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Preface

Richard Courant’s Differential and Integral Calculus, Vols. I and
II, has been tremendously successful in introducing several gener-
ations of mathematicians to higher mathematics. Throughout, those
volumes presented the important lesson that meaningful mathematics
is created from a union of intuitive imagination and deductive reason-
ing. In preparing this revision the authors have endeavored to main-
tain the healthy balance between these two modes of thinking which
characterized the original work. Although Richard Courant did not
live to see the publication of this revision of Volume II, all major
changes had been agreed upon and drafted by the authors before Dr.
Courant’s death in January 1972.

From the outset, the authors realized that Volume II, which deals
with functions of several variables, would have to be revised more
drastically than Volume I. In particular, it seemed desirable to treat
the fundamental theorems on integration in higher dimensions with
the same degree of rigor and generality applied to integration in one
dimension. In addition, there were a number of new concepts and
topics of basic importance, which, in the opinion of the authors, belong
to an introduction to analysis.

Only minor changes were made in the short chapters (6, 7, and 8)
dealing, respectively, with Differential Equations, Calculus of Vari-
ations, and Functions of a Complex Variable. In the core of the book,
Chapters 1-5, we retained as much as possible the original scheme of
two roughly parallel developments of each subject at different levels:
an informal introduction based on more intuitive arguments together
with a discussion of applications laying the groundwork for the
subsequent rigorous proofs.

The material from linear algebra contained in the original Chapter
1 seemed inadequate as a foundation for the expanded calculus struc-
ture. Thus, this chapter (now Chapter 2) was completely rewritten and
now presents all the required properties of nth order determinants and
matrices, multilinear forms, Gram determinants, and linear manifolds.
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vi Preface

The new Chapter 1 contains all the fundamental properties of
linear differential forms and their integrals. These prepare the reader
for the introduction to higher-order exterior differential forms added
to Chapter 3. Also found now in Chapter 3 are a new proof of the
implicit function theorem by successive approximations and a discus-
sion of numbers of critical points and of indices of vector fieldsin two
dimensions.

Extensive additions were made to the fundamental properties of
multiple integrals in Chapters 4 and 5. Here one is faced with a familiar
difficulty: integrals over a manifold M, defined easily enough by
subdividing M into convenient pieces, must be shown to be inde-
pendent of the particular subdivision. This is resolved by the sys-
tematic use of the family of Jordan measurable sets with its finite
intersection property and of partitions of unity. In order to minimize
topological complications, only manifolds imbedded smoothly into
Euclidean space are considered. The notion of ‘“‘orientation” of a
manifold is studied in the detail needed for the discussion of integrals
of exterior differential forms and of their additivity properties. On this
basis, proofs are given for the divergence theorem and for Stokes’s
theorem in n dimensions. To the section on Fourier integrals in
Chapter 4 there has been added a discussion of Parseval’s identity and
of multiple Fourier integrals.

Invaluable in the preparation of this book was the continued
generous help extended by two friends of the authors, Professors
Albert A. Blank of Carnegie-Mellon University, and Alan Solomon
of the University of the Negev. Almost every page bears the imprint
of their criticisms, corrections, and suggestions. In addition, they
prepared the problems and exercises for this volume.!

Thanks are due also to our colleagues, Professors K. O. Friedrichs
and Donald Ludwig for constructive and valuable suggestions, and to
John Wiley and Sons and their editorial staff for their continuing
encouragement and assistance.

FriTZ JOHN

NewYork
September 1973

1In contrast to Volume I, these have been incorporated completely into the text;
their solutions can be found at the end of the volume.
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CHAPTER

Functions of Several
Variables and Their Derivatives

The concepts of limit, continuity, derivative, and integral, as
developed in Volume I, are also basic in two or more independent
variables. However, in higher dimensions many new phenomena,
which have no counterpart at all in the theory of functions of a single
variable, must be dealt with. As a rule, a theorem that can be proved
for functions of two variables may be extended easily to functions of
more than two variables without any essential change in the proof.
In what follows, therefore, we often confine ourselves to functions of
two variables, where relations are much more easily visualized
geometrically, and discuss functions of three or more variables only
when some additional insight is gained thereby; this also permits
simpler geometrical interpretations of our results.

1.1 Points and Point Sets in the Plane and in Space

a. Sequences of Points: Convergence

An ordered pair of values (x, ¥) can be represented geometrically
by the point P having x and y as coordinates in some Cartesian coor-
dinate system. The distance between two points P = (x, y) and P’ =
(«, ¥') is given by the formula

PP = J(x =2+ (y — )3

which is basic for euclidean geometry. We use the notion of distance
to define the neighborhoods of a point. The &-neighborhood of a point

1
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C = (a, B) consists of all the points P = (x, ¥) whose distance from
C is less than €; geometrically this is the circular disk! of center C
and radius & that is described by the inequality

(x— @)+ (y — B <
We shall consider infinite sequences of points
Pl = (xl, yl)s PZ = (xz’ y2), R ] P" = (xn, yn)’ R

For example, P» = (n, n?) defines a sequence all of whose points lie
on the parabola y = x2. The points in a sequence do not all have to be
distinct. For example, the infinite sequence Pn = (2, (-1)*) has only
two distinct elements.

The sequence P, Py, . . . is bounded if a disk can be found con-
taining all of the Py, that is, if there is a point @ and a number M
such that P,Q < M for all n. Thus the sequence P, =(1/n, 1/n?) is
bounded, and the sequence (n, n?), unbounded.

The most important concept associated with sequences is that of
convergence. We say that a sequence of points P1, Ps, . . . converges
to a point @, or that

lim P, = @,

N>

if the distances P,@ converge to 0. Thus, lim P, = @ means that for

every € > 0 there exists a number N such that Py lies in the e-neigh-
borhood of @ for all n > N.2

For example, for the sequence of points defined by P, = (e~"*/4 cos n,
e "% gin n), we have lim P, = (0, 0) = @, since here

nro

P, =emt—0 for n—- oo «

We note that the P, approach the origin @ along the logarithmic
spiral with equation r = =% in polar coordinates r, 8 (see Fig. 1.1).
Convergence of the sequence of points P, = (x», ¥s) to the point

1The word “circle,” as used ordinarily, is ambiguous, referring either to a curve or
to the region bounded by it. We shall follow the current practice of reserving the
term “circle” for the curve only, and the term *‘circular region” or “disk” for the
two-dimensional region. Similarly, in space we distinguish the “sphere” (i.e., the
spherical surface) from the solid three-dimensional “ball” that it bounds.
?Equivalently, any disk with center @ contains all but a finite number of the Px.
The notation P» — @ for n — co will also be used.
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Py
Py

Pg Py

Pg Py f \D\ Py

N
N

P, Py

Figure 1.1 Converging sequence Px.

@ = (a, b) means that the two sequences of numbers x» and y» con-
verge separately and that

lim x, = a, lim y, = b.

n+o nro

Indeed, smallness of P,@ implies that both x, — a and y» — b are
small, since |[x, — a| < PaQ, |yn — b| < PaQ; conversely,

Pan\/(xn—a)2+(yn_b)2§ Ixn—al + l.’)’n—bL

so that P,@Q —— 0 when both x, — a and y, — b.

Just as in the case of sequences of numbers, we can prove that a
sequence of points converges, without knowing the limit, using
Cauchy’s intrinsic convergence test. In two dimensions this asserts:
For the convergence of a sequence of points P, = (xa, y») it is neces-
sary and sufficient that for every € > 0 the inequality P,Pm < ¢
holds for all n, m exceeding a suitable value N = N(g). The proof
follows immediately by applying the Cauchy test for sequences of
numbers to each of the sequences x, and yx.

b. Sets of Points in the Plane

In the study of functions of a single variable x we generally per-
mitted x to vary over an “interval,” which could be either closed or
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open, bounded or unbounded. As possible domains of functions in
higher dimensions, a greater variety of sets has to be considered and
terms have to be introduced describing the simplest properties of such
sets. In the plane we shall usually consider either curves or two-
dimensional regions. Plane curves have been discussed extensively
in Volume I (Chapter 4). Ordinarily they are given either “non-
parametrically” in the form y = f(x) or “parametrically” by a pair of
functions x = ¢(¢), ¥ = w(t), or “implicitly”’ by an equation F(x, y)
= 0 (we shall say more about implicit representations in Chapter 3).

In addition to curves, we have two-dimensional sets of points,
forming a region. A region may be the entire xy-plane or a portion of
the plane bounded by a simple closed curve (in this case forming a
simply connected region as shown in Fig. 1.2) or by several such
curves. In the last case it is said to be a multiply connected region,
the number of boundary curves giving the so-called connectivity; Fig.
1.3, for example, shows a triply connected region. A plane set may not
be connected! at all, consisting of several separate portions (Fig. 1.4).

Figure 1.2 A simply connected region. Figure1.3 A triply connected region.

Figure 1.4 A nonconnected region R.

1For a precise definition of “connected,” see p. 102.
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Ordinarily the boundary curves of the regions to be considered are
sectionally smooth. That is, every such curve consists of a finite
number of arcs, each of which has a continuously turning tangent
at all of its points, including the end points. Such curves, therefore,
can have at most a finite number of corners.

