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Pre/ace 

Richard Courant's Differential and Integral Calculus, Vols. I and 
II, has been tremendously successful in introducing several gener­
ations of mathematicians to higher mathematics. Throughout, those 
volumes presented the important lesson that meaningful mathematics 
is created from a union of intuitive imagination and deductive reason­
ing. In preparing this revision the authors have endeavored to main­
tain the healthy balance between these two modes of thinking which 
characterized the original work. Although Richard Courant did not 
live to see the publication of this revision of Volume II, all major 
changes had been agreed upon and drafted by the authors before Dr. 
Courant's death in January 1972. 

From the outset, the authors realized that Volume II, which deals 
with functions of several variables, would have to be revised more 
drastically than Volume I. In particular, it seemed desirable to treat 
the fundamental theorems on integration in higher dimensions with 
the same degree of rigor and generality applied to integration in one 
dimension. In addition, there were a number of new concepts and 
topics of basic importance, which, in the opinion of the authors, belong 
to an introduction to analysis. 

Only minor changes were made in the short chapters (6, 7, and 8) 
dealing, respectively, with Differential Equations, Calculus of Vari­
ations, and Functions of a Complex Variable. In the core of the book, 
Chapters 1-5, we retained as much as possible the original scheme of 
two roughly parallel developments of each subject at different levels: 
an informal introduction based on more intuitive arguments together 
with a discussion of applications laying the groundwork for the 
subsequent rigorous proofs. 

The material from linear algebra contained in the original Chapter 
1 seemed inadequate as a foundation for the expanded calculus struc­
ture. Thus, this chapter (now Chapter 2) was completely rewritten and 
now presents all the required properties of nth order determinants and 
matrices, multilinear forms, Gram determinants, and linear manifolds. 

v 



vi Preface 

The new Chapter 1 contains all the fundamental properties of 
linear differential forms and their integrals. These prepare the reader 
for the introduction to higher-order exterior differential forms added 
to Chapter 3. Also found now in Chapter 3 are a new proof of the 
implicit function theorem by successive approximations and a discus­
sion of numbers of critical points and of indices of vector fields in two 
dimensions. 

Extensive additions were made to the fundamental properties of 
multiple integrals in Chapters 4 and 5. Here one is faced with a familiar 
difficulty: integrals over a manifold M, defined easily enough by 
subdividing M into convenient pieces, must be shown to be inde­
pendent of the particular subdivision. This is resolved by the sys­
tematic use of the family of Jordan measurable sets with its finite 
intersection property and of partitions of unity. In order to minimize 
topological complications, only manifolds imbedded smoothly into 
Euclidean space are considered. The notion of "orientation" of a 
manifold is studied in the detail needed for the discussion of integrals 
of exterior differential forms and of their additivity properties. On this 
basis, proofs are given for the divergence theorem and for Stokes's 
theorem in n dimensions. To the section on Fourier integrals in 
Chapter 4 there has been added a discussion of Parseval's identity and 
of multiple Fourier integrals. 

Invaluable in the preparation of this book was the continued 
generous help extended by two friends of the authors, Professors 
Albert A. Blank of Carnegie-Mellon University, and Alan Solomon 
of the University of the Negev. Almost every page bears the imprint 
of their criticisms, corrections, and suggestions. In addition, they 
prepared the problems and exercises for this volume. l 

Thanks are due also to our colleagues, Professors K. O. Friedrichs 
and Donald Ludwig for constructive and valuable suggestions, and to 
John Wiley and Sons and their editorial staff for their continuing 
encouragement and assistance. 

FRITZ JOHN 

New York 
September 1973 

lin contrast to Volume I, these have been incorporated completely into the text; 
their solutions can be found at the end of the volume. 
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CHAPTER 

1 

Functions of Several 
Variables and Their Derivatives 

The concepts of limit, continuity, derivative, and integral, as 
developed in Volume I, are also basic in two or more independent 
variables. However, in higher dimensions many new phenomena, 
which have no counterpart at all in the theory of functions of a single 
variable, must be dealt with. As a rule, a theorem that can be proved 
for functions of two variables may be extended easily to functions of 
more than two variables without any essential change in the proof. 
In what follows, therefore, we often confine ourselves to functions of 
two variables, where relations are much more easily visualized 
geometrically, and discuss functions of three or more variables only 
when some additional insight is gained thereby; this also permits 
simpler geometrical interpretations of our results. 

1.1 Points and Point Sets in the Plane and in Space 

a. Sequences of Points: Convergence 

An ordered pair of values (x, y) can be represented geometrically 
by the point P having x and y as coordinates in some Cartesian coor­
dinate system. The distance between two points P = (x, y) and P' = 
(x', y') is given by the formula 

PP' = .J(x' - X)2 + (y' _ y)2, 

which is basic for euclidean geometry. We use the notion of distance 
to define the neighborhoods of a point. The f.-neighborhood of a point 

1 
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C = (a, ~) consists of all the points P = (x, y) whose distance from 
C is less than 1>; geometrically this is the circular diskl of center C 
and radius & that is described by the inequality 

(x - a)2 + (y - ~)2 < &2. 

We shall consider infinite sequences of points 

For example, Pn = (n, n2) defines a sequence all of whose points lie 
on the parabolay = x2• The points in a sequence do not all have to be 
distinct. For example, the infinite sequence P n = (2, (-l)n) has only 
two distinct elements. 

The sequence PI, P2, • • • is bounded if a disk can be found con­
taining all of the Pn, that is, if there is a point Q and a number M 
such that PnQ < M for all n. Thus the sequence Pn =(l/n, 1/n2) is 
bounded, and the sequence (n, n2), unbounded. 

The most important concept associated with sequences is that of 
convergence. We say that a sequence of points PI, P2, ... converges 
to a point Q, or that 

lim P n = Q, 
n~oo 

if the distances PnQ converge to O. Thus, lim P n = Q means that for 
n~oo 

every & > 0 there exists a number N such that Pn lies in the &-neigh-
borhood of Q for all n > N. 2 

For example, for the sequence of points defined by Pn = (e-nI4 cos n, 
e-nl4 sin n), we have lim P n = (0, 0) = Q, since here 

n~oo 

PnQ = e-nl4 ~ 0 for n~oo· 

We note that thePn approach the origin Q along the logarithmic 
spiral with equation r = e-9/4 in polar coordinates r, 9 (see Fig. 1.1). 

Convergence of the sequence of points P n = (Xn, Yn) to the point 

lThe word "circle," as used ordinarily, is ambiguous, referring either to a curve or 
to the region bounded by it. We shall follow the current practice of reserving the 
tenn "circle" for the curve only, and the tenn "circular region" or "disk" for the 
two-dimensional region. Similarly, in space we distinguish the "sphere" (i.e., the 
spherical surface) from the solid three-dimensional "ball" that it bounds. 
2Equivalently, any disk with center Q contains all but a finite number of the P,.. 
The notation P,. -+ Q for n -+ 00 will also be used. 
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Pa Po 

Figure 1.1 Converging sequence Pn• 

Q = (a, b) means that the two sequences of numbers Xn and Yn con­
verge separately and that 

lim Xn = a, lim Yn = b. 
n+'" n+'" 

Indeed, smallness of PnQ implies that both Xn - a and Yn - bare 
small, since IXn - al ~ PnQ, IYn - bl ~ PnQ; conversely, 

PnQ = ~(Xn - a)2 + (Yn - b)2 ~ IXn - al + IYn - bl, 

so that PnQ -+ 0 when both Xn -+ a and Yn -+ b. 
Just as in the case of sequences of numbers, we can prove that a 

sequence of points converges, without knowing the limit, using 
Cauchy's intrinsic convergence test. In two dimensions this asserts: 
For the convergence of a sequence of points Pn = (Xn, Yn) it is neces­
sary and sufficient that for every e > 0 the inequality PnPm < e 
holds for all n, m exceeding a suitable value N = N(e). The proof 
follows immediately by applying the Cauchy test for sequences of 
numbers to each of the sequences Xn and Yn. 

b. Sets of Points in the Plane 

In the study of functions of a single variable x we generally per­
mitted x to vary over an "interval," which could be either closed or 
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open, bounded or unbounded. As possible domains of functions in 
higher dimensions, a greater variety of sets has to be considered and 
terms have to be introduced describing the simplest properties of such 
sets. In the plane we shall usually consider either curves or two­
dimensional regions. Plane curves have been discussed extensively 
in Volume I (Chapter 4). Ordinarily they are given either "non­
parametrically" in the form y = f(x) or "parametrically" by a pair of 
functions x = tfi(t), y = If/(t) , or "implicitly" by an equation F(x, y) 
= 0 (we shall say more about implicit representations in Chapter 3). 

In addition to curves, we have two-dimensional sets of points, 
forming a region. A region may be the entire xy-plane or a portion of 
the plane bounded by a simple closed curve (in this case forming a 
simply connected region as shown in Fig. 1.2) or by several such 
curves. In the last case it is said to be a multiply connected region, 
the number of boundary curves giving the so-called connectivity; Fig. 
1.3, for example, shows a triply connected region. A plane set may not 
be connectedl at all, consisting of several separate portions (Fig. 1.4). 

oL-----------~-z o~--------------.x 

Figure 1.2 A simply connected region. Figure 1.3 A triply connected region. 

R 

Figure 1.4 A nonconnected region R. 

IFor a precise definition of "connected," see p. 102. 
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Ordinarily the boundary curves of the regions to be considered are 
sectionally smooth. That is, every such curve consists of a finite 
number of arcs, each of which has a continuously turning tangent 
at all of its points, including the end points. Such curves, therefore, 
can have at most a finite number of corners. 

In most cases we shall describe a region by one or more inequali­
ties, the equal sign holding on some portion of the boundary. The two 
most important types of regions, which recur again and again, are the 
rectangular regions (with sides parallel to the coordinate axes) and 
the circular disks. A rectangular region (Fig. 1.5) consists of the 
points (x, y) whose coordinates satisfy inequalities of the form 

a < x< b, c < y < d; 

each coordinate is restricted to a definite interval, and the point 
(x, y) varies over the interior of a rectangle. As defined here, our 
rectangular region is open; that is, it does not contain its boulldary. 

y 

d--~ 

c--~ 
I I 
I 
I 
I 
I 

O~~Ir-------~~~z 

Figure 1.5 A rectangular region. 

The boundary curves are obtained by replacing one or more of the 
inequalities defining the region by equality and permitting (but not 
requiring) the equal sign in the others. For example, 

x = a, 

defines one of the sides of the rectangle. The closed rectangle ob­
tained by adding all the boundary points to the set is described by the 
inequalities 

a;;;;; x;;;;; b, c;;;;;y;;;;; d. 

The circular disk with center (a, ~) and radius r (Fig. 1.6) is, as 
seen before, given by the inequality 
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It! 
I 
I 
I 

o~O(,---..! 

Figure 1.6 A circular disk. 

(x - a)2 + (y - ~)2 < r2. 

Adding the boundary circle to this "open" disk, we obtain the "closed 
disk" described by 

(x - a)2 + (y - ~)2 ~ r2. 

c. The Boundary 01 a Set. Closed and Open Sets 

One might think of the boundary of a region as a kind of membrane 
separating the points belonging to the region from those that do not 
belong. As we shall see, this intuitive notion of boundary would not 
always have a meaning. It is remarkable, however, that there is a 
way to define quite generally the boundary of any point set whatsoever 
in a way which is, at least, consistent with our intuitive notion. We 
say that a point P is a boundary point of a set S of points if every 
neighborhood of P contains both points belonging to S and points not 
belonging to S. Consequently, if P is not a boundary point, there 
exists a neighborhood of P that contains only one kind of point; that 
is, we either can find a neighborhood of P that consists entirely of 
points of S, in which case we call P an interior point of S, or 
we can find a neighborhood of P entirely free of points of S, in 
which case we call P an exterior point of S. Thus, for a given set S of 
points, every point in the plane is either boundary point or interior 
point or exterior point of S and belongs to only one of these classes. 
The set of boundary points of S forms the boundary of S, denoted 
by the symbol as. 

For example, let S be the rectangular region 

a < x< b, c<y< d. 
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Obviously, we can find for any point P of S a small circular disk with 
center P = (a, ~) that is entirely contained in S; we only have to take 
an E-neighborhood of P in which E is positive and so small that 

a < a - E < a + E < b, c < ~ - E < ~ + E < d. 

This shows that here every point of S is an interior point. The bound­
ary points P of S are just the points lying either on one of the sides 
or at a corner of the rectangle; in the first case, one-half of every 
sufficiently small neighborhood of P will belong to S and one-half 
will not. In the second case, one-quarter of every neighborhood 
belongs to S and three-quarters do not (Fig. 1.7). 

y 

d 

c 

o 
L-__ L-______ -L ________ ~x 

a b 

Figure 1.7 Interior point A, exterior point D, 
boundary points B, C of rectangular region. 

By definition, every interior point P of set S is necessarily a point 
of S, for there is a neighborhood of P consisting entirely of points of 
S, and P belongs to that neighborhood. Similarly, any exterior point 
of S definitely does not belong to S. On the other hand, the boundary 
points of a set sometimes do, and sometimes do not belong to the set. l 

The open rectangle 

a < x < b, c<y < d 

does not contain its boundary points, while the closed rectangle 

a ~ x ~ b, 

does. 

lObserve the distinction between "not belonging to S" and "exterior to S." A 
boundary point of S never is exterior, even when it does not belong to S. 
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Generally we call a set 8 of points open if no boundary point of 8 
belongs to 8 (Le., if 8 consists entirely of interior points). 8 is called 
closed if it contains its boundary. From any set 8 we can always 
obtain a closed set by adding to 8 all its boundary points, insofar 
as they do not belong to 8 already. We then obtain a new set, the 
closure S of 8. The reader can easily verify that the closure of 8 is a 
closed set. The exterior points are exactly those that do not belong to 
the closure of 8. Similarly, we define the interior 8° of 8 as the 
set of interior points of 8, that is, the set obtained by removing the 
boundary points from 8. The interior of 8 is open. 

It should be observed that sets do not have to be either open or 
closed. We can easily construct a set 8 containing only part of its 
boundary, such as the semiopen rectangle 

a ~ x < b, c ~y < d. 

It is also important to realize that our notion of-boundary applies to 
quite general sets and furnishes results far removed from intuition. 
A prime example of a set that is in no sense a "curve" or a "region" 
is the set 8 consisting of the "rational points" of the plane, that is, 
of those points P = (x, y) for which both coordinates x and yare 
rational numbers. Clearly, every disk in the plane contains both ra­
tional and nonrational points. Hence here there is no boundary 
"curve"; the boundary as consists of the whole plane. There exist 
neither interior nor exterior points. 

Even in cases where the boundary is one-dimensional, not all of 
it serves to separate interior from exterior points. For example, the 
inequalities 

(x - a)2 + (y - (3)2 < r2, 

describe a disk with one diameter cut out; here the boundary con-

Figure 1.8 Disk with diameter removed. 
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sists of the circle (x - a)2 + (y - P)2 = r2, and of the diameter 

y= p, Ix - al< r. 

Any sufficiently small neighborhood of a point of that diameter 
contains no exterior points at all (Fig. 1.8). 

d. Closure as Set of Limit Points 

The notions of "interior," "boundary," and "exterior" of a set 
8 are of importance when we consider limits of sequences of points 
P1, P2, ... all of which belong to the set 8.1 Clearly, a point Q 
exterior to 8 cannot be the limit of the sequence, since there is a 
neighborhood of Q free of points of 8, which prevents the Pk from 
coming arbitrarily close to Q. Hence, the limit of a sequence of points 
in 8 must either be a boundary point or an interior point of 8. Since 
the interior and boundary points of 8 form the closure of 8 it follows 
that limits of sequences in 8 belong to the closure of 8. 

Conversely, every point Q of the closure of 8 is actually the limit 
of some sequence P1, P2, . . . of points of 8, for if Q is a point of the 
closure, then Q either belongs to 8 or to its boundary. In the first 
case we have trivially in Q, Q, Q, . . . a sequence of points of 8 
converging to 8. In the second case, for any e > 0 the e-neighborhood 
of Q contains at least one point of 8. For every natural number n we 
may choose a point p" of 8 belonging to the e-neighborhood of Q 
with e = lIn. Clearly, the p" converge to Q. 

e. Points and Sets of Points in Space 

An ordered triple of numbers (x, y, z) can be represented in the 
usual manner by a point P in space. Here the numbers x, y, z, the 
Cartesian coordinates of P, are the (signed) distances of P from three 
mutually perpendicular planes. The distance PP' between the two 
points P = (x, y, z) and P' = (x', y', z') is given by 

PP' = .../(x' - X)2 + (y' - y)2 + (z' - Z)2. 

The e-neighborhood of the point Q = (a, b, c) consists of the points 
P = (x, y, z) for which PQ < e; these points form the ball given by 
the inequality 

(x - a)2 + (y - b)2 + (z - C)2 < e2• 

lThe points P", do not have to be distinct from one another. 
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The analogues to the rectangular plane regions are the rectangular 
parallelepipeds 1 described by a system of inequalities of the form 

a< X< b, c<y< d, e<z<f. 

All the notions developed for plane sets-boundary, closure, and 
so on-carryover to sets in three dimensions in an obvious way. 

When we are dealing with ordered quadruples like x, y, z, w, our 
visual intuition fails to provide a .geometrical interpretation. Still, 
it is convenient to make use of geometrical terminology, attributing 
to (x, y, z, w) a "point in four-dimensional space." The quadruples 
(x, y, z, w) satisfying an inequality of the form 

(x - a)2 + (y - b)2 + (z - C)2 + (w - d)2 < &2 

constitute, by definition, the &-neighborhood of the point (a, b, c, d). 
A rectangular region2 is described by a system of inequalities of the 
form 

a < x< b, c<y< d, e<z<f, g< w<h. 

Of course, there is nothing mysterious in this idea of "points" in 
four dimensions; it is just a convenient terminology and implies 
nothing about the physical reality of four-dimensional space. Indeed, 
nothing prevents us from calling an "n-tuple" (Xl, . . . ,Xn) a "point" 
in n-dimensional space, where n can be any natural number. For many 
applications it is quite useful and suggestive to represent a system 
described by n quantities in this way by a single point in some higher­
dimensional space.3 Often analogies with geometric interpretations 
in three-dimensional space provide guidance for operating in more 
than three dimensions. 

Exercises 1.1 

1. A point (x, y) of the plane may be represented by a complex number 
(Volume I, p. 103) in the form z = x + iy. Investigate the convergence 

lParallel epipedon (Greek for "plane"). 
2The terms "cell" and "interval" are also used to describe rectangular regions of 
this type in higher dimensions. 
lIThus the system of molecules of a gas in a container can be described by the position 
of a single point in a "phase-space" with a very high number of dimensions. Going 
even further, it is customary in some parts of analysis to represent an infinite 
sequence of numbers Xl, X2, • • • by a point (Xl, Xg, • • .) in a space with infinitely 
many dimensions. 
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for different values of z of the sequences 
(a) zn 

(b) zl/n where zl/n is defined as the primitive nth root of z, that is, as the 
root with minimum positive amplitude. 

2. Prove for P n = (Xn + ~n, yn + 1),,) that lim P n = (x + ~, Y + 1) 
n~oo 

where the limits x = lim Xn, ~ = lim ~n, y = lim Yn, 1) = lim 1)n are 
n-+oo n .... oo n-+oo n-+ oo 

presumed to exist. 
3. Show that every point of the disk X2 + y2 < 1 is an interior point. Is 

this also true for x 2 + y2 :s;; I? Explain. 
4. Show that the set S of points (x, y) with y > x 2 is open. 
5. What is the boundary of a line segment considered as a subset of the 

x, y·plane? 

Problems 1.1 

1. Let P be a boundary point of the set S that does not belong to S. Prove 
that there exists a sequence of distinct points PI, P2, . . . in Shaving P 
as limit. 

2. Prove that the closure of a set is closed. 
3. Let P be any point of a set S, and let Q be any point outside the set. 

Prove that the line segment PQ contains a boundary point of S. 
4. Let G be the set of points (x, y) for which I x I < 1, I y I < 1/2 and for which 

y < 0 if x = 1/2. Does G contain only interior points? Give evidence. 

1.2 Functions of Several Independent Variables 

a. Functions and Their Domains 

Equations of the form 

u = x + y, or u = log(l - x2 - y2) 

assign a functional value u to a pair of values (x, y). In the first two 
of these examples, a value of u is assigned to every pair of values 
(x, y), while in the third the correspondence has a meaning only for 
those pairs of values (x, y) for which the inequality x2 + y2 < 1 is true. 

In general, we say that u is a function of the independent variables 
x and y whenever some law f assigns a unique value of u, the depend­
ent variable, to each pair of values (x, y) belonging to a certain spec­
ified set, the domain of the function. A function u = f(x, y) thus 
defines a mapping of a set of points in the x, y-plane, the domain of 
f, onto a certain set of points on the u-axis, the range of f. Similarly, 
we say that u is a function of the n variables Xl, X2,. . • ,Xn if for each 
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set of values (Xl, . • . , Xn) belonging to a certain specified set there 
is assigned a corresponding unique value of u. l 

Thus, for example, the volume u = xyz of a rectangular paral­
lelepiped is a function of the length of the three sides x, y, z; the 
magnetic declination is a function of the latitude, the longitude, and 
the time; the sum Xl + X2 + . . . + Xn is a function of the n terms 
Xl, X2, • • • , Xn. 

It is to be noted that the domain of a function f is an indispensable 
part of its description. In cases where u = f(x, y) is given by an 
explicit expression, it is natural to take as domain of f all (x, y) for 
which this expression makes sense. However, functions given by the 
same expression but having smaller domains can be defined by "re­
striction." Thus the formula u = X2 + y2 can be used to define a func­
tion with domain X2 + y2 < 1/2. 

Just as in the case of functions of one variable, a functional 
correspondence u = f(x, y) associates a unique value of u with the 
system of independent variables x, y. Thus, no functional value is 
assigned by an analytic expression that is multi valued, such as 
arc tany/x, unless we specify, for example, that the "arc tangent" is to 
stand for the principal branch with values lying between -rt/2 and 
+ rt/2 (see Volume I, p. 214); in addition we have to exclude the line 
X = 0.2 

b. The Simplest Types of Functions 

Just as in the case of one independent variable, the simplest func­
tions of more than one variable are the rational integral functions or 
polynomials. The most general polynomial of the first degree, or 
linear function, has the form 

u = ax + by + c, 

where a, b, and c are constants. The general polynomial of the second 
degree has the form 

lOften we think of functions f as assigning a value to a point P rather than to the 
pair (x, y) of coordinates describing P. We write then f(P) for f(x, y). This notation is 
particularly useful when the functional relation between points P and values f(P) is 
defined geometrically without reference to a specific x, y-coordinate system. 
2Taking the principal value, we see that u = arc tan y / x for x > 0 is nothing but the 
polar angle of the point (x, y) counted from the positive x-axis. This polar angle can 
still be defined geometrically in an obvious way as a univalued function with values 
between -1t and 1t if we just exclude the origin and the points on the negative x-axis, 
but the polar angle is then no longer given by arc tany/x in the extended region, if 
we understand the arc tangent to mean the principal branch. 
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u = ax2 + bxy + cy2 + dx + ey + {. 

Its domain is the whole x, y-plane. The general polynomial of any 
degree is a sum of a finite number of terms amnxmyn (called monomi­
als), where m and n are nonnegative integers and the coefficients 
amn are arbitrary. 

The degree of the monomial amnxmyn is the sum m + n of the ex­
ponents of x and y, provided the coefficient amn does not vanish. The 
degree of a polynomial is the highest degree of any monomial with 
nonvanishing coefficient (after combining terms with the same powers 
of x and y). A polynomial.consisting of monomials all of which have 
the same degree N is called a homogeneous polynomial or a form of 
degree N. Thus x2 + 2xy or 3x3 + (7/5) x2y + 2y3 are forms. 

By extracting roots of rational functions we obtain certain algebra­
ic functions, l for example, 

Most of the more complicated functions of several variables that 
we shall use here can be described in terms of the well-known func­
tions of one variable, such as 

u = sin (x arc cos y) or u = logz y. 

c. Geometrical Representation of Functions 

Just as we represent functions of one variable by curves, we may 
represent functions of two variables geometrically by surfaces. To 
this end, we consider a rectangular x,y,u-coordinate system in 
space, and mark off above each point (x, y) of the domain R of the 
function in the x, y-plane the point P with the third coordinate u = 
{(x, y). As the point (x, y) ranges over the region R, the point P 
describes a surface in space. This surface we take as the geometrical 
representation of the function. . 

Conversely, in analytical geometry, surfaces in space are rep­
resented by functions of two variables, so that between such sur­
faces and functions of two variables there is a reciprocal relation. 
For example, to the function 

u = oJ1 - X2 - y2 

IFor a general definition of the term "algebraic function," see p. 229. 
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there corresponds the hemisphere lying above the x, y-plane, with 
unit radius and center at the origin. To the function u = x2 + y2 

there corresponds a so-called paraboloid of revolution, obtained by 
rotating the parabola u = x2 about the u-axis (Fig. 1.9). To the func­
tions u = x2 - y2 and u = xy, there correspond hyperbolic parabo­
loids (Fig. 1.10). The linear function u = ax + by + c has for its 
"graph" a plane in space. If in the function u = f(x, y) one of the 
independent variables, say y, does not occur, so that u depends on 
x only, say u = g(x), the function is represented in x,y,u-space by a 
cylindrical surface generated by the perpendiculars to the u, x-plane 
at the points of the curve u = g(x). 

u. 

Figure 1.9 u = x 2 + y2. Figure 1.10 u = X2 _ y2. 

This representation by means of rectangular coordinates has, how­
ever, two disadvantages. First, geometric visualization fails us when­
ever we have to deal with three or more independent variables. 
Second, even for two independent variables it is often more con­
venient to confine the discussion to the x,y-plane alone, since in the 
plane we can sketch and can perform geometrical constructions with­
out difficulty. From this point of view, anotp.er geometrical represen­
tation of a function of two variables, by means of contour lines, is 
sometimes preferable. In the x,y-plane we t~ke all the points for 
which u = f(x, y) has a constant value, say u = k. These points will 
usually lie on a Gurve or curves, the so-called contour line, or level 
line, for the given constant value k of the function. We can also 
obtain these curves by cutting the surface u = {(x, y) by the 
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plane u = k parallel to the x, y-plane and projecting the curves of 
intersection perpendicularly onto the x, y-plane. 

The system of these contour lines, marked with the corresponding 
values kI, k2, . . . of the height k, gives us a representation of the 
function. In practice, k is assigned values in arithmetic progression, 
say k = vh, where v = 1, 2, . . . The distance between the contour 
lines then gives us a measure of the steepness of the surface u = 
f(x, y), for between every two neighboring lines the value of the 
function changes by the same amount. Where the contour lines are 
close together, the function rises or falls steeply; where the lines are 
far apart, the surface is flattish. This is the principle on which contour 
maps such as those of the U.S. Geological Survey are constructed. 

In this method the linear function u = ax + by + c is represented 
by a system of parallel straight lines ax + by + c = k. The function 
u = x2 + y2 is represented by a system of concentric circles (cf. Fig. 
1.11). The function u = x2 - y2, whose surface is "saddle-shaped" 
(Fig. 1.10), is represented by the system of hyperbolas shown in Fig. 
1.12. 

y 

-2 

Figure 1.11 Contour lines of 
u = x2 + y2. 

Figure 1.12 Contour lines of 
u = x2 _ y2. 

The method of representing the function u = f(x, y) by contour 
lines has the advantage of being capable of extension to functions of 
three independent variables. Instead of the contour lines we then have 
the level surfaces f(x, y, z) = k, where k is a constant to which we can 
assign any suitable sequence of values. For example, the level sur­
faces for the function u = x2 + y2 + Z2 are spheres concentric about 
the origin of the x, y, z-coordinate system. 
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Exercises 1.2 

1. Evaluate the following functions at the points indicated: 

(a) Z -_ (arc cot (x + y»)3 £Oor 1 + -/3 1 --/3 
arc tan (x - y) ~I X = 2 ,y = 2 

(b) w = eCOS Z(X+II). for n 
x=y=2'z= -1 

(c) z = yX COS xII, X = e, y = logn 

(d) z = cosh (x + y), x = log n, y = log ~ 

x+y 1 1 
(e) z = x _ y' x = 2' y = 3' 

2. As in Volume I, unless we make an explicit exception, we consider the 
domain of a function defined by a formal expression to be the set of all 
points for which the expression is meaningful. Give the domain and 
range of each of the following functions: 

(a) z = -/:x:i=Y" 
(b) z = -/2x - y2 

1 
(c)z =r=== 

'\IX + y 

J X2 y2 
(d) z= 1----

a 2 b2 

(e) z = log (x + 5y) 

(f) z = -/x sin y 

(g) w = -/ a2 - x2 - y2 - Z2 

(h) z == x2 - y2 
x+y 

(i) z = -/3 - x2 - 2y2 

(j) Z = -/-x2 - y2 

(k) z = log (x2 - y2) 

x2 
(1) Z = arc tan X2 + y2 

(m) z= arc tan x ~ y 

(n) z = cos arc tan ~ 

(0) z = arc cos log (x + y) 

(P) z = -/y cos x. 

3. What is the number of coefficients of a polynomial of degree n in two 
variables? In three variables? In k variables? 

4. For each of the following functions sketch the contour lines correspond· 
ing to z = -2, -1,0,1,2,3: 

(a) z = x2y 

('0) z = X2 + y2 - 1 

(c) z = X2 - y2 

(d) z = y2 

(e) z = y (1- x2 ~ y2)' 
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5. Draw the contour lines for z = cos (2x + y) corresponding to z = 0, 
± 1, ± 1/2. 

6. Sketch the surfaces defined by 

(a) z = 2xy 

(b) z = x2 + y2 

(c) Z = x - y. 

(d) z = x2 

(e) z = sin (x + y). 

7. Find the level lines of the function 

_ I+Jx2+y2 
z - log 1 _ Jx2 + y2 . 

8. Find the surfaces on which the function u = 2 (x2 + y2)/Z is constant. 

1.3 Continuity 

a. Definition 

As in the theory of functions of a single variable, the concept of con­
tinuity figures prominently when we consider functions of several 
variables. The statement that the function u = f(x, y) is continuous 
at the point (~, TJ) should mean, roughly speaking, that for all points 
(x, y) near (~, TJ) the value of f(x, y) differs but little from the value 
f(~, TJ). We express this idea more precisely as follows: If f has the 
domain R and Q = (~, TJ) is a point of R, then f is continuous at Q if 
for every e > 0 there exists a 0 > 0 such that 

(1) If(P) - f(Q) I = lI(x, y) - f(~, TJ)I <e 

for all P = (x, y) in R for which 1 

(2) PQ = J(x - ~)2 + (y - TJ)2 < O. 

If a function is continuous at every point of a set D of points, we say 
that it is continuous in D. 

The following facts are almost obvious: The sum, difference, and 

lInstead of confining (x. y) to a small disk with center (e. TI) we could use a small 
square. Thus condition (2) in the definition of continuity can be replaced by 

(2') Iy -TIl < o. 
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product of continuous functions are also continuous. The quotient 
of continuous functions defines a continuous function at points where 
the denominator does not vanish (for the proof see the next section, 
p. 00). In particular, all polynomials are continuous, and all rational 
functions are continuous at the points where the denominator does 
not vanish. Continuous functions of continuous functions are them­
selves continuous (cf. p. 22). 

A function of several variables may have discontinuities of a much 
more complicated type than a function of a single variable. For 
example, discontinuities may occur along whole arcs of curves, not 
just at isolated points. This is the case for the function defined by 

u =y/x for X7=O; u=O for x= 0, 

which is discontinuous along the whole line x = O. Moreover, a 
function f(x, y) may be continuous in x for each fixed value of y and 
continuous in y for each fixed value of x, and yet be discontinuous as 
a function of the point (x, y). This is exemplified by 

for (x, y) 7= (0, 0), f (0, 0) = o. 

For any fixed y 7= 0, this function is obviously continuous as a 
function of x, as the denominator cannot vanish. For y = 0 we have 
f(x, 0) = 0, which also is continuous as a function of x. Similarly, 
f(x, y) is continuous as a function of y for any fixed x. But at every 
point ofthe line y = x except at the point x = y = 0 we have f(x, y) = 
1, and there are points of this line arbitrarily close to the origin. 
Hence, f(x, y) is discontinuous at the point (0, 0). 

Just as in the case of functions of a single variable, a function 
f(P) = f(x, y) is called uniformly continuous in the set R of the x, y­
plane if f is defined at the points of R and if for every 8 > 0 there exists 
a positive 0 = 0(8) such that If(P) - f(Q) I < 8 for any two points 
P, Q in R of distance < 0.1 The quantity 0 = 0(8) is called a modulus 
of continuity for f. We have the basic theorem: 

A function f that is defined and continuous in a closed and bounded 
set R is uniformly continuous in R. (For the proof see the Appendix 
to this chapter.) 

Particularly important is the case in which we can find a modulus 
of continuity that is proportional to 8 (see Volume I, p. 43). The 

lThe essential requirement making the continuity uniform is that 0 depends on E but 
not on P or Q. 
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function {(P) defined in R is called Lipschitz-continuous if there 
exists a constant L such that 

(3) I{(P) - {(Q) I ~ L PQ for all points P, Q in R. 

(L is called the "Lipschitz constant," relation (3) the "Lipschitz 
condition.") It is clear that a Lipschitz-continuous function { is 
uniformly continuous and has 3 = ElL as modulus of continuity.l 

b. The Concept of Limit of a Function of Several Variables 

The notion of limit of a function is closely related to the notion 
of continuity. Let us suppose that {(x, y) is a function with domain 
R. Let Q = (~, TJ) be a point of the closure of R. We say that { has the 
limit L {or (x, y) tending to (~, TJ) and write 

(4) lim {(x, y) = L 
(%.y)->(~. "I) 

or lim {(P) = L, 2 
P->Q 

if for every E > 0 we can find a neighborhood 

(5) PQ = ./(x - ~)2 + (y - TJ)2 < 3 

of (~, TJ) such that 

If(P) - LI = If(x, y) - LI < E 

for all P = (x, y) belonging to R in that neighborhood.3 

In case the point (~, TJ) belongs to the domain of {we have in (x, y) = 
(~, TJ) a point of R satisfying (5) for all 3 > O. Then (4) implies in 
particular that 

If(~, TJ) - LI < E 

IThe still wider class of "Holder-continuous" functions fis obtained when we replace 
the Lipschitz condition (3) by the Holder condition 

If(P)-f(Q)I~L PQ" for all P, Q in R. 
L and a are constants and 0 < a ~ 1 (see Volume I, p. 44). These functions also 
are uniformly continuous, and we can choose as modulus of continuity the quantity 

0= (E/L)l/U 

20r else lim f(x, y) = L for (x, y) ~ (I;, 1'\) or lim f(x, y) = L. 
x->!; 
Y->"I 

3The notion makes no sense for points (I;, 1'\) exterior to R since then there exist no 
points arbitrarily close to (I;, 1'\) in which f is defined, and every L could be con­
sidered as limit. 
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for all 8 > 0 and hence that L = {(~, TJ). But then, by definition, the 
relation 

lim {(x, y) = {(~, TJ) 
(x. y)-->(I;, 11) 

is identical with the condition for continuity of { at (~, TJ). Hence, 
continuity o{ the {unction { at the point (e, ,,) is equivalent to the statement 
that {is defined at (e. ,,) and that {(x. y) has the limit {(e, ,,) {or (x, y) 
tending to (e, ,,). 

If {is not defined at the boundary point (~, TJ) of its domain but has 
a limit L for (x, y) -+ (~, TJ), we can naturally extend the definition of 
{to the point (~, TJ) by putting {(~, TJ) = L; the function {extended in 
this way will then be continuous at (~, TJ). If {(x. y) is continuous in 
its domain R, we can extend the definition of { as limit not just to a 
single boundary point (~, TJ) but simultaneously to all boundary points 
of R for which { has a limit. The resulting extended function is 
again continuous, as the reader may verify as an exercise. Take, for 
example, the function 

2 {(x, y) = e-X II/ 

defined for all (x. y) with y > O. This function obviously is continuous 
at all points of its domain R. the upper half-plane. Consider a bounda­
ry point (~, 0). For ~ *" 0 we have clearly 

lim {(x, y) = lim e-a = 0 
(x. y)-->(I;, 11) 8-->" 

when y is restricted to positive values. If then we define the extended 
function {*(x. y) by 

2 {*(x, y) = {(x, y) =e-x II/ 

for y > 0 and all x, and by 

{*(x,O) = 0 

for x *" O. the function {* will be continuous in its domain R* where 
R* is the closed upper half-plane y ~ 0 with the exception of the 
point (0, 0). At the origin {* does not have a limit, and hence it is not 
possible to define {*(O, 0) in such a way that the extension is con­
tinuous at the origin. Indeed, for (x. y) on the parabola y = kX2, we 
have 
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f(x, y) = e-lik• 

Approaching the origin along different parabolas leads to different 
limiting values, so that there exists no single limit of f(x, y) for (x, y) 
~o. 

We can also relate the concept of limit of a function f(x, y) to that 
of limit of a sequence (cf. Volume I, p. 82). Suppose f has the domain 
Rand 

lim f(x, y) = L. 
(x. Y)-+(~.l1) 

Let Pn = (Xn, j'n) for n = 1, 2, ... , be any sequence of points in R for 
which lim Pn = (~, TJ). Then the sequence ofnumbersf(xn, Yn) has the 

n-+oo 

limit L. For f(x, y) will differ arbitrarily little from L for all (x, y) in R 
sufficiently close to (~, TJ), and (Xn, Yn) will be sufficiently close to (~, TJ) 
if only n is sufficiently large. Conversely, lim f(x ,y) for (x, y) ~ (~, TJ) 

n-+oo 

exists and has the value L if for every sequence of points (Xn, Yn) in 
R with limit (~, TJ) we have lim f(xn, Yn) = L. The proof can easily be 

n-+oo 

supplied by the reader. If we restrict ourselves to points (~, TJ) in the 
domain of f, we obtain the statement that continuity off in its domain 
R means just that 

(6) lim f(xn, Yn) = f(~, TJ) 
n-+oo 

whenever lim (Xn, yn) = (~, TJ) or that 
n-+oo 

limf(xn, yn) = f(lim Xn, lim Yn), 
n400 n4~ n400 

where we only consider sequences (Xn, Yn) in R that converge and have 
their limits in R. Essentially, then, continuity of a function fallows 
the interchange of the symbol for f with that for limit. 

It is clear that the notions of limit of a function and of continuity 
apply just as well when the domain offis not a two-dimensional region 
but a curve or any other point set. For example, the function 

f(x + y) = (x + y)! 

is defined in the set R consisting of all the lines x + Y = const. = n, 
where n is a positive integer. Obviously, fis continuous in its domain 
R. 
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It was mentioned earlier (p. 17) that when {(x, y) and g(x, y) are 
continuous at a point (~, 11), then{ + g, { - g, { • g, and for g(~, '11) oF 0 
also {Ig are continuous at (~, 11). These rules follow immediately 
from the formulation of continuity in terms of convergence of se­
quences. For any sequence (Xn, Yn) of points belonging to the domains 
of { and g and converging to (~, 11), we have by (6) 

lim {(Xn, Yn) = {(~, 11), lim g(Xn, Yn) = g(~, 11). 
n-+oo n-+oo 

The convergence of {(Xn, Yn) + g(Xn, y,,) and so on follows then from 
the rules for operating with sequences (Volume I, p. 72). 

c. The Order to Which a Function Vanishes 

If the function {(x, y) is continuous at the point (~, 11), the difference 
{(x, y) - {(~, 11) tends to 0 as x tends to ~ and y tends to 11. By intro­
ducing the new variables h = x - ~ and k = y - 11, we can express 
this as follows: The function ~(h, k) = {(~ + h, 11 + k) - {(~, 11) of 
the variables hand k tends to 0 as hand k tend to o. 

We shall frequently meet with functions ~(h, k) which tend to 0 as 
hand k do. As in the case of one independent variable, for many 
purposes it is useful to describe the behavior of ~(h, k) for h ~ 0 and 
k ~ 0 more precisely by distinguishing between different "orders of 
vanishing" or "orders of magnitude" of ~(h, k). For this purpose we 
base our comparisons on the distance 

p = ./h2 + k2 = ./(x - ~)2 + (y - 11)2 

of the point with coordinates x = ~ + hand y = 11 + k from the point 
with coordinates ~ and 11 and make use of the following definition: 

A function ~(h, k) vanishes as p ~ 0 to at least the same order as 
p = ./h2 + k2, provided that there is a constant C independent of 
hand k such that the inequality 

I~(h~ k)1 ~ C 

holds for all sufficiently small values of p; that is, provided there is a 
o > 0 such that the inequality holds for all values of hand k such that 

lin order to avoid confusion, we expressly point out that a higher order of vanishing 
for p -+ 0 implies smaller values in the neighborhood of p = 0; for example, p2 van­
ishes to a higher order than p and p2 is smaller than p when p is nearly o. 
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0< ./h2 + k 2 < (). We write, then, symbolically:~(h,k) = O(p).Further, 
we say that ~(h, k) vanishes to a higher order! than p if the quotient 
~(h, k)/p tends to 0 as p ~ o. This will be expressed by the symbolical 
notation ~(h, k) = o(p) for (h, k) ~ 0 (see Volume I, p. 253, where the 
symbols "0" and "0" are explained for functions of a single variable). 

Let us consider some examples. Since 

~L<l 
./h2+k2 = 

and ~1~-<1 
./h2+k2= , 

the components hand k of the distance p in the direction of the x 
and y-axes vanish to at least the same order as the distance itself. The 
same is true for a linear homogeneous function ah + bk with con­
stants a and b or for the function p sin l/p. For fixed values of a greater 
than 1, the power pn of the distance vanishes to a higher order than 
p; symbolically, pn = o(p) for a> 1. Similarly, a homogeneous 
quadratic polynomial ah2 + bhk + ck2 in the variables hand k 
vanishes to a higher order than p as p ~ 0: 

ah2 + bhk + ck2 = o(p). 

More generally, the following definition is used. If the comparison 
function ro(h, k) is defined for all nonzero values of (h, k) in a sufficient­
ly small circle about the origin and is not equal to 0, then ~(h, k) 
vanishes to at least the same order as ro(h, k) as p ~ 0 if for some suit­
ably chosen constant C the relation 

I t/> (h, k) 1< C 
ro(h, k) = 

holds in a neighborhood of the point (h, k) = (0, 0). We indicate this 
by the symbolic equation ~(h, k) = O(ro(h, k». Similarly, ~(h, k) 
vanishes to a higher order than ro(h, k), or ~(h, k) = o(ro(h, k», if 
~(h, k) 
ro(h, k) ~ 0 when p ~ o. 

For example, the homogeneous polynomial ah2 + bhk + ck2 is at 
least of the same order as p2, since 

lah2 + bhk + ck21 ~ (Ia l + ~ Ibl + Ic l)(h2 + k 2) 

Also p = 0(1/ Ilog pi), since lim (p log p) =0 (Volume I, p. 252). 
p~o 
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Exercises 1.3 

1. The function z = (x - y)/(x + y) is discontinuous along y = -x. Sketch 
the level lines of its surface for z = 0, ± 1, ±2. What is the appearance 
of the level lines for z = ±m, and m large? 

2. Examine the continuity of the function z = (x2 + y)-'; X2 + y2, where 
z = 0 for x = y = o. Sketch the level lines z = k (k = -4, -2,0,2,4). 
Exhibit (on one graph) the behavior of z as a function of x alone for y 
=-2, -1,0,1, 2. Similarly, exhibit the behavior of z as a function of 
y alone for x = 0, ± 1, ±2. Finally, exhibit the behavior of z as a function 
of p alone when 6 is constant (p, 6 being polar coordinates). 

3. Verify that the functions 
(a) f(x, y) = x3 - 3xy2 

(b) g(x, y) = X4 - 6X2y 2 + y4 
are continuous at the origin by determining the modulus of continuity 
3(£). To what order does each function vanish at the origin? 

4. Show that the following functions are continuous: 

(a) sin (x2 + y) 

(b) sin xy 
';x2 + y2 

x3 +y3 
(c) x 2 + y2 

(d) x 2 log (x2 + y2) 
where in each case the function is defined at (0, 0) to be equal to the 
limit of the given expression. 

5. Find a modulus of continuity, 3 = 3(e, x, y), for the continuous func­
tions 

(a) f(x, y) = ';1 + x2 + 2y2 

(b) f(x, y) = ';1 + e%1I. 

6. where is the function z = 1/(x2 - y2) discontinuous? 
7. Where is the function z = tan ny Icos nx discontinuous? 
8. For what set of values (x, y) is the function z = ';y cos x continuous? 
9. Show that the function z = 1/(1 - x2 - y2) is continuous in the unit 

disk x2 + y2 < 1. 
11. Find the condition that the polynomial 

P = ax2 + 2bxy + cy2 

has exactly the same order as p2 in the neighborhood of x = 0, y = 0 
(i.e., that both Plp2 and p2/P are bounded). 

12. Find whether or not the following functions are continuous, and if 
not, where they are discontinuous: 

(a) sin .1... 
x 
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x3 +y2 
(b) X2 + y2 

X3 +y2 
(c) X 3 + y3 

(d) x3 + y2 
x2 +y 

13. Show that the functions 

x4y4 
f(x, y) = (x2 + y4)3 , 

x2 

g(x, y) = x2 + y2 _ X 

tend to 0 if (x, y) approaches the origin along any straight line but that 
f and g are discontinuous at the origin. 

14. Determine whether the following functions have limits at x = y = 0 
and give the limit when it exists. 

x2 _y2 
(a) x2 + y2 

X2 + 2xy + y2 
(b) x2 + y2 

x 2 +3xy+y2 
(c) x2 + 4xy + y2 

d Ix-yl 
( ) - x 2 - 2xy + y2 

(f) Ixl ll 

(g) I X I' 1111' 

(h) * lyll~1 ../x2 + y2 
../x2 + y2 + Iy/xl 

15. Find a modulus of continuity 8(e:) for those functions of Exercise 14 
that have limits at x = y = 0, where the functions are defined at the 
origin by their limiting values. 

16. Show that f(x, y, z) = (x2 + y2 - Z2)/(X2 + y2 + Z2) is not continuous at 
(0,0,0). 

17. Prove that if P(x, y) and Q(x, y) are each polynomials of degree n > 0, 
vanishing at the origin, 

P(x, y) 
R(x, y) = Q(x, y) 

is not continuous at the origin. 
18. Find the limits of the following expressions as (x, y) tends to (0, 0) in an 

arbitrary manner: 

(a) sin (x2 + y2) 
x2 + y2 

(b) sin (x4 + y4) 
X2 +y2 

e-1I(X2+112 ) 

(c) X4 + y4 . 
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19. Show that the function z = 3(x - y)/(x + y) can tend to any limit 
as (x, y) tends to (0, 0). Give examples of variations of (x, y) such that 
(a) lim z = 2 

x+O 
y+O 

(b) lim z=-l 
x+O 
y+O 

(c) lim z does not exist 
x+O 
y+O 

20. Iff(x, y) -> 0 as (x, y) -> (0, 0) along all straight lines passing through the 
origin, does f(x, y) -> 0 as (x, y) -> (0,0) along any path? 

21. Investigate the behavior of z = y log x in a neighborhood of the origin 
(0,0). 

22. For z = f(x, y) = (x2 - y)/2x, draw the graphs of 

(a) z = f(x, x 2) 

(b) z = f(x, 0) 

(c) z = f(x, 1) 

(d) z = f(x, x) 

Does the limit of f(x, y) as (x, y) -> (0, 0) exist? 
23. Give a geometrical interpretation of the following statement: cp(h, k) 

vanishes to the same order as p = Jh2 + k2• 

Problems 1.3 

1. Let the continuous function f be extended to the function f* defined so 
that f* = f on the domain of f and f*(Q) = lim f(P) for all points Q on 

P-->Q 

the boundary of f where the limit exists. Prove that f* is continuous. 
2. Prove that lim f(x, y) for (x, y) -> (~, 1) exists and has the value L if 

and only if for every sequence of points (Xn, Yn) in the domain of f with 
limit (~, 1) we have lim f(xn, Yn) = L. 

n-->oo 

1.4 The Partial Derivatives of a Function 

a. Definition. Geometrical Representation 

If in a function of several variables we assign definite numerical 
values to all but one of the variables and allow only that variable, 
say x, to vary, the function becomes a function of a single variable. We 
consider a function u = f(x, y) of the two variables x and y and 
assign to y a definite fixed value y = yo = c. The resulting function 
u = f(x, yo) of the single variable x may be represented geometrically 
by cutting the surface u = f(x, y) by the plane y = yo (cf. Figs. 1.13 
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u 

x 

Figure 1.13 and Figure 1.14 Sections of u = f(x , y). 

and 1.14). The curve of intersection thus formed in the plane is re­
presented by the equation u = f(x, yo). If we differentiate this function 
in the usual way at the point x = Xo, assuming that f is defined in a 
neighborhood of (xo, yo) and that the derivative exists,l we obtain the 
partial derivative of f(x , y) with respect to x at the point (xo , Yo): 

1· f(xo + h, yo) - f(xo, Yo) 
1m h . 

h-->O 

Geometrically, this partial derivative denotes the tangent of the 
angle between a parallel to the x-axis and the tangent line to the 
curve u = f(x, yo). It is therefore the slope of the surface u = f(x, y) in 
the direction of the x-axis. 

To represent these partial derivatives several different notations 
are used, one of which is the following: 

1· f(xo + h, yo) - f(xo , Yo) f ( ) ( ) 
1m h = x Xo, yo = ux Xo, yo . 

h-->O 

If we wish to emphasize that the partial derivative is the limit of a 
difference quotient, we denote it by 

of or 
ox 

Here we use the special round letter 0 instead of the ordinary d used 
in the differentiation of functions of one variable in order to show 
that we are dealing with a function of several variables and differenti­
ating with respect to one of them. 
IWe shall not try to define a derivative at boundary points of the domain (except, 
on occasion, as limit of the values of partial derivatives as the boundary point is 
approximated by interior points). 
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For some purposes it is convenient to use Cauchy's symbol D (men­
tioned on p. 158 of Volume I) and to write 

but we shall seldom use this symbol. 
In exactly the same way we define the partial derivative of {(x, y) 

with respect to y at the point (xo, yo) by the relation 

1· {(xo, yo + k) - {(xo, Yo) ~ ( ) D ~( ) 
1m k = /7/ Xo, yo = 7//' Xo, yo • 

k ..... O 

This represents the slope of the curve of intersection of the surface 
U = {(x, y) with the plane x = Xo perpendicular to the x-axis (Fig. 
1.14). 

Let us now think of the point (xo. yo), hitherto considered fixed, as 
variable and accordingly omit the subscripts o. In other words, we 
think of the differentiation as carried out at any point (x, y) of the 
region of definition of {(x, y). Then the two derivatives are themselves 
functions of x and y, 

Uz(x, y) = {z(x, y) = a{<:; y) and U (x y) - ~ (x y) - a{(x, y) 
7/, - /'11\, - ay . 

For example, the function U = x2 + y2 has the partial derivatives 
uz = 2x (in differentiation with respect to x the term y2 is regarded 
as a constant and so has the derivative 0) and U7/ = 2y. The partial 
derivatives of U = x3y are Uz = 3x2y and U7/ = x3• 

Similarly, for a function of any number n of independent variables, 
we define partial derivatives by 

a{(XI, X2, . . . ,Xn) = lim {(Xl + h, X2, . . . , Xn) - {(Xl, X2, . . . ,Xn) 
aXl h-->O h 

it being assumed that the limit exists. 
Of course, we can also form higher partial derivatives of {(x, y) by 

again differentiating the partial derivatives of the "first order," 
{z(x, y) and {7/(x, y), with respect to one of the variables and repeating 
this process. We indicate the order in which the differentiations are 
carried out by the order of the subscripts or by the order of the 
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symbols ox and oy in the "denominator" from right to leftl and use 
the following symbols for the second derivatives: 

:x (~~) = o!2ty = fzy = DzDyf, 

o (of) o2f 
oy ox = oy ox = fyz = DyDzf, 

:)~~) = ~~ = fyy = (Dy)2f. 

We likewise denote the third partial derivatives by 

o (o2f) o3f 
ox ox2 = ox3 = fzzz, 

o (o2f) o3f 
oy ox2 = oy ox2 = fyzz, 

o ( o2f) o3f 
ox oxoy = ox2oy = fzzy, 

and so on, and in general the nth derivatives by 

and so on. 
The different notations for partial derivatives have their respective 

advantages. Writing of (x, y)/ox or Dzf(x, y) for the partial derivative 
of the function f(x, y) with respect to its first argument emphasizes 
that differentiation has the character of an operator Dz or %x acting 
on the function, written symbolically as a factor multiplying the 
function. The notation for higher derivatives is consistent with this 
idea of a product: 

lThis is consistent with the general notation for symbolic products of operators (see 
Volume I, p. 53). Actually, the order in which differentiations are carried out turns 
out to be immaterial in most cases of interest (see p. 36). 
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A disadvantage of the operator notation is its clumsiness when it 
comes to indicating for what values of the independent variables the 
derivatives are taken. For example, if {(x, y) = x2 + 2xy + 4y2, then 
its x-derivative at the point x = 1, y = 2 can be written as 

( a{(x, y») = {z(l, 2) = (2x + 2y) _ = 6. 
ax %=1 %-1 

y=2 y=2 

We should not write it simply as 

a{(1,2) 
ax 

since {(I, 2) has the constant value 21 and hence has 0 as its x-deriv­
ative. 

Just as in the case of one independent variable, the possession of 
derivatives is a special property of a function, not enjoyed even by all 
continuous functions.1 All the same, this property is possessed by all 
functions of practical importance, except perhaps at isolated ex­
ceptional points or curves. 

Exercises 1.4 a 

1. Find az/ax, az/ay for each of the following: 

(a) z = axn + bym, a, b, m, n constants (h) z = 3%111 

(b) z = 2xell + 3y (i) z = log (x + ~) 
(c) z = 2:!. + 3 J:'. (j) z = cos (x2 + y) y x 

(d) z = arc tan :2 
(e) z = X 2y 3/2 

(f) z=yX 

(g) z = xl/2 y3/4 

(k) z = tan (xy3 + eX) 

(1) z = C?S x 
sm y 

(m) z = xell + yeX 

(n) z = X../X2 + y2 

2. Find the first partial derivatives of the following: 

(a) ~X2 + y2 
1 

(d) ../1 + x + y2 + Z2 

(b) sin (x2 - y) (e) y sin xz 

lFor an explanation of the term "differentiable", which linplies more than that the 
partial derivatives with respect to x and y exist, see pp. 41-42. 
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(c) eX - Y (f) log v'l + x 2 + y2 

3. Find all the first and second partial derivatives of the following: 

(a) xy 

(b) log xy 

(c) tan (arc tan x + arc tan y) 

(d) xY 

(e) e(xY) 

4. Let w = f(x, y, z) = (cos x/sin y)ez. Find fx, fy, fz, for x = 71", Y = 71"/2, 
z = log 3. 

5. ;For f(x, y) = y cosh x + x sinh y, find fx2 + fy2 at x = 0, y = O. 
6. Show that the functions u =eX cos y, v = eX sin y, satisfy the con­

ditions Ux = Vy, Uy = - Vx. 
7. Show that the functions of Exercise 6 satisfy the partial differential 

equation 
fxx + fyy = O. 

Do the same for the functions 

(a) log v' x 2 + y2 

(b) arc tan~ 
x 

(c) -y­
x2 + y2 

(d) 3x2y - y3 

(e) .J x + .JX2"+Y2 
8. For r = v' x 2 + y2 + Z2, find rxx + ryy + rzz. 
9. Find a constant a for which if z = y3 + ayx2, then Zxx + Zyy = O. 

10. Prove that the function 
1 

f(XI, X2, ... , Xn)= (X12 + X22 + ... + Xn2)(n-2)12 

satisfies the equation 

fXIXI + fX2X2 + ... + fXnxn = O. 

Problems 1.4 a 

1. How many nth derivatives has a function of three variables? of k varia­
bles? 

2. Give an example of a function f(x, y) for which fx exists and fy does not. 
3. Find a functionf(x, y) that is a function of (x2 + y2) and is also a product 

of the form ~(x) ~(y); that is, solve the equation 

f(x, y) = <P(x2 + y2) = ~(x)~(y) 
for the unknown functions. 
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4. Prove that any function of the form 

u(x, y, z) = f(t + r) + g(t - r) 
r r 

(where r2 = x 2 + y2 + Z2), satisfies the equation 

U;r;;r; + U,," + Uzz = Utt. 

b. Examples 

In practice, partial differentiation involves nothing that the 
student has not already met. For, according to the definition, all the 
independent variables are to be kept constant except the one with 
respect to which we are differentiating. Therefore, we have merely to 
regard the other variables as constants and carry out the differenti­
ation according to the rules by which we differentiate functions of a 
single independent variable. We list some partial derivatives of 
several simple functions. 

1. Function: 

First derivatives: 

Second derivatives: 

{zz= 0, 

2. Function: 

First derivatives: 

{(x, y) = xy 

{z =y, lv = x 

{X'Y = {'Yx = 1, {'Y'Y = 0 

{(x, y) = ./x2 + y2 

f - Y 
'Y - ./x2 + y2 

[Thus, for the radius vector r = ./ x2 + y2 from the origin to the point 
(x, y), the partial derivatives with respect to x and to yare given by cos (J 
= x/r, and sin (J = y/r, where (J is the angle that the radius vector 
makes with the positive direction of the x-axis.] 

Second derivatives: 
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_ y2 _ sin2 tP 
fzz - ./ x2 + y2)3 - -r-' 

xy sin tP cos tP 
fzy = fyz = - ./(x2 + y2)3 = - r ' 

3. Reciprocal of the radius vector in three dimensions: 

First derivatives: 

x x 
fz = - ./(X2 + y2 + Z2)3 = - ra' 

~ y - Y 
III = - ./(x2 + y2 + z2)a - - r3' 

~ z z. 
11, = - ./(x2 + y2 + Z2)3 -;:a' 

Second derivatives: 

1 3x2 
/zz = - r3 + TS' 

3xy 
fZIl = fllz = -;:s, 

1 3y2 
/yy = - 3 + -6' r r 

3yz 
fill, = fzy = T5' 

1 3z2 
/ZZ=-3+-S' r r 

3zx 
fzz = fzz = -s . r 

From this we see that for the function f = ./ 2 1 2 2 the 
x +y + z 

equation 

f + ~ + ~ - l + 3(x2 + y2 + Z2) - 0 
zz 11111 11,1, - - r3 r S -

holds for all values of x, y, z except 0,0,0; we say, the function 
f(x, y, z) = 1/r satisfies the partial differential equation ("Laplace 
equation") 
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{xx + {1/1/ + {ZZ = o. 
4. Function: 

1 2 {(x, y) = ';y e-(x-a) 141/ 

First derivatives: 

f = -(x - a) -(x-a)2/41/ 
x 2y3/2 e , 

~ = (-1 + (x - a)2) -(x-a)2/41/ 
/1/ 2y 3/2 4y S/2 e 

Second derivatives: 

f = (-1 + (x - a)2) -(x-a)2/41/ 
xx 2y3/2 4y S/2 e , 

f - ~ - (~x - a _ (x - a)3) -(x-a)2/41/ 
X1/ - /1/X - 4 yS/2 8y7/2 e , 

f = (~~ _1 (x - a)2 + (x - a)4) -(x-a)2/41/ 
1/1/ 4 yS/2 2 y7/2 16y9/2 e . 

The partial differential equation/xx - /1/ = 0 is therefore satisfied 
identically in x and y. 

c. Continuity and the Existence of Partial Derivatives 

For a function of a single variable, the existence of the derivative 
at a point implies the continuity of the function at that point (cf. 
Volume I, p. 166). In contrast to this, the possession of partial deriv­
atives does not imply the continuity of a function of two variables: 
for example, the function u(x, y) = 2xy/(x2 + y2), with u(O, 0) = 0, has 
partial derivatives everywhere, and yet we have already seen (p. 18) 
that it is discontinuous at the origin. Geometrically speaking, the 
existence of partial derivatives restricts the behavior of the function in 
the directions of the x- and y-axes only and not in other directions. 
Nevertheless, the possession of bounded partial derivatives does imply 
continuity, as is stated by the following theorem: 
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If afunctionf(x,y) has partial derivatives fx and fy everywhere in an 
open set R, and these derivatives everywhere satisfy the inequalities 

Ifx(x, y)1 < M, Ify(x, y) 1< M, 

where Mis independent of x andy, then f(x, y) is continuous everywhere 
in R.1 

For the proof, we consider two points with coordinates (x, y) and 
(x + h, y + k), respectively, both lying in the region R. We further 
assume that the two line segments joining these points to the point 
(x + h, y) both lie entirely in R; this is certainly true if (x, y) is a 
point interior to R and the point (x + h, y + k) lies sufficiently close 
to (x, y). We then have 

(7) f(x + h, y + k) - f(x, y) = {f(x + h, y + k) - f(x + h, y)} 

+ {f(x + h, y) - f(x, y)}. 

The two terms in the first bracket on the right differ only in y; those 
in the second bracket, only in x. We can therefore apply the ordinary 
mean value theorem of the differential calculus (Volume I, p. 174) to 
the first bracket as a function of y alone and to the second bracket as 
a function of x alone. We thus obtain the relation 

(8) f(x + h, y + k) - f(x, y) = kfy(x + h, y + (hk) + hfx(x + 92h, y), 

where 91 and 92 are numbers between 0 and 1. In other words, the 
derivative with respect to y is to be formed for a point of the vertical 
line joining (x + h, y) to (x + h, y + k), and the derivative with re­
spect to x is to be formed for a point of the horizontal line joining 
(x, y) and (x + h, y). Since by hypothesis both derivatives are less 
than M in absolute value, it follows that 

(9) If(x + h, y + k) - f(x, y)1 ~ M(lhl + Ikl). 

For sufficiently small values of hand k the right-hand side is itself 
arbitrarily small, and the continuity of f(x, y) is proved.2 

IThis applies even, as the proof shows, to boundary points of the domain, provided 
they can be joined to any neighboring points of the domain by a broken line consist· 
ing of two segments parallel to the axes and f is defined properly at the boundary 
point. 
2If the domain of f is a rectangle with sides parallel to the axes, the inequality holds 
for any two points (x, y) and (x + h, y + k) in the domain. It follows then that f is 
even Lipschitz.continuous (see p. 19). 



96 Introduction to Calculus and Analysis. Vol. II 

Exercises l.4c 

1. State and prove for a function of three variables f(x, Y. z) that the 
existence and boundedn~ss of the first partial derivatives are sufficient 
for the continuity of f. 

2. Show that the following functions f(x, y) are continuous: 

{e-1I(Z2 + 1/2) X Y 1= 0 
(a) f(x, y) = 0, ' 'x = 0, y = 0 

(b) f(x, y) = {(x4 + y4) log (x2 + y2), X, Y 1= 0 
0, x=y=O. 

d. Change of the Order of Differentiation 

In all examples of partial differentiation given on pp. 32-34 we find 
that fyx = fxy; in other words, it makes no difference whether we 
differentiate first with respect to x and then with respect to y or first 
with respect to y and then with respect to x. This is true generally 
under the conditions of the following theorem: 

If the "mixed" partial derivatives fxy and fyx of a function f(x, y) are 
continuous in an open set R, then the equation 

(10) fyx = fxy 

holds throughout R; that is, the order of differentiation with respect to 
x and to y is immaterial. 

The proof, like that of the previous subsection, is based on the 
mean value theorem of the differential calculus. We consider the 
four points (x, y), (x + h, y), (x, y + k), and (x + h, y + k), where 
h =I=- 0 and k =I=- O. If (x, y) is a point of the open set R and if hand k are 
small enough, all four of these points belong to R. We now form the 
expression 

(11) A = f(x + h, y + k) - f(x + h, y) - f(x, y + k) + f(x, y). 

By introducing the function 

~(x) = f(x, y + k) - f(x, y) 

of the variable x and regarding the variable y merely as a "parameter," 
A assumes the form 

A = ~(x + h) - ~(x). 

Applying the mean value theorem of differential calculus yields 
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A = M'(x + 9h), 

where 9 lies between 0 and 1. From the definition of ~(x), however, 
we have 

~'(x) = fx(x, Y + k) - fx(x, y), 

and since we have assumed that the "mixed" second partial derivative 
fyx does exist, we can again apply the mean value theorem and find that 

(12) A = hkfyx(x + 9h, y + 9' k), 

where 9 and 9' denote two unspecified numbers between 0 and 1. 
In exactly the same way we may introduce the function 

\jI(y) = f(x + h, y) - f(x, y) 

and express A as 

A = \jI(y + k) - \jI(y). 

We thus arrive at the equation 

A = hkfxy(x + 9lh, y + 9l'k), 

where 0 < 91 < 1 and 0 < 91' < 1, and if we equate the two ex­
pressions for A, we obtain the equation 

fyx(x + 9h, y + 9' k) = fxy(x + 9lh, y + 91' k). 

If here we let hand k tend simultaneously to 0 and recall that the 
derivatives fxy(x, y) and fyx(x, y) are continuous at the point (x, y), 
we immediately obtain 

{yx(x, y) = {Xy(x, y), 

which was to be proved. 1 

IFor more refined investigations it is often useful to know that the theorem on the 
reversibility of the order of differentiation can be proved with weaker hypotheses. 
It is, in fact, sufficient to assume that in addition to the first partial derivatives fx and 
(y, only one mixed partial derivative, say fyx, exists and that this derivative is 
continuous at the point in question. To prove this, we return to equation (11), divide 
by hk, and then let k alone tend to o. Then the right· hand side has a limit, and there· 
fore the left·hand side also has a limit, and 

r ~ _ (y(x + h,y) - (y(x, y) 
k~~ kh - h . 

Further, it was proved above with the sole assumption that fyx exists that 

h~ = fllx(x + 9h, y + 9'k). 

By virtue of the assumed continuity of fyx, we find that for arbitrary I: > 0 and for 
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The theorem on the reversibility of the order of differentiation 
(i.e., on the commutativity of the differentiation operators Dz and Dy) 
has far-reaching consequences. In particular, we see that the number 
of distinct derivatives of the second order and of higher orders of 
functions of several variables is decidedly smaller than we might at 
first have expected. If we assume that all the derivatives that we are 
about to form are continuous functions of the independent variables 
in the region under consideration and if we apply our theorem to the 
functions fz(x, y}, lV<x, y), fzy(x, y), and so on, instead of to the function 
f(x, y), we arrive at the equations 

fzzy = fzyz = fyzz, 

fzyy = fyzy = fyyz, 

fzzyy = fzyzy = fzyyz = fyzzy = fyzyz = fyyzz, 

and in general we have the following result: 
In the repeated differentiation of a function of two independent vari­

ables the order of the differentiations may be changed at will, provided 
only that the derivatives in question are continuous functions. l 

all sufficiently small values of h and k 

{II"(X, y) - s < {II"(X + 9h, y + 9'k) < {II"(X, y) + s, 

whence it follows that 

~ ( ) _ ~ :s: fu(x + h, y) - fu(x, y) ___ ~ ( ) + 
III"X,y ~- h 2!/IISX,y S 

or 

lim fu(x + h, y~ - fu(x, y) = (II"(X, y). 
""'0 

that is, 

{""(X. y) = (IIS(X, y). 

lIt is of fundamental interest to show by means of an example that without the 
assumption of the continuity of the second derivative {"" or {liS the theorem need 
not be true and {SII can differ from {II". This is exemplified by the function 

x2_y2 
{(x, y) = xy X2 + y2' {(Of 0) = O. 

for which all the partial derivatives of second order exist but are not continuous. 
We find that 

~ (0 ) - r (x. y) - (0, y) _ lim X2 - y2 __ 
IS .y - z~ x - z ... oY X2+yS- y, 

~ ( O~ - 1· {(x, y) - {(x, 0) _ 1. X2 - y2 _ 
III X, 'I - un - un X 2 + 2 - x, 

y ... o Y y ... o x Y 
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With our assumptions about continuity, a function of two variables 
has three partial derivatives of the second order, 

four partial derivatives of the third order, 

and in general (n + 1) partial derivatives of the nth order, 

It is obvious that similar statements also hold for functions of more 
than two independent variables. For we can apply our proof equally 
well to the interchange of differentiations with respect to x and z or 
with respect to y and z, and so on, for each interchange of two succes­
sive differentiations involves only two independent variables at a 
time. 

Exercise 1.4d 

1. Obtain a2z/(ax ay) and a2z/(ay ax) to confirm their equality. 
(a) z = (ax + by)2 (d) z = y eZ 

(b) z = ';ax + by (e) z = log x + y 
x 

(c) z = f(ax + by) (f) z = eC08(1I2+z) 

2. Find all partial derivatives through the third order of the following 
functions: 
(a) I(x, y) = x" 
(b) f(x, y) = cosh xy 
(c) f(x, y) = ax2 + bxy + cy2 

(d) f(x, y) = ~ + ~ 
y x 

(e) f(x, y) = 2 cos x + 3 sin (y - x). 
3. Show for f(x, y) = log (eZ + ell) that fz + fll = 1 and fzz filII - (fzlI)2 = o. 

Problems 1.4d 

1. (a) Show that a function of the form u(x, y) = f(x) g(y) satisfies the 
partial differential equation 

and consequently 

111",(0, 0) = - 1 and ''''11(0, 0) = + 1. 
These two expressions are different, which by the above theorem can only be caused 
by the discontinuity of ''''11 at the origin. 
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U Uxy - UxUy = O. 

(b) Prove the converse statement. 

2. Define f(x, y) as: 

f( ) - { x2 arc tan ~ - y2 arc tan ~ , x, y "* 0, x,y - x y 
o for x = 0 or y = O. 

Show that fxy(O, 0) = -1, fyx = 1. 

1.5 The Total Differential of a Function and Its Geometrical 
Meaning 

a. The Concept of Differentiability 

For functions y = f(x) of one variable, the existence of a derivative 
is intimately connected with the possibility of approximating the 
function f in the neighborhood of a value x by a linear function; 
geometrically, this corresponds to approximating the graph of f by its 
tangent. By definition, the function f has a derivative at the point 
x if the limit 

limf(x + h) - f(x) = A 
/1,+0 h 

exists; the value A of the limit is denoted by f'(x). Thus, differentia­
bility of f at the point x means that for fixed x the increment Ilf = 
f(x + h) - f(x) corresponding to the increment h = Ilx of the In­

dependent variable can be written in the form 

N = f(x + h) - f(x) = Ah + Eh, 

where A does not depend on h and lim E = O. Letting x + h = ~, we 
fI,+O 

may say that f(~) is approximated by a linear function of~, namely 
~(~) = f(x) + A(~ - x), with an error that is of higher than the first 
order in ~ - x: 

f(~) - ~(~) = E • (~ - x) = o(~ - x) for 

Of course, the graph of this linear function 11 = ~(~) = f(x) + 
f'(x)(~ - x) in running coordinates ~, 11 is just the tangent to the 
graph of f at the point (x. y). Formulated differently, differentiability 
of f at x means that the increment Ilf considered as a function of 
h = Ilx can be approximated by the linear function df = f'(x) h = 
f'(x) dx within an error that is of higher than the first order in h.1 

IFor the independent variable x we have dx = 1·h = h = Ax. 
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These ideas can be extended in a perfectly natural way to functions 
of two and more variables. 

We say that the function u = {(x, y) is differentiable at the point 
(x, y) if it can be approximated in the neighborhood of this point by 
a linear function, that is, if it can be represented in the form 

(13) {(x + h, y +k) = Ah + Bk + C + f..Jh2 + k2 

where A, B, and C are independent of the variables hand k and 
where f. tends to 0 as hand k do. In other words, the difference be­
tween the function {(x + h, y + k) at the point (x + h, y + k) and 
the function Ah + Bk + C, which is linear in hand k, must be of 
order of magnitude o(p), where p = .Jh2 + k2 denotes the distance 
of the point (x + h, y + k) from the point (x, y). 

If such an approximate representation is possible, it follows at once 
that the function {(x, y) is continuous and has partial derivatives with 
respect to x and to y at the point (x, y) and that 

A = {z(x, y), B = {1I(X, y), C = {(x, y). 

For first of all we find from (13) for h = k = 0 that {(x, y) = C. More­
over, lim {(x + h, y + k) = C = {(x, y). 

4·0 
k·O 

Thus { is continuous at the point (x, y). Setting k = 0 in (13) and 
dividing by h yields the relation 

{(x + h, ~ - {(x, y) = A + E. 

Since E tends to 0 as h tends to 0, the left-hand side has a limit, and 
that limit is A. Similarly, we obtain the equation {1I(X, y) = B. 

Conversely, we shall prove the fundamental fact: 
A function u = {(x, y) is differentiable in the sense just defined­

that is, it can be approximated by a linear function with an error o(p) 
as in (13)-if it possesses continuous derivatives of the first order 
at the point in question. 

Indeed, we can write the increment 

Au = {(x + h, y + k) - {(x, y) 

of the function in the form 

Au = {(x + h, y + k) - {(x, y + k) + {(x, y + k) - {(x, y). 
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As before (p. 31), the two parentheses can be expressed in the form 

l1u = hfJ.x + 9lh, y + k) + kfY(x, y + 92k), 

where 0 < 91, 92 < 1, using the ordinary mean value theorem of 
differential calculus. Since by hypothesis the partial derivatives fie 
and f'll are continuous at the point (x, y), we can write 

fz(x + 9lh, y + k) = fz(x, y) + 81 

and 

where the numbers 81 and E2 tend to 0 as hand k do. We thus obtain 

l1u = hfJ.x, y) + kfY(x, y) + 8lh + 82k 

= hfz(x, y) + kf'll(x, y) + o(.Jh2 + k2), 

and this equation expresses the differentiability of f.l 
We shall occasionally refer to a function with continuous first 

partial derivatives as a continuously differentiable function or as a 
function of class Cl. We see that functions of class Cl are differentia­
ble. If in addition all the second-order partial derivatives are con­
tinuous, we say that the function is twice continuously differentiable, 
or of class C2, and so on. The continuous functions are also referred 
to as the functions of class CO.2 

Exercises 1.5a 

1. Show that each of the following functions is not differentiable at the 
origin: 
(a) f(x, y) = .fX cos y 

(b) f(x, y) = Jlxyl 

llfwe assume merely the existence, and not the continuity, of the derivatives {II: and 
{II' the function need not be differentiable (cf. p. 34). 
2'l'hese definitions of class Cl, C2, and so on apply only to functions {whose domain 
is an open set, since partial derivatives have been defined only for interior points of 
the domain. One can extend the notion of class to functions {with a nonopen domain 
R; it then means that the derivatives of {in question exist at all interior points of R 
and coincide at those points with functions that are defined and continuous through­
outR. 
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{ 
2xy 

(c) I(x, y) = ../xs + yS' 
0, 

(x, y) =1= (0, 0) 

(x, y) = (0, 0). 

2. For g(x), h(y) continuous functions of x, y in the intervals [XcI. xd, 
[Yo, yd. respectively, show that the function I(x, y) = (J:o g(s) ds) X 

(f:o h(t) dt) is differentiable at (x, y) for xo ::;; x ::;; Xl, yo ::;; Y ::;; Yl. 

Problems 1.5a 

1. Suppose that in a neighborhood of the point (a, b), I (x, y) = I (a, b) + 
hlx(a, b) + k I,,(a, b) + o(../hs +kS), where h = x-a and k = y-b. On 
the assumption that Ix and I" exist at (a. b) but are not necessarily 
continuous there, prove that I is continuous at (a, b). 

b. Directional Derivatives 

A basic property of differentiable functions {is that they not only 
possess partial derivatives with respect to x and y-or, as we also 
say, in the x- and y-directions-but that they have derivatives in any 
direction and that these derivatives can all be expressed in terms of 
{x and {y. By the derivative in the direction a we mean the rate of 
change of { at the point (x, y) with respect to distance as we approach 
(x, y) along the ray that forms the angle a with the positive x-axis. 
The points (x + h, y + k) of the ray are the ones for which h and k 
have the form 

h=pcosa, k = p sin a, 

where p = Jh2 + k2 is the distance of (x + h,y + k) from (x,y). Along 
the ray {becomes a function of p given by 

{(x + P cos a, Y + p sin a). 

The derivative o{ { at the point (x, y) in the direction a is defined as the 
derivative of {(x + p cos a, y + p sin a) with respect to p at p = 0 
and denoted by D(a) {(x, y). Thus, 

D(a){(x, y) = (dd {(x + p cos a, y + p sin a») 
p P=O 

= lim{(x + p cos a, y + p sin a) - {(x, y) 
p .. O p , 



44 Introduction to Calculus and Analysis, Vol. II 

provided the limit exists. In particular, we obtain for a = 0 and a = 
1t/2 the partial derivatives of (: 

D(o){(x, y) = lim {(x + p, y) - {(x, y) = (x(x, y) 
p~o p 

D(1t/2){(X, y) = lim{(x, y + p) - {(x, y) = (1I(X, y). 
p~O p 

If {(x, y) is differentiable, we have 

(14) {(x + h, y + k) - {(x, y) = h{x + k{1I + Ep 

= p({x cos a + (II sin a + E) 

Let p tend to 0; then, since E tends to 0, we obtain for the derivative 
of ( in the direction a the expression 

(14a) D(a>f(x, y) = {x cos a + (II sin a. 

Thus the directional derivative D(a){ is a linear combination o{ the 
derivatives {x and {II in the x- and y-directions with the coefficients 
cos a and sin a. This result holds in particular whenever the deriva­
tives {x and (II exist and are continuous at the point in question. 

Taking, for example, for f(x, y) the distance r = J x2 + y2 from the 
origin to the point (x, y), we have the partial derivatives 

rx = x = ..! = cos 9 
Jx2 + y2 r 

and rll = y = L = sin 9, 
.../x2 + y2 r 

where 9 denotes the angle that the radius vector makes with the x­
axis. Consequently, in the direction a the function r has the deriva­
tive 

D(a)r = rx cos a + rll sin a = cos 9 cos a + sin 9 sin a = cos (9 - a); 

in particular, in the direction of the radius vector itself (i.e., in the 
direction away from the origin), this derivative has the value 1, while 
in the directions perpendicular to the radius vector, it has the value o. 

The function x has, in the direction of the radius vector, the 
derivative Do (x) = cos 9, and the function y, the derivative Do (y) = 
sin 9; in the direction perpendicular to the radius vector these 
functions have the derivatives D(O+1t/2) X = -sin 9 and D(O+1t/2) Y = 
cos 9, respectively. 
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The derivative of a function {(x, y) in the direction of the radius 
vector is in general denoted by a{(x,y)jar. It is really the partial 
derivative with respect to r of fer cos e, r sin e) considered as a 
function of rand 9. Thus, we have the relation 

a{ a{. a{ 
ar = cos e ax + sm e ay' 

which we write conveniently in symbolic form as the identity 

a ea. e a -=cos -+Sln-ar ax ay 

between the differentiation operators ajar, ajax, ajay. 
It is worth noting that we also obtain the derivative of the function 

{(x, y) in the direction a if, instead of allowing the point Q with 
coordinates (x + h, y + k) to approach the point P with coordinates 
(x, y) along a straight line with the direction a, we let Q approach P 
along an arbitrary curve whose tangent at P has the direction a. For 
then if the line PQ has the direction ~, we can write h = p cos ~, 
k = p sin ~, and in the formulae (14) used in the proof above we have 
to replace a by ~. But since by hypothesis ~ tends to a as p ~ 0, we 
obtain the same expression as for D(a) {(x, y). 

In the same way, a differentiable function {(x, y, z) of three in­
dependent variables can be differentiated in a given direction. We 
suppose that the direction is specified by the cosines of the three 
angles that it forms with the coordinate axes. If we call these three 
angles a, 13, 'Y and if we consider two points (x, y, z) and (x + h, 
y + k, z + I), where 

h = p cos a, k = p cos ~, 1 = p cos 'Y, 

then just as in (14a), we obtain the expression 

(14b) {x cos a + {11 cos ~ + {z cos y 

for the derivative in the direction given by the angles (a, ~, y). 

Exercises 1.5b 

1. What is the geometrical interpretation of the derivative D(a>f(x, y) of 
the function f in the direction defined by the angle of inclination a.? 
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2. Find D(a){ (xo, yo), IX = 0, 30° , 60°, 90° for the following functions: 

(a) {(x, y) = ax + by, a,·b constants, Xo = yo = 0 
(b) {(x, y) = ax2 + y 2b, Xo = yo = 1, (a. b constants) 
(c) {(x, y) = x 2 - y2, Xo = 1, yo = 2 

(d) {(x, y) = sin x + cosy, Xo = yo = 0 

(e) {(x, y) = eX cosy, Xo = 0, yo = n; 

(f) {(x, y) = -/2x2 + y2, Xo = 1, yo = 1 

(g) {(x, y) = cos (x + y), Xo = 0, yo = O. 

3. Find the directional derivatives of each of the following functions as 
indicated: 
(a) Z2 - x 2 - y2 at (1,0,1) in the direction of (4, 3,0). 

(b) xyz-xy-yz-zx+x+y+z at (2, 2, 1) 

in the direction of (2, 2, 0). 

(c) XZ2 + y2 + ZS at (1, 0, -1) in the direction of (2, 1, 0). 

4. Give an example of a function that has derivatives in every direction 
at a point yet is not differentiable at that point. 

5. Show for {(x, y) = ~ that {is continuous and that the partial deriva­
tives oz/ox and oz/oy exist at the origin but that the directional deriva­
tives in all other drrections do not exist. 

6. Let {(x,y) = xy + -/2X2 + y2, r = -/x2 + y2, y/x = tan 6. Find o2f1or2 for 
6 = 0°, 30°, SOo, 90°, and:!C, y = 1. 

c. Geometrical Interpretation of Differentiability. 
The Tangent Plane 

For a function z = {(x, y) all these concepts can easily be illustrat­
ed geometrically. We recall that the partial derivative with respect to 
x is the slope of the tangep.t to the curve in which the surface re­
presenting the relation z = {(x, y) is intersected by a plane perpen­
dicular to the x,y-plane and parallel to the x-axis. In the same way, 
the derivative in the direction a gives the slope qf the tangent to the 
curve in which the surface is ip.tersected by a plane through (x, y, z) 
that js perpendicular to tl1e x, y-plane and makes the angle a with 
the x-axis. The formula D(a){ (x, y) = {x cos a + {II sin a now enables 
us to calculate the slopes of the tangents to all such curves, that is, of 
all tangents to the surface at a given point, from the slopes oftwo such 
tangents. 1 . 

IFor points (1;, 11, ~) in that plane we have I; = x + p cos a, 11 = Y + p sin a, and thus 
for points on the curve of intersection, 
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We have approximated the differentiable function 1; = f (~, TJ) in 
the neighQorhood of the point (x, y) by the linear function 

~(~, TJ) = f(x, y) + (~ - x)fx + (TJ - y)fy, 

where ~ and TJ are the current coordinates. Geometrically, this 
linear function is represented by a plane, which by analogy with the 
tangent line to a curve we shall call the tangent plane to the surface. 
The difference between this linear function and the function f (~, TJ) 
vanishes to a higher order than .jh2 + k 2 as ~ - x = hand TJ - y = k 
tend to O. Recalling the definition of the tangent to a plane curve, how­
ever, this means that the line of intersection of the tangent plane 
with any plane perpendicular to the x, y-plane is the tangent to the 
corresponding curve of intersection. We thus see that all these tangent 
lines to the surface at the point (x, y, z) lie in one plane, the tangent 
plane. 

This property is the geometrical expression of the differentiability 
of the function at the point (x, y, z) where z = f(x, y). In running 
coordinates (~, TJ, 1;), the equation of the tangent plane at the point 
(x, y, z) is 

1; - z = (~ -x)fx + (TJ - y)fy. 

As has already been shown on p. 41, the function is differentiable 
at a given point provided that the partial derivatives are continuous 
there. In contrast with the case of functions of one independent 
variable, the mere existence of the partial derivatives fx and fy is not 
sufficient to ensure the differentiability of the function. If the deriva­
tives are not continuous at the point in question, the tangent plane to 
the surface at this point may fail to exist; or, analytically speaking, 
the difference between f(x + h, y + k) and the function f(x, y) + 
hfx(x, y) + kfy(x, y), which is linear in hand k, may fail to vanish to 
a higher order than .jh2 + k 2• This is clearly shown by a simple 
example: 

, = f(x + p cos a, y + p sin a). 

Using p and, as coordinates, the slope of the tangent to the curve at, = z, p = 0 
is given by 

(dd') = D(a){(x, y). 
p P=o 

Hence, the tangent has the equation 

, = z + pD(a){(x,y) = f(x, y) + p cos a fz(x, y) + p sin a fll(x, y). 
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if x2 + y2::j::. 0, 

u=O if x = 0, y = O. 

If we introduce polar coordinates this becomes 

u = ; sin 29. 

The first derivatives with respect to x and to y exist everywhere in the 
neighborhood of the origin and have the value 0 at the origin itself. 
These derivatives, however, are not continuous at the origin, for 

If we approach the origin along the x-axis, ux tends to 0, while if we 
approach along the y-axis, ux tends to 1. This function is not dif­
ferentiable at the origin; at that point no tangent plane to the surface 
z = I (x, y) exists. For the equations liO, 0) = ly(O, 0) = 0 show that 
the tangent plane would have to coincide with the plane z = o. But 
at the points of the line 9 = 1[/4, we have sin 29 = 1 and z = 
I (x, y) = r/2; thus, the distance z of the point of the surface from the 
point of the plane does not, as must be the case with a tangent plane, 
vanish to a higher order than r. The surface is a cone with vertex at 
the origin, whose generators do not all lie in one plane. 

Exercises 1.5c 

1. Find the equation of the tangent plane to the surface defined by z = 
{(x, y) at the point P = (xo, yo) in each of the following cases: 

(a) {(x, y) = 3x2 + 4y2, P = (0, 1) 

(b) {(x, y) = 2 cos (x - y) + 3 sin x, P = (7t, ;) 
(c) {(x, y) = cosh (x + y), P = (0, log 2) 

(d) {(x, y) = ";x2 + y2, P = (1, 2) 

(e) {(x, y) = eX cos Y, P = (1, ~) 
(f) {(x, y) = cos 'it eXY, P = (log 2, 1) 

rx2+y2 2 (g) {(x, y) = Jo e-t dt, P = (1, 1) 

(h) {(x, y) = ax3 + bx2 y+ cxy2 + dy3, P = (1, 1), (a, b, c, d constants) 
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2. Show that all tangent planes to a surface z = y f(xfy) meet in a common 
point where f is any differentiable function of one variable. 

3. Show that the tangent plane to the surface S: z = f(x, y) at the point 
Po = (xo, yo) is the limiting position of the plane passing through the 
three points (XI, Yi, Z«), i = 0, I, 2, of S where Pl = (Xl, YI) and P2 = 
(X2, Y2) approach Po from distinct directions, making an angle not equal 
to 0° or 180°. 

4. Prove that the tangent plane to the quadric surface 

ax2 + by2 + cz2 = 1 

at the point (xo, Yo, zo) is 

axox + byoy + cZoZ = 1. 

d. The Differential of a Function 

As for functions of one variable, it is often convenient to have a 
special name and symbol for the linear part of the increment of a 
differentiable function u = f(x, y) which occurs in formula (14), 

Au = f(x + h, y + k) - f(x, y) = hfz(x, y) + kf7l(x, y) + eJh2 + k 2• 

We call this linear part the differential of the function, and write 

(15a) du = df(x y) = af h + af k = af Ax + af Ay. 
, ax ay ax ay 

The differential, sometimes called the total differential, is a function 
of four independent variables, namely, the coordinates x and y of the 
point under consideration and the increments hand k of the inde­
pendent variables. We emphasize again that this has nothing to do 
with the vague concept of "infinitely small quantities." It simply 
means that du approximates to the increment 4u = f(x + h, y + k) 
- f(x, y) of the function, with an error that is an arbitrarily small 
fraction t of Jh2 + k 2, provided that hand k are sufficiently small 
quantities. For the independent variables x and y we find from (15a) 
that 

ax ax 
dx = - Ax + - Ay = Ax 

ax ay 
and dy = :~ Ax + ~~ Ay = Ay. 

Hence, the differential df(x, y) is written more commonly 

(15b) 
af af 

df(x, y) = ax dx + ay dy = fZ(x, y) dx + f7l(x, y) dy. 
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Incidentally, the differential completely determines the first partial 
derivatives of f. For example, we obtain the partial derivative of/ox 
from df, by putting dy = 0 and dx = 1. 

We emphasize that the total differential of a function f(x, y) as the 
linear approximation to Af has no meaning unless the function is 
differentiable in the sense defined above (for which the continuity, 
but not the mere existence, of the two partial derivatives suffices). 

H the function f(x, y) also has continuous partial derivatives of 
higher order, we can form the differential of the differential df (x, y); 
that is, we can multiply its partial derivatives with respect to x and y 
by h = dx and k = dy, respectively, and then add these products. In 
this differentiation, we regard h and k as constants, corresponding 
to the fact that the differential df = hfz(x, y) + kfy(x, y) is a function 
of the four independent variables x, y, h, and k. We thus obtain the 
second differential1 of the function, 

Similarly, we may form the higher differentials 

d 21' d(d2f) o3f d 3 3 o3f d 2 d 3 o3f d d 2 o3f d 3 
I = = ox3 X + ox2 oy X Y + ox oy2 X .y + oy3 .y, 

d4f o4f d..4 ay d 3 d 6 oy d 2 d 2 = ox4 ;.!,- + 4 ox3 oy X .y + ox2 oy2 X .y 

ay o4f 
+ 4 ax oy3 dx dy3 + oy4 dy4, 

and, as is easily shown by induction, in general 

anf (n) onf dnf = - dxn + dxn- 1 dy + ... 
oxn 1 oxn-1oy 

lWe shall later see (p. 68) that the differentials of higher order introduced formally 
here correspond exactly to the terms of the same order in the expansion of the 
function. 
2Traditionally, one writes the powers (dX)2, (dX)3, (dy)2, (dy)3 of differentials simply 
as dx2, dx3, dy2, dy3. This is, of course, somewhat misleading, since they might be 
confused with d(X2) = 2x dx, d(X3) = 3x2 dx, and so on. 



Functions of Several Variables and Their Derivatives 51 

(n) ant d n-k d k + ant d n + k axn- k ayk x y +... ayn y. 

The last formula can be expressed symbolically by the equation 

( a a)n dnt = - dx + - dy t ax ay 

where the expression on the right is first to be expanded formally by 
the binomial theorem, and then the terms 

are to be substituted for 

(a) n ( a ) n-l ( a) ( a ) n ax dx {, ax dx ay dy t, . . ., ay dy t. 

For calculations with differentials the rule 

d(tg) = t dg + g dt 

holds good; this follows immediately from the rule for the differen­
tiation of a product. 

In conclusion, we remark that the discussion in this section can 
immediately be extended to functions of more than two independent 
variables. 

Exercises 1.5d 

1. Find the total differentials for the following functions: 

(a) z = x2y2 + 3xy3 - 2y4 

xy 
(b) z = x2 + 2y2 

(c) Z = log(x4 - y3) 

(d) z=~ + ~ 
y x 

(e) z = cos (x + log y) 

x-y 
(f) z=--

x+y 

(g) z = arc tan (x + y) 
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(h) z = x" 
(i) w = cosh (x + y - z) 

(j) w = x2 - 2xz + y8. 

2. Evaluate the total differential of f(x) = x - y + (x2 + y2)1I8, for x = 1, 
y = 2, dx = .1, dy = .3. 

3. Find d8f(x, y) for f(x, y) = ez2 +112. 

e. Application to the Calculus 01 Errors 

The differential d{ = h{z + k{1I is often used in practice as a 
convenient approximation to the increment of the function {(x, y), 
fl{ = {(x + h, y + k) - {(x, y) as we pass from (x, y) to (x + h, y + 
k). This use is exhibited particularly well in the so-called "calculus of 
errors" (cf. Volume I, p. 490). Suppose, for example, that we wish to 
find the possible error in the determination of the density of a solid 
body by the method of displacement. If m is the weight of the body in 
air and m its weight when submerged in water, then by Archimedes's 
principle, the loss of weight (m - m) is the weight of the water 
displaced. If we are using the cgs (centimeter-gram-second) system 
of units, the weight of the water displaced is numerically equal to its 
volume and hence to the volume of the solid. The density s of the body 
is thus given in terms of the independent variables m and m by the 
formula s = m/(m - m). The error in the measurement of the density 
s caused by an error dm in the measurement of m, and an error dm 
in the measurement of m is given approximately by the total dif­
ferential 

as as_ 
ds = am dm + am dm. 

By the quotient rule, the partial derivatives are 

as m 
am =- (m - m)2 and 

as m 
am = (m - m)2; 

hence, the differential is 

ds = -m dm + m dm. 
(m - m)2 

Thus the error in s is greatest if dm and dm have opposite sign, say, 
if instead of m we measure too small an amount m + dm and instead 
of m too large an amount m + dm. For example, if a piece of brass 
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weighs about 100 gm in air, with a possible error 0.005 gm, and in water 
weighs about 88 gm, with a possible error of 0.008 gm, the density is 
given by our formula to within an error of about 

88 • 5 • 10-3 + 100 • 8 • 10-3 
122 ,....., 9 • 10-3, 

or about 1 percent. 

Exercises 1.5e 

1. Find the approximate variation of the function z = (x + y)/(x - y), as x 
varies from x = 2 to x = 2.5, and y, from y = 4 to Y = 4.5. 

2. Approximate the value of log [(1.02)114 + (0.96)116 - 1]. 
3. The base length x and height y of a right triangle are known to within 

errors of h, k, respectively. What is the possible error in the area? 
4. If dz is the error of measurement in a quantity z, the relative error is 

defined as dz/z. Show that the relative error in a product z = xy is the 
sum of the relative errors in the factors. 

5. The acceleration g of gravity is to be determined by timing the fall in 
seconds of a body dropped from rest through a fixed distance x. If the 
measured time is t, we haveg = 2X/t2. Ifx is about 1 m and t about .45 sec 
show that the relative error of measurement in g is more sensitive to a 
relative error in t than a relative error in x. 

1.6 Functions of Functions (Compound Functions) and the 
Introduction of New Independent Variables 

a. Compound Functions. The Chain Rule 

Frequently a function u of the independent variables x, y is given 
in the form 

u = f(~, 11, ... ) 

where the arguments ~, 11, ... of f are themselves functions of x 
andy 

~ = ~(x, y), 11 = \jI(x, y), ... 

We then say that 

(16) u = f(~, 11, ... ) = f(~(x, y), \jI(x, y), ... ) = F(x, y) 

is a compound function of x and y (compare Volume I, pp. 52 ff.). 
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For example, the function 

(16a) u = F(x, y) = eZY sin (x + y) 

may be written as a compound function by means of the relations 

(16b) u = f(~, 1') = e/; sin 1'), 

where ~ = xy and 1') = x + y. Similarly, the function 

(16c) u = F(x, y) = log (x4 + y4) • arc sin .Jl - x2 _ y2 

can be expressed in the form 

(16d) u = f(~, 1') = 1') arc sin ~, 

where ~ = .Jl - x2 - y2 and 1') = log (x4 + y4). 

In order to make the concept of compound function meaningful we 
assume that the functions ~ = q,(x, y), 1') = 'l'(x, y), . . . have the 
common domain R and map any points (x, y) of R into points 
(~, 1'), . . . ) for which the function u = f(~, 1'), . . . ) is defined, that 
is, into points of the domain S of f. The compound function 

u = f(q,(x, y), 'l'(x, y), ... ) = F(x, y) 

is then defined in the region R. 
A detailed examination of the regions Rand S is often unnecessary, 

as in (16b), in which the argument point (x, y) can traverse the entire 
x, y-plane and the function u = e!; sin 1') is defined throughout the 
~, 1')-plane. On the other hand, (16d) shows the necessity for examin­
ing the domains Rand S in the definition of compound functions. 
For the functions ~ = .Jl - x2 - y2 and 1') = log (x4 + y4) are defined 
only in the region R consisting of the points 0 < x2 + y2 ~ 1, that is, 
the closed unit disk with center at the origin, the origin being deleted. 
Within this region we have I ~ I < 1, 1') ~ O. The corresponding points 
(~, 1') all lie in the domain of the function 1') arc sin ~, and thus the 
compound function F(x, y) is defined in R. 

A continuous function of continuous functions is itself continuous. 
More precisely, if the function u = f(t., 11, ... ) is continuous in the 
region S, and the functions t. = q,(x, y), 11 = If/(x, y), . . . are 
continuous in the region R, then the compound function u = F(x, y) 
is continuous in R. 

The proof follows immediately from the definition of continuity. 
Let (xo, YO) be a point of R, and let ~o, 1')0, . . . be the corresponding 
values of~, 1'), .... Now for any positive E the absolute value of 



Functions of Several Variables and Their Derivatives 55 

the difference 

f(~, TI, . . . ) - f(~o, Tlo, • • • ) 

is less than E, provided only that the inequality 

is satisfied, where 3 is a sufficiently small positive number. But by 
the continuity of ;(x, y), 'II(x, y), . . . this inequality is satisfied if 

J(x - XO)2 + (y - YO)2 < y, 

where y is a sufficiently small positive quantity. This establishes the 
continuity of the compound function. 

Similarly, a differentiable function of differentiable functions is itself 
differentiable. This statement is formulated more precisely in the 
following theorem, which at the same time gives the rule for the 
differentiation of compound functions, the so-called chain rule: 

If e = (J(x, y), 1'/ = If/(x, y), . .. are differentiable functions of 
x andy in the region Rand iff(e, 1'/, ••• ) is a differentiable function 
of e, 1'/,. • in the region S, then the compound function 

(17) u = f(~x, y), 'II(x, y), . . . ) = F(x, y) 

is also a differentiable function of x and y; its partial derivatives are 
given by the formulae 

(18) 

or, briefly, by 

(19) 

Fz = Ie ;z + fTl 'liz +. . . 
Fy = fE, ;1/ + fTl 'IIy + . 

Uz = Ul; ~z + UTl Tlz + . 
Uy = Ul; ~y + UTl Tly + . 

Thus, in order to form the partial derivative with respect to x, we 
must first differentiate the compound function with respect to each of 
the variables ~, TI, ... , multiply each of these derivatives by the 
derivative of the corresponding variable with respect to x, and add all 
the products thus formed. This is the generalization of the chain rule 
for functions of one variable discussed in Volume I (p. 218). 

Our statement can be written in a particularly simple and sug­
gestive form if we use the notation of differentials, namely, 
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(20) du = U~ d~ + UTI dll + . 
= U~ (~z dx + ~II dy) + UTI (l1z dx + 1111 dy) + 
= (u~ ~z + UTI llz + . . . )dx + (u~ ~II + UTI 1111 + . . .) dy 

= uz dx + UII dy. 

This equation shows that we obtain the linear part of the increment 
of the compound function U = I(~, 11, ... ) = F(x, y) by first 
writing this linear part as if ~, 11, ... were the independent varia-
bles and then replacing d~, dll, . .. by the linear parts of the 
increments of the functions ~ = tP(x, y), 11 = 'l'(x, y), . . .. This 
fact exhibits the convenience and flexibility of the differential no­
tation. 

In order to prove our statement (18) we have merely to make use of 
the assumption that the functions concerned are differentiable. From 
this it follows that corresponding to the increments Ax and Ay of the 
independent variables x and y the quantities ~, 11, . . . change by 
the amounts 

(20a) 

(20b) 

A~ = ~z Ax + ~II fly + 81.J(Ax)2 + (Ay)2 

where the numbers 81, 82, . • • tend to 0 for Ax ~ 0 and Ay ~ 0 or for 
.J(AX)2 + (Ay)2 ~ o. The derivatives tPz, tPII, 'l'z, 'l'II are taken for 
the arguments x, y. Moreover, if the quantities ~, 11, . . . undergo 
changes A~, All, ... , the function U = I (~, 11, ... ) changes by 
the amount 

where the quantity 0 tends to 0 for A~ ~ 0 and All ~ 0, and I~, ITI 

have the arguments ~, 11. Using here for L\~, All, ... the amounts 
given by formulae (20a, b) corresponding to increments Ax and Ay 
in x and y, we find an equation of the form 

(22) Au = (f~tPz + I"o/z + . . .) Ax + (l~tPII + 1,,0/11 + . . .) Ay 

+ 8.J(Ax)2 + (Ay)2. 

Here, for Ax = p cos n, Ay = p sin n, p = .J(AX)2 + (Ay)2, the 
quantity 8 is given by 
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8 = 81f, + 82f" + O'/(tPz COS a + tPy sin a + 81)2 + ('I'z cos a 

+ 'l'y sin a + 82)2 + . 

For p ~ 0 the quantities Ax, Ay, 81, E2 tend to 0 and, hence, so do 
A~, All, and O. On the other hand, le., fTl,' •• , tPz, tPy, 'l'z, 'l'y, ... stay 
fixed. Consequently, 

lim E = O. 
p+o 

It follows from (22) that u considered as a function of the independent 
variables x, y is differentiable at the point (x, y) and that du is given 
by equation (20). From this expression for du we find that the partial 
derivatives Uz, Uy have the expressions (19) or (18). 

Clearly this result is independent of the number of independent 
variables x, y, . . .. It remains valid, for example, if quantities 
~, ll, . . . depend on only one independent variable x, so that u is a 
compound function of the single variable x. 

To calculate the higher partial derivatives, we need only dif­
ferentiate the right-hand sides of our equations (19) with respect to x 
and y, treating ff., fTl,'" as compound functions. Confining 
ourselves for the sake of simplicity to the case of three functions 
~, ll, and ~, we obtain1 

(23a) Uzz = ff.'f,~z2 + fTlTlllz2 + fCC~z2 + 2ff.TI~zllz + 2fTlcllz~z 
+ 2f'f,c~z~z + f'f,~ZZ + fTlllzz + fc~zz, 

(23b) Uzy = f'f,F,~z~y + fTlTlllzlly + fcc~~y + f'f,TI(~zlly + ~yllz) 
+ fTlC(llz~y + lly~z) + f'f,c(~z~y + ~y~z) 
+ If,,~zy + fTlllzy + f,~zy, 

(23c) Uyy = f'f,'f,~y2 + fTlTllly2 + f,,~y2 + 2fF,TI~Ylly + 2fTlCll~y 
+ 2b.c~y~y + fF,~1I'U + fTlllyy + fc~yy, 

Exercises I.Ga 

1. Find all partial derivatives of first and second order with respect to x 
and y for the following: 

1 
(a) z = u log v, where u = X2, V = 1 + y 

lIt is assumed here that f is a function of 1;, 11 of class C2 and that 1;, 11, ~ are 
functions of x, y of class C2. It follows that the compound function u of x andy again 
is of class C2. 
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(b) z = eUv, where u = ax, v = cos y 

(c) z = u arc tan v, where u = x ~ y , v = x2y + y - x 

(d) z = g (x2 + y2, eX-II) 

(e) z = tan (x arc tan y). 

2. Calculate the partial derivatives of the first order for 
1 

(a) w = J(x2 + y2 + 2xy cos z) 

(b) w = arc sin-x-
Z+y2 

(c) w = x2 + y log (1 + X2 + y2 + Z2) 

(d) w = arc tan J(x + yz) 

3. Calculate the derivatives of 

(a) z =x(xX ), 

4. Prove that If f(x, y) satisfies Laplace's equation 
a2f a2f 
ax2 + ay2 = 0, 

so does rjJ(x, y) = f (x2 : y2, x2 ~ y2)' 

5. Prove that the functions 

(a) f(x, y) = log Jx2 + y2, 
1 

(b) g(x,y, z) = Jx2 + y2 + Z2' 

1 
(c) h(x, y, z, w) = x2 + y2 + Z2 + w2' 

satisfy the respective Laplace's equations, 
(a) fxx + filII = 0, 

(b) gxx + gllll + gzz = 0, 

(c) hxx + hllll + hzz + hww = O. 

Problems 1.6a 

1. Prove that if f(x, y) satisfies Laplace's equation 

a2f a2f 
ax2 + ay2 = 0, 

and if u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations, 

au av au av 
ax = ay' oy = - ax' 
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then the function ifJ(x, y) = {(u(x, y), v(x, y) ) is also a solution of 
Laplace's equation. 

2. Prove if z = {(x, y) is the equation of a cone, then 

fxxfyy - fxl = 0 

3. Let {(x, y, z) = g(r), where r = JX2 + y2 + Z2. 

(a) Calculate {xx + {yy + {zz. 

(b) Prove that if {xx + {yy + {zz = 0, then {(x, y, z) = ~ + b, where a 

and b are constants. 
4. Let {(Xl, X2, ... , Xn) = g(r), where 

r = JXl2 + X22+ • •• + Xn2 

(a) Calculate {XIXI + {X2X2 + ..• + {xnxn(compare 1.4.a, Exercise 10). 

(b) Solve {XIXI + {X2X2 +. . . + {xnxn = o. 

b. Examplesl 

1. Let us consider the function 

U = exp (X2 sin2y + 2xy sin x sin y + y2). 

We put 

u = ee+q+r.;, 1; = x2 sin2y, TJ = 2xy sin x sin y, S = y2 

and obtain 

1;x = 2x sin2y, TJx = 2y sin x sin y + 2xy cos x sin y, ex = 0; 

1;y = 2X2 sin y cos y, TJy = 2x sin x sin y + 2xy sin x cos y, ey = 2y; 

u~ = U1) = Ui; = el';+1)+'. 

Hence 

Ux = 2 exp (X2 sin2y + 2xy sin x sin y + y2) (x sin2y + y sin x sin y 

+ xy cos x sin y) 

and 

Uy = 2 exp (X2 sin2y + 2xy sin x sin y + y2) (x2 sin y cos y 

+ x sin x sin y + ~y sin x cos y + y). 

IWe note that the following differentiations can also be carried out directly, without 
using the chain rule for functions of several variables. 
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2. For the function 

U = sin (x2 + y2) 

we put ~ = x2 + y2 and obtain 

Ux = 2x cos (x2 + y2), Uy = 2y cos (x2 + y2) 

Uxx = - 4x2 sin (x2 + y2) + 2 cos (X2 + y2), 

Uxy = - 4xy sin (x2 + y2) 

Uyy = - 4y2 sin (x2 + y2) + 2 cos (x2 + y2). 

3. For the function 

U = arc tan (x2 + xy + y2), 

the substitution ~ = X2, 1') = xy, I; = y2 leads to 

Ux = c:--_:----:o-2_x_+'------'<-y_-----:::-:: 
1 + (x2 + xy + y2)2 ' 

X + 2y 
U = ------,:-::----"--_____=_=-= 

y 1 + (x2 + xy + y2)2' 

c. Change of the Independent Variables 

The application of the chain rule (19) to a change of the inde­
pendent variables is particularly important. For example, let U = 
f(~, 1') be a function of the two independent variables ~, 1'), which 
we interpret as rectangular coordinates in the ~,1')-plane. We can 
introduce new rectangular coordinates x, y in that plane (see Volume 
I, p. 361) related to ~, 1') by the formulae 

(24a) 

or 

(24b) x = al~ + a21'), y = ~l~ + ~2TJ 

Here, 

al = cos y, a2 = -sin y, ~l = sin y, ~2 = cos y, 

where y denotes the angle the positive ~-axis forms with the positive 
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x-axis. The function U = f(~, ,,) is then "transformed" into a new 
function 

U = {(~, ,,) = {(alx + ~IY, a2X + ~2Y) = F(x,y), 

which is formed from {(~, ,,) by a process of compounding as de­
scribed on p. 53. We say that the dependent variable U is "referred 
to the new independent variables x and y instead of ~ and TJ." 

The rules of differentiation (19) on p. 55 at once yield 

(25) 

where Ux, U1I denote the partial derivatives of the function F(x, y), 
and UI;" UTJ the partial derivatives of the function {(~, TJ). Thus the 
partial derivatives of any function are transformed according to the 
same law (24b) as the independent variables when the coordinate axes 
are rotated. This is true for rotation of the axes in space as well. I 

Another important change of the independent variables is that 
from rectangular coordinates (x, y) to polar coordinates (r, 9). The 
polar coordinates are connected with the rectangular coordinates by 
the equations 

(26a) x = r cos 9, y=rsin9 

(26b) r = ./x2 + y2, 9 x . Y 
= arc cos ./x2 + y2 = arc sm ./x2 + y2' 

Referring a function U = {(x, y) to polar coordinates, we have 

U = {(x, y) = {(r cos 9, r sin 9) = F(r, 9), 

and U appears as a compound function of the independent variables 
rand 9. Hence, by the chain rule (19) we obtain 

x y sin 9 
Ux = Urrx + ue9x = Ur - - Ue "2 = Ur cos 9 - Ue--

r r r 
(27) 

y x . cos 9 
U1I = Urr1l + ue911 = Ur - + Ue -2 = Ur sIn 9 + Ue -- • 

r r r 

These yield the useful equation 

(28) 

lBut, in general, not for other types of coordinate transformation. 
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By the rules (23a, b, c), the higher derivatives are given by 

sin2 9 cos 9 sin 9 
Ihx = Urr cos2 9 + Uee --2- - 2ure =-=-==----=---===--= r r 

+ sin2 9 + 2 cos 9 sin 9 
Ur-- Ue 2 ' r r 

. cos 9 sin 9 cos2 9 - sin2 9 
1h7/ = UX7/ = Urr cos 9 SIn 9 - Uee 2 + Ure .::...::...:'------=-===--~ r r 

+ sin2 9 - cos2 9 sin 9 cos 9 
Ue r2 -Ur r 

. cos2 9 cos 9 sin 9 
U1I1I = Urr SIn 2 9 + Uee --2 - + 2Ure -=-=-==----=---===-=-r r 

+ cos2 9 2 cos 9 sin 9 
Ur-r- - Ue r2 

This leads to the expression in polar coordinates of the so-called 
Laplacian au, which appears in the important "Laplace," or "po­
tential," equation au = 0 (see p. 33): 

(29) 
1 1 

au = Uxx + U1I1I = Urr + ueo"2 + Ur-r r 

1 { a (aU) a2u} = r2 r ar r ar + a92 • 

Conversely, we can apply the chain rule to express Ur and uo in terms 
of Ux and U7/' We find in this way 

(30a) 

(30b) 

Ur = UxXr + U1IYr = Ux cos 9 + U1I sin 9, 

Uo = UxXo + U7/Yo = - uxr sin 9 + U1Ir cos 9. 

We can also derive these equations by solving relations (27) for Ur 

and Uo. Incidentally, equation (30a) has been encountered already 
as the expression for the derivative of U in the direction of the radius 
vector r on p. 45. 

In general, whenever we are given relations defining a compound 
function, 

U = f(~, 11, ... ), 

~ = f/J(x, Y), 11 = 'V(x, y), . 

we may regard these as referring U to new independent variables x, y 
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instead of 1;, 1'), •••• Corresponding sets of values x, y and 1;, 
1'), ••• of the independent variables assign the same value to u, 
whether it is regarded as a function f(l;, 1') • • • ) of 1;, 1'), • • • or as a 
function F(x, y) == f(~(x, y), ",(x, y), . . . ) of x, y. 

In differentiations of a compound function U == f(l;, 1'), • • • ), we 
must distinguish clearly between the dependent variable U and the 
function f(l;, 1'), • • • ), which assigns values of U to values of the 
independent variables 1;, 1'), •••• The symbols of differentiation 
Ul;, UTI, • • • have no meaning until the functional connection between 
U and the independent variables is specified. When dealing with 
compound functions U == f(l;, 1'),...) == F(x, y), therefore, one 
really ought not to write Ul;, UTI or Ux, U1I but instead fl;(I;, 1'), 

fTl(I;, 1') or Fx(x, y), F,y(x, y), respectively. Yet, for the sake of brevity 
the simpler syrqbols Ul;, UTI, Ux, U1I are often used when there is no risk 
of confu!?ion. The chain rule is then written in the fqrm 

(31) 

which makes it unnecessary to give "names" for F for the functional 
relation between U and 1;, 1') or x, y. 

The following example illustrates the fact that the derivative of a 
quantity U with respect to a given variable depends on the nature of 
the functional connection between U and all of the independent 
variables; in particular, it depends on which of the independent 
variables are kept fixed during the differentiation. With the "identity 
transformation" I; == x, 1') == y the function U == 21; + 1') b~comes 
U == 2x + y, and we have Ux == 2, U1I == 1. If, however, we introduce 
the new independent variables I; == x (as before) and S + 1'\ == v, we 
find that U == x + v, so that ux == 1, U v == 1. Thus, differentiation 
with respect to the same independent variable x gives different results 
for different choices of the other variable. 

Exercises 1.6c 

1. Let U == f(x, y), where x == r cos 6, y == r sin 6. Express .vuz2 + Ull2 in 
terms of Ur and UQ. 

2. Prove that the expression fu + filII is unchanged by rotation of the 
coordinate system. 

3. Show that the linear changes of variables x == ot~ + ~1), y == y~ + 81) 
transform the derivatives fzz(x, y), {zll(X, y), fllll(X, y) by the same rule 
as the coefficients a, b, c, respectively, of the polynominal 

ax2 + 2bxy + cy2 
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4. Given Z = r2 cos e, where rand e are polar coordinates, find z% and 
Zy at the point e = n/4, r = 2. Express Zr and zo in terms of Zz and Zy. 

5. By the transformation ~ = a + exx + ~y, 7l = b - ~x + exy, in which 
a, b, ex, ~ are constants and ex2 + ~2 = 1, the function u(x, y) is trans­
formed into a function U(~, 7l) of ~ and 7l. Prove that 

U~eUTlTl - UeTl2 = Uxx Uyy - Uxy2 

6. Show how the expression T y - T xx is transformed under the intro­
duction of a variable z = x/Jy in place of y. 

7. (a) Prove that the function 

h(x, y) = f(x - y) + g(x + y) 

for any twice continuously differentiable functions f, g, satisfies the 
condition hxx = h yy• 

(b) Similarly, show that 

H(x, y) = f(x - iy) + g(x + iy), 

with i2 = -1, satisfies the condition Hx% = -Hyy. 

Problems l.6c 

1. Transform the Laplacian Uxx + Uyy + Uzz into three-dimensional polar 
coordinates r, e, ifJ defined by 

x=rsinecosifJ 
y=rsinesinifJ 
z = r cos e. 

Compare with lo6.a, Problem 3. 
2. Find values a, b, e, d such that under the transformation ~ = ax + by, 

7l = ex + dy, where ad - be *' 0, equation Afx% + 2Bfxy + Cfyy = 0 
becomes 

(a) fee + fTlTl = 0 

(b) feTl = 0 (A,B,C, constants) 

Is this always possible? 

1. 7 The Mean Value Theorem and Taylor's Theorem for 
Functions of Several Variables 

a. Preliminary Remarks About Approximation by Polynomials 

We have already seen in Volume I (Chapter V, p. 451) how a 
function of a single variable can be approximated in the neighbor­
hood of a given point with an accuracy higher than the nth order 
by means of a polynomial of degree n, the Taylor polynomial, provided 
that the function possesses derivatives up to the (n + 1)th order. 
Approximation by means of the linear part of the function, as given 



Functions of Several Variables and Their Derivatives 65 

by the differential, is only the first step toward this closer approxi­
mation. In the case of functions of several variables, for example, of 
two independent variables, we may also seek an approximate rep­
resentation in the neighborhood of a given point by means of a 
polynomial of degree n. In other words, we wish to approximate 
f(x + h, y + k) by means of a "Taylor expansion" in terms of the 
increments hand k. 

By a simple device this problem can be reduced to one for functions 
of only one variable. Instead of just considering f(x + h, y + k), we 
introduce an additional variable t and regard the expression 

(31) F(t) = f(x + ht, y + kt) 

as a function of t, keeping x, y, h, and k fixed for the moment. As t 
varies between 0 and 1, the point with coordinates (x + ht, y + kt) 
traverses the line segment joining (x, y) and (x + h, y + k). The 
Taylor expansion of F(t) according to powers of t will yield for t = 1 
an approximation to f(x + h, y + k) of the desired kind. 

We begin by calculating the derivatives of F(t). If we assume 
that all the derivatives of the function f(x, y) that we are about to 
write down are continuous in a region entirely containing the line 
segment, the chain rule (18) at once gives1 

(32a) 

(32b) 

F'(t) = hfz + kfll' 

F"(t) = h2fzz + 2hkfzll + k2fllll' 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
and, in general, we find by mathematical induction that the nth 
derivative is given by the expression 

(32c) F<n)(t) = hnfz'TI + (~) hn- 1 kfz'TI-lll + (~) hn- 2 k2fz'TI-2112 

+ ... + knfll'TI, 

lWe have from the chain rule 

d 
F'(t) = d/(x + ht. y + kt) = M.(e. 11) + klfl(e. 11) 

where e = x + ht, 11 = Y + kt. We write here f.,(x + ht, y + kt) for fF.(x + ht, 
y + kt) since (again by the chain rule) 

a 
ax f(x + ht. y + kt) = fF.(x + ht, y + kt) 

if x, y. h, k are considered independent variables. 
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which, as on p. 51, can be written symbolically in the form 

F<n)(t) = (h~ + k~)n{. 
ax ay 

In this formula the symbolic power on the right is to be expanded by 
the binomial theorem and then the powers of ajax, ajay multiplied 
by { are to be replaced by the corresponding nth derivatives anfjaxn, 
aYjaxn-1ay, .... In all these derivatives the arguments x + ht and 
y + kt are to be written in place of x and y. 

Exercises 1.7 a 

1. For F(t) = {(x + ht. y + ht) find F'(I) for: 

(a) {(x, y) = sin (x + y) 

(b) {(x, y) = ~ 

(c) {(x. y) = x2 + 2xy2 - y4 

2. Find the slope of the curve z(t) = F(t) = {(x + ht, y + ht) at t = 1, for 
x = 0, y = 1, h = t, k = t, and 
(a) {(x. y) = x 2 + y2 

(b) {(x, y) = exp [X2 + (y -1)2] 

(c) {(x, y) = cos l't' (y - 1) sin l't'X2 

b. The Mean Value Theorem 

Before taking up higher order approximations by polynomials, we 
derive a mean value theorem analogous to the one we already know 
for functions of one variable. This theorem relates the difference 
{(x + h, y + k) - {(x, y) to the partial derivatives {x and {y. We 
expressly assume that these derivatives are continuous. On applying 
the ordinary mean value theorem to the function F(t) we obtain 

F(t) - F(O) = F'(et), 
t 

where e is a number between 0 and 1; using (31) and (32a) it follows 
that 

{(x + ht, y + kt) - {(x, y) = h{x(x + eht, y + ekt) + k{y(x + eht, y + ekt). 
t 
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Setting t = 1, we obtain the required mean value theorem {or {unctions 
o{ two variables in the form 

(33) {(x + h, y + k) - {(x, y) 

= h{x(x + Oh, y + Ok) + k{y(x + Oh, y + Ok) 

= h{x(~, 11) + k{y(~, 11). 

Thus, the difference between the values o{ the {unction at the points 
(x + h, y + k) and (x, y) is equal to the differential at an intermediate 
point (c;, ,,) on the line segment joining the two points. It is worth 
noting that the same value of 0 occurs in both {x and {y. 

Just as for functions of a single variable (Volume I, p. 178), the 
mean value theorem can be used to obtain a modulus of continuity for 
a function {(x, y) and, more precisely, to show that a function {as 
above is Lipschitz continuous. In order to apply the mean value 
theorem we must be able to join two points by a straight line segment 
along which {is defined. Assume then that the domain R of {(x, y) 
is convex, that is, that the line segment joining any two points of R 
lies completely in R. Let {be continuously differentiable in Rand 
let M be a bound for the absolute value of the derivatives of {: 

lfZ(x, y) 1< M, Ify(x, y)1 < M 

for (x, y) in R. Then formula (33) can be applied and yields the in­
equality 

(34) If(x + h, y + k) - {(x, y)/ ~ /h/IfZ(~, 11)/ + Ik/lfll(~' 11)/ 

~lhlM + IkIM< 2M Jh2 + k2 

Hence, the numerical value of the difference in the values of { at two 
points. whose distance p = Jh2 + k2 does not exceed a fixed multiple 
of the distance (namely, 2Mp). This is exactly what is meant by 
Lipschitz continuity of {. In particular we have 

If(x + h, y + k) - {(x, y) 1< & 

for Jh2 + k2 < &/2M. Thus { is uniformly continuous in R with the 
"modulus of continuity" B = &/2M. 

The following fact, the proof of which we leave to the reader, is a 
simple consequence of the mean value theorem. A function {(x, y) 
whose partial derivatives {x and {1I exist and have the value 0 at every 
point of a convex set is constant. 
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Exercises 1. 7b 

1. Interpret the mean value theorem geometrically. 
2. Find a value 6 for which 

hfx(x + 6h, y + 6k) + kfy(x + 6h, y + 6k) 

= f(x + h, y + k) - f(x, y) 

in each of the following cases: 

(a) f(x, y) = xy + y2, X = Y = 0, h = ~, k = t 
(b) f(x, y) = sin 7t' (x + y), x = y = t, h = 1, k = t. 

3. Show that there is a number 6, 0 < 6 < 1 such that 

2 7t6. [7t'( ] - = cos - + sm - 1 - 6) 7t' 2 2 

using the mean value theorem for the function 

f(x, y) = sin 7t'X + cos 7t'y. 

4. Derive the mean value theorem for a functionf(x, y, z) of three variables. 
5. Find a number 6, 0 ~ 6 ~ 1, for which 

where 

(a) f(x, y, z) = xyz 

(b) f(x, y, z) = x2 + y2 + 2xz 

Problems 1.7b 

1. Let the domain of f(x, y) be a polygonally connected region; that is, 
suppose that any two points P, Q of the domain can be connected within 
the domain by a sequence of segments POPl, PlP2, . . . ,Pn-l Pn, where 
Po = P and P n = Q. Prove that if the partial derivatives fx and fy have 
the value 0 at every point of the domain, then f is constant. 

c. Taylor's Theorem for Several Independent Variables 

If we apply Taylor's formula with Lagrange's form of the remainder 
(cf. Volume I, p. 452) to the function F(t) = f(x + ht, y + kt), use the 
expressions (32a, b, c) for the derivatives of F, and put t = 1, we 
obtain Taylor's theorem for functions of two independent variables, 

(35) f(x + h, y + k) = f(x, y) + {hfx(x, y) + kfY(x, y)} 

1 + 2! {h2fxx(x, y) + 2hkfxy(x, y) + k 2fyy(x, y)} 
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+ ... + ;,{ hnfzn(x, y) + (~)hn-lkfzn-llx, y) 

+ . . . + knfyn(x, y)} + Rn, 

where Rn denotes the remainder term 

(36) Rn = (n ~ 1) , {hn+1fzn+l(X + Oh, y + Ok) + . 

+ kn+1 f'lln+l(X + Oh, y + Ok)}, 

where 0 < 0 < 1. The increment f(x + h, y + k) - f(x, y) is thus 
written as a sum of homogeneous polynomials of degree 1, 2, ... , 
n + 1, which, apart from the factors 

1 1 1 1 
1" 2 , ' • • ., n" (n + 1)' ' 

are the first, second, . . ., nth differentials 

df = hfz + kf'll = (h a: + k ;y) f 

( a a)2 d2f = h ax + k ay f = h2fzz + 2hkfz'll + k2fyy, 

dnf = (h i. + k ~)nf = hnf n + (n)hn-lkf n-l + ... + knf. n ax ay z 1 z 'II Y 

of f(x, y) at the point (x, y) and the (n + 1)th differential dn+1 f at an 
intermediate point on the line segment joining (x, y) and (x + h, 
y + k). Hence, Taylor's theorem can be written more compactly as 

(37) 
1 

f(x + h, y + k) = f(x, y) + df(x, y) + 2' d2f(x, y) + . 

+ ~ dnf(x, y) + R n, n. 

where 

(38) Rn = (n ~ 1) , dn+1f(x + Oh, y + Ok), 0<0<1. 

In general the remainder Rn vanishes to a higher order than the 
term dnf just before it; that is, as h ~ 0 and k ~ 0, we have Rn = 
O{.J(h2 + k2)n}. 
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From Taylor's theorem for functions of one variable the passage 
(n~oo) to infinite Taylor series led us to the expansions of many 
functions in power series. With functions of several variables such a 
process, even when possible, is in general too complicated. For us the 
importance of Taylor's theorem lies rather in the fact that the incre­
ment f(x + h, y + k) - f(x, y) of a function is split up into increments 
df, d2f, . . . of different orders. 

Exercises 1.7 c 

1. Find the polynomial of second degree that best approximates sin x sin y 
in the neighborhood of the origin. . 

2. For f(x, y) = x3 + 4y2x, approximate the value of f(2.1, 2.9). 
3. For f(x, y) = x/y + y/x, estimate the error in approximating the value 

of f(.9, .9) by f(l, 1). 
4. Expand the function f(x + h, y + k) in powers of h, k, for 

(a) f(x, y) = x 3 - 2x2y + y2 

1t 
(b) f(x, y) = cos (x + 2y) at x = 0, y = 2" 

(c) f(x, y) = x4y + 2y2x - v'3x2. 

5. Expand f(x, y, z) = xyz2 in powers of x, y - 1, z + 1. 
6. Obtain the first few terms of the Taylor expansions of the following 

functions in a neighborhood of the origin (0, 0): 

(a) 
y 

z = arc tan (x2 + 1) (f) z = log (1 - x) log (1 - y) 

(b) z = cosh x sinh y (g) z = ex2- 112 

(c) z = cos x cosh (x + y) (h) z = cos (x + y) e-x2 

(d) z=excosy (i) z = cos (x cos y) 

sin x 
(e) z =-- (j) z = sin (x2 + y2) 

cosy 

7. Estimate the error in replacing cos x/cos y by 

1 1- - (x2 _ y2) 
2 

for 
1t 

Ixl,lyl<S· 

Problems 1.7c 

1. Find the Taylor series for the following functions and indicate their 
range of validity. 

1 
(a) 1- x - y 
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(b) eX+II. 

2. Show that the law of cosines in spherical trigonometry, 

cos z = cos x cos y + sin x sin y cos 6, 

reduces to the euclidean law of cosines, 

Z2 = x2 + y2 - 2xy cos 6 

in the neighborhood of the origin. 
3. If {(x, y) is a continuous function with continuous first and second 

derivatives, then 

. f(2h, e-1I2h) - 2f(h, e-lIh) + {(O, 0) 
{xx(O, 0) = hm h 2 

h~+o 

4. Prove that the function {(x, y) = exp (- y2 + 2xy) can be expended in a 
series of the form 

~ Hn(x) 
"-' -,-yn, 
n-O n. 

that converges for all values of x and y and that the polynominals Hn(x), 
the so-called Hermite polynomials, satisfy 

(a) Hn(x) is a polynomial of degree n. 

(b) Hn'(x) = 2nHn-l(X) 

(c) Hn+l - 2xHn + 2nHn-l = 0 

(d) Hn" - 2xHn' + 2nHn = o. 

108 Integrals of a Function Depending on a Parameter 

The concept of multiple integral of a function of several variables 
will be taken up in Chapters IV and V. For the moment we shall only 
study the single integrals arising in connection with such functions. 

ao Examples and Definitions 

If {(x, y) is a continuous function of x and y in the rectangular 
region a ~ x ~ ~, a ~ y ~ h, we may think of the quantity x as fixed 
and integrate the function {(x, y), considered as a function of y alone, 
over the interval a ~ y ~ b. We thus arrive at the expression 

f: {(x, y) dy 

which still depends on the choice of the quantity xo Thus, we are con­

sidering not just one integral but the family of integrals f: {(x, y) dy 

obtained for different values of x. The quantity x, which is kept fixed 
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during the integration and to which we can assign any value in its 
interval, we call a parameter. Our ordinary integral therefore appears 
as a function of the parameter x. 

Integrals that are functions of a parameter frequently occur in 
analysis and its applications. For example, as the substitution xy = 
u readily shows, we have 

r 1 X dy . 
J 0 .vI _ x2y2 = arc sm x 

for -1 < x < 1. Again, in integrating the general power function we 
may regard the exponent as a parameter and write accordingly 

I l 1 
YXdy=--

o x + l' 

where we assume that x > -1. 
We can represent the region of definition of the function f(x, y) 

geometrically and consider the parallel to the y-axis corresponding to 
the fixed value of the parameter x, as in Fig. 1.15. We obtain the func­
tion of y that is to be integrated by considering the values of the 
function f(x, y) as a function of y along the line of intersection AB 
of the parallel with the rectangle. We may also speak of integrating 
the function f(x, y) along the segment AB. 

y 

a 

B 

I 
I 
I 
I 

I 
A 

L-__ L-____________ ~--___ % 

o a b 

Figure 1.15 

This geometrical point of view suggests a generalization. If the 
domain of definition R of the function f(x, y) has the shape shown in 
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o 

Figure 1.16 

Fig. 1.16. such that any parallel to the y-axis cuts the boundary 
in at most two points, then for a fixed value of x we can again 
integrate the values of the function {(x, y) along the line AB in which 
the parallel to the y-axis intersects the region R. The initial and final 
points of the interval of integration will themselves vary with x. We 
then have to consider an integral of the type 

(39) J'II (x) 
2 {(x, y) dy = F(x) , 

'IIt(x) 

that is, an integral with the variable of integration y in which the 
parameter x is present both in the integrand and in the limits of 
integration. If we represent the function {(x, y) by the surface 
z = {(x, y) in x, y, z-space, then for a positive function { we can 
consider the cylinder with generators parallel to the z-axis having 
as its base the domain R of { in the x, y-plane and bounded on 
top by the surface z = {(x, y). A fixed value of x corresponds to a 
plane parallel to the y, z-plane, which intersects the solid cylinder in 
a certain plane region. The area of that region is given by the integral 
in formula (39). For example, the integral 

I VI-X2 _ .v 1 - x2 - y2 dy 
-Vl-x2 

represents the area of the intersection of the hemisphere 

o < z < .vI - x2 - y2 

with a plane x = constant. 
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b. Continuity and differentiability of an integral with respect 
to the parameter 

The integral 

F(x) = Iab f(x, y) dy 

is a continuous function of the parameter x, for a;;:; x ;;:; ~, if f (x, y) 
is continuous in the closed rectangle R given by a ;;:; x ;;:; ~, a ;;:; y ;;:; b. 

For 

I F(x + h) - F(x) I = I Iab (f(x + h, y) - f(x, y» dy\ 

;;:; Jab If(x + h, y) - f(x, y) I dy. 

In virtue of the uniform continuity of f(x, y), for sufficiently small 
values of h the integrand on the right, considered as a function of 
y, may be made uniformly as small as we please, and the statement 
follows immediately. 

We next investigate the possibility of differentiating F(x). We first 
consider the case in which the limits of integration are fixed and as­
sume that the function f(x, y) has a continuous partial derivative 
fx in the closed rectangle R.l We shall prove that instead of first in­
tegrating with respect to y and then differentiating with respect to 
x we may reverse the order of these two processes: 

THEOREM. If in the closed rectangle a;;:; x ;;:;~, a;;:; y ;;:; b the 
function f(x, y) is continuous and has a continuous derivative with 
respect to x, we may differentiate the integral with respect to the 
parameter under the integral sign, that is, 

(40) :x F(x) = :xIab f(x, y) dy = Jab fx(x, y) dy. 

Moreover, F'(x) is a continuous function of x. 
Before proving this theorem, we remark that it yields a simple 

proof of the fact (already established on p. 37) that in the formation 
of the mixed derivative gxy of a function g(x, y) the order of differ­
entiation can be changed, provided that gy and gxy are continuous and 
gx exists. For if we put f(x, y) = gy(x, y), we have 

IThis means that f:r: exists in the open rectangle and can be extended into the closed 
rectangle as a continuous function (see. p. 42). 
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g(x, y) = g(x, a) + faY f(x, TJ) dTJ. 

Since f(x, y) has a continuous derivative with respect to x in the 
rectangle a ~ x ~ ~, a ~ y ~ b, it follows that 

and therefore by the fundamental theorem of calculus 

gyx(x, y) = fx(x, y). 

Since also fx(x, y) = gxY(x, y) from the definition of f, we see that 
gyx = gxy. 

PROOF. If both x and x + h belong to the interval a ~ x ~ ~, 
we can write 

F(x + h) - F(x) = Lb f(x + h, y) dy - Jab f(x, y) dy 

= Jab [f(x + h, y) - f(x, y)] dy. 

Since we have assumed that f(x, y) is differentiable with respect to 
x, the mean value theorem of differential calculus in its usual form 
gives 

f(x + h, y) - f(x, y) = hfx(x + 9h, y), 0<9<1.1 

Moreover, since the derivative fx is assumed to be continuous in the 
closed rectangle and therefore uniformly continuous, the absolute 
value of the difference 

fx(x + 9h, y) - fix, y) 

is less than any positive quantity e for all h with I h I < 0 where 
o = O(e) is independent of x and y. Thus, 

I F(x + h2 - F(x) - Iab fx(x, y) dy I 

lHere the quantity 0 depends on y and may even vary discontinuously with y. This 
does not matter, for by the equation f.,(x + Ok, y) = k-1 [f(x + k, y) - f(x, y)] we 
see at once that f.,(x + Ok, y) is a continuous function of x and y and is therefore 
integrable. 
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= ILb fx(x + 9h, y) dy - Lb fX(x, y) dy I 

;;:;; Lb 
& dy = &(b - a), 

for I h I < 3(&), provided h * O. This means, however, that the re­
lation 

1· F(x + h) - F(x) - i b f ( ) d - F'( ) 1m h - x x, y y - X 
k.o a 

holds. This proves the existence of F'(x) and formula (40). The con­
tinuity of F' follows from that of the integrand fx(x, y) (see p. 74). 

In a similar way we can establish the continuity of the integral and 
the rule for differentiating the integral with respect to a parameter 
when the parameter occurs in the limits of integration. 

For example, if we wish to differentiate 

l lj/2(X) 
F(x) = f(x, y) dy, 

lj/}(X) 

we start with the expression 

F(x) = J: f(x, y) dy = tfi(u, v, x), 

where u = '11l(X), v = 'l'2(X). Here we assume that 'l'l(X) and 'l'2(X) 
have continuous first derivatives in an interval a ;;:;; x ;;:;; ~ and that 

a < 'l'l(X) < 'l'2(X) < b 

for a < x < ~. Let, moreover, f(x, y) and fX(x, y) be continuous In 

the set 

a;;:;;y;;:;; b. 

The function tfi of the three independent variables u, v, x is defined 
then for 

a;;:;; u;;:;; b, a;;:;; v;;:;; b. 

Moreover, it has continuous partial derivatives, since by formula (40) 

o r" r" tfix(u, v, x) = oxJu f(x, y) dy = Ju fx(x, y) dy 
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and by the fundamental theorem of calculus (Volume I, p. 185) 

a rv 
~v(u, v, x) = avJu {(x, y) dy = {(x, v) 

a rv a . ru 
~u(u, v, x) = au Ju {(x, y) dy = - au J v {(x, y) dy = - {(x, u). 

We can apply the chain rule of differentiation (18) p. 55 to the 
compound function 

and find 

F'(x) = ~u'l'I'(X) + ~v'l'2'(X) + ~x, 

This proves the existence of a continuous derivative of F(x) for 
a < x < ~ and yields the formula 

(41) !i fIj/2(X) f,(x ) d 
dXJIj/I(X) , Y Y 

l Ij/2(X) 
= {x(x, y) dy - 'l'I'(X) {(x, 'l'1(X» + 'l'2'(X) {(x, 'l'2(X». 

Ij/I(X) 

Taking, for example, for F(x) the function 

F(x) = foxsin (xy) dy 

we obtain 

dF(x) rx dX = Jo y cos (xy) dy + sin (x2). 

For the example 

11 X dy 
F(x) = /1 2 2 = arc sin x, 

0'V -xy 

for - 1 < x < + 1, we obtain the relation 

i l dy 1 
F'(x) = 0 ./(1 - X2y 2)3 = ./1 - x2 

as the reader may verify directly. 
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Other examples are given by the sequence of integrals 

(42) Fo(x) = LX f(y) dy, 

where n is any positive integer and f(y) is a continuous function of 
y alone, in the interval under consideration. Since the expression 
arising from differentiation with respect to the upper limit x vanishes, 
rule (41) yields the recursion formula 

Fn'(x) = Fn-l(X) 

for n = 1, 2, 3,. .. Since Fo'(x) = f(x), this gives at once 

(42a) F n(n+1)(x) = f(x). 

Therefore Fn(x) is that function whose (n + l)th derivative is equal 
to f(x) and which, together with its first n derivatives, vanishes for 
x = 0; it arises from F n-l (x) by integration from 0 to x. Hence, Fn(x) 
is the function obtained froml(x) by integrating n + 1 times between 
the limits 0 and x: 

(42b) Ffj(x) = fox f(y) dy, 

F2(X)= LX Fl(Y) dy, . 

Fl(X) = LX Fo(y) dy, 

. . , Fn(X) = LX Fn-I{y) dy. 

This repeated integration can therefore be replaced by a single in­

tegration of the function (x - ,y)n f(y) with respect to y. 
n. 

The rules for differentiating an integral with respect to a parameter 
often remain valid even when differentiation under the integral sign 
yields a function that is not continlJ.ous everywhere. In such cases, 
instead of applying general criteria, it is more convenient to verify 
directly whether such a differentiation is permissible in each special 
case. 

As an example, we consider the elliptic integral (cf. Volume I, p. 
299). 

i +1 dx 
F(k) = -1 "'(1 - x2)(1 - k 2x2) ; 

k 2 < 1. 

The function 
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1 
{(k, x) = J(1 _ x2)(1 _ k2x2) 

is discontinuous at x = + 1 and at x = -1, but the integral (as an im­
proper integral) has a meaning. Formal differentiation with respect 
to the parameter k gives 

(+1 kx2 dx 
F'(k) = J-l J(1 - x2)(1 - k2x2)3 

To investigate whether this equation is correct, we repeat the 
argument by which we obtained our differentiation formula. This 
gives 

F(k + ~ - F(k) = 1:1 f,e(k + Oh, x) dx 

(+1 (k + Oh)x2 dx 
= J-l J(1 - x2) [1 - (k + Oh)2x2] 3· 

The difference between this expression and the integral obtained by 
formal differentiation is 

1+1 X2 ( k + Oh k) A= . - ~ 
-1 Jl - x2 J [1 - (k + Oh)2x2] 3 J(1 - k2x2)3 

We must show that this integral tends to 0 with h. For this purpose 
we mark off about k an interval ko -;;;;.k -;;;;. kl not containing the values 
± 1, and we choose h so small that k + Oh lies in this interval. The 
function 

k 

is continuous in the closed region -1 -;;;;. x -;;;;. 1, ko -;;;;. k -;;;;. kl, and is 
therefore uniformly continuous. The difference 

I k + Oh k I 
J[1 - (k + Oh)2X2]3 - J(1 - k2X2)3 

consequently remains below a bound E that is independent of x and 
k and which tends to 0 with h. Hence, 

5+1 X2 dx 
I A I < -1 Jl _ x2 E = ME, 
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where M is a constant independent of t. That is, the integral a tends 
to 0 as h does, which is what we wished to show. 

Differentiation under the integral sign is therefore permissible in 
this caSe. Similar considerations apply in other cases. 

Improper integrals with an infinite range of integration and de­
pending on a parameter will be discussed on p. 462. 

Exercises 1.Sb 

1. Let 

F(k) = LIl oc(x) ~(x. k) dx. 

where ~(x, k) and ~k(X, k) are continuous for a ~ x ~ b, ko < k < kI, 
and oc(x) is continuous for a < x < b, and LIl !oc(x)! dx exists as an im­

proper integral. Prove that 

F'(k) = LIl oc(x) ~k(X, k) dx for ko < k < ki. 

2. Let 

F(k) = f (x - l)xk log-Ix dx for 

Prove 
(a) lim k F(k) = 1 

k-~ 

2+k 
(b) F(k) = log 1 + k' 

-l<k. 

c. Interchange of Integrations. Smoothing of Functions 

The theorem on p. 74 about differentiation under the integral sign 
has the important consequence that we can interchange orders of 
integration. 

Let f(x, y) be continuous in the rectangle R given by 

(42c) a ~ x ~ b, 

Then the integrals 

and 

have the same value. We call this value the double integral of f over 
the rectangle (42c). 

As an example we consider the function f(x, y) = y sin (xy) in the 
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7t 
rectangle 0 ~ x ~ 1, 0 ~ y ~ 2. Here 

7t 
=--1 

2 

J = fO"/2 dl') 50 Il') sin (~l') d~ = fO"/2 (1 - cos l') dl') = ~ - 1. 

For the general proof of the identity 1= J, we introduce the in­
definite integrals 

v(x, y) = Say {(x, l') dl'), 

Applying formula (40) we find 

and thus 

u(x, y) = fax V(~, y) d~. 

u(x, y) = u(x, a) + Say Uy(x, l') dl') = LY dl') fax {(~, l') d~ 

For x = b, y = ~ it follows that I = J. 
We have associated here with a continuous function {(x, y) in the 

rectangle R a function u(x, y), which has continuous first derivatives 

Uy(x, y) = fax {(~, y) d~ 

and a continuous mixed second derivative 

UXy(x, y) = {(x, y). 

We shall use the function for the purpose of "smoothing" {, that is,· 
for constructing uniform approximations to { that have continuous 
partial derivatives. 

For technical applications it often is essential to replace a con­
tinuous function { (itself perhaps only an approximation to an imper­
fectly known physical quantity) by a smooth function nearby. We 
know from the Weierstrass approximation theorem (Volume I, p. 569) 
that functions of one independent variable, continuous in an interval, 
can be approximated uniformly by polynomials, which even have 
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derivatives of all orders. The analogous theorem holds for functions 
f(x, y) continuous in a rectangle. 

We can construct simpler approximations with a more moderate 
degree of smoothness by the process of "averaging" the function 
f(x, y). It is convenient here to have extended the definition of f from 
its rectangular domain (42c) to the whole x, y-plane so that f is con­
tinuous everywhere.1 For any h > 0 we form the average of f over the 
square of center (x, y) and sides of length 2h parallel to the axes: 

(42e) 1 1X+h i Y+h 
Fh(X, y) = 4h2 d~ {(~, 11) d11 

x-h y-n 

u(x + h, y + h) - u(x + h, y - h) - u(x - h, y + h) + u(x - h, y - h) 
= ~2 

It is clear that Fh(x, y) has continuous first derivatives and a con­
tinuous mixed second derivative. 2 In order to see that Fh(x, y) ap­
proximates f(x, y) for small h, we note that 

1 (X+h (Y+li 
(42f) Fn(x, y) - {(x, y) = 4h2 )X-h d~ )Y-h [{(~, 11) - {(x, y)] d11. 

Since { is uniformly continuous in some rectangle R' containing R 
in its interior, we know that {for given E and sufficiently small h will 
vary by less than E in every square of side 2h contained in R'. Then 
I {(~, 11) - {(x, y) I < E in (42f), and I Fh(x, y) - {(x, y) I < E. Hence 

lim Fh(x, y) => f(x, y) uniformly for (x, y) in R. 
h~o 

Thus we can find a smooth function Fh(x, y) arbitrarily close to 
{(x, y). 

1.9 Differentials and Line Integrals 

a. Linear Differential Forms 

In Section 1.5d we defined the total differential du of a function 
u = {(x, y, z) as the expression 

IThis can be achieved by continuing f as constant along rays perpendicular to one of 
the four sides of the rectangle and by continuing f into the remaining points of the 
plane as constant along rays from one of the four corners. 
2In order to have F,,(x, y) defined for all points of the rectangle R, we have to have 
f defined somewhat beyond R. 
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(43) d - af(x,y, z) d + af(x,y, z) d + af(x,y, z) d 
u - ax x ay Y az z. 

This definition for the differential of a function of several variables 
is suggested by the chain rule of differentiation. For if x, y, z are given 
functions of a variable t, 

(44) x = cp(t), y = 'I'(t), z = X(t), 

then the derivative of the compound function u = f [cp(t), 'I'(t), X(t)] 
according to the chain rule (19) is 

(45) du _ of dx + of dy + of dz 
dt - ax dt ay dt az dt . 

For functions u of a single variable t the differential has been defined 
du 

as du = dt dt. Hence, here by (45) 

du = (of dx + of dy + of dZ)dt 
ax dt ay dt az dt 

= of dx dt + of dy dt + of dz dt 
ax dt ay dt az dt ' 

which formally agrees with (43) if we remember that x, y, z (as func­
tions of t) have the differentials 

dx 
dx = dt dt, 

dy 
dy = dt dt, 

dz 
dz = dt dt. 

Thus the differential du = df(x, y, z) as given by (43) furnishes 

immediately the differential du = ~: dt of u "along any curve" repre­

sented parametrically in the form (44). 
The differential du as defined by (43) is a function of the six varia­

bles x, y, z, dx, dy, dz that is linear and homogeneous l in the variables 
dx, dy, dz, with coefficients that are functions of x, y, z. (There is, of 
course, no requirement that the differentials dx, dy, dz have to be 
"small" in any sense; such a restriction only arises if we want to use 
du as an approximation to the increment 

lThe most general linear function of three variables 1;, 1'\, ~ is AI; + B1'\ + c~ + 
D with coefficients A, B, C, D not depending on 1;, 1'\, ~; the linear function is called 
"homogeneous" or is said to be a "linear form" when D = 0 (see p. 13). 



81, Introduction to Calculus and Analysis. Vol. II 

~u = f(x + dx, y + dy, z + dz) - f(x,y, z) 

as explained on p. 42). 
The most general linear differential form in x,y,z-space is repre­

sented by the expression 

(46) L = A(x,y, z) dx + B(x,y, z) dy + C(x,y, z) dz. 

It is a function L of the six variables x, y, z, dx, dy, dz that is a linear 
form in the "differential" variables dx, dy, dz, with coefficients de­
pending on x, y, z. The total differentials du of functions are the 
special linear differential forms L that have coefficients of the form 

(47) A _ of (x, y, z) 
- ax ' 

B = of (x, y, z) 
oy , 

C = of(x,y, z) 
oz ' 

for a suitable function f = f(x, y, z). If a differential form L is the 
total differential of a function, we say it is an exact differential form or 
is integrable. Not every differential form is integrable; it is necessary 
that the coefficients A, B, C of L satisfy certain "integrability con­
ditions": 

If the coefficients A, B, C of the differential form L are of class Cl 
(that is, have continuous first derivatives; see p. 42) and if L is exact, 
then the equations 

(48) 

hold. 
Equations (48) simply are consequences of the rules for inter­

changeability of second derivatives. If A, B, C have continuous first 
derivatives and can be written in the form (47), thenfhas continuous 
second derivatives. Hence, by the theorem on p. 36, the order of dif­
ferentiation does not matter. Thus, for example, 

oA a of a of oB 
oy = oyox = oxoy = ax' 

and similarly for the other identities in (48). 
Hence, for example, the linear differential form 

L = y dx + z dy + x dz 

is not integrable, since here 
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aB _ ac _ az _ ax _ 1 =1= 0 
az ay - az ay - . 

On the other hand, the integrability conditions (48) are satisfied for 
the differential form 

L = yz dx + zx dy + xy dz, 

which, as a matter of fact, is the total differential du of the function 
u = xyz. To what extent the conditions (48) also are sufficient for 
expressing L as a total differential will be discussed in Section 1.10. 

Similar conditions for integrability are obtained when the num­
ber of dimensions is other than three. For two independent variables 
x, y the general linear differential form is L = A(x, y) dx + B(x, y) dYe 
If L is the differential du of a function u = {(x, y) the coefficients 
A, B satisfy the equation 

aA _ aB _ 0 
ay ax - . 

In four dimensions, on the other hand, we obtain corresponding to 
equations (48) six integrability conditions by forming all possible 
mixed second derivatives of a function { of four variables. 

The reason why it makes sense to consider a differential form L 
even when it is not an exact differential is that, along any curve C 
given parametrically in the form 

x = <p(t), y = 'I'(t), z = X(t), 

L becomes the differential 

L = (A dx + B dy + Cdz)dt 
dt dt dt 

of a function of a single variable. This function is simply the one 
given by the indefinite integral 

fL = f(A~: + B7t + ~dt. 

b. Line Integrals of Linear Differential Forms 

For the purpose of discussing integration of linear differential 
forms over lines, it is important to have a clear picture of the con-
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cepts and properties of oriented arcs and closed curves. The reader is 
advised to reread Volume I, pp. 333-340, where all the relevant re­
marks are made for the Gase of plane curves. These apply equally well 
to curves in spaces of any number of dimensions.1 Without restriction 
of generality we shall talk about integrals over curves in three-dimen­
sional x, y, z-space. 

A simple arc r is a set of points P = (x, y, z) that can be repre­
sented parametrically in the form 

(49) x = <p(t), y = 'If(t), z = X(t); a ~ t ~ b, 

where <p, 'If, X are continuous functions of t for a ~ t ~ b, and dif­
ferent t in that interval correspond to different points P. The parame­
tric representation (49) constitutes a 1-1 continuous mapping of the 
interval on the t-axis onto the set r in space.2 The same simple arc 
r has many different parametric representations. The most general 
one is obtained from the particular representation (49) by taking any 
continuous monotone function Il ('r), mapping the interval a~ t ~ ~ 
onto the interval a ~ t ~ b, and setting 

(50) y = 'If [Il (t)], 

There are two ways of ordering the points of r, which in any 
particular parametric representation (49) correspond to ordering 
according to either increasing or decreasing t. The choice of one of 
these two orderings converts r into an oriented simple arc r*. We 
say that r* is oriented positively with respect to the parameter t if 
the orientation of r* corresponds to increasing t and negatively if 
it corresponds to decreasing t. The oriented simple arc with the 
opposite orientation is denoted by - r*. The orientation is fixed 
completely if we know the order of any two points Po, PIon r. If 

lSpecifically two-dimensional are only the notions of "positive and negative side" 
of a curve and of "clockwise and counterclockwise sense." 
2The continuity of the mapping from tonto P is obvious from the assumed continuity 
of the functions <p, IV, ')C. It is important to realize that the inverse mapping P ---+ t 
also is continuous. This means that given a sequence of points Pn on r converging 
to a point P the corresponding parameter values tn converge to the parameter value 
for P. For the proof we observe that by the compactness property of closed and bound­
ed intervals (II olume I, p. 95) a subsequence of the tn converges to some value t with 
a ~ t ~ b. By the continuity of the original mapping, t is mapped on the limit P of 
the Pn • Because of the assumed 1-1 character of the mapping, t is determined unique­
ly by P. Hence, every convergent subsequence of the tn has as limit the parameter 
value t corresponding to P. This proves, however, that the whole sequence of the tn 
converges to t. 
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r* is oriented positively with respect to the parameter t and if to and 
tl are the parameter values for Po, PI, then to < tl means that PI 
follows Po or Po precedes PIon r* (Fig. 1.17). 

B 

I I I I ~ t 
a to tl b 

I I I • T 
a Tl TO (3 

Figure 1.17 Simple arc in space oriented negatively with respect to parameter T, 

positively with respect to parameter t = Il(T), where Il(a) = b, 11(13) = a. 

The end points of the oriented simple arc r* correspond in the 
parametric representation (49) to the values t = a, b in some order. We 
distinguish them respectively as "initial" and "final" point of r*, 
the initial end point being the one that precedes the other one. If r* 
has the initial point A and final point B we write 

r* =AB 

The oppositely oriented arc is then 

-r* = BA 

If r* is oriented positively with respect to t, the initial point has 
parameter value a, and the final point, parameter value b. 

An oriented simple arc r* = AB can be divided into oriented sim­
ple subarcs r I *, , . . . , r n * by points p], . . ., P n-I on r* following 
each other according to the orientation. We put Po = A, P n = Band 
define for i = 1, ... ,n the arc r i* as the set of points on r* consist­
ing of Pi-I, Pi and all points preceding Pi and following Pi-I, ordered 
in the same way as on r*. We write symbolically 
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(5i) 

If r* is oriented positively with respect to the parameter t in the 
representation (49) and if tt is the parameter value corresponding to 
Pc, we have 

a = to < tl < tz <. . . < tn = b. 

The arc r,* is obtained when we restrict t to the interval tt-l ~ t ~ 
tt (Fig. 1.18). 

Pa 

/; PI 
rl''' 

A Po 

r5* P4 

B=P5 
a b 
I I ---t 
to tl t2 ta t4 ts 

Figure 1.18 Oriented arc r* = AB represented as sum of 
ares rHl* = p, PHl such that r* = rl* + ra* + ra* + r4* + r5*. 

We are able now to define the integral f L of the linear differential 
form 

(52) L = A(x, y. z) dx + B(x, y, z) dy + C(x, y, z) dz 

over a simple oriented arc r*. We assume that the coefficients A, 
B, C of L are continuous in a neighborhood of P. We make the 
further assumption that the arc r* not only is continuous but 
sectionally smooth, that is, that it can be represented parametrically 
by functions 

(53) x = <p(t), y = ",(t), z = x(t); a ~ t ~ b, 

which are sectionally smooth. l 

lThis means that ql, \If, 1 are continuous for a ~ t ~ b and have continuous first 
derivatives in that interval except possibly for a finite number of jump-discontinui. 
ties of the derivatives. Notice that we require only the existence of some sectionally 
smooth parametric representation of r*, while other representations need not be 
smooth. 
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Let Po, PI, ... , Pn be any n + 1 points of r* following each 
other in the order determined by the orientation of r*, where Po is 
the initial, and Pn the final, point ofr*. 

We form the Riemann sum 

n-l 
(54) Fn = L: (Av Axv + Bv Ayv + Cv Azv). 

v=O 

Here A v, Bv, Cv are the 'values of A, B, C at some point Qv that 
precedes PV+I and follows Pv on r*, and Axv, Ayv, Azv stand for 

We shall show that for n ---+ 00 the sequence of F n converges to a limit 
F, provided that the largest distance between successive points Pv, 
PV+I tends to o. The value of F does not depend on the particular 
choice of the points Pv or of the intermediate points Qv. We call F the 
integral of the form L over the oriented arc r*, and write 

(55) F = f L =J A dx + B dy + C dz 
r'" r'" 

Since the definition of the integral does not refer to parametric re­
presentations, it is clear that the integral does not depend on the 
choice of parameters. The existence proof will imply that the integral 
is represented by the ordinary Riemann integral 

(56) r L = efb(A dx + B dy + Cdz) dt J r ", a dt dt dt 

Here the integrand is the function of the single variable t obtained 
by substituting for the arguments x, y, z of A, B, C their expressions 
(53); moreover, e = + 1 when r* is oriented positively with respect 
to t and e = -1 when oriented negatively. Without distinguishing 
cases we can also write (56) as 

(57) 

where ti is the parameter value for the initial point and t, that of the 
final point of the oriented arc r*; that is, ti = a, t, = b when e = 
+ 1, and ti = b, t, = a when e = -l. 

To prove convergence of the Riemann sums F n , we make use of the 
sectionally smooth parametric representation (53) of r*. Let tv be the 
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parameter value corresponding to the point Pv. Since the corre­
spondence between parameter values and points on the curve is 
continuous both ways for simple arcs (see footnote on p. 86), we see 
that as the largest distance between successive points tends to 0, 
the largest value of I tV+l - tv I tends to 0 for n ~ 00. The functions 
<p'(t), ",'(t), x'(t) may have jump-discontinuities at a finite number 
of points. We can assume that all those points of discontinuity occur 
among our subdivision points to, tl, . . . , tn, for since the A, B, C 
are bounded and the largest of the ilxv, ilyv, ilzv tend to 0 for n ~ 00, 
the effects of adding or subtracting contributions from a fixed finite 
number of subdivision points in the Riemann sum, Fn , disappear in the 
limit. 

Since <p(t), ",(t), X(t) are now differentiable in the interior of 
each subinterval, we can apply the mean value theorem of differential 
calculus (see Volume I, p. 174) and find 

ilxv = <P(tV+I) - <p(tv) = <p'(tv)(tv+I - tv) 

ilyv = ",'(tv')(tv+I - tv). ilzv = x'(tv")(tv+I - tv), 

with values tv, tv', tv" intermediate between tv and tV+I. The point 
Qv on r* also corresponds to a parameter value cry intermediate 
between tv and tV+I. Hence, the Riemann sum Fn in (54) takes the form 

n-l 
Fn = :E [A(crv)<p'(tv) + B(crv) ",'(tv') + C(crv) x'(tv")] [tv+I - tv]. 

V=O 

Here the points to, tl, ... . , tn form a subdivision of the parameter 
interval [a, b]. If r* is oriented positively with respect to t, the tv 
form an increasing sequence with to = a, tn = b, and iltv = tV+l - tv 
> O. Otherwise, the tv are decreasing, to = b, tn = a, and Mv < O. 
In our notation for the parameter interval, a always stands for the 
smaller one of the values a, b and thus may correspond to either the 
initial or the final point of the arc r*. 

If we now use the fundamental existence theorem for definite inte­
grals as limits of Riemann sums (see Volume I, pp. 192 ff.), we find that 
F = lim Fn exists and is given by formula (56).1 The factor E = ± 1 

arises from the assumption made in that theorem that the points of 
subdivision tv used in forming the Riemann sum constitute an in­
creasing sequence. When the orientation of r* corresponds to 

IThe intennediate values 'tv. 'tv'. 'tv", Uv need not be the same for convergence (see 
the remarks on p. 195, Volume I). 
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decreasing t, we have to run through the values tv in opposite order, 
starting with tn and ending with to, and change the sign of Mv. 

It is clear that the definition of line integral and the formula (56) 
can be extended to the case where r* is an oriented simple closed 
curve. l In this case we form the Riemann sum by selecting n points 
Pl, P2, ... ,Pn on r* that follow each other in the order determined 
by the orientation, and we put Po = Pn in the expression (54) for Fn. 

Instances of integrals over curves in the x, y-plane have been 
encountered already in Volume I. Thus, the oriented area bounded by 
a closed oriented curve r* had been represented in the form 

(see Volume I, p. 365); that is, as the line integral 

A = ~ Jr* x dy - y dx 

Another example is furnished by the work W done by a field of force 
with components p, 0' in moving from a point Po to a point Pl along 

,--.... 
a curve r* = POPl referred to arc length s as parameter. Here (see 
Volume I, p. 420) 

J: 8 l ( dx dy ) W= p - + 0'- ds, 
80 ds ds 

which can be written as 

W = I p dx + 0' dy. 
r* 

In the same way we can define the work done by forces in space with 
components p, 0', 't, in moving along an arc r* in the direction 
given by its orientation as a line integral 

W = J. p dx + 0' dy + 't dz. 
r* 

1Such a curve has a continuous parametric representation (53), with different t 
corresponding to different points, except that t = a and t = b yield the same point. 
Moreover a cyclic order is specified on r*, corresponding to either increasing or 
decreasing t (see Volume I, p. 339). We can always represent r* as sum of oriented 
simple arcs n* in the form (51), where for i = 2, . . . , n the final point of r,* -1 is 
the initial point of r,* and where the final point of r .. * is the initial point of r 1*. 
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Exercises 1.9b 

1. Find 
J z dx + x dy + y dz 

(a) over the arc of the helix 

x = cos t, Y = sin t, z = t 

joining the points (1, 0, 0) and (1, 0, 21t); 

(b) over the parabolic arc 

x = xo(l - t2), Y = yo(l - t2), z = t 

joining the points (0, 0, 1) and (0, 0, -1) (for constant Xo, yo). 

c. Dependence of Line Integrals on End Points 

We return to the general differential form L given by (52). Let r be 
a simple arc (not yet oriented) with a sectionally smooth parameter 
representation (53). 

For any two points Po, PIon r corresponding to the values to, tl 
of the parameter t, we can form the integral 

1= rtl (A dx + B dy + Cdz)dt. 
Jto dt dt dt 

By formula (57), I is equal to f L extended over the oriented subarc 

PoPI of r that has Po as initial and PI as final point. It follows that 
I does not depend on the particular parameter representation. We 
write 

The value of I is determined by the ordered pair of points Po, PI and 
the simple arc of which they are end points. 

For fixed Po we can define a function f = f(P) along the arc r by 
the indefinite integral 

f p it (dX dy dz) (58) f(P) = L = A dt + B dt + C dt dt. 
Po to 

Taking f as a function of the independent variable t, we then have 

(59) df = A dx + B dy + C dz 
dt dt dt dt . 
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Writing this equation as 

df = c;£ dt = A dx + B dy + C dz = L , 

we thus express the linear differential form L (which need not be 
exact) as the differential of a function f; but we have to remember 
that this relation holds only along a special curve r on which f is 
defined. 

For any points P and pI of r 

(60) f pI L = f(PI) - f(P). 
P 

This follows immediately if we express the line integrals as integrals 
over the variable t and apply the fundamental connection between 
definite and indefinite integrals (see Volume I, p. 190). If r*, the arc 
r with a certain orientation, has the initial point A and the final 
point B, we find, in particular, that 

(61) r L = I B L = feB) - f(A). Jr. A 

If Po,. ., Pn are points on r* in the order determined by the 
orientation of r*, with Po = A, Pn = B, we have 

n-l 
L = feB) - f(A) = :E [f(Pv+l) - f(Pv)] 

v-o 

n-l fPV+l 
= :E L. 

V=O Pv 

If we denote by r v+l * the subarc with initial point Pv and final point 
PV+l, we have 

Here the orientation of r v* agrees with that of r so that 

r* = rl* + r2* + ... + r n*. 

Therefore, line integrals are additive: 

(62) 
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Similarly, if we interchange the end points of r*, 

(63) I L=-f L 
-r* r* 

These rules are of particular interest when applied to oriented 
closed curves represented as sums of oriented simple arcs. Consider a 
number of oriented simple closed curves CI*, ... , Cn*(see Fig. 1.19), 

Figure 1.19 Additivity of line integrals over closed curves. 

which may have portions in common. Assume that a simple arc 
r common to two of the curves, C,* and Ck*, receives opposite orien­
tations from C,* and Ck* and that the portions of the curves not com­
mon to any two of them add up to an oriented closed curve C*. Writing 
each line integral over a curve C,* asthe sum of integrals over simple 
arcs and adding all these integrals, the contributions of the common 
arcs cancel out and we are left with the formula 

(64) f L=f L+·· .+J L 
c* Ct* Cn* 

This situation arises, in particular, when the C,* are plane curves 
forming the boundaries of nonoverlapping two-dimensional regions 
Rt that together form a region R with boundary curve C*, all Ct* and 
C* having the same orientation. More generally, the region Rand 
its boundary C* may lie on a surface, and R may be subdivided by arcs 
into subregions Rt with boundary curves Ct* whose orientations fit 
together in the manner described. 

A somewhat different application of the same principle occurs in 
the following theorem. Let two oriented closed curves C* and C'* 
(see Fig. 1.20) be subdivided by the points AI, ... ,An and AI', ... , 
An', respectively, in the order of the sense of orientation, and let each 
pair of corresponding points A, and At' be joined by a curved line. If 
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Figure 1.20 

by Ct* we denote the closed oriented curve AtAt+IAi+l' Ai' (identifying 
An+l with Al and An+l' with AI'), then 

(65) n f f f L: L = L - L. 
i= 1 Ci* c'* c* 

1.10 The Fundamental Theorem on Integrability of Linear 
Differential Forms 

a. Integration of Total Differentials 

A particularly important class of differential forms 

(66) L = A dx + B dy + C dz 

are the total differentials of functions u = f(x, y, z), with A, B, C of 
the form 

(67) A = af 
ax' 

B= af 
ay' 

C= af 
az' 

where f is a function with continuous first derivatives. While in 
general the value of Jr * L depends not only on the end points but 

on the entire course of the curve, the following theorem is valid 
here: 

The integral of a linear differential form L, which is the total dif­
ferential of a function f, is equal to the difference of the values of f at 
the end points and does not depend on the course of r* between those 
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points. That is, we obtain the same value for fr* L for all curves r* 

which lie in the domain of { and have the same initial point Po and 
the same final point Pl. 

For the proof, let the curve r* be referred to a parameter t where 
to corresponds to the initial point Po and tt to the final point Pl. By 
(57), p. 89 

1* L = i:l (A~: + B~: + c~:) dt. 

By the chain rule of differentiation [see formula (18) p. 55] we then 
have 

( (tl d{ t 
(68) Jr* L = Jto dt dt = { I t~ = {(PI) - {(Po), 

where we write 

for i = O,l. 
We observe that instead of requiring that the integral is inde­

pendent of the path, we might just as well require that the integral 
over a simple closed curve r* has the value 0, for if we divide the 
curve r* by means of two points Po and PI into two oriented arcs 
rl* and r2*, we have 

where, say, r l has initial point Po and final point PI, while r2* has 
initial point PI and final point Po (see p. 94). Then 

Here - r 2* has the same initial point Po and the same final point 
PI as r 1 *. The vanishing of f L over the closed curve r* means exactly 
the same thing as the equality of L taken over the two simple arcs that 
have Po as initial point and PI as final point. 

b. Necessary Conditions for Line Integrals to Depend Only on 
the End Points 

Only under very special conditions is a line integral independent 
of the path or, what is equivalent, is the line integral round a closed 
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path O. For example, if a closed curve C* in the x,y-plane forms the 
boundary of a region of positive area, then the line integral 
f(x dy - y dx) over C* is not O. We proved in the preceding section 
that for the independence of f L from the path joining the end points, it 
is sufficient that L is a total differential. The chief task of the theory of 
line integrals is to show that this condition is also necessary and then 
to express this necessary and sufficient condition in a form convenient 
for applications. 

We shall investigate this question of independence for integrals 
over curves in three-space. But the results and proofs are exactly 
analogous in any number of dimensions. We make the assumption that 
L = A dx + B dy + C dz is a linear differential form with coefficients 
A, B, C that are continuous functions of x, y, z in an open set R of 
space. The following theorem then holds: 

The line integral f L taken over a simple oriented arc r* in R is 
independent of the particular choice of r* and determined solely by 
the initial and final point of r* if and only if L is the total differential 
of a function f(x, y, z) in R. 

We have already proved on p. 95 that this condition is sufficient; 
that is, for an exact differential L = A dx + B dy + C dz the integral 
f L is independent of the path. It is easy to see that the condition is 
necessary. Assume that fr * L depends only on the end points of r*. 
We want to show that there exists a function u(x, y, z) defined in R 
for which du = L. With no loss of generality we can assume that 
every two points of R can be connected by a simple polygonal arc 
that lies completely in R.1 We pick a fixed point Po in R and define 
the function u = u (x, y, z) = u (P) at any point P of R as f L extended 
over any simple arc with initial point Po and final point P. In order 
to compute the partial derivatives of u, we consider any point (x, y, z) 
= P of R (Fig. 1.21). Since R is open, all points (x + h, y, z) = pi 
will then also belong to R provided I h I is sufficiently small. Let y* 
denote the oriented straight line segment joining P and pi, while r* 
shall denote a simple polygonal path joining Po to P. We can always 
modify r* slightly to bring about that the last side of this polygonal 
arc, which has P as final point, is not parallel to the x-axis. Then r* 
and y* have no point in common besides P (at least for I h I sufficiently 

IThe open set R can always be decomposed into connected subsets that have this 
property (see Appendix 112). We then define u in each of these subsets by the con­
struction indicated. 
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Figure 1.21 

small), and r* + y* represents a simple arc with initial point Po and 
final point P'. It follows [see (62, p. 93)] that 

u(x + h, y, z) - u(x, y, z) = U(PI) - u(P) = f * • L - r L = r L r +Y Jr· Jr· 

l X+h 
= x A(t,y, z) dt 

Dividing by h and passing to the limit with h ~ 0, we find that indeed 

au(x, y, z) = A 
ax ' 

and similarly aujay = Band aujaz = C. This shows that du = L. 

c. Insufficiency of the Integrability Conditions 

The theorem on independence of line integrals we just proved is, 
however, of no great value unless we have some way of finding out 
whether a given differential L is a total differential or not. It is 
desirable to have some condition that involves only the coefficients 
A, B, C of L = A dx + B dy + C dz and is easily verified. We have 
already recognized the integrability conditions 

(69) 

as necessary for the existence of a function u = {(x, y, z) with the 
property that L = duo A form L satisfying (69) is called closed. Hence 
every exact form is closed. Since line integrals can be independent of 
the particular path joining any two points only when L is a total 
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differential, we see that conditions (69) are necessary, if L is to depend 
only on the end points of the path of integration. Are these conditions 
also sufficient? They are sufficient if they permit us to construct a 
function u = f(x, y, z) for which 

(70) of 
A = ax' B= of 

ay' 
C = of 

oz' 
The surprising result is that the integrability conditions (69) suffice 
almost, but not quite, to ensure that L is the total differential of a 
function u and, hence, to ensure the independence of f L from the 
path. The identities (69) in themselves are not sufficient but become 
so if we add an assumption of quite a different character, one that 
concerns a geometrical property of the region in space in which L is 
considered. 

A simple counterexample shows that conditions (69) alone are not 
sufficient to guarantee that f L taken over any closed curve is O. We 
consider the differential 

(71) L = xdy - ydx 
x2 + y2 

corresponding to the choice of coefficients 

A= -y 
x2 + y2 ' 

B= X 
x2 + y2 ' c= 0, 

which are defined except for points on the line x = y'= 0 (the z-axis). 
One verifies easily that the integrability conditions (69) are satisfied 
and thus that L is closed. When we integrate around the unit circle 
C*: x = cos t, Y = sin t, z = 0 in the x,y-plane, oriented positively 
with respect to t, we find 

( (2" (dx dy ) (2" 
Jc* L = Jo A dt + B dt dt = Jo (sin2 t + cos2 t) dt 

= 2n"* O. 

As a matter of fact, it is easy to calculate f L around any closed curve 
C for the L given by (71). We introduce the polar angle e of a point 
P = (x, y, z) by 

(72) 
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that is, the angle formed with the x, z-plane by the plane through P 
passing through the z-axis (see Fig. 1.22). Then 

(73) 

x 

d9 = d arc tan ~ = L 
x ' 
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Figure 1.22 

so that L is represented as total differential of the function u = 8. 
The complications arise from the fact that formulae (72) define the 
values of 9 only within whole multiples of 21t. Starting with some 
possible values 90 for 9 at a point Po, we can define 9 in any point 
P by joining P to Po by a continuous curve and taking 

9(P) = 90 + f P d9 = 90 + f L 
Po 

(See Volume I, p. 434). But 9(P) defined in this way is multiple­
valued depending on the choice of the curve: for a closed curve C* 
the expression 

~ r d9 
21t Jc 

represents the number of times C winds around the z-axis in the 
clockwise sense (see Fig. 1.23). Hence, the value of 

(74) 
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z 

z 

~---y 

Figure 1.23 

taken for two different paths with end points Po, P is the same only 
if going along one path from Po to P and returning along the other 
path to Po we go zero-times around the z-axis. We can prevent any 
path from going around the z-axis by considering only points (x, y, z) 
with either y*-O or with y = 0 and x > 0, erecting, in a manner of 
speaking, a wall along the half-plane 

y= 0, x~O 

which is not to be crossed. The points not excluded form a region R 
in which we can assign to 9 a unique value with 

-n<9<n 

that constitutes a continuously differentiable function 9 = 9(x, y, z) 
with differential L. The integral (74) extended over any path in 
the region that joins P and Po has then a unique value 9(P) - 9(Po), 
which does not depend on the particular path. Similarly, the integral 
over a closed path in this region has the value o. 
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d. Simply Connected Sets 

In order to formulate the fundamental theorem generally we need 
the notion of a simply connectedl open set. In such a set R, any two 
points can be joined by a path lying in R, and any two paths in R with 
the same end points can be deformed into each other without moving 
the end points and without leaving R. 

We give precise definitions of these notions. A path C in R joining 
two points pI = (x', y', Z/) and pll = (x", y", Zll) means three con­
tinuous functions <p(t), 'I'(t), X(t) defined in the interval 0 ~ t ~ 1 
such that the point P(t) = (<p(t), 'I'(t) , X(t» lies in R for all t of the 
interval and coincides with pI for t = 0 and plI for t = 1.2 The set R 
is called connected3 if every two points pI and pll of R can be joined 
by a path in R. Actually it is easy to see that they can then be joined 
also by a smooth simple arc in R, provided the set R is open.4 

Trivial examples of connected sets are the convex sets R, charac­
terized by the property that any two of their points pI and p" can be 
joined by a line segment in R. Here we can choose as linear path with 
end points pI = (x', y', Zl) and pll = (x", y", Zll) simply the triple of 
linear functions 

<p(t) = (1 - t) x' + tx", 'I'(t) = (1 - t) y' + ty", 

X(t) = (1 - t) Z' + tzll 

for 0 ~ t ~ 1. Examples of such convex sets are solid spheres or cubes. 
Examples of connected, but not convex, sets are a solid torus, a 
spherical shell (i.e., the space between two concentric spheres), and 
the outside of a sphere or cylinder. Any set R whatsoever in space 
if it is not connected consists of connected subsets called the com­
ponents of R. Disconnected are, for example, the set of points not 

lMore precisely "pathwise simply connected." 
2Different t need not correspond to different P(t). Notice that the description of a 
path does not only include the set of the points P(t) in space (the "support" of the 
path) but also the choice of corresponding parameters t. Every simple arc in space 
determines many different paths corresponding to different parameter repre­
sentations ofthe arc. We can always bring about by a linear substitution that the 
parameter values vary over the particular interval 0 ==:;; t ==:;; 1. 
3More precisely "pathwise connected." 
4Taking a sufficiently fine subdivision of the parameter interval and joining cor­
responding points P(t) by line segments, we first obtain a polygonal arc in R joining 
P' and P". Omitting loops we get a simple polygonal arc. Replacing' small portions 
near a corner by suitable parabolic arcs, we get a smooth simple arc in R joining 
P' and P". See also p. 112. 
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belonging to a spherical shell or the set of points none of whose 
coordinates is an integer. 

Let Co and Cl be any two paths in R, given respectively by 
(CPo(t), 'l'o(t), Xo(t» and (CPl(t), 'l'l(t) , Xl(t». Their end points pI, P", cor­
responding to t = 0 and t = 1, shall be the same. The connected set 
R is simply connected, if we can "deform Co into Cl" or "join Co and 
Cl" by means of a continuous family of paths C'A. with common end 
points pI, P". This shall mean that there exist continuous functions 
(cp(t, A.), 'I'(t, A.), X(t, A.) of the two variables t, A. for 0 ~ t ~ 1, 0 ~ A. ~ 1, 
such that the point P = (cp, '1', X) always lies in R and such that P 
coincides with (CPo, '1'0, Xo) for A. = 0, with (CPl, '1'1, Xl) for A. = 1, with pI 
for t = 0 and with P" for t = 1.1 For each fixed A. the functions cP, '1', X 
determine a path C'A. in R that joins the points pI and P". As A. varies 
from 0 to 1, the path C'A. changes continuously from Co to Cl, and in this 
sense represents a "continuous deformation" of Co into Cl (see Fig. 
1.24). 

p' 

Figure 1.24 

As is easily seen, convex sets R are simply connected. We only have 
to associate with the two curves Co, Cl having common end points 
pI, P" the curves C'A. given by 

cp(t, A.) = (1 - A.) cpo(t) + A.CPl(t) 

'I'(t, A.) = (1 - A.) 'l'o(t) + A.'I'l(t) 

X(t, A.) = (1 - A.) Xo(t) + A.Xl(t). 

lThe paths C and Cl are called homotopic relative to P', P". 
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Here C). is obtained geometrically by joining points of Co and Cl that 
belong to the same t by a line segment and taking the point that 
divides the segment in the ratio ')../(1 - ')..). The points obtained in this 
way all lie in R because of the convexity of R. A different type of 
pathwise simply connected set is represented by a spherical shell. Not 
simply connected, on the other hand, is the set R obtained by re­
moving the z-axis from x, y, z-space. Here the two paths (semicircles) 

x = cos nt, y = sin nt, z = 0; 

and 

x = cos nt, y = -sin nt, z=O; 0~t~1 

have the same end points but cannot be deformed into each other 
without crossing the z-axis, which does not belong to R.l 

e. The Fundamental Theorem 

We can now state the relation between the notions of closed and of 
exact differential forms: 

If the coefficients of the differential form L = A dx + B dy + C dz 
have continuous first derivatives in a simply connected set R and satisfy 
the integrability conditions 

(75a) Bz - C" = 0, Cz - Az = 0, A" - Bz = 0, 

then L is the total differential of a function u defined in R: 

(75b) A = Uz, B = u", C= Uz. 

For the proof, it is sufficient to show that the integral of L extended 
over any simple polygonal arc in R with initial point pI and final point 
P" has a value that depends only on pI and P" (see p. 97). We represent 
the two oriented arcs Co* and Cl* parametrically by, respectively, 

(76a) 

and 

(76b) 

x = 90(t), 

x = 91(t), 

y = ",o(t), 

y = "'1(t), 

z = Xo(t), 

z = Xl(t); o~ t~1 

with t = 0 yielding pI and t = 1 yielding P". Using the simple con-

lThis follows from the fundamental theorem below and the fact that there exists a 
closed differential form, the one given by (71). whose integral over the whole circle 
does not vanish. 
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nectivity of R, we can "imbed" the paths (75a, b) into a continuous 
family 1 

(76c) x = ~(t, A), Y = 'I'(t, A), Z = X(t, A) 

reducing to (76a, b) for A = 0,1 and to pI, pI! for t = 0,1. We have by 
formula (56), p. 89. 

(76d) f L-J L 
Cl* Co* 

= f 1 [(AXt + BYt + CZt) 1.~=1 - (Axt + BYt + CZt) I ~=o] dt 
o 

where x, y, Z are the functions of t, A given by (76c). We assume, to 
begin with, that those functions have continuous first derivatives with 
respect to t, A and a continuous mixed second derivative for ° ~ t ~ 1, ° ~ A ~ 1. Then by (76d) 

(76e) f L - f L = I 1 dt I 1 (AXt + BYt + CZt)~ d'A 
Cl* Co* 0 0 

Now using the chain rule of differentiation and the integrability 
conditions (76a), we have the identity 

(Axt + BYt + CZt)~ = Axu + BY~t + Czu + Axx~xt + Ayy~xt + Azz~xt 
+ Bxx~Yt + ByY~Yt + Bzz~Yt + CxX~Zt 
+ CyY~t + C zZ~Zt 

= (Ax~ + By'A. + CZ'A.)t 

Interchanging orders of integration (see p. 80), we find that 

I L - I L = I 1 dA f 1 (Ax~ + By~ + CZ~)t dt = 0, 
Cl* co* 0 0 

since X'A., t'A., z~ vanish for t = 0, 1, because the end points are independ­
ent of A. 

One sees the important part played in the proof by the assumption 
that R is simply connected. It enables us to convert the difference of 
the line integrals into a double integral over some intermediate 
region. 

It is easy to remove the restrictions on the existence of derivatives 
of the functions ~, '1', X. Assume only that the arcs Co* and Cl* are 

IThe paths of the family need not to be simple for A. -=1= 0,1. 
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smooth, that is, that the functions ~(t, A), 'I'(t, A), X(t, A) have a continuous 
t-derivative when A has one of the values 0 or 1 while being continuous 
for other values of A. We can then (see p. 82) approximate these 
functions uniformly by functions ~, 'ii, X, which have continuous 
first derivatives with respect to t and A and a continuous mixed second 
derivative. In order that the smoother functions obtained represent a 
deformation of the paths Co* and Cl * into each other, they have to 
agree with ,p, '1', X for A = 0, 1 and for t = 0,1. This can always be 
brought about by a slight modification of~, 'ii, X, by adding suitable 
terms so that 

x = ~(t, A) - (1 - A) [~(t, 0) - ~o(t)] - A[~(t, 1) - ~l(t)] 

- (1 - t) [~(O, A) - ,po(O)] - t[~(1, A) - ~o(1)] 

+ (1 - t) (1 - A) [~(O, 0) - rpo(O)] + (1 - t)A [~(O, 1) - rpo(O)] 

+ t(1 - A) [~(1, 0) - ,po(1)] + tA [~(1, 1) - rpo(1)] 

with analogous expressions for y and z. These functions have the 
correct values for A = 0, 1, and for t = 0, 1, have continuous first 
derivatives and mixed second derivatives, and can be made to 
approximate the original ~, '1', X so closely that the corresponding 
points (x, y, z) still lie in the open set R. 

Finally, the equality of the integrals of L can be extended to arcs 
Co* Cl * that are only sectionally smooth, e.g. to polygonal arcs, 
by approximating these arcs by smooth ones with the same end 
points. The integrals over the approximating smooth arcs all have 
the same values, and the same follows then in the limit for the 
integrals over Co* and Cl*. 

Appendix 

Geometrical intuition and physical reality always have provided 
powerful motivation and guiding ideas for constructive mathematical 
thought. Nevertheless, with the advance of analysis since the begin­
ning of the nineteenth century, it has become a compelling necessity 
to cease invoking intuition as the prime justification of mathematical 
considerations. More and more, one has turned to rigorous proofs 
based on axiomatically hardened precision and clearly formulated 
concepts and procedures. In this development the notion of set, in 
particular of point set, has played a major role and by now has been 
absorbed into the fabric of analysis. Of some of these developments 
this appendix gives a simple introductory account. 
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A.I. The Principle of the Point of Accumulation in Several 
Dimensions and Its Applications 

To establish the theory of functions of several variables on a firm 
basis, we can proceed in exactly the same way as in the case of 
functions of one variable. It is sufficient to discuss these matters in the 
case of two variables only, since the methods are essentially the same 
for functions of more than two independent variables. 

a. The Principle of the Point of Accumulation 

We base our discussion on Bolzano's and Weierstrass's principle of 
the point of accumulation. A pair of numbers (x, y) may be represented 
in the usual way by means of a point with the rectangular coordinates 
x and y in an x,y-plane. We now consider a bounded infinite set of 
such points P(x, y), that is, a set containing an infinite number of dis­
tinct points, all of them lying in a bounded part of the plane, so that 
I x I < C and I y I < C, where C is a constant. The principle of the point 
of accumulation states that every bounded infinite set S of points has 
at least one point of accumulation. That is, there exists a point Q with 
coordinates (~, 11) such that an infinite number of points of S lie in 
every neighborhood of Q, say, in every region 

(x - ~)2 + (y - 11)2 < ~2, 

where ~ is any positive number. It follows that, out of the infinite 
bounded set of points we can choose a sequence of distinct points 
PI, P2, P3, . . . that converges to a limit Q. The sequence of the Pt 
can be constructed by induction, giving ~ successively the values 1, 
t, t, ... ; we choose PI arbitrarily in S; if PI, ... , P n have been 
defined, we take for Pn+l anyone of the infinitely many points in the 
set S that have distance < l/(n + 1) from Q and are different from 
Q and from PI, ... , P n• 

This principle of the point of accumulation for several dimensions 
can be proved analytically by the method used in the corresponding 
proof in Volume I (p. 95), merely by substituting rectangular regions 
for the intervals used there. An easier proof is obtained if we make use 
of the principle for one dimension. To do this we notice that by 
hypothesis every point P(x, y) of the set S has an abscissa x for which 
the inequality I x I < C holds. Either there is an x = Xo that is the 
abscissa of an infinite number of points P (which therefore lie vertical­
ly above one another) or else each x belongs only to a finite number 
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of points P. In the first case, we fix upon xo and consider the infinite 
number of values of y such that (xo, y) belongs to our set. These values 
of y have a point of accumulation for one dimension. Hence, we can 
find a sequence of values of y, say Yl, Y2, . . ., such that Yn ---+ 110, from 
which it follows that the points (xo, Yn) of the set tend to the limit 
point (xo, 110), which is thus a point of accumulation of the set. In the 
second case, there must be an infinite number of distinct values of x 
that are the abscissae of points of the set, and we can choose a se­
quence Xl, X2, . . . of these abscissae tending to a limit ~. For each Xn, 
let Pn = (Xn, Yn) be a point of the set with abscissa Xn. The Yn form 
an infinite bounded set of numbers; hence, we can choose a sub­
sequence Ynl' Yn2' ... tending to a limit 11. The corresponding sub­
sequence of abscissae Xnl' Xn2' . . . still tends to the limit ~; hence, the 
points Pnl' P n2 , ... tend to the limit point (~, 11). Thus, in either case, 
we can find a sequence of points of the set tending to a limit point, and 
the theorem is proved. 

b. Cauchy's Convergence Tetd. Compactness 

A consequence ·of the Bolzano-Weierstrass theorem is that every 
bounded infinite sequence of points PI, P2, . . . has a convergent sub­
sequence. Indeed, if the sequence contains an infinite number of 
distinct elements, they form an infinite set of distinct points from 
which, according to the Weierstrass principle, we can choose a 
sequence converging to a point Q. If the sequence does not contain 
an infinite number of distinct elements, then at least one of its ele­
ments must be repeated infinitely often; there exists then a point Q 
that appears infinitely often in the sequence, and the subsequence 
formed by elements that equal Q converges to the point Q. 

An important consequence is Cauchy's convergence test: 

A sequence of points PI, P2, . . . in the plane (and similarly a se­
quence in n-dimensional euclidean space) converges to a limit if and 
only if for every e > 0 there exists a number N = N(e) such that the 
distance between Pn and Pm is less than e whenever both nand m 
are greater than N. 

The proof proceeds exactly like the corresponding one for se­
quences of real numbers given in Volume I (p. 97). One sees im­
mediately that a sequence satisfying the Cauchy condition is bounded; 
hence, by the preceding theorem, it contains a convergent sub­
sequence with a limit Q, and it then follows immediately that the 
whole sequence converges to Q. 



Functions of Several Variables and Their Derivatives 109 

A set S of points in the plane was called closed if all boundary 
points of S belong to S. The limit Q of every convergent sequence of 
points of a closed set S is again a point of S (see p. 9). Since every 
bounded infinite sequence has been seen to contain a convergent 
subsequence of points, we find that every infinite sequence formed from 
points of a bounded and closed set S of points in the plane contains a 
subsequence that converges to a point of S. Generally we call a set S 
compact1 if every sequence formed from elements of S contains a 
convergent subsequence with a limit in S. Hence, a closed and bound­
ed set of points in the plane (or in n-dimensional euclidean space) is 
compact. The reader can easily verify the converse: Every compact 
set of points in the plane is closed and bounded. In the future we shall 
often refer to closed and bounded sets simply as compact sets. 

c. The Heine-Borel Covering Theorem 

A striking consequence of the Bolzano-Weierstrass principle is the 
Heine-Borel theorem: 

Let there be given a compact (i.e., closed and bounded) set S and a 
system ~ of infinitely many open sets that cover S in the sense that 
euery point of S belongs to at least one of the open sets in ~ . Then we 
can find a finite number of sets in ~ .that already cover S. 

As an illustration consider the infinite set S of points on the x-axis 
consisting of the points Pn = (l/n, 0) for n = 1,2, ... and of the origin 
Po = (0, 0). This is a closed set. For n = 1, 2, . . ., let Sn denote the 
open disk 

1 
../(x-1/n)2 + y2 < -

3n2 

with center Pn and radius 1/3n2, and let So denote the disk 

1 ../x2 +y2 <_ 
100 

Clearly the infinite system of all sets So, Sl, S2, . . . covers S. In agree­
ment with the Heine-Borel theorem we can pick a finite subsystem that 
covers S, for example the system consisting of So, Sl, . . ., S100. Here 
we immediately see the importance of the assumption that S be closed. 
The set T of points consisting of PI, P2, ... alone, without Po, is 
covered by the system consisting of Sl, S2, . . . , but no finite Bub· 

lSometimes more precisely "sequentially compact." 
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system of these sets, each of which contains only a single point of T, 
can cover T. 

To prove the Heine-Borel theorem, we use an indirect argument. 
Suppose that the theorem is false. The set S, being bounded, lies in a 
square Q. This square we subdivide into four equal squares. The part 
of S lying in at least one of these four squares or on its boundary 
cannot be covered by a finite number of the sets in L:; for if each of 
the four parts of S could be covered in this way, S itself would be 
covered. This part of Q we call QI. We now subdivide Ql into four 
equal parts. By the same argument one of the four parts of Ql is a 
square Q2 such that the points of S lying in Q2 or on its boundary 
cannot be covered by a finite number of the open sets in L: . Continu­
ing in this way, we obtain an infinite sequence of squares Ql, Q2, 
Qa, . . . each contained in the preceding one, their size shrinking to 
0, and such that the points of S in the closure of any Qn cannot be 
covered by a finite number of the sets in L: . Clearly, for each n we can 
find a point Pn of S that lies in the interior or on the boundary of Qn. 
Then PI, P2, . . . is a sequence of points of S. Since S is bounded, the 
sequence is bounded and must have a subsequence converging to some 
point A. Since S is closed, A is a point of S and hence contained in an 
open set Q belonging to L:. But then a whole neighborhood of A 
belongs to that open set Q, say, the neighborhood consisting of the 
points having distance less than & from A. We can choose an n so large 
that P n has distance less than &/2 from A and that the diagonal of 
Qn has length less than &/2. Then the whole square Qn is contained in 
the &-neighborhood of A and hence also in Q. We see that the single 
set Q of the system L: contains a whole square Qn and its boundary, 
contrary to the assumption for the sequence Qn. This completes the 
proof. 

d. An Application of the Heine-Borel Theorem to Closed Sets 
Contained in Open Sets 

Let R be an open set in the plane'! By definition every point P of R 
has a neighborhood that lies completely in R. For points P close to 
the boundary of R the neighborhood has to be very small. It is re­
markable that for P confined to a closed subset S of R we can find a 
uniform size for the neighborhoods that are contained in R: 

If a closed and bounded set S is contained in an open set R, there 
exists a positive e such that the e-neighborhood of every point P of S 

lEverything said in this paragraph applies equally well to higher dimensions if we 
substitute the term "ball" for "disk." 



Functions of Several Variables and Their Derivatives 111 

is contained in R. In other words, the points not in R lie at least a 
distance E away from all points of S,1 

For the proof we make use of the assumption that R is open. For 
every point P in R there exists a disk with center P that is contained 
in R. The radius of this disk, call it r, depends on P; that is, r = r(P). 
We take now for any P in S the open disk of radius t r(P) and center 
P. By the Heine-Borel theorem a finite number of these disks can be 
found that cover the compact set S. Thus, we can find a finite number 
of points PI, ... , P n in S such that every point P of S is contained in 
one of the disks of center Pk and radius t r(Pk) for k = 1, ... , n. Let E 
be the smallest of the positive numbers t r(PI), ... , t r(Pn). Then, for 
every Pin S, the E-neighborhood of P lies in R, for P lies in some disk 
of center Pk and radius t r(Pk). By construction the concentric disk 
D of radius r(Pk) lies completely in R. Since PPk < tr(Pk) and E < 
t r(Pk), the disk D contains the disk of radius E about P. This shows 
that the disk of radius E and center P lies in R. 

As an example, we consider a curve S lying in the open set R. Such 
a curve is a set of points P = (x, y) that can be represented in the form 

x = ¢(t), y = 'V(t) 

with the help of two continuous functions ¢ and 'V, where the para­
meter t varies over a closed interval 0 < t ~ 1. 2 Such a curve S is a 
closed point set, for let PI, P2, . . . be a sequence of points on S con­
verging to a point P. We consider the corresponding parameter values 
tl, t2, . . ., which all lie in the closed interval a < t < b. Since a 
closed bounded interval is compact, a subsequence of the tn converges 
to a value t in the interval. Since tjJ and 'V are continuous, the cor­
responding P n converge to the point Q = (x(t), y(t» on S. Thus, a sub­
sequence of the sequence PI, P2, . . . converges to a point Q of S. 
Since the whole sequence converges to P, we have P = Q. and hence, 
P lies in S. Thus, S contains all limits of sequences of points of Sand 
hence is closed. 

If the curve lies in the open set R, we can find a positive number E 

such that all disks of radius E with centers on S lie in R. Since f and' g 
are continuous, and hence uniformly continuous, we can find a 
positive number 8 such that two points on S have distance less than 
E if their parameter values t differ by less than 8. We can divide the 

lIt is essential that S is bounded. If, for example, R is the open half-plane y > 0 and 
S the closed set consisting of the points in the x,y-plane with y;::: l/x, x > 0, the 
boundary of R comes arbitrarily close to points of S. 
2The curve need not be simple; that is, different t may correspond to the same point 
P. The pair of functions defines a "path," and S is the support of that path. 
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parameter interval by points tt, . . ., tn-l such that 

a = to < h < t2 <. . . < tn-l < tn = b 

where the length of every subinterval is less than 3. Let Po, PI, . . ., 
Pn be the corresponding points on S. Then Pt+l always lies in the disk 
of radius & about Pt. Also, the straight line segment joining Pc and 
PHI lies completely in the disk of radius & and center Pc, and hence 
is contained in R. If we join successive points PI. by straight line 
segments, we obtain a polygonal curve that lies completely in Rand 
has the same end points Po, Pn as the continuous curve S. We can 
formulate this result as follows: 

If two points of an open set R can be joined by a curve that lies in R, 
then they can also be joined by a polygonal curve in R. 

A.2. Basic Properties of Continuous Functions 

For functions f defined and continuous in a closed and bounded set 
S we can state the following two fundamental theorems: 

The function f assumes a greatest value ("maximum") and a least 
value ("minimum") in S. 

The function f is uniformly continuous in S. 
The proofs of these theorems are like the corresponding proofs for 

functions of one variable (see Volume I, pp. 100-101) and need not be 
repeated. 

The second theorem can also be obtained as an immediate con­
sequence of the Heine-Borel theorem. Prescribe an & > O. If f is con­
tinuous at every point of S, there exists for every point P in S a 3-
neighborhood of P of a certain radius 3 = 3(P) such that If(Q) - f(P) I 
< &/2 for any Q in S that lies in that neighborhood. Now for each 
Pin S choose a neighborhood Qp of radius t3(P). The Q p clearly 
cover S. We can select a finite number of them, say those with centers 
PI, ... , Pn that also cover S. Let 11 be the smallest of the numbers 
t 3(PI), ... , t 3(Pn). If then P and Q are any two points of S whose 
distance is less than 11, the point P has distance less than t 3(Pk) 
from one of the points Pk with k = 1, ... , n. Since 11 < t3(Pk), we 
see that both P and Q lie in the 3(Pk)-neighborhood of Pk. Hence, 

and thus 

1 
If(Q) - f(P) I < 2~' 
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If(P) - f(Q) I < E. 

This establishes the uniform continuity of f since A is independent 
of the particular location of P and Q. 

A.3. Basic Notions of the Theory of Point Sets 

a. Sets and Subsets 

In more complicated arguments involving sets of points (particu­
larly in the theory of integration) it is convenient to use some stand­
ard notations for operations with sets. The sets of interest to us are 
always sets of numbers, of points, of functions, or of sets of these 
types. For example a "disk" in the plane is defined as a set of points 
(x, y) for which 

(x - XO)2 + (y - YO)2 < r2 

for fixed Xo, Yo, r. An example of a set of sets (or family of sets) would 
be that consisting of all disks that contain the origin; that would be 
those disks for which xo2 + yo2 < r2. 

We shall refrain from trying to reduce the basic notion of set to 
still more fundamental ones or to analyze the logical difficulties in­
volved in this notion. For us a set S is defined if for every object a ex­
actly one of the two following statements is correct: (1) a belongs to 
S; (2) a does not belong to S. In case (1) one also says that a is an ele­
ment of S or that a is contained in S,· symbolically! one denotes this by 

aE S, 

and case (2) by 

aft:. S. 

For example, if S is the disk given by the inequality x2 + y2 < r2, 
then a E S means that a is a point in the plane with coordinates x, y 
that has the property that x2 + y2 < r2. Generally the elements of a 
set S can be characterized by some common properties (e.g., by the 
property of belonging to S). We write the set S of elements a that have 
the properties A, B, . . . symbolically as 

S = {a: a has the properties A, B, ... }. 

IThe symbol E must not be confused with the Greek letter &. 
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For example, the disk S with center (xo, yo) and radius r can be de­
scribed as 

S = {(x, y): x, y = real numbers; (x - XO)2 + (y - YO)2 < r2}. 

The set described by 

S = {n : n = integer; 2 < n < 5} 

consists of the two elements n = 3 and n = 4. 
For many purposes it is convenient to introduce the "empty" (or 

"null") set with the special symbol 0. This set has no elements: 
a$.0 for all a. For example an open disk of radius 0 and center at the 
origin coincides with 0: 

{(x, y) : x, y = real numbers; X2 + y2 < O} = 0. 

Two sets Sand T are equal when they have the same elements, 
regardless of the different descriptions or properties used in their de­
finition: S = T means that XES if and only if x E T. 

A set S is said to be a subset of a set T ("S is contained in T") if T 
contains all the elements that are contained in S, that is, if a E S 
implies a E T. We write this symbolically: 

SeT 

or, more rarely, 

T:::) S. 

Thus, if S is the disk of radius 1 about the origin and T the disk of 
radius 4 about the point (1,1), then SeT. Similarly, 0 e Sand S e S 
for all sets S. 