In most cases we shall describe a region by one or more inequali-
ties, the equal sign holding on some portion of the boundary. The two
most important types of regions, which recur again and again, are the
rectangular regions (with sides parallel to the coordinate axes) and
the circular disks. A rectangular region (Fig. 1.5) consists of the
points (x, y) whose coordinates satisfy inequalities of the form

a<<x<b, c<y<d;

each coordinate is restricted to a definite interval, and the point
(x, y) varies over the interior of a rectangle. As defined here, our
rectangular region is open, that is, it does not contain its boundary.

73
/i

F) I,
QY= == o= o am o b

0

Figure 1.5 A rectangular region.

The boundary curves are obtained by replacing one or more of the
inequalities defining the region by equality and permitting (but not
requiring) the equal sign in the others. For example,

x=a c=y=d

defines one of the sides of the rectangle. The closed rectangle ob-
tained by adding all the boundary points to the set is described by the
inequalities

aZx<), c=y=sd.

The circular disk with center (o, B) and radius r (Fig. 1.6) is, as
seen before, given by the inequality
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n

Figure 1.6 A circular disk.

(x—02+(y—pR<ri

Adding the boundary circle to this “open” disk, we obtain the “‘closed
disk” described by

(x—a2+@—-p2=r2

¢. The Boundary of a Set. Closed and Open Sets

One might think of the boundary of a region as a kind of membrane
separating the points belonging to the region from those that do not
belong. As we shall see, this intuitive notion of boundary would not
always have a meaning. It is remarkable, however, that there is a
way to define quite generally the boundary of any point set whatsoever
in a way which is, at least, consistent with our intuitive notion. We
say that a point P is a boundary point of a set S of points if every
neighborhood of P contains both points belonging to S and points not
belonging to S. Consequently, if P is not a boundary point, there
exists a neighborhood of P that contains only one kind of point; that
1s, we either can find a neighborhood of P that consists entirely of
points of S, in which case we call P an interior point of S, or
we can find a neighborhood of P entirely free of points of S, in
which case we call P an exterior point of S. Thus, for a given set S of
points, every point in the plane is either boundary point or interior
point or exterior point of S and belongs to only one of these classes.
The set of boundary points of S forms the boundary of S, denoted
by the symbol a8S.

For example, let S be the rectangular region

a<x<b, c<y<d.
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Obviously, we can find for any point P of S a small circular disk with
center P = (a, PB) that is entirely contained in S; we only have to take
an e-neighborhood of P in which ¢ is positive and so small that

a<o—e<<oa+e<b, c<P—-—e<Pt+e<d.

This shows that here every point of S is an interior point. The bound-
ary points P of S are just the points lying either on one of the sides
or at a corner of the rectangle; in the first case, one-half of every
sufficiently small neighborhood of P will belong to S and one-half
will not. In the second case, one-quarter of every neighborhood
belongs to S and three-quarters do not (Fig. 1.7).

Figure 1.7 Interior point A, exterior point D,
boundary points B, C of rectangular region.

By definition, every interior point P of set S is necessarily a point
of S, for there is a neighborhood of P consisting entirely of points of
S, and P belongs to that neighborhood. Similarly, any exterior point
of S definitely does not belong to S. On the other hand, the boundary
points of a set sometimes do, and sometimes do not belong to the set.!
The open rectangle

a<x<b, c<y<d
does not contain its boundary points, while the closed rectangle

esx=sb c=y=d

does.

!Observe the distinction between *“not belonging to S” and “‘exterior to S.” A
boundary point of S never is exterior, even when it does not belong to S.
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Generally we call a set S of points open if no boundary point of S
belongs to S (i.e., if S consists entirely of interior points). S is called
closed if it contains its boundary. From any set S we can always
obtain a closed set by adding to S all its boundary points, insofar
as they do not belong to S already. We then obtain a new set, the
closure S of S. The reader can easily verify that the closure of S is a
closed set. The exterior points are exactly those that do not belong to
the closure of S. Similarly, we define the interior S° of S as the
set of interior points of S, that is, the set obtained by removing the
boundary points from 8. The interior of S is open.

It should be observed that sets do not have to be either open or
closed. We can easily construct a set S containing only part of its
boundary, such as the semiopen rectangle

a<x<b, cZy<d.

It is also important to realize that our notion of boundary applies to
quite general sets and furnishes results far removed from intuition.
A prime example of a set that is in no sense a “curve” or a “region”
is the set S consisting of the “rational points” of the plane, that is,
of those points P = (x, y) for which both coordinates x and y are
rational numbers. Clearly, every disk in the plane contains both ra-
tional and nonrational points. Hence here there is no boundary
“curve’; the boundary S consists of the whole plane. There exist
neither interior nor exterior points.

Even in cases where the boundary is one-dimensional, not all of
it serves to separate interior from exterior points. For example, the
inequalities

-0+ —-P2<r?, y+*p

describe a disk with one diameter cut out; here the boundary con-

Figure 1.8 Disk with diameter removed.
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sists of the circle (x — a)2 + (y — B)? = r2, and of the diameter
y =8, |lx —al<r.

Any sufficiently small neighborhood of a point of that diameter
contains no exterior points at all (Fig. 1.8).

d. Closure as Set of Limit Points

The notions of ‘‘interior,” “boundary,” and “exterior” of a set
S are of importance when we consider limits of sequences of points
Py, P;, . . . all of which belong to the set S.! Clearly, a point @
exterior to S cannot be the limit of the sequence, since there is a
neighborhood of @ free of points of S, which prevents the Py from
coming arbitrarily close to . Hence, the limit of a sequence of points
in S must either be a boundary point or an interior point of S. Since
the interior and boundary points of S form the closure of S it follows
that limits of sequences in S belong to the closure of S.

Conversely, every point @ of the closure of S is actually the limit
of some sequence Pi, Ps, . . . of points of S, for if @ is a point of the
closure, then @ either belongs to S or to its boundary. In the first
case we have trivially in @, @, @, . . . a sequence of points of S
converging to S. In the second case, for any € > 0 the e-neighborhood
of @ contains at least one point of S. For every natural number n we
may choose a point P, of S belonging to the e-neighborhood of @
with € = 1/n. Clearly, the P, converge to Q.

e. Points and Sets of Points in Space

An ordered triple of numbers (x, y, 2) can be represented in the
usual manner by a point P in space. Here the numbers x, y, 2, the
Cartesian coordinates of P, are the (signed) distances of P from three
mutually perpendicular planes. The distance PP’ between the two
points P = (x, y, 2) and P’ = (x, y/, 2') is given by

PP =& 22+ — 3%+ (@ — 22

The e-neighborhood of the point @ = (a, b, ¢) consists of the points
P = (x, y, 2) for which P@ < ¢; these points form the ball given by
the inequality

(x—a2+(y—02+(z—c)2<el

1The points Px do not have to be distinct from one another.
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The analogues to the rectangular plane regions are the rectangular
parallelepipeds! described by a system of inequalities of the form

a<x<b, c<y<d, e<z<f.

All the notions developed for plane sets—boundary, closure, and
so on—carry over to sets in three dimensions in an obvious way.

When we are dealing with ordered quadruples like x, y, 2, w, our
visual intuition fails to provide a geometrical interpretation. Still,
it is convenient to make use of geometrical terminology, attributing
to (x, ¥, 2, w) a “‘point in four-dimensional space.” The quadruples
(x, y, 2, w) satisfying an inequality of the form

x—a)+ (@ —-02+@EZ—-c)2+w—-d)?2<e?

constitute, by definition, the ¢-neighborhood of the point (a, b, ¢, d).
A rectangular region? is described by a system of inequalities of the
form

a<x<b, c<y<d, e<z<f, g<w<h.

Of course, there is nothing mysterious in this idea of “‘points” in
four dimensions; it is just a convenient terminology and implies
nothing about the physical reality of four-dimensional space. Indeed,
nothing prevents us from calling an “n-tuple” (x1, . . . ,x») a “point”
in n-dimensional space, where n can be any natural number. For many
applications it is quite useful and suggestive to represent a system
described by n quantities in this way by a single point in some higher-
dimensional space.? Often analogies with geometric interpretations
in three-dimensional space provide guidance for operating in more
than three dimensions.

Exercises 1.1

1. A point (x, y) of the plane may be represented by a complex number
(Volume I, p. 103) in the form z = x + iy. Investigate the convergence

1Parallel epipedon (Greek for “plane”).

2The terms “cell” and “interval’”’ are also used to describe rectangular regions of
this type in higher dimensions.

3Thus the system of molecules of a gas in a container can be described by the position
of a single point in a “phase-space” with a very high number of dimensions. Going
even further, it is customary in some parts of analysis to represent an infinite
sequence of numbers x1, x2, . . . by a point (x1, x2, . . .) in a space with infinitely
many dimensions.
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for different values of z of the sequences
(a) ="
(b) zl? where z1/* is defined as the primitive nth root of z, that is, as the
root with minimum positive amplitude.
2. Prove for Pn = (xn + En, Yn + Ma) that lim Pr=(x + &, y + n)

N>

where the limits x = lim x», £ =lim £, y = lim yn, n=1im 7. are

n>o n+oo n+o n—+co
presumed to exist.
3. Show that every point of the disk x2 + y2 < 1 is an interior point. Is
this also true for x2 4+ y2 < 1? Explain.
. Show that the set S of points (x, y) with y > x2 is open.
5. What is the boundary of a line segment considered as a subset of the
x, y-plane?

>

Problems 1.1

1. Let P be a boundary point of the set S that does not belong to S. Prove
that there exists a sequence of distinct points P1, P2, . . . in S having P
as limit.

2. Prove that the closure of a set is closed.

3. Let P be any point of a set S, and let @ be any point outside the set.
Prove that the line segment P@ contains a boundary point of S.

4. Let G be the set of points (x, y) for which |x| < 1, | ¥| < 1/2 and for which
y < 0 if x = 1/2. Does G contain only interior points? Give evidence.

1.2 Functions of Several Independent Variables

a. Functions and Their Domains

Equations of the form
u=x+y, u = x%y2, or u = log(1 — x2 — »?)

assign a functional value u to a pair of values (x, y). In the first two
of these examples, a value of u is assigned to every pair of values
(x, ¥), while in the third the correspondence has a meaning only for
those pairs of values (x, y) for which the inequality x% + y2 <1is true.

In general, we say that u is a function of the independent variables
x and y whenever some law f assigns a unique value of «, the depend-
ent variable, to each pair of values (x, y) belonging to a certain spec-
ified set, the domain of the function. A function u = f(x, y) thus
defines a mapping of a set of points in the x, y-plane, the domain of
f, onto a certain set of points on the u-axis, the range of f. Similarly,
we say that u is a function of the n variables x1, x2, . . . , x if for each
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set of values (x1, . . ., x») belonging to a certain specified set there
is assigned a corresponding unique value of u.!

Thus, for example, the volume u = xyz of a rectangular paral-
lelepiped is a function of the length of the three sides x, y, z,; the
magnetic declination is a function of the latitude, the longitude, and
the time; the sum x1 + x2 + + - - + x5 1s a function of the n terms
X1, X2, . - ., Xn.

It is to be noted that the domain of a function fis an indispensable
part of its description. In cases where u = f(x, ¥) is given by an
explicit expression, it is natural to take as domain of f all (x, y) for
which this expression makes sense. However, functions given by the
same expression but having smaller domains can be defined by “re-
striction.” Thus the formula ¥ = x2 + y2 can be used to define a func-
tion with domain x2 + y2 < 1/2.

Just as in the case of functions of one variable, a functional
correspondence u = f(x, y) associates a unique value of u with the
system of independent variables x, y. Thus, no functional value is
assigned by an analytic expression that is multivalued, such as
arc tan y/x, unless we specify, for example, that the “arc tangent” is to
stand for the principal branch with values lying between —r/2 and
+ /2 (see Volume I, p. 214); in addition we have to exclude the line
x=0.2

b. The Simplest Types of Functions

Just as in the case of one independent variable, the simplest func-
tions of more than one variable are the rational integral functions or
polynomials. The most general polynomial of the first degree, or
linear function, has the form

u=ax+ by +c,

where a, b, and ¢ are constants. The general polynomial of the second
degree has the form

10ften we think of functions f as assigning a value to a point P rather than to the
pair (x, y) of coordinates describing P. We write then f(P) for f(x, ). This notation is
particularly useful when the functional relation between points P and values f(P) is
defined geometrically without reference to a specific x, y-coordinate system.
2Taking the principal value, we see that u = arc tan y/x for x > 0is nothing but the
polar angle of the point (x, y) counted from the positive x-axis. This polar angle can
still be defined geometrically in an obvious way as a univalued function with values
between -n and & if we just exclude the origin and the points on the negative x-axis,
but the polar angle is then no longer given by arc tan y/x in the extended region, if
we understand the arc tangent to mean the principal branch.
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u=ax2+bxy+c?+dx+ey+f.

Its domain is the whole x, y-plane. The general polynomial of any
degree is a sum of a finite number of terms am»x™y" (called monomi-
als), where m and n are nonnegative integers and the coeflicients
amn are arbitrary.

The degree of the monomial amsx™y” is the sum m + n of the ex-
ponents of x and y, provided the coefficient @m» does not vanish. The
degree of a polynomial is the highest degree of any monomial with
nonvanishing coefficient (after combining terms with the same powers
of x and y). A polynomial .consisting of monomials all of which have
the same degree N is called a homogeneous polynomial or a form of
degree N. Thus x2 + 2xy or 3x3 + (7/5) x2y + 2y3 are forms.

By extracting roots of rational functions we obtain certain algebra-
ic functions,! for example,

u:\/x—er3 (x + y)*
x+y X3+ xy

Most of the more complicated functions of several variables that
we shall use here can be described in terms of the well-known func-
tions of one variable, such as

u = sin (x arc cos y) or v = logs y.

¢. Geometrical Representation of Functions

dJust as we represent functions of one variable by curves, we may
represent functions of two variables geometrically by surfaces. To
this end, we consider a rectangular x,y,u-coordinate system in
space, and mark off above each point (x, y) of the domain R of the
function in the x, y-plane the point P with the third coordinate u =
f(x, ). As the point (x, y) ranges over the region R, the point P
describes a surface in space. This surface we take as the geometrical
representation of the function.

Conversely, in analytical geometry, surfaces in space are rep-
resented by functions of two variables, so that between such sur-
faces and functions of two variables there is a reciprocal relation.
For example, to the function

u= ]__x2__y2

1For a general definition of the term “‘algebraic function,” see p. 229.
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there corresponds the hemisphere lying above the x, y-plane, with
unit radius and center at the origin. To the function u = x2 + »2
there corresponds a so-called paraboloid of revolution, obtained by
rotating the parabola u = x2 about the u-axis (Fig. 1.9). To the func-
tions u = x% — y2 and u = xy, there correspond hyperbolic parabo-
loids (Fig. 1.10). The linear function u = ax + by + ¢ has for its
“graph” a plane in space. If in the function u = f(x, y) one of the
independent variables, say y, does not occur, so that u depends on
x only, say u = g(x), the function is represented in x,y,u-space by a
cylindrical surface generated by the perpendiculars to the u,x-plane
at the points of the curve u = g(x).

Figure 1.9 u = x% 4 y2 Figure 1.10 u = x2 — »2.

This representation by means of rectangular coordinates has, how-
ever, two disadvantages. First, geometric visualization fails us when-
ever we have to deal with three or more independent variables.
Second, even for two independent variables it is often more con-
venient to confine the discussion to the x,y-plane alone, since in the
plane we can sketch and can perform geometrical constructions with-
out difficulty. From this point of view, another geometrical represen-
tation of a function of two variables, by means of contour lines, is
sometimes preferable. In the x,y-plane we take all the points for
which u = f(x, y) has a constant value, say u = k. These points will
usually lie on a curve or curves, the so-called contour line, or level
line, for the given constant value k of the function. We can also
obtain these curves by cutting the surface u = f(x, y) by the
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plane u = k parallel to the x, y-plane and projecting the curves of
intersection perpendicularly onto the x, y-plane.

The system of these contour lines, marked with the corresponding
values ki1, k2, . . . of the height &, gives us a representation of the
function. In practice, & is assigned values in arithmetic progression,
say k& = vh, where v=1, 2, . . . The distance between the contour
lines then gives us a measure of the steepness of the surface u =
f(x, ), for between every two neighboring lines the value of the
function changes by the same amount. Where the contour lines are
close together, the function rises or falls steeply; where the lines are
far apart, the surface is flattish. This is the principle on which contour
maps such as those of the U.S. Geological Survey are constructed.

In this method the linear function v = ax + by + c is represented
by a system of parallel straight lines ax + by + ¢ = k. The function
u = x* + y? is represented by a system of concentric circles (cf. Fig.
1.11). The function u = x2 — y2?, whose surface is “saddle-shaped”
(Fig. 1.10), is represented by the system of hyperbolas shown in Fig.
1.12.

Figure 1.11 Contour lines of Figure 1.12 Contour lines of
u=x2+4+y2 u=x%—y2

The method of representing the function u = f(x, y) by contour
lines has the advantage of being capable of extension to functions of
three independent variables. Instead of the contour lines we then have
the level surfaces f(x, y, 2) = k, where k is a constant to which we can
assign any suitable sequence of values. For example, the level sur-
faces for the function u = x2 + y2 + 22 are spheres concentric about
the origin of the x, y, z-coordinate system.
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Exercises 1.2

1. Evaluate the following functions at the points indicated:

__{arc cot (x + y)\3 _14+v3 . _1—V3
(a)z_(arctan(x—y)) for x= 3 V= 2

(b) w = ecos z=+y),  for xX=y= g—, z=-1
(c)z__..yzcosxy’ x=e, y=logﬂ
(d) 2 = cosh (x + y), x =log =, yzlog%

x+y _1 1

-y Ty Y53

2. As in Volume I, unless we make an explicit exception, we consider the
domain of a function defined by a formal expression to be the set of all
points for which the expression is meaningful. Give the domain and
range of each of the following functions:

(e)z=

@z=vx+y (i) z=+v3—x%—2y*

(b)z=v2x — 32 (G) z2=+—x% —y?