The symbols e and :::) are chosen, of course, for their similarity to 
the < and > signs of arithmetic (or more precisely to the < and > 
signs). They share with the latter symbols the basic properties: 

Se T and Te S implies 

SeT and Te R implies 

S= T 

SeR.l 

IThis is the common syllogism from logic: If all objects with the property A have the 
property B and all objects with the property B have the property C, then all objects 
with the property A have the property C. . 
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A basic difference between the "contained in" signs for sets and the 
order signs for numbers is that for real numbers we always have either 
x < y or y < x, whereas for sets neither of the propositions SeT or 
T c S has to hold. The symbol C defines only a "partial" ordering 
between sets; of two sets neither may contain the other one. 

b. Union and Intersection of Sets 

During the last decades a great number of logical symbols have 
found wide acceptance in mathematics, so that it is now customary to 
express many mathematical theorems completely in symbolic nota­
tions without the use of ordinary words or sentence structure.1 Use of 
proper symbolic notation has been essential for the development of 
mathematics from the very beginning; in fact, in rare instances, pro­
gress in some field may have slowed down for centuries just for lack 
of a suitable notation, as was perhaps the case with algebra in an­
tiquity. On the other hand, too concentrated a notation may prove a 
great strain to the reader who tries to relate the information in the 
"dehydrated" form to his ordinary experience. Authors of books not 
primarily devoted to logic and foundations of mathematics compro­
mise on the use of logical abbreviations in accordance with their 
tastes and the requirements of the special subjects under considera­
tion. 

There are two further set-theoretical symbols that we shall find al­
most indispensable later in this book, namely, the symbols for the 
operations of "union" and "intersection" of sets. Given two sets S and 
T we write S U T for the "union" of the two sets, that is, for the set of 
elements that are "either" in S "or" in T: 

S U T = {a: a E S or a E T}.2 

Similarly, the "intersection" S n T of Sand T is defined as the set of 
elements that belong to both Sand T: 

S n T = {a : a E S and a E T}. 

lExamples of frequently used symbols follow: 
{Xl, X2, • • ., X .. } : the set whose members are precisely Xl, ... , X .. 

S X T: the set of ordered pairs (a, b) with a E Sand bET ("Cartesian product" 
of the sets S, T) 
~: "implies" 
3 x: "there exists an x" 
V x: "for all x." 
2Here the word "or" like the Latin vel is not exclusive. S U T consists of the elements 
that belong to at least one of the two sets S, T but may belong to both. 
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For example, if 8 and T are intervals on the real number axis and if 

then 

8 = {x : 3 < x < 5}, 

T = {x: 4 < x < 6}, 

8 U T = {x: 3 < x < 6} 

8 n T = {x : 4 < x < 5} 

The operations U and n apply to any two sets 8 and T, provided we 
use the symbol for the empty set, writing 

8nT=0 

when 8 and T are disjoint, that is, have no common element. Notice 
that 8 U 0 = 8, 8 n 0 = 0 for any 8. 

The operation U has many properties in common with addition. In 
particular, if 8 and T are "disjoint" sets-that is, sets without com­
mon elements-and have finitely many elements, then the number of 
elements in 8 U T is just the sum of the numbers of elements in 8 and 
in T. There is, however, generally no unique inverse operation to 
union. Only if 8 and T are assumed to be disjoint and 8 c R, does the 
equation 

8U T=R 

have a unique solution T. For disjoint sets 8, T the union is often 
denoted by 8 + T, and for 8 c R, the solution T oHhe equation 8 + T 
= R by R - 8 ("the complement of 8 relative to R"). We shall use 
the symbol R - 8 more generally for any sets R, 8 to denote the set of 
elements of R that do not belong to 8. Then 8 + (R - 8) = R U 8. 

The union of n sets 81, . . . ., 8", is defined as the set of elements 
belonging to at least one of the sets 81,. . , 8", and is variously de­
noted by 

{a: a E 81 or a E 82 or ... or a E 8",} 

= 81 U 82 U • • • U 8", 

in analogy to the summation and product symbols. Similarly, the in­
tersection of the sets 81, . . ., 8"" defined as the set of elements com­
mon to all of them, is 
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{a: a E 81 and a E 82 and ... and a E 8 n} 

n 
= 81 n 82 n . . . n 8n = n 8k. 

k=l 

We can with equal ease form unions and intersections of an infinite 
number of sets 81, 82, . . ., 8n, . . ., which we write respectively as 

~ 

U 8k = {a: a E 8 n for some n} 
k=l 
~ 

n 8k = {a : a E 8 n for all n}. 
k=l 

For example, if 8n is the set of real numbers x < n 

we have 

8n = {x : x real, x < n}, 

~ 

U 8k = {x: x real} 
k=l 
~ 

n 8k = {x : x real, x < 1}. 
k=l 

In fact, union and intersection can be formed for arbitrary large 
families F of sets 8 even where the different sets 8 in F are not, or 
cannot be, distinguished by a subscript n with n = 1, 2, 3, . . . . 
We write 

U 8 = {a: a E 8 for some 8 with 8 E F} 
SEF 

n 8 = {a : a E 8 for all 8 with 8 E F}. 
SEF 

Thus the union of all disks in the x, y-plane containing the point (1, 0) 
but not the point (-1, 0) is the set of all (x, y) for which either y * 0 
or y = 0 and x > -1. The intersection of the same family of disks con­
tains the single point (1, 0). 

c. Applications to Sets of Points in the Plane 

Some of our earlier results and definitions (see pp. 6-8) can be 
rewritten more compactly in the notation introduced in the last sec­
tions. Thus, given a set 8 of points in the plane, we obtain a decomposi­
tion of the whole plane 1t into three disjoint sets, namely, the set So 
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of interior points of S, the set as of boundary points of S, and the set 
Se of exterior points of S; 

1t = So U as U Se 

or more precisely, 

1t = So + as + Se 

Since the sets are disjoint: 

So n as = as n Se = Se n So = 0. 

Here 

So eSc So + as. 

The set S defined by 

(1) S = So + as = S U as 

is the closure of S. We have So = S for open Sand S = S for closed S. 
The reader may verify as exercises the following propositions; 

as = as ("The boundary of a set is always closed.") 
S = S ("The closure of a set is always closed.") 
(SO)O = So, (Se)O = Se ("The sets So and Se are open.") 

2(a) So U TO c (S U T)O, S UTe S U T 

2(b) a(S U T) c as U aT 

The union of open sets is open. 
The union of a finite number of closed sets is closed. 
The intersection of a finite number of open sets is open. 
The intersection of closed sets is closed. 

The last statements indicate a kind of symmetry ("duality") 
between the notions "open" and "closed," "union" and "intersec­
tion." This becomes more precise if we introduce the complement C(S) 
of a set S, that is, the set of points in the plane 1t not belonging to S;l 

C(S) = {P: P E 1t, P $ S} = 1t - S. 

IFor sets S of points on three-space 2: the complement of S is defined as 2: - S, the 
set of points of 2: not belonging to S. 
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We have 

ac(s) = as, C(Se) = So. 

If S is open, C(S) is closed, and vice versa. The complement of the 
intersection of several sets is the union of their complements. 

In this notation the theorem of Heine-Borel takes a particularly 
simple form. "A family F of sets covers a set S" means simply that S 
is contained in the umon of the sets of F. The theorem then simply 
states: 

If F is a family of open sets in the plane and if S is a bounded and 
closed set such that 

Se U T, 
TEF 

then we can find a finite number of sets T I , T2, . . . , Tn E F such that 

n 
Se U Tk. 

k=l 

A.4. Homogeneous Functions 

The simplest homogeneous functions occurring in analysis and its 
applications are the forms or homogeneous polynomials in several 
variables (see p. 13). We say that a function of the form ax + by is a 
homogeneous function of the first degree in x and y, that a function of 
the form ax2 + bxy + cy2 is a homogeneous function of the second 
degree, and in general that a polynomial in x and y (or in a greater 
number of variables) is a homogeneous function of degree h if in each 
term the sum of the exponents of the independent variables is equal to 
h, that is, if the terms (apart from constant coefficients) are of the 
form Xli, xli-1y, XIi- 2y2, ... , yli. These homogeneous polynomials have 
the property that the equation 

f(tx, ty) = tlif(x, y) 

holds for every value of t. More generally, we say that a function 
f(x, y, ... ) is homogeneous of degree h if it satisfies the equation 

f(tx, ty, ... ) = tlif(x, y, ... ). 

Examples of homogeneous functions that are not polynomials are 
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tan(~) (h = 0), 

x2 sin! + y';x2 + y2logX + y 
y x (h = 2). 

Another example is the cosine of the angle between two vectors with 
the respective components x, y, z and u, v, w: 

xu + yv + zw 
(h = 0). 

The length of the vector with components x, y, z, 

';x2 + y2 + Z2 

is an example of a function that is positively homogeneous and of the 
first degree; that is, the equation defining homogeneous functions 
does not hold for this function unless t is positive or O. 

Homogeneous functions that are also differentiable satisfy Euler's 
partial differential equation 

xfz + yfll + zfz +. . . = hf(x, y, z, . . .). 

To prove this we differentiate both sides of the equationf(tx, ty, ... ) 
= tllf(x,y, ... ) with respect to t; this is permissible, since the equa­
tion is an identity in t. Applying the chain rule to the function on the 
left, we obtain 

xfz(tx, ty, ... ) + yfll(tx, ty, ... ) + . . . = htll-1f(x, y, ... ). 

If we substitute t = 1 in this, the statement follows. 
Conversely, it is easy to show that the homogeneity of the function 

f(x, y, ... ) is a consequence of Euler's relation, so that Euler's relation 
is a necessary and sufficient condition for the homogeneity of the func­
tion. The fact that a function is homogeneous of degree h can also be 
expressed by saying that the value of the function divided by Xli de­
pends only on the ratios y/x, z/x, .... It is therefore sufficient to show 
that it follows from the Euler relation that if new variables 

~ = x, 
z 

~ =-, ... x 

are introduced, the function 
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1 1 
Xli f(x, y, z, ... ) = ~/J(~, Tt~, ~~, ... ) = g(~, Tt,~, ... ) 

no longer depends on the variable ~ (i.e., that the equation gf, = 0 is 
an identity). In order to prove this, we use the chain rule: 

1 h 
ge = (fx + Ttf1l + ... ) ~Ii - ~k+1f 

1 h 
= (xfx + yf1l + . . .) k+1 - 1i+1 f. 

X x 

The expression on the right vanishes in virtue of Euler's relation, and 
our statement is proved. 

This last statement can also be proved in a more elegant, but less 
direct, way. We wish to show that from Euler's relation it follows that 
the function 

g(t) = tkf(x, y, ... ) - f(tx, ty, ... ) 

has the value 0 for all values of t. It is obvious that g(l) = o. Again, 

g'(t) = htk-1f(x, y, ... ) - xfx(tx, ty, ... ) - yf1l(tx, ty, ... ) - ... 

On applying Euler's relation to the arguments tx, ty, ... we find that 

h 
xfx(tx, ty, ... ) + yf1l(tx, ty, ... ) +. . . =t f(tx, ty, ... ), 

and thus g(t) satisfies the differential equation 

h 
g'(t) = g(t)t . 

If we write g(t) = y(t)tli , we obtain g'(t) = ~ g(t) + tky'(t), so that y(t) 

satisfies the differential equation 

tliy'(t) = 0, 

which has the unique solution y = constant = c. Since for t = 1 it is 
obvious that y(t) = 0, the constant c is 0, and so g(t) = 0 for all values 
of t, as was to be proved. 



CHAPTER 

2 

Vectors, Matrices, 
Linear Transformations 

Vectors in two dimensions have already been studied in Volume I, 
Chapter 4. Geometric concepts in higher dimensions make the use of 
vectors even more essential. Vectors serve to express many com­
plicated equations concisely in a manner clearly exhibiting those fea­
tures that do not depend on a particular choice of coordinate systems. 

2.1 Operations with Vectors 

a. Definition of YectorB 

We introduce vectors in n-dimensional space as entities that can be 
added to each other and multiplied by scalars. Specifically, a vector 
A is a set of n real numbersl ai, . . ., an in a definite order 

A = (ai, ... , an) 

(We always employ boldface type to denote vectors.) The numbers 
at, . .. , an are called the components of A. Two vectors A = (al, ... , 
an) and B = (bl, . .. , bn) are equal if and only if they have the same 
components. 

The sum of any two vectors A = (aI, ... , an) and B = (bt, ... , bn) 
is defined by 

(la) A + B = (al + bl, a2 + b2, ... , an + bn); 

IFor our purposes it is sufficient to consider only real numbers as components, al­
though vectors over other number fields also are used in other contexts. 

122 
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we define the product of the vector A = (aI, ... , an) by the scalar 
(Le., real number) 'A as 

(lb) 

More generally, we can form from any finite number of vectors A = 
(aI, a2, ... , an), B = (bI, b2, ... , bn), ... , D = (dI, d2, ... , dn) 
and an equal number of scalars 'A, /l, . . . , y the linear combination 
'AA + /lB + ... + yD = ('Aal + /lbI + ... + ydI, ... , 'Aan + /lbn 
+ . . . +ydn). In particular, any vector A = (aI, ... , an) can be 
represented as a linear combination of the n "coordinate vectors" 

(2a) EI = (1, 0, 0,. ., 0), E2 = (0, 1, 0, . . . ,0), . . . , 

En = (0, 0, 0,. ., 1). 

Obviously, 

(2b) 

We use the symbol 0 for the "zero vector," all of whose components 
vanish: 0 = (0, 0, . . . , 0). We write - A for the vector (-l)A = 
(-aI, -a2, ... , -an). 

It follows trivially from these definitions that sums of vectors and 
products with scalars obey all the usual algebraic laws, as far as they 
are meaningful. 2 Examples of objects conveniently represented by 
vectors are furnished by functions that are linear combinations of a 
finite number of suitably chosen functions. Thus, the general poly­
nomial of degree ~ n in the variable x 

IVectors differ from other objects that can be described by an ordered set of n real 
numbers (e.g., points in n-dimensional euclidean space or on a sphere in n + 1 di­
mensions) just by the fact that they permit the "linear operations" A + B and A.A. 
Addition of points defined similarly in terms of their coordinates would have no 
geometric meaning, at least no meaning independent of the special coordinate 
system used. Vectors will be represented later by pairs of points (see p. 109). 
2These laws are the following: 

(1) A + B = B + A, A + (B + C) = (A + B) + C 
(2) A.(A + B) = A.A + A.B, (A. + Il)A = A.A + IlA, (A.Il)A = A.(IlA) 
(3) There exists a unique element 0 such that A + 0 = A for all A 
(4) There exists a unique element -A for given A such that A + (-A) = 0 
(5) OA = 0, 1A = A for all A. 

Generally, sets of objects for which addition of the objects and multiplication by 
scalars are defined, and obey these laws, are called vector spaces. 
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can be represented by the single vector A = (ao, aI, ... , an) in (n + 1)­
dimensional space. Addition of vectors and multiplication by 
scalars correspond then to the same operations carried out for the 
polynomials. Similarly, the general nth degree trigonometric poly­
nomial 

1 n 
f(x) = "2 ao + ];.1 (ak cos kx + bk sin kx) 

(see Volume I, p. 577) can be represented by the vector (ao, aI, . . . , 
an, bl, b2, . . . , bn) in (2n + I)-dimensional space. The general linear 
homogeneneous function of three variables 

is represented by the vector (aI, a2, as) in three-dimensional space, 
and the general quadratic form in three variables 

by the vector (aI, a2, as, a4, a5, a6) in six-dimensional space. 

b. Geometric Representation of Yectors 

Vectors in n-dimensional space, just as in the plane, can be visual­
ized geometrically as certain mappings of space, the translations or 
parallel displacements. The vector A = (aI, a2, . . . , an) may be 
depicted as the translation of n-dimensional euclidean space Rn that 
maps any point P = (Xl, X2, . . . , Xn) into the point P' = (Xl', X2', . . . , 
Xn') with coordinates 

(3a) Xl' = Xl + aI, X2' = X2 + a2, ... , Xn' = Xn + an. l 

The translation or the corresponding vector A is determined 
uniquely if for a single point P = (Xl, X2, . . . , Xn) we give the image 
P' = (Xl', X2', . . . , Xn'); obviously by (3a) 

(3b) A = (Xl' - Xl, X2' - X2, . . . , Xn' - Xn). 

lIt is understood that both points P and P' lie in Rn and that their coordinates are 
taken with respect to the same coordinate system. 
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~ 

We shall denote this translation by A = PP' and say that the vectOr 
A is represented by the ordered pair of points P and P' We call P the 
initial point and P' the end point or final point in this representation. 

~ 

In drawings the vector A = PP' usually is indicated by an arrow 
extending from P to P'. The same vector A has many representations 
~ 

A = PP' by a pair of points P and P'. The initial point P is completely 
arbitrary, since the mapping defined by A can act on any point and 
then determine an image P'.l The zero vector 0 corresponds to the 
"identity mapping" in which each point is mapped onto itself: 0 = 
~ 

PP. 
As in the planar case (Volume I, p. 384) the sum of two vectors 

A = (aI, ... , an), B = (bl, ... , bn) yields the symbolic product 
of the corresponding mappings. If A takes the point P = (Xl, . . . , 
Xn) into the point P' = (Xl', . . . , Xn') and B takes the point P' into 
P" = (Xl", . . . ,Xn"), then C = A + B corresponds to the translation 
that takes Pinto P", since 

for i = 1,. ., n. In vector notation we have 

~ --->0. --->0. 

(4) A + B = PP' + P'P" = PP". 

--->0. 

If we represent B in the form PP'" giving it the same initial point 
--->0. 

P as A, we find that A + B = PP" is represented by the diagonal of 
the parallelogram with vertices P, P', P", pili (see Fig. 2.1). 

p 

Figure 2.1 Addition of vectors. 

~ 

lOccasionally the notation p' - P is used for the vector PP', which, in accordance 
with formula (3b), suggests the notion of vectors as differences of points. 
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------>.. 
Interchanging initial and end point of the vector A = PP' = 

(Xl' - Xl, X2' - X2, . . • ,Xn' - Xn) leads to the opposite vector 

------>.. 

P'P= (Xl- Xl',X2 - X2', • .. , Xn - Xn') = (-l)A = -A. 

The mapping P' -+ P corresponding to - A is the inverse to the mapping 
A; carrying out first A and then - A results in the identity mapping in 
accordance with the formula 

(-A) + A = (-1 + 1) A = OA = o. 

Corresponding to (4) we have the often used formula for the difference 
------>.. ----->0. 

of two vectors A = PP' and B = PP" with common initial point: 

~---..::..~~~~~ 

(4a) B - A = PP" - PP' = PP" + P'P = P'P + PP" = P'P". 

------"- ------>.. 
The difference of the vectors PP" and PP' is here represented by the 
third side of the triangle with vertices P, P', P". 

We can associate with every point P = (Xl, ... , Xn) a unique 
vector that has the origin as initial point and P as end point; this is 
the vector 

------>.. 

OP = (Xl, . . . , Xn), 

the so-called position vector of P. The components of the position 
vector of P are just the coordinates of P. For example, the coordinate 
vector Et = (0, . . . , 0, 1, 0, . . . , 0) in formula (2a) is the position 
vector of the point on the positive xt-axis that has distance 1 from the 

P' 

o 

->0.. 

Figure 2.2 The vector PP' as difference of position vectors. 
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--->.. 

origin. Any vector A = PP' can always be written as the difference of 
the position vectors of its end point and initial point: 

-->0. -->0. ---->0.. 

(5) PP' = OP' - OP 

(see Fig. 2.2). 

c. Length 01 Vectors, Angles Between Directions 

The distance between two points P = (Xl, . . . , Xn) and P' = 
(Xl', ... , Xn') in n-dimensional euclidean space Rn is given by the 
formula l 

Since only the differences of corresponding coordinates of P, P' enter 
into the expression for r, we see that the distance is the same for all 

-->0. 

pairs of points P, P' that represent the same vector A = PP'. We call 
r the length of the vector A and write r = / A /. The vector A = (aI, ... , 
an) has the length 

(6a) 

The zero vector 0 = (0, 0, . . . , 0) has length O. The length of any 
other vector is a positive number. 

In euclidean geometry, angles can be expressed in terms of lengths. 
This is achieved by the trigonometric formula ("law of cosines") that 
gives in a triangle with sides a, b, c the angle y between the sides a 
and b: 

(6b) a2 + b2 - c2 

cos Y = 2ab 

We apply this formula to a triangle with vertices P, P', plIo (Fig. 2.3a). 
The sides a and b of the triangle are the lengths of the vectors A = 
-->0. --->0. 

PP', B = PP", while side c is the length of the vector 

lin two or three dimensions the formula can be derived geometrically by applying 
the theorem of Pythagoras. In higher dimensions the expression for r can be con­
sidered as the definition of distance between two points in n-dimensional euclidean 
space, when referred to a Cartesian coordinate system. 
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P" 

P' 

P o 

(a) (b) 

Figure 2.3 Vector representation of a line through a given point with 
a given direction. 

--->0. --->0. ~ 

C = P' P" = PP" - PP' = B - A. 

For 

A = (aI, ... ,an), B = (bl, ... , bn) 

we have 

C = (CI, ... , Cn) = (bl - aI, ... , bn - an). 

By (6b) 

IAI2 + IBI2 -ICI2 
cos'Y = 21AI IBI 

where 

Thus, for A ::;t= 0, B ::;t= 0, 

(7) 

We see that the angle 'Y in the triangle PP'P" depends only on the 
~ ----lIo. 

vectors A = PP' and B = PP". Accordingly, we call the quantity cos y 
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given by formula (7) the cosine of the anglel between the vectors 
A = (aI, ... , an) and B = (bl, ... , bn). 

Formula (7) for cos y actually always defines real angles y 
between any two nonzero vectors A, B, since it always yields a value 
with I cos y I ~ 1. This is an immediate consequence of the Cauchy­
Schwarz inequality (Volume I, p. 15) 

(8) (albl + a2b2 + . . • + anbn)2 

~ (a12 + a22 :I- ••• +an2)(b12 + b22 + ..• + bn2). 

In computing the angles between the vector A and any other 
vector B from (7), we need to know only the quantities 

(9) (i = 1, ... , n) 

which are called the direction cosines of A. All nonzero vectors 
with the same direction cosines form the same angles with other 
vectors and thus can be said to have the same direction. It follows 
from (7) that the direction cosines of A can be interpreted as cosines 
of certain angles: 

(10) ~, = cos ai, 

where ai is the angle between A and the ith "coordinate vector" 
E, = (0, . . . , 0, 1, 0, . . . , 0). The n direction cosines of the vector 
A satisfy the identity2 

(11) cos2 al + cos2 a2 + . . . cos2 an = 1. 

The only vector without direction cosines (and thus without a direction) 
is the zero vector. 

Two vectors A and B not equal to 0 have the same direction if and 
only if they have the same direction cosines, that is, if 

lThe angle y itself is determined uniquely only if we confine y to lie in the interval 
o ~ y ~ n. Replacing y by 2nn ± y (where n is an integer), we obtain all other 
angles with the same value of cos y, and any of these will be considered as an angle 
between A and B. 
2In two dimensions the relation cos2 at + cos2 a2 = 1 permits us to choose for az 
the value n/2 - al. In three or higher dimensions the relation (11) between the 
direction cosines does not correspond to any simple linear relation between the 
angles aj themselves. 
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Clearly, this is the case if and only if A and B satisfy a relation A = 
AB, where A is positive. Here A = I A I / I B I is the ratio of the lengths 
of the vectors. A vector of length 1 is called a unit vector. The vector 

whose components are the direction cosines of A is the unit vector in 
the direction of A. 

The vector -A = (-aI, ... , -an) opposite to A has the direction 
cosines -1;i. We call its direction opposite to that of A. Two vectors 
A and B neither of which is the zero vector will be called parallel if 
they either have the same or the opposite directions. It is necessary 
for parallelism then that A = AB where A is any number ;t:. O. The 
components aI, ... , an of any vector A;t:. 0 parallel to a given 
direction are called direction numbers for that direction. 

If we assign to a unit vector (1;1, ... , 1;n) the origin 0 as initial 
point, the end point P = (1;1, . . . , 1;n) is a point on the "unit 
sphere" (i.e., the sphere of radius 1 and center at the origin 0) 1;12 + 
~22 + . . . + ~n2 = 1. Since there exists exactly one unit vector in 
any given direction, we see that the different directions in n-di­
mensional space can be represented by the points of the unit sphere. 
The points on the sphere corresponding to opposite directions are 
diametrically opposite. 

Intuitively a straight line can be thought of as a curve of "constant 
direction". This suggests that a straight line in n-dimensional space 
be defined as a locus of points with the property that all vectors ;t:. 0 
with initial and end point on the line are parallel. This definition leads 
immediately to a vector representation for lines. For any distinct 

------>0. 

points P, Q on the line L the vector PQ is parallel to a fixed vector A, 
that is, 

----'0.. 

PQ=AA (A ;t:. 0). 

If we keep P and A fixed and let Q run through all points of the line 
L we have for the position vector of Q the formula (see Fig. 2.3b) 

~ ~ ~ ~ 

(12) OQ = OP + PQ = OP + AA. 
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Here the parameter A varies over all real values; the value A = 0 
corresponds to the point Q = P. If Q has coordinates Xl, . . . , Xn; 

P, the coordinates Yl, . . . , Yn; and A, the components aI, . . . , an, 
formula (12) corresponds to the parametric representation of the line 

(i = 1, ... , n) 

where the parameter A varies over all real A. The point P divides 
the line L into two half-lines, or "rays," distinguished by the sign 

--'>.. 

of A. For A > 0 the vector PQ has the same direction as A ("points" 
--'>.. 

in the direction of A); for A < 0 the vector PQ points in the opposite 
direction. 

d. Scalar Products of Vectors 

The quantity appearing in the numerator of formula (7) for the 
angle y between two vectors A = (aI, ... ,an) and B = (bl, ... , bn) 
is called the scalar product of A and B and denoted by A . B: 

(13) 

Expressed in terms of geometric entities it can be written as 

(14) A . B = I A I I B I cos y. 

The scalar product of two vectors is the product of their lengths 
multiplied with the cosine of the angle between their directions. If 
~ ------>0. 

A = PP', B = PP", we can interpretp = IAI cos y geometrically as 
the (signed) projection of the segment PP' onto the line PP" (see Fig. 
2.4). We call p the component of the vector A in the direction of B. By 
formula (14) we have 

(14a) A· B =pIBI. 

Thus the scalar product of the vectors A, B is equal to the component 
of A in the direction of B multiplied by the length of B.1 If B is the 
coordinate vector Ei = (0, . . . , 1, . . . 0) in the direction of the 
positive Xi -axis, the component of A in the direction of B is simply 
ai, the ith component of the vector A. One easily verifies from the 

lIt is, of course, also equal to the component of B in the direction of A multiplied by 
the length of A. 
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P" 

Figure 2.4 Scalar product of the vectors A=PP and B=PP;,. 

definition (13) that the scalar product satisfies the usual algebraic 
laws 

(15a) 

(15b) 

A·B=B·A 

A(A • B) = (AA) • B = A • (AB) 

(commutative law) 

(associative law)1 

(15c) A· (B + C) = A • B + A • C, (A + B) • C = A • C + B • C 

(distributive laws). 

The fundamental importance of the scalar product stems from the 
fact that, expressed in terms of the components of the vectors A and 
B, it has the simple algebraic expression (13), while at the same time 
it has a purely geometric interpretation represented by formula (14), 
which makes no mention of the components of the vectors in any 
specific coordinate system. Scalar products are not only useful in 
describing angles but form the basis for deriving analytic expressions 
for areas and volumes as well. 

We conclude from the Cauchy-Schwarz inequality (8) that the 
scalar product satisfies the inequality 

(16) IA· BI ~ IAI IBI, 

which just expresses that I cos 11 ~ 1. We shall see (p. 191) that the 

lSince the scalar product of two vectors is not a vector but a scalar. there is no 
associative law involving scalar products of three vectors. 
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equality in (16) holds only if the vectors A and B are parallel or if at 
least one of them is the zero vector. 

We notice that by (6a), (13) for B = A 

(17a) 

That is, the scalar product of a vector with itself is the square of its 
length. This also follows from (14), since the vector A forms the 
angle y = 0 with itself. The important relation 

(17b) A· B = 0 

for nonzero vectors A, B corresponds to cos y = 0 or y = 1[/2. It 
characterizes the vectors A, B as "perpendicular" or "orthogonal" 
or "normal" to each other. On the other hand, A· B> 0 means 
cos y > 0; that is, we can assign to y a value with 0 ~ y < 1[/2; the 
directions of the vectors form an acute angle. Similarly, A • B < 0 
means that the vectors form an angle with 1[/2 < Y ~ 1[, an obtuse 
angle, with each other. 

For example, the two coordinate vectors (see p. 123) 

EI = (1, 0, 0, . . . ,0) and E2 = (0, 1, 0, . . . , 0) 

are orthogonal to each other, since 
EI' E2 = 1·0 + 0·1 + 0·0 + ... + 0·0 = o. More generally, any 

two distinct coordinate vectors Ei and Ek are orthogonal: 

(17c) (i =1= k). 

For k = i, we have, of course, 

(17d) 

the coordinate vectors have length 1. 

e. Equation of Hyperplanes in Vector Form 

The locus of the points P = (Xl, . . . , Xn) in n-dimensional space 
Rn satisfying a linear equation of the form 

(18) alXI + a2X2 + ... + anxn = c 

(where aI, a2,. ., an do not all vanish) is called a hyperplane. The 
prefix "hyper-" is needed because n-dimensional space contains 
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"planes," or "linear manifolds," of various dimensions; the hyper­
planes cap. be identified with the (n - I)-dimensional euclidean spaces 
contained in the n-dimensional space Rn. They are the ordinary two­
dimensional planes in three-dimensional space, the straight lines in 
the plane, the points on a line. 

Introducing the vector A = (aI, a2, ... , an) and the position 
->0. 

vector X = (Xl, ... , Xn) = OP of the point P, we can write equation 
(18) in vector notation as 

(18a) (A *- 0). 

~ 

Let Y = (Yl,. ., Yn) = OQ be the position vector of a particular 
point Q of the hyperplane, so that A • Y = c. Subtracting this 
equation from (18a), we find that the points P of the hyperplane 
satisfy 

->0. 

(19) 0 = A· X - A· Y = A· (X - Y) = A· PQ. 

Hence the vector A is perpendicular to the line joining any two 
points of the hyperplane. The hyperplane consists of those points 
obtained by proceeding from anyone of its points Q in all directions 
perpendicular to A. We call the direction of A "normal" to the 
hyperplane (see Fig. 2.5). 

o 

Figure 2.5 Law of formation of third-order determinant. 
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The hyperplane with equation (18a) divides space into the two 
open half-spaces given by A • X < c and A • X > c. The vector A 
points into the half-space A • X > c. By this we mean that a ray from 
a point Q of the hyperplane in the direction of A consists of points 
whose position vectors X satisfy A· X > c. Indeed the position 
vectors X of points P of such a ray are given by 

---->0. ---->0. 

X = OP= OQ + A.A = Y + A.A 

[see (12)], where Y is the position vector of Q and A. is a positive 
number. Then obviously 

A • X = A • Y + A • A.A = c + 1..1 A 12 > c. 

More generally, any vector B forming an acute angle with A points 
into the half-space A • X > c, since A • B > 0 implies that 

A • X = A • (Y + A.B) = A • Y + A.A • B > c. 

If the constant c is positive, the half-space A • X < c will be the one 
containing the origin, since A • 0 = 0 < c. Then A has the normal 
direction "away from the origin". 

The linear equation (18a) describing a given hyperplane is not 
unique. For we can multiply the equation with an arbitrary constant 
factor A. *- 0, which amounts to replacing the vector A by the parallel 
vector A.A and the constant c by A.c. If c *- o-that is, if the hyper­
plane does not pass through the origin-we can choose 

sgn c 
1..= W. 

Multiplying (18a) by A., we obtain the normal form of the equation 
of the hyperplane 

(20) 

Here p is a positive constant, and B is the unit normal vector pointing 
away from the origin. The constant p in equation (20) is simply the 
distance of the hyperplane from the origin 0, that is, the shortest 
distance of any point of the hyperplane from o. For let P be any point 
of the hyperplane and let X be the position vector of P. Then the 
distance of P from the origin 0 is given by 

---->0. 

IOPI=IXI=IXIIBI· 
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It follows from (16), (20) that 

-...:... 
IOPI~ B· X =p. 

Equality holds for the special point P of the hyperplane with position 
vector 

-...:... 

OP= X =pB. 

The line joining this point to the origin has the direction of the 
normal to the hyperplane. More generally we can find the distance 
d of any point Q in space with position vector Y from the hyperplane. 
As the reader may verify by himself, 

(20a) d =IB· Y - pI. 

f. Linear Dependence of Vectors and Systems of Linear Equations 

Many problems in mathematical analysis can be reduced to the 
study of linear relations between a number of vectors in n-dimensional 
space. A vector Y is called dependentl on the vectors AI, A2, . . . , Am 
if Y can be represented as a "linear combination" of AI, . . . ,Am, 
that is, if there exist scalars Xl, . . . , Xm such that 

(21) 

Here m is any natural number. The zero vector is always dependent, 
since it can be represented in the form (21) choosing for all the 
scalars Xt the value o. Dependence of Y on a single vector Al *- 0 
means that either Y = 0 or that Y is parallel to AI. Choosing for 
AI,. ., Am the n coordinate vectors 

(22) EI = (1, 0, . . . , 0), E2 = (0, 1, . . . ,0), . . . , 

En = (0, 0, . . . , 1) 

we see that the relation (21) holds for any vector Y = (YI, . . . , Yn) 
if we choose Xl = YI, X2 = Y2, • . • , Xn = Yn: 

(23) 

lWhat we call here "dependent" is often called "linearly dependent" in the liter­
ature. Since we do not consider any other kind of dependence between vectors, we 
drop the word "linear." 
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Thus, every vector in space is dependent on the coordinate vectors. 
On the other hand, none of the n coordinate vectors Ei is dependent 
on any of the others, as is easily seen. More generally, a vector Y "* 0 
cannot be dependent on vectors AI, A2, . . . ,Am if Y is orthogonal to 
each of the vectors AI, ... , Am. For multiplying relation (21) scalarly 
by itself yields that 

IYI2 = y. Y = y. (xiAI + x 2A2 + ... +xmAm) 

= Xl Y • Al + X2 Y • A2 + . . . + Xm Y • Am = 0, 

and hence that Y = o. 
We call the vectors AI, . . . , Am dependent if there exist scalars 

Xl, X2,. ., Xm that do not all vanish, such that 

(24) 

If AI, . . . , Am are not dependent - that is, if (24) holds only for 
Xl = X2 = . . . = Xm = 0 - we call AI, . . . , Am independent. For 
example, the coordinate vectors E I, ... , En are independent, since 

obviously implies that Xl = X2 = . . . = Xn = O. 
The two notions of "dependence of a vector on a set of vectors" 

and "dependence of a set of vectors" are closely related. A number 
of vectors are dependent if and only if we can find one of them that 
is dependent on the others. For, obviously, relation (21) expressing 
that Y is dependent on AI, . . . , Am can be written in the form 

xlAI + ... + xmAm + (-1)Y = 0, 

which shows that the m + 1 vectors AI, A2, . . . , Am, Yare de­
pendent. Conversely, if AI, ... ,Am are dependent, we have a relation 
of the form (24) where not all coefficients Xi vanish. If, say, Xk does 
not vanish, we can solve equation (24) for Ak, expressing Ak as a 
linear combination of the other vectors. 

Dependence of the vector Y on the vectors AI, . . . ,Am means that 
a certain system of linear equations has solutions Xl, ... , Xm. For 
let Y = (YI, . . . 1 Yn), and let the vector Ak be given by 

Then the vector equation (21), written out by components, is equiva­
lent to the system of n linear equations 
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(25) 

allXl + a12X2 + . . . + almXm = Yl 

a2lXl + a22X2 + . . . + a2mXm = Y2 

anlXl + an2X2 + . . . + anmXm = Yn 

for the unknown quantities Xl, .•• ,Xm. Obviously, Y is dependent 
on AI, . . . , Am if and only if the system (25) posesses at least one 
solution Xl, .•• , Xm. Similarly, the vectors AI, ... , Am are de­
pendent if and only if the "homogeneous" system of equations 

(25a) 

allXl + a12X2 +. . . + almXm = 0 

a2lXl + a22X2 + . . . + a2mXm = 0 

anlXl + an2X2 + . . . + anmXm = O. 

has a "nontrivial" solution Xl, • . . , Xm, that is, has a solution 
different from the trivial solutionl 

Xl = X2 =. . . = Xm = O. 

We found one set of n vectors in n-dimensional space that are 
independent, namely, the coordinate vectors El, ... , En. Basic for 
the theory of vectors is the fact that n is the maximum number of 
independent vectors: 

fuNDAMENTAL THEOREM OF LINEAR DEPENDENCE. Every n + 1 
vectors in n-dimensional space are dependent. 

Before proving this theorem we consider some of its far-reaching 
implications. We can conclude immediately that any set of more than 
n vectors in n-dimensional space is dependent. For any dependence 
(24) between the first n + 1 of m vectors can be considered a de­
pendence of all m vectors, if to the remaining vectors we assign the 
coefficient O. The fundamental theorem then implies: The system of 
homogeneous linear equations (25a) always has a nontrivial solution if 
m > n, that is, if the number of unknowns exceeds the number of 
equations. 

We can formulate the last statement geometrically in a different 
way, if we interprete each of the equations (25a) as stating that a 

1 Equations of the type P(X1, X2, . . • ,Xm) = 0 where P is a homogeneous polynomial 
(see p. 13) are called homogeneous. They always have the trivial solution Xl = 
X2 =. . . = Xm = O. Moreover any solution Xl, • • • , Xm stays a solution if we 
multiply all of the Xi by the same factor A.. 
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certain scalar product of two vectors ,in m-dimensional space vanishes. 
A nontrivial solution Xl, ••• , Xm then corresponds to a vector X = 
(Xl, • • . , Xm) =1= O. The vanishing of the scalar product of two non­
vanisfting vectors means that the vectors are perpendicular to each 
other. Equations (25a) state that X is perpendicular to the n vectors 
(au, a12, . . . , aIm), (a21, a22, . . . , a2m), . . . , (anI, an2, . . . , anm). We 
have then: Given a set of nonvanishing vectors whose number is less 
than the dimension of the space, we can find a vector that is perpen­
dicular to all of them (and hence, by p. 137, is independent of them). 

Returning to vectors in lJ-dimensional space, we observe a further 
consequence of the fundamental theorem: Every vector Y in n-di­
mensional space is dependent on n given vectors AI, . . . ,An, provided 
AI, . . . , An are independent. For since the n + 1 vectors AI, . . . , 
An, Y must be dependent, we have a relation of the form 

where not all of the quantities Zl, . • . , Zn+l vanish. Then Zn+l =1= 0, 
since otherwise AI, . . . , An would be dependent, contrary to as­
sumption. It follows that 

(26) 

where 

Zl Xc= --­
Zn+l 

(i = 1, ... , n). 

Incidentally, the coefficients Xk in the representation (26) of Y as a 
linear combination of the independent vectors AI, . . . , An are 
uniquely determined, for if there were a second representation 

Y = YIAI + Y2A2 + . . . + YnAn 

it would follow by subtracting that 

Here for independent vectors AI, . . . , An we conclude that all 
coefficients vanish and hence that Xl = YI, . . . , Xn = Yn. 

On the other hand, if AI, . . . ,An are dependent, we certainly can 
find a vector Y that does not depend on AI, . . . ,An, for in that case, 
one of the vectors AI, . . . , An is dependent on the others, say An 
on AI, . . . , An-I; a vector Y dependent on AI, . . . ,An is then also 
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dependent on AI, . . . , An-I. There are, however, vectors Yin n-di­
mensional space that do not depend on n - 1 given vectors (see 
p.139). 

Since independence of AI, . . . , An is equivalent to the fact that 
the corresponding system of homogeneous linear equations (25a) has 
only the trivial solution, we have deduced the following basic theorem 
on solvability of systems of linear equations from the fundamental 
theorem: 

The system of n linear equations 

(27) 

allXI + a12X2 + . . . + alnXn = YI 

a2lXI + a22X2 +. . . + a2nXn = Y2 

anlXI + an2X2 +. . . + annXn = Yn 

has a unique solution Xl, . • . , Xn for any given numbers YI, . • . , Yn 
provided the homogeneous equations 

(27a) 

allXI + al2X2 +. . . + alnXn = 0 

a2lXI + a22X2 + . . . + a2nXn = 0 

anlXl + an2X2 + . . . + annXn = 0 

have only the trivial solution Xl = X2 =. . . = Xn = o. If the system 
(2'la) has a nontrivial solution we can find values YI, •.. , Yn for 
which the system (27) has no solution. 

We have here a pure existence theorem, that gives no indication, 
how the solution Xl, X2 . . . , Xn, if it exists, can actually be obtained. 
This can be achieved by means of determinants, as discussed in 
Section 2.3 below. 

We proceed to the proof of the fundamental theorem, using in­
duction over the dimension n. The theorem states that any n + 1 
vectors Al, . . . , An, Y in n-dimensional space are dependent. For 
n = 1, vectors become scalars, and the statement to be proved is the 
following: For any two numbers Y and A we can find numbers xo, Xl, 

which do not both vanish, such that 

xoY + xlA = O. 

This is trivial. If Y = A = 0, we take Xo = Xl = 1; in all other cases, 
we take Xo = A, Xl = -Yo 
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Assume that we have proved that any n vectors in (n - I)-di­
mensional space are dependent. Let AI, . . . , An, Y be vectors in 
n-dimensional space. We want to prove that AI;. . . , An, Yare de­
pendent. This is certainly the case, if AI, . . . , An alone are already 
dependent. Thus we restrict ourselves to the case that AI, . . . , An 
are independent; we shall prove that then Y is dependent on AI, ... , 
An. It is sufficient to prove that each of the coordinate vectors EI, .. . 
En in (22) is dependent on AI, . . . , An, for any vector Y is, by (23), a 
linear combination of the Ei and hence also of the Ak if the Ei can 
be expressed in terms of the Ak. We shall prove only that En is de­
pendent on AI, . . . , An, since the proof for the other Ei is similar. 
We only have to show that the system of equations 

(28) 
anXI + ai2X2 + . . . + ainXn = 0 

aniXI + an2X2 + . . . + annXn = 1 
(i = 1, ... ,n - 1) 

has a solution Xl, ... , Xn. Now the first n - 1 equations, which are 
homogeneous, have a nontrivial solution Xl, ••• ,Xn as a consequence 
of the induction assumption that n vectors in (n - I)-dimensional 
space are dependent. For that solution, let 

aniXI + an2X2 + . . . + annXn = c. 

Here c *- 0, since otherwise the vectors AI, . . . , An would be de­
pendent. Dividing Xl, X2, .•• , Xn by c, we obtain then the desired 
solution of the system (28). This completes the proof of the funda­
mental theorem. 

Exercises 2.1 

1. Give the coordinate representation of the line passing through the 
point P = (-2, 0, 4) and in the direction of the vector A = (2, 1, 3). 

2. (a) What is the equation of the line passing through the points P = 
(3, -2, 2) and Q = (6, -5, 4)? 

(b) Give the equation of the line passing through any two distinct 
points P and Q. 

3. If A and B are two vectors with initial point 0 and final points P and 
Q, then the vector with 0 as initial point and the point dividing PQ 
in the ratio A: (1-A) as final point is given by 

(1- A)A + AB. 

4. In Exercise 3, for what values 00 does the position vector correspond 
to a point on the ray in the direction of Q from P? 

5. The center of mass of the vertices of a tetrahedron PQRS may be 
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defined as the point dividing MS in the ratio 1 :3, where M is the center 
of mass of the vertices PQR. Show that this definition is independent 
of the order in which the vertices are taken and that it agrees with the 
general definition of the center of mass (Volume I, p. 373). 

6. Two edges of a tetrahedron are called opposite if they have no vertex 
in common. For example, the edges PQ and RS of the tetrahedron of 
Exercise 5 are opposite. Show that the segment joining the midpoints 
of opposite edges of a tetrahedron passes through the center of mass of 
the vertices. 

7. Let Al, ... , An be n arbitrary particles in space, with masses, ml, 
m2, ... , mn, respectively. Let G be their center of mass and let Al 
. . . ,An denote the vectors with initial point G and final points 
Al, . . . , An. Prove that 

8. The real numbers form a one-dimensional vector space where addition 
of "vectors" is ordinary addition and multiplication by scalars is 
ordinary multiplication. Show that the positive real numbers also form 
a vector space where addition of vectors is ordinary multiplication and 
scalar multiplication is appropriately defined. 

9. Verify that the complex numbers form a two-dimensional vector space 
where addition is ordinary addition and the scalars are real numbers. 

10. Let P and Q be diametrically opposite points and R any other point on 
a sphere. Show that PR meets QR at right angles. 

11. (a) Obtain the normal form of the plane through the point P = (-3,2,1) 
and perpendicular to the vector A = (1, 2, -2). 

(b) What is the distance of the point Q = (1, -1, -1) from the plane? 
(c) Do 0 and Q lie on the same or opposite sides of the plane? 

12. (a) Let the equation of a hyperplane be given in the form (18). Deter­
mine the coordinates of the foot of the perpendicular from a point 
P to the hyperplane. 

(b) In Exercise 11, give the feet of the perpendiculars from 0 and Q on 
the plane. 

13. Let A and B be nonparallel vectors. Show that 

is perpendicular to B. The vector C is called the component of A perpen­
dicular to B. 

14. Find the angle tP between the plane 

Ax + By + Cz + D = o. 

and the line 

x = Xo + at, y = yo + ~t, z = Zo + yt. 
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2.2 Matrices and Linear Transformations 

a. Change 01 Base. Linear Spaces 

Every vector Y in n-dimensional space Rn can be written as a linear 
combination of the coordinate vectors EI, . . , En defined by (22); 
namely, 

(29) 

where theYt are the components ofY. We can generalize the notion of 
coordinate vector and of components by considering any m inde­
pendent vectors AI, . . . ,Am in Sn. If Y is a vector dependent on the 
Ai, we have 

(30) Y = xlAI + . . . + xmAm 

where the coefficients Xi are determined uniquely by Y. We call Xl, . 
. . , Xm the components of Y with respect to the base AI, . . . ,Am. With 
respect to this base, the base vector Al has the components 1,0, . 
. ,0; the base vector A2, the components 0, 1, . . . ,0; and so on. 
For any scalar A the vector 

also is dependent on the Ai and has components AXI, . . . , AXm. 

Similarly, if 

Y' = xI'AI + ... + xm'Am 

is a second vector depending on the Ai, the sum 

Y + Y' = (Xl + x'I)AI + ... + (Xm + xm')Am 

has the components Xl + Xl', ... ,Xm + Xm' with respect to our base. 
For m < n not all vectors Y in n-dimensional space are dependent 

on AI, . . . , Am. The vectors dependent on m independent vectors 
are said to form an m-dimensional vector space. We can visualize such 
a space by choosing an arbitrary point Po with position vector B = 
~ 

OPo as initial point for all the vectors AI,. ., Am. Let 

(31a) (i = 1, ... ,m) 

~ 

and let Y = PoP be the vector given by (30). Then the point P has the 
position vector 
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(31b) 
~ ~ ~ 

OP = OPo + PoP = B + xlAl + . . . + xmAm. 

The points Pin relation (31b) are said to form the m-dimensionallinear 
manifold 8m through Po spanned by the vectors AI, . . . , Am. Every 
point P in 8m uniquely determines values Xl, . . . , Xm, which we call 
affine coordinates for P. In this affine coordinate system for 8m 
the "origin" - that is, the point with Xl = X2 = . . . = Xm = 0 - is 
the point Po; the point with affine coordinates Xl = 1, X2 = . . . = Xm 

= 0 is PI, the end point of the vector Al = pJJl, and so on. For two 
points P and P' of 8m with position vectors 

~ -->0. 

OP = B +xlAl + ... +xmAm, OP' = B +xl'Al + . 
+ xm'Am, 

the vector 

--""- -->0. --.!!o. 

PP' = OP' - OP = (Xl' - xl)Al +. . . + (Xm' - xm)Am 

has as components with respect to the base AI, . . ., Am the differences 
of the affine coordinates of the points P and P'. 

According to our definition a one-dimensional linear manifold 81 
through the point Po is the locus of points P with position vectors of 
the form 

---"'0. 

OP = B + xlAI 

where B and Al are fixed vectors, (AI * 0) and Xl ranges over all 
real numbers. Of course, 81 is merely the straight line through Po 
parallel to the direction of the vector Al (see p. 130). A two-dimen­
sional linear manifold or two-dimensional plane 82 consists of the 
points P with position vectors 

-->0. 

OP = B + xlAI + x2A2 

where B, AI, A2 are fixed vectors (AI and A2 independent) and Xl and 
X2 range over all real numbers. The n-dimensional linear spaces 8n 

are identical with the whole space Rn; for any vector Y is dependent 
on n linearly independent vectors AI, . . . , An (see p. 133), and hence 
the position vector of any point P is representable in the form 

-->0. 

OP = B + xlAl + . • . + xnAn. 
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The (n - l)-dimensionallinear manifolds can be seen to be identical 
with the hyperplanes defined on p. 133. For given any n - 1 vectors AI, 
. . . ,An-I in n-dimensional space, we can find a vector A perpen­
dicular to all of them (see page 139.) Then for 

---->0.. 

OP = B + xiAI + . . . + Xn-I An-I 

we have the relation 

---->0.. 

A • OP = B • A + Xl • Al • A + . . . + Xn-I An-I· A = B • A 

= constant, 

which is just a linear equation for the coordinates of P. 
In general, the determination of the components x, of a vector 

Y with respect to a base AI, . . . ,Am requires the solution of a system 
of linear equations of the type (25). In one important special case, the 
x, can be found directly, namely, when the base vectors form an 
orthonormal system. We call the vectors AI, . . . ,Am orthonormal 
if each of them has length 1 and any two are orthogonal to each other, 
that is, if 

(32) A A (1 for i = k 
,. k = 0 for i =F k. 

If a vector Y is of the form 

we find, using the orthogonality relations (32), that 

(33) Y • A, = xiAI . A, + x2A2 • A, + ... +xmAm • A, =X, 
(i = 1, ... ,m). 

In particular, Y = 0 implies x, = 0 for i = 1, ... ,m; thus orthonor­
mal vectors always are independent. Formula (33) shows that the 
component x, of the vector Y with respect to an orthonormal base 
AI, . . . ,Am is equal to the component Y • A, of the vector Y in the 
direction of At. The coordinate vectors EI, . . . ,En defined by equa­
tions (22) form just such an orthonormal base, and the components 
ofthe vector Y = (YI, . . . ,Yn) with respect to this base are the quanti­
ties Y • E, = Yt. 

An orthonormal base is also distinguished by the fact that the 
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length of a vector and the scalar product of two vectors is given by the 
same formulae as in the original base E1, . . . ,En. Given any two 
vectors Y and Y' of the form 

(34a) Y = x1A1 + . . . + xmAm, Y' = x1'A1 + ... +xm'Am 

we have 

(34b) Y· Y' = (x1A1 +. . . + xmAm) • (Xl' A1 + . . . + Xm' Am) 

= x1A1· (x1'A1 + ... + Xm'Am) + . 
+ XmAm • (Xl' A1 + . . . + Xm' Am) 

= X1X1' + X2X2' + . . . + XmXm'.l 

In the particular case Y' = Y we find for the length of the vector 
Y the formula 

(34c) 

If the m-dimensional linear manifold 8m through the point Po is 
spanned by m orthonormal vectors A1, . . . ,Am, the corresponding 
affine coordinate system is called a Cartesian coordinate system for 
the space 8m. The coordinate vectors A1, . . . ,Am are mutually per­
pendicular and of length 1. The distance d between any two points 
with Cartesian coordinates (Xl, . . . ,Xm) and (Xl', . . . ,Xm') is given 
by the formula 

d = -J(X1' - X1)2 + ... + (Xm' - Xm)2 

More generally any geometric relation based on the notion of distance 
(such as angle, area, volume) has the same analytic expression in any 
Cartesian coordinate system. 

b. Matrices 

The relation 

(35a) 

between vectorsA1, ... ,Am, Yin n-dimensional space canbe written 
as a system of linear equations [see (25), p. 138) 

lWithout the orthogonality relations we could only conclude that Y • Y' is given 
by the more complicated expression 

y • y' = 1: CU,XIXk where Clk = Al • Ak. 
i.k 



(35b) 
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aUXI + a12X2 + ... + almXm = YI 

a2lXI + a22X2 + . . . + a2mXm = Y2 

anlXI + an2X2 + . . . + anmXm = Yn 

connecting the components YI, • . . ,Yn of the vector Y in the original 
coordinate system with the components Xl, •.. ,Xm ofY with respect 
to the base vectors Ai = (au, a2i, . • . , ani) for i = 1, . . . , m. The 
linear relations (35b) between the quantities x, and Yi are completely 
described by the system of n x m coefficients aji. The system of 
coefficients arranged in a rectangular array 

(36) a = (::i :;: 
anI an2 

as they appear in (35b) is called a matrix. 
(We shall usually denote matrices by boldface lower-case letters). 

The matrix a in (36) has mn "elements" 

j = 1, ... , n; i = 1, ... ,m. 

These elements are arranged in m "columns" 

or in n "rows" 

au) a21 

· · · 
anI 

(au 
(a21 

(anI 

. 

al2) (alm) a22 a2m . . . . . 
.' '. . . 

an2 anm 

al2 aIm), 

a22 a2m), . . . . . . . . 
an2 anm). 

Two matrices are considered equal only if they agree in the number 
of rows and columns and if corresponding elements are the same. 
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The columns of the matrix a can be identified respectively with the 
set of components of the vectors AI, As, . . ., Am. We shall often write 
the matrix a whose columns are formed from the components of the 
vectors AI, As,. . ,Am as 

(37) 

The system of equations (35b) expressing the n quantities YI, . . . , 
Yn as linear functions of the m quantities Xl, •.• ,Xm can be compress­
ed into the single symbolic equation 

(38) aX=Y, 

where X stands for the vector (Xl, • . . ,Xm) and Y for the vector 
(YI, . . . , Yn). If the column vectors AI, . . . ,Am of the matrix a are 
independent, we can interpret (38) as describing a change of base or 
of coordinate system for vectors. 

The equation connects the components Xl, • . . , Xm of the vector 
with respect to the base AI, . . . ,Am in the subspace 8m with the 
components YI, . . . ,Yn of the same vector with respect to the base 
EI, . . . ,En for the whole space 8n• This might. be called the "pas­
sive" interpretation of (38), in which the geometrical objects-the 
vectors-stay fixed and only the reference system is switched. 

There is another, "active" interpretation, in which the vectors 
change rather than the coordinate system. Equations (36) then de­
scribe a mapping of vectors (Xl, . . . ,Xm) in an m-dimensional space 
onto vectors (YI, ... ,Yn) in an n-dimensional space. Amapping given 
by equation (38), or in more detail by the equivalent system of equa­
tions (35b), is called linear, or affine.1 

lIn an affine mapping of vectors the components Yi of the image vector Y are homo­
geneous linear functions of components Xi of the original vector X, as in formulae 
(35b). If we identify X and Y with position vectors of points, formulae (35b) define a 
mapping of points (Xl, ... , Xm) in the space Rm onto points (YI, ... , Y,,) in the space 
R". The point mappings obtained in this way are the special affine mappings that 
take the origin of Rm into the origin of R". The most general affine mapping of points 
is given by inhomogeneous linear equations 

m 
(*) Yj =.I: ajiXi + bi (j = 1. •.. , n) ,-I 
(It can be obtained from a special mapping taking the origin into the origin by a 
translation with components bi). Applying the mapping (*) to two points P' = 
(Xl', ... , Xm'), P" = (Xl", ... , Xm") with images Q' = (Yl', ... , y",), Q" = (Yl", 

------"" 
... ,y,,''), we see that the corresponding mapping of the vectors P' P" = (Xl" - Xl', 

------"" 
.•. , Xm" - Xm') = (Xl, ... , Xm) onto the vectors Q' Q" = (YI" - Yl', ... , 
y,," - y",) = (YI, ... ,y,,) is given by the homogeneous equations (35b). 
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For example the system of equations 

(38a) 
2 1 

Yl = "3 Xl - "3 X2, 
1 2 

Y2 = - "3 Xl + "3 X2, 

1 1 
Ys = - - Xl - - X2 3 3 

corresponding to the matrix 

a= 

2 1 
3 -3 

2 
3 

1 1 
3 3 

can be interpreted as a mapping of vectors X = (Xl, X2) in the plane 
onto vectors Y = (Yl, Y2, ys) in three-dimensional space. Here the 
image vectors all satisfy the relation 

(38b) Yl + Y2 + Ys = 0 

and hence are orthogonal to the vector N = (1, 1, 1). Identifying the 
vectors X, Y with position vectors of points, we have in (38a) a map­
ping of the Xl x2-plane onto the plane 1t in Yl Y2 ys-space with equation 
(38b). Geometrically the point (Yl, Y2, Ys) is obtained by projecting the 
point (Xl, X2, 0) perpendicularly onto the plane 1t.l Alternately, equa­
tions (38a) can be interpreted passively as a parametric representation 
for the plane 1t, with Xl and X2 playing the role of parameters. 

Different matrices give rise to different linear mappings, for by 
(35b) the coordinate vectors 

El = (1, 0, . . . , 0), E2 = (0, 1, . . . ,0), . . . 

are mapped onto the vectors 

Al = (au, a2l, ... , anI), 

Thus, the column vectors AI, A2, ... ,An of the matrix a are just the 
images of the coordinate vectors El, E2, . . . ,En. Hence, the matrix 
a is determined uniquely by the mapping. 

IThe line joining (Xl, X2, 0) and (Yl, Y2, ya) is parallel to the normal N of 1t. 
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Of particular importance are the linear mappings Y = aX of the 
n-dimensional vector space into itself; they map a vector X = (Xl, . . . , 
Xn) onto a vector Y = (YI, . . . ,Yn) with the same number of compo­
nents. Such mappings correspond to matrices a with as many rows 
as columns, so-called square matrices. I Written out by components, 
the mapping Y = aX corresponding to a square matrix a with n rows 
and columns takes the form (27). p.140. The basic theorem of solvability 
of systems of n linear equations for n unknown quantities (p. 140) 
clW now be stated alternatively as follows: 

For a square matrix a there are two mutually exclusive possibili­
ties: 

(1) aX =F 0 for every vector X =F 0 
(2) aX = 0 for some vector X =F O. 

In case (1) there exists for every vector Y a unique vector X such that 
Y = aX. In case (2) there exist vectors Y for which the equation Y = aX 
holds for no vector X.2 

We call the matrix a singular in case (2) and nonsingular in case 
(1). Since existence of a nontrivial solution X of the equation aX = 
o is equivalent to dependence of the column vectors of the matrix 
a, we see that a square matrix a is singular if and only if its column 
vectors are dependent. 

c. Operations with Matrices 

It is customary to denote the elements of a matrix a as in (36) by 
letters bearing two subscripts, such as aji. The subscripts indicate 
the location or address of the element in the matrix, the first subscript 
giving the row number, the second the column number. For a matrix 
with n rows and m columns having elements aji the subscript j ranges 
over 1, 2, . . . , n and the subscript i over 1, 2, . . . , m. Equation (36) 
is often abbreviated into the formula 

a = (aji), 

which only exhibits the elements of the matrix a but does not show 
the numbers of rows and columns, which have to be deduced from the 
context.3 In the example 

lThe more general matrices with arbitrary numbers of rows and columns are referred 
to as rectangular matrices. 
2In case (1) the equation Y = aX represents a 1-1 mapping of the n-dimensional 
vector space onto itself. In case (2) the mapping is neither 1-1 nor onto. 
3The letter a in ajl is the name of a real-valued function of the independent variables 
j and i. The domain of this function consists of the points in the j, i-plane whose 
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I! 2! 3! m! 

2! 3! 4! (m + I)! 

a = (aji) = 3! 4! 5! (m + 2)! 

n! (n + I)! (n + 2)! . . • (m+n-1)! 

we have aji = (i + j - I)! 
Addition of matrices and multiplication of matrices by scalars are 

defined in the same way as for vectors. If a = (aji) and b = (bji) 
are matrices of the same "size"-that is, with the same numbers of 
rows and columns-we define a + b as the matrix obtained by adding 
corresponding elements: 

Similarly, for a scalar A we define Aa as the matrix obtained by 
multiplying each element of a by the factor A: 

One verifies immediately the rules 

(39) (a + b) X = aX + bX, (Aa) X = A(aX) 

for the mappings of vectors X determined by the matrices. 
More significant is the fact that matrices of suitable sizes can be 

multiplied with each other. A natural definition of the product of two 
matrices a, b is obtained by considering the symbolic product, or 
composition, of the corresponding mappings (see Volume I, p. 52). If 
a = (aji)is a matrix with m columns and n rows, and if X = (Xl, ... , Xm) 
is a vector with m components, then a determines the mappings 
Y = aX of the vector X onto the vector Y = (YI, . . . , Yn) with tile 
n components 

m 
Yj = 2: ajiXi 

j=l 
(j = 1, ... , n). 

If now b = (bkj) is a matrix with n columns and p rows, then the 

coordinates are integers with 1 ~ j ~ n, and 1 ~ i ~ m. Ordinarily we write a 
function f of two independent variables x, y as f (x, y), and a more consistent notation 
here would be a(j, i) instead of the customary aJI. 
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mapping Z = bY will map Y onto the vector Z = (Zl, . . . ,z'P) with the 
p components 

where 

(40) 
n 

Ckt = ~ bkj aj( (k = 1, ... ,p; i = 1, ... ,m). 
J=1 

Thus Z = eX, where e = ba = (Cki) is the matrix with p rows and 
ni columns and with elements given by formula (40). Accordingly, we 
define the product e = ba of the matrices b and a as the matrix with 
elements Cki given by (40). 

We observe that the product ba is defined only if the number of 
columns of b is the same as the number of rows of a. This corresponds 
to the obvious fact that the symbolic product of two mappings can 
only be formed, if the domain of the first factor contains the range 
of the second one. Thus it could happen very well that the product 
ba is defined but not the product ab with the factors in the reverse 
order. But even where both ba and ab are defined the commutative law 
of multiplication ab = ba in general does not hold for matrices. 
For example, for 

we have 

a = ( 0 
-1 

ab = ( 0 
-1 

~), b = (~ 

-1) 
0' ba = (~ 

However, one easily verifies from formula (40) that matrix multi­
plication obeys the associative and distributive laws 

(41a) 

(41b) 

a(be) = (ab)c, 

a(b + e) = ab + ac, (a + b)e = ae + be, 

(for matrices of appropriate sizes). We might say that all algebraic 
manipulations for matrices are permitted as long as the products 
involved are defined and we do not interchange factors. 
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The mapping of vectors determined by the matrix a, which we had 
written as Y = aX, can be considered a special example of matrix 
multiplication provided we write X and Y as "column vectors," that 
is, as matrices with a single column and with m and n rows, respec­
tively: 

Xl 

X2 

X= Y= 

, Xm Yn 

d. Square Matrices. The Reciprocal of a Matrix. Orthogonal 
Matrices 

Of particular importance in applications are the matrices with the 
same number of rows and columns, the so-called square matrices (the 
more general matrices with arbitrary numbers of rows and columns 
are referred to as rectangular matrices). The order of a square matrix 
is the number of its rows or columns. Any two square matrices of the 
same order n can be added or multiplied. In particular, we can form 
powers of such a matrix: 

a 2 = aa, a 3 = aaa,' . '. 

The zero matrix 0 of order n is the matrix all of whose elements are 
0, or all of whose columns are zero vectors: 

(42a) o = (0, 0, . . . , 0). 

It has the obvious properties 

(42b) a + 0 = 0 + a = a, aO = Oa = 0 

(for all n-th order matrices a), 

(42c) OX = 0 for all vectors X with n components. 

The unit matrix, of order n, denoted by e is the matrix correspond­
ing to the identity mapping of vectors X: 

(43a) eX=X 

for all vectors X. Since then in particular eEk = Ek for all coordinate 
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vectors Ek, we find that the unit matrix has the coordinate vectors as 
columns: 

(43b) e = (El, Ez, ... ,En) = 

1 

o 

o 

o 
1 

o 

o 
o 

o 

o 
o 

1 

One verifies immediately that e plays the role of a "unit" in matrix 
multiplication: 

(43c) ae = ea = a 

for all n-th order a. 
We call an nth order matrix b reciprocal to the nth order matrix 

aif 

(44) ab = e. 

If b is reciprocal to a, then a corresponds to the inverse of the map­
ping of vectors furnished by b, for if b maps a vector Y onto X (i.e., 
if X = by), then a maps X back onto Y, since aX = abY = eY = Y. 
More concretely, if we know a reciprocal b of the matrix a = (ai~), 
we can write down a solution X = (Xl, Xz, • • . , Xn) of the system of 
linear equations 

aUXl + alZXZ + . . . + alnXn = Yl 

a2lXl + a2ZX2 + . . . + aZnXn = yz 

anlXl + an2XZ + . . . + annXn = Yn 

for any given (Yl, . . . , Yn) = Y. Since ab Y = e Y = Y, we have in­
deed a solution given by X = bY, that is, by 

Xl = bUYl + . . . + blnYn 

Xn = bnlYl +. . . + bnnYn. 

Every real number a except zero has a reciprocal b for which ab = 1. 
However, there are matrices different from the zero matrix that 
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have no reciprocal. If a has a reciprocal, the equation aX = Y has for 
every vector Y the solution X = bY, since 

abY = eY = Y. 

Hence (see p. 150) the matrix a must be nonsingular; that is, the 
columns of a are independent vectors. Singular matrices have no 
reciprocal. The condition ab = e for the reciprocal matrix b of a can 
be written out in the form 

(45) 
n 

2.: ajrbrle = ejle, 
r=l 

where ajr, brie, ejle denote respectively the general elements of the 
matrices a, b, e. For fixed k we have in (45) a system of n linear equa­
tions for the vector Ble = (bllc, b21e, ... , bnle), which represents the 
kth column of the matrix b. If the matrix a is nonsingular, there exists 
a unique solution Ble of (45) for every k. Hence, a nonsingular matrix a 
has one and only one reciprocal b. 

Let a be any nonsingular matrix and b its reciprocal; that is, ab = 
e. Take an arbitrary vector X and put Y = aX. Since both Z = X and 
Z = bY are solutions of the equations Y = aZ and since the solution 
is unique, we must have 

bY=X 

for every vector X. Hence (see p.149) a is the reciprocal of b: 

ba = e. 

The reciprocal of a nonsingular matrix a is usually denoted by 
a-I. We have 

(46) 

where e is the unit matrix. The reciprocal can be calculated by solv­
ing the system of linear equations (45) for the brle. Since the elements 
ejle of the unit matrix have the value 0 for j *- k and 1 for j = k, equa­
tions (45) state that the scalar product of the jth row of the matrix 
a with the kth column of the matrix a-I has the value 0 for j *- k and 
1 for j = k. Furthermore, since a-I a = e we see that the scalar prod­
uct of the jth row of a-I with the kth column of a also has the value 
o for j *- k and 1 for j = k. 
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Multiplying by reciprocals enables us to "divide" an equation 
between matrices by a nonsingular matrix. For example, the matrix 
equation 

ab= e, 

where a is a nonsingular matrix, can be solved for b by multiplying 
the equation from the left by a-I: 

a-Ie = a-I(ab) = (a-Ia)b = eb = b. 

Similarly, the equation 

ba = e 

leads to 

ea-I = b. 

From the point of view of euclidean geometry the most important 
square matrices are the so-called orthogonal matrices, which cor­
respond to transitions from one Cartesian coordinate system to 
another such system or to linear transformations that preserve 
length. A square matrix a is called orthogonal if its column vectors 
AI,. ., A" form an orthonormal system: 

(47) A { 0 for i * k 
,. Ak = 

1 for i = k 

(see p. 145). Since vectors forming an orthonormal system are in­
dependent, it follows that orthogonal matrices are always nonsingular. 
The vector relation aX = Y corresponding to the matrix a, inter­
preted passively, describes how the components YI, . . . ,Y" of a vector 
with respect to the coordinate vectors EI, ... , E" are connected 
with the components of the same vector with respect to the base 
AI, . . . , A". For an orthogonal matrix a the base AI, . . . , An con­
sists of n mutually orthogonal vectors of length 1, forming a "Car­
tesian" coordinate system, in which distance is given by the usual 
expression (see p. 146). Interpreted actively, Y = aX represents a 
linear mapping in which the coordinate vectors Et are mapped onto 
the vectors A,. This mapping takes a vector 
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into the vector 

Y = aX = a (xiEI + . . . + XnEn) = xiaEI + . . . + xnaEn 

= xlAI + . . . + xnAn. 

The mapping preserves the length of any vector, since by (47) 

/Y/2 = y. y = (xiAI + ... + xnAn)· (xiAI + ... + xnAn) 

= X12 + ... + Xn2 = /X/2. 

More generally the mapping preserves the scalar product of any 
two vectors and hence also angles between directions, as is easily 
verified. Such length preserving mappings are known as orthogonal 
transformations, or rigid motions. In two dimensions they are 
easily identified with the changes of coordinate axes discussed in 
Volume I (p. 361). A vector Al of length 1 in two dimensions is of the 
form Al = (cos 1, sin 1) with some suitable angle 1. The only 
vectors A2 of length 1 that are perpendicular to Al are 

A2 = (cos (1 + ~), sin (1 + ~)) = (-sin 1, cos 1) 

and 

A2 = (cos (1 - ~), sin (1 -~)) = (sin 1, -cos 1). 

Thus the general second-order orthogonal matrix is either of the form 

(48) a = ( c~s 1 
sm 1 

-sin 1 ) 

cos 1 
or a=(C~S1 

sm 1 

sin 1 ) 

-cos 1 

The orthorgonality relations (47) permit one immediately to write 
down the inverse a-I of an orthogonal matrix a. We just take for a-I 
the matrix that has the Ak as row vectors; the scalar product of the 
jth row of a-I with the hth column of a is then 0 for j =1= hand 1 for 
j = h, as required by the relation a-I a = e. Generally, foranymatrix 
a = (ajk), one defines the transpose aT = (bjk) as the matrix obtained 
from a by interchanging rows and columns. More precisely bjk = 
akj.l For an orthogonal mlitrix we simply have 

IThinking of a as written out as a rectangular array, one defines the "main diagonal" 
of a as the line running from the upper left-hand corner downward at slope -1. It is 
the line containing the elements au, ass, a33, • • •• The transpose of a is obtained by 
"reflecting" a in the main diagonal. 
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(49) 

For example, 

( c~s 'Y -sin 'Y )-1 = ( cos 'Y 

sm 'Y cos 'Y - sin 'Y 

Following (46) we can write relation (49) as 

(49a) aaT = e. 

sin 'Y ). 
cos 'Y 

The second relation shows that in an orthogonal matrix the scalar 
product of the jth row with the kth row is 0 for j =;t:. k and 1 for j = k. 
Thus in an orthogonal matrix the row vectors also form an orthonormal 
system. 

Exercises 2.2 

1. In each case describe the space through P spanned by the vectors AI<. 

(a) P = (-1, 2,1); Al = (4, 0, 3) 

(b) P = (2, 1, -4) Al = (3, -2,1), Az = (I, 0, -1) 

(c) P = (2, 1, -4,2), Al = (3, -2,1,2), Az = (I, 0, -1,2). 

2. Verify that EI = (2/3, 2/3, - 1/3), Ez = (1/../2, -1/.[2, 0), Ea = (../2/6, 
../2/6, 2../2/3) form an orthonormal base and obtain the representations 
of the given vectors in terms of this base: 

(a) Al = (../"2, ../"2, ../"2) 
(b) Az = (3, -3,3) 

(c) Aa = (1,0,0) 

3. Given linearly independent vectors AI, Aa, . . . ,Am, construct mutual· 
ly perpendicular unit vectors El, Ez, . . . , Em with the property that 
Ek is a linear combination of AI, Az, . . . , Ak, for k = 1, 2, . . . ,m. 

4. From the result of Exercise 3, prove the fundamental theorem of linear 
dependence. 

5. What is the distance of the point P = (xo, Yo, zo) from the straight line 
given by 

x = at + b, y = ct + d, z = et + f? 
(Hint: Find the foot of the perpendicular from P to the line.) 

6. Does the following system of equations have a nontrivial solution? 

x + 2y + 3z = 0 

2x+3y+z=0 
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3x+y+2z=0 

7. Find the representation of the vector (aI, a2, aa) with respect to the 
base Al = (1, 2, 3), A2 = (2, 3, 1), Aa = (3, 1, 2). 

8. Determine the matrix for changing from Cartesian coordinates for the 
base EI, E2, Ea to affine coordinates for the base AI, A2, Aa given in 
Exercise 7. 

9. Prove that if the matrix a is singular, there exist vectors Y for which 
Y = aX has no solution. 

10. Obtain the products ab and ba for the matrices 

( 1 2 0) 
a= 0' 0 1 , 

210 

11. Find conditions that the 2 X 2 matrix 

has a reciprocal and give that reciprocal if it exists. 
12. Show that there is only one unit matrix. 
13. Find the reciprocal of ab, if neither a nor b is singular. 
14. Sometimes a singular n X n matrix is defined as a matrix that maps n­

dimensional space onto a space of lower dimension. Show that this 
definition is equivalent to the one given here. 

15. Interpret the matrices in (48) geometrically. 
16. Prove that a is orthogonal if and only if aT = a-I. 
17. Show that the transpose of a product ab is the product bTaT of the 

transposed matrices in reverse order. 
18. Show that the product of orthogonal matrices is orthogonal. 
19. Verify that mapping by an orthogonal matrix preserves scalar prod­

ucts; that is, if a is orthogonal, then (aX) • (aY) = X • Y 
20. Show that any length-preserving matrix is orthogonal. 
21. Prove that an affine transformation transforms the center of mass of 

a system of particles into the center of mass of the image particles. 

2.3 Determinants 

a. Determinants of Second and Third Order 

Mathematical analysis includes the study of nonlinear mappings 
in spaces of several dimensions. Such a study, however, has to be 
preceded by one of the linear mappings Y = aX where X and Yare 
vectors and a a matrix. In particular, it is of basic importance to 
analyze the structure of the inverse of such a mapping or-what 
amounts to the same thing-analyze the structure of the solutions of 
a system of n linear equations 
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(50) j 
allXI + al2X2 + . . . + alnXn = YI 

a2lXI + a22X2 +. . . + a2nXn = Y2 

. . . . . . . . . . . . . . . . . 
anlXI + an2X2 + . . . + annXn = Yn 

for n unknown quantities Xl, . . . , Xn. 

The process of solving n linear equations in n variables leads to 
certain algebraic expressions called determinants, which have a great 
number of terms. In the beginning, the explicit definition and the prop­
erties of determinants appear somewhat mystifying. The mystery 
will disappear when we base the definition of determinant on one 
single property, that of being a multilinear alternating form of n 
vectors in n-dimensional space. From this conceptual approach all the 
important properties of determinants can easily be derived. We shall 
see in later chapters of this book that determinants are of the utmost 
importance in extending differential and integral calculus to higher 
dimensions. 

It is instructive to write out the explicit solution of equations 
(50) for the first few values of n. For n = 1 we have the single equation 

with the solution 

(50a) 

anXI = YI 

YI 
XI=-. 

an 

For n = 2 we have the system 

Multiplying the first equation by a22, the second by al2 and sub­
tracting, we eliminate X2 and find a single equation for Xl; similarly, 
multiplying the first equation by a21 and the second by an and sub­
tracting eliminates Xl. In this way we find for Xl, X2 the expressions 

(50b) 

For n = 3 we have the system 



(5Oc) 
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I aUXI + al2X2 + alaXa = YI 

a21XI + a22X2 + a2aXa = Y2 

aalXI + aa2X2 + aaaXa = ya. 

We can reduce this system to two equations for Xl, X2, thus eliminat­
ing Xa, by multiplying the second equation by a13/a2a and subtracting 
it from the first and by multiplying the third equation byala/aaa and 
subtracting it from the from the first. The two resulting equations for 
Xl, X2 alone can then be solved as before. After some algebraic ma­
nipulation we find that 

(50d) 

with similar formulae for X2 and Xa. For n = 4, the computations be­
come completely unwieldy and it is clear that only a systematic ap­
proach can bring order into the results. 

We notice that in each case the solution Xc takes the form of a 
quotient, where the denominator is a function of the coefficients alt 
alone, that is, a function of the matrix a = (alc). For n = 1 this func­
tion is simply the coefficient au itself. For n = 2, the denominator 

formed from the elements of the matrix 

is called the determinant of the matrix a and written 

(51a) 

It is clear that the numerators in (50b) also can be written as deter­
minants, giving rise to the expressions 

(51b) 

Yl al2i 
Y2 a22 Xl = -':-"--=--..::..::......!... 

/ 
au a12/ 
a21 a22 
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Of course, these formulae make sense only if the determinant in the 
denominator does not have the value o. 

Formula (50d) suggests introducing as determinant of the third­
order matrix 

the expression 

(
au 

a = a21 

a31 

(52a) aUa22a33 + al2a23a31 + al3a21a32 - a13a22a31 

au 

= det(a) = a2l 

a33 

- aUa23a32 - al2a21a33 

The law of formation of such a third-order determinant can be ex­
pressed by the easily remembered "diagonal rule" (Fig. 2.5a). We repeat 
the first two columns after the third; form the product of each triad 
of numbers in the diagonal lines, multiplying the products associated 
with lines slanting downward to the right by + 1 and to the left by 
-1; and add. (This rule holds only for third-order determinants !). 

With the help ofthird-order determinants we can write the solution 
of the system (50c) in the more concise form 

I Yl al2 al3 au YI al3 au al2 YI 

I Y: 

a22 a23 a21 Y2 a23 a21 a22 Y2 

a32 a33 a31 Y3 a33 
,X3 = a31 a32 Y33 

Xl = ,X2 = 
au al2 al3 au al2 al3 au al2 al3 

a21 a22 a23 a21 a22 a23 a21 a22 a23 

a31 a32 a33 a31 a32 a33 a31 a32 a33 

Figure 2.5a 
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By analogy we define the determinant of the first order matrix 

a = (au) 

on the basis of (50a) as 

au = det(a). 

We see then that in each of the cases n = 1,2,3 the solution (Xl, 
•. , Xn) of the system (50) can be described as follows ("Cramer's 

rule"): Each unknown Xi is the quotient of two determinants. In the 
denominator we have the determinant of the matrix a = (ajk) ,·in the 
numerator we have the determinant of the matrix obtained by re­
placing the ith column of the matrix a by the quantities YI, Y2, . . .• Yn 
appearing on the right-ha,nd side of the equations. 

h. Linear and Multilinear Forms of Vectors 

In order to define determinants of higher order and to formulate 
their principal properties, it is necessary to make use of some general 
algebraic notions. 

A function f(al, ... , an) of the n independent variables aI, ... ,an 
can be considered as a function of the vector A = (al •...• an) and writ­
ten in the form f(A). We call f a linear form in A, if 

(53a) f(A + B) = f(A) + f(B) 

for any two vectors A, Band 

(53b) f("AA) = "Af(A) 

for any vector A and any scalar "A. 
The two rules (53a, b) can be compressed into the single requirement 
that 

(54a) f("AA + ~B) = "Af(A) + ~f(B) 

for any vectors A, B and scalars "A, ~. Written out in detail, the rule 
(54a) becomes 

(54b) f("Aal + ~bl, ... , Aan + ~bn) 
= "Af(al, . . . ,an) + ~f(bl, . . . , bn). 

For example, the function 
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f(A) = 3az - 27a3 

is a linear form, while 

is not. 
Relation (54a) immediately implies the more general rule for linear 

forms 

(54c) f('A.1A1 +. . . + 'A.mAm) = 1.-!{(A1) + . . . + J...",f(Am) 

valid for any m vectors AI, . . ., Am and scalars 'A.1, . . ., 'A.m. This rule 
yields an explicit expression for the most general linear form in the 
vector A. Using the coordinate vectors E1, . . ., En, we have by (2b) 
the representation 

for the vector A. Hence, by (54c), f is of the form 

(55a) f(A) = a1f(E1) + azf(Ez) +. . . + anf(En) 

= Cla1 + czaz +. . . + cnan 

where the c, have the constant values 

(55b) 

Combining the coefficients c, into the vector C = (C1, • • ., Cn), we have 

(55c) f(A) = C· A. 

The most general linear form in a vector A is the scalar product of A 
with a suitable constant vector C. 

A function f(A, B) of two vectors A = (a1, ... , an), B = (b1, ... , 
bn) is called a bilinear form in A, B if f is a linear form in A for fixed 
B and a linear form in B for fixed A; this means that we require that 

(56a) 

(56b) 

f('A.A + ~B, C) = 'A.f(A, C) + ~f(B, C) 

f(A, 'A.B + ~C) = 'A.f(A, B) + ~f(A, C) 

for any vectors A, B, C and scalars 'A., ~. The simplest example of a bi­
linear form is the scalar product 
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f(A, B) = A • B. 

In this example, the rules (56a, b) just reduce to the associative and 
distributive laws (15b, c), p. 132 for scalar products. 

We find more generally from (56a, b) that 

(56c) f(aA + ~B, yC + oD) = af(A, yC + oD) + ~f(B, yC + oD) 

= ayf(A, C) + aof(A, D) + ~yf(B, C) + ~of(B, D). 

Thus, we can operate with bilinear forms as with ordinary products in 
"multiplying out" expressions. Using again the decomposition 

A = (aI, ... , an) = aIEl + . . . + anEn 

B = (bl, ... , bn) = blEI + . . . + bnEn 

for the vectors A, B, we arrive at the formula 

f(A, B) = f(alEI + a2E2 + . . . + anEn, 

blEI + b2E2 + . . . + bnEn) 

Hence, the most general bilinear form in A, B is given by 

(57a) 

with constant coefficients 

(57b) 

For B = A the bilinear form f goes over into the quadratic form 

(57c) 

In a similar way one defines trilinear forms f(A, B, C) in three 
vectors A, B, C as functions that are linear forms in each vector 
separately. One finds, exactly as before, that the most general trilinear 
form is given by an expression 

(58a) 
n 

f(A, B, C) = ~ cjkrajbkcr, 
j.k.r-l 
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where 

(58b) 

More general multilinear forms {in any number m of vectors can be 
defined in an obvious manner. It is only the matter of notation that 
injects a new element, since we can no longer associate different 
letters with different vectors. We denote the vectors by AI, A2, ... , 
Am and introduce their components ajk by 

The function {is a multilinear form {(AI, . . . ,Am) in AI, A2, . . . , 
Am if it is a linear form in each vector when the others are held fixed. 
We can also consider { as function of the matrix 

that has AI, A2, . . . ,Am as column vectors. In analogy to (58a) the 
most general multilinear form in AI, A2, ... , Am is given by 

(59a) {(AI, A2, ... ,Am) = ) ~ Cit 12· • • lmaitIajz2· • • almm 
il.12.··· .Jm 
=1. .... n 

where I 

(59b) Citl2· • • 1m = {(Ejl' Ejz, ... , Elm>. 

c. Alternating Multilinear Forms. Definition of Determinants 

The determinants of second and third order defined in formulae 
(5la) and (52a) are special multilinear forms. The determinant of 
second order in (5la) p.l6l is a bilinear form of the two 2-dimensional 
vectors 

(60a) 

IThe use of subscripts of subscripts in these formulae is somewhat cumbersome. 
Here iI, h, . . . ,jm stands for any combination of m numbers selected from the set of 
numbers 1, 2, . . . , n. Such a combination could also be considered as a function 
j (k) whose domain is the set of numbers k = 1,2, . . . ,m and whose range is in the 
set of numbers j = 1,2, . . . ,n. Anyone of these combinations or functions gives 
rise to a term in the sum in formula (59a). 
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the determinant of third order in (52a) is a trilinear function of the 
three 3-dimensional vectors 

(60b) 

(The linearity of determinants in each vector separately follows by 
inspection from the fact that each product in the explicit expansion 
contains exactly one factor with a given second subscript). The extra 
feature that sets the determinants apart from other multilinear 
forms, is their alternating character. 

A function of several arguments (which could be vectors or scalars) 
is called alternating if it just changes in sign, when we interchange 
any two of the arguments. Examples of alternating functions of scalar 
arguments are 

(6Ia) 

(6Ib) 

~(x,y) = y - x 

~(x, y, z) = (z - y) (z - x) (y - x). 

A function { of two n-dimensional vectors AI, A2 is alternating if 

for all AI, A2. This implies in particular for Al = A2 = A that 

{(A,A) = O. 

Let n = 2 and {be an alternating function of the vectors AI, A2 
given by (60a), which is also a bilinear form. Then 

It follows from (57a, b) that 

where the constant c has the value 

(62b) 
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Thus, every bilinear alternating form of two vectors AI. A2 in two­
dimensional space differs from the determinant of the matrix with 
columns AI. A2 only by a constant factor c. 

More generally, an alternating bilinear form of two vectors in n 
dimensions can be written 

where 

Cjk = -CkJ. CJj = o. 

Combining the terms with subscripts differing only by a permutation, 
we can express f as a linear combination of second-order deter­
minants: 

(62c) 

For an alternating function f of three vectors, we have the re­
lations 

(63a) f(A, B, C) = -f(B, A, C) = -f(A, C, B) = -{(C, B, A), 

from which it follows that also 

(63b) {(A, B, C) = {(B, C, A) = {(C, A, B). 

In particular, { vanishes whenever two of its arguments are equal. 
Let AI, A2, Aa be the three-dimensional vectors given by (60b). By 
(58a, b) the general alternating trilinear form {in AI, A2, Aa is 

Here, using (63a, b), 

with ejkr = 0, if two of the numbers j, k, rare eq\lal and 
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(64a) 8123 = 8231 = 8312 = 1, 8213 = 8132 = 8321 = -1. 

Using the fact that the function tjJ(x, y, z) in formula (61b) changes 
sign whenever two of its arguments are interchanged, we find for 
81kr the concise expression 

(64b) 81kr = sgn tjJ(j, k, r) 

= sgn (r - k) (r - j) (k - j). 

Comparison with the expression (52a), p. 162 for a third-order determi­
nant shows that 

(64c) 

au 

f(A1, A2, A3) = c a21 

a33 

where c = f(E1, E2, E3) is a constant. We have the same result as in 
two dimensions: The most general trilinear alternating form in three 
3-dimensional vectors A1, A2, A3 differs from the determinant of the 
matrix with columns A1, A2, A3, only by a constant factor c. Obviously, 
then, the third-order determinant of the matrix with columns A1, A2, 
A3 is that uniquely determined trilinear alternating form in the 
vectors A1, A2, A3 that has the value 1 when A1, A2, A3 are respectively 
equal to the coordinate vectors E1, E2, E3.1 

It is clear now how we can define determinants of higher order. 
Let a be the matrix 

(65a) 
(

au 

a21 

a= . 

. 
an1 

with column vectors A1, A2,. ., An. Let f be a multilinear alter­
nating form in A1, . . . , An. Then f is given by (59a). Here the coef­
ficients CiIi2. . In have the form 

(65b) 

They change sign, whenever we interchange any two of the numbers 
ii, h, ... , jn. Denote by tjJ(X1, ••• , Xn) the product 

lThe last condition expresses that the unit matrix e has the determinant 1. 
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(65c) ~(XI, X2, ... ,Xn) 

= (Xn - Xn-l) (Xn - Xn-2) • • • (Xn - X2) (Xn - Xl) 

(Xn-l - Xn-2)· •• (Xn-l - X2) (Xn-l - Xl) 

= I I (Xk - Xi). 
j.k=l. 'j' <1 

(xa - X2) (Xa - Xl) 

(X2 - Xl) 

It is easily seen that ~ is an alternating function of the scalars Xl, . 
Xn that vanishes only when two of those scalars are equal. Then, 

(65d) 

., 

is an alternating function of jt, ... ,in, which only assumes the 
values + 1, 0, -1. For jt, ... ,in restricted to the values 1, 2, ... , n, 
we have Ei}i2 ... in = 0, unless the numbersjt, ... ,in are distinct, 
that is, unless they form a permutation of the numbers 1, 2, . . ., n. 
One calls jt, ... , in an even permutation of 1, 2, ... , n if Ei}i2 ... in 
= + 1 and an odd permutation if EiIi2' . . in = -1. An even permutation 
can be rearranged in the order 1, 2, . . ., n by an even number of 
interchanges of two elements, an odd permutation by an odd number 
of such interchanges. 

Obviously, by (65b), 

(65e) c11i2 . . . in = E1112 • • • in f(EI, . . . , En). 

We define the determinant of the matrix a in (65a) as 

au al2 aln 

(66a) det(a) = a21 a22 a2n . . . . 
anI an2 ann 

n 
=2 ; Eiti2 . . in aillai22 . . . ainn. 

h··· .. jn-l 

We have then the result: The most general multilinear alternating 
form f in n n-dimensional vectors AI, . . . , An differs from the deter­
minant of the matrix with columns AI, . . . , An only by the constant 
factor c = f (EI, . . ., En). 
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d. Principal Properties of Determinants 

Formula (66a) gives the explicit expansion of an nth-order deter­
minant in terms of its n 2 elements aik. Counting only the terms with 
nonvanishing coefficients Bili2 ... in, the determinant is an nth-degree 
form in the aik consisting of n! terms. Each term (aside from the 
coefficient sili2 ... in = ± 1) is a product of n of the elements, one from 
each column and from each row. In principle, the expansion formula 
makes it possible to compute a determinant for any given values of 
the elements. In practice, the formula has too many terms to keep 
track of (120 in the case of fifth-order determinants; 3,628,800 in the 
case of tenth-order determinants) to be useful for numerical com­
putations, and more efficient ways of evaluating determinants have 
been devised. 

The basic properties of determinants already are incorporated in 
our definition as alternating multilinear forms of n vectors AI, A2, 
. . ., An in n-dimensional space. If a is the matrix with these vectors 
as column vectors, we write 

det(a) = det(AI, ... , An). 

It follows immediately that the determinant of the square matrix a 
changes sign if we interchange any two columns of a; in particular, 
the determinant of a matrix a with two identical columns vanishes. 
Using the linearity of the determinant in each of its column vectors 
separately, we find that multiplying one column of the matrix a by a 
factor 'A has the effect of multiplying the determinant of a by 'A.I For 
example, 

In particular, we find for 'A = 0 and Al arbitrary that 

(67b) det(O, A2, . . . , An) = o. 

The same considerations apply, of course, to any other column, and 
we find that the determinant of a matrix a vanishes if any column of a 
is the zero vector. From the multilinearity of determinants, we con­
clude more generally that 

IMultiplying all elements of the nth order matrix a by the factor A is equivalent to 
multiplying each of its n columns by A and, hence, results in multiplying the deter­
minant of a by Aft. Thus, det (A a) = An det (a). 
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(67c) det(AI + AA2, A2, ... , An) 

= det(AI, A2, . . . , An) + A det(A2, A2, . . . ,An) 

= det(AI, A2, . . . , An), 

since the matrix (A2, A2, . . ., An) has two identical columns. General­
ly, the value of the determinant of the matrix a does not change if we 
add a multiple of one column of a to a different column. I 

Of fundamental importance is the multiplication law for deter­
minants: 

The determinant of the product of two nth-order matrices a and b 
is the product of their determinants: 

(68a) det(ab) = det(a) • det(b). 

Written out by elements, the rule takes the form 

au al2 aln bu bl2 bIn 

a21 a22 a2n b21 b22 b2n 

(68b) X 

anI an2 ann bnl b n 2 b nn 

Cu Cl2 Cln 

C21 C22 C2n 

= 

Cnl Cn2 Cnn 

where 
n 

(68c) Cjk = ajlblk + aj2b2k + . . . + ajnbnk = ~ ajrbrk. 
r=1 

This law is a simple consequence of our definition of determinants. 
Let c = ab be the product matrix. We hold the matrix a fixed and 
consider the determinant of c in its dependence on b. By (68c) the 
kth-column vector of the matrix c 

has elements Cjk which are linear forms in the kth-column vector Bk 

lObviously multiplying a column by the factor A and adding it to the same column 
changes the value of the determinant by the factor 1 + A. 
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of the matrix b. It follows that det (c) is a linear form in the vector Bk 
when the other columns of b are held fixed. It is also clear that inter­
changing two columns of b corresponds exactly to interchanging the 
corresponding columns of c. Hence, det(c) is an alternating multi­
linear form in the column vectors of the matrix b. Consequently 
(see p. 170), 

det(c) = 'Y det(b), 

where 'Y is the value of det (c) for the case where 

or where b is the unit matrix e. Now, if b = e, then obviously c = 
ab = ae = a, and consequently 'Y = det (a). This proves (68a). 

On p. 157 we defined the transpose aT of the matrix a as the matrix 
obtained from a by interchanging rows and columns. We have the 
surprising fact that a square matrix and its transpose have the same 
determinant: 

(68d) det(aT) = det(a) 

or 

au au 

al2 
(68e) = 

For n = 2,3 one easily verifies this identity from the explicit ex­
pressions (51a), (52a), pp. 161-2. We only indicate the prooffor general 
n, which can be based on the expansion formula (66a) for det (a). In 
each term of the sum with nonvanishing coefficient, we can rearrange 
the factors according to the first subscripts, so that 

where kl, k2, . . . , kn form again a permutation of the numbers 1, 2, 
... , n.1 One easily shows that 

lLooking at h, h, ... ,j,. as a function mapping the set 1,2, ... ,n onto itself, we 
have in kl' k2, .... , k,. just the inverse function; that is, the equation j, = s is 
equivalent to k, = r. 
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(this is left as an exercise for the reader). Hence, 

n 

An immediate consequence of formula (68d) is that a determinant can 
be considered as an alternating multilinear function of its row vectors. 
In particular a determinant changes sign if we interchange any two 
rows. 

The multiplication rule (68a) states that the product of the determi­
nants of two square matrices a, b is equal to the determinant of the 
matrix ab whose elements are the scalar products of the row vectors of 
a with the column vectors of b. We use now that the determinant of a 
matrix a is equal to the determinant of its transpose aT, which is ob­
tained by interchanging rows and columns of a. It follows then that 

det(a) • det(b) = det(aT) • det(b) = det(aTb). 

Hence, the product of the determinants of the matrices a and b is also 
equal to the determinant of the matrix aTb, obtained by forming the 
scalar products of the columns of a with the columns of b. If 

a = (AI, ... , An) and b = (BI, ... , B n), 

we obtain the identity 

(68f) det(AI,..., An) • det(BI, . . ., Bn) 

AI' BI AI' B2 

A2 • BI A2 • B2 

.An· Bn 

A simple application of these rules to orthogonal matrices a, for 
which [see formula (49), p. 158] a-I = aT or aTa = e, yields 

det(aTa) = det(aT) • det(a) = [det(a)]2 = det(e) = 1. 
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Consequently, the determinant of an orthogonal matrix can only have 
the values + 1 or -1. The geometric interpretation of this result will 
be given on p. 202. 

e. Application of Determinants to Systems of Linear Equations 

Determinants provide a convenient tool for deciding when n 
vectors AI, A2, ... , An in n-dimensional space are dependent or, 
equivalently, when the square matrix a with columns AI, . . ., An 
is singular. 

The necessary and sufficient condition for a square matrix to be singular 
is that its determinant vanishes. 

Let indeed a be singular. Then the column vectors AI, A2, ... , An 
are dependent. Thus, one of the column vectors, say AI, is dependent 
on the others: 

It follows from the multilinearity of determinants that 

det(a) = det(A.2A2 + A.3A3 • • • + A.nAn, A2, A3,. . ., An) 

= A.2det(A2, A2, A3,. . ., An) + 1..3 det(A3, A2, Aa, An), 

+ . . . + A.n det(An, A2, A3,. . . , An) 

=0, 

since each of the matrices has a repeated column. 1 

Conversely, if a is nonsingular, there exists (see p. 155) a reciprocal 
b = a-I of a: 

ab = e, 

where e is the unit matrix. By the multiplication rule for deter­
minants, it follows that 

det(a) . det(b) = det(e) = 1 

and, hence, that det (a) 7:- O. This proves that a is singular if and only 
if det(a) = o. 

We consider now the system of linear equations 

IMore generally, this argument shows that an alternating multilinear form in m 
vectors in n-dimensional space vanishes identically for m > n, since then the vectors 
are necessarily dependent. 
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(69a) /

al1XI + al2X2 + ... + alnXn = YI 

a2lXI + a22X2 + . . . + a2nXn = Y2 

. . . . . . . . . . . . . . . . . 
anlXI + an2X2 + . . . + annXn = Yn 

corresponding to the matrix a. Following the discussion on p. 150 we 
have to distinguish the two cases (1) det (a) "* 0 and (2) det (a) = O. 
In case (1) equations (69a) have a unique solution for every YI, . . ., 
Yn. In case (2) there does not always exist a solution, and it is never 
unique. We now have not only an explicit test to distinguish between 
the two cases with the help of determinants but also shall find the 
means to calculate the solution in case (1). Introducing the vector 

Y = (YI, Y2, ••• , Yn), 

we can write the system (69a) in the form 

(69b) 

where the Ak are the column vectors of the matrix a. Then, 

det(Y, A2, Aa, . . . , An) 

= det(xlAl + x2A2 + ... + xnAn, A2, Aa, . . ., An) 

= Xl det(AI, A2, Aa, . . ., An) + X2 det(A2, A2, Aa, . . ., An) 

= Xl det(AI, A2, . . ., An) 

and similarly, 

+ Xa det(Aa, A2, Aa, . . ., An) + . . . 
+ Xn det(An, A2 A2, . . ., An) 

det(AI, Y, Aa, ... , An) = X2 det(AI, A2, ... , An) 

and so on. If the matrix a is nonsingular, we can divide by its deter­
minant and obtain the solution Xl, X2, . . ., Xn expressed by deter­
minants: 

d __ e _,-,,-t(~Y,-!-, _A-.=2,_._.-,-, -.A-'-On) Xl - ~ - det(Al, A2,. . , An)' 
d_e-;t-i-(A...=l"-' Y.-'-, _',--,--,-'"-' A~n) X2 - , - det(AI, A2,. . , An)' 

. , Xn = d t(A A e 1, 2,. 

det(Al,A2, . ., Y) 
., An)' 
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This is Cramer's rule for the solution of n linear equations in n un­
known quantities. 

Exercises 2.3 

1. Evaluate the following determinants: 

3 4 5 1 1 1 

(a) 4 5 6 (c) 2 3 4 

5 6 7 3 -1 7 

1 1 1 1 X x3 

(b) 1 2 4 (d) 1 Y y3 

1 3 9 1 Z Z3 

2. Find the relation that must exist between a, b, c in order that the system 
of equations 

may have a solution. 

3x + 4y + 5z = a 

4x + 5y + 6z = b 

5x + 6y + 7z = c 

3. (a) Verify that the determinant of the unit matrix is 1. 
(b) Show that if a is nonsingular, then det (a-1) = l/det (a). 

4. Obtain the values of 

(a) e:321, (b) e:2143, 

5. Show that the determinant 

(c) e:4231, 

abc 

d e f 
g h k 

can always be reduced to the form 

oc 0 0 

o ~ 0 

o 0 y 

(d) e:54321 

merely by repeated application of the following processes: (1) inter­
changing two rows or two columns, and (2) adding a multiple of one 
row (or column) to another row (or column). 

6. A matrix is diagonal if ail = 0 whenever i '* j. Show that the determi­
nant of the n X n diagonal matrix (ail) is the product all a22 ... ann. 
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7. The matrix (aij) is upper-triangular if aij = 0 whenever j < i. Show that 

8. Evaluate 

(a) 

(b) 

(c) 

9. Solve the equations 

10. Prove the identity 

1 X x 2 

1 y y2 

1 Z Z2 

I! 2! 3! 

2! 3! 4! 

3! 4! 5! 

I! 2! 3! 4! 

2! 3! 4! 5! 

3! 4! 5! 6! 

4! 5! 6! 7! 

2x - 3y + 4z = 4 

4x - 9y + 16z = 10 

8x - 27y + 64z = 34. 

(a2 + b2) (e2 + d 2) = (ae + bd)2 + (be - ad)2 

by forming the product of the determinants 

1_: : 1 and I-~ ~ 1 
11. If A = x2 + y2 + Z2, B = xy + yz + ZX, show that 

B A B 

12. Show that 

D = B B A = (x3 + y3 + Z3 - 3xYZ)2. 

A B B 

A= 

h+x a+x a+x a+x 

b+x tz+x a+x a+x 

b + x b + X t3 + x a + x 

b + x b + x b + X t4 + x 

is of the form A + Bx, where A and B are independent of x. By giving 
particular values to x, prove that 
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A _ af(b) - bf(a) 
- a- b ' 

B _ f(b) - f(a) 
- b-a ' 

where 

f(t) = (h - t) (t2 - t) (t3 - t) (t4 - t). 

13. Prove that any bilinear form f in A and B may be written 

A • (cB) = (eTA) • B 

14. Prove that in a nonsingular affine transformation the image of a quadric 

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0 

is another quadric. 

15. If the three determinants 

do not all vanish, then the necessary and sufficient condition for the 
existence of a solution of the three equations 

alX + a2Y = d 

blX + b2Y = e 

CIX + C2Y =f 

IS 

al a2 d 

D = bl b2 e = o. 
CI C2 f 

16. State the condition that the two straight lines x = alt + bl, y = a2t 
+ b2, z = a3t + b3 and x = CIt + dl, y = C2t + d2, z = C3t + d3 
either intersect or are parallel. 

17. Prove (68d) by verifying that it does not matter whether the factors in 
each term of the expansion (66a) are ordered by their first or second 
subscripts, namely, with 

that 

18. Prove that the affine transformation 

x' = ax + by + CZ 

y' = dx + ey + fz 

Zl = gx + hy + kz 

leaves at least one direction unaltered. 
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2.4 Geometrical Interpretation of Determinants 

a. Vector Products and Volumes of Parallelepipeds In Three­
Dimensional Space 

In Volume I (p. 388) we defined the "cross product" of two vectors 
A = (aI, aa) and B = (b1, ba) in the plane as the scalar 

(70a) 

Here I A x B I represents twice the area of the triangle with vertices 
-->0. -->0. 

Po, PI, P2, where A = PoP1, B = POP2. We call I A x B I the area of 
the parallelogram spanned by the vectors A, B, that is, of the paral­
lelogram with successive vertices Po, PI, Q, P2. The sign of A x B 
determines the orientation of the parallelogram. 1 In determinant no­
tation the cross product takes the form 

(70b) I a1 bl I A x B = = det(A,B). 
. a2 b2 

Thus, I det(A, B) I can be interpreted geometrically as the area of the 
parallelogram spanned by the vectors A, B. Analogous interpretations 
will be found for higher-order determinants. 

For three vectors A = (aI, a2, as), B = (bl, b2, bs), C = (Cl, Ca, cs) 
in three-dimensional space, it is natural to form the determinant 

al bl Cl 

det(A, B, C) = a2 b2 C2 

as bs cs 

Written out as a linear form in the vector C we have, by (52a), 

(71a) det(A,B,C) = (a2bs-asb2)cl + (asbl-albs)C2 + (alb2-a2bl)cS 

= z· C, 

where Z = (Zl, Z2, zs) is the vector with components 

(71b) 

lWe have A x B> 0 if the sense (counterclockwise or clockwise) in which the 
vertices follow each other is the same as that for the "coordinate square" with 
successive vertices (0, 0), (£, 0), (1, 1,), (0, 1). 
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Z2 = a3bl _ alb3 = I a3 b31 
al bl' 

We call the vector Z the "vector product," or "cross product," of the 
vectors A, B and write Z = A X B.l Then, by definition, 

(71c) det(A, B, C) = (A x B) • C. 

Because of this formula the scalar det (A. B. C) is sometimes referred 
to as the triple vector product of A, B, C. 

The components z, of the vector Z = A x B are themselves second­
order determinants and, hence, are bilinear alternating forms of 
the vectors A, B. This leads immediately to the laws for vector 
multiplication: 

(72a) (A.A) x B = A x (A.B) = A.(A x B); 

(72b) (A' + A") x B = A' x B + A" x B; 

A X (B' + B") = A X B' + A x B" 

(72c) A x B = -B x A 

Relation (72c) could be called the "anti commutative" law of multi­
plication. It has the important consequence that 

(72d) A x A = 0 for all vectors A. 

More generally, the vector product of two vectors A, B vanishes if 
and only if A and B are dependent. For by (71c) the relation A x B 
= 0 is equivalent to 

det(A, B, C) = 0 for all vectors C, 

or to the fact (see p. 175) that A, B, C are dependent for all C. Now we 
can always find a vector C that is independent of A and B (see p. 139) 
Then the dependence of A, B, C implies that A and B are dependent. 

IThe vector product of two vectors in three-dimensions is again a vector, in contrast 
to cross products of vectors in two dimensions and scalar products in any number of 
dimensions, which are scalars. 
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The vector product A x B is perpendicular to both of the vectors 
A and B, since by (71c), 

(72e) (A x B) • A = det(A, B, A) = 0, (A x B) • B = det(A, B, B) = o. 
---"'- ---"'-

Hence, for A = POPI and B = P OP2 independent, the direction of A x B 
is one of the two directions perpendicular to any plane POPIP2 
spanned by A and B. The length of the vector A x B also has a simple 
geometric interpretation. We have, by (71b), 

(72f) I A x B 12 = (a2ba - ab2)2 + (aabl - alba)2 + (alb2 - a2bl)2 

= (a1 2 + a22 + aa2) (bI2 + b22 + ba2) 

- (albl + a2b2 + aaba)2 

IAI21BI2 - (A. B)2. I 

Using the fact [formula (14), p. 131] that 

A· B = IAIIBI cosy, 

where y is the angle between the directions of A and B, we find from 
(72f) that 

IA x BI = .JIAI2IBI2 - IAI21BI2 cos2 Y = IAIBlsin y 

---"'- ---"'-
For A = POPI, B = P OP2 we have in I B I sin y (where y is assigned 
a value between 0 and n) the distance of the point P2 from the line 
POPI (Fig. 2.6). Hence (exactly as in two dimensions), the quantity 
I A x B I gives the area of the parallelogram with vertices Po, PI, Q, P2 
"spanned" by the vectors A, B or twice the area of the triangle with 
vertices Po, PI, P 2. 

The individual components of the product A x B = (Zl, Z2, Za) also 
can be interpreted geometrically. For example, the expression 

is just the cross product of the two-dimensional vectors (aI, a2) and 

IThis identity incidentally yields an immediate proof of the Cauchy-Schwarz in­
equality 

IA • BI ;§; IAI IBI 
(see p. 132). It also supplies the additional piece of information that the equality sign 
holds if and only if the vectors A and B are dependent. 
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Q 

Figure 2.6 Area I A X B I of parallelo­
gram spanned by two vectors A, B. 

X3 
R _..,.,.,.,..nIYQ 
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Figure 2.7 Components of vector product A X B = 
(Zl, Z2, za) interpreted as projected areas. 

(bl, b2) [see (70a)]. If Po has the coordinates ~l, ~2, ~3, we have in / Z3/ 

the area of the parallelogram in the Xl, x2-plane with vertices (~l, ~2). 
(~l + al, ~2 + a2), (~l + al + bl, ~2 + a2 + b2), (~l + bl, ~2 + b2). This 
parallelogram is just the projection onto the Xl, x2-plane of the paral­
lelogram with vertices Po, Pl, Q, P2, spanned in space by the vectors 
A, B (see Fig. 2.7). If Ax B has the direction cosines cos ~l, cos ~2, 
cos ~3, we have [see (9), p. 129] 

/za/ = /A x B//cos ~3/ 
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Thus I cos ~al gives the ratio of the area of the parallelogram spanned 
by A and B to the area of its projection on the Xl, x2-plane. Here ~a 
is the angle between the normal of the plane through Po, PI, P2 and the 
xa-axis. This is, of course, the same angle as that between the plane 
containing the parallelogram spanned by A and B and the Xl, x2-plane.1 

~ ~ 

If A = POPI and B = POP2 are independent vectors, we have A x B 
~ 

= PoR, where the point R lies on the line through Po perpendicular 
to the plane POPIP2 and at a distance from Po equal to twice the area 
of the triangle POPIP2. This fixes R almost uniquely. There are only 
two points with these properties, lying on opposite sides of the plane. 

~ 

Which of these points is the end point R of the vector A x B = PoR 
can be decided by the following "continuity" argument. The vector 
product A x B depends continuously on the vectors A, B since its 
components are bilinear functions of those of A, B. Then the direction 
of A x B also depends continuously on A and B, as long as A x B 7:-
0, that is, as long as A and B are prevented from becoming 0 or paral­
lel. We can always change the two vectors A and B continuously 
in such a way that A and B are never 0 or parallel until finally 
A coincides with the coordinate vector EI = (1,0,0) and B with 
the vector E2 = (0, 1,0). This amounts to deforming the triangle 
POPIP2 continuously and without degeneracy, so that Po goes into 
the origin and PI, P2 come to lie respectively on the positive XI­
and x2-axis at the distance 1 from the origin. In the process, the point 
R on the line through Po perpendicular to the plane POPIP2 never 
crosses that plane. Now, by (71b), 

EI X E2 = (0, 0, 1) = Ea 

In a "right-handed" coordinate system, the kind we usually employ, 
the direction of Ea is fixed unambiguously as normal to EI and E2 in 
such a way that the 900 rotation about the xa-axis that takes EI into 
E2 appears counterclockwise from the point (0,0,1). Then, generally, if 

~ 

our coordinate system is right-handed, the direction of A x B = PoR 
~ ~ 

is such that the rotation about the line PoR of the vector A = POPI 
~ 

into the vector B = PoP2 by an angle y between ° and 1t appears coun-
terclockwise when viewed from R (see Fig. 2.8). Similarly, in a left­
handed coordinate system the 900 rotation from EI into E2 appears 

lin general, the area of the projection of a plane figure onto a second plane equals the 
product of the area of the original figure with the cosine of the angle between the 
two planes, as will become clear when we discuss transformations of integrals. 
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Po 

Q 

cb 
Ea 

Figure 2.8 Vector product A X Bin 
right-handed coordinate system. 

clockwise from (0, 0, 1), and so also does then the rotation from A into 
~ 

B appear from the end point R of Ax B = PoR. 
Generally, an ordered triple of three independent vectors A, B, C 

~ ~ 

defines a certain sense or orientation. If A = PoPI, B = PoP2, and C = 
~ 

POP3, we can rotate the direction of A into that of B by an angle be-
tween ° and 1C in the plane POPIP2. The sense of the triple A, B, C by 
definition is the sense (counterclockwise or clockwise) that rotation 
appears to have, when viewed from that side of the plane to which C 
points. I The triple B, A, C has the opposite orientation. The orientation 
of the triple A, B, A x B is always the same as that of the coordinate 
vectors EI, E2, E3. 

We call the triple A, B, C oriented positively with respect to the Xl, 

X2, x3-coordinate system if it has the same orientation as the triple of 
vectors EI, E2, E3, and oriented negatively if it has the opposite orien­
tation. For the triple A, B, C to be oriented positively with respect to the 
xI,x2x3,-coordinates it is necessary and sufficient that 

IThe same type of orientation determines the difference between left-handed and 
right-handed screws. The motion of a screw consists of a combination of translatory 
motion along an axis and rotation about that axis. The distinction between the two 
types of screws is defined by the sense of the rotation, clockwise or counterclockwise, 
when viewed from that direction of the axis in which the translation proceeds. 
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(73) det(A, B, C) > 0 

---.. ~ ---.. 
For let A = POP1, B = POP1, C = PoPa. Relation (73) means that 

(A x B)· C> 0, 

that is, that the directions of the vectors A x Band C form an acute 
angle. Since A x B is normal to the plane POP1P2, this implies that the 

---.. 
vector PoPa points to the same side of the plane as the vector A x B. 
Hence, A, B, C and A, B, A x B have the same orientation, which is 
that of El, E2, Es. 

The three independent vectors A, B, C when given the same initial 
point Po "span" a certain parallelepiped, namely, the one that has the 
end points P l , P2, Ps of A, B, C as vertices adjacent to the vertex Po. 
We call the parallelepiped oriented positively or negatively with re­
spect to the Xl, X2, xs-coordinate system according to the orientation 
of the triple A, B, C. An interchange of any two of the vectors A, B, C 
reverses the orientation for the parallelepiped spanned by the vec­
tors.l 

Let e be the angle formed by the direction of the vectors C and A x B. 
By (71c), 

(74a) det(A,B,C) = IA x BIICI cos e 

lI­
I 
I 

, , , 

AXB\ 90° IIIB' 
---' ~----+-=-="----­

\ II 
\ IAxBI --A 

Figure 2.9 Volume V= IA x Blh of parallelepiped. 

IThe orientation of the parallelepiped can be visualized as an orientation ascribed to 
each face of the parallelepiped (i.e .• as a sense assigned to the boundary polygon of 
the face) such that a common edge of two neighboring faces is assigned opposite 
senses in the orientation of the two faces. The orientation of all faces is determined 
uniquely if for a single face the sense of one edge is prescribed. For the orientation 
of the parallelepiped spanned by A, B, C, the sense of the edge POPI in the face 

-->0. ------'" 
spanned by the vectors POP2 and POPI is that of pro ceding from Po to PI (see Fig. 2.9). 
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Since A x B is perpendicular to the plane POPIP2, the angle between 
the line PoPa and the plane POP1P2 is in - O. Thus, 

(74b) h = I C II cos e I = I C I I sin (~ - e) I 
is the distance of the point Pa from the plane POP1P2, that is the al­
titude of the parallelepiped from Pa. Since the volume Vofthe paral­
lelepiped is equal to the area I A x B I of one face multiplied with the 
corresponding altitude h, it follows from (74a, b) that 

(74c) V= IA x Blh = Idet(A,B,C)I. 

In words, the volume of a parallelepiped spanned by three vectors A, 
B, C is the absolute value of the determinant of the matrix with columns 
A, B, C. Thus, the value of det(A, B, C) determines both the volume 
and the orientation of the parallelepiped spanned by A, B, C. We 
express this fact by the formula 

(74) det(A, B, C) = E V, 

where V is the volume of the parallelepiped spanned by the vectors 
A, B, C and E = + 1 if the parallelepiped is oriented positively with 
respect to xl,X2Xa,-coordinates and E == -1 if oriented negatively. 

b. Expansion of a Determinant with Respect to a Column. Vector 
Products in Higher Dimensions 

Only in three dimensions can we define a product A x B of two vec­
tors A, B that again is a vector. 1 The closest analogue in n-dimensions 
would be a "vector product" of n - 1 vectors. Taking n vectors, 

Al = (an, ... , anI), ... , An = (aln, ... , ann) 

in n-dimensional space, we can form the determinant of the matrix 
(AI, ... , An) with those vectors as columns. The determinant of this 
matrix is a linear form in the last vector An and can be written as a 
scalar product 

(75) det(Al, . . ., An) = Zlal + Z2a2 + ... + Znan = Z . An, 

lIn higher dimensions we cannot associate with two vectors A, B a third vector 
C outside the plane spanned by A, B in a geometric fashion, that is, by a construction 
that determines C uniquely and does not change under rigid motions. 
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where the vector Z = (ZI, . . ., Zn) depends only on the n - 1 vectors 
AI, A2, . . ., An-I. Obviously, Z is linear in each of the vectors AI, . . ., 
An-I separately and is alternating. We can call Z the vector product 
of AI, . . ., An-I and denote it by 

(76) x An-I. 

It is clear from (75) that 

Z • Al = Z • A2 = ... = Z • An-I = 0; 

we see that the vector product of n - 1 vectors is orthogonal to each 
of the vectors, as in three dimensions. The length of the vector product 
Z also can be interpreted geometrically as volume of the oriented 
(n - I)-dimensional parallelepiped spanned by the vectors AI, . . ., 
An-I, as we shall see later. 

Just as in three dimensions, the components of Z can be written 
as determinants in analogy to formulae (71b). We first derive such 
a determinant expression for the component Zn of Z. By (75), 

Zn = Z • En = det(AI, . . ., An-I, En), 

where 

En = (0,0, ... ,0,1) 

is the n-th coordinate vector. Taking An = En in the general ex­
pansion formula (66a) p.170 for determinants amounts to replacing the 
last factor ainn in each term by 1 for in = n and by 0 for in "* n. For 
in = n the coefficient tit ... in-lin vanishes, unless it, ... , in-I 
constitute a permutation of the numbers 1, 2, . . ., n - 1. In that 
case, the coefficient (65c, d) reduces to 

tit ... in-lin = tit ... in-In = sgn (J (it, ... , i-I, n) 

= sgn (n - in-I)· • • (n - it) (J (it. ... , in-I) 

= sgn (J (it, . . ., in-I) = til . . . in-l 

It follows from (66a) that 

(77a) 
n-l 

Zn = > ; til· • • in-Iaill ai22 • • • ain-In-I 
il·····,n-l- l 
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. al n-I 

= 

an-I I an-I 2 . an-I n-I 

We see that Zn is equal to the determinant of the matrix obtained 
from the matrix (AI, ... , An) by omitting the last row and column. 
Generally, one defines a minor of a matrix a as the determinant of 
a square matrix obtained from a by omitting some of the rows and 
columns, while preserving the relative positions of the remaining 
elements. The minor complementary to an element ajk of a square 
matrix a is the one obtained by omitting from a the row and column 
containing the element ajk. Thus Zn is equal to the minor comple­
mentary to ann. 

The other components of the vector Z have similar representations. 
We have, for example, by (75), 

Zn-I = det(AI, ... , An-I, En-I). 

To evaluate this determinant, we interchange the last two rows (see 
p. 174) which changes the sign of the determinant. The last column 
En-I then goes over into En, and we find from our previous result that 
-Zn-I is equal to the determinant obtained by omitting the last row 
and column of the new matrix or, equivalently, is equal to the minor 
complementary to the element an-I n in the original matrix. Similarly, 
one finds that ± Zi for each i = 1, . . . , n is equal to the minor com­
plementary to the element ain, where the positive sign applies for 
n - i even, the negative one for n - i odd. 

Formula (75) thus constitutes an expansion of an nth-order deter­
minant in terms of (n - I)-order determinants, the minors com­
plementary to the elements in the last column. For example, for 
n = 4 we have the formula 

au aI2 aI3 aI4 

a2I a22 a23 a24 
(77b) 

a3I a32 a33 a34 

a4I a42 a43 a44 

a2I a22 a23 au aI2 aI3 

= -al4 a3I a32 a33 + a24 a3I a32 a33 

a4I a42 a43 a4I a42 a43 
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a31 a32 a33 

Interchanging columns, we can derive similar formulae for ex­
panding a determinant in terms of the minors complementary to 
the elements of any given column. Expansions of this type playa role 
in many proofs that involve induction over the dimension of the space, 
as we shall see in the next sections. 

c. Areas of Parallelograms and Volumes of Parallelepipeds in Higher 
Dimensions 

Surfaces in space can be built up from infinitesimal parallelo­
grams. Thus, formulae for areas of curved surfaces and for integrals 
over surfaces require knowledge of an expression for the area of a 
parallelogram in space. Similarly, formulae for volumes or volume 
integrals over curved manifolds have to be based on expressions for 
volumes of parallelepipeds in higher dimensions. Such expressions are 
easily derived in greatest generality with the help of determinants. 

The basic quantity associated with vectors is the scalar product 
of two vectors 

and B = (bI, ... , bn)~ 

which in any Cartesian coordinate system is given by 

While the individual components aj and bk of A and B depend on the 
special Cartesian coordinate system used, the scalar product has an 
independent geometric meaning: 

A • B = I A II B I cos y, 

where I A I, I B I are the lengths of the vectors A and B, and y the 
angle between them. If follows that any quantity that can be express­
ed in terms of scalar products has an invariant geometric meaning 
and does not depend on the special Cartesian coordinate system 
used. 

The simplest quantity expressible in terms of scalar products is the 
distance of two points Po, PI which is the length of the vector A = 
---:.. 
POp!. The square of that distance is given by 



Vectors, Matrices, Linear Transformations 191 

(78a) IAI2=A·A. 

With two vectors A, B in n-dimensional space, we can associate the 
area of a parallelogram spanned by the two vectors if we give them a 

----->0. ----->0. 

common initial point Po. Let A = POPl and B = POP2. The vectors 
then span a parallelogram Po, PI, Q, P2 that has PI and P2 as vertices 
adjacent to the vertex Po. By elementary geometry the area a of the 
parallelogram is equal to the product of adjacent sides multiplied by 
the sine of the included angle y: 

a = I A II B I sin y 

= v'IAI2IBI2_IAI2IBI2 cos2 Y 

= v'IAI2IBI2_(A. B)2 

as we found already on p. 182 for the special case n = 3. We can write 
this formula for the area a more elegantly in the form of a deter­
minant for the square of a: 

(78b) a2 = (A • A)(B • B) - (A • B)(B • A) = I
A • A 

B·A 
A·BI 

B.BI 

The determinant that appears here on the right-hand side is called 
the Gram determinant of the vectors A, B and denoted by r(A, B). 
It is clear from the derivation that 

r(A, B) > 0 

for all vectors A, B and that equality holds only if A and Bare 
dependent. I 

We can derive a similar expression for the square of the volume V 
of a parallelepiped spanned by three vectors A, B, C in n-dimensional 
space. We represent the vectors in the form 

----->0. ----->0. 

A = POPI, C = POP3 

and consider the parallelepiped that has PI, P2, P3 as vertices ad­
jacent to the vertex Po. Its volume V can be defined as the product 
of the area a of one of its faces multiplied by the corresponding 
altitude h. Choosing for a the area of the parallelogram spanned 

IThat is, if either one of the vectors vanishes (I A I or I B I = 0) or if they are parallel 
(sin"( = 0). 
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by the vectors A and B, we have to take for h the distance of the 
point P3 from the plane through Po, PI, P2. Thus, 

A· B I. 
B·B 

We interpret h to stand for the "perpendicular" distance of P3 from 
~ 

the plane Po PI P2, that is, the length of that vector D = PP3 which 
is perpendicular to the plane and has its initial point P in the plane. 

~ 

For a point P in the plane POPIP2 the vector PoP must be dependent on, 
~ ~ 

A = POPI and B = POP2 (see p. 144): 

~ 

PoP = "AA + JlB. 

Hence, the vector D has the form 

~ ~ ~ 

D = PP3 = POP3 - PoP = C - "AA - JlB 

with suitable constants "A, Jl. If D is to be perpendicular to the plane 
spanned by A and B, we must have 

(79a) A· D = 0, B· D = O. 

This leads to a system of linear equations for determining "A and Jl: 

(79b) A· C = "AA • A + JlA • B, B • C = "AB • A + JlB • B. 

The determinant of these equations is just the Gram determinant 
rcA, B). Assuming A and B to be independent vectors, we have 
rcA, B) =;t= O. There exists, then, a uniquely determined solution 

~ 

"A, Jl of equations (79) and, hence, a unique vector D = PP3 per-
pendicular to the plane POPIP2 and with initial point in that plane. 
The length of that vector is equal to the distance h, so that by (79a) 

h 2 = 1 D 12 = D • D = (C - "AA - JlB) • D 

= C • D - "AA • D - JlB • D 

= C • D = C • C - "AC • A - JlC • B. 

This results in the expression 

(79c) V 2 = (C • C - "AA • C - JlB· C) r(A,B). 
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This expression for the square of the volume of the parallelepiped 
spanned by A, B, C can be written more elegantly as the Gram 
determinant formed from the vectors A, B, C: 

(79d) 

A·B 

B·B 

C·B 

A·C 

B· C = r(A,B,C). 

C·C 

To show the identity of the expressions (79c) and (79d) for V2, we 
make use of the fact that the value of the determinant r(A, B, C) 
does not change if we subtract from the last column A-times the first 
column and Il-times the second column: 

A·A A·B A·C-AA·A-IlA·B 

r(A,B,C) = B·A B·B B.C-AB·A-IlB·B 

C·A C·B C·C-AC.A-IlC·B 

It follows from (79b) that 

A·A A·B 0 

r(A,B,C) = B·A B·B 0 

C·A C·B C • C - AC • A - IlC • B 

Expanding this determinant in terms of the last column leads back 
immediately to the expression (79c). 

Formula (79d) shows that the volume V of the parallelepiped spanned 
by the vectors A, B, C does not depend on the choice of the face and of 
the corresponding altitude used in the computation, for the value of 
r(A, B, C) does not change when we permute A, B, C. For example, 
r(B, A, C) can be obtained by interchanging in the determinant 
for r (A, B, C) the first two rows and then the first two columns. 

Formula (79c) can be written as 

r(A,B,C) = IDI2r(A,B). 

It follows that 

r(A,B,C) > 0 

for any vectors A, B, C. Here the equal sign can only hold if either 
r(A, B) = 0 or D = O. The relation r(A, B) = 0 would imply that 
A and B are dependent. If D = 0, we would have C = AA + IlB, so 
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that C would depend on A and B. Hence the Gram determinant 
r(A, B, C) vanishes if and only if the vectors A, B, C are dependent. 

For n = 3 formula (79d) follows immediately from the formula 
(74c) for the volume V of an oriented parallelepiped spanned by three 
vectors A, B, C in three-dimensional space. This is a consequence of 
identity (6Sf) p. 174 according to which 

det(A, B, C) det(A, B, C) = r(A, B, C). 

The expression for V2 as a Gram determinant has the advantage of 
showing that V is independent of the special cartesian coordinate 
system used, and hence that V has a geometrical meaning. 

We can proceed to "volumes" Vof four-dimensional parallelepipeds 
~ ~ ~ ~ 

spanned by four vectors A = POPI, B = POP2 , C = POP3. D = POP4 
in n-dimensional space (n > 4). Defining V as the product of the 
volume of the three-dimensional parallelepiped spanned by the three 
vectors A, B, C with the distance of the point P4 from the three­
dimensional "plane" through the points Po, PI, P2 , P3, we arrive by the 
exactly same steps as before at an expression for V2 as a Gram deter­
minant: 

A·A A·B A·C A·D 

B·A B·B B·C B·D 
(80a) V2 = = r(A, B, C, D) 

C·A C·B C·C C·D 

D·A D·B D·C D·D 

If here n = 4, the Gram determinant becomes the square of the de­
terminant of the matrix with columns A, B, C, D, and we find that 

(SOb) V = 1 det(A, B, C, D) I. 

More generally, m vectors AI, ... , Am in n-dimensional space, 
to which we assign a common initial point Po, span an m-dimensional 
parallelepiped. The square of the volume V of that parallelepiped is 
given by the Gram determinant 

AI' Al AI' A2 . . • Al • Am 

A2' Al A2' A2 . . • A2' Am 

(S1a) V2 = = r(AI, . . ., Am) 

Am' Al Am' A2 • Am' Am 
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For m = n we obtain for the volume of the parallelepiped spanned by 
n vectors in n-space the formula 

(81b) v = 1 det(AI,. ., An) I. 

One proves by induction over m that 

where equality holds if and only if the vectors AI, . . ., Am are 
dependent. I 

d. Orientation of Parallelepipeds in n-Dimensional Space 

Later on, in Chapter 5, when we need a consistent method to fix 
the sign of multiple integrals, we have to make use of signed volumes 
and orientations of parallelepipeds in n-dimensional space. 

For the volume spanned by n vectors AI, . . ., An in n-dimensional 
space we have by (81b) the expression 

v = Idet AI, ... , An)l. 

We call det (AI, ... , An) the volume in (Xl' •• Xn)-coordinates of 
the oriented parallelepiped spanned by AI, . . ., An. The parallel­
epiped or the set of vectors AI, . . ., An is called positively oriented 
with respect to the coordinate system if det (AI, . . ., An) is positive, 
negatively if the determinant is negative. Thus, 

(81e) det(AI, . . ., An) = & V, 

where V is the volume of the parallelepiped spanned by the vectors 
AI, . . ., An and & = + 1 or -1 according to whether the parallelepi­
ped is oriented positively or negatively with respect to the coordinate 
system. 

While the square of det (AI, . . ., An) has a geometrical meaning 
independent of the Cartesian coordinate system, this is not the case 
for the sign of the determinant. Interchanging, for example, the 
XI- and X2-axes results in the interchange of the first two rows of the 
determinant and, hence, in a change of sign in det(AI, . . ., An). 
What has an independent geometric meaning, however, is the state-

lIn the case of dependent vectors Al, ... , Am with common initial point Po the 
parallelepiped spanned by these vectors "collapses" into a linear manifold of m-l 
dimensions or less and has m-dimensional volume equal to O. 
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ment that two n-dimensional parallelepipeds in n-dimensional space 
have the same or have the opposite orientation. 

Consider two ordered sets of vectors A1, . . ., An and B1, . . ., Bn 
in n-dimensional space, where we assume that each set consists of 
independent vectors. Obviously, the two sets have the same orienta­
tion-that is, are both oriented positively or both negatively with 
respect to the Xl • • • xn-system-if and only if the condition 

(82a) det(A1, . . ., An) • det(B1, . . ., Bn) > 0 

is satisfied. Using the identity (68£), we can write this condition in the 
form 

(82b) [A1, ... , An; B1, ... , Bn] > 0, 

where the symbol on the left denotes the function of 2n vectors defined 
by 

A1 • B1 A1 • B2 • •• A1 • Bn 

A2 • B1 A2 • B2 • •• A2 • Bn 

(82c) [A1, ... , An; B1, ... , Bn] = 

An· B1 An· B2 • •• An • Bn 

Notice that for B1 = A1, . . ., Bn = An the symbol [A1, . . ., An; 
B1, . . ., Bn] reduces to the Gram determinant r(A1, . . ., An). 
Formulae (82b, c) make it evident that having the same orientation is 
a geometric property that does not depend on the specific Cartesian 
coordinate system used. We denote this property symbolically by 

(82d) 0(A1, . . ., An) = 0(B1, . . ., Bn) 

and the property of having the opposite orientation1 by 

IThe individual orientation n of an n-tuple of vectors does not stand for a "number." 
Formula (82£) only associates a value ±1 with the ratio of two orientations,. while 
formulae (82d, e) express equality or inequality of orientations. It is, of course, 
possible to describe the two different possible orientations of n-tuples completely by 
numerical values, say, giving the value n = +1 to one orientation, the value n = 
-1 to the other. This involves, however, the arbitrary selection of a "standard 
orientation" we call +1-for example, that given by the coordinate vectors­
whereas the relations (82d, e, f) are meaningful independent of any numerical value 
assigned to n. Analogous situations are common throughout mathematics. For 
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(82e) n(AI, . . ., An) = - n(BI, . . ., Bn). 

Then, generally, for two sets of n independent vectors in n-dimen­
sional space, 

(82f) n(BI,. ., Bn) = Sgn[AI, ... , An; BI, ... , Bn]n(AI, ... , An). 

The set AI,. ., An is oriented positively or negatively with respect 
to Xl· • • xn-coordinates according to whether 

(83a) n(AI, . . ., An) = n(EI, . . ., En) 

or 

(83b) n(AI, . . ., An) = - n(EI, . . ., En), 

where EI, ., En are the coordinate vectors. On occasion, we shall 
denote the orientation n(El, . . ., En) of the coordinate system by 

n(XI, X2, • . ., Xn). 

For two sets of n vectors in n-dimensional space AI, . . ., An and 
AI',. ., An' we have by (82c), (8Ib) 

(84a) [AI, ... , An; AI', ... , An'] = ee'VV' 

Here V and V' are, respectively, the volumes of the parallelepipeds 
spanned by the two sets of vectors; the factors e, e' depend on their 
orientations and those of the coordinate vectors: 

(84b) e = sgn [AI, ... , An; EI, ... , En] 

(84c) e' = sgn [AI', ... , An'; EI, ... , En]. 

The product 

(84d) ee' = sgn [AI, ... , An; AI', ... , An'] 

example, in euclidean geometry, equality of distances and even the ratio of distances 
have a meaning even when no numerical values are assigned to the distances (as in 
Euclid's Elements). It is true that we can describe distances by real numbers, such 
that the ratio of distances is just that of the corresponding real numbers. This 
requires the arbitrary selection of a "standard distance" (e.g., a meter), to which all 
other distances are referred, and thus introduces in some sense a "nongeometrical" 
element. 
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is independent of the choice of the coordinate system and has the 
value + 1 if the parallelepipeds have the same orientation but -1 if 
the opposite orientation. 

Using the definition in terms of scalar products, we can form the 
expression 

(85a) [AI, ... , Am; AI', ... , Am'] 

• •• Al . Am' 

· . . A2 . Am' 

= 

Am· AI' · . . Am . Am' 

for any 2m vectors AI.. ., Am' in n-dimensional space. It is clear 
from the definition that this expression is a multilinear form in the 
2m vectors. For example, the vector AI' occurs only in the first column 
and the elements of that column are linear forms in AI'. Since the 
whole determinant is a linear form in the elements of the first column, 
it follows that it is a linear form in AI'. It also is evident from (85a) 
that the expression is an alternating function of the vectors AI', . . ., 
Am' for fixed AI, . . ., Am and an alternating function of AI. . . ., Am 
for fixed AI',. ., Am'. It follows (see the footnote on p. 000) that 

(85b) [AI, ... , Am; AI', ... , Am'] = 0 

whenever the m vectors AI, . . ., Am or the m vectors AI', . . ., Am' 
are dependent. In particular (85b) always holds when m > n. 

Assume then that m ;:;;;; n and that the vectors AI, . . ., Am and the 
vectors AI', . . ., Am' are independent. We can assume that all these 
vectors are given the same initial point, say the origin 0 of n-dimen­
sional space. Then AI, . . ., Am span an m-dimensionallinear manifold 
x through 0 and AI', ... , Am' another such plane x'. Introduce an 
orthonormal system of vectors EI, . . ., Em as coordinate vectors in 
x and another orthonormal system of vectors EI', ... , Em' in X'.l 

For fixed AI, ... , Am the function (85b) is an alternating multilinear 
form in the vectors AI', ... , Am' and, hence (see p. 149), is given by 

IThese two systems of coordinate vectors in n and n' do not have to be related 
to each other in any way nor to the coordinate system to which the whole n·di­
mensional space containing nand n' is referred. 
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[AI, ... , Am; AI', ... , Am'] 

= [AI, ... , Am; EI', ... , Em'] det(AI', ... , Am'), 

where det (AI', . . ., Am') is the determinant of the matrix formed by 
the components of the vectors AI', . . ., Am' referred to EI', . . ., Em' 
as coordinate vectors. Obviously the coefficient [AI, ... , Am; 
EI', . . ., Em'] itself is an alternating multilinear form in AI, . . ., Am 
and, hence, given by 

[EI. . . ., Em; E I', . . ., Em'] det(AI, . . ., Am), 

where the last determinant is formed from the matrix of components 
of AI, . . ., Am referred to the coordinate vectors E I, . . ., Em. 

Using formula (81c), we obtain the identity 

(85c) [AI, ... , Am; AI', ... , Am'] = ~EE' VV'. 

Here V and V' are respectively the volumes of the parallelepipeds 
spanned by the vectors AI, . . ., Am and AI', . . ., Am'. The factors 
E, E' relate the orientations of the parallelepipeds to those of the 
coordinate systems in rt and rt': 

E = sgn [AI,. ., Am; EI, ... , Em], 

E' = sgn AI',. ., Am'; EI', ... , Em']. 

Finally, the coeflicient 

depends only on the spaces rt and rt' and the coordinate systems 
chosen in those spaces. If rt = rt' we can choose 

E' = EI, ... , Em' = Em; 

in that case 11 = 1, as in formula (84~). 
For 11 =I=- 0, we can use formula (85c) to relate orientations in two 

distinct m-dimensionallinear manifolds rt and rt', both lying in the same 
n-dimensional space.! Replacing, if necessary, one of the coordinate 

lOne verifies easily that Il = 0 only when 1t and 1t' are perpendicular to each other, 
that is, when 1t' contains a vector orthogonal to all vectors in 1t. More generally, 
the coefficient Il can be interpreted as cosine of the angle between the two manifolds 
(see problem 13, p. 203). 
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vectors by its opposite, we can always contrive that p. > O. Then, 
by (85c) , 

(85d) sgn [AI, . . ., Am; AI', . . ., Am'] = gg' 

Thus, the condition 

[AI, ... , Am; AI', ... , Am'] > 0 

for any AI, . . ., Am in x and AI', . . ., Am' in x' signifies that both 
sets of vectors are oriented positively or both oriented negatively 
with respect to the coordinate systems in those spaces. 

e. Orientation of Planes and Hyperplanes 

The choice of a particular Cartesian coordinate system in an m­
dimensional linear manifold x determines a certain orientation 

Q(EI, . . ., Em), 

where EI, . . ., Em are the coordinate vectors. This choice fixes which 
sets of m vectors AI, ... , Am in x are called positively oriented, 
namely, those with the same orientation as EI, ... , Em. We denote 
by x* the combination of the linear space x with the selection of a 
particular orientation in x and call x* an oriented linear manifold. We 
write Q(n*) for the selected orientation and call m independent 
vectors AI, ... , Am in n oriented positively if 

Q(AI, . . ., Am) = Q(n*). 

We call x* oriented positively with respect to a particular Cartesian 
coordinate system if the orientation of the coordinate vectors is the 
same as that of x*. 

An oriented two-dimensional plane n* can be visualized as a 
plane with a distinguished positive sense of rotation. If a pair of vectors 
A, B is oriented "positively" with respect to x*, the positive sense 
of rotation ofTJ* is the sense of the rotation by an angle less than 1800 

that takes the direction of A into that of B.I 
If the oriented two-dimensional plane x* lies in an oriented three­

dimensional plane cr*, we can distinguish a positive and negative side 

INotice that the orientation of 1t* can only be described by pointing out a specific 
positively oriented pair of vectors B, C in 1t or a specific rotating object in 1t (e.g., 
a clock) that has the distinguished sense of rotation. There is no abstract way of 
deciding whether a given rotation is clockwise or counterclockwise, anymore than 
there is an abstract way of saying which is the right and which the left side. These 
questions can only be decided by reference to some standard objects. 
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of 1t*. Let Po be any point of 1t*. We take two independent vectors 
---->0.. ---->0.. 

B = PoPI, C = POP2 in 1t* for which 

(86a) Q(B, C) = Q(1t*). 
---->0.. 

A third vector A = PoPa, independent of B, C is said to point to the 
positive side of 1t* if 

(86b) Q(A, B, C) = Q( cr*). 

If cr* is oriented positively with respect to a Cartesian coordinate 
system, we can replace condition (86b) by 

(86c) det(A, B, C) > 0 

in that system. If cr* is oriented positively with respect to the usual 
right-handed coordinate system, then the positive side of an oriented 
plane 1t* is the one from which the positive sense of rotation in 1t* 
appears counterclockwise. 

The same terminology applies to oriented hyperplanes 1t* in 
n-dimensional oriented space cr*. Given n - 1 vectors A2, ... , An 
in 1t* with 

(87a) Q(A2, . . ., An) = Q(1t*), 

a vector Al is said to point to the positive side of 1t*, if 

(87b) Q(Al, . . ., An-I, An) = Q( cr*), 

f. Change of Volume of Parallelepipeds in Linear Transformations 

A square matrix a = (ajk) with n rows and columns determines a 
linear transformation or mapping Y = aX of vectors X in n-dimen­
sional space into vectors Y of the same space. Here we assume that 
X and Yare referred to the same coordinate vectors EI, . . . ,En. For 
X = (Xl, . . ., Xn), Y = (YI, . . ., Yn) the transformation, written 
out by components, has the form 

(j = 1, ... , n). 

A set of n vectors BI = (bu, ... , bnl),. ., Bn = (bIn, ... , bnn) is 
transformed into the set of n vectors CI = (cu, . . ., Cnl), . . ., Cn = 
(Cln, . . ., Cnn), where 
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11. 

Cjlt; = ~ aj,b,lt; ,-1 

By the rule for the determinant of a product of matrices (p. 172), we 
have 

(SSa) det(Cl, . . ., Cn) = det(a) • det(Bl, . . ., Bn) 

This formula contains the two formulae 

(SSb) I det(Cl, . . ., Cn) I = I det(a) II det(Bl, . . ., Bn) I 

(SSc) sgn det(Cl, . . ., Cn) = [sgn det(a)][sgn det(Bl, . . ., Bn). 

These two rules can be formulated immediately in geometrical lan­
guage: 

The linear transformation of n-dimensional space into itself cor­
responding to a square matrix a multiplies the volume of every 
parallelepiped spanned by n vectors by the same constant factor I det(a) I. 
It preserves the orientation of all n-dimensional parallelepipeds, if 
det (a) > 0, and changes the orientation of all of them if det (a) < 0.1 

For a rigid motion, the matrix a is orthogonal and, hence (see p. 
175), has determinant + 1 or -1. Thus, rigid motions preserve the 
volume of parallelepipeds. Those for which det (a) = + 1 preserve 
sense; the others invert it. 

Exercises 2.4 

1. Treat number 5 of Exercises 2.2 in terms of vector products. 
2. In a uniform rotation let (rt, !i, y) be the direction cosines of the axis of 

rotation, which passes through the origin, and CJ) the angular velocity. 
Find the velocity of the point (x, Y, z). 

3. Show that the plane through the three points (Xl, YI, Zl), (XZ, yz, ZZ), 

(xa, )'a, za) is given by 

I Xl - X YI - Y ZI - Z I 
Xz - X yz - Y Zz - Z = o. 
Xa-X ya-y Za-Z 

lit is important to emphasize the assumptions in this theorem. Only volumes of n­
dimensional parallelepipeds are multiplied by the same factor; lower-dimensional 
ones are multiplied by factors that vary with their location. Also, we have to assume 
that image and original refer to the same coordinate system if the statement about 
orientations is to hold. 
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4. Find the shortest distance between two straight lines [ and [' in space, 
given by the equations x = at + b, Y = ct + d, Z = et + f and x = 
a't + b',Y = c't + d', Z = e't + {'. 

5. Show that the area of a convex polygon with the successive vertices 
Pl(Xl, Yl), P2(X2,Y2), . . ., Pn(Xn,Yn) is given by half the absolute value of 

I Xl X2 I + I X2 Xa I +. . . + I Xn-l Xn I + / Xn Xl /. 
Yl Y2 Y2 ya Yn-l Yn Yn Yl 

6. Prove that the area of the triangle with vertices (Xl, Yl), (X2, Y2), and 
(xa, Ya) is 

1 I Xl Yl 1 I 2" X2 Y2 1 . 
Xa y3 1 

7. If the vertices of the triangle of the preceding exercise have rational 
coordinates, prove the triangle cannot be equilateral. 

8. (a) Prove the inequality 

n=1 :' a" 
b c I b' c' ~ J(a2 + b2 + c2)(a'2 + b'2 + c'2)(a" 2 + b"2 + c"2). 
b" cn 

(b) When does the equality sign hold? 
9. Prove the vector identities 

(a) A X (B X C) = (A • C) B - (A • B) C 

(b) (X X Y) • (X' X y') = (X. X') (y. y') - (X· V') (y. X') 

(c) [X X (y X Z)] • {[V X (Z X X)] X [Z X (X X V)]} = o. 

10. Give the formula for a rotation through the angle ifJ about the axis 
x:y: Z = 1: 0: -1 such that the rotation of the plane X = Z is positive 
when looked at from the point (-1, 0, 1). 

11. If A, B, and C are independent, use the two representations of X = 
(A X B) X (C X D) obtained from Exercise 9a to express D as a linear 
combination of A, B, and C. 

12. Let Ox, Oy, Oz and Ox', Oy', Oz' be two right-handed coordinate 
systems. Assume that Oz and Oz' do not coincide; let the angle zOz' be 
6 (0 < 6 < Tt). Draw the half-line OXI at right angles to both Oz and Oz' 
and such that the system OXl, Oz, Oz' has the same orientation as Ox, 
Oy, Oz. The OXI is the line of intersection of the planes Oxy and Ox'y'. 
Let the angle xOXl be ifJ and the angle XlOx' be IjI and let them be meas­
ured in the usual positive sense in their respective planes, Oxy and 
Ox'y'. Find the matrix for the change of coordinates. 

13. Let Tt and Tt' be two m-dimensional linear subspaces of the same n­
dimensional space with respective orthonormal bases El, E2, . . ., 
Em and El', E2', ... , Em'. Show that fL = [El, E2, ... , Em; El', E2', 
• • ., Em'] = 0 if and only if Tt and Tt' are orthogonal, that is, one space 
contains a vector perpendicular to all the vectors of the other. 
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2.5 Vector Notions in Analysis 

a. Yector Fields 

Mathematical analysis comes into play when we are concerned 
with a vector manifold depending on one or more continuously vary­
ing parameters. 

If, for example, we consider a material occupying a portion of space 
and in a state of motion, then at a given instant each particle of the 
material will have a definite velocity represented by a vector U = 
(UI, U2, ua). We say that these vectors form a vector field in the region 
in question. The three components of the field vector then appear as 
three functions 

of the three coordinates Xl, X2, Xa of the position of the particle at the 
instant in question. We would usually represent U as a vector with 
initial point (Xl, X2, xa). 

The forces acting at different points of space likewise form a vector 
field. As an example of a force field we consider the gravitational force 
per unit mass exerted by a heavy particle, according to Newton's law 
of attraction. According to that law the field vector F = (ft, f2, fa) at 
each point (Xl, X2, Xa) is directed toward the attracting particle, and 
its magnitude is inversely proportional to the square of the distance 
from the particle. 

Field vectors, like U or F, have a physical meaning independent of 
coordinates. In a given Cartesian Xl, X2, Xa-coordinate system the 
vector U has components UI, U2, Ua that depend on the coordinate 
system. In a different Cartesian coordinate system the point that 
originally had coordinates Xl, X2, Xs receives the coordinates YI, YI, Ys 
where the Yt and Xk are connected by equations of the form 

(89a) 

or 

(89b) 

I YI = allXI + al2X2 + alsXa + bl 

Y2 = a2lXI + a22X2 + a2sXa + b2 

Ys = aalXI + aa2X2 + aaaXa + ba 

(i = 1,2,3). 

The components VI, V2, Va of the vector U in the new coordinate system 
are then given by the corresponding homogenenous relations 
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(89c) (j = 1,2,3). 

The matrix a = (ajk) is orthogonal, so that (see p. 158) its re­
ciprocal is equal to its transpose. Consequently, the solutions of 
equations (89b), (89c) for Xk and Uk take the form 

(89d) (k = 1,2,3), 

(8ge) (k = 1,2,3). 

Any three functions UI, U2, Ua of the variables Xl, X2, Xa determine 
a field of vectors U with components UI, U2, Ua in Xl, X2, xa-coordinates. 
If the field is to have a meaning independent of the choice of coordi­
nate systems, the components Vi of U in a Cartesian YI, Y2, ya-coordi­
nate system have to be given by formula (89c) whenever the Yi and 
Xi are connected by formulae (89a). 

b. Gradient of a Scalar 

A scalar is a function s = s(P) of the points P in space. In any 
Cartesian coordinate system in which the point P is described by its 
coordinates Xl, X2, Xa the scalar s becomes a function s = {(Xl, X2, xa). 

We may regard the three partial derivatives 

as 
U2 = ~a = {X2(XI, X2, xa), 

X2 

as 
Ua = a- = {X3(XI, X2, xa). 

Xa 

as components in Xl, X2, Xa-coordinates of a vector U = (UI, U2, ua). 
In any new Cartesian YI, Y2, ya-coordinate system connected with 

the original one by relations (89a) or (89d), the scalar s is represented 
by the function 

s = g(YI, Y2, Ya) 
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By the chain rule of differentiation (p. 55) we have 

os 
Vi = -0 = gYj(YI, Yz, Y3) 

Yi 

= ± ~ OXk 
k=1 OXk 0Yi 

3 
= L: Ukaik. 

k =1 

Using the relations (89c), we see that the vector U has the com­
ponents Vi = OS/OYi in the Yl, yz,Y3-system. Thus the partial derivatives 
of the scalar s formed in any cartesian coordinate system form the 
components of a vector U that does not depend on the system. We 
call U the gradient of the scalar s and write 

U = grad s. 

By formula (14b), p. 45 the derivative of s in the direction with direc­
tion cosines cos aI, cos az, cos a3 is given in Xl, Xz, x3-coordinates by 

(90) 
os os os 

D(a)S = 0- cos al + -0 cos az + -0 cos a3. Xl Xz X3 

Introducing the unit vector R = (cos aI, cos a2, cos a3) in the 
direction with direction angles aI, az, a3, we can write the deriva­
tive of s in that direction in vector notation as 

(90b) D(a)S = R . grad s. 

We find from the Cauchy-Schwarz inequality (see p.132)for /R/ = 1. 

/D(a)s/ ~ /Rllgrad sl = Igradsl 

Thus, the derivative of s in any direction never exceeds the length of 
the gradient of s. Taking for R the unit vector in the direction of grad 
s, we find for the directional qe:rivative the value 

1 
D (a) S = 1 d 1 (grad s) . (grad s) = 1 grad s 1 gra s 

Thus, the length of the gradient vector of s is equal to the maximum 
rate of change of s in any direction. The direction of the gradient is 
the one in which the scalar s increases most rapidly, while in the 
opposite direction s decreases most rapidly. 
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We shall return to the geometrical interpretation of the gradient 
in Chapter 3. We can, however, immediately give an intuitive idea 
of the direction of the gradient. Confining ourselves first to vectors 
in two dimensions, we have to consider the gradient of a scalar 
s = {(Xl, X2). We shall suppose that s is represented by its level lines 
(or contour lines) 

s = {(Xl, X2) = constant = c 

in the Xl, x2-plane. Then the derivative of s at a point P in the direc­
tion of the level line through P is obviously 0, for if Q is another 
point on the same level line, the equation s(Q) - s(P) = 0 holds; 
dividing by the distance p of Q and P and letting p tend to 0 we find in 
the limit (see p. 45) that the derivative of s in the direction tangential 
to the level line at P is O. Thus, by (90b), R • grad 8 = 0 if R is a unit 
vector in the direction of the tangent to the level line, and therefore, 
at every point the gradient vector o{ s is perpendicular to the level line 
through that point. An exactly analogous statement holds for the 
gradient in three dimensions. If we represent the scalar s by its level 
surfaces 

s = {(Xl, X2, X3) = constant = c, 

the gradient has component zero in every direction tangential to the 
level surface and is therefore perpendicular to the level surface. 

In applications, we frequently meet with vector fields that repre­
sent the gradient of a scalar function. The gravitational field of force 
due to particle of mass M concentrated in a point Q = (~l, ~2, ~3) may 
be taken as an example. Let F = (/1, /2, fa) denote the force exerted 
by the attractive mass M on a particle of mass m located at the 
point P = (Xl, X2, X3). Denote by R the vector 

By Newton's law of gravitation, F has the direction of -R and the 
magnitude Cj 1 R 12, where C = 'YmM (here 'Y denotes the universal 
gravitational constant). Hence, 

or 
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~ C ~j-Xj 
0= S 

J(~l - XI)2 + (~2 - X2)2 + (~s - XS)2 

By differentiation, one verifies immediately that 

Hence, 

(91) 

where 

o C 
Ii = ox, J (~l - XI)2 + (~2 - X2)2 + (~s - XS)2 

C F = grad-, 
r 

r = J(~l - XI)2 + (~2 - X2)2 + (~s - XS)2 = IRI 

is the distance of the two particles at P and Q. 

(j = 1,2,3). 

(j = 1,2,3). 

If a field of force is the gradient of a scalar function, this scalar 
function is often called the potential function of the field. We shall 
consider this concept from a more general point of view in the study 
of work and energy (pp. 657 and 714). 

c. Divergence and Curl of a Yector Field 

By differentiation we have assigned to every scalar a vector field, 
the gradient. Similarly, we can assign by differentiation to every 
vector field U a certain scalar, known as the divergence of the vector 
field U. For a specific Cartesian Xl, X2, xs-coordinate system in which 
U = (UI, U2, us), we define the divergence of the vector U as the func­
tion 

(92) 

that is, as the sum of the partial derivatives of the three com­
ponents with respect to the corresponding coordinates. We can show 
that the scalar div U defined in this way does not depend on the 
particular choice of Cartesian coordinate system. I Let the coordinates 

lThis would not be the case for other expressions formed from the first derivatives of 
the components of the vector U, for example, 

aUl + aUg _ aUa 

aXl aX2 aXa 

or 
aUl aUg aUa 
aX2 • axa • aXl' 
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YI, Y2, Ya of a point in a different Cartesian system be connected with 
Xl, X2, Xa by equations (89b); the components VI, V2, Va ofUin the new 
system are then given by relations (89c). We have from the chain rule 
of differentiation 

which shows that we are led to the same scalar div U in any other 
coordinate system. 

Here we content ourselves with the formal definition of the diver­
gence; its physical interpretation will be discussed later (Chapter 
V, Section 9). 

We shall adopt the same procedure for the so-called curl of a vector 
field U. The curl is itself a vector 

B = curl U. 

If in a Xl, X2, xa-coordinate system the vector U has the components 
UI, U2, Ua, we define the components bl, b2, ba of curl U by 

We could verify as in the other cases that our definition of the curl of 
a vector U actually yields a vector independent of the particular 
coordinate system, provided the Cartesian coordinate systems con­
sidered all have the same orientation. However, we omit these 
computations here, since in Chapter V, p. 616 we shall give a physical 
interpretation of the curl that clearly brings out its vectorial character. 

The three concepts of gradient, divergence, and curl can all be 
related to one another if we use a symbolic vector with the com­
ponents 

a a a 

This vector differential operator is usually denoted by the symbol V, 
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pronounced "del." The gradient of a scalar s is the product of the 
symbolic vector V with the scalar quantity s; that is, it is the vector 

(94) ( a a a)l grad s = Vs = a- s, a- s, a-S. Xl X2 X3 

The divergence of a vector U = (U1, U2, U3) is the scalar product 

(94b) 

Finally the curl of the vector U is the vector product 

(94c) curl U = V x U 

= (a:2 U3 - a:3 U2, a:3 U1 - a:1 U3, a:1 U2 - a:2 U1) 

[see (71b), p. 180. The fact that the vector V is independent of the Car­
tesian coordinate system used to define its components follows from 
the chain rule of differentiation; under the coordinate transformation 
(89d), we have by the chain rule 

~ _ 3 aXk ~ _ ~ a 
~ - ~ ~ ~ -.l..; aik ~X ' 
UYi k-i fiYi uX" k-l u" 

which shows that the components of V transform according to the 
rule (89c) for vectors. This makes it obvious that also V s, V • U and 
V x U do not depend on coordinates.2 

In conclusion, we mention a few relations that constantly recur. 
The curl of a gradient is zero .. in symbols, 

(95a) curl grad s = V x (V s) = o. 

lWe are forced here to write the vector in front of the scalar in the product V s, 
contrary to our usual habit, since the components of the symbolic vector V do not 
commute with ordinary scalars. 
2This statement has to be qualified in the case of the curl. Generally, magnitude and 
direction of the vector product of two vectors has a geometrical meaning, as explain­
ed on p. 185, except that the product changes into the opposite when we change the 
orientation of the Cartesian coordinate system used. This implies for a vector U 
that curl U = V x U behaves like a vector, as long as we do not change the orien­
tation of the coordinate system (i.e., as long as only orthogonal transformations with 
determinant + 1 are used). Changing the orientation of the coordinate system 
results in changing curl U into its opposite. 



Vectors, Matrices, Linear Transformations 211 

The divergence of a curl is zero; in symbols, 

(95b) div curl U = = V • (V X U) = o. 

As we easily see, these relations follow from the definitions of diver­
gence, curl, and gradient, using the interchangeability of differentia­
tions. Relations (95a, b) also follow formally if we apply the ordinary 
rules for vectors to the symbolic vector V, since then 

V x (Vs) = (V x V)s = 0, V· (V x U) = det(V, V, U) = o. 

Another extremely important combination of our vector differential 
operators is the divergence of a gradient: 

(95c) 

Here 

(95d) 

is known as the "Laplace operator" or the "Laplacian." The partial 
differential equation 

(95e) 

satisfied by many important scalars s in mathematical physics is 
called the "Laplace equation" or "potential equation." 

The terminology of "vector analysis" is often used also when the 
number of independent variables is other than three. A system of 
n functions UI, . . ., Un of n indenpendent variables Xl, . . ., Xn 

determines a vector field in n-dimensional space. The concepts of 
gradient of a scalar and of the Laplace operator then retain their 
meaning. Notions analogous to the curl of a vector become more 
complicated. The most satisfactory approach to analogues of rela­
tions (95a,b) in n dimensions is through the calculus of exterior 
differential forms, which will be described in the next chapter. 

d. Families of Vectors. Application to the Theory of Curves in 
Space and to Motion of Particles 

In addition to vector fields we also consider one-parametric 
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manifolds of vectors, called families of vectors. where the vectors U = 
(Ul, U2, U3) do not correspond to each point of a region in space but to 
each value of a single parameter t. We write U = U (t). The derivative 
of the vector U can be defined naturally as 

(96a) ~~ = ~~ ~ [U(t + h) - U(t)]. 

It obviously has the components 

(96b) 
dUl dU2 dU3 - -
dt' dt' dt· 

One easily verifies that this vector differentiation satisfies analogues 
of the ordinary laws for derivatives: 

(97a) 

(97b) 

(97c) 

d d d 
dt (U + V) = dt U + dt V; 

d dV dU 
dt(U, V) = U· Cit + dt' V 

d dV dU 
dt(U x V) = Ux Cit + dt x V. 

We apply these notions to the case where the family of vectors con-
~ 

sists of the position vectors X = X (t) = OP of the points P on a curve 
in space given in parametric representation: 

Xl = (h(t). X2 = (/J2(t). X3 = ~3(t). 

Then 

The vector dXjdt has the direction of the tangent to the curve at the 
point corresponding to t. For the vector ~X = X(t + ~t) - X(t) 
has the direction of the line segment joining the points with parame­
ter values t and t + ~t. The same holds for the vector ~Xj~t, when 
~t > o. As ~t ~ 0 the direction of this chord approaches the di­
rection of the tangent. If instead of t we introduce as parameter the 
length of arc s of the curve measured from a definite starting point, 
we can prove that 
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1 
dX 12 = dX • dX = 1 
ds dsds . 

The proof follows exactly the same lines as the corresponding proof 
for plane curves (see Volume I, p. 354). Thus, dX/ds is a unit vector. 
Differentiating both sides of equation (98) with respect to s, using rule 
(97b), we obtain 

(99) dX • d 2X + d 2X • dX = 2 dX • d2X = 0 
ds ds2 ds2 ds ds ds2 • 

This equation states that the vector 

is perpendicular to the tangent. This vector we call the curvature 
vector or principal normal vector, and its length 

(100) 

we call the curvature of the curve at the corresponding point. The 
reciprocal p = l/k of the curvature we call the radius of curvature, 
as before. The point obtained by measuring from the point on the 
curve a length p in the direction of the principal normal vector is 
called the center of curvature. 

We shall show that this definition of curvature agrees with the one 
given for plane curves in Volume I (p. 354). For each s the vector 
Y = dX/ds is of length 1 and has the direction of the tangent. If we 
think of the vectors Y(s + As) and Y(s) as having the origin as 
common initial point, then the difference AY = Y(s + As) - Y(s) 
is represented by the vector joining the end points. The angle ~ 
between the tangents to the curve at the points with parameters s 
and s + As is equal to the angle between the vectors Y(s) and 
Y(s + As). Then 

IAYI = IY(s + As) - Y(s) I = 2 sin ~, 

SInce 

I Y(s) I = IY(s + As) I = 1. 
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Using 

we find that 

2 sin ~/2 1 
~ -. for 

Id2XI-ldYI-lim IAY\ -lim ~ ds2 - ds - M~O As - 6s~O As 

Hence, k is the limit of the ratio of the angle between the tangents at 
two points of the curve and the length of arc between those points as 
the points approach each other. But this limit defines curvature for 
plane curves. l 

The curvature vector plays an important part in mechanics. We 
suppose that a particle moving along a curve has the position vector 
X(t) at the time t. The velocity of the motion is then given both in 
magnitude and direction by the vector dX/dt. Similarly, the ac­
celeration is given by the vector d2X/dt2• By the chain rule, we have 

and 

(101) 

dX ds dX 
dt = dt ds 

d2X _ d2s dX (ds) 2 d2X 
dt2 - dt2 ds + dt ds2 • 

In view of what we know already about the first and second deriva­
tives of the vector X with respect to s, equation (101) expresses the 
following facts: the acceleration vector of the motion is the sum of 
two vectors. One of these is directed along the tangent to the curve 
and its length is equal to d2s/dt2 , that is, to the acceleration of the 
point in its path (the rate of change of speed or tangential accelera­
tion). The other is directed normal to the path toward the center of 
curvature, and its length is equal to the square of the speed multiplied 
by the curvature (the normal acceleration). For a particle of unit mass 

lIn the case of space curves, we cannot, as for plane curves, identify ~ with the 
increment ~u of an angle of inclination u. The reason is that the angle between 
Y (s) and Y (s + ~s) is generally not equal to the difference of the angles the vectors 
Y (s) and Y (s + ~s) form with some fixed third direction. Angles between directions 
in space are not additive, as in the plane. 
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the acceleration vector is equai to the force acting on the particle. If 
no force acts in the direction of the curve (as is the case for a particle 
constrained to move along a curve subject only to the reaction forces 
acting normal to the curve), the tangential acceleration vanishes and 
the total acceleration is normal to the curve and of magnitude equal 
to the square of the velocity multiplied by the curvature. 

Exercies 2.5 

~ 

1. Verify that the position vector PQ of a point Q with respect to a point P 
behaves like a vector in a change of coordinates. 

2. Derive the following identities. 

(a) grad (IX~) = IX grad ~ + ~ grad IX 
(b) div (IXU) = U • grad IX + IX div U 
(c) curl (IXU) = grad IX X U + IX curl U 
(d) div (U X V) = V· curl U...:.. U· curl V. 

3. Let U • v be the symbol for the operator 
a a a 

UZax + UYay + Uz az · 
Show that 
(a) grad (U • V) = U • vV + V • vU + U X curl V + V X curl U 
(b) curl (U X V) = U div V - V div U + V • vU - U • vV. 

4. For the Laplacian operator A establish 
AU = grad div U - curl curl U 

5. Find the equation of the so-called osculating plane of a curve x = f(t), 
y = g(t), z = h(t) at the point to, that is, the limit of the planes passing 
through three points of the curve as these points approach the point 
with parameter to. 

6. Show that the curvature vector and the tangent vector both lie in the 
osculating plane. 

7. Let C be a smooth curve with a continuously turning tangent. Let d 
denote the shortest distance between two points on the curve and l the 
length of arc between the two points. Prove that d - l = o(d) when d 
is small. 

8. Prove that the curvature of the curve X = X(t), t being an arbitrary 
parameter, is given by 

{IX/12 IX" 12 - (X'· X")2}1/2 
k= IX/13 . 

9. If X = X(s) is any parametric representation of a curve, then the vector 
d 2X/dt2 with initial point X lies in the osculating plane at X. 

10. If C is a continuously differentiable closed curve and A a point not on 
C, there is a point B on C that has a shorter distance from A than any 
other point on C. Prove that the line AB is normal to the curve. 
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11. A curve is drawn on the cylinder Xll + yll = all such that the angle 
between the z-axis and the tangent at any point P of the curve is equal 
to the angle between the y-axis and the tangent plane at P to the 
cylinder. Prove that the coordinates of any point P of the curve can be 
expressed in terms of a parameter 6 by the equations 

x = a cos 6, y = a sin 6, z = c ± a log sin 6, 
and that the curvature of the curve is (l/a) sin 6 (1 + sinll 6)112. 

12. Find the equation of the osculating plane (cf. Exercise 5) at the point 
6 of the curve x = cos 6, y = sin 6, z = {(6). Show that if {(6) = 
(cosh A6)IA, each osculating plane touches a sphere whose center is 
the origin and whose radius is v'(1 + 11A2). 

13. (a) Prove that the equation of the plane passing through the three 
points h, ts, ts on the curve 

1 1 
x = 3 atS, y = 2 bt2, z = ct 

is 
b y z 
- - 2(h + tll + ta) -b + (t2tS + tat1 + tIts) - - tIhta = o. a c 

(b) Show that the point of intersection of the osculating planes at h, 
t2, ta lies in this plane. 

14. Let X = X(s) be an arbitrary curve in space, such that the vector X(s) 
is three times continuously differentiable (s is the length of arc). Find 
the center of the sphere of closest contact with the curve at the point s. 

15. If X = X(s) is a curve on a sphere of unit radius where s is arclength, 
then 

holds. 
16. The limit of the ratio of the angle between the osculating planes at two 

neighboring points of a curve and of the length of arc between these two 
points (i.e., the derivative of the unit normal vector with respect to the 
arc s) is called the torsion of the curve. Let /;1 (s), /;2 (s) denote the unit 
vector along the tangent and the curvature vector of the curve X(s); 
by /;a(s) we mean the unit vector orthogonal to /;1 and /;ll (the so-called 
binormal vector), which is given by [/;1 X /;2]. 
Prove Frenet's formulae 

p , 

• /;1 
1;2=--+ 

p 

1;2 
~s = 

T ' 

I;s 
T ' 

where IIp = k is the curvature and lIT the torsion of x(s). 
17. Using the vectors /;1, 1;2, /;a of Exercise 16 as coordinate vectors, find 

expressions for (a) the vector X, (b) the vector from the point X to the 
center of the sphere of closest contact at X. 
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18. Show that a curve of zero torsion is a plane curve. 
19. Consider a fixed point A in space and a variable point P whose motion 

is given as a function of the time. Denoting by it the velocity vector of 
P and by a a unit vector in the direction from P to A, show that 

d -"- . 
dt I PA 1= - a • P 

20. (a) Let A, B, C be three fixed noncollinear points and let P be a moving 
point. Let a, b, c be unit vectors in the directions PA, PB, PC, 
respectively; express the velocity vector it as a linear combination 
of these vectors: 

it = au + bv + cwo 

Prove that 

a= IA~PI {[(a·b)v+(a·c)w]a-vb-wc}. 

(b) Prove that the acceleration vector P of the point P is 

P = Cla + ~b + yc, 

where 

. (a.b 1) (a.c 1) 
Cl = u + uv I A _ PI - I B - PI + uw I A - PI - I C - PI 
with similar expressions for ~ and y. 

21. Prove that if z = u(x, y) represents the surface formed by the tangents 
of an arbitrary curve, then (a) every osculating plane of the curve is a 
tangent plane to the surface and (b) u(x, y) satisfies the equation 

UxxU"" - ux,,2 = o. 



CHAPTER 

3 

Developments and Applications 
of the Differential Calculus 

3.1 Implicit Functions 

a. General Remarks 

Frequently in analytical geometry the equation of a curve is given 
not in the form y = {(x) but in the form F(x, y) = O. A straight line 
may be represented in this way by the equation ax + by + c = 0, 
and an ellipse, by the equation x2/a2 + y2/b2 = 1. To obtain the equa­
tion of the curve in the form y = {(x) we must "solve" the equation 
F(x, y) = 0 for y. In Volume I we considered the special problem of 
finding the inverse of a function y = {(x), that is, the problem of 
solving the equation F(x, y) = y - {(x) = 0 for the variable x. 

These examples suggest the importance of methods for solving an 
equation F(x, y) = 0 for x or for y. We shall find such methods even 
for equations involving functions of more than two variables. 

In the simplest cases, such as the foregoing equations for the 
straight line and ellipse, the solution can readily be found in terms 
of elementary functions. In other cases, the solution can be approxi­
mated as closely as we desire. For many purposes, however, it is pref­
erable not to work with the solved form of the equation or with these 
approximations but instead to draw conclusions about the solution by 
directly studying the function F(x, y), in which neither of the varia­
bles x, y is given preference over the other. 

Not every equation F(x, y) = 0 is the implicit representation 
of a function y = {(x) or x = ~(y). It is easy to give examples of 
equations F(x, y) = 0 that permit no solution in terms of functions 

218 
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of one variable. Thus, the equation x 2 + y2 = 0 is satisfied by the 
single pair of values x = 0, y = 0 only, while the equation x 2 + y2 + 
1 = 0 is satisfied by no real values at all. It is therefore necessary to 
investigate more closely the circumstances under which an equation 
F(x, y) = 0 defines a function y = f(x) and the properties of this 
function. 

Exercises 3.1a 

1. Suppose that for some pair of values (a, b), f(a, b) = o. If a is known, give 
a constructive iterative method for finding b. Under what conditions 
on f will this method work? 

b. Geometrical Interpretation 

To clarify the situation we represent the function F(x, y) by the 
surface z = F(x, y) in three-dimensional space. The solutions of 
the equation F(x, y) = 0 are the same as the simultaneous solutions 
of the two equations z = F(x, y) and z = o. Geometrically, our prob­
lem is to find whether the surface z = F(x, y) intersects the x, y­
plane in curves y = f(x) or x = ~(y). (How far such a curve of 
intersection may extend does not concern us here.) 

A first possibility is that the surface and the plane have no point 
in common. For example the paraboloid z = F(x, y) = x 2 + y2 + 1 
lies entirely above the x, y-plane. Here there is no curve of inter­
section. Obviously, we need consider only cases in which there is at 
least one point (xo, yo) at which F(xo, yo) = 0; the point (xo, yo) con­
stitutes an "initial point" for our solution. 

Knowing an initial solution, we have two possibilities: either the 
tangent plane at the point (xo, yo) is horizontal or it is not. If the 
tangent plane is horizontal, we can readily show by means of ex­
amples that it may be impossible to extend a solution y = f(x) or 
x = ~(y) from (xo, yo). For example, the paraboloid z = x 2 + y2 has the 
initial solution x = 0, y = 0, but contains no other point in the 
x, y-plane. In contrast, the surface z = xy with the initial solution 
x = 0, y = 0 intersects the x, y-plane along the lines x = 0 and y = 0; 
but in no neighborhood of the origin can we represent the whole 
intersection by a function y = f(x) or by a function x = ~(y), (see 
Figs. 3.1 and 3.2). On the other hand, it is quite possible for the 
equation F(x, y) = 0 to have such a solution even when the tangent 
plane at the initial solution is horizontal, as in the case F(x, y) = 
(y - X)4 = O. In the exceptional case of a horizontal tangent plane, 
therefore, no definite general statement can be made. 
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Figure 3.1 The surface u = xy. 

y 

Figure 3.2 Contour lines of u = xy. 

The remaining possiblity is that the tangent plane at the initial 
solution is not horizontal. Then, thinking intuitively of the surface 
z = F(x, y) as approximated by the tangent plane in a neighborhood 
of the initial solution, we may expect that the surface cannot bend 
fast enough to avoid cutting the x,y-plane near (xo, yo) in a single 
well-defined curve of intersection and that a portion of the curve 
near the initial solution can be represented by the equation y = f(x) 
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or x = ,(y). Analytically, the statement that the tangent plane is 
not horizontal means that Fx(xo,Yo) and F1I(xo, Yo) are not both 
zero (see p. 47). This is the basis for the discussion in the next sub­
section. 

Exercises 3.th 

1. By examining the surface of z = {(x, y), determine whether the equation 
{(x, y) = 0 can be solved for y as a function of x in a neighborhood ofthe 
indicated point (xo, yo) for 

(a) {(x, y) = x2 - y2, Xo = yo = 0 

(b) {(x, y) = [log (x + y)]1I2, Xo = 1.5, yo = -.5 

(c) {(x, y) = sin [n (x + y)] - 1, Xo = yo = 1/4 

(d) {(x, y) = X2 + y2 - y, Xo = yo = O. 

c. The Implicit Function Theorem 

We now state sufficient conditions for the existence of implicit 
functions and at the same time give a rule for differentiating them: 

Let F(x, y) have continuous derivatives Fx and F1I in a neighborhood 
o{ a point (xo, yo), where 

(1) F(xo, yo) = 0, F1I(xo, yo) =I::. o. 

Then centered at the point (xo, Yo), there is some rectangle 

(2) xo - a ~ x ~ xo + a, Yo - ~ ~ y ~ Yo + ~ 

such that {or every x in the interval I given by xo - a ~ x ~ xo + a 
the equation F(x, y) = 0 has exactly one solution y = {(x) lying in 
the interval yo - ~ ~ y ~ yo + ~. This {unction { satisfies the initial 
condition yo = {(xo) and, {or every x in I, 

(3) 

(3a) 

(3b) 

F(x, {(x» = o. 

yo - ~ ~ {(x) ~ yo + ~ 

F 1I(x, {(x» =I::. o. 

Furthermore, {is continuous and has a continuous derivative in I, given 
by the equation 

(4) y' = {'(x) = - :: . 
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This is a strictly local existence theorem for solutions of the 
equation F(x, y) = 0 in the neighborhood of an initial solution 
(xo, yo). It does not indicate how to find such an initial solution or 
how to decide if the equation F(x, y) = 0 is satisfied for any (x, y) 
at all. These are global questions and beyond the scope of the theorem. 
Uniqueness and regularity of the solution y = f(x), also, can be 
guaranteed only locally, that is, when y is restricted to the interval 
yo - 13 < y < yo + 13. The need for such restrictions is evident from 
the simple example of the equation 

F(x, y) = x2 + y2 - 1 = o. 

For every x with -1 < x < 1 the equation has two different solutions 
y = ± '\"'1 - x2. A single-valued solution y = f(x) is obtained by pre­
scribing arbitrarily one of the signs at each x. It is clear that in this 
way we can find solutions that are discontinuous for every x, 
choosing, for example, the positive sign for rational oX and the nega­
tive one for irrational x. Continuous solutions y = f(x) are obtained 
if we restrict y to a constant sign. This sign can be fixed by choosing 
for a given Xo in -1 < Xo < 1 one of the two possible values yo for which 
xo2 + Y02 = 1. A unique continuous solution y = f(x) with yo = f(xo) 
is obtained then for all x in -1 < x < 1 by requiring y to satisfy X2 + 
y2 = 1 and to have the same sign as yo. Geometrically, the graph of 
f is either the upper or the lower semicircle, whichever contains the 
point (xo, yo). The function f has a continuous derivative 

Fz x x y=--=--=--
F1I Y f(x) 

for - 1 < x < 1. With y defined to be zero for x = ± 1, the solution 
y = f(x) will be continuous in the closed interval - 1 ~ x ~ 1. How­
ever, the derivative y' then becomes infinite at the end points of the 
interval, since F 11 = 0 there. 

We shall prove the general theorem in the next section. We observe 
here only that once the existence and the differentiability of the 
function f(x) satisfying (3) have been established, we can find an 
explicit expression for f'(x) by applying the chain rule [see (18) p. 55] 
to differentiate F(x, y). This yields 

Fz + F1If'(x) = 0, 

and leads to formula (4) as long as F1I -=F o. Equivalently, if the equa­
tion F(x, y) = 0 determines y as a function of x, we conclude that 
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dF = Fx dx + Fy dy = 0 

and, hence, that 

An implicit function y = f(x) can be differentiated to any given 
order, provided the function F(x, y) possesses continuous partial deriv­
atives of that same order. For example, if F(x, y) has continuous 
first and second derivatives in the rectangle (2), the right side of equa­
tion (4) is a compound function of x: 

Fx(x,f(x» 
Fy(x, f(x» . 

Since, by (3b), the denominator does not vanish and since f(x) already 
is known to have a continuous first derivative, we conclude from (4) 
that y' has a continuous derivative; by the chain rule y" is given by 

Substituting the expression (4) for f', we find that 

(5) 

The rules (4) and (5) for finding the derivatives of an implicit func­
tion y = f(x) can be used whenever the existence off in an interval has 
been established from the general theorem on implicit functions, even 
in cases where it is impossible to express y explicitly in terms of ele­
mentary functions (rational functions, trigonometric functions, etc.). 
Even if we can solve the equation F(x, y) = 0 explicitly for y, it is usu­
ally easier to find the derivatives of y from the formulae (4) and (5), 
without making use of any explicit representation of y = f(x). 

Examples 

1. The equation of the lemniscate (Volume I, p. 102) 

F(x, y) = (x2 + y2)2 - 2a2(x2 - y2) = 0 

is not easily solved for y. For x = 0, y = 0 we obtain F = 0, Fx = 0, 
Fy = O. Here our theorem fails, as might be expected from the fact that 
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two different branches of the lemniscate pass through the origin. How­
ever, at all points of the curve where y *- 0, our rule applies, and the 
derivative of the function y = f(x) is given by 

, Fx y=--= Fy 
4x(x2 + y2) - 4a2x 
4y(x2 + y2) + 4a2y· 

We can obtain important information about the curve from this equa­
tion, without using the explicit expression for y. For example, maxima 
or minima might occur where y' = 0, that is, for x = 0 or for x 2 + y2 = 
a2• From the equation of the lemniscate, y = 0 when x = 0; but at the 
origin there is no extreme value (cf. Fig. 1.8.3, Volume I, p. 103). The 

two equations therefore give the four points (± ~ .J3, ±~) as the 

maxima and minima. 
2. The folium of Descartes has the equation 

F(x,y) = x 3 + y3 - 3axy = 0 

(cf. Fig 3.3), with awkward explicit solutions. At the origin, where 
the curve intersects itself, our rule again fails, since at that point 
F = Fx = Fy = O. For all points at which y2 *- ax we have 

y' = _ FFXy = _ ~ - ay 
y2 - ax· 

Accordingly, there is a zero of the derivative when x 2 - ay = 0 or, if 
we use the equation of the curve, when 

y 

Figure 3.3 Folium of Descartes. 
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x = a ~2, y = a ~4. 

Exercises 3.le 

1. Prove that the following equations have unique solutions for y near the 
points indicated: 

(a) x2 + xy + y2 = 7 (2, 1) 

(b) x cos xy = 0 (1, rr:/2) 
(c) xy + log xy = 1 (1, 1) 

(d) x5 + y5 + xy = 3 (1, 1). 

2. Find the first derivatives of the solutions in Exercise 1 and give their 
values at the indicated points. 

3. Find the second derivatives of the solutions in Exercise 1 and give their 
values at the indicated points. 

4. Which of the implicitly defined functions of Exercise 1 are convex at 
the indicated points. 

5. Find the maximum and minimum values of the function y that satisfies 
the equation x 2 + xy + y2 = 27. 

6. Let fy(x, y) be continuous on a neighborhood of the point (xo, yo). Show 
that the equation 

y = yo + r f('€" y)dF.. 
"'0 

determines y as a function of x in some interval about x = Xo. 

d. Proof of the Implicit Function Theorem 

Existence of the implicit function follows directly from the inter­
mediate value theorem (see Volume I, p. 44). Assume that F(x, y) is 
defined and has continuous first derivatives in a neighborhood of the 
point (xo, yo), and let 

F(xo, Yo) = 0, Fy(xo, yo) *- o. 

Without loss of generality we assume that m = F II(xo, Yo) > O. Other­
wise, we merely replace the function Fby - F, which leaves the points 
described by the equation F(x, y) = 0 unaltered. Since Fy(x, y) is con­
tinuous, we can find a rectangle R with center (xo, Yo) and so small 
that R lies completely in the domain of F and Fy(x, y) > m/2 through­
out R. Let R be the rectangle 

Xo - a ~ x ~ Xo + a, yo - P ~ y ~ yo + P 

(see Fig. 3.4). Since Fix, y) also is continuous, we conclude that Fs 
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y 

Yo+fJ 

Yo 
R 

Yo- fJ ---,rr--t-, --i-I---l---l 
I I I" x 

o I xo-a x I xo+a 
xo-a Xo xo+a 

Figure 3.4 

is bounded in R. Thus, there exist positive constants m, M such that 

(6) m 
F II(x,Y) >2' IFz(x,y)1 ~ M for (x,y) in R. 

For any fixed x between Xo - a and Xo + a the expression F(x, y) is 
a continuous and monotonically increasing function of y for yo - P 
~ y ~ yo + p. If 

(7) F(x,yo + P) > 0, F(x, yo - P) < 0, 

we can be sure that there exists a single value y intermediate. between 
yo - P and yo + P at which F(x, y) vanishes. For the given x the 
equation F(x, y) will then have a single solution y = f(x) for which 

yo - P < y < yo + p. 

To prove (7), we observe that by the mean value theorem 

F(x, yo) = F(x, yo) - F(xo, yo) = Fz(~, yo)(x - xo)., 

where ~ is intermediate between Xo and x. Hence, if a denotes a number 
between 0 and a, we have 

IF(x,yo)1 ~ IFz(~,yo)llx - xol ~ Ma for Ix - xol~ a. 

Similarly, it follows from FII> m/2 that 

1 
F(x, yo + P) = [F(x, yo + P) - F(x, yo)] + F(x, yo) > 2 mp - Ma, 

1 
F(x, yo - P) = - [F(x, yo) - F(x, yo - P)] + F(x, Yo) < - 2 mp + Ma. 

Thus, the inequalities (7) hold for any x in the interval Xo - a ~ x ~ 
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Xo + (l provided we take (l so small that (l ~ a and (l < m~/2M. 
For any x with I x - Xo I ~ (l this proves existence and uniqueness 

of a solution y = f(x) of the equation F(x, y) = 0 such that I y - yo I ~ 
~ and Fy(x, y) > mJ2 > O. For x = Xo the equation F(x, y) = 0 has the 
solution y = yo corresponding to our initial point. Since yo certainly 
lies between yo - ~ and yo - ~, we see that f(xo) = yo. Continuity and 
differentiability of f(x) now follow from the mean value theorem for 
functions of several variables applied to F(x, y) [see (33) p. 67]. Let x 
and x + h be two values between Xo - (l and Xo + (l. Let y = f(x) and 
y + k = f(x + h) be the corresponding values of f where y and y + k 
lie between yo - ~ and yo + ~. Then F(x, y) = 0, F(x + h, y + k) = O. 
It follows that 

o = F(x + h, y + k) - F(x, y) 

= Fx(x + eh, y + ek) h + Fy(x + eh, y + ek)k, 

where e is a suitable intermediate value between 0 and 1.1 

Using F y *- 0, we can divide by Fyand find that 

(8) 
k Fix + eh,y + ek) 
Ii = - Fy(x + eh, y + ek) . 

Since IFxl ~ M, IFyl> m/2 for all points of our rectangle, we find 
that the right-hand side is bounded by 2M/m. Thus 

Hence, k = f(x + h) - f(x) ~ 0 for h ~ 0, which shows that y = f(x) 
is a continuous function. We conclude from (8) that for fixed x and 
fory = f(x), 

lim f(x + h) - f(x) = _ lim Fix + eh, y + ek) = _ Fx(x, y) . 
h~o h h~o Fx(x + eh, y + ek) Fy(x, y) 

This establishes the differentiability of f and at the same time yields 
formula (4) for the derivative. 

The proof hinges on the assumption Fy(xo, yo) *- 0, from which we 
could conclude that Fy is of constant sign in a sufficiently small 

lObserve that the mean value theorem can be applied here, since the segment 
joining any two points of the rectangle I x - Xo I ~ n, I y - yo I ~ ~ lies wholly 
within the rectangle. 
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neighborhood of (xo, Yo) and that F(x, y) for fixed x is a monotone 
function of y. 

The proof merely tells us that the function y = f(x) exists. It is a 
typical example of a pure"existence theorem," in which the practical 
possibility of calculating the solution is not considered. Of course, 
we could apply any of the numerical methods discussed in Volume I 
(pp. 494 if.) to approximate the solutiony of the equation F(x, y) = 0 
for fixed x. 

Exercises 3.ld 

1. Give an example of a function {(x, y) such that (a) {(x, y) = 0 can be 
solved for y as a function of x near x = Xo, y = yo, and (b) (y(xo, yo) = O. 

2. Give an example of an equation F(x, y) = 0 that can be solved for y as a 
function y = {(x) near a point (xo, yo), such that (is not differentiable at 
xo. 

3. Let tP(x) be defined for all real values of x. Show that the equation 
F(x, y) = y3 - y2 + (1 + x 2) y - tP(x) = 0 defines a unique value of y 
for each value of x. 

e. The Implicit Function Theorem for More Than Two 
Independent Variables 

The implicit function theorem can be extended to a function of 
several independent variables as follows: 

Let F(x, y, ... , z, u) be a continuous function of the independent 
variables x,y, . .. z, u, with continuous partial derivatives Fx,FlI' . .. , 
Fz, Fu. Let (xo, yo, ... , zo, uo) be an interior point of the domain of 
definition of F, for which 

F(xo, yo, . . ., zo, uo) = 0 and F u(xo, yo, . . ., Zo, uo) =1= O. 

Then we can mark off an interval uo - /3 ~ u ~ uo + /3 about uo and a 
rectangular region R containing (xo, yo,. . ., zo) in its interior such that 
forevery (x,y, . .. , z) in R, the equation F(x,y, . .. , z, u) = 0 is satisfied 
by exactly one value of u in the interval uo - /3 ~ u ~ uo + /3.1 For 
this value of u, which we denote by u = f(x, y". . ., z), the equation 

F(x, y, ... , z, f(x, y, ... , z» = 0 

holds identically in R,' in addition, 

IThe value 13 and the rectangular region R are not determined uniquely. The as· 
sertion of the theorem is valid if 13 is any sufficiently small positive number and if 
we choose R (depending on 13) sufficiently small. 
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Uo = f(xo, Yo, . . ., zo), 

Uo - ~ < f(x,y, ... , z) < Uo +~; Fu(x,y, ... , z, f(x,y, ... , z» =f::- o. 

The function f is a continuous function of the independent variables x, 
y, .... , Z, and possesses continuous partial derivatives given by the 
equations 

(9a) Fx + Fufx = 0, Fy + Fufy = 0, ... , Fz + Fufz = o. 

The proof follows exactly the same lines that were given in the pre­
vious section for the solution of the equation F(x, u) = 0 and offers 
no further difficulty. 

It is suggestive to combine the differentiation formulae (9a) in the 
single equation 

(9b) Fxdx + Fydy + ... + Fzdz + Fudu = O. 

In words, if the variables x, y, ... , z, u, are not independent of one 
another but are subject to the condition F(x, y, ... , z, u) = 0, then the 
linear parts of the increments of these variables are likewise not inde­
pendent but are connected by the linear equation 

dF= Fxdx + Fydy + ... + Fzdz + Fudu = O. 

If we replace du in (9b) by the expression uxdx + uydy + 
+ uzdz and then equate the coefficient of each of the mutually independ­
ent differentials dx, dy, . . ., dz to zero, we retrieve the differentiation 
formulae (9a). 

Incidentally, the concept of implicit function enables us to give a 
general definition of an algebraic function. We say that u = f(x, y, 
... ) is an algebraic function of the independent variables x, y, . .. if 
u can be defined implicitly by an equation F(x, y, . ... u) = 0, where 
F is a polynomial in the arguments x,y, ... , u; briefly, if u "satisfies 
an algebraic equation." A function that satisfies no algebraic equa­
tion is called transcendental. 

As an example, we apply our differentiation formulae to the 
equation of th.e sphere, 

F(x, y, u) = x2 + y2 + u2 - 1 = O. 

For the partial derivatives, we obtain 
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ux=-~,u __ l.. u ,,- u' 

and by further differentiation 

1 x X 2 + U 2 
Uxx = - - + 2 Ux = - 3 

U U U 

x xy 
Ux" = 2 u" = - 3 ' U U 

1 Y y2 + u2 
U""=--+a U,,=- 3 

U U U 

Exercises 3.le 

1. Show that the equation x + y + z = sin xyz can be solved for z near 
(0, 0, 0). Find the partial derivatives of the solution. 

2. For each of the following equations examine whether it has a unique 
solution for z as a function of the remaining variables near the indi­
cated point: 

'It 
(a) sin x + cos y + tan z = 0 (x = 0, y = 2' z = 'It) 

(b) x2 + 2y2 + 3z2 - W = 0 (x = 1, y = 2, z = -1, W = 8) 

(c) 1 + x + y = cosh (x + z) + sinh (y + z) (x = y = z = 0). 

3. Show that x + y + z + xyz3 = 0 defines z implicitly as a function of x 
and y in a neighborhood of (0, 0, 0). Expand z to fourth order in powers 
of x andy. 

3.2 Curves and Surfaces ,n Implicit Form 

a. Plane Curves in Implicit Form 

The description of a plane curve by an equation ofthe form y = f(x) 
gives asymmetric preference to one of the coordinates. The tangent 
and the normal to the curve were found (see Volume I, pp. 344-345) 
to be given by the respective equations 

(lOa) (11 - y) - (~ - x)f'(x) = 0 

and 

(lOb) (11 - y)f'(x) + (~ - x) = 0, 

where ~, 11 are the "running coordinates" of an arbitrary point on the 
tangent or normal, and x, yare the coordinates of the point on the 
curve. The curvature of the curve is 
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(lOc) f" 
k = (1 + f'2)3/2 

(see Volume I p. 357). For a point of inflection the condition 

(10d) f"(x) = 0 

holds. We shall now obtain the corresponding symmetrical formulae 
for curves represented implicitly by an equation of the type F(x, y) = O. 
We do this under the assumption that at the point in question Fz 
and F yare not both 0, so that 

(11) 

If we suppose that Fy *- 0, say, we can substitute for f'(x) in (lOa, 
b), its value from (4), p.221, and at once obtain the equation of the 
tangent in the form 

(12a) (I; - x)Fz + (11 - y)Fy = 0 

and that of the normal in the form 

(12b) (I; - x)Fy - (11 - y)Fz = O. 

For Fy = 0, Fz *- 0 we obtain the same equations by starting from the 
solution of the implicit equation F(x, y) = 0 in the form x = g(y). 

The direction cosines of the normal to the curve at the point (x, y)­
that is, the direction cosines of the normal to the line with equation 
(12a) in the 1;, TJ-plane-are given by 

(12c) 

[see (20), p. 135] Similarly, the direction cosines of the tangent to the 
curve-that is, of the normal to the line (12b)-are 

(12d) 

There are actually two directions normal to the curve at a given 
point, the one with direction cosines (12c) and the opposite one. The 
normal given by (12c) has the same direction as the vector with com­
ponents Fz,Fy, the gradient of F(see p. 205). We saw on p. 206 that the 
direction of the gradient vector is the one in which Fincreases fastest; 
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thus, at a point of the curve F(x, y) = 0 the gradient points into the re­
gion F > 0 and the same holds for the normal direction determined by 
the formulae (12c). 

Formula (5), p. 223 gave the expression for the second derivative y" = 
f"(x) of a function given in explicit form F(x, y) = o. It follows 
that the necessary condition f" = 0 for the occurrence of a point of 
inflection can be written as 

(13) 

for curves given implicitly. In this formula there is no preference for 
either of the two variables x, y. It is completely symmetric and no 
longer requires the assumption that F1I *- o. This symmetric charac­
ter reflects, of course, the fact that the notion of point of inflection has 
a geometrical meaning quite independent of any coordinate system. 

If we substitute formula (5) for f"(x) into the formula (10c) for the 
curvature k of the curve, we again obtain an expressionl symmetric in 
x andy, 

(14a) 

Introducing the radius of curvature 

(14b) 

we find for the coordinates ~, TJ of the center of curvature, the point on 
the inner normal at distance p from (x, y) (see Volume I, p. 358), 

(14c) 

If instead of the curve F(x, y) = 0, we consider the curve 

F(x,y) = c, 

where c is a constant, everything in the preceding discussions remains 
the same. We only have to replace the function F(x, y) by F(x, y) - c, 
which has the same derivatives as the original function. Thus, for 

IFor the sign of the curvature, see Volume I, p. 357. The curvature k defined by 
formula (14a) is positive if Fincreases on the "outer" side of the curve, that is, if the 
tangent to the curve near the point of contact lies in the region F ~ o. 
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these curves, the form of the equations of the tangent, normal, and 
so on are exactly the same as above. 

The class of all curves F(x, y) - c = 0 that we obtain when we 
allow c to range through all the values of an interval forms the family 
of "contour lines," or "level lines," of the function F(x, y); (see p. 
14). More generally, we obtain a one -parameter family of curves from 
an equation of the form 

F(x, y, c) = 0, 

which for each constant value of the parameter c yields a curve rc 
in implicit form. For a point (x, y) lying on the curve r c -that is, sat­
isfying the equation F(x, y, c) = O-all the formulae derived pre­
viously apply. In particular, the gradient vector (Fx(x, y, c), Fy(x, y, c» 
is normal to rc at the point (x, y). 

As an example, we consider the ellipse 

(15a) 
x2 y2 

F(x,y) = a2 + b2 = 1. 

By (12a) the equation of the tangent at the point (x, y) is 

(~ - x) :2 + (11 - y) b2 = 0; 

hence, from (15a), 

We find from (14a) that the curvature is 

(15b) 

If a > b, this has its greatest value aJ b2 at the vertices y = 0, x = ± a. 
Its least value bJa2 occurs at the other vertices x = 0, y = ± b. 

If two curves F(x, y) = 0 and G(x, y) = 0 intersect at the point (x, y) 
the angle between the curves is defined as the angle (0 formed by 
their tangents (or normals) at the point of intersection. If we recall 
that the gradients give the direction of the normals and apply formula 
(7), p. 128 for the angle between two vectors, we find that 
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(16) 

Here cos co is determined uniquely by the choice of co as angle be­
tween the normals of the two curves in the directions of increasing 
F and G. 

Putting co = rt/2 in (16), we obtain the condition for orthogonality, 
that is, for the curves to intersect at right angles at the point (x, y): 

(16a) 

If the curves touch-that is, have a common tangent and normal in the 
point where they meet-their gradient vectors (Fx, Fy) and (Gx, Gy) 
must be paralleL This leads to the condition 

(16b) 

As an example, we consider the family of parabolas 

(17a) F(x, y, c) = y2 - 2C(X + ~) = 0 

(see Fig. 3.9, p. 245), all of which have the origin as focus ("confocal 
parabolas"). If Cl > 0 and C2 < 0, the two parabolas 

and 

intersect each other perpendicularly at two points; for at the points of 
intersection 

and hence, 

Fx(x, y, Cl) Fx(x, y, C2) + Fy(x, y, Cl) Fy(x, y, C2) 

= 4(Cl C2 + y2) = o. 
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By (14a) the curvature of the parabola (17a) is given by 

c2 

k = (c2 + y2)3/2. 

At the vertex x = -c/2, y = 0, this reduces to 

1 
k=TCT· 

The center of curvature or center of the osculating circle at the vertex 
has then by (14c) the coordinates 

c c 
~ = - - + I c I sgn c = - , 2 2 11=0 

so that the focus (0, 0) lies halfway between the vertex and the center 
of curvature. 

Exercises 3.2a 

1. Find the equations of the tangent and normal for the curves given 
implicitly by the following relations: 

(a) X2 + 2y2 - xy = 0 

(b) eX sin y + eIJ cos x = 1 

(c) cosh (x + 1) - sin y = 0 

(d) x2 + y2 = Y + sin x 

(e) x3 + y4 = cosh y 

(f) XU + yX = 1. 

2. Calculate the curvature of the curve 
sinx+cosy=l 

at the origin. 
3. Find the curvature of a curve that is given in polar coordinates by the 

equation f(r, 6) = o. 
4. Prove that the intersections of the curve 

(x + y - a)3 + 27axy = 0 
with the line x + y = a are inflections of the curve. 

5. Determine a and b so that the conics 
4X2 + 4xy + y2 - lOx - lOy + 11 = 0 

(y + bx - 1 - b)2 - a(by - x + 1 - b) = 0 
cut one another orthogonally at the point (1, 1) and have the same 
curvature at this point. 
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6. Let K' and K" be two circles having two points A and B in common. If 
a circle K is orthogonal to K' and K", then it is also orthogonal to every 
circle passing through A and B. 

b. Singular Point8 of Curve8 

In many of the formulae of the preceding section the expression 
F z 2 + F·i occurs in the denominator. Accordingly, we may expect 
something unusual to happen when this quantity vanishes, that is, 
when Fz = 0 and F" = 0 at a point of the curve F(x,y) = o. At such a 
point the expression y' = - F z/ F" for the slope of the tangent loses its 
meaning. 

We call a point P of a curve regular if in a neighborhood of P either 
variable x or y can be represented as a continuously differentiable 
function of the other. In that case, the curve has a tangent at P and is 
closely approximated by that tangent in a neighborhood of P. If not 
regular, a point of the curve is called singular or a singularity. 

From the implicit function theorem we know that if F(x, y) has con­
tinuous first partial derivatives, then a point of the curve F(x, y) = 0 
is regular if at that point Fz2 + F,,2 =F 0, for if F" =F 0 at P, we can 
solve the equation F(x, y) = 0 and obtain a unique continuously 
differentiable solution y = f(x). Similarly, if Fz =F 0 we can solve the 
equation for x. 

An important type of singularity is a multiple point, that is, a point 
through which two or more branches of the curve pass. For example, 
the origin is a multiple point of the lemniscate (Volume I, p. 102) 

It is clear that in the neighborhood of a multiple point we cannot 
express the equation of the curve uniquely in the form y = f(x) or x = 
g(y). 

An example of a singularity that is not a multiple point is furnished 
by the cubic curve 

F(x,y) = y3 - x2 = o. 

(see Fig. 3.5). Here at the origin Fz = F" = o. Solving for y, we can 
put the equation of the curve into the form 

y = f(x) = t' X2 , 

where f is continuous but not differentiable at the origin. The curve 
has a cusp at that point. 
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Figure 3.5 The curve y3 - x2 = O. 