(©z= —&% k) z = log (x2 — y?)
T2 2 2

(d)2=\/1—%-—%2 (1)z=arctanxz—x_;3,—§

(e) z=log (x + 5y) (m) 2= arc tanx_gf_y

f)z=+x sin y (n) z = cos arc tan%

@ w=va?—x2—y2 22 (0) z = arc cos log (x + )

(h)z:‘xzw‘y2 (p) 2=y cos x.

x+y

3. What isk the number of coefficients of a polynomial of degree n in two
variables? In three variables? In k variables?

4. For each of the following functions sketch the contour lines correspond-
ingtoz=-2,-1,0,1, 2, 3:

(a) z=x%

(o) z=x2+y2—1
(c) z=x2— y?

@ z=1y?

(e z=y(1——ﬂ——1y2).
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5. Draw the contour lines for z = cos (2x + y) corresponding to z =0,
+1, +1/2.
6. Sketch the surfaces defined by

(a) z = 2xy
(b) z = x2 4 y*
©z=x—1y.
d) z = x?

(e) z = sin (x + y).
7. Find the level lines of the function

14+ Vi 5 5
08 Ty W R

8. Find the surfaces on which the function u = 2 (x2 + y?)/z is constant.

z=1

1.3 Continuity

a. Definition

As in the theory of functions of a single variable, the concept of con-
tinuity figures prominently when we consider functions of several
variables. The statement that the function © = f(x, y) is continuous
at the point (€, n) should mean, roughly speaking, that for all points
(x, y) near (€, n) the value of f(x, y) differs but little from the value
f(E, n). We express this idea more precisely as follows: If f has the
domain R and @ = (&, n) is a point of R, then f is continuous at @ if
for every € > 0 there exists a 8 > 0 such that

oy lf(P) — (@) =If(x, y) — f&, n)|<e
forall P = (x,y) in R for which}?

@) PR=+V(x -8+ (y—-mnZE<s.

If a function is continuous at every point of a set D of points, we say
that it is continuous in D.
The following facts are almost obvious: The sum, difference, and

1Instead of confining (x, y) to a small disk with center (§, n) we could use a small
square. Thus condition (2) in the definition of continuity can be replaced by

2) lx —E|<d and ly —m| <.
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product of continuous functions are also continuous. The quotient
of continuous functions defines a continuous function at points where
the denominator does not vanish (for the proof see the next section,
p. 00). In particular, all polynomials are continuous, and all rational
functions are continuous at the points where the denominator does
not vanish. Continuous functions of continuous functions are them-
selves continuous (cf. p. 22).

A function of several variables may have discontinuities of a much
more complicated type than a function of a single variable. For
example, discontinuities may occur along whole arcs of curves, not
just at isolated points. This is the case for the function defined by

u=y/lx for x#0; u=20 for x =0,

which is discontinuous along the whole line x = 0. Moreover, a
function f(x, ¥) may be continuous in x for each fixed value of y and
continuous in ¥ for each fixed value of x, and yet be discontinuous as
a function of the point (x, y). This is exemplified by

[ =22y for  (59)#0,0, f0,0=0.

For any fixed y ## 0, this function is obviously continuous as a
function of x, as the denominator cannot vanish. For y = 0 we have
f(x, 0) = 0, which also is continuous as a function of x. Similarly,
f(x, y) is continuous as a function of y for any fixed x. But at every
point of the line ¥y = x except at the point x = y = 0 we have f(x, y) =
1, and there are points of this line arbitrarily close to the origin.
Hence, f(x, y) is discontinuous at the point (0, 0).

Just as in the case of functions of a single variable, a function
f(P) = f(x, y) is called uniformly continuous in the set R of the x, y-
plane if f is defined at the points of R and if for every ¢ > 0 there exists
a positive & = 8(g) such that |f(P) — f(@)| < ¢ for any two points
P, @ in R of distance << 3. The quantity 8 = 3(¢) is called a modulus
of continuity for f. We have the basic theorem:

A function f that is defined and continuous in a closed and bounded
set R is uniformly continuous in R. (For the proof see the Appendix
to this chapter.)

Particularly important is the case in which we can find a modulus
of continuity that is proportional to & (see Volume I, p. 43). The

1The essential requirement making the continuity uniform is that & depends on € but
not on P or Q.
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function f(P) defined in R is called Lipschitz-continuous if there
exists a constant L such that

3 I[f(P) — (@<L PQ for all points P, @ in R.

(L is called the ‘“‘Lipschitz constant,” relation (3) the “Lipschitz
condition.”) It is clear that a Lipschitz-continuous function f is
uniformly continuous and has 8 = ¢/L as modulus of continuity.!

b. The Concept of Limit of a Function of Several Variables

The notion of limit of a function is closely related to the notion
of continuity. Let us suppose that f(x, y) is a function with domain
R. Let @ = (&, n) be a point of the closure of R. We say that f has the
limit L for (x, y) tending to (€, n) and write

“) lim f(x,y)=L or Il)irg f(P)=1L,?

(x,y)—(&, n)

if for every € > 0 we can find a neighborhood

(6)) PQ=Vx -8+ (@ —m2<5?
of (§, n) such that
I[f(P)— L|=|f(x,y) — L] <e¢

for all P = (x, y) belonging to R in that neighborhood.?

In case the point (§, ) belongs to the domain of f we have in (x, y) =
(€, M) a point of R satisfying (5) for all 8 > 0. Then (4) implies in
particular that

If¢&,m) — LI<e

IThe still wider class of “*Holder-continuous” functions fis obtained when we replace
the Lipschitz condition (8) by the Hélder condition

If(P)—f@I=L PQ* for all P,Q@ in R.

L and a are constants and 0 < o =< 1 (see Volume I, p. 44). These functions also
are uniformly continuous, and we can choose as modulus of continuity the quantity

& = (¢/L)re
20r else lim f(x, y) = L for (x, y) — (€, n) or lim f(x, y) = L.
rE
Y-
3The notion makes no sense for points (£, n) exterior to R since then there exist no

points arbitrarily close to (§, n) in which f is defined, and every L could be con-
sidered as limit.
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for all € > 0 and hence that L = f(§, n). But then, by definition, the
relation

lim flx, y) = f@& )

(x, ), n

is identical with the condition for continuity of f at (§, n). Hence,
continuity of the function f at the point (¢, n) is equivalent to the statement
that f is defined at (¢, n) and that f(x, y) has the limit f(¢, n) for (x,y)
tending to (&, 7).

If f is not defined at the boundary point (¢, n) of its domain but has
a limit L for (x, y) — (§, n), we can naturally extend the definition of
f to the point (&, n) by putting f(€, n) = L; the function f extended in
this way will then be continuous at (¢, 1). If f(x, y) is continuous in
its domain R, we can extend the definition of f as limit not just to a
single boundary point (€, 1) but simultaneously to all boundary points
of R for which f has a limit. The resulting extended function is
again continuous, as the reader may verify as an exercise. Take, for
example, the function

f(x, y) = e="lv

defined for all (x, y) with y > 0. This function obviously is continuous
at all points of its domain R, the upper half-plane. Consider a bounda-
ry point (§, 0). For & 7= 0 we have clearly
lim flx,y)=lime*=0
(x, )&, m s

when y is restricted to positive values. If then we define the extended
function f*(x, y) by

*(x, 3) = f(x,y) =e=""
for y >0 and all x, and by
f*x, 0 =0

for x = 0. the function f* will be continuous in its domain R* where
R* is the closed upper half-plane y = 0 with the exception of the
point (0, 0). At the origin f* does not have a limit, and hence it is not
possible to define f*(0, 0) in such a way that the extension is con-
tinuous at the origin. Indeed, for (x, y) on the parabola y = kx?, we
have



Functions of Several Variables and Their Derivatives 21

f(x, y) = e7V/¥,

Approaching the origin along different parabolas leads to different
limiting values, so that there exists no single limit of f(x, y) for (x, y)
- 0.

We can also relate the concept of limit of a function f(x, y) to that
of limit of a sequence (cf. Volume I, p. 82). Suppose f has the domain
R and

lim f(x,y) = L.

(x, ) ()
Let Pn = (x4, ya)forn = 1,2, . . ., be any sequence of points in R for
which lim P, = (&, ). Then the sequence of numbers f(xs, y») has the

7n—>00

limit L. For f(x, y) will differ arbitrarily little from L for all (x, y) in R
sufficiently close to (&, n), and (x, y») will be sufficiently close to (€, 1)
if only n is sufficiently large. Conversely, lim f(x ,y) for (x, y) > (¢, 1)

exists and has the value L if for every sequence of points (xn, y») in
R with limit (&, n) we have lim f(xx, y») = L. The proof can easily be
n—oo

supplied by the reader. If we restrict ourselves to points (€, 1) in the
domain of f, we obtain the statement that continuity of fin its domain
R means just that

® '}lg f(xn, yu) = f(€, M)
whenever lim (xn, yu) = (€, 1) or that
lim f(xn, yn) = flim x4, lim ya),

where we only consider sequences (xx, ¥») in R that converge and have
their limits in R. Essentially, then, continuity of a function f allows
the interchange of the symbol for f with that for limit.

It is clear that the notions of limit of a function and of continuity
apply just as well when the domain of fis not a two-dimensional region
but a curve or any other point set. For example, the function

fx+y)=(x+ !

1s defined in the set R consisting of all the lines x + y = const. = n,
where n is a positive integer. Obviously, f is continuous in its domain
R.
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It was mentioned earlier (p. 17) that when f(x, y) and g(x, y) are
continuous at a point (¢, ), thenf + g,f — g, f - g, and for g(§,n) = 0
also f/g are continuous at (§, m). These rules follow immediately
from the formulation of continuity in terms of convergence of se-
quences. For any sequence (x5, y») of points belonging to the domains
of f and g and converging to (€, n), we have by (6)

im fGen, y2) = f& W), Lim gCrn, y2) = 8E .

The convergence of f(xa, yu) + g(xx, y») and so on follows then from
the rules for operating with sequences (Volume I, p. 72).

c. The Order to Which a Function Vanishes

If the function f(x, y) is continuous at the point (&, n), the difference
f(x, ¥) — f(§, n) tends to 0 as x tends to £ and y tends to n. By intro-
ducing the new variables h = x — £ and 2 = y — 1, we can express
this as follows: The function g(h, k) = f(E + h, n + k) — f(§, n) of
the variables i and % tends to 0 as 2 and k tend to 0.

We shall frequently meet with functions ¢(h, k) which tend to 0 as
h and k do. As in the case of one independent variable, for many
purposes it is useful to describe the behavior of (A, k) for A — 0 and
k — 0 more precisely by distinguishing between different “orders of
vanishing” or “orders of magnitude’ of (A, k). For this purpose we
base our comparisons on the distance

p=VEEFRE= V= O+ (y — 0

of the point with coordinates x = £ + handy = n + kfrom the point
with coordinates £ and n and make use of the following definition:

A function g(h, k) vanishes as p — 0 to at least the same order as
p = VA% + k2, provided that there is a constant C independent of
h and k such that the inequality

bl

holds for all sufficiently small values of p; that is, provided there is a
3 > 0 such that the inequality holds for all values of 4 and k such that

1Tn order to avoid confusion, we expressly point out that a higher order of vanishing
for p — 0 implies smaller values in the neighborhood of p = 0; for example, p? van-
ishes to a higher order than p and p? is smaller than p when p is nearly 0.
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0 < vAZ + k% < &. We write, then, symbolically: ¢(h, k) = O(p). Further,

we say that d(h, k) vanishes to a higher order! than p if the quotient

é(h, k)/p tends to 0 as p — 0. This will be expressed by the symbolical

notation ¢(h, k) = o(p) for (h, k) — 0 (see Volume I, p. 253, where the

symbols “0” and “O” are explained for functions of a single variable).
Let us consider some examples. Since

lAl

R =1 and aEs1

Vh24+ k2=

the components ~ and & of the distance p in the direction of the x
and y-axes vanish to at least the same order as the distance itself. The
same is true for a linear homogeneous function ah + bk with con-
stants @ and b or for the function psin 1/p. For fixed values of a greater
than 1, the power p¢ of the distance vanishes to a higher order than
p; symbolically, p* = o(p) for a > 1. Similarly, a homogeneous
quadratic polynomial ah2 + bhk + ck? in the variables A and &
vanishes to a higher order than p as p —» 0:

ah? + bhk + ck? = o(p).

More generally, the following definition is used. If the comparison
function w(h, k) is defined for all nonzero values of (4, k) in a sufficient-
ly small circle about the origin and is not equal to 0, then 4(h, k)
vanishes to at least the same order as w(h, k) as p — 0 if for some suit-
ably chosen constant C the relation

|8 (R, k)
o(h, k) =C

holds in a neighborhood of the point (2, &) = (0, 0). We indicate this
by the symbolic equation é(h, k) = O(w(h, k)). Similarly, d(h, k)
vanishes to a higher order than o(h, k), or ¢(h, k) = o(w(h, k)), if
#(h, k)
w(h, k)

For example, the homogeneous polynomial ah2 + bhk + ck? is at
least of the same order as p2, since

— 0 when p—0.

|ah? + bhk + ck?| < | |a| + %|bl+ le|) (2 + k2)

Also p = o(1/|1log p|), since lim (p log p) =0 (Volume I, p. 252).
p~>0
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Exercises 1.3

. The function z = (x — ¥)/(x + y) is discontinuous along y = —x. Sketch

the level lines of its surface for z = 0, +1, +2. What is the appearance
of the level lines for z = +m, and m large?

. Examine the continuity of the function z = (x2 + y)—+vx2 + y2, where

2 =0 for x =y = 0. Sketch the level lines z =k (k = —4, —2,0, 2, 4).
Exhibit (on one graph) the behavior of z as a function of x alone for y
=-2, —1, 0, 1, 2. Similarly, exhibit the behavior of 2z as a function of
y alone for x =0, 4-1, +2. Finally, exhibit the behavior of z as a function
of p alone when 6 is constant (p, 8 being polar coordinates).

. Verify that the functions

(@) f(x,y) = x® — 3xy®

(b) g(x, y) = x* — 6x%y% + y*

are continuous at the origin by determining the modulus of continuity
3(). To what order does each function vanish at the origin?

. Show that the following functions are continuous:

(a) sin (x% + y)
_sin xy
b)) 5 JET
x3 + y3
(c) x2 + y2
(d) x2 log (x% + y%)

where in each case the function is defined at (0, 0) to be equal to the
limit of the given expression.

. Find a modulus of continuity, 8 = 3(, x, y), for the continuous func-

tions
@) f(x,y) = V1 + x2 + 2y2
(b) f(xr y) = ‘/1 =+ e*v,

. Where is the function z = 1/(x% — y2) discontinuous?

. Where is the function z = tan =y /cos nx discontinuous?

. For what set of values (x, y) is the function 2z = vy cos x continuous?

. Show that the function z = 1/(1 — x2 — y?) is continuous in the unit

disk x2 + y2 < 1.
Find the condition that the polynomial

P = ax? + 2bxy + cy*
has exactly the same order as g2 in the neighborhood of x =0,y =0
(i.e., that both P/p? and p2/P are bounded).
Find whether or not the following functions are continuous, and if
not, where they are discontinuous:

in 2
(a) sin P
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xa + y2
(b) x2 + yz
x3 4+ y2
(c) x3 + y3

x3+y2

Show that the functions

__ xht _

f(x, y)—(x2+y4)3’ g(x) y)_

tend to 0 if (x, y) approaches the origin along any straight line but that
f and g are discontinuous at the origin.

x2
x2+y2—x

Determine whether the following functions have limits at x =y =0
and give the limit when it exists.
@ 5% () exp[— |x — y]/(x — 25y + 5]
a) g e) exp y xy + y
x2 4+ 2xy + ¥
(b) R eI ®) [x|v
x% + 3xy + ¥* Iyt
© x2 + dxy + y? (® |xl v
lx —y] lyl'=! Va2 § 52
@ o h)*
) T 4y O T+ Iy

Find a modulus of continuity 3() for those functions of Exercise 14
that have limits at x = y = 0, where the functions are defined at the
origin by their limiting values.

Show that f(x, y, 2) = (x2 + y2 — 22)/(x2 + ¥ + 2?) is not continuous at
(0, 0, 0).

Prove that if P(x, y) and Q(x, y) are each polynomials of degree n > 0,
vanishing at the origin,
_ P,
B9 = 9@, y)

is not continuous at the origin.
Find the limits of the following expressions as (x, y) tends to (0, 0) in an
arbitrary manner:

sin (x2 + y?)
@ x2 + y?
sin (x* + y9)
) EEY
e~ 1/(z2+y2)

© S
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19. Show that the function z = 3(x — ¥)/(x + ) can tend to any limit
as (x, y) tends to (0, 0). Give examples of variations of (x, ) such that
(@ lim z=2
z~0
¥+0
() lim z=-1

>0
y=0

(c) 31515)1 z does not exist
¥+0
20. Iff(x,y) — 0as (x,y) — (0, 0) along all straight lines passing through the
origin, does f(x, y) — 0 as (x, y) — (0, 0) along any path?
21. %nve)stigate the behavior of z = y log x in a neighborhood of the origin
0, 0).
22. For z = f(x, y) = (x2 — y)/2x, draw the graphs of

(a) z2=f(x, x?)

(b) z=1f(x, 0)
© z2=fx1)
@ z=f(x,x)

Does the limit of f(x, y) as (x, y) — (0, 0) exist?
23. Give a geometrical interpretation of the following statement: ¢(h, k)
vanishes to the same order as p = vA2 + k2.

Problems 1.3

1. Let the continuous function f be extended to the function f* defined so
that f* = f on the domain of f and f*(Q) = }I:in‘l' f(P) for all points @ on
the boundary of f where the limit exists. Prove that f* is continuous.