A curve can be regular at a point where both Fz and F1I vanish. This 
is exemplified by 

F(x,y) = y3 - x4 = o. 

Here again Fz = F1I = 0 at the origin. But solving for y, we find 

y = f(x) = ~ x4 , 

where f(x) is continuously differentiable for all x. Thus, the origin is 
a regular point. Since F is an even function of x, the curve is sym­
metric with respect to the y-axis. It is convex and touches the x-axis 
at the origin, like the parabola y = x2• Yet the origin is a somewhat 
special point for the curve, since there f" becomes infinite, and there 
the curve has infinite curvature. 

The trivial example of the equation 

F(x,y) = (y - X)2 = 0 

representing the straight line y = x shows that no peculiar behavior 
has to be associated with points of a curve F(x, y) = 0 for which 
F z2 + F1I2 = O. We shall treat singular points more systematically 
in Appendix 3. 

Exercises 3.2b 

1. Discuss the singular points of the following curves at the origin: 

(a) F(x, y) = ax3 + by3 - cxy = 0 

(b) F(x, y) = (y2 - 2X2)2 - xli = 0 

(c) F(x, y) = (1 + ellZ)y - x = 0 
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(d) F(x, y)= y2(2a - x) - x3 = 0 

(e) F(x, y) = (y - 2X)2 - x 5 = O. 

2. The curve x3 + y3 - 3axy = 0 has a double point at the origin. What are 
its tangents there? 

3. Draw a graph of the curve (y - X 2)2 - x5 = 0, and show that it has a 
cusp at the origin. What is the peculiarity of this cusp as compared with 
the cusp of the curve x 2 - y3 = O? 

4. Show that each of the curves 
(x cos oc - y sin oc - b)3 = c(x sin a. + y cos 11.)2, 

where a. is a parameter and b, c constants, has a cusp and that the cusps 
all lie on a circle. 

5. Let (x, y) be a double point of the curve F(x, y) = O. Calculate the angle rp 
between the two tangents at (x, y), assuming that not all the second 
derivatives of F vanish at (x, y). Find the angle between the tangents at 
the double point 

(a) of the lemniscate, 

(b) of the folium of Descartes (cf. p. 224). 

6. Find the curvature at the origin of each of the two branches of the curve 
y(ax + by) = cx3 + ex2y + fxy2 + gy3. 

c. Implicit Representation of Surfaces 

Hitherto, we have usually represented a surface in x, y, z-space by 
means of a function z = [(x, y). For a given surface in space the pref­
erence for the coordinate z implied in this representation may prove 
inconvenient. It is more natural and more general to represent sur­
faces in space implicitly by equations of the form F(x, y, z) = 0 or 
F(x, y, z) = constant. For example, it is better to represent a sphere 
about the origin by the symmetric equation x2 + y2 + Z2 - r2 = 0 
than by z = ± vr2 - x2 - y2. The explicit representation of the sur­
face appears then as the special implicit representation F(x, y, z) = 
z -f(x, y) = O. 

In order to derive the equation of the tangent plane at a point P 
of the surface F(x, y, z) = 0, we make the assumption that at that point 

(18) 

that is, that at least one of the partial derivatives is not 0.1 If, say, 
Fz "* 0, we can find an explicit equation z = f(x, y) for the surface near 
P. The tangent plane at P has the equation 

IJust as for curves, the vanishing of the gradient of Fusually corresponds to singular 
behavior of the surface. We shall not discuss the nature of such singularities. 
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(19a) s - z = (~ - x)fa; + ('11 - y)fy 

in running coordinates~, '11, S (see p. 47). Substituting for the deriva­
tives of f their values fa; = - Fa;/Fz, fy = - Fy/Fz in accordance with 
formulae (9a), p. 229, we obtain the equation of the tangent plane in the 
form 

(19b) (~ - x)Fa; + ('11 - y)Fy + (s - z)Fz = O. 

The normal to the tangent plane (19b) has the same direction as the 
gradient vector (Fa;, F y, Fz) (see p. 134). Hence, the direction cosines 
of the normal are given by the expressions 

(19c) 

Here, more precisely, we have taken that normal of the plane that 
points in the direction of increasing F (see p. 206). 

If two surfaces F(x, y, z) = 0 and G(x, y, z) = 0 intersect at a point, 
the angle 0) between the surfaces is defined as the angle between their 
tangent planes or, what is the same thing, the angle between their 
normals. This is given by 

(20a) 

In particular, the condition for perpendicularity (orthogonality) is 

(20b) 

Instead of a surface given by an equation F(x, y, z) = 0, we may con­
sider more generally surfaces given by F(x, y, z) = c, where c is a con­
stant. Different values of c yield different level surfaces of the function 
F (see p. 15). At any point (x, y, z) the gradient vector (Fa;, F y, Fz) 
is normal to the level surface passing through that point. Similarly, 
equation (19b) gives the tangent plane to the level surface. 

As an example, we consider the sphere 

By (19b), the tangent plane at the point (x, y, z) is 
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(~ - x)2x + (11 - y)2y + (I; - z)2z = 0 

or 

~x + 11Y + I;z = r2. 

The direction cosines of the normal are proportional to x, y, z, that is, 
the normal coincides with the radius vector drawn from the origin 
to the point (x, y, z). 

For the most general ellipsoid with the coordinate axes as principal 
axes 

the equation of the tangent plane is 

1. Find the tangent plane 
(a) of the surface 

Exercises 3.2c 

x 3 + 2xy2 - 7 Z3 + 3y + 1 = 0 
at the point (1, 1. 1); 

(b) of the surface 

(x2 + y2)2 + x 2 - y2 + txy + 3x + Z4 - Z = 14 

at the point (1, 1, 1); 
(c) of the surface 

sin2 x + cos (y + z) = ~ 
at the point (1t/6, 1t/3, 0). 

(d) of the surface 

1 + x cos 1tZ + y sin 1tZ - Z2 = ° 
at the point (0, 0, 1); 

(e) of the surface 

cosx+cosy+2sinz=0 

at the point (0, 0, -1t/2); 
(f) of the surface 

x2 + y2 = Z2 + sin z 

at the point (0, 0, 0). 
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2. Prove that the three surfaces of the family of surfaces 

xy = U, Jx2 + Z2 + Jy2 + Z2 = V, Jx2 + Z2 - Jy2 + Z2 = W 
z 

that pass through a single point are orthogonal to one another. 
3. The points A and B move uniformly with the same velocity, A starting 

from the origin and moving along the z-axis, B starting from the point 
(a, 0, 0) and moving parallel to the y-axis. Find the surface generated 
by the straight lines joining them. 

4. Show that the tangent plane at any point of the surface x 2 + y2 - Z2 = 1 
meets the surface in two straight lines. 

5. If F(x, y, z) = 1 is the equation of a surface, F being a homogeneous 
function of degree h, then the tangent plane at the point (x, y, z) is given 
by 

f,Fx + YlFy + '("Fz = h. 

6. Let z be defined as a function of x and y by the equation 

x 3 + y3 + Z3 - 3xyz = o. 
Express Zx and Zy as functions of x, y, z. 

7. Find the angle of intersection of the following pairs of surfaces, at the 
indicated points: 

(a) 2X4 + 3y3 - 4Z2 = -4, 1 + x 2 + y2 = Z2, at (0, 0, 1) 

(b) x y + yZ = 2, cosh (x + y - 2) + sinh (x + z - 1) = 1, at (1, 1, 0) 

(c) x 2 + y2 = eZ, x 2 + Z2 = eY, at (1, 0, 0) 

(d) 1 + sinh (x/h) = cosh (y/Jz), x 2 + y2 = Z2 - 1, at (0, 0, 1) 

(e) cos 1t(X2 + y) + sin 1t(x2 + z) = 1, x3 + y3 = Z3 at (0, 0, 0). 

3.3 Systems of Functions, Transformations, and Mappings 

a. General Remarks 

The results we have obtained for implicit functions now enable us 
to consider systems of functions, that is, to discuss several functions 
simultaneously. In this section we shall ce;nsider the particularly im­
portant case of systems in which the number of functions is the same 
as the number of independent variables. We begin by investigating the 
meaning of such systems in the case of two independent variables. 
If the two functions 

(21a) ~ = rfi(x,y) and 11 = 'V(x, y) 

are both continuously differentiable in a set R of the x, y-plane, the 
domain of the functions, we can interpret this system of functions in 
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two different ways. The first ("active") interpretation is by means of a 
mapping or transformation. (The second, as a coordinate transforma­
tion, will be discussed on p. 246). To the point P with coordinates (x, y) 
in the x, y-plane there corresponds the image point IT with coordinates 
(I;, 1'\) in the 1;, 1'\-plane. 

An example is the affine mapping or transformation 

I; = ax + by. 1'\ = ex + dy 

where a, b, c, d are constants (see p. 148). 
Frequently (x, y) and (I;, 1'\) are interpreted as points of one and the 

same plane. In this case we speak of a mapping, or a transformation of 
the x,y-plane into itself. 

The fundamental problem connected with a mapping is that of its 
inversion, the question whether and how x and y can in virtue of the 
equations I; = tfi (x, y) and 1'\ = 'I'(x, y) be regarded as functions of I; and 
1'\ and how to determine properties of these inverse functions. 

If for (x, y) varying over the domain R of the mapping the images 
(I;, 1'\) vary over a set B in the 1;, 1'\-plane, we call B the image set of R 
or the range of the mapping. If two different points of R always corre­
spond to two different points of B, then for each point (I;, 1'\) of B there is 
a single point (x, y) of R for which (I;, 1'\) is the image. (The point (x, y) 
is called the inverse image, as opposed to the image). That is, we can in­
vert the mapping uniquely, determining x andy as functions 

(21b) x = g(l;, 1'\), Y = h(l;, TJ), 

which are defined in B. We then say that the mapping (21a) has a 
unique inverse or is a 1-1 mapping, and we call the transformation 
(21b) the inverse mapping or transformation of the original one. 

If in this mapping the point P = (x, y) describes a curve in the 
domain R, its image point (I;, TJ) usually will likewise describe a curve 
in the set B, which is called the image curve of the first. For example, 
tothe line x = c, which is parallel to the y-axis, there corresponds in 
the 1;, TJ-plane the curve given in parametric form by the equations 

(22a) I; = tfi(c, y), TJ = 'I'(c, y), 

where y is the parameter. Again, to the line y = k there corresponds 
the curve 

(22b) I; = tfi(x, k), 1'\ = 'I'(x, k). 
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If to c and k we assign sequences of equidistant values CI, C2, C3, • • • 

and kl, k2, k3, . . ., then the rectangular "coordinate net" consisting 
of the lines x = constant and y = constant (e.g., the network of lines 
on ordinary graph paper) gives rise to a corresponding net of curves, 
the curvilinear net, in the ~,11-plane (Figs. 3.6 and 3.7). The two 
families of curves can be written in implicit form. If we represent the 
inverse mapping by the equations (21b), the equations of the curves 
are simply 

(22c) 

'1 

0 x-
c, Cz CJ 

o'---------.~ 

Figure 3.6 and Figure 3.7 Nets of curves x = constant and y = 
constant in the x, y·plane and the 1;, ll-plane. 

g(~, 11) = C and h(~, 11) = k, 

respectively. In many situations the curvilinear net furnishes a useful 
geometric picture of the mapping (21a) preferable to the interpretation 
of the equations as a two-dimensional surface in four-dimensional 
x, y, ~, 11-space. 

In the same way, the two families of lines ~ = y and 11 = K in the ~, 
11-plane correspond to the two families of curves 

r/J(x,y) = Y and 'V(x,y) = K 

in the x, y-plane. 
As an example, we consider the inversion (also called mapping by 

reciprocal radii or reflection with respect to the unit circle). This trans­
formation is given by the equations 

(23a) 11 - y 
-X2 +y2 

To the point P = (x, y) there corresponds the point n = (~, 11) lying on 
the same ray OP and satisfying the equation 
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(23b) or 

---->0. 

thus, the length of the position vector OP is the reciprocal of the 
~ 

length of the position vector on. Points inside the unit circle x2 + y2 

= 1 are mapped on points outside the circle and vice versa. From (23b) 
we find that the inverse transformation is .. 

Y _ 11 
- ~2 + 112' 

which is again an inversion; that is, the inverse image of a point coin­
cides with its image. 

For the domain R of the mapping (23a) we may take the whole x, y­
plane with the exception of the origin, and for the range B the whole 
~, 11-plane with the exception of the origin. The lines ~ = y and 11 = K 

in the ~, 11-plane correspond to the respective circles 

1 x2 + y2 - -x = 0 
y 

and 1 
x2 + y2 - - Y = 0 

K 

in the x, y-plane. In the same way, the rectilinear coordinate net in 
the x, y-plane corresponds to the two families of circles touching the 
1;-axis and 11-axis at the origin. 

As a further example we consider the mapping 

~ = x2 - y2, 11 = 2xy. 

The curves ~ = constant give rise in the x, y-plane to the rectangular 
hyperbolas x2 - y2 = constant, whose asymptotes are the lines x = y 
and x = - y. The lines 11 = constant also correspond to a family of 
rectangular hyperbolas having the coordinate axes as asymptotes. 
The hyperbolas of each family cut those of the other family at right 
angles (Fig. 3.8). The lines parallel to the axes in the x, y-plane corre­
spond to two families of parabolas in the~, 11-plane, the parabolas 112 = 
4c2(C 2 - ~) corresponding to the lines x = c and the parabolas 112 = 
4k2(k2 + ~) corresponding to the lines y = k. All these parabolas have 
the origin as focus and the ~-axis as axis; they form a family of 
confocal and coaxial parabolas (Fig. 3.9). 

One-one transformations have an important interpretation and ap­
plication in the representation of deformations or motions of continu­
ously distributed substances, such as fluids. If we think of such a sub­
stance as spread out at a given time over a region R and then deformed 
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Figure 3.8 Orthogonal families of rectangular hyperbolas. 

Figure 3.9 Orthogonal families of confocal parabolas. 

by a motion, the substance originally spread over R will in general 
cover a region B different from R. Each particle of the substance can 
be distinguished at the beginning of the motion by its coordinates 
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(x, y) in R and at the end of the motion by its coordinates (~, ,,) in B. 
The 1-1 character of the transformation obtained by bringing (x, y) 
into correspondence with (~, ,,) is simply the mathematical expression 
of the physically obvious fact that separate particles remain separate. 

Exercises 3.3a 

1. Find the image curves of the lines x = const., y = const. under the 
following transformations: 

(a) ~ = eX cos y, 1) = eX sin y 

(b) 1; = (x - y)/2, 1) = J xy 

(c) ~ = Jx/y, 1) = cos (x + y) 

(d) 1; = x + y2, 1) = Y + x2 - 1 

(e) ~ = XY, 1) = yX 

(f) ~ = sinh x, 1) = cosh y 

(g) ~ = sin(x + y), 1) = cos (x - y) 

(h) ; = eCOS x, 1) = esin Y. 

2. Find the image of the region bounded by the curve cosh2 x + sinh2 y = 1 
under the mapping ~ = eX, 1) = eY• 

3. Find the image of the rectangle 1 ;:;:; x ;:;:; 3, 4 ;:;:; y ;:;:; 16, under the 
mapping ~ = J x + y, 1) = Jy - x. 

4. Is the transformation 1; = x - xy, 1) = 2xy one-to-one? 

b. Curvilinear Coordinates 

Closely connected with the first interpretation (as a mapping) of 
the system of equations ~ = f(x, y), rj = 'J1(x, y) is the second interpreta­
tion as a transformation of coordinates in the plane. If the functions 
cp and 'J1 happen not to be linear, this is no longer an "affine" trans­
formation but a transformation to general curvilinear coordinates. 

We again assume that when (x, y) ranges over a region R of the 
x, y-plane the corresponding point (~, ,,) ranges over a region B of the 
~, ,,-plane and also that for each point of B the corresponding (x, y) 
in R can be uniquely determined; in other words, that the transfor­
mation is 1-1. The inverse transformation we again denote by X= 

g(~, ,,), y = h(~, ,,). 
By the coordinates of a point P in a region R we now mean any 

number-pair that serves to specify the position of the point P in R 
uniquely with respect to a given coordinate frame. Rectangular coordi­
nates form the simplest system of coordinates that extend over the 
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whole plane. Another familiar system is the system of polar coordi­
nates in the x, y-plane, introduced by the equations 

~ = r = ..; x2 + y2 

l'J = e = arc tany/x (0;;;; e < 2n). 

When we are given a system of functions ~ = ~(x, y), l'J = 'I'(x, y) 
as above, we can in general assign to each point P(x, y) the corre­
sponding values (~, l'J) as new coordinates, for each pair of values (~, l'J) 
belonging to the region B uniquely determines the pair (x, y), and, 
thus, uniquely determines the position of the point P in R. The "co­
ordinate lines" ~ = constant and l'J = constant are then represented 
in the x, y-plane by two families of curves, which are defined implicitly 
by the equations ~(x,y) = constant and 'I'(x,y) = constant, respec­
tively. These coordinate curves cover the region R with a coordinate 
net (usually curved), for which reason the coordinates (~, l'J) are also 
called curvilinear coordinates in R. 

We shall once again point out how closely these two interpreta­
tions of our system of equations are interrelated. The curves in the 
~,l'J-plane that in the mapping correspond to straight lines parallel 
to the axes in the x, y-plane can be directly regarded as the coordinate 
curves for the curvilinear coordinates x = g(~, l'J), y = h(~, l'J) in the 
~,l'J-plane; conversely, the coordinate curves of the curvilinear system 
~= ~(x, y), l'J = 'I'(x, y) in the x, y-plane in the mapping are the images 

, . 

of the straight lines parallel to the axes in the ~, l'J-plane. Even in the 
interpretation of (~, l'J) as curvilinear coordinates in the x,y-plane, 
we must consider a ~,l1-plane and a region B of that plane in which 
the point with the coordinates (~, 11) can vary if we wish to keep the 
situation clear. The difference is mainly in the point of view. 1 If we are 
chiefly interested in the region R of the x, y-plane, we regard ~, l'J 
simply as a new means of locating points in the region R, the region 
B of the ~,l'J-plane being then merely subsidiary; while if we are equal­
ly interested in the two regions Rand B in the x,y-plane and the ~, 11-
plane, respectively, it is preferable to regard the system of equations 
as specifying a correspondence between the two regions, that is, a 
mapping of one on the other. It is, however, often desirable to keep the 
two interpretations, mapping, and transformation of coordinates, 
in mind at the same time. 

IThere is, however, a real difference, in that the equations always define a mapping, 
no matter how many points (x, y) correspond to one point (e. 11), while they define a 
transformation of coordinates only when the correspondence is 1-1. 



248 Introduction to Calculus and Analysis, Vol. II 

If, for example, we introduce polar coordinates (r, 6) and interpret 
rand 6 as rectangular coordinates in an r, 6-plane, the circles r = 
constant and the lines 6 = constant are mapped on straight lines 
parallel to the axes in the r, 6-plane. If the region R of the x, y-plane is 
the circle x2 + y2 ~ 1, the point (r, 6) of the r, 6-plane will range over 
a rectangle 0 ~ r ~ 1, 0 ~ 6 ~ 21t, where corresponding points of the 
sides 6 = 0 and 6 = 21t are associated with one and the same point of 
R and the whole side r = 0 is the image of the origin x = 0, y = o. 

Another example of a curvilinear coordinate system is the system 
of parabolic coordinates. We arrive at these by considering the family 
of confocal parabolas in the x, y-plane (cf. also p. 234 and Fig. 3.9) 

y2 = 2C(X + ~), 

all of which have the origin as focus and the x-axis as axis. Through 
each point of the plane but the origin there pass two parabolas of the 
family, one corresponding to a positive parameter value c = ~ and the 
other to a negative parameter value c = 11. We obtain these two values 
by solving for c the quadratic equation y2 = 2c(x + c/2) using the 
values of x and y corresponding to the point; this gives 

~ = - x + .J x2 + y2, 11 = - x - .; x2 + y2. 

These quantities ~ and 11 may be introduced as curvilinear coordinates 
in the x, y-plane, the confocal parabolas then becoming the coordinate 
curves. These are indicated in Fig. 3.9 if we imagine the symbols (x, y) 
and (~, 11) interchanged. 

In using parabolic coordinates (~, 11) we must bear in mind that the 
one pair of values (~, 11) corresponds to two points (x, y) and (x, - y), 
the two intersections of the corresponding parabolas. Hence, in order 
to obtain a 1-1 correspondence between the pair (x, y) and the pair 
(~, 11), we must restrict ourselves to a half-plane, y ~ 0, say. Then every 
region R in this half-plane is in 1-1 correspondence with a region B 
of the ~, 11-plane, and the rectangular coordinates (~, 11) of each point in 
this region B are exactly the same as the parabolic coordinates of the 
corresponding point in the region R. 

Exercises 3.3b 

1. Prove that for x *- 1,0 < y < 7t/2, ~ = (siny)/(x -1), 'I) = xtany,define a 
system of curvilinear coordinates. 
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2. Find the equation for the circle x 2 + y2 = 1 in terms of the curvilinear 
coordinates 

~ = x 3 + 1, 1) = xy. 

3. For what points of the x, y-plane can we not use ~ = xy and 1) = x 2 + y2 
as curvilinear coordinates? 

c. Extension to More Than Two Independent Variables 

For three or more independent variables the state of affairs is an­
alogous. Thus, a system of three continuously differentiable functions 

~ = rfi(x. y, z), 11 = 'l'(x, y, z), s = X(x, y, z), 

defined in a region R of x, y, z-space, may be regarded as the mapping 
of the region R on a region B of ~, 11, s-space. If this mapping of Ron 
B is 1-1, so that for each image point (~, 11, s) of B the coordinates 
(x,y, z) of the corresponding point (original point or inverse image) in 
R can be uniquely calculated by means of functions 

x = g(~, 11, s), y = h(~, 11, s), z = l(~, 11, s), 

then (~, 11, s) may also be regarded as general coordinates of the point 
P in the region R. The surfaces ~ = constant, 11 = constant, S = con­
stant, or, in other symbols, 

t/J(x, y, z) = constant, 'l'(x, y, z) = constant, X(x, y, z) = constant, 

then form a system of three families of surfaces that cover the region 
R and may be called curvilinear coordinate surfaces. 

Just as for two independent variables, we can interpret 1-1 trans­
formations in three dimensions as deformations of a substance spread 
continuously throughout a region of space. 

A very important system of coordinates are the spherical coordi­
nates, sometimes called polar coordinates in space. These specify the 
position of a point P in space by three numbers: (1) the distance r = 
../x2 + y2 + Z2 from the origin; (2) the geographical longitude t/J, that 
is, the angle between the x, z-plane and the plane determined by P and 
the z-axis; and (3) the polar inclination or complementary latitude 
e, that is, the angle between the radius vector OP and the positive 
z-axis. As we see from Fig. 3.10, the three spherical coordinates r, t/J, e 
are related to the rectangular coordinates by the equations of trans­
formation 
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z 

Figure 3.10 Spherical coordinates. 

x = r cos ~ sin e, 

y = r sin ~ sin e, 

z = r cos e, 
from which we obtain the inverse relations 

r = ../ X2 + y2 + Z2 

A. X • Y 
Y' = arc cos ../X2 + y2 = arc SIn ../X2 + y2 

Z • ../X2 + y2 
e = arc cos / 2 + 2 + 2 = arc sIn../ 2 2 2 

'IX Y z X + y + z 

For polar coordinates in the plane the origin is an exceptional point 
in that the 1-1 correspondence fails because the angle is indeter­
minate there. In the same way, for spherical coordinates in space the 
whole of the z-axis is an exception in that the longitude ~ is indeter­
minate there. At the origin itself the polar inclination e is also indeter­
minate. 

The coordinate surfaces for three-dimensional polar coordinates 
are as follows; (1) for constant values of r, the concentric spheres 
about the origin; (2) for constant values of ~, the family of half-planes 
through the z-axis; (3) for constant values of e, the circular cones with 
the z-axis as axis and the origin as vertex (Fig. 3.11). 

Another coordinate system that is often used is the system of 
cylindrical coordinates. These are obtained by introducing polar co­
ordinates p, ~ in the X, y-plane and retaining z as the third coordinate. 
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Figure 3.11 Coordinate surfaces for spherical coordinates. 

Then the formulae for transformation from rectangular coordinates 
to cylindrical coordinates are 

x = p cos 9, 

y = p sin 9, 

z=z 

and the inverse transformation is 

p = ../x2 + y2 

x . y 
9 = arc cos ../x2 + y2 = arc sm ../x2 + y2 

z = z. 

The coordinate surfaces p = constant are the vertical circular cyl­
inders that intersect the x, y-plane in concentric circles with the 
origin as center; the surfaces 9 = constant are the half-planes 
through the z-axis, and the surfaces z = constant are the planes paral­
lel to the x, y-plane. 

Exercises 3.3c 

1. Find the inverse of the curvilinear coordinate transformation 

x 
~ = X2 + y2 + y2 ' 

y 
'IJ = X2 + y2 + Z2 ' 

z 
~ = X2 + y2 + Z2 , 
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2. Invert the coordinate transformation w = r cos cf>, x = r sin cf> cos 1jI, 
y = r sin cf> sin IjI cos 6, Z = r sin cf> sin IjI sin 6. What are the sets r = con­
stant, cf> = constant, IjI = constant, 6 = constant? 

d. Differentiation Formulae for the Inverse Functions 

In many cases of practical importance it is possible to solve the 
given system of equations explicitly, as in the above examples, and 
thus to recognize that the inverse functions are continuous and pos­
sess continuous derivatives. If we may presume the existence and dif­
ferentiability of the inverse functions, we can calculate the deriva­
tives of the inverse functions without actually solving the equations 
explictly in the following way: We substitute the inverse functions 
x = g(~, 11), y = h(~, 11) in the given equations ~ = ~(x, y), 11 = 'I'(x, y). 
On the right we obtain the compound functions ~(g(~, 11), h(~, 11» and 
'I'(g(~, 11), h(~, 11» of ~ and 11; but these must be equal to ~ and 11, respec­
tively. We now differentiate each of the equations 

(24a) ~ = ~(g(~, 11), h(~, 11» 

11 = 'I'(g(~, 11), h(~, 11» 

with respect to ~ and to 11, regarding ~ and 11 as independent variables l 

and applying the chain rule to differentiate the compound functions. 
We then obtain the system of equations 

(24b) 

Solving these equations, we obtain expressions for the partial deriva­
tives of the inverse functions x = g(~, 11) and y = h(~, 11) with respect 
to ~ and 11, expressed in terms of the derivatives of the original func­
tions ~(x, y) and 'I'(x, y) with respect to x and y, namely, 

(24c) 

or 

'l'v 
g~ = D' 

~v 
D' 

IThese equations hold for all values of l; and 11 under consideration; as we say, they 
hold identically, in contrast to equations between variables that are satisfied only 
for some of the values of these variables. Such identical equations or identities, when 
differentiated with respect to any of the variables occurring in them, again yield 
identities as follows immediately from the definition. 
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(24d) x. = TJII .. D' 

For brevity we have here written 

(24e) 

TJx 
y~ = - D' 

a~ a~ 
ax 

~x 
Yll= /j' 

ay 
D = ~xTJII - ~IITJx = 

aTJ aTJ 
ax ay 

This expression D, which we assume is not zero at the point in ques­
tion, is called the Jacobian or functional determinant of the functions 
~ = ~(x, y) and TJ = ",(x, y) with respect to the variables x and y. It 
plays a major role wherever we consider transformations, as will 
become apparent in the sequel. 

Above, as occasionally elsewhere, we have used the shorter notation 
~(x, y) instead of the more detailed notation ~ = ~(x, y), which dis­
tinguishes between the quantity ~ and its functional expression 
9(X, y). We shall often use similar abbreviations in the future when 
there is no risk of confusion. 

For polar coordinates in the plane expressed in terms of rectangular 
coordinates, 

~ = r = .; x2 + y2 and 

the partial derivatives are 

x x r - --
x - .; x2 + y2 - r ' 

ax = -y = - L 
x2 + y2 r2' 

Hence, the Jacobian has the value 

TJ =a=arctan.2" 
x' 

r - y _.2" 
11 - .; x2 + y2 - r ' 

a = x =-.£ 
11 x2 + y2 r2' 

and the partial derivatives of the inverse functions (rectangular co­
ordinates expressed in terms of polar coordinates) are, by (24d), 

X 
Xr = r' Xo = -y, Yr =.2", 

r 
yo = x, 
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as we could have found more easily by direct differentiation of the in­
verse formulae x = r cos e, y = r sin e. 

The Jacobian occurs so frequently that a special symbol is often 
used for itl: 

(25) D - d(~, 11) 
- d(x,y)' 

The appropriateness of this abbreviation wilJ soon be obvious. From 
the formulae for the derivatives of the inverse functions (24b), we find 
that the Jacobian of the functions x = x(~, 11) and y = y(~, 11) with 
respect to ~ and 11 is given by the expression 

(26) d(x, y) = x y _ x y = ~x11Y - ~y11x = 1 = (d(~, 11»)-1 
d(~, 11) l; 11 11 l; D2 D d(x,y) . 

That is, the Jacobian of the inverse system of functions is the reciprocal 
of the Jacobian of the original system.2 

We can also express the second derivatives of the inverse system 
of functions in terms of the first and second derivatives of the given 
functions. We have only to differentiate the linear equations (24b) 
with respect to ~ and to 11 by means of the chain rule. (We assume, of 
course, that the given functions possess continuous derivatives of the 
second order.) We then obtain linear equations from which the re­
quired derivatives can readily be calculated. 

For example, to calculate the derivatives 

and 

we differentiate the two equations 

1 = ~xXl; + ~yYl; 
o = 11xXl; + 11yyl; 

once again with respect to ~ and by the chain rule obtain 

lOften the Jacobian is written with the partial derivative sign as 

D - a(~, 11) 
- a(x, y) . 

2This, of course, is the analogue for the rule for the derivative of the inverse of a 
function of a single variable (Volume I, p. 207). 
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If we solve this system of linear equations, regarding the quantities 
x~~ and y~~ as unknowns (the determinant of the system is again D, 
and therefore, by hypothesis, not zero) and then replace x~ and y~ by 
the values already known for them, a brief calculation gives 

(27c) x~~ = _ J-_ \ ~xxlli - 2~xyllxlly + ~yyllx2 ~y I 
D3 llxxlly2 - 2~xyllxlly + llyyllx3 lly 

and 

(27d) 
_ ~ I ~xxlli - 2~xyllxlly + ~yyllx2 ~x I 

y~~ - D3 2 2 2 
llxxlly - llxyllxlly + TjyyTjx Tjx 

The third and higher derivatives can be obtained in the same way, 
by repeated differentiation of the linear system of equations; at each 
stage we obtain a system of linear equations with the nonvanishing 
determinant D. 

Exercises 3.3d 

1. Find the Jacobians of the following transformations: 

(a) ~ = ax + by, 1) = ex + dy 

(b) r = ';x2 + y2, e = arc tan y/x 

(c) ~ = X2, 'Yl = y2 

(d) ~ = t log (x2 + y2), 

(e) ~ = xy2, 1) = x2y 

1) = arc tan .,t 
x 

(f) ~ = x3 - y, 1) = y3 + x. 

2. For each of the transformations given in Exercise 1, give the points 
(x, y) lacking neighborhoods where the transformation has an inverse. 

3. Find the Jacobian of the transformation ~ = {(x, y), 1) = g(x, y), as well 
as all partial derivatives of x, y with respect to ~,1) through those of 
second order, in each of the following cases: 

(a) ~ = eX cos y, 1) = eX sin y 

(b) ~ = x 2 - y2, 1) = 2xy 

(c) ~ = tan (x + y), 1) = cos (x - y), -rr:/2 < x + y < rr:/2 

(d) ~ = sinh x + cosh y, 1) = -cosh x + sinh y 

(e) ~ = x 3 + y3, 1) = xy2. 
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4. A transformation is said to be "conformal" (see p. 288) if the angle 
between any two curves is preserved 
(a) Prove that the inversion 

is a conformal transformation; 
(b) prove that the inverse of any circle is another circle or a straight 

line; 
(c) find the Jacobian of the inversion. 

5. Let KI. Ks. Ks be three circles passing through 0 and having distinct 
pairwise intersections, say PI, Ps, Pa, at other points. Show that the 
sum of the angles of the curvilinear triangle PI Ps Pa, formed by circular 
arcs, is 7t. 

6. A transformation of the plane 

u = cp(x,y), v = Iji(x,y) 

is conformal if the functions cp and Iji satisfy the identities 

cpz = ljiy, cpy = - ljiz. 

7. Prove that if all the normals of a surface z = u(x. y) meet the z-axis, 
then the surface is a surface of revolution. 

8. The equation 
XS yS 

a-t+b-t=l (a > b) 

determines two values of t, depending on x and y: 

h = A(X,y), 

ts = lL(X, y). 

(a) Prove that the curves h = constant and ts = constant are ellipses 
and hyperbolas all having the same foci (confocal conics). 

(b) Prove that the curves h = constant and ta = constant are orthogo­
nal. 

(c) tl and ta may be used as curvilinear coordinates (so-called focal 
coordinates). Express x and y in terms of these coordinates. 

(d) Express the Jacobian (}(tl, ta)/(}(x, y) in terms of x and y. 

(e) Find the condition that two curves represented parametrically in 
the system of focal coordinates by the equations 

tl = {I(A), ta = fS(A) and tl = gl(lL), ta = g2(lL) 

are orthogonal to one another. 
9. (a) Prove that the equation in t 

X2 yS Z2 
--+--+-'-=1 a-t b-t c-t (a> b > c) 

has three distinct real roots tl, ts, ta, which lie respectively in the 
intervals 
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-00 < t < c, c < t < b, b < t < a, 

provided that the point (x, y, z) does not lie on a coordinate plane. 
(b) Prove that the three surfaces tI = constant, t2 = constant, ta = con­

stant passing through an arbitrary point are orthogonal to one an­
other. 

(c) Express x, y, z in terms of the focal coordinates tt, t2, t3. 
10. Prove that the transformation of the x, y-plane given by the equations 

~ = ~(x + x2 ~ y2)' ~ = ~(y - x2 ~ y2) 

(a) is conformal; 

(b) transforms straight lines through the origin and circles with the 
origin as center in the x, y-plane into confocal conics t = constant 
given by 

~2 ~2 

t + 1/2 + t - 1/2 = 1. 

11. For ~ = f(x,y), ~ = g(x,y), and D = a(~, ~)/a(x,y) * 0, demonstrate the 
identities 

(a) aD _ a(~y, ~) + a(~, ~y) 
ay - a(x, y) a(x, y) , 

(b) D-a [~x(~yy D - ~yDy) - ~y(~xyD - ~yDx)] 

= D-3 [~x(~yyD - ~yDy) - ~y(~xyD - ~yDx)]. 

e. Symbolic Product of Mappings 

We begin with some remarks on the composition of transformations. 
If the transformation 

(28a) I; = tjJ(x,y), TJ = ",(x, y) 

gives a 1-1 mapping of the points (x, y) of a region R on points (1;, TJ) of 
the region B in the 1;, TJ-plane and if the equations 

(28b) u = <1>(1;, TJ), v = '¥(I;, TJ) 

give a 1-1 mapping of the region B on a region R' in the u, v-plane, 
then a 1-1 mapping of Ron R' is generated. This mapping we naturally 
call the resultant mapping or transformation and say that it is obtained 
by composition of the two given mappings and that is represents their 
symbolic product. The resultant transformation is given by the equa­
tions 

u = <I>(tjJ(x, y), ",(x, y», v = '¥(tjJ(x, y), ",(x, y»; 

from the definition, it follows at once that this mapping is 1-1. 



258 Introduction to Calculus and Analysis, Vol. II 

By the rules for differentiating compound functions, we obtain 

(29a) 

(29b) 

In matrix notation (p. 152) 

(30) ( 
au au) ax ay 

av av 
ax ay 

On comparing this with the law for the multiplication of determinants 
(cf. p. 172) we find! that the Jacobian of u and v with respect to x and 
y is 

(31 a) 

In words, the Jacobian of the symbolic product of two transformations 
is equal to the product of the Jacobians of the individual transformations, 
namely, in the notation (25), 

(31b) 
d(u, v) d(u, v) d(~, 11) 
d(x, y) = d(~, 11) d(x, y) . 

This equation brings out the appropriateness of our symbol for the Ja­
cobians. When transformations are combined, the Jacobians behave 
in the same way as the derivatives behave when functions of one variable 
are combined. The Jacobian of the resultant transformation differs 
from zero, provided the same is true for the individual (or component) 
transformations. 

If, in particular, the second transformation 

u = <I>(~, 11), v = 'P(~, 11) 

is the inverse of the first, 

~ = ~(x,y), 11 = 'I'(x, y) 

lThe same result can, of course, be obtained by straightforward multiplication. 
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and if both transformations are differentiable, the resultant transfor­
mation will simply be the identical transformation; that is, U = x, 
v = y. The Jacobian of this last transformation is obviously 1, so that 
we again obtain the relation (26). 

From this, incidentally, it follows that neither of the two Jacobians 
can vanish.: 

d(~, 11) d(x, y) - 1 
d(x, y) d(~, 11) - . 

For a pair of continuously differentiable functions ~(x, y) and 'I' (x, y) 
that has a nonvanishing Jacobian, we can find formulae for the 
corresponding mapping of directions at a point(xo, YO) = Po. A curve 
passing through Po can be described parametrically by equations x = 
f(t), y = g(t), where f(to) = Xo, g(to) = yo. The slope of the curve at Po 
is given by 

g'(to) 
m = {'(to) . 

Similarly, the slope of the image curve 

~ = <p({(t),g(t», 11 = 'I'({(t),g(t» 

at the point corresponding to Po is 

(32) d11/d t 'l'xf' + 'l'yg' c + dm 
J.! = d~/dt = ~xf' + ~yg' = a + bm' 

where a, b, c, d are the constants 

a = ~x(xo, yo), b = ~y(xo, yo), c = 'l'x(xo, yo), d = 'l'y(xo, yo). 

The relation (32) between the slope m of the original curve at Po and 
the slope J.! of the image curve is the same as for the affine mapping 

~ = ~(xo, yo) + a(x - xo) + b(y - yo), 

11 = 'I'(xo, yo) + c(x - xo) + d(y - yo). 

that approximates our mapping near Po. Since 

dJ.! ad - be 
din = (a + bm)2 ' 
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we find that 11 is an increasing function of m for ad - bc > 0 and a de­
creasing function for ad - bc < 0.1 

Increasing slopes correspond to increasing angles of inclination 
or to counterclockwise rotation of the corresponding directions. Thus, 
dll/dm > 0 implies that the counterclockwise sense of rotation is pre­
served, while it is reversed for dp,/dm < O. Now, ad - bc is just the 
Jacobian 

d(~, 1') _ I ~z ~y I 
d(x, y) - 'liz 'Vy 

evaluated at the point Po. It follows that the mapping ~ = ~(x, y), 1') = 
'V(x, y) preserves or reverses orientations near the point (xo,yo) according 
to whether the Jacobian at that point is positive or negative. 

Exercises 3.3e 

1. For each of the following pairs of transformations find a(u, v)/a(x, y) 
first by eliminating ~ and 7), then by applying (31b): 

1 
{ u = -2 log (~2 + 7)2) 

(a) 
v =arctan~ 

~ 

{ ~ = eX C?S y 
7) = eX Sln y 

{ ~ = x C?S y 
7)=XS1ny 

{ u = e~ cos 7) { ~ = x/(x2 + y2) 
(c) V = e~ sin 7) 7) = -y/(x2 + y2) 

2. In which of the following successive transformations can x, y be defined 
as continuously differentiable functions of u. v in a neighborhood of the 
indicated point (uo. vo)? 

(a) ~ = eX cosy, 7) = eX siny; 
u = ~2 - 7)2, V = 2~7), Uo = 1, Vo = 0; 

(b) ~ = cosh x + sinh y, 7) = sinh x + cosh y, 
u= e{+l1, v = e{-l1, uo = Vo = 1; 

(c) ~ = x 3 - y3, 7) = x 2 + 2xy2; 
U = ~5 + 7), v = 7)5 -~; Uo = 1, Vo = O. 

3. Consider the transformation 

Show that 

{ u = <p(~, 7) 

v = \jI(~, 7) 
{ ~ = f(x) 

7) = g(y). 

IMore precisely, this holds locally, excluding the directions where m or ~ become 
infinite. 
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iJ(u, v) I I iJ(u, v) 
iJ(x, y) = ( (x) g (y) iJ(~, lj). 

4. If z = {(x, y) and ~ = cp(x, y), lj = IjI (x, y), show that 

iJz _ iJ(z, lj) / iJ(~, lj) 
iJ~ - iJ(x, y) iJ(x,y) 

and 

iJz _ iJ(~, z) / iJ(~, lj) 
iJlj - iJ(x, y) iJ(x, y) 

provided iJ(~, lj)/iJ(x, y) =1= o. 

f. General Theorem on the Inversion of Transformations and of 
Systems of Implicit Functions. Decomposition into Primitive 
Mappings 

The possibility of inverting a transformation depends on the 
following general theorem: 

Let ~(x, y) and ",(x, y) be continuously differentiable functions in a 
neighborhood of apoint(xo,yo),forwhichtheJacobianD = ~X"'lI- ~lI"'X 
is not zero at (xo, yo). Put Uo = ~xo, yo), Vo = ",(xo, yo). Then there 
exists a neighborhood N of (Xo, yo) and N' of (uo, vo) such that the map­
ping 

(33a) u = ~(x,y), v = ",(x, y) 

has a unique inverse 

(33b) x = g(u, v), y = h(u, v) 

mapping N' into N. The functions g and h satisfy the identities 

(33c) u = ~(g(u, v), h(u, v», v = ",(g(u, v), h(u, v» 

for (u, v) in N', and the equations 

(33d) Xo = g(uo, vo), yo = h(uo, vo). 

The inverse functions g, h have continuous derivatives for (u, v) near 
(uo, vo), given by 

(33e) 
ax 1 av ax 1 au 
au = Day' av =- Day 

(33f) 
ay 1 av ay -l au 
au = - D ax' av - D ax· 



262 Introduction to Calculus and Analysis, Vol. II 

The proof follows from the implicit function theorem on p. 228, 
which permits one to solve an equation for a single variable. In es­
sence, we invert equations (33a) by solving the first equation for one 
of the variables x, y and substituting the resulting expression into the 
second equation, obtaining an equation for the second variable alone. 

Since by assumption the Jacobian D does not vanish at the point 
(xo, yo), at least one of the first derivatives of tfi(x, y) differs from zero 
at that point. Let, say, tfix(xo, yo) =F- o. We can then solve the equation 

(34a) u = tfi(x,y) 

for x. More precisely, we can find positive constants hI, h2, hs such that 
for 

(34b) lu -uol< hI, Iy - yol< h2 

equation (34a) has a unique solution x = X(u, y) for which I x - Xo 1< 
hs. The function X(u, y) has the domain (34b) and satisfies the equa­
tions 

(34c) tfi(X(u, y), y) = u, X(uo, yo) = Xo, 

and the inequality 

(34d) IX(u,y) - xol < hs. 

Moreover, X(u,y) has continuous derivatives, for which, by (34c), 

(34e) 

(34f) 

tfix(X(u, y), y)Xu(u, y) = 1 

tfix(X(u, y), y)Xy(u, y) + tfiy(X(u, y), y) = O. 

We assume here that h2, hs are so small that the rectangle 

(34g) I x - Xo I < hs, I y - yo I < h2 

lies in the domain of tfi(x, y), 'I'(x, y). Substituting the expression 
X(u, y) for x into the functions 'I'(x, y), we obtain a compound function 

(34h) 'I'(X(u, y), y) = X(u, y) 

with domain (34b). Here, by (34c, f), 

(34i) X(uo, yo) = 'I'(xo, yo) = Vo 
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(34j) Xy(uo, yo) =\jIxXy + \jIy= -\jIx ~: + \jIy = ~ -=1= 0; 

we have ~x -=1= 0 from (34e). It follows that we can find positive con­
stants h4, h5, h6 such that for 

(34k) I u - Uo I < h4, I v - Vo I < h5 

the equation 

(34m) X(u,y) = v 

has a unique solution y = h(u, v), for which Iy - yol < h6. We can 
assume here that h4 ~ hI, h6 ~ h2 (see footnote on p. 228). 

Finally, we set 

(34n) X(u, h(u, v» = g(u, v). 

The two functions g(u, v), h(u, v) have the domain (34k). By (34c, h) 
they satisfy the equations 

~(g(u, v), h(u, v» = ~(X(u, h(u, v», h(u, v» = u 

\jI(g(u, v), h(u, v» = \jI(X(u, h(u, v», h(u, v» = X(u, h(u, v» = v 

and the inequalities 

Ig(u, v) - xol < ha, Ih(u, v) - yol < h6. 

Formulae (33e, f) for the derivatives of g and h were derived earlier, 
on p.253. 

To show the uniqueness of the inverse functions, assume that x, 
y, u, v is any set of values that satisfy the equations (33a) and the 
inequalities 

Ix-xol<h3, IY-Yol<h6, lu-uol<h4, Iv-vol<h5. 

Since (34a, b) hold, we conclude that 

(340) x = X(u,y). 

From (34h) we obtain the equation 

v = \jI(x, y) = \jI(X(u, y), y) = X(u, y), 
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which has the unique solution y = h(u, v). The relation x = g(u, v) 
then follows from (34n, 0). The relations (33d) for g and h follow from 
the uniqueness of the solution and the assumption that uo = ~(xo, Yo), 
Vo = ",(xo, yo). 

We have assumed so far that ~x(xo, Yo) *- o. If ~x(xo, Yo) = 0, but 
~y(xo, yo) *- 0, the inversion of the mapping (33a) proceeds similarly. 
In this case we solve the first equation of (33a) for y and substitute the 
resulting function y = Y(u, x) into the second equation, obtaining an 
equation for x alone. 

The inversion of the plane mapping (33a) has been reduced to inver­
sions of mappings in which only one variable is transformed at a time. 
Generally, we call the transformation (33a) primitive, if it leaves one 
of the coordinates unchanged, that is, if either the function ~(x, y) 
is identical with x or the function ",(x,y) is identical with y. The effect 
of a primitive transformation of the type u = ~(x, y), v = y is to move 
each point in the direction of the x-axis, keeping its ordinate un­
changed. After deformation the point has a new abscissa, which de­
pends on both x and y. If the Jacobian ~ of the primitive mapping is 
positive, u varies monotonically with x for fixed y. 

We shall prove that we can decompose an arbitrary transformation 
(33a) with nonvanishing Jacobian into primitive transformations in a 
neighborhood of a point. This follows readily from our construction of 
the inverse mapping. If ~x(xo, Yo) *- 0, we represent the mapping (33a) 
as the symbolic product of the primitive mappings 

(34p) ~ = ~(x,y), l1=y 

and 

(34q) u =~, 

Here the domain R of the first mapping in the x, y-plane shall be a rec­
tangle so small that 

Ix-xol<ha, ly-yol<h2, 1~(x,y)-uol<hI, 

while the second mapping has the domain 

I~ - uol < hI, 111 - yol < h2. 

It follows that the image (~, 11) of a point (x, y) of R in the mapping 
(34p), lies in the domain of the mapping (34q) and that 

x = X(~,y). 
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Consequently, also 

(34r) x = X(~(x, y), y). 

For the mapping compounded from (34p, q) we then have by (34 h, r) 

u = ~(x,y) 

v = X(~(x, y), y) = 'V(X (~(x, y), y), y) = 'V(x, y). 

An analogous decomposition of the mapping (33a) is obtained when 
~x(xo, yo) = 0 but ~y(xo, yo) 7= O. We only have to interchange the roles 
of the variables x and y. 

We cannot expect to resolve a transformation into primitive trans­
formations in one and the same manner throughout the whole open 
region R. However, since some type of decomposition can be carried 
out near each point of R, every bounded closed subset of R can be sub­
divided into a finite number of sets! such that in each one of those 
sets one of the decompositions is possible. 

The inversion theorem is a special case of a more general theorem 
that may be regarded as an extension of the theorem of implicit func­
tions to systems of functions. The theorem of implicit functions (p. 
228) applies to the solution of one equation for one of the variables. 
The general theorem is as follows: 

If tjJ(x, y, u, v, ... , w) and 'V(x, y, u, v, ... , w) are continuously 
differentiable functions of x, y, u, v,. ., w, and the equations 

~(x,y, u, v, ... , w) = 0 and 'I'(x,y, u, v, ... , w) = 0 

are satisfied by a certain set of values xo, yo, uo, vo,. . ., wo and if in ad­
dition the Jacobian of ~ and 'I' with respect to x and y differs from zero 
at thatpoint(thatis,D = ~x'l'y - ~y'Vx 7= 0), then in the neighborhood of 
that point the equations ~ = 0 and 'V = 0 can be solved in one, and only 
one way for x and y, and this solution gives x and y as continuously dif­
ferentiable functions of u, v, . . ., w. 

The proof of this theorem is similar to that of the inversion theorem 
above. From the assumption D 7= 0 we can conclude that at the point 
in question some partial derivative does not vanish, say ~x = O. By the 
main theorem of p. 228, if we restrict x, y, u, v, . . ., w to sufficiently 
small intervals about xo, Yo, Uo, Vo, . .. , Wo, respectively, the equation 
~(x, y, u, v, ... , w) = 0 can be solved in exactly one way for x as a 

IThis follows from the covering theorem, p. 109. 
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function of the other variables, and this solution x = X(y, u, v, .. "' w) 
is a continuously differentiable function of its arguments and has the 
partial derivative X lI = - flll/flz. If we substitute this function x = 
X(y, u, v, ... , w) in 'I'(x, y, u, v, . .. , w), we obtain a function 'I'(x,y, u, 
v, " .. , w) = X(Y, u, v, ... , w), and 

Hence, in virtue of the assumption that D #- 0, we see that the deriva­
tive XlI is not zero. Thus, if wer estricty, u, v, ... , w to intervals about 
Yo, Uo, Vo, . . . Wo contained in the intervals to which they were pre­
viously restricted, we can solve the equation X = 0 in exactly one way 
for y as a function of u, y, . . ., w, and this solution is continuously dif­
ferentiable. Substituting this expression for y in the equation x = 
X(y, u, v, .. "' w), we find x as afunctionofu, v, ... , w. This solution is 
unique and continuously differentiable, subject to the restriction of 
x, y, u, v, . . ., w to sufficiently small intervals about Xo, Yo, Uo, Vo, . . ., 
Wo, respectively. 

Exercises 3.3f 

1. Which of the following systems of equations may be solved for x, y as 
continuously differentiable functions of the remaining variables near 
the indicated points? 

(a) eZ sin u - ell cos v + w = ° 
x cosh w - u sinh y - v2 = cosh 1 
x = 1, y = 0, u = 0, v = 0, W = 1 

(b) u cos x - v sin y + w2 = 1 
cos (x + y) + v = 1, 
x = 0, y = 11:/2, u = 1, v = 1, W = 1 

(c) x2 + y2 + u2 - V = ° 
x2 - y2 + 2u - 1 = ° 
x=y=u=v=1 

(d) cos x + t sin y = ° 
sin x - cos ty = 0, 
x = 11:, Y = 11:/2, t = 1. 

g. Alternate Con8truction 01 the Inver8e Mapping by the Method 
of Succe88ive Approximations 

In the preceeding proof the problem of inverting a mapping was re­
duced to the one-dimensional case and ultimately to the elementary 
fact that the mappings furnished by continuous monotone functions 
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of a single variable can be inverted. This line of argument has two un­
desirable features. We are forced to distinguish different cases leading 
to quite different resolutions (say, for ~z * 0 and ~z = 0), which do not 
correspond to any radical change in the character of the original 
transformation. Moreover, the existence proof is not constructive; 
it does not furnish a practical numerical scheme for inverting map­
pings. Both of these objectionable features are absent in the method 
of iteration or of successive approximation that follows the pattern of 
the numerical methods given in Volume I (p. 502) for the solution of 
equations for a single unknown quantity. The basic idea is to apply 
successive corrections to an approximate solution, where the cor­
rections are determined from the linear equations best approximating 
the functional relation in a neighborhood of a point. 

We again consider the equations 

(35a) u = ~(x, y), v = W(x, y), 

where ~ and'll are continuously differentiable functions in an open set 
R of the x, y-plane. Let (xo, YO) be a point of R at which the Jacobian 

(35b) 

has a value different from zero, and let (uo, vo) be the image of (xo, YO) 
in the mapping (35a). We want to show that for (u, v) sufficiently close 
to (uo, vo) there exists a uniquely determined value (x, y) near(xo, yo) 
for which u = ,,(x, y) and v = w(x, y). 

To obtain the solution we shall use an iteration scheme identical 
with that for functions of one variable discussed in Volume I (p. 502) 
in a notation appropriate to the two-dimensional case. We introduce 
the vectors U = (u, v), X = (x, y). We can write the mapping (35a) 
concisely in the form 

(35c) U = F(X), 

where F is the nonlinear transformation mapping the vector with com­
ponents x, y onto the vector with components ~(x, y), W(x, y). The dif­
ferentials dx, dy and du, dv satisfy the linear relations (see p. 49) 

(35d) 

(35e) dv = dW = 'liz dx + '1111 dy. 
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If we combine the differentials into vectors dX = (dx, dy), dU = (du, 
dv), we can write! the relations (34d, e) as 

(35f) dU = F'dX, 

where F' is the square matrix formed from the first derivatives of the 
mapping functions 

(35g) F' = ({lz (ly) . 
"'z ",y 

Obviously the matrix F' plays the role of the derivative of the vector 
mapping function F. The determinant of F' is just the Jacobian (35b) 
of the mapping.2 Generally we shall write F' = F'(X) to emphasize the 
dependence of the matrix F' on the vector X = (x, y). For a linear 
mapping the matrix F' is constant. 

The "size" of the elements of the matrix F' limits how much the 
mapping F can magnify distances. Take two points (x, y) and (x + h, 
y + k) such that the whole straight line segment joining them lies in 
the domain of the mapping. By the mean value theorem for functions 
of several variables (p. 67), 

(36) 
(l(x + h, y + k) - (l(x, y) = {lzh + (lyk, 

",(x + h, y + k) - ",(x, y) = "'zh + ",yk, 

where the values of the first derivatives are taken at suitable points of 
the segment joining (x, y) and (x + h, y + k).3 Let M denote an upper 
bound for the quantities 

taken at all points of the segment joining (x, y) and (x + h, y + k). 
Then, obviously, the distance of the image points can be estimated by 

lIt is best to interpret (35£) as a relation between three matrices dU, F', dX,identify­
ing dX and dU with matrices with two rows and a single column: 

dX = (~;) dU = (~:) ; 
see p. 153. 
2The matrix F' is often called the Jacobian matrix or the Frechet derivative of the 
mapping. 
3Generally a different intermediate point has to be used in the first and in the second 
equation. 
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(36a) -/(rjJ(x + h, y + k) - rjJ(x, y»2 + (",(x + h, y + k) - ",(x, y»2 

~-/(Mlhl + IMlk)2 + (Mlhl + IMlk)2 

=-/2 M(lhl + Ikl) ~ 2M ../h2 + k2. 

Thus, the distance of the image points is at most 2M times that of the 
original ones. Introducing the vector Y = (x + h, y + k) we can write 
(36a) in the form of a Lipschitz condition for the mapping F: 

(36b) IF(Y) - F(X)I~ 2MIY - XI, 

where M is an upper bound for the absolute values of the elements of 
the matrix F'.l In matrix notation equations (36) become 

(36c) F(Y) - F(X) = H(X, Y) (Y - X) 

where the matix H satisfies 

(36d) lim H(X, Y) = F'(X). 
y·x 

We now consider the mapping U = F(X) in a neighborhood 

(37a) IX-Xol<a 

of the point Xo = (xo, Yo) in the domain R of F. Let Uo = F(Xo) = 
(uo, vo). For a fixed U we write the equation U = F(X), which is to 
be solved for X, in the form 

(37b) X = G(X), 

where 

(37c) G(X) = X + a(U - F(X»; 

here a stands for an appropriately chosen constant nonsingular ma­
trix, which has a reciprocal a-I. Equation (37b) is then equivalent to 
a(U - F(X» = 0, which by multiplication with a-I yields 

a-1a(U - F(X» = e(U - F(X» = U - F(X) = 0, 

where e is the unit matrix. Thus, any solution X of (37b)-that is, any 

IFor mappings F in n dimensions the factor 2 in (36b) is to be replaced by n. 
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fixed point of the mapping G-fumishes a solution of U = F(X). 
We will show that a solution X of (37b) is given by the limit of the 

Xn defined by the recursion formula 

(37d) (n = 0, 1, 2, . . . ), 

provided the matrix G'(X) representing the derivative of the vector 
mapping G is of sufficiently small size. More precisely, we require that 
for all X in the neighborhood (37a) ofXo the largest element of the ma­
trix G' is less than 1/4 in absolute value and that 

1 
IG(Xo) - Xol < "2 B• 

First we prove by induction that under the stated assumptions 
the recursion formula (37d) leads only to vectors satisfying (37a). 
In this way, one is sure that the Xn lie in the domain of G, so that the 
sequence can be continued indefinitely. We find from (36b) with M = t 
that 

1 
(37e) IG(Y) - G(X) I ~"2 IY - XI for IX - Xol < B, IY - Xol < B. 

Now the inequality (37a) is satisfied trivially for X = Xo.lfit holds for 
X = X n, we find for the vector Xn+l defined by (37d) that 

IXn+1 - Xol ~ IXn+1 - XII + IXI - Xol = IG(Xn) - G(Xo) I 
1 1 + I G(Xo) - Xo I ~ "2 I Xn - Xo I + "2 B < B. 

This proves that I Xn - Xo I < B for all n. 
In order to see that the Xn converge, we observe that by (37e) 

1 
IXn+1 - Xnl = IG(Xn) - G (Xn-~)I ~ "2IXn - Xn-ll· 

By the same reasoning 

1 
IXn-1 - Xn-21 ~ "2IXn-2 - Xn-31, 
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and so on. These inequalities together lead to the estimate 

(37f) 
1 0 

IXn+1 - Xnl;;;; 2nlXI - Xol;;;; 2n+1 • 

The existence of X = lim Xn follows then by writing X as sum of an 

infini te series 

X = Xo + (Xl - Xo) + (X2 - Xl) + ... + (Xn+l - Xn) + 

whose convergence is established from (37f) by comparison (see Volume 
I, p. 521) with a convergent geometric series. That X is a solution of 
(37b) follows immediately from (37d) for n -4 00, using the continutity 
of G(X). 

By its definition (37c) the function G depends continuously not only 
on X but also on the vector U. The Xn obtained successively by the re­
cursion formula (37d) then also depend continuously on U.1 Since the 
geometric series used in the comparison that establishes the conver­
gence of X = lim Xn does not depend on U, it follows that X is a 

uniform limit of continuous functions of U and, hence, is itself a con­
tinuous function of U. It is clear, moreover, that I X - Xo I ;;;; 0, since 
I Xn - X I < 0 for all n. If there existed a second solution Y with Y = 
G(Y) and I Y - Xo I ;;;; 0, we would find from (37e) that 

I Y - X I = I G(Y) - G(X) I ;;;; ; I Y - X I 

and, hence, that IY - XI = 0 and Y = X. 
In this way, we establish the existence, uniqueness, and con­

tinuity of a solution X of the equation U = F(X), for which I X - Xo I 
;;;; 0, provided the vector G defined by (37c) has a derivative G' with 
elements less than t in absolute value for I X - Xo I ;;;; 0 and provided 

1 
IG(Xo) - Xol < 2 o. 

It is easily seen that these requirements can be satisfied for all U suf­
ficiently close to Uo by a suitable choice of the matrix a. By (37c), 

G'(X) = e - aF'(X), 

IHere we make use of the fact that continuous functions of continuous functions 
are again continuous. 



f!l2 Introduction to Calculus and Analysis. Vol. II 

where e is the unit matrix. Then, for X = Xo, 

G'(Xo) = e - aF'(Xo) = 0 

if we choose for a the matrix reciprocal to the matrix F'(Xo): 

a = (F'(XO»-l. 

(The existence of this reciprocal follows from our basic assump­
tion that the matrix F'(Xo) has a nonvanishing determinant, that is, 
that the Jacobian of the mapping F does not vanish at the point Xo). 
From the assumed continuity of the first derivatives of the mapping F 
it follows that G'(X) depends continuously on X; hence, the elements 
of G'(X) are arbitrarily small, for instance, less than t, for suf­
ficiently small I X - Xo I, say for 

IX - Xol~ 3; 

moreover, by (37c), 

1 
IG(Xo) - Xol = la(U - F(Xo) I = la(U - Uo)1 <2 3, 

provided U lies in a sufficiently small neighborhood of Uo. 
This completes the proof for the local existence of a continuous 

inverse for a continuously differentiable mapping with nonvanishing 
Jacobian. The existence and continuity of the first derivatives of the 
inverse mapping follow easily from formulae (36c,d). Let U = F(X), 
where we assume that the Jacobian matrix F'(X) is non-singular. 
Then every V sufficiently close to U is of the form V = F(Y) where 
Y tends to X for V tending to U. Hence, for V sufficiently close to U 
the matrix H(X, Y) also is non-singular. We find then that 

Y - X = (H(X, Y»-l (V - U) 

= (F'(X»-l (V - U) + E(X, Y) (V - U) 

where 

lim E(X, Y) = lim E(X, Y) = o. 
y~U y~X 

This relation, however, just expresses that the vector X satisfying 
U = F(X) is a differentiable function of the vector U, and that the 
Jacobian matrix of X with respect to U is the reciprocal of the matrix 
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F'(X). The same construction of the inverse by iteration or successive 
approximations obviously can be applied to mappings in any number 
of dimensions. 

Exercises 3.3g 

1. Obtain the iterative approximation (X2, Y2) for the inverse transformation 
to 

1 
u = "2 (2X - y2), V = xy 

by applying (37d) to a neighborhood of X = (1, 1) or U = (0, 1). 
2. Compare the result of the preceding exercise with the Taylor expansions 

of x and y to second order in the neighborhood of u = 1, v = 1. 

h. Dependent Functions 

If the Jacobian D vanishes at a point (xo, yo), no general statement 
can be made about the possibility of solving the equations (33a) in the 
neighborhood of that point. Even if inverse functions do happen to 
exist, they cannot be differentiable, for then the product 

d(u, v) d(x, y) 
d(x, y) • d(u, v) 

would vanish, while by p. 259 it must be equal to 1. For example, the 
equations 

v=y 

can be solved uniquely, in the form 

y = v, 

although the Jacobian vanishes at the origin; but the function ~u 
is not differentiable at the origin. 

On the other hand, the equations 

v = 2xy 

cannot be solved uniquely in the neighborhood of the origin, since the 
two points (x, y) and (-x, -y) ofthe x, y-plane both correspond to the 
same point of the u, v-plane. 

If the Jacobian vanishes identically, not merely at the single point 
(x, y) but at every point in a whole neighborhood of the point (x, y), 
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then the transformation is called degenerate. In this case, it can be 
shown that the functions 

u = !fi(x,Y) and v = 'I'(x, y) 

are dependent, in the sense that one of them is a function of the other 
one.! We first consider the trivial case in which the equations !fix = 0 
and !fiy = 0 hold everywhere, so that the function !fi(x, y) is a constant. 
We then see that while the point (x, y) ranges over a whole region its 
image, (u, v) always remains on the line u = constant. That is, a re­
gion is mapped only into a line, instead of on a region, so that there is 
no possibility of a 1-1 mapping of two 2-dimensional regions on one 
another. 

A similar situation arises in the general case in which at least one 
of the derivatives !fix or!fiy does not vanish, but the Jacobian D is still 
zero. We suppose that at a point (xo, YO) of the region under con­
sideration we have !fix *' O. It is then possible to solve the first equation 
for x in the form x = X(u, y) and to write v = 'I'(X(u, y), y) = X(u, y), 
just as on p. 262, for there we made use only of the assumption !fix *' O. 
In virtue of (34j) and the equation D = 0, however, Xy must be identi­
cally 0 in the region where !fix *' 0; that is, the quantity X = v does not 
depend on y at all and v is a function of u alone. We conclude, then, 
that if the Jacobian of the transformation vanishes identically, a re­
gion of the x, y-plane is mapped by the transformation on a curve in 
the u, v-plane instead of on a region, for in a certain interval of values 
of u only one value of v corresponds to each value of u. Thus, if the 
Jacobian vanishes identically, the functions are not independent; 
that is, a relation 

F(<p, '1') = 'I' - X(<p) = 0 

exists that is satisfied for all systems of values (x, y) in the region. 
Conversely, if there exists a curve in the u, v-plane on which the re­
gion of the x, y-plane is mapped, then for all points of this region the 
Jacobian D = !fix'l'Y - !fiy'l'x must vanish identically, since obviously 
the mapping cannot be inverted in a full neighborhood of a point. 

The exceptional case discussed separately at the begining is ob­
viously included in this general statement. The curve in question is 
then just the curve u = constant, which is a parallel to the v-axis. 

An example of a degenerate transformation is 

IVanishing of the Jacobian is also equivalent to dependence of the vectors (~", ~y) 
and ('If", 'lfy) formed by the first derivatives of the mapping functions. 
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~ = X + y, 1'\ = (x + y)2. 

In this transformation all the points of the x, y-plane are mapped on 
the points of the parabola 1'\ = ~2 in the ~, 1'\-plane. Inverting the 
transformation is out of the question, for all the points of the line x + y 
= constant are mapped on a single point (~, 1'\). As we can easily verify, 
the value of the Jacobian is O. The relation between the functions ~ 
and 1'\, in accordance with the general theorem, is given by the equa­
tion 

F(~, 1'\) = ~ 2 - 1'\ = O. 

Exercises 3.3h 

1. Give an example of a pair of continuously differentiable functions ~ = 
f(x, y), 1) = g(x, y) that are independent in one region, and not independ­
ent in another. 

2. Prove that if ~ = ax + by + c and 1) = ocx + ~y + yare dependent, the 
lines ~ = 0 and 1) = 0 are parallel. 

i. Concluding Remarks 

The generalization of the theory to three or more independent vari­
ables offers no particular difficulties. The chief difference is that in­
stead of the two-rowed determinant D we have determinants with 
three or more rows. In the case of transformations with three inde­
pendent variables 

~ = ~(x, y, z), 

x = g(~, 1'\, t;), 

1'\ = ",(x, y, z), 

y = h(~, 1'\, t;), 

the Jacobian is given by the equation 

~x 
D = d(~, 1'\, t;) = ~y 

d(x,y,z) 

In the same way, for transformations 

"'x 
",y 

"'z 

t; = X(x, y, z), 

z = l(~, 1'\, t;), 

Xx 

Xy 

Xz 

(i = 1, 2, . . ., n) 
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with n independent variables, the Jacobian is 

--:-:d(,-",-~l~, ~~2,~._."--", ~n) _ 
d(Xl, X2,. . , Xn) -

a~l a~2 
aX2' aX2'· .. , 

a~l a~2 a~n 
aXn' aXn'· ., 8xn 

For more than two independent variables, it is still true that when 
transformations are compounded their Jacobians are multiplied to­
gether. In symbols, 

d(111, 112, . 
., ~n) d(111, 112,. ., 11n) _ d(~l, ~2, ... , ~n) 

--=-7--'-'-----'---'------'------'~ 

d(Xl, X2,. ., Xn) - d(Xl, X2, . . ., Xn) .,11n) 

In particular, the Jacobian of the inverse transformation is the recip­
rocal of the Jacobian of the original transformation. 

The theorems on the resolution and composition of transforma­
tions, on the inversion of a transformation, and on the dependence of 
transformations remain valid for three and more independent vari­
ables. The proofs are similar to those for the case n = 2; to avoid un­
necessary repetition we omit them. The same holds for the construc­
tion of the inverse mapping by the method of iteration. 

In the preceding section, we saw that the behavior of a general 
transformation in many ways resembles that of an affine transformation 
and that the Jacobian plays the same part as the determinant does in 
the case of affine transformation. The following remark makes this 
even clearer. Since the functions ~ = ~(x, y) and 11 = 'I'(x, y) are dif­
ferentiable in the neighborhood of (xo, yo), we can express them in the 
form 

~ - ~o = (x - xo)~x(xo, yo) + (y - yo)~y(xo, yo) 

+ E ./(x - XO)2 + (y - YO)2 , 

11 - 110 = (x - xO)'I'x(xo, yo) + (y - YO)'I'y(xo, Yo) 

+ 0 ./(x - XO)2 + (y - YO)2 , 

where E and 0 tend to zero with 
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./(x - XO)2 + (y - YO)2. 

This shows that for sufficiently small values of I x - Xo I and I y - yo I 
the transformation can be represented approximately by the affine 
transformation 

~ = ~o + (x - xo)~x(xo, yo) + (y - yo)~y(xo, Yo), 

11 = 110 + (x - XO)'I'x(xo, yo) + (y - YO)'I'y(xo, yo), 

whose determinant is the Jacobian of the original transformation. 

Exercises 3.3i 

1. Evaluate a(~, 1), p)/a(x, y, z) for each of the following: 

(a) ~ = eX cos y cos z 
1) = eX cos y sin z 
p=exsiny 

(b) ~ = cos (x + y) + cos (y + z) 
1) = cos (x + y) + sin (y + z) 
p = sin (x + y) + cos (y + z) 

(c) ~ = cosh x + log y 
1) = tanh y - sinh z 
p =x-yZ 

(d) ~ = x cos y sin z 
1) = x sin y sin z 
p =xcosz 

(e) 1; = x cos y 
1) = x sin y 
p = z. 

2. Define dependence of the functions ~ = {(x, y, z), 1) = g(x, y, z), p = 
h(x, y, z), in a region. Generalize the results of Section h to this case. 

3. Which of the triples of functions given in Exercise 1 are dependent? 
Give an equation relating the functions of each such triple. 

4. Show that the following three functions are dependent and find a re­
lation connecting them: 

~=x+y+z 

1) = x 2 + y2 + Z2 

~ = xy + yz + zx. 

5. Inversion in three dimensions is defined by the formulae 

~_ x _ y ~ z 
- x 2 + y2 + Z2' 1) - x2 + y2 + Z2 , = x2 + y2 + Z2 . 
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(a) Prove that the angle between any two surfaces is unchanged. 
(b) Prove that spheres are transformed either into spheres or into 

planes. 
(c) Find the Jacobian of the transformation. 

3.4 Applications 

a. Elements of the Theory of Surfaces 

For surfaces, as for curves, parametric representation is frequently 
to be preferred to other types of representation. For surfaces, we need 
two parameters instead of one; we denote them by u and v. A para­
metric representation may be expressed in the form 

(39a) x = ~(u, v), y = 'I'(u, v), z = X(u, v), 

where ~, '1', and X are given functions of the parameters u and v and the 
point (u, v) ranges over a given region R in the u, v-plane. The corre­
sponding point with the three rectangular coordinates (x, y, z) then 
ranges over a set in x, y, z-space. Typically, this set is a surface, which 
can be represented in explicit form z = {(x, y), for we may be able to 
solve two of our three equations for u and v in terms of the two cor­
responding rectangular coordinates. If we then substitute the expres­
sions found for u and v in the third equation, we obtain an unsymmet­
rical representation of the surface z = {(x, y).1 Hence in order to en­
sure that the equations really do represent a surface, we have only to 
assume that the three Jacobians 

(39b) I 'l'u 'l'v i 

I Xu Xv I' 
I Xu 
I 
I ~u 

Xv I, I ~u ~v I 
~v 'l'u 'l'v I 

do not all vanish at once; in a single formula, we require that 

Then in some neighborhood of each point in space represented by 
(39a) it is certainly possible to express one of the three coordinates in 
terms of the other two. 

It is advantageous to replace the three equations (39a) in the para­
metric representation (39a) by a single vector equation 

IThis is actually a special case of the parametric form, as we see by putting x = u 
andy = v. 
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(40a) x = <I>(u, V), 

where X = (x, y, z) is the position vector of a point on the surface, and 
<I> denotes the vector 

<I>(u, v) = (~(u, v), W(u, v), X(u, v». 

At each point with parameters u, v on the surface, we can form the 
partial derivatives of the position vector 

(40b) and 

The total differential of the vector X is then [cf. formula (15b), p.49] 

(40c) dX = (dx, dy, dz) = Xu du + Xv dv. 

The three determinants (39b) are just the components of the vector 
product Xu X Xv of the vectors Xu and Xv(see p. 000). The expression 
on the left in (39c) represents the square of the length of the vector 
Xu x Xv, so that condition (39c) is equivalent to 

(4Od) Xu x Xv =1= O. 

For example, the spherical surface x2 + y2 + Z2 = r2 of radius r 
is represented parametrically by the equations 

(40e) x = r cos u sin v, y = r sin u sin v, z=rcosv 

(0 ~ u < 27t, 0 ~ V ~ 7t) 

where v = e is the "polar inclination" and u = ~ is the "longitude" 
of the point on the sphere (cf. p. 250). 

This example exhibits one of the advantages of parametric repre­
sentation. The three coordinates are given explictly as functions of 
u and v, and these functions are single-valued. If v runs from 7t/2 to 7t, 
we obtain the lower hemisphere, that is, 

while values of v from 0 to 7t/2 give the upper hemisphere. Thus, for the 
parametric representation it is not necessary, as it is for the represen­
tation 
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to consider two single-valued branches of the function in order to ob­
tain the whole sphere. 

We obtain another parametric representation of the sphere by 
means of stereographic projection (see Volume I, p. 21). In order to 
project the sphere x 2 + y2 + Z2 - r2 = ° stereographically from the 
north pole (0, 0, r) on the equatorial plane z = 0, we join each point of 
the surface to the north pole Nby a straight line and call the intersec­
tion of this line with the equatorial plane the stereographic image 
of the corresponding point of the sphere (Fig. 3.12) We thus obtain a 
1-1 correspondence between the points of the sphere and the points 
of the plane, except for the north pole N. Using elementary geometry, 
we readily find that this correspondence is expressed by the formulae 

2r2u 
(40f) x = 2 + 2 + 2' U v r y = u 2 + v 2 + r2 ' 

where (u, v) are the rectangular coordinates of the image-point in the 
plane. These equations may be regarded as a parametric representa­
tion of the sphere, the parameters u and v being rectangular coordi­
nates in the u, v-plane. 

z 

Figure 3.12 Stereographic projection of the sphere 

As a further example, we give parametric representations of the 
surfaces 

x2 y2 Z2 
-+---=1 
a2 b2 c2 

and 
x2 y2 Z2 
-+---=-1 
a2 b2 c2 ' 

which are called the hyperboloid of one sheet and the hyperboloid of 
two sheets respectively (cf. Figs. 3.13 and 3.14). The hyperboloid of one 
sheet is represented by 
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Figure 3.13 Hyperboloid of one 
sheet. 

Figure 3.14 Hyperboloid of two 
sheets. 

x = a cos u cosh v, 

(40g) y = b sin u cosh v, 

z=csinhv 

(0 ~ u < 21t, -00 < V < + 00) 

and the hyperboloid of two sheets by 

x = a cos u sinh v, 

(40h) y = b sin u sinh v, 

z = ± c cosh v 

(0 ~ u < 21t, 0 < V < + 00). 

In general, we may regard the parametric representation of a surface 
as the mapping of the region R of the u, v-plane onto the corresponding 
surface. To each point of the region R of the u, v-plane there corre­
sponds one point ofthe surface, and typically the converse is also true. l 

In the same way, a curve u = u(t), v = v(t) in the u, v-plane corre­
sponds by virtue of the equations 

x = ~(u(t),v(t» = x(t), . 

IThis, of course, is not always the case. For example, in the representation (40e) of 
the sphere by spherical coordinates (p. 279) the poles of the sphere correspond to 
the whole line segments given by v = 0 and v = 1t. 
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to a curve on the surface. In particular, in the representation (40e) of 
the sphere by means of spherical coordinates the meridians are repre­
sented by the equation u = constant and the parallels of latitude by 
v = constant. Generally, we may consider those curves on a surface 
that are given by equations u = constant or v = constant. If in our 
parametric representation we substitute a definite fixed value for u, 
we obtain a "space curve" or "twisted curve" lying on the surface 
and having v as parameter, and a corresponding statement holds good 
if we substitute a fixed value for v and allow u to vary. These curves 
u = constant and v = constant are the parametric curves or coordi­
nate lines on the surface. The net of parametric curves corresponds to 
the net of parallels to the axes in the u, v-plane (Fig. 3.15). 

z 

O~ _____ y 

x 

Figure 3.15 Parametric curves 
u = constant, v = constant. 

The tangent to the curve on the surface corresponding to the curve 
u = u(t), v = v(t) in the u, v-plane has the direction of the vector 

( du dv du dv du dv) 
(41) Xt = (Xt,Yt, Zt) = Xu dt + Xv dt' Yu dt + Yv dt ' Zu dt + Zv dt 

du dv 
= Xu dt + Xv dt 

(see p. 212). At a given point of the surface the tangential vectors X t 

of all curves on the surface passing through that point are dependent 
on the two vectors Xu, Xv, which respectively are tangential to the 
parametric lines v = constant and u = constant passing through 
that point. This means that the tangents all lie in the plane through 
the point spanned by the vectors Xu and Xv, the tangent plane to the 
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surface at that point. The normal to the surface is perpendicular to all 
tangential directions, in particular to the vectors Xu and Xv. It follows 
(see. p. 182) that the surface normal is parallel to the direction of the 
vector product 

(42) Xu X Xv = (yuzv - YvZu, ZuXv - ZvXu, xuYv - xvyu). 

One of the most important tools for investigation of the properties 
of a given surface is the study of the curves that lie on it. Here we shall 
only give the expression for s, the length of arc of such a curve. As 
mentioned on p. 213, (see also Volume I, p.353) 

(ds) 2 (dx) 2 (dy) 2 (dz) 2 
dt = dt + dt + dt = X t • X t, 

so that in view of the equations (41) we obtain 

( du dV)2 (du dV)2 (du dV)2 
= Xu dt + Xv dt + Yu dt + Yv dt + Zu dt + Zv dt 

(du) 2 du dv (dv) 2 
= E dt + 2F dt dt + G dt . 

Here the coefficients E, F, G, the Gaussian fundamental quantities of 
the surface, are given by 

(44a) 

(44b) 

(44c) (ax) 2 (ay) 2 (az) 2 G = av + av + av = Xv • Xv. 

These depend only on the surface itself and its parametric representa­
tion and not on the particular choice of the curve on the surface. The 
expression (43) for the derivative of the length of arc s with respect 
to the parameter t usually is written symbolically without reference 
to the parameter used along the curve. One says that the line element 
ds is given by the quadratic differential form ("fundamental form") 

(45) ds2 = E du2 + 2F du dv + G dv2. 
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The length of the cross product Xu X J4 can be expressed in 
terms of E, F, G since (see p. 182) 

Our original assumption (39c) or (40d) on the parametric representa­
tion can thus be formulated as the condition 

(46) EG - F2> 0 

for the fundamental quantities. 
The direction cosines for one of the two normals to the surface are 

the components of the unit vector 

1 1 
IXu x Xvi Xu x Xv = .JEG _ F2 Xu X Xv. 

It follows from (42) that the normal for a surface represented parame­
trically has the direction cosines 

Yuzv - Yvzu ZuXv - ZvXu XuYv - XvYu 
(47) cos a = .JEG _ F2 , cos J3 = .JEG _ F2 ' cos'Y = .JEG _ F2 • 

The tangent to a curve u = u(t), v = v(t) on the surface has the di­
rection of the vector 

du dv 
Xt = Xu dt + Xv dt . 

H we now consider a second curve u = u(-r), v = v(-r) on the surface 
referred to a parameter 't, its tangent has the direction of the vector 

du dv 
XT = Xu d't + Xv d't . 

H the two curves pass through the same point on the surface, the co­
sine of the angle of intersection co is the same as the cosine of the 
angle between the vectors X t and XT• Hence (see p. 131), 

Here 

Xt· XT 
cos co = IXtllXTI . 

( du dv) (du dv) 
X t • XT = XUdt + XVdt • XUd't + XVd't 
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Consequently the cosine of the angle between the two curves on the 
surface is given by 

(48) cos co 

The mapping of one plane region on another may be regarded as a 
special case of parametric representation, for if the third of our func­
tions X(u, v) in (39a) vanishes for all values of u and v under considera­
tion, our equations merely represent the mapping of a region of the 
u, v-plane on a region of the x, y-plane; or if we prefer to think in 
terms of transformations of coordinates, the equations define a system 
of curvilinear coordinates in the u, v-region, and the inverse functions 
(if they exist) define a curvilinear u, v-system of coordinates in the 
plane x, y-region. In terms of the curvilinear coordinates (u, v) the line 
element in the x, y-plane is simply [see (44a, b, c)] 

where 

(49a) 

(49b) 

(49c) 

ds2 = E du2 + 2F du dv + G dv2, 

E = (aX)2 + (iJ:r)2 
au au' 

F = ii~ ax + ay ay 
au av au av' 

As a further example of the representation of a surface in parame­
tric form we consider the anchor ring, or torus. This is obtained by ro­
tating a circle about a line which lies in the plane of the circle and 
does not intersect it (cf. Fig. 3.16). We take the axis ofrotation as the 
z-axis and choose the y-axis in such a way that it passes through the 
center of the circle, whose y-coordinate we denote by a. If the radius 
of the circle is r < I a I, we obtain 
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z 

y 

Figure 3.16 Generation of a torus 
by the rotation of a circle. 

x = 0, y - a = r cos 9, z = r sin 9 (0 ;;;; 9 < 21t) 

as a parametric representation of the circle in the Y,z-plane. Now 
letting the circle rotate about the z-axis, we find that for each point 
of the circle x2 + y2 remains constant; that is, x2 + y2 = (a + r cos 9)2. 
If 1> is the angle of rotation about the z-axis, we have 

x = (a + r cos 9) sin ,p, 

y = (a + r cos 8) cos rp, 

z = r sin 9 

(0 ~ rp < 21t, 0 ~ 8 < 21t) 

as a parametric representation of the torus in terms of the parameters 
9 and ,p. In this representation the torus appears as the image of 
a square of side 21t in the 9, ,p-plane, where any pair of boundary points 
lying on the same line 9 = constant or 1> = constant corresponds to 
only one point on the surface, and the four corners of the square all 
correspond to the same point. 

For the line element on the anchor ring, we have by (44a, b, c), (45) 

ds2 = r2 d92 + (a + r cos 9)2drp2. 

Exercises 3.4a 

1. Calculate the line element 

(a) on the sphere 

x = cos u sin v, y = sin u sin v, z = cos v; 
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(b) on the hyperboloid 

x = cos u cosh v, y = sin u cosh v, z = sinh v; 

(c) on a surface of revolution given by 

r = vx2 + y2 = f(z), 

using the cylindrical coordinates z and 6 = arc tan (y/x) as coordi­
nates on the surface; 

(d) on the quadric ta = constant of the family of confocal quadrics given 
by 

x2 y2 Z2 
a - t + b - t + c - t = 1, 

using tl and t2 as coordinates on the quadric (cf. Exercise 9, p.256). 
2. Find the Gauss fundamental quantities for the catenoid x = a cosh (t/a) 

cos (6/a), y = a cosh (t/a) sin (6/a), z = t; show that E - G = F = O. 
3. For the surface x = u cos v, y = u sin v, z = rxu + (3, rx, (3 = constantl 

show that the images of the lines u = constant, v = constant are 
orthogonal. 

4. What is the fundamental form giving the line element for a surface given 
by an equation z = f(x, y)? 

5. Prove that if a new system of curvilinear coordinates r, s is introduced 
on a surface with parameters u, v by means of the equations 

then 

u = u(r, s), v = v(r, s), 

E'G' - F'2 = (EG _ F2) {d(U, V)} 2 
d(r, s) , 

where E', F', G' denote the fundamental quantities taken with respect to 
r, sand E, F, G those taken with respect to u, v. 

6. Let t be a tangent to a surface S at the point P, and consider the sections 
of S made by all planes containing t. Prove that the centers of curvature 
of the different sections lie on a circle. 

7. If t is a tangent to the surface S at the point P, we call the curvature of 
the normal plane section through t (i.e., the section througll t and the 
normal) at that point the curvature k of S in the direction t. For every 
tangent at P we take the vector with the'direction of t, initial point P, 
and length 1/& Prove that the final points of these vectors lie on a 
conic. 

8. A curve is given as the intersection of the two surfaces 

Find the equations of 
(a) the tangent, 

x2 + y2 + Z2 = 1 

ax2 + by2 + cz2 = 0 

(b) the osculating plane, at any point of the curve. 
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9. If the coordinates (x, y, z) of a point on a sphere are given by the equa­
tions (cf. p. 250) 

x = a sin 6 cos rp, y = a sin 6 sin rp, z = a cos 6, 

show that the two curves of the systems 6 + rp = ex, 6 - rp = ~, which 
pass through any point (6, rp), cut one another at the angle arc cos 
{(I - sin26)/(1 + sin2 6)} (cf. p. 285). 

Show that the radius of curvature of either curve is equal to 

a(l + sin2 6)3/2 
(5 + 3 sin2 6)1/2 • 

b. Conformal Transformation in General 

A transformation in the plane 

(50) x = p(u, v), y = 'I'(u, v) 

is called conformal if it maps any two intersecting curves into two 
others enclosing the same angle as the original ones. 

THEOREM. A necessary and sufficient condition that a con­
tinuously differentiable transformation (50) should be conformal is that 
the Cauchy-Riemann equations 

(51a) pu - '1'" = 0, p" + 'l'u = 0 

or 

(51b) pu + '1'" = 0, p" - 'l'u = 0 

hold. In the first case the direction of the angles is preserved, in the sec­
ond case the direction is reversed.1 

The proof of this follows: If the transformation is conformal, the 
two orthogonal curves u = constant = Uo, v = Vo + t and u = Uo + 't, 
V = constant = Vo in the u, v-plane must map into orthogonal curves 
in the x, y-plane. From the formula (48) for the angle between two 
curves (p. 285) is follows immediately that 

(51 c) 0= F = pup" + 'l'u'l'". 

In the same way, the curves corresponding to the lines u = Uo + t, 
v = Vo + t and u = Uo + 't, V = Vo - 't must be orthogonal. This gives 

lThis last statement follows directly from the statements on p. 260 concerning the 
sign of the Jacobian D = ; .. 'II" - ;" 'II... In case (51a) holds, we have D = ; .. 2 + ;,,2 
;;;:; 0, in case (51b) D = - ; .. 2'_ ;,,2;;a O. 
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(51d) 

Equation (51c) can be written as 

where "- denotes a constant of proportionality. Introducing this into 
equation (51d), we immediately get "-2 = 1, so that one or the other of 
our two systems of Cauchy-Riemann equations (51a, b) holds. 

That the Cauchy-Riemann equations are a sufficient condition for 
conformality except at points where all four of the quantities <Pu,<pv, 
\jIu, \jI v are zero is confirmed by the following observations. 

Equations (51a) or (51b) yield relations 

E = G ~ 0, F=O 

for the fundamental quantities E, F, G, defined by (49a, b, c). By (48) 
the angle (j) between two curves in the x, y-plane is then given by 

The right side of this equation is just the cosine of the angle between 
the corresponding curves in the u, v-plane. Thus, the mapping pre­
serves angles between curves, possibly changing their orientation. 
The only exception is presented by points where E = F = G = 0, 
that is, by points where all first derivatives of both mapping functions 
vanish. l 

Exercises 3.4h 

1. Investigate the behavior of the mapping x = u2 - v2, Y = 2uv. Is it con­
formal at u = 2, v = 3? At u = v = O? Why? 

2. Where is the mapping x = ~ log (u2 + v2), Y = arc tan v/u, conformal? 
3. Show that if the mappings (u, v) -> (x, y) and (u, v) -> (~, 1) are both 

conformal, the mapping (u, v) -> (x~ - Y1), X1) + y~) is also conformal. 
4. (a) Prove that the stereographic projection of the unit sphere on the 

plane is conformal. 
(b) Prove that circles on the sphere are transformed either into circles 

or into straight lines in the plane. 

IThere the mapping may actually cease to be conformal. 
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(c) Prove that in stereographic projection reflection of the spherical 
surface in the equatorial plane corresponds to an inversion in the 
u, v-plane. 

(d) Find the expression for the line element on the sphere in terms of the 
parameters u, v. 

5. Under what conditions on the Gaussian fundamental coefficients (44) 
will the mapping from the u, v-plane to the surface X = X (u, v) be 
conformal? 

6. Find a conformal mapping of the sphere x = cos f} sin ifJ, y = sin f} sin ifJ, 
z = cos ifJ into the u, v-plane such that f} = u, and ifJ = f(v) with f(O) = ~ 7t. 

3.5 Families of Curves, Families of Surfaces, and Their 
Envelopes 

a. General Remarks 

On various occasions we have already considered curves or sur­
faces not as individual configurations but as members of a family of 
curves or surfaces, such as f(x, y) = c, where to each value of c there 
corresponds a different curve of the family. 

For example, the lines parallel to the y-axis in the x, y-plane, that is, 
the lines x = c, form a family of curves. The same is true for the family 
of concentric circles x2 + y2 = c2 about the origin; to each value of 
c there corresponds a circle of the family, namely, the circle with ra­
dius c. Similarly, the rectangular hyperbolas xy = c form a family of 
curves, sketched in Fig. 3.2. The particular value c = 0 corresponds 
to the degenerate hyperbola consisting of the two coordinate axes. 
Another example of a family of curves is the set of all the normals 
to a given curve. If the curve is given in terms of the parameter t by the 
equations ~ = ~(t), 11 = 'I'(t), we obtain the equation of the family of 
normals in the form (see Volume I, p. 345) 

(x - ~(t»~/(t) + (y - 'I'(t»'I"(t) = 0, 

where t is used instead of c to denote the parameter of the family. 
The general concept of a family of curves can be expressed analyt­

ically in the following way. Let 

f(x, y, c) 

be a continuously differentiable function of the two independent 
variables x and y and of the parameter c, where the parameter varies 
in a given interval. (Thus, the parameter is really a third independent 
variable, which is lettered differently simply because it plays a dif-
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ferent part.) Then, if for each value of the parameter c the equation 

(52a) f(x,y, c) = 0 

represents a curve, the aggregate of the curves obtained as c describes 
its interval is called a family of curves depending on the parameter c. 

Each curve of such a family may also be represented in parametric 
form 

(52b) x = ~(t, c), y = 'tI(t, c), 

where c is the parameter distinguishing the different curves of the 
family and t the parameter along the curve. 

For example, the equations 

x = c cos t, y = c sin t 

represent the family of concentric circles mentioned above; again the 
equations 

x = ct, 

represent the family of rectangular hyperbolas mentioned above, ex­
cept for the degenerate hyperbola consisting of the coordinate axes. 

Occasionally we are led to consider families of curves that depend 
on several parameters. For example, the aggregate of all circles 
(x - a)2 + (y - b)2 = c2 in the plane is a family of curves depending on 
the three parameters a, b, c. If nothing is said to the contrary, we shall 
always understand a family of curves to be a "one-parameter" family, 
depending on a single parameter. The other cases we shall distinguish 
by speaking of two-parameter, three-parameter, or multiparameter 
families of curves. 

Similar statements of course hold for families of surfaces in space. 
If we are given a continuously differentiable function f(x, y, z, c) and 
if for each value of the parameter c in a certain definite interval the 
equation 

f(x,y, z, c) = 0 

represents a surface in the space with rectangular coordinates x, y, z, 
then the aggregate of the surfaces obtained by letting c describe its 
interval is called a family of surfaces, or, more precisely, a one-para-
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meter family of surfaces with the parameter c. For example, the spheres 
x2 + y2 + Z2 = c2 about the origin form such a family. As with curves, 
we can also consider families of surfaces depending on several para­
meters. 

Thus, the planes defined by the equation 

ax + by + J1 - a2 - b2 Z + 1 = 0 

form a two-parameter family depending on the parameters a and b 
if the parameters a and b range over the region a2 + b2 ~ 1. This 
family of surfaces consists of the class of all planes that are at unit 
distance from the origin. 1 

Exercises a.5a 

1. Characterize the following families of curves geometrically: 
x2 y2 

(a) a2 + b2 = c2, a, b = known constants, c = a parameter 

(b) x2 + (y - C)2 = c2, C = parameter 

(c) x = cos (c + t), Y = sin (c + t), O;$; t ;$; 2", c = parameter. 
2. Describe the one·parameter family of surfaces 

(x - C)2 + (y - 1 - C)2 + (z + J"2 - 2C)2 = 1. 

h. Envelopes of One-Parameter Families of Curves 

If a family of straight lines consists of the tangents to a plane curve 
E (e.g., if the family of normals of a curve Cis the family of tangents to 
the evolute E of C; cf. Volume I, p. 424,) we shall say that the curve E 
is the envelope of the family of lines. In the same way, we shall say that 
the family of circles with radius 1 and center on the x-axis-that is, 
the family of circles with the equation (x - C)2 + y2 - 1 = o-has as 
its envelope the pair of lines y = 1 andy = - 1, which touch each of 
the circles (Fig. 3.17). In both examples, we can obtain the point of con­
tact of the envelope and a curve of the family with parameter value c 
by finding the intersections of the two curves of the family with para­
meter values c and c + h and then letting h tend to O. We express this 
briefly by saying that the envelope is the locus of the intersections of 
neighbouring curves. 

For any family of curves a curve E that at each of its points touches 

ISometimes a one· parametric family of surfaces is referred to as 001 surfaces, a two­
parametric family as 00 2 surfaces, and so on. 
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y 

Figure 3.17 Family of circles with envelope. 

some one of the curves of the family is called the envelope of the family 
of curves. The question now arises of finding the envelope E of a given 
family of curves f(x, y, c) = O. We first make a few plausible remarks 
in which we assume that an envelope E does exist and that it can be 
obtained, as in the above cases, as the locus of the intersections of 
neighboring curves.1 We then obtain the point of contact of the curve 
f(x, y, c) = 0 with the curve E in the following way: In addition to this 
curve we consider a neighboring curve f(x, y, c + h) = 0, find the in­
tersection of these two curves, and then let h tend to O. The point of 
intersection must then approach the point of contact sought. At the 
point of intersection the equation 

f(x,y, c + h) - f(x,y, c) - 0 
h -

is true as well as the equations f(x, y, c + h) = 0 and f(x, y, c) = O. 
In the first equation, we pass to the limit h ~ O. Since we assume the 
existence of the partial derivative fe, this gives the two equations 

(53) f(x, y, c) = 0, fc(x, y, c) = 0 

for the point of contact of the curve f(x, y, c) = 0 with the envelope. 
If we can determine x and y as functions of c by means of these equa­
tions, we obtain the parametric representation of a curve with the 
parameter c, and this curve is the envelope. By elimination of the 
parameter c, the curve can also be represented in the form g(x, y) = O. 
This equation is called the discriminant of the family, and the curve 
given by the equation g(x, y) = 0 is called the discriminant curve. 

lSince this last assumption will be shown by examples to be too restrictive, we shall 
shortly replace these plausibilities by a more complete discussion. 
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We are thus led to the following rule: In order to obtain the en­
velope of a family of curves f(x. y, c) = 0, we consider the two equations 
f(x, y, c) = 0 and fc(x, y, c) = 0 simultaneously and attempt to express 
x and y as functions of c by means of them or to eliminate the quantity 
c between them. 

We now replace these heuristic considerations by a more general 
discussion based on the definition of the envelope as the curve of con­
tact. At the same time, we shall learn under what conditions our rule 
actually does give the envelope and what other possibilities present 
themselves. 

To begin with, we assume that E is an envelope that can be repre­
sented in terms of the parameter c by two continuously differentiable 
functions 

x = x(c), y = y(c), 

where 

and that E at the point with parameter c touches the curve of the 
family f(x, y, c) = 0 with the same value of the parameter c. The equa­
tion f(x, y, c) = 0 is then satisfied at the point of contact. Consequent­
ly, if we substitute the expressions x(c) andy(c) for x andy in this equa­
tion, it remains valid for all values of c in the interval. On differentiat­
ing with respect to c, we at once obtain 

dx dy 
fx de + f1l dc + fe = O. 

Now the condition of tangency is 

dx dy 
fx dc + f1l dc = 0, 

for the quantities dx/dc and dy/dc are proportional to the direction 
cosines of the tangent to E and the quantities fx and f1l are proportional 
to the direction cosines of the normal to the curve f(x, y, c) = 0 of the 
family, and these directions must be at right angles to one another. 
It follows that the envelope satisfies the equation fe = 0, and we thus 
see that equations (53) form a necessary condition for the envelope. 

In order to find out how far this condition is also sufficient, we as-
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sume that a curve E represented by two continuously differentiable 
functions x = x(e) andy = y(e) satisfies the two equations f(x,y, e) = 0 
and fe(x, y, e) = O. In f(x, y, e) = 0 we again substitute x(e) and y(e) 
for x and y; this equation then becomes an identity in e. If we differ­
entiate with respect to e and remember that fe = 0, we at once obtain 
the relation 

dx dy 
fx de + fy de = 0, 

which therefore holds for all points of E. If the two expressions fx2 + fy2 
and (dx/de)2 + (dy/de)2 both differ from 0 at a point of E, so that at 
that point both the curve E and the curve of the family have well­
defined tangents, this equation states that the envelope and the curve 
of the family touch one another. With these additional assumptions 
our rule is a sufficient condition for the envelope as well as a necessary 
one. If, however, fx and fy both vanish, the curve of the family may 
have a singular point (cf. p. 236), and we can draw no conclusions 
about the contact of the curves. 

Thus, after we have found the discriminant curve, it is still neces­
sary to make a further investigation in each case, in order to discover 
whether it is really an envelope or to what extent it fails to be one. 

In conclusion, we state the condition for the discriminant curve of a 
family of curves given in parametric form 

x = ~(t, e), y = ",(t, e), 

with the curve parameter t. This is 

~t"'e - ~e"'t = O. 

We can readily obtain this condition by passing from the parametric 
representation of the family to the original expression by elimination 
of t. 

Exercises 3.5b 

1. Do the normals to a smooth plane curve always have an envelope? 
2. The straight lines 

y = ex + Iji(e) 

satisfy the differential equation 

y = xy' + Iji(y') 
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(Clairaut equation). Obtain a nonparametric equation for the envelope 
of the family and verify that it, too, must satisfy the differential equation. 

c. Examples 

1. (x - C)2 + y2 = 1. As we remarked on p. 292, this equation rep­
resents the family of circles of unit radius whose centers lie on the 
x-axis (Fig. 3.17). Geometrically, we see at once that the envelope must 
consist of the two lines y = 1 and y = - 1. We can verify this by means 
of our rule; for the two equations (x - C)2 + y2 = 1 and - 2(x - c) = 0 
immediately give us the envelope in the form y2 = 1. 

2. The family of circles of unit radius passing through the origin, 
whose centers, therefore, must lie on the circle of unit radius about 
the origin, is given by the equation 

(x - cos C)2 + (y - sin C)2 = 1 

or 

x2 + y2 - 2x cos c - 2y sin c = o. 

The derivative with respect to c equated to 0 givesxsinc - ycosc = o. 
These two equations are satisfied by the values x = 0 and y = o. If, 
however, x2 + y2 =1= 0, it readily follows from our equations that sin c 
= y/2, cos c = x/2, so that on eliminating c we obtain x 2 + y2 = 4. 
Thus, for the envelope our rule gives us the circle of radius 2 about the 
origin, as is anticipated by geometrical intuition; but it also gives us 
the isolated point x = 0, y = o. 

3. The family of parabolas (x - C)2 - 2y = 0 (cf. Fig. 3.18) also has 
an envelope, which both by intuition and by our rule is found to be the 
x-axis. 

y 

Figure 3.18 Family of parabolas with envelope. 
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4. We consider the family of circles (x - 2C)2 + y2 - C2 = ° (cf. 
Fig. 3.19). Differentiation with respect to c gives 2x - 3c = 0, and by 
substitution we find that the equation of the envelope is 

x2 Y2 __ • 

- 3 ' 

that is, the envelope consists of the two lines 

1 
and Y = - ..; 3 x. 

The origin is an exception in that contact does not occur there. 

Figure 3.19 The family (x - 2c)S + yS - c2 = o. 

5. We next consider the family of straight lines on which unit 
length is cut out by the x- and y-axes. If a = c is the angle indicated 
in Fig. 3.20, the lines are given by the equation 

x y -- +-.-= 1. cos a SIn a 

The condition for the envelope is 

which, in conjunction with the equation of the lines, gives the 
envelope in parametric form, 

x = cos3 a, y = sin3 a. 
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Figure 3.20 Arc of the astroid as envelope of straight lines. 

Eliminating the parameter, we obtain the equation 

X 2/3 + y2/3 = 1. 

This curve is called the astroid (cf. Volume I, Chapter 4, Exercise 1, 
p. 435). It consists (Figs. 3.21 and 3.22) of four symmetrical branches 
meeting in four cusps. 

'1 

t-I 

Figure 3.21 Astroid. Figure 3.22 Astroid as envelope of ellipses. 

6. The astroid X2/3 + y2/3 = 1 also appears as the envelope of the 
family of ellipses 

X2 y2 
-+ = 1 c2 (1 - C)2 
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whose semiaxes c and (1 - c) have the constant sum 1 (Fig. 3.22). 
7. The family of curves (x - C)2 - y3 = 0 shows that in certain cir­

cumstances our process may fail to give an envelope. Here the rule 
gives the x-axis. But, as Fig. 3.23 shows, this is not an envelope; 
it is the locus of the cusps of the curves of the family. 

8. For the family 

y 

Figure 3.23 The family (x - C)2 - y3 = o. 

(x - C)3 - y2 = 0, 

the discriminant curve is the x-axis (cf. Fig. 3.24). This is again the 
cusp-locus; but it touches each of the curves, and in this sense must 
be regarded as the envelope. 

y 

Figure 3.24 The family (x - C)3 - y2 = o. 
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9. The family of strophoids 

[X2 + (y - C)2] (x - 2) + x = 0 

(cf. Fig. 3.25) has a discriminant curve consisting of the envelope plus 
the locus of the double points. The curves of the family are congruent 
to each other and arise from one another by translation parallel to 
the y-axis. By differentiation we obtain 

Ie = -2(y - c)(x - 2) = 0, 

so that we must have either x = 2 or y = c. The line x = 2 does not en­
ter into the matter, however, for no finite value of y corresponds to 
x = 2. We therefore have y = c. So that the discriminant curve is 

X2(X - 2) + x = o. 
This curve consists of the straight lines x = 0 and x = 1. As we see in 
Fig. 3.25, only x = 0 is the envelope; the line x = 1 passes through the 
double points of the curves. 

Figure 3.25 Family of strophoids. 

10. The envelope need not be the locus of the points of intersection 
of neighbouring curves; that is shown by the family of identical paral­
lel cubical parabolas y - (x - C)3 = o. No two of these curves inter­
sect each other. The rule gives the equation Ie = 3(x - C)2 = 0, so that 
the x-axis y = 0 is the discriminant curve. Since all the curves of the 
family are touched by it, it is also the envelope (Fig. 3.26). 
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Figure 3.26 Family of cubical parabolas. 

11. The notion of the envelope enables us to give a new definition 
for the evolute of a curve C (cf. Volume I, pp. 359, 424 ff.). Let C be given 
by 

x = rp(t), y = ",(t). 

We define the evolute E of C as the envelope of the normals of C. Since 
the normals of C are given by 

{x - rp(t)} ~/(t) + {y - ",(t)} ",/(t) = 0, 

the envelope is found by differentiating this equation with respect to 
t: 

° = {x - ~(t)} ~"(t) + {y - ",(t)} ","(t) - ~/2(t) - ",/2(t). 

From this equation and the preceding one, we obtain the parametric 
representation of the envelope, 

where 

_ I rp/2 + ",/2 _ ",' P 
x - ~(t) - '" (t) ","rp' _ ~"",' - ~ - .; ~/2 + ",/2 ' 

_ I rp/2 + ",/2 _ ~/p 

Y - ",(t) + ~ (t) "," ~' _ r",' - '" + .; rp/2 + ",/2 ' 

_ (1)'2 + ",/2)3/2 
P - "," rp' - ~"",' 

denotes the radius of curvature (cf. Volume I, p. 358). These equations 
are identical with those given in Volume I (p. 359) for the evolute. 

12. Let a curve C be given by x = ~(t), Y = ",(t). We form the en­
velope E of the circles having their centers on C and passing through 
the origin O. Since the circles are given by 

x2 + y2 - 2xrp(t) - 2y",(t) = 0, 

the equation of E is 
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x~'(t) + Y'If'(t) = o. 
Hence, if Pis the point (~t), 'I'(t» and Q(x, y) is the corresponding point 
of E, then OQ is perpendicular to the tangent to C at P. Since by defi­
nition PQ = PO, PO and PQ make equal angles with the tangent 
to Cat P. 

If we imagine 0 to be a luminous point and C a reflecting curve, 
then QP is the reflected ray corresponding to OP. The envelope of the 
reflected rays is called the caustic of C with respect to O. The caustic 
is the evolute of E: the reflected ray PQ is normal to E, since a circle 
with center P touches E at Q, and the envelope of the normals of E 
is its evolute, as we saw in the preceding example. 

For example, let C be a circle passing through O. Then E is the path 
described by the point 0' of a circle C' congruent to C that rolls on C 
and starts with 0 and 0' coincident, for during the motion 0 and 0' 
always occupy symmetrical positions with respect to the common 
tangent of the two circles. Thus, E will be a special epicycloid, in fact, 
a cardioid (cf. Volume I, p. 329 if.). As the evolute of an epicycloid is a 
similar epicycloid (cf. Volume I, p. 439), the caustic of Cwith respect to 
o is in this case a cardioid. 

Exercises 3.5c 

1. A projectile fired from the origin at initial angle of inclination ex and 
fixed initial speed v travels in a parabolic trajectory given by the 
equations 

x = (v cos IX) t 

Y = (v sin IX) t - ~ gt2, 

where g is the constant acceleration of gravity. 
(a) Find the envelope of the family of trajectories with parameter IX. 
(b) Show that no point above the envelope can be hit by the projectile. 
(c) Show that every point below the envelope can be hit in two ways, 

that is, that such a point lies on two trajectories. 
2. Obtain the envelopes of the following families of curves: 

(a) y = ex + lIe. 

(b) y2 = e(x - e) 

(c) ex2 + y 2/e = I 
(d) (x - e)2 + y2 = a2e2/(1 + all), a = constant. 

a. Let C be an arbitrary curve in the plane, and consider the circles of 
radiusp whose centers lie on C. Prove that the envelope of these circles 
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is formed by the two curves parallel to C at the distance p (cf. the defi­
nition of parallel curves, Volume I, p. 291). 

4. A family of straight lines in space may be given as the intersection of 
two planes depending on a parameter t: 

a(t)x + b(t)y + c(t)z = 1 

d(t)x + e(t)y + f(t)z = 1. 

Prove that if these straight lines are tangents to some curve, (Le., 
possess an envelope), then 

a-d 

a' 

d' 

b-e 

b' 

e' 

c-f 

c' =0. 

f' 
5. If a plane curve C is given by x = f(t), y = g(t), its polar reciprocal 

C' is defined as the envelope of the family of straight lines 

~f(t) + Tjg(t) = 1, 

where (~, Tj) are running coordinates. 
(a) Prove that C is also the polar reciprocal of C'. 
(b) Find the polar reciprocal of the circle (x - a)2 + (y - b)2 = 1. 
(c) Find the polar reciprocal of the ellipse x2/a2 + y2/b2 = 1. 

6. A circle of radius a rolls on a fixed straight line, carrying a tangent 
fixed relatively to the circle. Taking axes at the point of contact where 
the moving tangent coincides with the fixed line, show that the en­
velope of the tangent is given by 

x = a(6 + cos 6 sin 6 - sin 6) 

y = a(cos26 - cos 6). 
7. Find the envelope of a variable circle in a plane which passes through 

a fixed point 0, and whose center describes a given conic with center 
O. 

8. (a) If r is a plane curve and 0 a point in its plane, the locus r' of the 
orthogonal projections of 0 on a variable tangent of r is called the 
pedal curve of r with respect to the point O. Prove that if the point 
M describes the curve r, the pedal curve r' is the envelope of the 
variable circle with the radius vector OM as diameter. 

(b) What is the envelope like if r is a circle and 0 a point on its cir­
cumference? 

9. MM' is a variable chord of an ellipse parallel to the minor axis. Find 
the envelope of the variable circle with MM' as diameter. 

d. Envelopes of Families 01 Surfaces 

The remarks made about the envelopes of families of curves apply 
with but little alteration to families of surfaces also. Given a one-
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parameter family of surfaces {(x, y, z, c) = 0 defined for an interval of 
parameter values c, we shall say that a surface E is the envelope ofthe 
family if it touches each surface of the family along a whole curve and 
if, further, these curves of contact form a one-parameter family of 
curves on E that completely cover E. 

An example is given by the family of all spheres of unit radius with 
centers on the z-axis. We see intuitively that the envelope is the cyl­
inder x2 + y2 - 1 = 0 with unit radius and axis along the z-axis; the 
family of curves of contact is simply the family of circles parallel to 
the x, y-plane, with unit radius and center on the z-axis.1 

As on p. 292, if we assume that the envelope does exist we can find 
it by the following heuristic method: We first consider surfaces 
{(x, y, z, c) = 0 and {(x, y, z, c + h) = 0 corresponding to two different 
parameter values c and c + h. These two equations determine the 
curve of intersection of the two surfaces (we expressly assume that 
such a curve of intersection exists). As a consequence of the two equa­
tions above, this curve also satisfies the third equation 

{(x, y, z, c + h) - {(x, y, z, c) _ 0 
h - . 

If we let h tend to zero, the curve of intersection will approach a defi­
nite limiting position, and this limit curve is determined by the two 
equations 

(54) {(x, y, z, c) = 0, {c(x, y, z, c) = o. 

This curve is often referred to in a nonrigorous intuitive way as the in­
tersection of neighboring surfaces of the family. It is a function of the 
parameter c, so that the curves of intersection for all the different 
values of c form a one-parameter family of curves in space. If we elim­
inate the quantity c from the two equations above, we obtain an 
equation that is called the discriminant. As on p. 293, we can show that 
the envelope must satisfy this discriminant equation. 

Just as in the case of plane curves, we may readily convince our­
selves that a plane touching the discriminant surface also touches the 
corresponding surface of the family, provided that {x2 + {y2 + {i =1= o. 
Hence, the discriminant surface again gives the envelopes of the 
family and the loci of the singularities of the surfaces of the family. 

As a first example, we consider the family of spheres 

IThe envelope of spheres of constant radius whose centers lie on a given curve are 
called tube-surfaces. 
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XZ + yZ + (z - c)Z - 1 = 0 

mentioned above. To find the envelope we have the additional equa­
tion 

-2(z - c) = O. 

For fixed values of c these two equations obviously represent the circle 
of unit radius parallel to the x, y-plane at the height z = c. If we elim­
inate the parameter c between the two equations, we obtain the 
equation of the envelope in the form XZ + yZ - 1 = 0, which is the 
equation of the right circular cylinder with unit radius and the z-axis. 

For families of surfaces it is also possible to find envelopes of two­
parameter families {(x, y, Z, Cl, cz) = O. (For families of curves, how­
ever, the concept of envelope has a meaning only for one-parameter 
families.) For example, we consider the family of all spheres with unit 
radius and center on the x, y-plane, represented by the equation 

(x - Cl)Z + (y - cz)Z + ZZ - 1 = O. 

Intuition tells us at once that the two planes z = 1 and z = - 1 touch 
a surface of the family at every point. In general, we shall say that a 
surface E is the envelope of a two-parameter family of surfaces if at 
every point P of E the surface E touches a surface of the family in such 
a way that as P ranges over E, the parameter values Cl, cz correspond­
ing to the surface touching E at P range over a region of the Cl,CZ­
plane, and in addition different points (Cl, cz) correspond to different 
points P of E. A surface of the family then touches the envelope at a 
point and not, as before, along a whole curve. 

With assumptions similar to those made in the case of plane curves, 
we find that the point of contact of a surface of the family with the en­
velope, if it exists, must satisfy the equations 

{(x, y, Z, Cl, cz) = 0, {Cl(X, y, Z, Cl, cz) = 0, {C2(X, y, Z, Cl, CZ) = o. 

From these three equations we determine the point of contact of a 
given surface of the family by assigning the corresponding values to 
the parameters. Conversely, if we eliminate the parameters Cl and cz, 
we obtain an equation that the envelope must satisfy. 

For example, the family of spheres with unit radius and center on 
the x, y-plane is given by the equation 

{(X,y, Z, Cl, cz) = (x - Cl)Z + (y - cz)Z + ZZ - 1 = 0 
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with the two parameters Cl and C2. The rule for forming the envelope 
gives the two equations 

tCI = - 2(x - Cl) = 0 and tC2 = -2(y - C2) = o. 

Thus, for the discriminant equation, we have Z2 - 1 = 0, and in fact, 
the two planes z = 1 and z = - 1 are envelopes, as we have already 
seen intuitively. 

Exercises 3.5d 

1. What is the envelope of the family of ellipsoids of constant volume 
(i.e., fixed product of the semiaxes) with common center at 0 and axes 
parallel to the coordinate axes? 

2. What is the envelope of the family of planes ax + by + cz = 1, where 
.; a2 + b2 + c2 = I? 

3. (a) Find the envelope of the two-parameter family of planes for which 

OP + OQ + OR = constant = 1, 

where P, Q, R denote the points of intersection of the planes with 
the coordinate axes and 0 the origin. 

(b) Find the envelope of the planes for which 

OP2 + OQ2 + OR2 = 1. 

4. A family of planes is given by 

x cos t + y sin t + z = t, 

where t is a parameter. 
(a) Find the equation of the envelope for the planes in cylindrical 

coordinates (r, z, 6). 
(b) Prove that the envelope consists of the tangents to a certain curve. 

5. Let z = u(x, y) be the equation of a tube-surface, that is, the envelope 
of a family of spheres of unit radius with their centers on some curve 
y = f(x) in the x, y-plane. Prove that u2 (ux2 + U1l2 + 1) = 1. 

6. Find the envelope of the family of spheres that touch the three spheres 

( 3)2 9 
81: x - 2 + y2 + Z2 = 4 ' 

( 3) 2 9 
82: x2 + y - 2 + Z2 = 4' 

8a: x2 + y2 + (z - ~ r = ~. 
7. Letrbe a plane curve andr' its pedal curve as described in Exercise 8, 

p.303 
(a) Let M be a point describing the curve r. What is the envelope of the 
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variable sphere with the radius vector OM as diameter? 
(b) What is the envelope of the variable spheres if r is a circle and 0 

a point on its circumference? 
8. Show that the surface xyz = constant is the envelope of the family of 

planes that form, with the coordinate planes, a tetrahedron of constant 
volume (i.e., fixed product of the intercepts). 

9. A plane moves so as to touch the parabolas z = 0, y2 = 4x and y = 0, 
Z2 = 4x. Show that its envelope consists of two parabolic cylinders. 

3,6 Alternating Differential Forms 

a, Definition of Alternating Differential Forms 

In Chapter 1 (p. 84) we considered the general linear differential 
form 

(55a) L = A(x, y, z) dx + B(x, y, z) dy + C(x, y, z) dz 

in three independent variables. Along any curve r with parameter 
representation x = ~(t), Y = 'I'(t), z = X(t) the form L determines values 

(55b) L A dx B dy Cdz Al B· C· dt = dt + dt + dt = 'I' + 'i' + X, 

which depend on the special parametric representation of r. If r is 
referred to a different parameter t, we obtain 

(55c) L = A dx + B dy + cdz = (A dx + B dy + cdz)dt 
d'r: dT dT dT dt dt dt dT 

L dt 
= dt dT· 

However, the integral 

r L = f L dt = f(A dx + B dy + C dZ) dt 
Jr dt dt dt dt 

depends only on the curve r (and its orientation) and not on the partic­
ular parametric representation. 

Similarly, we can consider a differential form c.o which is quadratic 
in dx, dy, and liz, namely, a linear combination c.o of the symbols 
dx dx, dx dy, dx dz, dy dx, dy dy, dy dz, dz dx, dz dy, dz dz with coeffi­
cients that are functions of x, y, z. Upon any surface S in space with 
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parametric representation x = ;(s, t), Y = 'I'(s, t), z = x(s, t), the form 
co defines values colds dt if we agree that the quotients 

dxdx dxdy dxdz 
dsdt' dsdt' dsdt'" 

are to stand respectively for the Jacobians 

d(x, x) d(x, y) d(x, z) 1 

d(s, t) , d(s, t)' d(s, t) , .... 

We do not distinguish between two differential forms Ol that yield the 
same values Ol/ds dt at each point of the surface. In view of the alter­
nating character of determinants, namely, that. 

d(x, x) - 0 
d(s, t) - , 

d(x, y) __ d(y, x) 
d(s, t) - d(s, t) , . . . , 

we see that the terms of Ol with dx dx, dy dy, dz dz make no contribu­
tions and that dy dx, dz dy, dx dz can be replaced respectively by 
-dxdy,-dy dZ,-dz dx. Thus the most general quadratic differential 
form in dx, dy, dz can be written as 

(56a) Ol = a(x, y, z) dy dz + b(x, y, z) dz dx + c(x, y, z) dx dy. 

The values that Ol associates with the points of a surface S referred to 
parameters s, tare 

Ol d(y, z) d(z, x) d(x, y) 
(56b) ds dt = a(x, y, z) d(s, t) + b(x, y, z) d(s, t) + c(x, y, z) d(s, t) . 

Giving S different parameters s', t', we obtain from the multiplication 
law for Jacobians (see p. 258) 

(56c) 
Ol d(y, z) d(z, x) d(x, y) 

ds' dt' = a d(s', t') + b d(s', t') + C d(s', t') 

_ ~ d(s,t) 
- ds dt d(s', t')' 

Later (p. 593), we shall also define the double integral 

IThis convention characterizes alternating differential forms. In other contexts, 
nonalternating quadratic differential forms are encountered as well, such as the one 
giving the square of the line element in space or on a surface (see p. 283): 

da2 = dx2 + dy2 + dz2 = Edu2 + 2Fdudv + Gdv2. 
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and see that it does not depend on the particular parameter repre­
sentation of the surface S. 

In a similar way, we can consider a differential form ro that is cubic 
in dx, dy, dz. Such a form assigns values ro/dr ds dt corresponding to 
any parametric representation 

x = rp(r, s, t), y = 'I'(r, s, t), z = x(r, s, t), 

where again we interpret the quotients 

as the Jacobians 

dx dx dx dx dy dz 
dr dsdt ' dr dsdt ,. 

d(x, x, x) d(x, y, z) 
d(r, s, t)' d(r, s, t)' . 

Since the Jacobians vanish when two of the dependent variables are 
identical and change signs when two of the dependent variables are 
interchanged, the cubic differential forms in the three independent 
variables x, y, z are all of the type 

(56d) ro = a(x, y, z)dx dy dz. 

Whenever x, y, z are represented as functions of r,s, t, we obtain from 
ro the value 

(56e) ro ( )d(x, y, z) 
dr ds dt = a x, y, z d(r, s, t) . 

Proceeding in the same manner we could define "alternating" dif­
ferential forms in dx, dy, dz of degrees 4,5, .... But all of these are 
identically 0, since any Jacobians of orders 4, 5, . . . that we could 
form would have two of the dependent variables identical, and, hence, 
would vanish.1 

lHigher-order forms have, however, a nontrivial meaning in spaces of higher di­
mensions. In four-dimensional x, y, z, u-space the most general alternating dif­
ferential forms of order I, 2, 3, 4 can be written as 

(56f) Adx + Bdy + Cdz + Ddu 
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Exercises 3.6a 

1. Find CJl/du dv for each of the following: 

(a) CJl = x dy dz + y dz dx + z dx dy, 

x = cos u sin v, y = sin u sin v, z = cos v 

(b) CJl = (y - z)dy dz + (z - x)dz dx + (x - y)dx dy, 

x = au + bv, y = bu + cv, z = cu + av 

(c) CJl = dy dz + dz dx + dx dy, 

x = u2 + v2, y = 2uv, z = u2 - v2• 

b. Sums and Products of Differential Forms 

Two differential forms of the same order (Le., either both linear, 
both quadratic, or both cubic) can be added trivially by adding cor­
responding coefficients. Thus, for 

we define 

CJ)1 = al dy dz + bl dz dx + CI dx dy, 

CJ)2 = a2 dy dz + b2 dz dx + C2 dx dy, 

We can define the product CJ)1CJ)2 of any two differential forms CJ)1 

and CJ)2 of the same or of different orders by just substituting for CJ)1 

and CJ)2 their expressions in terms of dx, dy, dz and applying the dis­
tributive law of multiplication, taking care, however, to preserve the 
original order of the differentials in each term. I Thus, the product 
of the two linear forms 

and 

would be the quadratic form 

(56g) A dx dy + B dy dz + C dz du + D du dx + E dx dz + F dy du 

(56h) Adydzdu + Bdzdudx + Cdudxdy + Ddxdydz 

(56i) A dx dy dz du, 

respectively, with coefficients A, B, ... , which are functions of x, y, z, u. Forms of 
order higher than 4 vanish. 
1The product formed in this way is sometimes denoted by the symbol 0)1 1\ Cll2. 
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(57b) 0)10)2 = (AI dx + B1 dy + C1 dz)(A2 dx + B2 dy + C2 dz) 

= A1A2 dx dx + A1B2 dx dy + A1C2 dx dz + B1A2 dy dx 

+ B1B2 dy dy + B1 C2 dy dz + C1A2 dz dx 

+ C1B2 dz dy + C1C2 dz dz 

= (B1C2 - C1B2)dy dz + (C1A2 - A1C2)dz dx 

+ (A1B2 - B1A2)dx dy. 

If we describe the individual forms 0)1 and 0)2 by the "coefficient vec­
tors" R1 = (AI, B1, C1) and R2 = (A2, B2, C2), then the coefficients of 
the product 0)10)2 are just the components of the vector product R1 X R2 

(see p. 181). Clearly, the product of the forms is not commutative. 
Here, for example, 0)10)2 = - 0)20)1. 

Multiplying the first-order form 

0)1 = A dx + B dy + C dz 

with the second-order form 

0)2 = a dy dz + b dz dx + c dx dy, 

we obtain similarly 

(57c) 0)10)2 = (A dx + B dy + C dz)(a dy dz + b dz dx + c dx dy) 

= Aadxdydz + Abdxdzdx + Acdxdxdy 

+ Badydydz + Bbdydzdx + Bcdydxdy 

+ Ca dz dy dz + Cb dzdzdx + Ccdzdxdy 

= (Aa + Bb + Cc)dx dy dz. 

We observe that in this case the coefficient of 0)10)2 is the scalar product 
of the coefficient vectors (A, B, C) and (a, b, c). Here, incidentally, 
0)1 {J)2 = {J)2 0)1. 

Forming the product of a first- and a third-order form, of two 
second-order forms, or of a second- and a third-order form yields forms 
of order higher than 3, which vanish. For the sake of completeness 
it is convenient to define differential forms of order 0 as the scalars 
a(x, y, z). The product of a form a of order 0 with a form 0) of any order 
k = 0, 1, 2, 3 is then obtained by multiplying each of the coefficients 
of 0) by the scalar a. 

It is easily seen from the definition that products of differential 
forms are associative. For three linear forms 
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fA = A, dx + B, dy + C, dz (i = 1,2,3). 

for example, as is to be proved in Exercise 5, 

Al BI CI 
(57d) LI(L2L3) = A2 B2 C2 dx dy dz. 

A3 B3 C3 

and for (LI L2) L3 we obtain the same evaluation. 
Of course, a greater variety of products of differential forms can be 

formed when the number of independent variables is greater than 3. 

Exercises 3.6b 

1. Evaluate the following products: 

(a) (x dx + y dy)(x dx - y dy) 

(b) [(x2 + y2)dx + 2xy dy] [2xy dx + (x2 - y2)dy] 

(c) (adx + bdy)(adydz + bdzdx + cdxdy) 

(d) (dx + dy + dz)(dy dz - dx dy). 

2. For any form (,) of order 1 in x, y, z, show that (,)2 = O. 
3. For first-order forms (')1, (')2 in three variables, show that 

«(0)1 + (0)2)«(0)1 - (0)2) = 2CJlllCJll. 

4. Show for first-order forms in three variables that 

(CJll + CJl2 + CJl3 + CJl4)(CJll - CJlll + CJl3 - CJl4) = 2(CJl2 + (,)4)(CJll + CJls). 

5. Derive (57d). 

c. Exterior Derivatives of Differential Forms 

For a differential form of order 0, that is, for a scalar a(x, y, z) 
we have by definition 

(58a) da = az dx + a" dy + az dz. 

The coefficients of this differential form are just the components of the 
vector we denoted by grad a on p. 206. More generally, we define the 
exterior derivative dro of any differential form ro. For this purpose, we 
write out ro as a sum of terms where each term is a product of certain 
of the differentials dx, dy, dz preceded by a scalar factor and replace 
each of the scalar factors by its differential, formed in the ordinary 
sense. Thus, for a first order form 



Developments and Applications of the Differential Calculus 313 

L = A dx + B dy + C dz, 

we find for dL the second-order differential form 

(58b) 

dL = dA dx + dB dy + dC dz 

= (Ax dx + Ay dy + Az dz)dx 

+ (Bx dx + By dy + Bz dz)dy+(Cx dx+ Cy dy+ Cz dz)dz 

= (Cy - Bz)dy dz + (Az - Cx)dz dx + (Bx - Ay)dx dy. 

If we associate with L the vector R = (A, B, C), we have the remarkable 
fact that the coefficients of dL are just the components of the curl of R 
(see p. 209). 

For a second-order form 

co = adydz + bdzdx + cdxdy 

the exterior derivative dco is the third-order form 

(58c) dco = da dy dz + db dz dx + dc dx dy 

= (ax dx + ay dy + az dz)dy dz 

+ (bx dx + by dy + bz dz)dz dx 

+ (cx dx + Cy dy + Cz dz)dx dy 

= (ax + by + cz)dx dy dz. 

Hence, if the coefficients of co are combined into the vector R = 
(a, b, c), then the coefficient of dco is the scalar div R (see p. 210). 

The derivative of a third-order differential form is of fourth order 
and, hence, vanishes. 

An important general rule ("Poincare lemma") is that the second 
exterior derivative of any differential form co vanishes: 

(58d) ddco = O. 

In three-space this only has to be proved for the cases where co either 
is of order 0 or 1. Now if co is a scalar a(x, y, z), we have by (58a, b) 

d2co = d(ax dx + ay dy + az dz) = O. 

This is really only a different way of expressing the rule stated on 
p. 210 that curl (grad a) = 0 for any scalar a. Similarly, we find from 
(58b, c) for the case of a first-order differential form 
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ro = Adx + Bdy + Cdz 

that 

d2ro = d[( Cy - Bz)dy dz + (Az - Cz)dz dx + (Bz - Ay)dx dy] = O. 

This again is nothing else but the rule div (curl R) = 0 valid for any 
vector R (see p. 211). 

The inverse problem of finding a form 't that has a given form ro as 
its exterior derivative is basic. We should like to represent a given 
differential form ro as 

(58e) ro = d't 

with a suitable differential form 'to We call ro an exact, or total, differ­
ential when such a representation is possible. Applying rule (59) to 
the differential 't, we see that a necessary condition for ro to be an exact 
differential is that dro = 0.1 It turns out that this condition is also suf­
ficient; that is, for dro = 0 the equation (58e) has a solution 't,provided 
we restrict ourselves to a rectangular neighborhood of a point (xo, Yo, 
zo) interior to the domain of definition2 of ro. 

We prove this statement separately for each order of ro. If ro is of 
order 1, say 

ill = A dx + B dy + C dz, 

then, by (58b), the condition dro = 0 is equivalent to the relations 

(58f) Cy - Bz = 0, Az - Cz = 0, Bz - Ay = O. 

But these are just the integrability conditions that permit us to rep­
resent ro as the total differential of some function f, provided we re­
strict the point (x, y, z) to a rectangular parallelepiped containing 
(xo, Yo, zo) or, more generally, to a simply connected set (see p. 104). 

For ro of order 2, 

ro = a dy dz + b dz dx + c dx dy, 

the condition dro = 0 by (58c) is equivalent to 

(58g) az + by + cz = o. 

lForms 0) for which dO) = 0 are called closed. 
awe always assume that the differential forms considered here have coefficients 
with as many continuous derivatives as are needed for our arguments to hold. 
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Assume that this condition is satisfied in the rectangular parallel­
epiped 

I x - Xo I < n, I y - yo I < T2, I z - Zo I < Ta. 

We have to show that co = d1:, where 1: is of the form 

1: = A dx + B dy + C dz. 

This means functions A, B, C have to be found for which 

a = Cy - Bz, b = Az - Cx, c = Bx - Ay. 

We try to satisfy these equations with the choice C == O. Then A and 
B have to be of the form 

A(x, y, z) = a(x, y) + (z b(x, y, 1;;) d/;;, Jzo 

B(x, y, z) = ~(x, y) - (z a(x, y, 1;;) d/;; Jzo 

in order to satisfy the first two equations. It follows, using condition 
(58g), that 

a a a 
az(Bx - Ay) = axBz - ayAz = - ax - by = cz. 

Hence Bx - Ay - c does not depend on z. The third equation c = 
Bx - Ay will be satisfied for all z in question if it holds for z = zoo 
Hence, we only have to determine the functions a(x, y) and ~(x, y) in 
such a way that 

~x(x, y) - ay(x, y) = c(x, y, zo). 

This is achieved by taking 

a(x, y) = 0, ~(x, y) = IX c(~, y, Zo)d~, 
xo 

for example. 
Finally, for a third-order operator 

co = a(x, y, z)dx dy dz 
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the condition dro = 0 is always satisfied. We want to represent ro in 
the form ro = dt, where t is a second-order differential form 

t = adydz + bdzdx + cdxdy. 

By (58c) this amounts to finding functions a, b, c for which 

ax + by + Cz = u. 

One solution clearly is given by 

a(x, y, z) = b(x, y, z) = 0, c(x, y, z) = f u(x, y, I;)dl;. 
zo 

This proves our theorem. 

Exercises 3.6c 

1. Evaluate dw for each ofthe following: 

(a) w = arc tan y/x 

(b) w = y dx - x dy 

(c) w = {(x, y) dx dy 

(d) w = X2 cos y sin z dy dz - x sin y sin z dz dx + x cos z dx dy 

(e) w = (Z2 - y2)X dy dz + (x2 - Z2)y dz dx + (y2 - x2)z dx dy. 

2. For first-order forms in three variables, show that 

d(WIW2) = wl(dw2) + (dWl)W2. 

3. Show that any product of exact first-order forms in three variables is 
exact. 

d. Exterior Differential Forms in Arbitrary Coordinates 

So far, we have always looked at differential forms as linear 
combinations of alternating products of the differentials dx, dy, dz 
of the Cartesian coordinates x, y, z in space. We made essential use of 
this representation of forms in terms of dx, dy, dz in defining the 
product of two forms and the derivative of a form. The usefulness of 
alternating differential forms in applications depends on the fact that 
these forms can be defined and operations on forms can be performed 
in the same way when three-dimensionall euclidean space is referred 

IThe dimension 3 is chosen here only for the sake of definiteness. All these consider­
ations are equally valid for any other number of dimensions. 
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to any curvilinear coordinates u, v, w. More generally, this holds on 
any noneuclidean three-dimensional space or manifoldl referred to 
parameters u, v, w, for example, on a three-dimensional "surface" in 
four-dimensional euclidean space. What is important is that oper­
ations on forms can be defined in an invariant manner, without refer­
ence to a special coordinate system, and that the resulting formulae 
look the same in every system. 

In this context, one thinks of the points P of the three-dimensional 
space or of a manifold L: as geometric objects that exist independently 
of any coordinate system. A scalar f is a function of P with real 
numbers as values (that is, a mapping of L: into the real number axis). 
There are, however, many ways of describing points P by curvilinear 
coordinates, that is, by triples of numbers (u, v, w), for example, by 
rectangular coordinates or spherical coordinates in euclidean space. 
We always assume that any two such coordinate systems, say u, v, w 
and u' , Vi, Wi, are related by transformation equations 

u' = ~(u, v, w), Vi = 'I'(u, v, w), Wi = X(u, v, w), 

where ~, '1', X are continuous functions with as many continuous 
derivatives as required for our operations, and with a Jacobian 
d(u' Vi Wi) 
d(' , ) that does not vanish.2 In that case u, v, w can be expressed 

u,v, w 
by similar formulae in terms of u', Vi, Wi. In a given coordinate system 
u, v, w a scalar f = f(P) becomes a functionf(u, v, w) ofthe coordinates 
u, v, w of the point P. In different coordinate systems, the functions 
representing the same scalar are generally quite different. 

On the manifold 2: let C be a curve with the parametric represen­
tation P = P(t); with every real number t of a certain interval the 
parametric equation associates a point P of the manifold L:. Any 
scalar f(P) defined on L: yields a function of t along C obtained by 
forming the composition f(P(t». If this function is differentiable, it 
makes sense to form the derivative df/dt, which is defined for the given 
curve and parametric representation of C, independently of any curvi­
linear coordinate system used for L:. In a given coordinate system the 
coordinates u, v, w of a point P themselves are functions u = u(t), 
v = v(t), w = w(t); and f(P(t» is given by the compound function 

IGenerally we use the term "manifold" to denote a parametrically given set of any 
number of dimensions m ~ n in n-dimensional euclidean space. 
2The particular representation of the transformation involving univalued functions 
.p, 1jI, X needs to be valid only locally, that is, in a sufficiently small neighborhood of 
some point. 
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f(u(t), v(t), w(t». Assuming f(u, v, w) and u(t), v(t), w(t) to have continu­
ous derivatives, we find from the chain rule of differentiation that in 
the particular u, v, w-system dfldt takes the form 

(59) df = of du + of dv + of dw 
dt au dt av dt ow dt . 

A zero-order differential form in ~ is just a scalar f. The general 
first-order differential form ro is defined as a formal expression of the 
type 

where al, . . ., aN, {I, . . ., fN are given scalars. Along any curve C 
referred to a parameter t, we associate with ro the function of t, de­
noted by ro/dt, which is defined by 

ro N df, 
dt = t.;:1 at dt . 

Two forms 

and 

are considered equal if 

for any curve C and any parameter t along C. 
In a particular u, v, w-coordinate system ro/dt becomes 

where 

N of, 
A = ~ at!), 

i-I uU 

N of, 
B=~ac!l' 

i-I uV 

are scalars defined in ~. By our definition of equality of first-order 
differential forms, we can write ro as 
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ro = A du + B du + C dw 

Here the coefficients A, B, C of ro referred to a particular coordinate 
system u, u, ware determined uniquely, for if we take for the curve C 
a "coordinate line," say u = t, U = constant, w = constant, we find 

and similarly, 

ro ro 
-=-=A 
dt du ' 

ro 
du =B, 

ro 
dw= C. 

Thus, in any particular coordinate system u, u, w, we can write ro as 

(60) 
ro ro ro 

ro = du du + du du + dw dw, 

where ro/du really stands for the partial derivative formed along a 
curve where u and ware constant. This formula can be regarded as an 
extension of the chain rule (59) from the differential d{ of any scalar { 
to a general first-order differential form roo 

We can define now in exactly the same manner a second-order alter­
nating differential form ro as a formal expression of the type 

(61a) 

where aI, ... , aN, II, ... , {N, gl, ... , gN are scalars defined on :E. 
On any surface S in :E referred to parameters s, t, we associate with 
the form ro the values ro/ds dt defined by 

(61b) 

Two forms ro and ro', although represented with the help of different 
scalars, are considered identical when they determine the same values 
ro/ds dt = ro'lds dt on each surface for every parameter representa­
tion. Now in any particular coordinate system u, u, wwehavefortwo 
scalars{, g 
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I {8 {t I = I {UU8 + {vUS + {WW8 {uUt + {vUt + {wWt I 
g8 gt guUs + gvUs + gwWs guUt + gvUt + gwWt 

hence, 

(61c) 

where 

(61d) 

= ({vgw - {wgV)(UsWt - UtWS) + ({wgu - {ugW)(WsUt - WtUB) 

+ ({ugv - {vgU)(UsUt - UtUS); 

~ = a d(u, w) + b d(w, u) + c d(u, u) 
ds dt d(s, t) d(s, t) d(s, t) , 

a = t. at d({t, gt) , 
i=l d(u, w) 

Thus, we can write ill in the u, u, w-system as 

(61e) ill = adudw + bdwdu + cdudu. 

The coefficients a, b, c in this representation of ill are again determined 
uniquely; they are given by 

ill a--­
- du dw' 

ill b=-­
dwdu' 

ill 
c=-­

du du' 

where a = ill/dudw is formed with respect to a coordinate surface 
u = s, w = t, U = constant, and similarly for band c. In the u, u, w­
system the symbolic expression (61c) for ill becomes 

(61f) 
ill ill ill 

ill = du dw du dw + dw du dw du + du du du du, 

in analogy to the formula (60) for first-order differential forms.1 

IFormulae (6Ia, b) retain their validity for second·order forms in n-dimensional 
space referred to parameters Ul, • • ., Un. Instead of (6Ic, d, e, f), we have then 

(6Ig) 

where 

(6Ih) 

as is easily verified. 
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We define the product LM of two first-order forms 

(62a) L = ~acdfi, 
i 

on a surface with parameters s, t, as that second-order form 0), for 
which 

(62b) 
0) L M L M 

dsdt=ds dt-dt ds 

= ~ ai afi ~ bk agk _ ~ at aft ~ bk agk 
i as k at i at k as 

= ~ atbk d(f" gk) .1 
i.k d(s, t) 

Consequently, if Land M are given by (62a), LM can be identified with 
the second-order form 

(62c) 

However, the definition of O)jds dt = LMjds dt given by (62b) does not 
depend on the particular representation of Land M in terms of scalars 
ai, ft, bk, gk; hence, formula (62c) must represent the same form 0) = 
LM for all representations of the factors L, M. 

Another way of generating second-order forms from those of first 
order is by differentiation. Given the first-order form 

(63a) 

we can define dL without reference to any particular coordinate 
system by the prescription 

(63b) 
dL aL aL 

ds dt = as dt - at ds 

a aft a afi 
= as ~ a, at - at ~ ac as 

= ~ (aat afi _ aa, aft) = ~ d(ac, it) . 
i as at at as d(s, t) 

IHere M/ds and M/dt denote "partial" differentiation (or derivatives) with t and s, 
respectively, held constant. (A consistent distinction between ordinary and partial 
differentiation can hardly be made.) 
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This is equivalent to the formula 

(63c) 

and shows that the second-order form dL does not depend on the 
particular representation (63a) of L in terms of the scalars ac, fc. It is 
the natural generalization of formula (58b) for the special case of the 
derivative of a form L expressed as L = A dx + B dy + C dz. 

In the particular case where the first-order form L is a total differ­
ential-that is, L = df with a scalar f-we find, of course, from (63c) 
that dL = O. Hence, for a O-order operator f, the rule 

ddf=O 

is verified. When L is represented in terms of a particular coordinate 
system u, v, w in space by the standard form 

L = A du + B dv + C dw, 

we find from (61f), (63b) 

dL = dAdu + dBdv + dCdw 

dL dL dL 
=-d d dvdw+ d- d dwdu+-d dudv v w w u uv 

= (~ ..£ -~ ~)dv dw + (~ .f.- - ~ £)dW dv 
av dw aw dv aw du au dw 

(a L a L) + -----dudv 
au dv av du 

= (CtI- BID)dvdw + (AID - Cu)dwdu + (BII - AtI)dudv, 

in agreement with formula (58b). 
If dL = 0, we obtain as before that Cv - BID = Aw - Cu = Btl - Atl 

= O. It follows that locally there exists a scalar f for which A = fu, 
B = fv, C = flD or L = df. 

Finally, a third-order alternating differential form is defined by a 
formal expression 

(64a) 

with scalars ac, f" gc, he. In any parameter system T, 8, t in space it de­
fines the values 
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(64b) ro = f:. at d(ft, gi, hi) 
dr ds dt i-I d(r, s, t) 

With reference to a particular u, v, w-coordinate system, we can write 

(64c) ro = f:. at d(fi, gi, hi) d(u, v, w) 
dr ds dt i=1 d(u, v, w) d(r, s, t) 

This amounts to the identity 

(64d) ro = adudvdw, 

where 

(64e) a - ~ d({t, gi, ht) 1 
-~aid ). 

i=1 (u, v, W 

We can define the product Lro of a first-order form 

and a second-order form 

by specifying that 

Lro L ro L ro L ro 
dr ds dt = dr ds dt + ds dt dr + dt dr ds 

= L: aibk(aft d(gk, hk) + aft d(gk, hk) + aft d(gk, hk») 
i.k ar d(s, t) as d(t, r) at d(r, s) 

= L: aibk d(fi, gk, hk) 
i.k d(r, s, t) 

This amounts to the formula 

lIn n-dimensional space referred to parameters Ul, ... , Un, we have instead of (64c, 
d, e) the formula 

ro = :E AJkm dUJ dUk dUm, 
j.~.m=I .... n 

J<k<m 

where 
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(65a) LO) = ~ cub" df, dg" dh", 
i.k 

as could be expected from the formal multiplication of expressions for 
Land 0). When Land 0) are in their standard form 

L = A du + Bdv + Cdw, 0) = advdw + bdwdu + cdudv 

for a given u, v, w-coordinate system, the product becomes 

(65b) LO) = (Aa + Bb + Cc) du dv dw, 

in accordance with (57c). 
The derivative of the second-order form 

can be defined independently of special coordinate systems by the rule 

dO) _~~+~~+~~ 
dr ds dt - ar ds dt as dt dr at dr ds 

= ~ ~ a, d(g" ht) + ~ ~ cu d(g" ht) + ~ ~ cu d(g" ht) 
ar i d(s, t) as i d(t, r) at i d(7', s) 

Thus, 

(66a) dO) d(a" g" h,) 
dr ds dt = ~ d(r, s, t) , 

as one verifies easily. Hence, our definition of dO) implies 

(66b) dO) = ~ dac dg, dh,. 
i 

For 0) in the standard form 

(66c) 0) = a dv dw + b dw du + c du dv 

we obtain 

(66d) dO) = (au + btl + cw)dudvdw. 

This special representation for dO) can again be used as on p. 315 to 
show that a second-order form 0) with dO) = 0 is representable locally 
as 0) = dL, where L is a suitable first-order differential form. 
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Exercises 3.6d 

1. In spherical coordinates, x = p sin ifJ cos e, y = p sin ifJ sin e, z = p cos ifJ, 
choose unit vectors u, v, w, in the direction of the r, ifJ, e lines, re­
spectively. Show that dX = (dx, dy, dz) = udp + vpdifJ + wp sin ifJ de. 
Hence, find the expression for vf(p, ifJ, e) in spherical coordinates, where 
vf is defined by vf • dX = df. 

3.7 Maxima and Minima 

a. Necessary Conditions 

For functions of several variables, as for functions of a single vari­
able, one of the most important applications of differentiation is the 
theory of maxima and minima. 

We shall begin by considering a function u = {(x, y) of two in­
dependent variables x, y. The domain ofthe function shall be a certain 
set R in the x, y-plane. We can represent {in x, y, z-space by the surface 
S with equation z = {(x, y). We say that {(x, y) has a maximuml at the 
point (xo, yo) of its domain R if {(xo, yo) ~ {(x, y) for all (x, y) in R. Such 
a maximum corresponds to a highest point of the surface S. We talk of 
a strict maximum if actually {(xo, Yo) > {(x, y) for all (x, y) in R that 
are different from (xo, yo), so that the greatest value of the function is 
reached only at the single point (xo, yo). Similarly, {(x, y) is said to 
have a minimum at the point (Xl, YI) of R if {(Xl, YI) ;£ {(X, y) for all 
(x, y) in R, and a strict minimum if {(Xl, YI) < {(X, y) for all (x, y) =t= 
(Xl, YI) in R. The basic theorem of p. 112 assures us that i{ R is a closed 
and bounded set and { continuous in R, then there exist points in R 
where { has its maximum and also points where { has its minimum. 

As an example consider the function u = x2 + y2 in the closed disc 
given by x2 + y2 < 1. The surface S is the portion of the paraboloid 
of revolution z = x2 + y2 lying below the plane z = 1. Here the 
maxima of { occur at all the points of the boundary circle x2 + y2 = 1, 
whereas { has a strict minimum at the origin. 

Calculus applies directly to the determination of relative maxima 
or minima, rather than of absolute extrema. A point (xo, Yo) of the 
domain R is a relative maximum if {(xo, yo) ~ {(x, y) for all points 
(x, y) of R that lie in a sufficiently small neighborhood of (xo, yo). The 
value {(xo, yo) at a relative maximum does not have to be the greatest 
value of {in all of R but is a maximum of {if we restrict ourselves to 

lAlso called absolute maximum in contrast to the relative maximum defined below. 
The terminology used here is exactly the same as for functions of a single variable; 
see Volume I (pp. 238 if.). 
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points sufficiently close to (xo, yo). Relative nnmma are defined 
analogously. Every absolute maximum (minimum) also is a relative 
maximum (minimum), but the converse does not hold. 

For example, the function u = (x2 + y2)3 - 3(x2 + y2), whose do­
main shall be the open disc x2 + y2 < 4, has no maximum but does 
have a relative maximum at the origin. All points on the circle x2 + y2 

= 1 are minimum points. Here the surface S is generated by rotating 
the curve z = x 6 - 3x2 about the z-axis. 

The definitions of absolute or relative minima for functions u = 
{(x, y, z, . . .) of more independent variables are entirely similar. 

We shall first give necessary conditions for the occurrence of a rel­
ative maximum or minimum at an interior point (xo, Yo) of the domain 
R of the function {(x, y). We use the term relative extremum to include 
both maxima and minima. Let now (xo, Yo) be an interior point of the 
domain R of the function {(x, y), and let { have partial derivatives 
{z(xo, Yo), {y(xo, Yo) at that point. For a relative extremum o{ { to occur 
at the point (xo, yo), it is necessary that 

(67a) {z(Xo, yo) = 0, {u(Xo, yo) = O. 

The conditions (67a) follow at once from the known conditions 
for functions of a single variable. Put rfi(x) = {(x, yo). Then rfi(x) is 
defined for all x sufficiently close to Xo and has at xo the derivative 
rfi(xo) = {z(xo, yo). If {(xo, yo) ~ {(x, y) for all (x, y) in R that are suffi­
ciently close to (xo, yo), then, in particular, rfi(xo) ~ rfi(x) for all x suffi­
ciently close to Xo. It follows (see Volume I, p. 241) that rfi'(xo) = 0; 
that is, {z(xo, Yo) = o. The second necessary condition {u(xo, Yo) = 0 
is derived similarly. 

Geometrically, the vanishing of the partial derivatives of {(x, y) 
at the point (xo, Yo) means that at the point (xo, Yo, {(xo, yo» the tangent 
plane to the surface z = {(x, y) is parallel to the x, y-plane. We call 
(xo, yo) a stationary or critical point of {(x, y) if the first derivatives 
{z(xo, yo), {u(xo, yo) both exist and vanish. Hence, every relative ex­
tremum in the interior of the domain of a differentiable function { is 
a critical point of {. 

The same result applies to functions {(x, y, z, . . .) of any number 
of independent variables. Here (xo, Yo, Zo, . . .) is a stationary or 
critical point of { if all first derivatives {z, {y, . . • at that point exist 
and satisfy 

(67b) {z(xo, Yo, Zo, . . .) = 0, {y(xo, Yo, Zo, . . .) = 0, 

{z(xo, Yo, Zo, . . .) = 0, . . .. 
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The number of conditions is equal to that of independent variables 
x, y, z .... We can combine the conditions into the single require­
ment that 

d{ = {x dx + {y dy + {z dz + ... = 0 

for (x, y, z, . . .) = (xo, Yo, zo, . . .) and all dx, dy, dz, . 
Since the number of equations (67b) is the same as the number of 

unknowns xo, Yo, zo, . . . one usually expects to find a finite number of 
critical points, though, of course, that is not always so. Moreover, a 
critical point need not by any means be a relative extremum. 

Consider, for example, the function u = xy. Our two equations (67a) 
at once give the point x = 0, y = 0 as the only critical point. In every 
neighborhood of (0, 0), however, the function may assume either 
positive or negative values, depending on the quadrant containing 
(x, y). The function therefore has no relative extremum at this point. 
The surface representing the function u = xy geometrically is a hyper­
bolic paraboloid that has neither a highest nor lowest point, but has a 
saddle point at the origin (see Fig. 3.1). 

We see that the maximum and minimum points of a differentiable 
function either lie on the boundary of the domain of the function or 
are to be looked for among the critical points of the function. To 
decide whether a critical point actually is a maximum or minimum 
requires a special investigation. On p. 349 we shall meet conditions 
that are sufficient to ensure that a critical point be at least a relative 
extremum. 

The maximum value M of a function {(x, y) is the greatest of all 
values assumed by { at the points of its domain R. The maximum 
points of { are those for which {(x, y) = M.I Similarly, the critical 
or stationary values of { are those assumed at critical or stationary 
points. 

b. EXamples 

1. The function 

u = oJ1 - x2 _ y2 (X2 + y2 < 1) 

has the partial derivatives 

lSometimes the term "maximum" is used somewhat ambiguously referring either to 
the maximum value or an argument point (x, y) where f assumes its maximum value. 
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x y 
Ux =- .J1 - X2 - y2' Uy = - .J1 _ X2 _ y2 ' 

and these vanish at the origin. Here we have a maximum, for at all 
other points (x, y) in the neighborhood of the origin the quantity 
1 - x2 - y2 under the square root is less than it is at the origin. 

2. We wish to construct the triangle for which the product of the 
sines of the three angles is greatest; that is, we wish to find the 
maximum of the function 

{(x, y) = sin x sin y sin (x + y) 

in the region 0 ~ x ~ n, 0 ~ y ~ n, 0 ~ x + y ~ n. Since {is positive 
in the interior of this region, its greatest value is positive. On the 
boundary of the region, where the equality sign holds in at least one 
of the inequalities defining the region, we have {(x, y) = 0, so that 
the greatest value must lie in the interior. 

If we equate the derivatives to 0, we obtain the two equations 

cos x sin y sin (x + y) + sin x sin y cos (x + y) = 0, 

sin x cos y sin (x + y) + sin x sin y cos (x + y) = o. 

Since 0 < x < n, 0 < y < n, 0 < x + y < n, these give tan x = tan y, 
or x = y. If we substitute this value in the first equation, we obtain 
the relation sin 3x = 0; hence, x = n/3, y = n/3 is the only stationary 
point, and the required triangle is equilateral. 

3. Three points P1, P2, Pa, with coordinates (Xl, Y1), (X2, Y2), and 
(Xa, ya), respectively, are the vertices of an acute-angled triangle. We 
wish to find a fourth point P with coordinates (x, y) such that the sum of 
its distances from P1, P2, and Pa is the least possible. This sum of dis­
tances is a continuous function of x and y, and at some point P inside 
a large circle enclosing the triangle it has a least value. This point P 
cannot lie at a vertex of the triangle, for then the foot of the perpendi­
cular from either of the other two vertices to its opposite side would 
give a smaller sum of distances. Again, P cannot lie on the circumfer­
ence of the circle, if this is sufficiently far away from the triangle. With 
the distances ri defined by 

we wish to minimize the function 

{(x, y) = r1 + r2 + ra, 
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which is differentiable everywhere except at PI, P2, and Ps, We know 
that at the point P the partial derivatives with respect to x and y must 
vanish. Thus, by differentiating t, we obtain the conditions 

X-Xl X-X2 X-Xs --+--+--=0, 
rl r2 rs 

Y - YI Y - Y2 Y - Ys --+--+--=0 
rl r2 rs 

for P. According to these equations, the three plane vectors 

have the vector sum O. Also, these vectors are each of unit length. 
When given the common initial point P, their end points form an equi· 
lateral triangle; that is, each vector is brought into the direction of 
the next by a rotation through -in (Fig. 3.27). Since these three vectors 
have the same directions as the three vectors from P to PI, P2, Ps, it 
follows that each of the three sides of the triangle must subtend the 
same angle -in at the point P. 

Pa 

Figure 3.27 

Exercises 3.7b 

1. Find the stationary points of the following functions and state their 
nature: 

(a) f(x, y) = y2(sin x - x/2) 

(b) f(x, y) = cos (x + y) + sin (x - y) 
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(c) {(x, y) = yZ 

(d) {(x, y) = xly 

(e) {(x, y) = ye-z2• 

2. Determine the maxima and minima of the function 
(ax2 + by 2)e-Z2-1/2 

3. Find the values of x, y which make 

2x3 + (x - y)2 - 6y 

stationary. 

(O<a< b). 

4. The sum of the lengths of the 12 edges of a rectangular block is a; the 
sum of the areas of the 6 faces is a2/25. Calculate the lengths of the edges 
when the excess of the volume of the block over that of a cube whose 
edge is equal to the least edge of the block is greatest. 

5. Find the stationary points and state their nature, for the function 

{(x,y, z) = x2(y - 1)2(Z + ~r. 
6. According to present postal regulations in the United States, a rectangu­

lar parcel with side lengths x, y, z inches with x ~ y ~ z may be shipped 
only if 2(x + y) + z ~ 100. Find the maximum volume of a shippable 
parcel under this condition. [Hint. set z = 100 - 2(x + y).J 

7. Minimize the sum of the squared distances of a point X from n given 
points. 

c. Maxima and Minima with Subsidiary Conditions 

The problem of determining the maxima and minima of functions of 
several variables frequently presents itself in a different form. For 
example, we may wish to find the point of a given surface t)(x, y, z) = 0 
closest to the origin. We then have to minimize the function 

{(x,y, z) = ';x2 + y2 + Z2, 

where the quantities x, y, z however, are no longer three independent 
variables but are connected by the equation of the surface (J(x, y, z) == 0 
as a subsidiary condition. Such maxima and minima with subsidiary 
conditions do not, indeed, represent a fundamentally new problem. 
Thus in our example we only need solve for one of the variables, say 
z, as a function of the other two, to reduce the problem to that of 
determining the stationary values of a function of the two independent 
variables x, y. 

It is, however, more convenient, and also more elegant, to express 
the conditions for a stationary value in a symmetrical form, in which 
no preference is given to anyone of the variables. 
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A simple typical case is presented by the problem of finding the 
stationary values of a function f(x, y) when the two variables x, yare 
not mutually independent but are connected by a subsidiary condition 

tP(x,y) = O. 

In order to gain geometric insight, we assume first that the subsidi­
ary condition is represented, as in Fig. 3.28, by a curve in the x, y­
plane without singularities and that, in addition, the family of curves 
f(x, y) = c = constant covers a portion of the plane, as in the figure. 

Figure 3.28 Extreme value of f with subsidiary 
condition; = o. 

Among the curves of the family that intersect the curve tP = 0, we 
have to find that one for which the constant c is greatest or least. As 
we describe the curve tP = 0, we cross the curves f(x, y) = c, and in 
general c changes monotonically; at the point where the sense in 
which we run through the c-scale is reversed, we may expect an 
extreme value. From Fig. 3.28 we see that this occurs for the curve of 
the family that touches the curve tP = o. The coordinates of the point 
of contact will be the required values x = ~, y = 11 corresponding to 
the extreme value of f(x, y). If the two curves f = constant and tP = 0 
touch, they have the same tangent. Thus, at the point x = ~, y = 11, 
the proportional relation 

fx : f1l = tPx : tP1I 

holds; or, if we introduce the constant of proportionality A, the two 
equations 

fx + A.,px = 0 

f1l + A.,p1l = 0 
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are satisfied. These, with the equation 

~(x,y) = 0, 

serve to determine the coordinates (~, TJ) of the point of contact and 
also the constant of proportionality A. 

This argument may fail, for example, when the curve ~ = 0 has 
singular point, say a cusp as in Fig. 3.29, at the point (~, TJ) at which 
it meets a curve f = c with the greatest or least possible c. In this case, 
however, we have both 

~x(~, TJ) = 0 and 

-

Figure 3.29 Extreme value at a singular point of; = 0 

We are led intuitively to the following r Ie, which we shall prove 
in the next subsection: 

In order that an extreme value of the function • y) with the subsidi­
ary condition (J(x, y) = 0, may occur at the point x' = C;, y = 11, where 
~x(C;, ,,) and ~1I(C;, ,,) do not both vanish, there must be a constant of 
proportionality A. such that the two equations 

(67c) fx(~, TJ) + ~x(~, TJ) = 0 and 

are satisfied together with the equation 

(67d) ~(~, TJ) = o. 

This rule is known as Lagrange's method of undetermined multipliers, 
and the factor A is known as Lagrange's multiplier. 

We observe that this rule gives as many equations for the deter-



Developments and Applications of the Differential Calculus 999 

mination of the quantities ~, 11, and A as there are unknowns. We 
have, therefore, replaced the problem of finding the positions of the 
extreme values (~, 11) by a problem in which there is an additional 
unknown A but in which we have the advantage of complete sym­
metry. Lagrange's rule is usually expressed as follows: 

To find the extreme values of the function f(x, y) subject to the sub­
sidiary condition ({x, y) = 0, we add to f(x, y) the product of ({x, y) 
and an unknown factor A independent of x and y and write down the 
known necessary conditions, 

fx + A~x = 0, 

for an extreme value of F = f + A.~. In conjunction with the subsidiary 
condition ~ = 0 these serve to determine the coordinates of the 
extremum and the constant of proportionality. 

As an example, we find the extreme values of the function 

u= xy 

on the circle with unit radius and center at the origin, that is, with 
the subsidiary condition 

x2 + y2 - 1 = o. 

According to our rule, by differentiating xy + A(X2 + y2 - 1) with 
respect to x and to y, we find that at the stationary points the two 
equations 

y + 2AX = 0 

x + 2AY = 0 

have to be satisfied. In addition we have the subsidiary condition 

x2 + y2 - 1 = o. 
On solving, we obtain the four points 

1 
~=-.J2 ." 2 ' 

1 
~ = --./2 ." 2' 

1 
~ =-./2 
." 2 ' 

1 ,­
n = - '\'2 .• 2 ' 

1 
n = --./2 .• 2' 
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1 n=-,J2 .• 2 ' 

The first two of these give a maximum value u = t, and the second 
two, a minimum value u = -t, of the function u = xy. That the first 
two do really give the greatest value and the second two the least 
value of the function u follows from the fact that on the circumfer­
ence the function must assume a greatest and a least value (cf. p. 325), 
since the circumference is closed and bounded. 

Exercises 3.7c 

1. Solve Exercise 6 of Section 3.7b as a problem in maximizing the volume 
subject to the condition 2(x + y) + z = 100. 

2. Minimize the function z = x2y2 subject to the condition x + y = 1. 
3. Maximize the function z = cos 'It" (x + y) subject to the condition 

X2 + y2 = 1. 
4. In the plane, minimize the sum of the squared distances of a point X 

from n given points subject to the condition that X lie on a given line 
(compare Section 3.7b, Exercise 7). 

5. If C = !(a, b) is a true maximum or minimum of {(x, y) subject to the 
condition tP(x, y) = C', show that in general C' = tP(a, b) is a true maxi­
mum or minimum of tP(x, y) subject to the condition !(x, y) = C. 

d. Proof of the Method of Undetermined Multipliers in the 
Simplest Case 

As we should expect, we arrive at an analytical proof of the method 
of undetermined multipliers by reducing it to the known case of "free" 
extreme values. We assume that at an extremum point the two partial 
derivatives 'z(~, TJ) and ,U<~, TJ) do not both vanish; to be specific, we 
assume that ,y(~, TJ) =1= O. Then, by the implicit function theorem 
(p. 221), in a neighborhood of this point the equation ,(x, y) = 0 deter­
mines y uniquely as a continuously differentiable function of x, say 
y = g(x). If we substitute this expression in I(x, y), the function 

I(x, g(x» 

must have a free extreme value at the point x =~. For this the 
equation 

I'(x) = Iz + Iyg'(x) = 0 

must hold at x =~. In addition, the implicitly defined function 
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y = g(x) satisfies the relation tPz + tP"g'(x) = 0 identically. If we 
multiply this equation by A = - 1"ltP" and add it to Iz + I"g'(x) = 0, we 
obtain 

Iz + AtPz = 0, 

and by the definition of A, the equation 

holds. This establishes the method of undetermined multipliers. 
This proof brings out the importance of the assumption that the 

derivatives tPz and tP" do not both vanish at the point (~, TJ). If both 
derivatives vanish the rule breaks down, as the following example 
shows. We wish to make the function 

I(x,y) = x2 + y2 

a minimum, subject to the condition 

(J(x,y) = (x - 1)3 - y2 = o. 

In Fig. 3.30 the shortest distance from the origin to the curve (x - 1)3 
- y2 = 0 is obviously given by the line joining the origin to the cusp 
S of the curve (we can easily prove that the unit circle centered at the 
origin contains no other point of the curve). The coordinates of S-

y 

o 

Figure 3.30 The curve (x - 1)3 - y2 = o. 
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that is, x = 1 and y = o--satisfy the equations ~(x, y) = 0 and fv + 
'Mpv = 0 no matter what value is assigned to A., but 

fx + A.~x = 2x + 3A.(x - 1)2 = 2 =1= o. 

We can state the method of undetermined multipliers in a slightly 
different way that is particularly convenient for generalization. We 
have seen that the vanishing of the differential of a function F(x, y) 
at a given point is a necessary condition for the occurrence of a free 
extreme value of the function at that point. For the present problem 
we can similarly make the following statement: 

In order for the function f(x, y) to have an extreme value at the point 
(e;. '1) subject to the subsidiary condition ~x, y) = 0, the differential df 
must vanish at that point, where we consider the differentials dx and dy 
to be not independent but subject to the equation 

(67e) d~ = ~x dx + ~v dy = 0 

deduced from ~ = o. Assume that at the point (~, 11) the differentials 
dx and dy satisfy the equation 

(67f) df = fx(~, 11) dx + fv(~, 11) dy = 0 

whenever they satisfy the equation d~ = o. Multiplying equation (67e) 
by a number A. and adding to (67f), we obtain 

(fx + 'Mpx) dx + (fv + A.~v) dy = o. 
If we determine A. so that 

(67g) fv + A.~v = 0, 

as is possible in virtue of the assumption that ~v =1= 0, it follows that 
(fx + A.~x) dx = 0, and since the differential dx in (67e) can be chosen 
arbitrarily, say, equal to 1, we have 

(67h) fx + A.~x = o. 
Conversely, relations (67g, h) with any A. imply, of course, that df = 0 
whenever d~ = o. 

Exercises 3.7d 

1. Describe the appearance of the surface z = f(x, y) + ACP(X, y), for A the 
Lagrange multiplier and cP = 0 the constraining equation. 
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e. Generalization of the Method of Undetermined Multipliers 

We can extend the method of undetermined multipliers to a greater 
number of variables and also to a greater number of subsidiary con­
ditions. We shall consider a special case that includes every essential 
feature. We seek the extreme values of the function 

(68a) u = {(x, y, z, t), 

when the four variables x, y, z, t satisfy the two subsidiary conditions 

(68b) ~(x, y, z, t) = 0, 'I'(x, y, z, t) = o. 

We assume that at the point (~, 11,~, 't) the function {takes a value that 
is an extreme value when compared with the values at all 
neighboring points satisfying the subsidiary conditions. We require 
that, in the neighborhood of the point P = (~, 11, ~,'t) two of the 
variables, say Z and t, can be represented as functions of the other 
two, x and y, by means of the equations (68b). To ensure that such 
solutions z = g(x, y) and t = h(x,y) can be found, we assume that at 
the point P the Jacobian 

(68c) 
d(~, '1') _ 
d(z, t) - ~z'l't - ~t'l'z 

is not zero (cf. p. 265). We now substitute the functions 

z = g(x,y) and t = h(x,y) 

in the function u = {(x, y, z, t), to obtain a function of the two indepen­
dent variables x and y, and this function must have a free extreme 
value at the point x = ~, y = 11; that is, its two partial derivatives 
must vanish at that point. The two equations 

(69a) az at 
{z + {z ax + {t ax = 0, 

(69b) az at 
{y + {z ay + {t ay = 0 

must therefore hold. In order to calculate from the subsidiary condi-

t · h £ d· . az az at at . 
IOns t e our envatIves ax' ay' ax' ay occurnng here, we could 

write down the two pairs of equations 



338 Introduction to Calculus and Analysis, Vol. II 

(69c) 

(69d) 

and 

(6ge) oz ot 
~v + ~z oy + ~t oy = 0, 

(69f) oz ot 
'l'v + "'z oy + "'t oy = 0 

and solve them for the unknowns oz/ox, . . ., ot/oy; this is possible 
because the Jacobian d(~, ",)/d(z, t) does not vanish. Thus, the prob­
lem would be solved. 

Instead, we prefer to retain formal symmetry by proceeding as 
follows. We determine two numbers A and Il in such a way that the 
two equations 

(70a) 

(70b) 

fz + ~z + Il"'z = 0, 

are satisfied at the point where the extreme value occurs. The deter­
mination of these multipliers A and Il is possible, since we have as­
sumed that the Jacobian d(~, ",)/d(z, t) is not zero. If we multiply the 
equations (69c, d) by A and Il, respectively, and add them to the equation 
(69a), we have 

oz ot 
fx + ~x + Il'l'x + (fz + A~z + Il"'z) ox + (It + ~t + Il"'t) ox = O. 

Hence, by the definition (70a, b) of A and Il, 

fx + A~x + Il'l'x = o. 

Similarly, if we multiply the equations (6ge, f) by A and Il, respectively, 
and add them to the equation (69b), we obtain the further equation 

fv + A~v + Il"'v = O. 

We thus arrive at the following result: If the point (e, 1'/, (, -r) is an ex-
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tremum of f(x, y, z, t) subject to the subsidiary conditions 

(71 a) 

(71b) 

!f>(x, y, z, t) = 0, 

'l'(x, y, z, t) = 0, 

and if at that point d(9),If/)/d(z,t) is not zero, then two numbers A. and p, 
exist such that at the point (<!, 1'/, (, r) the equations 

(72a) 

(72b) 

(72c) 

(72d) 

fx + A9>x + Jl'l'x = 0, 

fy + A9>Y + Jl'l'y = 0, 

fz + A9>z + Jl'l'z = 0, 

ft + A9>t + Jl'l't = 0, 

and the subsidiary conditions (71a, b) are satisfied. 
These last conditions are perfectly symmetrical. Every trace of 

special emphasis on the two variables x and y has disappeared from 
them, and we should equally well have obtained (72a, b, c, d) if, instead 
of assuming that a(9), 'l')/a(z, t) -=1= 0, we had merely assumed that any 
one of the Jacobians a(9), 'l')/a(x, y), a(9), 'l')/a(x, z), ... , a(9), 'l')/a(z, t) did 
not vanish, so that in the neighborhood of the point in question a 
certain pair of the quantities x, y, z, t (not necessarily z and t) could 
be expressed in terms of the other pair. For this symmetry of our 
equations we have of course paid a price; in addition to the unknowns 
~, 11, 1;, 't, we now have A and Jl also. Thus, instead of four unknowns, 
we now have six, determined by the six equations above. 

In exactly the same way, we can state and prove the method of 
undetermined multipliers for an arbitrary number of variables and an 
arbitrary number of subsidiary conditions. The general rule is as 
follows: 

If in a function 

u = f(xI, X2, . . ., Xn) 

the n variables Xl, X2, . . ., Xn are not independent but are connected by 
the m subsidiary conditions (m < n) 

9>1(XI, X2, . . ., Xn) = 0, 

9>2(XI, X2, . . ., Xn) = 0, 

9>m(XI, X2, . . ., Xn) = 0, 
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then we introduce m multipliers AI, ..1.2, . . ., Am and equate the deriva­
tives of the function 

F = f + A,1911 + A,2912 + . . . + A,m91m 

with respect to Xl, X2, . . ., Xn, when AI, ..1.2, . . ., Am are constant, to O. 
The equations 

aF 
aX1 = 0, . 

aF 
·'a-=O Xn 

thus obtained, 1 together with the m subsidiary conditions 

911 = 0, . • ., 91m = 0, 

represent a system of m + n equations for the m + n unknown quanti­
ties Xl, X2, . . ., xn, AI, . . ., Am. These equations must be satisfied at any 
extreme point of f unless everyone of the Jacobians of the m functions 
911, 912,. . ., 91m with respect to m of the variables Xl, . . ., Xn has the value 
O. 

We observe that this rule gives us an elegant formal method for 
determining the points where extreme values occur; however, it 
merely constitutes a necessary condition. It still remains to investi­
gate the circumstances under which the points that we find by means 
of the multiplier method actually correspond to a maximum or a mini­
mum of the function. Into this question we shall not enter; its dis­
cussion would lead us too far afield. As in the case of free extreme 
values, when we apply the method of undetermined multipliers we 
usually know beforehand that an extremum in the interior of the 
domain of f does exist. If the method determines the point uniquely 
and the exceptional case (all the Jacobians 0) does not occur anywhere 
in the region under discussion, then we can be sure that we have 
really found the point where the extreme value occurs. 

Exercises 3.7e 

1. Interpret the problem of minimizing u = f(x, y, z) subject to the con­
straint ifJ(x, y, z) = 0 geometrically, 

2. Give an example of a problem of the form: Extremize f(x, y, z) subject to 
the constraints ifJ(x, y) = 0, Iji(y, z) = o. Interpret this geometrically. 

f. Examples 

1. As a first example we attempt to find the maximum of the 
function f(x, y, z) = X2y2z2 subject to the subsidiary condition X2 + y2 

lWhich are identical with those for a "free" extremum of the auxiliary function F. 
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+ Z2 = c2• On the spherical surface x2 + y2 + Z2 = c2, the function 
must assume a greatest value, since the surface is a bounded and 
closed set. According to the rule, we form the expression 

and by differentiation obtain 

2xy2z2 + 2A.x = 0, 

2x2yz2 + 2A.y = 0, 

2X2y2z + 2A.z = 0. 

The solutions with x = 0, y = 0, or z = ° can be excluded, for at these 
points the function f takes on its least value, zero. The other solutions 
of the equation are x2 = y2 = Z2, A. = - X4. Using the subsidiary con­
dition, we obtain the values 

c 
x=±.J3' 

for the required coordinates. 

c 
z=±.J3 

At all these points, the function assumes the same value c6/27, 
which accordingly is the maximum. Hence, any triad of numbers 
satisfies the relation 

= 
x2 + y2 + Z2 

3 

which states that the geometric mean of three nonnegative numbers 
X2, y2, Z2 is never greater than their arithmetic mean. 

One proves similarly for any arbitrary number of positive numbers 
that the geometric mean never exceeds the arithmetic mean.! 

2. As a second example we shall seek to find the triangle (with 
sides x, y, z) with given perimeter 2s, and the greatest possible area. 
By the well-known formula of Heron the square of the area is given by 

f(x, y, z) = s(s - x)(s - y)(s - z). 

We therefore seek the maximum of this function subject to the sub­
sidiary condition 

IFor another proof, see Volume I, Problem 13, p. 109, or Problem 11, p. 318. 
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tfi = X + y + z - 28 = 0, 

where X, y, z are restricted by the inequalities 

On the boundary of this closed region (i.e., whenever one of these 
inequalities becomes an equation), we always have f = o. Con­
sequently, the greatest value of f occurs in the interior and is a 
maximum. We form the function 

F(x,y, z) = 8(8 - X)(8 - Y)(8 - z) + A(X + y + z - 28), 

and by differentiation obtain the three conditions 

-8(8 - Y)(8 - z) + A = 0, -8(8 - X)(8 - z) + A = 0, 

-8(8 - X)(8 - y) + A = O. 

By equating the three expressions we obtain X = Y = z = 28/3; that is, 
the solution is an equilateral triangle. 

3. We next prove the inequality 

(73a) 
1 i uv s -un + -vP 

-a /3 

for every u ~ 0, v ~ 0 and every a > 0, /3 > 0 for which l/a + 1//3 = 1. 
The inequality is certainly valid if either u or v vanishes. We may 

therefore restrict ourselves to values of u and v such that uv '* O. If 
the inequality holds for a pair of numbers u, v, it also holds for all 
numbers utlln, vtllp where t is an arbitrary positive number. We need 
therefore consider only values of u, v for which uv = 1. Hence, we 
have to show that the inequality 

1 1 - un + - vP ~ 1 
a /3-

holds for all positive numbers u, v such that uv = 1. 
To do this, we solve the problem of finding the minimum of 

1 1 - un + - vP 
a /3 

subject to the subsidiary condition uv = 1. This minimum obviously 
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exists and occurs at a point (u, v) where u *" 0, V*" o. Consequently, 
there exists a multiplier - A for which we have 

ua- l - AV = 0 and v\3-1 - AU = o. 

On multiplication by u and v, respectively, these equations at once 
yield u a = A, v\3 = A. Taken with uv = 1, the last results imply that 
u = v = 1. The minimum value of 

1 1 
- u a + - v\3 
n ~ 

is, therefore, l/n + 1/~ = 1. That is, the statement that 

1 1 
- u a + - v\3 21 
n ~-

when uv = 1 is proved. 
If in the inequality (73a) we replace u and v by 

( n ) lIa 
U = uti ~1 Uia and ( n ) 11\3 

V = Vi/ ~ Vi\3 , 
z=l 

respectively, where UI, U2,. ., Un, VI, V2, ••• , Vn are arbitrary non­
negative numbers and at least one u and at least one v is not zero 
and if we sum over i = 1, ... , n, we obtain Holder's inequality 

(73b) 

This holds for any 2n numbers Ui, Vi where Ut ~ 0, Vi ~ 0 (i = 1, 2, 
. . ., n); not all the u's and not all the v's are zero; and the indices 
n, ~ are such that n > 0, ~ > 0, l/n + 1/~ = 1. The Cauchy-Schwarz 
inequality is the special case n = ~ = 2 of Holder's inequality. 

4. Finally, we seek the point on the closed surface 

~(x,y, z) = 0 

that is at the least distance from the fixed point(~, 11, 1;). Ifthe distance 
is a minimum its square is also a minimum; we accordingly consider 
the function 

F(x, y,,z) = (x - ~)2 + (y - 11)2 + (z - 1;)2 + ~(x, y, z). 

Differentiation gives the conditions 
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2(x - ~) + Npz = 0, 2(y - fl) + Np1l = 0, 2(z - ~) + Npz = 0, 

or, in another form, 

These equations state that the fixed point (~, fl,~) lies on the normal 
to the surface at the point of extreme distance (x, y, z). Therefore, 
in order to travel along the shortest path from a point to a (differ­
entiable) surface, we must travel in a direction normal to the surface. 
Of course, further discussion is required to decide whether we have 
found a maximum or a minimum or neither. Consider, for example, a 
point within a spherical surface. The points of extreme distance lie at 
the ends of the diameter through the point; the distance to one of 
these points is a minimum, to the other a maximum. 

Exercises 3.7f 

1. Find the shortest distance between the plane Ax + By + Cz = D and 
the point (a, b, c). 

2. Find the greatest and least distances of a point on the ellipse x2/4 + y2/1 
= 1 from the straight line x + y - 4 = O. 

3. Show that the maximum value of the expression 

ax2 + 2bxy + cy2 
ex2 + 2fxy + gy2 

is equal to the greater of the roots of the equation in A 

(ac - b2) - A(ag - 2bf + ec) + A2(ea - f2) = O. 

(eg - f2 > 0) 

4. Calculate the maximum values of the following expressions: 

x2 + 6xy + 3y2 
(a) x2 _ xy + y2 

X4 + 2x3y 
(b) X4 + y4 • 

5. Find the values of a and b for the ellipse x2/a2 + y2/b2 = 1 of least 
area containing the circle (x - 1)2 + y2 = 1 in its interior. 

6. Which point of the sphere X2 + y2 + Z2 = 1 is at the greatest distance 
from the point (1, 2, 3)? 

7. Find the point (x,y, z) of the ellipsoid x2/a2 + y2/b2 + Z2/C2 = lfor which 

(a) A + B + C 

(b) JA2 + B2 + C2, 

is a minimum, where A, B, C denote the intercepts that the tangent 
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plane at (x, y, z), where x > 0, y > 0, z> 0, makes on the coordinate axes. 
8. Find the rectangular parallelepiped of greatest volume inscribed in the 

ellipsoid x2/a2 + y2/b2 + Z2/C2 = 1. 
9. Find the rectangle of greatest perimeter inscribed in the ellipse x 2/a2 + 

y2/b2 = 1. 
10. Find the point of the ellipse 5x2 - 6xy + 5y2 = 4 for which the tangent 

is at the greatest distance from the origin. 
11. Prove that the length I of the greatest axis of the ellipsoid 

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz = 1 

is given by the greatest real root of the equation 

1 
d a-12 e 

d 
1 

b-I2 f 
1 

e f c -[2 

12. (a) Maximize xa yb zc, where a, b, c are positive constants, subject to the 
condition Xk + yk + Zk = 1 where x, y, z are nonnegative and k > 0. 

(b) From the result of part (a) derive the inequality for any six positive 
real numbers 

(~) a (E) b(l!!.) C :s; (u + v + W) a+b+c 
abc -a+b+c 

13. Let PIP2PaP4 be a convex quadrilateral. Find the point 0 for which the 
sum of the distances from PI, P2, Pa, P 4 is a minimum. 

14. Find the quadrilateral with given edges a, b, c, d that includes the 
greatest area. 

Appendix 

A.I Sufficient Conditions for Extreme Values 

In the theory of maxima and minima in the preceding chapter we 
contented ourselves with finding necessary conditions for the occur­
rence of an extreme value. In many cases occurring in actual practice 
the nature of the "stationary" point thus found can be determined 
from the special nature of the problem, permitting us to decide 
whether it is a maximum or a minimum. Yet it is important to have 
general sufficient conditions for the occurrence of relative extrema. 
Such criteria will be developed here for the typical case of two in­
dependent variables. 

If we consider a point (xo, Yo) at which the function is stationary, 
that is, a point at which both first partial derivatives of the function 
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vanish, an extreme value occurs if and only if the expression 

f(xo + h, Yo + k) - f(xo, Yo) 

has the same sign for all sufficiently small values of hand k. If we 
expand this expression by Taylor's theorem with the remainder of the 
third order and use the equations fx(xo, Yo) = ° and fy(xo, Yo) = 0, we 
obtain 

f(xo + h, Yo + k) - f(xo, Yo) = ~(h2fxx + 2hkfxy + k2fyy) + Ep2, 

where p2 = h 2 + k2 and E tends to zero with p. 
This suggests that in a sufficiently small neighborhood of the point 

(xo, Yo) the behavior of the functional difference f(xo + h, Yo + k) -
f(xo, Yo) is essentially determined by the expression 

Q(h, k) = ah2 + 2bhk + ck2, 

where for brevity we have put 

In order to study the problem of extreme values we must investigate 
this homogeneous quadratic expression or quadratic form Q in hand 
k. We assume that the coefficients a, b, c do not all vanish. In the ex­
ceptional case where they do all vanish, which we shall not consider, 
we must begin with a Taylor series extending to terms of higher order. 

With regard to the quadratic form Q there are three different 
possible cases: 

1. The form is definite. That is, when hand k assume all values, Q 
assumes values of one sign only fl.nd vanishes only for h = 0, k = 0. 
We say that the form is positive definite or negative definite according 
to whether this sign is positive or negative. For example, the ex­
pression h 2 + k 2, which we obtain when a = c = 1, b = 0, is positive 
definite while the expression -h2 + 2hk - 2k2 = -(h - k)2 - k2 is 
negative definite. 

2. The form is indefinite. That is, it can assume values of different 
sign; for example, the form Q = 2hk, which has the value 2 for h = 1, 
k = 1 and the value - 2 for h = -1, k = 1. 

3. The third possibility is that the form vanishes for values of h, 
k other than h = 0, k = 0, but otherwise assumes values of one sign 
only, for example, the form (h + k)2, which vanishes for all sets of 
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values h, k such that h = - k. Such forms are called semidefinite. 

The quadratic form Q = ah2 + 2bhk + ck2 is definite if and only if 
its discriminant ac - b2 satisfies the condition 

ac - b2 > 0; 

it is then positive definite if a > 0 (so that c > also); otherwise, it is 
negative definite. 

In order that the form may be indefinite, it is necessary and suffi­
cient that 

ac - b2 < 0, 

while the semi-definite case is characterized by the equationl 

ac - b2 = o. 
We shall now prove the following statements. If the quadratic 

form Q(h, k) is positive definite, the stationary value assumed for 
h = 0, k = 0 is a relative minimum (even a strict relative minimum). 
If the form is negative definite, the stationary value is a relative 
maximum. If the form is indefinite, we have neither a maximum nor a 
minimum; the point is a saddle point. Thus, definite character of the 
form Q is a sufficient condition for an extreme value, while indefinite 
character of Q excludes the possibility of an extreme value. We shall 
not consider the semidefinite case, which leads to involved dis­
cussions. 

In order to prove the first statement, we observe that if Q is a 
positive definite form, there is a positive number m independent of h 
and k such that2 

IThese conditions are easily obtained as follows. Either a = c = 0, in which case we 
must have b =F ° and the form is, as already remarked, indefinite; the criterion there­
fore holds for this case; otherwise, we must have, say, a =F 0. We can write 

ah2 + 2bhk + ck2 = a[ (h +~k)2 + ca ~ b2k2J. 
This form is obviously definite if ca - b2 > 0, and it then has the same sign as a. It 
is semidefinite if ca -b2 = 0, for then it vanishes for all values of h, k that satisfy 
the equation h/k = - bfa, but for all other values it has the same sign. It is indefinite 
if ca - b2 < 0, for it then assumes values of different sign when k vanishes and when 
h + (b/a)k vanishes. 
2To see this we consider the quotient Q(h, k)/(h2 + k 2) as a function of the two 
quantities u = h/./h2 + k2 and v = k/./h2 + k 2• Then u2 + v2 = 1, and the form 
becomes a continuous function of u and v, which must have a least value 2m on 
the circle u2 + v2 = 1. This value m obviously satisfies our conditions; it is not 
zero, for u and v never vanish simultaneously on the circle. 
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Therefore, 

1 
f(xo + h, Yo + k) - f(xo, Yo) = "2 Q(h, k) + Sp2 ~ (m + S)p2. 

If we now choose p so small that the number s is less in absolute value 
than tm, we obviously have 

m 
f(xo + h,yo + k) - f(xo, Yo) ~ 2" p2 > o. 

Thus, for this neighborhood of the point (xo, Yo) the value of the 
function is everywhere greater than f(xo, Yo), except of course at (xo, 
Yo) itself. In the same way, when the form is negative definite the 
point is a maximum. 

Finally, if the form is indefinite, there is a pair of values (hI, kl) 
for which Q is negative and another pair (h2, k2) for which Q is po­
sitive. We can therefore find a positive number m such that 

Q(hl, kl) < -2mpI2, 

Q(h2, k2) > 2mp22. 

If we now put h = thl, k = tkl, p2 = h 2 + k 2, (t =1= O)-that is, if we 
consider a point (xo + h, Yo + k) on the line joining (xo, Yo) to (xo + hI, 
Yo + kl)-then from Q(h, k) = t2Q(hl, kl) and p2 = t2Pl2 we have 

Q(h, k) < -2mp2. 

Thus, by choice of a sufficiently small t (and corresponding p), we can 
make the expression f(xo + h, Yo + k) - f(xo, Yo) negative. We need 
only choose t so small that for h = thl, k = tkl the absolute value of 
the quantity s is less than t m. For such a set of values we have 
f(xo + h, Yo + k) - f(xo, Yo) < - mp2j2, so that the value f(xo + h, Yo + k) 
is less than the stationary value f(xo, Yo). In the same way, on carry­
ing out the corresponding process for the system h = th2, k = tk2, we 
find that in an arbitrarily small neighborhood of (xo, Yo) there are 
points at which the value of the function is greater than f(xo, yo). Thus, 
we have neither a maximum nor a minimum but, instead, what we call 
a saddle value. 

If a = b = c = 0 at the stationary point, so that the quadratic 
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form vanishes identically, and in the semidefinite case, this discussion 
fails to apply. To obtain sufficient conditions for these cases would 
lead to involved distinctions. 

Thus, we have the following rule for distinguishing maxima and 
nnmma: 

At a point (xo, yo) where the partial derivatives vanish, 

and the inequality 

holds, the {unction { has a relative extreme value. This is a relative 
maximum i{{xx < 0 (and consequently {yy < 0), and a relative minimum 
i{ {xx> O. I{, on the other hand, 

{xx{yy - {xy 2 < 0, 

the stationary value is neither a maximum nor a minimum. The case 

{xxfyy - {xy 2 = 0 

remains undecided. 
These conditions have a simple geometrical interpretation. The 

necessary conditions {x = {y = 0 state that the tangent plane to the 
surface z = {(x, y) is horizontal. If we really have an extreme value, 
then in the neighborhood of the point in question the tangent plane 
does not intersect the surface. In the case of a saddle point, on the 
contrary, the plane cuts the surface in a curve that has several 
branches at the point. This matter will be clearer after the discussion 
of singular points in section A.3. 

As an example we seek the extreme values of the function 

{(x, y) = x2 + xy + y2 + ax + by. 

If we equate the first derivatives to 0, we obtain the equations 

2x + y + a = 0, x + 2y + b = 0, 

which have the solution x = t(b - 2a), y = t(a - 2b). The expression 

{xx{yy - {xy 2 = 3 
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is positive, as is {xx = 2. The function therefore has a minimum at the 
point in question. 

The function 

{(x, y) = (y - X 2)2 + X 5 

has a stationary point at the origin. There the expression {XX{lIl1 - {X1I2 

vanishes, and our criterion fails. We readily see, however, that the 
function has no extreme value there, for in the neighborhood of the 
origin the function assumes both positive and negative values. 

On the other hand, the function 

{(x,y) = (x - y)4 + (y - 1)4 

has a minimum at the point x = 1, Y = 1, though the expression 
{XX{lIl1 - {X1I2 vanishes there. For 

{(1 + h, 1 + k) - {(1, 1) = (h - k)4 + k4, 

and this quantity is positive when p =1= O. 

Exercises A.1 

1. Find and characterize the extreme values of the functions: 

(a) f(x, y) = x2 - 3xy + y2 

(b) f(x, y) = cos (x + y) + sin (x - y) + x2 

(c) f(x, y) = x cosh y - y2. 

2. If rjJ(a) = k *- 0, rjJ/(a) *- 0, and x, y, z satisfy the relation rjJ(x)rjJ(y)rjJ(z) = 
k3, prove that the function f(x) + f(y) + f(z) has a maximum when 
x = y = z = a, provided that 

f '( ) (rjJlI(a) _ rjJ/(a») > f"( ) 
a rjJ' (a) rjJ (a) a • 

3. Let PIP2P3 be a plane triangle with all three angles less than 1200 • Prove 
by the criterion of p. 349 or of Exercise 6 below that at the point P interior 
to PIP2P3 such that LP2PP3 = LP3PPI = LPIPP2 = 1200 , the sum 
PPI + PP2 + PP3 is actually a minimum (cf. Example 3, p. 328). 

4. Where does the minimum of the sum PPI + PP2 + PP3 occur if in the 
triangle of Exercise 3 the angle P2PIP3 is greater than, or equal to, 1200 ? 

5. (a) Prove that if all the symbols denote positive quantities the stationary 
value of lx + my + nz subject to condition xP + yP + zP = cP is 
c(lq + m q + n Q)lIq, where q = p/(P - 1). 

(b) Show that the value is a maximum or minimum according to whether 
p~1. 
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6. Generalize the investigation of Section A. 1 to functions of n variables, 
proving the following results. Let {(Xl, ... , Xn) be three times continu­
ously differentiable in the neighborhood of a stationary point Xl = XlO, 

.. . ,Xn = x"o, that is, a point where {Xl = {X2 = {xn = 0. Consider the 
n 

second total differential of { at the point xo, d 2{O = L: {xiXk ° dXi dXk; this 
i.k=I 

is a quadratic form in the variables dXl, . . ., dXn. If this quadratic form 
is nondegenerate, that is, if 

D= *0, 

then d2{O may be (1) positive definite, (2) negative definite or (3) indefinite. 
Prove that these possible cases correspond respectively to the following 
properties of { at the point xo: (1) {has a minimum, (2) {has a maximum, 
(3) {has neither a minimum nor a maximum. 

7. To investigate stationary points off = {(Xl, ... , X,,), where the variables 
satisfy the relations 

(1) (h(Xl, . •• , Xn) = 0, ... , t/Jm(XI, . •• , Xn) = ° (m< n) 

we may assume that we have found numerical values for the variables 
and the multipliers All such that F = { + Alt/JI + ... + Amt/Jm satisfies the 
equations 

(2) 
of 
OXI = 0, . 

of 
., ;-- = 0, uXn 

and such that the Jacobian of t/JI, ••• , t/Jm with respect to the variables 
Xl, • • ., Xm is not 0. To apply the criterion of Exercise 6 we may proceed 
as follows: Regarding Xm+ 1, • . ., Xn as independent variables, by differ­
entiating (1) we can obtain the first and second differentials of Xl • • ., 

Xm as functions of Xm+l, . . ., Xn and finally introduce these values into 

(3) 

Prove .the foll?win~ second rUJe, not invo!ving the computat~on oj the 
second dIfferentIals d Xl, • • ., d xm: Regardmg Xl, . . ., X" as I1).dE(pend­
ent variables, consider 

d 2F = L: FXiXk dXi dXk = d 2{ + Ald2t/JI + ... + Am d 2t/Jm; 

compute dXI, . . ., dXm from the equations 

dtjJll = t/JIlXI dXl + ... + t/JIlXn dXn = ° (~ = 1, . . ., m) 

and in~oduce these values into d 2F, thus obtaining a quadratic form 
82 F in the variables dXm+l, . . ., dXn. If this quadratic form is nondegener­
ate, then {has, respectively, a minimum, a maximum, or neither of these, 
according to whether 82F is positive definite, negative definite, or 
indefinite. 
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8. In the problem of finding the maximum of f = XlXS 0 0 ox .. subject to the 
condition ifJ = Xl + Xs + 0 0 0 + X .. - a = 0 (a > 0), the rule of undeter­
mined multipliers gives a stationary value of f at the point Xl = Xs = 
o 0 0 = X .. = a/n. Apply the rule of Exercise 7, instead of the consideration 
of the absolute maximum, to show that f has a maximum value at this 
point. 

9. Apply the criterion of Exercise 7, to prove that among all triangles of 
constant perimeter the equilateral triangle has the largest area (cf. 
p.341). 

A.2 Numbers of Critical Points Related to Indices of a Vector 
F.eld 

A continuous function I(x, y) defined in a closed and bounded set 
R certainly has a maximum point and minimum point in R, by our 
fundamental theorem (see p. 112). If a maximum or minimum point 
(xo, Yo) is an interior point of R and if I is a differentiable at (xo, yo), 
then (xo, yo) is a critical point of I. In some cases this observation per­
mits us to deduce the existence of at least one critical point of I. For 
example, if the set R consists of an open, bounded set S and its bound­
ary B and if I is constant on B and differentiable in S, then I has at 
least one critical point in S. This is just an extension of Rolle's theorem 
(see Volume I. p. 175) to functions of several variables, and it is 
proved in the same way: The function I has maximum and minimum 
points. If these all lie on the boundary B where f is constant, then the 
maximum and minimum value of I coincide; then I is constant in S as 
well and every point of S is critical. Hence, there is at least one 
critical point of I in S. 

In the case of functions of a single independent variable, more 
specific information on the number of critical points of a certain type 
is available. Relative maxima and minima alternate (see Volume I, 
p. 239). Hence, the total numbers of relative maxima and of minima 
of a function in an interval differ by, at most, 1. This is not true for 
functions of two variables defined in a set R of the plane. There exists, 
however, an (intuitively less obvious) relation connecting the total 
numbers of relative extrema and of saddle points in the interior of R 
with the values of Ion the boundary of R. In order to formulate this 
relation, we first have to consider the gradient field ofl and to introduce 
the notion of index of a closed curve with respect to a vector field. 
. Assume that I is continuous and has continuous first derivatives 
in the set R of the x, y-plane. Then f determines at each point of R the 
two quantities 

(74) u = Iz(x, y), v = 11I(x, y). 
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These can be interpreted as the components of a certain vector, the 
gradient of f. The gradients at the various points of R form a vector 
field. The critical points of R are those where the gradient vanishes. 
At all other points, the gradient vector has a uniquely determined 
direction described, for example, by its direction cosines 

and 
v 

(see Volume I, p. 383). Clearly, ~ and 11 are continuous functions of 
(x, y) at every noncritical point of R. We can put 

~ = cos 9, 11 = sin 9, 

where, however, the angle 9-the inclination of the vector (u, v)-is 
determined only within whole multiples of 21t. In general, it is not pos­
sible to select one definite value for 9 that will then vary continu­
ously with (x, y). On the other hand, the differential 

(75) 
v udv - vdu 

d9=darctan-= 2+ 2 u U V 

_ (uvx - vux)dx + (uv" - vUll)dy 
u2 + v2 

is defined unambiguously for every noncritical point (x, y) of R. 
Now let C be an oriented closed curve that lies in R and does not 

pass through any critical point of f. We define the Poincare index Ie 
of C with respect to the vector field as the number 

(76) 

If C is given parametrically by 

udv - vdu 
u2 + v2 

x = ~(t), Y = 'If(t) (a ~ t ~ b), 

where ~ and 'If have the same values at the two end points of the t­
interval and where the orientation of C corresponds to the sense of 
increasing t, then the index of C is given by the integral 

Ie = -l (b ( u dv ~ v dU) dt 
21t Ja u2 + v2 dt u2 + v2 dt . 
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Since, after traversing the curve C, we return to the same point (x, y), 
the values for 0 corresponding to t = a and t = b can only differ by a 
multiple of 21t. Hence, Ie is always an integer. This integer counts the 
total number of counterclockwise rotations performed by the vector 
(u, v) as we go around the curve Cin the sense indicated by its orien­
tation. l Of course, Ie changes sign when we change the orientation of 
C. As an illustration, consider the function 

f(x, y) = x2 + y2. 

Here the gradient 

(u, v) = (2x, 2y) 

at any point (x, y) has the direction of the radius vector from the 
origin. Assume we make use of a right-handed coordinate system. For 
a closed curve C that does not pass through the origin the index, 

Ie = -.l r x dy - y dx 
21t Je x2 + y2 

measures the total number of counterclockwise turns performed by 
the radius from the origin in going around the curve C. This is exactly 
the formula for the number of times the curve C winds about the 
origin derived in Volume I (p. 434). 

Generally, at points where u and v do not both vanish, the differ­
ential dO of equation (75) satisfies the integrability condition 

(UVZ - vuz) _ (UVy - VUy ) 

u2 + v2 Y - u2 + v2 z' 

which can be verified directly and, of course, only reflects the relation 

which holds in spite of the possible multiple-valuedness of the function 
arc tan (vlu). It follows from the fundamental theorem on line integrals 
(see p. 104 and p. 97) that Ie = 0 if C is the boundary of a simply con­
nected subset of R that contains no critical points of f. 

IFor the definition of "index" it is not necessary that the vector field be a gradient 
field. 
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More generally, consider a multiply connected set R with a number 
of closed boundary curves CI, C2, . . ., Cn. Let the x, y-coordinate 
system be right-handed, as usual. Assume each Cc is oriented in such 
a way that we leave R to our left in traversing Ct in the sense cor­
responding to its orientation. Assume that we can divide R into simply 
connected sets Ric by suitable auxiliary arcs joining various Cc (cf. Fig. 
3.31). Let f have no critical points in R. Then, 

Figure 3.31 Multiply connected region with positively oriented boundary 
curves C. divided into simply connected sets. 

J de = 0 

when extended over the boundary of any Ric traversed in the counter­
clockwise sense. Forming the sum of the integrals over the boundaries 
of all the Ric, we see that the contributions from the auxiliary arcs 
cancel out (see p. 94) and we find that 

This means, however, that 

(77) 

if the Ct are closed curves forming the boundary of a set R free of 
critical points of f, and with a sense of orientation leaving R to the 
left. 

As a consequence we obtain the theorem that there exists at least 
one critical point in R, whenever the sum of the indices of the boundary 
curves of R (oriented as explained) is different from zero. 
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More precise information on the number of critical points in R is 
obtained if we assume that {has continuous second derivatives in R, 
that {has only a finite number of critical points (Xl, YI), ... , (XN, YN), 
and that at each critical point the discriminant 

does not vanish. All critical points are then either relative maxima or 
minima corresponding to D > 0 or saddle points corresponding to 
D < 0 (see p. 349). Assume that R again is bounded by oriented simple 
closed curves CI, . . ., Cn that do not pass through any of the critical 
points of {. We can cut out a small neighborhood of each critical point 
(Xk, Yk) bounded by a curve 'Yk. There remains a set bounded by the 
curves CI, . . ., Cn, 'YI, . . ., 'YN that is free of critical points of f. Giving 
each 'Yk the counterclockwise orientation, we have then, by (77), 

n N 
(78) L: lei - L: Irk = O. 

i=l k=l 

Now the index of one of the curves 'Yk bounding a set containing a 
single critical point (Xk, Yk) just depends on the type of that point, as 
we shall show. 

Let 'Yk be a small circle 

X = Xk + r cos t, Y = Yk + r sin t 

of radius r and center at the critical point (Xk, Yk). By Taylor's theorem, 
we have on 'Yk 

(79a) u = {x(x, y) = (x - Xk){xx(Xk, Yk) + (y - Yk){xy(Xk, Yk) + 
= r(a cos t + b sin t) + O(r2) 

(79b) v = {y(x, y) = (x - Xk){Xy(Xk, Yk) + (y - Yk){yy(Xk, Yk) + 
= r(b cos t + c sin t) + O(r2), 

where we put 

In order to find out how often the vector (u, v) turns in the counter­
clockwise sense as t varies from (0, 2n) we observe that the point in the 
plane with coordinates (u, v) (that is, the point whose position vector 
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has components u, v) approximately describes the ellipse E with para­
metric representation 

(80) u = r(a cos t + b sin t), v = r(b cos t + c sin t). 

This ellipse has its center at the origin and has the nonparametric 
equation 

(cu - bV)2 + (av - bU)2 = r2(ac - b2)2. 

It is clear that the point (u, v) describes the ellipse E in (80) exactly 
once as t increases from 0 to 21t, so that the index of Yk certainly is 
either + 1 or -1 depending onthecounterclockwiseorclockwisesense 
of E corresponding to increasing t. Now the linear mapping 

u = r(au + bv), v = r(bu + cv) 

clearly takes the circle 

u = cos t, v = sin t 

in the u, v-plane (where increasing t correspond to the counterclock­
wise sense on the circle) into E. Since sense of curves is preserved or 
inverted according to the sign of the Jacobian r 2(ac - b2) of the 
mapping (see p. 260), we see that 

IYk = sgn(ac - b2) = sgn[fxx(Xk, Yk)fyy(Xk, Yk) - fXy2(Xk, Yk)] 

= sgn D(Xk, Yk).1 

It follows from (78) that 

As observed earlier sgn D(Xk,Yk) = + 1 when the critical point (Xk,Yk) is 
either a relative maximum or minimum, and sgn D(Xk,Yk) = -1, when 

IThe same result can be obtained analytically by observing that, by formulae(79a, b), 

1· 1 1° 1 l u dv - v du 
1m Yk = 1m 2- 2 + 2 

r-O r-O 1t Yk u v 

1 {21t ac - b2 

= 21t Jo (a cos t + b sin t)2 + (b cos t + c sin t)2 dt. 

The integral can be evaluated explicitly (see Volume I, p. 294) and has the value 
21t sgn (ac - b2). 
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it is a saddle point. Let Mo, Ml, M2 denote, respectively, the numbers 
of minima, saddle points, and maxima in R. Our result becomes the 
Poincare identity.l 

(81) 

In words, the excess of the number of relative maxima and minima of f 
in R over the number of saddle points equals- the sum of the indices of 
the boundary curves of R with respect to the gradient field of f. where 
each boundary curve is oriented so as to leave R on the left-hand side. 

The result is particularly simple when f is constant along each 
boundary curve Ct of R. The gradient vector of f then is perpendicular 
to C (see p. 233) and has the direction of either the exterior or the 
interior normal of Ct. If no critical point of f lies on Ct and Ct is a 
smooth closed simple curve the direction of the gradient varies con­
tinuously and cannot jump at any point of C, from that of exterior to 
that of interior normal or vice verse. It is clear then that the gradient 
vector turns exactly once along Ct, and in the same sense as the 
tangent vector of C" with which the gradient forms a fixed angle. 
Thus, lei = + 1 when Ct has the counterclockwise sense, and -1 when 
it has the clockwise one. It is easily seen that with our convention 
about the orientation of the boundary curves of R a boundary curve 
Ct has counterclockwise orientation when it forms the "outer" bound­
ary of one of the disconnected pieces making up R and has clockwise 
orientation if it bounds one of the "holes" in R (see Fig. 3.31). It 
follows that for f constant on the boundary curves 

(82) Mo - Ml + M2 = No - Nl, 

where No is the number of connected components of Rand Nl is the 
total number of holes in R (the "connectivity" of R). 

Take, for example, the case where R is a circular disc. Here No = 1, 
Nl = 0, and thus, for f constant on the boundary, 

Mo - Ml + M2 = 1. 

We find here that the total number of critical points in the interior of R 
is 

lThe corresponding formulae for functions of more than two independent variables 
are those of M. Morse. 
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and, hence, certainly is an odd number. Moreover, i{ the number Mo + 
Mz o{ relative extrema o{ { exceeds 1, then { has at least one saddle point 
in R. 

For a circular ring R we have 

No = 1, Nl = 1, 

and thus, for { constant on each boundary curve, 

Mo - Ml + Mz = o. 

Take the case where {has the same constant value on each of the 
two boundary curves. Then {is either constant everywhere or assumes 
its maximum or minimum in the interior of R. If we postulate that { 
has only critical points with {zxfyy - {zyz *- 0 the case of constant {is 
excluded. It follows then that Mo + Mz > 0 and, hence, that Ml > o. 
Hence, a {unction in a circular ring that vanishes everywhere on the 
boundary has at least one critical point with {zxfyy - {zyz ~ 0 in the 
interior. 

Exercises A.2 

1. Give an example of a continuous function {that has a singularity at the 
origin of index 

(a) -1; 

(b) -2; 

(c) -n, where n is a natural number. 

2. Give an example of a function {, not required to be continuous, which 
has a singularity at the origin of index 
(a) 2; 
(b) n, where n is a natural number. 

3. Let the closed convex region R in the x, y-plane be bounded by a closed 
convex curve C with continuously turning tangent. Let 

~ = {(x, y), 7) = g(x, y) 

be a continuously differentiable mapping of R into itself. Prove that the 
mapping has at least one "fixed point" in R, that is, that there exists a 
point (x, y) in R such that 

x = {(x, y), y = g(x, y). 

The analogous fixed point theorem in n dimensions is due to Brouwer. 
[Hint. Consider the field of vectors with components u = {(x, y) - x, 
v = g(x, y) - y.] 
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A.3 Singular Points of Plane Curves 

On p. 236 we saw that a curve f(x, y) = ° in general has a singularity 
at a point x = Xo, y = yo such that the three equations 

f(xo, yo) = 0, fixo, yo) = 0, f7l(xo, yo) = ° 
hold. In order to study these singular points systematically, we as­
sume that in the neighbourhood of (xo, Yo) the function f(x, y) has 
continuous derivatives up to the second order and that at that point 
the second derivatives do not all vanish. By expanding in a Taylor 
series up to terms of second order, we obtain the equation of the 
curve in the form 

2f(x, y) = (x - xo)2fzz(xo, yo) + 2(x - xo)(y - yo)fzY(xo, Yo) 

+ (y - yo)2f7lY(xo, yo) + &p2 = 0, 

where we have put p2 = (x - XO)2 + (y - YO)2 and & tends to ° with p. 
Using a parameter t, we can write the equation of the general 

straight line through the point (xo, yo) in the form 

x-xo=at, y-yo=bt, 

where a and b are two arbitrary constants that we may suppose to be 
so chosen that a2 + b2 = 1. To determine the point of intersection of 
this line with the curve f(x, y) = 0, we substitute these expressions in 
the above expansion for f(x, y). For the point of intersection, we thus 
obtain the equation 

A first solution is t = 0, that is, the point (xo, yo) itself, as is obvious. 
However, it is noteworthy that the left-hand side of the equation is 
divisible by t2, so that t = ° is a double root of the equation. For this 
reason the singular points are also sometimes called double points 
of the curve. If we remove the factor t2, we are left with the equation 

We now inquire whether it is possible for the line to intersect the 
curve in another point that tends to (xo, Yo) as the line tends to some 
particular limiting position. Such a limiting position of a secant we 
of course call a tangent. To discuss this, we observe that as a point 
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tends to (Xo, yo) the quantity t tends to 0, and therefore, e also tends 
to o. If the equation above is still to be satisfied, the expression 
a2{xx + 2ab{xy + b2{yy must also tend to 0, that is, for the limiting 
position of the line, we must have 

a2{xx + 2ab{xy + b2{yy = O. 

This equation gives us a quadratic condition determining the ratio 
alb, which fixes the slope of a tangent. 

If the discriminant of the equation is negative, that is, if 

{xx{yy - {xi < 0, 

we obtain two distinct real tangents. The curve has a double point, 
or node, like that exhibited by the lemniscate (x2 + y2)2 - (x2 - y2) = 
o at the origin or by the strophoid(x2 + y2) (x - 2a) + a2x = 0 at the 
point Xo = a, yo = o. 

If the discriminant vanishes, that is, if 

we obtain two coincident tangents; it is then possible that two 
branches of the curve touch one another or that the curve has a 
CUSp.l 

Finally, if 

there is no (real) tangent at all. This occurs for example in the case of 
the so-called isolated points of an algebraic curve. These are points at 
which the equation of the curve is satisfied but in whose neighborhood 
no other point of the curve lies. 

The curve (x2 - a2)2 + (y2 - b2)2 = a4 + b4 exemplifies this. The 
values x = 0, y = 0 satisfy the equation, but for all other values in 
the region I x I < a,J2, I y I < b,J2 the left-hand side is less than the 
right. 

We have omitted the case in which all the derivatives of the second 
order vanish. This case leads to involved considerations and we shall 
not investigate it. Through such a point, several branches of the curve 
may pass, or singularities of other types may occur. 

lIn this case, the curve need not have a singularity at all; for example, f(x, y) = 
(x - y)2 at the origin. 
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Finally, we shall briefly mention the connection between these 
matters and the theory of maxima and minima. Because the first 
derivatives vanish, the equation of the tangent plane to the surface 
z = f(x, y) at a stationary point (xo, YO) is simply 

z - f(xo, Yo) = o. 

The equation 

f(x, y) - f(xo, yo) = 0 

therefore gives us the projection on the x,y-plane of the curve of 
intersection of the tangent plane with the surface, and we see that the 
point (xo, yo) is a singular point of this curve. If this is an isolated 
point, in a certain neighborhood the tangent plane has no other point 
in common with the surface, and the function f(x, y) has a maximum 
or a minimum at the point (xo, yo) (cf. p. 349). If, however, the singular 
point is a multiple point, the tangent plane cuts the surface in a curve 
with two branches, and (xo, Yo) is a saddle point. These remarks lead 
us precisely to the sufficient conditions that we found earlier in 
Section A.I. 

Exercises A.a 
1. Find the singular points of the following curves and discuss their 

nature: 

(a) (x2 + y2)2 - 2c2(X2 - y2) = 0, c =1= 0 

(b) X2 + y2 - 2x3 - 2y 3 + 2x2y2 = 0 

(c) X4 + y4 - 2(x - y)2 = 0 

(d) x 5 - X4 + 2x2y - y2 = O. 

A.4 Singular Points of Surfaces 

In a similar way we can discuss a singular point of a surface 
f(x, y, z) = 0, that is, a point for which 

f = 0, fx = fy = fz = o. 

Without loss of generality we may take the point as the origin O. If 
we write 

fxx = n, fyy =~, fzz = y, fxy = A., fyz =~, fxz = v 
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for the values at this point, we obtain the equation 

ax2 + ~y2 + YZ2 + 2A.xy + 21lYz + 2vxz = 0 

for a point (x, y, z) that lies on a tangent to the surface at O. 
This equation represents a quadratic cone touching the surface at 

the singular point (instead of the tangent plane at an ordinary point 
of the surface) if we assume that not all of the quantities a, ~, . . ., v 
vanish and that the above equation has real solutions other than 
x = y = z = o. 

Exercises A.4 

1. Using the results of Exercise 6 of A.I examine the behavior of a surface 
in a neighborhood of a singular point. 

A.5 Connection Between Euler's and Lagrange's 
Representations of the Motion of a Fluid 

Let (a, b, c) be the coordinates of a particle at the time t = 0 in a 
moving continuum (liquid or gas). The motion can then be represented 
by the three functions 

x = x(a, b, c, t), 

Y = y(a, b, c, t), 

z = z(a, b, c, t), 

or in terms of a position vector X = X(a, b, c, t). Velocity and acceler­
ation are given by the derivatives with respect to the time t. Thus, 
the velocity vector is i with components X, y, Z, and the acceleration 
vector is X with components X, y, Z, all of which appear as functions 
of the initial position (a, b, c) and the parameter t. For each value of t 
we have a transformation of the coordinates (a, b, c) belonging to the 
different points of the moving continuum into the coordinates (x, y, z) 
at the time t. This is the so-called Lagrange representation of the 
motion. Another representation introduced by Euler is based upon the 
knowledge of three functions 

u(x, y, z, t), v(x, y, z, t), w(x, y, z, t) 

representing the components X, y, Z of the velocity i of the motion 
at the point (x, y, z) at the time t. 

In order to pass from the first representation to the second we have 
to use the first representation to calculate a, b, c as functions of x, y, 
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z, and t and to substitute these expressions in the expressions for 
x(a, b, c, t), j(a, b, c, t), i(a, b, c, t): 

u(x, y, z, t) = x(a(x, y, z, t), b(x, y, z, t), c(x, y, z, t), t), . 

We then get the components of the acceleration from 

x(a, b, c, t) = u(x(a, b, c, t), y(a, b, c, t), z(a, b, c, t), t), . 

by differentiation with respect to t for fixed a, b, c: 

or 

x = uxx + Uyj + uzi + Ut, . . . 

x = UxU + UyV + uzw + Ut, 

y = VxU + VyV + vzw + Vt, 

z = WxU + WyV + WzW + Wt. 

In the mechanics of a continuum, the following equation con­
necting Euler's and Lagrange's representations is fundamental: 

where 

d. . z) 
IV X = Ux + Vy + Wz = D' 

D( ) d(x, y, z) 
x,y, z, t = d(a, b, c) 

is the Jacobian characterizing the transformation. 
The reader may complete the proof of this and the corresponding 

theorem in two dimensions by using the various rules for the differ­
entiation of implicit functions (see p. 252). 

Exercises A.S 

1. What is the physical interpretation of the relations Ut = Vt = Wt = O. 
2. Interpret the relations 

x = UxU + UyV + UzW + Ut, 

i = vxu + VyV + vzw + Vt, 

z = wxu + WyV + wzw + Wt 

physically; rewrite these relations using vector notation. 
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A.6 Tangential Representation of a Closed Curve and the 
Isoperimetric Inequality 

A family of straight lines with parameter a may be given by 

(83) x cos a + y sin a - pea) = 0,· • • 

where pea) denotes a function that is twice continuously differenti­
able and periodic of period 21t (here p represents the distance of the 
line of the family with normal direction a from the origin). The en­
velope C of these lines is a closed curve satisfying (83) and the further 
equation 

- xsina + ycosa - p'(a) = O. 

Hence, 

x = p cos a - p' sin a 
(84) 

y=psina+p'cosa 

is the parametric representation of C (a being the parameter). Formula 
(83) gives the equation of the tangents of C and is referred to as the 
tangential equationl of C, and pea) as the support {unction of C. 

Since 

x' = - (p + p") sin a, y' = (p + p")cos a, 

we at once have the following expressions for the length L and area 
AofC: 

{h {h {h 
L = Jo ';X'2 + y'2 da = Jo (p + p")da = Jo p da 

lih lih lih A = - (xy' - yx')da = - (p + p")p da = - (P2 - p'2)da, 
2 0 2 0 2 0 

since p'(a) is also a function of period 21t.2 

IThe representation of C in the form (84) is valid for any closed convex curve whose 
curvature is finite and positive, and varies continuously along C. 
2Since p(a) + c is obviously the support function of the parallel curve at a distance 
c from C, the formulae for the area and the length of a parallel curve (cf. Volume I, 
p. 437, Exercise 7, and its solution in A. Blank: Problems in Calculus and Analysis, 
p. 188) are easily derived from these expressions. 
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From this we deduce the isoperimetric inequality 

£2 ~ 41tA, 

where the equality sign holds for the circle only. This may also be 
expressed by the statement: Among all closed curves of given length 
the circle has the greatest area. 

For the proof we make use of the Fourier expansion of p( a) (Volume 
I, p. 594), 

ao 00 

p(a) = 2 + ~ (av cos va + bv sin va); 

then 

00 

p'(a) = 2:: v(bv cos va - av sin va), 
V-I 

so that (using the orthogonality relations of Volume I, p. 593) we have 

L = 1tao,. 

A = - _0 - 2:: (V2 - 1)(av2 + bv2) • 1t(a 2 00 ) 

2 2 v=2 

Thus, 

in particular, A = L2/41t only if av = bv = 0 for v ~ 2; that is, p(a) = 
ao/2 + al cos a + bl sin a. The latter equation defines a cirlce, as is 
easily proved from (84). 

Exercises A.6 

1. Find the equations of the envelopes, their lengths, and contained areas, 
for each of the following families of straight lines: 

(a) (x + 2) cos at + y sin at + 2 = 0 

(b) x cos at + y sin at + ! sin 2at = o. 
2. Compare the formulae for area and length. Can there exist curves of 

arbitrarily large length enclosing arbitrarily small area? 
3. Can every closed curve be represented as the envelope of lines (83)? 



CHAPTER 

4 

Multiple Integrals 

Differentiation and operations with derivatives for functions of 
several variables are directly reducible to their anologues for func­
tions of one variable. Integration and its relation to differentiation 
are more involved, since the concept of integral can be generalized 
for functions of several variables in a variety of ways. Thus, for a 
function {(x, y, z) of three independent variables, we have to consider 
integrals over surfaces and lines, as well as integrals over regions of 
space. Nonetheless, all questions of integration will be related to the 
original concept of the integral of a function of a single independent 
variable. 

For simplicity we shall work mainly in the plane, (i.e., with two 
independent variables). However, all arguments apply equally well to 
higher dimensions with mere changes of terminology ("area" by 
"volume," "square" by "cube," etc.). 

4.1 Area in the Plane 

a. Definition of the J ordan Measure of Area 

In Volume I we expressed the area of a region in the x, y-plane by 
integrals of functions of a single variable. The basic idea (which led 
us to the notion of integral in the first place) was to approximate the 
region by simplet regions consisting of a finite number of rectangles. 
For a more systematic development of areas that immediately carries 
over to volumes in three or more dimensions, it is desirable to give a 
direct definition that is not tied to the idea of integration of functions 
of one variable and corresponds more closely to the intuitive notion 

367 
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of the area of a region as the "number of square units" contained in 
the region. At the same time, this new and more natural definition is 
more general and avoids all extraneous discussion of the regularity 
of the boundary, which becomes inevitable whenever we try to reduce 
areas to single integrals. As usual, we postpone rigorous existence 
proofs to the Appendix of this chapter. Those proofs only present 
systematically what should already be more or less obvious to the 
reader from the informal discussions of ideas and purposes presented 
in the main text. 

In defining areas, we accept the intuitive idea that the area A(8) 
of a set 8 should be a nonnegative number attached to 8 that has the 
following properties: 

1. If 8 is a square of side k then A = k2• 

2. Additivity: The area of the whole is the sum of the areas of its 
parts. More precisely, if S consists of nonoverlapping1 sets 81, ... , 
8N of areas A(81) ... , A(8N), respectively, then the area of 8 is 

A(8) = A(81) + ... + A(8N) 

On the basis of these simple requirements, we shall be able to assign 
a value A(8) to most of the two-dimensional sets A encountered in 
practice although not to all imaginable sets 8 in the plane. 

To arrive at a uniquely determined value A(8) for a bounded set 8, 
we use very special divisions of the plane into squares; it will be 
shown subsequently that every other way of dividing the plane into 
squares (or rectangles) will lead to the same area. Congruent squares 
provide the easiest way of covering the plane without gaps or .overlap. 
We use the grid attached to our coordinate system provided by the 
linesx = 0, ±1, ±2, ±3, ... andy = 0, ±1, ±2, ... , which divide the 
whole plane into closed squares of side 1. We denote by At(8) the 
number of squares having points in common with 8 and by A;(S) the 
number of those completely contained in 8. We next divide each 
square into four equal squares of side t and area t and denote by 
A;(8) one-fourth of the number ofthose subsquares having points with 
8 and by A~(8) one-fourth of the number of those completely contained 
in 8. Since each unit square completely contained in 8 gives rise to 
four subsquares completely contained in 8we have A;(8) ~ A~(S), and 
similarly At(8) ~ A;(S). We next divide each square of sidet further 
into 4 squares of side t. One-sixteenth of those squares having points 

IThe sets are nonoverlapping if every interior point of one of the sets is exterior to all 
the other sets. We call the sets disjoint if every point of one of the sets belongs to no 
others. 
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in common with S and one sixteenth of those contained in S will be 
denoted, respectively, by A~(S) and A;(S). Proceeding in this fashion, 
we associate values A~(S) and A~(S) with a division of the plane into 
squares of side 2-n(see Fig. 4.1). Itisclearthat thevaluesA~(S) forma 
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Figure 4.1 Interior and exterior approximations to the 
area of the unit disk X2 + y2 ~ 1, for n = 0, 1,2, where 
A; = 0, A; = 1, A; = 2, A; = 4t A; = 6, A: = 12. 

monotone decreasing and bounded sequence that converges toward 
a value A \S), while the A~(S) increase monotonically and converge 
towards a value A -(S). The value A -(S) represents the inner area, the 
closest we can approximate the area of S from below by congruent 
squares contained in S; the outer area A +(S) represents the best upper 
bound obtainable by covering S by congruent squares. If both values 
agree, we say that S is Jordan-measurable and call the common value 
A-(S) = A+(S) the content, or the Jordan-measure, of S. We shall use 
the simpler term area A(S) for the content of S, and shall say "8 has 
an area" instead of using the clumsier phrase "8 is Jordan-measur­
able" to denote the fact that A -(S) = A \8), (which is true for almost 
all sets occurring in practice). 

The difference A~(S) - A~(S) represents the total area of the 
squares in the nth subdivision that have points in common with S 
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without lying completely in S. All these squares contain boundary 
points of S, so that 

A~(S) - A~(S) ~ A!(aS) 

where as is the boundary of S. If the boundary of S has the area 0, we 
find that 

A +(S) - A -(S) = lim [A~(S) - A~(S)] = lim A~(aS) = 0, 
n ..... oo n ..... oo 

that is, that S has an area. Thus, S has an area if its boundary as has 
area O. (This condition is also necessary; see p. 518). 

In order to verify that a given set S has an area or that as has area 
o we would have to show that the total area of the squares in the nth 
subdivision that have points in common with as is arbitrarily small 
for n sufficiently large. Actually, it is not necessary to use squares of 
side 2-''' for this analysis. A set S certainly has an area if for every e > 0 
we can find a finite number of sets SI, . . ., SN that cover the boundary 
as of S and have total area < e. Then, for any n, obviously 

A~(aS) ~ A!(SI) + ... A~(SN), 
since any square that has points in common with as has points in 
common with at least one of the sets SI, ... , SN. Here, for n ~ 00, 

the right-hand side tends to the sum of the areas of the S" which is less 
than e; thus A+(aS) ~ e; since e is an arbitrary positive number, 
we conclude that A +(as) = o. 

This criterion is sufficient to establish that most of the common 
regions S encountered in analysis have area. In particular, it is suffi­
cient to know that the boundary of S consists of a finite number of arcs 
each of which has a continuous nonparametric representationy = f(x) 
or x = g(y) with for g, respectively, continuous in a finite closed in­
tervaL The uniform continuity of continuous functions in bounded 
closed intervals immediately permits us to show that these arcs can be 
covered by a finite number of rectangles of arbitrarily small total 
area.1 

b. A Set That Does Not Have an Area 

An example of a set that does not have an area in our sense (or is 
not "Jordan-measurable") is the set S of "rational" points in the 
unit-square, that is, the set of points whose coordinates x, yare both 

lWe leave as an exercise for the reader to prove that a rectangle with sides parallel 
to the axes has an area (as defined here) equal to the product of two adjacent sides. 
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rational numbers between 0 and 1. It is evident from the density 
property of rational and irrational numbers that 

A~ = 1, A~ = 0 

for all n, so that S has outer area 1 and inner area O. This agrees with 
the fact that the boundary as of S consists of the whole closed unit­
square and has area 1. If we cover S in any way by a finite number of 
closed sets Sl, ... , SN with areas A(Sl), ... , A(SN), respectively, 
then 

since the Sj necessarily also cover the boundary as of S (see Exercise 
6). Paradoxically, however, it is possible to cover S by an infinite 
number of closed sets Sj of arbitrarily small total area. We only have 
to use the fact that the pairs (x, y) of rational numbers form a de­
numerable set (see Volume I, p. 98).1 Thus, the points of S can be 
arranged into an infinite sequence (Xl, Yl), (X2, Y2), (X3, Y3), . . .. Let 8 
be an arbitrary positive number. Denote for each integer m > 0 by 
8",. a square of area 82--m and center (xm, Ym). Then the 8",. cover the 
whole set S, while their total area is given by 

8 8 8 8 -+-+-+-+···=8 2 4 8 16 . 

Thus, coverings by infinitely many unequal squares can lead to a 
substantial lowering of the upper bound A +(S) for the "area" of S, 
reflecting more closely the "rarity" of the rational points among the 
real ones. One of the starting points in the refined theory of measuring 
sets, originated by Lebesgue, is to define the outer area of a set as the 
greatest lower bound of the sum of areas of any finite or infinite set of 
squares covering it. For our set S this outer Lebesgue area has the 
value 0, the same as the inner area of S. Incidentally, for a closed and 
bounded set S the two definitions of outer area agree, since by the 

lWe can arrange them, for example, in groups, according to the size of the larger of 
the two denominators; each group has only a finite number of elements: 

@,~; a,~, a,~, a,m, @,~, @,m, 
(~, ~), (~,~) , (~,~); (~,~) , (~,~),.. .. 
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Heine-Borel theorem (cf. p. 109) any infinite covering of 8 already 
contains a finite covering. 

c. Rules for Operations with Areas 

In most cases that interest us we can establish the existence of an 
area of a set 8 by verifying that 8 is bounded by a finite number of arcs 
with continuous nonparametric representation. For that reason one 
might be tempted to exclude all other regions with more complicated 
boundaries from consideration. It turns out however that such a re­
striction not only results in a loss of generality but actually compli­
cates matters, since we have to make sure that the regions resulting 
from the operations of set union and intersection again have simple 
boundaries. The advantage of our general definition of area as content 
is that it is based on the primitive notion of counting of squares; 
nothing is postulated about the boundary at all beyond the require­
ment that it can be covered by a finite number of squares of arbitrarily 
small total area. The boundary of a Jordan-measurable set can be 
very complicated in detail, consisting perhaps of infinitely many 
closed curves. These complications will have no effect in the theory of 
integration, as long as we can show that the total contribution arising 
from the boundary is negligible. 

For work with areas, the operations of dividing a set into subsets 
and of combining sets into larger ones are basic. The important point 
is that applying these operations we stay within the class of sets that 
have areas. We have the fundamental theorem that the union 8 U T 
and the intersection 8 n T of two Jordan-measurable sets 8 and Tare 
again Jordan-measurable. 1 This follows immediately from the fact that 
the boundaries of 8 U T and of S n T consist of boundary points of 
S or T and, hence, have again area 0 (see p. 521). 

For the important case of two nonoverlap ping sets 8, T-that is, 
sets such that no interior point of one belongs to the other set or to 
its boundary-the law of additivity for areas holds: 

A(8 U T) = A(8) + A(T). 

More generally, for any finite number of Jordan-measurable sets 81, 
82,. ., 8N, no two of which overlap, we have the relation 

(1) 

lWe remind the reader that the union of sets consists of the points belonging to at 
least one of the sets and the intersection of those points belonging to all. 



Multiple Integrals 379 

The proof is trivial on the basis of the inequalities 

Here the first inequality follows simply from the fact that any square 
that has points in common with the union of the S, must have points 
in common with at least one of the Sf. The second one follows from 
the fact that any square contained in one set Sf cannot be contained 
in any other Sk(since the two are nonoverlapping) but is contained in 
their union. For n -+ 00, we conclude that 

A+((5 S,)~ t A+(Sf) 
1-1 1-1 

A -((5 S,) ~ f:. A -(S,). 
I-I I-I 

From the assumption that the Sf have areas, that is, that 

and that the inner area of the union cannot exceed the outer area, 
the equation (1) follows. 

It is now easy to verify that "areas" as defined here can be ex­
pressed in terms of integrals in the specific instances considered in 
Volume I. For example, let the set S consist of the points "below" the 
graph of a continuous positive function y = f(x) in an interval a ~ x 
~ b. that is, the set of points (x, y) for which 

a ~ x ~ b, 0 ~ y ~ f(x). 

Consider any subdivision of the interval [a, b] into N subintervals of 
length ~x" and let m, be the minimum and M, the maximum of f(x) 
in the ith subinterval. The rectangles with base ~x, and height m, 
are clearly nonoverlapping and their union is contained in S, so that 

Similarly, 

N 
L me ~Xf ~ A(s). 
i=1 

N 
A(S) ~ I: M, ~Xf • 

• -1 
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For continuous I, the lower and upper sums both tend to the integral 
of I and we arrive at the classical expression 

11 
A(S) = f I(x) dx 

II 

(2) 

for the area of S. 

Exercises 4.1 

1. Show that if Sand T have area and if S is contained in T, then A(S) ~ 
A(T). 

2. Under the hypothesis of Exercise 1, show that T - S has area, where 
T - S is the set of points of T that are not contained in S. 

3. Show that if Sand T are bounded, 

(a) A+(S U T) + A+(S n T) ~ A+(S) + A+(T) 

(b) A-(S U T) + A-(S n T) ~ A-(8) + A-(T) 

4. Let Sand T be any disjoint sets whose union has area. Show that 
A +(8) + A -(T) = A(S U T). 

5. (a) Show that if a set S has area in one coordinate system, it has area in 
any other coordinate system obtained by rotation and translation of 
axes. 

(b) Show that the area of S is the same in both coordinate systems. 
6. Let S be covered by a finite collection SI, ; . ., SN of closed sets. Show 

that the collection also covers the boundary as of S. 
7. Does the set S of points (lIp, l/q), where p and q are natural numbers, 

have an area? 

4.2 Double Integrals 

a. The Double Integral as a Yoiume 

Everything said about areas in the preceding paragraphs carries 
over immediately to volumes in three or higher dimensions. In de­
fining the volume V(S) of a bounded set S in x, y, z-space, we need 
only use subdivisions of space into cubes of side 2-71• The set Swill 
have a volume when its boundary can be covered by a finite number 
of these cubes of arbitrarily small total volume. This is the case for 
all bounded sets S whose boundary consists of a finite number of" 
surfaces each of which has a continuous nonparametric represen­
tation z = I(x, y) or y = g(x, z) or x = h(y, z) on a closed planar set. 

The attempt to represent the volume analytically leads directly to 
the notion of multiple integral, which has a great variety of ap­
plications. 
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Let R, a Jordan-measurable closed and bounded set in the x, y­
plane be the domain of a positive-valued function z = f(x, y). We wish 
to find the volume "below" the surface z = f(x, y), that is, the volume 
V(S) of the set S of points (x, y, z) for which 

(x,y) E R, o ~ z ~ f(x, y). 

For this purpose, we divide R into nonoverlapping closed Jordan­
measurable sets R1, . . ., RN. Let ~ be the minimum, and M, the 
maximum, of f for (x, y) in R,. It is easily seen that the cylinder with 
base Rt and height ~ has the volume ~A(Rf), where A(R,) is the 
area of Rt (Fig. 4.2).1 These cylinders do not overlap. Similarly, the 

Mi-mi 

z = f(x,y) 

mi 

s 

z=o 

Figure 4.2 

cylinders with base R, and height M, have volume M,A(R,) and do not 
overlap. It follows that 

(3a) 

lWhen we divide space into cubes of side 2-11, the cubes having points in common with 
the cylinder can be arranged into cylindrical "columns" whose cross section is a 
square having a point in common with R, and whose height differs by less than 2-11 

from Tni. 
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The sums appearing in this inequality we call, respectively, the lower 
and upper sums. 

We now make our subdivision finer and finer, in the sense that the 
largest diameter of any & occuring in the subdivision tends to zero.l 
The continuous function f(x, y) is uniformly continuous in the com­
pact set R, so that the maximum difference M, - me tends to zero with 
the maximum diameter of the sets R, in the subdivision. The difference 
between the upper and lower sums also tends to zero, since 

t. M,A(R,) - ~l meA(R,) 

= tl (M, - me)A(R,) ~ [M~(M' - me)] tl A(RJ:) 

= [Max(M, - me)]A(R). 
i 

It follows from (3a) that the upper and lower sums both converge to 
the limit V(S) as we refine our subdivision indefinitely. We can obvi­
ously obtain the same limiting value if instead of me or M, we take any 
number between me and M" such as f(Xc, Ye), the value of the function 
at a point (Xc, y,) of the set Re. We shall call the limit V(S) the double 
integral of f over the set R and write 

(3b) V(S) = .JL f(x, y)dR. 

b. The General Analytic Concept of the Integral 

The concept of double integral as volume suggested by geometry 
must now be studied analytically and be made more precise without 
reference to intuition. We consider a closed and bounded Jordan­
measurable set R with area A(R) = llR, and a function f(x, y) that is 
continuous everywhere in R (including the boundary). As before, we 
subdivide R into N nonoverlapping Jordan-measurable subsets Rl, 
R2, . . ., RN with areas llRl, . . ., llRN. In R, we choose an arbitrary 
point (~',TJ'), where the function has the value fe = f(~',TJf) and we 
form the sum 

The fundamental existence theorem then states: 

IThe "diameter" of a closed set is the maximum distance of any two points in the set. 
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If the number N increases beyond all bounds and at the same time 
the greatest of the diameters of the subregions tends to zero, then V N 

tends to a limit V. This limit is independent of the particular nature of 
the subdivision of the regions R and of the choice of the point (~i, 11i) 
in Ri. We call the limit V the (double) integral of the function f(x,y) 
over the region R and denote it by 

IL f(x, y)dR.l 

COROLLARY. We obtain the same limit if we take the sum only over 
those subregions Rt that lie entirely in the interior of R, thatis, which 
have no points in common with the boundary of R.2 

This existence theorem for the integral of a continuous function 
must be proved in a purely analytical way. The proof, which is very 
similar to the corresponding proof for one variable, is given in the 
appendix to this chapter (p. 526). 

We now illustrate this concept of an integral by considering some 
special subdivisions. The simplest case is that in which R is a rec­
tangle a :;£ x :;£ b, c:;£ y :;£ d and the subregions R, are also rec­
tangles (formed by subdividing the x-interval into n equal parts and 
the y-interval into m equal parts) of lengths 

b-a h=-­
n 

and 
d-c k--­- m . 

lWe can refine this theorem further in a way useful for many purposes. In the sub­
division into N subregions it is not necessary to choose a value that is actually as­
sumed by the function f(x, y) at a definite point (1;1, 1'\1) of the corresponding subre­
gion; it is sufficient to choose values that differ from the values of the function 
f(l;l, 1'\1) by quantities that tend uniformly to 0 as the subdivision is made finer. In 
other words, instead of the values of the function f(l;l, 1'\1) we can consider the 
quantities 

fi = f(l;l, 1'\1) + el,N 

where lei,NI ~ eN, lim eN = O. This theorem is almost trivial, for, since the numbers 
N-oo 

el,N tend uniformly to 0, the absolute value of the difference between the two sums 

N N 
'L,f, ARt and 'L, (fl + el,N)ARt 
1 1 

is less than eN 'L, AR" and can be made as small as we please if we take the number 
N sufficiently large. For example, if f(x, y) = P(x, y) Q(x, y), we may take fl = P,QI, 
where PI and Q, are the maxima of P and Q in RI, which are in general not assumed 
at the same point. 
2The corollary follows from the fact that not only the boundary iJR of R but also 
the set of all points sufficiently close to iJR can be covered by squares of arbitrarily 
small total area. 
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The points of subdivision we call xo = a, Xl, X2, • • ., Xn = band 
yo = C, YI, Y2, . . ., Ym = d. They correspond to parallels to the y-axis 
and x-axis, respectively. We then have N = nm. The subregions are 
all rectangles with area A(R,) = AR, = hk = Ax Ay, where h = Ax, 
k = fly. For the point (~" '11') we take any point in the corresponding 
rectangle R" and then form the sum 

for all the rectangles of the subdivision. 
If we now let n and m simultaneously increase beyond all bounds, 

the sum tends to the integral of the function f over the rectangle R. 
These rectangles can also be characterized by two suffixes Il and v, 

corresponding to the coordinates x = a + vh and y = C + Ilk of the 
lower left-hand comer of the rectangle in question. Here v assumes 
integral values from 0 to (n - 1) and Il from 0 to (m - 1). With this 
identification of the rectangles by the suffixes v and Il, we may ap­
propriately write the sum as a double suml 

(3c) 

Even when R is not a rectangle, it is often convenient to subdivide 
the region into rectangular subregions R,. To do this we superimpose 
on the plane the rectangular net formed by the lines 

x= vh 

y= Ilk 

(v = 0, ± 1, ± 2, ... ) 

(Il = 0, ± 1, ± 2, . . .), 

where h and k are numbers chosen arbitrarily. We now consider all 
those rectangles of the division that lie entirely within R. These rec­
tangles we call Ri. Of course, they do not completely fill the region; 
on the contrary, in addition to these rectangles R also contains 
certain regions R, adjacent to the boundary that are bounded partly 
by lines of the net and partly by portions of the boundary of R. By the 
corollary on p. 377 we can calculate the integral of the function f over 
the region R by summing over the interior rectangles only and then 
passing to the limit. 

Another type of subdivision frequently applied is the subdivision 
by a polar coordinate net (Fig. 4.3). We subdivide the entire angle 21t 

lIfwe are to write the sum in this way, we must suppose that the points (;,,111) are 
chosen so as to lie in vertical or horizontal straight lines. 
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Figure 4.3 Subdivision by polar coordinate nets. 

into n parts of magnitude i\9 = 2rc/n = h, and we also choose a 
second quantity k = i\r. We now draw the lines 9 = vh(v = 0, 1,2, 
. . ., n - 1) through the origin and also the concentric circles rll = ~k 
(~ = 1, 2, . . .). Those that lie entirely in the interior of R, we denote 
by Ri, and their areas, by i\R1.. We can then regard the integral of the 
function {(x, y) over the region R as the limit of the sum 

where (~1., '111.) is a point chosen arbitrarily in R i • The sum is taken 
over all the subregions Ri in the interior of R, and the passage to the 
limit consists in letting h and k tend simultaneously to zero. 

By elementary geometry the area i\R1. is given by the equation 

if we assume that Ri lies in the ring bounded by the circles with radii 
~k and (~ + l)k. 

c. Examples 

The simplest example is the function {(x, y) = 1. Here the limit of 
the sum is obviously independent of the mode of subdivision and is 
always equal to the area of the region R. Consequently, the integral 
of the function {(x, y) = 1 over the region is also equal to this area. 
This might have been expected, for the integral is the volume of the 
cylinder of unit altitude with the region R as base. 

As a further example, we consider the integral of the function 
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{(x, y) = x over the square 0 ~ x ~ 1, 0 ~ y ~ 1. The intuitive inter­
pretation of the integral as a volume shows that the value of our 
integral must be t. We can verify this by means of the analytical 
definition of the integral. We subdivide the rectangle into squares of 
side h = lin, and for the point (~f, 11') we choose the lower left-hand 
corner of each small square. Then each square in the vertical column 
whose left-hand side has the abscissa vh contributes the amount vh3 

to the sum. This expression occurs n times. Thus, the contribution of 
the whole column of squares amounts to nvh3 = vh2. We now form 
the sum from v = 0 to v = n - 1, to obtain 

I! vh2 = n(n - 1) h2 = 1: _ ~ 
v-o 2 2 2' 

The limit of this expression as h ~ 0 is t, as we stated. 
In a similar way we can integrate the product xy or, more generally, 

any function {(x, y) that can be represented as a product of a function 
of x and a function of y in the form {(x, y) = t)(x) 'I'(y), provided that the 
region of integration is a rectangle with sides parallel to the axes, 
say a ~ x ~ b, c ~ y ~ d. We use the same division of the rectangle 
as in (3c), and for the value of the function in each subrectangle we 
take the value of the function at the lower left-hand corner. The 
integral is then the limit of the sum 

11-1 m-l 
hk L: L: t)(vh)'I'(~k) 

v=O 1'=0 

which may be written as the product of two sums in the form 

From the definition of the ordinary integral, as h ~ 0 and k ~ 0 these 
factors tend to the integrals of the corresponding functions over the 
respective intervals from a to b and from c to d. We thus obtain the 
general rule that if a function {(x, y) can be represented as a product 
of two functions t)(x) and 'I'(Y), its double integral over a rectangle a ~ x 
~ b, c ~ y ~ d can be resolved into the product of two integrals: 

JL {(x, y) dx dy = Lb t)(x) dx • ili'l'(Y) dy. 

This rule and the summation rule (cf. (4b), p. 383) yield the integral of 
any polynomial over a rectangle with sides parallel to the axes. 

As a last example, we consider a case in which it is convenient to 
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use a subdivision by the polar coordinate net instead of a subdivision 
into rectangles. Let the region R be the circle with unit radius and 
center at the origin, given by x2 + y2 ;;;; 1, and let 

f(x, y) = .J1 - x2 - y2. 

The integral of f over R is merely the volume of a hemisphere of unit 
radius. 

We construct the polar coordinate net as before. The subregion 
lying between the circles with radii Til = Ilk and TIl+1 = (Il + l)k and 
between the lines 9 = vh and 9 = (v + l)h, where h = 21t/n yields the 
contribution 

where for the value of the function in the subregion R, we have taken 
the value that the function assumes on an intermediate circle with 
the radius Pil = (TIl+1 + TIl)/2. All subregions that lie in the same ring 
give the same contribution, and since there are n = 21t/h such regions 
the contribution of the whole ring is 

21t.J1 - PIl2 Pilk. 

The integral is therefore the limit of the sum 

As we already know, this sum tends to the single integral 

i l 21t 11 21t 21t r .J1 - T2 dr = - - .J(1 - r 2)3 = - . 
o 3 0 3 

We therefore obtain 

in agreement with the known formula for the volume of a sphere. 

d. Notation. Extensions. Fundame1flal Rules 

The rectangular subdivision of the region R is associated with the 
symbol for the double integral used since Leibnitz's time. Starting 
with the symbol 
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for the sum over the rectangles, we indicate the passage to the limit 
from the sum to the integral by replacing the double summation sign 
by a double integral sign and writing the symbol dx dy instead of the 
product of the quantities ax ay. Accordingly, the double integral is 
frequently written in the form 

J1 f (x, y) dx dy 

instead of the form 

J1 f(x,y)dR 

in which the area aR is replaced by the symbol dR. At this stage the 
symbol dx dy merely refers symbolically to the passage to the limit of 
the above sums of nm terms as n ~ 00 and m ~ 00. 

It is clear that in double integrals, just as in ordinary integrals of 
a single variable, the notation for the variables of integration is im­
material, so that we could equally well have written 

f1 f(u, v) du dv or 

In introducing the concept of integral, we saw that for a positive 
function f(x, y) the integral represents the volume under the surface 
z = f(x, y). In the analytical definition of integral, however, it is quite 
unnecessary that the function f(x, y) should be positive everywhere; 
it may be negative, or it may change sign, in which case the surface 
intersects the region R. Thus, in the general case the integral gives 
the volume in question with a definite sign, the sign being positive 
for surfaces or portions of surfaces that lie above the x, y-plane. If the 
whole surface consists of several such portions, the integral rep­
resents the sum of the corresponding volumes taken with their 
proper signs. In particular, a double integral may vanish, although the 
function under the integral sign does not vanish everywhere. 

For double integrals, as for single integrals, the following funda­
mental rules hold; their proofs are simple repetitions of those in 
Volume I (p. 138). If c is a constant, then 

(4a) J1 cf(x, y) dR = c J1 f(x,y) dR. 
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Furthermore, the integral of the sum of two functions is equal to the 
sum of their two integrals (linearity o{ the operation o{ integration): 

(4b) fL [{(x, y) + ~(x, y)] dR = ffR {(x, y) dR + fL ~(x, y) dR. 

Finally, if the region R consists of two subregions R' and R" that have 
at most portions of the boundary in common, then 

(4c) fL{(x,y)dR = ffR,f(X,y)dR + fL,,{(x,y)dR; 

that is, when regions are joined together the corresponding integrals 
are added (additivity of integrals). 

e. Integral Estimates and the Mean Value Theorem 

As for ordinary integrals, there are some very useful estimates for 
double integrals. Since the proofs are practically the same as those of 
Volume I (p, 138), we shall be content to merely state the facts. 

If {(x, y) ;;;; 0 in R, then 

(5a) fL{(x,y) dR;;;; 0; 

similarly, if {(x, y) ~ 0, 

(5b) fL {(x, y) dR ~ o. 

This leads to the following result: I{ the inequality 

(5c) {(x, y) ;;;; ~(x, y) 

holds everywhere in R, then 

(5d) IL{(x, y) dR ;;;; IL ~(x, y) dR. 

A direct application of this theorem gives the relations 

(5e) IL {(x, y) dR ~ IL If(x, y) I dR 

and 
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(5f) ILf(x,y)dR ~ - IL If(x,y)1 dR. 

We can also combine these two inequalities in a single formula: 

(5g) IILf(x,y)dRI ~IL If(x,y)1 dR. 

If m is the greatest lower bound and M the least upper bound of 
the function f(x, y) in R, then 

(6) mll.R ~ILf(x,y)dR ~ MIl.R, 

where Il.R is the area of the region R. The integral can then be ex­
pressed in the form 

(7a) IL f(x, y) dR = ~ Il.R, 

where ~ lies between m and M. The precise value of ~ cannot in gen­
eral be specified more exactly.1 

This form of the estimation formula we again call the mean value 
theorem of the integral calculus. 

Here again the following generalization holds: If p(x, y) is an ar­
bitrary positive continuous function in R, then 

(7b) ILp(x, y)f(x, y) dR = ~ ILp(x,y) dR, 

where ~ denotes a number between the greatest and least values of 
f that cannot be further specified. 

As before, these integral estimates show that the integral varies 
continuously with the function. More precisely, let f(x, y) and tfi(x, y) 
be two functions that in the whole region R satisfy the inequality 

If(x, y) - tfi(x, y) 1< E, 

where E is a fixed positive number. If Il.R is the area of R, then the in­
tegrals IIR f(x, y) dR and IIR tfi(x, y) dR differ by less than E Il.R, that 
is, by less than a number that tends to zero with E. 

In the same way, we see that the integral of a function varies con­
tinuously with the region. Suppose that two regions R' and R" are 

IJust as for integrals of continuous functions of one variable, the value J.1 is certainly 
assumed at some point of the set R by the function f(x, y) if R is connected and f is 
continuous. 
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obtained from one another by the addition or removal of portions 
whose total area is less than s, and let f(x, y) be a function continuous 
in both regions such that If(x, y) I < M, where M is a fixed number. 
The two integrals lIB' f(x, y) dR and lIB" f(x, y)dR then differ by less 
than Ms, that is, by less than a number that tends to zero with s. 
The proof of this fact follows at once from formula (4c) of p. 383. 

We can therefore calculate the integral over a region R as accurate­
ly as we please by taking it over a subregion of R whose total area 
differs from the area of R by a sufficiently small amount. For example, 
in the region R, we can construct a. polygon whose total area differs 
by as little as we please from the area of R. In particular, we may 
suppose this polygon to be bounded by lines parallel to the x- and y­
axes alternately, that is, to be pieced together out of rectangles with 
sides parallel to the axes. 

4.3 Integrals over Regions in Three and More Dimensions 

Every statement we have made for integrals over regions of the 
x, y-plane can be extended without further complication or introduc­
tion of new ideas to regions in three or more dimensions. For example, 
to treat the integral over a three-dimensional region R, we need only 
subdivide R (e.g, by means of a finite number of surfaces with con­
tinuous nonparametric representations) into closed nonoverlapping 
Jordan-measurable subregions RI, R2, . . ., RN that completely fill R. 
If f(x,y,z) is a function that is continuous in the closed region R 
and if (~" 11'1, ~,,) denotes an arbitrary point in the region R'I, we again 
form the sum 

in which !iR" denotes the volume of the region R". The sum is taken 
over all the regions R, or, if it is more convenient, only over those sub­
regions that do not adjoin the boundary of R. If we now let the number 
of subregions increase beyond all bounds in such a way that the diame­
ter of the largest of them tends to zero, we again find a limit in­
dependent of the particular mode of subdivision and of the choice of 
the intermediate points. This limit we call the integral of f(x, y, z) 
over the region R, and we denote it by 

(7c) fLf(x,y, z) dR. 

In particular, if we effect a subdivision of the region into rectangular 
regions with sides !ix, !iy, !iz, the volumes of the inner regions R, 
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will all have the same value ll.x ll.y ll.z. As on p. 382, we indicate the 
passage to the limit through the notation 

IIL{(x, y, z) dx dy dz. 

Apart from the necessary changes in notation, all the facts that we 
have mentioned for double integrals remain valid for triple integrals. 

For regions of more than three dimensions, once we have suitably 
defined the concept of volume for such regions, the multiple integral 
can be defined in exactly the same way. If we restrict ourselves to rec­
tangular subregions and define the volume of a rectangular region 

(i = 1, 2, . . ., n) 

as the product hlh2. . . hn, the definition of integral involves nothing 
new. We denote an integral over the n-dimensional region R by 

II· •• L {(Xl, X2, • • ., Xn) dXI dX2 ••• dXn. 

For more general regions and more general subdivisions we must rely 
on the abstract definition of volume given in the Appendix. 

In what follows, we confine ourselves to integrals in at most three 
dimensions. 

4.4 Space Differentiation. Mass and Density 

For functions of one variable, the integrand is the derivative of the 
integral. This fact represents the fundamental connection between dif­
ferential and integral calculus. For the multiple integrals of functions 
of several variables, the same connection exists; but here it is not so 
fundamental in character. 

We consider the multiple integral (domain integral) 

IIB {(x, y) dB or IJL {(x, y, z) dB 

of a continuous function of two or three variables over a region B 
that contains a fixed point P with coordinates (xo, Yo) or (xo, Yo, zo), 
respectively, and which has the content ll.B. Dividing this integral 
by the content ll.B, it follows from formula (7a) that the quotient is 
an intermediate value of the integrand, that is, a number between the 
greatest and the least values of the integrand in the region. If we let 
the diameter of the region B about the point P tend to zero, so that the 
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content I1B also tends to zero, this intermediate value of the func­
tion 1 must tend to its value at the point P. Thus, the passage to the 
limit yields the respective relations 

and 

(8) 

lim loIn rr l(x,y)dB = I(xo,yo) 
A8-0 DoD JJB 

.e,~ 11~ JJL f(x, y, z)dB = I(xo, Yo, zo). 

This limiting process, which parallels the process of differentiation 
for integrals with one independent variable, we call space differentia­
tion of the integral. We see, then, that space differentiation 01 a mul­
tiple integral gives the integrand. 

We can interpret the relation of integrand to integral in the case of 
several independent variables, by means of the physical concepts of 
density and total mass. We think. of a mass of a substance as distributed 
over a three-dimensioned region R in such a way that an arbitrarily 
small mass in contained in each sufficiently small subregion. In order 
to define the specific mass or density at a point P, we first consider a 
neighborhood B of the point P with content I1B and divide the total 
mass in this neighborhood by the content. The quotient we shall call 
the mean density or average density in this subregion. If we now let 
the diameter of B tend to zero, from the average density in the region 
B we obtain a limit called the density at the point P, provided always 
that such a limit exists independently of the choice of the sequence 
of regions. If we denote this density by Il(x, y, z) and assume that it is 
continuous, we see at once that the process described above yields the 
same value as the differentiation of the integral 

JJL Il(x,y, z) dV, 

taken over the whole region R. This integral taken over the whole re­
gion therefore represents the total mass of the substance of density Il 
in the regionl R. 

lWhat we have shown is only that the distribution given by the multiple integral has 
the same space·derivative as the mass·distribution originally given. It remains to be 
proved that this implies that the two distributions are actually identical; in other 
words, thaHhe statement "space differentiation gives the density Ji" can be satisfied 
by only one distribution of mass. The proof, although not difficult, is passed over 
here. We have to assume that mass is additive. that is, that for a region R consisting 
of two nonoverlapping regions R' and If'. the mass of R is the sum of the masses of 
R' and If'. 
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From the physical point of view such a representation of the mass 
of a substance is naturally an idealization. That this idealization is 
reasonable, that is, that it approximates to the actual situation with 
sufficient accuracy, is one of the assumptions of physics. 

These ideas, moreover, retain their mathematical significance even 
when Jl is not positive everywhere. Negative densities and masses 
may also have a physical interpretation, for example, in the study of 
the distribution of electric charge. 

4.5 Reduction of the Multiple Integral to Repeated Single 
Integrals 

The fact that every multiple integral can be reduced to single in­
tegrals is of fundamental importance in the evaluation of multiple 
integrals. It enables us to apply all the methods that we have previous­
ly developed for finding indefinite integrals to the evaluation of mul­
tiple integrals. 

a. Integrals over a Rectangle 

First we take the region R as a rectangle a ~ x ~ b, a ~ y ~ ~ 
in the x, y-plane and consider a continuous function f(x, y) in R. We 
then have the theorem: 

To find the double integral of f(x, y) over the region R, We first regard 
y as constant and integrate f(x, y) with respect to x between the limits 
a and b. This integral 

~(y) = i b f(x, y) dx 

is a function of the parameter y, which we integrate between the limits 
a and ~ to obtain the double integral. In symbols, 

ILf(x,y) dR = ill ~(y) dy, ~(y) = I: f(x, y) dx, 

or more briefly, 

(9a) IIR f(x, y) dR = ill dy i b f(x, y) dx. 

In order to prove this statement, we return to the definition of the 
multiple integral (3c), Taking 



we have 

b-a h=-­
m 

and 
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~-a k=-­
n ' 

JL {(x, y) dR = !i~ vt ~l f(a + ~h, a + vk) hk. 
n-~ 

Here the limit is to be understood to mean that the sum on the right­
hand side differs from the value of the integral by less than an arbi­
trarily small preassigned positive quantity E, provided only that the 
numbers m and n are both larger than a bound N depending only on 
E. By introducing the expressionl 

m 
Wv = 'LJ(a + ~h, a + vk) h 

11~1 

we can write this sum in the form 

n 
L: Wvk. 
v~l 

If we now choose an arbitrary fixed value for E and for n choose a fixed 
number greater than N, we know that 

IJL{(x,y) dR - k tl Wv 1< E 
no matter what the number m is, provided only that it is greater than 
N. If we keep n fixed and let m tend to infinity, the above expression 
never exceeds E. According to the definition of the ordinary integral, 
however, in this limiting process the expression Wv tends to the inte­
gral 

Lb {(x, a + vk) dx = ~(a + vk), 

and, therefore, we obtain 

IJ1{(x,y) dR - k tl~(a + vk) \ ~ E. 
IThe root idea of the following proof is simply that of resolving the double limit as 
m and n increase simultaneously into the two successive single limiting processes: 
first, m -+ 00 when n is fixed, and then, n -+ 00. 
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whatever the value of E, this inequality holds for all values of n that 
are greater than a fixed number N depending only on E. If we now let 
n tend to 00 (Le., let k tend to zero), then by the definition of "integral" 
and the continuity (see p. 74) of 

Lb f(x, y) dx = ~(y) 

we obtain 

n rll 
~~~ k ~ ~(a + vk) = Ja ~(y) dy; 

whence 

IILf(x,y) dR - ill ~(y) dy I ~ E. 
Since E can be chosen as small as we please and the left-hand side is 
a fixed number, this inequality can only hold if the left-hand side 
vanishes, that is, if 

IL f(x, y) dR = ill dy Lb f(x, y) dx. 

This gives the required transformation. 
The result permits one to reduce double integration to two succes­

sive single integrations. 
Since the parts played by x and y are interchangeable, no further 

proof is required to show that the equation 

(9b) ILf(x,y)dR = Lb dx I:f(x,y)dy 

is also true. 

b. Change 01 Order 01 Integration. Differentiation under the 
Integral Sign 

The two formulae (9a), (9b) yield the relation 

(9c) ill dy Lb f(x, y) dx = Lb dx I: f(x, y) dy 

(already proved in a different way on p. SO) or, in words: 
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In the repeated integration of a continuous function with constant 
limits of integration the order of integration can be reversed. 

The theorem on the change of order in integration has many ap­
plications. In particular, it is frequently used in the explicit calcula­
tion of simple definite integrals for which no indefinite integral can 
be found. 

As an example (for further examples see the Appendix), we con­
sider the integral 

1= dx i~ e-ax - e-bX 

ox' 

which converges for a > 0, b > o. We can express I as a repeated in­
tegral in the form 

In this improper repeated integral we cannot at once apply our theo­
rem on change of order. If, however, we write 

I = lim rT dx rb e-XY dy, 
T-~ Jo Ja 

we obtain by changing the order of integration 

i b 1 - e-Ty b i b e-TY 
1= lim dy = log- - lim --dy. 

T-~ a Y a T-~ a y 

In virtue of the relation 

ib e-TY J'Tb e-Y 
-dy= -dy, 

a Y Ta Y 

the second integral tends to zero as T increases; hence, 

(lla) i~ e-ax - e-bx b 
1= dx = log-. 

o x a 

In a similar way we can prove the following general theorem: 

If f(t) is sectionally smooth for t ~ 0 and if the integral 

f~ f(t) dt 
J 1 t 



392 Introduction to Calculus and Analysis, Vol. II 

exists, then for positive a and b 

(llb) I = i'" f(ax) - f(bx) dx = f(O) log ~ . 
o x a 

Here we can again express the single integral as the repeated in­
tegral 

I = So'" dx 1a f'(xy) dy 

and change the order of integration. 

c. Reduction 01 Double to Single Integrals lor More General 
Regions 

By a simple extension of the results already obtained, we can derive 
analogous results for regions more general than rectangles. We begin 
by considering a convex region R, that is, a region whose boundary 
curve is not cut by any straight line in more than two points unless 
the whole straight line between these two points is a part of the bound­
ary (Fig. 4.4). We suppose that the region lies between the lines of 

y 

-+----~~--~-----+-y-~ 

Figure 4.4 General convex region of integration. 

support (Le., lines containing a boundary point of R but not separat­
ing any two points of R) x = Xo, x = Xl and y = Yo, Y = YI, respec­
tively. Since the x-coordinate for any point of R lies in the interval 
Xo ;:::;; x ;:::;; Xl and the y-coordinate in the interval yo ;:::;; y ;:::;; YI, we con­
sider the integrals 
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P~2(1I) f(x ) dx 
J'h(lI) ,y 

and 

which are taken along the segments in which the lines y = constant 
and x = constant, respectively, intersect the region. Here 1/J2(y) and 
~l(Y) denote the abscissae of the points in which the boundary of the 
region is intersected by the line y = constant, and \jI2(X) and \jIl(X) the 
ordinates of the points in which the boundary is intersected by the 
lines x = constant. The integral 

is therefore a function of the parameter y, where the parameter ap­
pears both under the integral sign and in the upper and lower limits, 
and a similar statement holds for the integral 

as a function of x. The resolution into repeated integrals is then given 
by the equations 

(12) ~[ i ll L,s2(1I) f(x, y) dR = 1 dy f(x, y) dx 
R 110 1>1(11) 

= 1 dx 2 f(x,y) dy. Lx llV (x) 

xo IVI(X) 

To prove this we first choose a sequence of points on the arc y = 
\jI2(X), the distance between successive points being less than a positive 
number o. We join successive points by paths, each consisting of a 
horizontal and a vertical line segment lying in R. The lower bound­
ary y = \jIl(X), we treat similarly, choosing points with the same 
abscissae as on the upper boundary. We thus obtain a region R in R, 
consisting of a finite number of rectangles, where the boundary of R 
above and below is presented by sectionally constant functions y = 
V2(X) and y = Vl(X), respectively (cf. Fig. 4.5). By the known theorem 
for rectangles, we have 
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~---=r---~~--------------~--% x, 

Figure 4.5 

L[ l XI' ~v (x) _ {(x, y) dR = ,dx 2 {(x, y) dy. 
R q Vl~ 

Since 'l'1(X) and 'l'2(X) are uniformly continuous, as 0 ~ 0, the functions 
'ifrl(X) and 'ifr2(X) tend uniformly to 'l'1(X) and 'l'2(X), respectively, and so, 

uniformly in x. It follows that 

. lXI' ~V2(X) LX 1111 (x) hm dx {(x,y) dx = 1 dx 2 {(x, y) dx. 
1\-0 xo' VI (x) xo 1111 (x) 

On the other hand, as 0 ~ 0, the region R tends to R. Hence, 

lim rrj(x, y) dR = rr {(x, y) dR. 
1\-0 JJk JJR 

Combining the three equations, we have 

{(x, y) dR = 1 dx 2 {(x, y) dy. L[ l x llil (x) 

R xo IIIl(x) 

The other statement can be established in a similar way. 
A similar argument is available if we abandon the hypothesis of 

convexity and consider regions of the form indicated in Fig. 4.6. We 
assume merely that the boundary curve of the region is intersected 
by every parallel to the x-axis and by every parallel to the y-axis in 
a bounded number of points or intervals. By f {(x, y) dy, we then mean 
the sum of the integrals of the function {(x, y) for a fixed x, taken over 
all the intervals that the line x = constant has in common with the 
closed region. For nonconvex regions the number of these intervals 
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Figure 4.6 Nonconvex regions of integration. 

may exceed unity. It may change suddenly at a point x = ~ (as in fig. 
4.6, right) in such a way that the expression f {(x, y) dy has a jump­
discontinuity at this point. Without essential changes in the proof, 
however, the resolution of the double integral 

I1: {(x, y) dR = I dx I {(x, y) dy 

remains valid, the integration with respect to x being taken along the 
whole interval xo;;;; x;;;; Xl over which the region R lies. Naturally, 
the corresponding resolution 

IIR {(x, y) dR = I dy I {(x, y) dx 

also holds. 
In the example of the circle defined by x2 + y2 ;;;;; 1, we have 

y 

Figure 4.7 Circular ring as region of integration. 
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LT, J
+1 J+ .vl-x2 f(x, y) dR = dx _ f(x, y) dy. 

R -1 - .vl-x2 

If the region is a circular ring between the circles x2 + y2 = 1 and x2 

+ y2 = 4 (Fig. 4.7), then 

J.1 J -l J+ .v 4-x2 L2 J+ .v 4-x2 f(x, y) dx dy = dx _ f(x, y) dy + dx _ f(x, y) dy 
R -2 - .v 4-x2 1 - .v 4-x2 

1+1 l.vl-x2 J+l f+ .v4-x2 + dx _ f(x, y) dy + dx _ f(x, y) dy. 
-1 -.v4-x2 -1 -.vl-x2 

As a final example we take as the region R a triangle (Fig. 4.8) 
bounded by the lines x = y, y = 0, and x = a. (a. > 0). Integrating 
either first with respect to x, or with respect to y, we obtain 

'I 

I 
I ·r---

0 
.x-a x 

Figure 4.8 Triangle as region of integration. 

(13a) JL f(x, y) dR = La dx LX f(x, y) dy 

= La dy La f(x, y) dx. 

In particular, if f(x, y) depends on y only, our formula gives 

(13b) La dx LX f(y) dy = La f(y)(o. - y) dy. 

From this we see that if the indefinite integral LX f(y) dy ofafunction 

f(y) is integrated again, the result can be expressed by a single integral 
(cf. Volume I, p. 320). 
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d. Extension of the Results to Regions in Several Dimensions 

The corresponding theorems in more than two dimensions are so 
closely analogous to those already given that it is sufficient to state 
them without proof. If we first consider the rectangular region Xo ~ 
~ x ~ Xl, Yo ~ Y ~ YI, Zo ~ Z ~ Zl, and a functionf(x,y,z) continuous 
in this region, we can reduce the triple integral 

v = JJJRf(X, y, z) dR 

in several ways to single integrals or double integrals. Thus, 

(14a) JJLf(x, y, z) dR = L:I dz J1:f(x, y, z) dx dy. 

Here 

J1: f(x, y, z) dx dy 

is the double integral of the function taken over the rectangle B de­
scribed by Xo ~ x ~ Xl, yo ~ Y ~ YI, z being kept constant as a para­
meter during this integration so that the double integral is a function 
of the parameter z. Either of the remaining coordinates X and y can be 
singled out in the same way. 

Moreover, the triple integral V can also be represented as a re­
peated integral in the form of a succession ofthree single integrations. 
In this representation we first consider the expression 

LZI f(x, y, z) dz, 
zo 

X and y being fixed, and then consider 

(III dy (ZI f(x, y, z) dz, 
Jill Jzo 

X being fixed. We finally obtain 

(14b) LXI 1111 iZl V = dx dy f(x, y, z) dz. 
xo 110 zo 

In this repeated integral we could equally well have integrated first 
with respect to x, then with respect to y, and finally with respect to z 
and we could have made any other change in the order of integration, 
since the repeated integral is always equal to the triple integral. We 
therefore have the following theorem: 
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A repeated integral of a continuous function throughout a closed rec­
tangular region is independent of the order of integration. 

The way in which the resolution is to be performed for nonrectan­
gular regions in three dimensions scarcely requires special mention. l 

We content ourselves with writing down the resolution for a spherical 
region x2 + y2 + Z2 ;;;:;; 1: 

(15) rrr f(x,y,z)dxdydz = r+l dx r+ vil - x2 dy r+vil-X2-y2f(x,y,z)dz. 
JJJR J-l L vil-x2 J- vil-x2-y2 

4.6 Transformation of Multiple Integrals 

a. Transformation of Integrals in the Plane 

The introduction of a new variable of integration is one of the chief 
methods for transforming and simplifying single integrals. The intro­
duction of new variables is also extremely important for multiple in­
tegrals. In spite of their reduction to single integrals, the explicit 
evaluation of multiple integrals is generally more difficult than for one 
independent variable and integration in terms of elementary func­
tions is less likely. Yet often we can evaluate such integrals by in­
troducing new variables in place of the original ones under the inte­
gral sign. Quite apart from the question of the explicit evaluation of 
double integrals, the transformation theory is important for the com­
plete mastery of the concept of integral that it gives us. 

The important special transformation to polar coordinates has al­
ready been indicated on p. 378. Here we shall proceed at once to 
general transformations. First, we consider the case of a double inte­
gral 

I~ f(x, y) dR = II f(x, y) dx dy, 

taken over a region R of the x, y-plane. Let the equations 

x = rp(u, v), y = ",(u, v) 

give a 1-1 mapping of the region R onto the closed region R' of the 
u, v-plane. We assume that in the region R the functions rp and ",have 
continuous partial derivatives of the first order and that their Jacobian 

D = I rpu 
"'u 

IFor a general proof, see the Appendix, p. 531. 
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never vanishes in R. More precisely, we made the assumption, that 
the system of functions x = ~(u, v), y = ",(u, v) possesses a unique in­
verse u = g(x, y), v = h(x, y) (p. 261). Moreover, the two families of 
curves u = constant and v = constant form a net over the region R. 

Heuristic considerations readily suggest how the integral 
ffR {(x, y)dR can be expressed as an integral with respect to u and v. 
We naturally think of calculating the double integral ff {(x, y)dR by 
abandoning the rectangular subdivision of the region R and instead 
using a subdivision into subregions Rt by means of curves of the 
net u = constant or v = constant. We therefore consider the values u = 
vh and v = Ilk, where h = Ilu and k = Ilv are given numbers and v and 
Il take all integer values such that the lines u = vh and v = Ilk inter­
sect R' (so that their images are curves in R). These curves define a 
number of meshes, and for the subregions Rt we choose those meshes 
that lie in the interior of R (Figs. 4.9 and 4.10). We now have to find the 
area of such a mesh. 

y v 

tfj" •• K 

0 d 
.z u 

Figure 4.9 Figure 4.10 

If the mesh, instead of being bounded by curves, were a parallelo­
gram with vertices corresponding to the values (uv, VI') , (uv + h, Vl'), 

(uv, VI' + k), and (uv + h, VI' + k), then by a formula of analytical geom­
etry (cf. Chapter 2, p. 180) the area of the mesh would be the absolute 
value of the determinant 

I ~(uv + h, VI') - ~(uv, VI') 

I ",(uv + h, VI') - ",(uv, VI') 

which is approximately equal to 

I 
~u(uv, VI') 

"'u(uv, VI') 

~(Uv, VI' + k) - ~(uv, VI') I 
",(uv, VI' + k) - ",(uv, VI') , 
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On multiplying this expression by the value of the function f in the 
corresponding mesh, summing over all the regions R, lying entirely 
within R, and then passing to the limit as h ~ 0 and k ~ 0, we obtain 
the expression 

JLf(~(u, v), 'I'(u, v»IDI dudv 

for the integral transformed to the new variables. 
This discussion is incomplete, however, since we have not shown 

that it is permissible to replace the curvilinear meshes by parallelo­
grams or to replace the area of such a parallelogram by the expression 
I~u'l'v - 'l'u ~vl hk; that is, we have not shown that the errorintroduced 
in this way vanishes in the limit as h ~ 0 and k ~ O. Instead of com­
pleting the proofbymakingthe proper estimates (which will be done in 
the Appendix), we prefer to prove the transformation formula in a 
somewhat different way, one that can subsequently be extended di­
rectly to regions of higher dimensions. 

For this purpose, we use the results of Chapter 3 (p. 264) and per­
form the transformation from the variables x, y to the new variables 
u, v in two steps instead of one. We replace the variables x, y by new 
variables x, v through the equations 

x= x, y = <I>(v, x). 

Here we assume that the expression <l>v vanishes nowhere in the region 
R, say, that <l>v is everywhere greater than zero, and that the whole re­
gion R can be mapped in a 1-1 way on the region B of the x, v-plane. 
We then map this region B in a 1-1 way on the region R' of the u, v­
plane by means of a second transformation 

x = 'I'(u, v), v = v, 

where we further assume that the expression 'I' u is positive throughout 
the region B. We now effect the transformation of the integral 
ffRf(x,y) dx dy in two steps. We start with a subdivision of the region 
B into rectangular subregions of sides Ax = hand Av = k bounded 
by the lines x = constant = xv and v = constant = v" in the x, v­
plane. This subdivision of B corresponds to a subdivision of the region 
R into subregions Ri, each subregion being bounded by two parallel 
lines x = xv and x = xv + h and by arcs of the two curves y = <I>(v", x) 
and y = <I>(v" + k, x) (Figs. 4.11 and 4.12). By the elementary inter-
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Figure 4.13 

pretation of the single integral, the area of the subregion (Fig. 4.13) 
is 

l XV+h 
l!.R( = [<I»(v" + k, x) - <I»(v", x)] dx. 

Xv 

By the mean value theorem of the integral calculus, this can be 
written in the form 

where Xv is a number between Xv and xv + h. By the mean value theo­
rem of the differential calculus, this finally becomes 

l!.Rt = hk<l»v(v", xv), 

in which V" denotes a value between v" and v" + k, so that (v", x,,) are 
the coordinates of a point of the subregion in B under consideration. 
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The integral over R is therefore the limit of the sum 

as h -) 0, k -) O. We see at once that the expression on the right tends 
to the integral 

ILf(x, y)<I>v dx dv (y = <I>(v. x» 

taken over the region B. Therefore, 

ILf(x, y) dx dy = IIBf(x, y)<I>v dx dv. 

To the integral on the right we now apply exactly the same argument 
as that just employed for ffR f(x, y) dx dy and transform the region B 
into the region R' by means of the equations x = 'P(u, v), v = v. 

The integral over B then becomes an integral over R' with an inte­
grand of the form f(x, y) <l>v'Pu, namely, 

IIR' f(x, y)<I>v'Pu du dv. 

Here the quantities x and yare to be expressed in terms of the inde­
pendent variables u and v by means of the two transformations above. 
We have therefore proved the transformation formula 

(16a) IIR f(x, y) dx dy = IL, f(x, y)<I>v'P u du dv. 

By introducing the direct transformation x = ~(u, v), y = ",(u, v) the 
formula can at once be put in the form stated previously. For 

d(x, y) = <l>v 
d(x, v) 

and 

and so, by Chapter 3 (p. 258), we have 

d(x, v) = 'Pu 
d(u, v) , 

D - d(x,y) - <I> 'II 
- d(u, v) - v u· 

We have therefore established the transformation formula whenever 
the transformation x = ~(u, v), y = ",(u, v) can be resolved into a suc­
cession of two primitive transformations of the forms l x = x, y = 
<I>(v, x) and v = v, x = 'P(u, v). 

lWe have assumed above that the two derivativesellv and ell" are positive, but we easily 
see that this is not a serious restriction. If it is not satisfied, we merely have to reo 
placeellv'l'u by its absolute value in formula (16a). 
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In Chapter 3 (p. 265), however, we saw that for D -=1= 0 we can sub­
divide a closed region R into a finite number of regions in each of 
which such a resolution is possible, except perhaps that it may be 
necessary to interchange u and v, but this does not affect the value of 
the integral. We thus arrive at the following general result: 

If the transformation x = (J(u, v), y = ",(u, v) represents a continuous 
1-1 mapping of the closed Jordan-measurable region R of the x, y-plane 
on a region R' of the u, v-plane, and if the functions (J and", have con­
tinuous first derivatives and their Jacobian 

d(x, y) 
d(u, v) = (Ju'l'v - 'l'u(Jv 

is everywhere different from zero, then 

(16b) JLf(x, y)dxdy = JLf«(J(u, v), 'I'(u, v» I ~~:: ~~ I du dv. 

For completeness we add that the transformation formula remains 
valid if the determinant d(x, y)jd(u, v) vanishes without reversing its 
sign at a finite number of isolated points of the region, for then we 
have only to cut these points out of R by enclosing them in small cir­
cles of radius p. The proof is valid for the residual region. If we then 
let p tend to zero, the transformation formula continues to hold for 
the region R by virtue of the continuity of all the functions involved. 
This fact permits us to introduce polar coordinates with the origin in 
the interior ofthe region; for the Jacobian, being equal to r, vanishes 
at the origin. 

In Chapter 5 we shall return to transformations of integrals and 
assign a role to the sign of the Jacobian in connection with integrals 
over oriented manifolds. A different method of proving the transforma­
tion formula will be given in the Appendix. 

b. Regions of More than Two Dimensions 

We can, of course, proceed in the same way with regions in space of 
three or more dimensions and obtain the following general result: 

If a closed Jordan-measurable region R of x, y, z, ... -space is 
mapped on a region R' of u, v, w, ... -space by a 1-1 transformation 
whose Jacobian 

d(x,y,z, . .. ) 
d(u, v, w, ... ) 
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is everywhere different from zero, then the transformation formula 

(17) II··· Lf(x,y,z, . . . )dxdydx . .. 

rr r ~( ) I d(x, y, z, . = JJ •.• J1' J' x, y, z, . .. .J( 
R u' u, v, w,. :~ \dudVdw .. 

holds. 
As a special application, we can obtain the transformation formulas 

for polar and spherical coordinates. For polar coordinates in the plane, 

we write rand e instead of u and v, and at once obtain ~~:: ~~ = r 

(cf. p. 253). For the spherical coordinates in space, defined by the 
equations 

x = r cos tfi sin e, y = r sin tfi sin e, z = rcos e, 

in which tfi ranges from 0 to 27t, e from 0 to 7t, and r from 0 to + 00, we 
identify u, v, w with r, e, tfi; for the Jacobian we then obtain 

cos tfi sin e r cos tfi cos e 
d(x, y, z) _ .,f.. e .,f. e SIn 'I' sIn r sIn 'I' cos d(r, e, tfi) -

cose -rsine 

-r sintfi sine 

r cos tfi sin e 

o 
= r2 sin e. 

(The value r2 sin e is easily obtained by expanding in terms of the 
minors of the third column.) The transformation to spherical coordi­
nates in space is therefore given by the formula 

IIL {(x, y, z) dx dy dz = IIL, {(x, y, z)r2 sin e dr de dtfi. 

As in the corresponding case in the plane, we can also arrive at the 
transformation formula without using the general theory. We have 
only to start with a subdivision of space given by the spheres r = con­
stant, the cones e = constant, and the planes tfi = constant. The de­
tails of this elementary method can be left to the reader. 

For spherical coordinates our assumptions are not satisfied when 
r = 0 or e = 0, 7t since the Jacobian then vanishes. As in the case of the 
plane, we can easily convince ourselves that the transformation for­
mula nonetheless remains valid. 



Exercises 4.6 

1. Perform the following integrations: 

(a) foa fob xy(x2 - y2) dy dx 

(b) Ioft Ioft cos (x + y) dy dx 

(c) rf1-ddx o 0 xy .y 

(d) Ioa Iob xeZlI dydx 

(e) Io1 I o"1-z2 y2 dy dx. 

(f) rr-z o 0 ydydx 

2. II x2y2 dx dy over the circle X2 + y2 ~ 1. 

Multiple Integrals I,os 

rrx3 + y3 - 3xy(x2 + y2) . 2 2 
3. JJ (x2 + y2)3/2 dx dy over the cll'cle x + y ~ 1. 

4. Find the volume between the x, y·plane and the paraboloid z = 
2 - X2 _y2. 

5. Evaluate the integral 

rr dx dy 
JJ (1 + X2 + y2)2 

taken 
(a) over one loop of the lemniscate (x2 + y2)2 - (Xl - y2) = 0, 
(b) over the triangle with vertices (0, 0), (2,0), (1, /3). 

6. Evaluate the integral 

IIflXYZI dxdydz 

taken throughout the ellipsoid x 2/aS + y2/b2 + Z2/C2 ~ 1. 
7. Find the volume common to the two cylinders X2 + Z2 < 1 and y2 + Z2 

<1. 
8. By integration, find the volume of the smaller of the two portions into 

which a sphere of radius r is cut by a plane whose perpendicular dis­
tance from the center is h( <r). 

9. III (XS + y2 + ZS) xyz dx dy dz throughout the sphere x 2 + y2 + Z2 ~ r2. 

10. III z dx dy dz throughout the region defined by the inequalities x 2 + y2 

~ Z2, X2 + y2 + Z2 ~ 1. 
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11. fff (x + y + z) x2y2z2 dx dy dz throughout the region x + y + z ~ I, 
x G 0, y G 0, z G O. 

JJrrr dx dy dz 
12. ~J x2 + y2 + (z _ 2)2 throughout the sphere x2 + y2 + Z2 ~ 1. 

rrr dxdydz 
13. JJJ x2 + y2 + (z _ !)2 throughout the sphere x2 + y2 + Z2 ~ 1. 

14. II J~~ ;y2 over the square Ixl ~ I, Iyl ~ 1. 

15. Prove that if f(x, y) is a continuous function on a domain D in 
the x, y-plane and if for every region R contained in that domain 
f R f(x, y) dx dy = 0, then f(x, y) is identically O. 

16. Prove that 

iT, J, ~ e-u2 
e-(x2+y2) dx dy = ae-a2 --- du 

R 0 a2 + u2 

where R denotes the half-plane x G a > 0, by applying the trans­
formation 

y= vx. 

17. Prove that 

is invariant on inversion. 
18. Evaluate the integral 

I = fff cos (x~ + Y1j + zQ d~ d1j d~ 

taken throughout the sphere ~2 + 1j2 + ~2 ~ 1. 
19. In the integral 

f. 4 I (20-4x)/(8-x) 
I = dx (y - 4) dy 

2 41x 

change the order of integration and evaluate the integral. 

4.7 Improper Multiple Integrals 

In the case of functions of one variable, we found it necessary to 
extend the concept of integral to other functions that are not con­
tinuous in the interval of integration. In particular, we considered the 
integrals of functions with jump-discontinuities and of functions with 
infinite values; we also considered integrals over infinite intervals of 
integration. The corresponding extensions of the concept of integral 
for functions of several variables will now be discussed. 
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The notion of "integral", as defined on p. 377 (we call it the Rie­
mann integral), is not tied to continuity of the integrand {(x, y). As 
long as {is bounded in the region of integration R, we can always form 
the upper and lower sums corresponding to a division of R into Jor­
dan-measurable sets Rt. We call { integrable (more precisely Riemann­
integrable) if these upper and lower sums approach the same limit as 
the division of R is refined indefinitely. This is essentially the proce­
dure we shall follow in the exposition given in the Appendix to this 
chapter.1 Strictly speaking the integral of any integrable function is 
proper, even if the function happens to be discontinuous. 

In this section, however, we take only the existence of integrals of 
continuous functions for granted and try by limiting processes to ex­
tend the noti'on of integral and to prove its existence for wider classes 
of functions. We leave open the question whether improper integrals 
defined in this way are really identical with proper Riemann integrals 
obtained directly from upper and lower sums of subdivisions of R.2 

a. Improper Integrals of Functions over Bounded Sets 

The functions we aim to integrate are, in most cases, continuous in 
a certain region R except at isolated points or along certain curves, 
where the functions are not defined or are unbounded, or where their 
continuity is doubtful. In all cases that interest us the set of points of 
exceptional behavior for the function has area 0 (the word "area" is 
used here exclusively in the sense of Jordan-measure or content).3 
We may then cut away from R a set s of small area containing the ex­
ceptional points, integrate {over the remainder, and take the limit 
of the integrals of { over R - s as the area of s tends to o. If this limit 
exists, it defines the "improper" integral of { over R. Since we do not 
want the limit to depend on the particular way in which we approx­
imate the set R, we shall confine ourselves to the simplest situation 
(corresponding to "absolute convergence" in contrast to "conditional 
convergence" in infinite series) where not only { but also Ifl, has an 
improper integral. 

Let the region o{ integration R be bounded and have an area. Assume 
that we can find a "monotone" sequence o{ closed subregions Rn(i.e., 

lWe there use only subdivisions into squares in defining the integral. But this re­
striction can be shown to be inessential. 
2This actually always is the case whenfis bounded and is continuous except possibly 
on a set of points of content 0, provided R is bounded and Jordan-measurable. 
3More refined notions, like the Lebesgue integral, are needed to integrate some 
functions whose points of discontinuity form a set of positive Jordan measure. 
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R" C Rn+1 C R) in each of which f(x, y) is defined and continuous. As­
sume moreover that the areas A(R,,) of the sets R" approach the area 
A(R) and that the integrals 

(19a) ffRn If(x, y) I dx dy 

are bounded independently of n. Then 

(19b) I = !~~ fLn f(x, y) dx dy 

exists. This limit will be shown to be independent of theparticularap­
proximating seqUence R", and will be used to define the improper inte­
gral 

(19c) I = fL f(x, y) dx dy. 

Before proving this theorem, we illustrate the ideas by some typical 
examples. 

The function 

f(x,y) = log ./x2 + y2 

becomes infinite at the origin of the x, y-plane. Therefore, in order to 
calculate the integral of f over a region R containing the origin, for 
example, over the circle x2 + y2 ~ 1, we must cut out the origin by 
sUrrounding it with a region s whose area tends to O. We must then 
investigate the convergence of the integral taken over the residual 
region R - s. We take for s the circular disk s" of radius 1/17,. Let R" 
be the region obtained from R by cutting out s" Let, in turn, R be 
contained in a circle of radius p about the origin. Transforming to 
polar coordinates, we have 

l~r Ifldxdy = lrr Iflrdrde ~ (P dr (21t de rllog rl 
JRn JRn J1/" Jo 

= 21t (P rllog rl dr. 
J1/" 

The transformation thus yields a new integrand r I log r I that is bound­
ed and even continuous if defined as 0 for r = O. Hence, uniformly 
for all 17" 
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IIBn If I dx dy ~ 21t LP rllog rl dr. 

The existence of the improper integral 

~[ log ./x2 + y2 dx dy = lim rr log ./x2 + y2 dx dy JJR n-~ JJRn 

follows. For example, if R is the unit disk we find 

(20a) ~[2 2 log./ x2 + y2 dx dy = rl dr r2" de r log r JJz HI <1 Jo Jo 

= 21t L 1 r log r dr 

(1 1 )1 = 21t - r2 log r - - r2 
240 

As a further example, we consider the integral 

(20b) 

taken over the same region. Here we obtain immediately 

rr Ifldxdy ~ rp dr r2" de Iflrdrde 
JJRn Jl/n Jo 

= 21t J,P rl-a dr. 
lin 

From Volume I (p. 305) we know that the integral foP rl- a dr is conver­
gent if and only if a < 2. We therefore conclude that the double inte­
gral (20b) likewise is convergent if and only if a < 2. This remark 
can readily be extended into a sufficient (but by no means neces­
sary) criterion for the convergence of improper double integrals, 
which is applicable in many special cases. 

If the function f(x, y) is continuous in the region R everywhere 
except at one point, which we take as the origin, and if there exists a 
fixed bound M and a positive number a < 2 such that 

(21a) 
M 

If(x,y)l< ./(x2 + y2)a 
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everywhere in R {or (x, y) =1= (0, 0), then the integral 

(21b) IIR{(x, y) dx dy 

converges. 
We can treat the triple integral 

fI'"f dxdydz 
J .. JR ./(x2 + y2 + z2)a 

in a similar way. If R contains the origin, we introduce spherical 
coordinates and obtain 

JIL r2- a sin 0 dr d; dO. 

A discussion similar to the preceding one shows us that convergence 
occurs when a < 3. Again, more generally, we see that 

(22a) IIL {(x, y, z) dx dy dz 

converges if {(x, y, z) is continuous in R except at the origin provided 
that there exists a bound M and a constant a < 3 for which 

(22b) 
M 

1 {(x, y, z) 1 ~ ./(x2 + y2 + z2)a' 

In consequence, for an everywhere continuous function g(x, y, z), the 
improper integral 

(22c) fIT g(x, y, z) d 
J .. JR ./(X2 + y'" + z2t X dy dz 

exists, if a < 3. Improper integrals can also exist for integrands that 
are infinite along whole curves, not only at single points. In the 
simplest case, the integrand is infinite on a portion of a straight line, 
say a segment of the y-axis. In this case, if the relation 

(23) 
M 

If(x,y) 1 < Ixl a 

is valid everywhere in R for x =1= 0, where M is a fixed bound and 
a < 1, then again the improper integral of { over R exists. For the 
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proof, we only have to cut out from R a strip about the y-axis and let 
the width of the strip tend to O. 

Integrals like 

i"'r dxdy 
JR x3 ' 

violating our restriction on the exponent n, may sometimes still be 
defined in a "conditional" sense, in which the value depends on the 
precise manner of approximation to R. Here, for example, the integral 
can be defined as the limit of integrals over the regions obtained by 
cutting out of R a strip symmetric to the y-axis. Other approximations 
may lead to different values for the integral or even to divergence. 

b. Proof of the General Convergence Theorem for Improper 
Integrals 

We consider the set R of area A(R) and a sequence of closed subsets 
Rn whose areas A(Rn) tend to A(R) for n ~ 00. Here the Rn shall ex­
pand monotonically inside R: 

(24a) Rl C R2 C Ra C ••• c R. 

The function f(x, y) is assumed to be continuous in each Rn. Moreover, 
there shall exist a constant Jl such that 

(24b) IIBn If(x, y) I dx dy ~ Jl 

for all n. 
Because of (24a) the integrals 

obviously form a monotone increasing bounded sequence and thus 
have a limit for n ~ 00. By the Cauchy convergence test, for every 
e > 0 we can find an N = N(e) such that, for m> n > N(e), 

(24c) ~[ If I dxdy - II If I dxdy = fi[ If I dxdy < e. 
Rm Rn JJ Rm- Rn 

Let 

In = IIBn f(x, y) dx dy. 
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Clearly the I also satisfy the Cauchy test, since, by (5g), 

IJLmfdxdy - JLnfdxdyl = IJJRm_Rnfdxdyl 

~ rr Ifl dx dy < e JJRm- Rn 

for m> n > N(e). It follows that 

exists. 

I = lim rr f(x, y) dx dy 
n-oo JJRn 

It remains to be shown that the value I does not depend on the 
particular approximating sequence Rn used. Let S be any closed 
Jordan-measurable subset of R in which f is continuous. Let M be 
an upper bound for If! in S. Then, by the mean value theorem of 
integral calculus (see p. 384),1 

IJLfdXdy - JJsnRnfdxdyl = IJL-Rn fdxdyl 

~ JL-Rn Ifldx dy ~ MA(S - Rn) ~ MA(R - Rn) 

= M[A(R) - A(Rn)]. 

It follows from our assumption lim A(Rn) = A(R) that 

(24d) ~[fdxdY = lim ~[ fdxdy JJ s n-oo snRn 

Applying this relation to If I instead of f, and using (24b), we find 

(24e) ~[ Ifldxdy = lim ~[ Ifldxdy JJ s n-oo snRn 

~ lim JI, If I dx dy ~ ~. 
n-oo Rn 

Thus, the estimate (24b) has been extended to more general subsets 
Sof R. 

We can also extend (24c). We have, using (24d). 

lWe remind the reader that S n R .. stands for the set of points common to S andR .. 
and S - R" for the set of points that belong to S but not to R" (see p. 116): 

S - R" = S - S n R" 

We write again A(S - R .. ) for the area of the set S - R". 
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(42f) IIIs f dx dy - IIsnRn f dx dy I 
= lim I rr fdx dy - rr fdxdyl m-oo JJ snRm JJsnRn 

= lim I rr f dx dy I ~ lim rr I f I dx dy m-oo JJsn(Rm-Rn) m_ooJJRm-Rn 

= ~~ (IIRm Ifldxdy - IfRn Ifldxdy) < E 

for n> N(E). Here N does not depend on the particular set 8. 
Let now 81, 82, . . . be a sequence of closed subsets of R in which 

f is continuous and for which 

(24g) 81 C 82 C 8a C ••. c R 

and 

(24h) lim A(8m) = A(R). 
m-oo 

Since by (24e) 

ILm If I dx dy ~ ~, 

we know that 

J = lim If. f dx dy m-oo Sm 

exists. Then 

IJ - If. fdxdyl < E Sm 

for all sufficiently large m. It follows from (24f) that 

IJ - II fdxdyl< 2E JSmnRn 

for all m, n that are both sufficiently large. Interchanging the roles 
of the 8m and Rn, we also have 

I I - rr f dx dy I < 2E JJSmnRn 

for all sufficiently large m, n. Hence, I J - II < 4E for any positive 
number E, and thus, I = J, which was to be proved. 
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c. Integral8 over Unbounded Region8 

A different type of improper integral arises when the integrand f 
is continuous but the region of integration extends to infinity. Again, 
we do not try to analyze the most general situation but formulate a 
convergence criterion applicable to most cases occuring in practice. 
It is sufficient to treat the case of two independent variables. 

We consider an unbounded set R in which the function f is con­
tinuous. We exhaust R by a monotone sequence of subsets 

Ri C R2 C Ra C ••• C R 

each of which is closed, bounded, and Jordan-measurable. Instead of 
the previous condition lini A(Rn) = A(R), which might make no sense 

for unbounded R, we require that every closed and bounded subset of 
R is contained in at least one of the sets Rm. (If, for example, R is the 
whole plane, we can choose for the Rn the circular disks of radius n 
with center at the origin.) If the limit 

~~~ ffRnf(x,y) dxdy 

exists and is independent of the particular choice of the sequence of 
subsets Rn, we call it the integral of f over R and denote it by 

fLfdxdy. 

We then have the following sul/icient condition for existence of the 
integral: 

The improper integral off over the unbounded set R exists if for one 
particular sequence Rn (of the type described) the integrals 011 II over 
Rn are bounded uniformly in n, say if 

IJRn III dx dy ~ I.l 

for all n. 
The proof of this convergence criterion uses the same arguments 

as the one for improper integrals over bounded sets, and should be 
carried out as an exercise by the reader. 

We illustrate the theorem with the integral 
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where the region of integration is the whole x, y-plane. We choose for 
the sequence Rn of subregions the circular disks of radius n with 
center at the origin that obviously satisfy all our requirements. Here, 
transforming to polar coordinates: 

II e-X2- y2 dx dy = II e-x2- y2 dx dy 
Rn x 2 + y~ ~ n2 

rn r21t rn == Jo dr Jo d9 re -r2 dr = 27t Jo re -r2 dr 

= -7te-r2 [: = 7t(1 - e-n2). 

This proves the boundedness of the integrals over Rn and, hence, the 
existence of the integral over R. For n ~ 00 we find for the value of 
our improper integral 

II e-x2- y2 dx dy = lim 7t(1 - e-n2) = 7t. 
R n-oo 

On the other hand, we must obtain the same limit by using instead of 
the Rn the sequence 8m of squares 

-m;£ x;£ + m, -m;£ y;£ + m. 

Here we can make use of the fact that the integrand is a product of a 
function of x and of a function of y (see p. 380) and find 

If e-X2- y2 dx dy = If. e-x2 • e-y2 dx dy ~Sm Sm 

It follows that 

lim If e-X2- y2 dx dy = (rOO e-x2 dX) 2. m-co ~Rm Joe 

Since the Rn and 8m must yield the same value for the integral over 
R, we find that 

(25a) 1: e-x2 dx = ..fit. 
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By using the theory of improper double integrals we have thus evalu­
ated an improper single integral that is of great importance in analy­
sis. This value is difficult to find directly since the indefinite integral 
of e-z2 cannot be expressed in terms of elementary functions. 

We can make use of this result to evaluate the gamma {unction (see 
Volume I, p. 308) 

(25b) r(n) = So"" e-ttn- 1 dt 

for the argument n = t. The substitution t = x2 yields 

(25c) r - = --=dt = 2 e-z2 dx (1) So"" e-t L"" 
2 0 Jt 0 

= i: e-z2 dx = lit. 

We can formulate useful convergence tests for improper integrals 
over unbounded regions by comparison with powers of Jx2 + y2. These 
are analogous to the test found on p. 409 for functions that are un­
bounded near the origin. We find that the improper integral of a 
continuous function {(x, y) over an unbounded region R exists if { 
everywhere in R satisfies an inequality 

(26) 
M 

I {(x, y) I ~ J(x2 + y2)a ' 

where M and a are fixed constants and a > 2.1 

Exercises 4.7 

1. (a) By transforming to polar coordinates, show that the value of the 
integral ' 

ra sin p { r.[J=ii2 } 
K = Jo J" cot P log(x2 + y2) dx dy 

is a2~(log a-I}. 

lBehavior at infinity and at the origin are "complementary" in the sense that f is 
integrable near the origin if (26a) holds for a value a < 2. Thus, the improper integral 

rr dxdy 
JJ ~(xB+yB)a 

extended over the whole plane exists for no value of a. 
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(b) Change the order of integration in the original integral. 
2. Integrate 

(a) II (x2 + ;2 + 1)2 dx dy over the x, y-plane, 

(b) III(x2 + y2 ~ Z2 + 1)2 dx dy dz over x, y, z-space. 

3. Show that the order of integration in 

P{(1y-X I 
I = Jo Jo (x + y)3 dx dy 

cannot be reversed. 

4.8 Geometrical Applications 

a. Elementary Calculation of Volumes 

The concept of volume forms the starting-point of our definition of 
"integral." Here we use multiple integrals in order to calculate the 
volumes of several solids. 

For example, in order to calculate the volume of the ellipsoid of 
revolution 

we write the equation in the form 

b z = ± - ./a2 - x2 - y2. 
a 

The volume ofthe half ofthe ellipsoid above the x, y-plane is therefore 
given by the double integral [see (3b)], 

: = ~Jf ./a2 - x2 - y2 dxdy 

taken over the circle x2 + y2 ~ a2• If we transform to polar co­
ordinates, the double integral becomes 

II r ./ a2 - r2 dr d9 , 
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whence, on resolution into single integrals 

V b L2lt La b La - = - de r ./a2 + r2 dr = 21t- r./a2 - r2 dr 
2 ao 0 ao ' 

which gives the required value, 

4 
V = -1ta2b. 

3 

To calculate the volume of the general ellipsoid 

(27a) 

we make the transformation 

x = ap cos e, y = bp sin e, d(x,y) - b 
d(p, e) - a p 

and for half the volume obtain 

Here the region R' is the rectangle 0 ~ p ~ 1, 0 ~ e ~ 21t. Thus, 

V = abc r21t de rl p./1 _ p2 dp = g 1tabc 
2 Jo Jo 3 

or 

(27b) 
4 

V = 31tabc. 

Finally, we shall calculate the volume of the pyramid enclosed by 
the three coordinate planes and the plane ax + by + cz - 1 = 0, 
where we assume that a, b, and c are positive. For the volume we 
obtain 

V = ~ It (1 - ax - by) dx dy, 

where the region of integration is the triangle 0 ~ x ~ 11a, 0 ~ y ~ 
(1 - ax)lb in the x, y-plane. Therefore, 
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1 L lia L(I-aZ)/b V= - dx (1- ax - by)dy. 
Coo 

Integration with respect to y gives 

b I (l-az)/b (1 - ax)2 
(1 - ax)y - .2 y2 0 = 2b ' 

and if we integrate again by means of the substitution 1 - ax = t, 
we obtain 

1 ilia 1 Ilia 1 V= - (1- ax)2dx = - --(1- ax)3 =-. 
2bc 0 6abc 0 6abc 

This result agrees, of course, with the rule of elementary geometry 
that the volume of a pyramid is one-third of the product of base and 
altitude. 

In order to calculate the volume of a more complicated solid we 
can subdivide the solid into pieces whose volumes can be expressed 
directly by double integrals. Later, however (in particular in the next 
chapter), we shall obtain expressions for the volume bounded by a 
closed surface that do not involve this subdivision. 

h. General Remarks on the Calculation of Volumes. Solids of 
Revolution. Volumes in Spherical Coordinates 

Just as we can express the area of a plane region R by the double 
integral 

ILdR = ILdxdy, 

we may also express the volume of a three-dimensional region R by the 
integral 

V= IILdxdydz 

over the region R. In fact this point of view exactly corresponds to our 
definition of integral (cf. Appendix, p. 517) and expresses the geo­
metrical fact that we can find the volume of a region by cutting space 
into identical cubes, finding the total volume of the cubes contained 
entirely in R, and then letting the diameter of the cubes tend to zero. 
The resolution of this integral for V into an integral I dz II dx dy 
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[see (14a), p. 397] expresses Cavalieri's principle, known to us from 
elementary geometry, according to which the volume of a solid is deter­
mined if we know the area of every plane cross section that is perpen­
dicular to a definite line, say the z-axis. The general expression given 
above for the volume of a three-dimensional region enables us at once 
to find various formulae for calculating volumes. For this purpose, 
it often is useful to introduce new independent variables into the 
integral instead of x, y, z. 

The most important examples are given by spherical coordinates 
and by cyclindrical coordinates. Let us calculate, for example, the 
volume of a solid of revolution obtained by rotating a curve x = ~(z) 
about the z-axis. We assume that the curve does not cross the z-axis 
and that the solid of revolution is bounded above and below by planes 
z = constant. The solid is therefore defined by inequalities of the 
form a ~ z ~ b and 0 ~ ./x2 + y2 ~ ~(z). Its volume is given by the 
integral above. In terms of the cylindrical coordinates 

o = arccos~ = arcsin~ 
p p 

the expression for the volume becomes 

m[ rb r 21t r;(z) 
V= JJJRdxdydz = Ja dz Jo dO Jo pdp. 

If we perform the single integrations, we at once obtain 

(28a) 

We can also give a more intuitive derivation of this formula (see 
Volume I, p. 374). We cut the solid of revolution into small slices 

by planes perpendicular to the z-axis, and we denote by my the mini­
mum and by My the maximum of the distance ~(z) from the axis in this 
slice. The volume of the slice lies then between the volumes of two 
cylinders with altitude 

Az = Zv+l - Zv 

and radii my and M v, respectively. Hence, 



Multiple Integrals 421 

L my27C Il.z ~ V ~ L My27C Il.z. 

By the definition of the ordinary integral, therefore, 

V = 7C J: ~(Z)2 dz. 

If the region R contains the origin 0 of a spherical coordinate 
system (r, 0, ~) and if the surface is given by an equation 

where the function {(O, ~) is single-valued, it is frequently advantage­
ous to use these spherical coordinates instead of (x, y, z) in calculating 
the volume. If we substitute the value of the Jacobian 

d(x,y, z) _ 2 • l} 

d(r, 0, ~) - r sm u 

(as calculated on p. 000) in the transformation formula, we at once 
obtain the expression 

rrr. r21t rlt • r/(e,;) 
V= JJJRr2smOdrdOd~ = Jo dr)Jo smOdOJo r2dr 

for the volume. Integration with respect to r gives 

(28b) 
1 r21t rlt 

V = 3Jo d~ Jo f3(0,~) sin 0 dO. 

In the special case of the sphere, for which {(O, r) = R is constant, this 
at once yields the volume (4/3)7CR3. 

c. Area of a Curved Surface 

We expressed the length of a curve by an ordinary integral (Volume 
I, p. 349). We now wish to find an analogous expression for the area 
of a curved surface by means of a double integral. We defined the 
length of a curve as the limiting value of the length of an inscribed 
polygon when the lengths of the individual sides tend to zero. This 
suggests that we define the area of a surface analogously as follows: 
In the curved surface we inscribe a polyhedrcm formed of plane 
triangles, determine the area of the polyhedron, make the inscribed 
net of triangles finer by letting the length of the longest side tend to 
zero, and seek to find the limiting value of the area of the polyhedron. 
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This limiting value would then be called the area of the curved 
surface. It turns out, however, that such a definition of area would 
have no precise meaning, for in general this process does not yield a 
definite limiting value. This phenomenon may be explained in the 
following way: a polygon inscribed in a smooth curve always has the 
property (expressed by the mean value theorem of the differential 
calculus) that the direction of the individual side of the polygon ap­
proaches the direction of the curve as closely as we please if the sub­
division is fine enough. With curved surfaces the situation is quite 
different. The sides of a polyhedron inscribed in a curved surface may 
be inclined to the tangent plane to the surface at a neighboring point 
as steeply as we please, even if the polyhedral faces have arbitrarily 
small diameters. The area of such a polyhedron, therefore, cannot by 
any means be regarded as an approximation to the area of the curved 
surface. In the Appendix we shall consider an example of this state of 
affairs in detail (pp. 540). 

In the definition of the length of a smooth curve, however, we can, 
instead of using an inscribed polygon, equally well use a circumscribed 
one, that is, a polygon of which every side touches the curve. The 
definition of the length of a curve as the limit of the length of a 
circumscribed polygon can easily be extended to curved surfaces, if 
first modified as follows: we obtain the length of a curve y = f(x) that 
has a continuous derivative f'(x) and lies between the abscissae a and 
b by subdividing the interval between a and b at the points xo, Xl, • • ., 

Xn into n equal or different parts, choosing an arbitrary point ~v in 
the vth subinterval, constructing the tangent to the curve at this 
point, and measuring the length Iv of the portion of this tangent lying 
in the strip Xv ~ X ~ Xv+l (Fig. 4.14). If we let n increase beyond all 

Figure 4.14 



Multiple Integrals J,23 

bounds and at the same time let the length of the longest subinterval 
tend to 0, the sum 

n-l 
~ Iv 
v=o 

then tends to the length of the curve, that is, to the integral 

Lb .J1 + f'(X)2 dx. 

This statement follows from the fact that 

We now define the area of a curved surface similarly. We begin by 
considering a surface represented by a function z = f(x,y) with 
continuous derivatives on a region R of the x, y-plane. We subdivide 
R into n subregions Rl, R2, . . ., Rn with the areas llRl, . . ., llRn, 
and in these subregions we choose points (~l, TIl), . . ., (~n, TIn). At the 
point of the surface with the coordinates ~v, Tlv and ~v = f(~v, Tlv) we 
construct the tangent plane and find the area of the portion of this 
plane lying above the region Rv (Fig. 4.15). If Uv is the angle that the 
tangent plane 

makes with the x, y-plane and if ll'tv is the area of the portion 'tv of the 

Figure 4.15 
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tangent plane above Rv, then the region Rv is the projection of 'tv on 
the x, y-plane,l so that 

!:J.Rv = !:J.'tv cos avo 

Again (cf. Chapter 3, p. 239), 

1 
cos av = 

and therefore, 

We form the sum of all these areas 

n 
~ Lhv 
v=! 

and let n increase beyond all bounds, at the same time letting the 
diameter of the largest subdivision tend to zero. According to our 
definition of "integral" this sum will have the limit 

(29a) 

This integral, which is independent of the mode of subdivision of the 
region R, we now use to define the area of the given surface. If the 
surface happens to be a plane surface, this definition agrees with the 
preceding; for example, if z = f(x, y) = 0, we have 

It is occasionally convenient to call the symbol 

lThe fact that the area of a plane set is multiplied on projection onto another plane 
with the cosine of the included angle a is a consequence of our general substitution 
formula for integrals. We can introduce Cartesian coordinate systems x, y and X, Y 
in the two planes such that the y- and Y-axes coincide. The projection of a point 
(X, Y) onto the x, y-plane then has coordinates x = X cos a, y = Y. Hence, the pro­
jected area is 

II dxdy = II ~~i,y~)dXdY= II dXdYcosa. 
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the element of area of the surface z = f(x, y). The area integral can then 
be written symbolically in the form 

We arrive at another form of the expression for the area if we think 
of the surface as given by an equation ~(x, y, z) = 0 instead of z = 
f(x, y). If we assume that ~z =1= 0, on the surface the equations 

az ~x az _ ~y 
ax = - ~z ' ay - - ~z 

at once give the expression 

(29b) 

for the area, where the region R is again the projection of the surface 
on the x, y-plane. 

Let us apply the area formula to the area of a spherical surface. The 
equation 

z = ./ R2 - x2 _ y2 

represents a hemisphere of radius R. We have 

az x az y 
ax = - ./ R2 - x2 - y2' ay = - ./ R2 - x2 _ y2 . 

The area of the full sphere is therefore given by the integral 

rJ dxdy 
A = 2R L ./ R2 _ x2 _ y2 ' 

where the region of integration is the circle of radius R lying in the 
x, y-plane and having the origin as its center. Introducing polar co­
ordinates and resolving the integral into single integrals we obtain 

f 21< rR r dr rR r dr 
A = 2R 0 de Jo ./R2 _ r2 = 41tR Jo ./R2 _ r2' 

The ordinary integral on the right can easily be evaluated by means 
of the substitution R2 - r2 = u; we have 
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in agreement with the result of Archimedes. 
In the definition of "area", we have hitherto singled out the co­

ordinate z. If the surface had been given by an equation of the form 
x = x(y, z) or y = y(x, z), however, we could have represented the area 
similarly by the integrals 

II oJ1 + Xy2 + Xz2 dy dz or 

or, if the surface were given implicitly, by 

(29c) 

or 

(29d) 

That all these expressions do actually define the same area can be 
verified directly. To this end, we apply the transformation 

to the integral 

x = x(y, z), 

y=y 

Here x = x(y, z) is found by solving the equation rjJ(x, y, z) = 0 for x. 
The Jacobian is 

and therefore, 

The integral on the right is to be taken over the projection R' of the 
surface on the y, z-plane. 
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If we wish to get rid of any special assumption about the position 
ofthe surface relative to the coordinate system, we must represent the 
surface in the parametric form 

x = ~(u, v), Y = \jI(u, v), z = X(u, v) 

and express the area of the surface as an integral over the parameter 
domain R. A definite region R of the u, v-plane then corresponds to 
the surface. In order to introduce the parameters U and v in (29a), we 
first consider a portion of the surface near a point at which the 
Jacobian 

d(x,y) = D 
d(u, v) 

is different from zero. For this portion we can solve for u and v as 
functions of x and y and obtain (see p. 261) 

\jIv 
Uz = D' 

~ 
Uy=- D' 

\jIu 
Vz = - D • 

~u 
Vy = D. 

for their partial derivatives. Through the equations 

az az az 
ax = au Uz + av Vz and 

we obtain the expression 

If we now introduce u and v as new independent variables and apply 
the rules for the transformation of double integrals (16b), p. 403 we 
find that the area A' of the portion of the surface corresponding 
to a parameter region R' is 
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In this expression no distinction appears between the coordinates x, 
y, and z. Since we arrive at the same integral expression for the area 
no matter which one of the special nonparametric representations we 
start with, it follows that all these expressions are equal and rep­
resent the area. 

So far we have only considered a portion of the surface on which 
one particular Jacobian does not vanish. We reach the same result, 
however, no matter which of the three Jacobians does not vanish. If 
then we suppose that at each point of the surface at least one of the 
Jacobians is not zero, we can subdivide the whole surface into 
portions like the above and thus find that the same integral still gives 
the area A of the whole surface: 

(30a) 

A = IL ./(tPull/f) - ll/utPf)2 + (ll/uXf) - Xull/f)2 + (XutPf) - tPuXf)2 du du. 

The expression for the area of a surface in parametric represen­
tation can be put in another noteworthy form if we make use of the 
coefficients of the line element (cf. Chapter 3, p. 283) 

ds2 = E du2 + 2F du du + G du2, 

that is, of the expressions 

E = tPu2 + ll/u2 + Xu2, 

F = tPutPf) + ll/ull/f) + XuXf), 

G = tPf)2 + ll/f)2 + Xf)2. 

A simple calculation shows that (see p. 284) 

Thus, for the area we obtain the expression 

(30c) A = II ./EG - F2 dudu, 

and for the element of area 

(3Od) da = ./EG - F2 du du. 



Multiple Integrals 429 

As an example, we again consider the area of a sphere with radius 
R, which we now represent parametrically by the equations 

x = R cos u sin v, 

y = R sin u sin v, 

z = R cos v, 

where u and v range over the region 0 ~ u ~ 2n and 0 ~ v ~ n. A 
simple calculation shows that here 

(30e) dcr = R2 sin v du dv, 

which once more gives us the expression 

f21t fit 
R2 Jo du Jo sin v dv = 4nR2 

for the area. 
More generally, we can apply formula (30d) to the surface of revolu­

tion formed by rotating the curve z = ~(x) about the z-axis. If we refer 
the surface to polar coordinates (u, v) in the x, y-plane as parameters, 
we obtain 

x = u cos v, y = USln v, 

Then, 

E = 1 + ifJ'2(U), F=O, 

and the area is given in the form 

(3la) i 21t lUI lUI dv u.Jl + ~'2(U) du = 2n u.Jl + ~'2(U) duo o q q 

If instead of u we introduce the length of arc s of the meridian curve 
z = ~(u) as parameter, we obtain the area of the surface of revolution 
in the form 

(3lb) LSI 
2n u ds, 

so 

where u is the distance from the axis of the point on the rotating curve 
corresponding to s (Guildin's rule; cf. Volume I, p. 374). 
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We apply this rule to calculate the surface area of the torus (cf. 
Chapter 3, p. 286) obtained by rotating the circle (x - a)2 + Z2 = r2 
about the z-axis. If we introduce the length of arc s of the circle as a 
parameter, we have u = a + r cos (s/r), and the area is therefore 

r2"" r2ltr( s) 21t Jo U ds = 21t Jo a + r cos r ds = 21ta • 21tr. 

The area of a torus is therefore equal to the product of the circumfer­
ence of the generating circle and the length of the path described by 
the center of the circle. 

Exercises 4.8 

1. Calculate the volume of the solid defined by 

{v'x2 + y2 - 1}2 Z2 
a2 + b2 ;:;;; 1 (a < 1). 

2. Find the volume cut oft' from the paraboloid (x2/a2) + (y2/b2) = z by the 
plane z = h. 

3. Find the volume cut oft'from the ellipsoid (x2/a2) + (y2/b2) + (Z2/C2) = 1 
by the plane lx + my + nz = p. 

4. (a) Show that if any closed curve 6 = f(t/J) is drawn on the surface r2 = 
a 2 cos 26 (r, 6, t/J being spherical coordinates in space), the area of the 
surface so enclosed is equal to the area enclosed by the projection of 
the curve on the sphere r = a, the origin of coordinates being the 
vertex of projection. 

(b) Express the area by a simple integral. 
(c) Find the area of the whole surface. 

5. Find the volume and surface area of the solid generated by rotating the 
triangle ABC about the side AB. 

6. Find the surface area of the paraboloid z = X2 + y2 intercepted between 
the cylinders X2 + y2 = a and x2 + y2 = b, where a = t [(2m - 1)2 - 1] 

and b = t [(2n - 1)2 + 1], m and n being natural numbers with n > m. 
7. Find the surface area of the section cut out of the cylinder X2 + Z2 = a2 

by the cylinder x2 + y2 = b2, where 0 < b ~ a and z ~ O. 
8. Show that the area }; of the right conoid 

x = rcos6, y = r sin 6, z = f(6), 

included between two planes through the axis of z and the cylinder 
with generating lines parallel to this axis and cross section r = f'(6), 
and the area of its orthogonal projection on z = 0 are in the ratio 
[v'2" + log (1 + v'2»):1. 
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4.9 Physical Applications 

In Section 4.4 (p. 386) we have already seen how the concept of 
mass is connected with that of a multiple integral. Here we shall study 
some of the other concepts of mechanics. We begin with a detailed 
study of moment and of moment of inertia. 

a. Moments and Center of Mass 

The moment with respect to the x,y-plane of a particle with mass m 
is defined as the product mz of the mass and the z-coordinate. Similarly, 
the moment with respect to the y,z-plane is mx and that with respect 
to the z,x-plane is my. The moments of several particles combine 
additively; that is, the three moments of a system of particles with 
masses ml, m2, . . ., mn and coordinates (Xl, YI, Zl), . . ., (Xn, Yn, Zn) 
are given by the expressions 

n n n 
(32a) Tx = ~ mvxv, Ty = ~ mvyv, Tz = ~ mvzv. 

v=l v=l v-I 

If we deal with a mass distributed with continuous density ~ = 
~(x, y, z) through a region in space or over a surface or curve, we 
define the moment of the mass-distribution by a limiting process, as 
in Volume I (p. 373) and thus express the moments by integrals. For 
example, given a distribution in space we subdivide the region R 
into n subregions, imagine the total mass of each subregion concen­
trated at anyone of its points, and then form the moment of the system 
of these n particles. We see at once that as n -4 00 and the greatest 
diameter of the subregions tends at the same time to zero, the sums 
tend to the limits 

(32b) Tx = JJL ~X dx dy dz, Ty = JJL ~y dx dy dz, 

Tz = JJL ~z dx dy dz, 

which we call the moments of the volume-distribution. 
Similarly, if the mass is distributed over a surface S given by the 

equations X = ~(u, v), y = ",(u, v), z = X(u, v) with density ~(u, v), we 
define the moments of the surface distribution by the expressions 
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(32c) T7I = fIs ~y dO' = fL ~y .JEG - F2 du dv, 

Tz = fIs ~z dO' = fL ~z .JEG - F2 du dv. 

Finally, the moments of a curve x(s), y(s), z(s) in space with mass 
density ~(s) are defined by the expressions 

(32d) L81 
Tz = ~xds, 

80 
L81 

T7I = ~yds, 
80 

where s denotes the length of arc. 

181 Tz = ~zds, 
80 

The center of mass of a mass of total amount M distributed through 
a region R is defined as the point with coordinates 

(32e) 

For a distribution in space, the coordinates of the center of mass are 
therefore given by the expressions 

~ = i:tffL~xdxdydz, ... , where M= ffL~dxdydz. 

If the .tmlss-distribution is homogeneous. ~(x, y, z) = constant, the 
center of mass of the region is called its centroid.! 

As our first example, we consider the homogeneous hemispherical 
region H with mass density 1: 

The two moments 

x2 + y2 + Z2 ~ 1, 

z~o. 

Tz = fffHXdxdydz, 

T7I = fffHydxdydz 

are 0, since the respective integrations with respect to x or y give the 
value o. For the third, 

IThe centroid is clearly independent of the choice of the constant positive value of 
the mass density. Thus, it may be thought of as a geometrical concept associated 
only with the shape of the region R, not dependent on the mass-distribution. 
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Tz = fffH Z dx dy dz, 

we introduce cylindrical coordinates (r, z, e) by means of the equa­
tions 

z = z, x = r cos e, y = rsin e 
and obtain 

Tz = 501 
Z dz 5o"'1-Z2 r dr 502

" de = 21t 501 1 -; Z2 Z dz 

= 1t(~ - ~)I : = ~ . 
Since the total mass is 21t/3, the coordinates of the center of mass are 
x = 0, y = 0, z = 3/8. 

Next, we calculate the center of mass of a hemispherical surface 
of unit radius over which a mass of unit density is uniformly dis­
tributed. For the parametric representation 

x = cos u sin v, y = sin u sin v, z = cos v 

we calculate the surface element from formula (30e) on p. 429 and find 
that 

(32g) dcr = .,JEG - F2 du dv = sin v du dv. 

Accordingly, we obtain 

(,,/2 (2" 
Tx = Jo sin2v dv Jo cos u du = 0, 

(,,/2 r2" 
T y = Jo sin2v dv Jo sin u du = 0, 

J"/2 r2" sin2v \ ,,/2 
Tz = 0 sin v cos v dv Jo du = 21t -2- 0 = 1t 

for the three moments. Since the total mass is obviously 21t, we see that 
the center of mass lies at the point with coordinates x = 0, y = 0, 
Z= t. 

b. Moment of Inertia 

The generalization of the concept of moment of inertia to a con­
tinuous mass-distribution is equally obvious. The moment of inertia 
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of a particle with respect to the x-axis is the product of its mass and of 
p2 = y2 + Z2, that is, of the square of the distance of the point from 
the x-axis. In the same way, we define the moment of inertia about the 
x-axis of a mass distributed with density J1(x, y, z) through a region 
R by the expression 

(33a) ffL J1(y2 + Z2) dx dy dz. 

The moments of inertia about the other axes are represented by 
similar expressions. Occasionally, the moment of inertia with respect 
to a point, say the origin, is defined by the expression 

(33b) JfL J1(x2 + y2 + Z2) dx dy dz, 

and the moment of inertia with respect to a plane, say the y, z-plane, 
by 

(33c) JfL J1X2 dx dy dz. 

Similarly, the moment of inertia, with respect to the x-axis, of a sur­
face distribution is given by 

(33d) 

where J1(u, v) is a continuous function of two parameters u and v. 
The moment of inertia of a mass distributed with density J1(x, y, z) 

through a region R, with respect to an axis parallel to the x-axis and 
passing through the point (~, TJ, ~), is given by the expression 

(33e) ffL J1[(Y - TJ)2 + (z - ~)2] dx dy dz. 

If in particular we let (~, TJ, ~) be the center of mass and recall the 
relations (32e) for the coordinates of the center of mass, we at once" 
obtain the equation 

(33f) ffL J1(y2 + Z2) dx dy dz = ffL J1[(Y - TJ)2 + (z - ~)2] dx dy dz 

+ (TJ2 + ~2) ffL J1 dx dy dz. 
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Since any arbitrary axis of rotation of a body can be chosen as the 
x-axis, the meaning of this equation can be expressed as follows: 

The moment of inertia of a rigid body with respect to an arbitrary 
axis of rotation is equal to the moment of inertia of the body about a 
parallel axis through its center of mass plus the product of the total mass 
and the square of the distance between the center of mass and the axis 
of rotation (Huygens's theorem). 

The physical meaning of the moment of inertia for regions in 
several dimensions is exactly the same as that already stated in 
Volume I, p. 375: 

The kinetic energy of a body rotating uniformly about an axis is equal 
to half the product of the square of the angular velocity and the moment 
of inertia. 

We calculate the moment of inertia for some simple cases. 
For the sphere V with center at the origin, unit radius and unit 

density, we see by symmetry that the moment of inertia with respect 
to any axis through the origin is 

I = ffSv (x2 + y2) dx dy dz 

= fffv (x2 + Z2) dx dy dz 

= ffSv (y2 + Z2) dx dy dz. 

If we add the three integrals, we obtain 

31 = fffv 2(x2 + y2 + Z2) dx dy dz. 

In spherical coordinates, 

2 f 1 i" i2" 2 1 81t I = 3- r 4 dr sin v dv du = - . - . 2 • 21t = - . 
o 0 0 3 5 15 

For a beam with edges a, b, c parallel to the x-axis, the y-axis, and 
the z-axis, respectively, with unit density and center of mass at the 
origin, we find that the moment of inertia with respect to the x, y­
plane is 

l a/2 lb/2 lC/2 c3 
dx dy z2dz = ab- . 

-a/2 -b/2 -c/2 12 
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c. The Compound Pendulum 

The notion of moment of inertia finds an application in the mathe­
matical treatment of the compound pendulum, that is, of a rigid body 
which oscillates about a fixed horizontal axis under the influence of 
gravity. 

We consider a plane through G, the center of mass of the rigid body, 
perpendicular to the axis of rotation; let this plane cut the axis in the 
point 0 (Fig. 4.16). The motion of the body is given as a function of time 
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Figure 4.16 

by the angle rfi = rfi(t) that OG makes at time t with the downward verti­
cal line through O. In order to determine the function rfi and also the 
period of oscillation of the pendulum, we assume a knowledge of 
certain physical facts (see p. 658). We make use of the law of con­
servation of energy, which states that during the motion of the body 
the sum of its kinetic and potential energies remains constant. Here V, 
the potential energy of the body, is the product Mgh, where M is the 
total mass, g the gravitational acceleration, and h the height of the 
center of mass above an arbitrary horizontal line (e.g., above the 
horizontal line through the lowest position reached by the center of 
mass during the motion). If we denote by OG, the distance of the center 
of mass from the axis, by s, then V = Mgs (1 - cos ~). By p. 435 the 
kinetic energy is given by T = t 1~2, where lis the moment of inertia 
of the body with respect to the axis of rotation and we have written 
~ for d~/dt. The law of conservation of energy therefore gives the 
equation 

(34a) 
1 . :2 1~2 - Mgs cos ~ = constant 
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If we introduce the constant I = 11Ms, this is exactly the same as the 
equation previously found1 (Volume I, pp. 408, 410) for the simple 
pendulum; I is accordingly known as the length of the equivalent 
simple pendulum. 

We can now apply the formulas obtained for the simple pendulum 
(Volume I, p. 410) directly. The period of oscillation is given by the 
formula 

JT fro d(J T-2 -
- 2g -flo .; cos (J - cos (Jo ' 

where (Jo corresponds to the greatest displacement of the center of 
mass; for small angles this is approximately 

T = 21t Jlg = 21t J pjgs· 

The formula for the simple pendulum is of course included in this as 
a special case, for if the whole mass M is concentrated at the center 
of mass, then 1= Ms2, so that I = s. 

Investigating further, we recall that I, the moment of inertia about 
the axis of rotation, is connected with 10, the moment of inertia about 
a parallel axis through the center of mass, by the relation (cf. 33£) 

Hence, 

1= 10 + Ms2. 

10 l=s+ -
Ms' 

or if we introduce the constant a = 101M, 

a 
l=s+-. 

s 

We see at once that in a compound pendulum 1 always exceeds s, 
so that the period of a compound pendulum is always greater than 

lIn the notation used here the motion of the point mass in the simple pendulum is 
described by x = I sin ;, y = -I cos; and its speed by l.~. Here;, by Volume I, 
p. 408, satisfies the differential equation 

1 . 2 (191)2 - g I cos; = constant. 
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that of the simple pendulum obtained by concentrating the mass M 
at the center of mass. Moreover, the period is the same for all parallel 
axes at the same distance S from the center of mass, for the length of 
the equivalent simple pendulum depends only on the two quantities S 

and a = 10/M and therefore remains the same, provided neither the 
direction of the axis of rotation nor its distance from the center of 
mass is altered. 

The formula 

T = 21t Js +ga/s 

shows that the period T increases beyond all bounds as s tends to 0 
or to infinity. It must therefore have a minimum for some value So. 
By differentiating we obtain 

JI0 
So =.fa = M. 

A pendulum whose axis is at a distance So = .J 10/ M from the center of 
mass will be relativ.ely insensitive to small displacements of the axis, 
for in this case dT/ds vanishes, so that first-order changes in s produce 
only second-order changes in T. This fact has been applied by Profes­
sor M. Schuler of Gottingen in the construction of very accurate 
clocks. 

d. Potential of Attracting Masses 

We have seen in Chapter 2 (p. 208) that Newton's law of gravitation 
gives the force that a fixed particle Q with coordinates (~, 11, ~) and 
mass m exerts on a second particle P with coordinates (x, y, z) and 
unit mass, apart from the gravitational constant 'Y, as 

where 

1 m grad -
r 

r = .J(x - ~)2 + (y - 11)2 + (z _ ~)2 

is the distance between the points P and Q. The direction of the force 
is along the line joining the two particles, and its magnitude is 
inversely proportional to the square of the distance. Here the gradient 
of a function f(x, y, z) is the vector with components 
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of of of 
ax' ay' oz· 

Hence, in our case the force has the components 

m(~...,.. x) 
r3 

m(TI - y) 
r3 

m(~ - z) 
r3 

If we now consider the force exerted on P by a number of points QI, 
Q2, . . ., Qn with respective masses mI, m2, . . ., mn, we can express 
the total force as the gradient of the quantity 

mi + m2 + . . . + mn , 
rl r2 rn 

where rv denotes the distance of the point Qv from the point P. If a 
force can be expressed as a gradient of a function, it is customary to 
call this function the potential of the force ,.1 we accordingly define the 
gravitational potential of the system of particles QI. Q2, . . ., Qn at the 
point P as the expression 

n mv 
~1 .j(x - ~v)2 + (y - Tlv)2 + (z - ~v)2 • 

We now suppose that instead of being concentrated at a finite 
number of points the gravitating masses are distributed with con­
tinuous density ~ over a portion R of space or a surface S or a curve 
C. Then the potential of this mass-distribution at a point with co­
ordinates (x, y, z) outside the system of masses is defined as 

(35a) 

or 

(35b) JL~dcr, 

or 

(35c) L81 ~ - ds. 
80 r 

IOften the negative of this function, which has the meaning of potential energy, is 
called the potential of the forces. 



J,lI) Introduction to Calculus and Analysis. Vol. II 

In the first case, the integration is taken throughout the region R 
with rectangular coordinates (~, 11, s); in the second case, over the 
surface S with the element of surface dcr; and in the third case, along 
the curve with length of arc s. In all three formulae, r denotes the 
distance of the point P from the point (~, 11, s) of the region of inte­
gration and J.l the mass density at the point (~, 11, s). In each case the 
force of attraction is found by forming the first derivatives of the 
potential with respect to x, y, z. Working with the potential rather 
than with the force has the advantage that only one integral instead 
of three has to be evaluated. The three force components are then 
obtained as derivatives of the potential. 

For example, the potential at the point P with coordinates (x, y, z) 
due to a sphere K with uniform density 1, with unit radius and with 
center at the origin, is the integral 

ill d~dllds 
K ./(x - ~)2 + (y - 11)2 + (z - S)2 

1
+1 1+,./1-1;2 1+,./1-1;2-112 1 

= d~ _ dll __ -ds. 
-1 - "/1-1;2 - "/1-1;2-112 r 

In all the expressions (35a, b, c) the coordinates (x, y, z) ofthe point 
P appear not as variables of integration but as parameters, and the 
potentials are functions of these parameters. 

To obtain the components of the force from the potential we have 
to differentiate the integral with respect to the parameters. The rules 
for differentiation with respect to a parameter extend directly to 
multiple integrals, and by p. 74, the differentiation can be performed 
under the integral sign, provid~d that the point P does not belong to 
the region of integration, that is, provided that we are certain that 
there is no point of the closed region of integration for which the dis­
tance r has the value o. Thus, for example, we find that the components 
of the gravitational force on a unit mass due to a mass distributed with 
unit density through a region R in space are given by the expressions 

(36) Fl = - SSt x ;a ~ d~ dll ds, 

F2 = - SSt y ;a 11 d~ dll ds, 

Fa = - SSt z ;; s d~ dll ds. 
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Finally, we point out that the expressions for the potential and its 
first derivatives continue to have a meaning if the point P lies in the 
interior of the region of integration. The integrals are then improper 
integrals, and as is easily shown, their convergence follows from the 
criteria of Section 4.7 

As an illustration, we calculate the potential at an internal point 
and at an external point due to a spherical surface S with radius a 
and unit density. If we take the center of the sphere as the origin and 
let the x-axis pass through the point P (inside or outside the sphere), 
the point P will have the coordinates (x, 0, 0), and the potential will be 

If we introduce spherical coordinates on the sphere through the 
equations 

~ = a cos 0, 

11 = a sin 0 cos ~, 

~ = a sin 0 sin ~, 

then [see (30e), p. 429] 

i lt aZ sin 0 i ZIt 
U = 0 ,.J(x - a cos O)Z + aZ sinzO dO 0 dtp 

(It aZ sin 0 
= 21t Jo ,.; x2 + a2 - 2ax cos e de. 

We put XZ + aZ - 2ax cos 0 = rZ, so that ax sin 0 dO = r dr, and 
(provided that x =1= 0) the integral then becomes 

u = 21ta f lx+al r dr = ~1t a (Ix + al _ Ix - aD. 
x Ix-al r x 

For I x I > a we therefore have 

and for Ixl < a, 

u = 41ta. 
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Hence, the potential at an external point is the same as if the whole 
mass 47tu2 were concentrated at the center of the sphere. On the other 
hand, throughout the interior the potential is constant. At the surface 
of the sphere the potential is continuous; the expression for U is still 
defined (as an improper integral) and has the value 47tu. The com­
ponent of force Fz in the x-direction, however, has a jump of amount 
- 47t at the surface of the sphere, for if I x I > u, we have 

47tu2 
Fz = - -2- sgn x, 

X 

while Fz = 0 if Ixl < u. 
The potential of a solid sphere of unit density is found from that 

of a spherical surface by integrating with respect to u. This gives the 
value 

for the potential at an external point. This again is the same as if the 
total mass (4/3)7tu3 were concentrated at the center. By differentiation 
with respect to x we find for a point on the positive x-axis that 

41ta3 
Fz= - -2-' 

X 

This is Newton's result that the ,attraction exerted by a solid sphere 
of constant density on an external point is the same as if the mass of 
the sphere were concentrated at its center (Volume I, p. 413). 

Exercises 4.9 

1. (a) Find the position of the centroid of a solid right circular cone. 
(b) What is the position of the centroid of the curved surface of the cone? 

2. Find the position of the centroid of the portion of the paraboloid Z2 + .12 

= px cut oft' by the plane x = Xo, where Xo < O. 
3. Find the centroid of the tetrahedron bounded by the three coordinate 

planes and the plane xla + .1lb + zlc = 1. 
4. (a) Find the centroid of the hemisphericalshell a2 ~ x2 + .12 + Z2 ~ bZ, 

z~ O. 
(b) Show that the centroid of the hemispherical lamina x2 + .12 + Z2 

= a2 is the limiting position of the centroid in part (a) as b ap­
proaches a. 
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5. Find the moment of inertia about the z-axis of the homogeneous 
rectangular parallelopiped of mass m with 0 ;:;;; x ;:;;; a, 0 ;:;;; y ;:;;; b, 0 ;:;;; z 
;:;;; c. 

6. Calculate the moment of inertia of the homogeneous solid enclosed 
between the two cylinders 

X2+y2=R and X2 +y2=R' 

and the two planes z = hand z = -h, with respect to 
(a) the z-axis, 
(b) the x-axis. 

(R > R') 

7. Find the mass and moment of inertia about a diameter of a sphere whose 
density decreases linearly with distance from the center from a value 
!Lo at the center to the value !LI, at the surface. 

S. Find the moment ofinertia of the ellipsoid x2/a2 + y2/b2 + Z2/C2 ;:;;; 1 with 
respect to 
(a) the z-axis, 
(b) an arbitrary axis through the origin, given by 

x:y:z = ct:(3:y (ct2 + (32 + y2 = 1). 

9. If A, B, C denote the moments of inertia of an arbitrary solid of positive 
density with respect to the X-, yo, and z-axis, then the "triangle inequal­
ities" 

A + B > C, A + C> B, B + C> A 

are satisfied. 
10. Let 0 be an arbitrary point and 8 an arbitrary body. On every ray from 

o we take the point at the distance IN! from 0, where I denotes the 
moment of inertia of 8 with respect to the straight line coinciding with 
the ray. Prove that the points so constructed form an ellipsoid (the so­
called momenta I ellipsoid). 

11. Find the momental ellipsoid of the ellipsoid x2/a2 + y2/b2 + Z2/C2 ;:;;; 1 
at the point (~, ll, ~). 

12. Find the coordinates of the center of mass of the surface of the sphere 
x 2 + y2 + Z2 = 1, the density being given by 

1 
!L = ../(x _ 1)2 + y2 + Z2 • 

13. Find the x-coordinate of the center of mass of the octant of the ellipsoid 

x2/a2 + y2/b2 + Z2/C2 ;:;;; 1 (x ~ 0, y ~ 0, z ~ 0). 

14. A system of masses 8 consists of two parts 81 and 82; II, 12, I are the 
respective moments of inertia of 81, 82, 8 about three parallel axes 
passing through the respective centers of mass. Prove that 
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where ml and m2 are the masses of 81 and 82 and d the distance between 
the axes passing through their centers of mass. 

15. Find the envelopes of the planes with respect to which the ellipsoid 
(x2/a2) + (y2/ b2) + (Z2/C2) ~ 1 has the same moment of inertia h. 

16. Calculate the potential of the homogeneous ellipsoid of revolution 

(b > a) 

at its center. 
17. Calculate the potential of a solid of revolution 

r = ../X2 + y2 ~ fez) (a ~z ~ b) 

at the origin. 
18. Show that at sufficiently great distances the potential of a solid 8 is 

approximated by the potential of a particle of the same total mass 
located at its center of gravity with an error less than some constant 
divided by the square of the distance. 

19. Assuming that the earth is a sphere of radius R for which the density 
at a distance r from the center is of the form 

P =A -Br2 

and the density at the surface is 2~ times the density of water, while the 
mean density is 5~ times that of water, show that the attraction at an 
internal point is equal to 

where g is the value of gravity at the surface. 
20. A hemisphere of radius a and of uniform density p is placed with its 

center at the origin, so as to lie entirely on the positive side of the x, y­
plane. Show that its potential at the point (0, 0, z) is 

27tP[ 3 ] 4 - (a2 + Z2)3/2 - a3 + - a2z - - 7tPZ2 
3z 2 3 if O<z<a 

and 

2;P[(a2 + Z2)3/2 + a3 - ~ a2z J- ~ 7tPZ2 if z>a. 

21. Let (Xl, Yl), (X2, Y2), (xa, Ya) be the vertices of a triangle of area A (the 
order of the suffixes giving the positive orientation). Prove that the 
moment of inertia of the triangle with respect to the x-axis is given by 

A 6" (y12 + Y22 + ya2 + YIY2 + y2Y3 + Y3Yl). 

22. Prove that the attraction at either pole of a uniform spheroid with 
density p and semiaxes a, a, C is equal to 
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J, 2C 
2"p 0 r(l - cos 6) dr, 

where 

r = 2a2c cos 6/(a2 cos2 6 + c2 sin2 6). 

23. It is known experimentally that a charged conducting spherical lamina 
(on such a surface the charge distributes itself uniformly) exerts zero 
force on a point charge inside the sphere. Assuming that point charges 
repel or attract each other with a force dependent only on the distance 
between them, prove that this experiment implies Coulomb's law­
namely, that point charges attract or repel each other with a force 
proportional to the inverse square of their separation. This result is the 
converse of the theorem that the force of gravity of a homogeneous 
spherical lamina vanishes in its interior. 

4.10 Multiple Integrals in Curvilinear Coordinates 

a. Resolution of Multiple Integrals 

H the region R of the x, y-plane is covered by a family of curves 
t)(x, y) = constant, so that each point of R lies on one, and only one, 
curve of the family, we can take the quantity t)(x, y) = ~ as a new 
independent variable; that is, we can take the curves CI; represented 
by t)(x, y) = constant = ~ as one of the two families of curves in a 
coordinate grid. 

For the second independent variable we can choose the quantity 
" ::;:; y, provided that we restrict ourselves to a region R in which each 
pair of curves t)(x, y) = constant and y = constant intersect in one 
point. 

Hwe introduce these new variables, a double integralffR{(x, y) dx dy 
is transformed as follows [cf. (I6b), p. 403]: 

II {(x, y) dx dy = II {~~~r d~ dll. 

Keeping ~ constant and integrating the right-hand side with respect 
to 11, the integral with respect to 11 can be written in the form 

Since on 0; 
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this integral may be regarded as an integral along the curve ;(x, y) = 
~, the length of arc s being the variable of integration. Thus, we 
obtain the resolution 

(37a) rr f r {(x,y) JJ {(x, y) dx dy = d~ JCI; "!;z2 + ;1/2 ds 

for our double integral. 
The intuitive meaning of this resolution is very easily recognized 

if we suppose that corresponding to the curves CI; there is a family of 
orthogonal curves (the so-called orthogonal trajectories) that intersect 
each separate curve; = constant = ~ at right angles, in the direction 
of the vector grad ;. If cr is the length of arc on an orthogonal curve 
represented by the functions x(cr) and y(cr), then 

dx ;z dy ;1/ 
dcr = .,! ;z2 + ;1/2' dcr = .,! ;z2 + ;1/2 . 

Since 

we obtain 

(37b) 

Figure 4.17 
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We now consider the mesh bounded by two curves rp(x, y) = ~, rp(x, y) 
= ~ + A~, and two orthogonal curves that cut off a portion of 
length As from rp(x, y) = ~ (Fig. 4.17). The area of this mesh is given 
approximately by the product As Acr, and this in turn is approximate­
ly equal to 

This leads to a new interpretation of the identity (37a); 

Instead o{ calculating a double integral by subdividing the region 
into "infinitesimal rectangles" with sides parallel to the coordinate 
axes, we may use the subdivision into infinitesimal curvilinear rectan­
gles determined by the curves rp(x, y) = constant and their orthogonal 
trajectories. 

A similar resolution can be effected in three-dimensional space. If 
the region R is covered by a family of surfaces Sf; given by an equation 
rp(x, y, z) = constant = ~ in such a way that through every point 
there passes one, and only one, surface, then we can take the quantity 
~ = rp(x, y, z) as a variable of integration. In this way we resolve a 
triple integral 

fft {(x, y, z) dx dy dz 

= f d~ rr {(x, y, z) ./rpz2 + rpi + rpi d d 
JJ ./ rpz2 + rpy2 + rpz2 I rpz I .y z 

into an integral 

over the surface rp = ~ with element of area 

[see (29d), p. 426] and a subsequent integration with respect to ~: 
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This formula again permits a geometric interpretation if we in­
troduce the two-parametric family of curves orthogonal at each point 
to a surface l; = constant and use, in addition to the SF., coordinate 
surfaces consisting of those curves. 

b. Application to Areas Swept Out by Moving Curves and Volumes 
Swept Out by Moving Surfaces. Guldin's Formula. The Polar 
Planimeter 

The quantity 

dcr 1 
dl; = J ~x2 + ~112 

appearing in formulae (37a, b) can be interpreted kinematically if we 
identify the parameter l; with the time t. The equation ~(x, y) = 
constant = t represents then the position Ct of a moving curve at the 
time t. The quantity A.cr, which measures distances along the curves 
orthogonal to the curves Ct, can be thought of as the normal distance 
between the curves Ct and Ct+4t. Accordingly, 

(38a) 
dcr 1 

c = dt = ';~x2 + ~112 

is the normal velocity of the moving curve Ct at the time t. This veloc­
ity is different at different points of Ct. Similarly, the normal velocity 
of the moving surface Bt in space with equation ~(x, y, z) = constant 
= tis 

(38b) 
1 

In physics, such moving surfaces occur as wave fronts (e.g. for electro­
magnetic waves propagating in a medium). 

The normal velocity c of a moving surface Bt (and similarly of a 
moving curve Ct in the plane) has a particularly simple meaning if 
St consists of individual moving particles. If the position of one of 
these particles is described by the three functions x = x(t), y = y(t), 
z = z(t) and if the particle at all times stays on the moving surface, 
the equation 

~(x(t), y(t), z(t» = t 
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must hold for all t. Differentiating with respect to t we find the 
equation 

IT we divide this equation by the absolute gradient of ~ we obtain 
the relation 

(3Sc) 

where c is the normal velocity defined by (3Sb),~, 11, ~ are the direction 
cosines of one of the normals of St, and the positive or negative sign 
applies according to the normals pointing in the direction of increas­
ing or decreasing t, respectively. IT we introduce the unit-normal 
vector 

and the velocity vector of the particle 

(dx dy d~ 
v = dt ' dt' dt) 

we can represent c by the scalar product 

(38d) c= ±von 

In words, the component normal to the surface St of the velocity of a 
particle moving with the surface equals ± c where c is the normal 
velocity of St. The positive sign holds when n is the "forward" normal 
of St, that is, the normal on the side of the surface facing the points to 
be swept over in the immediate future. 

Formula (37c) for f = 1 yields an expression for the volume Vofthe 
region swept over by a movin-g surface St with normal velocity c: 

(39a) v = III dxdydz = I dt IIst cdS. 

Similarly, we find for the area A of a region in the plane swept over by 
a moving curve Ct the expression 

(39b) 
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We apply these results to the case of an area swept over by a 
straight line segment C, moving in the plane (Fig. 4.18). The segment 
can be represented by an equation of the form 

(40a) ~(t)x + 11(t)y = p(t), 

where (~, 11) is the unit normal and p the (signed) distance of Ct from 
the origin. The center of C, (which is the same as its centroid) is at the 
point [see (32e), p. 432] 

(40b) X(t) = fi;tX:' Y(t) = fj/;!S 

Figure 4.18 

Integration of (40a) with respect to S over the segment C, furnishes the 
relation 

(4Oc) ~(t)X(t) + 11(t) Y(t) = p(t), 

which merely states that the center of Ct lies on Ct. If C, is thought to 
consist of individual moving particles the normal component of the 
velocity of these particles is found from (40a), (38c) to be 

dx dy dp d~ d11 
nov = ~ dt + 11 dt = dt - dt x - dt y. 

Hence by (40b), (40c) 

L L (dp d~ d11 )L ± cds= novds= ---X--Y ds Ct Ct dt dt dt Ct 
= (~dX + 11 dY\ f ds = w 0 nL 1 

dt de }JCt 
IThe same formula can also be derived using the expression (38a) for c if one calcu­
lates the first derivatives of the function t = ;(x, y) with respect to x and y from the 
implicit equation (40a) for the function t. 
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where 

(dX dY) 
W= (ii, dt 

is the velocity vector of the center (X, Y) of the segment Ct, and 

L = L(t) = r ds, 
Jet 

the length of Ct. It follows from (39b) that the area swept over by the 
moving segment Ct is 

(41a) A = f ± L W • n dt. 

In the same way, one finds that the volume swept out by a moving 
plane region St of area A(t) and unit normal n is 

(41b) v = f ± Aw 0 n dt, 

where w is the velocity of the centroid (X, Y, Z) of St. In these formulas 
the positive sign is taken when n is the "forward normal" of St, the 
one that points in the direction of motion. 

Of special interest is the case of formula (41b) in which the cen­
troid (X, Y, Z) of St moves along a curve which at every moment is 
perpendicular to the plane of St. In that case, the normal component 
of velocity of the centroid coincides with the speed of motion of the 
centroid along its path: 

dcr 
±won=dt' 

where cr is the length of arc along the path of the centroid. It follows 
then that 

(42a) v = f A ~; dt = f A dcr. 

If, moreover, all the plane regions St have the same area A, we find 
that 

(42b) 
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or that the volume swept out by the Se is equal to their area A multiplied 
by the length of the path described by their centroids. A particular case is 
obviously Guldin's rule for the volume of a solid of revolution swept out 
by rotation of a plane region R about an axis in that plane. The volume 
is equal to the area A of R multiplied by the length of the path described 
by the centroid of R during the revolution (see Volume I, p. 374). 

Returning to formula (41a) we see that the integral 

(43a) f Lw· n dt 

represents the signed area swept out by the segments Ce, the sign de­
pending on whether the normal n points in the direction of motion or 
in the opposite one. The same holds for an integral 

(43b) , f Aw· n dt 

associated with volumes swept out by a moving plane area. 
These observations allow us to extend our results to cases in which 

the segment or plane area does not always move in the same sense or 
covers part of the plane (or space) more than once. The integrals given 
above will then express the algebraic sum of the areas (or volumes) 
of the parts of the region described, each taken with the appropriate 
sign. 

As an example, let a segment of constant length move so as to have 
its end points always on two fixed curves rand r' in a plane, as in Fig. 
4.19. From the arrows showing the positive direction of the normal, 
we can determine the sign with which each area appears in the inte­
gral, and we find that the integral gives the difference between the 
areas enclosed by rand r'. If r' contains zero area, as when it de-

Figure 4.19 
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generates into a single segment of a curve multiply described, the in­
tegral gives the area enclosed by r. 

This principle is used in the construction of the well-known polar 
planimeter (Amsler's planimeter). This is a mechanical apparatus for 
measuring plane areas. It consists of a rigid rod at the center of which 
is a measuring wheel that can roll on the drawing-paper. The plane of 
the wheel is perpendicular to the rod. When the instrument is to be 
used to measure the area enclosed by a curve r drawn on the paper, 
one end of the rod is moved round the curve, while the other is hinged 
to a rigid arm whose other end pivots about a fixed point 0, the pole, 
exterior to r. The hinged end of the rod therefore describes (multiply) 
an arc of a circle, that is, a closed curve containing zero area. It 
follows that here the expression (43a) furnishes the area enclosed by 
r. But the integrand Lw·n is proportional to the angular speed with 
which the measuring wheel turns, provided that the circumference of 
the wheel moves on the paper as the rod moves, in which case the 
position of the wheel is only affected by the motion normal to the rod. 
The total angle by which the wheel has turned is then proportional 
to the area enclosed by r. 

In the instrument as usually constructed the wheel is not exactly 
at the center of the rod, but this only alters the factor of proportion­
ality in the result, and the factor can be determined directly by a 
calibration of the instrument. 

4.11 Volumes and Surface Areas in Any Number of Dimensions 

a. Surface Areas and Surface Integrals in More than Three 
Dimensions 

In n-dimensional space described by n coordinates Xl, . . ., Xn an 
(n - 1)-dimensional surface (hypersurface or manifold) is defined by 
an implicit equation 

(44a) ~(XI, X2, •.• , Xn) = constant, 

where at each point of the surface at least one of the first derivatives 
of ~ does not vanish. We suppose that a portion S of this surface 
corresponds to a certain region Bin XIX2 •• 'Xn-I-space where a~/aXn 
=1= 0 and Xn can be calculated from equation (44a) as a function of the 
other coordinates. 

We now define the (n - I)-measure of this portion of surface as the 
integral 
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This definition is a formal generalization of formula (29b), p. 425 for 
areas of surfaces in three-space and can be based on similar intuitive 
arguments. When there is no danger of confusion, we shall also refer to 
A simply as "area" even in the case of a hypersurface in n-dimensional 
space. A more systematic discussion of surfaces, surface areas, and 
surface integrals will be given in the next chapter. For the moment, 
we observe only that the quantity A defined by (44b) is independent 
of the choice of the coordinate Xn for which we solve equation (44a). 
This may be proved in the same way as was done in the three-dimen­
sional case on p. 426. 

More generally, we define the integral o{ a {unction{(xl, ... , Xn) 
over this (n - I)-dimensional surface as 

(44c) 

= fL ... f {(Xl, . 

IIs ... I {(Xl,. . ., Xn) dcr 

..; 9Z}2 + . . . + 9z 2 
" Xn) 19zn I n dXI dX2 • • • dXn-l, 

where, as before, we suppose that Xn is expressed in terms of Xl, . . ., 
Xn-l by means of equation (44a). We again find that the value of the 
expression (44c) is independent of the choice of the variable Xn. 

As for two or three dimensions, a multiple volume integral over an 
n-dimensional region R 

(45a) IL ... I {(Xl, . . ., Xn) dXI, . . ., dXn 

can be resolved into surface integrals [see formulas (37a, c)]. We 
assume that the region R is covered by a family of hypersurfaces SP. 

(45b) 9(Xl, . . ., Xn) = constant = ~ 

in such a way that through each point of R there passes one, and only 
one, surface. If we replace Xl, . . ., Xn-l, Xn by new independent 
variables 

Xl, . . ., Xn-l, ~ = 9(XI, . . ., Xn), 

the multiple integral (45a) becomes by the rule for transformation of 
integrals (p. 404) 
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fd J! f fl(XI' ... , Xn) d d 
~ ... I I Xl • •• X_I. 

(Jzn 

Using formula (44c), we obtain the formula 

(45c) 

where 

(45d) 

is the element of area of the surface Sf.. 

b. Area and Volume 01 the n-Dimensional Sphere 

As an application of the formula (45c) for reduction of volume to 
surface integrals, we sha.ll calculate the area and volume of a sphere 
of radius R inn-dimensional space, that is, the area of the hyper­
surface with equation 

(46a) 

and the volume of the ball 

(46b) 

We first derive a general formula that reduces the space integral 
of a function with spherical symmetry to a single integral. We say the 
function 1 of the variables Xl, • . ., Xn has spherical symmetry if 

1= I(r), 

where 

(46c) 

that is, if 1 is constant on spheres with centers at the origin. The 
sphere S, of radius r about the origin is given by the equatioJ). 

(46d) (J(XI, ••• , Xn) = ";~12 + ... + Xn2 = constant = r. 
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Here 

(46e) 

From (45c) we then obtain the volume integral of the function f(r) 
over the ball (46b), namely, 

(460 If. •• I f(r) dXl ••• dXn = foR f(r) dr Is, ... Ida 

= foR f(r) an(r)dr, 

where an(r) is the area of the sphere Sr. Here, by (44b), (46e) the area 
of the hemisphere 

(Xn ~ 0) 

is 

(47a) 1 L I dXl • • • dXn-l - an (r) = r • • • , 
2 B, Xn 

where the integration is extended over the (n - I)-dimensional ball 
Br given by 

and where 

Replacing Xl, • . ., Xn-l in Br by the new variables 

and putting 

we obtain from (47a) that 

1 
~,= -X, 

r 
(i = 1, ... , n - 1) 

(47b) an(r) = 2rn-1 I ••• J d~l •• ~: dSfI-l , 
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where the integration is over the unit ball in n - 1 dimensions 

Formula (47b) can be written as 

(47c) 

where 

ron = 2 II· . . I d~l • .~: d~n-l = On(l) 

is the area of the unit sphere 81 in n dimensions. It expresses the 
intuitively plausible fact that areas of spheres in n dimensions are 
proportional to the (n - l)-st power of their radius. Formula (46f) for 
the space integral over the ball (46b) of a function with spherical 
symmetry now takes the form 

(48a) II· .. I f(r) dXl ••• dXn = ron foR f(r)rn- l dr. 

We can calculate ron conveniently from this formula. We choose for 
f(r) a function for which the integral on the right converges absolutely 
for R ~ 00 and can be evaluated explicitly. The improper integral of 
f(r) as a function of Xl, . • ., Xn over the whole space then also con­
verges. We choose for f the function 1 

f(r) = exp( -r2) = exp( -X12 - ••• - Xn2). 

The integral of f over the whole space is the limit of integrals over cubes 
Ca with center at the origin and sides of length 2a parallel to the axes. 
Here 

If ... I f(r) dXl ••• dXn 
C a 

= L: dXl L: dX2 • • • L: dXn exp( - X12) exp( - X22) • • • exp( - Xn2) 

lOne conveniently writes exp(z) for the exponential function eZ in cases where the ex­
ponent z is a more complicated expression. 
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Thus, for a ~ 00, we obtain from (48a) the identity 

(48b) 

For the special case n = 2, this formula already has been derived by 
a similar argument on p. 415 and led to the result [see (25a)] that 

(48c) (1) ~ -r 2 = l~ e-x2 dx = ./rt. 

On the other hand, the substitution r2 = s shows that 

(48d) e-r2 rn- 1 dr = - r e-ss(n-2)/2 ds = - r -. l~ 1 ~ 1 (n) 
o 2Jo 2 2 

Here r(~) denotes the gamma function defined by 

r(~) = L~ e-ssl1- 1 ds 

in Volume I (p. 308).1 Hence, (48b) leads to the value 

(48e) 2./rtn 

ron = r(~) 

(~> 0) 

for the surface area of the unit sphere in n dimensions. The value of 
r(n/2) for integers n is easily determined from the recursion formula 

(48f) r(~) = (~ - 1) r(~ - 1), 

which follows directly by integration by parts from the definition 
of the gamma function (see Volume I, p. 308). Hence, for even n 

(48g) r - = -- -- •.• - r (1) = - - 1 , (n) n-2 n-4 2 (n) 
2 2 2 2 2' 

while for odd n, using (48c), 

(!!-) _ n - 2 n - 4 ••• 1 (!) _ (n - 2)(n - 4) ••• 3·1 -
(48h) r 2 - 2 2 2 r 2 - 2(n-l)/2 ./rt. 

In this way we obtain from (48e) successively the values 

lSee also pp. 497 of the present volume. 
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8 
ro5 = 31t2, • 

In order to find the volume of the n-dimensional ball Vn(R) of radius 
R, we put f = 1 in formula (48a) and find that 

(49a) Vn(R) = II· .. I dXI ••• dXn = ron foR r n- l dr = vnRn, 

where 

(49b) 
1 ../xn 

Vn = n ron = r (n ~ 2) 

is the volume of the n-dimensional unit ball. Thus, 

(49c) 
4 1 8 

VI = 2, V2 = 1t, V3 = 31t, V4 = "2 1t2, Vs = 151t2, • 

c. Generalizations. Parametric Representations 

In n-dimensional space we can consider an r-dimensional set for 
any r ~ n and seek to define its area. For this purpose a parametric 
representation is advantageous. Let the r-dimensional set be given 
by the equations 

Xn = ,pn(Ul, ... , Ur), 

where the functions ,pv possess continuous derivatives in a region B 
of the variables (UI, •.. , Ur). As the variables UI, .•. , Ur range over 
this region, the point (Xl, . . ., Xn) describes an r-dimensional surface. 

From the rectangular matrix (see p. 147), 

aXI aX2 aXn 
aUI aUI ••• aUI 

aXI aX2 aXn 
aU2 aU2 ••• aU2 

aXI aX2 aXn 
aUr aUr··· aUr 
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we now form all possible r-rowed determinants D" where i = 1, 2, 

., k = (;), the first of which, for example, is the determinant 

aXI aX2 aXr 

aUI aUI' •• aUI 

aXI aX2 aXr 

DI= 
aU2 aU2' •• aU2 

aXI aX2 aXr 

aUr aUr ••• aUr 

The area of the r-dimensional surface is then given by the integral 

k = (;). 

By means of the theorem on the transformation of multiple in­
tegrals (p. 404) and simple calculations with determinants (which we 
shall omit here), we can prove that the area defined by this expression 
is not changed if we replace UI, • . ., Ur by other parameters. We see 
also that for r = 1 this reduces to the usual formula for the length 
of arc, and for r = 2 in a space of three dimensions it becomes formula 
(30a), p. 428 for the area. 

We prove formula (50a) when r = n - 1, where n is arbitrary; that 
is, we shall prove the following theorem: 

If a portion of an (n - I)-dimensional hypersurface in n-dimensional 
space can be represented parametrically by the equations 

XI = ",,(UI, .•• , Un-I) 

then its area is given by 

where D, is the Jacobian of (n - I) rows given by 

D d(XI, • • ., XI-I, X'+I, ••• , Xn} ,-
- d(UI, • • ., Un-I} 

(i = 1, .. . ,n), 

_ 1/ d(UI, ••• , Un-I} 
- d(XI, • • ., X'-l, XC+I, • . ., Xn} • 
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Here, as always, we assume the existence and continuity of all the 
derivatives involved. 

Without loss of generality we may assume that ¢1xn =1= O. Then, by 
(44b), A is given by 

A = f· .. f'1~:~i' dXI· •• dXn-l. 

We have only to show that 

I ¢1~n I I grad ¢1 I dXI • • • dXn-1 = J ~ D,2 dUI • • • dUn-I, 

or 

Now, from the properties of Jacobians, 

DI _ d(XI, .•. , XI-I, XI+I, ... , Xn)/d(UI, ... , Un-I) 
Dn - d(XI, ... , Xn-I)/d(UI, ... , Un-I) 

= 
d(XI, . . ., XI-I, XHI, . . ., Xn) 

d(XI, . . ., Xn-l) 

This last Jacobian corresponds to the introduction of (Xl, ••• , XI-I, 
XHI, ... , Xn) instead of (Xl, ... , Xn-l) as independent variables. But as 

the partial derivatives aaxn are obtained from the equations 
Xt 

(i = 1, . . ., n - 1), 

we have Dt/Dn = ± ¢1Xi/¢1xn. Hence, 

which proves the formula (50b) for A. 
It may be mentioned here that the expression ~, D,2 may be rep­

resented as a determinant of (n - 1) rows, 
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(50c) 
n 

W = ~ D,2 = r(XU1 , • • ., X Un- 1) 
,=1 

= I ~~1". ~~1 . ~~1 : ~U~ ~ ~ '. ~:1: .~U~-1 
I X Un- l • X Ul ••••••• X Un- l • X Un- l 

("Gram determinant"; see p. 194), so that 

(50d) A = r .. f v'Wdul· •• dUn-I. 

Here, the elements of the determinant are the inner products of the 
vectors 

and (aXl aXn) 
XUk = aUk" • ., aUk ' 

namely, the expressions 

(50e) 

Exercises 4.11 

1. Calculate the volume of the n-dimensional ellipsoid 

Xl2 Xn2 -+ ... +-::;;1. 
al2 an2 -

2. Express the integral I of a function of Xl, depending on Xl alone, over the 
unit sphere Xl2 + ... + Xn 2 = 1 in n-dimensional space, as a single 
integral. 

3. An n-simplex is the intersection in n-dimensional space of n + 1 half­
spaces in general position; that is, any n of the bounding hyperplanes 
of the half-spaces meet in exactly one point, a vertex of the simplex: For 
example, a triangle in the plane or a tetrahedron in three-dimensional 
space. Find the volume of the n-simplex bounded by the hyperplanes 
Xk ~ 0 for k = 1, 2, . . ., nand 

Xl X2 Xn -+ -+ ... + - ~1. 
al a2 an 

4.12 Improper Single Integrals as Functions of a Parameter 

a. Uniform Convergence. (JontinuoUB Dependence on the Parameter 

Improper integrals frequj;ln~ly appear as functio~s of a parameter. 
For example; the integral of the gen~ral power 



(51a) 
1 1 r yXdy=­

Jo x + 1 
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is an improper integral for x in the interval -1 < x < O. 
We have seen (p. 74) that an integral over a finite interval is 

continuous when regarded as a function of a parameter, provided that 
the integrand is continuous. In the case of an infinite interval, 
however, the situation is not so simple. Let us consider, for example, 
the integral 

(51b) F(x) = (" sin xy dy. 
Jo y 

According to whether x > 0 or x < 0, this is transformed by the sub­
stitution xy = z into 

(" sin z dz 
Jo z 

The integral 

or L-OO sin z Loo sin z -- dz = - --dz. 
o z 0 z 

rOO sin z dz 
Jo z 

converges, as we have seen in Volume I (p. 310), and in fact has the 
value 'It/2 (Volume I, p. 589). Thus, although the function (sin xy)/y, 
regarded as a function of x and y, is continuous everywhere and its 
integral converges for every value of x, the function F(x) is dis­
continuous: 

'It for x>o -
2 

(51b) Loo sin xy dy = 
o Y 

0 for x=o 

'It 
for x<o. -2 

In itself, this fact is not at all surprising, for it is analogous to the 
situation of nonuniform convergence for infinite series (Volume I, 
p. 533), and we must remember that the process of integration is a 
generalized summation. We can be sure that an infinite series of 
continuous functions represents a continuous function only ifthe con­
vergence is uniform. Here, in the case of improper integrals depending 
on a parameter, we must again introduce the concept of uniform 
convergence. 
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We say that the integral 

(52a) F(x) = So" f(x, y)dy 

converges uniformly (in x) in the interval a ;;;;; x ;;;;; b, provided that the 
"remainder" of the integral can be made. arbitrarily small simultane­
ously for all values of x in the interval under consideration, or, more 
precisely, provided that for a given positive number e, there is a positive 
number A = A(e) that does not depend on x and is such that whenever 
B~A 

(52b) IIa" f(x,y)dy/ < 8. 

As a useful test we mention that the integral 

So" f(x, y)dy 

converges uniformly (and absolutely) if for sufficiently large y, say y > 
yo, the relation 

(52c) 

holds, where M is a positive constant and a > 1. For, in this case, 

I r" I roo dy 1 1 
JB f(X,y)dy < M JB ya = M(a _ l)B" 1;;;;; M(a _ l)A" 1 ; 

the last bound can be made as small as we please by choosing A 
sufficiently large, and it is independent of x. This is a straightforward 
analogue of the test for the uniform convergence of series given in 
Volume I (p. 535). 

We readily see that a uniformly convergent integral of a continuous 
function is itself a continuous function, for if we choose A so that 

IL" f(x,y)dy I < 8 

for all values of x in the interval under consideration, then, from (52a), 

I F(x + h) - F(x) I < I SoA {f(x + h, y) - f(x, y)} dy I + 28. 
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By virtue of the uniform continuity of the function f(x, y) in a bounded 
set, we can choose h so small that the finite integral on the right is 
less than 8, which proves the continuity of the integral. 

A similar result holds when the region of integration is finite, but 
the integrand has a point of infinite discontinuity. Suppose, for 
example, that the function f(x, y) tends to infinity as y -+ a. We then 
say that the convergent integral 

(53a) F(x) = 111 f(x, y)dy 

converges uniformly in a ~ x ~ b if for every positive number e we 
can find a number k independent of x such that 

(53b) I LU+h f(x, y)dy I < 8, 

provided h ~ k. 
The condition in the neighborhood of the point y = a 

(53c) I f(x, y) I < (y ~ a)v (v < 1) 

is sufficient for uniform convergence. As before, uniform convergence 
for a continuous integrand implies that the integral is a continuous 
function. 

If the convergence is uniform in an interval a ~ x ~ b, the im­
proper integral F(x) is continuous. We can then integrate F(x) over 
this finite interval and thus form the corresponding improper re­
peated integral 

Lb dx fo~ f(x,y)dy 

for an infinite interval of integration in y, and 

for an infinite discontinuity. 
Instead of the finite interval a ~ x ~ b, we can of course also 

consider an infinite interval of integration for x. But then the re­
peated integral need not converge. For example, the integral 
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converges uniformly for x G 1, but 

.r F(x)dx 

does not exist. 

b. Integration and Differentiation of Improper Integrals with 
Respect to a Parameter 

It is not true in general that improper integrals may be differenti­
ated or integrated under the sign of integration with respect to a 
parameter. In other words, limit operations with respect to a para­
meter and integration cannot generally be executed in reverse order 
(cf. the example on p. 473). 

In order to determine whether the order of integration in improper 
repeated integrals is reversible, we can often use the following test 
(or else make a special investigation along the lines of its proof): 

I[ the improper integral 

(54a) F(x) = fo~ [(x, y)dy 

converges uniformly in the interval a ~ x ~ ~, then 

(54b) I: dx fo~ [(x, y)dy = So~ dy I: [(x, y)dx. 

To prove this we put 

So"" [(x, y)dy = SoA [(x, y)dy + RA(X). 

By hypothesis, 1 RA(X) 1 < e(A), where e(A) depends only on A, not 
on x, and tends to zero as A -) 00. The theorem on p. 80 on inter­
changing the order of integration yields 

I: dx 50"" [(x, y)dy = 113 dx LA [(x, y)dy + 113 RA(X)dx 

= LA dy 113 [(x,y)dx + 113 RA(X)dx, 

whence by the mean value theorem of the integral calculus 

I I: dx So"" [(x, y)dy - LA dy I: [(x, y)dx I ~ e(A) 1 ~ - a I. 
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If we now let A tend to infinity, we obtain the formula (54b). 
If the interval of integration with respect to a parameter is infinite 

also, the change of order is not always possible, even though the 
convergence may be uniform. It can, however, be performed if the cor­
responding improper double integral exists (cf. Chapter 4, pp. 408 ff.). 
Thus, 

(54c) fo~ dx fo~ f(x, y)dy = fo~ dy fo~ f(x, y)dx 

if the double integral fflf(x, y)ldxdy over the whole first quadrant 
exists. 

Formula (54c) holds since the improper double integral is independ­
ent of the mode of approximation to the region of integration. In the 
one case, we approximate the integral by means of infinite strips 
parallel to the x-axis, and in the other, by strips parallel to the y-axis. 

A similar result also holds if the interval of integration is finite, 
but the integrand is discontinuous along a finite number of straight 
lines y = constant or on a finite number of more general curves in the 
region of integration. The corresponding theorem is as follows: 

If the function [(x, y) is discontinuous only along a finite number of 
straight lines y = aI, y = a2, . . ., y = ar and if the integral 

Lb f(x,y)dy 

converges uniformly in x in the interval a ~ x ~ ~, then in this interval 
it represents a continuous function of x, and 

(54d) iii dx Lb f(x, y)dy = Lb dy f: f(x, y)dx. 

That is, under these hypotheses the order of integration can be 
changed. The proof of the theorem is analogous to the one for formula 
(54b) given above. 

It is equally easy to extend the rules for differentiation with re­
spect to a parameter. The following theorem holds: 

If the function f(x, y) has a sectionally continuous derivative with 
respect to x in the interval a ~ x ~ ~ and the two integrals 

(55a) F(x) = fo~ f(x, y)dy and fo~ {ix, y)dy 
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converge uniformly, then 

(55b) F'(x) = So'" fz(x, y)dy. 

That is, under these hypotheses, the order of the processes of in­
tegration and of differentiation with respect to a parameter can be 
reversed, for, if we put 

G(x) = So'" fz(x, y)dy, 

then (54b) yields 

L~G(x)dx = L~ dx So'" fz(x, y)dy = So'" dy L~ fz(x, y)dx. 

The integrand on the right has the value 

L~ fz(x, y)dx = f(~, y) - f(a, y); 

therefore, 

II; G(x)dx = F(l;) - F(a); 

hence, if we differentiate and then replace ~ by x, we obtain 

dF(x) r'" -----a:x =G(x) = Jo fZ(x, y)dy, 

as was to be proved. 
We can similarly extend the rule for differentiation when one of 

the limits depends on the parameter x (see Chapter 1, p. 77), for we 
can write 

L~z) f(x,y)dy = L;z) f(x,y)dy + L'" f(x,y)dy, 

where a is any fixed value in the interval of integration. Then we can 
apply rules previously proved to each of the two terms on the right. 

As before our rules of differentiation also hold for improper in­
tegrals with finite intervals of integration. 
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c. Examples 

1. We consider the integral 

100 1 
e-ZlI dy = -

o x 
(x> 0). 

If x ~ 1, this integral converges uniformly, since for positive values 
of A 

where the final bound no longer depends on x and can be made as 
small as we please if we choose A sufficiently large. The same is true 
of the integrals of the partial derivatives of the function with respect 
to x. By repeated differentiation, we thus obtain 

100 1 100 2 Inoo n' ye-ZlI dy = 2 ' y2e-ZlI dy = 3 , ... , yn e-ZlI dy = n~l' 
o X 0 X 0 X 

In particular, for x = 1, we have 

r(n + 1) = fooo yne-lI dy = n! 

This formula was established differently in Volume I (p. 308). 
2. Further, let us consider the integral 

Again it is easy to convince ourselves that if x ~ a, where a is any 
positive number, all the assumptions required for differentiation 
under the integral sign are satisfied. By repeated differentiation we 
therefore obtain the sequence of formulas 

fOOO dy 1t 1 1 foo dy 1t 1·3 1 
J~ (X2 + y2)2 = 2 . 2 . x3' Jo (x2 + y2)3 = 2 . 2·4 • ,x5' .•. , 

foo dy 1t 1·3··· (2n - 3) 1 
Jo (x2 + y2)n = 2 • 2·4 ••• (2n - 2) • X 2n- 1 ' 

From these formulas we can get another derivation of Wallis's 
product for 1t (cf. Volume I, p. 281). For this we put x = .;n to obtain 
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As n increases, the left side converges to the integral 

rOO 1 
Jo e-IIz dy = 2.fit. 

To prove this, we estimate the difference 

rOO -liZ d roo dy 
Jo e y - Jo (1 + y2/n)n • 

This difference satisfies the inequality 

since (1 + y2/n)n > y2. But if we choose T so large that 

LOO 1 t e-IIZ dy + - <­
T T 2 

and then choose n so large that 

as is possible in virtue of the uniform convergence of the limit 

lim (1 + y2/n)-n = e-IIz 

(Volume I, p. 152), it follows at once that 

I rOO( 1) I Jo e-IIz - (1 + y2/n)n dy < t. 

With the value of the integral of e-IIZ from (25a), p. 415, this establishes 
the relation 
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(56) 
. 1· 3 • • • (2n - 3) 1 

hm . ..f7i=-, 
",-00 2·4 •• ·(2n - 2) Ji 

which is equivalent to formula (SO) in Volume I (p. 282). 
3. With a view to calculating the integral 

LOO siny d 
o y ~, 

we shall discuss the function 

LOO siny 
F(x) = e-ZII - dy. 

o y 

This integral converges uniformly if x ~ 0, while the integral 

converges uniformly if x ~ a > 0, where a is an arbitrarily small 
positive number. Both these statements will be proved below. There­
fore, F(x) is continuous if x ~ 0; and if x ~ a, we have 

F'(x) = - Sooo e-ZII sin y dy. 

Integrating by parts twice, we easily evaluate this last integral (see 
Volume I, p. 277): 

F'(x) = - 1 ! x'd • 

We integrate this to obtain 

F(x) = - arctan x + C, 

where C is a constant.l By virtue of the relation 

IL OO siny I Loo e-zlI / O 1 e-ZII -- dy ~ e-zlldy = - =-. 
o Y 0 x 00 x 

lHere arc tan x denotes the principal branch of that function, as defined in Volume I 
(p.214). 



1il2 Introduction to Calculus and Analysis, Vol. II 

which holds if X ~ 0, we see that lim F(x) = O. Since lim arc tan x 

= 1t/2, C must be 1t/2, and we obtain 

1t 
F(x) = 2 - arc tan x. 

Since F(x) is continuous for x ~ 0, 

lim F(x) = F(O) = roo sin y dy, 
%-0 Jo y 

which gives the required formula 

(57) roo siny dy = ~ 
Jo y 2 

(cf. Volume I, p. 589). 
We prove that 

roo e-%lI sin y dy 
Jo y 

converges uniformly if x ~ O. If A is an arbitrary number and k1t is 
the least multiple of 1t that exceeds A, we can write the "remainder" 
of the integral in the form 

00' kit' (v+l)It' f e-XlI smy dy =f e-XlI smy dy + f: r e-XlI smy dy. 
A YAY .=kJvlt Y 

The terms of the series on the right have alternating signs and their 
absolute values tend monotonically to O. By Leibnitz's test (Volume I, 
p. 514), therefore, the series converges and the absolute value of its 
sum is less than that of its first term. Hence, we have the inequality 

lloo siny I I(k+l)1t IsinYI I(k+l)1t 1 21t e-xlI -- dy < e-xll -- dy < - dy < - , 
A YAY A A A 

in which the right side is independent of x and can be made as small 
as we please. This establishes the uniformity of convergence. 

The uniform convergence of 

for x ~ 0 > 0 follows at once from the relation 
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4. On p. 466 we learned that uniform convergence of the integrals 
is a sufficient condition for reversibility of the order of integration. 
Mere convergence is not sufficient, as the following example shows: 

If we put f(x, y) = (2 - xy) xye-z lI, then, since 

a 
f(x, y) = oy (xy2e-ZII), 

the integral 

SoOO f(x, y)dy 

exists for every x in the interval 0 ~ x ~ 1; in fact, for every such 
value of x, it has the value o. Therefore, 

Sol dx Sooo f(x, y)dy = O. 

On the other hand, since 

for every y ~ 0, we have 

Sol f(x, y)dx = ye-II, 

and, therefore, 

SoOO dy Sol f(x, y)dx = Sooo ye-II dy = Sooo e-II dy = 1. 

Hence, 

Sol dx Sooo f(x, y)dy =1= Sooo dy Sol f(x, y)dx. 

tl. Evaluation of Fre8Rer8 Integral8 

Fresnel's integrals 
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(5Sa) r+oo 
Fz = J-oo cos (rZ)dt, 

are important in optics. In order to evaluate them, we apply the sub­
stitution t Z = t, obtaining 

roo sin t roo cos t 
FI = Jo ./ t dt, Fz = Jo .rt dt. 

Here, we put 

1 2 roo 
./t = '/ii Jo e-z2t dx 

(this follows from the substitution x = t/ ./t) and reverse the order of 
integration, as is permissible by our rules. (we first restrict the integra­
tion with respect to t to a finite interval 0 < a < t < b, and then let 
a-+O, b-+oo). 

2 roo roo 
FI = '/ii Jo dx Jo e-z2t sin t dt, 

2 00 roo 
F2 = '/ii So dx Jo e-zZt cos t dt. 

Using integration by parts to evaluate the inner integrals, we reduce 
FI and Fz to the elementary rational integrals 

2 roo 1 2 roo x2 

FI = ../i Jo 1 + x4 dx, Fz = ../i Jo 1 + x4 dx. 

The integrals may be evaluated from the formulae given in Volume I 
(cf. Volume I, p. 290); the second integral can be reduced to the first 

by means of the substitution x' = ~ ; both have the value 2~ . Con­

sequently, 

(5Sb) 

Exercises 4.12 

1. Evaluate fooo xfte-zll dx. 

2. Evaluate 

F(y) = fol XII-I(y log x + l)dx. 
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3. Let f(x, y) be twice continuously differentiable and let u(x, y, z) be 
defined as follows: 

u(x, y, z) = 102" f(x + z cos 1>, y + z sin 1»d1>. 

Prove that 

z(Uxx + Uyy - uzz) - uz = O. 

4. If f(x) is twice continuously differentiable and 

u(x, t) = t;-2 L:t f(x.+ y)(t2 - y2)(P-3)/2 dy 

prove that 

p-1 
Uxx = -t- Ut + Utt. 

5. How must a, b, c be chosen in order that 

L: L: exp [-(ax2 + 2bxy + cy2)]dx dy = 1? 

6. Evaluate 

(p> 1), 

(a) L:~ L:~ exp [-(ax2 + 2bxy + cy2)](Ax2 + 2Bxy + Cy2)dx dy, 

(b) L:~ L:~ exp [-(ax2 + 2bxy + cy2)](ax2 + 2bxy + cy2)dxdy, 

where a > 0, ac - b2 > O. 
7. The Bessel function Jo(x) may be defined by 

Prove that 

1 r+1 cos xt 
Jo(x) = ; Ll 'V'1 _ t2 dt. 

Jo" + ~Jo' + Jo = O. 

8. For any nonnegative integral index n the Bessel function In(X) may be 
defined by 

xn L+1 In(X) = 1 3 5 (2 1) (cos xt)(1 - t2)n-(1/2) dt. • • ••• n - 1t-l 

Prove that 

(a) I n'' + ~Jn' +(1- ::)In = 0 

(b) In+1 = In-l - 2Jn' 

and 

Jl= -Jo'. 

(n ~ 0), 

(n ~ 1) 
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9. Evaluate the following integrals: 

(a) K(a) = So" e-az2 cos x dx 

(b) r" e-bz - e-a:ll cos x dx 
Jo x 

(c) I(a) = So" exp (-x2 - a2/x2) dx 

(d) r" sin (ax) Jo(bx) dx 
Jo x 

where Jo denotes the Bessel function defined in Exercise 7. 
10. Prove that 

l "" sin2ax --dx 
o x 

is of the order oflog n when n is large and that 

r" sing ax - sing bX d 1 I a 
Jo x x=2 og lj. 

11. Replace the statement "The integral I." {(x, y) dy is not uniformly 
o 

convergent" by an equivalent statement not involving any form of the 
words "uniformly convergent". 

4.13 The Fourier Integral 

a. Introduction 

The theory given in Section 4.12 is illustrated by Fourier's integral 
theorem (see Volume I, p. 615), which is fundamental in analysis and 
mathematical physics, We recall that Fourier series represent a 
sectionally smooth, but otherwise arbitrary, periodic function in 
terms of trigonometric functions. Fourier's integral gives a cor­
responding trigonometrical representation of a nonperiodic function 
{(x) that is defined in the infinite interval - 00 < x < + 00 and has 
its behavior at infinity restricted in a suitable way to ensure con­
vergence. 

We make the following assumptions about the function {(x): 

1. In any finite interval {(x) is defined, continuous, and has a 
continuous first derivative {,(x), except possibly for a finite number of 
points. 

2. Near each exceptional point {'(x) is bounded. At an exceptional 
point, {(x) takes as its value the arithmetic mean of the limits on the 
right and left: 
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(59a) 
1 

f(x) = :2 [f(x + 0) + f(x - 0)].1 

3. The integral 

(59b) 1: If(x)ldx = C 

is convergent. 

Then Fourier's ip.tegral theorem states: 

(60) f(x) = - r dt f(t) cos t(t - x)dt. 1 00 100 

7t Jo -00 

Using the identity 

and putting 

(61a) 1 L+oo 

g(t) = v'27t -00 f(t)e- ftt dt, 

we can write formula (60) in the form 

1 100 f(x) = ----== [efT.Xg(t) + e-kXg( - 't)] d't 
.J21t 0 

1 LA = lim '2 g('t)etx~ dt. 
A-oo 'V 7t -A 

Hence, Fourier's theorem becomes 

(61b) 1 i oo 
f(x) = - g(t)eixt dt. v'2i -00 

IFor an exceptional x we do not require thatf'(x) be defined. However, the bounded· 
ness of f' near an exceptional x implies that the limits f(x - 0) and f(x + 0), from 
the left and right, exist. 
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In the complex form, (6Ia) associates with a function f(x) another 
function g(1:), the Fourier transform of f. Fourier's theorem, as given 
by formula (6Ib), expresses fin terms of g in a quite symmetric fashion; 
as a matter of fact, it just states that f( - x) is the Fourier transform of 
g(1:). The relation between f and g is reciprocal except for the sign of 
the exponent and the fact that according to our derivation from (60) 
the improper integral in (6Ib) is to be taken in the restricted sense 

100 lA = lim . 
-00 A-oo-A 

In formula (6Ia) for g, however, the integral is absolutely convergent 
by assumption (59b), and the upper and lower limits can tend in­
dependently to +00 and -00, respectively. The two formulas (6Ia, b) 
are reciprocal equations, each yielding the one function in terms of 
the other. 

The Fourier transform g(1:) of a real-valued function f(x) generally 
takes complex values. From (6Ia) we obtain the complex conjugate 
equation for a real f, 

(62) 1 i+oo 
g(1:) = J2rc -00 f(t)eht dt = g( -1:). 

When f(x) is an even function of x, however, the Fourier transform g 
is even, too, and is real for real f. Indeed, combining the contributions 
of t and - t in the integral (6Ia), we obtain 

(63a) 
2 roo 

g(1:) = .f2it Jo f(t) cos (rt) dt, 

which implies that g(1:) = g( -1:). Formula (6Ib) can then be written in 
the form 

(63b) 
2 roo 

f(x) = .f2it Jo g(1:) cos (tX) d1: 

2100 100 = - cos (1:x)d1: f(t) cos (tt)dt. 
rc 0 0 

Similarly, for an odd function f(x), 

(64a) 
2· .. - z r 

g(1:) = J2rc Jo f(t) sin (1:t) dt. 
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In (64a), g is an odd function with values that are pure imaginary for 
real f. The reciprocal formula becomes 

(64b) 
2i (~ 

f(x) = .v21t Jo g('r) sin (m)dt 

2i~ l~ = - sin (tx)dt f(t) sin (tt)dt. 
1t 0 0 

We illustrate Fourier's integral theorem by examples and then 
proceed to its proof. 

b. Examples 

1. Let f(x) be the ste'p~unction defined by f(x) = 1 when x2 < 1, 
f(x) = 0 when x2 > 1. By formula (63a) the Fourier transform of f is 
the function 

2 (1 2 sin t 
g(t) = .v21t Jo cos (tt)~t = .v21t -t-· 

Hence, by (63b), 

(65a) f(x) = ~ (~cos (tx) sin t dt = 1 ~ 
1t Jo t 2 

o 

for Ixl< 1 

for x=±l 

for Ixl>1. 

This integral appears in mathematical literature under the name of 
Dirichlet's discontinuous factor. It shows that an integral can be a 
discontinuous function of a parameter x although the integrand is 
continuous in x. Of course, this phenomenon can occur only because 
the integral is improper. 

2. Let f(x) = e-kx for x > 0, where k is a positive real number. 
Defining f as an even function for all x, we find its Fourier transform: 

2 (~ ~ k 
g(t) = .v21t Jo cos (tt) e-kt dt = V 1t k2 + t2 

[see formula (64), p. 277, of Volume I for the evaluation of the integral]. 
By (63b) this leads to the equation 

(65b) ~() - ~l~ kcos(tx)d - -klxl 
/' X - k2 + 2 t - e . 

1t 0 t 



l,8() Introduction to Calculus and Analysis, Vol. II 

On the other hand, continuing e-kX as an odd function of x for negative 
x, we obtain the Fourier transform 

( ) - 2i f ~ . () d . J2 -r 
g -r = ./2ii Jo sm -rt e-kt t = -£ 1t k2 + -r2 

and the formula 

(65c) 

for 

for 

for 

x>o 
x=o 
x<o. 

3. The function f(x) = e-x2/2 gives an interesting illustration of our 
reciprocal formulas. The Fourier transform is 

2 ~ 

g(-r) = -=- f e-x2/2 cos (x-r) dx . 
.J21t Jo 

We are handicapped in evaluating g by the fact that no explicit 
expression for the indefinite integral is available. Curiously enough, 
g can be found by solving a differential equation. On differentiating 
the expression for g and integrating by parts, we obtain 

2 ~ 

g'(-r) = - ,- f (xe-Z2/2) sin (x-r) dx 
'V21t Jo 

= -- [e-X2/2 sin (x-r) - -r e-x2/2 cos (x-r) dx] 2 I~ i~ 
.J21t 0 0 

= --rg(-r). 

It follows that 

or that 

!! [g(-r)e~2/2] = (g-r + g')e~2/2 = 0 
d-r 

g(-r)e~2/2 = constant = c. 

Hence, g is of the form 
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Thus, the Fourier transform g of the function f = e-z2/2 has the form 

with a certain constant c. Since [see (25a) p. 415] 

/2 r~ 2 r~ 
c = g(O) = V ~Jo e-z2/2 dx = .lii Jo e-1I2 dy = 1, 

we find that the Fourier transform of f = e-z2/2 is the same function: 

(66a) 

c. Proof of Fourier's Integral Theorem 

The proof Oike the corresponding one for Fourier series in Volume 
I) is based on a simple lemma ("Riemann-Lebesgue lemma"): 

If ;(t) is bounded and continuous in the open interval a < t < b, we 
have 

(67) lim rb ;(t) sin At dt = o. 
A-~ Ja 

For the proof of the lemma, we assume that I ;(t) I < M for a < t < b. 
Let & be a prescribed positive number. Let a and ~ be chosen so 
that 

I; I; 
a < a < a + M' b - M < ~ < b, a < ~. 

Then, 

I lab ;(t) sin At dt I < I If} ;(t) sin At dt I + 2£. 

In the closed interval a ~ t ~ ~, the function ;(t) is uniformly con­
tinuous and we can find a <> such that 

& 
I;(t') - ;(t)1 < b _ a for It' - tl < <>. 
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Now, replacing t by t + 'It/A in the integral we have 

rll ?(t) sin At dt = - rP- It/A ?(t + A'It ) sin At dt 
Ja Ja- It/A 

rP • = - Ja ?(t) sm At dt 

-LP-
It/A [~(t + ~) - ?(t)] sin At dt 

+ rll rfJ(t) sin At dt 
Jp- It/ A 

- ra ?(t + A'It )sin At dt. Ja- It/ A 

Hence, if A is so large that 'ltl A < 0 and 2M'It/ A < &, we find that 

and, thus, also 

I Lb ?(t) sin At dt I ~ 3f:. 

Since & is arbitrary, the relation (67) follows. 
It is clear that formula (67) holds more generally, namely when, 

by removing a finite number of exceptional points, the interval a < t 
< b can be broken up into open intervals in each of which ?(t) is con­
tinuous and bounded. 

Now let f(t) be a function defined for all t that satisfies the as­
sumptions 1-3 stated on p. 476-7. In order to prove our main theorem 
in the form (60), we first replace the infinite intervals of integration by 
finite ones so that we may reverse the order of integration. For 
positive A, B, (and a fixed x), we introduce the expression 

(68a) 
1 A ~ 

IA = - r d;; r f(t) cos ;;(t - x) dt. 
'It Jo L~ 

By assumption 3, 

1: If(t)Idt 
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converges. Consequently, given e> 0, we have 

If. f(t) cos 't(t - x) dt I ~ r If(t)ldt < e 
Itl>B Jltl>B 

for all sufficiently large B. It follows that 

(68b) l~~ L:B f(t) cos * -x) dt = L: f(t) cos 't(t - x) dt 

converges uniformly in 'to 

Formula (60), which we want to prove, states that 

(69) f(x) = lim lA. 
A-"" 

In the integral (68a) defining lA, we can interchange the integrations 
[see (54b), p. 466] since the integral (68b) converges uniformly.! Thus, 

lA = - dt r f(t) cos * - x) d't II"" A 

7t -"" Jo 

= ! r"" f(t) sin A(t - x) dt = ! r+"" f(t + x) sin At dt. 
7tL"" t - x 7t L"" t 

Using the identity 

r"" sin At dt = ~ 
Jo t 2 

for A>O 

[see (57), p. 472], we can write this result in the form 

1 r"" sin At 
lA = 1tJo [f(x + t) + f(x - t)] -t - dt 

= f(x + 0) + f(x - 0) +! r"" 9(t) sin At dt 
2 7t Jo 

= f(x + 0) + f(x - 0) + ! rC ~(t) sin At dt + ! r"" 9(t) sin At dt 
2 7t Jo 7t Jc ' 

lWe apply the theorem on p. 466 separately to 

Jo"" ((t) cos t(t - x) dt and f"" ((t) cos t(t - x) dt. 

The function {may have a finite number of jump-discontinuities in any finite interval 
without changing the proof of (54b). 
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where C is any positive constant and 

(J(t) = f(x + t) ~ f(x + 0) + f(x - t) ~ f(x - 0) . 

The function (J(t) satisfies all the assumptions of the Riemann-Lebesgue 
lemma (67): It obviously is continuous except possibly at a finite 
number of points, since this is true for f. At a point of discontinuity 
t =1= 0 the function (J(t) stays bounded, since f has jump-discontinuities 
only. The boundedness of (J(t) near t = 0 follows from the differenti­
ability off and the boundedness of f', since by the mean value theorem 
of differential calculus, 

(J(t) = fl(X + at) - f'(x - TIt), 

where a and TI are certain values intermediate between 0 and 1.1 
Applying (67), we conclude that for any c > 0 

1· 1LC 1m - (J(t) sin At dt = O. 
A-~ 1t 0 

Moreover, 

! r~ (J(t) sin At dt = ! r~ f(x + t) + f(x - t) sin At dt 
1t Jc 1t Jc t 

_ f(x + 0) + f(x - O)J~ sin t dt. 
1t AC t 

Here the second integral tends to 0 for A ---+ 00 and any C, whereas by 
choosing C sufficiently large, the first one can be made arbitrarily 
small uniformly for all A > O. It follows that 

1· I f(x + 0) + f(x - 0) 
1m A= 2 . 
A-~ 

This is equivalent to (69), since we assumed that 

~( ) _ f(x + 0) + f(x - 0) 
I'X - 2 . 

INotice that to apply the mean value theorem we only require existence of the 
derivative in the interior of the interval and continuity in the closed interval (see 
Volume I, p.174). These assumptions are satisfied by the function defined byf(x + t) 
for small positive t and by f(x + 0) for t = 0, as well as for the function defined by 
f(x - t) for small positive t and by f(x - 0) for t = O. 
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d. Rate of Convergence in Fourier's Integral Theorem 

The reciprocal formulas (61a, b) have been established under the 
assumptions 1-3 on the functionf(x) stated on p. 47&-7. A consequence 
of the requirement 

is that the Fourier transform g(-c) given by (61a) is absolutely and uni­
formly convergent. Indeed, if we put 

(70a) 

then 

1 i B gB(-c) = .J21t -B f(t)e- itt dt, 

I g(-c) - gB(-c) I = I /21 f f(t)e-ht dt r 
'V 1t J1tl>B 

~ /21 f If(t) I dt. 
'V 1t J1tl>B 

Hence, given e > 0, it is possible to find a B so large that 

for all-c. 

It follows that g, as uniform limit of continuous functions gB, is itself 
continuous. 

We cannot be sure in general of the uniform convergence of the 
integral in the reciprocal formula (6Ib). The approximating functions 

(70b) 

certainly are continuous and converge to f(x) for each x. However, 
the convergence cannot be uniform if f has discontinuities, as in our 
Example 1 on p. 479. Sufficient for uniform convergence of the fA(X) 
toward f(x) is again the existence of the improper integral 

This condition clearly is violated in the example mentioned, where 
g(-c) = 2 sin -c/./21r.-c. 
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For many applications, it is convenient to work only with integrals 
that are uniformly and absolutely convergent. Interchanges oflimit 
operations are usually much harder to justify for integrals that 
converge only conditionally. It is easy to impose additional restrictions 
on f that guarantee the integrability of I g lover the whole axis, and, 
hence, the uniform convergence of the fA(X). It is sufficient to require 
that f(x) have continuous first and second derivatives f'(x) and {"(x) 
and that all three integrals 

L: I f(x) I dx, L: I f'(x) I dx, L: I {"(x) I dx 

are convergent. 
'First, the convergence of 

L:If'(x)ldx 

implies that 

~i~ f(x) = ~i~ [f(O) + LX {'(t)dt] = f(O) + Leo f'(t)dt 

exists. Obviously, 

lim f(x) 
X-eo 

can only have the value 0, since otherwise 

could not converge. Thus, lim f(x) = 0 and, by the same argument, 
X-eo 

lim f(x) = o. Similarly, the convergence of 
x--oo 

S:eol{"(x) I dx 

implies that 

lim f'(x) = 0, 
x-±~ 
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also. Integration by parts applied twice to formula (70a) yields 

(71a) gB('r) = . ,I [-f(B)e-iBT: + f( -B)etBT: + i B f'(t)e-he dt] 
''V 21t -r -B 

_ e-fBT:[{'(B) + i-rf(B)] - etBt [f'( - B) + i-rf( - B)] 
- J21t -r2 

1 iB - f"(t)e-'d dt J21t -r2 -B • 

Hence, for B ~ 00 

(71b) 

and thus, 

(71c) 1 +00 ( 1 ) 
Ig(-r) I ~ J21t -r2100 If"(t) I dt = 0 :t2 . 

This estimate for g(-r) clearly implies that 

converges (see Volume I, p. 307) and, hence, that 

f(x) = lim fA(X) = lim '21 fA g(-r)e'Z1: d-r 
A-oo A-oo 'V 1t J-A 

uniformly for all x. In fact, under the assumptions made on f, it does 
not matter how the upper and lower limit in the integral tend to 
± 00; in general, 

1 LA f(x) = lim '2 g(-r)etZt d-r. 
A-oo 'V 1t B 
B--oo 

Equation (71b) can be interpreted as stating that the function f'(t) 
has the Fourier transform i-rg(-r) and f"(t), the Fourier transform 
- -r2g(-r), where g is the Fourier transform off. Thus, under suitable reg­
ularity assumptions differentiation of f corresponds to multiplication 
of the Fourier transform of f by the factor i-r. This fact is crucial for 
many applications of the Fourier transformation. 
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e. Parseval's Identity for Fourier Transforms 

For Fourier series, we proved (Volume I, p. 614) the Parseval 
identity connecting the integral of the square of a periodic function 
with the sum of squares of the Fourier coefficients. A remarkable anal­
ogous identity exists for Fourier integrals; it is even more symmet­
ric in form because of the reciprocity between a function I and its 
Fourier transform g. Since, even for real I, the Fourier transform g 
will generally be complex-valued, one has to use the square of the ab­
solute value rather than the square of the function. The Parseval 
identity then states that the integral of the square of the absolute 
value extended over the whole axis is the same for the function I and 
its Fourier transform g: 

(72) 

We shall not prove this identity under the most general assump­
tions for which it holds, but merely for I restricted in the same way as 
at the end of the last section, namely, when the three functions I, f', 
f" are all continuous and absolutely integrable over the whole x-axis. l 

As before, we define the approximations gB(r:) to g and IA(X) to I 
by the equations (70a) and (70b). Then we form the expression 

JA,B = i: II(x) - IA(X)1 2 dx 

= i: [I(x) - IA(X)][I(x) - IA(X)] dx 

= i: [f(x) I(x) - I(x) IA(X) - IA(X)I(x) + IA(X)IA(X)] dx, 

where the bar above an expression indicates the complex conjugate 
value. Now, interchanging integrations, we find that 

f B 1 iB fA l(x)IA(X)dx = ~ I(x)dx g(r:)e-tXt dr: 
-B 'V ~1t -B -A 

1 fA iB = '2~- g(r:) dr: l(x)e-tXt dx 
'V 1t -A -B 

= f~ g(r:)gB(r:) dr:, 

lThe identity can be extended to more general f by suitably approximating f by 
functions of the restricted class used here. 
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whence, taking the complex conjugate, we find 

Hence, 

(73) JA,B = i:(If(x)1 2 + IfA(X)12)dx 

-i: [g('t) gB('t) + g('t) gB('t)]d't. 

Since our assumptions about f(x) guarantee that 

lim fA(X) = f(x) 
A-~ 

uniformly in x (see p. 487), we also have 

lim If(x) - fA(X) 1 2 = 0 
A-~ 

uniformly in x. Consequently, 

lim JA, B = lim rB If(x) - fA(X) 12 dx = O. 
A-~ A-~ J-B 

Thus, identity (73) yields for A ~ 00 

(74) 0 = 2 i: If(x) 12 dx - 1: [g('t) gB('t) + g('t) gB('t)]d't. 

Since 

lim gB('t) = g('t) 
B-~ 

uniformly in 't and since gB('t) is bounded uniformly, and 

g('t) = O(!2)' 

we can let B tend to 00 in identity (74) to obtain in the limit the Par­
seval relation (72). 
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f. The Fourier Transformation for Functions of Several Yariables 

In one dimension the Fourier integral identity yields a representa­
tion of a function f(x) as a linear combination of exponential func­
tions eixl; that depend on a parameter ~. For each value ~ of the 
parameter, we multiply the function eixl; with a suitable "weight 
factor" g(~)/ J21t and integrate with respect to ~. The appropriate 
factor g(~) is the Fourier transform of f. 

Similar formulae exist for decomposition of functions of several 
variables into exponential functions. Functions f(x, y) of two inde­
pendent variables x, yare represented as combinations of exponential 
functions of the form eiCx!;+Yl1) that depend on the parameters ~, TJ. 
Similarly, functions f(x, y, z) of three independent variables are built 
up from exponentials ei(x!;+Yl1+Z~) depending on the parameters, ~, TJ, s. 
Such decompositions of general functions into exponentials constitute 
one of the most powerful tools of mathematical analysis. For a given 
set of parameters ~, TJ, S the function ei(xl;+Yl1+~) depends on the single 
combination s = x~ + YTJ + zs, which is constant along each plane 
with direction numbers ~, TJ, S in x, y, z-space. If we introduce a new 
rectangular coordinate system in which one of these planes is a coordi­
nate plane, then eiCxI;+Yl1+~) becomes a function of a single coordinate. 
In this way, Fourier's formulae yield a decomposition of f(x, y, z) into 
functions that depend only on a single coordinate (where, however, 
the direction of the corresponding coordinate axis depends on the 
parameters ~, TJ, s). . 

Such exponential expressions are intimately connected with the 
plane waves encountered in physics. Multiplyingthe exponential func­
tion ei (XI;+Yl1+ZC) by a time dependentexponentialfactor e-iOlt , we obtain 
the expression 

(75 a) u(x, y, z, t) = e i (XI;+Yl1+ZC) e-ioot = e i (l;x+l1Y+CZ-Olt). 

Here u has a fixed value et8 for all times t at all locations (x, y, z) with 
the same "phase" value 

s = x~ + YTJ + zs - rot. 

For fixed s, this represents at each time t a plane ("wave front") in 
x, y, z-space with direction numbers~, TJ, S for its normal. As t varies, 
this plane moves parallel to itself. Since (see p. 135) the quantity 

s + rot 
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is the distance of the plane from the origin at time t, the plane moves 
with speed 

(75b) 
dp co 

c = dt = ';~2 + 1'\2 + ~2 • 

This is the speed of propagation of the wave fronts, corresponding 
to a "frequency" co of the wave. 

We shall state and prove the Fourier integral theorem for a func­
tion f(x, y) of two independent variables under conditions on f that are 
sufficient for the validity of the theorem (although far from necessary) 
and are convenient for applications. 