2. Prove that lim f(x, ) for (x, y) — (¢, ) exists and has the value L if
and only if for every sequence of points (xz, y») in the domain of f with
limit (¢, n) we have lim f(xx, y») = L.

n—ooo

1.4 The Partial Derivatives of a Function

a. Definition. Geometrical Representation

If in a function of several variables we assign definite numerical
values to all but one of the variables and allow only that variable,
say x, to vary, the function becomes a function of a single variable. We
consider a function u = f(x, ¥) of the two variables x and y and
assign to y a definite fixed value y = yo = c. The resulting function
u = f(x, yo) of the single variable x may be represented geometrically
by cutting the surface u = f(x, y) by the plane y = yo (cf. Figs. 1.13
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Figure 1.13 and Figure 1.14 Sections of u = f(x, y).

and 1.14). The curve of intersection thus formed in the plane is re-
presented by the equation u = f(x, yo). If we differentiate this function
in the usual way at the point x = xo, assuming that f is defined in a
neighborhood of (xo, ¥0) and that the derivative exists,! we obtain the
partial derivative of f(x, y) with respect to x at the point (xo, ¥,):

i [0t B, y0) — f(xo, yo).
h—-0 h

Geometrically, this partial derivative denotes the tangent of the
angle between a parallel to the x-axis and the tangent line to the
curve u = f(x, yo). It is therefore the slope of the surface u = f(x, y) in
the direction of the x-axis.

To represent these partial derivatives several different notations
are used, one of which is the following:

lim f(xo + h, y0) — f(x0, y0)

Lim h = fx(x0, ¥0) = uz(xo, Yo).

If we wish to emphasize that the partial derivative is the limit of a
difference quotient, we denote it by

of ]

ax o ox .
Here we use the special round letter d instead of the ordinary d used
in the differentiation of functions of one variable in order to show
that we are dealing with a function of several variables and differenti-
ating with respect to one of them.
1We shall not try to define a derivative at boundary points of the domain (except,

on occasion, as limit of the values of partial derivatives as the boundary point is
approximated by interior points).
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For some purposes it is convenient to use Cauchy’s symbol D (men-
tioned on p. 158 of Volume I) and to write

of _
ox = D,

but we shall seldom use this symbol.
In exactly the same way we define the partial derivative of f(x, ¥)
with respect to y at the point (xo, y0) by the relation

lim 20,20+ B J50,90) _ (2, 30) = Dyfan, 300

This represents the slope of the curve of intersection of the surface
u = f(x, y¥) with the plane x = xo perpendicular to the x-axis (Fig.
1.14).

Let us now think of the point (xo, y0), hitherto considered fixed, as
variable and accordingly omit the subscripts 0. In other words, we
think of the differentiation as carried out at any point (x, y) of the
region of definition of f(x, y). Then the two derivatives are themselves
functions of x and y,

ux%, y) = folx, y) = 3f(x, 2 and uy(x, y) = fylx, ) = f(g.cy y)

For example, the function u = x2 + y2 has the partial derivatives
uz = 2x (in differentiation with respect to x the term y2? is regarded
as a constant and so has the derivative 0) and uy = 2y. The partial
derivatives of u = x3y are u, = 3x%y and u, = x3.

Similarly, for a function of any number n of independent variables,
we define partial derivatives by

af(x1, %2, - . ., %n) _ limf(x1 + h, x2,...,%s) — flx1, X2, . . . ,%Xn)
ax1 T b0 h
= fz, (21, X2, . . ., %n) = Dy f(x1, %2, . . ., %),

it being assumed that the limit exists.

Of course, we can also form higher partial derivatives of f(x, y) by
again differentiating the partial derivatives of the “first order,”
[z(x, ¥) and f(x, y), with respect to one of the variables and repeating
this process. We indicate the order in which the differentiations are
carried out by the order of the subscripts or by the order of the
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symbols dx and dy in the “denominator” from right to left! and use
the following symbols for the second derivatives:

9P _%f _
6x(6 )_ dx? = faz = (Da)f,
o(ofy_ 9f _
ax(ay) ~ dxoy = fay = DaDif,
o@fy_ @f _ . _
8y(8x) T dyodx fus = DyDsf,
3 (f\_ Of _ :
ay(ay) ayz f!/!l (Dll) f-
We likewise denote the third partial derivatives by
92f\ _ 93
ox (8x2) g — faa
o%f *f _
oy (axz) dy 0x2 fyaz,
( azf ) 03 ~f
dx\6xdyl — oxzay 'V

and so on, and in general the nth derivatives by

Sy,

dx\oxn-1l  ox»
i an—lf _ anf _
ay(ax”‘l) = Oy axn1 =fyan-1,

and so on.

The different notations for partial derivatives have their respective
advantages. Writing df(x, y)/dx or D.f(x, y) for the partial derivative
of the function f(x, y) with respect to its first argument emphasizes
that differentiation has the character of an operator D or d/dx acting
on the function, written symbolically as a factor multiplying the
function. The notation for higher derivatives is consistent with this
idea of a product:
da(ad
s5lae! )= 3y 53/ = DDl
1This is consistent with the general notation for symbolic products of operators (see
Volume I, p. 53). Actually, the order in which differentiations are carried out turns
out to be immaterial in most cases of interest (see p. 36).
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A disadvantage of the operator notation is its clumsiness when it
comes to indicating for what values of the independent variables the
derivatives are taken. For example, if f(x, ¥) = x2 + 2xy + 4y2, then
its x-derivative at the point x = 1, y = 2 can be written as

9=, y) =fz(1,2)=Qx + 2y) _ =86.

6x x=1 x=1

y=2 y=2

We should not write it simply as

of(, 2)
dx

since f(1, 2) has the constant value 21 and hence has 0 as its x-deriv-
ative.

Just as in the case of one independent variable, the possession of
derivatives is a special property of a function, not enjoyed even by all
continuous functions.! All the same, this property is possessed by all
functions of practical importance, except perhaps at isolated ex-
ceptional points or curves.

Exercises 1.4a

1. Find 6z/0x, 0z/dy for each of the following:

(a) z = ax" + by™, a, b, m, n constants (h) z = 32/v

(b) z = 2xev” + 3y () z=log (x + x%)
©z= 2§+3§— () z = cos (x2 + y)
(d) z = arc tan % (k) z = tan (xy® + )
(e) z = x2y32 z= gfrf ;

) z=y (m) z = xe¥ + ye®

(g) z = x1/2 y%/4 (n) z = xv/x2 + 52

2. Find the first partial derivatives of the following:

1
D AT o
(b) sin (x2 — y) (e) y sin xz

(a) VxT+y2

1For an explanation of the term “differentiable”, which implies more than that the
partial derivatives with respect to x and y exist, see pp. 41-42.
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() ex¥ (€) log vi+ x2 F 2

. Find all the first and second partial derivatives of the following:

(@) xy

(b) log xy

(c) tan(arc tan x + arc tan y)
d) xv

(e) ea®

. Let w = f(x, ¥, 2) = (cos x/sin y)e?. Find fz, fy, fz, for x = n, y = n/2,

2z = log 3.

. For f(x,y) = y cosh x + x sinh y, find fs2 + f,2at x = 0,y = 0.
. Show that the functions u =e* cos y, v = e® sin y, satisfy the con-

ditions uz = vy, Uy = —Us.

. Show that the functions of Exercise 6 satisfy the partial differential

equation

fzz + fyy = 0.
Do the same for the functions
(a) log vx? + y?

y
(b) arc tan;

y
© =iy
@ 3x%y —y°
@ Yx+ Va7t

. For r = vx2 1 92 & 22, find roe + ryy + re.
. Find a constant a for which if z = y3 + ayx2, then zzz + 24y = 0.
10.

Prove that the function
1

(X122 + X292 4 o o o | x,2)(n-D/2

f(x1, x2,. .., xXn)=
satisfies the equation
lezl + fxzzz + oo +fz,,zn =0.

Problems 1.4 a

. How many nth derivatives has a function of three variables? of k varia-

bles?

. Give an example of a function f(x, y) for which f, exists and fy does not.
. Find a function f(x, y) that is a function of (x2 4 y2) and is also a product

of the form ¢(x) ¢(y); that is, solve the equation
flx, ¥) = ¢(x® + y%) = Y(x)d(y)

for the unknown functions.
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4. Prove that any function of the form

f@t + r)+g(t— r
r r

u(x, y, 2) =

(where r2 = x2 + y? 4 2z?), satisfies the equation

Uzz + Uyy + Uzz = Utt.

b. Examples

In practice, partial differentiation involves nothing that the
student has not already met. For, according to the definition, all the
independent variables are to be kept constant except the one with
respect to which we are differentiating. Therefore, we have merely to
regard the other variables as constants and carry out the differenti-
ation according to the rules by which we differentiate functions of a
single independent variable. We list some partial derivatives of
several simple functions.

1. Function:

f(x,y) = xy

First derivatives:

Second derivatives:
frzz=0, faw=frz=1  fuw=0
2. Function:
flx, y) = Va2 + y2
First derivatives:

X

- % Y
T Va y? fu

fe =UEiy
[Thus, for the radius vector r = vx2 F y2 from the origin to the point
(x, ¥), the partial derivatives with respect to xand toy are given by cos ¢
= x/r, and sin ¢ = y/r, where ¢ is the angle that the radius vector
makes with the positive direction of the x-axis.]