Let f( x, y) be defined and have continuous derivatives of first, second, 
and third orders for all values x, y. The absolute values of f and its 
derivatives of order ~ 3 shall be absolutely integrable over the whole 
plane; that is, for any nonnegative integers i, k with i + k ~ 3 the 
improper integrals 

(76) ff I aHkf(x, y) I JJ ax' ayk dx dy, 

extended over the whole x, y-plane, shall converge. The Fourier trans­
form g(~, 1'\) of f is defined by the formula 

(77a) g(~, 1'\) = in II e-t(Z!;+Yt) f(x, y) dx dy. 

The function f is then expressed in terms of its Fourier transform by the 
reciprocal formula 

(77b) 

Here, all integrals are extended over the whole plane and converge ab­
solutely. 

An analogous statement holds for functions f(xI, . . ., Xn) of n in­
dependent variables. We only have to assume that f and its derivatives 
of order ~ n + 1 exist and are absolutely integrable over the whole 
space. The Fourier transform g(~l, ~2, . . ., ~n) is then defined by 
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The reciprocal formula for {(Xl, . . ., XII) here becomes 

(77b) {= (21t)-n/2 J- .. I e(Zl!;l+'" +ZII~) g(~l, ... , ~II) d~l ••• d~II' 

The proof for n dimensions is exactly the same as the proof for the 
two-dimensional case that will be given now. 

We shall first prove the Fourier integral theorem for a function 
{(x, y) of class ca and of compact support. meaning that {has continu­
ous .derivatives of order ~ 3 and vanishes outside some bounded set. 
For this situation the Fourier formula for {follows immediately from 
the formula for functions of a single variable, as we now show. 

The Fourier transform 

is given by a proper integral, since {vanishes outside a bounded re­
gion. Introducing the "intermediate" Fourier transform with respect 
to y alone, namely, 

(77c) r(x, TJ) = .J~1t f e-(71TJ {(x, y) dy, 

we can write g in the form 

g(~, TJ) = .J~1t f e-(Z!;r (x, TJ) dx. 

Obviously, for each value of TJ. we have in r(x, TJ) a function of the 
single variable X of class ca and of bounded support. Its Fourier trans­
form is g(~, TJ). The theorem of p. 477 applies and yields 

(78) r(x, TJ) = .J~1t f e(Z!; g(~, TJ) d~. 

On the other hand, r(x, TJ) for fixed X is the Fourier transform of f(x, y) 
considered as a function of y alone. Hence, the reciprocal formula 

{(x, y) = .J~1t f e i7lTJ r(x, TJ) dTJ 

holds. Substituting here for r its expression from (78) yields 

{(x, y) = .Ai f dTJ f et(zl;+71TJ) g(~, TJ) d~. 



Multiple Integrals 1,99 

In this formula, the repeated integral (first with respect to ~ and then 
with respect to 11) can be replaced by a double integral over the whole 
~, 11-plane, which leads to formula (77b). This step is valid (see p. 466), 
since the single integral 

(79a) 

converges uniformly in 11 for all 11 and, in addition, the double integral 

(79b) 

converges. Both convergence results follow if we can show that an es­
timate of the form 

(79c) 

holds for g with a suitable constant M. The convergence of the double 
integral (79b) is a consequence of (79c). The uniform convergence of 
the single integral (79a) follows from (79c) since for A> 1 

the right side tends to 0 for A ---+ 00 independently of 11. 
Inequality (79c) is established from (77a) by repeated integration 

by parts. Since f has compact support, we find that 

II e-'(X~+II'l) a3~~~ y) dx dy = 21t(i~)3g(~, 11) 

II e-'(Z~+II'l) a3~~~ y) dx dy = 21t(i11)3g(~, 11) 

and, hence, that 

21t(1 + 1 ~ 13 + 11 13) 1 g(~, 11) 1 

= 21t 1 g(~, 11) 1 + 121t(i~)3g(~, 11) 1 + 121t(i11)3g(~, 11) 1 

~II( If(x,y)l+ la3~~~Y)1 + la3~~~Y)I) dxdy. 
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For any ~, 11 let the largest of the three quantities 1, I ~ I, 1111 be denoted 
by 1;. Then 

(1 + ~2 + 112)3/2 ~ (1;2 + 1;2 + 1;2)3/2 = 3.J3 1;3 ~ 3.J3(1 + I ~ 13 + 1111 3). 

This yields the inequality (79c) with the value 

(79b) M = 3.J3 rf(II(X y) I + I a31(x, y) I + I a31(x, y) I )dX dy 
21t JJ' ax3 ay3 

for the constant and completes the proof of the Fourier theorem for 
functions I(x, y) of class (;3 and of compact support. 

The proof of the theorem for the most general lof class (;3 for which 
the integrals (76) converge follows by approximating such I by func­
tions In(x, y) of compact support. For this purpose we multiply I(x, y) 
with a suitable "cut-oft''' function (In(X, y) so that the product In = {lnl 
has compact support, but agrees with I in the disk X2 + y2 ~ n2. Here 
we only require an auxiliary function (In(X, y) with these properties: 

1. (In(X,y) has compact support and belongs to (;3; 

2. (In(X,y) = 1 for X2 + y2 ~ n2; 
3. The absolute values of (In(X, y) and of all its derivatives of orders 

~ 3 do not exceed a fixed quantity N independently of x, y and n. 

Suitable functions (In can be constructed easily ina variety of ways. 1 

Denote by gn(~, 11) the Fourier transform of In = (lnl: 

(80a) gn(~, 11) = i1t II e-t (Zl;+IITJ) (In(x,y)l(x,y) dx dy. 

Then 

lFor example, define the function h(s) by 

Then 

[
1 for 8~O 

h(s) = (1 - 8 4)4 for 

o for 1 ~s. 

~ .. (x, y) = h(x - n)h( -n - x)h(y - n)h( -n - y) 

has all the desired properties. 
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From the assumed convergence of the integral of I II over the whole 
plane it follows that 

(80b) lim gn(~, 11) = g(~, 11) 
n-'" 

uniformly for all (~, 11). In order to see that g(~, 11) again satisfies an 
inequality of the form (79c), we observe that by Leibnitz's rule 

A similar estimate holds for the third y-derivative of In. Let I be the 
largest of the integrals taken over the whole plane, of the absolute 
values of I and its derivatives of orders ~ 3. Then 

JJ(l/nl + \:;3/n\ + I :;3 In/ )dXdy ~ (1 + 8 + 8)NI = 17Nl. 

Applying the inequality (79c, d) to the function In, we find that for any 
n and all ~, T), the inequality 

(SOc) 

holds with 

M= 5~;a Nl. 

It follows from (BOb) that 

for all (~, 11), with the same constant M. 
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Since I" has compact support, the reciprocal formula 

(SOd) {,,(x, y) = in II e'(Z1;+lIll) g,,(~, 1'\) d~ d1'\ 

is known already to be valid. For a given (x, y) we have {,,(x, y) = 
{(x, y), once n is so large that n2 > x2 + y2. For n ~ 00 we obtain then 
from (SOd), using (SOb) and (SOc), the reciprocity law (77b) for {itself. 

Parseval's identity for multiple Fourier integrals takes the form 

(S1) 

where the integrations are extended over the whole plane. The proof 
can be carried out by exactly the same arguments as those used in Sec­
tion e, p. 488, for the Parseval identity for functions of a single vari­
able, provided we make the same assumptions about {(x, y) as for the 
derivation of the Fourier integral formula. Modifying the expressions 
used on pp. 488 appropriately, we consider the integral 

JA,B= ~[ 1{(X,Y)-{A(X,y)1 2 dxdy, 
JJz2+y2<B2 

where 

Here, instead of (73) we obtain the identity 

For A ~ 00 and B ~ 00 the identity (81) follows in the same manner 
as before. 
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Exercises 4.13 

1. Find the Fourier transforms of the following functions: 

(a) f(x) = 

(b) f(x) = 

{ c, for 0 < x < a 

0, for x < 0 or x > a. 

{ 
e-ax, for x > 0, (a> 0) 

0, for x < 0 

(c) J .. (x)/x" (with J .. defined as in 4.12, Exercise 8). 

4.14 The Eulerian Integrals (Gamma Function)l 

One of the most important examples of a function defined by an 
improper integral involving a parameter is the gamma function r(x), 
which we shall discuss in some detail. 

a. Definition and Functional Equation 

In volume I (p. 30S) we defined r(x) for every x > 0 by the improper 
integral 

(S2a) r(x) = So" e-t tz- 1 dt. 

We can split up the integral into one extended over the unbounded 
portion of the t-axis from t = 1 to t = 00 with a continuous integrand 
and one extended over the finite interval from t = 0 to t = 1, where­
at least for values of x between 0 and I-the integrand is singular. 
The tests developed on p. 000 show at once that the integral (S2a) con­
verges for any x > 0, the convergence being uniform in every closed 
interval of the positive x-axis that does not include the point x = O. 
The function r(x) is therefore continuous for x > O. 

The integrals obtained by formal differentiation of formula (S2a) 
also converge uniformly in any interval 0 < a ~ x ~ b. Consequently 
(see p. 465), r(x) has continuous first and second derivatives given by 

(S2b) 

(S2c) 

P(x) = So" e-ttZ - 1 log t dt 

P'(x) = So" e-ttZ- 1 log2t dt. 

lA discussion related to the present one is given by E. Artin, The Gamma Function 
(English translation by Michael Butler), Holt, Rinehart and Winston: New York, 
1964. 
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By simple substitution the integral (S2a) for r(x) can be trans­
formed into other forms that are frequently used. Here we only men­
tion the substitution t = u2, which transforms the gamma function 
into the form 

Thus, for a = 2x - 1, 

(S2d) (a >-1) 

[cf. formula (4Sd), p. 458]. 
As in Volume I (p. 30S), integration by parts in formula (S2a) yields 

the relation 

(S3a) r(x + 1) = xr(x) 

for any x > O. This equation is called the functional equation of the 
gamma function. 

Clearly, r(x) is not uniquely defined by the property of being a solu­
tion of this functional equation since we obtain other solutions merely 
by multiplying r(x) by an arbitrary function p(x) with period unity. 
The expression 

(S3b) u(x) = r(x) p(x) 

where 

(S3c) p(x + 1) = p(x) 

represents the most general solution of equation (S3a), for if u(x) is 
any solution, the quotient 

u(x) 
p(x) = r(x) 

[which can always be formed since r(x) =1= 0] satisfies equation (S3c). 
Instead of r(x) it is frequently more convenient to consider the 

function u(x) = log r(x); this is defined for all positive x, since r(x) > 
o for x > o. The function satisfies the functional equation (a "dif­
ference equation") 

(S3d) u(x + 1) - u(x) = log x. 
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We obtain other solutions of (83d) by adding to log r(x) an arbitra­
ry function with period unity. In order to characterize the function 
log r(x) uniquely, we must supplement the functional equation (83d) 
by other conditions. One very simple condition of this type is given 
by the following theorem of H. Bohr and H. Mollerup: 

Every convex solution of the difference equation 

(84a) u(x + 1) -u(x) = log x 

for x > 0 is identical with the function log r(x), except perhaps for an 
additive constant. 

b. Convex Functions. Proof of Bohr and Moilerulls Theorem 

A function f(x) with continuous second derivative is called convex 
(see Volume I, p. 357) if f" ~ O. A more general definition, appli­
cable even to functions that are not twice differentiable, is the 
following: 

The function f( x) defined in an interval (posssibly extending to 
infinity) is called convex if for any values Xl, X2 of its domain and any 
positive numbers a, p with a + P = 1 the inequality 

(84b) 

holds. Geometrically (84b) means that for any two points of the curve 
y = f(x) with abscissa Xl, X2, the chord joining them never lies beneath 
the curve (cf. Fig. 4.20). 

y 

I 
I 
I 
I 
I 

:f(xQ 
I 
t 

, f(IXX/ + (3X2) : 
:f(x,) I 
I I 
I , 

O~--~I~----~~I~~----~I __ ~Z 
XI aXJ+f3xz X2 

Figure 4.20 A convex function. 
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For a twice continuously differentiable function f, we find, using 
the mean value theorem of differential calculus and the fact that a and 
~ are positive numbers with sum 1, 

(84.c) af(xI) + ~f(X2) - f(axi + ~X2) 
= ~[(X2) - {(axi + ~X2)] - a[{(axi + ~X2) - ((Xl)] 

= a~(x2 - XI)f'(~2) - a~(x2 - XI){'(~I) 

= a~(x2 - XI)(~2 - ~1)f"(TJ), 

where ~l, ~2, TJ are suitable intermediate values with 

(84d) ~l < TJ < ~2. 

It follows immediately from (84c) that (84b) is satisfied if f"(TJ) ~ 0 
for all TJ in the domain of f. Conversely, we find from (84b), (84c), using 
(84d), thatf"(TJ) ~ 0; for fixed a, ~ and X2 ~ Xl it follows from the con­
tinuity of f" that f"(XI) ~ 0 for any Xl in the domain. Hence, a twice 
continuously differentiable function f is convex in the sense of (84b) 
if and only if f" ~ o. 

To be convex, a function need not be twice, or even once, dif­
ferentiable. An example is furnished by f(x) = Ixi. However, a convex 
function necessarily is continuous at interior points of its domain. 
This follows from the inequality 

f(X2) - {(XI):s;; {(X4) - {(xa) 
X2 - Xl - X4 - Xa 

(84e) 

satisfied by a convex function for any x, in its domain for which 

Xl < X2 < Xa < X4. 

To prove (84e) we write X2 in the form 

X2 = axl + ~xa, 
where 

Xa - X2 A __ X2 - Xl • 
a = , p 

Xa - Xl Xa - Xl 

Then 

((Xa) - f(X2) {(X2) - ((Xl) 
Xa - X2 X2 - Xl 

= af(XI) + ~f(xa) - {(axi + ~xa);:?; 0, 
a~(Xa - Xl) -
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and, similarly, 

{(X4) - {(X3) _ {(X3) - {(X2) ~ 0 
X4-X3 X3-X2 -, 

which implies (84e). In words, (84e) states that the difference quotients 
o{ the convex {unction { formed {or disjoint intervals are increasing. 
It follows that 

{(X2) - {(Xl) ~ {(~2) - f(~l) ~ {(X4) - f(X3) 
X2 - Xl - ~2 - ~l - X4 - X3 

for any values ~l, ~2 between X2 and X3. Thus, {satisfies a Lipschitz 
condition in the interval X2 < X < X3 and, hence, is continuous in that 
interval. For any X in the interior of the domain of {we can always 
find suitable Xl, X2, X3, X4, showing that {is continuous at x. 

In order to prove that the function log r(x) is convex, it is sufficient 
to show that 

(84f) 
d2 log r P'r - p2 

dx2 = P ~ O. 

The relation (84f) follows from the Cauchy-Schwarz inequalityl for 
integrals, since, here by (82a, b, c), 

p2 = (L~ e-ttZ-llog t dt) 2 

= (L~(e-tI2JtZ-l)(e-tI2JtZ-llog t) dtr 

~ r~ e-ttZ-l dt r~ e-ttZ- l log2t dt = rr". - Jo Jo 

lFrom the Cauchy-Schwarz inequality for sums (Volume I, p. 15) we find for any 
continuous functions f(x), g(x) and any subdivision of their domain by points XI into 
intervals of length 4xI that 

(~f(Xj)g(XI)4Xr ~ (~f2(Xj)4Xj) (~g2(XI)4XI). 

Refining the subdivisions we find in the limit the Cauchy-Schwarz inequality for in­
tegrals: 

(fa" f(x)g(x) dx} 2 ~ (fa" f2(X) dx) (fa" g2(X) dX} • 

This inequality is extended immediately from proper Riemann integrals of continu­
ous functions to improper integrals by passage to the limit with respect to the 
domain of integration. 
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Now let u(x) be an arbitrary convex solution of the functional equa­
tion (84a) for x > O. We form the expression 

Vk(X) = u(x + h) - 2u(x) + u(x - h) 

for 0 < h < x. Applying relation (84e) which is valid for convex u, 
we find for 0 < h < k < x that 

Vk(X) - Vk(X) = [u(x + k) - u(x + h)] - [u(x - h) - u(x - k)] 

= (k _ h) [u(x + k) - u(x + h) _ u(x - h) - u(x - k)] ~ o. 
k - h --h + k -

For fixed x, therefore, Vk(X) is a continuous nondecreasing function of 
h. Now, the functional equation for u yields 

Vl(X) = u(x + 1) - 2u(x) + u(x - 1) 

= [u(x + 1) - u(x)] - [u(x) - u(x - 1)] 

= log x - log(x - 1). 

Hence, for 0 < h < 1 < x, 

(84g) 0 = vo(x) ~ Vk(X) 

Since 

= u(x + h) -2u(x) + u(x - h) 

x 
~ Vl(X) = log x-I . 

lim log _x_ = log 1 = 0, 
x-~ x-I 

we find from (84g) that for every convex solution of (84a) 

lim [u(x + h) - 2u(x) + u(x - h)] = 0 (0 < h < 1). 

If then p(x) is the difference of two convex solutions of (84a), we find 
that also 

lim [p(x + h) - 2p(x) + p(x - h)] = o. 

Since p(x) is periodic with period 1, so also is the function 

p(x + h) - 2p(x) + p(x - h) 
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and it approaches 0 as a limit for x ~ 00. Obviously, such a function 
must vanish identically. Hence, 

(84h) p(x + h) - 2p(x) + p(x - h) = 0 (0 ~ h < 1). 

Let M = p(l;) be the largest value of the continuous function p(x) in 
the interval 1 ~ x ~ 2. Thenp(x) ~ Mfor all x> 0 and by (84h) 

2M = 2p(l;) = p(1; + h) + p(1; - h) ~ 2M (0 ~ h < 1). 

Hence, 

p(1; - h) = p(1; + h) = M (0 ~ h < 1), 

and since p has period 1, 

p(x) = M = constant (all x > 0). 

This shows that any two convex solutions of (84a) differ at most by a 
constant and completes the proof of Bohr and Mollerup's theorem. 

c. The Infinite Product for the Gamma Function 

Bohr and Mollerup's theorem can be used to derive the infinite 
products representations for the gamma function found by Gauss and 
Weierstrass. 

For any given function g(x) we can easily verify that a special solu­
tion w(x) of the difference equation 

w(x + 1) - w(x) = g(x) 

is given by the infinite series 

~ 

w(x) = - :Eg(x + j) 
;-0 

= - g(x) - g(x + 1) - g(x + 2) - • • ., 

provided that series converges. We cannot apply this observation di­
rectly to equation (84a) with g(x) = log x, since the resulting series 
diverges. However, the difference equation for w = u" obtained by 
differentiating (84a) twice can be solved in this way. A special solu­
tion of the equation 

(85a) 1 
w(x + 1) - w(x) = - 2 

x 
(x> 0) 
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is given by 

(85b) 
1 00 1 

w(x) = 2 + ~ ( + ·)2 X ,-I X J 
(x> 0). 

Here, the infinite series converges uniformly in every finite interval 
o ~ x ~ b (see Volume I, p. 535) since 

1 < 1 
(x + j)2 = j2 (x ~ 0). 

Consequently, w is continuous for x > o. Moreover, term-by-term in­
tegration of the series is permitted (see Volume I, p. 537) and leads 
to a function 

(85c) 1 oolz d~ 
v(x) = - - + ~ (J: + ·)2 

X ,-I 0 ~ J 

= - ~ - ~ (x ~ j - I)' 
where the series occuring in this formula again converges uniformly 
in any interval 0 ~ x ~ b. Thus v(x) + l/x is a continuous function of 
x for x ~ 0 that vanishes for x = o. By the foregoing construction 

(85d) 

Since, by (85a, d), 

it follows that 

(85e) 

v' (x) = w(x) 

d . 1 
-d [v(x + 1) - v(x)] = -2 x x 

1 
v(x + 1) - v(x) = - + c x 

(x> 0). 

(x> 0), 

(x> 0), 

where c is a constant. In order to determine the value of c, we observe 
that by (85e) 

-c = lim [v(x) + 1] - lim v(x + 1) = -v(l) 
x-o x x-o 

00 (1 1) =1+~1+·--;-,-I J J 

= 1 + (~ - 1) + (~- ~) + (~ - ~) + ... = O. 
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Integration of (85c) leads to a function 

(85f) ~ (~( 1 1) 
U(x) = - log x - ~ Jo ~ + j - J d~ 

= - log x - f: [log(x + j) - log j - ~J, 
j=1 J 

where the infinite series again converges uniformly in any interval 
o ~ x ~ b. As before we conclude that U(x) is a continuous function of 
x for x > 0 satisfying 

U'(x) = v(x), lim (U(x) + log x) = 0 
x-o 

(85g) U(x + 1) - U(x) - log x = constant = C. 

Here, 

C = lim U(x + 1) - lim [U(x) + log x] = U(1) 
x-o x-o 

= - t [log(1 + j) - log j - ~J ,-I J 

= - lim n~ [log(1 + j) - logj - ~J n-~ foi J 

= lim (1 + 1: + ... + _1_ - log n). 
n-~ 2 n - 1 

It follows that C is identical with Euler's constant 

(85h) C = lim (1 + 1: + 1: + . . . + !. - log n) 
n-~ 2 3 n 

introduced in Volume I (p. 526). 
By (85g) the function 

u(x) = U(x) - Cx 

satisfies the difference equation 

u(x + 1) - u(x) = log x. 

Moreover, by (85b) 

u"(x) = w(x) > 0 (x> 0), 
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so that u(x) is convex. Since, in addition, 

u(1) = U(1) - C = 0 = log r(1), 

it follows from Bohr's theorem that u(x) and log r{x) are identical: 

(86a) log r(x) = - Cx - log x - t (lOg x :- j - ~. ,-I J j) 

Our derivation also shows that 

(86b) r'(x) 1 00 (1 1) 
r{x) = - C + v(x) = - C - X -. t-1 x + j - J ' 

d2 10g r(x) 1 00 1 
d 2 = w(x) = 2 + ~ ( + ')2' X X ,-I X J 

(86c) 

Forming the exponential function of both sides of equation (86a), 
we arrive at the Weierstrass infinite product for 1/r{x): 

(86d) _1_ = xecz IT (1 + ~ e-zlJ 
r(x) i-I j} 

(x> 0). 

We can write (86d) in a slightly different form not involving the 
Euler constant C. From (86a), (85h), 

log r{x) = - log x + lim t:. (-7 - log x -: j) - C X 
11-00 ,-I J J 

= - log x + lim [x It ~ - C - log n) 
11-00 V=1 J 

+ x log n - !110g x j jJ 
[ 

11-'1 ~ ] 
= - log x + lim x log n + ~ log j - f,.:. log (x + j) . 

11-00 ,-I ,-I 

Consequently, we obtain the formula 

. 1 • 2 • 3 • • • (n - 1) Z 

(86e) r(x) = ~~ x(x + 1)(x + 2)(x + 3) ••• (x + n _ 1) n (x > 0), 

which is Gauss's infinite product for the gamma function. 
The limit on the right-hand side of (86e) exists not only for positive 

values of x but all x'* 0, - 1, - 2, ... : for a given x let the positive in­
teger m be chosen so large that x + m > O. Then, replacing n by n + 
m under the limit sign, we obtain 
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lim 1 • 2 • • • (n - 1) nZ 

n-~ x(x+ l)(x + 2) ••• (x + n - 1) 

r 1 • 2 ••• (n + m - 1) ( + )Z 
= n:~ x(x + l)(x + 2) ••• (x + n + m _ 1) n m 

= lim [n(n + 1) ..• (n + m - l)(n + m)Z] 
n-~ x(x + 1) ••• (x + m - l)nz+m 

[ 1 • 2 ••• (n - l)nz+m ] 
(x + m)(x + m + 1) ••• (x + m + n - 1) 

r(x + m) 
= x(x + 1) ••• (x + m - 1) . 

Thus, we can use Gauss's formula (86e) to define r(x) for all values of 
x other than zero or negative integers. When x approaches one of 
these exceptional values, r(x) becomes infinite. The extended func­
tion r(x) obviously still satisfies the functional equation 

(86f) r(x + 1) = xr(x). 

d. The Extension Theorem 

The values of the gamma function for negative values of x can also 
easily be obtained from the values for positive values of x by means of 
the so-called extension theorem. We form the product r(x)r( - x), 
which is 

. 1 • 2 ••• (n - 1) . 1 • 2 ••• (n - 1) 
lIm nZ 11m n-Z 
n-~ x(x + 1)·· ·(x + n - 1) n-~ - x(l - x)(2 - x)-· -(n - 1 - x) 

and combine the two limiting processes into one, to obtain 

r(x)r( - x) = - ~2 ~i~ {I _ (x/1)2} {I _ (X/2)2}1. • • {I _ [x/(n _ 1)]2} , 

provided x is not an integer. But, by employing the infinite product 
for the sine, 

sin 1tX = ii (1 _ (~)2), 
1tX v=l V 

from Volume I (p. 603), we obtain 

1t 
r(x)r( -x) = - . . 

x SIn 1tX 
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Hence, 

1t 1 
r( -x) = - x sin 1tX r(x)· 

We can put this relation in a somewhat different form by calculat­
ing the product r(x)r(1 - x). Since by (86f) 

r(1 - x) = - xr( -x), 

we obtain the extension theorem 

(97a) 
1t r(x)r(1 - x) = -. - . 

SIn 1tX 

Thus, if we put x == t, we have r(t) = ../Te. Since 

r(~) = 2 Loo e-u2 du, 

we have here a new proof for the fact that the integral 

has the value tv'lt (see p. 415). In addition, we can calculate the 
gamma function for the arguments x = n + t, where n is any posi­
tive integer: 

(97b) r(n + ~) = (n - ~)(n - ~) ... ~ ~ r(~) 
(2n - 1)(2n - 3) ••• 3· 1 

= 2n .fit. 

e. The Beta Function 

Another important function defined by an improper integral involv­
ing parameters is Euler's beta function. The beta function is defined by 

(98a) B(x, y) = LI tX - 1(1 - t)II- I dt. 

If either x or y is less than unity, the integral is improper. By the cri­
terion of p. 465, however, it converges uniformly in x and y, provided 
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we restrict ourselves to intervals x ~ e, y ~ 1'), where e and 1') are ar­
bitrary positive numbers. It therefore represents a continuous function 
for all positive values of x and y. 

We obtain a somewhat different expression for B(x, y) by using the 
substitution t = 't + t: 

(98b) (112 (1 ) x-I (1 ) 11-1 
B(x, y) = J-1I2 2 + 't 2 - 't d't. 

If we now put 't = tj28, where 8 > 0, we obtain 

(98c) (2s)X+II-l B(x, y) = f~8 (8 + t)x-l(8 - t)lI-l dt. 

If, finally, we put t = sin2~ in formula (98a), we obtain 

(98d) 
(,,/2 

B(x, y) = 2 Jo sin2x-l~ COS211-1~ d~. 

We shall now show how the beta function can be expressed in 
terms of the gamma function, by using a few transformations which, 
at first sight, may seem strange. 

If we multiply both sides of the equation (98c) by e-2s and integrate 
with respect to 8 from 0 to A, we have 

B(x, y) (A e-2s(2s)X+II-l ds = (A e-2& ds (& (8 + W-1(8 - t)lI-l dt. 
Jo Jo La 

The double integral on the right may be regarded as an integral 
of the function 

e-2&(8 + t)x-l(8 - t)lI-l 

over the isosceles triangle in the 8, t-plane bounded by the lines 8 ± t 
= ° and 8 = A. If we apply the transformation 

this integral becomes 

cr = 8 + t, 
't = 8 - t, 

The region of integration R is now the triangle in the cr, 't-plane 
bounded by the lines cr = 0, 't = 0, and cr + 't = 2A. 
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If we let A increase beyond all bounds, the left-hand side, by (82a), 
tends to the function 

1 2 B(x, y)r(x + y). 

Therefore, the right side must also converge and its limit is the double 
integral over the whole first quadrant of the a, 't-plane, the quadrant 
being approximated to by means of isosceles triangles. Since the inte­
grand is positive in this region and the integral converges for a mono­
tonic sequence of regions (by Chapter 4, p. 414) this limit is inde­
pendent of the mode of approximation to the quadrant. In particular, 
we can use squares of side A and accordingly write 

B(x, y)r(x + y) = lim r A r A e-a-rO'~-l't,,-l dO'd't A_ooJO Jo 

= Loo e-aO'~-l dO' Soooe-r't,,-l d't. 

We therefore obtain the important relation1 

(99a) B( ) = r(x)r(y) 
X,y r(x+y). 

From this relation we see that the beta function is related to the 
binomial coefficients 

( n + m) _ (n + m)! 
n - n!m! 

lThis equation can also be obtained from Bohr's theorem. We first show that B(x, y) 
satisfies the functional equation 

so that the function 

x 
B(x + 1, y) = -+ B(x, y), x y 

u(x, y) = r(x + y) B(x, y), 

considered as a function of x, satisfies the functional equation of the gamma function, 

u(x + 1) = xu(x). 

The convexity of log B(x, y) and, hence, that of log u(x) follows from the Cauchy­
Schwarz inequality in the same way as that of log r(x) on p. 501. Thus, we have 

r(x + y) B(x, y) = r(x) • a(y), 

and finally, if we put x = 1, a(y) = r(1 + y) B(l, y) = r(y). 
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in roughly the same way as the gamma function is related to the num­
bers n! For integers n, m in fact, 

(99b) (n + m) 1 
m - {n + m + l)B (n + 1, m + 1) . 

Finally, we mention that the definite integrals 

r,,/2 
Jo sinat dt and 

r,,/2 
Jo cosat dt, 

which by (98d) are identical with the functions 

! B (a + 1 !) = ! B (! a + 1) 
2 2 '2 2 2' 2 ' 

can be simply expressed in terms of the gamma function: 

r,,/2 r,,/2 .,Ii r(1 + a/2) 
(99c) Jo sinat dt = Jo cosat dt = a r(a/2) . 

f. Differentiation and Integration to Fractional Order. 
Abef B Integral Equation 

U sing our knowledge of the gamma function, we now carry out a 
simple process of generalization of the concepts of differentiation and 
integration. We have already seen (p. 78) that the formula 

(l00a) 
(1: (x - t)n-1 1 (1: 

F(x) = Jo (n _ I)! f(t)dt = r(n)Jo (x - t)n-lf(t)dt 

gives the n-times-repeated integral of the function f(x) between the 
limits 0 and x. If D symbolically denotes the operator of differentiation 
and if D-l denotes the operator 

rz ... dx 
Jo ' 

which is an inverse of differentiation, we may write 

(l00b) F(x) = D-nf(x). 

The mathematical statement conveyed by this formula is that the 
function F(x) and its first (n - 1) derivatives vanish at x = 0 and that 
the nth derivative of F(x) is f(x). But it is now very natural to con-
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struct a definition for the operator D-). even when the positive number 
A. is not necessarily an integer. The integral of order A. of the function 
f( x) between the limits 0 and x is defined by the expression 

(lOOc) D-).f(x) = rtA.) LZ (x - t».-lf(t)dt. 

This definition may now be used to generalize nth-order differentia­
tion, symbolized by the operator Dn or dn/dxn, to 11th-order differentia­
tion, where 11 is an arbitrary nonnegative number. Let m be the least 
integer greater than 11, so that 11 = m - p, where 0 < p ~ 1. Then our 
definition is 

(lOla) 
dm 1 (z 

D"f(x) = DmD-pf(x) = dxm r(p)Jo (x - t)p-lf(t) dt. 

A reversal of the order of the two processes would give the defini­
tion 

1 LZ D"f(x) = D-pDmf(x) = -(- (x - t)p-1f<m)(t) dt. r p) 0 

It is left to the reader (see Exercise 12) to employ the formulas for 
the gamma function to prove that 

(101b) IJaDPf(x) = DPDaf(x), 

where a and 13 are arbitrary real numbers. He should show that these 
relations and the generalized process of differentiation have a mean­
ing whenever the function f(x) is differentiable in the ordinary way 
to a sufficiently high order for all x and vanishes for x ~ O. In general 
D"f(x) exists if f(x) has continuous derivatives up to, and including, 
the mth order. 

In connection with these ideas, we mention Abel's integral equa­
tion, which has important applications. Since 

r@ = .lit, 

the integral of a function f(x) to the order t is given by the formula 

(102) 
1 LX f(t) D-1I2 f(x) = --= -- dt = 'II(x). 

.In 0 .Ix - t 
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Formula (102) is called Abel's integral equation when it is to be 
solved for an unknown function f(x) , the function ",(x) on the right side 
being given. If the function ",(x) is continuously differentiable and 
vanishes at x = 0, the solution of the equation is given by the formula 

(103a) f(x) = D1I2",(x), 

or 

(104) 
1 d (l; ",(t) 

f(x) = JTc dxJo .Ix _ t dt. 

Exercises 4.14 

1. Verify that for nonnegative integral n, 

r( !) _ (2n)! Jl. 
n + 2 - n!4n . 

2. Find r(! - n) where n is a positive integer. 
3. Show that 

4. Prove 

B(x,x) = 21- 2XB( x, ~). 

1- (1 ~ _ J1t r(~) 
- Jo Jl - tx - x (1 1)· r - +-x 2 

5 Establish the following relations: 

11 x2n+l (n !)2 22n 
(a) I dx = , 

o vI - x 2 (2n + I)! 

101 X2n (2n)! 'It 
(b) Jl _ x2 dx = 22n+l(n!)2· 

6. Prove that the volume of the positive octant bounded by the planes 
x = 0, y = 0, Z = h and the surface xm/am + ym/bm = z/c, where m > 0, 
IS 

(h) 21m r(1 + l/m)2 
abh C r(2 + 21m) • 

7. Prove that 
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taken throughout the positive octant of the ellipsoid xl/al + yS/bB + 
Zl/Cl ~ 1 is equal to 

a'Pbllcr r(f} r(f) r(f} rl f(~)~('P+Il+r-S)/1 d~ 
8 r (P + ~ + r) Jo . 

(Hint: Introduce new variables ~. "I), ~ by writing 

X2 y2 Z2 
a2 + b2 + C2 = ~ or x = a.J~(l - "I) 

y2 Z2 
b2 + C2 =~"I) or y = b.J~"I)(l - Q 

Z2 
z=c~ 2=~"I)~ or c 

and perform the integrations with respect to "I) and ~.) 
8. Find the x-coordinate of the center of mass of the solid 

( X) lin (Y) lin (Z) lin - + - + - :::;;1 abc -. x ;;;: 0, y ;;;: 0, z;;;:; o. 

9. Find the moment of inertia of the area enclosed by the astroid X S/3 + yll3 
= R2/S with respect to the x-aDs. 

10. Prove that the (n + I)-fold integral 

f· .. f f(xo + •.. + Xn)Xo"O-1 •• • xn"n-1dxo ••• dXn 

taken over the positive orthant Xli: ~ 0 for k = 0, . . ., n bounded by 
the hyperplane Xo + . . . + Xn = 1 is equal to 

11. Prove that 

r{ao) ••• r(an) rl f(t) t"o+· . ·+",,-1 dt. 
r(ao + ... + an) Jo 

12: r(xW (x + ~) _ _ 
2 r(2x) - 2.J~. 

12. (a) Show that for any positive real numbers or; and 13 

nanPf(x) = nPnaf(x) 

where the derivatives are defined by (lOla) and f has ordinary 
derivatives up to (p + q)-th order that vanish at x = 0, p and q being 
the least integers greater than or; and 13, respectively. 

(b) Under the foregoing conditions, is it always true that nanPf(x) = 
na+Pf(x)? 

(c) Extend the foregoing result to the case in which or; or 13 may be 
negative. 
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Appendix: Detailed Analysis of the Process of Integrationl 

A.I Areas 

The area of a set S can be defined rigorously along the lines sug­
gestedby intuition, as explained on pp. 368. Essentially one uses a 
subdivision of the plane into squares by lines parallel to the coordi­
nate axes. One adds up the areas of the squares completely contained 
in S. This yields a lower bound for the area of S. Adding up the areas 
of all squares having points in common with S, we obtain an upper 
bound for the area of S. If these lower and upper bounds converge 
toward one and the same value as the subdivision of the plane is re­
fined indefinitely, we identify this common value with the area of S. 
This construction for the area of a region incorporates the same ideas 
of approximating the region from inside and outside by regions com­
posed of rectangles that led us to the notion of the Riemann integral 
of a function f(x). 

The concept of area, as defined here, is named the Jordan measure 
(after one of the initiators of modern precise analysis) or content of 
S. This is not the only way to introduce areas. (An extremely important 
definition that applies to more general sets yields the so-called 
Lebesgue measure of S.) The Jordan measure, which will occupy us 
here exclusively, has the advantage of greater intuitive immediacy 
and is quite adequate for those portions of analysis that lie within the 
scope of this book. 

For simplicity, we shall work mainly in the plane. However, our 
treatment will apply to higher dimensions with only such changes of 
terminology as the replacement of the term area by volume, square 
by cube and so on. 

a. SubdivisionB of the Plane and the Corresponding Inner and 
Outer Areas 

To define at the area of a set S in the x, y-plane, we use successive 
subdivisions of the plane into squares of side 1, t, t, t, ... by 
equidistant parallels to the coordinate axes.2 The nth subdivision 
(where 11, is a positive integer) is produced by the lines 

lBefore reading this Appendix the reader would do well to review the arguments 
leading to the Riemann integral in Volume I (pp. 192-195). 
SIt is helpful at this stage to introduce area through a quite specific set of sub­
divisions of the plane into squares. Later, it will turn out that much more general 
subdivisions lead to the same area. 
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(1) 

where i and k range over all integers. The plane is then divided into 
the closed squares R/ic given by 

(2) R n i < < i + 1 
ik: 2n=x= 21" 

Let now S be any bounded set of points in the plane.1 We form ap­
proximations from below and from above to the prospective area A 
of S by forming the sum A; of the areas of all squares Rt/c that are com­
pletely contained in S, and the sum A! of the area of all squares R/lc 
that have points in common with S. Here the area of a square R/lc 
thathasside2-n is defined to be 2-2n• Using the symbolic notation for 
relation between sets explained on p. 114, we have, accordingly,2 

(3) A+ -n- ~ 2-2n 
I.k 

RYk ns"'(2) 

(see Fig. 4-1). 
It is clear from the definition that 

(4) O<A-<A+ = n= n' 

As we pass from the nth to the (n + 1)-st subdivision, each square 
R/ic is broken up into four squares R~11. If R/lc is contained in S, somust 
be its parts Rnr11. If, on the other hand, a part Rnr11 contains a point 
of S, then the same holds for the whole square Rtic. 
It follows3 that successive sums satisfy the inequalities 

(5) 

We see from (5) that the sums A; form a nondecreasing sequence 
with the upper bound At, hence, they converge to a limit, 

A- = limA;. 
n-oo 

lAreas, properly speaking, will only be defined for bounded sets, although an 
"improper" area is defined for some unbounded sets as limit of "proper" areas. 
2If no square Ri~ is contained completely in S, we put A;; = O. 
3We have used here that the sum of the areas of the four squares R"r~l making up 
Ril equals the area of RiZ, which, in this context, follows from the arithmetical 
identity 
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Similarly, the sums A~ form a nonincreasing sequence with lower 
bound Al and converge: 

By (5), we have for all n 

(6) 

We call A- the inner area and A+ the outer areal of S. Every bounded 
set S has an inner and an outer area, which we denote by A-(S) and 
A+(S). 

The inner area A -(S) has the value 0 if and only if S has no interior 
points, for a set with no interior points contains no square RiZ, so that 
A; = 0 for all n, and thus, A - = O. A set with interior points contains 
some square Ri~ for sufficiently large n, so that A; > 0 for large n, 
and hence, A - > O. 

b. Jordan-Measurable SetB and Their AreaB 

We call a bounded set S Jordan-measurable if the inner fl,l'eaA­
and the outer area A+ of S coincide.2 We denote the common value by 
A and call it the area or the Jo.rdan measure of S: 

A -(S) = A +(S) = A(S). 

Note that for the squares R[k used in our definitions, the original 
notion of "area" and the new one, the Jordan measure, coincide. Each 
square R/k has the Jordan measure 2-2n in the sense of the general 
definition, since for S = Ri~ and m > n 

A~(S) = (.2m-n)22-2m = 2-2n• 

A~ = [(.2m-n)2 + 4(.2m-) + 4]2-2m = 2-2n + 22-m-n + 22-2m. 

More generally, any rectangle S with sides parallel to the coordi­
nate axes: 

IThe terms interior Jordan measure or interior content, or, respectively, exterior 
Jordan measure or exterior content, are also commonly used. 
2Instead of using the phrase "the set S is Jordan-measurable," we shall simply say, 
"s has an area." The term measure has the advantage of being independent of 
dimension and can be used equally well for length in one dimension, as for area in 
two dimensions, and for volume in higher dimensions. 



518 Introduction to Calculus and Analysis, Vol. II 

S: a ~ x ~ b, c ~ y ~ d 

has the area (b - a)(d - c), as expected from elementary geometry; 
for, given a positive integer n, we can find integers a, /3, y, 3 such that 

Then, 

a2-n < a ~ (a + 1)2-", /32-" ~ b < (/3 + 1)2-n 

y2-" < c ~ (y + 1)2-", 32-" ~ d < (3 + 1)2-n. 

A;(S) = (/3 - a - 1)(3 - y - 1)2-2" ~ (b - a - 21-n)(d - C - 21-n), 

A!(S) = (/3 - a + 1)(3 - y + 1)2-2" ~ (b - a + 21-n)(d - C + 21-n), 

so that for n -+ 00, 

lim A;(S) = lim A!(S) = (b - a)(d - c). 
n-w n-~ 

Our next task is to find criteria for measurability of a set S. We 
shall prove quite generally that necessary and sufficient for a bounded 
set S to have an area is that its boundary as have area zero. 

In proof, consider a subdivision of the plane into squares Ri~ and 
form the corresponding sums A; (S) and A! (S) as in (3). Obviously, 
A! - A; represents the sum of the areas of the squares Ri~ that 
contain points in S as well as points not in S. Let O"n be the set of those 
squares. Each square of (fn contains a boundary point of S, for on the 
line segment joining a point P of Ri~ in S to a point Q not in S but in 
the same square Ri~ there certainly lies a boundary point of S. Hence, 
each square of (fn has points in common with as, and consequently, 

A!(S) - A;(S) ~ A!(aS). 

If as has area 0 (or, what is the same, outer area 0) the right-hand side 
tends to 0 for n -+ 00, and we find that A+(S) - A-(S) = O,orthatS 
has an area. 

Conversely, let S have an area, so that 

(7) lim [A!(S) - A;(S)] = O. ,,-.. 
A point P in the plane that for a fl,xed n belongs only to squares Ri~ 
contained in 8 must be an interior point of 8.1 Similarly, a point be-

lRemember that our squares Ril are closed. Hence, P could belong to as many as 
four squares. 
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longing only to squares free of points of S must be an exterior point of 
S. Let P be a boundary point of S. If P did not lie in any square of 
O'n, it would have to belong to a square contained in S as well as to a 
square free of points of S. But this is impossible since two such squares 
cannot have a common point. Hence, every P in as is contained in a 
squre R/ic of the set O'n. The total area of those squares is A~(S) - A;(S). 
Any square R/ic having a point in common with as either is then a 
square in O'n or one of the eight neighbors of such a square, having a 
point in common with it. Hence, the total area of the squares R{k hav­
ing points in common with as cannot exceed nine times the total area 
of the squares in O'n: 

A~(aS) ~ 9[A~(S) - A;(S)]. 

Hence, (7) implies that A+(aS) = 0 and, thus, that as has area o. 
An example of a set that does not have an area A in our sense is 

furnished by the set of rational points in the unit square, that is, the 
set S consisting of the points (x, y), where x and yare rational num­
bers between 0 and 1. Here the boundary aSis the set of all (x, y) with 
o ~ x ~ 1, 0 ~ y ~ 1 and, hence, has area 1. It follows from our theo­
rem that S is not Jordan-measurable. 

c. BaBic PrOpertieB of Area 

Let Sand T be two bounded sets with S contained in T. A square 
Rtic that contains a point of S necessarily contains a point of T, so that 

A~(S) ~ A~(T). 

For n -+ 00 we find that generally 

(8) for SeT. 

In the particular case that A\T) = 0, we ~onclude that also 
A+(S) = o. Hence: 

Any subset of a set of area 0 has area O. 
For any two bounded sets S, T the totality of squares R/ic covering 

Sand T also covers their union S U T. Hence 

A~(S U T) ~ A~(S) + A~(T). 

For n -+ 00 we find that 

(9) 
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More generally, for any finite number of sets 81, 82,. . ., 8N we have 
the finite subadditivity of outer areas expressed by the formula 

(10) 

If in (10) all the 8( have area 0 the same follows for the union: 

The union of any finite number of sets of area 0 has area O. In partic­
ular, any finite set of points has area O. 

By definition, a set of area 0 can be covered by a finite number of 
squares Ri~ of arbitrarily small total area A:. More generally, a set 
8 has area 0 if for each E > 0 we can find a finite number of sets 81, 
. . ., 8N covering 8, the sum of whose outer areas is less than E, for then 
by (8) and (9) the outer area of 8 is less than 8, and hence, since 8 is 
an arbitrary positive number, A +(8) = O. 

For example, a continuous arc C in the plane given nonparametri­
cally by an equation 

y = f(x) (a ~ x ~ b) 

has area O. For the proof we only have to use the fact that a con­
tinuous function defined in a closed and bounded interval is uniformly 
continuous. For, given E > 0, we can find an n so large that f differs 
by less than 8 for any two arguments in its domain that have distance 
< 2-n• We can find integers n, ~ such that 

The portion of the graph of f(x) corresponding to values xwithi2-n 

< x < (i + 1)2-n is contained in a rectangle with sides that are paral­
lel to the coordinate axes and have the lengths 2-n and 28. Hence, C 
is contained in the union of these rectangles with sides parallel to the 
axes of total area 

For n ~ 00 it follows that 

and thus, since 8 is an arbitrary positive number, that the arc C has 
area O. 
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Most of the regions of practical interest have boundaries consist­
ing of a finite number of continuous arcs of the form y = f(x) or x = 
g(y). Since the union of a finite number of sets of area 0 has itself area 
0, we conclude that such regions have a boundary of area 0 and, hence, 
are Jordan-measurable: 

Let the boundary of a set S be contained in the union of a finite num­
ber of arcs, each of which is given either by an equation y = f(x) or by 
an equation x = g(y) with the respective function f or g defined and con­
tinuous in a finite closed interval. Then S has an area.1 

We now consider the union and intersection of Sand T, where S 
and T are any two Jordan-measurable sets. A point that is interior to 
S or to Tis interior to S U T; a point exterior to S and to Tis exterior 
to S U T. Hence, a boundary point of S U T must be boundary point 
of either S or T. Similarly, boundary points of S n T must be bound­
ary points of either S or of T. Hence, the boundaries of S U T and 
S n T lie in the union of as and aT and have area 0, since the bound­
aries as and aT have area O. This proves the fundamental fact: 

The union and intersection of two Jordan-measurable sets are again 
Jordan measurable. 

Applying (9), we conclude: 

If the sets Sand T have an area, their union S U T also has an 
area and 

(11) A(S U T) ;;;; A(S) + A(T). 

Furthermore, if Sand T do not overlap (Le., interior points of either 
one of the sets are exterior to the other), we can even conclude that 

(12) A(S U T) = A(S) + A(T). 

For then a square R{!c cannot be contained in both Sand T. Hence, for 
the nth subdivision 

For n ~ 00 it follows that 

IMore generally, it follows in the same way that a set S in n dimensions is Jordan­
measurable if its boundary is contained in the union of a finite number of surfaces, 
each given by an equation of the form 

XI = {(Xl, ••• , XI-I, %/+1, ••• , x,,) 

with f continuous in a bounded closed set of Xl 0 0 OXj_l Xj+1 0 0 ox,,·space. 
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Since S, T and S U T are Jordan-measurable this implies that 

A(S U T) ~ A(S) + A(T), 

so that (12) follows from (11). 
This result can be extended immediately to any finite number of 

Jordan-measurable sets and constitutes the finite additivity of areas: 

If each of the finite number of sets SI, . . ., SN has an area and no two 
sets overlap, then the union S of SI, . . ., SN also has an area, and 

(13) 

This addition theorem can be supplemented by a subtraction 
theorem. Given two sets S, T with SeT, we denote by T - S the set 
of points of T that are not contained in S. We shall prove that when 
Sand T have areas and SeT, then T - S has an area and 

(14) A(T - S) = A(T) - A(S). 

It is easily seen again that the boundary of T - S is contained in 
the union of the boundaries of T and of S, so that T - S has an area. 
Moreover, Sand T - S have no points in common hence do not over­
lap, and have union T, so that by the additivity rule (12) 

A(T) = A(S) + A(T - S), 

which is equivalent to (14). 
A more symmetric combination of the addition and subtraction 

rules for areas consists in the identity 

(15) A(S n T) + A(S U T) = A(S) + A(T) 

valid for any two Jordan-measurable sets Sand T. Indeed, we have the 
identity 

SUT-T=S-SnT 

between the four sets S, T, S n T, S U T. Since all four sets have an 
area, we can apply (14), and (15) follows. 

The preceding theorems permit us to free the notion of area from 
any reference to the special squares R/ic used in its definition. We shall 
see that area may be defined in terms of much more general methods of 
subdivision of the plane, including, for example, subdivisions of the 
plane into rectangles with sides parallel to the axes. 
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First, we observe that for a Jordan-measurable set S all points suf­
ficiently close to the boundary as of S can be enclosed in a set of ar­
bitrarily small area, for, since as has area 0, we can for a given e > 0 
find an n = n(e) such that the set O'n of squars R/lc having points in 
common with as has total area < e/9. Let P be a point of the plane 
that has distance < 2-n from some point of as. Then P either belongs 
to one of the squares in O'n or to one of the eight neighbors of such a 
square. The union of the set of all squares in O'n and of their neighbors 
is then a set of area < e that contains all points of distance < 2-n 

from the points of as. 
Now take a subdivision ~ of the whole plane into closed rectangles 

with sides parallel to the coordinate axes. The rectangles need not 
be congruent, but we require that the subdivision be so fine that all 
of the rectangles p have diametersl less than 2- n (s). We form the sum 
A~(S) of the areas of all rectangles p of our subdivision that are con­
tained in S and also the sum Ai(S) of all p that have points in common 
with S. Clearly, 

Ai(S) ~ A(S) ~ Ai(S). 

Moreover, Ai(S) - Ai(S) represents the sum of the areas of all 
rectangles p that contain both points in S and points not in S. These 
rectangles necessarily contain boundary points of S. Since their di­
ameter is less than 2-n , each point of such a rectangle p will have a 
distance less than 2-n from some point of as. Hence, the total area of 
these rectangles will be less than e. Thus, 

Ai(S) - Ai(S) < e, 

and consequently, 

A(S) - A~(S) < e, Ai(S) - A(S) < e. 

Taking a sequence of subdivisions ~n of the plane into rectangles 
with the largest diameter of any rectangle in ~n tending to zero, we 
find that the corresponding sums A!(S) and A;(S) tend to the area 
A(S) of our set. 

The argument used applies equally well to sequences of much more 
general subdivisions ~n of the whole plane into sets p. We need re­
quire only that the individual sets p be Jordan-measurable, closed, and 
connected and that the maximum diameter of any set p in a subdivi­
sion tend to 0 as n ~ 00. 

IThe diameter ofa set is defined generally as the least upper bound (or, in the case of 
a closed and bounded set, as the maximum) of the distances of any two points in the 
set. In the case of a rectangle p this is the length of the diagonals. 
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A.2 Integrals of Functions of Several Variables 

a. Definition of the Integral of a Function f(x, 1/) 

We first define the integral of a functionf(x, y) over the whole x,Y­
plane. Throughout this section we make the assumption that the func­
tion f(x, y) is defined for all (x, y) but has the value 0 outside some 
bounded set, that is that f(x, y) = 0 for all (x, y) sufficiently far away 
from the origin (such functions are said to have compact support). 
Moreover, we assume that f is bounded. 

In defining the integral of such a function f we make use of the same 
kind of subdivision of the plane into closed squares Ri~ as in the case 
of areas. Let Mi~ be the supremum and mi~ the infimum! of f in the 
square Ri~' We then associate with f and the nth subdivision of the 
plane the upper sum 

and the lower sum2 

P- ~ "2-2" ,,=~mik . 
I.k 

Only a finite number of terms in these sums are different from 0, since 
f = 0 for distant points. Since mi~ ~ Mik' we have 

(16) 

In passing from the nth to the (n + 1)-st subdivision, each square 
Rik is divided into four squares R"t/ of area 2-2"-2 for which, 
obviously, 

It follows that 

(17) 

m." < m~+l < M~+l < M'!' 
""lk = 18 = 18 = ik' 

Since bounded monotone sequences converge (see Volume I, p. 96), 
the upper and lower sums have limits 

lSee the definitions in Volume I, p. 97 
BThe factor 2-BII represents the area of the squares Ri% produced in the nth subdivi­
sion. In three dimensions, where we subdivide space into cubes of side 2-11, the factor 
becomes 2-311 and, similarly, in k dimensions. 2-I0Il• 
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(18) 

where, of course, 

(19) 

We call F+ the upper integral and F- the lower integral of the function 
f(x, y). 

DEFINITION. The function f(x, y) is called integrablel if its upper 
integral F+ and its lower integral F- have the same value, which is then 
called the integral of f and is denoted by 

II fdxdy. 

Since 

F+ - F- = lim (F~ - F:;), 
n-~ 

we immediately have the following integrability condition: Necessary 
and sufficient for the integrability of f is that 

(20) 

We can associate with the nth subdivision a Riemann sum 

where (~ik' TJik) is an arbitrary point of the square Rik. Clearly, 

(21) F -<F <F+ n = n = n· 

We conclude from (18): 

If f is integrable, the Riemann sums Fn converge to the value of 
II f dx dy irrespective of the choice of the intermediate points (~iko TJi%) 

in Rfk. 

lMore precisely, "Riemann.integrable." The definition given here differs from the 
common one in so far as only the restricted class of subdivisions into squares R7. is 
considered, but is equivalent to it. 
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b. Integrability of Continuous FunctiolUl and Integrals OJJeI" Sets 

For applications of the notion of integral the following theorem is 
basic: 

A continuous {unction { vanishing outside some bounded set S is in­
tegrable. 

For the proof we can assume that S is a square 

Ixl~N, lyl~N, 

where N is a positive integer. Then in the nth subdivision M!k = mi~ 
= 0 for Ri~ not contained in S. In the closed bounded set S the con­
tinuous function {is uniformly continuous. Consequently, given e > 0, 
there exists a ~ > 0 such that the values of {differ by less than e 
for any two points in S having distance less than ~. Hence, 

provided n is so large that 

Thus, 

where the summation is extended over all i, k for which the square 
Ri~ is contained in S. Since the sum of the areas of those squares 
equals the area 4N2 of S, it follows that 

for all sufficiently large n and, hence, that { satisfies the integrability 
condition (20). 

The continuous functions are not the only integrable ones. We 
shall not try to determine the most general integrable functions. 
However, we do consider one important class of discontinuous func­
tions that are integrable, namely, the characteristic functions of 
bounded Jordan-measurable sets. With any set S in the plane we as­
sociate the characteristic {unction ~s defined by 

{
I for (x, y) E S 

~s(x,y) = o for (x, y) $. S. 
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The points where ~s is discontinuous are exactly the boundary points 
ofS. 

We take now a bounded set S and investigate the integrability of 
the function ~s(x, y). The boundedness of S implies that ~s vanishes 
outside some bounded set. Obviously, for this function Mi~ = 1 for 
all squares Rik having points in common with S, and Mi~ = 0 for the 
others. Hence, the upper sum F;i is just the sum A~(S) of the areas of 
all squares Rik that have points in common with S. Thus, for the func­
tion ~s the upper integral F+ = lim F~ is identical with the outer area 

n-oo 

A+(S). Siririll)l'ly, P;' equals the total area A;(S) of the squares Rik 
contained in S, so that the lower integral F-is the inner areaA-(S). 
Hence, integrability of ~s is equivalent with A+(S) = A-(S), that is, 
with Jordan-measurability of S. When ~s is integrable, the value F 
of its integral is, of course, the area A(S). We have proved: 

The sets S whose characteristic function ~s is integrable are exactly 
those that have an area. The integral of ~s is the area of S: 

II ~s dx dy = A(S). 

From continuous functions and characteristic functions of Jordan­
measurable sets, we can construct other integrable functions by ap­
plying the rule: 

The product of two integrable functions is integrable. 
Let f and g be integrable, which for us implies that they are bound­

ed and vanish outside some bounded set. Let Mi~' M'ik> M"ik denote 
the supremum and m~, m'ik> m''ik the infimum of the three functions 
fg, f, g in the square Rik' For any two points (~', TJ'), (~", TJ"), we have 

f(~', TJ')g(~', TJ') - f(~", TJ")g(~", TJ") 

= f(~', TJ')[g(~', TJ') - g(~", TJ")] + g(~", TJ")[f(~', TJ') - f(~", TJ")]. 

Hence, denoting by N an upper bound for If I and I g I : 

Mi~ - mik ~ N(M"ik - m"ik) + N(M'ik - m'ik)' 

It follows immediately that fg satisfies the integrability condition (20) 
if it is satisfied by f and by g. 

Given a function f(x, y) and a set S in the y, z-plane, we say that f 
is integrable over the set S if the function f~s is integrable in the sense 
used before; we then define the integral of f over S by 

(22) IIsfdxdy = II Nsdxdy. 



528 Introduction to Calculus and Analysis. Vol. II 

We have from our product theorem: 

An integrable {unction {is integrable over every Jordan-measurable 
set S. In particular, every continuous {unction o{ compact support is in­
tegrable over Jordan-measurable sets. 

If {is integrable over the set S, the value of the integral 

IIs fdxdy 

does not depend on the values of { at points not in S, since the function 
{tfis is determined by the values of {in the points of S. It is not even nec­
essary to have {defined everywhere. As long as S belongs to the do­
main of a function {, we can define {tfis to be equal to { at the points of 
Sand 0 everywhere else. 

For any integrable {(x, y), we can always interpret 

II {dxdy 

as 

IIs {dxdy, 

where S is some sufficiently large square outside of which { vanishes. 

c. Basic Rules for Multiple Integrals 

We saw already that the product of two integrable functions { and 
g is again integrable. Even more trivial is the fact that { + g also is 
integrable; this follows from the integrability condition (20) and the 
observation that for any set 

suP({ + g) - inf({ + g) ~ (sup { - inf f) + (sup g - inf g). 

The representation of integrals as limits of Riemann sums then shows 
that 

(23) II (f + g)dxdy = II fdxdy + II gdxdy. 

An estimate analogous to the mean value theorem of integral cal­
culus for functions of a single variable is basic for all work with 
integrals. Let S be a Jordan measurable set and f an integrable func­
tion. Let M be an upper bound and m a lower bound for {in S. We can 
approximate the integral of {tfis by Riemann sums 
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where we take care to choose for (~ik, Tlik) a point of S if the square 
Rik contains such a point. Thus, 

F n = I: f(~ik, Tlik)2-2n 

where the sum is extended over all i, k for which Rik has points in com­
mon with S. Since m ~ f ~ M in S, we find that 

mA~(S) ~ Fn ~ MA~(S). 

For n ~ 00 it follows that 

since, by assumption, S has an area, we conclude that the inequality 

(24) mA(S) ~ IIs f dx dy ~ MA(S) 

holds. 
Let S' and S" be Jordan-measurable sets that do not overlap (that 

is, interior points of one are exterior to the other); let S be their union 
and s their intersection. The characteristic functions of these sets 
satisfy the relation 

Hence, for any integrable function f we find, on applying (23), the re­
lation 

II Ns dx dy + II f,p8 dx dy = II Ns' dx dy + II f,ps" dx dy; 

that is, 

IIs f dx dy + II, f dx dy = IIs, f dx dy + IIs" f dx dy. 

Here, by assumption, s contains only boundary points of S' and of 
S". Thus, A(s) = 0, and, hence, by (24), also 

ILfdxdy = O. 

This proves the law of additivity for integrals: 
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If the sets S' and S" have areas and do not overlap and if f is 
integrable, the relation 

(25) ff fdxdy = r[ fdxdy + f[ fdxdy JJs/uSII JJsl JJSII 

holds. 
More generally, if S is the union of the Jordan-measurable sets 

SI,. ., SN, no two of which overlap, and if f is integrable, we have 

(26) n[ f dx dy = t r[.f dx dy. JJs ,-1 JJs, 
This rule opens up the possibility of approximating integrals over a 

set S by Riemann sums based on much more general subdivisions than 
the ones we have considered so far. Assume, for simplicity, that Sis 
a closed Jordan-measurable set and f a function continuous in S. 
A "general subdivision" ~ of S shall mean a representation of S 
as the union of the Jordan-measurable sets SI, ... , SN, no two of 
which overlap. In each S, we pick an arbitrary point (~" 11') and form 
the generalized Riemann sum 

(27) 

We shall prove that F tends to the integral of f over the set S as the 
subdivision is refined indefinitely. The continuous function f is uni­
formly continuous in the bounded closed set S. Given an & > 0, we can 
find a B > 0 such that f varies by less than & between any two points 
of S having distance less than B. Assume that the subdivision ~ is 
so fine that all the S, have diameter < B, that is, that any two points 
in the same S, have distance less than B. Then, 

f(~" 11t) - & ~ f(~, 11) ~ f(~" 11') + & 

for all (~, 11) in St. It follows from (24) that 

[f(~" 11') - &]A(St) ~ fL/(~, 11)dx dy ~ [f(~t, 11') + &]A(S,). 

Hence, by (26), (27), (13), 

Fy; - &A(S) ~ fLfdxdy ~ Fr. + &A(S). 

It follows that the generalized Riemann sums Fr. differ arbitrarily 
little from the value of the integral of f over S, for all sufficiently fine 
subdivisions ~. 
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d. Reduction of Multiple Integrals to Repeated Single Integrals 

The computation of the value of a triple integral can usually be 
reduced to the evaluation of single and double integrals-and, similar­
ly, that of double integrals to single integrals and generally that of an 
integral in n-space to integrals in (n - I)-space-by use of the follow­
ing theorem: 

Let f(x, y, z) be an integrable function defined in x, y, z-space. As­
sume that for any fixed values of x, y we have in f(x, y, z) a function of 
the single variable z that is integrable,1 and let 

(28) I f(x, y, z)dz = h(x, y). 

Then h(x, y) as function of x, y is integrable and 

(29) III f(x, y, z) dx dy dz = II h(x, y) dx dy. 

For the proof we consider the nth subdivision of x, y, z-space into 
cubes Cljk given by 

We form the upper sum for the triple integral of f: 

F + - " M·~ 2-3n 
n - .4-<k 'Jk , '.J. 

where M/jk is the supremum of f(x, y, z) in C/jk> and, similarly, form 
the lower sum F;;. We now take any fixed point (x, y) in the square 
Ri; 

R n • i < < i + 1 .L < < j + 1 
ij' 2n = x = ~, 2n = y = 2n . 

Then M/Jk is an upper bound for f(x, y, z) as a function of z in the in­
terval 

1 Here, of course, single integrals are taken in the same sense as double integrals; 
they are defined with the help of the special subdivisions on the line into intervals 
i2-n ~ z ~ (i + 1)2-n, taking lower and upper sums, and so on. 
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It follows from (24) and (26) that for x, y, E Rn 
h(x, y) = I f(x, y, z) dz 

= I: r 11 f(x, y, z) dz ~ I: M/!k2- 1I• 1 
k ~k k 

Denote by H! and H~ the upper and lower sums for the integral of 
h(x, y) in the nth subdivision. It follows that 

and similarly, 

Since 

TY+ < '" (" M.~ 2-11)2-211 = F+ 
II 11 = 4":::""'k "k 11' 

'·1 

~~l!,l F~ = ~i~ F~ = III f(x, y, z) dx dy dz, 

it follows that h(x, y) is integrable and that (29) holds. 
Under appropriate assumptions we can further reduce the double 

integral 

II h(x, y) dx dy 

to a repeated single integral 

I g(x) dx, 

where for each fixed x the function g(x) is defined by 

g(x) = I h(x, y) dy 

To apply this reduction we only have to know that for each fixed x 
we have in h(x, y) an integrable function of y. This follows, however, 
from the two-dimensional analogue of formula (29) if we make the 

lImplicit in our assumptions is, of course, that f vanishes outside some bounded 
region, so that only a finite number of the intervals It are involved. 
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additional assumption that {(x, y, z) {or any fixed x is an integrable 
{unction in the y,z-plane, so that 

II {(x, y, z) dx dy = I h(x, y) dy = g(x). 

Hence, we can evaluate the original triple integral by repeated single 
integrations: 

(30) III {(x, y, z) dx dy dz = I{J[J {(x, y, z) dzJ dy} dx. 

A simple application, familiar from elementary calculus, is pro­
vided by the formula for the reduction of a volume integral over a 
cylindrical region to a double integral. 

Assume that S, a closed set in the x, y-plane, has an area and that 
a(x, y), ~(x, y) are continuous functions defined in S with a(x, y) ~ 
~(x, y). Let C denote the cylindrical region 

C: (x,y) E s, a(x, y) ~ z ~ ~(x, y). 

The boundary of C consists of the surfaces z = a(x,y), and z = 
~(x, y), which, by p. 521, have volume 0, and of the points in Cfor which 
(x, y) lies on the boundary Sb of S. Since Sb has area 0, this latter set 
also has volume o. This shows that C is Jordan-measurable. Now let 
{(x, y, z) be a continuous function defined in C. Then {(x, y, z)rpc(x, y, z) 
is integrable and 

IIL {dx dy dz = III {(x, y, z)(Jc(x, y, z) dx dy dz 

exists. Now for any fixed (x, y) E S the expression {(x, y, z)rpc(x, y, z) 
vanishes outside the interval 

a(x, y) ~ z ~ ~(x, y) 

(which might shrink to a point) and is continuous in the interval. 
Hence, {(x, y, z)rpc(x, y, z) is integrable and has the integral 

I 11l(X,y) 
h(x, y) = {(x, y, z)rpc(x, y, z) dz = {(x, y, z) dz, 

a(x,y) 

where we have made use of the ordinary notation for definite integrals 
over intervals. For (x, y) $. S we have {(x, y, z)rpc(x, y, z) = 0 for all z. 
Hence, for any (x, y) 
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LP(.z,u> 
h(x, y) = ;8(X, y) {(x, y, z) dx dy. o(.z,u> 

Consequently, in this case, the identity (29) yields 

(31) IIfo {(x, y, z) dx dy dz = IIs [I;:::> {(x, y, z) dz J dx dy. 

A.3 Transformation of Areas and Integrals 

a. Mappings of Sets 

Our aim will be to derive the rule by which a multiple integral is 
transformed when we change the variables of integration. Such a 
change of the independent variables x, y in the plane is a mapping 
Tofthe form 

(32) ~ = {(x, y), 11 = g(x, y), 

where { and g are defined in a set n, the domain of the mapping. (Simi­
lar mappings define a change of variable in higher dimensions.) Each 
point (x, y) in n has a unique image (~, 11). The images form the range 
ro = T(n) of the mapping T (see p. 242). More generally, for any subset 
S of n we denote by T(S) the set consisting of the images of all the 
points of S. 

For the mappings T considered here, we make the following as­
sumptions: 

1. The domain n of T is an open bounded set in the x, y-plane. 
2. The mapping functions {, g are continuous and have continuous 

first derivatives: {.z, {u, g.z, gu in n. 
3. The Jacobian 11 of the mapping does not vanish in n: 

(33) d(~, 11) I {.z {u I 11 = ~( ) = = {,zgu - {ug.z =1= o. 
x, y g.z gu 

4. The mapping is 1-1; that is, each point (~, 11) in co is the image of 
a single point (x, y) of n. 

Formula (33) has the important consequence (see p. 261) that for 
every e-neighborhood Ns of a point (xo, yo) of n there exists a a-neigh­
borhood of the image point (~o, 110) contained in T(Ns). This implies 
that for any subset S of n an interior point· of S is mapped into an 
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interior point of T(S). Thus, open sets S are mapped onto open sets 
T(S),1 In particular, the range 0) of our mapping is open. 

Condition 4 states that there exists an inverse mapping 1'-1, which 
associates with every (~, 1') in 0) the unique (x, y) in n that is mapped 
by T onto (~, 1'). The inverse mapping is given by functions 

x = a(~, 1'), y = 13(~, 1') 

defined in the open set 0), which. are continuous and have continuous 
first derivatives 

(see p. 261). The Jacobian of the inverse mapping is 

d(x,y) I~ 
d(~, 1') = l3e 

and, of course, is also different from zero. 
Hence, in short, the inverse mapping T-1has all the properties we 

postulated for T. 
In order to arrive at the area of the image of a set S, we first consider 

a closed square Rfk contained in n and estimate the area of T(Rik). 
We assume that we are given an upper bound Jlfor /{x/,lfy/,/gx/,/gy/ 
and an upper bound M for I ~ I in Rfk' We assume also that we have an 
upper bound E for the amount by which any of the quantities {x, {y, 
gx, gy varies in Rfk' Introducing the abbreviations X1 = i2-n,Ylc = k2-n 

for the coordinates of the lower left-hand corner of Rik, we can 
approximate { and g in Rik by the linear functions 

ftk(x, y) = teXt, Ylc) + {z(Xt, Ylc)(X - Xt) + {y(Xt, Ylc)(y - Ylc) 

gik(x, y) = g(Xt, Yk) + gz(Xt, Ylc)(X - Xi) + gy(Xt, Yk)(Y - Ylc). 

By the mean value theorem of differential calculus (see p. 67), we 
have for every (x, y) in Rfk 

{(x, y) = teXt, Ylc) + {z(x', y')(x - Xi) + {y(x', y')(y - Ylc) 

g(x, y) = g(Xt, Ylc) + gz(x", y")(X - Xi) + gy(X", y")(y - Ylc), 

where (x', y') and (x", y") are suitable intermediate points on the 
line joining (x, y) and (Xi, Ylc). It follows that for any (x, y) in Rfk, 

lWe say that T is an open mapping. 
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I {(x, y) - fFk(x, y) I 
= I [(x(X', y') - (x(Xi, Yk)](X - Xi) 

+ [(y(X', Y') - (y(Xi' Yk)](Y - Yk) I ~ 2e2-n, 

and similarly, 

Ig(x,y) - gile(X,y) I ~ 2e2-n. 

Now, the linear mapping 

(34) ~ = f/ic(x, y), 11 = gile(x, y) 

takes the square Rile into the parallelogram nik with vertices 

({, g), ({ + 2-n{x, g + 2-ngx), ({ + 2-n{y, g + 2-ngy), 

({ + 2-n{x + 2-n{y, g + 2-ngx + 2-ngy), 

where {, g, {x, {y, gx, gy are to be taken at the point (Xi, Yk). The area 
of this parallelogram is the absolute value of the determinant (p.195) 

The coordinates (~, 11) of any point of T(Rik) differ at most by 2e2-n from 
the corresponding coordinates of a point in nile obtained by the linear 
mapping. Hence, every point in T(Rik) either lies in nile or at a distance 
at most 23/2e2-n from one of the sides of nile. Each side of nile has length 
at most ..f2 2-nll. The set of points lying within the distance 23/2e2-n 

from one side has an area at most 

Since the area of nile does not exceed M2-2n, we find that T(Rile) is 
contained in a set whose area is at most 

(35) (M + 32ne2 + 32Ile)2-2n. 

Take now any square Rj;. arising in the Nth subdivision contained 
in n. In the closed set RJ~ the quantities Ifx I.lfy I, I gx I, I gy I have a 
common upper bound Il. Since {x, gx, {y, gy are uniformly continuous 
in Rj;., we can find a finer subdivision into squares Rfk such that these 
functions vary by less than e in each square Rile C Rfr. If M/ic denotes 
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the supremum of 1111 in Rik, we find from (35) that T(Rfr) is covered by 
sets of total area at most 

where F! is the upper sum corresponding to the nth subdivision for 
the integral 

fInfr 1111 dx dy. 

For n ~ 00 the upper sums F! tend to the value of the integral, since 
the function 1111 is continuous and, thus, integrable over Rfr. Since 
8 is an arbitrary positive number we find [see (8), (10), p. 519,520] that 
the outer area of the image of the square Rfr satisfies the inequality 

(36) A +[T(Rfr)] ~ fIn,~ 1111 dx dy, 

which represents the first step in our computation of the area of image 
sets. 

Now take any Jordan-measurable set S, which together with its 
boundary as lies in the open set n. We can find a closed set Sf c n 
and an N such that for n > N any square R:k of side 2-n that has 
points in common with S lies completely in Sf.l 
For n > N, let the union of the squares Rik having points in common 
with S be denoted by Sn. The image of Sn is covered by the images of 
those squares. Hence, (36) yields the estimate for the outer area of 
T(S) 

A +[T(S)] ~ A +[T(Sn)] ~ 1:::: A +[T(Rik)] 
BikeSn 

For n ~ 00 the integral of 1111 over Sn tends to the integral over S, 
since 1111 is bounded in Sf and the total area of the Rik that have points 
in common with S without lying completely in S tends to 0 for the 
Jordan-measurable set S. Thus, we have proved that 

(37) A+[T(S)] ~ fIs Il1ldx dy 

lWe only have to choose for 8' the union of all Rfr having points in common with 
8, where we take N sufficiently large. 
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for any Jordan-measurable set whose closure lies in n. 
Under the same assumptions on S, we can also apply (37) to the 

boundary as of S which is a closed subset of n of area O. Then, by (37), 

A +[T(aS)] ~ rr I A I dx dy ~ (Max I A I )A(aS) = O. JJas as 

Hence T(aS) has area O. Let (~, TJ) be a boundary point of T(S) and 
consider a sequence of points(~n, TJn) in T(S) with the limit (~, TJ). The 
(~n, TJn) are images of points (Xn, Yn) in S. A subsequence of the (Xn, Yn) 
converges to a point (x, y) in the closure of S and, hence, inn. The con­
tinuity ofthe mapping T implies that (~, TJ) is the image of(x,y). Here 
(x, y) cannot be an interior point of S, since then (~, TJ) would have to 
be an interior point of T(S) and not a boundary point. Hence, (x, y) 
is a boundary point of S. Thus, the boundary of T(S) consists of images 
of boundary points of S, and, hence, is a subset of the set T(aS) that 
has been shown to have area O. Thus, the boundary of T(S) also has 
area 0, and we have proved that T(S) is Jordan-measurable. We can 
then replace A + [T(S)] in (37) by the area A[T(S)] and find that A [T(S)] 
exists and satisfies 

(38) A[T(S)] ~ IIs I A I dx dy = IIs I ~~;: ~~ I dx dy 

for any Jordan-measurable set S whose closure lies in n. 
We saw that the boundary of T(S) is contained in T(aS) and, hence, 

in 0). Thus, T(S) is a Jordan-measurable set whose closure lies in 0) = 
T(n). Since T and T-l have the same properties we can apply formula 
(38) to the inverse mapping and find that also 

(39) A(S) ~ IIT(S) I ~~~: ~~ : d~ dTJ = IL(s) I i I d~ dTJ. 

If we apply this last formula to a square Rile contained in n, we find 
that 

where m».: is the greatest lower bound ofl A I in Rik' Thus, 
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For any Jordan-measurable set S with closure in n, let the union of 
the Rik c S be denoted by Sn. Then 

A[T(S)] ~ A[T(Sn)] = L: A[T(Rik)] ~ L: mik 2-2n = F;;, 
BikcS Bikcs 

where F;; is the lower sum for the integral of I A lover the set S. For 
n ~ 00 we conclude that 

A[T(S)] ~ IL IAldx dy. 

Combined with (38) we have thus proved the fundamental fact: 

Let S be a Jordan-measurable set whose closure lies in the domain 
n of the mapping T. Then the image T(S) also has an area and this area 
is given by the formula 

(40) A[T(S)] = IIT(S) d~ dll = IIs I ~~;, ~~ I dx dy. 

b. Transformation of Multiple Integrals 

It is easy to pass from formula (40), which represents the law of 
transformation of areas, to the more general formula for transforma­
tion of integrals. We make the same assumptions on the mapping T 
as before. Now let S be a closed Jordan-measurable set contained in 
n and let F(x, y) be a function that is defined and continuous for (x,y) 
in S. Since the inverse mapping x = a(~, 11), y = J3(~, 11) is continuous in 
n, the function F( a(~, 11), J3(~, 11» is defined and continuous in the set 
T(S). We again denote this function of ~ and 11 by the letter F. The law 
of transformation for integrals then takes the form 

(41) rr F d~ dll = lrr FI d(~, 11) I dx dy. JJT(S) Js d(x,y) 

For the proof, we use the representation of integrals of continuous 
functions by generalized Riemann sums (see p. 530). We consider a 
general subdivision of S: 

n 
S = U St, 

i=l 
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where the S, are closed Jordan-measurable subsets of S that do not 
overlap. The image sets T(S,) furnish a corresponding subdivision of 
the set T(S). Since the mapping T is uniformly continuous in the 
closed set S, the diameters of the image sets T(Sc) tend to 0 when those 
of the S, do. Take a subdivision so fine that f varies by less than 8 

in each S,. Let (X" y,) be a point in S,. Then F(x" y,) is also one of the 
values taken by the function F(a(~, 11), ~(~, 11» in the set T(S,). We form 
the Riemann sum corresponding to the left-hand integral in (41): 

~ F(x" y,)A[T(S,)] = ~ IIsi F(x" y,) I A(x, y) I dx dy 

where 

= ~ rr .F(x,y) IA(x, y)ldxdy + r , JJs, 

= IIs F(x, y) I A(x, y) I dx dy + r, 

I r I = I ~ IIsi [F(x" y,) - F(x, y)] I A(x, y) I dx dy I 

~ 8 ~ IIsi I A(x. y) I dx dy = 8A[T(S)]. 

As the subdivision becomes finer, the Riemann sum tends to the inte­
gral of F over the set T(S). For 8 -4 0 we obtain the identity (41). 

A.4 Note on the Definition of the Area of a Curved Surface 

In Section 4.8 (p. 423) we defined the area of a curved surface in a way 
somewhat dissimilar to that in which we defined the length of arc in 
Volume I (p. 348). In the definition of length, we started with inscribed 
polygons, while in the definition of area we used tangent planes in­
stead of inscribed polyhedra. 

In order to see why we cannot use inscribed polyhedra, we consider 
that part of the cylinder with the equation x2 + y2 = 1 in x, y, z-space, 
which lies between the planes z = 0 and z = 1. The area of this cyl­
indrical surface is 21t. In it we now inscribe a polyhedral surface, all 
of whose faces are identical triangles, as follows: We first subdivide 
the circumference of the unit circle into n equal parts, and on the 
cylinder we consider the m equidistant horizontal circles z = 0, z = h, 
z = 2h, . .. , z = (m - l)h, whereh = 11m. We subdivide each of these 
circles into n equal parts in such a way that the points of division of 
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each circle lie above the centers of the arcs of the preceding circle. 
We now consider a polyhedron inscribed in the cylinder whose edges 
consist of the chords of the circles and of the lines joining neighboring 
points of division of neighboring circles. The faces of this polyhedron 
are congruent isosceles triangles, and if n and m are chosen sufficient­
ly large, this polyhedron will lie as close as we please to the cylindri­
cal surface. If we now keep n fixed, we can choose m so large that each 
of the triangles is as nearly parallel as we please to the x, y-plane and 
therefore makes an arbitrarily steep angle with the surface of the cyl­
inder. Then we can no longer expect that the sum of the areas of the 
triangles will be an approximation to the area of the cylinder. In fact, 
the bases of the individual triangles have the length 2 sin 1tln, and the 
altitude, by the Pythagorean theorem, the length 

J 1 ( 1t)2 J 1 . 1t - + 1 - cos - = - + 4 sm4- . 
m2 n m2 2n 

Since the number of triangles is obviously 2mn, the surface area of 
the polyhedron is 

Fnm = 2mnsin ~ J~ + 4sin4~ = 2nsin~ Jl + 4m2 sin4~. , n m2 2n n 2n 

The limit of this expression is not independent of the way in which 
m and n tend to infinity. If, for example we keep n fixed and let m ~ 00, 

the expression increases beyond all bounds. If, however, we make 
m and n tend to 00 together putting m = n, the expression tends to 21t. 
If we put m = n 2, we obtain the limit 

and so on. From the above expression Fn,m for the area of the polyhed­
ron we see that the lower limit (lower point of accumulation) of the set 
of numbers F n,m is 21t, where m tends to infinity with n in any manner 
whatsoever. 1 This follows at once from Fn,m ~ 2n sin 1tln and 
lim 2n sin 1tln = 21t. 
n-oo 

lThe lower limit L of a bounded sequence F n (denoted by L = lim inf F n) can be defined 

in several equivalent ways: 
a) L is the greatest lower bound of the limits of all convergent subsequences of the 

F n• 

b) L is the limit for N -+ 00 of the greatest lower bounds of the sets obtained from 
the F n by omitting the first N terms. 
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In conclusion wemention-without proof-a theoretically interest­
ing fact of which the example just given is a particular instance. If 
we have any arbitrary sequence of polyhedra tending to a given 
surface, we have seen that the areas of the polyhedra need not tend to 
the area of the surface. But the limit of the areas of the polyhedra 
(if it exists) or, more generally, any point of accumulation of the 
values of these areas is always greater than, or at least equal to, the 
area of the curved surface. If for every sequence of such polyhedral 
surfaces we find the lower limit of the area, these numbers form a 
definite set of numbers associated with the curved surface. The area 
of the surface can be defined as the greatest lower bound of this set of 
numbers.l 

c) L is the lower point of accumulation (see Volume I. p. 95) of the F n that is L is the 
smallest number with the property that every neighborhood of L contains points 
F n for infinitly many n. 

d) For every positive & we have F n < L - & for at most a finite number of n, and 
F n < L + & for infinitly many n. 

The upper limit M = lim sup F" of the sequence Fnis defined analogously. The se-
n-~ 

quence converges if and only if L = M. 
IThis remarkable property of the area is called semicontinuity or, more precisely, 
lower semicontinuity. 



CHAPTER 

5 

Relations Between Surface 
and Volume Integrals 

The multiple integrals discussed in the previous chapter are not the 
only possible extension of the concept of integral to more than one 
independent variable. Other generalizations arise from the fact that 
regions of several dimensions may contain manifolds of fewer dimen­
sions and that we can consider integrals over such manifolds. Thus, 
for two independent variables, we considered not only the integrals 
over two-dimensional regions but also integrals along curves, which 
are one-dimensional manifolds. With three independent variables, 
besides integrals over three-dimensional regions and integrals along 
curves, we encounter integrals over curved surfaces. In the present 
chapter we shall introduce surface integrals and discuss the mutual 
relations between integrals over manifolds of varying dimensions. l 

5.1 Connection Between Line Integrals and Double ~ntegrals 
in the Plane (The Integral Theorems of Gauss, Stokes, and 
Green) 

For functions of a single independent variable the fundamental 

lWe use the term manifold without precise definition as a generic name for sets of 
an unspecified number of dimensions. In this book we deal exclusively with manifolds 
that are subsets of some euclidean space, such as the curves, two-dimensional sur­
faces, hypersurfaces, and four-dimensional regions in four-dimensional euclidean 
space. More generally, manifolds can be defined without reference to a surrounding 
euclidean space. Such manifolds locally resemble deformed portions of euclidean 
space, while their over-all structure can be much more complicated than that of 
euclidean space. 
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formula stating the relation between differentiation and integration 
(cf. Volume I, p. 190) is 

JXI {,(x) dx = {(Xl) - ((xo). 
Xo 

(1) 

An analogous formula-Gauss's theorem, also called the divergence 
theorem-holds in two dimensions. Here again, the integral of a 
derivative of functions 

Ii (x(x,y) dx dy or Ii gll(X,y) dx dy 

is transformed into an expression that depends on the values of the 
functions themselves on the boundary. We regard here the boundary 
C of the set R as an oriented curve + C, choosing as positive sense on 
C the one for which the region R remains on the "left" side as we de­
scribe the boundary curve C.I Gauss's theorem then states that 

(2) Ii r{x(x,y) + gy{x,y)] dx dy = La [((X,y) dy - g(x,y) dx]. 

This theorem contains as a special case our previous formula ex­
pressing the area A of the set R as a line integral over the boundary C 
of R. We put {(x, y) = x, g(x, y) = 0 and at once obtain 

A = Ii dxdy = La xdy. 

In exactly the same way, for {(x, y) = 0 and g(x, y) = y, we obtain 

A = Ii dx dy = - La y dx 

in agreement with Volume I (p. 367). 
The divergence theorem becomes particularly suggestive in the no­

tation of the calculus of differential forms, as explained on pp. 307-324. 
In (2), the line integral has the integrand 

L = ((x,y) dy - g(x,y) dx, 

a first-order differential form. Indeed, L can be identified with the most 
general first-order forma(x,y)dx + b(x,y)dy if we take {= b, g = -a. 
By the definition on p. 313 the derivative of this form is 

lAssuming that the x, y-coordinate system is right-handed. 
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dL = df dy - dg dx = (fx dx + f1l dy) dy - (gx dx + g1l dy) dx 

= fx dx dy - g1l dy dx = (fx + g1l) dx dy, 

which is just the integrand of the double integral in (2). Hence, for­
mula (2) takes the form1 

(2a) 

In the proof we restrict ourselves to the case in which R is an open 
set whose boundary C is a simple closed curve consisting of a finite 
number of smooth arcs; moreover, we assume that every parallel to one 
of the coordinate axes intersects C in at most two points.1 We require 
f and g to be continuous and to have continuous first derivatives in 
the closure of R (consisting of R and of its boundary C). 

We first assume that the function g vanishes identically. Then the 
double integral of fx over R exists and can be written as a repeated 
integral2 

(3) fL fx(x,y) dx dy = f dy ffx(x,y) dx. 

On each parallel to the x-axis, the variable y is constant. The paral­
lels to the x-axis intersecting R correspond to y-values forming an 
open interval 110 < Y < 111, the projection of R onto the y-axis.3 For 

lThe process of forming the boundary of a set R presents fonnal analogies with differ­
entiation. For that reason one frequently uses the symbol aR for the boundary + C 
of R, writing (2a) as 

(2b) 

This formula actually applies much more generally to differential forms integrated 
over manifolds in n-dimensional space (see p. 624). 
lIn the Appendix the theorem (and its generalizations in higher dimensions) is 
proved under the assumption that R is the closure of an open set bounded by a simple 
curve that is smooth everywhere. 
2The set R is bounded by the union of a finite number of smooth arcs and, hence, (see 
p. 521) is Jordan-measurable. The integral of the continuous function fz over R exists 
then and is defined as the integral of I)nfz over the whole plane,where I)R is the char­
acteristic function of the set R (that is, I)R is 1 in the points of R but is 0 in all other 
points). The reduction of the double integral to a repeated integral is permitted (see 
p. 531) since the function I)nfz can be integrated over each parallel to the x-axis; 
indeed, each parallel to the x-axis meets R in either an open interval or nowhere, so 
that the integral of I)nfz over a parallel to the x-axis is either the integral of the con­
tinuous function fz over an open interval or zero. 
3The projection of R is an open interval because R is open and its boundary is a 
simple closed curve and, hence, connected. 
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each y in that interval the corresponding parallel to the x-axis cuts 
out of R an interval xo(y) < x < Xl(y) whose end points are the ab­
scissas of the two points of intersection of the parallel with C (see 
Fig. 5.1). Formula (3) asserts more precisely that 

Figure 5.1 

II fa; dx dy = Jlll hey) dy, 
R 110 

where 

J2:l (1/) 

hey) = f:r;(x, y) dx = f(Xl(y), y) - f(xo(y), y). 
2:0(1/) 

Hence, 

(4) II. fa; dx dy = ill 1 f(Xl(y), y) dy - ill 1 f(xo(y), y) dye 
R 110 110 

We introduce the two simple oriented arcs + Cl, + Co given parametri­
cally, respectively, by 

+ Cl: x = Xl t , Y = t, 
+ CO: x = Xo t , Y = t, 

for 

for 

where in each case the sense of increasing t corresponds to the 
orientation of the arc. Formula (4) can then be written as 

II. fa; dx dy = J f dy - f f dye 
R +Cl +Co 
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Now Cl and Co form respectively the right and left portions of C, 
where, however, + C1 has the same orientation as C and + Co the op­
posite one. Denoting by - Co the arc obtained by reversing the orienta­
tion of Co, we obtain (see p. 94) 

If f dx dy = J f dy + I f dy = f f dy. 
R +Cl -co +c 

We can similarly decompose + C into an "upper" arc 

for 

and "lower" arc 

+ ro: x = t, y = yo(t), for 

oriented according to the sense of increasing t. Here the interval 
~o < x < ~l represents the projection of R onto the x-axis. Then, 

r[ I!;1 f Y1 (X) JJ gy dx dy = dx gy dy 
R 1;0 Yo (x) 

rf.l r!;1 
= J. g(x, Yl(x»dx - J. g(x, yo(x» dx 

!;o 1;0 

=-I gdx-J gdx 
-rl +ro 

= - J gdx 
+c 

since here r 0 has the same orientation as C and r 1 the opposite one. 
Adding the two identities obtained, we arrive at the general formula 
(2). 

We can now extend our formula to more general open sets R 
bounded by a simple closed curve C, provided C can be decomposed 
into a finite number of simple arcs Cl, . . ., Cn each of which is inter-
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sected in at most one point by any parallel to one of the coordinate 
axes. I In order to prove that here also 

(5) If Ix dx dy = J I dy, 
R +c 

we draw parallels to the y-axis through all of the end points of the 
simple arcs Ct (see Fig. 5.2). In this way R is decomposed into a finite 

Pa 

Figure 5.2 

number of sets RI, . . ., RN each of which is bounded laterally by 
straight segments parallel to the y-axis and above and below by simple 
subarcs of two of the arcs Ct. We can apply the formula 

roc Ix dx dy = f I dy JJRi Hi 

to each of the sets Rt with boundary r" since r, is intersected by 
each parallel to the x-axis in at most two points. Here the orienta­
tion of the boundary curve + r, agrees with that of + C in the nonverti­
cal portions and is that of increasing y on the right-hand boundary 
and of decreasing y on the left-hand one. Adding up the formulae 

lThis assumption is not always satisfied. The boundary curve C may, for example, 
consist in part of the curve y = Xl sin (l/x), which is cut by the x-axis in an infinite 
number of points and can not be decomposed into a finite number of arcs cut in only 
one point. 
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for i = 1, . . . , N the double integrals over the Rt yield the double 
integral over R. In the line integrals over the + ri the contributions 
over the vertical auxiliary segments cancel out, since each segment is 
traversed twice, once upward, once downward. Hence, the line inte­
grals over the curves + r i add up to that over the whole curve + C, 
and one obtains formula (5). In the same way one proves that 

If gy dx dy = - J g dx 
R +c 

by dividing R by parallels to the x-axis through all of the end points 
of the arcs Ci. 

The same arguments also show that we can dispense with the 
assumption that the boundary C of R consists of a single closed curve 
C. The divergence theorem (2) applies just as well when C consists of 
several closed curves, as long as C can be decomposed into a finite 
number of simple arcs each intersected in at most one point by paral­
lels to the axes. In taking the integral over + C we have to give each 
of the closed components of C the orientation corresponding to leav­
ing R on the left-hand side. Decomposition by parallels to the y-axis 
still results then in regions whose boundary is intersected in at most 
two points by any parallel to the x-axis (see Fig. 5.3). 

Figure 5.3 

In this manner we prove the divergence theorem for more general 
regions R by decomposing R into regions for which the theorem has 
already been proved. Often, we can instead transform R into a region 
to which the theorem is known to apply. Writing the divergence theo­
rem as 
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If. dL = I L, 
R +0 

we notice that the differential forms dL and L are defined independent­
ly of coordinates, as explained in Section 3.6d, p. 322. Let 

x = x(u, v), y = y(u, v) 

be a continuously differentiable 1-1 transformation, with positive 
Jacobian, that takes R into a set R* with boundary C* in the u, v­
plane. Then, 

L = f dy - g dx = f(yu du + Yv dv) - g(xu du + Xv dv) 

= (fyu - gxu) du + (fyv - gxv) dv 

= A du + Bdv, 

where 

A = fyu - gxu, B =fyv -gXv. 

The derivative of L computed in either X, y or u, v variables is given by 

dL = df dy - dg dx = (fz + gil) dx dy 

= dA du + dB dv = (Bu - Av) du dv, 

so that (as can also be verified directly) 

d(x,y) 
(fz + gil) d(u,v) = Bu - Av. 

Let C be referred to a parameter t: 

X = x(t), y = y(t) a ~ t ~ b, 

where the orientation of + C corresponds to increasing t. Using for the 
corresponding points of + C* the same parameter value t, we have for 
the line integrals of Lover C and C* the common value 

J -f L - f (t dY dx) - f (A du dv) L - dt dt - dt - g dt dt - * dt + B dt dt. 
+0 +C 
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Similarly, we have the same value for the area integrals in the two 
planes: 

ffdL = ff (Ix + gil) dx dy 
R 

= fI d(x,y) L R. (Ix + gil) d(u,v) du dv 

= fL. (Bu - A,,) du dv. 

Hence, the divergence theorem for R 

II. (Ix + gil) dx dy = I (I dy - g dx) 
R 0 

will follow from the corresponding formula for R*, 

ff (Bu - A,,) du dv = J (A du + B dv). 
JJR• +0. 

For the validity of the theorem for a region R, it is sufficient that R 
can be transformed into a region whose boundary consists of simple 
arcs intersected by parallels to the axes in, at most, one point. If, for 
example, the boundary C or R is a polygon, we can always rotate the 
figure in such a way that none of the sides of the polygon is parallel 
to one axis, and the divergence theorem will apply. 

5.2 Vector Form of the Divergence Theorem. Stokes's 
Theorem 

Gauss's theorem can be stated in a particularly simple way if we 
make use of the notations of vector analysis. For this purpose we con­
sider the two functions I(x, y) and g(x, y) as the components of a plane 
vector field A. The integrand of the double integral in formula (2) is 
denoted by div A, 

div A = Ix(x, y) + gll(X, y) 

and is called the divergence of the vector A (cf. p. 208). In order to ob­
tain a vector expression for the line integral on the right side in the 
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divergence theorem, we introduce the length of arc s of the oriented 
boundary curve + C (cf. Volume I, p. 352). Here, the sense of increasing 
s is taken to correspond to the orientationl of the curve + C. The right 
side of identity (2) then becomes 

1 [{(x, y)y - g(x, y)x] ds, 
c 

where we put dx/ds = x and dy/ds = y. 
We now recall that the plane vector t with components x and y 

has unit length and has the direction of the tangent in the sense of 
increasing s and, hence, in the direction given by the orientation of 
C. The vector n with components S = Y and 11 = - x has length 1, is 
perpendicular to the tangent, and, moreover, has the same position 
relative to the vector t as the positive x-axis has relative to the 
positive y-axis.2 If, as usual, a 900 clockwise rotation takes the posi­
tive y-axis into the positive x-axis, the vector n is obtained by a 90 0 

clockwise rotation from the tangent vector t. Thus, n is the normal 
pointing to the "right" side of the oriented curve C (cf. Volume I, 
p. 346). Since in our case + C is oriented in such a way that the re­
gion R lies on the left side of + C, it follows that n is the unit vector in 
the direction of the outward-drawn normal (see Fig. 5.4). The com­
ponents S, 11 of the unit vector n are the direction cosines of the 
outward normal: 

s = cos 9, 11 = sin 9 

lln effect, this convention on s makes the value of a line integral of the form 

1= L hds 

independent of the orientation of C as long as the integrand h does not depend on the 
orientation. If C is represented parametrically in the form x = x(t), y = y(t) for a ~ 
t ~ b where the sense of increasing t corresponds to a particular orientation of C, 
then 

1= { h ds = {b h ds dt, 
Jc Ja dt 

where ds/dt > O. In particular, I> 0 whenever the integrand h is positive along the 
curve. 
2We see this from considerations of continuity; we may suppose that the tangent to 
the curve is made to coincide with the y-axis in such a way that t points in the 
direction of increasing y. Then x = 0, y = 1, so that the vector n with components 
e = 1 and TJ = 0 has the direction of the positive x-axis. 
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y 

oL-------------~% 

Figure 5.4 

if n forms the angle {) with the positive x-axis. It is useful to notice 
that the components of n can also be written as directional derivatives 
of x and y in the direction of n: 

~ =y = dx, 
dn 

. dy 
11 = - x =-, 

dn 

since for any scalar h(x, y) the derivative of h in the direction of n 
is given by 

:: = hz cos {) + h y sin {) = ~hz + llhy 

(see p. 44) 
Gauss's theorem therefore can be written in the form 

(6) Ii div A dx dy = L (I:: + g :~) ds. 

Here the integrand on the right is the scalar product A • n of the 
vector A with components I, g and the vector n with components 
dx/dn, dy/dn. Since the vector n has length 1 the scalar product 
A • n represents the component An of the vector A in the direction 
of n. Consequently, the divergence theorem takes the form 
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(7) If div A dx dy = I A • n ds = f An ds. 
R C C 

In words, the double integral of the divergence of a plane vector field 
over a set R is equal to the line integral, along the boundary C of R, 
of the component of the vector field in the direction of the outward­
drawn normal. 

In order to arrive at an entirely different vector interpretation of 
Gauss's theorem in the plane we put 

a(x, y) = - g(x, y), b(x, y) = f(x, y). 

Then, by (2), 

(8) If (bx - a1l) dx dy = I (ax + by) ds = f a dx + b dy. 
R C +c 

If the two functions a and b are again taken as components of a 
vector field B (where at each point B is obtained from the vector A 
by a 90° rotation in the counterclockwise sense), we see that ax + by 
is the scalar product of B with the tangential unit vector t: 

ax + by = B . t = Be, 

where Be is the tangential component of the vector B. The integrand 
of the double integral in (8) appeared on p. 209 as a component of the 
curl of a vector in space. In order to apply the concept of curl here 
we imagine the plane vector field B continued somehow into x, y, z­
space in such a way that in the x, y-plane the x- and y-components 
of B coincide with a(x, y) and b(x, y), respectively. Then bx - a1l 
represents the z-component (curl B)z of the curl B. The divergence 
theorem now takes the form 

(9) If (curl B)z dx dy = I Be ds. 
R C 

We can formulate the theorem in words as follows: 

The integral of the z-component of the curl of a vector field in space 
taken over a set R in the x, y-plane is equal to the integral of the tangential 
component taken around the boundary of R. This statement is Stokes's 
theorem in the plane. 
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If we make use of the vector character of the curl of a vector field 
in space we can free the Stokes theorem from the restriction that the 
plane region R lie in the x, y-plane. Any plane in space can be taken 
as x, y-plane of a suitable coordinate system. We thus arrive at the 
more general formulation of Stokes's theorem: 

(10) If (curl B)n ds = i Be ds, 
R C 

where R is any plane region in space bounded by the curve C, and 
(curl B)n is the component of the vector curl B in the direction of 
the normal n to the plane containing R. Here C has to be oriented 
in such a way that the tangent vector t points in the counterclockwise 
direction as seen from that side of the plane toward which n points. 

If the complete boundary C of R consists of several closed curves, 
these formulas remain valid provided that we extend the line integral 
over each of those curves, oriented properly so as to leave R on its 
left side. 

Of importance is the special case where the functions a(x, y), 
b(x, y) satisfy the integrability condition 

(11) all = bz , 

that is, where a dx + b dy is a "closed" torm. Here the double 
integral over R vanishes and we find from (8) that 

I a dx + b dy = 0 
C 

whenever C denotes the complete boundary of a region R in which 
(11) holds. This again implies, as we saw on p. 96, that 

Iadx+bdy 

extended over a simple arc has the same value for all arcs that have 
the same end points and that can be deformed into each other with­
out leaving R (see p. 104). 

Exercises 5.2 

1. Use the divergence theorem in the plane to evaluate the line integral 
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L Adu+Bdv 

for the following functions and paths taken in the counterclockwise 
sense about the given region 

(a) A = au + bv, B = 0, u G; 0, v G; 0, ot2U + ~2V :;;; 1 

(b) A = u2 - v2, B = 2uv, I u I < 1, I v I < 1 

(c) A = vn, B = un, u2 + v2 :;;; r2. 

2. Derive the formula for the divergence theorem in polar coordinates: 

Lc. !(r, 0) dr + g(r, 0) dO = fL. ; f~; -! ~l dB. 

3. Assuming the conditions for the divergence theorem hold, derive the 
following expressions in polar coordinates for the area of a region R with 
boundary C, 

1- r r2 dO, 
2 J+c• 

- r rO dr, 
J+c• 

where in the second formula we assume that R does not contain the 
origin. 

4. Apply Stokes's theorem in the x, y-plane to show that 

rr dd«U, v» dB = r u(grad v) • t ds, 
JJR• X, Y J+c· 

where t is the positively oriented unit tangent vector for C. 

5.3 Formula for Integration by Parts in Two Dimensions. 
Green's Theorem 

The divergence theorem 

(12) Ii (fz + gil) dx dy = i (f~: + g :~ ds 
R C 

[see formula (6)] combined with the rule for differentiating a product 
immediately yields a formula for integration by parts that is basic in 
the theory of partial differential equations. Let f(x, y) = a(x, y) u(x, y) 
and g(x, y) = b(x, y) v(x, y), where the functions a, u, b, v have con­
tinuous first derivatives. Since here 

we can write formula (12) in the form 



(13) 
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If (auz + bvy) dx dy = 
R 

r (dx dy) J .. aUdn + bv dn ds c 

- If. (azu + byv) dx dy. 
R 

To obtain Green's first theorem we apply this formula to the case 
where v = u and where a and b are of the form a = Wz and b = Wy. 
(We assume that u has continuous first derivatives and W continuous 
second derivatives in the closure of R.) We obtain the equation 

Ii (UzWz + UyWy) dx dy = L u{wz ~: + Wy ~~ ds 

- II u(wzz + Willi) dx dy. 
R 

Using the symbol A for the Laplace operator (p. 211), we write 

Wzz + Wyy = Aw. 

Moreover, dx/dn and dy/dn are the direction cosines of the outward 
normal of the boundary C of R (see p. 552); thus, we have in 

dx dy dw 
Wz dn + WII dn = dn 

the directional derivative of W taken in the direction of the outward 
normal to C.I In this notation Green's first theorem becomes 

(14) IL (uzwz + UyWy) dx dy = L U ~: ds - IL uAw dx dy 

If in addition u has continuous second derivatives, we obtain from 
(14) by interchanging the roles of u and v the formula 

If. (WzUz + WIIUII) dx dy = i W :: ds - Si wAu dx dy 
R C R 

Subtracting the two relations yields an equation symmetric in u 
and W and known as Green's second theorem: 

lUsually dw/dn is called, for short, the normal derivative of w. 
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(15) Ii (u~w - w~u) dx dy = L (U ~~ - w ~~) ds. 

The two theorems of Green are basic in the study of the solutions of 
the partial differential equation Uxx + Uyy = 0 (Laplace equation).1 

5.4 The Divergence Theorem Applied to the Transformation 
of Double Integrals 

a. The Case of 1-1 Mappings 

The divergence theorem yields a new proof for the fundamental 
rule for transformation of double integrals to new independent 
variables (see p. 403). The divergence theorem for a region R with 
boundary C can be stated in the form 

(16) fdL=J L 
R +c 

[see formula (2a), p. 545].2 Here, putting f = b, g = -a, 

(17a) 

(17b) 

L = a(x, y) dx + b(x, y) dy 

dL = (bx - ay) dx dy. 

If the curve C has a parametric representation 

x = x (t), y = y (t), 

where the sense of increasing t corresponds to the orientiation of + C, 
we can write the line integral in (16) as the ordinary integral 

(17c) r L = r a dx + b dy = r' ~t dt J+c J+c Ja 

with the integrand 

lSee the section on potential theory (p. 713). 
2Here and in what follows we always assume tacitly that the assumptions used in the 
proof of the divergence theorem are satisfied; that is, that R is an open set whose 
boundary C consists of a finite number of smooth arcs, each of which is intersected 
in at most one point by parallels to the axes. The coefficients of the linear form L 
are assumed to have continuous first derivatives in the closure of R. 
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(see p. 307). 
We now consider a mapping defined by functions 

(18a) u = u(x, y), v = v(x, y). 

We assume that the mapping is 1-1 in the closure of R and that the 
Jacobian d(u, v)/d(x, y) is positive throughout. Let R be mapped 
onto the set R' in the u, v-plane and C onto the boundary C' of R'. 
Moreover, C' also shall consist of a finite number of smooth arcs, each 
of which is intersected in, at most, one point by any parallel to a 
coordinate axis. Since the Jacobian is positive, the orientation is 
preserved; that is, for increasing t the point (u, v) given by 

u = u(x(t), y(t», v = v(x(t), y(t» 

describes the curve C' in such a way that we leave the set R' to our 
left. Referred to the coordinates u, v we have 

L = Adu + Bdv = A (uxdx + uydy) + B(vxdx + vydy) = adx + bdy, 

where the coefficients A, B in the u, v-system are connected with 
the coefficients a, b in the x, y-system by the relations 

a = Aux + Bvx, b = Auy + Bvy. 

Along C' 

so that by (17c) 

(18b) r L = rp ~t dt = rp A du + B dv = r , L. J+c Ja Ja J+c 

Applying the divergence theorem (16) to the region R' in the u, v­
plane, we find that 

(18c) I, L = II, dL, 
c R 



560 Introduction to Calculus and Analysis. Vol. II 

where, in analogy to (17b), 

dL = (Bu - Av) du dv. 

One verifies immediately thatl 

bx - ay = (Auy + Bvy)x - (Aux + Bvx)y 

= (Auux + Avvx)uy + (Buux + Bvvx)vy - (Auuy + Avvy)ux 

- (Buuy + Bvvy)vx 

= (Bu - Av) (uxVy - Uyvx). 

Thus, we conclude from (18b, c) and (16) that 

(19) IL, dL = IL, (Bu - Av) du dv = IL dL 

= IL (bx - ay) dx dy = Ii (Bu - Av) ~~:: ;~ dx dy. 

This formula contains the general law of transformation 

(20) IL, f(u, v) du dv = ILf(u (x, y), v (x, y» :~:: ;~ dx dy 

for double integrals [see (16b), p. 403]. We only have to choose the 
functions A, Bin (19) in such a way that A = 0 and Bu = f(u, v). 
This means that for fixed v the function B shall be some indefinite 
integral of f (u, v) as a function of u alone: 

B(u, v) = ru f(w, v) dw + h(v), 
Jg(V) 

where h(v) is arbitrary and g(v) is chosen in such a way that the 
point (g(v), v) lies in R'. For the special function f = 1, formula 
(20) yields an expression for the area of the image region as a double 
integral: 

IThis formula follows without any algebraic computations if we use the fact proved 
on p. 322 that dL can be formed for a form L without reference to any particular 
coordinate system; hence, by (56c), p. 308, 

dL dL d(u, v) d(u, v) 
b", - all = dx dy = du dv d(x, y) = (Bu - Av) d(x, y) 
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(20a) II f'r d(u, v) 
a' du dv = Ja d(x, y) dx dy 

Essentially formula (20) expresses the fact that the double integral 
of a second-order differential form 0) = f du dv does not change under 
changes of the independent variables. This fact is proved here by 
expressing 0) as derivative dL of a first-order form L, reducing the 
double integral to a line integral by means of the divergence theorem, 
and making use of the invariance of a line integral fL. 

b. Transformation of Integrals and Degree of Mapping 

It is interesting to observe what happens to the transformation 
formula (20) when the mapping 

u = u(x, y), v = v(x, y) 

is no longer 1-1 and when its Jacobian is not necessarily positive. 
First, we look at the case where the mapping of R onto R' is 1-1, but 
the Jacobian is negative throughout the closure of R. The only differ­
ence in the argument leading to (20) is that now + C and + C' have op­
posite orientations: if increasing parameter values t on C' means leav­
ing R' on the left, then increasing t on C means leaving R on the right. 
In applying the divergence theorem (16) we assume that the boundary 
of the two-dimensional region is oriented in such a way that the re­
gion lies on the positive (left) side of the boundary. The result is that 
formula (20)1 has to be replaced by 

(20b) f'r f1 d(u, v) Ja ' f du dv = - af d(x, y) dx dYe 

We can combine formulae (20) and (20b) into a single formula valid 
whenever the mapping from (x, y) onto (u, v) is 1-1 and the Jacobian 
is of constant sign: 

IFormula (20) applies unchanged if the two·dimensional regions Rand R' themselves 
are considered as oriented manifolds. In that case, the sign of an integral over the 
manifold changes when the orientation of the manifold is reversed. A negative 
Jacobian for the mapping implies that Rand R' have opposite orientations, so that 
formula (20) persists if written as 

JiR' f du dv = JiR f :~:: ;~ dx dYe 

Instead of orienting the regions, we can also replace the Jacobian by its absolute 
value as in formula (lSb) on p. 403. 
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(21) ff fER du dv = fL f~~:: ~~ dx dy. 

Here the integral on the left side is to be extended over the whole 
u, v-plane, and the function ER = ER(U, v) is defined as 

! 0 if (u, v) is not the image of a point of R 
ER(U, v) = . d(u, v). .. . 

sIgn d(x, y) If (u, v) IS the Image of a pomt of R. 

More generally we consider the case where the mapping of R is not 
necessarily 1-1. We assume that we can divide R into subsets Ri, 
each of which is mapped 1-1 and in each of which the Jacobian is 
of constant sign ERi' Then 

fJ' fd(u, v) dx dy = L: ff fd(u, v) dx dy 
L R d(x, y) i JJRi d(x, y) 

= ~ fffERi du dv = fffxR du dv. 

Here the last integral is extended over the whole u, v-plane, and the 
function XR stands for 

XR(U, v) = ~ ER,(U, v). , 
Each term ERi(U, v), when (u, v) is image of a point of Ri, is equal 
to the sign of the Jacobian at the point. Hence, the function XR(U, v), 
the degree of the mapping of R at the point (u, v), is the excess of the 
number of points of R with image (u, v) for which d(u, v)/d(x, y) is 
positive over the number of those points for which d(u, v)/d(x, y) 
< O. With this definition of XR(U, v) the transformation formula for 
integrals becomes 

fr IT ~~0 
(22) JJ f(u, v) XR(U, v) du dv = JJR f(u(x, y), v(x, y» d(x, y) dx dy. 

Taking the constant 1 for f, we obtain the formula 

(23) f1 d(u, v) fJ J' R d(x, y) dx dy = J. XR(U, v) du dv, 

which generalizes formula (20a) to mappings with nonvanishing 
Jacobian that are not necessarily 1-1. 
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As an example, consider the mapping 

(24a) u = eX cos y, v = eX sin y, 

for which 

d(u, v) = e2x > 0 
d(x, y) 

for all (x, y). Using polar coordinates r, e in the u, v-plane defined by 
u = r cos e, v = r sin e, we see that the image of the point (x, y) is the 
point with polar coordinates r = eX, e = y. Now let R be the rectangle 

(24b) 0< x < log 2, 
3 3 

- 21t < y < 2 1t· 

The image points lie in the annulus 1 < r < 2 (see Fig. 5.5) The points 
of the annulus with u < 0 are covered twice by the image of R 
(they can be assigned polar angles between 1t/2 and 31t/2 or between 
-1t/2 and -31t/2). The other points of the annulus are covered once. 

y 

~~--::--x 
log 2 

u u 

Figure 5.5 Degree of the mapping u = eX cos y, v = eX sin y 
applied to the rectangle 0 < x < log 2, I y I < 3/2 1t. 
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Hence, 

! 0 for 0 ~ r ~ 1 or r ~ 2 

XR(U, v) = 2 for 1 < r < 2 and U < 0 

1 for 1 < r < 2 and U ~ o. 
Here, since each half of the annulus 1 < r <2 has area 3nj2, we have 

Alternatively, by direct calculation, 

(( d(u v) (a"/2 (lOg 2 (log 2 9 
JJR d(x: y) dx dy = L a"J2 dy Jo e2z dx = 3n Jo e2z dx = 2n. 

We have the remarkable identity 

(25a) 

between the (signed) number of times XR(U, v) that the image R' of R 
covers the point (u, v) and the number of times Jlc(u, v) that the image 
C' of C winds about the point (u, v). Here the winding number is 
determined in accordance with the definition given in Volume I (p. 
431). Assuming that both the x, y- and u, v-coordinate systems are 
right-handed, we give to C the positive sense with respect to R, which 
corresponds to leaving R on our left. If on any portion y of C this 
sense is that of increasing values of some parameter t, we also orient 
the corresponding portion y' of C' according to increasing t. The 
number of times C' winds about a point (uo, vo) not on C' is then the 
difference-here denoted by Jlc (uo, vo)-between the number of times 
C' crosses the ray u = Uo, v > Vo from right to left and the number of 
times C' crosses from left to right, following C' in the sense assigned 
to it. 

Clearly, both sides in the equation (25a) are additive by definition; 
that is, dividing R into a finite number of subregions Rt with bound­
ary curves C, we have 

Ilc(u, v) = L: Ilci(U, v). 
i 

Hence, it is sufficient for the proof of (25a) to prove that 

(25b) 
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for any portion Re of R that is mapped 1-1 into the u, v-plane.and in 
which the Jacobian d(u, v)/d(x, y) has a constant sign SRi. Let Rt have 
the boundary curve C" and let Re' be the image of R" C't that of Ct. 
Obviously, for any (u, v) not on C, 

( ) {
SRi for (u, v) in R, 

lR- U, V = 
, 0 for (u, v) exterior to R,. 

Moreover, C, is a simple closed curve whose orientation is counter­
clockwise for SRi> 0, clockwise for SRi < 0 (see Section 3.3e, p. 260). 
Hence, the number of times Ct winds about a point (u, v) also is sRi 
for (u, v) inside C, and is 0 for (u, v) outside Cf, which proves (25b). 

For the example on p. 563 the identity of lR(U, v) and ~c(u, v) is 
immediate by inspection (see Fig. 5.5). 

5.5 Area Differentiation. Transformation of ~u to Polar 
Coordinates 

On p. 387 we defined the notion of space differentiation of a triple 
integral. In two dimensions we deal with the corresponding concept 
of area differentiation of a double integral 

(26) M(R) = II. p(x, y) dx dy. 
R 

We assume here that p(x, y) is a continuous function defined in an 
open set S of the x, y-plane. With any (Jordan-measurable and closed) 
subset R of S we can then associate through formula (26) a value 
M =M(R). We denote by A(R) the area of R: 

A(R) = II. dx dy. 
R 

From the mean value theorem (p. 384) we know that the quotient 

M(R) 
A(R) 

lies between the supremum and the infimum of p(x, y) in R. It follows 
that at a point (xo, yo) of S 

(27) 
_ M(Rn) 

p(Xo, yo) = ~l~ A(Rn) , 
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where the Rn are any sequence of subsets of S that have an area 
A(Rn), contain the point (xo, Yo) an~ have diameters tending to 0 for 
n ~ 00, The limit is analogous to differentiation in one dimension. 
We call p the area derivative of M with respect to A. 

Physically, we can interpret the differential form p(x, y) dx dy 
(at least for p > 0) as the element of mass of a certain mass-distribu­
tion in the plane, the integral M(R) representing the total mass 
contained in the set R. Equation (27) then shows the p(x, y) can be 
obtained as the limit of the masses of the sets Rn divided by their 
areas as the Rn shrink into the point (x, y). Calling M(Rn)/ A(Rn) 
the average density of mass-distribution in the set Rn , we define 
p(x, y) as the density at (x, y), or as the massperunitarea. In a different 
physical interpretation not restricted to positive p, we can think of 
p dx dy as element of electric charge, of M(R) as the total charge in R, 
and of p(x, y) as the charge density or charge per unit area. 

In a mapping 

x = x(x, y), y = y(x, y) 

of points (x, y) of the plane onto points (x, y) the area of the image R 
of a set R is given by 

- f.'r -d- f.'r d(x,y) d d 
A(R) = Ji dx .y = JRd(x, y) x y 

[see formula (20a)]. Here clearly the Jacobian 

d(x, y) = lim A (Rn) 
d(x, y) n-~ A (Rn) 

is the area derivative of the area of the image region with respect to 
the area of the original region. 

Imagine now that the plane is covered by a deformable elastic 
material where (x, y) is the position of a particle of the material at a 
certain time t and that (x, y) is the position of the same particle at a 
later time i. Let p(x, y) denote the density of the material at the 
position (x, y) at the time t and p(x, y) that at the time i at (x, y). If 
we postulate that the total mass of the particles filling the set R at 
time t is the same as that of the same particles at the time i when they 
fill the set R, then 

M(R) = Jk p dx dy = M(R) = JL p dx dy 
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It follows that 

_ . M(Rn) . M(Rn) A(Rn) _ p 
p = ~~ A(Rn) = ~~ A(Rn) A(Rn) - d(x, y)/d(x, y) 

Hence, mass-densities in mappings (x, y) ---+ (x, y) transform according 
to the rule 

(28) 
_ d(x,y) 

p = p d(x, y). 

This equation, written as a relation between differential forms (see 
p. 308), just states the law of conservation of elements of mass: 

(28a) p dx dy = p dx dY. 

Applying the notion of area differentiation enables us to trans­
form the expression Au = Uzz + Uyy to new coordinates, for ex­
ample, to polar coordinates (r, 9). For this purpose we use the formula 

Ii Au dx dy = L:~ ds, 

which arises from Green's theorem [see (15), p. 558] if we put w = 1. 
If we carry out area differentiation using a sequence of sets Rn with 
boundaries en shrinking into the point (x, y), we find 

(29) Au = lim A(R1 ) r ddu ds u-~ n Jen n 

In order to transform Au to other coordinates, we therefore have 
only to apply the corresponding transformation to the simple line 
integral f (du/dn) ds, divide by the area, and perform a passage to the 
limit. The advantage over the direct calculation is that we need not 
carry out the somewhat complicated calculation of the second deriva­
tives of u, since only the first derivatives occur in the line integral. 

As an important example, we shall work out the transformation of 
Au to polar coordinates (r, 9). For Rn we choose a small mesh of the 
polar coordinate net, l say that between the circles rand r + h and the 
lines 9 and 9 + k, whose area, as we know, has the value 

lHere hand k are supposed to tend to 0 as n -+ 00. 
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The first derivatives transform according to the formulae 

u, = ~a u (r cos 9, r sin 9) = 1. (xux + YUy) ur r 

Uo = :9 u (r cos 9, r sin 9) = - YUx + XUIl' 

On a circle r = constant the direction cosines of the normal (pointing 
in the direction of increasing r) are x/r, y/r, and hence, du/dn = u" 

while ds = r d9. On a ray 9 = constant the direction cosines of the 
normal (pointing in the direction of increasing 9) are - y/r, x/r, and 
hence, du/dn = uo/r while ds = dr. Thus, taking the integral of 
the derivative of u in the direction of the outward normal along the 
boundary en of Rn, we find 

i du i O+k 
dn ds = [(r + h)ur (r + h, 9) - ru, (r, 9)] d9 

en 0 

(r+h 1 
+ J. r [uo(r, 9 + k) - uo(r, 9)] dr 

r 

Since here by the formula for area in polar coordinates (p. 000) 

A(Rn) = If r dr d9 
Rn 

we find from (29) that 

(30) 1 1(1) 1 1 ~u = - (rUr)r + - - Uo = Urr + - + Ur + 2" uoo, r r r 0 r r 

which is the required transformation formula. 

This formula suggests some important special solutions of the 
Laplace differential equation ~u = O. From (30) solutions of this 
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equation that depend on r alone-that is, that are of the form u = 
f(r)-must satisfy the condition 

1 
- [rf'(r)]r = 0 
r 

which leads to rf'(r) = constant = a or to 

(3la) u = f(r) = a log r + b = a log ./x2 + y2 + b, 

where a and b are constants. Similarly, we find that the general 
solution of Laplace's equation that depends on 9 alone has the form 

(3lb) u = c9 + d = c arc tan L + d, 
x 

with constants c and d. 

5.6 Interpretation of the Formulae of Gauss and Stokes by 
Two-Dimensional Flows 

Our integral theorems find their most natural interpretation in 
terms of the motion of a liquid moving in the x, y-plane. The motion 
shall be described at every moment by its velocity field. I The particle 
that occupies the location (x, y) at the time t shall have the velocity 
vector v = (VI, V2). 

If the velocity of the liquid were independent of x, y, t, the liquid 
that crosses a line segment I during the time interval from t to t + dt 
fills at the time t + dt a parallelogram of area (v· n) s dt, where s is 
the length of I and n is the unit normal vector to I pointing to the side 
of I to which the liquid crosses (see Fig. 5.6). 21f instead we arbitrarily 
choose for n any one of the two unit normal vectors to I, then (v . n)sdt 
is the area filled by the liquid crossing I in the time interval from 
t to t + dt, counted positive if the liquid crosses toward the side to 
which n points, and negative otherwise. If p is the density of the 

IThe motion in the x, y-plane may be thought of as part of a motion in x, y, z-space, 
in which the velocity of any particle is parallel to the x, y-plane and is independent 
of the z-coordinate. 
2The parallelogram is formed by the points (x, y) for which the segment with end 
points (x, y) and 

(x,y) = (x - VI dt,y - v2dt) 

has points in common with 1. 
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Figure 5.6 Amount of liquid 
crossing segment I in time dt 
for uniform flow of velocity v. 

liquid, then (v • n) p s dt is the mass of the liquid that crosses I toward 
the side to which n points. 

Let C be a curve in the x, y-plane. Along C we arbitrarily select 
one of the two possible unit normal vectors and denote it by n. In 
a flow with velocity and density depending on x, y, t the integral 

(32a) 1 (v· n)p ds 
e 

represents the mass of the liquid crossing C in unit time toward that 
side of C pointed to by n. This follows immediately by approximating 
C by a polygon and the flow by one for which the velocity is constant 
across each side of the polygon. 

If C is the boundary of it region R and if n is the outward drawn 
normal the integral represents the mass of the liquid leaving R in unit 
time.l Applying the divergence theorem in the form (7), p. 554, we 
can express the flow through C as a double integral: 

(32b) 1 (v· n) p ds = 1 (pv). n ds = II div (pv) dx dy. 
e e R 

We can compare this flow of mass through C out of R with the 
change of mass contained in R. The total mass of the liquid contained 
in the region R at the time t is2 

IThis will be a negative quantity if the net flow is into R. 
2This generally is a function of t, since p = p(x. y. t) is permitted to vary with t. The 
region R and its boundary C are held fixed in the present consideration. 
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IL P dx dy. 

Thus, in unit time there is a loss of mass contained in R by the amount 

- ! IL p(x, y, t) dx dy = - II Pt(X, y, t) dx dy. 

H we assume that mass is preserved, then mass can only be lost to R 
by passing through the boundary C. Hence, by (32b), we must have 

(32c) IL div (pv) dx dy = - IL Pt dx dy. 

This identity holds for arbitrary regions R. Dividing by the area of R 
and shrinking R into a point (that is, by area differentiation), we find 
in the limit that 

(33) Pt + div (pv) = 0 

(cf. Section 4.6, Exercise 15). This differential equationl and the in­
tegral relation (32c) express the law of conservation of mass in the 
flow. In terms of the components VI, V2 of the velocity vector we can 
write (33) as 

(33a) op + op + op + (OVI + OV2) = 0 
ot VI oX V2 oy P ox oy • 

An important special case of this equation arises when we deal with 
an incompressible homogeneous medium in which p has a constant 
value independent of location and time. In that case equations (33) 
or (33a) reduce to an equation for the velocity vector alone: 

(34) div v = OVI + OV2 = o. 
ox oy 

It follows from (32b) that the total amount of an incompressible liquid 
crossing a closed curve C in unit time is 0: 

(35) I v· n ds = o. 
c 

lIn mechanics often referred to as the continuity equation. 
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Stokes's theorem (9), p. 554, applied to the vector v also has an in­
terpretation in terms of fluid flow. The integral extended over a 
closed oriented curve C 

I v· t ds, 
c 

where t is the unit tangent vector corresponding to the orientation 
of C, is called the circulation of the fluid around C. By Stokes's theo­
rem the circulation is equal to the double integral 

fL (curl v)z dx dy 

over the enclosed region R. Hence, the quantity 

(36) 

which is called the vorticity of the motion, measures the density of 
circulation at the point (x, y) in the sense that the area integral of the 
vorticity gives the circulation around the boundary. 

A flow is called irrotational if the vorticity vanishes everywhere, 
that is, if 

(37) 

By Stokes's theorem the circulation around a closed curve C vanishes 
if C is the boundary of a region where the motion is irrotational. 
Since (37) is the condition for Vi dx + V2 dy to be an exact differential 
(see p. 104), there exists for an irrotational flow in every simply con­
nected region a function <p = <p (x, y, t) such that 

(38) Vi = - <Px, V2 = - <py. 

The scalar <p (which is determined within a constant) is called a 
velocity potential. In vector notation (38) can be replaced by the single 
equation 

(38a) v = - grad <po 

The irrotational motion of an incompressible homogeneous liquid 
satisfies both equations (37) and (34). Substituting for Vi and V2 in (34) 
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their expressions from (38), we find that the velocity potential is a solu­
tion of Laplace's equation: 

L\q> = q>zz + q>yy = o. 

As an example, we consider the flow that corresponds to the 
solution 

q> = a log r = a log " x2 + y2 

of the Laplace equation [cf. (3la), p. 569]. By (38) the velocity vector 
v has· components 

ax 
VI = -7' V2 = _ a;, 

r 

and is singular at the origin (see Fig. 5.7a). All velocity vectors point 
towards the origin for a > 0, away from the origin for a < o. In this 
example the velocity of the liquid at a given location does not change 
with time, although we have different velocities at different points; 
we speak of a steady flow. The circulation around any closed curve 
C not passing through the origin vanishes, since 

(a) (b) 

Figure 5.7 (a) Flow with sink. (b) Flow with vortex. 

I V • t ds = I VI dx + V2 dy = - I dq> = o. 
c c c 

On the other hand, the amount of liquid passing outward through the 
closed curve C in unit time is 
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p L von ds = p L (VI :: + Vs :~ ds = p LVI dy - Vs dx 

i Xdy -ydx i = - ap 2 +s = - ap dO, 
c X Y c 

where 0 is the polar angle from the origin. Since (see p. 354) 

1-1 dO 2n c 

is an integer that measures the number of times C winds around the 
origin, we see that if the closed curve C is simple, does not pass 
through the origin, and is oriented counterclockwise, 

p vonds= 1 { 0 if C does not enclose the origin 

c - 2nap if C encloses the origin. 

Thus, the same amount of mass flows in unit time through every 
simple closed curve C enclosing the origin. For a > 0 the origin is a 
sink, where mass disappears at the rate of 2nap units in unit time. 
For a < 0 we have a SOUTee of mass at the origin. 

The opposite behavior is encountered if we consider the steady 
flow with velocity potential [see (3lb), p. 569] 

<p = cO = e arc tan ~. 
x 

While <p itself is a multiple valued function, the corresponding- ve­
locity field has univalued components 

ey ex 
VI = 2' Vs = - 2· 

T T 

The vector v is perpendicular to the radii from the origin. (Fig. 5.7b). 
Again the velocity field is singular at the origin. 

The circulation around a closed curve C has the value 

fa VI dx + Vs dy = - fa d<p = - e fa dO. 

Hence, the circulation is zero for a simple closed curve not enclosing 
the origin. For a simple closed curve running around the origin in the 
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counterclockwise sense we find the value - 2nc for the circulation. 
This corresponds to a vortex of strength - 2nc concentrated at the 
origin. On the other hand, the flow of mass in unit time through any 
closed curve C not passing through the origin is 0, since here 

p fa v . n ds = p fa Vl dy - V2 dx 

= c r x dx + y dy 
"Jc x2 + y2 

Jdr 
= cp - = O. 

c r 

Thus, the origin is not a source or sink of mass. 

5.7 Orientation of Surfaces 

The theory of integration for three independent variables includes 
not only triple integrals and line integrals, which we have discussed 
previously, but also the concept of surface integral. In order to explain 
the latter, we begin with considerations of a general nature, which 
at the same time will serve to refine our previous ideas relating to 
double integrals. In treating integrals of a differential over a curve 
C in the plane or in space (p. 89), we found it necessary not just 
to consider C as a set of points in space but to assign to it a certain 
sense, or orientation. The same holds when we consider integrals of 
differential forms over surfaces in space of three or more dimensions. 
Similarly, the definition of integrals of third-order differential forms 
over three-dimensional manifolds requires a definition of orientation 
for such manifolds. In discussing this topological concept of orienta­
tion we shall restrict ourselves to the simplest situations of curves, 
surfaces, and such lying in a euclidean space of any dimension and 
possessing smooth parametric representations in a sufficiently small 
neighborhood of any point. 

a. Orientation of Two-Dimensional Surfaces in Three Space 

In Section 3.4, we described surfaces in three-dimensional space 
by means of their parametric representations. In what follows we use 
a somewhat refined notion of a surface, as a set of points in space 
that exists independently of any particular parametric representation 
and that for its complete description may even require several systems 
of parameters. We define a two-dimensional surface S as a set of points 
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x, y, z-space with regular local representations by means of two pa­
rameters. That is, in a neighborhood of any point Po of S the position 

-->0. 

vectors X = OP = (x, y, z) of the points P of S are representable in 
the form 

(39a) X = X(u, v) 

where the parameters u, v range over an open set y in the u, v-plane 
and different (u, v) correspond to different points on S. We require, 
moreover, the representation (39a) to be regular in the sense that the 
vector X(u, v) has derivatives Xu = (xu, Yu, zu) and Xv = (xv, Yv, zv) 
with respect to u, v in y that are continuous and linearly independent.1 
Independence of the vectors Xu, Xv is expressed algebraically by the 
condition [see formula (4Od) p. 279] 

(39b) Xu X Xv *- 0 

or by 

(39c) r(Xu, Xv) = I 
Xu' Xu 

Xv' Xu 
Xu' Xv I 2 = IXu X Xvi >0, 
Xv' Xv 

where r denotes the Gram determinant of the vectors Xu, Xv [see 
p. 191 and formula (45a), p. 284]. 

The vectors Xu(u, v) and Xv(u, v) at a point P = X(u, v) of S with 
parameters u, v are tangential to Sat P and "span" the tangent plane 
n(P) of S at P; that is, every point of the tangent plane has a posi­
tion vector of the form 

X (u, v) + AXu(U, v) + ~Xv(u, v) 

with suitable constants A, ~ (see p. 144). We orient the surface S by 
assigning an orientation to each of the tangent planes of S in a con­
tinuous manner. We shall give a precise meaning to this statement. 

lEven for as simple a surface as a sphere we cannot hope to find a single regular 
parametric representation for the whole surface. For that reason we only require 
existence of local representations for S. Incidentally, we exclude surfaces that have 
edges and corners, where no regular local representation is possible (for example, 
cubes). 

More generally, a (simple) m-dimensional surface in n-dimensional Xl, ... , Xn­

space is defined as a set of points with local parametric representations of the form 
X = X(Ul, ••• , Urn), 

where the first derivatives of the vector X with respect to the variables Uk are con­
tinuous and linearly independent. 
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An oriented tangent plane 1t*(P) is obtained from the plane 1t(P) by 
specifying an ordered pair of independent vectors ~(P) and 'I(P) in 
1t(P). The orientation of 1t* is then that of the ordered pair~, 'lor, sym­
bolically,I 

(40a) Q(1t*(P» = Q(~(P), 'I(P». 

Any other ordered pair of independent tangential vectors ~', 'I' at P 
determines the same orientation if 

(40b) [J: J:"] I ~ . ~' 
~, 'I; ~ ,'I = 'I.~' 

~ • 'I' I >0' 
'I • 'I' , 

(see p. 196). More generally, 

(40c) Q(~, 'I) = sgn [~, 'I; ;', 'I'] Q(~', 'I') 

The orientation Q(1t*) can be described more easily in terms of the 
unit vector (see Fig. 5.8) 

;-------~y 

" 
Figure 5.8 

1 We can picture O(n:*(P» as a sense of rotation in the plane n:(P); namely, as the sense 
of that rotation by an angle less than 180° that takes the direction of the vector l; 
into that of 1). 
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(4Od) 

which is normal to ~ and 1'1 and, hence, to the tangent plane 1t(P). 
The vector ~ does not depend on the individual pair of tangential 
vectors ~, 1'1 but only on the orientation determined by the vectors. 
This follows from the general identity for vector productsl 

(40e) I 
~ . ~' 

(~ x 1'1) • (~' x 1'1') = 
1'1 • ~' 

~ • 1'1' I [I: 1:"] , = ~,1'1;~, 1'1 • 
1'1.1'1 

If here the ordered pairs of tangential vectors ~,1'1 and ~', 1'1' give the 
same orientation to 1t, then by (40b) the corresponding unit normals 
~ and ~' satisfy 

(40£) ~ • ~' _ [~, 1'1; ~', 1'1'] > 0 
- I ~ x 1'I11~' x 1'1' I . 

Since ~ and - ~ are the only possible unit normal vectors, it follows 
from (40f) that ~' = ~. 

We now say that the orientations O(1t*(P» determined by (40a) 
from pairs of tangential vectors ~(P), 1'I(P) vary continuously with P 
if the unit normal vector ~ given by (4Od) depends continuously on 
P. An oriented surface 8* is defined as a surface 8 with continuously 
oriented tangent planes 1t*(P). If the orientation of 1t* is given by 
(40a), we write symbolically 

(40g) 0(8*) = 0(1t*) = O(~, 1'1). 

Any unit normal vector ~ at a point P of 8 determines an orienta­
tion of the tangent plane 1t(P), namely, the one given by O(~, 1'1), 
where ~, 1'1 are any tangential vectors for which ~ x 1'1 has the direc­
tion of ~. By formula (71c), p. 181, 

(40h) det (~, 1'1, ~) = ~ . (~ x 1'1) = I~ x I'll > O. 

Hence (see p. 186), ~ is that unit normal vector of Sat P for which the 
triple of vectors ~, ~, 1'1 is oriented positively with respect to the coordinate 
axes,. that is, 

lThe identity can be verified directly by writing it in terms of the components of the 
vectors involved; see also Exercise 9b, Section 2.4, p. 203. Formula (39c) is the special 
case ; = ;' = XII, 'I = ,.' = Xv. 
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(40i)1 Q(~, 1;, 1) = Q(X, y, Z). 

An orientation of 8 consists then in choosing in a continuous fashion 
a unit normal vector ~ at all points of 8. Here ~ is given by (4Od) 
whenever Q (8*) = Q(I;, 1) for the oriented surface 8*. We say that 
S is the unit normal vector pointing to the positive side of the oriented 
surface 8* or is the positive unit normal of 8*.2 

Let 8 be a connected surface, that is, one with the property that any 
two points of 8 can be joined by a curve lying on 8. It is then easy to 
see that either 8 cannot be oriented at all or that there are exactly 
two different ways of orienting 8.3 For two orientations of 8 corre, 
spond to two choices ~ (P) and ~/(P) of unit normal vectors on 8. Here, 
necessarily, ~' = e~, where e = e(P) has one of the values + lor -1. 
Since, by assumption, the vectors ~ and ~' vary continuously with P, 
the same holds for the scalar e(P) = ~ . ~/. Thus, e is a continuous 
function on 8 assuming only the values + 1 or -1. If e(P) =1= e(Q) 
for any two points P, Q on 8, it would follow from the intermediate 
value theorem that e = 0 somewhere along a curve on 8 joining P 
and Q, contrary to the definition of e. Consequently, e has the same 
value at all points of 8. Thus, any orientation of 8 is either the one 
described bythenormal~(P)orthe one described by -~ (P).If 8* is the 
oriented surface with positive normal ~, we write - 8* for the one with 
the other orientation of 8, so that 

(40j) Q( -8*) = -Q(8*). 

Obviously, the orientation of the positive normal ~ to a connected 
surface 8 at a single point P uniquely determines the positive normal 
at any other point Q and, hence, determines the orientation of 8. We 

lFormula (4Oi) shows that the sense of rotation of the plane 7t associated with n (1;, tJ) 
appears counterclockwise when viewed from that side of 7t to which , points, 
provided the x, y, z·coordinate system is right-handed. Notice that the connection 
between n(l;, 11> and the direction of , depends on the orientation of the coordinate 
system used, since the vector product I; X tJ depends on that orientation. 
2More generally, any nontangential vector, with initial point P is said to point to 
the positive side of S* if (40i) holds. For a "material" oriented surface, say a thin 
metal sheet, the two sides of the surface can be painted in distinctive colors. The 
pigment layer on the positive side would then only occupy points that can be 
reached by starting at a point P of the surface and moving a short distance in the 
direction of the positive normal to the surface. 
3'fhe assumption that S is connected is essential. For a surface consisting of several 
disjoint connected components, the individual components might be oriented inde­
pendently of each other. That there exist surfaces that cannot be oriented at all will 
be shown on p. 583. 
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only need to connect Q to P by a curve Con S and define a unit normal 
to S along C that coincides with ~ at P and varies continuously along 
C; the normal then also coincides at Q with the positive normal. 

It is particularly simple to orient a surface S that forms the bound­
ary of a three-dimensional region R of space (here S need not be con­
nected, as in the case of a spherical shell R). At each point P of S we 
can distinguish an interior normal pointing into R and an exterior 
normal pointing away from R, both varying continuously with P. 
Taking the exterior normal as positive normal defines an orientation 
for S. We call the corresponding oriented surface S* oriented positively 
with respect to R.l 

If, for example, R is the spherical shell 

(40k) a ~ IXI ~ b, 

the positive oriented boundary S* of R has the positive unit normal 

(401) ~ = -X/a for IXI = a and ~ = X/b for IXI = b. 

Let a portion of the oriented surface S* have a regular parametric 
representation X = X(u, v) for (u, v) varying over an open set 'Y ofthe 
u, v-plane. Then, 

(40m) Z _ Xu X Xv 
- IXu x Xvi 

defines a unit normal vector for (u, v) in 'Y. If ~ is the positive unit 
normal of S*, we have 

(40n) ~ = eZ 

lAs defined here, the positive orientation of the boundary 8 of a region R depends 
on the orientation of the x, y, z-coordinate system or on the orientation of three-space 
determined by that system. It is often more convenient to think of R also as oriented 
and to define unambiguously the oriented boundary 8* of the oriented connected 
region R* in three-space. Here the "orientation" of R* consists of a particular choice 
of x, y, z-coordinate system, which then is "oriented positively with respect to R" by 
definition: 

O(R*) = O(x,y, z). 

The positively oriented boundary surface 8* of R* (usually denoted by aR*) is defined 
such that 

O(~, ;. ,.) = O(R*) 
whenever ;, ,. are tangential vectors at a point P of 8 with 0(8*) = 0(;, ,.), and ~ 
is the exterior normal unit vector at P. 
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with e = e(u, v) = ± 1. Since both ~ and Z are continuous, it follows 
that e is continuous and, hence, constant in any connected part of 
y. For e = 1, that is, for 

(400) 0(8*) = O(Xu, Xv), 

we say that 8* is oriented positively with respect to the parameters 
u, v and write 

(40p) 0(8*) = O(u, v). 

If the same portion of 8* has a second regular parametric representa­
tion in terms of parameters u' , v' varying over a region y', we have by 
formula (42), p. 283, 

(40q) (d(Y, z) d(z, x) d(x, y») 
Xu X Xv = d(u, v)' d(u, v)' d(u, v) 

- d(u' , v') (X I X ') 
- d(u, v) u X v· 

Hence, the unit normals Z and Z' corresponding to the two parametric 
representations are related by 

(40r) d(u' v') 
Z = sgn ' Z'. d(u, v) 

Thus, if 8* is oriented positively with respect to the parameters u, v, 
then it is also positively oriented with respect to the parameters u', v', 
provided 

(40s) 
d(u' v') 
d(u: v) > o. 

In illustration, we consider the unit sphere 8* with center at the 
origin, oriented positively with respect to its interior. Using u = x, 
v = y as parameters for z *- 0, we have 

(40t) X = (u, v, e .vI - u2 - v2), where e = sgn z. 

The corresponding normal vector Z defined by (40m) becomes here 

Z = (ex, ey, ez) = e~, 

where ~ is the exterior unit normal. Hence, 8* is oriented positively 
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with respect to the parameters x, y for z > 0 and negatively for z < 0 
(see Fig. 5.9). 

u 

Figure 5.9 

A surface in three-space for which no distinction between the sides 
can be made or along which we cannot select a continuously varying 
unit normal cannot be orientable. The simplest example of a "one­
sided" surface of this type, shown in Fig. 5.10(a) is called a Mobius 

~7 
Figure 5.10(a) Mobius band. 

band after its discoverer. We can easily make such a surface out of a 
rectangular strip of paper by fastening the ends of the strip together 
after rotating one end through an angle of 1800

• If we start out with 
the rectangle 0 < u < 21t, -a < v < a (where 0 < a < 1) in the 
u, v-plane, we arrive at a Mobius band if we move each segment u = 
constant rigidly in such a way that its center moves to the point 
(cos u, sin u, 0) of the unit circle in the x, y-plane and such that it be­
comes perpendicular to that circle and makes the angle u/2 with the 
positive z-axis (the assumption a < 1 keeps the surface from intersect­
ing itself). The resulting band S has the parametric representation 
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(40u) X = ( (1 + V sin ~) cos u, (1 + v sin ~) sin u, v cos ~) 

with v restricted to the interval -a < v < a. The points (u, v), 
(u + 4n, v), (u + 2n, - v) in the u, v-plane correspond to the same 
point on the surface. If for an arbitrary point Po of S we make 
one possible choice Uo, Vo of parameters, formula (40u) yields a 
regular local parametric representation of S for u, v restricted to 
the rectangle y given by 

Uo - n < u < Uo + n, -a < v < a. 

Along the center line v = 0 of the surface, equation (40m) defines a 
unit normal vector 

Z ( u. u. U) 
= cos u cos 2' sm u cos 2' - sm 2 

that varies continuously with u. Starting out with the unit normal 
Z = (1, 0, 0) at the point (1, 0, 0) of S corresponding to u = 0 and 
letting u increase from 0 to 2n, we describe a complete circuit along 
the center line of the surface returning to the same point but with the 
opposite unit normal Z = (-1,0,0). We would find similarly that carry­
ing during our motion a small oriented tangential curve we return to 
the same point with the orientation reversed. Thus, it is not possible 
to choose a continuously varying unit normal, or a side of S, or to 
choose a sense of rotation on S in a consistent way. The one-sidedness 
of the Mobius band is strikingly illustrated by the insects crawling 
along the band in the drawing by M.e. Escher, reproduced in Fig. 
5.10(b). We see that a surface does not automatically enjoy the prop­
erty of orientability. 

We oriented a surface by orienting its tangent planes in a con­
tinuous manner. The orientation of the t.angent planes n*(P) was 
described by a suitable pair of independent tangential vectors ~(P), 
1](P). When it came to defining "continuity" of Q(n*) = Q(~, 1]), we 
made use of the normal vector ~ formed according to (40d) and re­
quired ~ to be continuous. It is desirable to define continuity of the 
orientations Q(~(P), 1](P» without recourse to normal vectors or 
cross products. This is of particular importance when it comes to 
defining orientation for manifolds in higher-dimensional spaces, say, 
for a two-dimensional surface S in four-dimensional euclidean space. 
Here again, orientation of each tangent plane can be described by an 
ordered pair of independent tangential vectors ~,ll. But there is no 
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Figure 5.10(b) Band Van Mobius II, by M. C. 
Escher (Escher Foundation, Haags Gemeente· 
museum, The Hague, Netherlands). 

unique unit normal vector or uside" of S we can associate with S. 
We also cannot require the tangential vectors ~(P). T\(P) describing 
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n ('It*) to be defined and continuous for all P on 8.1 We discuss short­
ly two definitions of orientation of surfaces in three-space equivalent 
to the one given before, but not involving normals and, hence, capable 
of generalization to higher dimensions. 

Any regular parametric representation X = X(u, v) of a portion 
of a surface of 8 in three-space determines a continuously varying 
unit normal Z on that portion by means of formula (40m). Let there 
be given a number of regular parametric representations for different 
portions of 8. They will then define a continuously varying unit 
normal on all of 8 and, hence, an orientation of 8, provided at least 
one of the representations is valid near any point P of 8 and provided 
any two representations valid at P lead to the same unit normal vector 
Z. By (40r) the latter condition simply requires that 

d(u' v') 
--,--,-' -'--,-<- > 0 
d(u, v) 

(41a) 

wherever two of the representations with parameters u, v and u', v' 
hold. The surface is then oriented positively with respect to each of 
the given parametric representations. 

For instance, various portions of the unit sphere 8 have the regular 
parametric representations 

(41h) X = (sin u cos v, sin u sin v, cos u) 

(41c) 

(41d) 

for 0 < u < 'It, Vo - 'It < V < Vo + 'It 

X = (u', v', "'1 - U'2 - V'2) for U'2 + V'2 < 1 

X = (v", u", - "'1 - U"2 - V"2) for U"2 + V"2 < 1. 

It is easily seen that all of these representations define an orientation 
of 8. For example, both (41b) and (41d) apply on the hemisphere z < 0, 
and there 

d (u", v") d (sin u sin v, sin u cos v). > 0 
d (u, v) = d (u, v) = -sm u cos u . 

The unit normal Z obtained from all these parametric representations 
is the exterior normal, and the orientation of 8 is the one that is 
positive with respect to the interior. 

lEven for as simple a surface as a sphere in three-space no nonvanishing tangential 
vectors !;(P) can be found that are continuous at all points of the surface. We can, 
however, always choose the vectors !;(P), 1J(P) in such a way that they vary continu­
ously in a neighborhood of a given point. 
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The second method to be mentioned expresses the condition of 
continuity of Q(I;(P), 1)(P» directly in terms of the vectors 1;, 1). 

Let ~(P) be the unit normal vector associated with 1;, 1) by (4Od). In 
a neighborhood of a given point Po of S, a regular parametric rep­
resentation X = X(u, v) holds, defining a continuously varying 
normal vector Z by (40m). Then ~(P) = e(P) Z(P) with a certain 
e (P) = ± 1. Continuity of the vector ~ (P) at Po obviously is equivalent 
to the condition e(P) = constant near Po or to the condition 

~(P) • ~(Po) = e(P) &(Po) Z(P) • Z(Po) > ° 
for all P sufficiently close to Po. Now, using the identity (40e), we 
find that 

~(P) • ~(P ) _ [I;(P), 1)(P); I;(Po), 1)(Po)] 
o - II;(P) x 1)(P) II I;(Po) x 1)(Po) I' 

Consequently, the orientations 0(1;, 1) vary continuously and define 
an orientation of the surface S if for every Po on S 

(41e)1 [!;(P), 1)(P); I;(Po), 1)(Po)] > ° 
for all points P on S sufficiently close to Po. 

For example, let S be the unit sphere x2 + y2 + Z2 = 1. For any 
point (x, y, z) on S that is not one of the poles (0,0, ± 1), the vectors 

I; = (xz, yz, Z2 - 1), 1) = (-y, x, 0) 

are independent and tangential, since they are perpendicular to the 
position vector X = (x, y, z). With the additional choice of 

I; = (1, 0, 0), 1) = (0, e, 0) 

at the pole (0, 0, E), where e = ± 1, the orientations 0(1;, 1) are con­
tinuous at every point Po of S. This is clear when Po is not one of the 
poles, since then I; and 1) themselves are continuous and not zero. 
Thus, one only has to verify condition (41e) when Po is a pole. 
For example, for the "north pole" Po = (0, 0, 1) and for any point 
P = (x, y, z) in the "northern hemisphere" 

lOne can deduce directly from formula (S5c), p. 199, that (41e) is a relation between 
n(n*(P» and n(n*(Po» alone and does not depend on the particular vectors I;(P), 
1J(P), I;(Po), 1J(Po) used to represent the orientations of those tangent planes. 
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I ~(1') • ~(1'o) [~(P), 11(1'); ~(1'o), 11(1'0)] = 11(1'). ~(J>o) 
~(1') • l1(Po) I 
11(1') • 11(J>0) 

= I xz YZ I _ Y X = (X2 + y 2) Z > 0 

except for P = 1'0. But, of course, also 

[~(J>o), 11(1'0); ~(1'o), l1(Po)] = I ~ ~ I = 1 > o. 

b. Orientation of Curves on Oriented Surfaces 

We saw that it is possible to distinguish a positive and negative 
side of an oriented surface 8* lying in a space with a certain orienta­
tion of the coordinate system. In the same way, we can define the posi­
tive and negative sides of an oriented curve C* lying on an oriented 
surface 8*. Let ~ be a vector tangential to the curve at a point l' and 
pointing in the direction determined by the orientation of C*;1 

(41f) '1(~) = '1(C*). 

Let TJ be a vector tangential to the surface at l' and linearly independ­
ent of~. We say that TJ points to the positive side of C* if 

(41g) '1(11, ~) = '1(8*). 

Conversely, we can orient a curve C lying on an oriented surface 
8* by requiring that a given vector 11 not tangential to C point to the 
positive side of C.2 

There is a natural way to orient a curve C when C forms part of the 
boundary of a region cr lying on an oriented surface 8* if we require 
crto lie on the negative side of the oriented curve C*. More precisely, 

llf X = X(t) is a parametric representation of C* and O(C*) corresponds to· in­
creasing t, the vector I; is to have the same orientation as dX/dt. 
2In order to achieve greater consistency for higher dimepsions the notation for 
positive and negative sides of a curve has been changed from the one used in Volume I 
(p. 342). Consider the special case, where S* is the plane with the usual counter­
clockwise orientation when viewed from a certain side. If C* is an oriented arc with 
the tangent vector I; pointing in the direction given by the orientation of C*, then by 
(41g) a vector 1) points to the positive side of C* if a counterclockwise rotation by an 
angle less than 180° takes 1) into 1;; that is, 1) points to the right side of C* if we look 
in the direction of 1;. 
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we call C* oriented positively with respect to cr if a vector 1) tangential 
to 8* at a point P of C* and pointing away from cr points to the positive 
side of C*. Conversely, we can indicate the orientation of a surface 
8* graphically by taking a region cr on 8* and marking the positive 
orientation of its boundary curve (see Fig. 5.11).1 

~~ 
+~c* 

+ 

s· 

Figure 5.11 Oriented curve C* 
on oriented surface S*. 

If an oriented surface 8* is divided into portions 81, 82, .. . , 8n, 
then any arc C that separates a portion 8t from a portion 8k receives 
opposite orientations when oriented positively with respect to those 
portions. This follows immediately from the fact that any vector 11 
tangential to 8 ata point P of C and pointing into 8t points away 
from 8k (see Fig. 5.12). 

Figure 5.12 

Exercises 5.7 

1. Let S be the two·dimensional surface ("product of two circles") in four-
space given by 

1 In this manner of indicating orientation of a surface S* by that of a curve C* on it, 
we have to specify clearly the set <1 with respect to which the curve C* is to have 
positive orientation. Ordinarily, C* is a "small" simple closed curve dividing S into 
two portions, exactly one of which is also small and which is then taken for <1. 
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x = (cos u, sin u, cos v, sin v). 

Prove that the vectors 

/; = (-x2, Xp - X 4 , x 3), 11 = (- X 2, Xl' X 4 , - x 3) 

determine an orientation on 8. 
2. Let 8* be the torus with the parametric representation given in Chapter 

3 (p. 286) and oriented positively with respect to the parameters 6, ifJ. 
Prove that 8* is oriented positively with respect to its interior. 

3. Let 8 be the Mobius band represented parametrically as in (40u). 
(a) Show that the line v = aJ2 divides 8 into an orientable and a 

nonorientable set. 
(b) Show that the line v = 0 does not divide 8, that is, that the set 81 

of points obtained by removing from 8 all points with v = 0 is still 
connected. 

(c) Show that 81 is orientable. 
4. Let /;, 11, be independent vectors in the plane 1t. Put a = I/; 12, b = /; • 11, 

c = 111 12 and form for any t the vector 

( b.) a sin t 
R(t) = cos t - .; ac _ b2 sm t /; + .; ac _ b2 11· 

Prove that R(t) is obtained by rotating the vector /; in the plane 1t by 
an angle t in the sense given by the orientation O(/;, 11). 

5.S Integrals of Differential Forms and of Scalars over Surfaces 

a. Double Integrals over Oriented Plane Regions 

In the original definitions of single and multiple integrals, say as 
limits of Riemann sums, orientation plays no role. The integral of a 
function f is based on the use of length, areas, volumes, and so on, of 
elementary figures that, naturally enough, are given positive values. 
The use of signed 'quantities, amounting to the introduction of orien­
tations, however, imposes itself right away if we want to have simple 
rules of operating with integrals. l Thus, the definite integral 

b J f(x) dx 
a 

IGenerally, mathematics would become intolerably clumsy if we restricted ourselves 
to using only positive quantities, for example, to positive distances instead of signed 
distances as coordinates. This would necessitate inumerably many distinctions 
between different cases in the proof and statement of simple theorems. Positivity 
is an essential element in the formulation of inequalities between mathematical 
objects but complicates the formulation of most identities, which are based 
usually on unrestricted algebraic manipulation of quantities. 
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is defined as limit of Riemann sums for a < b. If we want the additivity 
rule 

Jb f(x) dx + .r.. f(x) dx = Je f(x) dx 
a b a 

to hold without restricting the relative positions of a, b, c, we have 
to define 

b J fdx 
a 

as well for a ~ b by the formula 

(42a) s: f(x) dx = - r" f(x) dx 
a J b 

(see Volume I, p. 136). Geometrically, the ordered pair of numbers 
a, b determines an oriented interval 1* on the x-axis with "initial" 
point a and "final" point b. Here the value of 

(42b) 
b J fdx=J fdx 
a I* 

is the one given by the limit of Riemann sums (which is positive for 
positive f) when the orientation of 1* corresponds to the sense of 
increasing x, that is, for a < b. It is the negative of that limit for 
a> b. Interchanging the end points of 1* converts 1* into the in­
terval-I*, with the opposite orientation, so that formula (42a) can 
also be written as 

(42c) J f dx = - r f dx, 
-I* J I* 

A similar situation holds for the integral over an oriented (Jordan­
measurable) set R* in the x y,-plane.1 When R* is oriented positively 
with respect to x, y-coordinates, n (R*) = n (x, y), the double integral 

lOrientation of R* is defined here in accordance with the general definition of orien­
tation of surfaces. It is determined by associating with each point of R* an orientation 
(described, for example, by a pair of vectors), the orientations varying continuously 
from point to point. For a connected set only two distinct orientations are possible. 
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fL. f(x, y) dx dy 

is to be understood in the sense defined in Chapter 4. That is, the 
integral is the limit of sums obtained from subdivisions of the plane 
into squares of area 2-2n• The integral will have a nonnegative value 
for nonnegative f. In case Q(R*) = -Q(x, y) = Q(y, x), we define 
the integral of f over R* by 

where now 

fL. f dx dy = - fL. f dy dx, 

r fdy dx JR· 

has the ordinary meaning as the limit of sums. As a consequence, we 
have the rule that 

(43) fiR. fdxdy = - fL. fdxdy, 

where -R* is obtained by changing the orientation of R*. With this 
convention the substitution rule [see (16b), p. 403], in the form 

(43a) fL. f(x, y) dx dy = fL. f«(>(u, v), ",(u, v» ~~:: ~~ du dv, 

holds for smooth 1-1 mappings 

x = (>(u, v), y = ",(u, v) 

of T* onto R* as long as the Jacobian d(x, y)/d(u, v) is either posi­
tive throughout T* or negative throughout T*. Here the orientation 
of T* has to be the one corresponding to that of R* under the map­
ping.1 If, for example, Q(R*) = - Q(x, y) and if d(x, y)/d(u, v) < 0, 

lin order to find that orientation, we form, in accordance with (40 0, p), the vectors 
X .. = (x ... y .. ). Xv = (xv. Yv) 

and put 

n(R*) = E n(x ... Xv) = E (Sgn IX.. x~\ n(x. y). 
y .. YvV 

where E = ± 1 has the value determined by 

n (R*) = n(T*) = sn(u. v). 
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then Q(T*) = Q(u, v). We might say that the orientation of R* 
attributes a certain sign to the differential form dx dy: the positive 
sign if the x, y-coordinate system has the orientation of R*, the 
negative one otherwise. The sign attributed by the orientation of 
T* to the form du dv is then the one tha.t agrees with the relationship 

dx dy = d(x, y) du dv. 
d(u, v) 

In the same way we can define triple integrals 

IIL. f(x, y, z) dx dy dz 

over oriented sets in x, y, z-space and similarly in higher dimensions. 

b. Surface Integrals of Second-Order Differential Forms 

We can now give a general definition for the integral of any 
second-order differential form 00 over an oriented surface S* in space. 
Let 00 be given by the expression 

(44) 00 = a(x, y, z) dy dz + b(x, y, z) dz dx + c(x, y, z) dx dy. 

Assume first that the whole surface S* under consideration can be 
represented parametrically in the form 

(45) x = x(u, v), y = y(u, v), z = z(u, v), 

with (u, v) varying over a set R* in the u, v-plane. Here R* has a cer­
tain orientation determined by that of S* (see p. 581).1 

We can write 00 in the form 

00 = K du dv, 

where 

(46) K = _00- = a d(y, z) + b d(z, x) + c d(x, y) 
du dv d(u, v) d(u, v) d(u, v) 

and define 

IThe rule for orienting R* is as follows: fl(R*) = Efl(u, v) with E = ± 1 if fl(S*) = 
Efl(X .. , Xv), where X = (x, y, z) is the position vector. 
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(46a) fL. (J) = fL. K du dv 

II ( d(y, z) + b d(z, x) + c d(x, y») du dv. 
= R* a d(u, v) d(u, v) d(u, v) 

The value obtained in this way for the integral of (J) over the oriented 
surface S* is independent of the particular parametric representation 
for S*. If the surface can also be referred to parameters u', v', we have 
(see p. 308) 

where 

(J) = K' du' dv' 

K' = K d(u, v) 
d(u', v')' 

The orientation of the region of integration R'* in the u', v'-plane is 
then such that the substitution rule (43a) applies and 

fL. K du dv = fL,. K ~~: ~~) du' dv' = IL,. K' du'dv'. 

Let, for example, S* be representable nonparametrically in the 
form z = f(x, y) with (x, y) varying over the vertical projection R* 
of S* onto the x, y-plane. The orientation of S* determines an orien­
tation for R*. The orientation of S* can be described by specifying the 
normal of S* that points to the positive side of S*, when the orien­
tation of space is that of the x, y, z-coordinate system. When that 
normal forms an acute angle with the positive z-axis, the orientation 
of R* is that of the x, y-system, otherwise that of the y, x-system. l In 
either case we have 

IL* (J) = IIs* (a dy dz + b dz dx + c dx dy) 

= IL* (c - afx - bfy) dx dy. 

It is now easy to get rid of the special assumption that the whole 
surface S* can be represented by means of a single parametric repre-

lSee p. 578. In the first case with S* referred to the parameters x, y the positive 
normal ~ has the direction of the vector (-{x, -{y, 1), and thus, det (~, Xu, Xv) > O. 
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sentation. We assume that the oriented surface S* can be divided into 
a finite number of oriented portions S1 *, S2 *, . . ., SN*' in such a way 
that each portion has a parametric representation of the kind dis­
cussed. We form the surface integral of the form 0) for each of the 
portions according to the definition above, and define the integral of 
0) over S* as the sum of the integrals over the St*. One has to show, 
of course, that the integral over S* defined in this way does not 
depend on the particular subdivision of S* into portions St*. For 
the exact assumptions needed for this to be true and the proof, see the 
Appendix to this chapter. 

c. Relation Between·Integrals 01 Differential Forms over Oriented 
Surfaces to Integrals of Scalars over Unoriented Surfaces 

In Chapter 4 (p. 424) we introduced the area A of a surface S in 
space without any reference to its orientation. If S has the parametric 
representation 

x = x(u, v), y = y(u, v), z = z(u, v) 

and if ~, 11, S denote the components of the normal vector 

(46b) ~ = dey, z) d(z, x) s = d(x, y) 
d(u, v)' 11 = d(u, v)' d(u, v) 

[see (30a) p. 428], the area of S is given by 

Here the integral is extended over the set R in the u, v-plane cor­
responding to S. The integral is understood in the original sense of 
a double integral in which the surface element 

is treated as a positive quantity or, equivalently, in which R is given 
the positive orientation with respect to the u, v-system. l Orientability 

lIf we introduce the position vector X = (x, y, z), the quantity v'~2 + 112 + ~2 re­
presents the length of the vector product of the vectors Xu and Xv. By (30b), p. 428, 
it can also be written as 

v'EG - F2 = v'(Xu· Xu) (Xv· Xv) - (Xu· Xv)2 = v'[Xu, Xv; Xu, Xv]. 

The differential dB has the same invariance properties as a second order alternating 
differential form under parametric substitutions with positive Jacobian but changes 
sign under substitutions with negative Jacobian. 
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of S is not essential for the definition of A. The reader can, for ex­
ample, easily express as an integral the total area of the unorientable 
Mobius band with the parametric representation given on p. 583. 

More generally, for a function f (x, y, z) defined on the surface S, 
we can form the integral of f over the surface: 

(47a) 

The value of the integral is independent of the particular parameter 
representation used for S and does not involve any orientation of 
S. It is positive for positive f. 

In order to relate the integral of a second-order differential form 

ill = a(x, y, z) dy dz + b(x, y, z) dz dx + c(x, y, z) dx dy 

over an oriented surface S* to the surface integrals of functions over 
the unoriented surface S as defined just now, we introduce the direc­
tion cosines of the positive normal of S* 

where ~, 11, ~ are given by (46b), and E = ± 1, Q(8*) = dl(Xu, Xv). 
Then, by (46), 

(0 

K = du du = E (a cos « + b cos 13 + c cos y) J~2 + T\2 + ~2. 

Now, by (46a), 

JL* ill = JL* K du du = E fL K du du. 

Consequently, (47a) yields the identity 

(47b) JL* ill = JJs*a dy dz + b dz dx + c dx dy 

= JL (a cos a + b cos 13 + c cos y) dS 

= If (a cos a + b cos 13 + c cos y) J~2 + 112 + ~2 du du, 
R 
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which expresses the integral of the differential form co over the 
oriented surface S* as an integral over the unoriented surface S or 
over the unoriented region R in the parameter plane. Here, however, 
the integrand depends on the orientation of S*, since cos a, cos /3, 
cos yare the direction cosines of that normal n of S* that points to 
the positive side of S* (using a positive space orientation with respect 
to x, y, z-coordinates). 

If the oriented surface S* consists of several portions Sk* each of 
which permits a parametric representation of the form (45), we apply 
identity (47b) to each portion and, by addition over the different por­
tions, obtain the same identity for the integral of co over the whole 
surface S*. 

The direction cosines of the normal n pointing to the positive side 
of S* can be identified with the derivatives of x, y, z in the direction 
of n: 

Thus, 

(47c) 

dx cosa=­
dn' 

cos A = dy 
I-' dn' 

dz 
cos y = dn. 

In vector notation the formula reduces to 

(47d) If * co = If V • n dS, 
s s 

where n = (cos a, cos /3, cos y) is the unit normal vector on the posi­
tive side of S*, and V the vector with components a, b, c. 

The concept of surface integral can be interpreted intuitively in 
terms of the flow of an incompressible fluid (this time in three dimen­
sions) whose density we take as unity. Let the vector V = (a, b, c) 
be the velocity vector of this flow. Then at each point of the surface 
S* the product V • n gives the component of the velocity of flow in the 
direction of the normal n to the surface. The expression 

V • n dS = (a cos a + b cos /3 + c cos y) dS 

can therefore be identified with the amount of fluid that flows in unit 
time across the element of surface dS from the negative side of S* 
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to the positive side (this quantity may, of course, be negative).1 The 
surface integral 

(48) fL* (a dy dz + b dz dx + c dx dy) = fL V • n dS 

therefore represents the total amount of fluid flowing across the 
surface S* from the negative to the positive side in unit time. We 
notice here that an important part is played in the mathematical 
description of the motion of fluid by the distinction between the 
positive and negative sides of a surface, that is, by the introduction 
of orientation. 

In other physical applications the vector V denotes the force due to 
a field acting at a point (x, y, z). The direction of the vector V then 
gives the direction of the lines of force and its magnitude gives the 
magnitude of the force. In this interpretation the integral 

fL* (a dy dz + b dz dx + c dx dy) 

is called the total flux of force across the surface from the negative to 
the positive side. 

5.9 Gauss's and Green's Theorems in Space 

a. Gauss's Theorem 

The concept of surface integral leads to an extension to three 
dimensions of Gauss's theorem, which we proved on p. 545 for two 
dimensions. The essential point in the statement of the theorem in 
two dimensions is that an integral over a plane region is reduced to 
a line integral taken around the boundary of the region. We now 
consider a closed bounded three-dimensional region R in x, y, z-space 
bounded by a surface S that is intersected by every parallel to one of 
the coordinate axes in, at most, two points. This last assumption will 
be removed later. 

Let the three functions a(x, y, z), b(x, y, z), c(x, y, z) and their 
first partial derivatives be continuous in R. We consider the integral 

lSee the analogous two-dimensional interpretation on. p 570. We think here of the 
surface in the neighborhood of a point as approximated by a plane piece of area AS 
and of the velocity vector V as replaced by a constant vector. A suitable passage to 
the limit furnishes the integral representation for the amount of liquid crossing S*. 
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IIL ac(xiJ:, z) dx dy dz 

taken over the region R, oriented positively with respect to x, y, z­
coordinates. The region R can be described by inequalities 

zo(x, y) ~ z ~ Zl(X, y), 

where (x, y) varies over the projection B of R onto the x, y-plane. We 
assume that B has an area and that the functions Zo (x, y) and Zl (x, y) 
are continuous and have continuous first derivatives in B. We can 
transform the volume integral over R by means of the formula (see 
p.531) 

III f dx dy dz = II dx dy JZI f dz. 
R B ~ 

Since here f = ac/az the integration with respect to z can be 
carried out, yielding 

iZI ac 
a- dz = c(x, y, Zl) - c(x, y, zo) = Cl - co, 

zo Z 

so that 

IIL ac(x'a;' z) dx dy dz = IL Cl dx dy - IL Co dx dy. 

If we assume that the boundary S is positively oriented with respect 
to the region R, then the portion of the oriented boundary surface 
S* consisting of the points of entry z = zo(x, y) has a negative orien­
tation with respect to x, y-coordinates when projected on the x, y­
plane,l while the portion z = Zl (x, y) consisting of the points of exit 
has a positive orientation. Hence, the last two integrals combine to 
form the integral 

If* c (x, y, z) dx dy 
s 

taken over the whole surface S*. We thus obtain the formula 

IIi ac (~:' z) dx dy dz = I1* c (x, y, z) dx dy. 

lSee p. 593. On z = zo(x, y) the positive normal (the one exterior to R) points down­
ward. 
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The formula remains valid if 8* contains cylindrical portions 
perpendicular to the x, y-plane, for these contribute nothing to the 
integral. If, for example, such a portion 8'* of 8* has the representa­
tion y = fJ (x), we have for 8'* the parameter representation 

x = u, y = fJ(u), Z=V 

and, thus, indeed 

IL* c dx dy = II c ~i~: ~~ du dv = II c I~, ~ I du dv = o. 

If we derive the corresponding formulae for the components a and 
b and add the three formulae, we obtain the general formula 

(49) II'r [aa(x, y, z) + ab(x, y, z) + ac(x, y, Z)] dx d dz k h ~ h Y 

= Ii* [a(x, y, z) dy dz + b(x, y, z) dz dx + c(x, y, z) dx dy], 

which is known as Gauss's theorem. Using formula (47b) of p. 595, 
we can also write this in the form 

(50) III (ax + by + cz) dx dy dz 

= Ii (a cos n + b cos ~ + c cos y) d8 

= II (a dx + b dy + c dZ) d8. 
s dn dn dn 

Here, corresponding to the positive orientation of 8* with respect 
to R, we have in n, ~, y the angles the outward-drawn normal n makes 
with the positive coordinate axes. 

This formula can easily be extended to more general regions. We 
have only to require that the region R be capable of being subdivided 
by a finite number of portions of surfaces with continuously turning 
tangent planes, into subregions Ri each of which has the properties 
assumed above (in particular, that each Ri has a boundary consisting 
of surfaces that are either intersected by every parallel to a coordinate 
axis in, at most, two points or are portions of cylinders with gener­
ators parallel to one of the coordinate axes). Gauss's theorem holds 
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for each region Ri. On adding, we obtain on the left a triple integral 
over the whole region R; on the right, some of the surface integrals 
combine to form the integral over the oriented surface S, while the 
others (namely, those taken over the surfaces by which R is sub­
divided) cancel one another, as we have already seen in the case of 
the plane (p. 549).1 

As a special case of Gauss's theorem, we obtain the formula for the 
volume of a region R bounded by a surface S* oriented positively with 
respect to R. If, for example, we put in (49) a = 0, b = 0, C = z, we 
immediately obtain the expression 

V= ffL dxdydz = fL* zdxdy 

for the volume. In the same way, we find2 that 

v = fL* x dy dz = fL* y dz dx. 

If A is the vector with components a, b, c, we have in ax + by + Cz 

the divergence of A, and in 

IThe proof for general R that we have given here makes use of a definition of integral 
over a closed surface S that has actually not been shown to be independent of the 
particular way in which S is divided into portions with simple parameter represent­
ations. The proof that for smooth S the integral over S is independent of the sub­
division will be given in the Appendix, p. 635. In the extension of Gauss's theorem 
to more general regions R given above, however, we necessarily make use of sub­
regions Ri bounded by surfaces Si that have edges and are not perfectly smooth. For 
that reason, it is more convenient to use a quite different technique of proof that 
does not involve decomposition of R into disjoint subsets Ri, which cannot possibly 
have smooth boundaries. This is achieved by the method of partition of unity, in 
which, effectively, R is represented as union of overlapping regions Ri with smooth 
boundaries, to each of which the theorem applies directly. See the Appendix to this 
chapter, pp. 639-642. 
2It is noteworthy that cyclic interchange of x, y, z in these expressions for V brings 
about no change in sign, in contrast to the corresponding formulae for the area of a 
two-dimensional region bounded by an oriented curve C*: 

A = L. x dy = - L. y dx 

This is so because in two dimensions an interchange of the positive x-direction with 
the positive y-direction reverses the orientation of the plane: O(x, y) = -O(y, x), 
while a cyclic interchange of coordinates in three-space preserves the orientation of 
space: 

O(x, y, z) = O(y, z, x) = O(z. x,y). 
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the scalar product of the vectors A and n, that is, the normal com­
ponent An of the vector A. Hence, in vector notation Gauss's theorem 
becomes l 

(52) ffL div A dx dy dz = fIs A· n dS = fIs An dS. 

More striking is the formulation of the Gauss's theorem (49) in 
terms of exterior differential forms. The second-order differential form 

0) = a(x, y, z) dy dz + b(x, y, z) dz dx + c(x, y, z) dx dy 

just has as its derivative [see (5Sc), p. 313] the third-order form 

dO) = (ax + by + cz) dx dy dz. 

Denoting by S* the boundary of R oriented positively with respect to 
R, we have simply 

(53) 

Heretofore we have made the assumption that the three-dimensional 
region R is oriented positively with respect to x, y, z-coordinates. 
We can free ourselves from this assumption by observing that 0) in 
(53) stands for an arbitrary second-order differential form and that the 
relation between 0) and dO) is independent of coordinates used. Denote 
by R* an oriented region in space and by aR* its boundary oriented 
positively with respect to R*. We can always choose an x, y, z-system 
with respect to which R* is oriented positively, so that (53) holds 
with S* = aR* (see p. 591). With these conventions we have for any 
orientation of R* 

(53a) 

INotice that in the surface integrals the orientation given to S only affects the 
integrand. 
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Precisely analogous formulae hold more generally for sets of 
any number of dimensions, as we shall see. l 

Exercises 5.9a 

1. Evaluate the surface integral 

If; dS 

taken over the half of the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1, for which z 
is positive where IIp = lxla2 + mYlb2 + nzlc2, 1, m, n being the direction 
cosines of the outward-drawn normal. 

2. Evaluate the surface integral 

IIHdS 

taken over the sphere of radius unity with center at the origin, where 
H = alx4 + a2y4 + a3z4 + 3a4X2y2 + 3asy2z 2 + 3a6x2z 2. 

b. Application of Gauss's Theorem to Fluid Flow 

As in the case of the plane, we can obtain a physical interpretation 
fo Gauss's theorem in space by taking the vector A = (a, b, c) as the 
momentum vector in the flow of a fluid of density p whose velocity is 
given by the vector V = (u, v, w). Here p and the velocity components 
u, v, w depend on the (x, y, z) and the time t considered. The momentum 
vector (per unit volume) is defined by A = pV. If R is a fixed region 
in space bounded by the surface S, then the total mass of fluid that 
in unit time flows across a small portion of S of area AS from the 
interior to the exterior of R is given approximately by the expression 
p Vn AS, where Vn is the component of the velocity vector V in the 
direction of the outward normal n at a point of the surface element. 
Accordingly, the total amount of fluid that flows across the boundary 
S of R from the inside to the outside in unit time is given by the 
integral 

IGenerally, for an n-dimensional oriented set R* in euclidean space of n or more 
dimensions the symbol aR* denotes the boundary of R* oriented positively with re­
spect to R*; that is, aR* is oriented in such a way that 

!l(R*) = !l(B,AI, ••• , A"-I) 

where AI, ... , An-l are vectors tangential at some point to the boundary of aR*. 
with 

!l(aR) = !l(AI.A2 ••••• A"-I), 

and where B is a vector tangential to and pointing away from R*. 
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fIs pVndS= fIs AndS 

taken over the whole boundary S. By Gauss's identity (52) the amount 
of fluid leaving R in unit time through its boundary is thus: 

ffL div A dx dy dz = ffL div (pV) dx dy dz. 

On the other hand, the total mass of fluid contained in R at anyone 
time is given by the triple integral 

ffL p(x, y, z, t) dx dy dz 

and the decrease in unit time of the mass of fluid contained in R by 

- :t IIL p(x, y, z, t) dx dy dz = - IIL Pt(x, y, z, t) dx dy dz. 

If the law of conservation of mass is to hold and if there are no sources 
or sinks of mass in R, then the total amount of mass of fluid leaving 
R through the surface S must be exactly equal to the loss of mass of 
fluid contained in R. We must then have 

ffL div (p V) dx dy dz = - ffL Pt dx dy dz 

at any time t for any region R. Dividing both sides of this identity by 
the volume of R and shrinking R into a point (that is, applying space 
differentiation), we obtain the three dimensional continuity equation 

div (pV) = -Pt 

or 

(55) 

which expresses the law of conservation of mass for motion of fluids 
in the form of a differential equation 

If the law of conservation of mass is not invoked, the expression 

Pt + div (pV) 
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measures the amount of mass created (or annihilated, when negative) 
in unit time per unit volume. 

Particular interest attaches to the case of a homogeneous and 
incompressible fluid, for which the density p has the same value in all 
places and is unchanging with time. Since p is then constant, we 
deduce from (55) that 

(56) div V = ou + ov + ow = 0 
ox oy oz 

if mass is to be preserved. It then follows from (52) that 

(57) IIs V· n dS = 0 

whenever the surface S bounds a region R. Consider, in particular, 
two surfaces SI and S2 bounded by the same oriented curve C* in 
space, and together forming the boundary S of a three-dimensional 
region R. We find from (57) that 

(58) 0 = If V· n dS = If V· n dS + If V· n dS, 
8 ~ ~ 

where, on both SI and S2, n denotes the normal pointing away from 
R. We can make both SI and S2 into oriented surfaces SI*and S2*in 
such a way that the orientation of C* is positive with respect to both 
SI* and S2*. On both these surfaces, let n* be the unit normal pointing 
to the positive side. (For a right-handed orientation of space, this 
means that n* points to that side of the surface from which the orien­
tation of C* appears ounterc1ockwise.) Then, necessarily, n* = n on 
one of the surfaces SI, S2 and n* = -n on the other.! It follows from 
(58) that 

(59) If V· n* dS = If V· n* dS. 
81 82 

In words, if the fluid is incompressible and homogeneous and mass is 
conserved, then the same amount of fluid flows across any two surfaces 

IThe normal n determines an orientation on the whole surface 8 if we require, for 
example, that n points to the positive side of 8. Orienting 81 and 82 relative to n, the 
curve C receives opposite senses if we require it to be oriented positively with 
respect to 81 or to 82 (see p. 588). However, since C* has the positive sense with 
respect to both 81* and 82*, it follows that the orientations given by n* and by n 
agree only on one of the surfaces. 
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with the same boundary curve C* that together bound a three-dimen­
sional region in space. This amount of fluid does not depend on the 
precise form of the surfaces; it is plausible that it must be determined 
by the boundary curve C* alone. l We then ask how we can express the 
amount of fluid in terms of the curve C* alone. This question is 
answered in the next section (p. 614) by means of Stokes's theorem. 

c. Gauss's Theorem Applied to Space Forces and Surface Forces 

The forces acting in a continuum may be regarded either as space 
forces (such as gravitational attraction, electrostatic forces) or as 
surface forces (such as pressures, tractions). The connection between 
these two points of view is given by Gauss's theorem. 

We consider only the special case of the force in a fluid of density 
p = p(x, y, z), in which there is a pressure p(x, y, z), which in general 
depends on the point (x, y, z). This means that the force acting on a por­
tion R of the liquid exerted by the remaining part of the liquid can 
be considered as a force acting at each point of the surface S of R 
in the direction of the inward drawn normal and of magnitude p per 
unit surface area. Denoting by dxjdn, dyjdn, dzjdn the direction 
cosines of the outward-drawn normal at a point of the surface S of R, 
the components of the force per unit area are given by 

dx 
-Pdn' 

dy 
-p dn' 

dz 
-p dn· 

Thus, the resultant of the surface forces acting on R is a force with 
components 

By Gauss's theorem (50), p. 599, we can write X, Y, Z as volume 
integrals 

X = - IIL px dx dy dz, Y = - IIL Pu dx dy dz, 

Z = - IIL pz dx dy dz. 

In vector notation the resultant is a force F given by 

IThe amount of fluid crossing asurface bounded by the closed curve C in unit time is 
independent of time if we make the further assumption that the flow is steady, that is, 
that the velocity vector V is independent of time. 
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(60) F = - ffL grad p dx dy dz. 

We can express this result as follows. The forces in a fluid due to 
a pressure p(x, y, z) may, on the one hand, be regarded as surface 
forces (pressure) that act with density p(x, y, z) perpendicular to each 
surface element through the point (x, y, z) and, on the other hand, 
as volume forces, that is, as forces that act on every element of 
volume with volume density -grad p. 

If a fluid is in equilibrium under the forces due to pressure and to 
gravitational attraction, the vector F must balance the total at­
tractive force G acting on the liquid contained in R: 

F + G = 0. 

If the gravitational force acting on a unit mass at the point (x, y, z) 
is given by the vector r(x, y, z), we have 

G = fffR rp dx dy dz. 

From the relation F + G = 0, valid for any portion R of the fluid, 
we conclude by space differentiation that the corresponding relation 
holds for the integrands, that is, that at each point of the fluid the 
equation 

(61) -gradp + pr = ° 
holds. Since the gradient of a scalar is perpendicular to the level 
surfaces for that scalar, we conclude that for a fluid in equilibrium 
under pressure and gravitational attraction the attraction at each point 
of a surface of constant pressure p ("isobaric" surface) is perpendicular 
to the surface. If we make the customary assumption that the gravita­
tional force per unit mass near the surface of the earth is given by the 
vector r = (0, 0, -g), where g is the gravitational acceleration, we 
find l from (61) that 

(62) px = 0, py = 0, pz = -gpo 

Consider in particular a homogeneous liquid of· constant density 
p bounded by a free surface of pressure 0. Along this free surface, we 

IThis formula was derived in Volume I (p. 226). in the description of the pressure 
variations in the atmosphere. 
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have, by (62), 

o = dp = px dx + py dy + pz dz = - gp dz. 

Hence, dz = 0, which means that the free surface has to be a plane 
z = constant = zoo For any point (x, y, z) of the liquid the value of 
the pressure is then 

p(x, y, z) = - fO Pz(x, y, ~)d~ = gp (zo - z). 
z 

Thus, at the depth Zo - z = h the pressure has the value gph. For a solid 
partly or wholly immersed in the liquid, let R denote the portion of 
the solid lying below the free surface z = zoo We apply formula (60) 
to the region R in order to determine the total pressure force acting 
on the solid.1 We find from (60) and (62) that the resultant of the 
pressure forces acting on the solid is equal to a force (buoyancy) with 
components 

x=O, y= 0, Z = ffL gp dx dy dz; 

this force is directed vertically upward and its magnitude is equal 
to the weight of the displaced liquid (Archimedes' principle). 

d. Integration by Parts and Green's Theorem in Three Dimensions 

Just as in the case of two independent variables (p. 556), Gauss's 
theorem (50), p. 599 applied to products au, bv, cw leads to a formula 
for integration by parts: 

(63) ffL (aux + bvy + cWz) dx dy dz 

= fL (au~: + bv~~ + cw ;~) dS 

-fIL (axu + byv + czw) dx dy dz. 

If here u = v = w = U and if a, b, c are of the form a = Vx, b = Vy, 
c = Vz for some scalar V, we obtain Green's first theorem 

1 Any portions of the boundary of R lying in the plane z = Zo make no contribution 
since there p = 0 by assumption. 
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(64) ffL (Ua; Va; + Uy V y + Uz V z) dx dy dz 

= fL U~~ dS - ffL U fl V dx dy dz. 

Here we use the familiar symbolfl for the Laplace operator defined by 

fl V = Va;a; + V yy + Vzz 

and denote by dV/dn the derivative of V in the direction of the out­
ward normal: 

dV = Va; dx + V dy + Vz dz. 
dn dn Y dn dn 

Interchanging U and V in formula (64) and subtracting from (64) 
yields Green's second theorem 

(65) IIL (U fl V - V flU) dx dy dz = Ii (U~~ - V ~~) dS. 

e. Application of Green's Theorem to the Transformation of .t1U to 
Spherical Coordinates 

If we set V = 1 in Green's theorem (65), we obtain 

(66) IIL flU dx dy dz = Ii ~~ dS = Ii (grad U). n dS. 

Just as in the plane, we can use this formula to transform fl U to 
other coordinate systems, notably to the spherical coordinates r, ~, 

e defined by 

x = r cos ~ sin e, y = r sin ~ sin e, z = r cos e. 

We apply formula (66) to a wedge-shaped region R described by in­
equalities of the form 

(67) 

The boundary S of R consists of six faces along each of which one 
of the coordinates r, ~,. e has a constant value. Applying the formula 
for transformation of triple integrals we write the left side of equation 
(66) in the form 
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(68) ffL AU dx dy dz = fff AU~ ~~: ~: ;~ dr d9 d(J 

= fff AU r2 sin 9 dr d9 d(J, 

with the integral in r, 9, (J-space extended over the region (67). In order 
to transform the surface integral in (66) we introduce the position 
vector 

x = (x, y, z) = (r cos (J sin9, r sin (J sin 9, r cos 9) 

and notice that its first derivatives satisfy the relations 

(68a) 

(68b) 

Xr • Xo = 0, 

Xr • Xr = 1, 

Xo • X(J = 0, X; • Xr = ° 

It follows from these relations that at each point the vector Xr is nor­
mal to the coordinate surface r = constant passing through that 
point, the vector Xo normal to the surface 9 = constant, and the 
vector X; normal to the surface (J = constant. More precisely, on 
one of the faces r = constant = r~ (where i has either the value 1 
or 2) the outward normal unit vector n is given by (-1)~Xr. Hence, 
on those faces 

au 
(grad U) • n = (_1)i (grad U) • Xr = (_1)i ar' 

Using, moreover, 9 and (J as parameters along a face r = n, we have 
for the element of area the expression [see (30e), p. 429} 

dS = ./EG - F2 d9 d(J = ./(Xo • Xo) (X.p' X.p) - (Xo • X.p)2 d9 d(J 

= r2 sin 9 d9 d(J. 

It follows that the contribution of the two faces r = rl and r = r2 to 
the integral of dUjdn over S"is represented by the expression 

where the integrations are taken over the rectangle 
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We can write the difference of these integrals as the triple integral 

fff aar (r2 sin 9 aa~) dr d9 drfi 

extended over the region (67). 
Similarly, we find that on a face 9 = constant = 9t 

dS = r sin 9 drfi dr, dU _ (-1)1 au 
dn - r a9 

and on a face rfi = constant = rfii 

1 
n = (-l)t-.-X; 

r SIn 9 ' 
dS = r dr d9, dU (-1)' au 

dn = r sin 9 arfi· 

Here also, combining the contributions of opposite faces 9 = constant 
or rfi = constant, we find for the total surface integral the expression 

II dUdS - III [~( 2 • 9 au) ~(. 9 au) s dn - ar r sm ar + a9 sm a9 

a (1 au)] + arfi sin 9 arfi- dr d9 drfi· 

Comparing with the expression (68), dividing by the volume of the 
wedge R, and shrinking the wedge to a point leads to the desired 
expression for the Laplace operator in spherical coordinates: 

Exercises 5.ge 

1. Let the equations 

Xt = XI (pl, P2, pa) (i = 1, 2, 3) 

define an arbitrary orthogonal coordinate system Pl, P2, P3; that is, if 
OXt h h t· we put atk = ,,-, t en t e equa Ions 
UPk 

are to hold. 

alla2l + a12a22 + a13a2a = 0 

allaal + a12aa2 + alaaaa = 0 

a2laal + a22a32 + a23a33 = 0 



(a) Prove that 

where 

(b) Prove that 
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apt 1 aXk 1 -=- -=-aki. 
aXk ei Opt e, 

(c) Express au = U'''1XI + UX2X2 + UX3X3 in terms of PI, P2, ps, using 
Gauss's theorem. 

(d) Express au in the focal coordinates tt, t2, ts defined in Exercises 9, 
Section 3.3d, p. 256. 

5.10 Stokes's Theorem in Space 

a. Statement and Proof of the Theorem 

We have already seen Stokes's theorem in two dimensions (p. 554). 
The analogous theorem in three dimensions connects the integral of 
the normal component of the curl of a vector over a curved surface 
with the integral of the tangential component of the vector over the 
boundary curve of the surface. While in two dimensions Gauss's 
theorem and Green's theorem go over into each other by a change in 
notation, they are essentially different theorems in three dimensions. 

Let S be an orientable surface in three-space bounded by a closed 
curve C. The choice of an orientation for S converts S into the ori­
ented surface S*. Let C* be the boundary curve of S* oriented posi­
tively with respect to S*. Assuming that space is oriented positively 
with respect to x, y, z-coordinates, let n at each point of S* denote 
the unit normal vectorl pointing to the positive side of S*. Let t be the 
unit tangent vector on C* pointing in the direction corresponding to 
the orientation of C*. Let A = (a, b, c) be a vector defined near S. 
Stokes's theorem asserts2 that 

(70) IIs (curl A) • n dS = LA. t ds. 

lIn effect this means that when we move a point of S* into the origin in such a way 
that n coincides with the positive z-axis, the sense of rotation on S* will be that of 
the goo rotation taking the positive x-axis into the positive y-axis. 
2Precise regularity assumptions for S, C, A under which the theorem can be proved 
are given in the Appendix to this chapter, p. 643. 
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Denoting by dx/dn, dy/dn, dz/dn the components of the vector n 
and by dx/ds, dy/ds, dz/ds those of t, we write Stokes's theorem in the 
form! 

(71) ISs [(Cy - bz) ~~ + (az - Cx) ~~ + (bx - ay) ~~] dS 

= L (a: + b : + c :) ds. 

Using formula (47c), p. 596, we have, equivalently, 

(72) II * (Cy - bz) dy dz + (az - cx) dz dx + (bx - ay) dx dy 
s 

= L* a dx + b dy + c dz. 

Introducing the first-order differential form 

(73a) L = a dx + b dy + c dz 

and 

(73b) co = (Cy - bz) dy dz + (az - cx) dz dx + (bx - ay) dx dy, 

we notice (see p. 313) that co is just the derivative of L: 

(73c) co = dL. 

If as* is the positively oriented boundary C* of S*,2 Stokes's theorem 
becomes simply 

(74) 

In this form it is completely analogous to Gauss's theorem as written 
in formula (53), p. 60l. 

The truth of Stokes's theorem can immediately be made plausible 
from the fact that the theorem has already been proved for plane 
surfaces [see formula (10), p. 555]. Consequently, if S is a polyhedral 
surface composed of plane polygonal surfaces, so that the boundary 

lSee (94c), p. 209 for the definition of the curl of a vector. 
2This accords with the general definition in footnote 2, p. 587, for the case n = 2. 
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curve C is a polygon, we can apply Stokes's theorem to each of the 
plane portions and add the corresponding formulae. In this process 
the line integrals along all the interior edges of the polyhedron cancel, 
and we at once obtain Stokes's theorem for the polyhedral surface. 
In order to obtain the general statement of Stokes's theorem, we only 
pass to the limit, leading from approximating polyhedra to arbitrary 
surfaces S bounded by arbitrary curves C. 

The rigorous validation of this passage to the limit, however, 
would be troublesome; therefore, having made these heuristic re­
marks, we carry out the proof by transforming the whole surface S 
into a plane surface and by observing that the theorem is preserved 
under such transformations. 

We assume that there exists a parametric representation! 

x = ~(u, v), y = 'If(u, v), z = X(u, v) 

for S, where ~, 'If, X are functions with continuous first derivatives for 
which the vector with components 

(75) ~ = d(y, z) 
d(u, v) , 

d(z, x) 
TI = d(u, v) , 

~ = d(x, y) 
d(u, v) 

does not vanish. Assume that there is an oriented set L* in the u, v­
plane bounded by an oriented closed curve r* such that L* is 
mapped bi-uniquely onto the surface S* and r* onto C*.2 

Now L determines a differential form in du and dv: 

L = a (x .. du + Xv dv) + b (y .. du + Yv dv) + c (z .. du + Zv dv) 

= (ax .. + by .. + cz .. ) du + (axv + byv + cZv) dv 

and 

where on the right side we take L as expressed in terms of du and 
dv. Similarly, co gives rise to a second-order form in du and dv, 

1 In the Appendix to this chapter the theorem will be proved more generally for 
surfaces S that can be patched together from portions with a parametric represen­
tation of the type mentioned. 
21£ the vector (~. 11,~) has the direction of D, we have n(I:;*) = n(u, v) j if (~, 11, 0 
has the direction of -D, we have n(I:;*) = -n(u, v). The curve r* is oriented 
positively with respect to I:;* in either case. See p. 587. 
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c.o 
c.o = du dv du dv 

= [(cu - bz)~ + (az - cz)T) + (bz - au~] du dv, 

and again [see (46a), p. 593] 

Moreover, as we proved on p. 322, the relation c.o = dL does not 
depend on the choice of independent variables x, y, z or u, v. l Con­
sequently, the proof of identity (74) has been reduced to the case, 
involving a first-order differential form L in du and dv and a region 
2:* with boundary r* in the u, v-plane. Since Stokes's theorem is 
known to hold in the u, v-plane, it now follows for the curved surface 
S. 

Stokes's theorem answers the question raised on p. 0000. We have 
seen that for a given vector field V(x, y, z) with div V = 0, the integral 

fLV.ndS 

over a surface S with unit normal n depends only on the boundary 
curve C of S and not on the particular nature of S. On the other hand, 
we found on p. 315 that a vector field V with vanishing divergence 
can be represented as the curl of a vector A = (a, b, c)-at least if 
we restrict ourselves to vector fields defined in a parallelepiped with 
edges parallel to the coordinate axes. Stokes's theorem now enables 
us to express 

fL V· n dS = fL (curl A) • n dS 

in the form 

which involves only the boundary curve C of S. 

lThis can also be verified directly by proving the identity 

(ell - b.)/; + (a, - e.,)11 + (b., - all)l; = (ax" + by" + ez,,) .. - (ax .. + by .. + ez .. )", 

where /;, 11, C are defined by (75). 



Relations Between Surface and Volume Integrals 615 

Exercises 5.10a 

1. Let 

I = IIs. z dx dy - x dy dz 

where S* is the spherical cap X2 + y2 + Z2 = 1, x > 1/2, oriented posi­
tively with respect to the normal pointing to infinity. 
(a) Calculate I directly using y, z as parameters on S*. 
(b) Calculate I from Stokes's formula (74), p. 612, observing that 

z dx dy - x dy dz = dL 

with 
L = - yz dx - xy dz. 

b. Interpretation of Stokes's Theorem 

The physical interpretation of Stokes's theorem in three dimen­
sions is similar to that already given (p. 572) in two dimensions. 
Once again we interpret the vector field V = (Vl, Vz, va) as the velocity 
field ofthe flow of a fluid. We call the integral 

LV. t ds = L* Vl dx + Vz dy + Va dz 

taken for an oriented closed curve C* the circulation of the flow along 
this curve. Stokes's theorem states that the circulation along C* is 
equal to the integral 

IIs (curl V)· n dS, 

where S is any orientable surface bounded by C, and n is the unit 
normal on S chosen in such a way that the screw determined by n 
and the sense of rotation of C* has the same sense (right-handed or 
left-handed) as that of the x, y, z-system. Suppose we divide the cir­
culation around C by the area of the surface S bounded by C and pass 
to the limit by letting C shrink to a point while remaining on the 
surface. This process of space differentiation gives for the limit of the 
double integral of the normal component of curl V divided by the 
area the value of (curl V). n at the limit point. We therefore see that 
the component of curl V in the direction of the normal n to the surface 
can be regarded as the specific circulation or circulation density of 
the flow in the surface at the corresponding point. l 

IThese considerations also show that the curl of a vector has a meaning independent 
of the coordinate system and therefore is itself a vector as long as the orientation of 
the coordinate system (and, hence, the vector n) is not changed. 
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The vector curl V is called the vorticity of the motion of the fluid. 
Thus, the circulation around a curve C is equal to the integral of the 
normal component of the vorticity over a surface bounded by C. The 
motion is called irrotational if the vorticity vector is 0 at every point 
occupied by the fluid, that is, if the velocity vector satisfies the 
relations 

OV3 _ OV2 = 0 
oy oz ' 

OV2 _ OV! - 0 
ox oy - . 

As a consequence of Stokes's theorem the circulation in an irrota­
tional motion vanishes along any curve C that bounds a surface 
contained in the region filled by the fluid. 

If we interpret the vector V as the field of a mechanical or electrical 
force, the line integral 

represents the work done by the field on a particle when it is made to 
describe the curve C* in the sense indicated by its orientation. By 
Stokes's theorem the expression for this work is transformed into an 
integral over the surface S bounded by C, the integrand being the 
normal component of the curl of the field of force. If here the curl of 
the force field vanishes, the work done on a particle returning to the 
same point is zero, and the field is called conservative. 

From Stokes's theorem we obtain a new proof for the main theorem 
on line integrals in space (p. 104). The chief problem is to describe 
the nature of the vector field A = (a, b, c) if the integral 

J A • t ds = J a dx + b dy + c dz 

is to vanish around an arbitrary closed curve C. Stokes's theorem 
yields a new proof of the fact that the vanishing of the line integral 
is ensured if curl A = 0, provided C forms the boundary of a surface 
S contained in the region where A is defined. The vanishing of curl A 
-or, as we shall say, the irrotational nature of A-is therefore a 
sufficient condition for the vanishing of the line integral of the 
tangential component of A around any closed curve that bounds a 
surface S in the domain of definition of A. That the condition also 
is necessary we know already from p. 97. If the condition curl A = 0 
is satisfied, we can represent A as gradient of a function {(x, y, z): 
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A = gradf. 

If we take A as the velocity vector V of a fluid flow, irrotationality 
of the flow, that is, the equation curl V = 0, in a simply connected 
region implies that there exists a velocity potential f(x, y, z) such that 

V = gradf. 

If, in addition, the fluid is homogeneous and incompressible, we have 
(see p. 604) the relation 

divV = O. 

It follows in this case that the velocity potentialf satisfies the equation 

o = div grad f = !:if = fzz + filII + fzz, 

which is Laplace's equation, already met before. 

Exercises 5.10b 

1. Let qI, a, and b be continuously differentiable functions of a parameter 
t, for 0 ~ t ~ 2~, with a(2~) = a(O), b(2~) = b(O), qI(2~) = qI(O) + 2n~ (n 
a rational integer), and let x, y be constants. Interpreting the equations 

~ = x cos qI - y sin qI + a, 11 = x sin qI + yeas qI + b 
as the parametric equations (with parameter t) of a closed plane curve 
r, prove that 

~ fr (~ d1l - 11 d~) = A (x2 + y2) + Bx + Cy + D 

where 

A = ~ f dql, B = fr. (a cos qI + b sin qI) dtp, 

C = fr (- a sin qI + b cos qI)dtp, D = ~ fr (a db - b da). 

2. Let a rigid plane P describe a closed motion with respect to a fixed plane 
II with which it coincides. Every point M of P will describe a closed 
curve of II bounding an area of algebraic value S(M). Denote by 2n~ 
(n a rational integer) the total rotation of P with respect to II. Prove the 
following results: 
(a) If n 4: 0, there is in P a point C such that for any other point M of 

Pwe have 

S(M) = ~nCM2 + S(C); 

(b) If n = 0, then two cases may arise: first there is in P an oriented 
line t.. such that for every point M of P 
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B(M) = A d(M), 

where d(M) is the distance of M from /1 and A is a constant positive 
factor; or, second, B(M) has the same value for all the points M of 
the plane P (Steiner's theorem). 

3. A rigid line segment AB describes in a plane II one closed motion of a 
connecting-rod: B describes a closed counterclockwise circular motion 
with center C, while A describes a (closed) rectilinear motion on a line 
passing through C. Apply the results of the previous example to deter­
mine the area of the closed curve in II described by a point M rigidly 
connected to the line segment AB. 

4. The end points A and B of a rigid line segment AB describe one full 
turn on a closed convex curve r. A point M on AB, where AM = a, 
MB = b, describes as a result of this motion a closed curve r'. Prove 
that the area between the curves rand r' is equal to rr;ab (Holditch's 
theorem). 

5. Prove that if we apply to each element ds of a twisted, closed, and rigid 
curve r a force of magnitude ds/p in the direction of the principal nor­
mal vector (Chapter 2 p. 213). the curve r remains in equilibrium; IIp 
is the curvature of r at ds and is supposed to be finite and continuous 
at every point of r. (By the principles of the statics ofa rigid body, we 
have to prove that 

r n ds = 0, 
Jr p 

r x X nds = o. 
Jr p 

where n denotes the unit principal normal vector of r at ds, and x is the 
position vector of ds.) 

6. Prove that a closed rigid surface :E remains in equilibrium under a 
uniform inward pressure on all its surface elements. (If by n' we denote 
the inward-drawn unit vector normal to the surface element des and by 
x the position vector of des, the statement becomes equivalent to the 
vector equations 

ffr. n' des = 0, .fL x X n' des = 0.) 

7. A rigid body of volume V bounded by the surface I is completely im­
mersed in a fluid of specific gravity unity. Prove that the statical effect 
of the fluid pressure on the body is the same as that of a single force f 
of magnitude V, vertically upward, applied at the centroid C of the 
volume V. 

8. Let p denote the distance from the center of the ellipsoid :E 

x2 y2 Z2 _ 

a2 + b2 + c 2 - 1 

to the tangent plane at the point P(x, y, z) and dB the element of area 
at this point. Prove the relations 

(i) f.h p dB = 4rr;abc, 
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(ii) 

9. An ordinary plane angle is measured by the length of the arc that its 
sides intercept on a unit circle with center at the vertex. This idea can be 
extended to a solid angle bounded by a conical surface with vertex A 
as follows: The magnitude of the solid angle is by definition equal to the 
area that it intercepts on a unit sphere with center A. Thus, the meas­
ure of the solid angle of the domain x ~ 0, y ~ 0, z ~ 0 is 4rr/8 = rr/2. 
Now let r be a closed curve, :E a surface bounded by r, and A a fixed 
point outside both r and :E. An element of area dS at a point M of :E 
defines an elementary cone with its vertex at A, and the solid angle of 
this cone is readily found by an elementary argument to be 

cos 6 dS 
r2 ' 

-->0.. 

where r = AM and 6 is the angle between the vector MA and the 
normal to :E at M. This elementary solid angle is positive or negative 
according to whether 6 is acute or obtuse. Interpret the surface integral 

n = II cos 6 dS 
1: r2 

geometrically as a solid angle and show that 

n = rr (a - x) dy dz + (b - y) dz dx + (c - z) dx dy 
JJ1: [(a - X)2 + (b _y)2 + (c - Z)2]3/2 

where (a, b, c) and (x, y, z) are the Cartesian coordiantes of A and M, 
respectively. 

10. Prove, first directly and then by interpretation of the integral as a solid 
angle, that 

r~ f~ dx dy _ 
L~ L~ (x2 + y2 + 1)3/2 - 2rr. 

11. Prove that the solid angle that the whole surface of the hyperboloid of 
one sheet (x2/a2) + (y2/b2) - (Z2/C2) = 1 subtends at its center (0, 0, 0) 
is 

f 1t /2J b2 cos2 rp + a2 sin2 rp 8c . dcp. 
o a2b2 + b2c2 cos2 rp + a2c2 s1n2 rp 

12. Show that the value of the integral 

n = rr (a - x) dy dz + (b - y) dz dx + (c - z) dx dy 
JJ 1: [(a - X)2 + (b - y)2 + (c - Z)2]3/2 

is independent of the choice of the surface :E, provided its boundary r 
is kept fixed. By integrating over the outside of the surface, prove from 
this result that if :E is a closed surface, then n = 4rr or 0, according to 
whether A(a, b, c) is within the volume bounded by:E or outside this 
volume. 
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13. Let the surface ~ be bounded by the closed curve r and consider the 
integral 

O( b ) _ rr (a - x) dy dz + (b - y) dz dx + (e - z) dx dy 
a, ,e - JJI: r3 ' 

[r2 = (a - X)2 + (b - y)2 + (e - Z)2], 

as a function of a, b, e. Prove that the components of the gradient of 
o can be expressed as line integrals as follows: 

ao = r (z - e) dy - (y - b) dz ao = r (x - a) dz - (z - e) dx 
aa J r r3 'ab Jr r3 ' 

ao = r (y - b) dx - (x - a) dy. 
ae Jr r3 

These formulae, which have an important interpretation in electromag­
netism, can be expressed by the following vector equation 

r x X dx 
grad 0 = - Jr 1Xf3' 

where x is the vector with components (x - a), (y - b), (z - e). 
14. Verify that the expression 

- 4xy dx + 2(x2 - y2 - 1) dy 
(x2 + y2 _ 1)2 + 4y2 

is the total differential of the angle that the segment -1 ~ x ~ 1, y = 0 
subtends at the point (x, y). Using this fact, prove the following result 
by a geometrical argument: Let r be an oriented closed curve in the x, 
y-plane, not passing through either of the points (-1, 0), (1, 0). Let p be 
the number of times r crosses the line segment -1 < x < 1, y = 0 from 
the upper half-plane y > 0 to the lower half plane y < 0, and n the 
number of times r crosses this line segment from y < 0 to y > o. Then, 

6 = r -4xy dx + (x2 - y2 - 1) dy = 2n{p _ n). 
Jr (x2 + y2 - 1) + 4y2 

Thus, if r is the curve r =' 2 cos 26 (0 ~ 6 ~ 27t), in polar coordinates, 
6=0. 

15. Consider the unit circle C 

x' = cos <p, y' = sin <p, z' = 0 (0 ~ <p ~ 27t) 

in the x, y-plane. Denote by 0 the solid angle which the circular disc 
x 2 + y2 ~ 1, z = 0, subtends at the point P = (x, y, z). Now let P de­
scribe an oriented closed curve r that does not meet the circle C. Let 
p be the number of times r crosses the circular disc x 2 + y2 < 1, z = 0, 
from the upper half-space z > 0 to the lower half-space z < 0, and n 
the number of times r crosses this disc from z < 0 to z > o. If P starts 
from a point Po on r with 0 = 00, then P, describing r (while 0 varies 
continuously with P), will return to Po with a value 0 = 01. Prove by a 
geometrical argument that 

01 - 00 = Ir dO = 47t(p - n). 

Using the vector equation found above, 
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~ r PP' X dP' 
grad n = - Ja IPP'1 3 

(Exercise 13), prove that 
x'-x dx dx' 

y' - y dy dy' 

z'-z dz dz' 

(x' - z) (dy dz' - dz dy') + (y' - y) (dz dx' - dx dz,) 
r r + (z' - z) (dx dy' - dy dz') 

= Jr Jc [(x' - X)2 + (y' - y)2 + (z' - Z)2]3/2 

= 47t(p - n). 

[This repeated line integral, which is due to Gauss, gives the number of 
times r is wound around C. It should be remarked that its vanishing is 
necessary if the two curves rand C (thought of as being two strings) 
are to be separable, but not sufficient, as is shown by the example in 
Fig. 5.13, where p = n = 1, yet rand C cannot be separated.] 

Figure 5.13 

16. Let r be a closed curve in space on which a definite sense of description 
of the curve has been assigned. Prove that there is a vector a with the 
following characteristic property: for any unit vector n the scalar prod­
uct a·n is equal to the algebraic value of the area enclosed by the or­
thogonal projection of r on the plane II orthogonal to n. (Note that n 
gives the orientation of II, and r gives the orientation of its projection 
on II.) In particular, the projection of r on any plane parallel to a has 
the algebraic area zero. (The vector a may be called the area vectorofr.) 

17. Let {(x, y) be a continuous function with continuous first and second 
derivatives. Prove that if 

{xx{"" - {x,,2 1= 0, 
the transformation 

U = {x(x, y), v = {,,(x, y), w = - z + x{x(x, y) + y{,,(x, y) 

has a unique inverse, which is of the form 
x = gu(u, v), y = gv(u, v), z = - w + ugu(u, v) + vgv(u, v). 
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18. Represent the gravitational vector field 

x- x 
- J (X2 + y2 + Z2)3 ' 

y- y 
- J(X2 + y2 + Z2)3 

z- Z 
- J (X2 + y2 + Z2)3 ' 

as a curl. 

5.11 Integral Identities in Higher Dimensions 

The formulae of Gauss and Stokes discussed in the previous sec­
tions all can be considered as extensions to more dimensions of the 
fundamental theorem of calculus 

(76) 
b f {'(x) dx = f(b) - f(a). 

a 

That theorem expresses the integral of the derivative of a function of 
a single variable over an interval in terms of the values of the function 
at the boundary points of the interval. In a similar way, Gauss's 
theorem 

(n = outward-drawn normal) expresses an integral over a set R in 
terms of quantities taken on the boundary of R. In vector form, with 
A = (f, g, h) the divergence theorem becomes 

ffL div A dx dy dz = fIs A • n dS. 

Obviously, the expression div A plays the role of the derivative f' 
in the simple formula (76). 

In three-dimensions we obtained in addition formulae expressing 
integrals of differential expressions over curves or surfaces in terms 
of boundary integrals. The curve integrals considered took the form 

(78) LA. t ds, 

(t = unit tangent vector of the curve C) and surface integrals the form 
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(n = unit normal vector to the surface B). There are bound to be 
restrictions on the vector A if integrals of these types are to be ex­
pressible in a form that only involves boundary points of C or of B. 
The reason is that there are many curves or surfaces in three-space 
with the same boundary. An identity expressing an integral in terms 
of functions on the boundary alone implies that the integral does not 
depend on the particular curve or surface chosen and this can only be 
the case for vectors A of special types. 

Thus, we found that if the line integral of A· t over a curve C is to 
depend only on the end points P and Q of C, then the vector field 
A(x, y, z) has to be irrotational; that is, curl A = o. If this condition 
is satisfied in a simply connected set containing C, we can find a scalar 
U = U(x, y, z) such that A = grad U = (Uz , U1/, Uz); in that case, 
we indeed have an integral identity of the desired type: 

fa A • t ds = fa dU = U(Q) - U(P). 

Similarly, for the surface integral 

to depend only on the boundary curve C of B, the vector A has to 
satisfy the necessary condition! div A = o. If the condition div A = 
o is satisfied, we can represent A in the form A = curl B (see p. 315) 
and express the integral of A • n over the surface B in terms of an 
integral over C by Stokes's theorem 

(79) fIs A· n dB = fIs (curl B)· n dB = fa B • t ds. 

From these examples one would expect that there exist more gener­
al formulae expressing appropriate combinations of derivatives of 
functions over an m-dimensional set in M-dimensional euclidean 
space as integrals of the functions over the (m - I)-dimensional 

lAssume that the double integral of A • n over any surface S depends only on the 
boundary C of S. Then the integral is the same for any two surfaces with the same 
boundary if we define the direction n consistently on the two surfaces (i.e., so that 
the normal vectors n go into each other if one surface is deformed smoothly into the 
other). In case the two surfaces together form the boundary C1 of a set R in space, the 
integral of A • N over C1 is 0 if N denotes the unit normal of C1 pointing away from 
R. By the divergence theorem, it follows then that the integral of div A over R 
vanishes. Since R is arbitrary, we find by space differentiation that div A = o. 
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boundary of the set. For m = M Gauss's theorem (77) suggests an 
obvious generalization: 

Here R is a set in M-space bounded by the (M - I)-dimensional hyper­
surface S with outward-drawn normal n, and fI, f2, ... , fM are 
functions of Xl, ... , XM. On the other hand, the formula of Stokes 
in the form (79) has no such obvious analogue. However, the calculus 
of exterior, or alternating, differential forms leads one immediately 
to conjecture the general Stokes's formula 

(80) 

for arbitrary differential forms (0 of order m - 1 and arbitrary m­
dimensional oriented surfaces S* with suitably oriented (m - 1)­
dimensional boundary as*. In the Appendix to this chapter we shall 
prove the general formula (80) without using any new ideas beyond 
those already arising in the rigorous proof of the special cases (77) 
and (79). 

Appendix: General Theory of Surfaces and of 
Surface Integrals 

Rigorous proofs of the theorems of Gauss and Stokes and their 
extensions to higher dimensions require a more careful analysis of 
the notions of surface, of orientation of surfaces, and of integrals 
over surfaces. These are provided in the present appendix. 

A.l Surfaces and Surface Integrals in Three Dimensions 

a. Elementary Surfaces 

Elementary surfaces are essentially the analogues of the simple 
arcs defined in Volume I, p. 334. They form the building blocks making 
up surfaces of more complicated structure. 
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An elementary surface 0' in x, y, z-space is a set of points P = 
(x, y, z) represented parametrically by three functions, 

(la) x = t(u, v), y = g(u, v), z = h(u, v) 

where (1) the domain U of the functions is an open bounded set in the 
u, v-plane; (2) t, g, h are continuous and have continuous first de­
rivatives in U; (3) the inequality 

(lb) w = J I tu tv)2 + \ gu gv)2 + I hu hv \2 
gu gv hu hv tu tv 

is satisfied at all points U; and (4) the mapping of the set U in the 
u, v-plane on the set 0' in x, y, z-space is 1-1 and the inverse mapping 
from 0' onto U is also continuous. 

The quantity W represents the length of the vector with com­
ponents 

B = hutv - hvtu, 

that is the vector product of the two vectors 

(3) and 

The two vectors in (3) are tangential to the surface, while the vector 
(A, B, C) is perpendicular to those two and, hence, normal to the 
surface. Equation (lb) guarantees that there are only two directions 
normal to the surface, namely that of the vector (A, B, C) and of its 
opposite (- A, - B, - C). 

At each point of 0', at least one of the three quantities A, B, C does 
not vanish. If, say, C =1= 0 at a point Po = (xo, yo zo) corresponding to 
a parameter point (uo, vo) in U, we can find for a sufficiently small 
positive t a number 0> 0 such that each pair (x, y) with 

(4) ./(x - XO)2 + (y - YO)2 < 0 

is representable uniquely in the form 

(5) x = t(u, v), y = g(u, v) 

with 

(6) ./(u - UO)2 + (v - VO)2 < t. 
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The values u, v determined by x, yare functions 

(7) u = (J(x, y), v = 'V(x, y), 

which are continuous and have continuous first derivatives for (x, y) 
satisfying (4). By the assumed continuous dependence of (u, v) on P 
we see that every point P on the surface (J' that is sufficiently close to 
Po has parameters (u, v) satisfying (6). If, moreover, the distance from 
P to Po is < &, the coordinates x, y of P will satisfy (4). Thus, for all 
P on (J' sufficiently close to Po, we can express the parameter values 
u, v in terms of x, y by (7). On substituting these values in the equa­
tion z = h(u, v). we then have a non parametric representation 

(8) z = h«(J(x, y), 'V(x, y» = H(x, y), 

which applies to all points of the surface (J' that are sufficiently close 
to Po. If the quantity B does not vanish, we obtain similarly a local 
representation of the formy = G(x, z) and in case A =;t:. 0 a representa­
tion of the form x = F(y, z). 

The same elementary surface (J' has many different parameter 
representations, all of which, however, are related in a simple fashion. 
Let 

(9) x = {(ii, D), y = g(ii, D), i = h(ii, D) for (ii, D) in (j 

be a second parameter representation for (J' also satisfying all our 
four requirements. The bi-unique and bi-continuous correspondence 
between U and (J' and between (j and (J' establishes then a 1-1 and 
continuous mapping with continuous inverse of the set (j onto the 
set U: 

(10) u = a(ii, D), v = ~(ii, D) for (ii, D) in (j. 

If, here, for a certain (iio, Do) in (j the corresponding values (Uo, vo) 
are such that the quantity C(uo, vo) is not zero, then the representa­
tion (7) applies for all (u, v) near (uo, vo), and hence, we find from (9) 
that 

u = a(ii, D) = (J({(ii, D), g(ii, D» 

v = ~(ii, D) = 'V({(ii, D), g(ii, D» 

for all (ii, D) sufficiently close to (iio, Do). Since (J, 'V, t, g all are func­
tions with continuous first derivatives, it follows that the functions 
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u, P describing the change of parameters (10) not only are con­
tinuous but have continuous first derivatives as well. 

Putting 

(11) Il = d(u, v) = au ap _ au ap 
d(u, u) au au au au' 

we find from the rules for the Jacobian of the product of two map­
pings [see (31b), p. 258] that 

(12a) C = d(x, y) = d(x, y) • d(u, v) = CIl 
d(u, u) d(u, v) d(u, u) 

and, similarly, that 

(12b) jj = BIl, A = All. 

In particular, we find that the Jacobian of the mapping (10) be­
tween the two parameter regions does not vanish, since by (12a, b) 

(13) W= ~A2 + jj2 +C2 = ~1l2(A2 + B2 + C2) = IIlIW 

and, by assumption, W *- o. 
Of course the same statements are valid for the expressions of u, u 

in terms of u, v. The important fact is that the relation between two 
parameter systems for the same elementary surface satisfy all of the 
assumptions made in the proofs of the transformation laws for areas 
and integrals. 

b. Integral of a Function over an Elementary Surface 

There is nothing difficult in the notion of a continuous function F 
defined in the points P of an elementary surface cr. We just require 
that with every P E cr there is associated a value F = F(P) in such 
a way that for a sequence of points Pn on cr that converges to a 
point P of cr, we have 

lim F(Pn ) = F(P). 
n-'" 

In any particular parametric representation (la), F becomes a func­
tion of u, v in the domain U and continuity of F on cr becomes equiva­
lent! to continuity of F as a function of u and v. 

lWe make use here of the bi·continuous character of the relation between cr and U. 
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We restrict ourselves here to continuous functions F on cr that 
are zero outside some compact (i.e., closed and bounded) subset s 
of cr. The corresponding parameter points (u, v) form then a compactl 

subset S of U. We then define the integral of F over the elementary 
surface cr by the formula 

(14) IIcr FdA = II FW du dv, 

where W is the expression given by (lb). Here FW is continuous 
function of u, v, which we define as 0 for (u, v) outside S; hence, FW 
is integrable. One still has to show that the surface integral of F 
over cr defined by (14) does not depend on the particular parameter 
representation (la). This follows immediately from the law of trans­
formation (13) for Wand from the general formula (16b), p. 403, for 
transformation of double integrals under a change of variables from 
u, v to ii, v. Indeed, 

ffFWdU dv = ffFWI~~~: ~~Idii dv 

= ffFW ILlI dii dv = ffFWdii dv 

The independence of the integral of FW from the particular pa­
rametric representation means that the differential form W du dv = dA 
is invariant; it can be identified with the element of area. 

It would be easy to extend the notion of integral over an elementary 
surface to more general functions, although we will not do so in 
the sequel. This involves the extension of the notion of Jordan­
measurability to a set s whose closure is contained in the elementary 
surface cr; we merely require that the corresponding set S of points 
(u, v) in the parameter plane be a Jordan-measurable set whose closure 
lies in U. It is seen immediately from the relations between different 
parameter representations that Jordan-measurability of s does not 
depend on the particular representation.2 The same holds for the area 
of s that we can define as 

IFor (Un, Vn) E S and (Un, Vn)--+(U, V) the corresponding points P n ofalie ins.Compact­
ness of s implies that a subsequence of the P n converges toward a point P of s. By 
continuity convergence of Pn to P implies convergence of the (Un, Vn) to the cor­
responding parameter point in S. Thus, (u, v) E S, which proves that S is closed. It 
is bounded as a subset of the bounded set U. 
2See p. 539 
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A(s) = Sis dA = Sis Wdu dv. 

Of particular importance are the sets s whose closure lies on cr 
and that have area o. They correspond to sets S in the u, v-plane of 
area 0; this means that S can be covered by a finite number of squares 
contained in U of arbitrarily small total area. 

c. Oriented Elementary Surfaces 

A particular parameter representation (la) of the elementary sur­
face cr is said to define a particular orientation of cr (the one that is 
positive with respect to the u, v-system). Two parameter sets u, v 
and U, u for the same elementary surface cr are said to give cr the 
same orientation if the Jacobian 

d(u, u) 
d(u, v) 

is positive throughout the parameter domains and to give the op­
posite orientations if the Jacobian is negative throughout the pa­
rameter domains. The combination of the elementary surface cr with 
a particular orientation is called an oriented elementary surface cr*. 

By our assumptions, the Jacobian cannot vanish. Since it is also 
a continuous function of the parameters, we can be sure that it has 
constant sign when the parameter domain is a connected set. In that 
case there are only two possible orientations for an elementary sur­
face cr that may be distinguished as cr* and -cr*. It is clear, however, 
that the number of possible orientations is larger for disconnected 
sets, where orientations of the parts of cr corresponding to the differ­
ent components of U can be changed independently of each other. 

Orientation of the elementary surface is intimately connected with 
picking a normal direction on cr or with "distinguishing the sides" 
of cr. A particular parameter representation (la) of cr defines by 
formulae (2) at each point P quantities A, B, C that can be considered 
as the components of a vector perpendicular to cr at P. This vector 
has the same direction as the unit vector with components 

(15) 
A 

~= W' 
B 

1'\= W' 
C 

I;;=W· 

When we change parameters from u, v to U, u the quantities A, B, C 
change and are replaced by the proportional quantities A, E, C, 
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according to the laws (11) and (12a). Here the factor of proportionality 
is just the quantity 

11 = d(u, v) 
d(u, u) 

Hence, the unit normal (~, 1'), ~) is the same for equal orientations of C1 

and opposite for opposite orientations. Equivalently, the orientation 
of C1* picks out at each point a certain side of C1, namely, that one 
to which the normal (~, 1'), ~) points.1 

The orientation of C1* can also assign a definite sense to every 
simple closed curve C lying on C1 by ascribing to C that sense that 
is positive on the closed curve "( in the u, v-plane that corresponds 
to C with respect to the finite region enclosed by"(. 

Specification of an orientation for the elementary surface becomes 
mandatory when we consider instead of integrals of the form ffF dA, 
where F is a scalar, an integral of a differential form 

(16) co = a dy dz + b dz dx + c dx dy, 

where, say, a, b, c are continuous functions on C1 vanishing outside 
a closed and bounded subset. Here the natural interpretation for 
the integral suggested by the substitution formulae is, of course, 

rJco = rJ [a d(y, z) + b d(z, x) + c d(x, y)] du dv 
J~ L d(u, v) d(u, v) d(u, v) 

= SS (aA + bB +cC) du dv 

= SS (a~ + b1') + ~) W du dv = SS (a~ + b1') + c~) dA 

where we have made use of the relations (15) and (14). Here ~, 1'), ~ 
are the direction cosines of the normal determined by the choice of 
the parameters u, v; their sign depends on the orientation of our 
surface C1. Thus, we first define the integral of co over one of the 
oriented surfaces C1* arising from C1. We put 

(17) J.'f co = J.J[a d(y, z) + b d(z, x) + c d(x, y)] du dv 
JC1* d(u, v) d(u, v) d(u, v) 

IThis is the positiue side of cs*, which depends on the orientation of the :!C, y, z-coordi­
nate system; see p. 580. In the notation used on p. 581, we have 

n(cs*) = n(u, v). 
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= JJ(a~ + b11 + cl;) dA, 

where u, v must be one of the parameter systems used to define the 
orientation of cr* or connected with such a system by a substitution 
with positive Jacobian and where ~, 11, I; is the normal direction in­
duced by the orientation of cr*. If -cr* is the elementary surface 
with the opposite orientation, we have 

(18) 

d. Simple Surfaces 

Let cr be an elementary surface with a parametric representation 
(la) where the parameter point (u, v) varies over the open set U. If 
U' is any open subset of U, the points of cr with (u, v) restricted to 
U' clearly form an elementary surface cr' contained in cr. Indeed, all 
four of our conditions immediately apply to cr', using the same pa­
rameters u, v. As an example, we note that the points of cr of distance 
< 8 from a given point (xo, Yo, zo) again form an elementary surface 
(if not empty), for those are the points whose parameter values u, v 
satisfy 

(19) [f(u, v) - XO]2 + [g(u, v) - YO]2 + [h(u, v) - ZO]2 < 8 2, 

and since f, g, h are continuous functions in U, the set U' of such 
points (u, v) is open. 

It is less obvious that the most general elementary surface cr' con­
tained in the elementary surface cr can be obtained by restricting the 
parameter domain of cr to a suitable open set. 

For the proof, let the elementary surface cr have the parametric 
representation (la) for (u, v) E U. Let cr' be an elementary surface with 
the parametric representation (9) with (it, u) varying over the set 0. 
Let cr' be a subset of cr. Then every (it, u) E 0 determines a point P E cr, 
which in turn determines a point (u, v) E 0 whose coordinates are 
functions of it, U: 

(20) u = a(it, u), v = P(u, u) for (it, v) E 0. 

The set 0 is mapped by (20) onto a subset U' of U. It is clear then 
that the set cr' arises from cr by restricting the parameter points (u, v) 
to the subset U' of U. It only remains to see that U' is open. Let Po = 
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(xo, Yo, zo) be a point of cr' corresponding, respectively, to the parameter 
points (uo, Yo) in (j and (Uo, vo) in U'. Let C and C be both different 
from 0 at that point.1 Then a neighborhood of (uo, vo) is mapped by 

x = feu, v), y = g(u, v) 

onto a set in the x, y-plane that covers a neighborhood of (xo, Yo); the 
corresponding points (u, v) obtained from (7) then cover a neighbor­
hood of (Uo, vo), so that U' is seen to be an open set. 

We see in addition that the two surfaces a and a' agree in a suf­
ficiently small neighborhood of Po, since every P on a sufficiently 
near Po has parameter values (u, v) arbitrarily near (uo, vo); thus, for 
P sufficiently close to Po, we have (u, v) E U', since (Uo, vo) is an in­
terior point of U', and hence, we see that P E cr'. We have proved: 

If the elementary surface a' is contained in the elementary surface 
a and if Po is a point of a', then we can find a sufficiently small neigh­
borhood of Po in which a and a' agree. 

Any orientation imposed on the elementary surface a immediately 
determines a unique orientation on any elementary surface a' con­
tained in a. We need only refer a' to the same parameter system that 
defines the orientation of a and take that system to fix the orientation 
of a'. 

We are now in a position to give precise meaning to the more 
general notion of a simple surface, as an object "patched together" 
from elementary surfaces: 

A set 't in x, y, z-space is called a simple surface if for every point 
Po on 't there exists an s > 0 such that the points of 't that have 
distance less than s from Po form an elementary surface. 

Thus, for every Po E 't there is an elementary surface a that agrees 
with't near Po and is contained in't. We can show that the inter­
section of two elementary surfaces a' and a" contained in the simple 
surface 't is again an elementary surface (if not empty), for if Po is 
a common point of a' and a", we can find an s-neighborhood Ne of Po 
such that a = Ne n 't is an elementary surface. Here a contains the 
two elementary surfaces Ne na' and Ne na". Consequently, a' and 
a" agree with a, and thus with each other, at all points sufficiently 
near to Po. If a' is referred to parameters u, v with uo, Vo corresponding 
to Po, all (u, v) sufficiently close to (uo, vo) will correspond to points 

lWe can assume that all three quantities A, H, (J are * 0 at Po, applying, ifnecessary, 
a suitable rotation to x, y, z·space. At least one of the quantities A, B, C does not 
vanish at Po; let it be C. 
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of cr' that lie in cr". Hence, the parameter points (u, v) corresponding 
to points (x, y, z) in cr' n cr" form an open set. Thus, cr' n cr" is an 
elementary surface. 

We define an oriented simple surface analogously: 

The simple surface 't is oriented if 't is represented as the union 
of elementary surfaces each of which has been given an orientation, 
provided the orientations agree in the intersection of any two of the 
elementary surfaces. Two orientations of 't are considered identical 
if they lead to the same orientations at the points common to any two of 
the oriented elementary surfaces used in defining the orientations of 
'to Equivalently, two orientations are identical if they lead to the same 
choice of a normal direction at each point of't. 

A case of special importance arises when the simple surface 't 
is the boundary of a set R in x, y, z-space. We assume here that R 
is the closure of a bounded open set.1 In that case, we can assign an 
orientation to 't for which the positive sense assigned by the orien­
tation to each normal of't is that of the "direction pointing away from 
R" or that of the "exterior normal." Indeed, for each point Po = 
(xo, Yo, zo) on 't, we can find a neighborhood in which 't agrees with an 
elementary surface. We can even choose the neighborhood so small 
that't can be represented nonparametrically in that neighborhood, 
say, by an equation 

(21) z = F(x, y) valid for 

If two points P and P' in space can be joined by an arc that contains 
no point of the boundary 't of R, either both or neither lie in R. This 
is clearly the case for any two points satisfying either condition 

(22a) F(x, y) < z < F(x, y) + a, 
or 

(22b) F(x,y) - a < z < F(x,y), (x - XO)2 + (y - YO)2 < 82, 

provided a is a sufficiently small positive number. Thus, each of the 
to sets (22a) and (22b) either is completely contained in R or has 
no points in common with R. They cannot both be contained in R, 
for then the set (21) also would belong to R, since R is closed; but then 
Po would not be a boundary point of R. Neither can both sets be free 
of points of R, since then Po could not be a limit of interior points of 

lThis means that R is closed and bounded and that every boundary point of R is 
the limit of interior points. 
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R. Thus, exactly one of the sets (22a) and (22b) is contained in R. If 
(22b) is the set contained in R, we choose the parameters u = x, v = y 
to assign an orientation to the elementary surface (21), writing 

x = u, y = v, z = F(u, v). 

The corresponding normal direction has directio ncosines [see (2) and 
(15)] 

Fv 
1'\= - W' 

1 
~=W' 

Since ~ > 0, the normal at any point of the surface points away from 
R. in the sense that any point on the normal at a point of (21) that is 
sufficiently close to the surface will lie in the set (22a) and, hence, 
outside R. Similarly, if the set (22a) belongs to R, we define the orien­
tation of (21) by the parametric representation 

x = v, y = u, z = F(u, v), 

which leads to ~ = -1/W < 0 and again singles out the normal di­
rection away from R. 

We have thus represented 't as a union of oriented simple surfaces, 
where, because of the geometric meaning of the orientation in re­
lation to the set R, orientations agree in overlapping simple surfaces. 
We call 't oriented positively with respect to R 1. 

e. Partitions of Unity and Integrals over Simple Surfaces 

Given a simple surface 't, we wish to define 

under the assumption that F is a continuous function on 't that 
vanishes outside some closed and bounded subset s of 'to (In case 
the whole surface 't is closed and bounded, the definition will furnish 
the integral over 't of an arbitrary continuous function on 't.) We 
make use of a device known as partition of unity to reduce our in­
tegrals to integrals over compact subsets of elementary surfaces that 
have been defined already. 

lWe assume here that R has the orientation of the x, y, z-coordinate system. 
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A partition of unity consists of a finite number of functions X1(P), 
X2(P), . . ., 'XN(P) defined and continuous in the points P of the set 
s with the properties: 

1. X,(P) ~ 0 for all PES and i = 1, ... , N; 

2. X1(P) + X2(P) + . . . + 'XN(P) = 1 for all PES 

3. for each i = 1, . . ., N there exists an elementary surface 0", 

contained in 't such that X,(P) = 0 for P in S outside a certain compact 
subset of 0",. 

(It is, of course, property 2 that accounts for the name partition of 
unity). 

Assume that we have such a partition of unity for s. We can write 
forPEs 

(23a) F(P) = F(P) X1(P) + F(P) X2(P) + . . . + F(P) 'XN(P). 

Here each term is defined and continuous for Pin s. However, since 
F(P) is assumed to be defined and continuous on the whole of 't and 
to vanish outside the set s, we can extend each term F(P) X,(P) over 
the whole of 't as a continuous function just by defining F X' as 
zero for points of't not in s. 

We then define the integral of F over 't by the formula 

(23b) 

Here the integrals on the right have a meaning since F X' is con­
tinuous on the elementary surface 0', and vanishes outside a com­
pact subset of O"i. 

To complete the definition, we have to show that the expression 
(23b) for the integral of F over 't does not depend on the particular 
partition of unity used. Assume that we have a second partition con­
sisting of functions X1'(P), X2'(P),. . ., Xm'(P) vanishing, respec­
tively, outside compact subsets of elementary surfaces 0"1', ••• , O"m'. 

For each i = 1, . . ., Nand k = 1, . . ., m the set 

is again an elementary surface (if not empty), since both 0", and 0"11:' 

lie on't. Moreover, the function F Xi X1I:' vanishes outside a compact 
subset of that surface. Hence, formula (23b) yields 
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Ii FdA = ~ILi FX' dA 

= ~ ~[ F Xt Xk' dA 
',k JJO'i 

= ~ ILk FXt Xk' dA 

= ~ ~[ FXk'dA, k JJO'kl 

which shows that a different partition leads to the same value for the 
integral. 

It remains to exhibit an actual partition of unity. By definition, 
we have for every point Q of the simple surface 't" a number EQ > 0 
such that the points of't" within distance EQ from Q form an elementary 
surface C1Q. We associate with Q the function of P defined by 

(24a) I EQ - 2PQ for PQ < ; EQ 

'l'Q(P) = 
- 1 o for PQ ~ "2 EQ. 

Here PQ denotes the distance between the two points P and Q. The 
function 'l'Q(P) is defined and continuous for all P in space and, 
hence, in particular, is continuous on C1Q. The number EQ can be 
chosen so small that the set of points P on C1Q for which PQ ~ 
t EQ is closed.1 These points then form a compact subset of C1Q outside 
of which the function 'l'Q(P) vanishes. 

lThe reason is that all points P in the closure of an elementary surface a that are 
sufficiently near to a given point Q of a have to belong to the set a itself: Let a cor­
respond to the open set U in the parameter plane, with Q corresponding to a point 
q. Let Pn be a sequence of points on a with images pn in U, and let Pn -+ P. For p" 
sufficiently close to Q the pn lie in a closed disc about q contained in U. A subse­
quence of the pn converges to a point P of U. The point on a corresponding to P is 
just P. Now by definition of t there exists a positive oQ such that the points P of t 
with PQ < EQ form an elementary surface a. There exists then a positive EQ ~ oQ 

(depending on the choice of oQ) such that the points P of the closure of a for which 
PQ ~ ! EQ belong to a. Let aQ c a denote the set of points P of t with PQ < EQ • 

Then the closure of the set of points P of aQ with PQ ~ ! EQ belongs to a, and 
hence also to aQ since ! EQ < EQ. 
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We take now for each Q on -r the open ball of radius tEQ in which 
the function 'l'Q is positive. By the Heine·Borel theorem a finite 
number of these balls, say the ones with centers Ql, ... , QN, already 
covers the closed and bounded set s. We then define the partition 
functions X' for i = 1, . . ., N by 

(24b) 

Here the denominator is different from zero for each P in s, so that 
X,(P) is defined and continuous in s. It is clear that in s the Xf(P) 
are nonnegative and have sum 1. Moreover, X,(P) = 0 outside a 
compact subset of the elementary surface crQi. Thus, the X,(P) form 
a partition of unity. 

Having defined the integral of a function F over a simple surface, 
we can immediately obtain the integral of a differential form 

(25a) 0> = a dy dz + b dz dx + c dx dy 

over an oriented simple surface -r*, assuming the coefficients a, b, c 
to vanish outside a compact subset s of -r*. We simply take 

(25b) Ii* 0> = Ii (a~ + b1'\ + c~) dA, 

where -r is the unoriented surface and ~, 1'\, ~ are the direction cosines 
of the normal singled out by the orientation of -r* with respect to the 
coordinate axes. 

A.2 The Divergence Theorem 

a. Statement 01 the Theorem and Its lnvariance 

In several variables the role of the fundamental theorem of cal­
culus, which connects the operations of differentiation and inte­
gration, is played by the Gauss divergence theorem. Under suitable 
assumptions, for a set R in x, y, z-space with boundary surface -r the 
theorem takes the form 

(26) IIL (az + by + cz) dx dy dz = Ii (a~ + b1'\ + c~) dA, 

where ~, 1'\, ~ denote the direction cosines of the exterior normal (i.e., 
of the normal pointing away from R) in the points of-r. 
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We shall prove the theorem here under the assumptions that R is 
the closure of an open bounded set in x, y, z-space and that the bound­
ary of R is a simple surface. The functions a(x, y, z), b(x, y, z), 
c(x, y, z) shall be continuous in R and have continuous and bounded 
first deri\'atives in the interior points of R. 

An important feature of formula (26) is its invariance under rigid 
motions of space. This fact is more easily verified if subscripts rather 
than different letters are used to distinguish variables. We replace 
the quantities x, y, z by Xl, Xz, X3 and a, b, C by aI, az, a3, and ~, 11, ~ by 
~l, ~z, ~3. Formula (26) becomes 

(27a) IIL ~ ~:: dXI dxz dX3 = Ii ~ a, ~, dA, 

where i = 1, 2, 3. Of course, the analogous formula with i ranging 
from 1 to n holds in n dimensions. 

A rigid motion is given by a linear transformation from x- to y­
variables of the form 

(27b) X, = ~ C"eYk + d, 
k 

where the cu and d, are constants and the Ctk satisfy the orthog­
onality relations [see (47) p. 156] 

(27c) { 
0 for j =1= k 

~ Ctj cu = 
, 1 for j = k. 

The same law of transformation, but with the "inhomogeneous" terms 
d, omitted, applies to vectors, since their components are just differ­
ences of the coordinates of their end points. Thus, we associate with 
the a, the components bk of the same vector in the new system deter­
mined by 

This law of transformation also applies to the direction cosines of the 
normal on the boundary, which are just the components of the 
exterior unit normal. The new direction cosines 11k are connected with 
the t;i by the formulae 
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Then, obviously, 

where we have made use of the chain rule of differentiation (see p. 
p. 208-209). Similarly, using (27c) 

Hence, (27a) implies that 

and, thus, represents a relation that is invariant under rigid motions 
of space. l 

h. Proof of the Theorem 

The proof of the general formula (26) is again simplified considerably 
by the use of partitions of unity. This device permits us for a given 
region R with boundary t to reduce the formula for general a, b, c 
to the case where a, b, c are zero except in the neighborhood of a 
point. We shall prove the following: 

If every point Q in R has a neighborhood of radius BQ such that (26) 
holds for all a, b, c vanishing outside that neighborhood,2 then the 
formula holds for general a, b, c. 

For the proof of this assertion, we use the auxiliary functions 
'l'Q(P) defined by 

lThe invariance of the volume element follows because the Jacobian of the trans­
formation (27b), that is, the determinant of the Clk, has the value ±1 (see p. 175), 
while that of the surface element dA = W du dv follows by transforming the ex­
pression (lb) for W. 
2We consider only functions a, b, c satisfying the assumptions stated: They are 
continuous in R and have continuous derivatives in the interior points of R. 
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that are continuous and have continuous first derivatives for all P. 
Since R is closed and bounded, we can pick a finite number of points 
Q, say Ql, Q2, . . ., QN, such that the corresponding balls PQ, < 
t &Qi cover all of R. We again introduce functions 

that are defined and have continuous first derivatives in all points P 
of R and, besides, satisfy the conditions for a partition of unity 

(a) Xi(P) ~ 0 inR 

(b) ~Xi(P) = 1 , 

(c) Xi(P) = 0 for 
- 1 

PQ, >-rQi 

The function a can then be decomposed into 

a = ~aXi 
i 

where the individual terms a X' are again continuous in R and have 
continuous first derivatives in the interior points of R. Similarly, b 
and C can be decomposed. Then, since formula (26) applies to the 
individual terms, it obviously applies to the whole expression. 

Hence, we only have to prove (26) for functions a, b, c vanishing 
outside an arbitrarily small neighborhood of a point Q. We distinguish 
the cases of Q in the interior of Rand Q on the boundary surface't. 

For a point Q interior to R, we choose &Q so small that the ball of 
radius 2sQ and center Q lies in R. For a, b, c vanishing outside the 
ball of radius SQ, the surface integral vanishes and we only have to 
prove that 

(28) fff(a:l: + by + cz) dx dy dz = 0 

Here a, b, c are defined and have continuous derivatives in the whole 
space if we put a = b = c = 0 outside R. The first derivatives of a, b, c 
are integrable over every parallel to the coordinate axes. Applying 
formula (29), p. 531 for the reduction of a triple integral to single 
integrals we find, for example, 
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III Cz dx dy dz = II h(x, y) dx dy 

where 

h(x, y) = I Cz(X, y, z) dz = o. 

In this way (28) is established. 
Now consider the case where Q is a boundary point of R. We can 

assume that the normal of the surface 't at Q is not parallel to any of 
the three coordinate planes; this can always be brought about by a 
suitable rigid motion of space, which does not change the formula to 
be proved. In a neighborhood of Q of sufficiently small radius EQ, no 
normal will be parallel to a coordinate plane; that is, none of the 
direction cosines ~, T), S will vanish. If the neighborhood is sufficiently 
small, the portion of 't contained in it can be represented nonpar­
ametrically, expressing anyone of the three variables x, y, z as a 
function of the other two. For example, we can represent 't by an 
equation 

z = F(x, y) 

The set R in that neighborhood will be characterized either by z ~ 
F(x, y) or by z ~ F(x, y); (see p. 633). We assume, with no loss of 
generality, that R is characterized locally by z ~ F (x, y); the exterior 
normal of 't then has the direction cosines ~, T), S where S > o. For 
a, b, c vanishing outside the neighborhood, and using u = x and v = y 
as surface parameters, we have 

(29) Ii cs dA = II c dx dy, 

in agreement with our orientation. On the other hand, continuing c 
as 0, where not defined,! 

IThe corresponding function c. is then bounded and continous except in the set of 
points (x, y, z) near Q for which z = F(x, y). This latter set has Jordan measure 
zero. Hence c. (x, y, z) is Riemann integrable as a function of x, y, z, and also as a 
function of z alone for fixed x, y. (See footnote 2 on p. 407). Thus fromula (29), p. 531 
applies. 
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where 

{ <z, II) 
h(x, y) = _~ Cz (x, y, z) dz = c(x, y, F(x, y». 

Only points near Q contribute to the integrals, so that the function 
F(x, y) also has to be defined only for (x, y, z) near Q. Comparison 
with (29) establishes that 

Ii c~ dA = IIL CZ dx dy dz. 

Similarly, with y, z or x, z as parameters, it also follows that 

II a~ dA = IIi az dx dy dz, 
T R 

I bTl dA = IIi bll dx dy dz. 
T R 

This completes the proof of the divergence theorem (26). 

A.3 Stokes's Theorem 

We consider a simple surface 't', which need not be closed. Given 
a subset Cf of't' we define the relative interior of Cf (that is "relative" to 
the surface 't') as the set of points P of 't' with the property that in some 
suitable neighborhood of P all points of't' belong to Cf. Similarly, the 
relative boundary of Cf consists of the points P of 't' for which every 
neighborhood contains points of 't' belonging to Cf as well as points of 
't' not belonging to Cf, The set Cf is relatively open if each of its points 
is a relatively interior point. 

We now consider a closed and bounded subset s of 't' that shall 
consist of a relatively open set Cf and of its relative boundary, This 
relative boundary shall be a simple closed curve C, given parame­
trically in the form 

(30) x = a(t), y = ~(t), z = r(t), 

where a, ~, r are functions of period p with continuous first deriva­
tives, for which a'2 + W2 + r'2 > 0 for all t. We assume that the 
surface 't' is oriented and that ~, TI, ~ are the direction cosines of the 
positive normal on the oriented surface 't'*. We can then assign a 
special orientation to the curve C determined by the orientation of 't' 
and by the "side" of C on which Cf lies and, thus, make C into an 
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oriented curve C*. This "positive" orientation of C with respect to 
't* can be defined in two equivalent ways. In x, y, z-space the tangent 
vector of C corresponding to the direction of increasing t points in 
the direction given by the vector (a'(t), W(t), "('(t». The exterior 
product of this tangent vector and of the surface normal (~, 11, ~) is 
the vector with components 

(31) W~ - ,,('11, "('~ - a'~, a'l1 - W~. 

Its direction, which is perpendicular to that of the tangent of C and 
tangential to the surface, gives a distinguished normal direction for 
C relative to the surface. The orientation assigned to C shall now be 
that of increasing t if the vector (31) points away from s and that of 
decreasing t if it points into s. 

A different way of arriving at the same orientation uses the 
parameter representation for 't in the neighborhood of the point P: 

(32) x = f(u, v), y = g(u, v), z = h(u, v) 

where we assume that the parameters u, v are those defining the 
orientation of 't near P, that is, that the vector (A, B, C) defined by 
(2), p. 625 points in the direction of the distinguished normal of't 1. The 
curve C near P will be mapped onto an arc "( in the u, v-plane; the set s 
near P will be mapped into a set p in the u, v-plane. We can define 
the orientation of C as that corresponding to the positive orientation 
of"( with respect to the set p, in the sense imparted by the orientation. 
We could also say that the orientation of"( is that of increasing t 
if the vector with components dv/dt and -du/dt points away from p. 

Given now three functions a(x, y, z), b(x, y, z), c(x, y, z), which 
are defined and have continuous first derivatives in a neighborhood 
of the set s, Stokes's theorem is represented by the formula 

(33) fIs [(Cy - bz) ~ + (az - cz)l1 + (bz - ay)~] dA 

= L* (a dx + b dy + c dz). 

The proof of the theorem follows a pattern that should be familiar 
to the reader by now. By using a suitable partition of unity, we can 
restrict ourselves to the case where the functions a, b, c vanish out-

IThe parametric representation (32) of't is only local (i.e., valid near the point P). 
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side an arbitrarily small neighborhood of a point Q of s. Near this 
point the surface "C has a parametric representation of the form (32) for 
which the normal vector with components A, B, C given by (2), p.OOO 
has the direction fixed by the orientation of t*. We can write 

IL* [(Cy - bz) ~ + (az - cx)T) + (bx - ay)~] dA 

= II [(Cy - bz)A + (az - Cx)B + (bx - ay) C] du dv 
p 

= II (Au + Jlv) du dv, 
p 

where 

A = aXv + byv + CZv, -~ = axu + byu + czu, 

as is easily verified algebraically by substituting the expressions 
(2), p. 625 for A, B, C and using the chain rule of differentiation 

and so on.l 

If Q is now a point in the relative interior of s, then the functions 
A(u, v) and ~(u, v) vanish near the boundary y of p, and from the 
divergence theorem for two dimensions, we find 

If (Au + Jlv) du dv = O. 
p 

On the other hand, if Q is on the relative boundary of s the correspond­
ing point in the u, v-plane lies on y and A, ~ vanish outside a small 
neighborhood of that point. In this case again, the two-dimensional 
divergence theorem yields 

II (Au + Jlv) du dv = 1 (Ap + M) dy, 
p y 

where dy is the element of length and p, q are the direction cosines 
of the normal pointing away from p on the curve y. Describing yin 
the positive sense with respect to p, we have 

IFormula (63b), p. 321 is another version of this identity withL = adx + bdy + c dz, 
).. = L/dv, l1 = L/du. 
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L (')..p + ~) dr = 1. (').. dv - J.1du) 
'Y 'Y 

= L. (ax" + by" + cz,,) du + (ax,., + by" + CZv) dv 
'Y 

= fa. (a dx + b dy + c dz), 

which was to be proved. 

A.4 Surfaces and Surface Integrals in Euclidean Spaces of 
Higher Dimensions 

a. Elementary Surfaces 

Let EM be M-dimensional euclidean space referred to Cartesian 
coordinates Xl, ... , XM. We first define m-dimensional elementary 
surfaces" in EM as sets of points that can be represented "nicely" 
with the help of m parameters. We say a set S in EM is an m-dimen­
sional elementary surface if we can find M functions P(UI, .. . ., Um), 
F(UI, ... , Um), ... , fM(UI, ... , Um) defined in an open set U of 
UI, U2, • • ., Um-space with the following properties: 

1. The equations 

Xl = {1(UI, •.. , Um), ... , XM = fM(UI, .... , Um) 

define a 1-1 continuous mapping of U onto S whose inverse is also 
continuous. 

2. The functions f'(UI, ... , Um) have continuous first derivatives 
in U. 

3. For any point (UI, ... , Um) in U and for i = 1, ... , m, let 
A' = A' (UI, •.• , Um) be defined as the vector in EM with components 
(f"il , f"i2, ... , f,,~). We require that the m vectors A' be independ­
ent, that is, that 

(34) W = .Jr(Al, A2, ... , Am) > 0, 

where r is the Gram determinant defined by (81a), p. 194. 
One proves, as on p. 626, that if we represent S in the same man­

ner with the help of some other parameters VI, . . ., Vm, there is a 
1-1 continuously differentiable relation between corresponding 
parameter points (UI, •.• , Um) and (VI, .•. , Vm) with a nonvanishing 
Jacobian: 
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(35) d (Ul, ... , Um) =1= 0 
d (VI, ... , Vm) . 

If F(Xl, • . ., XM) is a function defined and continuous on the 
elementary surface S which has compact support on S (that is, F van­
ishes outside a closed and bounded subset of S), we define l the integral 
of Fover Sby 

(36) If . . . IF dS = II· . . J FW dUl • • • dUm. 
s u 

The integral defined in this manner does not depend2 on the par­
ticular parametric representation used for S. 

At a point Po of S we form the corresponding vectors At, give them 
initial point Po, and denote their final points by Pt, so that At = 
~ 

PoP,. The m + 1 points Po, PI, . . ., Pm lie in an m-dimensional 
plane Po, the tangent plane of S at Po. If Po is endowed with an orien­
tation (see p. 200), converting it into the oriented tangent plane 
Po* we have 

(37a) 

where e(po) has either the value +lor -1. We call the surface S 
oriented if at every point P of S we orient the tangent plane p* = 
p*(P) so that the orientation depends continuously on P; that is, for 

Q(p*) = Q(Bl, ... , Bm) 

with suitable vectors Bl, ... , Bm inp*, we require that3 

[Bl(P), ... , Bm(p); Bl(Po), ... , Bm(Po)] > 0 

lThe cube with edges oflength h parallel to the coordinate axes in Ul, . . ., um-space 
is mapped up to terms of higher order onto a parallepiped in Xl, . . ., XM-space 
spanned by the vectors hAl, ... , hAm and, hence, of m-dimensional volume 

";r(hAl, ... , hAM) = hmw. 

This makes it plausible that dS should be identified with the element of volume in 
Ul, . . ., um-space multiplied by the factor W. 
ITo prove this, we observe that under changes of parameters, W is multiplied by the 
absolute value of the Jacobian of the parameter transformation, for such a trans­
formation results in a linear substitution for the vectors A' that changes the volume 
Wof the parallelepiped spanned by the vectors only by a factor equal to the deter­
minant of the substitution (see p. 202). 
lIThe symbol in brackets stands for the determinant defined by (85a), p. 198. 
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for all points P on 8 sufficiently close to a point Po. Since the vectors 
A i vary continuously with the point P of contact, the orientation of p* 
varies continuously with the point of contact P if the factor e(P) 
defined by (37a) varies continuously with P on 8. Sincee can only 
have the values + 1 or -1, it follows, as on p. 579, that for a connected 
elementary surface there are only two possible orientations. In any 
case, the oriented surface 8* determines an orientation of the set 
Uin the parameter space Ul, ... , Um, namely, the one given by 

(37b) O(U) = e(P) O(Ul, ... , Urn) 

[see (40n, 0, p), p. 580-1]. Here, under a change of parameters from 
Ul, . . ., Urn to VI, . . ., Vm the quantity e is just multiplied by the 
sign of the Jacobian (35). 

b. Integral of a Differential form over an Oriented Elementary 
Surface 

Mter these preliminaries we are ready to define the integral of an 
mth-order differential form 0) over an m-dimensional oriented el­
ementary surface 8*. The form 0) is some linear combination of 
ordered products of m of the differentials dXl, . . ., dXM at a time, say, 

0) = a dXl dX2 • • • dXm + b dX2 dxa • • • dXm+1 + C dXl dxa • • • dXm 
+ . .. , 

where the coefficients a(xl,. . ., XM), b(Xl,. . ., xM), • • • are as­
sumed to be continuous and to have compact support on 8*.1 Let 
8* be represented parametrically with the help of parameters Ul, . . ., 
Urn that vary over the set U*, oriented in accordance with the orien­
tation of 8*. We then define 

f · . ·fO) = f· . . f 0) dUI ••• dUrn 
s* u* dUI ••• dUrn 

f J[ d(Xl, X2, . . ., Xm) + b d(X2, Xa, . . ., Xm+1) 
= • ~* • a d(Ul, U2, ... , Urn) d(Ul, U2, ... , Urn) 

+ . . . ] dUI • • • dUm. 

IThat is, a, b, c, . . . vanish outside some closed and bounded subset of S·. 
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Our notation1 has been arranged in such a way that the value of the 
integral does not depend on the particular parameter representation 
used for S*. 

c. Simple m-Dimensional Surfaces 

By "patching together" elementary surfaces, we can obtain simple 
surfaces just as in three-space. A set 't in M-dimensional euclidean 
space is called an m-dimensional simple surface if each point Po of 't 
has a neighborhood intersecting 't in an elementary m-dimensional 
surface. If each of the elementary surfaces occurring in the character­
ization of a simple surface is oriented and if the orientations of two 
of these elementary surfaces agree, whenever they overlap we say 
that the simple surface 't has been oriented. 

At each point of an m-dimensional oriented simple surface 't* we 
can choose m vectors Al(P), ... , Am(p) such that 

Q('t*) = Q[Al(P), ... , Am(p)] 

and 

[Al(P), ... , Am(p); Al(Q), ... , Am(Q)] > 0 

for Q sufficiently close to P. 
For subsets s of an m-dimensional simple surface 't we can define 

the relative boundary2 of s, that is, the boundary of s relative to the 
surface 'to The relative boundary of s consists of those points of s 
for which each neighborhood contains points of s and points of 't not 
belonging to s. The relative closure3 of s consists of s and of relative 
boundary points of s. The set s is called relatively open if it has no 

1 Here, for a continuous integrand F(Ul, . . ., Um), the integral of F over an oriented 
set U* with orientation 

Cl(U*) = £il(Ul, ... , Um) 
(e = ±1 and continuous) is defined by 

II • u: IF dUl· • • dUm = II· u J Fe dUl" • • dUm 

where the integral on the right side has the ordinary meaning that gives positive 
values for positive integrands. 
2This notion is needed when we want to discuss, say, the boundary curve of a two­
dimensional surface s in spaces of dimensions M> 2. The ("absolute") boundary of 
the surface s taken with respect to the whole space always contains the whole 
surface s. 
3The relative closure of s also is the set of all points of t that are limits of sequences 
formed from points of s. 
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points in common with its relative boundary and called relatively 
closed if it contains its relative boundary. 

Of particular interest is the case where s is a subset of the m­
dimensional simple surface t" whose relative boundary itself is an 
(m - l)-dimensional simple surface os. We assume furthermore that 
s is the relative closure of a relative open set. In the neighborhood of 
a point P of os we can always represent os and t" "nonparametrically" ; 
that is, we can use some of the Cartesian coordinates Xl, • . ., XM in 
space as independent variables; after a suitable renumbering of 
coordinates we then have for t" near P the parametric representation 

Xt = {,(Xl, . . ., Xm) (i = m + 1, ... , M), 

and on os we have an additional condition 

Xl = g(X2, . . ., Xm) 

with continuously differentiable functions {t and g. Moreover, the 
points of s are characterized near P by either the inequality 

or by 

g(X2, . . ., Xm) ~ Xl. 

If we deal with an oriented set s*, we can assign a unique orien­
tation to the relative boundary as. Let there be given m - 1 inde­
pendent vectors A2, ... , Am at a point P of os that are tangential 
to os and an additional vector Al that is tangential to t" but not to 
as at P and that points away from s*. We then have 

(38) O(s*) = eO(Al, ... , Am-I, Am) 

where e has either the value + 1 or -1. The boundary os* is then 
called oriented positively with respect to s* if 

(39) 

In particular, let m = M and t" be the whole M-dimensional space. 
Let s be the closure of an open I set and let the boundary of s be an 

lWe can omit here the word relative. 
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(m - I)-dimensional simple surface as. Assume that in a neighbor­
hood of a point P the surface as has the nonparametric representation 

Xl = g(X2, . . ., Xm). 

We can define a quantity ~ = ± 1 so that 

(40a) [Xl - g(X2, ... , Xm)]~ ~ 0 

for points (Xl,. ., Xm) in s near P. We choose for A2, ... , Am the 
vectors 

A2 = (gx2' 1,0, ... ,0,0), ... , Am = (gxm, 0, ... ,0,1) 

tangential to as, and for Al the vector 

Al = (~, 0, . . ., 0) 

that points away from s. Then in Xl, • . ., xm-coordinates 

det (AI, . Am-l Am) - ~ . . , , - u, 

so that [see (83a, b), p. 197] 

For the oriented set s* let e = ± 1 be defined near P by (38). Then, 

(40b) O(s*) = e~O(xI, . . ., Xm), 

while for the boundary as* oriented positively with respect to s*, 
relation (39) holds. Consequently, if X2, . . ., Xm are considered as 
parameters for the surface as* near P then the orientation of X2, . . ., 
xm-space determined by as* is 

(40c) 

[see (37b), p. 647]. Thus, for a set s* oriented positively with respect 
to Xl, . . ., xm-coordinates (e~ = 1), the positively oriented boundary 
has the orientation of the X2, . . ., Xm-System where s lies "below" the 
boundary, and the opposite one where s lies "above" the boundary 
(compare p. 634). 
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A.5 Integrals over Simple Surfaces, Gauss's Divergence Theo­
rem and the General Stokes Formula in Higher Dimensions 

We define integrals over simple surfaces by means of partitions of 
unity exactly as on p. 635. In particular, if 't* is an m-dimensional 
oriented simple surface and ro an mth-order differential form the 
integral 

J ... J ro 
't* 

is defined provided the coefficients of ro are continuous and vanish 
outside a bounded and closed l subset of't*. 

Now let 't be an m-dimensional simple surface in M-space and s* 
an oriented bounded and closed subset of't. We assume that s* is 
the closure of a relatively open set and that the relative boundary 
of s*, oriented positively with respect to s*, is an (m - I)-dimensional 
oriented simple surface as*. Let ro be a differential form of order 
m - 1 with coefficients that have continuous first derivatives. Stokes's 
general theorem asserts that 

(41) J ... J ro = f· .. Jdro. 
as* s* 

We shall first treat the special case where m = M, which is Gauss's 
divergence theorem in m dimensions. In this case, we take 't as the 
whole space, s* as an oriented set that is the closure of an open set 
bounded by an (m - I)-dimensional simple surface as* oriented 
positively with respect to s*. The form ro of degree m - 1 can be 
written as 

al dX2 dxa ••• dXm + a2 dxa dX4 ••• dXm dXI + ... 
+ am dXI dX2 •• ·dXm-l, 

where the at are functions of Xl, • • ., Xm. Then, 

(42a) dro = dal dX2 dxa ••• dXm + da2 dxa dX4 ••• dXm dXl + 
. . . + dam dXI dX2 • • • dXm-1 

INot just relativel, closed. 
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where 

oal Oa2 = - dXI dX2 0 0 0 dXm + - dX2 dX3 0 0 0 dXm dXI + 0 0 0 

OXI OX2 

= K dXI 0 0 0 dXm, 

+ oam dXm dXI 0 0 0 dXm-1 
OXm 

(42b) K = oal + (_1)m-1 oa2 + oa3 + (_1)m-1 oa4 + 0 0 0 

OXI OX2 OX3 OX4 

+ (_1)m-1 oam. 
OXm 

The proof of formula (41) for this case proceeds exactly as in the 
special case m = 3 discussed on pp. 639-642, and there is no point in 
recapitulating the individual steps. The only item to be checked is the 
sign in the final formula. The proof finally reduces to the case where 
a2, . . ., am vanish identically and al vanishes outside a neighbor­
hood of a point P of the surface 0"*. Here near P the surface is given 
by an equation 

Xl = g(X2, . . ., Xm) 

and s* is given by the inequality 

[Xl - g(X2, . . ., xmWi ~ 0, 

where 0 = ± 1. Let the number & = ± 1 be defined at P by 

Q(s*) = &OQ(XI, . • ., Xm) 

[see (40b)]. Then, by (42a, b), 

Jo 0 0 (dO) = &0 Jo 0 0 (oal dXI 000 dXm = &Jo 0 of aldx2 000 dXm. 
s* J- JaXI Zl-g 

On the other hand [see (40b) and (40c)], we also have 

J 0 0 0 J 0) = &fO 0 0 J al dX2 0 0 0 dXm. 
os* Zl=g 

This completes the proof of the divergence theorem. 
The general Stokes formula for arbitrary m < M is an immediate 
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consequence. Using partitions of unity, it is again sufficient to estab­
lish it for differential forms that vanish outside a neighborhood of 
a point P of the simple surface 't. In that neighborhood 't is identical 
with an elementary surface. Introducing local parameters Ul, . . ., 

Una to describe 't, the identity (41) goes over into the corresponding 
identity in m-dimensional parameter space, where now everything is 
reduced to Gauss's divergence theorem discussed above. In this way, 
the general Stokes theorem is established. 

This kind of argument makes it pretty clear that the fact that our 
m-dimensional surface 't is embedded in a euclidean space of dimen­
sion M is rather irrelevant. All that counts are the local parametric 
representations mapping 't onto a set in euclidean m-space. This sug­
gests that similar formulae will hold on more general m-dimensional 
abstract manifolds that near every point can be described by pa­
rameters. However, in order to avoid topological considerations be­
yond the scope of this book, we have restricted ourselves to simple 
surfaces in euclidean spaces. 



CHAPTER 

6 

Differential Equations 

We have already discussed special cases of differential equations 
in Volume I, Chapter 9. We cannot attempt to develop the general 
theory in detail within the scope of this book. In this chapter, how­
ever, starting with further examples from mechanics, we shall give 
at least a sketch of some of the principles of the subject, making use 
of the calculus of functions of several variables. 

6.1 The Differential Equations for the Motion of a Particle in 
Three Dimensions 

a. The Equations of Motion 

In Volume I (Chapt~r 4, pp. 397-423), we discussed the motion of 
a particle constrained to move in the x, y-plane. We now drop this 
restriction and consider a mass m that we suppose concentrated at 
a point with coordinates (x, y, z). The position vector from the origin 
to the particle has components x, y, z and we denote it by R. A motion 
of the particle will then be represented mathematically if we can 
express (x, y, z) or R as a function of the time t. If, as before, we denote 
differentiation with respect to the time t by a dot, then the vector 
Ii = (x, y, i) oflength 

(1) 

represents the velocity, and the vector it = (x, y, z), the acceleration 
of the particle. 

The fundamental tool for determining the motion is Newton's 
second law l , according to which the product of the acceleration vector 

l"Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum 

654 
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R and the mass m is equal to the force vector F = (x, y, z) acting on 
the particle: 

(2a) mR=F, 

or, in components, 

(2b) mx=X, my= Y, mz=Z. 

These relations! can be used to find the motion, provided we are given 
sufficient information about the force F. 

One example is the constant field of force representing gravity near 
the surface of the earth. IT we take gravity as acting in the direction 
of the negative z-axis, we know the force to be represented by the 
vector 

(3) F = (0, 0, - mg) = - mg(grad z), 

where g is the constant acceleration due to gravity (see Volume I, 
p.399). 

Another example is the field of force produced by a mass ~ con­
centrated at the origin of the coordinate system and attracting ac­
cording to Newton's law of gravitation (see Volume I, p. 413). IT r = 
.; x2 + y2 + Z2 = I R I is the distance of the particle (x, y, z) with mass 
m from the origin, the field of force is given by the expression 

(4a) F = ~m'Y(grad ~), 

where'Y is the universal gravitational constant. In this case, New­
ton's law of motion (2a) states that 

(4b) 

or, in components, 

.. x 
x = - ~'Y r3' 

.. 1 
R = ~'Y grad­

r 

.. z 
z = -~'Y3' r 

lineam rectam qua vis illa imprimitur" (i.e., "Change of motion is proportional to the 
force applied and takes place in the direction of the straight line in which the 
force acts"). 
IThe vector mR is called the momentum, so that Newton's law states that "force 
equals the rate of change of momentum". 
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In general, if F is a given field of force with components X(x, y, z), 
Y(x, y, z), Z(x, y, z), which are known functions of position, the 
equations of motion 

mx = X(x, y, z), my = Y(x, y, z), mz = Z(x, y, z) 

form a system of three differential equations for the three unknown 
functions x(t), y(t), z(t). The fundamental problem of the mechanics 
of a particle is to determine the path of the particle from the differ­
ential equations, when at the beginning of the motion, say at the time 
t = 0, the position of the particle [i.e., the coordinates Xo = x(0), yo = 
y(O), Zo = i(O)] and the initial velocity [i.e., the quantities xo = x(O), 
yo = y(O), io = i(O)] are given. The problem of finding three functions 
that satisfy these initial conditions and also satisfy the three differ­
ential equations for all values of t is known as the problem of the 
solution or integrationl of the system of differential equations. 

6. The Principle 01 Conservation 01 Energy 

The equations of motion (2a) for a particle have an important 
consequence obtained by forming the scalar product with the velocity 
vector R: 

(6a) mR • R = F • R = Xx + Yy + Zi. 

Here the left-hand side can be written "as 

(6b) d (1 " ") d 1 
dt "2 mR • R = dt 2 mv2, 

that is, as the time derivative of the kinetic energy tmv2 (energy of 
motion) of the particle. Integrating equation (6a) with respect to t 
from to to h, we find that the change in kinetic energy of the particle 
during the time interval from to to tl is given by 

1 1 rtl (dx dy dz) 
(6c) "2 mVl2 - "2 mv02 = Jto X dt + Y dt + Z dt dt 

= f (X dx + Y dy + Z dz), 

where the line integral is extended over the path described by the 
particle during the time from to to h. The integral 

lThe word is used here because the solution of differential equations may be re­
garded as a generalization of the process of ordinary integration. 
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J X dx + Y dy + Z dz 

taken over an oriented arc is called the work done by the force F = 
(X, Y, Z) in moving along this arc. 1 Hence, (6c) can be stated as the 
equation of energy: The gain in kinetic energy is equal to the work 
done by the force during the motion. 

In the important case where the field of force can be represented 
as the gradient of a function, say 

(7a) F = grad t), 

the integral of the differential form 

X dx + Y dy + Z dz = dt) 

is independent of the path and depends only on the initial and final 
points of the path (see p. 95). Following Helmholtz, a field of force 
of the type (7a) is called conservative.2 We introduce the potential 
energy U(energy of position) of the conservative force field by U = -~. 
The equations of motion then have the form 

mit = -grad U 

or, in components, 

(7b) mx = -Ux , my = -Uy , mz = -Uz• 

The potential energy as a function of position (x, y, z) is determined 
by the force field only within an arbitrary additive constant. For the 
work done by the conservative forces during the motion we find 

I X dx + Y dy + Z dz = - I dU = UO - Ul 

lSee Volume I, p. 420. Introducing the arc length s as parameter, the line integral 
takes the fonn 

I F.dRds 
ds 

and thus is equal to the limit of the sums of the component of force in the direction 
of motion multiplied with the distances. 
2"Conservative" by virtue of the theorem of the conservation of energy, which we 
shall deduce shortly. 
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where Uo and UI are the respective values of the potential energy for 
the positions of the particle at the times to and tl. Comparison with 
(6c) shows that 

Hence, the quantity t mv2 + U has the same value at any times to 
and h during the motion. Without going into the physical explana­
tion of these concepts, we have arrived at a form of the law of con­
servation of energy for a particle in a conservative field of force: 

The total energy-that is, the sum of the kinetic energy tmv2 and of 
the potential energy U-remains constant during the motion. 

In the examples in the next sections we show how this theorem 
can be used in the actual solution of the equations of motion. 

We notice that both the force fields defined by equations (3) and 
(4a) are conservative. The equations of motion under the uniform 
gravitational field (3) reduce to 

(8a) x = 0, y = 0, Z = -g. 

Their general solution trivially is given by 

Here, obviously, the constants (a2, b2, C2) give the initial position, 
and the constants (aI, bI, CI), the initial velocity of the particle at the 
time t = 0. The trajectory of a particle given parametrically in terms 
of the time t by equations (8b) is a parabola with axis parallel to the 
z-axis. Since the force field is - mg grad z, the potential energy is U = 
mgz + constant. Changes in U are proportional to changes in ele­
vation z. The law of conservation of energy thus takes the form 

(8c) 
1 1 2" mv2 + mgz = constant ="2 mvo2 + mgzo 

1 = "2m(aI2 + bI2 + C12) + mgc2. 

The velocity v is therefore least at the highest point of the trajectory. 
Instead of a freely falling particle, we can consider a particle 

moving under the influence of the gravitational field F = - mg grad z, 
where the particle is constrained to stay on a surface z = f(x, y) 
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by a reaction force perpendicular to the surface. l Since the reaction 
force has no component in the direction of motion, and hence does 
no work, the work done during the motion is that done by the con­
servative gravitational field. We arrive thus at the same equation 
of energy 

(9) 
1 2 mv2 + mgz = constant, 

as for the freely falling body, the only difference being that z = f(x, y) 
is now a prescribed function of the coordinates x, y. 

c. Equilibrium. Stability 

The equations of motion 

(lOa) mR = -grad U 

of a particle in a conservative force field enable us to discuss motions 
near a position of equilibrium. We say that the particle is in equi­
librium under the influence of the field of force if it remains at rest. 
In order that this may be the case, its velocity and its acceleration 
must both be 0 throughout the interval of time under consideration. 
The equations of motion (lOa) therefore yield 

(lOb) grad U = 0 

or 

(lOc) Ux = Uy = Uz = 0 

as the necessary conditions for equilibrium. Thus, a position of 
equilibrium (xo, Yo, zo) necessarily is a critical point of the potential 
energy U. Conversely, every critical point (xo, Yo, zo) of U is a possible 
position of rest, since obviously the constant vector 

R = (xo, Yo, zo) 

satisfies the equations (lOa). 
Of great practical importance is the notion of stability of equilibri­

um. We mean by stability that if we slightly disturb the state of 

IAn example is furnished by the spherical pendulum where a mass is constrained to 
move on a sphere. Compare with the motions on a curve discussed in Volume I, pp. 
405 if. 
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equilibrium, the whole resulting motion will differ only slightly from 
the state of rest. I More precisely, let rl and VI be any positive num­
bers. We can find corresponding to T1 and VI two positive numbers 
ro, Vo so small that if the particle is moved a distance not more than 
ro from its position of equilibrium and started off with a velocity not 
greater than Vo, then in its whole subsequent motion it will never 
reach a distance greater than T1 from the point of equilibrium and a 
velocity greater than VI. 

It is particulary interesting that the equilibrium is stable at a 
point at which the potential energy U has a strict relative minimum.2 

It is remarkable that we can prove this statement about stability 
without actually solving the equations of motion. For simplicity, we 
assume that the position of equilibrium under consideration is the 
origin, which we can always bring about by a translation. Moreover, 
since the potential energy is only determined within a constant, we 
can assume that U(O, 0, 0) = o. Since U has a strict relative minimum 
at the origin, we can find a positive number r < rl such that U> 0 
everywhere on the surface of the sphere of radius r about the origin 
and in its interior, except at the origin. The minimum value of U on 
the surface of the sphere is then a positive number a. Since U is con­
tinuous, we can find an ro < r such that U(x, y, z) < ta and U(x, y, z) 
< tmvl2 in the solid sphere of radius ro about the origin. Let, 
moreover, the positive number Vo be so small that tmvo2 < ta and 
tmvo2 < tmvl2. Then, for an initial position of the particle of distance 
less than ro from the origin and an initial velocity less than Vo, we 
have initially for the total energy the inequalities 

(lla) 
1 1 1 
- mv2 + U(x y z) < - mvo2 + - a < a 2 "= 2 2 

(llb) 

IThe notion can be illustrated best by the analogous two-dimensional problem of a 
particle moving under gravity but constrained to stay on a surface z = f(x. y). Here 
the positions of equilibrium are the critical points of the potential energy mgz = 
mgf(x, y), that is, the highest or lowest points or saddle points ofthe surfacez = f(x,y). 
The equilibrium is stable for a particle resting, say, under the influence of gravity 
at the lowest point of a spherical bowl, which is concave upward. On the other hand, 
a particle resting at the highest point of a spherical bowl that is concave downward 
is in unstable equilibrium; the slightest disturbance results in a large change of 
position. Since the small disturbances can always be assumed to be present in 
practice, unstable equilibrium is not maintained and unlikely to be observed. 
2At a strict minimum point the value of U is lower than at all other points of a suf­
ficiently small neighborhood. See page 325-6 for the definitions. 
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Since the energy is constant throughout the motion, we see from 
(lla) that at all subsequent times 

~ mv2 + U(x, y, z) < a, 

and consequently, 

U(x, y, z) < a. 

Since initially the particle is inside the sphere of radius r and since 
U ~ a on that sphere, the particle can never reach the surface of the 
sphere. This shows that the distance of the particle from the origin 
never exceeds the value r < n. Since also U ~ 0 inside the sphere 
of radius r, it follows from (llb) that 

1 1 
-mv2 < -mvl2 
2 2 

and, consequently, that the velocity of the particle never exceeds the 
value VI, as was to be proved. 

d. Small Oscillations About a Position of Equilibrium 

The motion of a particle about a position of stable equilibrium, 
corresponding to a minimum of the potential energy, can be approxi­
mated in a simple way. For the sake of brevity, we restrict ourselves 
to a motion in the x, y-plane and assume that there is no force acting 
in the direction of the z-axis. We also assume that the potential U (x, y) 
has a minimum at the origin and that U(O, 0) = O. Moreover, at the 
minimum point, U = Uo = O. We imagine U expanded by Taylor's 
theorem in the form 

1 
U = 2 (ax2 + 2bxy + cy2) + . . '. 

The function U will have a strict relative minimum at the origin if 
the quadractic form 

(12a) 1 
Q(x, y) = 2 (ax2 + 2bxy + cy2) 

is positive definite, 1 that is, that 

lSee page 347. The positive definite character of Q is sufficient, but not necessary, 
for a strict relative minimum. However, it is necessary that Q be neither indefinite 
nor negative definite. 
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(12b) a> 0, ac - b2 > o. 
We assume that conditions (12b) are satisfied and that in a sufficiently 
small neighborhood of the position of equilibrium at the origin the 
potential energy U can be replaced with sufficient accuracy by the 
quadratic form Q. 1 With these assumptions the equations of motion 
take the form 

mR = - grad Q 

or 

(12c)2 mx = -ax - by, my = -bx - cy. 

The equations (12c) can be integrated completely if we first rotate 
the x- and y-axes through a suitably chosen angle (J so that the new 
coordinate axes coincide with the principal axes of the ellipses Q = 
constant. We make the orthogonal substitution 

lNo serious attempt at justifying this "plausible" assumption can be made here. 
2We again can interpret these equations as approximating the equations of motion 
under gravity of a particle constrained to move on a surface z = f(x, y) near a mini­
mum point of that surface. The precise equations of motion here have the form 

x = - 'A.f:z;, Y = - 'A.fll, Z = - g + 'A., 
taking into account that the forces acting on a particle consist of the gravitational 
force (0, 0, - mg) and a reaction force ( -;I. f:z;, -;I. fll' ;I.) perpendicular to the surface and 
containing an indeterminate multiplier 'A.. We can eliminate A by observing that 

.. d 2f {'. I" - + { '2 + 2{ .• + I" ·2 Z = dt2 = :z;X + IllY ""'x :Z;IIXY I lillY 

and find the equations 

x = - Af." Y = - 'A.fll 

with 
'A. _ g + f.,:z;x2 + 2(,,"xy+ (1I11y2 

- 1+ (:z;2 + (112 

for the two unknown functions x, y. Iff has a minimum at the origin and is approxi­
mated there by the quadratic 

I 
(13a) (= 2" (ax2 + 213xy + ry2), 

we find near the origin, neglecting all nonlinear terms, the differential equations 

(13b) x = -g(ax + l3y), Y = -g(l3x + ry), 
which are of the form (12c). If, for example, the surface is the sphere 

z = L - ..; L2 - x2 _ y2 

(" spherical pendulum of length L"), we find 

(13c) x = -1 x, y = - 1fJ. 
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where (J is determined from the condition that 

1 1 
Q = - (ax2 + 2bxy + cy2) = - (a~2 + 'Y112) 

2 2 

with suitable positive constants a, 'Y 1. In the new rectangular 
coordinates ~, 11 the equations of motion (12c) transform into 

(14a) m~= -a~, mil = - 'Y11. 

As in Volume I (p. 404), both these equations can be integrated com­
pletely. We obtain 

(14b) 

where CI, C2, AI, A2 are constants of integration that enable us to 
make the motion satisfy any arbitrarily assigned initial conditions.2 

The form of the solution shows that the motion about a position 
of stable equilibrium results from the superposition of simple har­
monic oscillations in the two principal directions, the ~-direction and 
the 11-direction, the frequencies of these oscillations being given by 
./a/m and ./'Y/m. 3 A general discussion of these oscillations, which 
we shall not carry out here, shows that the resultant motion may take 
a great variety of forms. 

To give a few examples of these compound oscillations, we first 
consider the motion represented by the equations 

~ = sin (t + c), 11 = sin (t - c) 

By eliminating the time t, we obtain the equation 

lOne finds immediately that; is determined from the equation 

2b tan2;= --. 
a-c 

The positivity of n, 'Y follows from the positive definiteness of Q. 
2It is of interest to observe that in cases of unstable equilibrium, one or both of the 
constants n, 'Y might be negative. In that case, the trigonometric functions oc­
curing in (14b) would have to be replaced by hyperbolic ones and the coordinates 
1;, Tl do not both stay bounded for all t. 
3In the case (lac) of the spherical pendulum, the two frequencies have the same value 
../g/L. 
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(~ + 1')2 sin2 c + (~ - 1')2 cos2 C = 4 sin2 c cos2 C, 

which represents an ellipse. The two components of the oscillation 
have the same frequency 1 and the same amplitude 1, but a difference 
of phase 2c. If this difference of phase successively takes all values 
between 0 and 1t/2, the corresponding ellipse passes from the de­
generate straight-line case ~ - 1') = 0 to the circle ~2 + 1')2 = 1, and the 
oscillation passes from the so-called linear oscillation to the circular 
(cf. Figs. 6.~.3). 

, ! 

Figures 6.1-6.3 Oscillation diagrams. 

If, as a second example, we consider the motion represented by the 
equations 

~=sint, 1') = sin 2(t - c), 

where the frequencies are no longer equal, we obtain oscillation 
diagrams decidedly more complicated. In Figs. 6.4-6.6 these curves 
are given for the phase differences c = 0, c = 1t/8, and c = 1t/4, re­
spectively. In the first two cases, the particle moves continuously on 
a closed curve, but in the last case, it swings backward and forward 

Figures 6.4-6.6 Oscillation diagrams. 
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on an arc of the parabola 11 = 2~2 - 1. The curves obtained by the 
superposition of different simple harmonic oscillations in directions 
at right angles to one another are given the general name of Lis­
sajous figures. 

e. Planetary Motionl 

In the examples discussed above, the differential equations of the 
motion can immediately (or after a simple transformation) be written 
in such a way that each of the coordinates occurs in one differential 
equation only and can be determined by elementary integration. We 
shall now consider the most important case of a motion in which the 
equations of motion are no longer separable in this simple way, so that 
their integration involves a somewhat more difficult calculation. The 
problem in question is the deduction of Kepler's laws of planetary 
motion from Newton's law of attraction. We suppose that at the origin 
of the coordinate system there is a body of mass ~ (e.g., the sun) whose 
gravitational field of force per unit mass is given by the vector 

1 
y~ grad-. 

r 

What is the motion of a particle of mass m (a planet) under the in­
fluence of this field offorce? The equations of motion are (see p. 655) 

(15) 
.. x 
x = - y~ ,-3' 

•• y 
y = - y~ r3' 

.. z 
z = - Y~3' r 

In order to integrate them, we first state the theorem of conservation 
of energy (see p. 658) for the motion in the form 

~ m (x2 + j2 + i2) _ y~m = C, 

where C is constant throughout the motion and is determined by the 
initial conditions. 

From the equations of motion (15) we can deduce other equations 
in which only the components of the velocity, not the acceleration, 
are present. If we multiply the first equation of motion by y, the 
second by x, and then subtract, we obtain 

xy - xji = 0 or :t (xy - jx) = 0, 

IThe special case of circular motion has been discussed in Volume I (pp. 413 ff.). 
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whence, by integration, we have 

xj - yx = Cl. 

Similarly, from the remaining equation of motion we obtainl 

yz - zj = C2, ZX - xz = Ca. 

These equations enable us to simplify our problem very considera­
bly in a way that is highly plausible from the intuitive point of view. 
Without loss of generality, we can choose the coordinate system in 
such a way that at the beginning of the motion, that is, at t = 0, the 
particle lies in the x, y-plane and its velocity vector at that time also 
lies in that plane. Then z(O) = 0, and Z(O) = 0; and by substituting 
these values in the above equations and remembering that the right­
hand sides are constants, we obtain 

(16a) 

(16b) 

(16c) 

xj - yx = Cl = h, 

yz - zj = 0, 

zx - xz = O. 

From these equations we conclude in the first place that the whole 
motion takes place in the plane z = O. Since we naturally exclude the 
possibility of an initial collision between the sun and planet, we as­
sume that initially the three coordinates (x, y, z) do not vanish 

lWe can also arrive at these three equations using vector notation if we form the 
vector product of both sides of the equation of motion and the position vector R. 
Since the force vector is in the same direction as the position vector, we obtain zero 
on the right, while the expression R x R on the left is the derivative of the vector 
R x R with respect to the time. It therefore follows that this vector R x R = C has 
a value constant in time; this is exactly what is stated by the coordinate equations 
above. 

As we see, this equation does not depend on our special problem but holds in 
general for every motion in which the force has the same direction as the position 
vector. 

The vector R x R is called the moment of velocity and the vector mR x R the mo­
ment of momentum of the motion. From the geometrical meaning of the vector pro­
duct we easily obtain the following intuitive interpretation of the relation just given 
(cf. the subsequent discussions in the text). If we project the moving particle on to 
the coordinate planes and in each coordinate plane consider the area that the radius 
vector from the origin to the point of projection sweeps over in time t, this area is 
proportional to the time (theorem of areas). 
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simultaneously, so that at the time t = 0 at which z(O) = 0, we have, 
say, x(O) =1= O. Now, from (16c), it follows that 

~t ( =) = - zx ~ ix = O. 

Therefore, z = ax, where a is a constant. If we put t = 0 here, then 
from the equations z(O) = 0 and x(O) =1= 0, it follows that a = 0, so 
that z is always O. 

We therefore reduce our problem to integration of the two dif­
ferential equations 

(17a) 1 ('2+'2) 'Y~m C 2 mx Y --r-= , 

(17b) xy - yx = h. 

We next use the equations x = r cos G, y = r sin G to transform the 
rectangular coordinates (x, y) into the polar coordinates (r, G), which 
are now to be determined as functions of t. Since 

we have the two differential equations 

(17c) 

(17d) 

1 . . 'Y~m - m (r2 + r2(2) - - = C 
2 r' 

for the polar coordinates r, e. The first of these equations is the 
theorem of the conservation of energy, while the second expresses 
Kepler's law of areas. In fact (cf. Volume I, pp. 371-372) the expres­
sion tr2e is the derivative with respect to the time of the area swept 
out in time t by the radius vector from the origin to the particle. This 
is found to be constant, or, as Kepler expressed it, the radius vector 
describes equal areas in equal times. 

If the area constant h is zero, e must vanish; that is, G must remain 
constant, so that the motion must take place on a straight line 
through the origin. We exclude this special case and expressly assume 
that h =1= O. 



668 Introduction to Calculus and Analysis. Vol. II 

In order to find the geometrical form of the orbit, we shall no 
longer describe it parametrically in terms of the timel but consider 
the angle 9 as a function of r or r as a function of 9, and from our two 
equations we calculate the derivative dr/d9 as a function of r. 

If we substitute the value e = h/r2 from the area equation in the 
energy equation and recall the equation 

. dr dr· 
r = dt = d9 9, 

we at once obtain the differential equation of the orbit in the form 

m{ h2(dr\2 + h2 } _ YJ,lm = C 
2 r4 d91 r2 r 

or 

(17e) 

To simplify the later calculations, we make the substitution 

1 
r= -

u 

and introduce the following abbreviations: 

The differential equation (17e) then becomes 

and this can be integrated immediately. We have 

9-90= , f du 
~(82/p2 - (u - 1/p)2) 

lThe course of the motion as a function of the time can be determined subsequently 
by means of the equation 

I8 r2 dO = h(t - to), 
80 

in which we suppose that r is known as a function of 0 (cf. p. 670). 
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or, if for the moment we introduce u - l/p = v as a new variable, 

For the integral [by Volume I, p. 270, formula (24)] we obtain the 
value arc sin (VP/E) and thus find the equation ofthe orbit in the form 

1.. _ 1.. = v = ~ sin (9 - (0). 
r p p 

The angle 90 can be chosen arbitrarily, since it is immaterial from 
which fixed line the angle 9 is measured. If we take 90 = 1t/2-that 
is, if we let v = 0 correspond to the value 9 = 1t/2-we finally obtain 
the equation of the orbit in the form 

- p 
r - 1 - E cos 9· 

This is the familiar equation in polar coordinates of a conic having 
one focus at the origin.1 

Our result therefore gives Kepler's law: 

The planets move in conics with the sun at one focus. 
It is interesting to relate the constants of integration 

to the initial motion. The quantity p is known as the semi-latus rec­
tum or parameter of the conic; in the case of the ellipse and the 
hyperbola it is connected with the semiaxes a and b by the simple 
relation 

b2 
p-­- a· 

The square of the eccentricity, E2, determines the character of the 
conic; it is an ellipse, a parabola, or a hyperbola, according to whether 
E2 is less than, equal to, or greater than 1. 

From the relation 

IThis is seen easily by transforming the equation to rectangular coordinates: 

(x - &a)2 + 1 ~2 &2 = a2 (a = 1 !. &2). 
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we see at once that the three different possiblities can also be stated 
in terms of the energy constant C; the orbit is an ellipse, a parabola, 
or a hyperbola, according to whether C is less than, equal to, or 
greater than zero. 

If we suppose that at time t = 0 the particle is at the point Ro in 
the field of force and is moving with initial velocity Ro, then the 
relation 

1 'YJ1m C= -mv02---
2 ro 

gives the supnsmg fact that the character of the orbit-ellipse, 
parabola, or hyperbola-does not depend on the direction of the initial 
velocity at all, but only on its absolute value Vo. 

Kepler's third law is a simple consequence of the other two: 

For a planet in elliptic orbit the square of the period bears a con­
stant ratio to the cube of the major semiaxis. the ratio depending on 
the field of force only and not on the particular planet. 

If we denote the period T and the major semiaxis by a, we should 
then have 

T2 - = constant 
a3 ' 

where the constant on the right is independent of the particular prob­
lem and depends only on the magnitude of the attracting mass and on 
the gravitational constant. 

To prove this we use the theorem of areas (17d) in the integrated 
form 

o 
f r2 dO = h(t - to), 

Joo 

which defines the motion as a function of the time. If we take the 
integral over the interval from 0 to 21t, we obtain on the left twice 
the area of the orbital ellipse, and that, by previous results, is 21tab; 
on the right the time difference t = to is replaced by the period T. 
Therefore, 

21tab = hT or 
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We already know that h2 is connected with the a and b of the orbit 
by the relation h21'Y~ = p = b2/a. If we replace h2 in the above 
equations by (b2/a) 'Y~, it follows at once that 

which exactly expresses Kepler's third law. 

Exercises 6.le 

1. Treat in detail the motion of an orbiting body in a straight line trajectory 
[h = 0 in equation (17d»). 

2. Prove that as t -+00 the velocity v of a planet tends to 0 if its orbit 
is a parabola and to a positive limit if it is a hyperbola. 

3. Prove that a body attracted toward a center 0 by a force of magnitude 
mr moves on an ellipse with center O. 

4. Prove that the orbit of a body repelled by a force of magnitude f(r), where 
f is a given function, from a center 0 is given in polar cordinates (r, 6) by 

Jr dr 
6 = r2..j2clh2 + 2sr f(r) drlh3 - l/r2• 

5. Prove that the equation of the orbit of a body repelled with a force 
1L1"s from a center 0 is 

1. = f :2~ cos (k6 + e) for IL < h2 

r t h~k cosh (k6 + e) for IL > h2 

if 

and e is a constant of integration. 
6. A planet is moving on an ellipse, and w = w(t) denotes the angle pI MP., 

where pI is the point on the auxiliary circle corresponding to P, the posi· 
tion of the planet at that time t; P. its position at the time t. when it is 
nearest to the sun S; and M the center of the ellipse. Prove that wand 
t are connected by Kepler's equation 

h(t - t.) = ab(w - e sin w). 

7. Prove that in a central field of force the attraction p per unit mass is 
given by 

_ hg dq 
p - q3 dr' 
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where q is the distance of the tangent of the orbit from the pole and h 
the area constant (p. 667). Hence prove that the cardioid r = a(l + cos 6) 
can be described under an attraction to the pole equal to fLr-4 per unit 
mass. 

8. A particle of unit mass moves under the action of two forces, of which the 
first is always toward the origin and is equal to A2 times the distance of 
the particle from that point, while the second is always at right angles to 
the path of the particle and is equal to 2fL times its velocity. Prove that if 
the particle is projected from the origin along the axis of x with velocity 
U, its coordinates at any subsequent time tare 

U I--
X = --== sin (VA2 + fL2 t) cos fLt 

JA2 + fL2 ' 

Y = J 2 U 2 sin (JA2 + fL2 t) sin fLt. 
A + fL 

9. Let there be n fixed particles in a plane, all attracting with a central force 
of magnitude l/r. Prove that there are not more than n - 1 positions of 
equilibrium for a particle in the field. 

Calculate these positions for the case of four attracting particles with 
coordinates (a, b), (a, - b), (- a, b), (- a, - b), where a> b > o. 

f. Boundary Value Problems. The Loaded Cable and the Loaded Beam. 

In the problems of mechanics and the other examples previously 
discussed, we selected from the whole family of functions satisfying 
the differential equation a particular one by means of so-called initial 
conditions; that is, we chose the constants of integration in such a 
way that the solution and, in certain cases, some of its derivatives 
assume preassigned values at a definite point. In many applications 
we are concerned neither with finding the general solution nor with 
solving definite initial-value problems but with solving a so-called 
boundary value problem. In a boundary value problem we seek a 
solution that satisfies preassigned conditions at several points and 
satisfies the differential equation in the intervals between those 
points. Here we shall discuss a few typical examples without going 
into the general theory of such boundary value problems. 

Example 1-The Differential Equation of a Loaded Cable 

In a vertical x, y-plane-in which the y-axis is vertical-we suppose 
that a cable with (constant) horizontal component of tension S is 
stretched from the origin to the point x = a, y = b, (cf. Fig. 6.7). The 
cable is acted on by a load whose density per unit length of horizontal 
projection is given by a sectionally continuous function p(x). Then 
the sag y(x) of the cable, that is, the y-coordinate, is given by the 
differential equation 
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% 

Figure 6.7 Loaded cable. 

y"(x) = g(x) g(x) = ~. 

The shape of the cable will then be given by that solution y(x) of the 
differential equation that satisfies the conditions y(O) = 0, y(a) = b. 
The solution of this boundary value problem can be written down at 
once, since the general solution of the homogeneous equation y" = 0 
is the linear function Co + CIX, and the solution of the nonhomo­
geneous equation that, with its first derivative, vanishes at the origin 
is given by the integral fox g@(x - ~) d~ [see (42), p. 78]. In the 
general solution 

y(x) = Co + CIX + LX g(~)(x - ~) d~ 

the condition y(O) = 0 at once gives Co = 0, and then the condition 
y(a) = b determines c, through the quation 

In practice, we must often deal with a more complicated form 
of this boundary value problem in which the cable is subject not 
only to the continuously distributed load but also to concentrated 
loads, that is, loads that are concentrated at a definite point of the 
cable, say, at the point x = Xo. Such concentrated loads we shall con­
sider as ideal limiting cases arising as E ~ 0 from a loading p(x) 
that acts only in the interval Xo - E to Xo + E and for which 
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In this, the total loading P remains constant during the passage 
to the limit e ~ 0; the number P is then called the concentrated load 
acting at the point xo.1 By integrating both sides of the differential 
equation y" = p(x)/S over the interval from x - e to x + e before 
making the passage to the limit e ~ 0, we see that the equation 
y'(xo + e) - y'(xo - e) = PIS holds. If we now perform the passage 
to the limit e ~ 0, we obtain the result that a concentrated load P 
acting at the point Xo corresponds to a jump of the derivative y'(x) 
by an amount PIS at the point Xo. 

The following example shows how the presence of a concentrated 
load modifies the boundary value problem. We suppose that the 
cable is stretched between the points x = 0, y = 0 and x = 1, y = 1 
and that the only load is a concentrated load of magnitude P acting 
at the midpoint x = t. This physical problem corresponds to the fol­
lowing mathematical problem: to find a continuous function y(x) 
that satisfies the differential equation y" = 0 everywhere in the in­
terval 0 ;:;;; x ;:;;; 1 except at the point Xo = t; that takes the values 
y(O) = 0, y(1) = 1 on the boundary; and whose derivative has a jump 
of the amount PIS at the point Xo. In order to find this solution, we 
express it in the following way: 

y(x) = ax + b (0;:;;; x;:;;; t) 

and 

y(x) = c(1 - x) + d (t ;:;;; x;:;;; 1). 

The condition y(O) = 0, y(1) = 1 gives b = 0, d = 1. From the con­
dition that both parts of the function shall give the same value at the 
point x = t, we find that 

lOne often thinks of the concentrated load as described purely formally by a dis­
tributed load 

p(x) = P o(x - xo), 

where o(x) stands for a generalized function (the so-called Dirac function) for which 

o(x) = 0 for x -=1= 0 and L: o(x) dx = 1, 

with no value assigned to 0(0). No finite value of 0(0) would be compatible with the 
other conditions imposed. 



Differential Equations 675 

Finally, the requirement that the derivative y shall increase by the 
amount PIS on passing the point t gives the condition 

P 
-c - a = S. 

These conditions yield 
p 

a = 1 - 2S' b = 0, 
P c = -1--
2S' d = 1, 

and our solution has been found. Moreover, no other solution with 
the same properties exists. 

Example 2-The Loaded Beaml 

The treatment of a loaded beam is very similar (cf. Fig. 6.8). Let us 
suppose that in its position of rest the beam coincides with the 

Figure 6.8 Loaded beam. 

x-axis between the abscissas x = 0 and x = a. Then it is found that the 
sag (vertical displacement) y(x) due to a force acting vertically in the 
y-direction is given by the linear differential equation of the fourth 
order 

(19a) y"" = q>(x), 

where the right-hand side q>(x) is p(x)IEI, p(x) being the density of 
loading, E the modulus of elasticity of the material of the beam (E is 
the stress divided by the elongation), and I the moment of inertia of 
the cross section of the beam about a horizontal line through the 
center of mass of the cross section. 

The general solution of this differential equation can at once be 
written [(42), p. 78] in the form 

y(x) = Co + ClX + C2X2 + C3X3 + LXq>(~) (x ;! ~)3 d~, 
lFor the theory of loaded beams, cf. v. Karman and Biot, Mathematical Methods in 
Engineering. 
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where Co, Cl, C2, C3 are arbitrary constant.s of integration. The real 
problem, however, is not that of finding this general solution but 
of finding a particular solution, that is, of determining the constants 
of integration in such a way that certain definite boundary conditions 
are satisfied. If for example, the beam is clamped at the ends, the 
boundary conditions 

y(O) = 0, y(a) = 0, y'(O) = 0, y'(a) = 0 

hold. It then follows at once that Co = Cl = 0, and the constants C2 

and C3 are to be determined from the equations 

C2a2 + c3a3 + La cp(~) (a ;! ~)3 d~ = 0, 

2c2a + 3C3a2 + La cp(~) (a ;! ~)2 d~ = o. 

For beams, too, the problem of concentrated loads is important. 
We again think of the concentrated load acting at the point x = Xo 
as arising from a loading p(x), distributed continuously over the 
interval Xo - E, to Xo + E, for which f::~: p(~) d~ = P; we again 
let E approach zero and at the same time let p(x) increase in such 
a way that the value of P remains constant during the passage to the 
limit E -+ o. P is then the value of the concentrated load at x = Xo. 
Just as in the example above, we integrate both sides of the differen­
tial equation (19a) over the interval from x - E to x + E and then 
pass to the limit as E -+ o. It is found that the third derivative of the 
solution y(x) must have a jump at the point x = Xo, amounting to 

(19b) 
P 

y'" (xo + 0) - y'" (xo - 0) = EI . 

Here y(xo + 0) means the limit of y(xo + h) as h tends to 0 through 
positive values, y(xo - 0) being the corresponding limit from the 
left. 

Thus, the following mathematical problem arises: we attempt to 
find a solution of y"ll = 0 that, together with its first and second 
derivatives, is continuous, for which y(O) = y(l) = y'(O) = y'(l) = 0, 
and whose third derivative has a jump of the amount PIEI at the 
point x = Xo and elsewhere is continuous. 

If the beam is fixed at a point x = Xo (cf. Fig. 6.9)-that is, if at this 
point the sag has the fixed preassigned value y = o-we can think of 
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-t--
t 

Figure 6.9 Sag of beam supported in the middle. 

this constraint as being achieved by means of a concentrated load 
acting at that point. By the mechanical principle that action is 
equal to reaction, the value of this concentrated load will be equal 
to the force that the fixed beam exerts on its support. The magnitude 
P of this force is then given at once by the formula [see (19b)] 

P = EI {y"' (xo + 0) - y"' (xo -O)}, 

where y(x) satisfies the differential equation y"" = pIEI everywhere 
in the interval 0 ~ x ~ 1 except at the point x = Xo and in addition 
also satisfies the conditions y(O) = y(l) = y'(O) = y'(l) = 0, y(xo) = 0, 
and y, y', and y" are also continuous at x = Xo. 

In order to illustrate these ideas, we consider a beam that ex­
tends from the point x = 0 to the point x = 1, is clamped at its end 
points x = 0 and x = 1, carries a uniform load of density p(x) = 1, 
and is supported at the point x = t (cf. Fig. 6.9). For the sake of 
simplicity we assume that EI = 1, so that the beam satisfies the 
differential equation 

y"" = 1 

everywhere, except at the point x = t. 
As the formula shows, the general solution of the differential 

equation is a polynomial of the fourth degree in x, the coefficient of 
X4 being 1/4!. The solution will be expressed by a polynomial of this 
type in each of the two half-intervals. For the first half-interval we 
write the polynomial in the form 

in the second half-interval, in the form 

1 
y = Co + Cl(X - 1) + C2(X - 1)2 + C3(X - 1)3 + 4! (x - 1)4. 
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Since the beam is clamped at the ends x = 0 and x = 1, it follows 
that 

y(O) = y(l) = y'(O) = y'(l) = 0, 

whence we obtain bo = bl = Co = CI = O. In addition, y(x), y'(x), 
y"(x) must be continuous at the point x = t; that is, the values of 
y( t), y'( t), y"( t) calculated from the two polynomials must be the 
same, and the value of y( t) must be o. This gives 

1 1 1 1 1 1 
"4 b2 + 8" ba + 384 = "4 C2 - 8 Ca + 384 = 0, 

3 1 3 1 
b2 + "4 ba + 48 = - C2 + "4 Ca - 48' 

2b2 + 3ba = 2C2 - 3ca. 

From this we obtain the following values for b2, ba, C2, ca: 

and the force that must act on the beam at the point x = t in order 
that no sag may occur at that point is given by 

y'" (; + 0) - y'" (; - 0) = (6ca - ;) - (6ba + ;) = - ;. 

6.2 The General Linear Differential Equation of the First Order 

a. Separation of Variables 

A differential equation is said to be of the first order if it involves, 
besides x and y(x) , the first derivative of the function y(x) but no 
higher derivative. The most general equation of this type is 

(20a) F(x, y, y') = 0, 

where Fir a given function of its three arguments x, y, y'. We can 
assume that in a certain region of the x, y-plane the differential 
equation (20a) can be solved uniquely for y' and thus expressed in 
the form 

(20b) y' = f(x, y). 
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Explicit formulae for the general solution of a differential equa­
tion (20b) can only be found in special cases.1 The simplest situation 
arises when the function f(x, y) is the quotient of a function of x 
alone and of a function of y alone, that is, when the differential 
equation has the form 

(21a) 
, a(x) 

y = ~(y)' 

In this case we can "separate" the variables x, y, writing the equation 
symbolically in the form 

(21b) ~(y) dy = a(x) dx. 

We now introduce the two indefinite integrals 

(21c) A(x) = J a(x) dx, B(y) = J ~(y) dy 

obtained by ordinary quadratures. Then by (21a) 

dB(y) = dB(y) dy = ~(y) y' = a(x) = dA(x) . 
dx dy dx dx 

It follows that for every solution of (21a) 

(21d) B(y) - A(x) = c, 

where c is a constant (depending on the solution).2 Equation (21d) 
may now be solved for y, assigning any value to c, and the required 
solution of (21a) is thus obtained by quadratures. 

As a matter of fact, we already have used this method of separation 
of variables in a variety of problems leading to differential equations 
(see Volume I, p. 406; Volume II, p. 668). Another type of differential 
equation that can be reduced to the form (21a) is the so-called homo­
geneous equation 

(21e) Y'=f(~). 

lWe shall, however, discuss on p. 704 a general approximation scheme giving the 
solution of (20b) in all cases, where the function f has continuous first derivatives. 
2Instead of using the chain rule in the derivation of (21d), we could also argue that by 
(21b, c) 

d(B - A) = dB - dA = P dy - a dx = 0 
and, hence, that B - A is constant. 
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Introducing the new unknown function z = y/x, we arrive at a 
differential equation 

z' - xy' - y = f(z) - z 
- x2 X 

which is separable. The general solution is then found from the 
relation 

(21f) J dz Jdx 
f(z) - z = X + c = c + log I x I, 

where c is a constant. We use this equation to express z as a function 
of x and put y = xz to obtain the required solution. 

As an example, consider the equation 

2 
y' _.L - x2 

corresponding to f(z) = Z2. Here relation (21f) becomes 

J dz z-l 
Z2 _ z = log-z- = c + log Ixl. 

Hence, 

where k = ± ell is a constant. 

b. The Linear First-Order Equation 

A differential equation is called linear if it represents a linear 
relation between the unknown function y and its derivatives with 
coefficients that are given functions of x. Thus, the general first-order 
linear differential equation has the form 

(22a) y' + a(x) y = b(x) 

where a(x) and b(x) are given. 
We first suppose that b = O. Then the differential equation is 

separable and can be written as 

dy = -a(x) dx. 
y 
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Hence, 

log Iyl = - f a(x) dx + constant. 

If we denote by A(x) any indefinite integral of the function a(x), 
that is, any function with derivative a(x), we find that 

(22b) y = ce-A(x) 

where c is an arbitrary constant of integration. This formula gives 
a solution, even when c = 0, namely, y = o. 

If b(x) is not zero we seek a solution of the form 

(22c) y = u(x)e-A(x) 

where A is defined as before and u(x) must be suitably determined. l 

One finds by substitution into (22a) that 

y' + ay = u'e-A - uA'e-A + aue-A = u'e-A = b. 

Hence, the unknown function u must have the derivative 

u' = b(x) eA(x). 

Thus, 

u = c + f b(x) eA(x) dx, 

where c is a constant. We find for the solution y of (22a) the 
expression 

(22d) y = e-A(x) (c + f b(x) eA(x) dx), 

where c is any constant and 

(22e) A(x) = f a(x) dx. 

Since every function y can be written in the form (22c) with a suitable 
function u, we see that formula (22d) represents the most general 

IThis device of replacing the constant c in (22b) by the variable u is known as varia­
tion of parameters. 
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solution of (22a). Thus, .the general solution is formed from known 
functions merely by exponentiation and the ordinary process of in­
tegration. The solution really contains only one arbitrary constant, 
since any different choice of the constants of integration in A(x) or 
in the indefinite integral occuring in (22d) can be compensated for by 
a suitable change in c. 

For example, in the case of the differential equation 

y' + xy = -x 

we have 

A(x) = f x dx = ~ x2 

f b(x)eA(Z) dx = - f xez2/2 dx = - eZ2/2 

and, hence, obtain the solution 

Exercises 6.2 

1. Integrate the following equations by separation of the variables: 

(a) (1 + y2)X dx + (1 + x2) dy = 0 

(b) yeZz dx - (1 + e2Z) dy = O. 

2. Solve the follwing homogenous equations: 

(a) y2 dx + x(x - y) dy = 0 

(b) xy dx + (x2 + y2) dy = 0 

(c) x2 - y2 + 2xyy' = 0 

(d) (x + y) dx + (y - x) dy = 0 

(e) (x2 + xy)y' = X';X2 - y2 + xy + y2. 

3. Show that a differential equation of the form 

- [ax+by+c ] 
y' - tP alX + blY + CI 

(a, aI, ... constant) 

can be reduced to a homogeneous equation as follows. If abl - alb =1= 0, 
we take a new unknown function and a new independent variable 

"l = ax + by + c, ~ = alX + blY + CI. 

If abl - alb = 0, we need only change the unknown function by putting 
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ll=ax+by 

to reduce the equation to a new equation in which the variables are 
separated. 

4. Apply the method of the previous exercise to 

(a) (2x + 4y + 3)y' = 2y + x + 1 

(b) (3y - 7x + 3)y' = 3y - 7x + 7. 

5. Integrate the following linear differential equations ofthe first order: 

(a) y' + y cos x = cos x sin x 

(b) y' - ~ = ex(x + l)n 
x+1 

(c) x(x - l)y' + (1 - 2x)y + x2 = 0 

(d) y' - ~ y = X4 
X 

1 
(e) (1 + x2)y' + xy = 1 + x 2· 

6. Integrate the equation 

1 
y' +y2 =2. x 

7. A Bernoulli equation has the form 

y' + f(x)y = g(x)yn. 

Show that such an equation is made separable by the substitution 

y = v exp f - ff(x) dX} = vF (x). 

8. Integrate the equation 

xy' + y(l - xy) = o. 
9. By any method available, solve 

y' + y sin x + yn sin 2x = o. 

6.3 Linear Differential Equations of Higher Order 

a. Principle of Superposition. General Solutions 

Many of the examples previously discussed belong to the general 
class of linear differential equations. A differential equation in the 
unknown function u(x) is said to be linear of the nth order if it has 
the form 

(23) u(n)(x) + alU(n-l)(x) + . . . + anU(X) = ~(x), 
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where aI, a2, a3, . . ., an are given functions of the independent 
variable x, as is also the right-hand side ~(x). We denote the ex­
pression on the left side by L [u] (where L stands for "linear differ­
ential operator"). 

If ~(x) is identically zero in the interval under consideration, we 
call the equation homogeneous .. otherwise, we call it nonhomogeneous. 
We see at once (as in the special case of the linear differential 
equation of the second order with constant coefficients, discussed 
in Volume I, p. 640) that the following principle of superposition 
holds: 

If UI. U2 are any two solutions of the homogeneous equation, every 
linear combination of them, u = CIUI + C2U2, where the coefficients CI, 

C2 are constants, is also a solution. 
If we know a single solution v(x) of the nonhomogeneous equation 

L[u] = ~(x), we can obtain all other such solutions by adding to 
v(x) any solution of the homogeneous equation. 

For n = 2 and constant coefficients aI, a2 we proved in Volume 
I (p. 636) that every solution of the homogeneous equation can be 
expressed in terms of two suitably chosen solutions UI, U2 in the form 
CIUI + C2U2. An analogous theorem holds for any homogeneous 
differential equation with arbitrary continuous coefficients. 

To begin with, we explain what we mean by saying that functions 
are linearly dependent or linearly independent, by means of the 
following definition: n functions ~1(X), ~2(X), ... , ~n(X) are linearly 
dependent if n constants CI, . . ., Cn that do' not all vanish exist, 
such that the equation 

CI~I(X) + C2~2(X) + ... + Cn~n(X) = 0 

holds identically, that is, for all values of x in the interval under 
consideration. If, say, Cn =1= 0, then ~n (x) may be expressed in the form 

~n(X) = al~l(x) + . . . an-l ~n-I(X), 

and ~n is said to be linearly dependent on the other functions. If no 
linear relation of the form 

CI~I(X) + C2~2(X) + ... + Cn~n(X) = 0 

exists, the n functions ~'1 (x) are said to be linearly independent. I 

lLinear dependence of functions 9(X) is defined in exactly the same way as depend­
ence of vectors (see p. 137). As a matter of fact, it often is convenient to visualize 
a function 9(X) defined in an interval I of the x-axis as a "vector 9 with infinitely 
many components," one component of value 9(X) corresponding to each x in 1. 
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Example 1 

The functions 1, x, X2, ••• , xn-l are linearly independent. Other­
wise, constants Co, Cl, • • ., Cn-l would have to exist such that the 
polynomial 

Co + Cl X + ... + Cn-l xn-l 

vanishes for all values of x in a certain interval. This, however, is 
impossible unless all the coefficients of the polynomial are zero. 

Example 2 

The functions eaiZ are linearly independent, provided al < a2 < 
... < an. 

PROOF. We assume that this statement has been proved true for 
(n - 1) such exponential functions. Then if 

is an identity in x, we divide by eanZ and, putting a, - an = be, 
obtain 

If we differentiate this equation with respect to x, the constant Cn 

disappears and we have an equation that implies that the (n - 1) 
functions ebl z, eb2z , ..• , ebn-IZ are linearly dependent, from which it 
follows that ealz, ea2z , •.• , ean-IZ are linearly dependent, contrary 
to our original assumption. Hence, there cannot be a linear relation 
between the n original functions either. 

Example 3 

The functions sin x, sin 2x, sin 3x, . . ., sin nx are linearly in­
dependent in the interval ° ~ x ~ 1t. We leave the reader to prove 
this in Exercise 1, p. 690, using the fact that 

f +1t {o if m =1= n, 
sin mx sin nx dx = 

-It 1t if m = n, 

(cf. Volume I, p. 274). 

If we assume that the functions tPi (x) have continuous derivatives 
up to, and including, the nth order, we have the following theorem: 

The necessary and sufficient condition that the system of functions 
tP,(x) shall be linearly dependent is that the equation 
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th(x) (h(x) · 9n(X) 

(24) W= 91'(X) 92'(X) · 9n'(X) =0 

91 (n-l)(x) 92(n-l)(x) · 9n(n-l)(x) 

shall be an identity in x. The function W is called the Wronskian of 
the system of functions. 1 

That the condition is necessary follows immediately: if we assume 
that 

successive differentiation gives the further equations 

LC' 9"(X) = 0, ••• , 

LCt 9,(n-l) (x) = o. 

These, however, form a homogeneous system of n equations, which 
are satisfied by the n coefficients Cl, ... , Cn; hence, W, the de­
terminant of the system of equations, must vanish. 

That the condition is sufficient, that is, that if W = 0 the functions 
are linearly dependent, may be proved as follows: From the vanishing 
of W we may deduce that the system of equations 

C191 + . . . + Cn9n = 0 

C191' + . . . + Cn9n' = 0 

CI91(n-l) + ... + Cn9n(n-l) = 0 

possesses a solution Cl, C2, . . ., Cn that is not trivial (see p. 150) 
where c, may still be a function of x. Here we may assume without 
loss of generality that Cn = 1. Further, we may assume that V, the 
Wronskian of the (n - 1) functions 91, 92, . . ., 9n-l is not zero, for 
we may suppose that our theorem has already been proved for 
(n - 1) functions; then V = 0 implies the existence of a linear relation 

lIn this proof and the following one a knowledge of the elements of the theory of 
determinants is assumed. Notice that each column of the Wronskian determinant is 
the vector formed from a function" and its derivatives of orders 1, 2. . . ., n - 1. 
Thus, vanishing of the Wronskian for a system of functions means that the corres­
ponding vectors are dependent (see p. 175). 
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between ('1, th, . . ., 9n-l and, hence, between 91, 92, 93, • • ., 9n. By 
differentiatingl the first equation with respect to x and combining 
the result with the second, we obtain 

similarly, by differentiating the second equation and combining the 
result with the third, we obtain 

and so on, up to 

Since V, the determinant of these equations, is assumed not to 
vanish, it follows that Cl', C2', • • ., Cn-l' are zero; that is, Cl, C2, • • ., 

Cn-l are constants. Hence, the equation 

does express a linear relation, as was asserted. 
We now state the fundamental theorem on linear differential 

equations: 

Every homogeneous linear differential equation 

(25) L [u] = ao(x) u(n)(x) + al(x) un-1(x) + ... an(x) u(x) = 0 

possesses systems of n linearly independent solutions Ul, U2, . . ., Un. 
By superposing these fundamental solutions every other solution u 
may be expressed2 as a linear expression with constant coefficients 
CI, ••• , Cn: 

lIt is easy to see that the coefficients c, are continuously differentiable functions of 
x, for if the determinant V is not zero, they can be expressed rationally in terms of 
the functions ~ and their derivatives. 
llTwo different systems of fundamental solutions Ul, ••• , u .. ; Vl, ••• ,V.. can be 
transformed into one another by a linear transformation 

n 
v, = :E CU, Ut, 

k=l 

where the coefficients C't are constants and form a matrix whose determinant 
does not vanish. 



688 Introduction to Calculus and Analysis. Vol. II 

n 
U = LCCUC. 

i=l 

In particular, a system of fundamental solutions can be determined 
by the following conditions. At a prescribed point, say x = ~, Ul is to 
have the value 1 and all the derivatives of Ul up to the (n - l)-th order 
are to vanish; Uc, where i > 1, and all the derivatives of Uc up to the 
(n - l)-th order, except the i-th, are to vanish, while the i-th derivative 
is to have the value 1. 

The existence of a system of fundamental solutions will follow from 
the existence theorem proved on p. 702. It follows from Wronski's 
condition (24), which we have just proved, that a linear relation 
must exist between any further solution U and Ul, • • ., Un, for the 
equations 

n 
~ azu(n-Z) = 0 
1='0 
n 
~ azUc(n-l) = 0 
1='0 

(i = 1, ... , n) 

imply that the Wronskian of the (n + 1) functions u, Ul, U2, • • ., Un 

must vanish, so that u, Ul, U2, • • ., Un are linearly dependent. Since 
Ul, • • ., Un are independent, U depends linearly on Ul, • • ., Un. 

b. B(Jmogene(JUB Differential Equations 01 the Second Order 

We shall consider differential equations of the second order in 
more detail, as they have very important applications. 

Let the differential equation be 

(26) L[u] = au" + bu' + cu = O. 

If Ul (x), U2 (x) form a system of fundamental solutions, W = UIU2' -

U2Ul' is its Wronskian, and W' = UIU2" - U2Ul". 

Since 

and 

it follows that 

This is a first-order linear equation for W. Its general solution by 
formula (22b), p.681 is given by 
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(27) W = ce - f(bla) aX 

where c is a constant. This formula is used a great deal in the further 
development of the theory of differential equations of the second 
order. 

Another property worth mentioning is that a linear homogeneous 
differential equation of the second order can always be transformed 
into an equation of the first order, known as Riccati's differential 
equation. Riccati's equation is of the form 

v' + pv2 + qv + r = 0, 

where v is a function of x. The linear equation (26) is transformed 
into Riccati's equation by putting u' = uz, so that u" = u'z + uz' = 
uz2 + uz', and we have 

az' + az2 + bz + c = O. 

A third remark: if we know one solution v(x) of our linear homo­
geneous differential equation of the second order, the problem can be 
reduced to that of solving a differential equation of the first order and 
can be carried out by quadratures. Specifically, if we assume that 
L[v] = 0 and put u = zv, where z(x) is the new function that we are 
seeking, we obtain the differential equation 

az"v + 2az'v' + bz'v + zL[v] = avz" + (2av' + bv) z' = 0 

for z. This, however, is a linear homogeneous differential equation 
for the unknown function z' = w; its solution is given by formula 
(22d) on p. 681. From w we then obtain the factor z and, hence, the 
solution u by a further quadrature.1 

For example, the linear equation of the second order 

y"-2 y' + 2...L = 0 
x x2 

is equivalent to Riccati's equation 

2 2 z'+ Z2_- Z +_=0 
x x2 ' 

IThe same result is obtained by observing that the Wronskian W formed from v and 
any other solution u is given by (27). But, for known Wand v the equation W = 
vu' - v'u represents a linear first-order equation for u that can be solved by quadra­
tures. 
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where z = y'/y. The original equation has y = x as a particular 
solution; hence, it may be reduced to the equation of the first order 

r/'x = 0, 

where v = y/x. That is, v = ax + b. Hence, the general integral of the 
original equation is given by 

y = ax2 + bx. 

We mention that exactly the same method can be used to reduce 
a linear differential equation of the nth order to one of the (n - 1)­
st order, when one solution of the first equation is known. 

Exercises G.3b 

1. Prove that the functions sin x, sin 2x, sin 3x, . . . are linearly inde­
pendent in the interval 0 ~ x ~ '11:'. Hint: Any two of these functions are 
orthogonal over the interval; namely, if m :1= n 

in sin mx sin nx dx = 0 

(cf. Volume I, p. 274). 
2. Prove that if ai, ... , a" are different numbers and Pl(X), ... , P,,(x) are 

arbitrary polynomials (not identically zero), then the functions 

;1(X) = Pl(x)ea1:t, ... , ;,,(x) = P,,(x)eak:t 

are linearly independent. 
3. Show that the so-called Bernoulli equation (cf. Exercise 7 in Section 6.2) 

y' + a(x)y =b(x)y" (n :1= 1) 

reduces to a linear differential equation for the new unknown function 
z = yl-". Use this to solve the equations 

(a) xy' + y = yZ log x 

(b) xyZ(xy' + y) = aZ 

(c) (1 - XZ)y' - xy = axyz. 

4. Show that Riccati's differential equation 

y' = P(x)yZ + Q(x)y + R(x) = 0 

can be transformed into a linear differential equation if we know a 
particular integral Yl = Yl(X). [Introduce the new unknown function 
u = 1/<Y - Yl)]. 

Use this to solve the equation 

y'-xZyz+x4 -1=O 
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that possesses the particular integral Yl = X. 

5. Find the integrals that are common to the two differential equations 

(a) y' = y2 + 2x - X4 

(b) y' = - y2 - Y + 2x + x 2 + X4 

6. Integrate the differential equation 

y'=y2+2x-x4 

in terms of definite integrals, using the particular integral found in 
Exercise 5. Draw a rough graph of the integral curves of the equation 
throughout the x, y-plane. 

7. Let Yl, Y2, Y3, Y4 be four solutions of Riccati's equation (cf. Exercise 4). 
Prove that the expression 

is a constant. 

(Yl - Y3) 
(Yl - Y4) 
(Y2 - Y3) 
(Y2 - Y4) 

8. Show that if two solutions, Yl(X) and YIl(X), of Riccati's equation are 
known, then the general solution is given by 

Y - Yl = c(y - YIl) exp [JP(y1l - Yl) dx], 

where c is an arbitrary constant. 
Hence find the general solution of 

1 
y' - Y tan x = yll cos X - --, 

cos x 

which has solutions of the form a cosR x. 
9. Prove that the equations 

(a) (1 - x) y" + xy' - y = 0 

(b) 2x(2x - l)y" - (4x2 + 1)y' + y(2x + 1) = 0 

have a common solution. Find it and hence, integrate both equations 
completely. 

10. The tangent at a point P of a curve cuts the axis of y at a point T below 
the origin 0 and the curve is such that OP = n· OT. Prove that its polar 
equation is of the form 

(1 + sin 6)R 
r = a cosR+1 6 . 

c. The Nonhomogeneous Differential Equation. Method of Variation 
of Parameters 

To solve the nonhomogeneous differential equation 

(28a) L[u] = aou(n) + ... + anU = t)(x) 
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in general, it is sufficient, by what we have said on p. 684, to find a 
single solution. This may be done as follows: By proper choice of the 
constants Cl, C2, • • ., Cn, we first determine a solution of the homo­
geneous equation L[u] = ° in such a way that the equations 

(28b) u(~) =0, u'(~) = 0, ... , u(n-2)(~) = 0, u(n-l)(~) = 1 

are satisfied. This solution, which depends on the parameter ~, we 
denote by u(x, ~). The function u(x, ~) is a continuous function of 
~ for fixed values of x, and so are its first 17. derivatives with respect 
to x. As an example, for the differential equation u" + k2 U == ° the 
solution u(x, ~) that fulfills the conditions (28b) has the form 
[sin k(x - ~)]/k. 

We now assert that the formula 

(28c) v(x) = fo:/: ~(~) u(x,~) d~ 

gives a solution of L[v] = ~ that, together with its first 17. - 1 
derivatives, vanishes at the point x = 0. Te verify this statement, 1 

we differentiate the function v(x) repeatedly with respect to x by the 
rule for the differentiation of an integral with respect to a parameter 
[cf. (41) p. 77] and recall the relations following from (28b): 

u(x, x) = 0, u'(x, x) = 0, . . ., u(n-2)(x, x) = 0, u(n-l)(x, x) = 1 

where, for example, u'(x, x) = ou(x, ~)/ox for ~ = x. 

We thus obtain 

:/: r:/: 
v'(x) = 9(~) u(x,~) le-x + r ~(~) u'(x,~) d~ = J. ~(~) u'(x, ~) d~, Jo 0 

v"(x) = ~(~)u'(x,~) Ie-:/: + So:/: ~(~) u"(x,~) d~ = So:/: ~(~) u"(x, ~) d~, 

lIt is possible to give a physical interpretation for this process. If x = t denotes the 
time and u the coordinate of a point moving on a straight line subject to a force ;(x), 
the effect of this force may be thought of as arising from the superposition of the 
small effects of small impulses. The above solution u(x, e) then corresponds to an im· 
pulse of amount 1 at time e, and our solution gives the effect of impulses of amount 
;(1;) during the time between 0 and x. 
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= J,Z ,(~) U(n-l) (x, ~) d~, 
o 

v(n)(x) = ,(~) U(n-l) (x, ~) /1;=:1: + LZ ,(~) u(n)(x, ~) d~ 

= ,(x) + 1:1: ,(~) u(n)(x, ~) d~. 
o 

Since L[u(x, ~)] = 0, this establishes the equation L[v] = ,(x) and 
shows that the initial conditions v(0) = 0, v'(O) = 0, . . . , v(n-l)(O) = 0 
are satisfied. 

The same solution can also be obtained by the following apparently 
different method, which generalizes the procedure used on p. 681 
for a first-order equation. We seek a solution u of the nonhomo­
geneous equation in the form of a linear combination of independent 
solutions Ut of the homogeneous equation 

(28d) u = :E y,(x) Uf(X), 

where now we allow the coefficients y, to be functions of x. On these 
functions, we impose the following conditions: 

Yl'Ul + Y2'U2 + ... + Yn'Un = 0 

Yl'Ul' + Y2'U2' + ... + Yn'Un' = 0 

From these it follows that the derivatives of U are given by the fol­
lowing formulae: 

U' = :Ey(ul 

u" = :EYfUt" 

U(n-l) = :EYfU,(n-l) 

u(n) = :Eyt'Ut(n-l) + :Ey,u,(n). 

Substituting these expressions in the differential equation and re­
membering that L[u] = " we have 

:E yt'Ut(n-l) = '(x). 
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For the coefficients '(t' we obtain a linear system of equations, with 
determinant W, the Wronskian of the system offundamental solutions 
Ut, which therefore does not vanish. Thus, the coefficients '(/ are 
determined, and hence, by quadratures; so are the coefficients '(,. 
As the whole argument can be reversed, a solution ofthe equation has 
actually been found, which, in fact, is the general solution, by virtue 
of the integration constants concealed in the coefficients '(t. 

We leave it to the reader to show that the two methods are really 
identical, by expressing u(x, ~), the solution of the homogeneous 
equation defined above, in the form 

u(x, ~) = 2:: at(~)ut(x). 

The latter method is known as variation of parameters, because it 
exhibits the solution as a linear combination of functions with 
variable coefficients, whereas in the case ofthe homogeneous equation 
these coefficients were constants. 

Example 1 

We consider the equation 

u' U 
u" - 2 - + 2 2 = xeX • x x 

By p. 690, a system of independent solutions of the corresponding 
homogeneous equation 

u" - 2 u' + 2 ~ = 0 
X x2 

is given by Ul = x, U2 =x2• Hence, if we seek solutions of the form 

u = '(IX + '(2X2, 

we have the conditions 

for '(1 and '(2. That is, 

'(I'X + '(2'X2 = 0, 

'(I' + 2'(2' X = xeX 

Hence, the general solution of the original nonhomogeneous 
equation is 
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Example 2 

As an application we give a method for dealing with forced vibra­
tions, for which the right side of the differential equation need no 
longer be periodic, as in the cases considered in Volume I, Chapter 
9, p. 641, but may instead be an arbitrary continuous function {(t). 
For the sake of simplicity we restrict ourselves to the frictionless case 
and take m = 1 (or, what amounts to the same thing, divide through 
by m). Accordingly, we write the differential equation in the form 

(28e) x(t) + k2x(t) = ~(t), 
where the quantity k 2 and ~ are what we called k and {before. 

According to (28c), the function 

1 (t 
F(t) = Ii Jo ~(')..) sin k(t - ')..) d').. 

is a solution of the differential equation (28e) and satisfies the initial 
conditions 

F(O) = 0, F'(O) = o. 
For the general solution of the differential equation we thus obtain, 
just as before, the function 

x(t) = ! it ~(')..) sin k(t - ')..) d').. + Cl sin kt + C2 cos kt, 

where Cl and C2 are arbitrary constants of integration. 
In particular, if the function on the right side of the differential 

equation is a periodic function of the form sin rot or cos rot, a simple 
calculation again yields the results of Volume I, Chapter 9, p. 642. 

Exercises 6.3c 

1. Integrate the following equations: 

(a) y''' - y = O. 

(b) y'" - 4y" + 5y' - 2y = O. 

(c) y'" - 3y" + 3y' - y = 0 

(d) y'''' - 3y" + 2y = 0 

(e) X2y" + xy' - y = o. 



696 Introduction to Calculus and Analysis, Vol. II 

2. Prove that the linear homogeneous equation 

L(y) = y(") + Cly("-l) + •.. + C,,-ly' + c" = 0 

with constant coefficients C has a system of fundamental solutions of the 
form Xl'e"k"', where the ak' s are the roots of the polynomial 

fez) = z" + CIZ,,-l + ..• + c". 
3. Let 

aoy + aly' + ..• + a"y(") = P(x) 

be a linear nonhomogeneous differential equation of the nth order with 
constant coefficients, and let P(x) be a polynomial. Let ao '* 0 and con­
sider the formal identity 

1 = bo + bIt + b2t2 + . . .. 
ao + alt + ••• + a"t" 

Prove that 

y = boP(x) + bIP'(X) + b2P"(x) + ... 
is a particular integral of the differential equation. 

If ao = 0, but al '* 0, then the expansion 

1 = bt-l + bo + bIt + b2t2 + ... 
alt + a2t2 + . . . + a"t" 

is possible. Prove that now 

y = b J P(x) dx + boP(x) + bIP'(X) + b2PII(X) + ... 
is a particular integral of the differential equation. 

4. Apply the method of Exercise 3 to find particular integrals of 

(a) y" + y = 3x2 - 5x 

(b) y" + y' = (1 + X)2 
5. A particular integral of the equation 

aoy + aly' + ... + a"y(") = ek"'P(x), 

where k, ao, aI, ... are real constants and P(x) is a polynomial. can 
be found by introducing a new unknown function z = z(x) given by 

y = zek'" 

and applying the method of Exercise 3 to the equation in z. 
Use this method to find particular integrals of 

(a) y" + 4y' + 3y = 3e'" 

(b) y" - 2y' + y = xe"'. 

6. Integrate the equation 

y" - 5y' + 6y = e"'(x2 - 3) 

completely. 
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7. (a) If u, v are two independent solutions of the equation 

f(x)y'" - f'(x)y" + ifJ(x)1' + ).(x)y = 0, 

prove that the complete solution is Au + Bv + Cw, where 

w = uf vf(x) dx _ vs uf(x)dx 
(uv' - U'V)2 (uv' - U'V)2 

and A, B, C are arbitrary constants. 
(b) Solve the equation 

X2(X2 + 5)y'" - x(7x2 + 25)1" + (22x2 + 40)1' - 30xy = 0 

that has solutions of the form xn. 

6.4 General Differential Equations of the First Order 

a. Geometrical Interpretation 

We begin by considering a differential equation of the first order 

(29) F(x, y, y') = 0, 

where we assume that the function F is a continuously differentiable 
function of its three arguments x, y, y'. Geometrically at a point in the 
plane with rectangular coordinates (x, y), the equation is a condition 
on the direction of the tangent to any curve y(x) passing through 
this point that satisfies the differential equation. We assume that in 
a certain region R of a plane, say in a rectangle, the differential equa­
tion F(x, y, y') = 0 can be solved uniquely for y' and, thus, can be 
expressed in the form 

(30) y' = f(x, y), 

where the function f(x, y) is continuously differentiable in x and y. 
Then to each point (x, y) of R equation (30) assigns a direction of 
advance. The differential equation is therefore represented geometri­
cally by a field of directions,. and the problem of solving the differential 
equation geometrically consists in the finding of those curves that 
belong to this field of directions, that is, those whose tangents at 
every point have the direction preassigned by the equation y' = 
f(x, y). We call these curves the integral curves of the differential 
equation. 

It is now intuitively plausible that through each point (x, y) of R 
there passes a single integral curve of the differential equation y' = 
f(x, y). These facts are stated more precisely in the following funda­
mental existence theorem: 
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If in the differential equation y' = f (x, y) the function f is continuous 
and has a continuous derivative with respect to y in a region R, then 
through each point (xo, yo) of R there passes one, and only one, integral 
curve; that is, there exists in a neighborhood of Xo one, and only one, 
solution y(x) of the differential equation for which y(xo) = yo. 

We shall return to the proof of this theorem on p. 702 Here we 
confine ourselves to the consideration of some examples. 

For the differential equation 

(3Ia) x 
y' = - y' 

that we consider in the region y < 0, say, the field at a point (x, y) 
is readily seen to have a direction perpendicular to the vector from 
the origin to the point (x, y). From this we infer by geometry that the 
circular arcs about the origin must be the integral curves of the dif­
ferential equation. This result is very easily verified analytically, 
for by the method of separation of variables (p. 679), it follows that 

x2 + y2 = constant = c, 

which shows that these circles are the solutions of the differential 
equation. 

At each point, the field of directions of the differential equation 

(3Ib) y' =~ x 

obviously has the direction of the line joining that point to the 
origin. Thus, the lines through the origin belong to this field of 
directions and are therefore integral curves. As a matter of fact, we 
see at once that the function y = cx satisfies the differential equation 
for any arbitrary constant c. l 

In the same way, we can verify analytically that the differential 
equation 

and 

x y'=­y 

y'= -~ 
x 

(y =1= 0) 

(x =1= 0) 

lAt the origin the field of directions is no longer uniquely defined; this is connected 
with the fact that an infinite number of integral curves pass through this singular 
point of the differential equation. 
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are satisfied by the respective families of hyperbolas 

y2=C+X2 

c 
y=X-' 

where c is the parameter specifying the particular curve of the family. 
Our fundamental theorem shows that, in general, differential 

equations of the first order are satisfied by a one-parameter family 
of functions. Functions of x in such a family depend not only on x but 
also on a parameter c, for example, on c = yo = y(O); as we say, the 
solutions depend on an arbitrary constant of integration. Ordinary in­
tegration of a function f(x) is merely the special case of the solution 
of the differential equation in which f(x, y) does not involve y. The 
direction of the field at a point is then determined by the x-coordinate 
alone, and we see at once that the integral ~urves are obtained from 
one another by translation in the direction of the y-axis. Analytically, 
this corresponds to the familiar fact that the indefinite integral y, 
that is, the solution of the differential equation y' = f(x), involves 
an arbitrary additive constant c. 

The geometrical interpretation of the differential equation sug­
gests an approximate graphical construction of the integral curves, 
in much the same way as in the special case of the indefinite integra­
tion of a function of x (Volume I, p. 483). We have only to think of the 
integral curve as replaced by a polygon in which each side has the 
direction assigned by the field of directions for its initial point (or for 
any other one of its points). Such a polygon can be constructed by 
starting from an arbitrary point in R. The smaller we take the length 
of the sides of the polygon, the greater the accuracy with which the 
sides of the polygon will agree with the field of directions of the dif­
ferential equation, not only at their initial points but throughout 
their whole length. Without going into the proof, we here state the 
fact that, by successively diminishing the length of the sides, a poly­
gon constructed in this way may actually be made to approach closer 
and closer to the integral curve through the initial point. 

b. The Differential Equation of a Family of Curves. Singular 
Solutions. Orthogonal Trajectories 

The existence theorem shows that every differential equation has 
a family of integral curves. This suggests that we ask the reverse 
question. Does everyone-parameter family of curves (J(x, y, c) = 0 
or y = g(c, x) have a corresponding differential equation 
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F(x, y, Y') = ° 
that is satisfied by all the curves of the family? If so, how can we find 
this differential equation? Here the essential point is that c, the 
parameter of the family of curves, does not occur in the differential 
equation, so that the differential equation is in a sense a representa­
tion of the family of curves not involving a parameter. In fact, it is easy 
to find such a differential equation. Differentiating with respect to 
x, In 

(32a) (lex, y, c) = ° 
we have 

(32b) {lx + {lilY' = 0. 

If we eliminate the parameter c between this equation and the 
equation {l = 0, the result is the desired differential equation. This 
elimination is always possible for a region of the plane in which the 
equation (l = 0 can be solved for the parameter c in terms of x and 
y. We then have only to substitute the expression c = c(x, y) thus found 
in the expressions for {lx and {l1l in order to obtain a differential 
equation for the family of curves. 

As a first example, we consider the family of concentric circles 
x2 + y2 - c2 = 0, from which, by differentiation with respect to x, 
we obtain the differential equation 

(32c) x + yy' = 0, 

in agreement with (3la), p. 698. 
Another example is the family (x - C)2 + y2 = 1 of circles with 

unit radius and center on the x-axis. By differentiation with respect 
to x, we obtain 

(x - c) + yy' = 0, 

and on eliminating c, we obtain the differential equation 

y2(1 + y'2) = 1. 

The family y = (x - C)2 of parabolas touching the x-axis likewise 
leads by way of the equationy' = 2(x - c) to the required differential 
equation 

y'2 = 4y. 
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In the last two examples we see that the corresponding differential 
equations are satisfied not only by the curves of the family but, in the 
first case, also by the lines y = 1 and y = -1 and, in the second case, 
also by the x-axis, y = O. These facts, which can at once be verified 
analytically, also follow without calculation from the geometrical 
meaning of the differential equation. For these lines are the envelopes 
of the corresponding families of curves, and since the envelopes at 
each point touch a curve of the family, they must at that point have 
the direction prescribed by the field of directions. Therefore, every 
envelope of a family of integral curves must itself satisfy the differ­
ential equation. Solutions of the differential equation that are found 
by forming the envelope of a one-parameter family of integral curves 
are called singular solutions. 

Let R be a region that is simply covered by a one-parameter family 
of curves <I>(x, y) = c = constant. If to each point P of R we assign 
the direction of the tangent of the curve passing through P, we obtain 
a field of directions defined by the differential equation y' = - Cl>z/Cl>y 
[see (32b)]. If, on the other hand, to each point P we assign the direc­
tion of the normal to the curve passing through it, the resulting field 
of directions is defined by the differential equation 

, Cl>y 
Y = Cl>z· 

The solutions of this differential equation are called the orthogonal 
trajectories of the original family of curves Cl>(x, y) = c. The curves 
<I> = c (the level lines of the function Cl» and their orthogonal trajec­
tories intersect everywhere at right angles. Hence, if a family of 
curves is given by the differential equation y' = {(x, y), we can find 
the differential equation of the orthogonal trajectories without in­
tegrating the given differential equation, for the equation of the 
orthogonal trajectories is 

, 1 
Y = - {(x, y). 

In the example (31a) discussed above, from the differential equation 
satisfied by the circles x2 + y2 = C we find that the differential 
equation of the orthogonal trajectories is y' = y/x. The orthogonal 
trajectories are therefore straight lines through the origin [see (31b)]. 

If p > 0, the family of confocal parabolas (cf. Chapter 3, p. 234) 
y2 - 2p(x + p/2) = 0 satisfies the differential equation 
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1 
y' = y (-X + ./ x2 + y2). 

Hence, the differential equation of the orthogonal trajectories of this 
family is 

-1 1 
y' = (-x + ./x2 + y2)/y = Y (- x - ./x2 + y2). 

The solutions of this differential equation are the parabolas 

y2 - 2p(x + p/2) = 0, 

wherep < 0; these are parabolas confocal with one another and with 
the curves of the first family. 

c. Theorem olthe Existence and Uniquene88 01 the Solution 

We now prove the theorem of the existence and uniqueness of the 
solution of the differential equation y' = {(x, y) that we stated on 
p. 698. Without loss of generality, we can assume that for the solu­
tion y(x) in question the initial condition ((xo) = yo reduces to y(O) = 
0, for we could introduce y - yo = TJ and x - Xo = ~ as new variables 
and should then obtain a new differential equation, dTJ/d~ = 
{(~ + Xo, TJ + yo), of the same type, satisfying the desired condition. 

In the proof, we may confine ourselves to a sufficiently small neigh­
borhood of the point x = o. If we have proved the existence and 
uniqueness of the solution for such an interval about the point 
x = 0, we can then prove the existence and uniqueness for a neighbor­
hood of one of its end points, and so on. 

Let us then consider a rectangle Ixl ~ a, Iyl ~ b contained in 
the domain of the function {(x, y). There exist bounds M, Ml such 
that 

(32d) I{,,(x, y)1 ~ M, I{(x, y)1 ~ Mdor Ixl ~ a, Iyl ~ b. 

Replacing, if necessary, a by a smaller positive value, we can always 
bring about that 

(32e) Ml a < b, Ma < 1. 

The inequalities (32d) will still be valid in the smaller rectangle. For 
any solution y(x) of y' = {(x, y) with initial value y(O) = 0 we then 
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have the estimate IY(x) I ;;;; b for Ixl ;;;; a. For otherwise there would 
exist values ~ for which I ~ I ;;;; a, IY(~) I = b. There would be such a ~ 
of smallest absolute value. Then the relation 

b = I y(~) I = I { (x, y(x» dx I ;;;; Ml I ~ I ;;;; Ml a < b 

would lead to a contradiction. 
We first convince ourselves that there cannot be more than one 

solution of the differential equation satisfying the initial conditions, 
for if there were two solutions Yl(X) and Y2(X), the difference d(x) = 
Yl - Y2 would satisfy 

d'(x) = f(x, Yl(X» - f(x, Y2(X». 

By the mean value theorem, the right side of this equation can be 
put in the form (Yl - Y2) fy(x, ji) = d(x) fy(x, ji), where ji is a value 
intermediate between Yl and Y2. In a neighborhood I x I ;;;; a of the 
origin, Yl and Y2 are continuous functions of x that vanish at x = o. 
Here b is an upper bound of the absolute values of the two functions 
in this neighborhood, so that ljil ;;;; b whenever Ixl ;;;; a. Further­
more, M is a bound of /fyl in the region Ixl ;;;; a, lyl ;;;; b. Finally, 
let D be the greatest value of I d(x) I in the interval I x I ;;;; a and sup­
pose that this value is assumed at x = ~. Then, for I x I ;;;; a, 

I d'(x) I = I d(x) fY(x, ji) I ;;;; DM, 

and therefore, 

D = Id(~)1 = I 101; d'(x) dx I;;;; I~IDM;;;; aDM. 

But since aM < 1, it follows that D = o. That is, in such an interval 
I x I ;;;; a we have l Yl(X) = Y2(X). 

By a similar integral estimate we arrive at a proof of the existence 
for the solution. We construct the solution by a method that has other 
important applications, in particular, to the numerical solution of 
differential equations and to the inversion of mappings (see p. 266). 
This is the process of iteration or successive approximations. Here we 

IThe root idea of this proofis the fact that for bounded integrands integration gives 
a quantity that vanishes to the same order as the interval of integration, as that 
interval tends to zero. 
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obtain the solution as the limit function of a sequence of approximate 
solutions Yo(x), Yl(X), Y2(X), . . .. As a first approximation yo(x), we 
take yo(x) = O. Using the differential equation, we take 

as the second approximation: from this we obtain the next approxi­
mation Y2(X), 

and in general the (n + l)-th approximation is obtained from the 
n-th by the equation 

(33a) 

If in an interval I x I ;;£ a these approximating functions converge 
uniformly to a limit function y(x), we can at once perform the pas­
sage to the limit under the integral sign and obtain for the limit 
function the equation 

(33b) 

From this it follows by differentiation that Y' = {(x, Y), so that Y 
is actually the required solution. 

We prove convergence for a sufficiently small interval Ixi ;;£ a 
by means of the following estimate. We put Yn+1(X) - Yn(X) = dn(x) 
and by Dn denote the maximum of I dn(x) I in the interval I x I ;;£ a. 

From the equation 

dn'(x) = Yn+1' - Yn' = {(x, Yn) - {(x, Yn-l) 

the mean value theorem gives 

(33c) dn'(x) = dn-l(X) {1I(X, Yn-l(X», 

where Yn-l is a value intermediate between Yn and Yn-l. Let the in­
equalities I {1I(X, y) I = M, I {(x, y) I ;;£ Ml hold in the rectangular 
region I x I ;;£ a, I Y I ;;£ b. If we assume that for the function Yn the re-
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lation I Yn I ~ b holds in the interval I x I ~ a, then, by the definition 
of Yn+I, we have 

We shall therefore choose the bound a for x so small that aMI ~ b. 
Then, in the interval Ixl ~ a, we shall certainly have IYn+I(X) I ~ b. 
Since for yo(x) = 0 it is obvious that Iyol ~ b, it follows by induction 
that in the intervallxl ~ a we have IYn(x) I ~ b for every n. Hence, 
in (33c) we may use the estimate Ifyl ~ M and integrate to obtain 

Thus, we may bound the maximum Dn of I dn(x) I in the interval 
Ixl ~ a by 

Dn ~ aMDn-l. 

We now take a so small that aM ~ q < 1, where q is a fixed proper 
fraction, say q = t. Then Dn+1 ~ qDn ~ qn Do. 

Let us now consider the series 

do(x) + dl(X) + d2(X) + ... + dn-I(X) + .... 

The nth partial sum of this series is yn(X). The absolute value of the 
nth term is not greater than the number DOqn-1 when I x I ~ a. Our 
series is therefore dominated by a convergent geometric series with 
constant terms. Hence (cf. Volume I, p. 535), it converges uniformly 
in the interval I x I ~ a to a limit function y(x), and thus, we see that 
an interval I x I ~ a exists in which the differential equation has a 
unique solution. 

All that now remains to be shown is that this solution can be ex­
tended step by step until it reaches the boundary of the (closed 
bounded) region R in which we assume f(x, y) to be defined. The prool 
so far shows that if the solution has been extended to a certain point, 
it can be continued onward over an x-interval of length a, where 
a, however, depends on the coordinates (x, y) of the end point of the 
portion already constructed. It might be imagined that in this advance 
a diminishes from step to step so rapidly that the solution cannot be 
extended by more than a small amount, no matter how many steps 
are made. This, as we shall show, is not the case. 
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Suppose that R' is a closed bounded region interior to R. Then 
we can find a number b so small that for very point (xo, yo) in R' the 
whole square Xo - b ;;;; x ;;;; Xo + b, yo - b ;;;; y ;;;; yo + b lies in R. 
If by M and Ml we denote the upper bounds of I (y(x, y) I and I {(x, y) I 
in the region R, then we find that in the preceding proof all the condi­
tions imposed on a are certainly satisfied if we take a to be, say, the 
smallest of the numbers b, M/2, and b/Ml. This no longer depends 
on (xo, YO); hence, at each step we can advance by an amount a that is 
a constant. Thus, we can proceed step by step until we reach the 
boundary of R'. Since R' can be chosen as any closed region in R, 
we see that the solution can be extended to the boundary of R,l 

Exercises 6.4 

1. Let 

(x,y, c) = 0 

be a family of plane curves. By eliminating the constant c between this 
and the equation 

a(+a( '=0 
ax ay y , 

we get the differential equation 

F(x,y, y') = 0 

of the family of curves (cf. p. 700). Now let t/J(P) be a given function of p; 
a curve C satisfying the differential equation 

F(x, y, t/J(y'» = 0 

is called a trajectory of the family of curves (x, y, c) = O. The second and 
third equations show that 

y' = t/J(Y') 

is the relation between the slope Y' of C at any given point, and the slope 

lIt is essential in this theorem that R be a closed and bounded region and not, for ex­
ample, the whole x, y-plane. This is shown by the differential equation 

y' = 1 +y2 

for whichf(x, y) is defined and continuously differentiable for all x, y. The unique so­
lution ofthis equation with initial conditiony = Of or x = Ois thefunctiony = tan x 
for I x I < 7t/2. The solution ceases to exist at x = ±7t/2, in spite of the fact thatf(x,y) 
is regular for all x and y. In agreement with the general theorem proved, the graph 
of the solution leaves any prescribed bounded and closed subset of R, for example, 
any rectangle I x I ~ a, I y I ~ b, before ceasing to exist. The function y = tan x either 
exists in the whole interval I x I ~ a or exists and becomes larger than b in absolute 
value in some subinterval. 
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y' of the curve {(x, y, c) = ° passing through this point. The most impor­
tant case is tft(p) = - IIp, leading to the equation 

F(X,y, - ~) = 0, 

which is the differential equation of the orthogonal trajectories of the 
family of curves (cf. p. 701). 

Use this method to find the orthogonal trajectories of the following 
families of curves: 

(a) x 2 + y2 + cy - 1 = ° 
(b) y = cx2 

x2 y2 
(c) -- + -- = 1, (a > b> 0, -b2 < c <00) 

a2 + c b2 + c 

(d) y = cos x + c 

(e) (x - C)2 + y2 = a2. 

In each case draw the graphs of the two orthogonal families of curves. 
2. For the family of lines y = cx, find the two families of trajectories in 

which (a) the slope of the trajectory is twice as large as the slope of the 
line; (b) the slope of the trajectory is equal and of opposite sign to the 
slope of the line. 

3. Differential equations of the type 

y = xp + ljI(p), p = y' 

were first investigated by Clairaut. Differentiating, we get 

[x + ~'(p)] ~~ =0, 

which gives p = c = constant, so that 

.y = xc + ~(c) 
is the general integral of the differential equation; it represents a family 
of straight lines. Another solution is 

x = -IjI'(p), 

which together with 

y = - p~'(p) + ~(p) 
gives a parametric representation of the so-called singular integral. 
Note that the curve given by the last two equations is the envelope of the 
family of lines. 

Use this method to find the singular solution of the equations 

p2 
(a) y = xp - 4" 

(b) y = xp + eP • 

4. Find the differential equation of the tangents to the catenary 
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y = a cosh~. 
a 

5. Lagrange investigated the most general differential equation linear 
in both x and y, namely, 

y = xt/>(p) + 1ji(P). 

Differentiating, we get 

p = t/>(P) + [xt/>'(P) + Iji'(p)] dp 
dx 

which is equivalent to the linear differential equation 

dx + t/>'(p) x + Iji'(p) = 0, 
dp t/>(P)-p t/>(p)-p 

provided t/>(p) - p "* 0 and p is not constant. Integrating and using the 
first equation, we get a parametric representation of the general in­
tegral. From the second equation we see that the equations t/>(P) - p = 0, 
p = constant lead to a certain number of singular solutions represent­
ing straight lines. 

The solutions can be interpreted geometrically as follows: Consider 
the Clairaut equation 

y = xp + [1ji(t/>-1(P)], 

where t/>-l(p) is the inverse function oft/>(p), that is, t/>-l(t/>(p» =p. From this 
we see that the solutions of the differential equation are a family of tra­
jectories of the family of straight lines 

y = xc + 1ji[t/>-l(C)J 

or 

y = xt/>(c) + Iji(c) (c = constant). 

Thus, for example, 

y = - ~ + Iji(p) 
p 

is the differential equation of the involutes (orthogonal trajectories of 
the tangents) of the curve that represents the singular integral of the 
Clairaut equation 

y=xp + Iji(- ~). 
Use this method to integrate the equation 

1 
y = x(p + a) - 4 (P + a)2. 

6. Express, when possible, the integrals of the following differential equa­
tions by elementary functions: 
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(a) [~~r = 1-y2 (c) [dYT = 2a-y dx Y 
(b) [dYT - 1 dx - 1-y2 (d) [dYT = 1- y2. dx 1 + y2 

In each case, draw a graph of the family of integral curves, and detect the 
singular solutions if any, from the figures. 

7. Integrate the homogeneous equation 

and find the singular solutions. 

8. As mentioned in Exercise 3, a curve is the envelope of its tangents, hence, 
it is the singular integral of the Clairaut equation satisfied by its tangent 
lines. With this in mind, ascertain what kind of curve satisfies each of 
the following properties and give the corresponding Clairaut equation: 
(a) The sum of the x- and y-intercepts of a tangent line is constant. 
(b) The length of the segment intercepted on a tangent by the axes is 

constant. 
(c) The area bounded by the tangent line and the axes is constant. 

6.5. Systems of Differential Equations and Differential 
Equations of Higher Order 

The above arguments extend to systems of differential equations 
of the first order with as many unknown functions of x as there are 
equations. As an example of sufficient generality, we shall consider 
here the system of two differential equations for two functions y(x) 
and z(x), 

y' = f(x, y, z), 

z' = g(x, y, z), 

where the functions f and g are continuously differentiable. This 
system of differential equations can be interpreted by a field of direc­
tions in x, y, z-space. To the point (x, y, z) of space a direction is as­
signed whose direction cosines are in the proportion dx: dy: dz = 
1: f: g. The problem of integrating the differential equation again 
amounts geometrically to finding curves in space that belong to this 
field of directions. As in the case of a single differential equation, we 
again have the fundamental theorem that through every point (xo, 
Yo, zo) of a region R in which the given functions f and g are con­
tinuously differentiable, there passes one, and only one, integral curve 
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of the system of differential equations. l The region R is covered by 
a two-parameter family of curves in space. These give the solutions 
of the system of differential equations as two functions y(x) and z(x) 
that both depend on the independent variable x and also on two arbi­
trary parameters Cl and C2, the constants of integration. 

Systems of differential equations of the first order are particularly 
important because differential equations of higher order, that is, 
differential equations in which derivatives higher than the first occur, 
can always be reduced to such systems. 

For example, the differential equation of the second order 

y" = h(x, y, y') 

can be written as a system of two differential equations of the first 
order. We have only to take the first derivative of y with respect to 
x as a new unknown function z and then write down the system of 
differential equations 

y' = z, 
z' = h(x, y, z). 

This is exactly equivalent to the given differential equation of the 
second order, in the sense that every solution of the one problem is 
at the same time a solution of the other. 

The reader may use this as a starting point for the discussion of the 
linear differential equation of the second order and thus prove the 
fundamental existence theorem for linear differential equations used 
on p. 687. 

Exercises 6.5 

1. Solve the following differential equations: 

(a) y'y" = x 

(b) 2y'" y" = 1 

IFor Xo = yo = Zo = 0 the proof again can be given by a suitable iteration scheme 
with the recursion formulae 

Yn+l(X) = So" {('t", Yn('t,,) , Zn('t,,» d't", 

Zn+l(X) = 1: g('t", Yn('t,,), Zn('t,,» d't" 

taking the place of the single relation (33a). 
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(c) xy" - y' = 2 

(d) 2xy'" y" = y"2 - 2 

2. A differential equation of the form 

fey, y', y") = 0 

(note that x does not occur explicitly) may be reduced to an equation of 
the first order as follows: Choose y as the independent variable and p = 
y' as the unknown function. Then 

y' =p, y" = dp = dp dy =p'p 
dx dy dx ' 

and the differential equation becomes fey, p, pp') = o. 
Use this method to solve the following equations. 

(a) 2yy" + y'2 = 0 

(b) yy" + y'2 - 1 = 0 

(c) y3y" = 1 

(d) y" - y'2 + y2y' = 0 

(e) yiV = (y"')l/2 

(f) yiV + y" = O. 

3. Use the method of Exercise 2 to solve the following problem: At a 
variable point M of a plane curve r draw the normal to r; mark on this 
normal the point N where the normal meets the x-axis and C, the center 
of curvature of r at M. Find the curves such that 

MN . MC = constant = k. 

Discuss the various possible cases for k > 0 and k < 0, and draw the 
graphs. 

4. Find the differential equation of the third order satisfied by all circles 

x 2 + y2 + 2ax + 2by + c = o. 

6.6 Integration by the Method of Undetermined Coefficients 

In conclusion, we mention yet another general device that can 
frequently be applied to the integration of differential equations. 
This is the method of integration in terms of power series. We assume 
that in the differential equation 

y' = [(x, y) 

the function [(x, y) can be expanded as a power series in the variables 
x and y and accordingly possesses derivatives of any order with 
respect to x and y. We can then attempt to find the solutions of the 
differential equation in the form of a power series 
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y = Co + ClX + C2X2 + . . . 

and to determine the coefficients of this power series by means of the 
differential equation. l To do this we proceed by forming the differ­
entiated series 

y' = Cl + 2C2X + 3cax2 + ... , 

replacing y in the power series for f(x, y) by its expression as a power 
series, and then equating the coefficients of like powers of x on the 
right and on the left (method of undetermined coefficients). Then, if 
co = C is given any arbitrary value, we can attempt to determine the 
coefficients 

Cl, C2, ca, C4, • • • 

successively. 
The following process, however, is often simpler and more elegant. 

We assume that we are seeking that solution of the differential 
equation for which y(O) = 0, that is, for which the integral curve passes 
through the origin. Then Co = C = o. If we recall that by Taylor's 
theorenl the coefficients of the power series are given by the expres­
SIOns 

Cv = -\ y(v) (0), v. 

we can calculate them easily. In the first place, Cl = y'(O) = f(O, 0). 
To obtain the second coefficient C2 we differentiate both sides of the 
differential equation with respect to x and obtain 

y"(x) = fa: + fy y'. 

If we here substitute x = 0 and the already known values y(O) = 0 
and y'(O) = f(O, 0), we obtain the value y"(O) = 2C2. In the same 
way, we can continue the process and determine the other coefficients 
ca, C4, • • ., one after the other. 

It can be shown that this process always gives a solution if the 
power series for f(x, y) converges absolutely in the interior of a 
circle about x = 0, y = o. We shall not give the proof here. 

IThe first few terms of the series then form a polynomial of approximation to the 
solution. 
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Exercises 6.6 

1. Obtain the power series expansions to the indicated number of terms for 
the solution passing through the given point of each of the following 
differential equations. 

(a) y' = x + y, k terms, (0, a) 

(b) y' = sin (x + y), four terms, (0, 71:/2) 

(c) y' = eZY, four terms, (0, 0) 

(d) y' = ./x2 + y2, four terms, (0,1). 

2. Solve the differential equation 

1 
y" + - y' + y = 0, x 

with y(O) = 1, y'(O) = 0, by means of a power series. Prove that this func­
tion is identical with the Bessel function Jo(x) defined in Section 4.12, 
Exercise 7, p. 475. 

6.7 The Potential of Attracting Charges and Laplace's 
Equation 

Differential equations for functions of a single independent varia­
ble, such as we have discussed above, are usually called ordinary 
differential equations, to indicate that they involve only "ordinary" 
derivatives, those of functions of one independent variable. In many 
branches of analysis and its applications, however, an important 
part is played by partial differential equations for the function of 
several variables, that is, equations between the variables and the 
partial derivatives of the unknown function. Here we shall touch 
upon some typical applications that involve Laplace's differential 
equation. 

We have already considered the field of force produced by masses 
according to Newton's law of attraction, and we have represented it 
as the gradient of a potential cI> (cf. Chapter 4, pp. 439 ff.). In this 
section we shall study the potential in somewhat greater detail.1 

a. Potentials of Mass Distributions 

As an extension of the cases considered previously, we now take 
m as a positive or negative mass or charge. Negative masses do not 
enter into the ordinary Newtonian law of attraction, but in the theory 

lAn extensive literature is devoted to this important branch of analysis (see, e.g., 
O.D. Kellogg Foundations of Potential Theory Frederick Ungar Publ. Co.). 
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of electricity, where mass is replaced by electric charge, we dis­
tinguish between positive and negative electricity; there, Coulomb's 
law of attracting charges has the same form as the law of gravitational 
attraction of masses. If a charge m is concentrated at a single point of 
space with coordinates (I;, TI,I;), we call the expression mlr, where 

r = ./(x - 1;)2 + (y - TI)2 + (z - 1;)2, 

the potential! of this mass at the point (x, y, z). By adding up a number 
of such potentials for different sources or poles (I;t, Tlf, I;f), we obtain 
as before (cf. p. 439) the potential of a system of particles or point 
charges 

The corresponding fields of force are given by the expression f = 
Y grad <1>, where y is a constant independent of the masses and of their 
positions. 

For masses that are not concentrated at single points but are 
distributed continuously with density ~(I;, TI, 1;) over a definite por­
tion R of 1;, TI, I;-space, we defined the potential of this mass-distribu­
tion to be 

(34a) 

If the masses are distributed over a surface S with surface density 
~, the potential of this surface is the surface integral 

(34b) 

taken over the surface S with surface element dcr. 
For the potential of a mass distributed along a curve, we likewise 

obtain an expression of the form 

(34c) J ~(s) ds 
r ' 

lWe could call this a potential of the mass. Any function obtained by adding an arbi· 
trary constant to this could equally well be called a potential of the mass, since it 
would give the same field of force. 
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where s is the length of arc on this curve and J.l. (s) is the linear density 
of the mass. 

For every such potential the level surfaces of W defined by W = 
constant represent the equipotential surfaces. l 

One example of the potential of a line-distribution is that of a 
mass of constant linear density J.l. distributed along the segment 
-1 ~ z ~ +lof the z-axis. We consider a point P with coordinates 
(x, y) in the plane z = o. For brevity we introduce p = ';x2 + y2, the 
distance of the point P from the origin. The potential at P is then 

fH dz 
w(x, y) = J.l. .; 2 2 + c. 

-I p + z 

Here we have added a constant C to the integral, which does not 
affect the field of force derived from the potential. The indefinite 
integral on the right can be evaluated as in Volume I [po 270 (26)], and 
we obtain 

f dz = ar sinh ~ = log z + .; Z2 + p2 
';p2 + Z2 P p' 

so that the potential in the x, y-plane is given by 

W(x, y) = 2J.l.log 1 + ';12 + p2 + c. 
P 

To obtain the potential of a line extending to infinity in both 
directions, we give the value -2J.l.log 21 to the constant2 C and thus 
obtain 

1 + ';12 + 2 
W(x, y) = 2J.l. log 21 p - 2J.l. log p. 

If we now let the length 1 increase without limit, that is, if we let 
the length of the line tend to infinity, the expression {I + ';12 + p2} /21 

lCurves that at every point have the direction of the force vector are called lines of 
force. Since the force here has the direction of the gradient of~, the lines offorce are 
curves that everyWhere intersect the level surfaces at right angles. We thus see that 
the families oflines offorce corresponding to potentials generated by a single pole or 
by a finite number of poles run out from these poles as iffrom a source. In the case of 
a single pole, for example, the lines of force are simply the straight lines passing 
through the pole. 
2We make this choice in order that in the passage to the limit l~oo the potential ~ 
shall remain finite. 
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tends to unity, and for the limiting value of ([>(x, y) we obtain the 
expression 

(35a) ([>(x, y) = - 211 log p. 

We thus see that, apart from the factor -211, the expression 

(35b) log p = log J x2 + y2 

is the potential of a straight line perpendicular to the x, y-plane over 
which a mass is distributed uniformly. The equipotential surfaces 
here are the circular cylinders 

p = J x2 + y2 = constant. 

On p. 441 we already calculated the potential of a spherical surface 
of constant density (i.e., mass per unit area) 11. We found that for 
a sphere of radius a and center at the origin the potential ([> at a point 
P = (x, y, z) is given by 

(36a) 
41ta2 

(r> a) ([>=-11 
r 

(36b) ([> = 41tal1 (r < a) 

where 

(36c) r = J x2 + y2 + Z2 

is the distance of P from the origin. The potential of a solid sphere of 
density 11 can be obtained by decomposing the ball into spherical 
surfaces of radius a and surface density 11 da. Accordingly, the 
potential of a solid sphere of radius A is obtained from formulae (36a, b) 
by integrating with respect to a from 0 to A. One finds (cf. p. 442) 
that 

(37a) 

(37b) 

41tA3 
([> = --11 

3r 

2 ([> - (21tA 2 - - 1tr2) 11 - 3 

The corresponding gravitational force 

(37c) f=ygrad 9 

(r> A) 

(r < A). 
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exerted by the solid sphere on a unit mass at P is directed toward the 
origin and has magnitude 

(37d) for r>A, 
41tr 
-Yll 3 

for r<A. 

In addition to the distributions previously considered, potential 
theory also deals with so-called double layers, which we obtain in the 
following way: We suppose that point charges M and - M are located 
at the points (~, 11, ~) and (~ + h, 11, ~), respectively. The potential of 
this pair of charges is given by 

<1>= M 
./(x - ~)2 + (y - 11)2 + (z _ ~)2 

M 
./(x - ~ - h)2 + (y - 11)2 + (z - ~)2 • 

If we let h, the distance between the two poles, tend to zero and at 
the same time let the charge M increase indefinitely in such a way 
that M is always equal to - Il/h, where Il is a constant, <I> tends to the 
limit 

We call this expression the potential of a dipole or doublet with its 
axis in the ~-direction and with "moment" Il. Physically it represents 
the potential of a pair of equal and opposite charges lying very close 
to one another. In the same way, we can express the potential of a 
dipole in the form 

Il:v(~)' 
where olav denotes differentiation in an arbitrary direction v, that 
of the axis of the dipole. 

If we imagine dipoles distributed over a surface S with moment­
density Il and if we assume that at each point the axis of the dipole 
is normal to the surface, we obtain an expression of the form 
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where a/av denotes differentiation in the direction of the normal 
to the surface (we can, as before, choose either direction for the 
normal) and r is the distance of the point (~, 11, ~) that ranges over the 
surface from the point (x, y, z). This potential of a double layer can be 
thought of as arising in the following way: On each side of the sur­
face and at a distance h we construct surfaces, and we give one of 
these surfaces a surface-density J.l/2h and the other a surface-density 
- J.l/2h. At an external point these two layers together create a po­
tential that tends to the expression above as h ~ o. 

h. The Differential Equation of the Potential 

We shall assume that in all our expressions the point (x, y, z) con­
sidered is at a point in space at which no charge is present, so that 
the integrands and their derivatives with respect to x, y, z are con­
tinuous. By virtue of this hypothesis we can obtain a relation that 
all the foregoing potentials satisfy, namely, Laplace's differential 
equation 

(38a) <l>xx + <1>/1/1 + <l>zz = 0, 

which is abbreviated 

(38b) ~<I> = o. 
As can easily be verified by simple calculation (p. 59), this equa­
tion is satisfied by the expression l/r. It therefore holds also for all 
the other expressions formed from l/r by summation or integration, 
since we can perform the differentiations with respect to x, y, z under 
the integral sign.! This differential equation is also satisfied by the 
potential of a double layer, for by virtue of the reversibility of the 
order of differentiation2 we find that for the potential of a single dipole 
the equation 

lObserve that the differentiatipn under the integral sign is only legitimate as long as 
r =1= 0, that is in regions where no charge is present. Laplace's equation does not have 
to hold otherwise. For example, within a solid sphere, its potential satisfies, by (37b), 
the equation 

A«I» = A(2nA 2 - .! nr2)J! = - 4nJ! =1= o. 
3 

2Note that the differentiation 8/8v refers to the variables (e, 11, ~) and the expression 
A to the variables (x, y, z). Incidentally, the function l/r, considered as a function of 
the six variables (x, y, z; e, 11, 0, is symmetrical in the two sets of variables and there­
fore satisfiell the Laplace equation 

«I»ee + «1»1111 + «1»" = 0 
with respect to the variables (e, 11. ~) also. 
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(38c) 

holds. 

Laplace's equation is also satisfied by the expression log 1I'x2 + y2 
obtained for the potential of a vertical line, as we can readily verify 
(cf. also Chapter 5, p. 569). Since this no longer depends on the variable 
z, it also satisfies the simpler Laplace's equation in two dimensions, 

(38d) ~xx + ~1I11 = o. 

The study of these and 'related partial differential equations forms 
one of the most important branches of analysis. We point out that 
potential theory is not by any means chiefly directed to the search 
for general solutions of the equation A~ = 0 but rather to the ques­
tion of the existence and to the investigation of those solutions that 
satisfy preassigned conditions. Thus, a central problem of the theory 
is the boundary value problem, in which we seek a solution ~ of 
A~ = 0 that, together with its derivatives up to the second order, 
is continuous in a region R and that has preassigned continuous 
values on the boundary of R. 

c. Uniform Double Layers 

We cannot enter here into a detailed study of potential functions,! 
that is, of functions that satisfy Laplace's equation Au = o. In this 
subject Gauss's theorem and Green's theorem (pp. 601, 608) are 
among the chief tools employed. It will be sufficient to show by some 
examples how such investigations are carried out. 

We shall first consider the potential of a double layer with constant 
moment·density J.1 = 1, that is, an integral of the form 

(39) V= IL :v(~) dcr. 

This integral has a simple geometrical meaning. Let us assume that 
each point of the surface carrying the double layer can be "seen" 
from the point P with coordinates (x, y, z), meaning that it can be 
joined to this point P by a straight line that meets the surface nowhere 
else. The surface S, together with the rays joining its boundary to the 
point P, forms a conical region R of space. We now state that the 

1a180 called harmonic functions. 
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potential of the uniform double layer, except perhaps for sign, is equal 
to the solid angle that the boundary of the surface S subtends at the 
point P. By this solid angle we mean the area of that portion of the 
spherical surface of unit radius about the point P as center that is cut 
out of the spherical surface by the rays going from P to the boundary 
of S. We give this solid angle the positive sign when the rays pass 
through the surface S in the same direction as the positive normal 
v, otherwise we give it the negative sign. 

To prove this, we recall that the function u = l/r, when considered 
not only as a function of (x, y, z) but also as a function of (~, 11, ~) 
still satisfies the Laplace equation 

We fix the point P with coordinates (x, y, z) and denote the rectangular 
coordinates in the conical region R by (~, 11, ~); we use a small sphere 
of radius p about the point Pto cut off the vertex from R;the residual 
region we call Rp. To the function u = l/r, considered as a function 
of (~, 11, ~) in the region Rp, we now apply Green's theorem (Chapter 
5, p. 608) in the form 

Here S' is the boundary surface of Rp and a/an denotes differentiation 
in the direction of the outward normal. Since flu = 0, the left side is 
zero.l IT we have chosen the positive normal direction v on S so as to 
coincide with the outward normal n, the surface integral on the right 
side consists of three parts: (1) the surface integral 

over the surface S, which is the expression V considered in (39); (2) 
an integral over the lateral surface formed by the linear rays; (3) an 
integral over a portion r p of the surface of the small sphere of radius 
p. The second part is zero, since there the normal direction n is per-

lFrom this form of Green's theorem it follows in general that the surface integral 

JJ;~d(J 
taken over a closed surface must always vanish when the function u satisfies 
Laplace's equation Au = 0 everywhere in the interior of the surface. 
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pendicular to the radius, and therefore is tangential to the sphere 
r = constant. For the inner sphere with radius p the symbol ajan is 
equivalent to -ajap, since the outward direction of the normal points 
in the direction of diminishing values of r. We thus obtain the 
equation 

or 

v - (I ~(~)da = 0 ). rp ap p 

v = - \ (( da, 
p JJrp 

where on the right we have to integrate over the portion r p of the 
small spherical surface that belongs to the boundary of Rp • We now 
write the surface element on the sphere with radius p in the form 
da = p2 dm, where dm is the surface element on the unit sphere, to 
obtain 

V= - II dm. 

The integral on the right is to be taken over the portion of the spheri­
cal surface of unit radius lying in the cone of rays, and we see at once 
that the right side has the geometrical meaning stated above; it is the 
negative of the apparent angular magnitude if the normal direction on 
S is chosen so that it points outward! from the conical region R. 
Otherwise, the positive sign is to be taken. 

If the surface S is not in the simple position relative to P described 
above but instead is intersected several times by some of the rays 
through P, we have only to divide the surface into a number of por­
tions of the simpler kind in order to see that the statement still holds 
good. The potential of the uniform double layer (of moment 1) on a 
bounded surface is therefore, except perhaps for sign, equal to the 
"apparent" magnitude that the boundary has when looked at from the 
point (x, y, z). 

For a closed surface we see by subdividing it into two bounded 
portions that our expression is equal to zero if the point P is outside 
and equal to -41t if it is inside. 

IThe negative sign is explained by the fact that with this choice of the normal direc­
tion the negative charge lies on the side of the surface facing the point P. 
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A similar argument shows in the case of two independent varia­
bles that the integral 

Ie :v (log r) ds 

along the curve C, except possibly for sign, is equal to the angle that 
this curve subtends at the point P with the coordinates (x, y). 

This result, like the corresponding result in space, can also be 
explained geometrically as follows. Let the point Q with the coordi­
nates (~, 1') lie on the curve C. Then the derivative of log r at the point 
Q in the direction of the normal to the curve is given by the equation 

a a 1 
-a (log r) = -a (log r) cos (v, r) = - cos (v, r), v r r 

where the symbol (v, r) denotes the angle between this normal and the 
direction of the radius vector r. On the other hand, when written in 
polar coordinates (r, e), the element of arc ds of the curve has the 
form 

1'2'2 de 
ds = ';x2 + ·2 de = r'V~ +.y rde = _r __ 

y - yx+ xy cos (v, r) 

(cf. Volume I, p. 351), so that the integral is transformed as follows: 

I a I1 rde I -a (log r) ds = - cos (v, r) ( ) = de. v r cos v, r 

The final integral on the right is the analytical expression for the 
angle. 

d. The Mean Value Theorem 

As a second application of Green's transformation, we prove the 
following mean value property of potential functions: 

Let u satisfy the differential equation Au = 0 in a certain region 
R. Then the value of the potential function at the center P of an arbi­
trary solid sphere of radius r lying completely in the region R is equal 
to the mean value of the function u on the surface Sr of the sphere,' that 
is, 

(40a) u(x, y, z) = 4 1 
2 11 udcr, nr Sr 
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where u(x, y, z) is the value at the center P and u the value on the sur­
face Sr of the sphere of radius r. 

To prove this we proceed as follows: Let Sp be a sphere concentric 
to, and inside of, Sr with radius 0 < p ~ r. Since tJ.u = 0 everywhere 
in the interior of Sp, by the footnote on p. 720 we have 

II ou dcr = 0, 
Sp on 

where ou/on is the derivative of u in the direction of the outward 
normal to Sp. If (~, 11, 1;) are running coordinates and if with the point 
(x, y, z) as pole we introduce spherical coordinates by the equations 

~ - x = p cos ~ sin 9, 11 - Y = p sin ~ sin 9, I; - z = p cos 9, 

the above equation becomes 

II ou(p, 9, ~) dcr = O. 
Sp op 

Since the surface element dcr of the sphere Sp is equal to p2 da, where 
da is the element of surface of the sphere S of unit radius (cf. (30e) 
p. 429), we find that 

II ou da = 0 
sop , 

where the region of integration no longer depends on p. Consequently, 

and on interchanging the order of integration and performing the 
integration with respect to p, we have 

IIs {u(r, 9, ~) - u(O, 9, ~)} da = O. 

Since u(O, 9, ~) = u(x, y, z) is independent of 9 and~, 

IIs u(r, 9, ~) dcr = u(x, y, z) IIs dcr = 41tu(x, y, z). 

Because 
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Jf u(r, 9, (J) do = \JJ u(r, 9, (J) da, 
S r Sr 

where the integral on the right is to be taken over the surface of Sr, 
the mean value property of u is proved. 

In exactly the same way, a function u oftwo variables that satisfies 
Laplace's equation Uzz + Uyy = 0 has the mean value property 
expressed by the formula 

(40b) 21tru(x, y) = f u ds, 
Sr 

where u denotes the value of the potential function on a circle Sr 
with radius r centered at the point (x, y) and ds is the element of arc 
of this circle. 

e. Boundary Value Problem for the Circle. Poisson's Integral 

A boundary value problem that we can treat rather completely is 
that of Laplace's equation in two independent variables x, y for the 
case of a circular boundary. Within the circular region x2 + y2 ~ R2 
we introduce polar coordinates (r, 9). We wish to find a function 
u(x, y) continuous within the circle and on the boundary, possessing 
continuous derivatives of the first and second order within the region, 
satisfying Laplace's equation au = 0, and having prescribed values 
u(R, 9) = f(9) on the boundary. Here we assume that f(9) is a 
continuous periodic function of 9 with sectionally continuous first 
derivatives. 

The solution of this problem, in terms of polar coordinates, is given 
by the so-called Poisson integral: 

R2 - r2J21t f(a) 
(41) u = 21t 0 R2 _ 2Rr cos (9 _ a) + r2 da. 

To prove this, we begin by constructing special solutions of 
Laplace's equations in the following way. We transform Laplace's 
equation to polar coordinates, obtaining 

1 1 au = -(rUr)r + 2 uoo = 0, r r 

and seek solutions that can be expressed in the "separated" form 
u = (J(r) ",(9), that is, as a product of a function of r and a function 
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of O. If we substitute this expression for u in Laplace's equation, the 
equation becomes 

[r~'(r)]r ","(0) 
r ~(r) = - ",(0)· 

Since the left side does not involve 0 and the right side does not in­
volve r, the two sides must each be independent of both variables, 
that is, must be equal to the same constant k. Accordingly, ",(0) 
satisfies the differential equation "," + k", = o. 

Since the function u and, hence, ",(0) must be periodic with period 
21t, the constant k is equal to n2, where n is an integer. Hence, 

",(0) = a cos nO + b sin nO, 

where a and b are arbitrary constants. 
The differential equation for ~(r), 

r29"(r) + r~'(r) - n2~(r) = 0, 

is a linear differential equation, and as we can immediately verify, 
the functions rn and rn are independent solutions. Since the second 
solution becomes infinite at the origin, while u is to be continuous 
there, we are left with the first solution ~ = rn and obtain the 
separated solutions of Laplace's equation 

rn(a cos nO + b sin nO). 

We can now generate other solutions by linear combination of such 
solutions according to the principle of superposition (cf. p. 684) 

~ ao + ~ rn(an cos nO + bn sin nO). 

Even an infinite series of this form will be a solution, provided that 
the series converges uniformly and can be differentiated term by 
term twice in the interior of the circle. 

The Fourier expansion of the prescribed boundary function f(O) 

1 ~ 
f(O) = -2 ao + ~ (an cos nO + bn sin nO), 

n-l 

regarded as a series in 0, certainly converges absolutely and uniformly 
(cf. Volume I, p. 604). Hence, the series 
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1 00 rn 
u(r, 0) = -2 ao + ~ -R (an cos nO + bn sin nO) 

n=l n 

a fortiori converges uniformly and absolutely in the interior of the 
circle. This series, however, can be differentiated term by term, 
provided r < R, because the resulting series again converge uni­
formly (cf. Volume I, p. 539). The function u(r, 0) is, therefore, a 
potential function. Since it has the prescribed value on the boundary, 
it is a solution of our boundary value problem. 

We can reduce this solution to the integral form (41) by introducing 
the integrals for the Fourier coefficients, 

1 f.2" 1 f2" an = - f(a) cos na da, bn = - f(a) sin na da. 
1t 0 1t 0 

Since the convergence is uniform, we can interchange integration 
and summation and obtain 

1J2" {1 00 rn } u(r, 0) = - f(a) -2 + ~ R cos n(O - a) da. 
1t 0 n-l n 

Poisson's integral formula will be proved if we can establish the 
relation 

1 00 rn 1 R2-r2 
2 + ~ Rn cos nt = 2 R2 - 2Rr cos 't + r2 . 

But this can be proved by the method used in Volume I (p. 586), that 
is, by reduction to a geometric series, using the complex represen­
tation 

1 cos n't = - (eint + e-int). 
2 

We leave the details of the proof to the reader. 

Exercises 6.7 

1. By applying inversion to Poisson's formula, find a potential function 
u(x, y) that is bounded in the region outside the unit circle and assumes 
given values {(6) on its boundary (the so-called outer boundary value prob­
lem). 

2. Find (a) the equipotential surfaces and (b) the lines of force for the 
potential of the segment x = y = 0, - 1 ~ z ~ + I, of constant linear 
density (J.. 
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3. Prove that if the values of a harmonic u(x, y, z) and of its normal deriva­
tive au/an are given on a closed surface S, then the value of u at any 
interior point is given by the expression 

u(x,y,z) = l rr (1 au _ u a(l/r») dcr, 
41t' JJs r an an 

where r is the distance from the point (x, y, z) to the variable point of in­
tegration (apply Green's theorem to the functions u and l/r). 

6.8 Further Examples of Partial Differential Equations from 
Mathematical Physics 

a. The Wave Equation in One Dimension 

The phenomena of wave propagation (e.g., of light or sound) are 
governed by the so-called wave equation. We begin by considering the 
simple idealized case of a so-called one-dimensional wave. Such a 
wave involves the magnitude u of some property-for example, pres­
sure, position of a particle, or intensity of an electric field-which 
depends not only on the coordinate of position x (we take the direc­
tion of propagation as the x-axis) but also on the time t. 

A wave function u(x, t) then satisfies a partial differential equation 
of the form 

(42a) 1 
Uxx = a2 Utt, 

where a is a constant depending on the physical nature of the me­
dium. I 

We can find solutions of equation (42a) of the form 

u = f(x - at), 

where f(~) is an arbitrary function of ~, which we only assume to have 
continuous derivatives of the first and second order. If we put ~ = 
x - at, we see at once that our differential equation is actually satisfied, 
for 

Uxx = f"(~), Utt = a2f"(~). 
In the same way, using an arbitrary function g(~), we obtain a solu­
tion of the form 

IFor example, for transverse vibrations of a string, u represents the lateral displace­
ment of a particle, and a2 = TIp, where T is the tension and p the mass per unit 
length. 
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u = g(x + at). 

Both solutions represent wave motions propagated with the ve­
locitya along the x-axis; the first represents a wave traveling in the 
positive x-direction, the second a wave traveling in the negative x­
direction. Let u = f(x - at) have the value U(XI, tl) at any point Xl 

at time tt; then U has the same value at time t at the point x = Xl -

a(t - tl), for then X - at = Xl - atl, so that f(x - at) = f(XI - atl). 
In the same way we can see that the function g(x + at) represents 
a wave traveling in the negative x-direction with velocity a. 

We shall now solve the following initial value problem for this wave 
equation. From all possible solutions of the differential equation we 
wish to select those for which the initial state (at t = 0) is given by 
two prescribed functions u(x,O) = tfi(x) and Ut(x,O) = ",(x). To solve 
this problem, we merely write 

(42b) U = f(x - at) + g(x + at) 

and determine the functions f and g from the two equations 

tfi(x) = f(x) + g(x) , 

1 
- ",(x) = - ('(x) + g'(x). 
a 

The second equation gives 

1 IX c + - ",(t) d. = - f(x) + g(-:.,), 
a 0 

where c is an arbitrary constant of integration. From this we readily 
obtain the required solution in the form 

(42c) U(x, t) = tfi(x + at) + tfi(x - at) + -.l rx+at ",(.) d •. 
2 2a Jx-at 

The reader should prove for himself, by introducing new independ· 
ent variables ~ = x - at, 11 = x + at instead of x and t, that no 
solutions of the differential equation exist other than those given. 

b. The Wave Equation in Three-Dimensional Space 

In space of three dimensions the wave function U depends on four 
independent variables, namely, the three space coordinates x, y, z 
and the time t. The wave equation is then 



(43a) 

or, more briefly, 

(43b) 
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1 
Uzz + UlIlI + Uzz = 2 Utt, a 

1 
Au = 2Utt. 

a 

Here again we can easily find solutions that represent the prop· 
agation of a plane wave in the physical sense. Namely, any function 
{(~) that is twice continuously differentiable yields a solution of the 
differential equation if we make ~ a linear expression of the form 

~ = ax + ~y + yz ± at, 

whose coefficients satisfy the relation 

For, since 

Au = (a2 + ~2 + y2)f"(~) = f"(~) 

and 

Utt = a2 f"(~), 

we see that U = {(ax + ~y + yz ± at) really is a solution of the 
equation (43b). 

If q is the distance of the point (x, y, z) from the plane ax + ~y + yz 
= 0, we know by analytical geometry (cf. p. 135) that 

q = ax + ~y + yz. 

Hence, in the first place, we see from the expression 

U = {(q + at) 

that at all points of a plane at a distance q from the plane ax + ~y + 
yz = 0 and parallel to it the property that is being propagated (rep­
resented by u) has the same value at a given moment. The property 
is propagated in space in such a way that planes parallel to ax + 
~y + yz = 0 are always surfaces on which the property is constant; 
the velocity of propagation is a in the direction perpendicular to the 
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planes. In theoretical physics a propagated phenomenon of this kind 
is referred to as a plane wave. 

A case of particular importance is that in which the property varies 
periodically with time. If the frequency of the vibration is ro, a phe­
nomenon of this kind may be represented by 

U = exp[ik(ax + ~y + yz + at)] = exp[ik(ax + ~y + yz)] exp(irot), 

where k/21t is the reciprocal of the wavelength A.: k = 21t/A. = ro/a. 
The wave equation with four independent variables has other 

solutions, which represent spherical waves spreading out from a given 
point, say the origin. A spherical wave is defined by the statement that 
the property is the same at a given instant at every point of a sphere 
with its center at the origin, that is, that U has the same value at 
all points of the sphere. To find solutions satisfying this condition, 
we transform ..1u to polar coordinates (r, e, rfi), and then assume that 
u depends only on rand t but not on e and rfi. If we accordingly 
equate the derivatives of u with respect to e and rfi to zero (cf. p. 610), 
the differential equation (43b) becomes 

or 

2 1 
Urr + - Ur = 2 Utt r a 

1 
(ru)rr = 2 (ru)tt. 

a 

For the moment we replace ru by wand observe that w is a solution 
of the equation 

1 
Wrr = 2Wtt, a 

which we have already discussed; hence, w must be expressible in the 
form 

Consequently, 

(43c) 

w = f(r - at) + g(r + at). 

1 
U = - [f(r - at) + g(r + at)]. 

r 
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The reader should now verify for himself directly that a function of 
this type is actually a solution ofthe differential equation (43b). 

Physically the function u = f(r - at)/r represents a wave prop­
agated with velocity a from a center outward into space. 

c. Maxwell's Equations in Free Space 

As a concluding example we shall discuss the system of equations 
known as Maxwell's equations, which form the foundations of 
electrodynamics. However, we shall not attempt to approach the 
equations from the physical point of view but shall merely use them 
to illustrate the various mathematical concepts developed above. 

The electromagnetic state in free space is determined by two 
vectors given as functions of position and time, an electric vector 
E with components Et, E2, Ea and a magnetic vector H with com­
ponents Ht, H2, Ha. These vectors satisfy Maxwell's equations: 

(44a) 

(44b) 

1 aH 
curlE+- -=0 

c at ' 

1 aE 
curlH--- -=0 

c at ' 

where c is the velocity of light in free space. Expressed in terms of 
the components of the vectors, the equations are: 

and 

aEa _ aE2 + 1.- aHt = 0 
ay az c at ' 

aEt _ aEa + 1.- aH2 = 0 
az ax c at ' 

aE2 _ aEt + 1.- aHa = 0 
ax ay c at ' 

aHa _ iiH2 _ 1_ aEt = 0 
ay az c at ' 

aHt _ ~!la _ 1.- aE2 = 0 
az ax c at ' 

aH2 _ aHt _ 1.- aEa = 0 
ax ay c at ' 
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We thus have a system of six partial differential equations of the 
first order, that is, of equations involving the first partial derivatives 
of the components with respect to the space coordinates and to the 
time. 

We shall now deduce some distinctive consequences of Maxwell's 
equations. If we form the divergence of both equations, and remember 
that div curl A = 0 (see p. 211) and that the order of differentiation 
with respect to the time and formation of the divergence is inter~ 
changeable, we oQtain from (44a, b) 

(45a) 

(45b) 

div E = constant, 

div H = constant; 

this is, the two divergences are independent of the time. In particular, 
if initially div E and div H are zero, they remain zero for all time. 

We now consider any closed surface S lying in the field and take 
the volume integrals 

III div E dt 

and 

fffdivHdt 

throughout the volume enclosed by it. If we apply Gauss's theorem 
(p. 601) to these integrals, they become integrals of the normal 
components En, Hn over the surface S. That is, the equations 

div E = 0, div H = 0 

give 

IIs En da = 0, IIs Hn da = O. 

In electrical theory, surface integrals 

or 

are called the electric or magnetic /lux across the surface S, and our 
result may accordingly be stated as follows: 
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The electric flux and the magnetic flux across a closed surface, 
subject to the zero initial conditions on diu E and diu H, are zero. 

We obtain a further deduction from Maxwell's equations if we 
consider a portion of surface S bounded by the curve r, as follows: 

If we denote the components of a vector normal to the surface S by 
the suffix n, it immediately follows from Maxwell's equations (44a, b) 
that 

(curl E)n = _ ! a~n. 
(curl H)n = + ! a:en. 

If we integrate these equations over the surface with surface element 
dcr, we can transform the left sides into line integrals taken round the 
boundary r by Stokes's theorem (cf. p. 611). Doing this, and taking 
the differentiation with respect to t outside the integral sign, we 
obtain the equations 

L Es ds = - ! :t IIs Hn dcr, 

L Hs ds = + ! :t IL En dcr, 

where the symbols Es and Hs under the integral signs on the left 
are the tangential components of the electric and magnetic vectors in 
the direction of increasing arc and the sense of description of the 
curve r in conjunction with the direction of the normal n forms a 
right-handed screw. 

The facts expressed by these equations may be expressed in words 
as follows: 

The line integral of the electric or the magnetic force round an 
element of surface is proportional to the rate of change of the electric 
or magnetic flux across the element of surface, the constant of propor­
tionality being -11c or + lie. 

Finally, we shall establish the connection betweene Maxwell's 
equations and the wave equation. We find, in fact, that each of the 
vectors E and H, that is, each component of the vectors, satisfies the 
wave equation 

1 
flu = 2 Utt. c 
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To show this, we eliminate the vector H, say, from the two equations, 
by differentiating the second equation with respect to the time and 
substituting for aH/at from the first equation. 

It then follows that 

1 a2E 
c curl (curl E) + C at2 = o. 

If we now use the vector relation 1 

(46) curl (curl A) = - ~A + grad(div A), 

and recall that 

div E = 0, 

we at once obtain 

(47a) 

In the same way we can show that the vector H satisfies the same 
equation: 

(47b) 

Exercises 6.S 

1. Integrate the following partial differential equations: 

(a) Uxy = 0 

(b) Uxyz = 0 

(c) Uxy = a(x,y). 

2. Find a solution of the equation 

Uxy= U, 

for which u(x, 0) = u(O, y) = 1, in the form of a power series. 
3. Find the partial differential equation satisfied by the two-parameter 

family of spheres 

Z2 = 1 - (x - a)2 - (y - b)2. 

4. Prove that if 

lThis vector relation follows immediately from its expression in terms of coordinates. 
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Z = u(x,y, a, b) 

is a solution depending on two parameters a, b, of the partial differential 
equation of the first order 

F(x, y, Z, Zx, Zy) = 0, 

then the envelope of everyone-parameter family of solutions chosen 
from Z = u(x, y, a, b) is again a solution. 

5. (a) Find particular solutions of the equation 

ux2 + Uy2 = 1 

of the form U = f(x) + g(y). 
(b) Find particular solutions of the equation 

UxUy = 1 

of the forms U = f(x) + g(y) and u = f(x) g(y). 
(c) Use the result of Exercise 4 to obtain other solutions of the equa­

tion in part (b) by putting b = ka in 

u = ax + ly + b, 

where k is a constant. 
6. Solve the equation 

a 

UXX + 5uxy + 6uyy = eX+Y 
by reducing it to one of the form of Exercise l(c). 

7. Prove that if K is a homogeneous function of x, y, Z the equation 

~ (KOU) + ~ (KOU) + ~ (KOU) = ° 
ox ox oy oy oz oz 

has a solution that is a power of (x2 + y2 + Z2). 

8. Determine the solutions of the equation 

that are also solutions of 

o2Z o2Z 
-=a2 -
ot2 ox2 

(::r = a2 (~=r-
9. (a) Obtain particular solutions of the wave equation 

1 UXX = c2 Utt 

in the form u(x, t) = ¢'(x)~(t) satisfying the boundary conditions 

u(O, t) = u(rc, t) = 0. 

(b) Express the solution of part (a) in the form f(x + ct) + g(x - ct). 

(c) Plucked string problem: By expanding f(x) over the interval [0, rc] 
in a Fourier sine series (which defines f( -x) = -f(x) for 0 ~ x ~ rc), 



796 Introduction to Calculus and Analysis, Vol. II 

find a solution of the foregoing type that satisfies the initial con· 
ditions, for 0 ;;;::;; x ;;;::;; 7t, 

where 

(i) 

(ii) 

U(x,O) = f(x) 

Ut(x,O) = 0, 

{
X, 0 ;;;::;; x ;;;::;;7t/2 

f(x) = 
7t - x, 7t/2 ;;;::;; x ;;;::;; 7t 
~ 

f(x) = .E an sin nx. 
n=l 

10 . Let u(x, t) denote a solution of the wave equation 

1 
Uxx = a 2 Utt (a> 0) 

that is twice continuously differentiable. Let tfo(t) be a given function 
that is twice continuously differentiable and such that 

tfo(O) = tfo'(O) = tfo"(O) = O. 

Find the solution U for x ~ 0 and t ~ 0 that is determined by the bound· 
ary conditions 

U(x,O) = Ut(x,O) = 0 

u(O, t) = tfo(t) 

(x ~ 0), 

(t ~ 0). 



CHAPTER 
7 

Calculus of Variations 

7.1 Functions and Their Extrema 

In the theory of ordinary maxima and minima of a differentiable 
function {(Xl, . . ., Xn) of n independent variables, the necessary 
condition (pp. 326-7) for the occurrence of an extreme value at a 
point of the domain of { is 

(1) d{= 0 or grad { = 0 or {Xi = 0 (i = 1, . . ., n). 

These equations express the stationary character of the function { at 
the point in question. Whether these stationary points are actually 
maximum or minimum points can only be decided upon further in­
vestigation. In contrast to the equations (1), sufficient conditions for 
extrema take the form of inequalities (see p. 349). 

The calculus of variations is likewise concerned with the problem 
of extreme values (respectively stationary values) but in a completely 
new situation. Now the functions whose extrema we seek no longer 
depend on one independent variable or a finite number of independent 
variables within a certa n region but are so-called {unctionals, or 
functions of functions. Specifically, in order to determine them we 
must know one or more functions or curves (or surfaces, as the case 
may be), the so-called argument {unctions. 

General attention was first drawn to problems of this type in 1696 
by John Bernoulli's statement of the brachistochrone problem. 

In a vertical X, y-plane a point A = (xo, yo) is to be joined to a point 
B = (Xl, Yl), such that Xl > xo, YI > Yo, by a smooth curve y = u(x) 
in such a way that the time taken by a particle sliding without friction 
from A to B along the curve under gravity (which is taken as acting 
in the direction of the positive y-axis) is as short as possible. 

737 
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The mathematical expression of the problem is based on the physi­
cal assumption that along such a curve y = ,(x) the velocity ds/dt 
(s being the length of arc of the curve) is proportional to ./2g(y - yo), 
the square root of the height of fall. The time taken in the fall of the 
particle is therefore given by 

1 :1:1 dt ds 1 1:1:1 ./1 + y'2 
T= - -dx = ----= dx :1:0 ds dx ./2g:l:o ./y - yo 

(cf. Volume I, p. 408). If we drop the unimportant factor ./2g and take 
yo = ° (which we can do without loss of generality), we obtain the 
following problem: Among all continuously differentiable functions 
y = ,(xo), y ~ ° for which ~xo) = 0, ,(Xl) = Yl, find the one for 
which the integral 

(2a) 

has the least possible value. 
On p. 751 we shall obtain the result-very surprising to Bernoulli's 

contemporaries-that the curve y = ,(x) must be a cycloid. Here 
we wish to emphasize that Bernoulli's problem and the elementary 
problems of maxima and minima are quite different. The expression 
I {s6} depends on the whole course of the function s6. Since s6 cannot 
be described by the values of a finite number of independent variables, 
I is a function of a new kind. We indicate its character of "function 
of a function s6(x)" by means of braces. 

The following is another problem of a similar nature: Two points 
A = (xo, yo) and B = (Xl, YI), where Xl > xo, yo > 0, YI > 0, are to be 
joined by a curve Y = u(x) lying above the x-axis, in such a way that 
the area of the surface of revolution formed when the curve is rotated 
about the x-axis is as small as possible. 

Using the expression given on p. 429 for the area of a surface of 
-revolution and dropping the unimportant factor 2x, we have the 
following mathematical statement of the problem: Among all con­
tinuously differentiable functions y = ,(x) for which ,(xo) = Yo, 
t)(XI) = YI, ,(x) > 0, find the one for which the integral 

(2b) I{,} = PI y./1 + y'2dx 
J:l:O 

[y = t)(x)] 

has the least possible value. It will be found that the solution is a 
catenary. 
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The elementary geometrical problem of finding the shortest curve 
joining two points A and B in the plane belongs to the same category. 
Analytically, the problem is that of finding two functions x(t), y(t) 
of a parameter t in an interval to ;:;;; t ;:;;; h, for which the values 
x(to) = Xo, x(h) = Xl and y(to) = Yo, y(tl) = YI are prescribed and for 
which the integral 

(2c) rtz Ji.;z + '2 dt 
Jto Y 

( • _ dx • _ dy ) 
x- dt'y - dt 

has the least possible value. The solution is, of course, a straight 
line. 

Less trivial is the solution of the corresponding problem of finding 
the geodesics on a given surface G(x, y, z) = 0, that is, of joining two 
points on the surface with coordinates (xo, Yo, zo) and (Xl, YI, Zl) by the 
shortest possible curve lying in the surface. In analytical language, 
we have the following problem: Among all triads of functions x(t), 
y(t), z(t) of the parameter t that make the equation 

(3a) G(x, y, z) = 0 

an identity in t and for which x(to) = Xo, y(to) = Yo, z(to) = Zo and x(h) 
= Xl, y(h) = YI, z(h) = Zl, find that for which the integral 

(3b) 

has the least possible value. 
The isoperimetric problem of finding a closed curve of given length 

enclosing the largest possible area, already discussed on p. 366, 
also belongs to the same category. We have proved above that the 
solution is a circle. I 

The general formulation of the type of problem encountered here 
is as follows: We are given a function F(x, {I, (l) of three arguments 

lThe proof given there applied only to convex curves; the following remark,however, 
enables us to extend the result immediately to any curve: We consider the convex 
hull of the curve C (i.e., the smallest convex set enclosing C). Its boundary K consists 
of convex arcs of C and rectilinear portions of tangents to C that touch C at two 
points and bridge over concave parts of C by straight lines. It is evident that the area 
of K exceeds that of C, provided C is not convex, and, on the other hand, that the 
perimeter of K is less than that of C. If we now make K expand uniformly so that it 
always retains the same shape, until the resultingcurveK' has the prescribed per­
imeter, K' will be a curve of the same perimeter as C but enclosing a greater area. 
Hence, in the isoperimetric problem we may from the outset confine ourselves to 
convex curves, in order to obtain the maximum area. 
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that in the region of the arguments considered is continuous and 
has continuous derivatives of the first and second orders. If in this 
function F we replace (I by a function y = (I(x) and (I' by the de­
rivative y' = (I'(x), F becomes a function of x, and an integral of the 
form 

(4) I X 1 
I {(I} = F(x, y, y') dx 

xo 

becomes a definite number depending on the function y = (I(x); 
that is, it is a "functional evaluated for the function (I(x)." 