Second derivatives:
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sz = —“’-—yz —_ Sinz ¢
Vx? + y?)3 r’
fow = fro = — xy __ sin ¢ cos ¢
SN RS D ro
x? cos? ¢
fv =

Vi@ ot

3. Reciprocal of the radius vector in three dimensions:

}

1
flx,5,2) = ¢m = r

First derivatives:

X
fo=—"77 xz 28 ¥
(x? + y% + 2%) r
fo=-— ““z—z“‘z"—ﬂ:_%’
V(xZ +y2 + 29 r

2
f: = — = %,

V@ T+ 22

Second derivatives:

1, 3x2 1 | 3y2 1 822
fzz=—;;+75“, fyy=—;_§+*r§, fzz'—"—ﬁ"‘?,
3x; 3yz 3zx
fw=fw=75y, foe = foy = %, fza::fzz:?.
From this we see that for the function f =—:1—* the
Var + 32 + 22

equation

3 3(x2 2 4 2
fxx+fyy+fzz:—?3+w—+—z)=

r5

0

33

holds for all values of x, y, z except 0, 0, 0; we say, the function
f(x, y, 2) = 1/r satisfies the partial differential equation (*Laplace

equation”)
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foz + fyy + fzz = 0.

4. Function:

fi ) = eeroti

First derivatives:

fo= -—(2357,—2‘1—) e-@-0?iy,
fv= (5;?1@ + (x4;5/‘21’)2)e-—(x-a)2/41/
Second derivatives:
foz = (2;—3}2 + %i%)z)e—w-a)%y,
fzy = fyx = (% xy;;ga —_ (x8_;-7 /Z)a)e—(z-a)zlw’

31 1(x—a)? , (x—a)Y a2
fuy = (Z;E/—z T + 16y°72 )e (@-a)/ay,

The partial differential equation fzz — fy = 0 is therefore satisfied
identically in x and y.

c. Continuity and the Existence of Partial Derivatives

For a function of a single variable, the existence of the derivative
at a point implies the continuity of the function at that point (cf.
Volume I, p. 166). In contrast to this, the possession of partial deriv-
atives does not imply the continuity of a function of two variables:
for example, the function u(x, y) = 2xy/(x? + y?), with (0, 0) = 0, has
partial derivatives everywhere, and yet we have already seen (p. 18)
that it is discontinuous at the origin. Geometrically speaking, the
existence of partial derivatives restricts the behavior of the function in
the directions of the x- and y-axes only and not in other directions.
Nevertheless, the possession of bounded partial derivatives does imply
continuity, as is stated by the following theorem:
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If a function f(x, y) has partial derivatives f; and fy everywhere in an
open set R, and these derivatives everywhere satisfy the inequalities

Ifz(xay)I<M: |fy(xay)l<Ma

where M is independent of x and y, then f(x, y) is continuous everywhere
inR1

For the proof, we consider two points with coordinates (x, y) and
(x + A, ¥ + k), respectively, both lying in the region R. We further
assume that the two line segments joining these points to the point
(x + h, y) both lie entirely in R, this is certainly true if (x, y) is a
point interior to R and the point (x + A, y + &) lies sufficiently close
to (x, y¥). We then have

(M fx+hy+ k) —flx,9)={f(x+h,y+ k) —fx+ h,y)
+{f(x + h, y) — f(x, y)}.

The two terms in the first bracket on the right differ only in y; those
in the second bracket, only in x. We can therefore apply the ordinary
mean value theorem of the differential calculus (Volume I, p. 174) to
the first bracket as a function of y alone and to the second bracket as
a function of x alone. We thus obtain the relation

@) f(x+hy+ k) —f(x,9) = kfy(x + h,y + 601k) + hfs(x + 02, y),

where 01 and 02 are numbers between 0 and 1. In other words, the
derivative with respect to y is to be formed for a point of the vertical
line joining (x 4+ A, y) to (x + A, ¥ + k), and the derivative with re-
spect to x is to be formed for a point of the horizontal line joining
(x, y) and (x + A, y). Since by hypothesis both derivatives are less
than M in absolute value, it follows that

) If(x+ h,y + k) — f(x, )| < M(1h[+ | E]).

For sufficiently small values of A and & the right-hand side is itself
arbitrarily small, and the continuity of f(x, y) is proved.2

1This applies even, as the proof shows, to boundary points of the domain, provided
they can be joined to any neighboring points of the domain by a broken line consist-
ing of two segments parallel to the axes and f is defined properly at the boundary
point.

2If the domain of f is a rectangle with sides parallel to the axes, the inequality holds
for any two points (x, y) and (x + h, y + k) in the domain. It follows then that f is
even Lipschitz-continuous (see p. 19).
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Exercises 1.4¢

1. State and prove for a function of three variables f(x, y, 2) that the
existence and boundedness of the first partial derivatives are sufficient
for the continuity of f.

2. Show that the following functions f(x, y) are continuous:

-1/(z2 + y2)
(a)f(x,y)={(e) ,x,z:(())y=0

® Feo, ) = {((),,64 + 5% log (? + y9), %y ;& 0 o

d. Change of the Order of Differentiation

In all examples of partial differentiation given on pp. 32-34 we find
that fyz = fzy; in other words, it makes no difference whether we
differentiate first with respect to x and then with respect to y or first
with respect to y and then with respect to x. This is true generally
under the conditions of the following theorem:

If the “mixed” partial derivatives fzy and fyz of a function f(x, y) are
continuous in an open set R, then the equation

(10) f yr = f zy

holds throughout R; that is, the order of differentiation with respect to
x and to y is immaterial.

The proof, like that of the previous subsection, is based on the
mean value theorem of the differential calculus. We consider the
four points (x, y), (x + h, 3), (x, y + k), and (x + h, ¥ + k), where
h = 0and k = 0. If (x, y) is a point of the open set R and if » and % are
small enough, all four of these points belong to R. We now form the
expression

(11) A=fx+hy+k—fx+hy)—flxy+k+fz))
By introducing the function
#(x) = f(x, y + k) — f(x, 5)

of the variable x and regarding the variable y merely as a “‘parameter,”
A assumes the form

A = ¢(x + h) — ().

Applying the mean value theorem of differential calculus yields
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A = h#'(x + Oh),

where 0 lies between 0 and 1. From the definition of ¢(x), however,
we have

¢’(x) = fz(x’ y+ k) - fx(x) y)’

and since we have assumed that the “mixed” second partial derivative
fyz does exist, we can again apply the mean value theorem and find that

(12) A = hkfys(x + Oh, y + O'k),

where 6 and 9’ denote two unspecified numbers between 0 and 1.
In exactly the same way we may introduce the function

V() = f(x + h,y) — f(x,y)
and express A as
A=y + k) — v
We thus arrive at the equation
A = hkfzy(x + 01h, y + 01'k),

where 0 <01 <1 and 0 < 60/ <1, and if we equate the two ex-
pressions for A, we obtain the equation

fua(x + Oh, y + O'k) = fay(x + 01k, y + O1'K).

If here we let A and % tend simultaneously to 0 and recall that the
derivatives fzy(x, y) and fys(x, y) are continuous at the point (x, ¥),
we immediately obtain

fve(x, ¥) = fay(x, 3),
which was to be proved.!

1For more refined investigations it is often useful to know that the theorem on the
reversibility of the order of differentiation can be proved with weaker hypotheses.
Itis, in fact, sufficient to assume that in addition to the first partial derivatives f; and
fy, only one mixed partial derivative, say fyz, exists and that this derivative is
continuous at the point in question. To prove this, we return to equation (11), divide
by hk, and then let k alone tend to 0. Then the right-hand side has a limit, and there-
fore the left-hand side also has a limit, and

1 A_fy(x+hry)_fy(x1y)
W n = h '

Further, it was proved above with the sole assumption that fy- exists that

A .
WE= fyz(x + Oh, y + O'k).

By virtue of the assumed continuity of f,z, we find that for arbitrary € > 0 and for
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The theorem on the reversibility of the order of differentiation
(i.e., on the commutativity of the differentiation operators D, and D,)
has far-reaching consequences. In particular, we see that the number
of distinct derivatives of the second order and of higher orders of
functions of several variables is decidedly smaller than we might at
first have expected. If we assume that all the derivatives that we are
about to form are continuous functions of the independent variables
in the region under consideration and if we apply our theorem to the
functions f«(x, ), fy(x, ¥), fzy(%, ¥), and so on, instead of to the function
f(x, y), we arrive at the equations

fzxy = fxyx = fwx,
fzw - fyxy = fyyx,
fzzw = fzyzy = fxwx = fyzay = fﬂzyz = fyyaz,

and in general we have the following result:

In the repeated differentiation of a function of two independent vari-
ables the order of the differentiations may be changed at will, provided
only that the derivatives in question are continuous functions.!

all sufficiently small values of & and &
fuz(x, ) — € <fya(x + Ok, y + Ok) < fyalx, y) + ¢,

whence it follows that

fulx + h, ) — fu(x, )
h

fys(x, y) — €= < fyz(x,y) + ¢

or

lim fylx + A, .’)Z — fy(x, ¥) = fya(x, y»
h~0

that is,

fzy(x, ¥) = fye(x, ¥).
1]t is of fundamental interest to show by means of an example that without the
assumption of the continuity of the second derivative fzy or fyr the theorem need
not be true and fzy can differ from fy:. This is exemplified by the function
x2 —y2
X2+ y2’
for which all the partial derivatives of second order exist but are not continuous.
We find that

f(x, y) = xy f©,0)=0,

fx, ) —f0,» . x*—y%
o “}clfay 2ty

fz(o, y) = lim y’
z~0

X,

- fe,y) —fx,0) _ . x2—yP
, 0 =1 =1 =
fu(x, 0) Lim y P
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With our assumptions about continuity, a function of two variables
has three partial derivatives of the second order,

foz, fav, fyy;
four partial derivatives of the third order,
fraz, frzy, fzyy, fywy;

and in general (n + 1) partial derivatives of the nth order,

fams Faon-1yy Frme2yts « + oy Foym-1, fyn.