The fundamental problem of the calculus of variations is the 
following: 

Among all the functions that are defined and continuous and possess 
continuous first and second derivatives in the interval Xo ~ x ~ Xl 

and for which the boundary values yo = (I(xo) and YI = (I(XI) are 
prescribed find the one for which the functional I {(I} has the least 
possible value (or the greatest possible value). 

In discussing this problem, an essential point is the nature of the 
admissibility conditions imposed on the functions (I(x). Forming the 
value I{(I} merely requires that when (I(x) is substituted, F shall 
be a sectionally continuous function of x, and this is assured if the 
derivative rf/(x) is sectionally continuous. But we have made the 
conditions for admission more stringent by requiring that the first 
derivatives, and even the second derivatives, of the functions (I(x) 
shall be continuous. The field in which the maximum or minimum is 
to be sought is of course thereby restricted. It will, however, be found 
that this restriction does not, in fact, affect the solution, that is, that 
the function that is most favorable when the wider field is available 
will always be found in the more restricted field of functions with 
continuous first and second derivatives. 

Problems of this type occur very frequently in geometry and 
physics. Here we mention only one example: the fundamental princi­
ple of geometrical optics. We consider a ray of light in the x, y-plane 
and assume that the velocity of light is a given function v(x, y, y') 
of the point (x, y) and of the direction y' [y = (I(x) being the equation 
of the light-path and y' = (I'(x) the corresponding derivative]. Then 
Fermat's principle of least time states: 

The actual path of a ray of light between two given points A, B is 
such that the time taken by the light in traversing it is less than the 
time that light would take to traverse any other path from A to B. 



Calculus of Variations 741 

In other words, if t is the time and s the length of arc of any curve 
y = tjJ(x) joining the points A and B, the time that light would take 
to traverse the portion of curve between A and B is given by the 
integral 

(5) JXl dt ds LXI ~1 + y'2 I{tjJ} = - -dx = dx. 
xo ds dx xo v(x, y, y') 

The actual path of the light is determined by the function y = tjJ(x) 
for which this integral has the least possible value. 

We see that the optical problem of finding the light ray is a special 
case of the general problem stated above, corresponding to 

F = _~_1_+,--,,--Y'_2 
V 

In most optical cases the velocity of light v is independent of the 
direction and is merely a function of position v(x, y). 

7.2 Necessary Conditions for Extreme Values of a Functional 

a. Vanishing of the First Variation 

Our object is to find necessary conditions that a function y = tjJ(x) 
may yield a maximum or minimum or, to use a general term, an ex­
treme value, of the integral I {tjJ} defined by (4). We proceed by a 
method quite analogous to that used in the elementary problem of 
finding the extreme values of a function of one or more variables. We 
assume that y = tjJ = u(x) is the solution. Then we have to express 
the fact that (for a minimum) I must increase when u is replaced by 
another admissible function tjJ. Moreover, because we are merely 
concerned with obtaining necessary conditions, we may confine our­
selves to the consideration of any special class of functions tjJ that 
are close to u, that is, functions for which the absolute value of the 
difference tjJ - u remains between prescribed bounds. 

We think of the function u as a member of a one-parameter family 
with parameter e, constructed as follows: We take any function T](x) 
that vanishes on the boundary of the interval-that is, for which 
T](xo) = 0, T](Xl) = o-and that has continuous first and second 
derivatives everywhere in the closed interval. We then form the 
family of functions 

tjJ(x, e) = u(x) + eT](x). 
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The expression t11(x) = ou is called a variation of the function u. 
[since 11(X) = atjJ/at, the symbol 0 denotes the differential obtained 
when t is regarded as the independent variable and x as a parameter.] 
Then, if we regard the function u as well as the function 11 as fixed, 
the value of the functional 

JXI 
J{u + t11} = G(E) = F(x, u + E11, u' + E11') dx 

xo 

becomes a function of t; and the postulate that u shall give a minimum 
of J {tjJ} implies that the function above shall possess a minimum for 
E = 0, so that as necessary conditions we have the equation 

(6a) G'(O) = 0 

and also the inequality 

(6b) G"(O) ~ O. 

The corresponding necessary conditions for a maximum are the 
same equation G'(O) = 0 and the reversed inequality G"(O) ~ O. 
The condition G'(O) = 0 must be satisfied for every function 11 that 
satisfies the above conditions but is otherwise arbitrary. 

Putting aside the question of discriminating between maxima and 
minima, we say that if a function u satisfies the equation G'(O) = 0, 
for all functions 11, the integral J is stationary for tjJ = u. If, as before, 
we use the symbol 0 to denote differentiation with respect to E, we 
also say that the equation 

OJ = EG'(O) = 0, 

when satisfied by a function tjJ = u and arbitrary 11, expresses the 
stationary character of 1. The expression 

(6c) EG'(O) = E {dd r XI F(x, u + E11, u' + E11') dX} 
E Jxo &=0 

is called the variation or, more accurately, the first variation,1 of the 
integral. Stationary character of an integral and vanishing of the first 
variation, therefore, mean exactly the same thing. 

1 From this comes the use of the term calculus of variations, which is meant to indicate 
that in this subject we are concerned with the behavior of functions of a function 
when this independent function, or argument function, is made to vary by altering a 
parameter s. 
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Stationary character is necessary for the occurrence of maxima or 
minima, but as in the case of ordinary maxima or minima, it is not a 
sufficient condition for the occurrence of either of these possibilities. 
We shall not treat the problem of sufficiency here; in what follows, 
we confine ourselves to the problem of stationary character. 

Our main object is to transform the condition G'(O) = 0 for the 
stationary character of the integral in such a way that it becomes a 
condition for u only and no longer contains the arbitrary function 11. 

Exercises 7.2a 

1. In connection with the brachistochrone problem (see pp. 737-738), cal­
culate the time of fall when the points A and B are joined by a straight 
line. 

2. Let the velocity of a particle with spherical coordinates (r, 6, ifJ) moving 
in three-dimensional space be v = Ilf(r). What time does the particle take 
to describe the portion of a curve given by a parameter a [the coordinates 
of a point on the curve being r(a), 6(a), ifJ(a)] between the points A and B? 

b. Derivation 01 Euler's Differential Equation 

The fundamental criterion of the calculus of variations is con­
stituted by the following theorem: 

Necessary and sufficient for the integral 

(7a) I {s6} = r Xl F(x, s6, s6') dx 
Jxo 

to be stationary when s6 = u is that u shall be an admissible function 
satisfying Euler's differential equation 

(7b) d 
L[u] = Fu - dxFu' = 0, 

or, in full, 

(7c) 

To prove this we note that we can differentiate the expression 

I X 1 
G(&) = F(x, u + &11, u' + &11') dx 

xo 

with respect to & under the integral sign (cf. p. 74), provided that 
the differentiation yields a function of x that is continuous or at least 
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sectionally continuous. In this case, on putting u + Ell = Y and dif­
ferentiating, we obtain under the integral sign the expression llFy + 
11' Fy', which, owing to the assumptions made about f, u, and 11, satis­
fies the conditions just stated. Hence, we immediately obtain 

(7d) 0'(0) = rZ1 [l1Fu(x, u, u') + 11' Fu'(x, u, u')] dx. Jzo 

For subsequent purposes, we note that in deriving this equation 
we have used nothing beyond the continuity of the functions u and 
TJ and the sectional continuity of their first derivatives. In this 
equation the arbitrary function appears under the integral sign in a 
twofold form, namely, as TJ and TJ'. We can, however, immediately get 
rid of TJ' by integration by parts; we have 

for by hypotheses TJ(xo) and TJ(Xl) vanish. In this integration by parts 
we have to assume that the expression (dldx)Fu' is defined and in­
tegrable, but this is certainly the case since we assumed continuity 
of the second derivatives of F. Hence, if we write 

(7e) 

for brevity, we have the equation 

(7f) l Zl 
TJL[u] dx = O. 

zo 

This equation must be satisfied for every function TJ that satisfies our 
conditions but is otherwise arbitrary. From this, we conclude that 

(7g) L[u] = 0, 

by virtue of the following: 

LEMMA I. If a function C(x) that is continuous in the interval under 
consideration satisfies the relation 

I ZI 
TJ(x) C(x) dx = 0 

zo 

for an arbitrary function l1(x) such that l1(xo) = l1(Xl) = 0 and l11/(X) 
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is continuous, then C(x) = 0 for every value of x in the interval. (The 
proof of this lemma will be postponed to p. 747.) 

We could, however, obtain condition (7g) in a different way,l by 
getting rid of the term in 1"\ in the quation 

by integration by parts, for if we write Fu' = A, Fu = b = B' for 
brevity and remember the boundary condition for 1"\, on integrating 
by parts we obtain 

I X1 IX1 I X1 1"\ Fu dx = 1"\ B' dx = - 1"\'B dx. 
xo xo Xo 

If we put I;; = 1"\', we have, in analogy to (7f), the condition 

(7h) I X1 I;;(A - B) dx = O. 
xo 

In deriving this formula we need not make any assumptions about 
the second derivatives of 1"\ and u. On the contrary, it is sufficient to 
assume that fJ (or u and 1"\) are continuous and have sectionally con­
tinuous first derivatives. Now equation (7h) must hold, not, it is true, 
for any arbitrary (sectionally continuous) function I;; but only for 
those functions I;; that are derivatives of a function 1"\(x) satisfying our 
conditions at the end points. However, if I;;(x) is any given sectionally 
continuous function satisfying the relation 

(7i) I X1 
I;;(x) dx = 0, 

xo 

we can put 

1"\ =Ix I;;(t) dt; 
xo 

we have then constructed an admissible 1"\, for 1"\' = I;; and ll(xo) = 
1"\(Xl) = O. We thus obtain the following result: 

A necessary condition that the integral should be stationary is 

(7j) r Xl I;; (A - B) dx = 0, 
Jxo 

IThe first method is Lagrange's, and the second, P. Du Bois Reymond's. 
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where ~ is an arbitrary sectionally continuous function merely satisfy­
ing the condition (7i). 

We now require the help of the following: 

LEMMA II. If a sectionally continuous function Sex) satisfies the 
condition 

(8a) I X! 
~s dx = 0, 

xo 

for all functions ~(x) that are sectionally continuous in the interval 
and for which 

(8b) I X! 
~dx = 0, 

xo 

then Sex) is a constant c. 

This lemma will also be proved below on p. 747. If meanwhile we 
assume its truth, it follows from (7h)-if we substitute the above ex­
pressions for A and B-that 

rx Fu dx + c = Fu'. 
Jxo 

Since Fu is sectionally continuous, the left side regarded as an in­
definite integral may be differentiated with respect to x and has F u 

as its derivative; the same is therefore true of the right side. Hence, 
the expression (d/dx) Fu' for the supposed solution u exists, and the 
equation 

(9a) d 
Fu = dx Fu' 

holds at all points of continuity of u'. 
Thus, Euler's equation remains the necessary condition for an 

extreme value, or the condition that the integral should be stationary, 
when the class of admissible functions ~(x) is extended from the 
outset by requiring only sectional continuity of the first derivative 
of ~(x). 

Euler's equation is an ordinary differential equation of the second 
order. Its solutions are called the extremals of the minimum problem. 
To solve the minimum problem, we must find among all the extremals 
that one that satisfies the prescribed boundary conditions. 
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If Legendre's condition 

(9b) 

is satisfied for ~ = u(x), the differential equation can be brought 
into the "regular" form u" = {(x, u, u'), where the right side is a 
known expression involving x, u, u'. 

c. Proofs of the Fundamental Lemmas 

We now prove the two lemmas used above. To prove Lemma I, we 
assume that at some point, say x = ~, C(x) is not zero and is positive. 
Then, since C(x) is continuous, we can certainly mark off a subinter­
val of (xo, Xl), 

(9c) 

within which C(x) remains positive. We now choose a twice con­
tinuously differentiable TJ, positive in the interior of this subinterval 
and zero elsewhere, say, by setting for x in (9c) 

TJ(x) = (x - ~ + a)4 (x - ~ - a)4 = {(x - ~)2 - a2} 4. 

This function TJ certainly fulfills all the prescribed conditions; TJ(x)C(x) 
is positive inside the subinterval and zero outside it. The integral 

I XI 
TJC dx 

xo 

therefore cannot be zero.1 Since this contradicts our hypothesis, C(1;) 
cannot be positive. For the same reasons, C(~) cannot be negative. 
Hence, C(~) must vanish for all values of ~ within the interval, as 
was stated in the lemma. 

To prove Lemma II, we note that our assumption (8b) about I;;(x) 
immediately leads to the relation 

(10) I x! 
I;;(x) {S(x) - c} dx = 0, 

xo 

where c is an arbitrary constant. We now choose c in such a way that 
S(x) - c is an admissible function I;;(x); that is, we determine c by the 
equation 

1 The integral of a continuous nonnegative function is positive except when the 
integrand vanishes everywhere; this follows immediately from the definition of in­
tegral. 
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o = ~ dx = {S(x) - c} dx = S(x) dx - C(XI - xo). I~ I~ I~ 
XO XO XO 

Substituting this value of C in equation (10) and taking ~= S(x) - c, 
we at once have 

I XI 

xo 
{S(x) - cp dx = o. 

Since by hypothesis the integrand is continuous, or at least sectional­
ly continuous, it follows that 

S(x) - c = 0 

is an identity in x, as was stated in the lemma. 

d. Solution of Euler's Differential Equation in Special Cases. 
Examples. 

To find the solutions u of the minimum problem, we must find a 
particular solution of Euler's differential equation for the interval 
Xo ~ x ~ Xl that assumes the prescribed boundary values yo and YI 

at the end points. Since the complete integral of Euler's differential 
equation of the second order contains two constants of integration, 
we expect to determine a unique solution by making these two con­
stants fit the boundary conditions, the latter giving two equations 
that the constants of integration must satisfy. 

In general, it is not possible to solve Euler's differential equation 
explicitly in terms of elementary functions or quadratures, and we 
have to be content to show that the variational problem does reduce to 
a problem in differential equations. On the other hand, for important 
special cases and, in fact, for most of the classical examples, the 
equation can be solved by means of quadratures. 

The first case is that in which F does not contain the derivative 
y' = (/ explicitly: F = F(t/J, x). Here Euler's differential equation 
is simply Fu(u, x) = 0; that is, it is no longer a differential equation 
at all but forms an implicit definition of the solution y = u(x). Here, 
of course, there is no question of integration constants or the pos­
sibility of satisfying boundary conditions. 

The second important special case is that in which F does not 
contain the function y = t/J(x) explicitly: F = F(y', x). Here Euler's 
differential equation is (d/dx) (Fu') = 0, which at once gives 

Fu'=c, 
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where c is an arbitrary constant of integration. We may use this 
equation to express u' as a function f(x, c) of x and c, and we then 
have the equation 

u' = f(x, c), 

from which by a simple integration (quadrature) we obtain 

u = So x f(~, c) d~ + a; 

that is, u is expressed as a function of x and c, together with an ad­
ditional arbitrary constant of integration a. In this case, therefore, 
Euler's differential equation can be completely solved by quadrature. 

The third case, which is the most important in examples and 
applications, is that in which F does not contain the independent 
variable x explicitly: F = F(y, y'). In this case, we have the following 
important theorem: 

If the independent variable x does not occur explicitly in the varia­
tional problem, then 

(11) E = F(u, u') - u' Ff/,1(u, u') = c 

is an integral of Euler's differential equation. That is, if we substitute 
in this expression a solution u(x) of Euler's differential equation for 
F, the expression becomes a constant independent of x. 

The truth of this statement follows at once if we form the derivative 
dE/dx. We have 

dE _ F ' + F" " F '2 F ' "F dx - uU u'U - U u' - U uu' - U U u'u', 

or by (7c) 

dE 
dx = u' L[u] = 0; 

hence, for every solution u of Euler's differential equation, we have 
E = c, where c is a constant. 

If we think of u' as calculated from the equation E = c, say u' = 
f(u, c), a simple quadrature applied to the equation 

dx 1 
du = f(u, c) 
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gives x = g(u, c) + a (where a is another constant of integration); 
that is, x is expressed as a function of u, c, and a. By solving for u, 
we then obtain the function u(x, c, a). Hence, the general solution 
of Euler's differential equation, depending on two arbitrary constants 
of integration, is obtained by a quadrature. 

We shall now use these methods to discuss a number of examples. 

General Note 

There is a general class of examples in which F is of the form 

F = g(y) J1 + y'2, 

where g(y) is a function depending explicitly on y only. For the 
extremals y = u, our last rule gives at once 

g(u) U'2 
g(u) J1 + U'2 - = c 

J1 + U'2 

or 

g(u) 
J1 + U'2 = c; 

whence, 

dx 1 
du = J( {g(u)} 2jc2) - 1 ' 

and on integrating we have the equation 

(12) f du 
x - b = J({g(U)}2jc2) _ l' 

where b is another constant of integration. By evaluating the integral 
on the right and solving the equation for u, we obtain u as a function 
of x and of the two constants of integration c and b. I 

The Surface of Revolution of Least Area 

In this case, by (2b), p. 738, g = y. The integral (11) becomes 

f du u 
x - b = Ju2jc2 _ 1 = carcosh c ; 

1 Of course, we may not be able to solve for u in terms of elementary functions, but for 
all practical purposes, these procedures define u well enough. 



hence, the result is 

x-b y=u=ccosh--. 
c 
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That is, the solution of the problem of finding a curve that on rotation 
gives a surface of revolution with stationary area is a catenary (see 
Volume I, p. 378). 

A necessary condition for the occurrence of such a stationary curve 
is that the two given points A and B can be joined by a catenary for 
which y > o. The question whether the catenary really represents a 
minimum will not be discussed here. 

The Brachistochrone 

Another example is obtained by taking g = 1/ vi. This, according to 
(2a), p. 738, is the problem of the brachistochrone. By means of the 
substitutions l/c2 = k, u = kr:, r: = sin29/2, the integral (12) 

f du 
vl/(uc2) - 1 

is immediately transformed into 

x - b = k f j 1 ~ r: dr: = ~ k f (1 - cos 9) d9, 

whence 

x - b = ~ k(9 - sin 9), 

1 
y = u = - k(1 - cos 9). 

2 

The brachistochrone is accordingly (cf. Volume I, p. 329) a common 
cycloid with its cusps on the x-axis. 

Exercises 7.2d 

1. Find the extremals for the following integrands: 

(a) F = Jy(l + y'Z) 

(b) F = Jl + y'z/y 

(c) F = y Jl - y'Z 
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2. Find the extremals for the integrand F = x" y'2, and prove that if n ~ 1, 
two points lying on opposite sides of the y-axis cannot be joined by an 
extremal. 

3. Find the extremals for the integrand y"y'm, where nand m are even inte­
gers. 

4. Find the extremals for the integrand F = ay,g + 2byy' + cy2, where a, 
b, c are given continuously differentiable functions of x. Prove that Eu­
ler's differential equation is a linear differential equation of the second 
order. Why is it that when b is constant, this constant does not enter into 
the differential equation at all? 

5. Show that the extremals for the integrand F = eZ v'1 + y'2 are given by 
the equations sin(y - b) = e-(z-a) and y = b, where a, b are constants. 
Discuss the form of these curves, and investigate how the two points 
A and B must be situated if they can be joined by an extremal arc of the 
form y = f(x). 

6. For the case where F does not contain the derivative y', deduce Euler's 
condition F 1/ = 0 by an elementary method. 

7. Find a function giving the absolute minimum of 

I {y} = fy'2 dx 

with the boundary conditions 

(a) y(O) = y(l) = 0 

(b) y(O) = 0, y(l) = 1. 

8. Find the extremals for f -/r2 + r,g de, that is, the paths of shortest distance 
in polar coordinates. 

e. Identical Vanishing 01 Euler's Expression 

Euler's differential equation (7c), p. 743 for F(x,y,y') may degenerate 
into an identity that tells us nothing, that is, into a relation that is 
satisfied by every admissible function y = ,p(x). In other words, 
the corresponding integral may be stationary for any admissible 
function y = ,p(x). If this degenerate case is to occur, Euler's ex­
pression 

must vanish at every point x of the interval, no matter what function 
y = ,p(x) is substituted in it. We can, however, always find a curve 
for which y =,p, y' = ,p', and y" = ,p" have arbitrary prescribed 
values for a prescribed value of x. Euler's expression must therefore 
vanish for every quadruple of numbers x, y, y', y". We conclude that 
the coefficient of y", (i.e., FlI'lI') must vanish identically. F must 
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therefore be a linear function of y', say F = ay' + b, where a and 
b are functions of x and y only. If we substitute this in the remaining 
part of the differential equation, 

it follows at once that 

or that 

must vanish identically in x andy. In other words, Euler's expression 
vanishes identically if, and only if, the integral is of the form 

I = I {a(x, y) y' + b(x, y)} dx = I a dy + b dx, 

where a and b satisfy the condition of integrability that we have 
already met with on p. 104, that is, where a dy + b dx is a exact 
differential. 

7.3 Generalizations 

a. IntegralslDith More Than One Argument Function 

The problem of finding the extreme values (stationary values) of 
an integral can be extended to the case where this integral depends 
not on a single argument function but on a number of such functions 
sh(x), ~2(X), • . ., ~n(X). 

The typical problem of this type may be formulated as follows: 
Let F (x, ~1, ••• , ~n, ~1/, ••• , ~n') be a function of the (2n + 1) ru:gu­
ments x, ~1, .•• , ~n', which is continuous and has continuous deriv­
atives up to, and including, the second order in the region under 
consideration. If we replace y, = ~, by a function of x with continuous 
first and second derivatives, and ~,I by its derivative, F becomes a 
function of the single variable x, and the integral 

(13) I {~1, ••• , ~n} = r Xl F(x, ~l, ••• , ~n, ~l/, ••• , ~n') dx 
Jxo 

over a given interval Xo ~ x ~ Xl has a definite value determined by 
the choice of these functions. 
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In the comparison with the extreme value, we regard as admissible 
all functions ~i(X) that satisfy the above continuity conditions and 
for which the boundary values ~i(XO) and ~i(XI) have prescribed 
fixed values. In other words, we consider the curves Yt = ~i(X) 
joining two given points A and B in (n + l)-dimensional space with 
coordinates YI, Y2, . . ., Yn, x. The variational problem now requires us 
to find, among all these systems of functions ~i(X), one [Yi = ~i(X) 
= Ui(X)] for which the integral (13) has an extreme value (a maximum 
or a minimum). 

Again, we shall not discuss the actual nature of the extreme value 
but shall confine ourselves to inquiring for what systems of argument 
functions ~i(X) = Ui(X) the integral is stationary. 

We define the concept of stationary value in exactly the same way 
as we did on p. 742. We embed the system of functions Ui(X) in a 
one-parameter family of functions depending on the parameter E, in 
the following way: Let TJI(X), ... , TJn(X) be n arbitrarily chosen 
functions that vanish for x = Xo and x = Xl, are continuous in the 
interval, and possess continuous first and second derivatives there. 
We embed the Ut(x) in the family of functions Yt = ~t(x) = Ui(X) + 
ETJi(X). 

The term ETJi(X) = OUi is called the variation of the function Ui. 

If we substitute the expressions for ~i in 1 {~l, . . ., ~n}, this integral 
is transformed into 

G(E) = rX1F(x, UI + ETJI, ... , Un + ETJn, UI' + ETJI', .•. , Un' + ETJn') dx, Jxo 

which is a function of the parameter E. A necessary condition that 
there may be an extreme value when ,pi = Ui (Le., when E = 0) is 

G'(O) = o. 

Exactly as for the case of one independent function, we say that the 
integral 1 has a stationary value for,pi = Ut if the equation G'(O) = 0 
holds or 

01 = EG'(O) = 0 

holds, no matter how the functions TJi are chosen subject to the 
conditions stated above. In other words, stationary character of the 
integral for a fixed system of functions Ui(X) and vanishing of the first 
variation JI mean the same thing. 
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We have still the problem of setting up conditions for the stationary 
character of the integral that do not involve the arbitrary variations 
1']t. This requires no new ideas. We proceed as follows: First we take 
1']2, 1']3, ••• , 1']n as identically zero (i.e., we do not let the functions 
U2, ••• , Un vary). We thus consider only the first function ~1(X) as 
variable and then the condition 0'(0) = 0, by p. 744, is equivalent to 
Euler's differential equation 

Since we can pick out anyone of the functions Ui(X) in the same way, 
we obtain the following result: 

A necessary and sufficient condition that the integral (13) may be 
stationary is that the n functions Ut(x) shall satisfy the system of Euler's 
equations 

(13a) 
d 

Fu' - -Fu" = 0 
t dx t 

(i = 1, 2, ... , n). 

This is a system of n differential equations of the second order 
for the n functions Ut (x). All solutions of this system of differential 
equations are said to be extremals of the variational problem. Thus, 
the problem of finding stationary values of the integral reduces to the 
problem of solving these differential equations and adapting the 
general solution to the given boundary conditions.1 

b. Examples 

The possibility of giving a general solution of the system of Euler's 
differential equations is even more remote than in the case in Section 
7.2. Only in very special cases can we find all the extremals explicitly. 
Here the following theorem, analogous to the particular case offormu­
la (11) on p. 749, is often useful: 

lUsing Lemma II (Section 7. 2, p. 746), we can prove that these differential equations 
must hold under the general assumption that the admissible functions merely have 
sectionally continuous first derivatives. However, if we wish to concentrate on the 
formalism of the subject, it is more convenient to include continuity of the second 
derivatives in the conditions of admissibility of the functions </>j(x). We can then 
write out the expressions dldx FUjI in the form 

(13b) 
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If the function F does not contain the independent variable x explicit­
ly, i.e. F = F('l •... , 'n, (Jh', ... , ,.,/), then the expression 

E = F(ul, ... , Un, Ul', ..• , Un') - f: u,,' F u/ 
i-I 

is an integral of Euler's system of differential equations. That is, if we 
consider any system of solutions u,,(x) of Euler's equations (13a), we 
have 

(13c) E = F - ~ u/ Fui' = constant = c, 

where, of course, the value of this constant depends upon the system 
of solutions substituted. 

The proof follows the same lines as on p. 749; we differentiate the 
left side of our expression with respect to x and, using (13b), verify 
that the result is zero. 

A trivial example is the problem of finding the shortest distance 
between two points in three-dimensional space. Here we have to 
determine two functions y = y(x), z = z(x) such that the integral 

12'1 
.J1 + y'2 + Z'2 dx 

2'0 

has the least possible value, the values of y(x) and z(x) at the end 
points of the interval being prescribed. Euler's differential equations 
(13a) give 

d y' d z' - -- -0 dx .J1 + y'2 + Zl2 - dx .J1 + y'2 + Zl2 - , 

whence it follows at once that the derivatives y'(x) and z'(x) are 
constant; hence, the extremals must be straight lines. 

Somewhat less trivial is the problem of the brachistochrone in three 
dimensions. (Gravity is again taken as acting along the positive 
y-axis.) Here we have to determine y = y(x), z = z(x) in such a way that 
the integral 

----'~--- dx = F(y, y , z) dx L
2'1 )1 + y'2 + Z'2 L2'1 " 

2'0 y 2'0 

is stationary. One of Euler's differential equations gives 

z' 1 
- -a .Jy .J1 + y'2 + Zl2 - . 
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In addition, we have from (13c) that 

1 1 
F - y' Fyi - Z Fzl = .ry .J1 + y'2 + Zl2 = b, 

where a and b are constants. By division it follows that z' = alb = k 
is likewise constant. The curve for which the integral is stationary 
must therefore lie in a plane z = kx + h. From the further equation 

1 1 
ry .J1 + k2 + y'2 = b, 

there follows, as is obvious from p. 751, that this curve must again 
be a cycloid. 

Exercises 7.3b 

1. Write down the differential equations for the path of a ray of light in 
three dimensions in the case where (spherical coordinates r, 6, rp being 
used) the velocity of light is a function of r (cf. Exercise 2, p. 743). Show 
that the rays are plane curves. 

2. Show that the geodesics (curves of shortest length joining two points) 
on a sphere are great circles. 

3. Find the geodesics on a right circular cone. 
4. Show that the path minimizing the distance between two nonintersect· 

ing smooth closed curves is their common normal line. 
5. Show that the path for the least time of fall from a given point to a given 

curve is the cycloid that meets the curve perpendicularly. 
6. Prove that the extremals of fF(x, y) oJ1 + y'2 dx, with end points freely 

movable on two curves, meet those curves orthogonally. 

c. Hamilton's Principle. Lagrange's Equations 

Euler's system of differential equations has a very important bear­
ing on many branches of applied mathematics, especially dynamics. 
In particular, the motion of a mechanical system consisting of a finite 
number of particles can be expressed by the condition that a certain 
expression, the so-called Hamilton's integral, is stationary. Here we 
shall briefly explain this connection. 

A mechanical system has n degrees of freedom if its position is 
determined by n independent coordinates ql, q2, . . ., qn. If, for 
example, the system consists of a single particle, we have n = 3, since 
for ql, q2, qa we can take the three rectangular coordinates or the 
three spherical coordinates. Again, if the system consists of two 
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particles held at unit distance apart by a rigid connection-assumed 
to have no mass-then n = 5, since for the coordinates qi we can 
take the three rectangular coordinates of one particle and two other 
coordinates determining the direction of the line joining the two 
particles. 

A dynamical system can be described with sufficient generality by 
means of two functions, the kinetic energy and the potential energy. 
If the system is in motion, the coordinates qi will be functions qi(t) 
of the time t, the components of velocity being qi = dqi/dt. The kinetic 
energy associated with the dynamical system is a function of the 
form 

(14a) 

The kinetic energy, therefore, is a homogeneous quadratic expression 
in the components of velocity, the coefficients Uik being taken as 
known functions, not depending explicitly on the time, of the co­
ordinates ql, . . ., qn themselves. l 

In addition to the kinetic energy, the dynamical system is supposed 
to be characterized by another function, the potential energy 
U(ql, ... , qn), which depends on the coordinates of position qi only 
and not on the velocities or the time.2 

Hamilton's principle states that the motion of a dynamical system 
in the interval of time to ~ t ~ tI from a given initial position to a given 
final position is such that for this motion the integral 

(14b) ~ tl 
H{ql, ... , qn} = (T - U) dt 

to 

is stationary, in the class of all continuous functions qi(t) that have 
continuous derivatives up to, and including, the second order and that 
have the prescribed boundary values for t = to and t = tl 

lWe obtain this expression for the kinetic energy T by thinking of the individual 
rectangular coordinates of the particles of the system as expressed as functions of the 
coordinates ql. . . ., qn. Then the rectangular velocity components of the individual 
particles can be expressed as linear homogeneous functions of the qt's ; from these we 
form the elementary expression for the kinetic energy, namely, half the sum of the 
products of the individual masses and the squares of the corresponding velocities. 
2We restrict ourselves here to mechanical systems in which the forces acting are con­
servative and independent of time. As is shown in dynamical textbooks, the potential 
energy determines the external forces acting on the system (see p. 0000 for the case 
of a single particle). In bringing the system from one position into another, me­
chanical work is done; this is equal to the difference between the corresponding 
values U and does not depend on the particular motion from one position to another. 
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This principle of Hamilton's is a fundamental principle of dy­
namics. It contains in condensed form the laws of dynamics. When 
applied to Hamilton's principle, the Euler equations (13a), give 
Lagrange's equations, 

(14c) 
d aT aT au 
dt aqi - aq, = - aq, (i = 1, 2, . . ., n), 

which are the fundamental equations of theoretical dynamics. 
Here we shall only make one noteworthy deduction, namely, the 

law of conservation of energy. 
Since the integrand in Hamilton's integral does not depend explicit­

lyon the independent variable t, for the solution q,(t) of the differ­
ential equations of dynamics the expression 

must be constant [see (13c) J. Since U does not depend on the q, and 
T is a homogeneous quadratic function in them (cf. p. 119), 

" . a(T - U) ". aT 2T 
~ qt a • = ~ qt a----;- = . qt qt 

Hence 

T + U = constant; 

that is, during the motion the sum of the kinetic energy and the potential 
energy does not vary with time. 

d. Integrals Involving Higher Derivatives 

Analogous methods can be used to attack the problem of the ex­
treme values of integrals in which the integrand F not only contains 
the required function y = ~ and its derivative ~' but also involves 
higher derivatives. For example, suppose we wish to find the extreme 
values of an integral of the form 

(15a) I {~} = r Xl F(x,~,~', ~") dx, 
Jxo 

where in the comparison those functions y = ~(x) are admissible that, 
together with their first derivatives, have prescribed values at the end 
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points of the interval and that have continuous derivatives up to, 
and including, the fourth order. 

To find necessary conditions for an extreme value, we again assume 
that y = u(x) is the desired function. We embed u(x) in a family of 
functions y = ~(x) = u(x) + El1(X), where E is an arbitrary parameter 
and TJ(x) an arbitrarily chosen function with continuous derivatives 
up to, and including, the fourth order that vanishes together with its 
first derivatives at the end points. The integral then takes the form 
G(E), and the necessary condition 

(15b) G'(O) = 0 

must be satisfied for all choices of the function TJ(x). Proceeding in a 
way analogous to that on p. 744, we differentiate under the integral 
sign and thus obtain the above condition in the form 

(15c) 

which must be satisfied if u is substituted for ~(x). Integrating once 
by parts, we reduce the term in TJ'(x) to one in TJ, and integrating twice 
by parts, we reduce the term in TJ"(x) to one in TJ; taking the boundary 
conditions into account, we easily obtain 

(15d) JX! ( d d2 ) 
xo TJ Fu - dx Fu' + dx2 Fu" dx = O. 

Hence, the necessary condition for an extreme value (i.e., that the 
integral may be stationary) is Euler's differential equation 

(15e) 
d d 2 

L[u] = Fu - dx Fu' + dx2 Full = O. 

The reader can verify for himself that this is a differential equation 
of the fourth order,1 

e. Several Independent Variables 

The general method for finding necessary conditions for an extreme 
value can equally well be applied when the integral is no longer a 
simple integral but a multiple integral. Let D be a given region 

lin deriving (15e) from (15d) we have to restrict 11 in Lemma I (p. 744) to functions of 
class C4 for which 11 and 11' vanish at the end points. It is clear from the proof of the 
lemma on p. 747 that the conclusion is valid under these more restrictive conditions. 



Calculus of Variations 761 

bounded by a curve r in the x, y-plane. We assume that D and rare 
sufficiently regular to permit application of the rule for integration by 
parts (p. 557). Let F(x, y, tP, tPx, tP1/) be a function that is continuous and 
twice continuously differentiable with respect to all five of its argu­
ments. If in F we substitute for tP a function tP(x, y) that has continu­
ous derivatives up to, and including, the second order in the region D 
and has prescribed boundary values on r and if we replace tPx and tP1/ 
by the partial derivatives of tP, F becomes a function of x and y, and 
the integral 

(16a) 

has a value depending on the choice of tP. The problem is that of find­
ing a function tP = u(x, y) for which this value is an extreme value. 

To find necessary conditions we again use the old method. We 
choose a function l1(x, y) that vanishes on the boundary r; has con­
tinuous derivatives up to, and including, the second order; and is 
otherwise arbitrary. We assume that u is the required function and 
then substitute tP = u + Ell in the integral, where E is an arbitrary 
parameter. The integral again becomes a function G(E), and a neces­
sary condition for an extreme value is 

G'(O) = o. 

As before, this condition takes the form 

(16b) IID (TJF .. + TJz F .. :/; + l11/F"1/) dx dy = o. 

To get rid of the terms in llz and 111/ under the integral sign we integrate 
one term by parts with respect to x and the other with respect to y. 
Since 11 vanishes on r, the boundary values on r fall out, and we have 

(16c) 

Lemma I (p. 744) can be extended at once to more dimensions than 
one, and we immediately obtain Euler's partial differential equation 
of the second order, 

(16d) 
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Examples 

1. F = ~X2 + ~y2. Ifwe omit the factor 2, Euler's differential equation 
becomes 

l1u = Uxx + Uyy = o. 
That is, Laplace's equation has been obtained from a variation 
problem. 

2. Minimal surfaces. Plateau's problem is this: To find, over a 
region D, a surface z = f(x, y) that passes through a prescribed curve 
in space whose projection is r and whose area 

is a minimum. 
Here Euler's differential equation is 

a ux + ~ Uy = 0 
ax .J1 + ux2 + Uy2 ay .J1 + ux2 + Uy2 

or, in expanded form, 

uxx(l + Uy2) - 2uxyuxuy + uyy(l + ux2) = o. 

This is the celebrated differential equation of minimal surfaces, which 
we have treated extensively elsewhere. l 

7.4 Problems Involving Subsidiary Conditions. Lagrange 
Multipliers 

In discussing ordinary extreme values for functions of several 
variables in Chapter 3 (p. 332) we considered the case where these 
variables are subject to certain subsidiary conditions. In this case 
the method of undetermined multipliers led to a particularly clear 
expression for the conditions that the function may have a stationary 
value. An analogous method is even more important in the calculus 
of variations. Here we shall briefly discuss only the simplest cases. 

a. Ordinary Subsidiary Conditions 

A typical case is that of finding a curve x = x(t), y = y(t), z = z(t), 
where to ~ t ~ tl, in three-dimensional space, expressed in terms of 

lR. Courant, Dirichlet's Principle, Conformal Mapping and Minimal Surfaces, 
Interscience: New York, 1950. 
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the parameter t, subject to the subsidiary condition that the curve 
shall lie on a given surface G(x, y, z) = 0 and shall pass through two 
given points A and B on that surface. The problem is then to make 
an integral of the form 

(17) rtl F(x, y, z, x, y, i) dt 
Jto 

stationary by suitable choice of the functions x(t), y(t), z(t), subject to 
the subsidiary condition G(x, y, z) = 0 and the usual boundary and 
continuity conditions. 

This problem can be immediately reduced to the cases discussed on 
p. 753. We assume that x(t), y(t), z(t) are the required functions. We 
assume further that on the portion of surface on which the required 
curve is to lie zcan be expressed in theformz = g(x,y); this is certainly 
possible if Gz differs from zero on this portion of the surface. If we 
assume that on the surface in question the three equations Gx = 0, 
Gy = 0, Gz = 0 are not simultaneously true and if we confine our­
selves to a sufficiently small portion of surface, we can suppose with­
out loss of generality that Gz "* O. Substituting z = g(x, y) and i = 
gxx + gyy under the integral sign, we obtain a problem in which x(t) 
and y(t) are functions independent of one another. Thus, we can 
immediately apply the results of p. 755 and write down the con­
ditions that the integral I may be stationary, by applying equations 
(13a) to the integrand 

F(x, y, g(x, y), x, y, xgx + ygy) = H(x, y, X, Y). 

We then have the two equations 

But 

d d d ai 
dt Hx - Hx = dt Fx - Fx + dt (Fzgx) - Fzgx - Fz ax = 0, 

d d d ai 
dt Hy - H y = dtFy - F y + dt(Fzgy) - Fzgy - Fz ay = o. 

d ai 
dt gy = ay' 

as we see at once on differentiation. Hence, 
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If, for brevity, we write 

(18a) 

with a suitable multiplier A(t) and use the relations (p. 229) gx = 
- Gx/Gz, gil = - GII/Gz, we obtain the two further equations 

(18b) 

(18c) 

We thus have the following condition that the integral may be 
stationary: If we assume that Gx , Gil, Gz do not all vanish simultane­
ously on the surface G = 0, the necessary condition for an extreme 
value is the existence of a multiplier A(t) such that the three equations 
(18a, b, c) are simultaneously satisfied in addition to the subsidiary 
condition G(x, y, z) = 0. That is, we have four symmetrical equations 
determining the functions x(t), y(t), z(t) and the multiplier A. 

The most important special case is the problem of finding the short­
est line joining two points A and B on a given surface G = 0, on 
which it is assumed that the gradient of G does not vanish. Here 

and Euler's differential equations are 

d x 
dt ";x2 + y2 + i2 = AGx, 

d y 
dt ";x2 + y2 + i 2 = AGII, 

d i 
dt ";x2 + y2 + i2 = AGz• 

These equations are invariant with respect to the introduction of a 
new parameter t. That is, as the reader may easily verify for himself, 
they retain the same form if t is replaced by any other parameter 
t = t(t), provided that the transformation is 1-1, reversible, and 
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continuously differentiable. If we take the arc length s as the new 
parameter, so that x2 + y2 + i2 = 1, our differential equations take 
the form 

(19) 

The geometrical meaning of these differential equations is that the 
principal normal vectorsl of the extremals of our problem are orthog­
onal to the surface G = O. We call these curves geodesics of the 
surface. The shortest distance between two points on a surface, 
then, is necessarily given by an arc of a geodesic. 

Exercises 7.4a 

1. Show that the same geodesics are also obtained as the paths of a particle 
constrained to move on the given surface G = 0, subject to no external 
forces. In this case the potential energy U vanishes and the reader may 
apply Hamilton's principle (p. 758). 

2. Let C be a curve on a given surface G(x, y, z) = O. At each point of C 
take a perpendicular geodesic segment of fixed length and fixed orienta­
tion relative to C. The free end of the geodesic segment generates a curve 
C'. Show that C', too, is perpendicular to the geodesic segment. 

b. Other Types of Subsidiary Conditions 

In the problem discussed above we were able to eliminate the 
subsidiary condition by solving the equation determining the subsid­
iary condition and thus reducing the problem directly to the type 
discussed previously. With the other kinds of subsidiary conditions 
that frequently occur, however, it is not possible to do this. The most 
important case of this type is the case of isoperimetric subsidiary 
conditions. The following is a typical example: With the previous 
boundary conditions and continuity conditions, the integral 

(20a) I {9} = r Xl F(x, 9, 9') dx 
Jxo 

is to be made stationary, the argument function 9(X) being subject to 
the further subsidiary condition 

(20b) H{9} = rXI G(x, 9, 9') dx = a given constant c. Jxo 

1 That is, the vectors (x, y, z); see p. 213. 
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The particular case F = rp, G= .vI + rp'2 is the classical isoperimetric 
problem. 

This type of problem cannot be attacked by our previous method 
of forming the "varied" function rp = u + 811 by means of an arbitrary 
function l1(x) vanishing on the boundary only, for in general, these 
functions do not satisfy the subsidiary condition in a neighborhood 
of 8 = 0, except at 8 = 0. We can attain the desired result, however, 
by a method similar to that used in the original problem, by in­
troducing, instead of one function 11 and one parameter 8, two 
functions 1'\1(X) and 112(x) that vanish on the boundary and two param­
eters 81 and 82. Assuming that rp = u is the required function, we 
then form the varied function 

rp = u + 811'\1 + 821'\2. 

If we introduce this function into the two integrals, we reduce the 
problem to the derivation of a necessary condition for the stationary 
character of the integral 

subject to the subsidiary condition 

the function K(81, 82) is to be stationary for 81 = 0, 82 = 0, where 
81, 82 satisfy the subsidiary condition 

M(81, 82) = c. 

A simple discussion, based on the previous results for ordinary 
extreme values with subsidiary conditions, and in other respects 
following the same lines as the account given on p. 743, then leads 
to this result: 

Stationary character of the integral is equivalent to the existence of 
a constant multiplier A. such that the equation H = c and Euler's 
differential equation 

are satisfied. An exception to this can only occur if the function u satis­
fies the equation 
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d 
dx GUI - Gu = o. 

The details of the proof may be left to the reader, who may consult 
the literature on this subject. l 

Exercises 7.4b 

1. Show that the geodesics on a cylinder are helices. 
2. Find Euler's equations in the following cases: 

(a) F = .; 1 +y'2 + yg(x) 

_ y"2 
(b) F - (1 + y'2)3 + yg(x) 

(c) F = y"2 _ y,2 + y2 

(d) F = VI + y'2 

3. If there are two independent variables, find Euler's equations in the 
following cases: 

(a) F = arpx2 + 2brpxrpy + Crpy2 + rp2d 

(b) F = (rpxx + rpyy)2 = (t:>rp)2 

(c) F = (t:>rp)2 + (rpxxrpyy - rpXy2). 

4. Find Euler's equations for the isoperimetric problem in which 

I X1 (au'2 + 2buu' + cu2) dx 
xo 

is to be stationary subject to the condition 

f Xl 
u 2 dx = 1. 

xo 

5. Let f(x) be a given function. The integral 

I (rp) = fol f(x)rp(x) dx 

is to be made a maximum subject to the integral condition 

H(rp) = fol rp2 dx = K2 

where K is a given constant. 
(a) Find the solution u(x) from Euler's equation. 
(b) Prove by applying Cauchy's inequality that the solution found in (a) 

gives the absolute maximum for 1. 

ISee, for example, M. R. Hestenes, Calculus of Variations and Optimal Control Theory. 
John Wiley and Sons, New York, 1966. R. Courant and D. Hilbert: Methods of 
Mathematical Physics, Interscience Publishers, New York, 1953, Vol. I, Chapter IV. 
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6. Use the method of Lagrange's multiplier to prove that the solution of 
the classical isoperimetric problem is a cricle. 

7. A thread of uniform density and given length is stretched between two 
points A and B. If gravity acts in the direction of the negative y-axis. the 
equilibrium position of the thread is that in which the center of gravity 
has the lowest possible position. It is accordingly a question of making 

an integral of the form f Zl Y v'1 + y'2 dx a minimum, subject to the sub-
zo 

sidiary condition that f Zl "'1 + y'2 dx has a given constant value. Show 
zo 

that the thread will hang in a catenary. 

8. Let y = u(x) yield the smallest value for the integral fZIF(x,y,y')dx 
zo 

among all continuously differentiable functions y(x) with prescribed 
boundary values y(xo) = yo, y(Xl) = Yl. Prove that u(x) satisfies the in­
equality FIJIIJI(x , u(x), u'(x» ~ 0 (Legendre's condition) for all x in the 
interval Xo ~ x ~ Xl. 

9. Let (xo, yo) and (Xl, Yl) be points lying above the x-axis. Find the extremals 
for the area under the graph of a function passing through the two points 
subject to the condition that the path between the two points has a fixed 
length. 



CHAPTER 

8 

Functions of a Complex Variable 

In Section 7.7 of Volume I we touched on the theory of functions 
of a complex variable and saw that this theory throws new light on 
the structure of functions of a real variable. Here we shall give a 
brief, but more systematic, account of the elements of that theory. 

8.1 Complex Functions Represented by Power Series 

a. Limits and Infinite Series with Complex Terms 

We start from the elementary concept of a complex number z= x+ iy 
(cf. Volume I, p. 104) formed from the imaginary unit i and any two 
real numbers x, y. We operate with these complex numbers just as we 
do with real numbers, with the additional rule that i2 may always be 
replaced by -1. We represent x, the real part, and y, the imaginary part 
of z, by rectangular coordinates in an x, y-plane or a complex z-plane. 
The number i = x - iy is called the complex number conjugate to z. 
We introduce polar coordinates (r, a) by means of the relations x = 
r cos a, y = r sin a and call a the argument (or amplitude) of the 
complex number and 

its absolute value (or modulus). We recall that 

We can immediately establish the so-called triangle inequality 
satisfied by the complex numbers Zl, Z2, and Zl + Z2, 

769 
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I Zl + z21 ;;;; I zll + I z21 , 

and the further inequality 

which follows immediately from it if we put Zl = Ul - U2, Z2 = U2. 

The triangle inequality may be interpreted geometrically if we 
represent the complex numbers Zl, Z2 by vectors in the x, y-plane 
with components Xl, Yl and X2, Y2, respectively. The vector that rep­
resents the sum Zl + Z2 is then simply obtained by vector addition 
of the first two vectors. The lengths of the sides of the triangle formed 
by this addition (see Fig. 8.1) are 

I zll, I z21, I Zl + z21. 

Figure 8.1 The triangle inequality for complex numbers. 

Thus, the triangle inequality expresses the fact that anyone side of 
a triangle is less than the sum of the other two. 

The essentially new concept that we now consider is that of the 
limit of a sequence of complex numbers. We state the following defini­
tion: a sequence of complex numbers Zn tends to a limit Z provided 
I Zn - Z I tends to zero. This, of course, means that the real part and the 
imaginary part of Zn - Z both tend to zero. It follows that Cauchy's 
test applies: the necessary and sufficient condition for the existence 
of a limit Z of a sequence Zn is 

lim IZn - zml = O. 
n-~ 

m-~ 

A particularly important class of limits arises from infinite series 
with complex terms. We say that the infinite series with complex 
terms, 
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~ 

I: Cv, 
v-o 

converges and has the sum S if the sequence of partial sums, 

n 
Sn = I: Cv, 

v=o 

tends to the limit S. If the real series with nonnegative terms 

converges, it follows, just as in Chapter 7 of Volume I (p. 514), that 
the original series with complex terms also converges. The latter 
series is then said to be absolutely convergent. 

If the terms cv of the series, instead of being constants, depend on 
(x, y), the coordinates of a point varying in a region R, the concept 
of uniform convergence acquires a meaning. The series is said to be 
uniformly convergent in R if for an arbitrarily small prescribed 
positive I> a fixed bound N can be found, depending on I> only, such 
that for every n ~ N the relation I Sn - S I < I> holds, no matter 
where the point z = x + iy lies in the region R. Uniform convergence 
of a sequence of complex functions Sn(Z) depending on the point Z of 
R is, of course, defined in exactly the same way. All these relations and 
definitions and the associated proofs correspond exactly to those with 
which we are already familiar from the theory of real variables. 

The simplest example of a convergent series is the geometric series 

1+z+z2 +Z3 + •. •. 

As for a real variable, the nth partial sum of this series is 

and 

(8.1) 

1 - zn+1 
Sn = , 1-z 

1 1+z+z2 + ... =--1-z for Izl < 1. 

We see that the geometric series converges absolutely provided I z I < 
1 and that the convergence is uniform provided I z I ~ q, where q is 
any fixed positive number between 0 and 1. In other words, the geo­
metric series converges absolutely for all values of z within the unit 
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circle and converges uniformly in every closed circle concentric with the 
unit circle and with a radius less than unity. 

For the investigation of convergence the comparison test is again 
available: If I cv I ;:;;; pv, where pv is real and nonnegative and if the 
infinite series 

~ 

L: pv 
v-o 

converges, then the complex series L:cv converges absolutely. 
If the pv's are constants, while the cv's depend on a point z varying 

in R, the series L:cv converges uniformly in the region in question. 
The proofs are the same, word for word, as the corresponding proofs 
for a real variable (Volume I, Chapter 7, p. 535) and therefore need 
not be repeated here. 

If M is an arbitrary positive constant and q a positive number 
between 0 and 1, the infinite series with the positive terms pv = Mqv 
or Mqv-I or 

~ V+l 

v+1 q 

also converge, as we know from Volume I, p. 543. We shall immedi­
ately make use of these series for purposes of comparison. 

b. POlDer Series 

The most important infinite series with complex terms are power 
series, in which Cv is of the form Cv = avzv; that is, a power series 
may be expressed in the form 

~ 

P(z) = L: avzv 
v=o 

or, somewhat more generally, in the form 

~ 

L: av(z - zo)v, 
v=o 

where Zo is a fixed point. As this form can, however, always be re­
duced to the preceding one by the substitution z' = z - Zo, we need 
only consider the case where Zo = o. 

The main theorem on power series is word for word the same as 
the corresponding theorem for real power series in Chapter 7 of 
Volume I (p. 541): 
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If the power series converges for z = " it converges absolutely for 
every value of z such that 1 z 1 < I, I. Further, if q is a positive number 
less than 1, the series converges uniformly within the circle 1 z 1 ~ 

ql'l. 
We can at once proceed to the following further theorem: 

The two series 

00 

D(z) = ~ vavzv+1 
v:;ol 

00 a 
I(z) = ~ _v_ zv+1 

v-o V + 1 

also converge absolutely and uniformly if 1 z 1 ~ q 1 , I. 

The proof follows exactly as before. Since the series P(z) converges 
for z = ~, it follows that the nth term, an~n, tends to zero as n in­
creases. Hence, a positive constant M certainly exists such that the 
inequality 1 an~n 1 < M holds for all values of n. If now 1 z 1 = q 1 ~ 1 , 

where 0 < q < 1, we have 

1 anzn 1 < Mqn, Inanzn-11 < IPfI nqn-l, l~zn+ll<MI~1 qn+1 . 
.., n+1 n+1 

We thus obtain comparison series that, as we have seen already 
(p. 771), converge absolutely. Our theorem is thus proved. 

In the case of a power series there are two possibilities: either it 
converges for all values of z or there are vall.!8s z = TJ for which it 
diverges. Then, by the preceding theorem, the series must diverge for 
all values of z for which 1 z 1 > 1 TJ 1 (cf. Volume I, p. 541), and just as in 
the case of real power series, there is a radius of convergence p such 
that the series converges when 1 z 1 < p and diverges when 1 z 1 > p. 
The same applies to the two series D(z) and I(z), the value of p being 
the same as for the original series. The circle 1 z 1 = p is called the 
circle of convergence of the power series. No general statement can be 
made about the convergence or divergence of the series on the 
circumference of the circle itself, that is, for 1 z 1 = p. 

c. Differentiation and Integration 01 Power Series 

A convergent power series 

00 

P(z) = ~ avzv 
v=o 
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defines a function of the complex variable Z in the interior of its circle 
of convergence. In that region it is the limit to which the polynomials 

n 
Pn(Z) = L: avzv 

V=O 

tend as n tends to infinity. 
A polynomial f(z) may be differentiated with respect to the in­

dependent variable Z in exactly the same way as for a real variable. In 
the first place, we notice that the algebraic identity 

Zln - zn ---=--- = zln-l + z l n-2 Z + ... + zn-l 
Zl - Z 

holds. If we now let Zl tend to z, 1 we immediately have 

d . Zln - Zn -Zn = hm = nzn-l. 
dz Zl-Z Zl - Z 

In the same way, we immediately have 

, d . Pn(ZI) - Pn(Z) ~ -1 
P n (Z) = d- Pn(Z) = hm = 4...1 vavzv = Dn(Z). 

Z Zl-Z ZI - Z v=l 

We naturally call the expression Pn'(z) the derivative of the complex 
polynomial Pn(Z). 

We now have the following theorem, which is fundamental in the 
theory of power series: 

A convergent power series 

~ 

(8.2a) P(z) = L: avzv 
v=o 

may be differentiated term by term in the interior of its circle of con­
vergence. That is, the limit 

(8.2b) P'(Z) = lim P(ZI) - P(z) 
Zl-Z ZI -z 

exists, and 

IThe concept of a limit for a continuous complex variable (Zl -+ z) can be introduced 
in exactly the same way as for a real variable. 
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~ 

(8.2c) P'(z) = ~ vavzv- 1 = lim Pn'(z) = lim Dn(z) = D(z). 
v-I 11.-00 n-co 

From this theorem it is at once clear that the power series 

~ av 
I(z) = ~ -- Zv+l 

v-a V + 1 

may be regarded as the indefinite integral of the first power series, that 
is, that I'(z) = P(z). 

The term-by-term differentiability of the power series is proved in 
the following way: 

From p. 773 we know that the relation 

D(z) = lim Dn(z) 
n-~ 

holds within the circle of convergence. We have to prove that the 
difference quotient 

P(Zl) - P(z) 
Zl- Z 

differs in absolute value from D(z) by less than a prescribed positive 
number & if only we take Zl sufficiently close to z within the circle 
of convergence. For this purpose, we form the difference quotient 

D( ) - P(Zl) - P(z) _ Pn(Zl) - Pn(z) + ~ ~ 
~z- - ~~~ 

Zl - Z Zl - Z V=n+l 

where for brevity we write 

zlv - zv 
A.v = = Zlv-l + Zl v-2 Z + ... + zv-1 

Zl - Z 

If we keep to the notation used on p. 773 and if I z I < q I ~ I and I zll < 
ql~l, then 

Hence, 
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Owing to the convergence of the series of positive terms ~ vqv-l, the 
expression I Rn I can therefore be made as small as we please, provided 
we make n sufficiently large. We choose n so large that this expression 
is less than e/3 and so large-increasing n further if necessary-that 

ID(z) - Dn(Z) I < e/3. 

We now choose Zl so close to Z that the absolute value of 

Pn(Zl) - Pn(z) 
Zl- Z 

also differs from Dn(z) by less than e/3. Then, 

ID(Zl, z) - D(z) I ~ I Pn(z~ == ~n(z) - Dn(z) I 
+ I Dn(z) - D(z)1 + IRnl 

and this inequality expresses the fact asserted. 
Since the derivative of the function is again a power series with 

the same radius of convergence, we can differentiate again and repeat 
the process as often as we like. That is, a power series can be differ­
entiated as often as we please in the interior of its circle of convergence. 

Power series are the Taylor series of the functions P(z) that they rep­
resent,· that is, the coefficients av may be expressed by the formula 

(8.3) 
1 

av = -, p<v)(O). 
v. 

The proof is word for word the same as for a real variable (cf. 
Volume I, p. 545). 

d. Examples of POlDer Series 

As we mentioned in Chapter 7 (p. 553) of Volume I, the power 
series for the elementary functions can immediately be extended to 
the complex variable; in other words, we can regard the power series 
for the elementary functions as complex power series and extend the 
definitions of these functions to the complex realm in this way. For 
example, the series 
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00 zV 00 v Z2v 00 (_I)VZ2v+1 00 Z2v 00 Z2v+l 

~ov!' v~ (-1) (2v)!' ~o (2v + I)!' ~ (2v)!' v~ (2v + I)! 

converge for all values of z. (This follows at once from comparison 
tests.) The functions represented by these power series are again 
denoted, respectively, by the symbols eZ, cos z, sin z, cosh z, sinh z, 
just as in the real case. The relations 

(BAa) 

(BAb) 

cos z + i sin z = eiz, 

cosh z = cos iz, i sinh z = sin iz 

now follow immediately from the power series. Again, by differentiat­
ing term by term, we obtain the relation 

(BAc) 
d -eZ-eZ dz - . 

As examples of power series with a finite radius of convergence, 
other than the geometric series, we consider the series 

(BAd) 
00 v+l ZV 

log (1 + z) = 2.: ( -1) -
V=l v 

00 v Z2v+1 1 
arc tan z = 2.: (-1) 2 + 1 = -2' [log (1 + iz) - log(l- iz)], 

v-o v £ 

whose sums we again denote by log and arc tan. Here the radius of 
convergence is again 1. Differentiating term by term, we obtain 
geometric series and find 

dlog(l+z) 1 d 1 
dz = 1 + z' dz (arc tan z) = 1 + Z2 • 

Exercises 8.1 

1. (a) Show that the operation of taking the conjugate of a complex number 
distributes over rational algebraic operations, for example, 

cc~ = ~~. 

(b) Prove that if f(z) is defined by a power series with real coefficients, 
then f(z) = f(i). 

2. (a) Prove for a polynomial P(z) with real coefficients that cc is a root if 
and only if its complex conjugate is a root. 

(b) Prove under the assumption above that if P(cc) = 0 and cc is not real, 
cc = a + ib and b ~ 0, then P(z) has the real quadratic factor. 



778 Introduction to Calculus and Analysis. Vol. II 

(z - ex) (z - &) = Z2 - 2az + a2 + b2• 

3. (a) Show that Iz - exl = A I z - ~ I, A ~ 1, A real is the equation of a 
circle. Determine the center Zo and the radius r of the circle. If A = 1 
what is the locus of this equation? 

(b) Show that the general linear transformation 

I exz + ~ z---
- yz + 3' 

where ex3 - ~y ~ 0, transforms circles and straight lines into circles 
and straight lines. 

4. For which points z = x + iy is 

1=~~1~1? 
5. Prove that if:E an zn is absolutely convergent for z = ~, then it is uni­

formly convergent for every z such that I z I ~ I ~ I. 
6. Using the power series for cos z and sin z, show that 

cos2z + sin2z = 1. 

7. For what values of z is 
~ ZV 

L: 
v=l 1- ZV 

convergent? 

8.2 Foundations of the General Theory of Functions of a 
Complex Variable 

a. The Postulate of Differentiability 

As we have seen above, all functions that are represented by 
power series possess a derivative and an indefinite integral. This fact 
may be made the starting point for the general theory of functions 
of a complex variable. The object of such a theory is to extend the 
differential and integral calculus to functions of a complex variable. 
In particular, it is important that the concept of function should be 
generalized for complex independent variables in such a way that it 
comprises any function that is differentiable in a complex region. 

We could, of course, confine ourselves from the very beginning 
to the consideration of functions that are represented by power series 
and thus satisfy the postulate of differentiability. There are, however, 
two objections to this procedure. In the first place, we cannot tell a 
priori whether the postulate of the differentiability of a complex 
function necessarily implies that the function can be expanded in a 
power series. (In the case of the real variable we saw that functions 
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even exist that possess derivatives of any order and yet cannot be 
expanded in a power series; cf. Volume I, p. 462.) In the second place, 
we learn even from the the simple function 1/(1 - z), whose power 
series, the geometric series, converges in the unit circle only, that 
even for simple functional expressions the power series does not 
everywhere represent the function, which in this particular case we 
already know in other ways. 

These difficulties can be avoided by a method of Weierstrass, and 
the theory of functions of a complex variable can actually be de­
veloped on the basis of the theory of power series. It is desirable, 
however, to emphasize another point of view, that of Cauchy and 
Riemann. In their method, functions are characterized not by explicit 
expressions but by simple properties. More precisely, the property that 
a function shall be differentiable, and not that it shall be capable of 
being represented by a power series, is to be used to mark out the 
domain in which a function is defined. 

We start from the general concept of a complex function I; = f(z) 
of the complex variable z. If R is a region of the z-plane and if with 
every point z = x + iy in R we associate a complex number I; = u + iv 
by means of any relation, I; is said to be a complex function of z in 
R. This definition, therefore, merely expresses the fact that every pair 
of real numbers x, y, such that the point (x, y) lies in R, has a cor­
responding pair of real numbers u, v, that is, that u and v are any 
two real functions u(x, y) and v(x, y), defined in R, of the two real 
variables x and y. 

This concept of function embraces too much for complex calculus. 
We limit it in the first place by the condition that u(x, y) and v(x, y) 
must be continuous functions in R with continuous first derivatives 
ux, Uy, Vx, Vy. Further, we insist that our expression u + iv = I; = f(z) 
= f(x + iy) shall be differentiable in R with respect to the complex in­
dependent variable z; that is, the limit 

lim f(Zl) - f(z) = lim f(z + h) - f(z) = f'(z) 
Zl-Z Zl - Z /1,-0 h 

shall exist for all values of z in R. This limit is then called the de­
rivative of f(z). 

In order that the function may be differentiable, it is by no means 
sufficient that u and v should possess continuous derivatives with re­
spect to x and y. Our postulate of differentiability implies far more 
than differentiability does for functions of real variables, since h = 
r + is can tend to zero through both real values (s = 0) and purely 



780 Introduction to Calculus and Analysis, Vol. II 

imaginary values (r = 0) or in any other way, and the same limit ('(z) 
must result in all cases if the function is to be differentiable. 

If, for example, we put u = x, v = 0, that is, f(z) = f(x + iy) = x, 
we have a correspondence in which u(x, y) and v(x, y) are continu­
ously differentiable. For the derivative of f with respect to z, however, 
by putting h = r, we obtain 

lim f(z + r) - f(z) = lim x + r - x = 1 
r-O r r-O r ' 

whereas if we put h = is, we have 

lim f(z + i~) - f(z) = lim ~ = 0; 
8-0 ts 8-0 ts 

that is, we obtain two entirely different limits. For S = u + iv = x + 
2iy we similarly obtain different limits for the difference quotient as 
h tends to zero in different ways. 

Thus, in order to ensure the differentiability of f(z) with respect to 
z we have to impose yet another restriction. This fundamental fact 
in the theory of functions of a complex variable is expressed by the 
following theorem: 

If S = u(x, y) + iv(x, y) = fez) = f(x + iy), where u(x, y) and 
v(x, y) are continuously differentiable, the necessary and sufficient 
conditions that the function f( z) be differentiable in the complex region 
are the so-called Cauchy-Riemann differential equations. 

(8.5a) Ua; = Vy, Uy = - Va;. 

In every open set R where u and v are continuously differentiable and 
satisfy these conditions, fez) is said to be an analyticl function of the 
complex variable z, and the derivative of f( z) is given by 

(8.5b) {'(z) = Ua; + iVa; = Vy - iuy = -~ (Uy + ivy). 
t 

We shall first show that the Cauchy-Riemann differential equations 
constitute a necessary condition. We assume that f'(Z) exists. Ac-

IThe term holomorphic is also used. A deeper theorem, not proved here, asserts that 
for f differentiable ina region, the derivatives of u and v not only exist but automati­
cally are continuous. Hence, actually, differentiability of f implies continuous 
differentiability. In what follows, however, we shall not make use of that theorem 
and always assume that the differentiable f considered have continuously differenti­
able real and imaginary parts or, equivalently, that f'(z) is a continuous function of 
z. 
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cordingly, we must obtain the limit f'(z) by taking h equal to a real 
quantity r. That is, 

f'(z) = lim (u(x + r, y) - u(x, y) + i v(x + r, y) - v(x, y») 
r-O r r 

= Ux + ivx. 

In the same way, we must obtain f'(z) if we take h to be a pure imagi­
nary is; that is, we must have 

Hence, 

f'(z) = lim (u(x, y + s! - u(x, y) + i v(x, y + ~) - v(x, y») 
8-0 ts tS 

= ~ (Uy + ivy). 

. 1 ( .) Ux + tux = --;- Uy + tuy . 
t 

By equating real and imaginary parts, we at once obtain the Cauchy­
Riemann equations. 

These equations, however, also form a sufficient condition for the 
differentiability of the function f( z). To prove this, we form the differ­
ence quotient [see formula (13) p. 41] 

f(z + h) - f(z) _ u(x + r, y + s) - u(x, y) + i{v(x + r, y + s) - v(x,y)} 
h - r+is 

rux + SUy + irvx + isvy + sllhl + iS21hl 
- r + is 

where SI and S2 are two real quantities that tend to zero with I h I = 
./r2 + S2 . If now the Cauchy-Riemann equations hold, the above 
expression immediately becomes 

. Ihl· Ihl ux + tux + SI --.- + tS2 --.- . 
r+ts r+ts 

We see at once that as h ~ 0, this expression tends to the limit ux + 
ivx independently of the way in which the passage to the limit h ~ 0 
is carried out. 
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We now use the Cauchy-Riemann equations, or the property of 
differentiability that is equivalent to them, as the definition of an 
analytic function, on which we shall base our deduction of all the 
properties of such functions. 

b. The Simplest Operations of the Differential Calculus 

All polynomials and all power series in the interior of their circle 
of convergence are analytic functions (see p. 776). We see at once that 
the operations that lead to the elementary rules of the differential 
calculus can be carried out in exactly the same way as for the real 
variable (see Volume I, pp. 201-206, 218-220). In particular, the 
following rules hold: The sum, the difference, the product, and 
(provided the denominator does not vanish) the quotient of analytic 
functions can be differentiated according to the elementary rules 
of the calculus and, hence, are again analytic functions. Further, an 
analytic function of an analytic function can be differentiated ac­
cording to the chain rule and therefore is itself an analytic function. 

We also note the following theorem: 

If the derivative of an analytic function, = f( z) vanishes everywhere 
in a region R, the function is a constant. 

PROOF. We have by (8.5a, b) Vy - iuy = 0 everywhere in R. Hence, 
Vy = 0, Uy = 0, and by virtue of the Cauchy-Riemann equations, 
vx = 0, Ux = 0; that is, u and v are constants; hence, ~ is a constant. 

Application to the Exponential Function 

We use this theorem to derive some of the basic properties of the 
exponential function, defined for all complex z by the power series 

00 Zk Z Z2 
eZ = ~,=1+1+1+···· 

k=o k. 1. 2. 

Since we may differentiate this series (see p. 776), we find that 

(8.6) 
d Z2 
dz eZ = 1 + z + 2! + ... = eZ• 

Thus, the exponential functionf(z) = eZ is a solution ofthe differential 
equation 

f'(z) = f(z) 

for all z. By the chain rule of differentiation, it follows then for any 
fixed complex S that 
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d d 
- ez+t e-Z = - f(z + ~) f( -z) 
dz dz 

= {'(z + ~) f(-z) - f(z + ~) {'( -z) 

= f(z + ~) f( -z) - f(z + ~) f( -z)=o. 

Using the theorem above, we see that 

is a constant independent of z. We find the value of this constant by 
putting z = 0, and since eO = 1, obtain 

(8.6a) 

for all z and ~. For ~ = 0 it follows that 

(8.6b) 

Consequently, the exponential function is different from zero for all 
complex z and the reciprocal of ez is e-Z• Multiplying both sides of the 
identity (8.6a) by ez we arrive at the functional equation of the ex­
ponential function 

(8.6c) 

which could not be derived as easily directly from the power series 
representation. 

If f(z) is any solution of the differential equation 

(8.7a) {'(z) = f(z) 

we have 

d 
dzf(z)e-Z = {,(z)e-z - f(z)e-z = O. 

Hence, 

f(z)e-z = constant = c. 

Thus, the most general solution of the differential equation (8.7a) has 
the form 

(8.7b) f(z) = ceZ 

where c is a constant. 
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We found on p. 777 that 

(8.8a) e~z = cos z + i sin z, 

where cos z and sin z are defined by their power series. Replacing z 
by - z, we find, since sin (-z) = - sin z 

e-tz = cos z - i sin z. 

Multiplying the two relations, we see that 

Since e'z e-tz = etz- tz = 1, we have proved the identity 

(8.8b) cos2z + sin2z = 1 

for all complex z. 

By (8.6c) and (8.8a), 

(8.8c) 

If here x and y are real, we find that the absolute value of ez = exHlI 

is given by 

(8.8d) lezl = I exHlI I = lex cos y + i eX sin yl 
= .J(eX cos y)2 + (eX sin y)2 = .Je2X(cos2y + sin2y) 

Another important consequence of the relation (8.8a) connecting 
the exponential and trigonometric functions is obtained if we put z 
= 21t: 

(8.9a) e21t' = cos(21t) + i sin(21t) = 1. 

More generally, from (8.6c) for ~ = 21ti, we have 

(8.9b) 

Thus, for complex arguments the exponential function is periodic and 
has the period 21ti. 

Formula (8.8a) shows that for any integer n 

(8.9c) e2nltt = cos(2n1t) + i sin(2n1t) = 1. 
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One easily sees that the values z of the form 

z = 2n1ti (n = integer) 

are the only ones for which 

eZ = 1, 

for if z = x + iy, with real x, y, we find from eZ = 1 and (8.8d) that eX = 
1, and hence, x = O. Then 

1 = eiy = cos y + i sin y, 

which yields 

cos y = 1, sin y = o. 

Hence, y must be a multiple of 21t. 
We conclude that an equation 

(8.9d) 

can hold if and only if 

(8.ge) z = I; + 2n1ti, 

where n is an integer, for multiplying (8.9d) by e-~, we get 

c. Conformal Transformation. Inverse Functions 

By means of the functions u(x, y) and v(x, y) the points of the z­
plane or x, y-plane are made to correspond to points of the I;-plane or 
u, v-plane. Thus, we have a transformation or mapping of regions of 
the x, y-plane onto regions of the u, v-plane determined by I; = f(z) = 
u + iv. By (8.5a, b), p. 780, the Jacobian of the transformation is 

D _d(u,v)_ _ 2 2-lf'()12 - d(x,y) - UxVy - UyVx - Ux + Vx - z . 

The Jacobian is therefore different from zero and is, in fact, positive 
wherever f'(z) =1= o. If we assume that f'(z) =1= 0, our previous results 
(p. 261) show that a neighborhood of the point Zo in the z-plane, if 
sufficiently small, is mapped 1-1 and continuously on a region of the 
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~-plane in the neighborhood of the point ~o = f(zo). This mapping is 
conformal (Le., angles are unchanged by it), for as we have seen in 
Chapter 3 (p. 288), the Cauchy-Riemann equations are the necessary 
and sufficient conditions for the transformation to be conformal and 
to preserve not only the magnitude but also the sign of angles. We 
thus have the following result: 

Conformality of the transformation given by u(x, y) and v(x, y) and 
analytic character of the function fez) = u + iv mean exactly the same 
thing, provided we avoid points Zo for which f'(zo) = o. 

The reader should study the examples of conformal representation 
discussed in Chapter 3 (pp. 243-244) and prove that all these trans­
formations can be expressed by analytic functions of simple form. 

For a 1-1 conformal representation of a neighborhood of Zo on a 
neighborhood of ~o, the reverse transformation is also conformal. It 
follows that z = x + iy may also be regarded as an analytic function 
,(~) of ~ = u + iv. This function is called the inverse of ~ = f(z). 

Instead of using this geometrical argument, we can establish the 
analytic character of this inverse directly by calculating the deriva­
tives of x(u, v), y(u, v) as in (24d) on p. 0000. We have 

(8.10) ~ ~ ~ . 
xu = D' XV = - D' Yu = - D' Yv = D' 

and we see that the Cauchy-Riemann equations xu = Yv, Xv = - Yu 
are satisfied by the inverse function. As we can at once verify, the 
derivative of the inverse z = ,(~) of the function ~ = f(z) is given by 
the formula 

(8. lOb) 

Exercises 8.2 

1. Prove that the product and the quotient of analytic functions and the 
function of an analytic function are again analytic, using not the prop­
erty of differentiability but the Cauchy-Riemann differential equations. 

2. Show that if I f(z) I is constant in a region R, then f(z) is constant. 
3. Where are the following functions continuous? Which ones are differen­

tiable? 

(a) i; (b) Izl; Z2 + i 2 

(d) ---rzT2. 
4. Prove that in the transformation ~ = ! (z + lIz) the circles with cen­

ters at the origin and the straight lines through the origin of the z-plane 
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are respectively transformed into confocal ellipses and hyperbolas in 
the ~-plane. 

5. For the general linear transformation 

~=az+b 
ez+d 

(ad - be *- 0), 

there may be as many as two fixed points, values of z for which ~ = z. 
Show that if the transformation does have two fixed points, the family 
of circles through the two fixed points and the family of circles or­
thogonal to them transform into themselves. (For this purpose the 
straight line through the points and the perpendicular bisector of the 
segment joining them are considered to be "circles" of the respective 
families. 

6. Relate the inversion in the unit circle to the analytic function f(z) = lIz 
and thus derive the basic properties of inversion stated in Section 3.3d, 
Exercise 4, p. 256. 

7. Prove that a substitution of the form 

~=or.z+~ 
~z + ii' 

where or. and ~ are any complex numbers satisfying the relation 

or.ii - ~~ = 1, 

transforms the circumference of the unit circle into itself and the interior 
of the circle into itself. Prove also that if 

~~ - or.ii = 1, 

the interior is transformed into the exterior. 
S. Prove that any circle may be transformed by a substitution of the form 

~ = (or.z + ~)/(Yz + 8) into the upper half-plane bounded by the real 
axis. (Use Exercise 4, p. 778.) 

9. Prove that a substitution ~ = (or.z +~)/(Yz + 8), where or.8 - ~Y ~ 0, 
leaves the cross ratio 

(Zl - -za)/(z2 - za) 
(Zl - z4)/(Z2 - Z4) 

of four points Zl, Z2, Za, Z4 unaltered. 

8.3 The Integration of Analytic Functions 

a. Definition of the Integral 

The central theorem of the differential and integral calculus of 
functions of a real variable is that the indefinite integral of a function 
(the upper limit being undetermined) may be regarded as the primitive 
function or antiderivative of the original function (Volume I, p. 188). 
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A corresponding relation forms the nucleus of the theory of analytic 
functions of a complex variable. 

We begin by extending the definition of the definite integral of a 
given function fez). Here it is convenient to use t = r + is, instead of 
the independent variable z, to denote the variable of integration. Let 
the function f(t) be analytic in a region R, and let t = to and t = z 
be two points in this region, joined by an oriented curve C that is 
sectionally smooth (see p. 88) and lies wholly within R (Fig. 8.2). 
We then subdivide the curve C into n portions by means of the succes­
sive points to, h, . . ., t" = z and form the sum 

Figure 8.2 

(8. 11 a) 
n 

8" = ~ f(tv') (tv - tv-I), 
V*l 

where tv' denotes any point lying on C between tv-l and tv. IT we now 
make the subdivision finer and finer by letting the number of points 
increase without limit in such a way that the greatest of the lengths 
I tv - tV-II tends to zero, 8" tends to a limit that is independent of the 
choice of the particular intermediate point tv' and of the points tv. 

This can be proved directly by a method analogous to that used to 
prove the corresponding theorem of the existence of the definite inte­
gral for real variables. For our purpose, however, it is more con­
venient to reduce the theorem to what we already know about real 
curvilinear integrals (cf. Chapter 1, p. 89) as follows: We put f(t) = 
u(r, s) + iv(r, s), tv = rv + isv, tv' = rv' + isv', I1tv = tv - tV-l = I1rv + 
i I1sv. Then, we have 

n 
8" = ~ u(rv', Sv') I1rv - v(rv', Sv') I1sv 

V-I 

+ i It v(rv', Sv') I1rv + u(rv' , Sv' ) I1sv}. 
r-l 
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As 11. increases the sums on the right side tend to the real curvilinear 
integrals 

fe(u dx - v dy) and ife(v dx + u dy), 

respectively, and hence, as we asserted, 8n tends to a limit. We call 
this limit the definite integral of the function f(t) along the curve C 
from to to z and write it 

Ie: f(t) dt or Sa f(t) dt. 

Thus, 

(8.llb) fef(t) dt = fe(u dx - v dy) + i fe(v dx + u dy). 

The definition of this definite integral at once gives an important es­
timate: If If(t) I ~ M on the path of integration, where M is a constant 
and L is the length of the path of integration, then 

(8.llc) I fe f(t) dt I ~ ML, 

for by (8. lla) and Volume I (p. 350), 

18nl ~ M:E Itr - tr-ll ~ ML. 
v 

In addition, we point out that operations with complex integrals 
(in particular, combinations of different paths of integration) satisfy 
all the rules stated in this connection for curvilinear integrals in 
Chapter 1 (pp. 93-95). 

b. Cauchy's Theorem 

The most important property of functions of a complex variable is 
that the integral between to and z is largely independent of the choice 
of the path of integration C. In fact, we have Cauchy's theorem: 

If the function f(t) is analytic in a simply connected region R, the 
integral 

rZ f(t) dt = r f(t) dt Jeo Je 
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is independent of the particular choice of the path of integration C join­
ing to and z in R; the integral is an analytic function F(z) such that 

! F(z) = :z [ Ie: f(t) dt] = f(z). 

F(z) is accordingly a primitive function or indefinite integral of fez). 
Cauchy's theorem may also be expressed as follows: 

The integral of f(t) around a closed curve lying in a simply connected 
region in which f is analytic, has the value zero. 

The proof that the integral is independent of the path follows im­
mediately from (8. llb) and the main theorem on curvilinear integrals 
(cf. Chapter 1, p.104); for both u dx - v dy, the integrand in the real 
part, and v dx + u dy, the integrand in the imaginary part, satisfy 
the condition of integrability, by virtue of the Cauchy-Riemann equa­
tions (8.5a). Thus the integral is a function of x, y or of x + iy = z, 
F(z) = U(x, y) + i V(x, y), and from our previous results for curvilinear 
integrals, we have the relations 

Uz = u, Uy = -v, Vz = v, Vy == u, 

that is [see (8.5b), p. 780], 

Uz = Vy , Uy = - Vz, Uz + iVz = u + iv, 

which shows that F(z) is actually an analytic function in R with the 
derivative F'(z) = f(z). 

The assumption that the region is simply-connected is essential 
for the validity of Cauchy's theorem. For example, consider the func­
tion lIt, which is analytic everywhere in the t-plane except at the ori­
gin. We are not entitled to conclude from Cauchy's theorem that the 
integral of lIt, taken around a closed curve enclosing the origin, 
vanishes, for such a curve cannot be enclosed in a simply connected 
region in which the function is analytic. The simple connectivity 
of the region is destroyed by the exceptional point t = O. If, for ex­
ample, we take the integral around a circle K given by I t I = r or t = 
rei9 in the positive sense and make 9 the variable of integration (dt = 
riei9 d9), we have 

(8. 12a) -= -d9=2m' i dt i21< riei9 • 

K t 0 rei9 ' 

that is, the value of the integral is not zero but 21ti. 
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We can, however, extend Cauchy's theorem to multiply connected 
regions as follows: 

If a multiply connected region R is bounded by a finite number of 
sectionally smooth closed curves Cl,C2,. . . and if f( z) is analytic in the 
interior of this region and on its boundary, I then the sum of the integrals 
of the function along all the boundary curves is zero, provided that all 
the boundaries are described in the same sense relative to the interior 
of the region R, that is. that the region R is always on the same side, 
say the left-hand side, of the curve as it is described. 

The proof follows at once, on the model of the corresponding proofs 
for curvilinear integrals: We cut up the region R into a finite number 
of simply-connected regions (Figs. 8.3 and 8.4), apply Cauchy's theorem 

c 

q 
1 

Figure 8.3 I.c = I. + I. . 
Ct C2 

Figure 8.4 A multiply connected region 
R subdivided by segments Qt, Q2, ... into 
simply connected regions. 

to these regions separately, and add the results. We can express this 
theorem in a somewhat different way: 

If the region R is formed from the interior of a closed curve C by 
cutting out of this interior the interiors of further curves CI, C2, . . . , 
then 

(8. 12b) r f(t) dt = I: r f(t) dt, Jc v Jcv 

where the integrals around the external boundary C and the internal 
boundaries are to be taken in the same sense. 

lA function is said to be analytic on a curve if it is analytic throughout a neighbor. 
hood, no matter how small, of this curve. 
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c. Applications. The LogarUkm, the Exponential Function, and the 
General Power Function 

We can now use Cauchy's theorem as the basis for a satisfactory 
theory of the logarithm, the exponential function, and hence the other 
elementary functions, following a procedure similar to that adopted 
for a real variable (Volume I, Chapter 2, p. 145). 

We begin by defining the logarithm as the integral of the function 
lit. At first, we limit the path of integration by making it lie in a 
simply connected region of analyticity by making a cut along the 
negative real x-axis, that is, by permitting no path of integration to 
cross the negative real axis. More precisely, if we put t = I t I (cos 0 + 
i sin 0), we limit 0 by the inequality -1t < 0 ~ 1t. In the t-plane, after 
the cut has been made, we join the point t = 1 to an arbitrary point z 
by any curve C, and we can then use Cauchy's theorem to integrate 
the function lit between these two points, independently of the path. 
The result is an analytic function that we call log z and that is defined 
uniquely for z =1= 0: 

(8. 12c) ~ z dt 
~ = log z = - = f(z). 

1 t 

The logarithm has the property that 

(8. 12d) d 1 
-d (log z) = -. z z 

The inverse of the logarithm can be identified with the exponential 
function. We consider the function e10g Z defined for z =1= 0 in the plane 
slit along the negative real axis, in accordance with the definition of 
the logarithm. Using the chain rule of differentiation, we find from 
(8.12d) and (8.6) for z =1= 0: 

Hence, 

d 1 1 1 
- - e10g z = _ - e10g z + - elOg z. 
dzz Z2 Z2 

1 - e10g z = constant = c. 
z 

If we take here z = 1, we find that 

c=elogl=eO=1. 
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Thus, 

(8.l3a) elogZ=z for all z =1= 0.1 

Equation (8.l3a) shows that the equation 

(8.l3b) eW = z 

has at least one solution w for every z =1= 0, namely, 

(8.l3c) w = log z. 

Hence, the exponential function assumes all complex values but zero. 
The solution, however, is not unique. We know from p. 785 that if 

w is any particular solution of (8.l3b), then the general solution has 
the form 

w + 2n1ti, 

where n is an integer. Hence: 

For any z =1= 0 the equation 

(8.l3d) eW = z 

is equivalent to 

(8.l3e) w = log z + 2n1ti, 

where n is an integer. 
As an application we derive the addition theorem for logarithms. 

We have for any complex z, ~ that do not vanish, from (8.l3a) 

z~ = e log z e lOg c = e log z + log C 

and, on the other hand, 

z~ = eIOg(zC). 

lOne is tempted to conclude similarly from 

d 1 
dz log (ez) = eZ eZ = 1 

that 

g(z) = log(ez) - z = constant. 

But this is wrong, since g(O) = 0 and g(27ti) = - 27ti. It is left to the reader to discover 
the fallacy of the argument. 
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Hence, 

(8.14) log(z~) = log z + log ~ + 2n1ti, 

where n is an integer. Here, for positive real z, ~ we can always take 
n = 0 but not for others, as the following example shows. 

The integral 

I z dt 
log z = -

1 t 

is easily evaluated explicitly by taking the straight line joining the 
points t = 1 and t = I z I together with the circular arc I t I = I z I as the 
path of integration. Setting t = I z I ei~ on the circle, we have 

(8.15) JIZI dt r 0 
log z = 1 t + J 0 i d~ = log I z I + ie, 

where 9 is the argument of the complex number z (Fig. 8.5) For ex­
ample, 

log 1 = 0, log i = ~, log(-l) = 1ti. 

Figure 8.5 Log z = log Izl + i9. 

We notice that 

log [( -1) (-1)] = log 1 = 0 = log( -1) + log (-1) - 21ti. 

Thus, in formula (8.14), we cannot take n = 0 when z = ~ = -1. 
The value obtained in this way for the logarithm of any complex 

number z, whose argument lies in the interval -1t < 9 ~ 1t, is often 
called the principal value of the logarithm. This terminology is 
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justified by the fact that other values of the logarithm can be obtained 
by removing the condition that the negative real axis must not be 
crossed. We can then join the point 1 to the point z by a path that en­
closes the origin t = O. On this curve, the argument of t will increase 
up to a value that is greater or less than the argument previously as­
signed to z by 21t. We then have the value 

log z = log Izl + if} ± 21ti 

for the integral (Fig. 8.6). In the same way, by making the curve travel 
around the origin in one direction or the other any integral number of 
times n, we obtain the value 

(8.16) log z = log Izl + i9 + 2n1ti. 

This expresses the many-valuedness of the logarithm.1 Formula (8.16) 
represents the general solution of the equation elog z = z. 

Figure 8.6 Log z = log I z I + iO + 21ti. 

Now that we have introduced the logarithm and the exponential 
function it is easy to define the general power functions aZ and za, 
where a and a are complex constants (cf. the corresponding discus­
sion for the real variable in Volume I, p. 152). We define aZ by the re­
lation 

(8.16a) aZ = eZ log a (a =1= 0), 

where the principal value of log a is to be taken. In the same way we 
define za by the relation 

IOf course, the many-valued logarithm is not a function in the sense of a univalent 
assignment of a complex logarithm to each number z; the principal value is a func­
tion in that sense. 
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(8. 16b) (z =1= 0). 

While the function aZ is defined uniquely if we use the principal 
value of log a in the definition, the many-valuedness of the function 
za goes deeper. Taking the many-valuedness of log z into account, we 
see that along with anyone value of za we also have all the other 
values obtained by multiplying one value by e2nlria, where n is any 
positive or negative integer. If a is rational, say a = p/q, where p and q 
are integers prime to one another, among these multipliers there are 
only a finite number of different values (whose qth power must be 
unity). If, however, a is irrational, we obtain an infinite number of dif­
ferent multipliers. The many-valuedness of the function za will be 
discussed in greater detail on p. 815. 

As we see from the chain rule, these functions satisfy the dif­
ferentiation formulae 

(8. 16c) 
d(az) d(za) 
dz = aZ log a, dz = aza-I . 

Exercises 8.3 

. f 2Z - 1 1. ConsIder Z2 -1 dz. 

(a) What are the values of this integral taken counterclockwise around 
small circles centered at 1 and at -I? 

(b) Describe a closed path surrounding both 1 and -1 about which the 
integral is zero. 

2. Investigate the extensions of the laws of exponents, 

aBat = aSH, sata = (st)a, (aB)t = aBt = (at)., 

from the real to the complex domain and discuss the complications that 
arise from many-valuedness in the definition za = exp[ot (log z + 2n7ti)], 
where log z is the principal value of the logarithm. 

3. (a) Show that all values of i' are real. 
(b) Find general conditions on complex z (z ~ 0) and ~ such that all 

values of z~ are real. 
(c) -Is it possible to choose real x and~, such that all the values of xl; are 

real? 
4. The gamma function: Prove that the integral 

r(z) = Soo tz- 1 e-t dt, 
o 

where the principal value of tZ- 1 is taken, extended over all real values of 
the variable of integration t, is an analytic function of the parameter z = 
x + iy if x> O. Show directly that the expression r(z) can be differen-
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tiated with respect to z. Prove that the gamma function thus defined for 
the complex variable satisfies the functional equation r(z + 1) = 
zr(z). 

5. Riemann's zeta function: Taking the principal value of nZ , form the in­
finite series 

~ 1 
.E - = ~(z). 

n=l n Z 
(z = X + iy), 

Prove that this series converges if x> 1 and represents a differentiable 
function [~(z) is called Riemann's zeta function]. The proof can be carried 
out directly by a method like that for power series (cf. Volume I, p. 525). 

6. (a) Apply Cauchy's theorem to the integral 

J (z + ~ r zn-l dz (n > m > 0) 

taken along a path consisting of the positive quadrant of the unit 
circle I z I = 1 and the parts of the axes between the origin and the 
circle, a small circular detour being made round z = 0; and deduce 
that 

J 7</2 mO 0 dO _ sin [(n - m)1t/2] r(m + 1) r[(n - m)/2] 
o cos cos n - 2m+! r[(n + m)/2 + 1] 

(b) Prove that if n = m the value of the latter integral is 1t/2m+!. (In the 
complex integral the integrand may be taken as real on the positive 
half of the axis.) 

8.4 Cauchy's Formula and Its Applications 

a. Cauchy's Formula 

Cauchy's theorem for multiply connected regions leads to a 
fundamental formula, again Cauchy's, which expresses the value 
of an analytic function f(z) at any point z = a in the interior of a 
closed region R throughout which the function is analytic, by means 
of the values that the function takes on the boundary C. 

We assume that the function f(z) is analytic in the simply con­
nected region R and on its boundary C. Then the function 

g(z) = f(z) 
z-a 

is analytic everywhere in the region R, the boundary C included, 
except at the point z = a. Out of the region R we cut a circle of small 
radius p about the point z = a, lying entirely within R (Fig. 8.7), and 
then apply Cauchy's theorem (p. 790) to the function g(z). If K denotes 
the circumference of the circle described in the positive sense and C 
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c 

Figure 8.7 

the boundary of R described in the positive sense, Cauchy's theorem 
states that [see (S.12b), p. 791] 

Ie g(z) dz = IK g(z) dz. 

On the circle K we have z - a = pei9, where the angle 9 determines 
the position of the point on the circumference. On the circle, there­
fore, dz = piei9 d9, and hence, 

Since f(z) is continuous at the point a, we have, provided p is sufficient­
ly small, 

f(a + pei9) = f(a) + 11, 

where 1111 is less than an arbitrary prescribed positive quantity E. 
Hence, 

and therefore, 

r 2" 
Jo f(a + pei9) d9 = 21tf(a) + K, 

where I K I ~ 21tE. Thus, if p is sufficiently small, 

Ie g(z) dz = 21tif(a) + Ki, 

where I Ki I < 21t'E. 
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If we make t tend to zero (by making p tend to zero), the right 
side of the equation tends to 2nif(a), while the value of the left side, 
namely, 

Ie g(z) dz, 

is unaltered. We thus obtain Cauchy's fundamental integral formula 

(S.17a) f(a) = ~ r fez) dz. 
2m Je z - a 

If we now revert to the use of t as variable of integration and then 
replace a by z, the formula takes the form 

(S.l7b) fez) = ~ r f(t) dt. 
2m Je t - z 

This formula expresses the values of a function in the interior of 
a closed region in which the function is analytic by means of the 
values that the function takes on the boundary of the region. 

In particular, if C is a circle t = z + reiO with center z-that is, if 
dt = ireiO de-then 

1 i SIt fez) = - fez + reiO) de. 
2n 0 

In words, the value of a function at the center of a circular disk is equal 
to the mean of its values on the circumference, provided that the circle 
and its interior are contained in a region where the function is analytic. 

b. Expansion of Analytic Functions in Power Series 

Cauchy's formula has a number of important consequences. The 
chief of these is that every analytic function can be expanded in a power 
series, which connects the present theory with that in Section S.l 
(p. 772). More precisely, we have the following theorem: 

If the function f(z) is analytic in the interior and on the boundary of 
a circle I z - Zo I ~ R, it can be expanded as a power series in z - Zo 
that converges in the interior of that circle. 

In proving this we can take Zo = 0 without loss of generality. 
(Otherwise we could merely introduce a new independent variable z' 
by means of the transformation z - Zo = z'). We now apply Cauchy's 
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integral formula (8.17b) to the circle C, It I = R, and write the in­
tegrand (using the geometric series) in the form 

f(t) = f(t) 1 = f(t) (1 + ~ + d • ~) + f(t)(~)n+l _1_. 
t - z t 1 - zit t t tn t t 1 - zit 

Since z is a point in the interior of the circle, I zit I = q is a positive 
number less than unity, and we estimate the remainder of the geo­
metric series, 

1 zn+1 1 
rn = t tn+1 1 - zit' 

by 

1 1 
I r 1 < -qn+l __ 

n =R 1-q' 

Introducing our expressions into Cauchy's formula and integrating 
term by term, we obtain 

f(z) = Co + CIZ + ... + Cnzn + Rn, 

where 

If M is an upper bound of the values of If(t) I on the circumference of 
the circle, our estimate (8.llc) for complex integrals immediately 
gives 

1 qn+1 qn+1 
I Rn I ~ 21tR 1 _ q 21tRM = 1 _ q M 

for the remainder. Since q < 1, this remainder tends to zero as n 
increases and we obtain the power series expansion for f(z), 

~ 

f(z) = L: CvZV, 

V=O 

where 
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(8.l8a) 

Our assertion is thus proved. 
This theorem has important consequences. To begin with, we 

know from p. 776 that every power series can be differentiated as 
often as we please in the interior of its circle of convergence. Since 
every analytic function can be represented by a power series, it 
follows that the derivative of a function in the interior of a region where 
the function is analytic is also differentiable (i.e., is again an analytic 
function). In other words, the operation of differentiation does not lead 
us out of the class of analytic functions. As we already know that the 
same is true for the operation of integration, we see that differenti­
ation and integration of analytic functions can be carried out without 
any restrictions. This is an agreeable state of affairs, which does not 
exist in the case of real functions. 

Since, as we saw in Section 8.1 (p. 776), every power series is the 
Taylor series of the function that it represents, it now follows in 
general that every analytic function can be expanded in the neighbor­
hood of a point z = Zo in a region R where the function is analytic in 
a Taylor series 

(8.l8b) 
~ f(V)(zo) 

fez) = f(zo) +:E -,- (z - zo)V. 
V=l v. 

The coefficients Cv in (8.l8a) are accordingly given by the formulae 

(B.lBc) f(V)(Zo) _ ~ r f(zo + t) dt 
v ! - 21ti Jc tv+l • 

From this result we may also deduce an important fact about the 
radius of convergence of a power series. The Taylor series of a function 
fez) in the neighborhood of a point z = Zo converges in the interior of 
the largest circle whose interior lies wholly within the region where 
the function is defined and is analytic. 

By virtue of the theorems on differentiation and integration that 
we have now established as also valid for the complex variable, all 
the elementary functions of a real variable that we expanded in 
Taylor series have exactly the same Taylor series for a complex in­
dependent variable. For most of these functions we have already seen 
that this is true. 

Here we may point out that, for example, the binomial series (cf. 
Volume I, p. 456). 
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~ 

(8.19a) (1 + z)a = ~ (~) ZV 
v-o 

is also valid for the complex variable if I z I < 1 and a is any complex 
exponent, provided that 

(8. 19b) (1 + z)a = ea log(l+z) 

is formed from the principal value of log (1 + z). 
The fact that the radius of convergence of this series is equal to 

unity follows from what we have just said, together with the remark 
that the function (1 + z)a is no longer analytic at the point z = -1, 
for if it were, all the derivatives would exist there, which is certainly 
not the case. The circle with radius 1 with the point z = 0 as center 
is therefore the largest circle in the interior of which the function is 
still analytic. 

This example illustrates that the convergence behavior of power 
series, which real analysis leaves in mystery, becomes completely 
intelligible in the light of the fact that we have just proved about the 
radius of convergence. 

For example, the failure of the geometric series representing 
1/(1 + Z2) to converge on the unit circle is a simple consequence of the 
fact that the function is no longer analytic for z = i and z = - i. 
We also see now that the power series 

(8.20) 
_z__ Bv*zv 
eZ - 1 - L: v! ' 

which defines Bernoulli's numbers (cf. Volume I, p. 562), must have 
the circle I z I = 21t as its circle of convergence, for the denominator of 
the function vanishes for z = 21ti but (apart from the origin) at no 
point interior to the circle I z I ~ 21t. 

c. The Theory of Functions and Potential Theory 

Since analytic functions f = u + iv may be differentiated as often 
as we please, it follows that the functions u(x, y) and v(x, y) also have 
continuous derivatives of any order. We may, therefore, differentiate 
the Cauchy-Riemann equations. If we differentiate the first equation 
with respect to x and the second with respect to y and add, we have 

~u = Uzz + U1/1/ = 0; 

in the same way, the imaginary part v satisfies the same equation 
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Av = Vxx + Vyy = O. 

In other words, the real part and the imaginary part of an analytic 
function are potential functions. 

If two potential functions u, v satisfy the Cauchy-Riemann equa­
tions, v is said to be conjugate to u, and - u conjugate to v. 

This suggests that the theory of functions of a complex variable 
and potential theory in two dimensions are essentially equivalent to 
one another. 

d. The Converse of Cauchy's Theorem 

Cauchy's theorem has a valid converse (Morera's theorem): 

If the integral of the continuous function, = u + iv = f( z) around 
every closed curve C in its region of definition R vanishes, then fez) 
is an analytic function in R. 

To prove this, we note that the integral 

F(z) = r Z f(t) dt 
Jto 

taken along any path joining a fixed point to and a variable point 
z is independent of the path. Then by (8.llc), p. 789, 

F(z + h) - F(z) _ f(z) = ~ iZ+k [f(t) - f(z)] dt -) 0 (h -) 0). 
h h Z 

Hence, F(z) has the derivative F'(z) = f(z). F(z) is therefore analytic, 
and by our earlier result, so is its derivative f(z). 

The converse of Cauchy's theorem shows that the postulate of 
differentiability could have been replaced by the postulate of inte­
grability (i.e., that the line integral is independent of the path). The 
equivalence of these two postulates is a very characteristic feature 
of the theory of functions of a complex variable. 

e. Zeros, Poles, and Residues of an Analytic Function 

If the function f(z) vanishes at the point z = Zo, the constant term 
in the Taylor series of the function in powers of z - Zo 

f(z) = f(zo) + (z - zo) {'(zo) + ... , 

vanishes, and possibly other terms of the series also vanish. A factor 
(z - zo)n may then be taken out of the power series and we may write 
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f(z) = (z - zot g(z) 

where g(zo) =1= o. A point Zo for which this occurs is said to be a zero 
of the function fez) of the nth order. 

The reciprocal l/f(z) = q(z) of an analytic function, as we saw 
above, is also analytic, except at the points where f(z) vanishes. If Zo 

is a zero of f(z) of the nth order, the function q(z) can be represented 
in the neighborhood of the point Zo in the form 

1 1 1 
q(z) = (z _ zot g(z) - (z _ zo)n h(z), 

where h(z) is analytic in the neighborhood of z = zoo At the point z = 
Zo the function q(z) ceases to be analytic. We call this point a singu­
larity (singular point). In this particular case the singularity is called 
a pole of the function q(z) of the nth order. If we think of the function 
h(z) as expanded in powers of (z - zo) and then divided by (z - zo)n 
term by term, in the neighborhood of the pole we obtain an expansion 
of the form 

q(z) = C-n(Z - zo)-n + ... + C-l (z - ZO)-l + Co + Cl (z - zo) + .. " 

where the coefficients of the powers of (z - zo) are denoted by C-n, 
. . ., C-l, Co, Cl, . . .• 

If we are dealing with a pole of the first order (i.e., if n = 1), we 
obtain the coefficient C-l immediately from the relation 

C-l = lim (z - zo)q(z). 
z-zO 

Since 

1 f(z) f(z) - f(zo) 
q(z) (z - zo) = z - Zo = z - Zo ' 

we have for the coefficient of l/(z - zo) in the expansion of q(z), 

(8.21a) 
1 

C-l = f'(zo)" 

In the same way, if q(z) = r(z)/~(z), where ~(z) has a zero of the first 
order at z = Zo and r(zo) =1= 0, we have in the expansion of q(z) 

(8.21b) 
r(zo) 

C-l = ~'(zo)" 
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If a function is defined and analytic everywhere in the neighbor­
hood of a point Zo but not at the point itself, its integral around a 
complete circle enclosing the point Zo will in general not be zero. By 
Cauchy's theorem, however, the integral is independent of the radius 
of this circle and in general has the same value for all closed curves 
C that form the boundary of a sufficiently small region enclosing the 
point zoo The value of the integral taken around the point in the 
positive sense is called the residue at the point. 

If the singularity is a pole of the nth order and if we integrate the 
expansion of the function, the integral of the series with positive in­
dices is zero, as this power series is still analytic at the point zoo 

When integrated, the term C-l (z - ZO)-l gives the value 21tic_l, while 
the terms with higher negative indices give 0, for the indefinite 
integral of (z - zo)-v for v > 1 is (z - zo)-v+l/(l - v), as in the real 
case, so that the integral around a closed curve vanishes. 

The residue of a function at a pole is therefore 2nic-l. 
In the next section we shall become acquainted with the usefulness 

of this idea as expressed by the following theorem: 

THEOREM OF RESIDUES. If the function fez) is analytic in the 
interior of a region R and on its boundary C except at a finite number 
of interior poles, the integral of the function taken around C in the 
positive sense is equal to the sum of the residues of the function at the 
poles enclosed by the boundary C. 

The proof follows at once from the statements above. 

Exercises 8.4 

1. Prove, without using the theory of power series directly, that the deriva­
tive of an analytic function is differentiable by successive differentia­
tion under the integral sign in Cauchy's formula and justify the validity 
of this process. 

2. Show that the function 

f(z) - l J f(~) zn. d)' 
2n:i ~ - z ~n '" 

where the integral is taken around a simple contour enclosing the 
points ~ = 0 and ~ = z, is a polynomial g(z) of degree n - 1 such that 

g(m)(o) = f(m)(o) (m = 0, 1, . . ., n - 1). 

3. Show that for every potential function u it is possible to construct a 
conjugate function" and to determine it uniquely apart from an additive 
constant provided the domain is simply connected. 

4. What are the residues of f(z) = (2z - 1)/(z2 - 1) at its poles? 
5. If f(z) is bounded, If(z) I < M, on the entire complex plane, show that 
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f(z) - f(O) = 2~i f f(r.) [~ ~ z - !J dt 

can be made as small as one pleases by taking the integral over a suf­
ficiently large circle. Consequently, f(z) = f(O); that is, the function is 
constant. 

6. Letf(z) be analytic for Izl;;;; p. If Mis the maximum of If(z) I on the cir­
cle I z I = p, then the coefficients of the power series for f, 

satisfy the inequality 

f(z) = i: avzv, 
V=O 

M lavl ;;;; pv. 

Note that the conclusion of Exercise 5 follows also from this result. 
7. Let P(z) = IXnZn + IXn_IZn-1 + ... + IXO be a polynomial of positive de­

gree n. Show that the assumption that P(z) has no roots implies that 
f(z) = l/P(z) is bounded and,hence, constant, by Exercise 5 or Exercise 
6, and, then, that f(z) is identically zero. This proves the fundamental 
theorem of algebra. that every polynomial of positive degree with com­
plex coefficients has at least one complex root. 

8. Let f(z) be analytic in the interior of, and on, a simple closed curve C 
with the possible exception of a finite number of points in the interior. 
Consider 

1 r f'(z) 
1= 2n:iJc f(z) dz, 

taken in the positive sense around C. 
(a) Show that if f has a zero of order n at IX and no other poles or zeros 

in the interior of or on C, then I = n. 
(b) Show that if f has a pole of order m at IX and no poles or zeros at any 

other point in or on C, then I = - m. 
(c) Show that if f has a finite number of zeros and poles in C, none on 

C, then I is the number of zeros minus the number of poles, counting 
multiplicity; that is, if the zeros have multiplicities nI, n2, . .. , 
nj and the poles, multiplicities ml, m2, . . ., mk, then 

1= nI + n2 + ... + nj - ml - m2 - ... - mk. 

9. (a) Two polynomials P(z) and Q(z) are such that at every point on a cer­
tain closed contour C 

I Q(z) I < I P(z) I· 

Prove that the equations P(z) = 0 and P(z) + Q(z) = 0 have the 
same numbers of roots within C. (Consider the family of functions 
P(z) + IlQ(z), where the parameter Il varies from 0 to 1.) 

(b) Prove that all the roots of the equation 

z5+ az+l=O 
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lie within the circle I z I = r if 

10. Use Exercise 8(b) to show that a polynomial P(z) of degree n has pre­
cisely n roots, counting multiplicity. 

11. (a) Iff(z) has one simple root ex within a closed curve C, prove that this 
root is given by 

1 r {,(z) 
ex = 2rri Jc z f(z) dz. 

(b) Interpret the integral of part (a) when f(z) has finitely many zeros 
and poles in, but not on, C. 

12. Prove that eZ cannot vanish for any value of z. 

8.5 Applications to Complex Integration (Contour Integration) 

Cauchy's theorem and the theorem of residues frequently enable 
us to evaluate real definite integrals by regarding these as integrals 
along the real axis of a complex plane and then simplifying the argu­
ment by suitable modification of the path of integration.! In this way 
we sometimes obtain surprisingly elegant evaluations of apparently 
complicated definite integrals, without necessarily being able to 
calculate the corresponding indefinite integrals. We shall discuss 
some typical examples. 

a. Proof of the Formula 

(8.22) rOO sin x dx = 1t 

Jo x 2· 

Here we give the following instructive proof of this important 
formula, which we have already discussed by other methods (Volume 
I, p. 589; Volume II, p. 471). 

We integrate the function eizjz in the complex z-plane along the 
path C shown in Fig. 8.8, which consists of a semicircle HR of radius 
R and a semicircle Hr of radius r, both having their centers at the 
origin, and the two symmetrical intervals II and 12 of the real axis. 
Since the function eiz j z is regular in the circular ring enclosed by 
these boundaries, the value of the integral in question is zero. Com­
bining the integrals along II and h we have 

lIt is always necessary to reduce the integral considered to one over a closed path 
in the complex plane. 
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o r It 
.% 

Figure 8.8 

f eiz f. e iz lR sin x -dz + -dz + 2i --dx = O. 
HR Z HrZ r X 

We now let R tend to infinity. Then the integral along the semicircle 
HR tends to zero, for if we put z = R( cos e + i sin e) = ReiO for points 
of the semicircle, we have 

eiz = eiR cos 0 e-R sino, 

and the integral becomes 

i Lit eiR cos 0 e-R sin 0 de. 

The absolute value of the factor eiR cos 0 is 1, while the absolute value 
of the factor e-R sin 0 is less than 1 and, moreover, tends uniformly to 
zero as R tends to infinity, in every interval 8 ~ e ~ 1t - 8. Hence, it 
follows ~t once that the integral along HR tends to zero as R ~ 00. As 
the reade~an easily prove for himself, the integral along the semi­
circle Hr ten~ to -1ti as r ~ O. The integral along the two symmetrical 
intervals It, 12 of the real axis tends to 

2i r~ sin x dx 
Jo x 

as R~ 00 and r~O. 

Combining these statements, we immediately obtain the relation (S.22). 

b. Proof of the Formula 

(S.23) 
~ 1 r (cos ax)e-Z2 dx = - .lit e a2/4 

Jo 2 

(Compare Section 4.12, p. 476 Exercise 9a.) 

We integrate the expression e-z2 along a rectangle ABB'A' (Fig. 
S.9), in which the length of the vertical sides AA', BB' is a/2 and that 
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1,;;-j-' ======'======:i-!;--!-']_i __ X A 0 B 

Figure 8.9 

of the horizontal sides AB, A' B' is 2R. This integral has the value 
zero, by Cauchy's theorem. On the vertical sides we have 

and this expression tends uniformly to zero as R tends to infinity. 
Thus, the portions of the whole integral that arise from the vertical 
sides tend to zero and if we carry out the passage to the limit R ~ 00 

and note that dz = d(x + tia) = dx, on A' B' we may express the 
result of Cauchy's theorem as follows: 

+~ ~ 

i~ e-(ZHa/2)2 dx = i~ e-z2 dx. 

That is, we can displace the path of integration of the infinite integral 
parallel to itself. By our previous result (see p. 415) the value of the 
integral on the right is .fit. The integral on the left immediately 
becomes 

ea2/41~ e-Z2(cos ax - i sin ax)dx = 2ea2/4 r- cos ax e-z2 dx, 
-~ Jo 

since sin ax is an odd function and cos ax an even function. This 
proveSl formula (8.23). 

c. Application of the Theorem of Residues to the Integration of 
Rational Functions 

For the rational function 

ao + alZ + . . . + amzm 
Q(z) = bo + bIZ + . . . + b",z"" 

if the denominator has no real zeros and its degree exceeds that of the 
numerator by at least two, the integral 



810 Introduction to Calculus and Analysis, Vol. II 

1= L: Q(x)dx 

can be evaluated in the following way: We begin by taking the 
integral along a contour consisting of the boundary of a semicircle 
H of large radius R (on which z = Reto, 0 ~ 9 ~ 1t) and the real axis 
from - R to + R. The radius R is chosen so large that all the zeros of 
the denominator lie in the interior of the circle. Consequently, all the 
poles of the Q(z) lie in the interior of the circle. On one hand, the 
integral is equal to the sum of the residues of Q(z) within the semi­
circle, while, on the other, it is equal to the integral 

In = i: Q(x) dx 

plus the integral along the semicircle H. By our assumptions, a fixed 
positive constant M exists such that for sufficiently large values of 
R we havel 

M 
I Q(z) I < R2' 

The length of the circumference of the semicircle is 1tR. By our 
estimation formula (8.llc) on p. 789, the integral along the semicircle 
is therefore less in absolute value than 

and, hence, tends to zero as R -+ 00. This means that the integral 

1= i: Q(x)dx 

is equal to the sum of the residues of Q(z) in the upper half-plane. 
We now apply this principle to some interesting special cases. 

We begin by taking 

1 1 
Q(z) = az2 + bz + c = f(z) , 

IThis follows immediately from the fact that Q(z) = (1/z2) R(z), where R(z) tends to 
zero as z -+ 00 (when n > m + 2) or to am/b.. (when n = m + 2). 
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where the coefficients a, b, c are real and satisfy the conditions a > 0, 
b2 - 4ac < o. The function Q(z) has one simple pole in the upper half­
plane at the point 

Zl = -.l {- b + i.J4ac - b2 } 
2a ' 

where the square root is to be taken positive, in the upper half-plane. 
By the general rule (S.21a), therefore, the residue is 21ti [1/f'(Zl)]. Since 

f'(Zl) = 2azl + b = i .J4ac - b2, 

we have 

(S.24a) 
rOO 1 ~ 

L_ ax2 + bx + c dx = .J 4ac - b2 . 

As a second example, we shall prove the formula (cf. Volume I, p. 
290) 

(S.24b) 

Here again, we can immediately apply our general principle. In 
the upper half-plane the function 1/(1 + z4) = 1/f(z) has the two 
poles Zl = s = e(1/4)lti, Z2 = -S-l (the two fourth roots of -1 that have 
a positive imaginary part). The sum of the residues is 

2 . {_I _1}_ 2 .! (~ ~) _ 1ti( -3 3) 
m f'(Zl) + f'(Z2) - m 4 Z13 + Z23 - 2 s - s , 

. •. 31t . 1t 1 r = -1tt • t Sin - = 1t Sin - = - 1t 11 2 
4 4 2 ' 

as was asserted. 
The following proof of the formula 

(S.24c) 
rOO dx 1t (2n)! 

L_ (1 + x2)n+1 = 4n (n!)2 

exemplifies the case where the residue at a pole of higher order has 
to be calculated. 

If we replace x by z, the denominator of the integrand is of the 
form (z + i)n+1(z - i)n+1, and the integrand accordingly has a pole 
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of the (n + l)-th order at the point z = + i. To find the residue at that 
point, we write 

1 1 1 1 
(Z2 + l)n+l = f(z) = (z - i)n+l (2i + z - i)n+l 

1 1 ( z-i)-n-l 
= (z - i)n+l (2i)n+l 1 + ~ . 

If we expand the last factor by the binomial theorem, the term in 
(z - i)n has the coefficient 

1 ( - n -1) 1 (n + 1) ... 2n in (2n)! 
(2i)n n = (2i)n (-l)n 1. 2 ..• n = 2n (n!)2 . 

The coefficient C-l in the series for the integrand in the neighborhood 
of the point z = i is therefore equal to 

1 1 (2n)! 
22n+l i (n !)2 . 

The residue 21tic-l is therefore 

1t (2n)! 
22n (n!)2 ' 

which proves the formula. 
As a further exercise the reader may prove for himself by the 

theory of residues that, 

(8.24d) l~ x sin x d -! -I c 1 
2+ 2 x- 2 1te o x C 

(replacing sin x by eix). 

d. The Theorem of Residues and Linear Differential Equations 
with Constant Coefficients 

Let 

be a polynomial of the nth degree and t a real parameter. We think of 
the integral 
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r etzf(z) 
u(t) = Je P(z) dz, 

taken along any closed path C in the z-plane, which does not pass 
through any of the zeros of P(z), as a function u(t) of the parameter t. 
Let f(z) be a constant or any polynomial in z, of a degree that we shall 
assume to be less than n. By the rules for differentiation under the 
integral sign, which hold unaltered for the complex plane, we can 
differentiate the expression u(t) once or repeatedly with respect to t. 
This differentiation with respect to t under the integral sign is 
equivalent to multiplication of the integrand by z, Z2, Z3, ... , as the 
case may be. If we now form the differential expression L[u] = aou + 
alu' + a2u" + ... + anU(n), or, in symbolic notation, P(D)u, where 
D denotes the symbol of differentiation D = d/dt, we have 

P(D)u = L[u] = fe etz f(z) dz. 

By Cauchy's theorem, the value of the complex integral on the 
right is 0; that is, the function u(t) is a solution of the differential 
equation L[u] = O. If f(z) is any polynomial of the (n - l)-th degree, 
this solution contains n arbitrary constants. We may accordingly 
expect to get in this way the most general solution of the linear 
differential equation with constant coefficients, L[u] = O. 

In fact, we do obtain the solutions in the form that we already 
know (cf. Chapter 6, p. 696), on evaluating the integral by the theory 
of residues, with the assumption that the curve C encloses all the 
zeros Zl, Z2, . . ., Zn of the denominator P(z) = an(Z - Zl) (z - Z2) 
••• (z - Zn). If we assume to begin with that all these zeros are 
simple zeros, they are simple poles of the integrand, and the residue 
at the point Zv is by formula (8.21b) given by 

2 . f(zv) tz 
m P'(zv) e v. 

By suitable choice of the polynomial f(z) the expressions f(zv)/P'(zv) 
can be made arbitrary constants; we accordingly obtain the solution 
in the form 

n 
u(t) = ~ cvezvt, 

V=I 

in agreement with our previous results. 
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If a zero Zv of the polynomial P(z) is multiple, say r-fold, so that 
the corresponding pole of the integrand is of the rth order, the residue 
at the point Zv must be determined by expanding the numerator 
etz f(z) = etzv et(Z-Zvlf(z) in powers of z - Zv' We leave it to the reader to 
show that the residue at the point Zv gives the solutions tetzv, ... , 
tr-1etzv as well as the solution etzv. 

Exercises 8.5 

1. (a) Let f(z) be analytic and g(z) have a pole of order n at z = ex. Obtain 
an expression for the residue of f(z)g(z) at z = ex. 

(b) In particular, if g(z) = (z - ex)-n, show that the residue is 

27t'i - f<n-l)(ex) 
(n - I)! . 

2. If f(z) has a zero of order 2 at ex, show that the residue of 11f(z) at ex is 

47t'i {"'(ex) 
3 {"(ex)2' 

3. Evaluate, for nonnegative integers n, m with n > m, the following inte­
grals: 

(a) l~ x 2 

_~ 1 + X4dx 

(b) l~ 1 
_~ (1 + X4)2 dx 

(c) 
l~ x2m 
_~ 1 + X2ndx. 

4. Let f(z) be a polynomial of degree n with the simple roots exl, ex2, • 
exn. Prove that 

. . , 

n exvk 

1: f'( ) = 0 (k = 0, 1, .. " n - 2). 
v=l (Xv 

(Consider ff~:) dz around a closed curve enclosing all the exv.) 

5. Derive the result of (8.24d), namely, 

r~ x sin x _ ! _I c 1 
Jo x2 + c2 - 2 7t'e • 

8.6 Many-Valued Functions and Analytic Extension 

In defining functions both real and complex, we have hitherto 
always adopted the point of view that for each value of the independ­
ent variable the value of the function must be unique. Even Cauchy's 
theorem, for example, is based on the assumption that the function 
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can be defined uniquely in the region under consideration. All the 
same, many-valuedness often arises of necessity in the actual con­
struction of functions, (e.g., in finding the inverse of a unique function 
such as the nth power). In the real case, we separated different one­
valued branches of the inverse function in inversion processes such 
as ../Z or Vz. We shall see, however, that in the complex case this 
separation is no longer reasonable, for the various one-valued 
branches are now interconnected in a way that makes any separation 
of them rather artificial. 

We must be content here with a very simple discussion based on 
typical examples. 

For instance, we consider the inverse ~ = ../Z of the function z = 
~2. To each nonzero value of z there correspond the two possible 
solutions ~ and -~ of the equation z = ~2. These two branches of the 
function are connected in the following way: Let z = rei9• If we then 
put ~ = "/i ei9/2 = f(z), ~ = f(z) is certainly analytic in every simply 
connected region R excluding the origin [where f(z) is no longer 
differentiable]. In such a region, ~ is uniquely defined, by our previous 
statement. If, however, we let the point z move around the origin on 
a concentric circle K, say in the positive direction, ~ = ../,. ei9/2 will vary 
continuously; the angle 9, however, will not return to its original 
value but will be increased by 27t. Hence, in this continuous extension 
when we come back to the point z, we no longer have the initial value 
~ = ../,. ei9/2 , but the value ../,. ei9/2 e2"i/2 = -~. We say that when the 
function f(z) is continuously extended on the closed curve K it is not 
umque. 

The function Vz, where n is an integer, exhibits exactly the same 
behavior. Here every revolution multiplies the value of the function 
by the nth root of unity-namely, E = e2"iln-and the function only 
returns to its original value after n revolutions. 

In the case of the function log z, we saw (p. 795) that there is a 
similar many-valuedness, in that, in traveling once continuously 
around the origin in the positive sense, the value of log z is increased 
by 27ti. 

Again, the function za is multiplied by e2ltia per revolution. 
All these functions, although in the first instance uniquely defined 

in a region R, are found to be many-valued when we extend them 
continuously (as analytic functions) and return to the starting point 
by a certain closed path. This phenomenon of many-valuedness and 
the associated general theory of analytic extension cannot be in­
vestigated in greater detail within the limits of this book. We merely 
point out that the uniqueness of the values of a function can theoreti-



816 Introduction to Calculus and Analysis. Vol. II 

cally be ensured by drawing certain lines in the z-plane that the path 
traced by z is not allowed to cross, or, as we say, by making cuts along 
certain lines. These cuts are so arranged that closed paths in the 
plane that lead to many-valuedness are no longer possible. 

For example, the function log z is made one-valued by cutting the 
z-plane along the negative real axis. The same applies to the function 
rz. The function J1 - Z2 becomes one-valued if we make a cut along 
the real axis between -1 and + 1. 

Once the plane has been cut in this way, Cauchy's theorem can 
at once be applied to these functions. We give a simple example by 
proving the formula 

(8.27) i +1 1 21t 
1= -1 (x - k)J1 - x2 dx = Jk2 - 1 ' 

where k is a constant that does not lie on the real axis between -1 
and +1. 

We begin by noting that the function 

1 
(z - k)J1 - Z2 

is one-valued in the z-plane, provided we make a cut along the 
real axis from -1 to + 1. If in the complex plane we approach this cut 
S first from above and then from below, we obtain equal and opposite 
values for the square root J1 - Z2, say, positive from above and 
negative from below. We now take the complex integral 

r dz 
Jc (z - k) J1 - Z2 

along a path C as indicated in Fig. 8.10. By Cauchy's theorem we 
can make this path contract round the cut without altering the value 
of the integral. The integral is therefore equal to the limiting value 
obtained when this contraction is made, which is obviously equal to 
21. On the other hand, if we take the integral of the same integrand 
along the circumference of a circle K with radius R and center at the 
origin, this integral, by our previous investigations, tends to zero as 
R increases. 1 By the theorem of residues, however, the sum of the 
integrals along C and K is equal to the residue of the integrand at the 

lIn fact, its value is actually zero, since by Cauchy's theorem it is independent of the 
radius R, provided that the circle encloses the pole z = k. 



Functions of a Complex Variable 817 

Figure 8.10 

enclosed pole z = k; hence, 2I is equal to the residue in question. 
This residue is 

21ti ~~ (z - k) "'1 ~ Z2 (z ~ k) = Jk~~ l' 
which proves our statement. 

Example of Analytic Extension: The Gamma Function 

In conclusion we give yet another example showing how an 
analytic function, originally defined in a part of the plane, can be 
extended beyond the original region of definition. We shall extend the 
gamma function, which was defined for x > 0 by the equation 

(8.28) 

analytically for x ~ 0 also. We could do this by means of the function­
al equation 

1 
r(z) = - r (z + 1), z 

using this equation to define r(z - 1) when r(z) is known. By 
means of this equation, we can imagine r(z) as extended first to the 
strip -1 < x ~ 0 and subsequently extended to the next strip - 2 < 
x ~ -1, and so on. 
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We adopt another method, of greater theoretical interest, for 
extending the gamma function. We consider the path C in the t-plane 
indicated in Fig. 8.11, which surrounds the positive real axis of the 
t-plane and approaches this axis asymptotically on either side. We 
easily see from Cauchy's theorem that the value of the loop-integral,l 

r tz-1e-t dt 
Jc ' 

is unaltered when the loop is made to contract into the x-axis. The 
integrand tz-1e-t then tends to different values as we approach the 
x-axis from above and below, the values differing by the factor e2ltiz • 

• 

Figure 8.11 Loop-integral for the gamma function. 

For x > 0, we thus obtain the formula 

This formula is derived subject to the assumption that x, the real 
part of z, is positive. We see now, however, that the loop-integral has 
a meaning, no matter what the complex number z is, since it avoids 
the origin t = O. This loop-integral therefore represents a function 
defined throughout the z-plane. We then define this function by 
stating that it is equal to (1 - e2Itiz)r(z) throughout the z-plane. The 
gamma function has thus been analytically extended to the whole 
of the z-plane, except the points x ;;;; 0 for which the factor (1 - e2ltiz) 

vanishes, that is, except the points z = 0, z = - 1, z = - 2, and so on. 
For more detailed and extensive investigations the reader is 

referred to the literature of the theory of functions. 2 

Miscellaneous Exercises 8 

1. Write down the condition that three points Zl, Z2, Z3 may lie in a straight 
line. 

IThis is again an improper integral, which arises by a passage to a limit from an 
integral along afhiite portion of C. The reader may satisfy himself that it exists by an 
argument similar to those previously employed. 
2For example L. V. Ahlfors, Complex Analysis. N. Y.: McGraw-Hill, 1953. 
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2. Show that three distinct point ex, ~, y of the complex plane form an 
isosceles triangle with vertex at y if and only if there exists a real 
positive k for which 

y- ~ 
--r.>.=k. 
ex-t' 

3. Write down the condition that four points Zl, Z2, Z3, Z4 may lie on a cricle. 
4. Let A, B, C, D in the z-plane be four points in order on the circum­

ference of a circle, with coordinates Zl, Z2, Z3, Z4. Using these complex 
coordinates, show that AB· CD + BC • AD = AC • BD. 

5. Prove that the equation cos Z = c can be solved for all values of c. 
6. For which values of c has the equation tan Z = c no solution? 
7. For which values of z is (a) cos z, (b) sin z real? 
8. Find the radius of convergence of the power series .Ean zn, where 

(a) an = \, s being a complex number with a positive real part n 
(b) an = nn 

(c) an = log n. 

9. Evaluate the integrals 

(a) r~ cos x dx 
Jo 1 + X4 

r~ x 2 cos X 

(b) Jo 1 + X4 dx 

r~ cos x d 
(c) Jo q2 + x2 X 

00 a-I 

(d) So (x + ;) (x + 2) dx for 1 < ex < 2 

by complex integration. 
10. Find the poles and residues of the functions 

1 1 cosz -.- -- r(z) cot z = -.- . 
Slnz' cosz" Slnz 

11. Show that if x and yare real 

Isinh(x + iy)1 ~ A(x), 

where A(x) is independent ofy and tends to 00 as x -+ ±oo. 
By integrating 1/[(z - w) sinh z] round a suitable sequence of 

contours, show that 

12. Find the limiting value of the integral 
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r cot TCt dt 
JCn t - z 

as n -+ 00, where the path of integration is a square en with its sides 
parallel to the axes at a distance n ± t from the origin. Hence, using the 
theorem of residues, obtain the expression for cot TCZ in partial fractions. 

13. Using the equation 

rZ dt 
10g(1 + z) = Jo 1 + t' 

show that the power series for log (1 + z) converges everywhere on 
the unit circle I z 1= 1, except at the point z = -1. By equating the 
imaginary part of the series to the imaginary part of log (1 + et9), 

establishes the truth of the Fourier series (cf. Volume I, p. 592) 

~ 6 = sin 6 - ~ sin 26 + ~ sin 36 - • • • (-TC<6<TC). 

14. Prove that if f is analytic (dnldxn) f(-Ix) is equal to the result obtained 
by putting y and a each equal to -Ix in the expression for 

2 ~ yf(y) 
iJyn (y + a)n+l . 

15. (a) Prove that the series 
~ (_1)"+1 

f(z) = f(x + iy) = r: -'----='--
v=1 V Z 

converges for x > o. 
(b) Prove that this series provides an extension of the zeta function 

(defined in Exercise 5, p. 797) to values of z such that 0 < x ~ 1, 
by means of the formula 

f(z) = (1 - 21-z)~(z), 

which is valid for x > 1. 
(c) Prove that the zeta function has a pole of residue 1 at z = 1. 
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Exercises 1.1 (p. 10) 

1. (a) Write z = r (cos 0 + i sin 0), in polar form with 0 < 0 < 27t. Then, 
by De Moivre's theorem (Volume I, p. 105), 

zn = rn(cos nO + i sin nO). 

For r < 1, we have lim rn = 0; therefore, lim zn =0. For r > 1, we 
11. ..... 00 11.-00 

have lim rn = 00; therefore, the distance of zn from the origin, hence 
n-oo 

from any given point, can be made arbitrarily large and the sequence 
diverges. For r = 1, there are two cases: z = 1 (0 = 0) for which 
lim zn = 1, and z = cos 0 + i sin O. In the latter case, we have 
n-oo 

for the distance between two successive points of the sequence 

Izn+l-znl=lznl-lz-ll=lz-ll 
= 2 - 2 cosO, 

a fixed positive value; by the Cauchy test the sequence must then 
diverge. 

(b) The primitive nth root of z is given in polar form by 

zlln = rlln( cos ~ + i sin ~). 

If z = 0, we have lim zlln = O. Otherwise, we have on setting zlln = 
Xn + iy,., 

lim zlln = lim Xn + i lim y,. 

= lim r ll ,. cos ~ + i lim rlln sin ~ = 1. 
11.-00 n n-4IJO n 

2. Apply the limit theorems of Volume I to the components of P,. separate­
ly. 

3. For a point (a, b) satisfying a2 + b2 < 1, set ex = Ja2 + b2• The neigh­
borhood (x - a)2 + (y - b)2 < (1 - ex)2 of (a, b) is contained in the disk. 

For a point (a, b) satisfying a2 + b2 = 1, every neighborhood contains 
points not in the disk. 

4. Let (a, b) be any point of S. Put y = b - a2 > O. Consider an e-neighbor­
hood of (a, b), 

(x - a)2 + (y - b)2 < e2• 

For all points of the neighborhood, we have I x - a I < e, I y - b I < E:. 

Using 

821 
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a2 = X2 - 2(x - a)a - (x - a)2, 

we obtain 

y > b - e: = a2 + y - e: 

= x2 - 2(x -a) a - (x - a)2 + y - e: 

> x2 + y - 2e: 1 a 1- e:2 - e: > x 2 

provided e: is taken as the smaller of lor y/(21 a 1 + 2). Thus the e:-neighbor­
hood is in S. 

5. The segment (together with its end points if these are not considered as 
points of the segment). 

Problems 1.1 (p. 11) 

1. By definition, every neighborhood of the boundary point P contains 
points of S. Choose PI in S so that PIP < 1/2. Since P is not in S, PI =t­
P, and therefore, PIP> O. Now proceed by induction: given P n choose 
Pn+1 in S so that Pn+1P < t PnP. Clearly, the Pn are distinct and PnP 
< 1/2n. 

2. Let S be the given set; Se, the closure of S; and Sec, the closure of Se. 
Every point of Sec is either in Se or the boundary of Se. If P is in the 
boundary of Se, then every neighborhood of P contains at least one 
point Q of Se and one point R not in Se. Since R is not in Se, it is not in 
S. Since a neighborhood is open, the neighborhood of P contains a 
neighborhood of Q that must contain a point of S. Thus P is in Se. 

3. Let Xbe any point of Son PQ. The set of values of PXis bounded, since 
PX « PQ. Let R be the point on PQ at distance equal to lub PX from P. 
Any neighborhood of R contains points of PQ that are in S and points 
that are not in S. 

4. All points of G are interior points. 

Exercises 1.2 (p. 16) 

27 
1. (a) "8 

(c) _1_ 
(log 1t)e 

(e) 5. 

2. The domain is the set of points (x, y) and the range, the set of values u, 
where 

(a) y?: - x , u ?: 0 

(c) y > - x, u > 0 

(e) y > -~, ureal 

(j) x = y = 0, u = 0 

(k) 1 y 1 < 1 xl, ureal 

(1) (x, y) =t- (0, 0), 0 ~ u ~ i 
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(g) X2 + y2 + Z2 ~ a2, 0 ~ W ~ a (m) 
'It' 'It' 

y=l=-x --<u<-, 2 2 

(h) y =1= -x, ureal (n) x =1= 0, 0 < u ~ 1 

(i) x2 + 2y2 ~ 3, 0 ~ u ~ .Ja (0) ! < x + y < e, 0 ~ u ~ 'It' 
e 

'It' 'It' 
(p) 2n'lt' - 2" ~ x ~ 2n'lt' + 2" and y;;:: 0, or 

3. For k variables, 

1 k! (n + 1) (n + 2) ••• (n + k). 

(Compare Volume J, Chapter 1, p. 117, Exercise 11.) 

Exercises 1.3 (p. 24) 

2. Discontinuous at x = Y = o. 
3. (a) Set x = p cos 6, y = p sin 6. Then 

If (x, y) 1= p31 cos 36 - 3 cos Osin26 1< 4p3. 

Take 8(e:) = 3.fi{4. f(x, y) has at least the order of p3. 
4. As in the theory of functions of one real variable, sums and products 

of continuous functions and continuous functions of continuous 
functions are continuous. 
(a) Continuous. 
(b) Discontinuity possible only at (0, 0). Note with x = p cos 6, y = 

p sin 6 from I sin (XI < I(XI, that 

I j!~ ~yy21 < p; 

hence, the limit at (0, 0) exists and is o. 
5. Use the mean value theorem of the differential calculus to obtain for 

z;;:: 0, z + h > 0 

l.Jl + (z + h) - .Jl + z I = 2.Jl j ~~ + 6h) ~ I; I ; 
hence, it is sufficient with appropriate choice of z in each case to require 
I h I < 2e:. Set tJ.x = p cos 6, tJ.y = P sin 6, where p < 8 (e:, x, y) 

(a) With z = x2 + 2y2 and h = tJ.z note that 

I tJ.z I = p 12x cos 6 + 4y sin 6 + p (cos2 6 + 2 sin2 6 I 

~ p (2Ixl+ 4Iyl+3p) ~ p(2Ixl+ 41yl+ 3), 

where we impose 8 < 1. For I tJ.z I < 2e:, it is sufficient to require 
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3 < min (21xl + 2:lyl + 3' 1). 

6. On the lines y = ± x. 
7. On the lines x = n + i, y = n + i. 
8. For all values. (By definition, a function is continuous in the exterior 

of its domain.) 
9. Set z = l/u where u = 1- x2 - y2. l.6zl = l.6ul/(u + 6 .6U)2. For u > 0, 

choose I.6U 1< 2/u. Then u + 6 .6u > u/2 and 

l.6z I < 41.6: I.. 
u 

Now, with.6x = P cos 6,.6y = p sin 6, p < 3:S;; 1 and lxi, Iyl < 1, 

I.6U I = I p (2x cos 6 + 2y sin 6) + p21 

< p (21xl + 21yl + 1) < 53. 

Therefore, to enforce I z I < e, take 

3 = min [2~ (1-x2 - y2)2, 1]-

11. With x = p cos 6, Y = p sin 6, we have 

P = p2 (a cos26 + 2b cos 6 sin 6 + c sin26) 

= p2 f (6). 

The expressionf(6) must not vanish for any value of6. Thus we must 
have ac - b2 > O. 

12. All discontiuous, (a) on line x = 0, (c) on line y = - x. 
13. For the approach along a straight line set x = p cos 6, Y = p sin 6 

with 6 fixed. To show discontinuity for f(x, y), approach along the 
parabola, x = ay2 with arbitrary a, for g(x, y), along the circle (x _. !-)2 
+y2 = i. 

14. For (e) and (g) limits exist. For (h), set y = e-allzl with arbitrary 
positive ex and show for 

f ) ylzlJx2+y2 
(x, y = -'---------'-"---

Jx2 + y2 + I~I 
that lim f(x, e-a/l z I) =e-a• 

x-o 
15. For Exercise 14(e), 

For Exercise 14(g), 

1 
3 (e) = - J 2 log e' 

3 = min (_ log 2 , !). 
log e 2 

16. First set x = y = 0, then set z = O. 
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17. Follows since R(x, y) is not defined at the origin and the origin is a 
boundary point of the domain of R. 

18. (a) 1 
(b) 0 

(c) O. 
19. Set Y = mx. Then lim z = 3 (1 -m)/(l + m). 

x-o 
20. Compare Exercise 13. 
21. Approach along straight lines other than x = 0 yields the limiting value 

O. Approach along the curve y = a/log x yields the arbitrary limiting 
value a. 

23. ifJ maps the part of its domain within any circle of sufficiently small 
radius p about the origin into an interval of radius Cp centered at 0, 
where the constant C may be fixed independently of p. 

Problems 1.3 (p. 26) 

1. Let S be the domain of I, S* the domain of 1*. If Q is an interior point of 
S, then there exists a neighborhood of Q entirely within S and continuity 
for 1* is identical with continuity for I. If Q in S* is a boundary point of 
S, then whether or not Q is in S, there exists a 8-neighborhood of Q 
wherein 1 I(P) - f*(Q) 1 < E/2. For any point Q of S* in the 8-neighbor­
hood of Q but not in S, there are points P in S for which I(P) is 
arbitrarily close to 1* (Q), say 1 I(P) - I*(Q) 1 < E/2. It follows that 
1 f*(Q) - f*(Q) 1 < E. 

2. If lim I(x, y) = L and lim (Xn, Yn) = (~, 1l), then for any positive 
<x.y)+(/;·TJ) n+oo 

E there is a 8 such that II(x, y) - LI < E whenever (x, y) lies within the 
8-neighborhood of (~, 1l). Furthermore, there is an N such that (Xn, yn) 
lies within the 8-neighborhood of (~, 1l) for n > N. For n > N, then, 
1 l(xn.Yn) - LI < E. 

Conversely, suppose for every sequence of points (Xn. Yn) in the 
domain oflwith limit (~, 1l), we have lim I(xn. Yn) = L. If 1 did not have 

n+oo 

the limit L at (~, 1l), then for some E > 0 and for all 8 > 0, there exists 
a point (x. y) =1= (~, 1l) in the 8-neighborhoodof(~, ll)forwhich II(x,y) - LI 
> E. Set 81 = 1 and choose (Xl, Yl) in the 81-neighborhood of (~, 1l) so 
that I 1 (Xl, Yl) - L I 2 e. Define 8n and (Xn, Yn) sequentially by 8n = 
!-v'(Xn-l - ~)2 + (Yn-l - 1l)2, and v'(Xn - ~)2 + (Yn - 1l)2 < 8n with If (Xn, 
Yn) - L I 2 E. In this way, a sequence (Xn, Yn) is constructed that violates 
the hypotheses if 1 does not have the limit L at (~, 1l). 

Exercises 1.4a (p. 30) 

oz oz 
1. (a) ox = naxn- l ; oy = mbym- l . 

(c) oz _ 2X2 - 3y2. OZ _ 3y2 - 2X2 
oX - x2y , oy - xy2 
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az az 3 (e) - = 2xy312. - = _x2y1l2 
ax ' ay 2 . 

az y314 az 3Xl12 

(g) ax = 2x1l2 ; ay = 4y1l4' 

(j) az = _ 2x sin (x2 + y)' aayz = - sin (x2 + y). 
ax ' 

0) az = _ s_~_n_x; az = 
ax smy ay 

cos x cos y 
sin2y 

( ) az _ 2X2 + y2. az = xy 
n ax - .Jx2 + y2' ay .Jx2 + y2' 

at _ 2x . at _ 2y 
2. (a) ax - 3(x2 + y2)213' ay - 3(x2 + y2)213 

(c) at = eX-II; at = -eX-II 
ax ay 

at at . 
(e) ax = yz cos xz; ay = sm xz; at = xy cos xz. 

az 

a f _ . a f _ a2f _ a2f _. a2f 
3. (a) ax -y, ay - x. ax2 - ay2 - 0, axay = 1. 

x+y (c) Use f(x, y) = --; 
1-xy 

af _ 1 + y2 . af 1 + x2 

ax - (1- xy)2' ay = (1- xy)2' 

a2f _ 2(y + y3). a2f_ 2 (x + y). a2t 2(x + XS) 
ax2 - (1 - xy)3' ax ay - (1 - xy)3' ay2 = (1- xy)3' 

(e) a f = yxll-l e(xlI); a f = XII e(XIll}og x. 
ax ay 

a2f II ax2 = yxll- 2 e(xll) (y - 1 + yx ); 

a2f = Xll- l e(xll ) (1 + y log x + yxll log x); 
axay 

a2f ay2 = XII (log X)2 e(xll) (1 + XII). 

4. fx = 0, fll = 0, fz = -3. 

5. 1. 

8. (2/r). 

9. a = - 3. 
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Problems 1.4a (p. 31) 

1. (n;; k). (Compare Exercises 1.2, number 3.) 

2. Consider a function of the form {(x, y) = Ot(x)~(y) where Ot is differen­
tiable and ~ is not. 

3. Differentiate with respect to x and y to obtain for all x and y, 

¢/(X2 + y2) = \jJ'(x) \jJ(y) = \jJ'(y) \jJ(x); 
2x 2y 

whence, \jJ'(x)/2x\jJ(x) is constant. {(x, y) = cea(x2 + y2). 

Exercises 1.4c (p. 36) 

2. (a) Observe that the first partial derivatives, 

a f = j(X2 ~ y2)2 exp [-1/(x2 + y2)] , x, y*,O 
ax 

~ x=y=O 

a{ = !(X2 ~ y2)2 exp [-1/(x2 + y2)] , x, y*,O 
ay 

~ x=y=~ 

are bounded. 
(b) The origin is the only point in question. Consider 

a { j2x x; + y: + 4xs log (x2 + y2), x, y*,O 
-= x +y ax 

~ x=y=~ 

in the neighborhood X2 + y2 < a2 • Then 

:~ < 23s + 832 13 log 31 

< 1032, 

for 3 < 1, where we have used 1 3 log 31 < 1, for 3 < 1. 

Exercises l.4d (p. 39) 

1. (a) 2ab 

(c) ab {"(ax + by) 

1 
(e) - (x + y)2 . 

2. (b) {x = y sinh xy, {y = x sinh xy, {xx = y2 cosh xy, 

{Xy = xy cosh xy + sinh xy, {yy = x 2 cosh xy, 
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{xxx = y3 sinh xy, {XXy = xy2 sinh xy + 2y cosh xy, 

{Xyy = x2y sinh xy + 2x cosh xy, {yyy = x3 sinh xy. 

(d) {x = l/y - y/x2, {y = l/x - X/y2, {xx = 2y/x3, 

{Xy = (- l/x2) - l/y2, {yy = 2X/y3, {xxx = - 6y/x4, {XXy = 2/x3, 

{Xyy = 2/y3, {yyy = - 6X/y4. 

Problems 1.4d (p. 39) 

1. (b) Set z = log u. Then zxy = O. Thus zx does not depend on y. Set 
zx = IX(X); then, 

z = J IX(X) dx + Iji(y) = ¢>(x) + Iji(y); 

whence, 

u = e" = e+(x) e\jl(y). 

Exercises 1.5a (p. 42) 

1. (a), (b) fx(0, 0) does not exist. 
(c) Set h = p cos 6, k = p sin 6. For differentiability it would be 

necessary that 

{(h, k) - {(O, 0) = p sin 26 = fx(0, O)h + MO, O)k + o(p), 

but {x(O, 0) = {y(O, 0) = 0, a contradiction. 
2. For s between x and x +81, t between y and y + 82, we have I g(s) - g(x) I 

< El(81), I h(t) - h(y) 1< E2(82) where lim El(81) = lim E2(82) = O. Con-
01-0 02-0 

sequently, by the mean value theorem of integral calculus, 

5X+01 g(s) ds = r g(s) ds + 81g(~) 
Xo Xo 

where Ig(~) - g(x) I <El(81); a similar result holds for h(t). It follows 
that 

{(x + 81, y + 82) = U:l(s) ds + 81g(X) + 0(81) J 

Problems 1.5a (p. 43) 

• [J:oh(t) dt + 82h(y) + 0(82)J 

= {(x. y) + 81g(X) + 82h(y) + 0(.J812 + 822). 

1. Set p = .Jh2 + k2. Then 

I {(x, y) - {(a, b) I ~ p( I {x(a, b) I + I {y(a, b) I + E), 
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where lim e: = o. Thus, f is not only continuous, but Lipschitz con­
P+O 

tinuous: for P = (x, y), A = (a, b), we have in some neighborhood of A, 
I f(P) - f(A) I ~ M I P - A I, where M is constant. 

Exercises 1.5b (p. 45) 

1. The slope of the section of the surface Z = f (x, y) with the plane 
arc tan[(y - yo)/(x - xo)] = ex; that is, the slope in the z, p-plane ofthe 
curve z = rft(p) = f(x + p cos cx, y + p sin ex). 

2 ( ) av'3 + b a + bv'3 b . a a, 2 ' 2 ,. 

(c) 2, v'3 - 2, 1 - 2v'3, - 4. 

v'- 1 
(e) - 1, - +, -2' o. 

(g) 0, 0, 0, o. 
3. (a) - 8/5 

(b) -1 

(c) - 2/v'3. 
4. f (x, y) = xyl(x2 + y2). 

6. 82 f18r2 = sin 26. 

Exercises 1.5c (p. 48) 

1. (a) z = 8y - 4 

(c) 3x + 3y - 4z + 5 - 3 log 2 = 0 

(e) z = [exp(1/v'2)/v'2] (x - y + .f2 + 7':14) 

f 2 2 
(g) Z = 2e-2(x + y + i e2 0 e-t dt - 2). 

2. The common point is the origin. 
3. The equation of the plane through the three points can be put in the form 

z- zo= 

(x - xo) [kl(Z2 - zo) - k2(ZI - zo)] + (y - Yo] [h2(ZI - zo) -hl(Z2 - zo)] 
h2kl - hlk2 

where hi = Xi - Xo, ki = Y - yo, for i = 1,2. Set hi = Pi cos CXi, ki = Pi sin exi. 
Then Zi -Zo = Pi[(COS exi)(8zI8x) + (sin cxi)(8zI8y)] + O(pi). Enter this in 
the equation of the plane with sin (exl - ex2) =t= 0, and(x, y) fixed to ob­
tain the desired result, 

8 Z 8z O(p2) O(PI) 
Z - Zo = (x - xo) - + (y - yo) - + - + - . 

8x 8y P2 PI 
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4. We may suppose not all coefficients vanish, say c =1= o. Then (xo, Yo, zo) 
lies on one of the surfaces 

Jl- ax2 - by2 z= ± . 
c 

The tangent plane has the equation 

z - Zo = (x - xo) zx (xo, yo) + (y - yo) Zy(xo, yo). 

Differentiate the equation for the quadric surface to obtain 

az 
2axo + 2czo ax = 0 

az 
2byo + 2czo ay = 0 

and insert the values for ~; and :; in the equation for the tangent 

plane to obtain (if Zo =1= 0), 

z - Zo = - axo (x - xo) - byo (y - yo), 
czo cZo 

whence 

axox + byoy + cZoZ = aXo2 + byo2 + czo2 = 1. 

Exercises 1.5d (p. 51) 

1. (a) (2xy2 + 3y3) dx + (2x2y + 9xy2 - 8y3) dy. 

(c) 4x3 dx - 3y2 dy/(x4 _ y4). 

(e) -(dx + y-l dy) sin (x + log y). 

(g) dx + dy/(1 + (x + y)2). 

(i) (dx + dy - dz) sinh (x + y - z). 

2. (-2/10) + (7 ~5/25) 
3. ex2+y2[(8x3 + 12x) dx3 + (8x2y + 4y) dx2 dy + (8xy2 + 4x) dx dy2 

+ (8y 3 + 12y) dy3]. 

Exercises 1.5e (p. 53) 

1. z varies from -3 to -3.5. 

1 
2. - 600. 

3. 1/2 (ylhl + xlkl)· 
4. From dz = y dx + x dy, dz/z = dx/x + dy/y. 
5. From dg = 2dx/t2 - 4x dt/t3, the relative error in g is dg/g = dx/x-2dt/t. 
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Thus a given relative error in the measurement of t will have twice 
the effect of the same relative error in the measurement of x. 

Exercises I.6a (p. 57) 

x 2 
1. (a) Zx = -2x log (1 + y), Zy = - 1 + y' Zxx = - 2 log (1 + y), 

2x x2 
Zxy = - (1 + y)' Zyy = (1 + y)2' 

(e) Set u = x, v = arc tan y, Zx = v sec2(uv), Zy = [sec2(uv)]/(1 + y2), 

2. (a) 

Zxx = 2v2 sec2(uv) tan(uv), Zxy = [sec2(uv)/(1 + y2)] [1 + 2v tan (uv)], 

Zyy = x sec2(uv)/(1 + y2)2 [x tan(uv) - 2y]. 

- x - y cos Z 
Wx == , 

(x2 + y2 + 2xy cos Z)312 

- Y - x cos Z 

Wy = (x2 + y2 + 2xy cos Z)312 ' 

_____ ~x~y~s~in~z __ ~~ Wz= 
(x2 + y2 + 2xy cos Z)312 

1 
(b) Wx = ~==::===~=o:==::­

-/ Z2 + 2zy2 + y4 - x2 ' 

Wy = ( 2) I , Z + y V Z2 + 2zy2 + y4 - x2 
- 2xy 

-x 
Wz =( ;-:z~+-;-y02~)-/rz=;:2=+=2~zy~2:=+=y:::;4=-=x=:-2 . 

( 2xy c) wx = 2x + , 
1 + x 2 + y2 + Z2 

Wy = log (1 + x2 + y2 + Z2) + 2y2 
1 + x2 + y2 + Z2 ' 

2yz wz = ---~=---
1 + x2 + y2 + Z2 . 

1 (d) wx = ---c-----=------
2(1 + x + YZ)-/x + yz' 

Wy = -,-____ ---.:z~ ___ _ 
2(1 + x + yz)-/ x + yz ' 

Wz= Y 
2(1 + x + yz)-/ x + yz . 

3. (a) Consider the derivative of Z = UV where u and v are functions of x: 

dz du v dv 
dx = VUV- 1 dx + u log u dx' 
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Employ this formula for u = x, v = x to obtain 

d 
dx (XX) = xX(1 + log x). 

Now employ the formula again for u = x, v = XX to obtain 

.!! (x(xX» = x(XX) XX [! + log x + (log X)2] • 
dx x 

(b) Set y = 1/x. Then 

dz 1 dz 
dx = - x2 dy' 

Use z = (yY)Y = uV , where u = y, v = y2 to obtain 

dz 2 
dy = y(y +1) (1 + 2 log y) = yz(1 + 2 log y), 

whence, 

dz _ 2 log x -1 
dx - x3+lIx2 

4. See Problem 1. 
5. Use the symmetry in the several variables and calculate in each case: 

y2 _ x2 
(a) fn = (x2 + y2)2 ' 

_ 2x2 -y2_z2 
(b) glZz - (x2 + y2)2 • 

_ 6x2 - 2y2 - 2Z2 - 2w2 

(c) hxx - (x2 + y2)3 . 

Problems t.Ga (p. 58) 

1. Use the Cauchy-Riemann equations in 

rpxx + rpyy = (ux2 + uy2)f .... + 2(uxvx + uyvy)f .. v + (vx2 + vy2)fvv 

+ (UXIZ + uyy)f .. + (vxx + vyy)fv, 

and note that u and v are also solutions of Laplace's equation. 
2. Let the vertex of the cone be located at the origin (no loss of generality 

is entailed since a translation of axes will not affect the derivatives of 
f). If a point (x, y, z) lies on the cone, then so also does the point (Ax, AY, 
Az) where A is any real number. We therefore have 

thus the equation of the cone can be written in terms of a function rp 
of one real variable: 



Z=x~(~). 
The result follows on differentiation. 

2 
3. (a) grr + r gr. 
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(b) From grrfgr = -2fr, obtain log gr = -2 log r + constant, etc. 

n-l 
4. (a) grr + -r- gr. 

(b) If n = 1, ar + b. 

If n = 2, a log r + b. 

If n > 2, afrn- 2 + b (compare Problem 3). 

Exercises lo6c (p. 63) 

1. ';Ur2 + (lfr2) ue2• 

2. Set u = f(x, y) and introduce new variables by ~ = x cos 6 + y sin 6, 
II = ycos 6 - xsin6. Obtainuxx = cos2 6 U~I; - 2 cos 6sin6 U!;l1 + sin26 Ullll. 
Uyy = sin 26 u~~ + 2 cos 6 sin 6 U~l1 + cos2 6 Ullll. 

4. Zx = 3, Zy = 1, Zr = Zx cos 6 + Zy sin 6, ze = - zxr sin 6 + Zyr cos 6. 
5. Note that the derivatives do not depend on a and b. The transformation 

is essentially a rotation and translation of the x, y-axes. Compare 
Exercise 2 and 3. Use 

Uxx = a.2Ur;r; - 2a.~Ur;11 + ~2Ullll' 
Uxy = a.~Ur;l; + (a.2 - ~2) Ur;l1 - a.~Ullll' 

Uyy = ~2Ur;r; + 2a.~U!;11 + a.2Ullll . 

For a geometrical interpretation see 1.6 a, Problem 2. 
Z3 Z Z2 

6. 22 Tz + Txx + - Txz + 2" Tzz. x x x 
Problems lo6c (p. 64) 

1 a ( 2 au) 1 a2u a (. au) 
1. r2 ar r ar + sin 6 a~2 + au sm 6 a6 . 

To compare with 1.6 a, Problem 3, let derivatives of u with respect to 6 
and ~ vanish. 

2. Under the given transformation, the equation Afxx + 2Bfxy + Cfyy = 0 
is transformed into A *fr;r; + 2B*fr;11 + C*fllll = 0, where 

A* = a2A + 2abB + b2C 

B* = acA + (ad + bc)B + bdC 

C* = c2A + 2cdB + d 2C 
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(compare Exercise 3). Observe that 

B*2 - A*C* = (ad - bC)2 (B2 - AC). 

Thus, the sign of B*2 - A*C* is independent of the linear transfor­
mation. It follows that no such transformation exists for (a) if 
B2 - AC ~ 0 or for (b) if B2 - AC < O. 
(a) Assume B2 - AC < 0, and set A * = 1, B* = 0, C* = 1 above. 

Observe from AC> B2 ;;:: 0 that A and C have the same nonzero 
sign, which we may assume to be positive. If B = 0, take b = c = 0, 
a = 11'; A, d = 11'; C. If B -=1= 0, first reduce to the case B = 0, 
for example, by taking 

1 
b = 0, a = ';:/I' c= 

B -A 
.; A(AC - B2) , d = .; A(AC _ B2) . 

(b) Assume B2 - AC > 0 and set A* = C* = 0, B* = 1 above. If B = 
0, then A and C have opposite signs. In that case, satisfy the equations 

a J~ d J~ - . iJ= -A'~= -A,bc';-AC-l, 

for example, take 

a = 1, b = J - ~, c = ~, d = ~ J - ~ . 
If B -=1= 0 and at least one of A or Cis nonvanishing, say A > 0, first 
reduce to the case B = 0, for example, by taking A * = A, C* = 
-IIA, b = 0, then 

Exercises 1.7a (p. 66) 

1. (a) (h + k) cos (x + h + y + k). 

(b) _ h(y + k) + _k_ 
(X+h)2 x+h' 

1 
2. (a) - S. 

(b) ~ e5116• 

(c) ~. 

Exercises 1.7b (p. 68) 

1. For a curve defined by the intersection with the surface z = {(x, y) of a 
vertical plane h(TJ - y) - k(; - x) = 0 through the point (x,y), there exists 
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a tangent at some interior point of any arc that is parallel to the chord 
joining the end points. 

1 
2. (a) 2. 

(b) 8 . 8 - 4v'2 - v'2 
3- arc SIn . 

rr 3rr 

1 1 
3. Take x = 0, y = - 2' h = k = 2. 

3 
5. (a) '7. 

23 
(b) 54· 

Problems 1. 7b (p. 68) 

1. It is sufficient to prove that (has the same value for any two points 
that can be connected by a segment within the domain. 

Exercises 1.7c (p. 70) 

1. xy. 
2. Observe that d( vanishes at (2, 3) for h = 0.1, k = - 0.1. Thus, approxi­

mately, (2.1, 2.9) = (2, 3) + id2(2, 3) = 79.9. 
3. The approximation is exact. The error is zero to all orders. 
4. (a) x3 - 2x2y + y2 + h(3x2 - 4xy) + k(2y - 2X2) + h2(3x - 2y) - hk4x 

+ k2 + 6h3 - 2h2k. 

~ (- 1)n(h + 2k)2n-l 
(b) n"fl (2n - 1)! . 

(c) The cases x + h > 0, x + h < 0 must be taken separately; the two 
cases yield different first order terms in h: 

x4y - 2y2x - v'31xl +h(4x3y - 2y2 - Ja sgn(x + h) 

+ k(x4 - 4yx) + h26x2y + hk4x3 - k22x + h34xy 

+ h 2k6x2 - 2hk2 + h4y + 4h3k + h4k. 

5. x + x(y - 1) - 2x(z + 1) - 2x(y - 1) (z + 1) + 2x(z + 1)2 

+ x(y -1) (z +1)2. 

y3 y5 
6. (a) y - x2 - 3" + x4y - X2y3 + 5" + ... 

x2y y3 x2yB x4y y5 
(b) y + 2 + 6" + 12 + 24 + 120 ... 
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X4 y4 
(g) 1 + X2 - y2 + 2 - X2y2 + 2 + . 

3x2 y2 
(h) 1 - 2 - xy - 2 + ... 

(i) X2 x2y2 X4 x 6 x4y2 x2y4 
1 - 2 - 2 + 24 - 120 - 12 + 3 + ... 

(j) x 2 + y2 _ x 6 _ x4y2 _ x2y4 _ y6 + . . . 
6 2 2 6 

7. Observe that the error is fourth order. To fourth order 

cos x x 2 - y2 X4 - 6X2y 2 + 5y4 --=1----+ + ... ; 
cosy 2 24 , 

for the fourth-order term we have 

X4 - 6X2y2 + 5y4 _ (y2 - x 2) (5y2 - x 2) 
24 - 24 

For I x I ::;; rt/6, I y I ::;; rt/6 the two factors reach their maxima at x = 0, 
y = rt/6. Thus, we estimate the error as about 

5 (rt) 4 24 6 ~ .016 

Problems 1.7c (p. 70) 

1. (a) I: I: xryn-r = I: I: xmyn; 00 n (n) 00 00 (m+n) 
n=O r=O r n=O m=O n 

converges in the strip I x + y I < 1. 
00 n xr yn-r 00 00 xm yn 

(b) I: I: - = I: I: - - ; 
n=O r=l r! (n - r)! n=O m=O m! n! 
converges for all values of x and y. 

2. Expand both sides of the spherical formula to second order in x, y, and z. 
3. Expand f (2h, e-1I2h) and f(O, 0) to second order in the neighborhood of 

(h, e-lIh); add and divide by h 2• 

4. Convergence follows by convergence of the expansion of the exponential 
function for one variable. Differentiate with respect to x to obtain 
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=H'(x)n =2H ()n 2yf(x, y) = 1: n y = 1: n-I X Y 
n=O n! n=l (n - I)! 

whence (b) follows on equating coefficients. From (b) and Ho(x) = 1, (a) 
follows inductively. To obtain (c), differentiate with respect to y and 
equate coefficients. To obtain (d), use (b) to replace 2nHn-l in (c) by Hn' 
and then differentiate to obtain 

H n+1' - 2xHn' + 2Hn' + Hn" = o. 
Next use (b) in this result to replace H n+1' by 2(n + 1) Hn. 

Exercises 1.8b (p. 80) 

1. Use the uniform continuity of ~k(X, k) for x in the closed interval 
a ~ x ~ band k restricted to any closed subinterval of ko < k < kl. 

2. (a) For e: = k-2/3 and 1 - e: < X < 1, we have for large k 

k log x = k(x - 1) + O(k-1I3) 

x-I = 1 + O(k-2/3) 
log x ' 

hence 

xk(x - 1) = ek(x-l) (1 + O(k-1I3» 
log x ' 

while for 0 < x < 1 - e: 

xk(x - 1) = 0 (X - 1 e-k1l3). 
log x log x 

It follows that 

I l Il-. 1 F(k) = + = - + O(k-4/a). 
1-£ 0 k 

(b) By Ex. 1, 

I l 1 1 
F'(k) = 0 Xk(X - 1) dx = k + 2 - k + 1· 

2+k Hence F(k) = log 1 + k + c, where the value of the constant c turns 

out to be 0 from (a). 

Exercises 1.9b (p. 92) 

1. (a) I:Ir( -t sin t + cos2 t + sin t) dt = 31t' 

I I 4 
(b) (-2t2xo - 2txoyo(1 - t2) + yo(l - t 2» dt = - -(xo - YO). 

-1 3 
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Exercises 2.1 (p. 141) 

1. If X = (x, y, z) is an arbitrary point of the line, then 
--"-
PX=AA, 

where A may be any real number. Thus, 

or 

(x + 2, y, z - 4) = A(2, 1, 3), 

x+2 __ z-4 
2 -y - 3 . 

~ ~ 

2. Set PQ = A. Any point X of the line satisfies PX = AA. Let B, C, and 
V be the position vectors of P, Q, and X, respectively. Then, 

~ 

PX = V - B = AA = A(C - B); 

or 

V = (1 - A)B + AC 

In particular, if P = (3, - 2, 2) and Q = (6, - 5, 4), as given in (a), 

(x, y, z) = A(3, - 3, 2), 

or 

=£ 
3 

3. If V is the position vector of any point X on the line joining P to Q, 
then, by the solution to Exercise 2, 

V = (1 - A) A + AB. 

for some real A. Thus, 

(1 - A) (V - A) = A (B - V) = (1 - A) A (B - A). 

If 0 < A < 1, it follows that V - A, B - V and B - A have the same 
direction and I V - AI/I B - V 1= A/(1 - A) 

4. Write the position vector in the form 

V = A + A(B - A), 
-->.. 

where B - A is represented by PQ, to see that A > O. 
5. Let A, B, C, D, E be the position vectors of the points P, Q, R, S, M, 

respectively. Take the origin 0 at the point dividing MS in the ratio 
1/3. Thus, D = -3E. Since E = 1/3 (A + B + C), it follows that 

~ (A + B + C + D) = o. 

Hence, 0 is the center of mass by the general definition and clearly 
does not depend on the order of the vertices. 
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6. Let the edges be PQ and RS; in the notation of the preceding solution 
their midpoints have position vectors t (A + B) and t(C +D), respec­
tively. From the solution to Exercise 5, t(A + B) = - HC + D); 
hence, the midpoints are collinear with the center of mass 0 and equi­
distant from it. 

7. If Pk = (Xk, Yk, Zk), for k = 1,2, ... , n, then 

( ,£mkXk '£mkYk ,£mkZk) 
G = (xo, Yo, zo) = '£mk' '£mk' '£mk 

'£mk Ak = ('£mk(xk - xo), '£mk(Yk - yo), '£mk(zk - zo» = (0, 0, 0). 

8. The zero vector is the real number 1. "Multiplication" of the "vector" 
a by the scalar A means raising a to power A. Thus, if vector "addition" 
is denoted by EB, scalar multiplication by (!), 

A ® (a EB b) = (ab)~ = a~b~ = (A ® a) EB (A ® b). 

9. The complex number a + ib corresponds to the vector (a, b). 
10. Take the origin as center of the sphere and let A, B, R be the position 

vectors of P, Q, R, respectively. If the radius of the sphere is p, 

I A 12 = I B 12 = I R 12 = p2 

and B = - A. Consequently, from (15c) 

(R - A) • (R - B) = (R - A) • (R + A) = I R21-1 A 12 = O. 

11. (a) From (X - P) • A = 0, an equation of the plane is 

x + 2y - 2z = -1. 

With the unit normal B=(-1/3, -2/3,2/3), obtain the normal form 

(b) 2/3. 

(c) Same. 

1 2 2 1 - aX - aY + aZ = a . 

12. (a) Set P = (YI, Y2, . . . , Yn) and let B be the position vector of P. If 
Q = (Xl, X2 , • • ., Xn) with position vector X is the foot of the per­
pendicular, then 

and B-X=AA. 

Thus A· (B -AA) = c, hence A = (A. B - c)/IAI2 and 

X = B + A (c - A. B)/IAI2. 

(b) (-1/9, 2/9, 2/9) and (7/9, -13/9, -5/9, respectively. 

13. Observe first that C =1= 0; otherwise, 

A·B 
A = lBf2B, 

violating the condition that A and B are nonparallel. B • C = o. 
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14. The angle between the line and the plane is the complement of the angle 
between the line and the normal; that is, 

• exA + ~B+ yC 
sm ifJ = .; ex2 + ~2 + y2 .; A 2 + B2 + C2 . 

Exercises 2.2 (p. 158) 

1. (a) The line x = -1 + 4).., Y = 2, Z = 1 + 3)... 
(b) The plane x = 2 + 3tL + v, Y = 1 - 2tL, Z = -4 + tL - v; or x + 2y 

+z=O. 
(c) The two-dimensional linear space of points (x, y, z, w) satisfying 

x + 2y + z = 0 and 2y + 2z + w = -4. 
2. (a) Al = ';2 EI + 2E3. 
3. For EI, only EI = AlII All is possible. Suppose such vectors up to index 

k - 1 have been found. Take Ek = Vk/lVkl where 

k-l 
Vk = Ak - 1: (All' Ell) Ell. 

11=1 

Observe that if Ell depends on AI, A2, . . . , All, for tL = 1, 2, . . . , 
k - 1, then Ek depends on AI, A2, . . . , Ak. 

4. Let Ak, k = 1, 2, . . . , n + 1 be any set of n + 1 vectors. If AI, . . . , 
An are dependent so is the full set of n + 1 vectors; if not, the vectors 
EI, . . . , En are dependent on AI, . . . , An by Exercise 3. Since Ek, 
k = 1, 2, . . . , n may be taken as coordinate vectors, An+1 depends on 
E, . . . , En; hence, a fortiori, it depends on AI, A2, . . . , An. 

5. In the vector form the line has the equation 

Z=At+B 

where B = (b, d, f) and A = (a, c, e). Let Q be the foot of the perpen­
dicular from P to the line and Xo = (xo, yo, zo), Xl = (Xl, YI, Zl) the 
position vectors of P and Q, respectively. Since Q is on the line, for 
some number T, Xl = AT + B. But, from (Xl - Xo) • A = 0 the de­
sired distance d is given by 

d2 = IXI - Xol2 = (XI- Xo)' (AT + B - Xo) = (Xl - Xo)' (B - Xo) 

= (Xl - xo) (b - xo) + (YI - yo) (d - yo) + (Zl - ZO) (I - zo), 

where 

(Xl, YI, Zl) = (aT + b, CT + d, eT + f) 

and 

(Xo - B) • A a(xo - b) + c(yo - d) + e(zo - f) 
T= = . I A 12 a2 + C2 + e2 

6. No. To prove this, show that the coefficient vectors (1, 2, 3), (2, 3, 1), 
(3, 1, 2) are linearly independent. For example, use the method of 
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solution of Exercise 3 to construct a set of three mutually perpendicular 
vectors that depend on the coefficient vectors. 

7. This is equivalent to solving the system oflinear equations in Exercise 
6 with constants aI, a2, a3 instead of 0, 0, 0 on the right 

1 1 
Xl = 18 (-5al + a2 + 7a3), X2 = 18 (al + 7a2 - 5a3), 

1 
X3 = 18 (7al - 5a2 + a3). 

8. From the solution to Exercise 7 

(
-5 1 

1~ 1 7 
7 -5 

9. If a is singular, the column vectors AI, A2, ... , An are dependent. If 
a solution X = (Xl, X2, . . . ,Xn) existed for every Y, then every Y would 
have a representation 

Y = xlAl + x2A2 + ... + xnAn, 

but the Ak do not span the space. 

10. 

ab=(-~ 
-4 

11 . .::\ = ad - be *- o. 

3 

o 
3 

4) (-2 
~' ba = -; 

-4 

-2 

3 

! ( d -b) . 
.::\ -e a 

12. Suppose that ae = ea = a and a'e = e/a = a for all square matrices 
a. Then e/e = ee' = e = e/. 

13. b-l a-I. 

14. From our definition, a matrix is singular if and only if the column 
vectors are dependent. Thus, at least one of the column vectors can be 
expressed as a linear combination of the others. It follows that any 
image vector in the mapping can be expressed as a linear combination 
of no more than n - 1 given vectors. Conversely, if the dimension of the 
image space is less than n, the column vectors of the matrix must be 
linearly dependent, for if they were independent, their linear combi­
nations would span n-dimensional space. 

15. Express X in the form (r cos 6, r sin 6). Then, for 

a = (C~s Y -sin Y) , 
smy cosy 

aX = (r cos (6 + y), r sin(6 + y»; 
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hence. a may be interpreted as a rotation of vectors through the angle 
y or a rotation of axes through the angle -yo For 

(
COS y sin Y) 

b= , 
sin y -cos y 

bX = (r cos(y + 6), r sin(y - 6) ); 

a reflection of vectors in the line inclined at angle h with respect to 
the x-axis or a reversal of sense of the y-axis followed by a rotation of 
axes through the angle -Yo 

16. The condition is necessary for orthogonality by (49a). It is also suf­
ficient, for if Ak is the kth column vector of a, it is the kth row vector 
of aT. By the definition of matrix multiplication aaT = e implies 

{
O, if j,* k 

Aj· Ak = .. 
1, If J = k. 

17. Set c = abo If c = (elj), then cT = (CljT), where 
n n 

eljT = ejl = .E ajk bkl = .E blkT akjT = bTaT. 
k=1 k-l 

18. From Exercises 13, 17, and 16, if a and b are orthogonal, 

(ab)T = bTaT = b-l a-I = (ab)-l. 

which is sufficient for the orthogonality of abo 
19. If X = (Xl, X2, ... , Xn) and Y = (Yl, Y2, ... ,Yn), then by (47), 

(aX) • (a Y) = (xlAl + x 2A 2 + ... + xnAn) • (YlAl + y2A2 + ... + YnAn) 

= XIYl + X2Y2 + ... + XnJn. 

20. A length-preserving matrix a must also preserve scalar products; for 

laX + aYI2 = laXI2 + laYI2 + 2(aX)· (aY) 

= I X 12 + I Y 12 + 2(aX) • (a Y) = I a(X + Y) 12 = I X + Y 12 

=IXI2+ IYI2+2X.Y 

(compare the answer to Exercise 18). Condition (47) follows since each 
coordinate vector Ek is mapped on to the column vector Ak of a. 

21. Let the particles be Xl, X2, . . . ,Xk and their masses ml, m2, . . . , mk, 
respectively. Assume the affine transformation is given in the form 
X' = aX + A. Let the centers of mass before and after transformation 

beXo = (t mjXj)! t mj, Yo = (.~mjXl)/.f mj,respectively.Observe 
,-I ;=1 1=1 ,-1 

that XO' = aXo + A = Yo. 

Exercises 2.3 (p. 177) 

1. (a) 0. 
(b) 2. 



(c) 12. 
(d) (x - y) (y - z) (z - x) (x + y + z). 

2. a + c = 2b. 
3. (a) Use det (ea) = det (a). 

(b) Use det (e) = det (aa-1). 

4. (a) -1. 
(b) 1. 
(c) -1. 
(d) 1. 
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5. If all the elements of the determinant vanish, the result is immediate. 
Otherwise, we may suppose all =1= 0, for if au =1= 0, we may interchange 
the first and ith rows and the first and jth columns to place aij in the 
first row and column, with perhaps a change of sign in the determinant. 
Multiply the first column by alj/au and subtract from the jth column 
to make the first element in thejth column vanish. Proceed similarly to 
make the first element in any row vanish. By means of this operation 
and a multiplication of the first row by -1 if necessary, the determinant 
is put in the form 

at 0 0 

o bu bl2 

o b21 b22 

I bu bl2 I 
The same procedures applied to the subdeterminant I put it in 

I ~ 0 I b21 b22 
the form 0 y . Since the operations on the subdeterminant can be 

extended to the rows and columns of the original determinant without 
aifectingthe zero elements in the first row and column, the desired form 
has been attained. 

6. In (66a) the only possible nonzero term is that for which h = 1, h = 2, 
... ,jn = n. 

7. In aill aj22 ••• ajnn, let k be the least index for which jt =1= k. Ifjt < k, the 
product vanishes. If jt > k, then k must appear as a row index for a 
factor atm, where k < m; hence, again the product vanishes. Thus, 
all a22 ••• ann is the only possible nonzero term in (66a). 

8. (a) (x - y) (y - z) (z - x). 
(b) -12. 
(c) 2!23!24!' 

9. x = 3, y = 2, Z = 1. 
10. Apply det(a) • det(b) = det (aTb). 
11. Use D = (A + 2B) (A - B)2 

= [ (x + y + z) (x2 + y2 +Z2 - xy - yz - xz) ]2. 

12. Since the determinant is an alternating form in the column vectors, it is 
immediate that ~ = A + Bx. For x = -a, the matrix is lower-tri-
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angular and for x = -b, upper-triangular. Hence, from Exercise 7, 
A + Ba = f(a) and A + Bb = f(b). 

13. From (57a), with e = (Cjk) 

n n 
= .E aj .E cjkbk 

j=l k=l 

= A· (eB) 
n n 

= .E bk .E Cjkaj 
k=l j=l 

= B. (eTA). 

14. Set X = (x, y, z), A = (g, h, i), and 

a !d 
2 

a= b 

and rewrite the equation of the quadric in the form 

X • (aX) + A • X + j = o. 
If the affine transformation is given in the form 

X' = bX + B, 

its inverse is 

X=eX'+C 

where e = b- l and C = -b-1 B. Thus the equation of the quadric in 
the new coordinate system is 

eX' • (ae X') + C • (ae X') + eX' • (aB) 

+ A • eX' + C • (aC) + A • B + j = O. 

Apply the result of the preceding exercise to put this in the form 

X' • (a'X') + A' • X' + j' = 0, 

where 

a' = eTae, 

A' = eT(aTC + aB + A), 

j' = C· aC + A· B + j. 

15. Compare with the homogeneous linear system 

alX + a2Y + dz = 0 



blX + b2Y + ez = 0 

CIX + C2Y + fz = O. 
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If this system has a solution with z = -1, and hence a nontrivial so­
lution, the determinant D must vanish. Conversely, if the determinant 
vanishes, the column vectors are dependent. 
Thus, there exist constants x, y, z, not all zero, such that 

XAI + yA2 + zB = 0 

where At = (at, bi, Ct) and B = (d, e, f). It is not possible that z = 0, 
for then Al and A2 would be dependent and all three of the given 2 X 
2 determinants would vanish. We may therefore divide by -z to make 
-1 the coefficient of B; hence, the desired solution exists. 

16. In vector form the lines may be written as 

X = At + B, X = Ct + D. 

The lines are parallel if and only if A and C are parallel (this includes 
the case that the lines are the same). They intersect if and only if there 
exist numbers h, and t2 for which Ah + B = Ct2 + D. Thus, by the 
solution of the preceding exercise, the condition is that the matrix 
with column vectors A, C, B - D have a vanishing determinant; that 
is, 

al Cl bl- dl 

a2 C2 b2 - d2 =0 

aa Ca ba - da 

17. A set of interchanges that permutesit,js, ... ,j" into 1, 2, ... ,n, also 
permutes 1, 2, ... , n into kl, k2, ... , k". Consequently, it, js, ... , 
j" and kl, k2, . . . , k" are either both even or both odd permutations of 
1,2, ... ,n. 

18. In vector form this states that the vector equation 

aX=AX 

must have at least one nontrivial solution. Rewrite the equation in 
the form of a homogeneous equation: 

(a - )..e)X = 0, 

where e is the unit matrix. This equation has a nontrivial solution if 
and only if 

det(a - )..e) = O. 

In n-dimensional space this is a polynomial equation in ).. of nth degree 
with leading term (-1)"),,". Thus, a solution always exists ifn is odd. 

Exercises 2.4 (p. 202) 

1. Let Xo be the position vector of P and express the line in the vector 
form X = At + B. The distance r from P to l is I Xo - B I sin 6, where 
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e is the angle between P - B and A; hence, 

r = I (Xo - B) X A If I A I· 
2. The velocity is roo, where r is the distance of the point from the axis of 

rotation. From the solution of the preceding, with B representing the 
origin Xo = (x, y, z) and A = (oc, ~, y). 

roo = 00 [(yy - Z~)2 + (zoc - xy)2 + (x~ - yoc)2]l/2. 

3. Name the position vectors of the three points Xl, X2, X3, respectively. 
If X = (x, y, z) represents any point of the plane, the three vectors 
Xl - X, X2 - X, X3 - X lie in a two-dimensional space and, hence, 
are dependent. Consequently, 

det (Xl - X, X2 - X, X3 - X) = o. 
4. Let the equations of the lines be given in vector form by l:X = At + B 

and l': X' = A't' + B/. The shortest segment pp' with one end point 
on each line must be perpendicular to both. For, say, pp' is not per­
pendicular to [' at pI; then the perpendicular from P to [' would be 
shorter. If X and X' are the position vectors of P and P', respectively, 

X - X' = At + B - A't' + B' 

= k(A X A'). 

To determine k, take the dot product with (A X A') in this equation, 
which yields 

k = (B - B/) • (A X A') 
lAx A'l ' 

which yields the desired distance d through 

d2 = IX - X / 12 = k21A X A/12 

or 

d - I (B - B/) • (A X A') I 
- lAX A'l . 

5. The sum does not depend on the choice of origin, since a different choice 
of origin (a, b) amounts to replacing each determinant 

Because 

~k = I;: ;::: I by I Xk - a Xk+1 - a I 
~k' = 

I Yk - b Yk+l - b 

~k' = ~k _[I Xk a I + II Xk+1 a I ' 
Yk b Yk+l b 

I d . I Xk a I . . h lb' h each aditiona etermmant Yk b I appears tWIce m t e tota, ut WIt 

opposite signs. Thus, we may choose the origin in the interior of 
the polygon. The polygon is the sum of the areas of the triangles 
OPkPk+1, k = 1, . . . , n (where P n+1 = PI), but the area of OPkPk+1 is 
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precisely 

! 1 x" X"+l I. 
2 Y" YHI 

6. Subtract the third row from the first two to show that the determinant 
equals i Xl X X2, where Xl = (Xl - xa, YI - ya) and X2 = (X2 - Xa, 
Y2 - ya). 

7. If the coordinates of the vertices are rational, the area of the triangle 
as defined by the determinant is clearly rational. But, for an equilateral 
triangle with side length 8, the area is t 82\"'3, where 

8 2 = (Xt - Xj)2 + (YI - Yj)2 (i =1= j). 

is plainly rational. 
8. (a) In vector form, this states 

A • (A' X A") ::;; I A I • I A' I • I A" I , 
which is obviously true, since 

lA' X A"I::;; IA'I • IA"I 
and 

I D I = I A • (A' X A") I ::;; I A I • I A' X A" I· 
(b) Equality can hold only if it holds in both the preceding inequalities. 

Thus A, A', and A" must be mutually perpendicular. 
9. (a) IfB and C are dependent, say, C = )..B, the identity is trivially true. 

Otherwise, form the orthonormal basis EI, E2, Ea, where the re­
spective vectors are unit vectors in the directions of B, B X C, 
B X (B X C). Write A, B, and C in terms of this basis: 

A = aIEl + a2E2 + aaEa 

B = bEl, C = cIEI + caEa 

to obtain B X C = -bcaE2 and 

A X (B X C) = bca(aaEI - aIEa). 

Employ EI = (lIb) Band Ea = l/ca [C - (cl/b)B] to obtain 

A X (B X C) = (alcl + aaca)B - (alb)C. 

(b) Observe that 

Z = (X X Y) • (X' X Y') = det(X, Y, X' X Y') 

= det(Y, X' X Y', X) 

= [Y X (X' X Y') ] • X. 

Apply Exercise 9a to obtain 

z= [Y. Y')X' - (Y· X')Y']. X 

(c) Apply Exercise 9a to rewrite the expression on the left as 
u= [(X. Z)Y - (X· Y)Z]. V, 
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where 

v = [ (Y • X)Z - (Y • Z)X] X [ (Z • Y)X - (Z • X)Y] 

Thus, 

= (Y • X) (Y • Z) (Z X X) + (X • Y) (X • Z)(Y X Z) 

+ (Z • Y) (Z • X) (X X Y). 

u = (X • Z)(Y • X) (Y • Z) [Y • (Z X X) ] 

- (X • Y) (Z • Y) (Z • X) [Z • (X X Y) ] = 0. 

10. Let E be the unit vector in the direction of ( -1, 0, 1); thus, E = (-hl2, 
0, tv'2). Let X = (x, y, z) be the position vector of any point and A 
the foot of the perpendicular from the point to the axis of rotation: 

A = (X. E)E = (~(x - z), 0, ~(z - x»). 
Note that X - A is perpendicular to A and introduce the mutual 

perpendicular E X (X - A) to these two. If X' is the position vector of 
the image of (x, y, z) in the rotation, then X' - A is perpendicular to 
A and the given orientation condition yields 

(X - A) X (X' - A) = r2 sin ifJ E, 

where r = I X - A I = I X' - A I is the distance of X from the axis. 
Set 

X' = AA + (J.(X - A) + v[E X (X - A)] 

as we may, since the vectors appearing in the linear combination are 
mutually perpendicular. From (X' - A) • A = 0, it follows that 
A = 1; from (X' - A) • (X - A) = r2 cos ifJ, we have (J. = cos ifJ. Fi­
nally, from Exercise 9a 

r2 sin ifJ E = (X - A) X (X' - A) 

= v(X - A) X [E X (X - A) ] 

thus, v = sin ifJ. Employ 

X - A = (~(x + z), y, ~(x + z») 

E X (X - A) = E X X = ~ v2 (-y, x + z, -y) 

to obtain X' = aX, where 

1 IV- . ifJ 1 
2(cOS ifJ + 1) -- 2sm -(cos ifJ - 1) 

2 2 

a= ~v'2 sin ifJ cos ifJ IV-' ifJ 
2 2sm 

1 -!v'2sin ifJ 1 -(cos ifJ -1) 2(cosifJ + 1) 2 2 
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11. From Exercise 9a, 

X = [ (A X B) • D]C - [(A X B) • C]D 

= [(C X D) • A]B - [ (C X D) • B]A. 

Since A, B, C are independent, (A X B) • C * 0 and we may solve for 
D. 

12. Let EI', E2', Ea' be the unit coordinate vectors in the new coordinate 
system. We are given Ea· Ea' = cos 6, EI X (Ea X Ea') = sin 6 sin tjJ Ea, 
and EI' X (Ea X Ea') = -sin 6 sin 1\1 Ea'. Furthermore, EI· (Es X Ea') 
= sin 6 cos tjJ and EI' • (Ea xEs') = sin 6 cos 1\1. Thus, from Exercise 
9a, (EI • Ea') = sin 6 sin tjJ and EI' • Es = sin 6 sin 1\1. Now, set 

where 

(atl) = (Et • El) 

is the matrix we seek. The information we already have yields 

ala = sin 6 sin tjJ, aSI = sin 6 sin 1\1, ass = cos 6. 

Form Ea X Ea' = sin 6 sin 1\1 E2' + aa2 EI' and take the scalar product 
with EI' to find 

EI' • (Ea X Ea') = sin 6 cos IjI = aa2. 

Thus, 

Es = -sin 6 sin IjI EI' + sin 6 cos IjI E2' + cos 6 Ea'. 

Using this expression for Ea, solve for au and a12 in the equations 

EI • Es = 0, J EIJ2 = 1, 

to obtain 

au = -cos 6 sin tjJ sin IjI ± cos tjJ cos 1jI, 

al2 = -cos 6 sin tjJ cos 1\1 ± cos tjJ sin 1\1. 

The undetermined signs in these expressions for au and al2 are fixed 
by the condition EI • (Es xEs') = sin 6 cos tjJ, which yields the plus 
sign in the expression for au and the minus sign for a12. Set E2 = Ea X EI 
to obtain, finally, 

(

-cos 6 sin tjJ sin 1\1 
+ cos tjJ cos IjI 

(at') = cos 6 cos tjJ cos IjI 
+ sin tjJ cos 1\1 

sin 6 sin IjI 

-cos 6 sin tjJ cos 1\1 
-cos tjJ sin IjI 

cos 6 cos tjJ cos IjI 
-sin tjJ sin IjI 

sin 6 cos IjI 

sin 6 sin tjJ 

cos 6 

Note that this result holds also for 6 = 0 or 7t', when tjJ and IjI become 
indeterminate with tjJ + IjI = xOx' or tjJ - IjI = xOx', respectively. The 
angles tjJ, 1jI, 6, are so-called Eulerian angles, and our result shows that 
the most general orthogonal matrix with determinant ~ of value + 1 
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may be expressed "parametrically" by means of the three variables 
t/J. Iji, e, subject to the inequalities 

o ~ e ~ n;, 0 ~ t/J < 2n;, 0 ~ Iji < 2n;. 

13. Let A = aIEl + a2E2 + ... + am Em be a nonzero vector of n; perpen­
dicular to all the vectors of n;' with, say, al * O. Using EI = l/al(A 
- a2E2 - ••• - amEm), we obtain from (85a) 

{.L = l [A - a2E2 - '" - amEm, E2, ... , Em; EI', ... , Em') 
al 

1 = - [A, E2, ... , Em; EI', E2', ... , Em'] = o. 
al 

Conversely, if {.L = 0, the column vectors in the determinant repre­
sentation (85a) of {.L are dependent: for some nontrivial set of coef­
ficients, 

AIEk • EI' + A2Ek • E2' + ... + AmEk • Em' = 0 (k = 1, 2, . . . ,m). 

Then 

and we have a vector of n;' orthogonal to every basis vector and, 
hence, every vector of n;. 

Exercises 2.5 (p. 215) 

~ 

1. Let the coordinates of P be (Xl', X2', xa'); of Q, (XI/l, X2/1, xa/l). Thus PQ 
represents the vector U, where Ui = xi" - xl'. The coordinates of P 
and Q in the new system are given by (89a) with appropriate primes and 
......>0. 

PQ represents the vector Vi = y/' - yi' whose components clearly 
satisfy (89a). 

5. Let the curve be expressed vectorially by X (t), and let the three values 
of the parameter be given by t, tl, t2, and the corresponding points by 
X = X (t), Xl = X (tl), X2 = X(t2). The normal to the plane through the 
three points is parallel to 

(Xl - X) X (X2 - X). 

Setting h - t = hI, t2 - t = h2 and using Taylor's theorem, obtain 

dX 1d2X Xi = X + --hi + - -hi2 + •••. 
dt 2 dt2 

Thus, to lowest order, 

(Xl - X) X (X2 - X) = ! dX d 2X(hk2 - kh2). 
2 dt dt2 

In the limit as hand k approach 0 and as t approaches to, the normal 
to the osculating plane takes the direction of dX/dt X d 2X/dt2 at Xo = 
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X(to). Thus, the position vector Y of a point of the osculating plane 
satisfies 

(Y - Xo) • (c!~ X d 2X) = 0 dt dt2 • 

6. From the result of the preceding exercise, we must show that dX/ds 
and d2X/ds2 are both perpendicular to dX/dt X d 2X/dt2. This is imme­
diate from 

dX dXdt 
= 

ds dt ds 
and d 2X _ dX d 2t d 2X (dt)2 ------+- - . 

ds2 dt ds2 dt2 ds 

7. Let the curve be given by X(s), where s is arc length, and expand X by 
Taylor's theorem: 

X(s) = X(so) + X'(so)l + YO(12), 

where 1 = s - So and Y is bounded. Thus, since I X'(so) 1= 1, 

d - 1 = I X(s) - X(so) 1- 1 

= I X'(so)l + YO(12) 1- I 

:::;;; IX'(so)ll + 0(12) - I; 

that is, d - I = 0(12) = 0(1). 

8. From the solution to the preceding problem 6. 

k = I d 2X I = I X' ri2t + X" (dt) 2). 
ds2 ds2 ds 

Note that 

hence, 

d 2t X'· X" = ds2 -lX'f4. 
Thus, 

2 _ IX'1 2 1X"12 - (X'. X")2 
k - IX'1 6 -

9. From the solution to Exercise 6, d 2X/dt2 is a linear combination of 
dX/ds and d 2X/ds 2• 

10. Let C be represented by X(t) and assume that the position vector 
X(to) of B is not an end point of C. Let Y be the position vector of A. 
I Y - X(to) I is a minimum if 

dd IY - X(t) 12 1 = 0; 
t t = to 

that is, 

[Y - X(to)] • X'(to) = o. 
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11. Let the curve be given parametrically by X(6) where ,,= a cos 6, 
y = a sin 6. The tangent plane depends only on" and y, not z, and it 
makes the angle 6 with the y-axis. The z-component of the tangent 
vector X' to the curve satisfies 

z' 
./",s + y's + z's = cos 6. 

or 

z' 
./a2 + Z'2 = cot 6. 

Thus, 

z' = ± a cot 6; 
whence, 

z = c ± a log sin 6. 

For the curvature, see Exercise 8. 
12. From dXld6 = (-sin 6, cos 6, sinh A6), we have 

d 2X . 
d62 = (-cos 6, -sm 6, Acosh A6), 

the solution yields the equation for any point Y of the osculating plane 

0= (Y - X). (~~ X ~~~), 
where the normal vector is given by 

dX d2X 
d6 X d6S = (NI, Ns, N3) 

and 

NI = A cos 6 cosh A6 + sin 6 sinh A6. 

N2 = A sin 6 cosh A6 - cos 6 sinh A6 

N3 = 1. 

The distance of the plane from the origin is I X • N III N I, and, since 
X • N = (A + l1A) cosh A6 and I N 12 = (AS + 1) cosh2 A6, the result 
follows. 

13. (a) Let X(t) be the parametric representation of the curve and set 
X, = X(t,). The plane through the tht'tle points, by Exercise 3 of Section 
2.4, is 

(Xl - X) • [ (Xs - X) X (Xa - X) J = 0 

or 

X • [Xl X Xs + Xs X Xa + X3 X Xl] = Xl • (X2 X Xa), 

from which the result follows. 

(b) The three osculating planes have the equations 



(X - Xi) • (Xl' X Xl") = 0 

(from Exercise 6) or, in terms of coordinates, 

3x _ 6tt y + 3ti2 Z _ ti3 = O. 
abc 
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Thus, if (x, y, z) is a point common to the three osculating planes, 
tl, t2, ta are the three roots of the above equation with coefficients: 

3z 
tl + t2 + ta = - , 

C 

ttt2 + t2ta + tah = 6; , 
3x 

ht2ta = -. 
a 

14. Since a sphere is determined by any four of its noncoplanar points, we 
may impose four conditions on the sphere of closest contact: that the 
contact of curve and sphere be of third order. Let X(s) be the repre­
sentation of the curve in terms of arc length and A the center of the 
sphere. Require that 1 X - A 12 vanish to third order; thus, from 1 X 12 = 
1 and X.:it. = 0, 

(X - A). X = 0, 

(X - A) • :it. + 1 = 0 

(X - A). X = O. 

From the first and last of these equations, X - A = A(X X X), where A 
is given by the second equation. Hence, 

XxX 
A=X+ ... ". 

X· [X X Xl 

15. Set 1 X - A I = 1 in the solution of the preceding exercise. 

16. Since, by Exercise 6, ;a is normal to the osculating plane, ! = 1 ;al. 
't" 

Furthermore, since ~i and ;i are perpendicular 

~2 = a;1 + b;a and ~a = C;1 + d;2. 

Differentiate ;1 = ;2 X ;a to obtain 

1 ~2 = (;2 X ~a) + (~2 X ;a) 
p 

= -a~2 - c;a; 

hence a = -l/p and c = O. From ~a = d;2, d = ± 1/'t"; choose the 
minus sign. To determine b, differentiate ;a = (;1 X ;2): 

~a = -1;2 = (;1 X ~2) - (;2 X ~1) 
't" 
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whence b = 1/'r. 
17. (a) Differentiate X = ~1 = k~2 to obtain 

X = k~2 + k~2 

(b) From the result of Exercise 14, 

~2 k l' 
-+kT .. 3 • 
.,; .,; 

18. Since 1/.,; = I ~31 = 0, then ~3 = 0 and, therefore, ~3 must be a constant 
. d 

vector. From 0 = ~1 • ~3 = X • ~3 = ds (X • ~3), it follows that X· ~3 

= constant. 
19. Let A and P be the position vectors of A and P respectively. Set X = 

A - P, hence X = -Po The equation states 

d . 
dt I X I = -a . P, 

which follows directly from the differentiation formula 

d d -- X.X 
dt I X I = dt Jx . X = lXf 

with a = X/IXI. 
20. (a) Set X = A - P as in the preceding solution. From that solution, 

. . d . 
-P = X = dt (IXla) = -(a· P)a + IXIIi. 

and the desired result is immediate. 

(b) Introduce the expression for a and the similar expressions for b in 

P = ua + vb + we + ua + vb + we. 
21. (a) Let the curve be given by X (t). The surface then has the parametric 

equation 

y = X(t) + "X(t) 

The vector ay/a" X ay/at is normal to the surface, but 

~i X ~~ = X(t) X [X(t) + "X(t)] = "X(t) X X(t) 

is also normal to the osculating plane. 

(b) Set Y = (x, y, z) and X(t) = (lX(t), ~(t), y(t) ). Thus, x and yare func­
tions of t and" satisfying 

x = lX(t) + M(t) 

Y = ~(t) + "~(t). 
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Use 

U(x, y) = yet) + Ay(t) 

to calculate Uzz, Uyy, and Uzy in terms of derivatives with respect to 
t and A. 

Differentiate Y = X(t) + AX(t) with respect to x to obtain, (A = s) 

Y z = (I,O,uz) = (X + AX)tz + XSz. 

Form X X Y z and equate components in the x and z directions to 
obtain 

~Uz = stz(~, y), ~ = -stx(a., ~), 

where (u, v) is defined by 

(u, v) = ltV - vu. 
Thus, 

- (~, y) - ~ 
Ux - - (a., ~)' tx - - s(a., ~) . 

Similarly, from X X Y y obtain 

(y, a.) a: 
Uy = - (a., ~)' ty = s(a., ~) 

Note that Ux and Uy do not depend on A. Consequently, 

d ~ d (~, y) 
Uxx = txdtux = s(a., ~) dt(a., ~) 

d a: d (a., y) 
Uyy = ty dt Uy = s(a., ~) dt (a., ~) 

and 

d a: d (~, y) 
Uxy = ty dtUX = - s(a., ~) dt (a., ~) 

= tx!iUY = __ ~_!i (a., y), 
dt s(a., ~) dt (a., ~) 

from which the result is immediate. 

Exercises 3.1a (p. 219) 

1. Set Yn+1 = Yn + cf(a, Yn), where c is constant, and apply the methods of 
Volume 1, Sections 6.3c and d, with cp(y) = y + cf(a, y). To guarantee 
convergence, we require Icp'(y)I ;;;; q < 1 on some interval containing b, 
and the smaller the q, the better. Consequently, we attempt to fix c so 
that cp'(y) is nearly zero, or 

1 
c~ ----

(y(a, b)· 

Thus we begin with the assumption fy(a, b) =1= o. 
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In practice. we choose c = -1/fy(a, yo), where yo is close to the sought­
for solution b. The condition for convergence then becomes 

Icp'(y) 1 = Ify(a, yo) - fy(a, Y)j ~ q < 1 
fy(a, yo) 

for all y in some neighborhood of b. Suppose fy satisfies a Lipschitz 
condition 

1 fy(a, 712) - fy(a, 7)1) 1 < K 1712 - 7111 

on some neighborhood of b. Within this neighborhood, let e be the 
radius of some perhaps smaller neighborhood where of/oy is bounded 
away from 0, 

fy(a, y) > m > 0; 

such a neighborhood exists by virtue of the Lipschitz condition and 
fy(a, b) =F O. For an initial choice yo satisfying 

Iyo - bl < max Ie, ~~l' 
the iteration scheme converges to b through 

1 
1 yn - b 1 ~ 2 qn 1 yo - b I· 

Exercises 3.lh (p. 221) 

i. (a) The tangent plane is horizontal. The surface intersects the tangent 
plane in the pair of lines y = x and y = - x; hence, y cannot be ex­
pressed as a function of x in the neighborhood of (xo, yo). 

(b) The surface is a cylinder with generators parallel to the vector 
i - j. Thus, the line y = 1 - x, z = 0 lies on the surface and yields 
the desired solution y = 1 - x. 

(c) The surface is a cylinder with generators parallel to i - j. The 
solution is y = 1/2 - x. 

(d) The tangent plane y + z = 0 is not horizontal. Thus, the curve 
f(x, y) = 0 is tangent to the line y = 0 at the origin. 

Exercises 3.lc (p. 225) 

1. By subtracting the constant on the right from both sides, we may put 
each of these equations in the form F(x, y) = O. The conditions of the 
theorem are satisfied. In particular, each given point is an initial so­
lution F(xo, yo) = 0; and Fy(xo, yo) has nonzero values, namely, (a) 4, 
(b) -1, (c) 2, (d) 6. 

2x+y 5 
2. (a) - x + 2y; -4' 

(b) Explicitly, y = 1t/2x; hence, y' = _1t/2X2. Implicitly, 
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Y' _ cot xy - xy . 1t' 

- X 2 ' -2' 
(c) Explicitly, y = I/x; hence, y' = -I/x2. Implicitly, y' = -y/x; -1. 

(d) y' = y + 5X4. -1 
x + 5y4 ' . 

3 () " -6(x2 + xy + y2) -42 21 
. a y = (x + 2y)3 = (x + 2y)3; - 32 . 

1t' 
(b) y" = 3 ; 1t'. 

X 

(c) y" = 2y = ~ ; 2. 
x2 x3 

(d) "= _ [150 x 3y3(10 - xy) + 20(x6 + y6) + 8xy - 30]. _19 
y (x + 5y 4)3 ' 3 . 

4. From the positive sign of their second derivatives, band c. 
5. Assume that the equation defines y as a differentiable function of x in a 

neighborhood of each extreme value. Then at an extremum F.,(x, y) = O. 
Maximum, y = 6; minimum, y = -6. 

6. Set F (x, y) = y - yo - r (y(~, y)d~ and note that 
"0 

Fy(x, y) = 1 - r {y(~, y)d~ > 0 
"0 

for x sufficiently close to Xo. 

Exercises 3.1d (p. 228) 

1. f(x, y) = y3 + X near (0, 0). 
2. Same as for Exercise 1. 
3. Since Fy(x, y) = (3y2 - 2y + 1) + x 2 is the sum of a positive quadratic 

expression in y and a square, it follows that Fy(x, y) > 0 for each x and 
all y. Consequently, for each x, F(x, y) is strictly increasing in y. Thus, 
F(x, y) = 0 can have no more than one solution y corresponding to each 
fixed x. Such a solution must exist because for each x, y3 - y2 + (1 + x 2)y 
= G(x, y) takes on arbitrarily large values of both signs, positive and 
negative, for appropriate values of y. It follows by the intermediate value 
theorem that G(x,y) takes on all real values. In particular, for some value 
of y, G(x, y) = ~(x); hence, for each x and this value of y, F(x, y) = 
G(x, y) - ~(x) = o. 

Exercises 3.Ie (p. 230) 

1. Set F(x, y, z) = x + y + Z - sin xyz. Fz(O, 0, 0) = 1 *- O. 

oz = yz cos xyz -1 
ox 1 -xy cos xyz ' 

~ _ xz cos xyz -1 
oy -1 -xy cos xyz' 
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2. Since each equation can be put in the form F(z, x, y, ... ) = 0, where 
F is formed by rational operations and application of continuously 
differentiable functions of one variable, it is only necessary to test that 
the derivative F. at the point is nonzero. 
(a) F, = 1 
(b) F, =-6 
(c) For F(x, y, z) = 1 + x + y - cosh(x + z) - sinh(y + z), F, = 1. 

3. For {(x, y, z) = x + y + z + xyz3, {,(O, 0, 0) = 1 *" O. Second- through 
fourth-order terms vanish; z = - x - y + . . .. 

Exercises 3.2a (p. 235) 

1. (a) Equation satisfied only by point (0, 0); tangent and normal do not 
exist. 

(b) (~- x) [ez sin y - ell sin x] + ('rj - y) [ez cos y + ell cos x] = 0; 

('rj - x) [eZ cos y + ell cos x] - ('rj - y) [ez siny - ell sin x] = o. 
(c) Equation satisfied only by points (-1, rr:/2 + 2krr:); tangent and 

normal do not exist. 

(d) (~- x) (2x + cos x) + ('rj - y) (2y - 1) = 0; 

(~ - x) (2y - 1) - ('rj - y) (2x + cos x) = O. 

(e) (~- x) (3X2) + ('rj - y) (4y3 - sinh y) = 0; 

(~ - x) (4y3 - sinh y) - ('rj - y) (3X2) = O. 

(f) Equation satisfied only on positive x- and y-axes. For x = 0, y > 0, 
tangent is x = 0, and normal, 'rj = y; for y = 0, x > 0, tangent is 
y = 0, and normal ~ = x. 

2. -1. 
3. From Volume I, p. 437, Problem 5 of 4.1h, 

r2 + 2r,2 - rr" 
k = (r2 + r,2)3/2 ' 

where the primes indicate derivatives with respect to 6. Enter the 
expressions for r' and r" in terms of the partial derivatives of { in the 
formula for k to obtain 

k = r2{r3 + r(p{ee - 2{e{r{re + {e2{rr) + 2{e2{r 
({e2 + r2f2)3/2 • 

4. Observe that Fzz = FilII = 6(x + y - a) = 0 when x + y = a. Apply 
(13): 

FII2Fzz - 2FzF IIF zII + F z2FIIII = -54axy FZII = 0, 

since xy = 0 at an intersection. 
5. a = ±1, b = -i. 
6. The circles K, K', K" may be denoted by the equations 



K = X2 + y2 + ax + by + e = 0, 

K' = X2 + y2 + a'x + b'y + e' = 0, 

K" = X 2 + y2 + a"x + b"y + e" = o. 
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Then any circle passing through A and B is given by K' + )..K" = O. 
The conditions that the circle K should be orthogonal to K' and K" are 
aa' + bb' - 2(e + e') = 0, aa" + bb" - 2(e + e") = O. From these condi­
tions the corresponding relation expressing the orthogonality of K 
and K' + )..K" readily follows. 

Exercises 3.2b (p. 237) 

1. (a) Double point 
(b) Two branches tangent to x-axis 
(c) A corner: for x = 0+ the slope is 0, for x = 0- the slope is I 
(d) Cusp 
(e) Cusp. 

2. The coordinate axes. 
3. y = x2(1 ± X1l2). The two branches of the curve forming the cusp at the 

origin lie on the same side of their common tangent. 
4. The curves are obtained by rotation through the angle at from the curve 

(x - b)3 = ey2. 
5. Differentiate the equation F = 0 twice with respect to x and use the 

fact that F" = o. 
ql = arc tan 2../Fx,,2 - FxxF"" . 

Fxx + F"" ' 
thus, 

(a) rr/2; 
(b) rr/2. 

6. Note that the tangents at the origin are y = 0 and ax + by = O. In the 
respective cases, expand y to second order: 

I " 2 Y = :2YO x + ... and a + I "2 Y = - f/ :2 yo x + .... 
Enter these expressions in the original equation to obtain yo". 

k = ~ k = 2(a3g - a2bf - ab2e - b3e) 
a ' a(a2 + b2)3/2 

Exercises 3.2c (p. 240) 

1. (a) 5x + 7y - 2lz + 9 = 0 
(b) 20x + 13y + 3z = 36 
(c) x - y - z + ,,/6 = 0 
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(d) x + 2z - 2 = 0 
(e) The surface has no tangent plane at the point. 
(f) z = o. 

2. Each equation is in the form F(x, y, z) = constant. The vectors (Fz, F y, 
Fz) perpendicular to the respective surfaces are given by 

(~,;, -;~) (.Jx: + Z2' .Jy2Y+ Z2' .Jx2Z+ Z2 + .Jy2
Z
+ Z2)' 

(.JX2X+Z2'- .JY/+Z2' .JX2:Z2 - .Jy2
Z
+-Z2)· 

The scalar product of any two of these vectors vanishes. 
3. x (y + z) = ay. 
4. Since this is a surface of revolution, we may assume y = 0, Let (a, 0, c) 

be a point of the surface, that is, a2 - c2 = 1. The tangent plane at the 
point is ax - cz = 1. The intersection lines are (z - c)c = (x - a)a 
= ±acy. 

5. From Euler's relation the equation 

(~ - x)Fz + (1) - y)Fy + (~ - z)F. = 0 

for the tangent plane can be put in the form 

~Fz + 1)Fy + ~Fz = xFz + yFy + zFz = hF(x, y, z) = h. 

yz - x2 XZ - y2 
6. ZZ = 2 ' Zy = . z - xy Z2 - xy 

7. (a) 0 
(b) arc cos l/.JS 
(c) arc cos 4/5 
(d) rr:/2 
(e) Not defined. 

Exercises 3.3a (p. 246) 

1. (a) Circles ~2 + 1)2 = e2Z ; lines through origin ~ sin y - 1) cos y = o. 
(b) Parabolic arCS,1) = .Jx2 - 2~x, 1) = .Jy2 + 2~y. 
(c) 1) = cos x(l + 1/~2), 1) = cos y(l + ~2). 
(d) Parabolas ~ = 1)2 - 21)(x2 + 1) + X4 + 3x + 1, 1) = ~2 - 2~y + y4 + 

y+1. 
(e) ~ = X T1l1z, 1) = y!;lIY. 

(f) Lines ~ = constant, 1) = constant(1) ~ 1). 
(g) Elliptical arcs ~2 - 2~1) sin 2x + 1)2 = cos2 2x, ~2 - 2~1) sin 2x + 1)2 

= cos2 2y. 
(h) Segments ~ = eCOS z, (e-1 ;:::;; 1) ;:::;; e), 1) = eCOS y, (e-1 ;:::;; ~ ;:::;; e). 

2. The equation admits only the values x = y = O. Hence, the region is the 
plane. Its image is the open first quadrant in the ~, 1)-plane. 
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3. The region bounded by the two circles ~2 + 'lj2 = 8, ~2 + 'lj2 = 32 and the 
hyperbolas ~2 - 'lj2 = 2, ~2 - 'lj2 = 6. 

4. No. The origin of the ~, 'Ij-plane is the image of any point (0, y). 

Exercises 3.3b (p. 248) 

1. For this, it is only necessary to show that at a given point with Cartesian 
coordinates (a, b) the curves ~ = IX, 'Ij = (3, where IX = (sin b)/(a - 1) and (3 
= a tan b, have different directions. For ~ = IX, 

dx (a - 1) cos b 
dy= sinb ; 

for'lj = (3, 

dx -a 
dy = cos2 b sin b . 

Thus, curvilinear coordinates are defined for all points except those that 
satisfy cos3 b = a/(1 - a). 

2. (~- 1)2/3 + 'lj2(~ - 1)-2/3 = 1. 
3. As in the solution of Exercise 1, those points with Cartesian coordinates 

(a, b) for which the curves ~ = IX and 'Ij = (3 have the same direction, 
in this case, the points on the 45°-lines b = ± a. 

Exercises 3.3c (p. 251) 

1. Use 

2. 

to obtain 

_ ~ y_ 'Ij _ t;; 
x - ~2 + 'lj2 + 1;;2 ' - ~2 + 'lj2 + 1;;2 ' Z - ~2 + 'lj2 + 1;;2 

r = ';x2 + y2 + Z2 + w2 

';x2 + y2 + Z2 .; y2 + Z2 ifJ=arctan ,1jI=arctan , 
w x 

6 = arc tan z/y. Here r = constant, is a three-sphere of radius reentered 
at the origin; ifJ = constant, is the hypercone generated by all lines 
through 0 making the angle ifJ with the w-axis; the set IjI = constant is 
the union of all planes through the w-axis that meet the x axis at the 
angle 1jI. The set 6 = constant is the union of all three-spaces contain­
ing the x- and w-axes that meet the y-axis at angle 6. 

Exercises 3.3d (p. 255) 

1. (a) ad - be 1 
(d) x2 + y2 
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(b) 1/-Ix2 + y2 

(c) 4xy 

(e) -3x2y2 

(f) 9x2y 2 + 1. 

2. If ad - bc = 0, all points; if ad - be =1= 0, none. 
(b) None. (The transformation is not defined for x = y = 0.) 
(c) The coordinates axes. 
(d) None. Note, however, that there is no over-all inverse because the 

points( x, y + 2n1t') all have the same image. 
(e) The coordinate axes. 
(f) None. 

3. (a) D = e2X ; X~ = Yn = ~/(~2 + 1)2); Xn = - Y~ = 1)/(~2 + 1)2); xe~ = Y~n = 

-Xnn = (~2 - 1)2)/(~2 + 1)2)2; Y~~ = -X~n :::; - Ynn :::; -2~1)/(~2 + 1)2)2. 

(b) D=4(X2+y2); with r:::;v'~2+1)2, 6=arc tan 1)/~; xe=Yn= 

!v'r cos ! 6; YI; = -Xn = -! ..rr sin ! 6; X~~ :::; Yl;n = -Xnn = 

-t r 3/2 cos 36/2; y~1; = -X~n = -Ynn = tr3/2 sin 36/2. 

(c) D = 2 sin(x - Y)/cos2(x + y). XI; = YI; = 1/2(1 + ~2); Xn = Yn = 

1/2v'1 _1)2; Xl;I;:::; YI;I;:::; - ~/(1 + ~2)2; x~n:::; Yl;n:::; 0; xnn:::; -Yl1l1 :::; 

1)/2(1 - 1)2)3/2. 

(d) D = cosh(x + y);~ = (coshy)/D;Xl1 = -(sinhy)/D;YI; = (sinhx)/D; 

Yn = (cosh x)/D. 

XI;I; = - [cosh2 y sinh(x + y) + sinh2 x]/D3; 

Xl;n = Hsinh 2y sinh(x + y) - sinh 2x]/D3; 

Xl1l1:::; -[sinh2y sin(x + y) + cosh2x]ID3; 

Y~~ = [cosh2y - sinh2 x sinh(x + Y)]ID3; 

yen = -Hsinh 2y + sinh 2x sinh(x + y)]/D3; 

Ynn = [sinh2y - cosh2x sinh(x + y)]/D3. 

(e) D = 6x3y - 3y4. XI;:::; 2x/3(2x3 - y3) 

Xn:::; -y/(2x3 - y3), y~:::; -y/3(2x3 _ y3); 

Yn :::;x2/y(2x3 - y3). XI;I;:::; - jx(8x3 + 5y3)/(2x3 _ y3)3; 

Xl;n :::; 2y(7x3 + y3)/3(2x3 - y3)3; 

Xnl1 :::; - 2x2(X3 + 4y3)/y(2x3 - y3)3; 

yl;l; :::; 2y(7x3 + y3)/3(2x3 - y3)3 

yl;n = -2x2(X3 + 4y3)/3y(2x3 - y3)3 

Ynn = 2X(y6 + 3X3y3 - X6)Jy3(2x3 - y3)3. 

(a) Let ml and m2 be the slopes of two curves passing through the 
point (a, b) of the x, y-plane. Let ILl and !L2 be the corresponding 
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slopes at the corresponding point in the ~, l)-plane. Use 

dl) dl)/dx (Ol)/ox) + m(ol)/oy) m(a2 - b2) -2ab 
IL = d~ = d~/dx = (o~/o x) + m(o~/oy) = b2 - a2 - 2mab 

to obtain 

IL2 - ILl _ ml - m2 
1 + ILlIL2 - 1 + mlm2 . 

Thus, the angle between the two curves is preserved in magnitude 
but reversed in orientation. 

(b) Observe that ~2 + l)2 = 1/(x2 ~ y2). Express the circle (x - a)2 + 
(y - b)2 = r2 in the form x2 + y2 - 2ax - 2by = r2 - a2 - b2• This 
transforms into the curve 

or 

1 2a~ 2by --- - --- - --- = r2 - a2 - b2 
~2 + l)2 ~2 + l)2 ~2 + l)2 

(~2 + l)2) (r2 - a2 - b2) + 2a~ + 2bl) = 1. 

This is a circle in the ~, l)-plane unless the original circle passes 
through the origin; then r2 - a2 - b2 = 0 and the image is a 
straight line. 

(c) -1/(x2 + y2)2. 
5. By the solution of Exercise 4(b), an inversion maps PlP2Pa into an 

ordinary triangle with the same angles. 
6. Let ml, m2 be the slopes of curves passing through the point (a, b) and 

ILl, IL2 the corresponding slopes of their images. From 

_ dv /dx _ IjIz + mljly _ IjIz + mljly 
IL---- - , 

du/dx ¢lz + m¢ly ljIy - mljl.c 

it follows that 

IL2 - ILl _ m2 - ml 
1 + IL2ILl - 1 + mlm2 . 

7. The normal is given by 

~-x l)-y --=--=u-z. 
Uz uy 

It passes through the z-axis if and only if XUy - YUz = o. The surface 
is a surface of revolution if and only if z = f(w) where w = x2 + y2. 
Thus, the curves z = constant and w = constant are the same and the 
mapping (x, y) --+ (w, z) must have a vanishing Jacobian, that is, 

d(w,z) = 21 x y 1- 0 
d(x, y) Uz Uy - . 

8. (a) If either t < b (ellipse) or b < t < a (hyperbola), the foci are (0, ±c), 
where c = ../a - b. 
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(b) If we denote the left-hand side of the equation defining tl and t2 by 
F(x, y, t), two curves tt = constant and t2 = constant are given 
implicitly by the equations F(x, y, tt) = 1 and F(x, y, t2) = 1, 
respectively. The condition that these should be orthogonal is 
therefore 

0= Fx(x, y, tl) Fx(x, y, t2) + Fy(x, y, tl) Fy(x, y, t2) 

4x2 4y2 
--~~--+ . 
(a -tl) (a - t2) (b - tl) (b - t2) , 

but this relation is an immediate consequence of F(x, y, tt) -
F(x, y, t2) = O. 

(c) The coefficients of the quadratic equation defining tt and t2 are 
equal to It, t2, and -(It + t2), respectively. We thus obtain two 
linear equations in x2 and y2, whence 

x = ± J(a - tl) (a - t2) , y = ± J(b - tl) (b - t2) . 
a-b b-a 

(d) d(tl, t2) = 4xy(a - b) 
d(x, y) .; {(a + b)2 - 2(a - b) (x2 - y2) + (x2 + y2)2} 

f 'g' f2'g2' (e) 1 1 = __ '-=-"~ __ 
(a - tl) (b - tl) (a - t2) (b - t2) . 

9. (a) Let F (t) be the left-hand side of the equation defining t. F is a 
continuous function of t in -00 < t < c, for which F(-oo) = 0, 
F (c - 0) = + 00 ; hence, F = 1 at one point at least ofthat interval. 
Similar conclusions apply to the other intervals. 

(b) Cf. Exercise 8 (b). 

. ( ) _ J(a - tt) (a - t2) (a - ts) 
(c) Cf. ExercIse 8 c. x - ± (a _ b) (a _ c) , 

with similar formulae for y and z. 
10. (a) Apply the result of Exercise 6. 

(b) Let x = r cos 6, y = r sin 6. Then the straight line 6 = constant is 
transformed into the conic It = ! - cos2 6 and the circle r = 
constant. into the conic t2 = -t [r2 + (1/r2)]. 

11. (b) Use (24d) as follows 

_ a (-~y) _ _ a (T)y) 
X!;l1 - ~ D - xll !; - aT) D ' 

or apply the result of part (a). 

Exercises 3.3e (p. 260) 

1. (a) 1. (c) exp[2x/(x2 + y2)] 
(x2 + y2)2 
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2. (a), (c). In part (b), Uo = Vo = 1 is not in the range of the composite 
transformation. 

3. Apply (31b). 
4. The inverse transformation 

x = p(~, '1), Y = q(~, '1) 

exists. The first result is obtained by forming the composition of the 
given mapping with 

whence 

z = f(p(~), q('1)) = ex(~, '1) 

'1) = '1) = ~(~, '1), 

d(z, '1) _ d(z, '1) d(x, y) _ d(z, '1)/d(x, y) 
d(~, '1) - d(x,y) d(~, '1) - d(~, '1)/d(x, y). 

But 

Exercises 3.3f (p. 266) 

1. (a), (b). In part (c), the given values do not satisfy the equations. 

Exercises 3.3g (p. 273) 

1. With w = v-I, 

1 1 
X2 = 1 + 2 (u + w) + 8 (u2 - 2uw - w2), 

1 1 
Y2 = 1 - 2 (u - w) + 8 (u2 + 2uw - w2). 

2. The same. 

Exercises 3.3h (p. 275) 

1. ~=x2+xlxl, '1)=y. 

2. If the functions are dependent, a(~, '1)/a(x, y) = a~ - hex = o. 

Exercises 3.3i (p. 277) 

1. (a) _e3x cos y 
(b) o. 
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(c) [yz log y sinh x cosh Z ( h ),.z-1 . h ] - ---- cos ZJ SIn x. 
cosh2 Y y 

(d) - x2 sin z. 
(e) x. 

2. There exists a region on which some function of~, 'Yl, ~ vanishes. The 
condition for this is a(~, 'Yl, Q!a(x, y, z) = O. 

3. The triple of Exercise l(b) is dependent: 

('Yl2 + p2) [('Yl + p - ~)2 + ~2] = 2('Yl + p)2. 

1 1 1 
4. a(~, 'Yl, ~) = 2x 2y 2z == 0; ~2 - 'Yl - 2~ = o. 

a(x,y,z) 
y+z x+z y+x 

5. (a) Since the angle between two surfaces is the angle between their 
normals, we need show only that the angle between any two di­
rections is unchanged. Let s be arc length on any curve in x, y, z· 
space and t = (x, y, i) = i the unit tangent vector, where the dot 
denotes differentiation with respect to s. The direction oft maps into 

th d · t· f (~, it, ~) Y·!I Y· I Th· d·· e Irec IOn 0 'I" = (~2 + it2 + ~2)1I2 = . e Image IrectlOn 

1: is given in terms of t and X by 

t 2(t· X)X 
1:= - IXI2 .. 

From this it follows easily that the cosine of the angle between two 
curves meeting at X is given by '1"1 • '1"2 = t1 • t2. 

(b) Follows as does the solution of Exercise 4(b), p. 256 
(c) - 1!(x2 + y2 + Z2)3. 

Exercises 3.4a (p. 286) 

1. (a) ds2 = sin2v du2 + dv2 

(b) ds2 = cosh2v du2 + (1 + 2 sinh2v)dv2 

(c) ds2 = (1 + f'2)dz2 + f2 d02 

(d) ds2 = (h - t2) (h - t3) dh2 + (t2 - h) (t2 - t3) dt22. 
4(a - h) (b - tl) (c - h) 4(a - t2) (b - t2) (c - t2) 

2. E = G = cosh2 (t!a), F = o. 
3. Xu = (cos v, sin v, IX); XV = (-u sin v, U cos v, 0); hence, Xu· Xv = o. 
4. ds2 = (1 + zx2)dx2 + 2zxz y dx dy + (1 + Zy)2 dy2. 

5. EG _ F2 = I Yu Zu /2 + \ Zu Xu /2 + /1 Xu Yu 12; use the 
Yv Zv Zv Xv Xv Yv 

transformation formula for Jacobians. 
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6. Introduce coordinates x, y, z such that P becomes the origin; the tangent 
plane at P, the x, y-plane; and t, the x-axis. The equation of S then takes 
the form z = {(x, y), where teo, 0) = fx(o, 0) = o. A plane L: through 
t is given by the equation z = O(y. We now introduce r = ./ y2 + Z2 and 
x as coordinates in L: ; then the intersection of L: and S is given implicit­
ly by the equation 

.//: 0(2 = fIx, .//+ 0(2}' 

The curvature of the curve of intersection at the point x = 0, r = 0 is 
therefore (cf. p. 232) given by 

k -f ./~ - xx 0( 

Thus, the center of curvature of this section has the coordinates 
1 0( 0( 0(2 

X = 0, y = k./l + 0(2 = {xx(1 + 0(2)' Z = k./l + 0(2 = {xx(1 + 0(2) ; 

that is, it lies on the circle 

{xx(y2 + Z2) - Z = O. 

7. Take the tangent plane at P as the x, y-plane. Then the equation of S 
may be taken to be z = {(x, y). A normal plane is given by the equation 
x = O(y. Take r = ./x2 + y2 and z as coordinates in the plane; 

z = {{ ./10(: 0(2' ./1 ~ 0(2}' 

and its a curvature at r = 0 by 
0(2 0( 1 

k = {xx(O, 0) 1 + 0(2 + 2{xy(0, 0) 1 + 0(2 + fyy(O, 0) 1 + 0(2 ; 

the final point of the vector of length 1/";k along the line t then has the 
coordinates 

0( 1 1 1 
x = ./1 + 0(2 ./k ,y = ./1 + 0(2 ./k' z = 0; 

that is, it lies on the conic 

x 2{xx + 2xy{xy + y2{yy = 1. 

8. (a) By differentiating the two equations with respect to a parameter t 
of the curve, we obtain 

xx' + yy' + zz' = 0, axx' + byy' + czz' = O. 

From these relations we can find the ratio x':y':z', that is, the di­
rection of the tangent. If (~, 1), ~) are current coordinates, the 
equations of the tangent are 

c-b a-c b-a 
(~ - x) : (1) - y) : (~ - z) = -- : -- : -- . 

x y z 
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(b) By differentiating the equations of the curve a second time and 
using the result of (a), we obtain 

xx" + yy" + zz" = _(X'2 + y'2 + Z'2) 

= A{(C - b)2 + ~a - C)2 + (b - a)2} 
X2 y2 Z2 

and 

axx" + byy" + czz" = AIa(c - b)2 + b(a - C)2 + c(b - a)2}, 
1 x2 y2 Z2 

where A is a factor of proportionality. Eliminating A, we have 

( "+ "+ ,,){a(c - b)2 + b(a - C)2 + c(b - a)2} xx yy ZZ 2 2 2 
X Y Z 

= (axx" + byy" + czz") + + -~~ . {(C - b)2 (a - C)2 (b - a)2} 
x2 y2 Z2 

This linear equation in x", y", z" remains valid if we substitute x', 
y', z' for x", y", z". Hence, it is still satisfied if we replace x", y", z" 
by some linear combination AX' + fLX", Ay' + fLY", AZ' + fLZ", respec­
tively. Now if (~, 1), Q is in the plane, ~ - x, 1) - y, t; - z are just such 
a linear combination (cf. Exercise 6, p. 215). 

The equation of the osculating plane is hence found to be 

axa by3 cz3 
c _ b (~ - x) + ~ (1) - y) + b _ a (t; - z) = o. 

9. Take a as parameter for both curves. Then with u = a, v = 1>, set 
du/dt = dv/d-r: = 1, dv/dt = -1, dv/d-r: = 1, E == a2 , G = a2 sin2a in (48). 

The tangents of the curves are given in coordinate vectors i, j, k by 

X = Xo±Xq\ 
= a(cos a cos 1> ± sin a sin 1»i 

+a(cos a sin 1> =F sin a cos 1»j - a sin a k, 

and I X 12 = a2(1 + sin2a) in both cases. 

X = 2a(± cos a sin 1> - sin a cos 1»i 
+ 2a(=F cos a cos 1> - sin a sin 1»j 
- a cos a k. 

Apply the formula of Section 2.5 Exercise 8. 

Exercises 3.4b (p. 289) 

1. The mapping is conformal everywhere except at u = v = 0 because the 
Cauchy-Riemann equations are satisfied. At the origin all first deriva­
tives vanish. In polar coordinates u = r cos a, v = r sin a the mapping 
becomes x = r2 cos 2a, y = r2 sin 2a; thus, at the origin, all angles are 
doubled. 
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2. Whenever it is defined; that is, everywhere except on the line u = O. 
3. Verify the Cauchy-Riemann equations with p = x~ -,Y1J, q = X7J + y~, 

a p = x a~ + ~ ax _ y a7J _ 7J ay 
au au au au au 

= x a7J + ~ ~ + y ~ + 7J ax = aq . 
au au au au au 

4. (a) From (40f) it follows that Xu· Xu = Xv • Xv = 4r4/(u2 + u2 + r2)2 

and Xu· Xv = O. Set E = G and F = 0 in (48) to obtain the desired 
result. 

(b) A circle on the sphere is the intersection of the sphere with a plane, 
say P. If the plane P passes through the north pole, stereographic 
projection maps the circle onto the intersection line of P with the 
x, y-plane. More generally, if P has the equation ax + by + cz = d, 
then, from (40f), 

(c - d) (u2 + u2) + 2ar2u + 2br2v = r2(cr + d), 

which is the equation of a line if c = d and a circle if c *- d. 
(c) From (40f) 

u = x( 1 -~) ; u = y( 1 - ~) 
Reflection in the equatorial plane yields the transformation (u, v)--+ 
(~, 7J), where 

~_ X ''Yl- Y 
C, - 1 + z/r' "j - 1 + z/r' 

Substituting for x and z from (40f), we find 

r~u r2v 
~=--;7J=--. 

u2 + v2 u2 + u2 

which are the equations of inversion in a circle of radius r. 

(d) From the result of part (a), 

d 2 - 4r4 (d 2 d 2) 
S - (u2 + u2 + r 2)2 u + u . 

5. The angle given by (48) must satisfy 

du/dt du/dT + du/dt du/dT 
cos W = -.;~[ (""d=u/TCd""'t )¥2 ~+=;(=;dv='/""dt:;:;:;)2~] 7[ (;=id(=u/Td;=;T )Cii'2 =:+=(7'id;=u/7'idr<T )""2] 

Taking orthogonal pairs of vectors (du/dt, dv/dt) = (0, 1) and (du/d-r, 
dv/dT) = (1,0) yields F = O. Similarly, the pair (1,1), (1, -1) yields E = 
G. If E and G are not 0, the conditions 

E= G, F=O 

are sufficient. 
6. From the solution of Exercise 5, we require 
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E = sin2? = ?'2 = G. 

Solving the equation?' = sin?, we obtain 

v = log tan if 
2 

or ? = 2 arc tan e". 

Exercises 3.5a (p. 292) 

1. (a) A family of similar ellipses centered at the origin with axes aligned 
with the coordinate axes. 

(b) The family of circles tangent to the x-axis with centers on the y-axis. 
(c) Not a family. Each value of e yields the same curve, the unit circle 

x2 + y2 = 1. 
2. The spheres of radius 1 with centers on the line 

x = y - 1 = ~ (z + -/2). 

Exercises 3.5b (p. 295) 

1. No. For example, consider the normals to a straight line or circle. 
2. An envelope satisfies the parametric equations 

x = -I!/(e), y = -elji'(e) + Iji(e). 

If Iji' has an inverse ?, we may set ?(-x) = (Iji')-l(-X) and use e = 
?( -x) to obtain the nonparametric equation 

from which 

y = X?(-x) + 1jI(?(-x», 

y' = ?(-x) - X'?'(-x) -IjI'(?(-x» ?'(-x) 

= ?(-x). 

Entering e = ?(-x) = y' in the expression for y, we obtain the desired 
result. 

Exercises 3.5c (p. 302) 

1. (a) Eliminate t to obtain 

y = x tan ot - 2~2 x2(1 + tan2ot). 

Let e = tan ot be the parameter of the family: 

(a) y = ex - (1 ~t) gx2• 

The envelope has the equation 
_ v2 gx2 

Y - 2g - 2v2 
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(b) For a fixed x, dy/dc = x - cgx2/U2 and d 2y/dc2 = _gx2/U2 < o. 
Since dy/dc = 0 on the envelope we conclude that for a given x the 
point on the envelope is the highest reachable target. 

(c) For (x, y) with y below the maximum, the quadratic equation (ex) has 
two solutions for c. 

2. (a) The parabola y2 = 4x. 

(b) The straight lines x = ± 2y. 

(c) The hyperbolas xy = ±~. 
(d) The straight lines y = ±ax. 

3. Let the equation of the curve be given parametrically by x = ifJ(t), 
y = lji(t). The envelope of the family of circles satisfies 

[x - ifJ(t)]2 + [y - lji(t)]2 = p2 

and 

[x - ifJ(t)]ifJ'(t) + [y - lji(t)] lji'(t) = O. 

These are precisely the conditions that (x, y) lie at the distance p from 
the point (ifJ(t), lji(t» in a normal direction. 

4. We may introduce t as parameter on the curve, so that the latter is given 
by x = x(t), y = y(t), z = z(t) and the tangent at the point with paramo 
eter t lies in the two planes corresponding to t; this gives the relations 

ax' + by' + cz' = 0, dx' + ey' + fz' = o. 
By differentiating the equations of the straight lines with respect to t, 
we thus obtain 

a'x + b'y + c'z = 0, d'x + e'y + f'z = o. 
With the relation 

ax + by + cz = dx + ey + fz 

we then have three homogeneous equations in x, y, z, and the determi­
nant must vanish. 

5. (a) The parametric equations for C' with t as parameter are defined by 
the equations 

~x + lJY = 1, ~x' + lJY' = o. 
Taking the ordinary derivative in the first equation with respect to 
t, we find, in view of the second equation, 

~'x + lJ'y = O. 

This, coupled with the first equation, defines the polar reciprocal of 
C' which is clearly the curve C. 

(b) ~2(1 - a2) + lJ2(1 - b2) - 2ab~lJ + 2a~ + 2blJ = 1: 
(c) a2~2 + b2lJ2 = 1. 

6. The equation of the generating tangent is 

x sin e + y cos e = a(e sin e + cos e - 1). 
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7. If (x2/a2) ± (y2/b2) = 1 is the equation of the conic, then (x2 + y2)2= 
4(a2x2 + b2y2) is the equation of the envelope. Note that if the conic 
is a rectangular hyperbola, this envelope is an ordinary lemniscate 
(x2 + y2)2 = 4a2(x2 _ y2). 

8. (a) If r is given parametrically by the vector equation X = clI(t), the 
points Y of the pedal curve are defined by the conditions 

(Y - X) • Y = 0, y. X' = 0, 

A point Z on the circle must satisfy (Z - lX)2 = lX2 or Z2 - Z· X 
= o. To be on the envelope, then, Z must satisfy Z • X' = o. These 
are the conditions that Z be on the pedal curve. 

(b) From the original definition of pedal curve, a cardioid r = a (1 + cos 6), 
where a is the radius of the circle and 6 is the azimuth with 
respect to the direction of the center from O. 

9. If the ellipse has equation (x2/a2) + (y2/b2) = 1, the envelope is the 
ellipse with equation 

Exercises 3.5d (p. 306) 

1. These are ellipsoids (x2/a2) + (y2/b2) + (Z2/C2) = 1, with abc = k, where k 
is fixed. The envelope is xyz = k2/3-127. 

2. These are planes with unit distance from o. Envelope, the unit sphere 
X2+y2+ Z2=1. 

3. (a) JX + -Iy + .rz = 1. 
(b) X 2/3 + y2/3 + Z2/3 = 1. 

4. For the envelope we have the two equations 

xcost+ysint+z=t 

-x sin t + Y cos t = 1. 

These two equations give a family of straight lines with parameter t; 
if a curve having these lines as tangents exists, it must also satisfy the 
equations obtained by differentiating once again. 
(a) r sin [z + -Ir2 - 1 - 6] + 1 = O. 
(b) The curve is given by z = 6 - x/2, r = 1. 

5. Let P (x. y, z) be a point on the tube-surface ~, and let 8 be the sphere 
of the family that has the point P in common with~. Then 8 and ~ 
have the same tangent plane at P, that is, the same values of x, y, z, Zz, 

Zl/ at that point. It is therefore sufficient to prove that the relation is true 
for any sphere of unit radius that has its center in the x, y-plane, that 
is, for u(x, y) = -II - (x - a)2 - (y - b)2. 

6. Use inversion. Since 81, 82, 8a pass through the origin, they are trans­
formed into planes; we have then merely to find the envelope of the 
spheres touching three planes (i.e., a certain circular cone), which we 
reinvert: 
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(x2 + y2 + Z2)2 - 2(x2 + y2 + Z2) (x + y + Z) 

- 3(x2 + y2 + Z2 - 2xy - 2xz - 2yz) = o. 
7. (a) If P describes the pedal curve r' of r, construct on OP as diameter 

a circle in the plane perpendicular to the plane of r; the envelope 
is the surface generated by this variable circle. 

(b) See the solutions of part (a) and Exercise 8(b) of section 3.5c. 
8. This is the family (x/a) + (y/b) + (z/c) = 1, with abc = k. The envelope 

is defined by these equations together with 

x zk _ '. y zk_ 
-2+22b- O, -b2+~b2-0 a cae a 

which yield, with the first equation x/a = y/b = z/c = j, whence, xyz = 
k/27. 

9. Such a plane must contain the tangent vectors Tl = (a, 1, 0) at the 
point (a2, 2a, 0) of the first parabola and T2 = (b, 0,1) at the point (b2, 0, 
2b) ofthe second. The condition that the tangents intersect yields b = 
+ a, with the intersection point (-a2, 0, 0). Using Tl X T2 = (1, -a, - b) 
as a normal to the plane, we then obtain its equation in the form 
x - a(y + z) + a2 = 0, with a as parameter and, as an envelope, the para­
bolic cylinders 4x = (y + Z)2. 

Exercises 3.6a (p. 310) 

1. (a) - sin v. 

(b) (a3 + b3 + c3) (u - v) + 3abcv. 

(c) 4uv. 

Exercises 3.6b (p. 312) 

1. (a) - 2xy dx dYe 
(b) (x4 - 4x2y2 + y4) dx dYe 

(c) (a2 + b2) dx dy dz. 
2. For w = A dx + B dy + C dz, 

w 2 = A2 dx dx + B2 dy dy + C2 dz dz 

+ AB(dx dy + dy dx) 

+ BC(dydz + dz dy) 

+ CA(dz dx + dx dz) 

and each term in w2 clearly vanishes. 
Alternatively, since we know for any two such forms that WIW2 = 

- W2Wl, it follows that w2 = -w2; hence, w2 = 0 
3. Use the result of Exercise 2. 
4. Rewrite the left side in the form 
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[(WI + (3) + (W2 + (4)] [(WI + (3) - (W2 + (4)] 

and apply the result of Exercise 3. 

5. Ll(L2L3) = (AI dx + Bl dy + Cl dz) {/ B2 B3/ dy dz 
C2 C3 

+ / C2 C31 dz dx + / A2 A3/ dx dY } 
A2 A3 B2 Ba 

= {AI I~: ~: I + Bl I~: ~: I + Cl I~: ~: I} dx dy dz, 

where the coefficient of dx dy dz is the expansion in minors of the first 
Al Bl Cl 

row for the determinant A2 B2 C2 
Aa Ba C3 

Exercises 3.6c (p. 316) 

1. (a) - _y_ dx + _x_ dy 
X2+y2 X2+y2 

(b) 2 dx dy 

(c) 0 

(d) x (cos y - 1) sin z 

(e) O. 

2. For Wj = Ai dx + Bi dy + Ci dz, (i = 1, 2), 

{( OBI OC2 OCI OB2) 
d(WlW2) = ax C2 + Bl ax - ax Bz - C1 ax 

+ (oC I A2 + Cl oA2 _ oA I C2 - Al ~) 
oy oy oy oy 

+ (0.t11 Bl + Al oBz _ OB2 A2 - Bl OA2)}dX dy dz 
oz oz oz oz 

= [(OCI _ OBI) A2 + (OAI _ OCl) B2 
oy OZ oz ox 

+ (O!l _ O~l) C2} dx dy dz 

+ {AI (OB2 _ OC2) + Bl (OC2 _ OAl) 
OZ oy ox oz 

+ CI (O~2 - O!2)l dx dy dz 

= (dWI)WZ + wI(dwz). 
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3. From Exercise 2, if dw! = dW2 = 0, then d(W!W2) = 0. 

Exercises 3.6d (p. 325) 

1. Considering F(X) = f(p, ifJ, e) = g(x, y, z) as a function of a point in 
space, we know from the invariance of the differential form that 

dF = dg = ag dx + ag dy + ag dz 
ax ay az 

= vF· dX 

= a f d + a f d'" + clj'de 
ap p aifJ 'f' de . 

Consequently, 

(at 1 af 1 af ) 
vF· dX = ap U + p aifJ v + p sin ifJ ae w • dX, 

whence 
at Iaf 1 af 

vf = ap U + p aifJ v + p sin ifJ ae w. 

Exercises 3.7b (p. 329) 

1. (a) Saddles at y = 0, x = 1t/3 + 2n1t; minima at y = 0, x = -1t/3 + 2n1t. 
(b) Maxima at x = 1t/4 + 2n1t, y = 1t/4 + 2n1t, and x = 31t/4 + 2n1t, 

y = 31t/4 + 2n1t; minima at x = 1t/4 + 2n1t, y = 31t/4 + 2n1t, and 
x = 31t/4 + 2n1t, y = 1t/4 + 2n1t. 

(c) Saddle at x = 0, y = 1. 
(d) No stationary points. 
(e) Saddle at x = 0, y = 0. 

2. Maxima for x = 0, y = ±I; minimum for x = y = 0. 
3. Minimum for x = 1, y = 4, saddle point for x = -1, y = 2. 
4. a/20, a/lO, a/10. 
5. Improper minima on the planes x = 0, y = 1, z = -i. 
6. Maximize V = xy[IOO - 2(x + y)]. Maximum volume for x = y = 50/3, 

z = 100/3; Vrnax = (25/27) X 104 in3 <=:::: 5.4 ft3. 

7. Set X = (x, y, z) and let the n points be (ai, bi, ci),where i = 1,2, ... , n. 
To minimize L[(X - aj)2 + (y - bi)2 + (z - Ci)2], set 

2L(X - ai) = 2L(Y - bi) = 2L(Z - Ci) = ° 
Hence, x = (I/n) Lai, y = (I/n) Lbi, z = (I/n) LCi. The sum is minimized 
at the center of gravity of the n points. 

Exercises 3.7c (p. 334) 

1. Take 
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F(x, y, z) = xyz + ).[2(x + y) + z - 100]. 

From 

Fz = yz + 2)" F7I = ZX + 2)., Fz = xy + )., 
the extremum occurs when 

v = xyz = -2AX = -2Ay = -Az. 

Thus, z = 2x = 2y. Entering this in the subsidiary condition, we obtain 
z = 100/3, x = y = 50/3, as before. 

2. x = y = t, Z = k. 
3. x = - y = 1/ J2" Z = 1. 
4. Take the center of gravity of the n points as the origin and let their 

coordinates be (ai, bi). Set X = (x, y) and let the line be given by Ax + By 
= C. Applying the method of Lagrange multipliers to 

we obtain 

whence, 

Thus, 

l:[(x - ai)2 + (y - bi)2] + (C - Ax - By), 

2nx - AA = 2ny - ).B = 0; 

2nC 
).= A2 + B2 

AC BC 
x = A2 + B2' y = A2 + B2; 

that is, X is the nearest point on the line to the center of gravity. 
5. Let 8 denote the curve f(x, y) = C and 8' the curve 1>(x, y) = C'. 8 and 

8' have a point of contact in (a, b). In general, f(x, y) - C is positive on 
one side of 8 and negative on the other side in some neighborhood; 
similarly, with 1>(x,y) - C' and 8'. If, for example, f(a, b) is a maximum 
of f, then f(x, y) - C ~ 0 on 8' i.e., 8' is wholly on one side of 8, then 
8 is also on one side of 8'. That is, 1>(x, y) - C' has a constant sign 
on 8, and as it is equal to 0 at (a, b), it has either a maximum or a mini­
mum there. 

Exercises 3.7e (p. 340) 

1. For smoothfand 1>, the minimumc characterizes a level surfacef(x,y, z) 
= c tangent to the surface 1>(x, y, z) =: O. 

2. Find a point on the intersection of the two cylinders 1>(x, y) = 0 and 
ljJ(y, z) = 0 where f(x, y, z) is an extremum. Assuming f is smooth and 
the intersection is a smooth curve, this occurs where a level surface 
of f touches the curve. 
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Exercises 3.71 (p. 344) 

1. Extremize 

(x - a)2 + (y - b)2 + (z - C)2 + 'A(D - Ax - By - Cz) 

to obtain the conditions 

2(x - a) - 'AA = 2(y - b) - 'AB = 2(z - c) - 'AC = 0, 

whence 

'A _ ::..:2(=D_-~a.::..:A,-=---:-,,-b-,-B-=--:---,-cC~) 
- A2 + B2 + C2 . 

This yields 

A(D - aA - bB - cC) 
x = a + A2 + B2 + C2 ' .. 

and the minimum distance p is given by 

_ I D - aA - bB - cC I 
p- ';A2+B2+C2 • 

2. (4 + ./5)/';')., (4 - ';5)/';').. 

3. The maximum value is the same as for the expression ax2 + 2bxy + cy2 
subject to the subsidiary condition ex2 + 2fxy + gy2 = 1. 

4. Cf. Exercise 3. 
(a) 14/3 + 2';67/3. 
(b) The function has a non-strict maximum (p. 325) equal to 1.95, 
when y/x = 0.64. 

5. The ellipse obviously touches the circle; that is, the two equations 
must give a double root in x. Hence, the condition for contact is 
a2(b2 - 1) = b4 : a = 3/i2, b = ';3/2. 

6. (-1/';14, -2/';14, -3/';14). This is on the line joining the given point 
to the center. 

7. A = a2/x, B = b2/y, C = c2/z, together with the subsidiary condition 
(x2/a2) + (y2/b2) + (Z2/C2) = 1: 

a4/S 

(a) x = .; a2/S + b2/S + C2/S ' • 

aS/2 

(b) x = ';a + b + c' . 

8. The vertices are given by x = ± a/./3, y = ±b/.f3, z = c/,;3. 
9. The vertices are given by x = a2/Ja2 + b2, y = b2/Ja2 + b2. 

10. x = 1, y = 1. 
11. The greatest axis is given by the maximum of .; X2 + y2 + Z2, with the 

subsidiary condition that (x, y, z) lies on the ellipsoid. Hence, we have 
the three equations 
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x x 
./x2 + y2 + Z2 = I = A(ax + dy + ez), . 

Multiplying these by (x, y, z), respectively, and adding, we have A = 
./ x2 + y2 + Z2 = 1. On the other hand, we may regard the equations 
as three linear homogeneous equations in x, y, z whose determinant 
must vanish. 

12. (a) Equivalently, maximize 
a log x + b log y + clog z + A(1 - Xk - yk - Zk). 

This yields 

whence, 

1 
A = k (a + b + c). 

The maximum is attained when 

abc 
Xk = a + b + c' yk = a + b + c' Zk = a + b + c 

J aa bbcc 
and is equal to k ( b ) b+. a+ +c a+ C 

(b) Set Xk = u/(u + v + w), yk = v/(u + v + w), Zk = w/(u + v + w) in 

( a b C)k < aa bb CC 
x Y z = (a + b + c)a+b+c 

13. Compare the similar proof for triangles on p. 328. A minimum point 0 
does exist. First show that if 0 is not one of the vertices, then it can only 
be the point of intersection of the diagonals. Use the fact that the final 
points of four unit vectors whose vector sum is 0 form a rectangle. 
Then prove that the sum of the distances from the vertices is less for 
the point of intersection of the diagonals than for any of the vertices. 

14. Suppose the pairs a, band c, d are adjacent. Let ifJ be the a:ngle between 
a and b, Iji that between c and d. The problem is to maximize 

A(ifJ, Iji) = ~(ab sin ifJ + cd sin Iji) 

subject to 
f(ifJ, Iji) = (a2 + b2 - 2ab cos ifJ) - (c2 + d2 - 2cd cos Iji) = o. 

Setting the respective derivatives (iJ/iJifJ) (A + Af) and (iJ/iJlji) (A + Af) 
equal to 0 we obtain 

A= __ 1_=_1_ 
4tanifJ 4tanlji' 

whence ifJ + Iji = 7t. Consequently, 

A = ~(ab + cd) sin ifJ, 
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where cos rjJ = !(a2 + b2 - C2 - d 2)/(ab + cd). Eliminating rjJ, we obtain 
the maximum area 

1 
A = 4.J4 (ab + Cd)2 - (a2 + b2 - c2 - b2)2 

1 
= 4 .J8abcd - (a2 + b2 + c2 + d 2)2 , 

which is clearly independent of our assumption concerning the order 
of the sides. 

The conclusion that the maximum is independent of the order of the 
sides is geometrically obvious since any pair of adjacent sides may be 
interchanged without affecting the area of a convex polygon. 

Exercises A.I (p. 350) 

1. (a) Minimum at the origin. 
(b) For simplicity, introduce new variables u = x + y, v = x - y. We 

seek extreme values of 

f(u, v) = cos u + sin v + i(u + V)2. 

The conditions fu = fv = 0 yield (i) cos v = - sin u = - !(u + v). 
We must entertain two possibilities: 

1. sin v = - cos u. In this case 

fuv 2 - fuufvv = cos2u 

and only saddles are found. 
2. sin v = cos u. In this case, (i) yields u + v = - Tt/2, we may have 

either u = - ex or u = Tt + ex. In the former case, fuv 2 - fuufvv = 
cos u (1 - cos u) is positive and we obtain a saddle; in the latter case, 
it is negative and we obtain a minimum from fuu = fvv = cos ex + !. 

(c) No extreme, since fx > 0 everywhere. 
2. f(x) + f(y) + f(z) 

= 3i(a) + {(x - a) + (y - a) + (z - a)} f'(a) + ~ p2 {f"(a) + E}, 

where p2 = (x - a)2 + (y - a)2 + (z - a)2. On the other hand, the 
subsidiary condition gives 

(x - a) + (y - a) + (z - a) 

= p2 (_ r/J"(a) + E) _ rjJ'(a) {(x - a) (y - a) 
2rjJ'(a) rjJ(a) 

+ (x - a) (z - a) + (y- a) (z - a)} 

_ ( r/J"(a) rjJ'(a) ) 
- - 2rjJ'(a) + 2rjJ(a) + E p2, 

where lim E = o. 
x.y.z-a 
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3. If p, = (XI, Yf), rf = PP" we have 
3 3 

d 2f = L: d 2ri = L: rc3[(y - Yi)dx - (X - xi)dy]2 
I i-I 

which is positive definite. 
4. At the point Pl. Note that the function f = rl + r2 + ra is continuous 

in the whole plane but not differentiable at the points PI, P2, Ps, where 
it has conical points (like the function z = ../(x - XI)2 + (y - YI)2, which 
geometrically represents a circular cone). Investigate the derivative of 
f at PI in all directions around this point. 

5. (a) If we put f = lx + my + nz, tP = xP + yP + zP - cP, F = f - AtP, 
then the conditions for stationary values are 

(1) I = APXP-I, m = ApyP-I, n = APZP-I 

Multiplying these equations by x, y, z, respectively, and adding, we 
have 

(2) Ix + my + nz = ApCP. 

Calculating x, y, z from (1) and substituting in tP = 0, we get 

Ap = (lq + m q + n q)lIqc1- P• 

Substitution of this expression for Ap in (2) gives the stationary 
value. 

(b) Cf. Exercise 6. Here we have 

d 2F = -Ap(p - 1) (XP-2 dX2 + yp-2 dy2 + Zp-2 dz2); 

as p > 0, this quadratic form is positive or negative definite ac­
cording to whether p ~ 1. 

6. The proof resembles that for n = 2 (p. 347). A positive definite quad­
ratic form L:au,xixk can be brought by a suitable transformation 

n 
XI = L: CikYk 

k=l 
(i = 1, ... , n) 

with a nonvanishing determinant into the form L:aikx/xk = yl2 + 
Y22 + ... + Yn2 > m(xl2 + ... + Xn2), where m is a suitable positive con­
stant. For the applications, it is important to remember that a 
necessary and sufficient condition that a form ~ = L:aikxixk shall be 
positive definite is that its principal first minors of order 1, 2, . . . , n, 
as indicated below, 

an . al2 ala . aln ........ . 
a21 a22 a23 ................. 
a31 a32 a33 : 

. . anl························ann 
shall all be positive. ~ is negative definite if -~ is positive definite. 
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7. According to the first rule, we have to compute d 2f from (3), with dXl, 
... , dXm, d 2xl, ... , d 2xm substituted from (1). Note that(l) implies 
that 

=0 (fL = 1, ... , m); 

if this is multiplied by All and added to (3) for all values of fL, we have 
d 2f = d 2F = I:.Fxlxk dXi dXk, because d 2xl, ... , d 2xm drop out on 
account of the relations (2). 

8. For F = f + AifJ (disregarding a positive factor), we get 

d 2F = I:. dXi dXk 
i.k~I. ... n 

(difJ = dXl + ... + dXn = 0). 

Eliminating dXn, we have to show that the quadratic form 

-d2F = (dXl + ... + dXn-l)2 - I:. dXi dXk 
i.k~I.".n-l 

I.n-l 
= I:. dXt2 + I:. dXi dXk 

i~I.".n i.k 

is positive definite. 
9. From dx = -dy - dz, 

d 2F = -2s[(s - Z)dy2 + (s - x)dy dz + (s - y)dz2]. 

When x = y = z the discriminant of d 2 F is positive and d 2 F is negative 
definite. 

Exercises A.2 (p. 359) 

1. (c) Using polar coordinates x = r cos 6, y = r sin 6, take 

f(x, y) = rn+l sin (n + 1) 6, 

for which 

vf = (n + l)rn (sin n6, cos n6). 

2. (b) Extend the solution of Exercise 1: 

f(x, y) = rn+l sin(-n + 1)6 

and 

vf = (n - l)r-n (sin n6, -cos n6). 

3. If there is no fixed point, we have u2 + v2 1= 0 everywhere in R. Since the 
convex region R is simply connected, it follows as on p. 358 that the 
index Ie of the curve C with respect to the vector field is zero. On the 
other hand, since R is mapped into itself, the vector (u, v) for every point 
on C points into R or is tangential. This implies that Ie = 1/2'1t Je d6 = 
1 if C has the usual orientation determined by the x, y-coordinate 
system. 
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Exercises A.a (p. 362) 

1. (a) A node at (0, 0), with tangents x = ±y. 
(b) The equations 

{x = 2x - 6x2 + 4xy2 = 0, 

{y = 2y - 6y2 + 4x2y = 0 

have the common solutions (0, 0), (J!, 0), (0, JD, G, !), and (1, 1), 
of which only the first and last are points of the curve. At (0, 0) 
the singularity is an isolated point. At (1, 1), {xx = {yy = 0 and {Xy = 
8; the singularity is a node with tangents x = 1 and y = 1. 

(c) A double tangent y = x at (0, 0). The curve has two branches; to 
second order y = x ± x2 

(d) A double tangent y = 0 at (0, 0). The curve has a cusp. This is the 
same curve as that of Section 3.2b, Exercise 3. 

Exercises A.4 (p. 363) 

1. If the quadratic form is nondegenerate and definite, the singularity is an 
isolated point; if nondegenerate and indefinite, the tangent lines at the 
singularity form a cone. If the form is degenerate and semidefinite, the 
tangent lines may lie in a plane where two branches are tangent to 
each other, like the plane z = ° for the surfaces 

Z2/3 + (x2 + y2)2/3 = a2/3 

at (a, 0, 0) (a line cusp), 

Z4 = (x2 + y2)3 

at (0, 0, 0) (two tangent branches). Or there may be a point cusp where 
only one tangent line exists, like the line x = y = 0 for the former 
surface at (0, 0, a). If the form is degenerate and indefinite, the tangent 
lines lie in two planes, like the planes x = ± y at (0, 0, 0) for the surface 
x 2 - y2 + Z3 = 0. 

Exercises A.5 (p. 364) 

1. The flow is stationary; that is, the fluid velocity is constant in time at 
each point of space. 

2. If U = (u, v, w) is the velocity of the particle passing through the point 
X = (x, y, z) at time t, its acceleration is 

d 2X = dU = dX • vU + au 
dt2 dt dt at 

= U. vU + au. at 
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Exercises A.6 (p. 366) 

1. (a) x = -2 - 2 cos a., y = -2 sin a. or (x + 2)2 + y2 = 4; L = 47t; A = 
47t. 

(b) x = -sins a., y = -coss a. or X 2/3 + y2/3 = 1, 

3 r 21t r,,/2 
L=2,Jo Isin2a.lda.I=6 Jo sin 2a. da. = 6. 

A = -(3/8)7t, where the sign comes from the clockwise orientation 
of the curve. 

2. Yes. Consider the right triangle with vertices (0,0), (0, c), (c -2, 0) for 
large c. 

3. For the curve to be expressible as the envelope of its tangents, it must be 
piecewise smooth. 

Exercises 4.1 (p. 374) 

1. In the nth subdivision, any square that contains points of S contains 
points of T, An+(S) ~ An+(T). On passing to the limit as n ---+ 00, we 
obtain the result. 

2. In the nth subdivision, any square that contains points of T - S may 
not be one that consists entirely of points of S, and both kinds of squares 
contain points of T; therefore, 

An+(T);?; An+(T - S) + An-(S). 

Similarly, 

An+(T) ~ An-(T - S) + An+(S). 

Combining thesetesults with An-(T - S) ~ An+(T - S), we find 

An+(T) - An+(S) ~ An-(T - S) ~ An+(T - S) 

~ An+(T) - An-(S), 

from which the result follows on passing to the limit as n ---+ 00. 

3. For the proof of (a), observe that any square of the nth subdivision 
that enters in An+(S) or An+(T) may enter in only one or in both of 
these; if a square enters into only one, it enters in An + (S U T); if it enters 
in both, it enters in An +(S U T); but need not enter in An + (S n T), be­
cause the square may contain points of both Sand T without containing 
points common to the two, Consequently, 

An +(S U T) + An +(S n T) ~ An +(S) + An +(T), 

from which (a) follows. 
For (b) we observe that any square that enters in one sum but not the 

other, say, An-(S) but not An-(T), will enter in An-(SUT) but not 
An - (S n T) and any square that enters in both An - (S) and An - (T) also 
enters in both An - (S n T) and An - (S U T). Thus, 
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An- (S) + An- (T) ~ An- (Sn T) + An- (SU T), 

from which (b) follows. 
Note that a square consisting of points of S U T need not consist 

wholly of points of S or wholly of those of T; consequently, the inequality 
sign can not be removed. 

4. In the nth subdivision, consider any square that consists entirely of 
points of S U T. If it contains any point of S, the square enters in An +(S), 
but it cannot enter in An- (T), because it cannot consist wholly of 
points of T. If the square contains no points of S, it must consist wholly 
of points of Tand, thus, enters in An- (T). Finally, we observe that any 
square that enters in An +(S) but does not lie wholly in S U T must con­
tain a boundary point of S U T and therefore enter An + (a[s U TJ). Com­
bining these results, we find 

An -(S U T) ~ An +(S) + An -(T) ~ An -(S U T) + An +(a[s U TJ). 

Since lim An - (S U T) = A (S U T) and lim An + (a [S U T]) = 0, the desired 
n-= n-= 

result follows. 
5. (a) Let Jordan content in the original system be denoted by A, and in 

the transformed system, by B. Since A(as) = 0, lim An +(as) = o. 
n-~ 

Let P be any point of as. Note that in the nth subdivision, the 
maximum distance from P of any point of a square that contains 
P is 2-n v'2. Now, in the nth subdivision with respect to the new 
coordinate system, let RB be any square containing P. Form a larger 
square RB* with RB at its center and five subdivision squares on a 
side. The smallest distance from any point of RB to the boundary of 
RB* is 2 • 2-n• Thus, RB* contains each square RA that contains P 
in the subdivision with respect to the original system. We conclude 
that for each square that enters into An * (as) no more than 25 
squares enter Bn+(aS). Since 0 ~ Bn+(aS) ~ An+(aS), it follows 
that lim Bn+(as) = o. 

(b) Observe that in the nth subdivision with respect to the two systems, 
any square that enters in An -(S) is covered by squares that enter into 
Bn+(S). It follows that An-(S) :;;; Bn+(S) and, passing to the limit 
as n ----> 00, A(S) ~ B(S). By a parallel argument, B(S) ~ A(S). 
Consequently, A(S) = B(S). 

The foregoing argument makes tacit use of the assumption that 
if two sets U and V are made up of nonoverlapping congruent 
squares from respective grids and U c V, then the number of 
squares in U is less than, or equal to, the number of squares in V. 
We prove this inductively as follows: Let u and v be two finite col­
lections of nonoverlapping squares of side length a from respective 
grids such that the union U of squares of u is contained in the union 
Vofsquares ofv. Ifp is the number of squares ofu, andq, the number 
of squares of v, then p ~ q and equality holds if and only if u = v. 
For the proof, we use induction on p. 

If p = 1, we cannot have q < p; for, then, q = 0 and V does not 
contain U. Moreover, if q = p = 1, we note that opposite vertices of 



Solutions 885 

the square of u must be opposite vertices of the square of v, since the 
maximum distance aJ2 between any two points of either square is 
attained only at opposite vertices. Consequently, the squares are the 
same and u = v. 

Now we prove that the truth of the hypothesis for a fixed p implies 
its truth for p + 1: Let u be a collection of p + 1 squares and let 
u* be any subcollection of p squares. Suppose q < p + 1. Since V::J 
U::J U*, q ~ p by the induction hypothesis. However,p ~ q < p + 1 
implies q = p, and hence, by the induction hypothesis, v = u*. 
But, then V cannot contain the one square of u that does not belong 
to u*, contradicting that V::J U. We conclude that q ~ p + 1. If 
equality holds, q = p + 1, we now show that v = u. We shall show 
that the set U(= V) must have a corner on the boundary; that is, at 
least one of the squares R of u must have a vertex with its adjacent 
edges on the boundary of U. The square R must also belong to v, as 
we shall prove. By the induction hypothesis, the collections u* and 
v*, obtained from u and v by deleting R, must be the same. Conse­
quently, u = v. 

To prove that U has a corner, let P be any point of U most distant 
from an arbitrary given point Q. The point P must lie on the bound­
ary of U, otherwise it would be an interior point and its neighbor­
hood within U would contain points more distant from Q. Further­
more, P must be a vertex of one of the squares of u, because ifit were 
an inner point of an edge, at least one of the two vertices on the edge 
would be farther from Q than P, since it would be farther than P 
from the perpendicular from Q to the line of the edge. No two edges 
meeting at P can be aligned, for the same argument shows that one 
of the end points of the segment made up of the two edges must be 
more remote from Q than P. It follows that P and its adjacent edges 
can belong to only one square R of u. (The figure shows all possible 
configurations in the neighborhood of a boundary vertex.) Exactly 
the same argument applies to v, but then, R must belong to v, as 
claimed. 

6. If P is a boundary point of S, it is either a point of S and covered or a 
limit point of S such that every deleted neighborhood of P contains 
infinitely many points of S. Thus, P is the limit of a convergent sequence 
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of distinct points of S. Since the collection of covering sets is finite, at 
least one of these sets must contain a subsequence, and because this 
set is closed, it must contain the limit of the subsequence, P. 

7. The area of the set is zero. Let Sn be the set of points for which both p 
and q are greater than nand Tk the set for which either p or q is equal 
to k. 

S = Sn U Tl U T2 U ... U Tn. 

Note that Sn is contained in the square 

{(X,Y)IO ~x<~, 0 ~Y<~}' 
Consequently, 

An+ (Sn) ~ (~+ 21n r. 
Observe also that Tk contains 2k - 1 points, each of which may lie in 
no more than four squares of the nth subdivision. Consequently, 

An + (Tk) ~ 4(2~2-:- 1) . 

Summing, we see that 

(1 1)2 4n2 

~ n + 2n + 22n ; 

whence, lim An+ (S) = O. 
n-~ 

Exercises 4.6 (p. 405) 

1. (a) a2b2 (a2 - b2)/8. 
(b) -4. 

(c) log 2. 
(d) -a + (eab - 1)/b. 
(e) rt/16. 
(f) 4/3. 

2. rt/2 
3. O. 
4. 2rt. 
5. Use polar coordinates: 

(a (1l/4 (vicOS 20 r dr d6 = ~ _ ! 
) J-4/ 1l Jo (1 + r2)2 4 2 

(b) (1l/3 rvl3/COS(0-1l/6) r d d6 = .J3 t ! 
Jo Jo (1 + r2)2 r 2 arc an 2 . 



Solutions 887 

6. Use the substitution x = a~, y = bYj, Z = c~; then use polar coordi­
nates and symmetry to obtain 

7. Use the fact that the figure is symmetrical; 1/16 of the volume lies 
above the triangle with vertices (0, 0), (1, 0), (1, 1) and below the surface 
x 2 + Z2 = 1; 16/3. 

B. It (2r3 - 3r2 h + h3). 

9. o. 
10. O. With the additional restriction z ~ 0; It/B. 
11. 1/50,400. 
12. Use cylindrical coordinates and integrate with respect to e, r, and Z 

in that order; It[2 - (3/2) log 3]. 
13. Use spherical coordinates with origin at (0, 0, t). With IX = 

1 cos-1 [p -(3/4p)] for 2 ~ p ~ 3/2, 

J3/2 ra r21t + r1/2 r1t r21t 
1/2 Jo Jo Jo J o Jo sin e difJ de dp 

= It {2 +~ log 3} . 

14. Use polar coordinates: 4 log (1 + J2). 
15. Let (a, b) be any point of the domain and choose a 8-neighborhood 

Ro of (a, b) within D so small that If(x, y) - f(a, b) 1< E in the neighbor­
hood. By the mean value theorem, 

fRo f(x, y) dx dy = fL82, 

where I fL - f(a, b) I < E. Since the integral vanishes, fL = o. Consequent­
ly, I f(a, b) 1< E for arbitrary positive E, and hence, f(a, b) = O. 

16. Using d(x, y)/d(u, v) = u/(1 + v2), we obtain 

= 2e-a2 r ro ue-u2 arc tan!!. duo 
Jo a 

Integration by parts yields the result. 
17. Set p2 = ~2 + "'12. From ~x = "'12 - ~2, ~y = - 2~Yj, "'Ix = - 2~Yj, Yjy = 

~2 - "'12, it follows that I d(x, y)/d(~, "'I) 1= l/p4 and also that ux2 + Uy2 = 
p4(U~2 + UlJ2). 

lB. For new Cartesian coordinates to the same scale, the Jacobian of the 
transformation is 1. With r = (x2 + y2 + Z2)li2, choose Cartesian 
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coordinates u, v, w for which u = (xl; + Y1l + zO/r. The integral 
becomes 

I = III cos ru du dv dw 

over the sphere u2 + v2 + w2 ;:iii 1. In cylindrical coordinates u, v = 
p cos 6, w = p sin 6, we find. 

I = J 1 f2n f .,/1-U2 P cos ru dp d6 du 
-1 Jo Jo 

= 4" (Sin r _ cos r) . 
r3 r2 

J, 2 i (20-811)/(4-11) 
19. - (4 - y) dx dy = 16 log 2 - 12. 

1 4111 

Exercises 4.7 (p. 416) 

1. (a) K = lim J.P J.a r log r2 dr d6. 
s-o 0 s 

(b) K = (Joac08P Jo" tan P + Ja: osp So v'aL z2) log (x2 + y2) dy dx. 

2. (a) ". (b) ,,2. 
3. Symmetry shows that reversal of the order of integration reverses the 

sign. Since I is not zero, I = t, the result is established. Alternately, 
for 0 < a, b ;:iii 1, set 

_ f 1 r 1 y - X _ (1 - a)(1 - b)(b - a) 
J - J b J a (x + y)3 dx dy - 2(1 + a) (1 + b) (a + b) . 

Integrating first with respect to x, then y, is equivalent to taking 

I= lim lim J= 2!; 
b-o a-a 

integrating first with respect to y, then x, to taking 

t 
lim lim J= --2· 
a-O b-o 

Exercises 4.8 (p. 430) 

1. Apply Guldin's rule; 2,,2ab. 

2. t"abh2• 

3. Set x = aI;, y = bTl, z = c~. With d = pf./a2l2 + b2m2 + c2n2, the vol­
ume is "abc(2 - 3d + d 3)/3. 

4. (a) With 6 and ifJ as parameters for both surfaces, .JEG - F2 = 
a2 sin 6. 

L2n Lf(;) . r2n 
(b) a2 0 0 a2 sm 6 difJ d6 = a2 Jo {I - cos f(ifJ)} difJ. 
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(c) Take f(<P) = 1t/4; 1ta2(2 - -v'2). 
5. Let a, b, c be the lengths of the sides opposite A, B, C respectively, and 

p the altitude from C. Apply Guldin's rule. 
(a) i 1tCp2, 
(b) 1tp(a + b). 

6. 11t (n - m) (4n2 + 4mn + 4m2 - 6n - 6m + 3). 
7. Take polar coordinates in the x, y·plane as surface parameter for the 

cylinder X2 + Z2 = a2. Thus, x = r cos 6, y = r sin 6, Z = -v'a2 - r2 
and E = a2/(a2 - r2), F = 0, G = r2. The surface area is then 

8. 

S = 8 ---== dr d6 J "/4! bsecO ar 
o 0 -v'a2 - r2 

r,,/4 I b sec 0 
= -8a Jo -v'a2 -r2 0 do 

= 2a21t - 8aI, 

where 
r,,/4 

I = Jo -v'a2 - b2 sec26 d6. 

Set 6 = arc tan (-v'(a2 - b2)/b2 sin (0) to obtain 

l i.. (a2 - b2) cos2 00 

I = 2· 2 b2 2 doo, OaSlnoo+ cosoo 

where tan A = bNa2 - 2b2• The explicit integral is 

I = a arc tan (~tan (0) - boo I:. 
Hence, 

[1t a ] b S = 8a2 -4 - arc tan -v' - 8ab arc tan -v' • 
a2 - 2b2 a2 - 2b2 

L: = II -v' EG - F2 dr d6 

= r 02 d6 r 1'(0) -v'r2 + f'2 dr 
J01 Jo 

= [-v'2 + log (1 + -v'2)] r 02 ! f'2 d6, 
J01 2 

(cf. Volume I, p. 215), which is [-v'2 + log (1 + -v'2)] times the area of the 
projection 

Exercises 4.9 (p. 442) 

1. (a) Use cylindrical coordinates. On the axis of the cone, three-fourths 
of the way from the vertex to the base. 
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(b) On the axis of the cone, two-thirds of the way from the vertex to the 
base. 

2. x = 2xo/3, where y = z = o. 
3. Let (~, ll, 0 be the centroid: 

~ =! f II fb(l-~ f c( 1-!-~) x dz dy dx, 
V Jo Jo 0 

where V, the volume of the tetrahedron is obtained by replacing the 
integrand x by unity in the above triple integral. Integrate to 
obtain ~ = a2bc/24 V, where V = abc/6. Hence, by algebraic sym­
metry, ~ = a/4, II = b/4, ~ = c/4. 

4. (a) Use spherical coordinates, Z = 3(b4 - a4)/8(b3 - a3), x = y = o. 
(b) Factor b - a out of the numerator and denominator in the solution 

of part (a) and take the limit. 
5. m (b2 + c2)/3. 
6. If (L is the density, 

(a) 7t(Lh(R2 - R,2), 

(b) 27t(Lh(R - R') [~(R + R') + i h2} 

7. Use spherical coordinates. Mass, 17ta3[(Lo + 3(Ll]. Moment of inertia, 
47t a5 [(Lo + 5(Ll]f45. 

8. Substitute x = a~, y = blj, z = c~; use the expressions for the moments 
of inertia given in the text and the properties of symmetry of the 
ellipsoid: 

(a) 1~ 7tabc (a2 + b2), 

(b) ~ 7tabc {(I - a;2)a2 + (1 - ~2)b2 + (1 - y2)C2} 15 . 

9. For example, with A = IR (y2 + Z2) dV, B = IR (Z2 + x2) dV, and C = 
IR (x2 + y2) dV, 

A + B = IR (x2 + y2 + 2Z2) d V 

= C+ IR 2z2 dV> C. 

10. Let (~, ll, 0 be the point on the ray at distance 1/..11 from O. The 
squared distance of a point (x, y, z) from the line is 

x2 + y2 + Z2 _ (~x + llY + ~Z)2/(~2 + ll2 + ~2). 
Consequently, 

1= r]rr [X2 + y2 + Z2 - (~x + llY + ~)2J dx dy dz 
L~R ~2 + ll2 + ~2 
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1 
- ~2 + 112 + ~2 . 

Multiplying both sides of this equation by ~2 + 112 + ~2, we obtain a 
positive definite quadratic expression in ~, 1l, ~ set equal to unity; hence, 
the equation is that of an ellipsoid. 

11. a2(x - ~)2 + b2(y - 1l)2 + c2(z _ Q2 
= {a 2 + b2 + c2 + 5(~2 + 112 + ~2)} {(x - ~)2 + (y -1l)2 + (z _ ~)2}. 

12. (-L 0, 0) 
5a 2a2 + b2 + c2 

13. x = 16 a2 + b2 + c2 • 

14. 1 = (It + mlrt2) + (12 + m2r22), where rt and r2 are the distances from 
the axes through the centers of mass of the respective parts from the 
axis through the center of the system. Use mlrl = m2r2 and rt + r2 
=d. 

15. The distance ofth6 point(x,y,z) from the plane ux + uy + wz = -1 is 
given by 

16. 

ux + uy + wz + 1 
../u2 + u2 + w2 • 

The moment of inertia of the ellipsoid with respect to this plane is 
therefore given by 

Au2 + Bu2 + Cw2 + V 
u2 + u2 + w2 

where A, B, C denote the moments of inertia with respect to the co­
ordinate planes and V is the volume of the ellipsoid, thatis,B = 4ab3c/15, 
C = 4abc3/15, and V = 4abc/3. We have now to find the envelope of 
the planes for which this expression is equal to h. The envelope is 
given by the equations 

(A - h)u = AX, (B - h)u = AY, (C - h)w = Az. 

where A denotes a common multiplier, which from the expression for 
the moment of inertia and the equation of the plane is found to be V. 
By squaring the three equations we obtain the equation of the envelope, 
namely, 

where [.L is the constant density. 
b 

17. 21t[.L f a ../ Z2 + {f(z)}2 dz - 1t[.L I b2 ± a21, where the lower or upper sign 

is to be taken according as the origin is inside the body or not. 
18. Let X be a variable point of the solid, 0 its center of mass and Y a 

variable point of the space where the potential is calculated. The 
potential at Y is 
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u(Y)=IIL I;~VXI· 
Let a be the maximum value of I X I in S, I X I ~ a, and suppose I Y I > a. 
Then, if M is the mass of the solid, 

I U(Y) - I~II = I IILfL(IY ~ XI - I"i l) dV 
~ IIIfLIIY~ X 1- li l /dV 

~ III fL IYI(I~~ IXI) dV 
(since II Y I-I Y - X II ~ I X I by the triangle inequality) 

~ III fL IYI(I;I- a) dV 
~ 1~2 IIIfL dV 

(where we suppose IYI ~ 2a) 

<2aM 
= IYI2· 

5 3 11 15/2 
19. As A - BR2 = "2' A - 5 BR2 = 2' we have A = 10, B = R2 • The 

attraction at an internal point is equal to the attraction of the total 
mass of the points inside of the sphere of radius r concentrated at the 
center of the sphere. 

20. Use cylindrical or spherical coordinates. 
21. By translation we can ensure that the triangle lies in the upper half­

plane. Then its moment of inertia is equal to 

¢J(XIYI, X2Y2) + tP(X2Y2, xaya) + ¢J(xaya, XlYI), 

where ¢J(XIYI, X2Y2) denotes the moment of inertia of the quadrilateral 
with vertices (Xl, 0), (Xl, YI), (X2, 0) multiplied by the sign of (Xl - X2). 
Then show that 

f2 f4/Y 
22. 1= (Y - 4)dy dx = 12 - 16 log 2. 

I (8y-20)/(y-4) 

23. Let f(p) be the potential associated with a unit point charge. The 
potential at apoint (0, 0, z) in the interior of a spherical lamina centered 
at the origin and carrying unit-charge density is 

U(z) = So 2" So" f(p)a 2 sin e de dtP 
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where, in the integrand, if a is the radius of the sphere, p is given by 

p = ./a2 + Z2 - 2az cos 6. 

lf g is a function such that g' (p) = pf (p)/z, where z is kept constant, 
then 

U(z) = 21tag(p) I :-0 
= 21ta[g(a + z) - g(a - z)]. 

Since the force vanishes for I z I ~ a, we obtain 

U'(z) = 21tafg'(a + z) + g'(a - z)] = 0; 

consequently, 

(a + z) f(a + z) = (a - z) f(a - z). 

This is a relation holding for all positive a and all z with I z I < a. 
Introducing new independent variables ~ and 1) with ~ = a + z and 1) 

= a - z, we obtain 

~f(~) = 1)f(1) 

for all positive ~ and 1). Consequently, pf(p) = c, where c is constant. 
Thus, we conclude that 

f(p) = ~ (c = constant), 

which is the potential for the inverse square force law. 

Exercises 4.11 (p. 462) 

./i" 
1. Substitute XI = al~I, ... ,X" = a,,~,,: r(n; 2) ala2 • •• a". 

2. 1=f·.·f f(xI)+f(-xI) dX20. odx" 
,\",1 - X22 - 0 0 0 - X,,2 

taken throughout the interior of the (n - I)-dimensional unit sphere in 
X2 ° 0 0 x" space. Introducing polar coordinates, we obtain 

1= 11 drJ. f(./f=r2) + f( -./l=r2) do, 
o S(r) ./1 - r2 

where S (r) denotes the sphere of radius r and center 0 in X2° ° • x" -space. 
As the integrand depends on r only, 

I L I f(./1 - r2) + f( -./1 - r2) = 00"_1 r,,-2 dr. 
o ./1 - r2 

Putting y = ./1 - r2, we have 

1=00,,_1 (+1 f(y) (1 - y2) (,,-3)/2 dy. 
J-l 
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Exercises 4.12 (p. 474) 

1. Put In(a) = f~ xne-ax2 dx; then In(a) = -I~-2(a), where primes denote 

differentiation with respect to a. Alternatively, integrate by parts. 

1 (n - 1) 'h . dd ,- 1.3 .••• (n - 1) . 2 -2- . w en n IS 0 ,'V7t 2(n+2)12 when n IS even. 

2. Integrate by parts. Diverges for y ~ 0; for y > 0, F(y) = O. 
3. Use the relation 

!(fx cos ifJ + (y sin ifJ) = {xx sin2 ifJ - 2{xy sin ifJ cos ifJ + {yy cos2 ifJ 
Z 

+ ~:ifJ ({x sin ifJ - (y cos ifJ)· 

4. Integrate Uxx by parts twice (special precautions necessary in the case 
where p < 5/2). 

5. Substitute ~ = ocx + ~y, 7J = yx + 8y, where oc, f), y, 8 are chosen so 
that 

~2 + 7J2 = ax2 + 2bxy + cy2. 

Then (oc8 - f)y)2 = ac - b2, and the integral is transformed into 

1 r 00 r 00 e-<!;2+1]2) d~ dy). 
-/ ac - b2 Loo Loo 

ac - b2 = 7t2, a > O. 
6. Make the same substitution as in Exercise 5 and evaluate the resulting 

integrals, (a) using the result of Exercise 1, (b) introducing polar co­
ordinates. 

(a) 7t(aC + cA + 2bB) 
(ac - b2)3/2 

27t 
(b) (ac _ b2)112· 

7. Differentiate with respect to x and integrate by parts to obtain 

Jo' = - - SIn xt --=== Ifl. tdt 
7t -1 -/1 - t2 

X fl = -- -/1 - t2 cos xt dt. 
7t -1 

Differentiate the first of these expressions with respect to x to obtain 

Jo" = _111 t 2 t dt ~cosx . 
7t -1 'Vl-t2 
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Now combine the integral representations with the cosine factor in the 
integrand. 

8. Compare the answer to Exercise 7. 
9. (a) Forming K'(a), where the dash denotes differentiation with respect 

to a, and integrating by parts twice (taking xe-a.,2 as one factor), 
we have K'(a) = -K(a) 12a + K(a) 14a2 ; that is, 

K(a) = Ca-1I2 e-1I4a, 

where C is given by C = lim ~a K(a) = lim r ~_t2 cos ,t_ dt = 2! ~i. 
a-co a-co J 0 1/ a 

1)-K(a) - - !: e-1I4a 
- 2 a ' 

(b) Integrate the formula tl(1 + t2) = Jo= e-t., cos x dx with respect to t 

from a to b. 

1 1 + a2 

2 log 1 + b2· 

(c) Substituting x = lIt in the expression for ['(a), prove that [' = -2[, 
that is, 

[= Ce-2a, 

where C = lim [ = J. = e-.,2 dx. 
a-O 0 

1 
2~e-2a. 

(d) Substitute the integral expression for Jo and change the order of 
integration. Use the formula 2 sin ax cos bxt = sin (a + bt)x + 
sin(a- bt) x; cf. the expression for r = sin xy dy on pp. 463. 

Jo y 

rr:/2 when a> b; arc sin alb when a < b. 

10. Set sin2 ax = (1 - cos 2ax)/2. Compare Volume I, Section 3.15, p. 322; 
Exercise 8 and 9b. 

11. There exists an e: > 0 such that for every A there is an A' > A such 
that 

for some value of x. 

Exercises 4.13 (p. 497) 

1. (a) ic (e-ta't -1)1 ~2rr: T. 

(b) 1/J2rr: (a + iT). 
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(c) From 4.12, Exercise 8, In(x)/Xn is the Fourier transform of the 
function 

1 n! 2n (1 2)n-l I I 1 
f(x) = ./2n (2n!) - t ,x < 

0, Ixl> 1. 
Consequently, by Fourier's integral theorem f( -t) = f(t) is the 
Fourier transform of In(x). 

Exercises 4.14 (p. 513) 

1. From (97b), 

r(n + !) = 2n (2n - 1)(2n - 2) •• ·3·2· 1./7t 
2 2n(2n)(2n - 2) ••• 2 ' 

which immediately yields the desired result. 
2. Form (97a), 

r( n + ~) r(~ -+ _ r '( (-1)""-
smn n+ 2 

Insert the result of (97b) to obtain 

r(! _ n) _ (-2)n ./7t 
2 - 1 • 3 • 5 ••• (2n - 1) . 

3. From (98d) 

_ r" /2 (sin 2t)2.,-1 
B(x, x) - 2 Jo 22.,-1 dt 

= L" (sin S)2.,-1 ds 
o 22.,-1 

_ r 11/2 (sin S)2.,-1 
- 2 Jo 22.,-1 ds 

= 21-2., B(x,~). 

4. Set s = t., in the integral to obtain 

I=! i 1 Slll.,'-1 (1 - S)-1I2 ds 
x 0 

= ! B (! !) = ! r(l/x) r(I/2) . 
x x' 2 x r(l/x + 1/2) 

5. Set t = x2 in the integral 

i l X2 
1= . dx 

o ./1- x2 

(s = 2t) 
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to obtain 

I=! (t(a-l)/2 (1 _ t)-1I2 dt = ! B (oc + 1 !) 
2J' 2 2'2 

= 2a-1 B (OC + 1 OC + 1) 
2 ' 2 ' 

where the result of Exercise 3 is employed at the end. 
(a) For oc = 2n + I, this yields 

1= 22n ~(n + 1) P(n + 1) = 22n(n!)2 . 
P(2n + 2) (2n + I)! 

(b) For oc = 2n, with the result of Exercise I, we obtain 

1= 22n-1 P(n + 1/2) P(n + 1/2) 
P(2n + 1) 

= 22n- 1 [(~~)~f7tr/(2n)!, 

which immediately yields the desired result. 
6. Set X'" = amM./c, ym = b mh7j/c, and z = h~ to obtain the volume inte­

gral 

v = abh (!!:.) 21m (1 (l-/;fl ~(lIm)-1 7j(1/m)-1 d~ d7j d~. 
m2 C J 0 J 0 I;+tl 

Then, on integrating with respect to ~ and 7j, 

V= a!h (~rm[B(~, ~ + 1) - B(~ + I, ~ + 1) 
- _1_B(~ 1. + 2)J 

m+l m'm 

= abh (~rm B(; + I,; + 1). 
7. Set x 2 = a2~, y2 = b27j, Z2 = C2~ to reduce the integral to 

1= ap~qcr III f (~ + 7j + Q ~(p/2)-1 7j(q/2)-1 ~(r/2)-1 d~ d7j d~ 

over the tetrahedron bounded by the coordinate planes and the plane 
~ + 7j + ~ = 1. Now replace ~ by the new variable t with ~ = t - ~ - 7j 

to obtain 

aPbqcrl 1 ltit-ll 1=-- f(t) ~(P/2)-1 7j(q/2)-1 (t - ~ - 7j)(r/2)-1 d~ d7j dt 
8 0 0 0 

= apbqcr (1 (t f (t)7j(q/2)-1 (t _ 7j)(P/2)+(r/2)-1 (1 U(p/2)-1 (1 _ u)(r/2)-1 
8 JoJo Jo 

du d7j dt 

where we have put ~ = (t - 7j)u. Thus, 



898 Introduction to Calculus and Analysis, Vol. II 

1= ap~qCr B(~,~) Jol fot f(t)Tj(q/2)-1 (t - 1)(pI2)+(rI2)-1 d1) dt. 

Now, setting 1) = tv in this, we obtain 

1= ap~qcr B(~,~) B(~, p ; r - 1) Jol f(t)t(p+q+r)/2-1 dt, 

which immediately gives the desired result. Note the general result 
implied by the foregoing: 

J = JJJf(~ + 1) +~) ~a-I1)I3-1 ~Y-I d~ d1) d~ 

= r(ex) r«(3) r(y) (1 f (t)ta+fJ+y-l dt, 
r(ex + (3 + y) Jo 

where the triple integral is taken in the positive octant bounded by the 
plane ~ + 1) + ~ = 1. Many integrals can be reduced to this form, as 
seen in the following exercises. 

8. Set x = a~n, y = b1)n, Z = c~n to obtain 

_ a III~2n-1 1)n-1 ~n-l d~ d1) d~ 
x= ~~------------------

III ~n-l 1)n-l ~n-l d~ d1) d~ 

where the integrals are taken .over the positive octant bounded by the 
plane ~ + 1) + ~ ;;;;:; 1 and have the form of the integral J in the so­
lution of Exercise 7. Consequently, 

__ 3a r(2n) r(3n) 
x - 4 r(n) r(4n) . 

9. Set x = R~2/3, Y = R1)3/2 to obtain 

I = 4 III X2 dx dy = 9R4 II ~7/2 1)112 d~ d1), 

where the latter double integral is taken over the positive quadrant in 
the ~, 1)-plane bounded by the line ~ + 1) = 1. As in Exercise 8, this 
yields 

1= 2R4B (11 ~) = 21 R4 
2 '2 297r • 

10. As in Exercise 7, replace Xo through Xo = t - Xl - ... -Xn. Then, 

I = Sol f:- xo ... Sol-XO ••• -Xk-l ..• Sol-XO ••• Xn_l f(xo + ... + Xn) 

xoaO- l .•. Xnan- l dXn ... dXk ... dXl dxo 

= Sol Sot . .. Sot-xl' .. Xk- l it-xl' .. xn- 2 Xl aI-I ... Xn_Ian- I - 1 f(t) 

(t-xi ... -xn- l I d d d Jo Xnan- l (t - Xl ... -Xn)ao- Xn Xn-l'" Xk 

.•. dXldt. 
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In the integral with respect to Xn, set xn = (t - Xl ••• Xn-l) Un, which 
yields 

ft-xl ... xn- l 
Jo Xnan-l(t - Xl ••• -Xn)ao-l dXn 

= (t - Xl· •. -Xn_l)aO+an-1 SOl Unan- l (1 - Un)ao-l dUn 

= (t - Xl ••• -Xn-l) ao+an-l B(an, ao). 

Iterating this procedure with Xk = (t - Xl ••• - Xk-l)Uk for k = 2, . 
n and Xl = tu1 , we finally obtain 

1= B(an, ao) B(an-l, an + ao) ... B(al, a2 + ... + an + ao) 

Ll f(t)taO+al+ ... an-l dt, 

which immediately yields the desired result. 
11. Show that for Gn(X) defined by the expression following the limit sign in 

the right hand side of formula (86e), p. 506, 

G (2) - !22xG ( )G ( + !)(2n)!Jn. 2n X - 2 n X n X 2 22n(n !)2 ' 

then let n -> 00 and apply Wallis's formula (Volume I, p. 282). 
12. (a) Set U = IX - p, V = ~ - q. Integrating D-u f(x) repeatedly by 

parts, we obtain 

. _ f(O)xu f (P-l)(O)XU+P-l 
(1) D U f(x) = r(u + 1) + ... + r(u + p) 

+ 1 rx (x _ t)U+P-l f(p)(t) dt. 
r(u + p)Jo 

Noting that the derivatives at 0 vanish and differentiating p 
times with respect to X, we then find 

(ii) g(x) = DUf(x) = ddP [D-u f(x)] = D-u f(p)(x). 
xP 

= _1_ (x (x _ t)U-l fCP)(t) dt. 
r(u) Jo 

Further integrations by parts yield 

_ f(p) (O)X U f(P+q-l) (O)Xu+q-l 
g(x) - r(u + 1) + ... + r(u + q) 

+ 1 rx(x _ t)u+q-l f(p+q)(t) dt. 
r(u + l)Jo 

Since the derivatives of f at the origin vanish, we then find 

D-v DUf(x) = D-v g(x) 

= rx (x - t)V-l rt (t - S)u+q-l f(p+q) (s) ds dt 
Jo r(v) Jo r(u + q) 
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= 1 rz f(p+q) (s) rz (x - t)tH (t - S)tHq-l dt ds. 
r(v) r(u + q)Jo Jo 

We evaluate the inner integral by introducing a new variable of 
integration, Z = (t - s) / (x - s) to obtain 

D-fJDOf(x) = B(u + q, v) rz (x _ S)tHtJ+q-l f(p+q)(s) ds 
r(v) r(u + q) Jo 

= 1 rz (x _ S)tHtJ+q-l f(p+q)(s) ds. 
r(u + v + q) Jo 

Now differentiating q times, we find 

(iii) DP DOf(x) = Dq D-tJ g(x) 

= 1 rz (x _ S)tHtJ-l f(p+q)(s) ds. 
r(u + v) Jo 

The final result is symmetric in u and v and, hence, independent 
of the order in which the operators DO and DP are applied; hence, 
DoDP f(x) = DPDo f(x). 

(b) Let r be the smallest integer greater than IX + ~, W = r - IX - ~. 
Then (ii) yields 

DO+P f(x) = _1_ rz (x - t)W-l f(r)(t) dt. 
r(w) Jo 

If u + v ~ I, then r = p + q, w = u + v, and this integral is the 
same as that for DP DO f(x) obtained in (iii). However, if 1 < u + v ~ 
2, then w = u + v-I and r = p + q + 1. Now we only carry the 
expansion (i) out to the (r - l)-th derivative, namely, 

D-w f(x) = 1 1z (x - t)w+r-2 f(r-l)(t) dt 
r(w + r -1) 0 

and differentiate r - 2 times with respect to x to obtain 
Dr- 2D-w f(x) = Do+P-2 f(x) 

= 1 1z (x - t)w f(r-l)(t) dt 
r(w + 1) 0 

= 1 rz (x _ t)tHtH f (p+q)(t) dt. 
r(u + v)Jo 

Thus, in this case, DODPf(x) -=1= DO+Pf(x). 

Exercises 5.2 (p. 555) 

1. (a) -b/21X2~2. 

(b) O. 

(c) O. 

4. Write d(u, v)/d(x, y) = (uv,,}z - (uvz)" = curl (u grad v). 
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Exercises 5.7 (p. 588) 

1. Observe that; = Xu + Xv, 1) = Xu - Xv. 
2. Compare the direction X, of the exterior normal with the normal di­

rection represented by Xe X X;. 
3. (a) The line v = a/2 divides 8 into a portion 8' given by a/2 < v < a 

(or, equivalently, by -a < v < -a/2) and oriented by ; = Xu, 1) = 
Xv, and a portion 8" given by -a/2 < v < a/2, which is just another 
Mobius band. 

(b) 81 is representable in the form (40a) with v restricted to the interval 
0< v < a. Obviously, any two points on 81 can be joined by the 
curve on 81 that is the image of the line segment joining the cor­
responding points (u, v) in the parameter plane. 

(c) 81 is oriented by; = Xu, 1) = Xv. 

4. One easily verifies that R(t) has length I; 1 and is linearly dependent on 
;, 1) and, hence, lies in 7t. Moreover, R(t) • ;/1; 12 = cos t. The vector 
R(t) coincides with; for t = 0 and has the direction of 1) for a certain 
t between 0 and 1800 , namely, for that t determined by the relations 

cos t = bf..jac, sin t = J1 - b2/ac. 

Exercises 5.9a (p. 602) 

1. II~ d8 = (~2 + ~ + ~) III z dx dy dz, 

where the volume integral is to be extended throughout the upper half of 
the ellipsoid. (The base of this half-ellipsoid contributes nothing to the 

surface integral): ~ (~ + ~ + c~) abc2. 

2. Since H is a homogeneous function of the fourth degree, we have 

4 II H d8 = II(xHx + yHy + zH.)d8 

= II~~ d8 = III t.H dx dy dz 

= 6 III[x2(2a1 + a4 + a6) + y2(2a2 + a4 + as) 

+ z2(2aa + as + a6)] dx dy dz. 

Exercises 5.ge (p. 610) 

1. (a) Compare Exercise 8, Section 2.4, p. 203. 

(c) Let R be an arbitrary region and v an arbitrary function vanishing 
on the boundary of R. Then, by Green's first formula, 



902 Introduction to Calculus and Analysis. Vol. II 

= - IIIR V <lU dXl dX2 dxa 

= - IIJR V <lU -I ele2ea dPl dP2 dpa. 

Now 

and 

Hence, 

IIL(UZ1VZ1 + UZ2Vz2 + UZaVXa) dXl dX2 dXa 

=JJ]J (-.! UP1VPl + .l UP2VP2 + -.! UpaVpa) dXl dX2 dxa 
el e2 ea 

= ~IJ (Je2ea UP1VPl + Jeael UP2VP2 + Jele2 UpaVP3)dPl dP2 dpa JJ el e2 ea 

= III (UlVPl + U2VP2 + UaVP3) dPl dP2 dpa, 

where we write Ui = -I ele2ea Upi. 
ej 

Applying Gauss's theorem to the vector (UIV, U2V, Uav), we obtain 

- r~J(aUl + aU2 + aUa) v dPl dP2 dpa. 
JJJ apl ap2 apa 

Thus, for an arbitrary v vanishing on the boundary of R we have 

III v <lu -I ele2ea dPl dP2 dpa 

= IIIv (~~: + ~~: + ~~:)dPl dP2 dpa 

and, hence (cf. Lemma I, p. 744), 

<lu = (aUl + aU2 + aUa) 1 
apl ap2 apa Jele2ea 

= _1_ [~ (Je2ea au) + ~ (Jeael au) + ~ (Jele2 au)]. 
Jele2ea apl el apl ap2 e2 ap2 ap3 ea apa 

(d) Use Exercise 9c, Section 3. 3d, p. 257: 
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~ (t2 - h) (ta - tl) (ta - t2) au = (ta - t2).,It/J(tI) 0~1 (.,It/J(t1) ::) 

+ (ta - h).,I -t/J(t2) 0~2 (.,I -t/J(t2) :~2) 

+ (t2 - h).,It/J(ta) o:a (.,It/J(ta) :~) , 
where t/J(x) = (a - x) (b - x) (c - x). 

Exercises 5.10a (p. 615) 

1. (a) 1= - rr < (zxz + x) dy dz, where x = .,II - y2 - Z2. 
JJ1I2+z2 1/4 

(b) I = L = - x y dz = - - - cos26 d6 = - - n. fa fa 1 12"3 3 
as* as* 2 0 4 8 

Exercises 5.10b (p. 617) 

2. If (~, 1) and (x, y) are rectangular coordinates in IT and P, respectively, 
then the motion of the point M (x, y) can be described by the equations 

~ = x cos t/J - y sin t/J + a, 1) = x sin t/J + y cos t/J + b 

(i.e., by a rotation and a translation). Then 

S(M) = A(x2 + y2) + Bx + Cy + D. 

(a:) If A = nn 01= 0, we have S(M) = n7t(x - XO)2 + (y - YO)2] + S(C), 
where C is the point x = Xo = -B/2nrr, y = yo = -C/2nrr, hence 
A, B, C, D have the values in Exercise 1. 

«(31) If A = nrr = ° but B2 + C2 > 0, then 

S = I B2 C2 Bx + Cy + D = d(M) 
M v + .,IB2 + C2 A , 

where A =.,IB2 + C2 and a is the line Bx + Cy + D = 0. 
«(32) If A = B = C = 0, we have S(M) = D = constant. 

3. For the motion of the plane P rigidly attached to the connecting-rod 
AB, we have n = 0, S(A) = 0, S(B) = rrCB2 = rr:y2. Hence, a passes 
through A, and by symmetry, a is perpendicular to AB at A. Hence, 
S(M) = rr:y2l-1 d (M), where 1 = AB. 

4. For the motion of the plane P rigidly attached to the chord AB, we 
have n = 1, S(A) = S(B) = S = area of r. The point C of Steiner's 
theorem is therefore equidistant from A and Band S(A) = rrCA 2+ S(C), 
S(M) = rrCM2 + S(C); hence, S(A) - S(M) = area of r - area of r' 
= rr(CiP - CM2) = rrab. 

5. If 1 is the length of r, the Frenet formulae (Exercise 16, Section 2.5, 
p. 216) give 
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I !!ds = II;2 ds = I~1 ds = fd2x ds = 0; 
p P ds2 

I x ~ n ds = I x X 1;1 ds = x X 1;1 I ~ - I x X 1;1 ds 

= - II;I X 1;1 ds = 0 

6. Let n' = (oc, ~, y), x = (x, y, z). If in Gauss's formula 

II (aoc + b~ + cy) da = - III (:~ + :! + :~) dx dy dz, 

we substitute a = 1, b = c = 0, and a = 0, b = -z, c = y, we get 

and II(yy - z~) da = 0, 

respectively. 
7. Take rectangular coordinates (x, y, z) such that z = ° is the free 

horizontal surface of the fluid and Oz points downward. The pressure 
on da is nz da, where z is the depth of da. By repeated applications 
of Gauss's formula in three dimensions, with obvious choices of the 
functions a, b, c we find for the components of the resultant of the fluid 
pressure 

IIocz da = 0, II ~z da = 0, II yz da = -II dx dy dz = - V. 

For the components of the resultant moment with respect to the origin ° we find, again by Gauss's formula, 

II (yzy - z2~)da = III y dx dy dz = VYO, 

If (Z2oc - xzy)da = -Iff x dx dy dz = - VXo, 

ff (xz~ - yzoc)da = 0, 

(xo, yo, Zo are the coordinates of the centroid C). Now we note that the 
components of the force f are 0, 0, - V, and the components of its 
moment with respect to ° are VYO, - Vxo, 0. 

8. From the parametric equations 

x = a cos u cos v, y = b sin u cos v, z = c sin v 

(0 ~ u < 27t, - i ~ v < i) 
of the ellipsoid we readily obtain the formulae 

dS D2 du dv 
p dS = abc cos v du dv, - = b ' 

p accosv 

where 

D2 = b2c2 cos 2U cos2v + a2c2 sin2u cos2v + a2b2 sin 2V cos2v. 
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10. The integral represents the flat solid angle which the plane z = 0 
subtends at the point M = (0, 0, 1). For a direct analytical proof, use 
plane polar coordinates. 

12. Verify the identity 

~(a-x) +~(b-Y) +~(~) =0, ox y3 oy y3 oz y3 

y2 = (x - a)2 + (y - b)2 + (z - C)2, 

for all points (x, y, z) different from (a, b, c). From Gauss's formula in 
three dimensions we conclude (i) that Q = 0 if L is a closed surface 
such that A = (a, b, c) is outside the volume bounded by L; (ii) that if 
A is within L, the value of the integral is independent of the shape of 
L. Taking for L a sphere with center A, we easily see that Q = 41t. 

13. The integral, writing y for r, 

:~ = Jho~ (a;a X) dy dz + :a (b:;; X) dz dx + :a(C;a Z) dx dy 

is independent of L and depends only on the boundary r of L, for the 
identity given in the answer to Exercise 12 implies that 

~[~ (a - X)] +~[~ (b - Y)] +~[~ (~)] - 0 ox oa y3 oy oa y3 OZ oa y3 -. 

By Stokes's theorem (p. 611) and the discussion of Chapter 5, pp. 613-
614, the surface integral expression for oQ/oa may be expressed as a 

line integral J u dx + u dy + w dz along r. Verify that the functions 

u =0, 

satisfy the identities 

z-c 
u=--, 

y3 
y-b 

w=--­
y3 

ow _ ou = ~ (a - X) oU _ ow = ~(b - Y), ou _ ou = ~(C - Z). 
oy OZ oa y3 'oz ox oa y3 ox oy oa y3 

14. Note the following facts: (1) the value of the line integral 6 remains 
unchanged if r is deformed in such a way that r never sweeps over· 
any of the points (-1, 0) or (1, 0) during its deformation; (2) 6 = 21t if 
r is a small circle around (1, 0) oriented counterclockwise; (3) 6 = 21t 
if r is a small circle around (-1, 0) oriented clockwise. 

15. Think of C as being a rigid circle made of wire and of r as being a 
string. Now deform the string r to a new position r' lying entirely 
within the plane y = O. The numbers p and n are not changed during 
this deformation, and the first formula now follows directly if Exercise 
14 is applied to the curve r' within the plane y = 0 and the line seg­
ment -1 < x < 1, y = 0, z = 0 of this plane. The factor 41t (instead of 
21t, as in the previous example) results from the solid angle Q increas­
ing by 41t along a closed path for which p = 1, n = O. One way of carry­
ing out the above deformation of r into r' analytically is as follows. 
Assume that r does not meet the z-axis and let 
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x = y(t) cos ifJ(t), y = y(t) sin ifJ(t), z = z(t) 

be the parametric equations of r. Consider now the family of curves 

r(r): x = y(t) cos ['rifJ(t)], y = y(t) sin [TifJ(t)], z = z(t), 

depending on the parameter T, which decreases from T = 1 to T = O. 
Note that r(l) = r and that r' = r(o) is a closed curve that lies in 
the plane y = o. Note also that (for a fixed value of z) each point P 
of r (T) rotates about the z-axis as T varies; hence, the solid angle 
o that C subtends at P does not vary with T. This implies that 01 -
00 will have the same value for r(O) as for r(l) = r. To prove the sec­
ond formula, note that 

f f f J pp' X dP' 
01 - 00 = Jr dO = Jr grad 0 • dP = - Jr dP • 

r r r c IPP'1 3 

= _ f i dP • Cf5j5' X dP') = f i PP' • (dP X dP') 
Jr c Ipp'13 Jr c Ipp'1 3 . 

16. Take a coordinate system OX1,OX2, OX3, and denote the position vector 
of a variable point on r by x. Then 

a=!fxxdx 
2Jr 

has the required properties, for 

a • Xa = tfr (Xl dX2 - X2 dXl) 

is the area of the projection of r on the plane OX1X2. 

17. The two equations u = {x, V = {y can be solved for X and y, since 
a(u, v)ja(x, y) * o. Let X = a(u, v), y = T(U, v); since Uy = Vx, we have 
(cf. p. 261) Xv = y", av = T". Hence, a function g exists such that 
X = g,,(u, v), y = gv(u, v). 

18. u = yz 
(X2 + y2) ';,,2 + y2 + z2 ' 

-xz 
v = (;-X-;;2-+-:--y";;2);-';---;='X:O=2 '=+=y=2:C==+==;;Z2 ' w=O. 

Exercises 6.le (p. 671) 

1. With e = 0, equation (17c) takes the form 

(i) ;-2 = c + ~, 
r 

where c = 2Cjm and b = 2YfL. Writing this in the form 

J-r- dr_l 
cr + b dt-

and integrating, we obtain if c * 0, 
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(iia) t = k + Jcr2 + br - ~f(r), 
c 2c 

where 

fc ar orinh (1+ 2crlb) for c>O 

(iib) f(r) = 
-1 

for .;=c arc sin (1-2cr/b) c < 0, 
-c 

and ifc = 0, 

(iic) (3Jb ) 2/3 
r= 2t+k . 

Returning to the differential equation (i), we determine the inte­
gration constant c by 

• 2 b c = ro --. 
ro 

If c < 0, we see that r is bounded, r ~ -b/c. If;.o > 0, r increases to 
this value and then decreases as the orbiting body falls toward the sun. 
If ;'0 < 0, the body moves directly toward the sun until collision. 

If c = 0, we observe that the constant of integration k in (iic) is k = 
± r03/2 = b3/2/;'03, where the plus or minus sign is taken according to 
whether ;'0 is positive or negative. If;.o is negative, we again get a solu­
tion in which the body accelerates into the sun. If;.o is positive, the body 
escapes to infinity but with limiting velocity zero. 

If k > ° and ;'0 < 0, the body accelerates into collision with the sun 
as before. But if;.o > 0, the body escapes and it can be seen from (i) and 
(iii) that it has a positive limiting velocity, namely, 

• __ • 2 b 
r~ - C - ro --. 

ro 

2. For both the parabola and the hyperbola, the orbit is nonperiodic and 6 

is bounded. Consequently, from fO r2 d6 = h(t - to), for t to approach 
00 

00, r also must approach 00. From (17d) we conclude that 6 = ° as t -> 00; 

hence in (17c), from 

lim r262 = (lim r26) (lim 6) = h lim 6 = 0, 
t-~ t-~ \t-~ t-~ 

we conclude that lim ;'2 = 2C/m. However, from the definition of e, for 
t-~ 

the parabola (e = 1) C has the value ° and for the hyperbola (e > 1), a 
positive value. 

3. The force is -m/2 grad ;'2. Hence, by conservation of energy, 

! m(;'2 + r2( 2) + ! mr2 = C 
2 2 

and the moment equations, as for any centrally directed force, yield 
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r 2e = h. 

We eliminate t from these equations, as we did from the equations (17c) 
and (17d) for planetary motion, to obtain 

dr rJ2Cr2 
d6=h m- h2 - r4• 

This is easily integrated to give 

2 _ a 
r - b+sin26' 

where a = 2h2 and b = J1 - h2m2/(J2. In Cartesian coordinates this 
becomes 

b(x2 + y2) + 2xy = a, 

which is the equation of a conic section. 

4. The force is -grad U, where U = - f f(r) dr. As for planetary motion 
we may apply conservation of energy and the moment equation (17d), 
namely, 

~ m(f2 + r 2e2) - f f(r) dr = C 

r 2e = h. 

We may now proceed in the same way to the desired result. 
5. Apply the result of Exercise 4. 
6. If (~, 7) are the coordinates with respect to the axes of the ellipse, then 

~=acosw=x+ea 

7)=bsinw=y 

give the equation of the ellipse and by the law of areas 

h(t - t.) = rm (x 8y _ Y 8X ) dw Jo 8w 8w 

= ab S: (1 - E: cos w) dw: 

7. The motion takes place in a plane, since p is a central force (proved for 
the case p = 1/r2 on pp. 666). Hence, 

" x 
x= - rP' 

!y=_:r. p . 
r 

It follows that 

xy - xy = constant = h, 



Hence, 

... + ... -XX-YY • 
xx YY = r P = -rp. 

! d (X2 + y2) = -rp. 
2dt 

The distance of the tangent from the origin is 

therefore, 

or 

ixy - xyi h 
q = J x 2 + y2 = J x2 + y2 ; 

1 d h2 
- - -= -p, 
2 dr q2 
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which proves the first statement. For the cardioid we have q = r21J2ar. 

8. By definition 

(A) 
5C = - ),2X - 2ILY 

y = - ),2y + 21Lx. 

On differentiating the two equations twice and combining them, we get 
an equation involving x only, 

x + (2),2 + 41L2)5C + ),4X = 0 

and a corresponding equation involving y only, 

y" + (2)..2 + 41L2)ji + )..4y = o. 
Thus, x and yare linear combinations of exp [±i(1L ± J)..2 + 1L2)t] (cf. 
Exercise 2, p. 696) or of cos (IL + J'A2 + 1L2)t, cos (IL - J),2 + 1L2)t, 
sin(1L + J'i:.2 + 1L2)t, sin(1L - J)..2 + 1L2)t, with constant coefficients a, b, c, d, 
and a', b', c', d'. From (A) it follows that a' = -c, b' = -d, c' = a, d' = 
b. Using the initial conditions x(O) = y(O) = y(O) = 0, x(O) = u, we 
obtain the result given. 

9. Let (Xl, YI), . . . , (Xn, Yn) be the attracting particles. Then the resultant 
force at a point (x, y) has the components 

x = r; X - Xv Y = r; y - Yv 
v J(x - xv)2 + (y - Yv)2 ' v J(x - xv)2 + (y - Yv)2 

If we introduce the complex quantities Zl = Xl + iYI , . . . , Zn = 
Xn + iYn, Z = X + iy, Z = X + iY, we have 

Z= r;-l-_ =f'(z) 
v Z - Zv f(z) , 
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where f(z) denotes the polynomial (z - Zl) • • • (z - Zn) and Ii the 
complex quantity conjugate to z. The positions of equilibrium cor­
respond to Z = 0, that is, to the zeros of the polynomial f'(z) of which 
there are n - 1 at most. 

Positions of equilibrium in the particular case: (0, 0), (-Ia2 - b2, 0), 

(--Ia2 - b2, 0). 

Exercises 6.2 (p. 682) 

1. (a) y = tan log (cNl+ x2). 

(b) y = c-ll + e2z• 

2. (a) y = ceY /z • 

(b) y2(2x2 + y2) = c2• 

(c) x 2 - 2cx + y2 = 0 (circles). 

(d) arc tan (ylx) + c = log -Ix2 + y2 or, in polar coordinates r = e;+c 
(logarithmic spirals). 

(e) c + log I x I = arc sin(ylx) - ! -I x 2 - y2. 
X 

3. If abl - alb =1= 0, we have 

d1] a + by' a + bt/>(1]I'€.) 
d'€. = al + bly' = al + blt/>(1]I'€.) , 

which is a homogeneous equation. 

If abl - alb = 0 or alIa = bl/b = k, then 

d1] = a + b dy = a + bt/> ( 1] + c ). 
dx dx kl] + Cl 

and the variables are separated. 
4. (a) 4x + 8y + 5 = ce4z- 8y• 

1 3 
(b) x = c - ;j,<3y - 7x) - 410g (3y - 7x). 

5. (a) y = ce-sin z + sin x-I. 

(b) y = (x + l)n(ez + c). 

(c) y = cx(x -1) + x. 

(d) y = !x5 + cx2• 
3 

c 1 
(e) y = -II + X2 (1 + x 2) (x + -II + x 2) • 

6. Introduce l/Y as a new unknown function; the equation then becomes 
homogeneous : 
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1 1- cx../s 
X ../5 (1 1 -) 1 1 -' 

cx 2 - 2"'5 - 2 - 2"'5 
7. With this substitution, the equation becomes 

v' = vng(x)F(x)n-l. 

8. See Exercise 7. Eliminate y through v = xy, y' = v'Jx - vJx2 to obtain a 
separable equation; 

1 
y = x(c - log x) . 

9. Following the idea of the substitution in Exercise 7, seek a function 
f(x) such that v = yf(x) and v' = (y' + y sin x) f(x). From f' = y' f (x) + 
yf'(x), we have 

f'(x) = f(x) sin x; 

whence, 

f(x) = ae-eos x. 

The constant a is irrelevant for our purpose, and we set a = 1. We then 
obtain the separable equation 

v' = _e(n-l)eos x sin 2x, 

which is easily integrated by separation of variables. The final result is 

!n-l J 2[~1_ - cos xJ + ke-(n-l)cos x 
y = (n-l 

keeos x+(eos 2x)/2 

(n =1= 1) 

(n = 1). 

Exercises 6.3b (p. 690) 

1. If any linear combination of these were to vanish, say 

Cl sin ntX + C2 sin n2X + ... + C/c sin n/cx = 0, 

then, on multiplication by sin nj(x), where j = 1, . . . , k, and inte­
gration over [0, 1t], we would obtain 

whence Cj = 0 for all j. 
2. Use induction. Suppose that a linear relation Cl(/JI + ... + c/cifJ/c = 0 

holds. Divide by ea/cx and differentiate (n/c + 1) times if P/c(x) is of 
degree n/c. The degree of the coefficients of the other ea,x is unchanged, 
so that they remain different from zero. 

3. Multiply both sides of the equation by (1 - n)y-n. 

(a) y-l = CX + log x + 1. 
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3a2 
(b) y 3 = cx-3 +-. 

2x 

(c) (y-l + a)2 = C(X2 - 1). 

4. If we put y = Yl + u-l, the equation reduces to the linear equation 
u' - (2PYl + Q) u = P. 

y = x ___ e_x-,,-p--,,[(-,---1-,---/2-'-.)x_4",,--] __ 

c + fox X2 exp [(1/2)x4] dx 

5. Equate the right sides of the two equations to obtain y = X2 and verify 
directly that this is an integral of both equations. 

6. Note that this is equation (a) of Exercise 5 and is therefore a Riccati 
equation with one solution known. Then apply the result of Exercise 4. 

y = x 2 _ exp [(2/3)x3] 

c + r exp [(2/3)x3] dx 
-00 

[= f(x, c)]. 

To draw the graphs of the corresponding family of curves, first plot the 
two branches of the curve 

y = ±J(x3 - 2)x, 

which divides the plane into two regions where y' < 0 and one region 
where y' > O. The two infinite branches of this curve are asymptotic to 
the two parabolas y = ±X2. Show that all the integral curves are 
asymptotic to these parabolas by proving the two relations 

f(x, c) = - x2 + 0(1) as x --> +00 (-00 < c < 00) 

and 

f(x, c) = x 2 + 0(1) as x -> -00 

where 0 (1) denotes a function that tends to zero. 
7. Put 

Yl- Ya = a, 

Then 

so that 

or 

Similarly, 

Yl - Y4 = b, Y2 - ya = c, 

a' + Pa(Yl + Y3) + Qa = 0, 

a' 
P(YI + Y3) = - Q - ~ , 

a 

P(YI - Y3) = aP 

a' 
2PYl = aP - Q - - . 

a 

(c =I=- 0), 

Y2 - Y4 = d. 



Hence, 

and similarly, 

b' 2PYl = bP- Q - b. 

d log (a/b) =P(a _ b) = - P(Y3 - Y4), 
dx 

d log (c/d) =._ P(Y3 - Y4); 
dx 

by subtraction, 

alb 
log c/d = constant. 

8. Compare the relation 

d log (a/b) _ P( ) 
dx - Y4 -y3, 

in the proof of the preceding example. 
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Particular solutions of the special equation are Yl = l/cos x and 
Y2 = - l/cos x; 

1 + ce2x 

Y = (1 - ce2x)cos x 

9. The common solution eX of (a) and (b) is obtained by eliminating y" 
from the two equations. 

(a) CleX + C2X. 

(b) CleX + C2../X. 

10. The curve satisfies the differential equation 

n(x~~-y) =r 
or in polar coordinates, r. 6, with 6 as independent variable, 

nr2 
dr . = r; 

cos 6 d6 - r sm 6 

that is, 

d log r = _n_ + t 6 
d6 cos 6 an, 

whence, 

r = a [tan(6/2 + 7t/4)]n = a (1 + sin 6)n 
cos 6 cosn+1 6 

(cf. Volume I, pp. 271-272.) 
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Exercises 6.3c (p. 695) 

.J3 x . J3 x 1. (a) Y = Clez + C~-(1I2)Z cosT + Cae-(1I2)z SIn -2-. 

(b) Y = Clez + c2xez + cae2z• 

(c) Y = Clez + C2Xez + c3x2ez • 

(d) Y = CleZ + C2e-Z + c3ev'2z + c~-v'2z. 
(e) Substitute x = e': 

Y = ClX + C2/X. 

2. From the fundamental theorem of algebra, it follows that f(z) may be 
written 

f(z) = (z - al)ll l (z - a2)112 ••• (z - a k )llk 

(cf. Volume I, p. 286; Volume II, p. 806), where the (Lv'S are positive 
integers such tha (LI + ... + (Lk = nand 

f(av) = {'(av) = ••• = f(llv- l)(av) = o. 
Now 

L(e).Z) = f(A)e).z. 

On differentiating this relation «(Lv - 1) times and putting A = av in 
the result, we get (cf. Leibnitz's rule, Volume I, p. 203) 

L(e"vZ) = f(a v) e"VZ = 0 

L(xe"vz) = [f'(av) + xf(av)]e"vZ = 0 

L(x2a"vz) = [f"(av) + 2xf'(av) + x 2f(av)]e"vz = 0 

L(xIlV-1e"VZ) = [((Lv 0- 1) f(lLv-I)(av) + ("V 11) f<lLv-2)(av)x 

+ •.. + (~: = Uf(av)x"v- l ] e"vZ = o. 
So we have n particular solutions 

e"l Z, xe"IZ , ... , X"I-Ie"IZ 

e"2Z, xe"2Z , ••• , x Il2-l e"2Z 

which are linearly independent by Exercise 2, p. 690. 
3. On substituting in the differential equation, we get 

(aobo - 1)P(x) + (aobl + albo)P'(x) 

+ (aob2 + albl + a2bo)pll(x) + ... = 0, 
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and this is an identity if aobo = 1, aObl + albo = 0, . . . , from the 
expansion. The second case reduces to the first if we substitute y for y. 

4. (a) 1/(1 + t2) = 1 - t2 + t4 - • • • ; hence, 

y = p (x) - P"(x) = 3x2 - 5x - 6. 

(b) 1/(t + t2) = (lIt) - 1 + t - t2 + ... ; hence, 

y = J P(x) dx - P(x) + P'(x) - P"(x) = - ~ + x + ~X3. 

5. (a) y = ~ex. 

6. y = ex(~2 + ~x + i) + cle3x + c2e2x. 

7. (b) The equation becomes of the form treated in (a) if we multiply it by 
x 3• It has the particular solutions u = x3 andy = x 5 ; hence, by (a), a 
third solution is given by w = 1 + X2; the general solution is then 

A(l + x2) + Bx3 + Cx5• 

Exercises 6.4 (p. 706) 

1. (a) x2 + y2 + cx + 1 = 0 (- 00 < c < 00) and the line x = O. 
(b) x 2 + 2y2 = c2. 
(c) The differential equation ofthe family of confocal conics (cf. p.256) 

is found to be 

Y'2 + x 2 - y2 - a2 + b2 y' _ 1 = 0 
xy , 

which is unaltered if y' is replaced by -l/y'; the family of ellipses 
(-b2 < c < 00) is orthogonal to the family of hyperbolas (-a 2 < 
c < -b2). 

(d) y = log I tan (x/2) I + c and the vertical lines x = krr (k an integer). 

(e) The family of curves (tractrix) 

x - c = ±[J a 2 - y2 - a ar cosh (aly)] 

and the same family reflected in the x-axis. 
2. (a) The family of parabolas y = cx2• 

(b) The family of hyperbolas xy ::::: c. 
3. (a) y=X2. (b) y= -x+xlog(-x), (O>x> -00). 

4. y = xp + aJ1 + p2 - ap ar sinhp. 

1 5. x = ce-p1a + - P 
2 

1 1 
y = c(p + a)e-p1a + "2 P(P + a) - 4 (p + a)2. 
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Note that for c = 0 this gives the parabola y = x 2 - (a2/4). What is 
the geometrical meaning of this result? 

6. (a) y = sin (x + c), singular solutions y = ± 1. 

(b) x = ± ~ (arc sin y + yJ1 - y2) + c. 

(c) x = ± (J(2a - y)y - 2a arc tan) y ) + c, 
2a -y 

which is a family of cycloids and can be expressed in the parametric 
form x = c + a (rjJ - sin rjJ), y = a (1 - cos rjJ). Singular solution 
y = 2a. 

(d) x = ± rY )11 + y: dy + c Jo - y 
(-1 ~y ~1); 

singular solutions y = ± 1. (The reader should prove that these 
curves are not sine curves. The expression for x can be expressed 
in terms of elliptic integrals of the second kind; see Volume I, pp. 
436 ff. Section 4.lg, Problem 1.) 

7. y = x sin ax; singular solutions y = x and y = -x. 
8. In each case, let the equation of the tangent line be given in the form 

x/a + y/b = 1. 
(a) Clairaut equation, y = xp + hp/(p - 1), where h = a + b. The singular 

integral is the parabola x2 - 2xy + y2 - 2hx - 2hy + h2 = 0 sym­
metric about the line x = y and tangent to the x- and y-axes at the 
points (h, 0) and (0, h), respectively. 

(b) Set a = k cos a and b = k sin a, where k is the intercepted length 
on the tangent, and use a as the parameter along the curve. The 
Clairaut equation is y = xp ± hp/ J1 + p2. The parametric equations 
of the curve are x = h cos3 a, y = h sin3 a. This is the astroid of 
Volume I, p. 436, Section 4. 1e, Problem 7. 

(c) Set !ab!= h. The Clairaut equation is y = xp + Jk!p!. The curve 
is the union of two rectangular hyperbolas 4xy = ± h. 

Exercises 6.5 (p. 710) 

1. (a) Rewrite as (!y'2Y = x; 

y = ~ x J x2 + a + ~ a log (x + J x2 + a). 

(b) Rewrite as (y"2Y = 1; 

4 
y = 15 (x + a)5/2 + bx + c. 

(c) Rewrite as (xy'Y = 2; 

y = 2x + a log x + b. 
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(d) Rewrite as x (y"2)' = y"2 - 2 and introduce y"2 as a new independent 

variable. y = x 2 + ~ ax3 + bx + c. 

2. (a) y = (ax + b)2/3. 

(b) y = ../a + (x + W. 
(c) y = ../a(x + b)2 + a 1. 

(d) The equation can be expressed in the form p(dldy) (plY) = 1. y = 
a/(1 - beax). Note solutions p = 0, y = constant. 

(e) Introduce new variables z and q, where z = y", q = ylll and q(dqldz) 
=yiv. 

y = ax2 + bx + c + ;5 (~+ bf 
(f) Proceed as in part (e); 

y = ax + b + c sin (x + d). 

3. MN = y../1 + y'2, Me = - [(1 + y'2)3/2Iy'1, and the differential equation 
IS 

(1 + y'2)2y + ky" = O. 

By the general method this is easily reduced to 

(dy )2 __ k + c - y2 
dx y2-c 

(c an arbitrary constant). 

The various cases, all of importance in the differential geometry of 
surfaces, 1 are as follows; 

(1) k = )(2(> 0), C = _y2 « 0, y2 < )(2). The curve is everywhere 
smooth and oscillates, alternately touching the lines y = ±../)(2 _ y2. 
It looks like a sine curve, but is not one. 

(2) k = )(2 , C = o. The curve is a circle of radius )( with center on the 
x-axis. 

(3) k = )(2, C = y2 (> 0). The curve consists of a sequence of identical 
arcs, joined by cusps lying on the line y = y, and all touched by 
y = ../)(2 + y2. It looks like a cycloid but is not one. 

(4) k = _)(2 « 0), c = y2 > )(2. The curve consists of a sequence of 
identical arcs upside-down, with their cusps on y = y and touched 
by y = ../y2 _ )(2. 

(5) k = _)(2, C = y2 = )(2. The curve is a tractrix. 
(6) k = _)(2, C = y2 < )(2. The curve has an infinity of cusps perpendic­

ular to the lines y = y and y = -y alternately. 
4. Eliminate a, b, c by using the equations obtained by differentiating the 

equation of the circle three times successively. 

lSee L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, 
reprinted by Dover (N.Y., 1960), pp. 270-274. 
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(1 + y2) y'" - 3y' y"2 = O. 

Exercises 6.6 (p. 713) 

a+l 
1. (a) Co = a, Cl = a, Cv = --,-". 

(v ~ 2). 

n .-~ (b) Co = 2 ' Cl = I, CIlV = 0, C2V+! = 2v + 1 

1 
(c) Co = 0, Cl = 1, Ca = 0, Ca = 3 . 

xl! x3 
(d) 1 + x + "2 + 4" + .... 

2. If y(x) = ECvxv, then 

(v ~ 1). 

CV+2 = - (v + 2)1l 
Cv and Co = I, Cl = 0; 

.. ( I)V 
y(x) = E -=-Xllv. 

v=o 21lv v!1l 

If we substitute the power series for cos xt in the expression for Jo (x) 
in Exercise 7, p. 475, and interchange summation and integration (Why 
is this permissible?), we get 

1 .. XIlV f'l-1 tllv 
Jo(x) = - E (2 )' (-l)v ,-dt; 

n v=o V. -1 'V 1 - til 

the value of 

is 

as is found by putting t = sin 't' and referring to Volume I, p.280. The 
power series for y(x) and Jo(x) are therefore identical. 

Exercises 6.7 (p. 726) 

1. Poisson's formula gives a potential function u(r, 6) inside the unit 
circle, with boundary values f(6). Now u(l/r, 6) is also a potential 
function (cf. p. 58, Exercise 4) with the same boundary values, and it is 
bounded in the region outside the unit circle; thus, the expression 

r2 - lL2f1f(rt) drt 
2n 0 1 - 2r cos(6 - rt) + rll 

is a solution of the problem. 
2. The potential is 

1 z + l + ./(z + l)2 + x2 + y2 
IL og l ' . z - + 'V (z - l)2 + x2 + y2 
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Since on the ellipsoid z = lex. cos f/J, Jx2 + y2 = IJex.2 - 1 sin f/J, the 
potential is 

the confocal ellipsoids 

ex. + 1 
!L log --1' ex.-

(1 ~ ex. ~ 00) 

are equipotential surfaces. The lines of force are the orthogonal traj­
ectories and hence (cf. Exercise I.c. p. 707) are the confocal hyperbolas 
given by the same equation when 0 ~ ex. ~ 1 and the ratio of x to y is 
constant. 

3. Let 1: be a sphere of radius p and center (x, y, z), lying inside S. Since 
!1(I/r) = 0 and !1u = 0 in the region bounded by 1: and S, by Green's 
theorem (cf. p. 608) we have 

o = iT (! au _ u a(l/r») da _ rr (! au _ u a(l/r») da, 
Js r an an JJ~ r an an 

where in the first integral n is the outward normal to S and in the 

second the outward normal to 1:. Now on the sphere 1: we have a~;;) = 

a(l/r) = _ l, r = constant = p; therefore, 
ar p2 

rr ! au da =! rr au da = 0, 
JJr. r an p JJr. an 

since u is a harmonic function (cf. p. 720); in addition, 

and as p -+ 0, this expression obviously tends to u(x, y, z), for it is the 
mean value of u on ~. 

Exercises 6.8 (p. 734) 

1. (a) u = ((x) + g(y); { and g are arbitrary functions. 
(b) u = {(x, y) + g(x, z) + hey, z); (, g, h are arbitrary functions. 
(c) The most general solution is obtained from a particular solution 

by adding the general solution of the homogeneous equation Uxy = 
o. 

u = J: d~ J: a(~, 7) d7) + ((x) + g(y), 

where (and g are arbitrary. 
2. If u(x, y) = 1: ex.Vllxvyll, then 
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ctVIl 
ctV+1, IHI = (11 + 1) (IJ. + 1) 

in addition, 

ctvo = ctov = 0 

for 11 ;;;;; 1 and ctoo = 1. Hence, 

.. xvyv 
u(x, y) = E 12 = Jo(2i vxy), 

v=o v. 

where Jo is the Bessel function of Exercise 2, p. 713. 
3. Z2(Z.z2 + Zy2 + 1) = 1. 
4. A one-parameter family is obtained from the two-parameter family of 

solutions Z = u(x, y, a, b) by making a and b depend in some way on a 
parameter t: 

a = f(t) 

b = g(t), 

Z = u(x, y, f(t), g(t». 

The envelope of this one-parameter family is obtained by finding t from 
the equation 

o = Zt = uaf' + Ubg', 

and substituting this expression for t in Z = u(x, y, f(t), g(t». The 
result is again a solution of F(x, y, Z, Z.z, z,,) = 0, as 

Z = u(x, y, a, b) 

Z.z = U.z + Utt.z = = u.z(x, y, a, b) 

z" = U" + Utt" = u,,(x, y, a, b) 

and Z = u(x, y, a, b) satisfies the equation F(x, y, Z, Z.z, ZII) = O. 
5. (a) From the differential equation we get 

[f'(X)J2 + [g'(y)]2 = 1 

or 

[f'(X)]2 = 1 - [g'(y)2]. 

As the left-hand side does not depend on y, nor the right·hand side 
on x, both sides are equal to a constant (which has to be positive or 
zero), say e2 ; that is, 

[f'(X)]2 = e2, 1 - [g'(y)]2 = e2• 

Hence, 

U = ex + vI - e2 y + b 

is a solution, where e and b are arbitrary and e2 ;:;; 1. 

(b) U = f(x) + g(y) gives 



1 
f(x) = g'(y) = constant = a, 

so that 

u=ax+!y+b 
a 

(where a and b are constants). 

If u = f(x) g(y), then 

:x[f(x)]2 = 4/ d~[g(y)]2 = constant = 2c; 

so, in this case, 

u = J (2cx + a) (~y + b) , 

where a, b, c are arbitrary constants. 

(c) u=xJ y +yJx+k+kJ y . 
x+k y x+k 

6. Apply the linear transformation 

x = ~ + 1), 

y = 3~ + 21), 

1 
u = f(y - 2x) + g(3x - y) + 12 eX+IJ. 
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7. Put u = (x2 + y2 + z2)n12 and let K be of degree h. Then, 

t.u = Uxx + UIJIJ + Uzz = n(n + 1) (x2 + y2 + z2)(n-2)/2, 

x 8K +y8K + z8K = hK 
8y 8y 8z 

(cf. p. 120). Hence, u = (x2 + y2 + Z2)-(l+h)/2 is a solution. 
8. According to p. 728, a solution of the first equation is of the form 

z = f(x + at) + g(x - at). 

On substituting this expression in the second equation, we have 

f'g' = 0; 

that is, either f = constant or g = constant. Hence, z = f(x + at) or 
z = f (x - at) is the most general solution of both equations. 

9. (a) From the differential equation 

ifJx~ -l tjItt - A 
ifJ - c2 tjI - , 

a constant. The boundary conditions can be satisfied only if A = - n2 , 

where n is an integer and 

ifJ(x) = oc sin nx, 
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whence, 

Iji(t) = a sin net + b cos net. 

Thus, the most general particular solution of the specified type is 

u(x, t) = sin nx (a sin net + b cos net). 

(b) Using sin A sin B = ! [cos (A - B) - cos (A + B)] and sin A cos B 
= t [sin(A + B) + sin(A - B)], we obtain 

u(x, t) = ~ [a cos n(x - et)+ b sin n(x - et)] 

- ~[a cos n(x + et)- b sin n(x + et)]. 

(c) Assume a solution in the form of a sum of solutions of the type 
obtained in part (a), that is, 

~ 

u(x, t) = r; sin nx(an sin net + bn cos net). 
n=l 

In order to satisfy the initial conditions in (ii), we must have 
bn = CXn, an = O. 

For the solution of (i), observe from Volume I, p. 587, (17), that 

CXn = ~ [1: -f(-x) sin nx dx + 1" f(x) sin nx dX] 

= ~ (n f(x) sin nx dx. 
~Jo 

For the particular function in (i), we find CX2v = 0, CX2V+l = 
(-I)v/~(2v + 1)2, where v = 0,1,2, ... ; 

whence 

( t) = 1 [sin x cos et _ sin 3x cos 3et 
U x, ~ 12 32 

+ sin 5x cos 5et - ] 
52 .... 

10. u(x, t) = f(x - at) + g(x + at); then, for x ~ 0, 

o = u(x, 0) = f(x) + g(x) 

0= Ut(x, 0) = -af'(x) + ag'(x); 

by differentiating the first equation and comparing with the second, 
we have 

f'(x) = 0, g'(x) = 0, 

or 

f(x) = constant = e, 

For t ~ 0, moreover, 

g(x) = - e for x~ O. 
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if>(t) = u(O, t) = f( -at) + g(at) = f( -at) - c; 

that is, f m = c + if>(~/-a) if ~ < O. As x + at ~ 0 always, and, hence, 
g(x + at) = -c, it follows that 

!
OfOrx-at~O 

u(x, t) = if> (X =aat) for x - at ~ 0 

if both x and t are nonnegative. 

Exercises 7.2a (p. 743) 

--.L J(XI - XO)2 + (Yl - YO)2 
1. ,- . 

v2g Yl - yo 

2. T = fal f(r) ",;,.2 + r292 + r2 sin26~2 da. Jao 

Exercises 7.2d (p. 751) 

x2 
1. (a) Parabolas y = c2 + 4c2 ' 

(b) Circle with center on x-axis. 

(c) y = c sin x - a. 
c 

2. y = ~1 + b for n > I, and y = a log x + b for n = 1. x n-

3. y = a(x - b)n(n+m) if n + m '* 0; y = aeb", if n = -m. 

4. ay" + a'y' + (b' - c) y = 0; for b = constant, 

1"'1 b byy' dx = - (y22 - Y12) 
"'2 2 

only depends on the end points of the curve y = y(x). 

'It 
5. Yl - yo < 2' 

6. Consider F (x, y) for fixed x as a function of y; let this function of y have 
a minimum for y = y. Then, F(x, y) ~ F(x, y) for a certain neighborhood 
of y and Fy(x, y) = O. Y will depend on the parameter x; [i.e., y = y(x)]. 
Then, for any neighboring function y, we have 

f"'l F(x, y(x» dx ~ f"'l F(x, y(x» dx, 
"'0 "'0 

where y (x) satisfies the equation Fy(x, y(x» = O. 
7. (a) y = O. 
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(b) Use Cauchy's inequality. For any admissible x, 

1 = y(l) - y(O) = Sol y' dx ;;;; J Ll 12 dx J Ll y,2 dx = ,/1, 

and the equality sign holds for y = x. 
8. Introduce l/r as new dependent variable in Euler's equation. The general 

solution is the line l/r = a cos 6 + b sin 6. 

Exercises 7.3b (p. 757) 

1. If v = l/f(r), then T is given by Exercise 2, p. 743: 

F = {(r) ./;'2 + r262 + r2 sin2 6 ~2. 

Euler's equation for the variable rp gives 

1.{2 r2 sin 2 A. 
Fj = 'I' F 'I' = constant = C 

along a ray. Now let the polar coordinates be chosen in such a way that 
the plane rp = 0 passes through the initial point and the end point; since 
rp = 0 at both these points, we have ~ = 0 for some intermediate point, 
by the mean value theorem, that is, C = 0; but then ~ = 0 for the whole 
ray, that is, rp == o. Hence the whole ray must lie in the plane rp = O. 

2. See Exercise1.Usingrpas parameter, we have to minimize r N62 + sin26drp, 
where r = constant. Introducing cot 6 as new dependent variable in 
Euler's equation leads to the general solution cot 6 = a cos rp + 
b sin rp, corresponding to a curve of intersection of the sphere with a 
plane through the center. 

3. See Exercise 1 above. Here in spherical coordinates we have 6 = con­
stant. Introducing r as dependent and rp sin 6 as independent variable 
yields the same integral to be minimized as in Exercise 8, p. 752. (The 
mapping of the point of the cone with spherical coordinates r, 6, rp 
onto the point in the plane with polar coordinates r, rp sin 6 preserves 
arc length). 

l/r = a cos(rp sin 6) + b sin(rp sin 6). 

4. The path has to be straight, since it has to have minimum length for 
given end points. We only have to find the minimum distance between 
two points constrained to move on two given curves, which is a minimum 
problem for a function of several variables with subsidiary conditions 
(cf. Chapter 3, p. 337). 

5. See solution to next problem. 
6. Let the end points be constrained to lie on the curves y = ((x) and 

y = g(x), respectively. Let the minimizing curve have end points (ao, 
{(ao», (bo, g(bo», and an equation y = u(x), where u(ao) = ((ao), u(bo) 
g(bo). Since u also is an extremal for fixed end points, it satisfies Euler's 
equation. Consider a family of curves y = u(x) + ell(X) with parameter 
e and end points (a, {(a», (b, g(b», where a = a(e), b = b(e) are solu-
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tions of f(a)= u(a) + &1)(a), g(b) = u(b) + &1)(b). The corresponding in­
tegral is 

1"(£) 
G(e) = F (x, u(x) + &1)(x» ../1 + [u'(x) + &1)'(X)]2 dx. 

a(£) 

For the extremal u we have the condition 0 = G'(O). We evaluate G'(O) 
as on pp. 743-744, using integration by parts to eliminate 7j'(x). 
Because u satisfies Euler's equation the only contributions arise from 
differentiating the limits in the integral for G and from the boundary 
terms in the integration by parts. Noticing that, for e = 0, 

da db 
[f'(a) - u'(a)] de = 7j(a), [g'(b) - u'(b)] de = 7j(b) 

and that 7j (a), 7j(b) are arbitrary, we find the relations 

o = 1 + u'(ao) f'(ao) = 1 + u'(bo) g'(bo) 

expressing orthogonality at the end points. 

Exercises 7.4a (p. 765) 

1. The law of conservation of energy gives 

T + U = T = ~(~;)2 = constant = ~ C2; 

hence, ds/dt = constant = C = initial velocity. 
Then Hamilton's principle asserts the stationary character of 

fl (T- U) dt= fl Tdt=-21C2f1 dt=-21Cf."lds; 
to to to .0 

the stationary character of Hamilton's integral implies. that the length 
of path is stationary. 

2. Let t be a parameter along the curve C. On the geodesic perpendicular to 
C at a point of C with parameter t, we use arc length s as parameter, 
counting s from the point on C. Then x = x (s, t), Y = Y (s, t), Z = Z (s, t) 
shall represent the curve obtained by laying off a fixed geodesic distance 
s along each geodesic perpendicular to C at the point with parameter t. 
Here, since s is arc length, we have x.2 + y.2 + Z.2 = 1; moreover, by 
formula (19), p. 765, x •• , y •• , Z.. are proportional to Gx, G", Gz, and 
G(x, Y, z) = 0 for all s, t in question. On C(i.e., for s = 0) we have by 
assumption x.Xt T y.Yt + Z.Zt = O. Then, 

d 
ds (x.Xt + Y.Yt + z.Zt) = )..(GxXt + G"Yt + GzZt) + X.X.t + Y.Y.t + z.z.t 

dG 1 d = ).. dt + 2 dt (x.2 + y.2 + Z.2) = O. 

Hence, X.Xt + Y.Yt + Z.Zt = constant = 0 for all s, which proves that 
the curves C' for which s = constant are perpendicular to the geodesics. 
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Exercises 7.4h (p. 767) 

1. From the differential equations for geodesics (p. 765) we find that for a 
cylinder (i.e., if G does not depend on z) dz/dt is constant; hence, the 
geodesics on a cylinder make a constant angle with the x, y -plane. 

y" 
2. (a) g(x) - J(l + y'2)B = o. 

6y"(y"2 + 4y' ylll) 2y"" 48y'2y "B 
(b) g(x) - (1 + y'2)4 + (1 + y'2)B + (1 + y'2)5 = o. 

(c) y + y" + y'''' = o. 
(d) (2 - y'2) y" = o. 

3. (a) tftd = (ax + bll)tftx + (bx + CIl)tftll + atftxx + 2btftx1l + ctftllll. 

(b) !),.2tft = o. 
(c) !),.2tft = o. 
au" + a'u' + u(b' - c) 4. = A = constant. 

u 

5. (a) Euler's equation gives 

f+ 2AU = 0; 

from this equation and fol tft2 dx = K2, we have 

±Kf 

u = j fol f2 dx • 

(b) For any continuous admissible tft we have 

1= f ftft dx ~ J Iolf2 dx J foltft2 dx = K J folf2 dx, 

the equality sign holding for tft = u. 
8. From the necessary condition (6b), p. 742, we find that 

I X
I (FIIIIYj2 + 2FII1J'YjYj' + F1J'1J'Yj'2) dx ~ 0 

xo 

for any Yj(x) vanishing at x = Xo, Xl. Let h and ~ be such that Xo < ~ - h 
< ~ < ~ + h < Xl. Define Yj(x) to be [(x - ~)2 - h2]2h-7/2 for Ix - ~I < 
h, and to be 0 elsewhere. For h ~ 0, the integral tends to cF 1I'II'(~' u(~), U'(~», 
where c is a positive constant. 

9. Problem really identical to standard isoperimetric problem. Solution is a 
circular arc, but since solutions are functions of x, there is an upper 
bound on permissible lengths in this problem, namely, 

2[(Xl - XO)2 + (Yl - YO)2] arc tan Xl - Xo • 
Xl-XO IYl-yol 
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Exercises 8.1 (p. 777) 

1. (a) Set oc = al + ia2, ~ = bl + ib2. 
For the example of multiplication, 

oc~ = (albl - a2b2) - i(alb2 + a2bl) = ;X~. 
(b) Follows directly from part (a) on passage to the limit of the real and 

imaginary parts of the partial sums. 

2. (a) From Exercise 1, P(oc) = p(a); hence, P(oc) = ° implies P(a) = 0, and 
conversely. 

(b) By long division express P(z) in the form 

P(z) = (Z2 - 2az + a2 + b2) Q(z) + ez + d, 

where Q(z) is a polynomial with real coefficients and e and dare 
real. Setting z = oc in this equation, obtain eoc + d = 0; whence, 

ea + d = ° and ieb = 0. 

Since b =1= 0, e = 0, and hence, d = 0. 
3. (a) Use the equation of a circle in the form 

(z - zo) (z - zo) = r2. 

Then Zo = oc - A2~, r2 = zozo - oca + A2~B. 
If A = 1, z = x + iy, the equation becomes that of a straight line, 
ax + by = e, where a = 2Re oc, b = 21m ~, e = loc 12 -I ~ 12. 

(b) Invert the transformation to obtain 

~ - I)z' z=---· 
yz' -oc' 

then show that 

I z - zll = A I z - z21 

becomes 

I z' - zl'l = A I YZ< - oc II z' - Z2' I. 
YZ2 -oc 

4. For x ~ 0. 
5. Use the comparison test. 
6. The coefficient of zn in the expansion of cos2z + sin2z for n > ° is 

(_1)n/2 f: (-l)v = (_1)n/2 f: (_l)v(n) = ° 
v=ov!(n-v)! n! v=o v 

[cf. Volume I, p. 110, Exercise 1 (b»). 
7. The series is convergent if, and only if, I z I < 1, for if I z I = e < 1, then 

1 ~\:::;;_~:::;;_l_ev 1 - zv - 1 - ev - 1 - e 
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and we may compare with the geometric series. If I z I > 1, then zv 1(1- zv) 
tends to -1 as v increases, whereas in a convergent series the terms 
must tend to O. If I z I = 1, each term of the series either is undefined or 
has absolute value ~ t and the series cannot converge. 

Exercises 8.2 (p. 786) 

1. Set f(z) = u + iv, g(z) = s + it. Taking the product, for example, we 
find for 

that 

and so on. 

U(x, y) = Re {f(z) g(z)} = us - vt 

V(x, y} = 1m {f(z} g(z}} = ut + vs 

Ux = uxs + uSx - (vxt + vtx) 

= VyS + uty + uyt + lJSy 

= uty + uyt + VyS + VSy = Vy, 

2. For f(z) = u + iv, on differentiating u2 + v2 = constant, we obtain the 
pair of equations 

uUx + vVx = 0, UUy + VVy = O. 

Replacing the second equation through the Cauchy-Riemann equations 
by one in derivatives with respect to x alone, we obtain a system with 
only the solution ux = Vx = 0 (unless we are dealing with the trivial 
case u 2 = v2 = 0). Consequently, Uy = Vy = 0 and the result follows. 

3. (a) -(c) Everywhere continuous; not differentiable. 
(d) Continuous for z =1= 0: not differentiable. 

4. If z = ret~, ~ = ~ + iTj, then 

~ = ~(r +~) cos ~ 

Tj = ~(r - ~) sin ~. 
If r = constant = c, then 

~2 + Tj2 _ l' 
1 1 - , 
4(c + l/c)2 4(c - l/c)2 

if ~ = constant = c, then 
~2 2 

-"- + Tj =1 
cos2 c cos2 C - 1 

(cf. p.256, Exercise 8). 
5. From 8.1, Exercise 3b we know that the transformation maps circles 

into circles. Since the two points are fixed, circles through them map into 
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circles of the same family in both the transformation and its inverse. 
Since the mapping is conformal, the same is true of the orthogonal family 
of circles. 

6. Set z = x + iy, ~ = liz = ~ + iT). Thus, 

~=X2+Xy2' T)=~ x2 + y2 

and we recognize inversion as the composition gf(z) of liz and reflection 
in the x-axis, g(~) = t Since reflection is conformal-with reversal of 
the sense of angles-and liz is analytic, inversion is conformal. Re­
flection maps circles into circles, and liz, a general linear transformation 
(see Exercise 5), does the same; hence, inversion does the same. The 
Jacobian of inversion is the product of those for reflection and for liz, 
hence, for inversion it is 

-I fez) 12 = -I z112 = (x2 ~ 1y2)2 . 

7. 1~12 = ~~ = ex~zz + ~~ + t~z + ii~Z~ 
~~zz + exii + ex~z + ii~z 

Now for exii - ~~ = 1 the difference between the numerator and the de­
nominator is 

zz -1; 

so the numerator is greater than the denominator for 1 z I> 1, and 
smaller for 1 z 1 < 1. If ~~ - exii = 1, the converse is the case. 

8. First transform, by putting ~ = az + b, into the unit circle; then 
apply the transformation 

Exercises 8.3 (p. 796) 

1. (a) Write the integrand in the form 

~ (z ~ 1 + z ! 1) . 
The first term in parentheses is analytic in the neighborhood of 
z = -1; hence, its integral around a small circle centered at -1 is 
O. Similarly, the integral of the second term around a small circle 
centered at 1 is O. To evaluate the integral in the circle about 1, 
set z = rete to obtain rci. Similarly, for the small circle about -1, the 
integral is 3rci. 

(b) Take a path circling 1 in one sense three times as many times as it 
circles -1 in the other; for example, (see Fig. 8.12). 
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2. 

Figure 8.12 

atZat~ = exp[z(log at + 2n7ti)] exp [~(log at + 2m7t'i)], 

whereas 

atZ+~ = exp[(z + ~) (log at + 2k7t'i)]. 

Thus, addition of exponents is valid, provided the same branch of the 
logarithm is used throughout; that is, n = m = k. Note that this is the 
best one can do except in very special cases, for if the addition theorem 
is valid, then 

k(z + 0 = nz + m~ + p, 

where p is some integer. If z and ~ are linearly independent when 
considered as two-component vectors and n '* m, the components of 
z = a + ib and ~ = at + i~ are restricted by 

(n - m) (af' - atb) _ 
~ + b -p, 

an integer, and if n = m '* k, then ~ + b = o. Neither condition is 
generally satisfied. 

For the second law, 

whereas 

za~a = exp [at(log z + 2n7t'i)] exp [at(log ~ + 2m7t'i)] 

= exp {ot[log z + log ~ + 2(n + m)7t'i]} , 

(zoa = exp {at[log(z~) + 2k7ti]) . 

Here, equality need not even hold if k = n + m because if z = re'o 
and ~ = peH , the conditions -7t' < 6 ;;;;; 7t', -7t' < f/J ;;;;; 7t' do not force 6 + f/J 
to satisfy the same inequalities. 

For the third law, 

Similarly, 

(atZ)~ = eI; log atZ = exp {~[z(log at + 2n7t'i) + 2m7t'i]} 

= exp (z~ log at + 2z~n7t'i + 2~m7t'i). 

(atC)Z = exp (z~ log at + 2zYmi + 2zQ7t'i) 
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and 

exZ, = exp(z~ log ex + 2z~r1t'i), 
where m, n, p, q, r are arbitrary integers. Thus, we generally expect 
equality to hold only if m = q = 0 and n = p = r. 

The best one can say is that it is possible to pick branches of the 
many-valued functions involved so that the laws of exponents hold, but 
we must be cautious about choosing them properly. 

3. (a) The values of it are exp [(2n - ~)1t'], for integral n. 

(b) Set ~ = ~ + i1), z = relO, -1t' < 6 ~ 1t' and a = log r = log)z). Then, 

z, = exp[a~ - (6 + 2k1t')1)] exp {i[a1) + ~(6 + 2k1t')]). 

The condition is that a1) + ~(6 + 2k1t') be an integral multiple of 1t' for 
each choice of integral k. Setting k = 0, 1, we obtain the condition 
~ = j /2, where j is any integer and, hence, for a*-O (r *- 1), 

1) = (/1t' - ~j6)/a, 

where I may be any integer. Thus, for any z not on the unit circle, 
there exists an exponent ~(j, l) for each pair of integers j, I such that 
all values of z, are real. If a = 0, the foregoing condition on 1) above 
is replaced by the condition ~6 = p1t', where p may be any integer, 
and 1) is now arbitrary. If p *- 0, we see that 6 = 21t'pfj must be a 
rational multiple of 21t'. If p = 0, ~ may be zero and then 6 may be 
arbitrary. 

(c) Yes. Set z = x + iy, ~ = ~ + i1), where y = 1) = O. If x> 0, the 
solution of part (b) yields ~ = h where j is any integer. If x < 0, 
part (b) yields only integral values of 1; = n. . 

4. For z = x + iy, we may certainly differentiate under the integral sign 
with respect to x and y, since these derivatives are continuous with 
respect to the parameters and convergence of the integrals of the 
derivatives at the lower limit t = 0 is uniform for x > e: > O. Since the 
Cauchy-Riemann equations hold for the integrand, they must then hold 
for the integral. Integration by parts yields the functional equation. 

5. Use the theorem in Volume I, p. 525, to show that the series is absolutely 
convergent. . 

6. (a) The value of the integral round the small circular detour tends to 
zero as the circle becomes smaller. If we put z = eiO on the unit 
circle and z = x, z = iy, respectively, on the axes, Cauchy's theorem 
gives 

o = Sol ( X + ~) m x n- l dx + i 10,,/2 (eiO + e-iO)m e inO d6 

- i 11 (iY + ~r (iy)n-l dy 
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= 501 (x + ~r X n- 1 dx + i· 2m 5o"/2COsm6 e'n9 d6 

_ e,,,(n-m)/2501 ( _ y + ;) m yn-1 dy; 

by equating the imaginary parts of this equation, we get 

L
"/2 'It"(n - m) r1 ( l)m 

2m 0 cosm6 cos n6 d6 = sin 2 Jo - y + Y yn-1 dy 

1 'It"(n - m)L1 = - sin (1 - 1j)m 1j(n-m-2)/2 d1j 
2 2 0 

1 (. 'It" ) ( n - m) = 2 sm 2 (n - m) B m + 1, -2-

(cf. p. 508). 

(b) Use the relation 

( . (n - m)'It") r(n - m) 'It" 
sm 2 ,-2- = III - (n - m)/2] 

(cf. p. 508). 

Exercises 8.4 (p. 805) 

1. The integrand has a continuous derivative with respect to z; conse­
quently, differentiation under the integral sign is permissible. See 
Section 1.8b. 

2. It is easily seen that 

h(z) = ~ J f(~) zn d~ 
2'1t"l ~ - z~n 

is an analytic function of z. By differentiating under the integral si~n 
and using Leibnitz's rule (cf. Volume I, p. 203), we find that h(Jl) (z) is 

-..E v! n • (n - 1) ••• (n - !L + v + 1) -- d~ 1 Jl (!L) f f(O zn-Jl+V 
27tl v=o v (~ - Z)V+1 ~n 

!L! U ( n ) J f(O Zn-Jl+v 
= 27ti v~ !L - v (~ _ Z)V+1 ~ d~. 

Only the terms with !L - v ~ n differ from zero, as otherwise ( n ) 
!L- V 

vanishes. On the other hand, a term with !L - v < n vanishes for z = 0; 
if !L < n, there are no other terms, so that h(Jl) (0) = o. If!L G n, there 
remains only the term with !L - v = n, so that 

h<Jl)(O) = !L!.I -~d~ =f<Jl)(O). 
27tl (~ - z)n+1 

3. By the Cauchy-Riemann equations the partial derivatives Vx and Vy of 
v are given; a function v with these derivatives does exist, since the 
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condition of integrability Uxx + Uyy = ° is satisfied [see p.104. formulae 
(75a, b)]; v is uniquely determined apart from an additive constant 
c and is given by the curvilinear integral 

f (x. y ) 
v(x,y) = (Vy dy + vx dx) + c. 

(xo.yo) 

It also follows from the Cauchy-Riemann equations that v is a potential 
function. 

4. At z = 1, rri; at z = -1, 3rri (Section 8.3, Exercise 1). 
5. Choose a circle of radius R centered at 0, with R = I ~ I so large that 

R> 21zl. Then, 

6. 

1_1 __ !I_ Izl < 21z1 
~ - z ~ - I ~ 1211 - z/~ I R2' 

Consequently, for the integral, obtain the bound 

If(z) - f(O) I ~ 2Ml z 1/R. 
Pass to the limit as R tends to 00. 

where C is the circle of radius p about the origin. 
7. By assumption I O(n I> 0. Consequently, 

(i) IP(z)1 = Izln I O(n + O(n-l + ... +~ I 
z zn 

1 > 21 z I n I O(n I , 

provided we take 

I I {I 2 I O(n-ll + . . . + I 0(0 I} . 
z > max , I O(n I ' 

for, then, 

O(n + - + ... + - ~ O(n - -- + ... +--I O(n-l 0(01 I I {IO(n-ll 10(0 I} 
z zn Izl Iznl 

> I I I O(n-ll + ... + 10(0 I I O(n I 
= O(n - I z I > -2- . 

Now, since P(z) has no roots, f(z) is defined everywhere. But, since 
Izl> 1, 

2 2 
I f(z) I < I O(n II z In < I O(n I . 

Consequently, f(z) is bounded and therefore constant. We conclude 
from the first of the foregoing inequalities that f(z) = 0, which con­
tradicts f(z) P(z) = ~. 

8. (a)-(b) The residue of f'lf at 0( is 2rriI. Set f(z) = (z - O()p <P(z), where 
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? is analytic, ?(oc) =1= 0, and p represents either the order n of the 
zero or -m for the pole for parts (a) and (b), respectively. Then 

f'(z) P?(z) + (z - oc) ?'(z 
f(z) = (z - oc) ?(z) 

Cauchy's integral formula then shows that I is the value of [P?(z) 
+ (z - oc)] ?'(z)/?(z) when z = oc; that is p. 

(c) Apply the theorem of residues (p. 805). 
9. (a) The number of roots of the equation P(z) + 6Q (z) = 0, by Exercise 

8, is 

1 r P'(z) + 6Q'(z)d 
27tiJc P(z) + 6Q(z) z. 

The denominator differs from zero for every 6 for which 0 ~ 6 ~ 1 at 
any point of C; the whole integral is therefore a continuous 
function of6. As its value is always an integer, it is constant and, 
hence, the same for 6 = 0 and 6 = 1. 

(b) If 

1 lal<r4 --, 
r 

then r > 1; so the equation Z5 + 1 = 0 has five roots inside the 
circle I z 1= r; if we put P (z) = Z5 + 1, Q (z) = az, we have on the 
circle I z I = r, 

I Q(z) I = I a I r < r 5 - 1 < I Z5 + 11 = I P(z) I· 
10. From the lower bound (i) in Exercise 7 for I P(z) I, no root can lie 

outside or on a sufficiently large circle about o. Applying the technique 
of estimation used in (i) in Exercise 7, we find 

f'(z) = ~ + R( ) 
f(z) z z, 

where the remainder R(z) satisfies I R(z) I < MIl Z 12 outside a circle 
of sufficiently large radius r. Take r so large that all the roots of P lie in 
its interior. Applying the result of Exercise 8(c), we obtain for the 
number of roots, the integral about the circle of radius r 

1 J f'(z) - 1 J 
21ti f(z) dz - n + 27ti R(z) dz. 

Since 

J2~iJ R(z) dzl < ~, 
the remainder integral tends to zero as r -+ 00. 

11. (a) Follow the method of solution for Exercise 8(a). 
(b) If the roots are OCl, OC2 , ••• , OCj, if the poles are located at ~I, ~2, 

... , ~k, and if these have multiplicities nl, n2, ... , nj and ml, 
m2 , ... , mk, respectively, the integral has the value 
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nllXl + n21X2 + ... + njlXj - ml~l - m2~2 - ••• - mk~k. 

12. Since fez) = eZ is everywhere analytic, since f'(z)!f(z) = 1, and since 
the integral I of Exercise 8(a) must therefore vanish on any circle, 
no matter how large, fez) can have no roots. 

Exercises 8.5 (p. 814) 

1. (a) Expressing the functions in the neighborhood of IX by 

fez) = ao + al(Z - IX) + ... + an-l(Z - lX)n-l + ... 
and 

g(z) = (z - 1X)-n[C-n + C-n+1(Z - IX) + ... + C-l(Z - lX)n-l + ... ], 
we obtain the residue 

n-l 
21ti r: aVC-V-l' 

v=o 

(b) In the foregoing solution, use Ck = 0 for k> -n and an-l = 
f(n-l)(IX)!(n - I)!. 

2. Set 

fez) = (z - 1X)2tjJ(Z) = (y - 1X)2 [f"~IX) + f"~IX) (z - IX) + ... ] 

and determine the first·order coefficient in the expansion of IN(z). 

3. (a) 1t!.J2. 
(b) Use the result of Exercise 2 for the residues at e i1t14 and e3i1t14 to 

obtain 31t!4.J2. Here, for fez) = (1 + X4)2,{"(Z) = 24x2(1 + x 4) + 32x6 
andf"'(z) = 48x(1 + x4) + 9·32x5• 

(c) The integrand has simple poles at the points Zk = w2k- 1 (k = 1, 
2, ... , 2n), where w = ei1t/2n is the principal (4n)-th root of unity. 
For k ~ n, the poles are in the upper half-plane. Thus, from formula 
(8.21b) the integral is equal to 

n Zlc2m 1ti n 
I = 21ti r: ---- = - - r: Zk2m+1 

k=1 2nzk2n- 1 n k =1 ' 

where we have used Zk2n = -1. Entering the expression for Zk in this 
last sum, we obtain I in theJorm of a geometric series and then 
sum to obtain the result: 

1ti n 1tiw2m+1 1_(w4m+2)n 
1=- --- r: [w4m+2]k = - --- =---'------''--

nw2m+1 k=1 n 1 - w4m+2 

1t 2i 1t 

n w2m+1 - w-(2m+1) n sin[(2m + 1!2n)1t] . 

4. The left-hand side of the formula is the sum of the residues of the function 
zk!f(z) divided by 21ti and is therefore equal to 

1 f Zk 
21ti fez) dz 
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round a circle enclosing all the roots otv. But this integral tends to zero 
as the radius of the circle tends to infinity (the center remaining fixed). 

5. Because x cos x is odd and x sin x is even, t~e integral is equal to 

1 r-
2iL_ 

xe'Z 
~+ 2 dx. x c 

The residue in the upper half-plane of zefz/2i(z2 + c2) is t"e- I c I. Take 
Z = r (cos 6 + i sin 6) and integrate over the closed path C from -r to r 
along the x-axis and over the semicircle I Z I = r in the upper half-plane. 
We need only prove the part of the integral over the semicircle tends 
to zero in the passage to the limit as r -> 00. We find for the integral over 
the half circle 0 ~ 6 ~ ", 

J= d~ l it r2e'ge-r sin 9 e'r cos 9 

o r 2e2f9 + c2 

Choose r so large that I r 2e2f9 + c2 1 > ~ r2; for example, choose r2> 2c2• 

It follows that 

11t/2 11t/2 2" I J I < 4 e-r sin 9 d6 < 4 e-2r9/1t d6 < - . 
o 0 r 

Miscellaneous Exercises 8 (p. 818) 

1. (Zl - za)/(Z2 - Za) must be real. 
2. Let arg Z be the argument of Z = re'9; that is, arg Z = 6 + 2n". The 

3. 

. -+ -+ 
directed angle from the segment ot(3 to the segment otr is 

y-ot 
arg (3 _ ot + 2pn-, 

where p is an integer. The given equation tells us that 

arg y - ot = _ arg y - (3 + 2n". 
(3-ot ot-(3 

Thus, taking the segment joining ot and (3 as the base of the triangle, 
we see that the angles from the base to the sides are equal and opposite 
in sign. Conversely, equality of the base angles· yields the given 
equation. 

.6. = (Zl - za)/(z2 - za) 

(Zl - Z4)/(Z2 - Z4) 

must be real, for if C is the circle through Zl, Z2, Za, we may transform 
C by a linear transformation ~ = (otZ + (3)/(yz + 8) into the real axis 
(cf. Section 8.2, Exercise 8). By Section 8.2, Exercise 9, .6. is unchanged. 
Then a necessary condition that the image of Z4 shall lie on the same 
circle as the images of Zl. Zz, Za is that it be real, which is equivalent to 
.6. being real. 
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4. The equality to be proved is 

JIZI - z211zs - z41 + JIZ2 - zsllzl - z41 = JIZI - zsllz2 - z41 

or 

1 + JI (Zl - Z2) (zs - Z4) J = JI (Zl - ZS) (Z2 - Z4) J 

(Z2 - ZS) (Zl - Z4) (Z2 - zs) (Zl - Z4) 

Now the expressions under the square roots are invariant in a linear 
transformation (cf. Section 8.2, Exercise 8, 9). If by a suitable linear 
transformation we transform the circle into the real axis, we have only 
to prove the relation AB • CD + BC • AD = AC • BD for four points 
on a straight line, where it is trivial. 

5. ~ = e'Z takes every value except ~ = 0, as is easily seen from the 
relation e'" = e-Y(cos x + i sin x). Now we have to choose ~ so that 

e = cos Z = ~(~ +~) ; 

this quadratic equation always has a solution 

~ = e ± Je2 -1. 

and this solution is not zero, so that a corresponding Z exists. 
6. Cf. Exercise 5. If ~ = e'z, then 

or 

_ 1 ~ - (1/~) _ 
tan Z - i ~ + (1/~) - e 

~=J1+~e; 
1- ze 

there is a finite ~ =1= 0 only when e =1= ± i; hence, tan Z = e only has a 
solution if e is neither +i nor -i. 

7. If Z = x + iy, cos Z is real if x = 7tn or y = 0, and sin Z = 0 if x = 
7tn + 7t/2 or y = 0 (where n is an integer). 

8. (a) r = 1 (for I Z I > 1 the individual terms tend to 00; for I Z I < 1 com­
pare with the geometric series). 

(b) r = o. 
(c) r = 1. 

9 (a) Integrate efz/(1 + z4) over upper semicircle: 

7t../2 -v'2/2(. J2 J2) 4 e sm 2 +cos 2 · 

(b) Integrate z2efz/(1 + Z4) over upper semicircle: 

7t../2 -v'2/2( J2 . J2) 4 e cos 2 - sm 2 . 

(c) Integrate e'Z/(q2 + Z2) over upper semicircle: 
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2~e-q. 

(d) Integrate XU-1/[(x + 1) (x + 2)J over a region bounded by a large cir­
cle about the origin and slit along the positive real axis: 

n(2U- 1 - 1) 
sin nIX 

10. (a) +2ni at z = 2nn, -2ni at z = (2n + l)n. 
(b) +2ni at z = 2nn + 3n/2, -2ni at z = 2nn + n/2. 
(c) Usethefunctionalequationr(z) = r(z + v + l)/z(z + 1) ••• (z+ v); 

(-l)n 
--,- 2ni at z = -no 

n. 

(d) 2ni at z = nni. 

. . (eZHY - e-Z-(Y) (eZ-(Y _ e-ZHY ) 
11. Ismh (x + zy)12 = 2 2 

1 
= 2 (cosh 2x - cos 2y) 

~ ~ (cosh 2x - 1). 

Integrate along the boundary of a square with sides x = ± n(n + i) 
and y = ± (n + i), where n is an integer. As n -+ 00, the integral 
tends to zero; hence, the sum of the residues tends to zero. 

12. Write 

13. 

cot nt = cot nt + z cot nt . 
t - z t t(t - z) , 

cot nt is bounded on the square Cn, and the integrals of (cot nt)/t over 
opposite sides of the square almost cancel one another; hence, 

lim r cot nt dt = lim r z cot nt dt = o. 
n+~Jcn t - Z n-~ JCn t(t - z) 

If we put together residues of opposite poles, the sum of the residues 
converges and we obtain 

cot nx = 2x (~+_1_ +_1_ + ••• ) 
n 2X2 x2 -!2 x2 -22 

(cf. Volume I, p. 602). 

_1_ = 1 _ t + t2 - + ••• ± tn- 1 + (-l)n ~ . 
l+t l+t 

Hence, 
Z2 Z3 zn 

log (1 + z) = z - - + - - ••• ± - + Rn 
2 3 n' 

where 
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Rn = (-I)n rz -1 t n dt. 
Jo + t 

If we take z = eta and the straight line from 0 to eta as path of inte­
gration, we have, for eiO oF -1. 

IRnl=lrll tn "a dtl ~ .1 r1 tndt = Jo + e' t m Jo 
1 

m(n + 1)' 

where m denotes the minimum of 11 + eiOt I for 0 ~ t ~ 1. Hence, if 
z = eiO oF -1, Rn tends to O. 

14. If x oF 0 and if C' is a contour in the region in which f is regular and 
contains y but not 0, then, by p. 801, 

!!!!...- yf(y) = El r tf(t) dt 
dyn (y- a)n+1 27ti Jc' (t + a)R+l (t - y)R+l . 

If we put a = y = Jx, the latter integral becomes 

El r tf(t) dt 
27ti J c' (t2 - X)R+l . 

If we then substitute t2 = -r, the integral becomes 

~ r _f(-F.) d-r 
27ti Jc (-r-x)n+1 ' 

where C is a contour containing x but not 0; the integral is equal to 

1 d n -
2dxJ (Jx). 

15. (a) ~ (1 1 ) 
f(z) = fl (2v - I)Z - (2v)Z ; 

now 

1 __ I_=z(2v ~ dy::; JzJ _ JzJ 
(2v - l)z (2v)z J 2v-l yZ+1 - I (2v - I)Hll - (2v - 1)1+X' 

and the series .E 1/(2v - l)1+X is absolutely convergent for x > o. 
v 

1 1 1 2 2 2 (b) (1 - 21-z)~(Z) = 1 + - + - + - + ... - - - - - - - ... 
2z 3Z 4Z 2Z 4Z 6Z 

111 = 1 - - + - - - + ... = f(z). 
2z 3z 4z 

(c) lim (z - 1) ~(z) = f(l) • lim z - 1 = f(n = 1 
z-l z-l 1 - 21- z g'(I) , 

where 

g(z) = 1 - 21- z• 
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Index 

Abel's integral equation, 512 
Absolute value, 769 
Absolutely convergent, 771 
Acceleration, normal-, 214 

tangential-, 214 
-vector, 214 

Active interpretation of transformation, 
148 

Additivity for, -areas, 372 
-integrals, 93 
-masses, 387 

Admissibility for variational problem, 740 
Affine, -coordinates, 144 

-mapping, 148, 242 
-transformation, 179, 276 

Algebraic functions, 13,229 
Alternating, -differential, forms, 307, 324 

-functions, 167, 170,175 
Amplitude of complex number, 769 
Analytic, -extension, 814-818 

-function, 780, 791 
Anchor ring, 285 
Angle, -between curves, 234 

-between curves on surface, 285 
-between directions, 127 -131 
-between surfaces, 239 
solido, 619, 720 

Angular magnitude, 721 
Anticommutative law of multiplication, 

181 
Apparent magnitude, 721 
Approximation, linear-, 50 

polynomial-, 64 
successive-, 267 
Weierstrass theorem on, 81 

Arc tangent, power series, 777 
principal branch, 12 

Archimedes'-principle, 52, 607 
Area, 367-374,515 

additivity foro, 372, 522 

943 

basic properties, 519-523 
-derivative, 566 
inner-, 369,517 
-law, 667 

of curved surface, 424, 428, 540 
-of hypersurface, 453, 460 
-of n-dimensional sphere, 455-458 

of polygon, 203 
-of spherical surface, 426 

outer-, 369, 517, 520 
-swept out by moving curves, 448-453 
-vector, 621 

Argument of complex number, 769 
Associative law, 132, 152 
Astroid, 298 
Averaging of function, 82 

Ball,9 
Base of vectors, 143 
Beam, loaded, 675-678 
Bernoulli's, -<lifferential equation, 683, 690 

-numbers, 802 
Be~elfunction,475 

Beta function, 508-511 
Binomial, coefficients, 510 

series, 801-802 
Binormal vector, 216 
Bohr-Mollerup theorem, 499 
Bolzano-Weierstrass principle of the point 

of accumulation, 107 
Boundary, -of oriented region, 580 

-of set, 6, 8, 10 
-value problem, 719, 724 

Bounded sequence, 2 
Brachistochrone problem, 737,751,756 
Buoyancy, 607 

Cable, loaded, 672-675 
Calculus, -of errors, 52-53 

of variations, 737 
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Cardiod, 302 
Cartesian, coordinate system, 127,146,156 

product of sets, 117 
catenary, 751, 768 
catenoid, 287 
Cauchy~Riemann equations, 58, 288, 780, 

786 
cauchy-Schwarz inequality, 129, 182, 343 

for integrals, 501 
Cauchy'S, -convergence test, 3, 108 

-formula,799 
-symbol,28 
-theorem, 789, 803 

Caustic, 302 
Cell,lO 
Center of niaSS, 432 
Centroid, 432 
Chain rule of differentiation, 55 
Characteristic function of set, 526 
Circle of convergence, 773 
Circular disk, 5, 6 
Circulation, 572,615 
Clairautequation, 296,708 
Oosed, -set, 8 

-differential form, 314 
Oosure of set, 9,10, 11, 118 
Columns of matrix, 147 
Commutative law, 132 
Compact, -set, 86, 109 

-support, 492 
Comparison test, 772 
Complement of a set, 116, 118, 119 
Complementary minor, 189 
Components, -of set, 102 

-of vector, 122, 131, 143 
Compound, -functions, 53-55, 62-63 

pendulum, 436-438 
Cone,59 
Confocal, -conics, 256 

-parabolas, 234, 701 
-quadrics, 287 

Conformal transformation, 256, 288, 785, 
786 

Conjugate, -functions, 803, 805 
number, 767, 777 

Connected, -region, 102 
simply-, 103 
-surface, 579 

Connectivity, 358 
Conservation, -of energy, 656-658, 759 

of mass, 567,571,603 
Conservative field, 616, 657 
Constraint, 340 
Content, 369,515-517 
Continuity, -and partial derivatives, 34 

-equation, 571, 603 
modulus of-, 67 
-of integral with respect to a parameter, 

74,464 
uniform-,112 

Continuous, -deformation, 103 
-function, 17-22, 112-113 

Continuously differentiable, 42 
Contour integration, 807 -814 
Convergence, absolute-, 771 

Cauchy's intrinsic test foro, 3 
circle of-, 773 
-of improper integrals, 411 
of sequence, 2 
radius of-, 773, 802 
uniform-,771 

Convex, set, 102, 103 
functions, 499-500 
hull,739 

Coordinate(s), affme-, 144 
Cartesian-, 127, 146, 156 
-curves, 247 
curvilinear-, 246, 251 
cylindrical-, 250 
focal-, 256, 257 
general-, 249 
-lines on surface, 282 
-net, 243, 247 
parabolic-, 248 
polar-, 248 
right-handed-, 184 
spherical-,249 
-surfaces, 250 
-transformation of, 246 
-vector, 129, 133, 143 

Cosines, law of, 71, 127 
Coulomb's law, 445,714 
Cramer's rule, 163, 177 
Critical points, 326, 352 
Cross product of vectors, 181, 182 
Curl of a vector, 209, 313 
Curvature, center of-, 213, 214, 232 

-of curve, 213, 230, 232 
radius of-, 213, 232 
-vector, 213 



Curve(s), coordinate-, 247 
curvature of-, 213, 230, 232 
discriminant-, 293 
double points of-, 360 
envelope of-, 293 
evolute of-, 301 
family of-, 291-302 
-in implicit form, 230-237 
isolated point of-, 361 
length of-, 283 
multiple point of-, 236 
normal of-, 231 
parallel-, 365 
pedal-, 303 
polygonal-,112 
sectionally smooth-, 88 
singular point of-, 236, 360 
space-, 282 
tangent of-, 212, 231 
tangential representation of-, 365 
torsion of-, 216 

Curvilinear coordinates, 246-251 
Cusp, 299, 361 
Cut-off function, 494 

Deformation, 244 
Degenerate transformation, 274 
Degree, -of freedom, 757 

-of mapping, 562 
-of polynomial, 13, 119 

Density, 386, 566 
Dependent, -functions, 272, 273, 684 

linearly-, 137, 684 
-variables, 11 
vectors, 137 

Derivative, -at boundary points, 27 
directional-, 43, 45, 206 
exterior-, 312 
Fr~chet-, 268 
normal-, 557 
-of an implicit function, 223 
-of function of complex variable, 779 
-of mapping, 268 
-of vector, 212 
partial-, 27 
radial-, 45, 62 

Determinants, 160-202 
definition of-, 166-170 
expansion of-, 170, 187 
functional-, 253 
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geometrical interpretation of-, 180-187 
Gram-, 193 
Jacobian-, 253 
nth order-, 171 
-of matrix, 170 
matrix, 175 
of product, 172 
second order-, 161 
third order-, 161 

Diagonal,-rule, 162 
-matrix, 177 

Diameter of set, 376,523 
Difference, of function, 66 

of points, 125 
Differentiability, 40-42 

complex variable, 779 
Differential, exact-, 314 

-of function, 49-51 
-of higher order, 50 
-operator, 209, 684 
total-, 49, 50, 314, 322 

Differential equations, 654-734 
constant of integration foro, 699 
existence and uniqueness of solution of-, 

702-706 
fundamental theorem on linear-, 687 
homogeneous-, 688 
integral curves of-, 697 
integration of-, 656 
linear-, 680, 696 
non-homogeneous-, 691 
-of family of curves, 699-702 
-of rust order, 678-682 
-of higher order, 683-690 
-of second order, 688 
ordinary-, 654-712 
partial-, 713-735 
-systems of, 709-710 
-with constant coefficients, 696, 699, 

812-814 
Differential form, alternating-, 307 -324 

closed-, 314 
exterior-, 316 
integral of-, 589-601, 647-653 
linear-,84 
non-alternating-, 308 
quadratic-, 283 

Differentiation area-, 565 
change of order of-, 36-39 
-for inverse functions, 252 
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-to fractional order, 511-512 
under the integral sign, 74-80, 466-468 

Dipole, 717 
Dirac function, 674 
Direction, -cosines, 129 

-numbers, 130 
Directional derivative, 44 
Dirichlet's discontinuous factor, 479 
Disconnected,102 
Discontinuous, 18 
Discriminant, 304, 347 
Disjoint sets, 116 
Disk, 5, 6 
Distance, -from hyperplane, 135 

-from surface, 343 
-of points, 127, 146 

Distributive law, 132, 152, 165 
Div, 208 
Divergence, -of a vector, 208-210 

theorem, 549, 554, 637-642, 651 
Domain of a function, 11, 12 
Double, -integral, 80, 374-386 

-integral over oriented region, 589-592 
-layer, 717, 719, 720 

Doublet, 717 

Element of matrix, 147 
-of area, 425, 628 

Elementary surface, 624-627, 645 -647 
Ellipsoid, 240 

greatest axis of-, 345 
moment of inertia of-, 443 
momental-, 443 
volume of, 417,462 

Elliptic integral, 78 
Energy, conservation of-, 656, 657, 759 

kinetic-, 656, 758 
potential-, 657 

Envelopes, 292-295, 303-306, 735 
Epicycloid, 302 
e-neighborhood, 1, 9 
Equilibrium, 659-663 
Equipotential surfaces, 715 
Errors, 52-53 
Eulerian integrals, 497 -5 11 
Euler's, -Beta function, 508 

-constant, 505 
-differential equation, 743,748,755,761, 

766 
-partial differential equation for 

homogeneous functions, 120,761 
-representations of motion, 363 

Even permutation, 170 
Evolute, 301-302 
Exp, 457 
Exact differential form, 84 
Exponentialfunction,782-785,792,793 
Extension of function, 20 
Exterior, -content, 517 

differential forms, 312-313, 321-324 
-Jordan measure, 517 
-normal, 580, 633 
-point, 7, 9, 118 

Extremals, 755 
Extreme values, 325, 326, 333, 334, 336, 

345 

Families, of curves, 290, 291 
of surfaces, 291 

Fermat's principle of least time, 740 
Field, direction-, 697 

gradient-, 352 
vector-, 204 

Final point of vector, 125 
Fixed point of mapping, 270, 359, 787 
Fluid flow, 602-605 
Flux, 597, 732 
Focal coordinates, 256, 611 
Folium of Descartes, 224, 238 
Force, electric-, 733 

field of-, 204 
flux of-, 597 
gravitational-, 207,655 
magnetic-, 733 
surface-, 606 

Form(s), 13,83,84 
alternating-, 168, 169, 175 
bilinear-, 164, 165, 167,168,179 
differential-, 84, 283,307-324 
linear-, 83,163,164 
multilinear-, 166, 169, 175 
quadratic-, 165, 347 
trilinear-, 165, 168 

Fourier, -integral, 476-496 
-integral theorem, 477,481,485,491 
-transform, 478, 491 

Fr~chet derivative, 268 
Free surface, 606 
Freely falling particle, 658 
Frenet's formulae, 216 



Fresnel's integrals, 473 
Function(s), 11, 19 

algebraic-, 13, 229 
alternating-, 167-170 
analytic-, 780, 791 
characteristic-, 526 
compound-, 54, 55, 62 
continuous-, 17,18, 19,20,112 
conjugate-, 803, 805 
convex-, 499 
cut-off-, 494 
dependent-, 273-275, 684 
differentiable-, 41, 42, 45 
domain of-,ll, 12, 16, 17 
extreme values of-, 333 
geometric representation of-, 13-15 
harmonic-,719 
Hb1der-continuous-, 19 
implicit-, 218-230 
independent-, 274 
inverse-, 252 
limit of-, 19 
Lipschitz-continuous-, 19 
many valued-, 814 
-of class Cn,42 
-of compact support, 492 
-of functions, 53 
potential-, 719, 803, 805 
rational-, 18 
rational integral-, 12 
support-, 365 
transcendental-, 229 
uniformly continuous-, 18 
variation of-, 742 

Functional,740 
Functional equation of gamma function, 

498 
Fundamental quantities of surface, 283 
Fundamental system of solutions, 688 
Fundamental theorem, -of algebra, 806 

-on integrability of linear differential 
forms, 95,104,616 

-on linear dependence, 138, 158 

Gamma function, 497-508,818 
Gauss, divergence theorem, 544, 597 -610, 

637-642,651 
-infinite product, 506 

Gaussian fundamental quantities of surface, 
283 

Geodesics, 739, 757,765 
Geometric series, 771 
Global,222 
Grad,206 
Gradient, -field, 352 
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-vector, 206, 207,210,231 
Gram determinant, 193, 194 
Gravitational, -constant, 207, 655 

-field of force, 207, 655 
-potential,439 
-vector field, 622 

Green's, 543 
-integral theorems, 556-558, 607-608 

Guldin's rule, 429, 452 

Half-spaces, 135 
Hamilton's principle, 757,758 
Heine-Borel covering theorem, 109-110, 

119 
Helix, 92,767 
Hemisphere, 14, 279 
Hermite polynomials, 71 
Heron's formula, 341 
Higher order of vanishing, 22 
Holder, -condition, 19 

-continuous, 19 
-inequality, 343 

Holomorphic, 780 
Homogeneous, -differential equations, 684, 

688 
-fluid,604 
-functions, 119-121, 124 
-linear system of equations, 138-140 
-medium, 571 
-polynomials, 13, 119 
positively-, 120 

Homotopic, 103 
Huyghens' theorem, 435 
Hyperbolic paraboloid, 14 
Hyperboloid, 280, 287 
Hyperplanes, 133-135,201 
Hypersurface, 453, 460 

Identities, 252 
Identity, mapping, 126, 153 

transformation, 63 
Imaginary part, 769 
Implicit, -function theorem, 221, 228, 265 

-functions, 218-230, 261,265 
-representation, 231, 238 
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Improper integrals, 407-416,462-468 
differentiation of-, 467 
integration of-, 467 

Inclination, 249, 353 
Incompressible fluid, 571, 604, 617 
Increment, 83 
Indefinite quadratic form, 346 
Independent, 139 

-functions, 274 
-variables, 11, 60 
-vectors, 137 

Index of closed curve, 352, 355 
Inflection point, 231, 232 
Initial point of vectors, 125 
Inner area, 517 
Integrability conditions for differential, 84, 

98,314 
Integrability of continuous functions, 526 
Integrable, 407, 525-528 
Integral(s), -curves, 699 

double-, 374-385 
-estimates, 383-385 
Eulerian-, 497 
Fourier-, 476 
Fresnel's, 473 
-identities in higher dimensions, 622 
improper-, 406-416, 462-468 
law of additivity foro, 383,529 
Lebesgue-, 407 

-of total differentials, 95 
-to fractional order, 511 

Interchange of, -differentiations, 36-39 
-integrations, 80 

Interior, -content, 517 
-normal,580 
-of set, 8 
-points, 6, 7, 8,9,118 

Interval, 10 
Intrinsic convergence test, 3 
Invariant, 317 
Inverse, -functions, 252,786 

-image, 242 
-mapping, 154,242, 266 
-transformation, 261 

Inversion, 243, 244, 256, 277,787 
Irrotational motion, 572, 616 
Isoperimetric, -inequality, 365 -366 

problem, 739, 767 
-subsidiary conditions, 765 

Iteration, 267, 703 

Jacobian, -determinant, 253, 254 
-matrix, 268, 272 
-of product of two transformations, 258, 

276 
Jordan, -measure, 367-370, 515, 517 

-measurable set, 517, 628 

line-,82-106 Kepler's, -equation, 671 
multiple-, 367,388,531 -laws, 665, 667,669,671 
-of analytic function, 788 Kinetic energy, 656, 758 
-of continuous functions, 526 -of rotating body, 435 
-of differential forms, 589-597,634, h4 i -b;,j 

647-653 Lagrange's, -equations, 759 
-of functions of several variables, 524- -multiplier, 332,762-768 

525 -representation of motion, 363 
-over an elementary surface, 627 Laplace, -equation, 58, 62, 573, 617,713, 
-over regions in more dimensions, 385 724,762 
-over sets, 526 -operator, 211,608 
-over simple surfaces, 594-597 -operator in polar coorlndates, 62 
over unbounded regions, 414-416 -operator in spherical coordinates, 610 
reduction of double-, 392 Laplacian, 62, 211 
repeated-,78 Latitude, 249 
Riemann-, 89,407 Lebesgue, -area, 371 
transformation of multiple-, 539, 562 -integral,407 

Integration, 78,80,515,656 -measure, 515 
-constant,699 Left-handed screws, 185 
-of analytic functions, 787-789 Legendre's condition, 747,768 
-ofrational functions, 809 Lemniscate, 223, 236, 238 



Length, -of arc on surface, 283 
-ofvector, 146, 157 

Level line, 14, 207, 233 
Limit, 9, 19,21 

-for complex variable, 770, 774 
of function, 19,21 
-of sequence, 2,9,21 

Line, contour-, 14, 233 
element, 283 
level-, 14, 207,233 
parametric representation of-, 131 
vector representation for-, 130 

Line integrals, 85-91 
additivity of-, 93 
-independent of the path, 96, 104 

Linear, -approximation, SO 
-dependence, 137,684 
-equations, 137, 138, 175-177 
-homogeneous function, 124 
-differential form, 84, 93, 95 
manifolds, 134, 144-146 
mappings, 150 
operations, 123 
transformations, 202, 778 

Lines of force, 597 
Lipschitz, -condition, 19 

-constant, 19 
-continuous, 19, 35,67 

Lissajous figures, 665 
Loca1,222 
Logarithm, 792-794 
Longitude, 249 
Lower, integral, 525 

-limit, 541 
-point of accumulation, 542 

Main diagonal of matrix, 157 
Manifold, 317,543 

abstract-, 653 
linear-, 134, 144-146, 195, 198-200 
vector-, 204 

Mapping(s), 11, 242 
affine-, 148, 242 
-by reciprocal radii, 243 
degree of-, 561-565 
fixed point of-, 270, 359,787 
identity-, 126, 153 
inverse-, 242, 266 
linear-, 1 SO 
-of directions, 259 

-of sets, 11, 534 
-of vectors, 148 
open-, 535 
primitive-, 264 
resultant-, 257 

Index 949 

symbolic product of -, 152,257 
Mass, center of-, 432 

conservation of-, 571, 603 
moment of-, 431 
total-, 387 

Matrices, 147 
addition of-, 151 
columns of-, 147 
determinants of-, 170 
diagonal-, 177 
elements of-, 147 
Jacobian-, 268, 272 
main diagonal of-, 151 
minor of-, 189 
multiplication of-, 151 
nonsingular-, 150, ISS, 175 
operations with-, 150, 153 
orthogonal-, 156, 175 
product of-, 151-153, 172 
reciproca1-, 153, 154, ISS 
rectangular-, 150, 153 
rows of-, 147 
singular-, 150, ISS, 175 
square-, 150, 153 
transpose-, 157, 173 
unit-, 153, 154, 177 
upper triangular-, 178 
zero-, 153 

Maximum, absolute-, 325 
-of continuous function, 112 
relative-, 325, 347, 349 
strict-, 325 
value-, 327 
-with subsidiary conditions, 330-334 

Maxwell's equations, 731-734 
Mean, arithmetic-, 341 

-density, 387 
geometric-, 341 

Mean value theorem, -for functions, 67 
-for potential functions, 722 

Minimal surfaces, 762 
Minimum, -of continuous function, 112 

relative-, 325, 347-349 
strict-, 325 
-with subsidiary conditions, 330-334 



950 Index 

Minor of a matrix, 189 
Mgbius band, 582, 589 
Modulus, -of complex number, 769 

of continuity, 18, 19, 67 
-of elasticity, 675 

Moment, -of dipole, 717 
-of inertia, 433-435 
-of inertia of ellipsoid, 443 
-of mass distribution, 431-432 
of momentum, 666 
-of velocity, 666 

Momental ellipsoid, 443 
Momentum, 602, 655 
Monomial, 13 
Morera's theorem, 803 
Motion, equations of-, 654-656 

planetary-, 665-671 
Multiplier, 334-340, 762-768 

N-dimensional, ball, 459 
-Euclidean space RN, 10, 124 
sphere, 455 
-surface, 645, 648 
-vector space, 143 

Negative definite quadratic form, 346 
Neighborhood, 1, 9 
Newton's, -law of attraction, 204, 665 

-second law, 654 
Non-homogeneous differential equation, 684 
Non-overlapping sets, 368 
Non-singular matrix, 150, 155, 175 
Non-trivial solution, 138, 140 
Normal, -acceleration, 214 

-derivative, 557 
-distance, 448 
exterior-, 580 
hyperplane, 135 
outward-drawn-, 599 
positive-, 593 
-to curve, 230-231 
-to hyperplane, 134-135 
-to surface, 238, 283, 284 
-velocity, 448 

Odd permutation, 170 
One sided surface, 582 
Open, -mapping, 535 

-set, 8 
Orders of magnitude, 22 
Orientability,583 

Orientation, continuously varying-, 578,586 
-of curves on surfaces, 587 
-of hyperplanes, 200, 201 
ofparallel-epiped, 186, 195, 198, 199 
-of parallel-ogram, 180 
-of planes, 200, 201 
opposite-, 86, 185, 196 
standard-, 196 
-transformed, 260 

Oriented, area, 91 
-boundary, 580 
-hyperplanes, 201 
-linear manifold, 200 
-parallellepiped, 194, 195 
-simple closed curve, 86, 91 
-surface, 578, 580, 629, 633 
-tangent plane, 577 

Orthogonal, -curves, 234 
-matrices, 156, 158, 175 
-trajectories, 701,707 
-transformations, 157 
-vectors, 13 3 

Orthogonality relations, 145, 146 
Orthonormal, -base, 145 

-system of vectors, 145, 156, 158 
Oscillations, 661-665 
Osculating plane, 215 
Outer area, 517,520 
Overlapping, 368 

Parabolas, coaxial-, 244 
confocal-, 234, 244, 248 

Parabolic coordinates, 248 
Paraboloid, hyperbolic-, 14 

-of revolution, 14 
Parallel curves, 365 
Parallel displacements, 124 
Parallelepiped, orientation of, 186, 195, 

198,199 
rectangular-, 10, 12 
-spanned by vectors, 186, 191 
volume of-, 187, 191,193,194,195,197 

Parallelogram, area of-, 182, 184, 190, 191 
orientation of-, 180 

Parametric representation, -of are, 86 
-ofline, 131 
-of surface, 278, 576 

Parseval's identity for Fourier transforms, 
488,496 

Partial, 27,29, 34 



-derivative, 26-30 
-differential equation, 713-736 
-sums, 771 

Partition of unity, 635, 636 
Passive interpretation of transformation, 148 
Paths, 102 

family of-, 103, 105 
homotopic-, 103 
-of rays of light, 740 
support of-, 111 

Pathwise simply connected, 102 
Pendulum, 436-438 
Permutation, 170 

even-, 170 
odd-, 170 

Perpendicular, -distance, 192 
-vectors, 133 

Plane, osculating-, 215, 216 
perpendicular distance from-, 192 
tangent-, 239 
-waves, 490, 729 

Planetary motion, 665-671 
Planimeter, 453 
Plateau's problem, 762 
Poincar~, -identity, 358 

-index, 353 
-lemma, 313 

Point, boundary-, 6, 7 
critical-, 326, 352 
double-, 360 
exterior-, 6, 7, 8, 118 
fIXed,787 
-in n-dimensional space, 10 
interior-, 6, 7, 8, 118 
isolated-, 361 
-of inflection, 231, 232 
rational-, 370 
saddle-, 327, 347 
sequences of-, 2 
singular-, 360, 362 
stationary-, 326 

Poisson's integral formula, 724-726 
Polar, -coordinates, 61 

-planimeter, 453 
-reciprocal, 303 

Pole of analytic function, 805 
Polygonal curve, 112 
Polygonally connected, 68 
Polynomial(s), 13, 18 

Hermite-,71 

Taylor-,64 
trigonometric-, 124 

Position vector, 126 

Index 951 

Positive, -deftnite quadratic form, 346 
-normal of surface, 579, 593 
-side of oriented surface, 579 
-side of plane, 201 

Postiively homogeneous, 120 
Potential, -due to a spherical surface, 441, 

716 
~nergy, 439,657,758 
~quation,62,211,718-726 

-functions, 719, 722, 802, 805 
-of attracting charges, 714 
-of ellipsoid of revolution, 444 
-of forces, 657,661 
-of solid sphere, 716 
-of straight line, 716-719 
-of uniform double layer, 720 

Power series, 772-777,799-802 
Pressure, 605 
Primitive, -mappings, 264 

-nth root, 11, 821 
-transformation, 264 

Principal, -branch of arc tangent, 12 
-normal, 213, 265 
-value of logarithm, 794-802 

Product, cross-, 181 
of differential forms, 311-312, 321 
-of mappings, 257 
-of matrices, 152 
scalar-, 131-133 
symbolic-, 152,257 
vector-, 181, 182, 187 

Quadratures, 679 
Quadratic form, discriminant of-, 347 

indefinite-, 346 
negative defmite-, 346 
positive deftnite-, 346 

Quadratic, 179 

Radius of convergence, 773, 802 
Rational, -functions, 809 

-integral function, 12 
-points, 370 

Reaction forces, 215,659 
Real part, 769 
Reciprocal matrix, 153, 154, 155 
Reflection with respect to unit circle, 243 



952 Index 

Region, connected-, 4, 102 
rectangular-, 7,10 
simply connected-, 4, 102-104 

Relative, -boundary, 648 
-closure, 648 
-error, 53 
-extremum, 326, 349 
-maximum, 325, 347-349 
-minimum, 325, 347-349 

Relatively open, 648 
Remainder in Taylor expansion, 69 
Repeated integration, 78 
Residue, -at point, 805 

-theorem, 805 
Restriction of function, 12 
Resultant, -mapping, 257 

-transformation, 257 
Riccati's differential equation, 690, 691 
Riemann, -integrable, 407,525 

-integral, 89, 407 
-sum, 89, 525, 530 
-zeta function, 797, 820 

Riemann-Lebesgue lemma, 481 
Right handed screws, 185 
Rigid motions, 157,202 
Rolle's theorem, 352 
Rotation, clockwise-, 200 

counterclockwise-, 200 
-of axes, 61, 202 
sense of-, 200 

Rows of matrix, 147 

Saddle point, 347 
Saddle-shaped,15 
Sag, -of beam, 675 

-of cable, 672 
Scalar,123,205,318 

gradient of a-, 205-208, 210 
-multiplication of matrices, 151 
-products of vectors, 131-133, 157 

Sectionally smooth, 5, 88 
Semi-continuity, 542 
Sense, -of curves, 357 

-of rotation, 200 
ofvectors, 185 

Sequence,bounded-,2 
convergence of-, 2 
limit of-, 2, 9, 21 
lower limit of-, 541 
-of complex numbers, 770 

-of points, 2 
Sequentially compact, 109 
Separation of variables, 678 
Series, 770 
Set, boundary of-, 10, 118 

closed-, 8, 109 
closure of-, 10, 118 
compact-, 109 
complement of-, 116, 118, 119 
connected-, 102 
diameter of-, 376,523 
disjoint-, 116 
empty-,114 
null-,114 
open, 8, 109 
simply connected-, 102, 103 

Sets, Cartesian product of-, 115 
disjoint-, 116 
family of-, 113 
intersection of-, 115 -117 
Jordan-measurable-, 517 
non-overlapping-, 368 

Shell, spherical, 580 
Shortest line joining two points, 764 
Simple, -arc, 86 

-surface, 631-634, 648 
Simplex, 462 
Simply connected sets, 102-103 
Singular, -matrix, 150, 155, 175 

-points of curves, 236, 360-362 
surfaces, 362-363 
-solutions, 701 

Singularity of analytic function, 804 
Sink,574 
Slope of surface, 27 
Smoothing of function, 81 
Solid angle, 619 
Solutions, nontrivial-, 138 

trivial-, 138, 140 
-system of fundamental, 687, 688 

Solvability of system of linear equations, 
150 

Source of mass, 574 
Space differentiation, 387 
Spanned by vectors, 144 
Speed of propagation, 491 
Spherical, -coordinates, 404 

-law of cosines, 71 
-pendulum, 663 
-shell,580 



Square matrices, 150 
Stability of equilibrium, 653-659 
Statics, principles of-, 618 
Stationary, -character, 737 

-point, 345, 351,742 
-values, 331, 349,754 

Steady flow, 573 
Stereographic projection, 280, 290 
Stokes', -integral theorem, 554, 555, 572, 

611-617,642,643 
-formula in higher dimensions, 624, 651-

653 
Straight line, parametric representation of-, 

131 
vector representation of-, 131 

String, plucked-, 735 
vibrations of-, 727 

Strophoids, 300 
Subadditivity of outer areas, 520 
Subset, 114 
Subsidiary conditions, 330-336,762-767 
Successive approximation, 266, 703 
Sum(s), lower-, 376, 524 

-of vectors, 125 
Riemann-, 89, 525, 530 
upper-, 376,524 

Superposition, principle of-, 683-684 
Support, compact-, 492 

-function, 365 
-of path, 111 

Surface, -areas in any number of dimen-
sions, 453-455 

area of-, 424, 428 
area of spherical-, 426, 458 
connected-, 579 
coordinate lines on-, 282 
elementary-, 624-625, 632, 645-647 
equipotential-, 715 
-forces, 606 
free-, 606 
geodesics on-, 739, 757,765 
implicit representation of-, 238-240 
in parametric representation, 278, 576 
-integrals, 624, 645-653, 594-597 
isobaric-, 606 
m-dimensional-, 645, 648 
minimal-, 762 
-normal, 239,283,284 
of revolution, 50, 429 
one sided-, 582 

Index 953 

orientation of-, 575-588 
oriented-, 578,580,629,633 
simple-, 631-634, 648 
tangent plane to-, 282 

Symbolic product, -Qf mappings, 125, 152, 
257 

-Qf operators, 29 
System, -Qf functions, 241 

-Qf linear equations, 137,138,175-177 
-of mappings, 241 
-of transformations, 241 
orthonormal-, 145, 156, 158 

Tangent, -line, 231 
-plane, 47, 239, 282 

Tangential representation of curve, 365 
Taylor's, -expansion, 65, 64-66 

-series, 68-70, 776, 801 
-theorem, 68-70 

Tetrahedron, 141, 142 
Torus, 102,285,286,589 
Total differentials, integration of-, 95 -98 

-Qf functions, 49-51,97,104 
Transcendental functions, 229 
Transformations, affme-, 179,276 

conformal-, 256, 288, 785 
degenerate-, 274 
inversion of, 261 
-Qf coordinates, 246 
primitive-, 264 
product of two-, 257 
resultant-, 257 

Translations, 124 
Transpose of matrix, 157 
Trigonometric polynomial, 124 
Triangle inequality, 769, 770 
Trivial solution, 138, 140 
Tube surface, 306 
Twisted curve, 282 

Undetermined, -coefficients, 711, 712 
-multipliers, 334-340,762-768 

Uniform, -convergence, 464-771 
-approximations, 81 

Uniformly continuous, 18, 112 
Unit matrix, 153, 154, 177 
Unstable equilibrium, 663 
Upper integral, 525 
Upper-triangular matrix, 178 



954 Index 

Variation, first-, 741-743 
-of function, 742, 754 
-of parameters, 681, 691-694 

Vectors, acceleration-, 214 
as differences of points, 125 
base of-, 143 
binormal-, 216 
component of-, 122, 131 
coordinate-, 123, 129, 133, 143 
cross product of-, 180, 181, 182 
curl of-, 209, 313 
curvature-, 213 
definitions of-, 122, 123 
divergence of-, 208, 210 
electric-, 731 
families of-, 211, 212 
fields of-, 204, 208, 211 
geometric representation of;., 124-127 
gradient-, 206, 207, 210, 231 
inclination of-, 353 
length of-, 127,146,157 
linear dependence of-, 136, 141 
linear forms of-, 163 
magnetic-, 731 
-manifold, 204 
mapping of-, 148, 153 
multilinear forms of-, 163-170 
opposite-, 126 
orthogonal-, 133 
orthonormal-, 145, 156 
perpendicuiar-, 133 
position-, 126, 127, 212 
principal normal-, 213 
-product, 180, 188 
-representation for lines, 130 
scalar products of-, 131-133, 146, 157 
spaces of-, 123, 142, 143 
spanned by-, 144, 182 
sum of-, 122, 125 

triple product of-, 181 
unit-, 130 
vector product of-, 181,182,187,188,311 
Zero-, 123,.129 

Velocity, -of light, 741 
-potential, 617 
-vector, 214 

Vibrations, -forced, 695 
-of a string, 727 

Volume, 146, 374,419 
-in any number of dimensions, 453 
-of ellipsoid, 417,418,462 
of n-dimensional ball, 459 
-of parallelepipeds, 190-195, 201, 202 
-of pyramid, 418 
-of region bounded by surface, 600 

Vortex, 575 
Vorticity, 572, 616 

Wallis's product, 469 
Wave, -equation in one dimension, 727 -728 

-equation in three dimensions, 728, 729, 
733,735,736 

-fronts, 448, 490, 491 
piane-, 490 
spherical-, 730 
traveling-, 728 

Weierstrass', -approximation theorem, 81 
-infinite product, 506 
-principle of the point of accumulation, 107 

Winding number, 100, 564 
Work, 616, 657 
Wronskian, 686 
Wronski's condition, 688 

Zero, -matrix, 153 
-vector, 123, 129 

Zeros, number of-, 806 
-of analytic function, 803 

Zeta function, 797, 820 
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