It is obvious that similar statements also hold for functions of more
than two independent variables. For we can apply our proof equally
well to the interchange of differentiations with respect to x and z or
with respect to y and 2z, and so on, for each interchange of two succes-
sive differentiations involves only two independent variables at a
time,

Exercise 1.4d

1. Obtain 32z/(9x dy) and 322/(dy ax) to confirm their equality.

(a) z = (ax + by)? dz=ye*
(b) 2= Yax + by (e)z=10gx-;y
(c) z=Ff(ax + by) () z = ecos@+2)

2. Find all partial derivatives through the third order of the following
functions:
@) f(x, y) = x¥
(b) f(x, y) = cosh xy
(©) f(x, y) = ax? + bxy + cy?
@ fer, ) =2+%
y x

(e) f(x,y) =2cos x + 3sin (y — x).
3. Show for f(x, y) = log (e + ev) that fz + fy = 1 and fzz fuy — (fzs)? = 0.

Problems 1.4d

1. (a) Show that a function of the form w(x, y) = f(x) g(y) satisfies the
partial differential equation

and consequently

fuz(0,0) = —1 and  fx(0,0) = +1.
These two expressions are different, which by the above theorem can only be caused
by the discontinuity of fzy at the origin.



40 Introduction to Calculus and Analysis, Vol. IT

U Uzy — UzUy = 0.
(b) Prove the converse statement.
2. Define f(x, y) as:
f(x, y) ___{xz arc tan% — y? arc tan% , X,y #0,

for x=0o0or y=0.
Show that fzy(0, 0) = —1, fyz = 1.

1.5 The Total Differential of a Function and Its Geometrical
Meaning

a. The Concept of Differentiability

For functions y = f(x) of one variable, the existence of a derivative
is intimately connected with the possibility of approximating the
function f in the neighborhood of a value x by a linear function;
geometrically, this corresponds to approximating the graph of f by its
tangent. By definition, the function f has a derivative at the point
x if the limit

limf(—xj:ih)—i(x) - A

h>0

exists; the value A of the limit is denoted by f'(x). Thus, differentia-
bility of f at the point x means that for fixed x the increment Af =
f(x + h) — f(x) corresponding to the increment A = Ax of the in-
dependent variable can be written in the form
Af = f(x + h) — f(x) = Ah + &h,
where A does not depend on % and lim € = 0. Letting x + h = §, we
h=0

may say that f(£) is approximated by a linear function of §, namely
#(€) = f(x) + A — x), with an error that is of higher than the first
orderin & — x:

-9 =¢e-E—x)=0E—-x for Eoux

Of course, the graph of this linear function M = ¢(§) = f(x) +
f(x)(¢ — x) in running coordinates &, n is just the tangent to the
graph of f at the point (x. y). Formulated differently, differentiability
of f at x means that the increment Af considered as a function of
h = Ax can be approximated by the linear function df = f'(x) h =
f!(x) dx within an error that is of higher than the first order in A.1

1For the independent variable x we have dx = 1:h = h = Ax.
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These ideas can be extended in a perfectly natural way to functions
of two and more variables.

We say that the function u = f(x, y) is differentiable at the point
(x, y) if it can be approximated in the neighborhood of this point by
a linear function, that is, if it can be represented in the form

13) f(x+ h,y+k) =Ah + Bk + C + evh? 3 k2

where A, B, and C are independent of the variables 2~ and k and
where € tends to 0 as 2 and & do. In other words, the difference be-
tween the function f(x + A, y + k) at the point (x + h, y + k) and
the function Ak + Bk + C, which is linear in A and &, must be of
order of magnitude o(p), where p = vh2 + k2 denotes the distance
of the point (x + A, y + k) from the point (x, y).

If such an approximate representation is possible, it follows at once
that the function f (x, y) is continuous and has partial derivatives with
respect to x and to y at the point (x, y) and that

A = fx(x: y)! B = f?l(x’ y)! C = f(x’ y)'

For first of all we find from (13) for » = k = 0 that f (x, y) = C. More-
over, lénz flx+ h,y+ k) =C =f(x, y).
-0

Thus f is continuous at the point (x, y). Setting £ = 0 in (13) and
dividing by & yields the relation

f+hy)— ) _ 4 ¢
2 .

Since € tends to 0 as A tends to 0, the left-hand side has a limit, and
that limit is A. Similarly, we obtain the equation fy(x, y) = B.

Conversely, we shall prove the fundamental fact:

A function u = f(x, y) is differentiable in the sense just defined—
that is, it can be approximated by a linear function with an error o(p)
as in (13)—if it possesses continuous derivatives of the first order
at the point in question.

Indeed, we can write the increment

Au=f(x+h,y+ k) —fl(x,)
of the function in the form

Au=fx+hy+ k) —flx,y+ k) +flx,y + k) — f(x, y).
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As before (p. 31), the two parentheses can be expressed in the form
Au = hfx + 61k, y + k) + kfy(x, y + 02k),

where 0 < 01, 62 <1, using the ordinary mean value theorem of
differential calculus. Since by hypothesis the partial derivatives f,
and fy are continuous at the point (x, y), we can write

fo{x +61h,y + k) = faolx, ¥) + &1
and
fulx, y + O2k) = fy(x, y) + €2
where the numbers €1 and €2 tend to 0 as & and £ do. We thus obtain
Au = hf(x, y) + kfy(x, y) + €1h + g2k
= hfdx, y) + kfy(x, y) + o(vhZ + E?),

and this equation expresses the differentiability of f.1

We shall occasionally refer to a function with continuous first
partial derivatives as a continuously differentiable function or as a
function of class C'. We see that functions of class C! are differentia-
ble. If in addition all the second-order partial derivatives are con-
tinuous, we say that the function is twice continuously differentiable,
or of class C2, and so on. The continuous functions are also referred
to as the functions of class C°.2

Exercises 1.5a

1. Show that each of the following functions is not differentiable at the
origin:
(@) f(x,y)=+x cos y
(b) f(x, ) = V]xy]

1If we assume merely the existence, and not the continuity, of the derivatives f; and
fy, the function need not be differentiable (cf. p. 34).

2These definitions of class C*, C?, and so on apply only to functions f whose domain
is an open set, since partial derivatives have been defined only for interior points of
the domain. One can extend the notion of class to functions f with a nonopen domain
R; it then means that the derivatives of fin question exist at all interior points of R
and coincide at those points with functions that are defined and continuous through-
out R.
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© £, 9) =[¢;_22x—i—7é 9 #0,0

0, (x, y) = (0, 0).
2. For g(x), h(y) continuous functions of x, y in the intervals [xo, xi],
[¥o0, y1}, respectively, show that the function f(x, y) = (fzo g(s) ds) X

U ZO h(t) dt) is differentiable at (x, y) for xo < ¥ < x1, Y0 <y < y1.

Problems 1.5a

1. Suppose that in a neighborhood of the point (a, b), f (x, y) = f (a, b) +
hfxa, b) + k fya, b) + o(vh? +k?), where h = x—a and k = y—b. On
the assumption that f: and fy exist at (a, b) but are not necessarily
continuous there, prove that f is continuous at (a, b).

b. Directional Derivatives

A basic property of differentiable functions f is that they not only
possess partial derivatives with respect to x and y—or, as we also
say, in the x- and y-directions—but that they have derivatives in any
direction and that these derivatives can all be expressed in terms of
fz and f,. By the derivative in the direction o we mean the rate of
change of f at the point (x, y) with respect to distance as we approach
(x, y) along the ray that forms the angle a with the positive x-axis.
The points (x + A, y + k) of the ray are the ones for which # and &
have the form

h =p cos «a, k= p sin a,

where p = VA2 F kZis the distance of (x + A,y + &) from (x,y). Along
the ray f becomes a function of p given by

f(x+ p cos a,y + p sin o).

The derivative of f at the point (x, y) in the direction a is defined as the
derivative of f (x + p cos o, ¥ + p sin o) with respect to p at p =10
and denoted by D) f(x, ¥). Thus,

d .
Dwf(x, y) = (d—p f(x 4+ p cos o,y + p sin a))

p=0
— imf(®+p cos 0,y + p sin @) — f(x, y)
p~0 P ’
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provided the limit exists. In particular, we obtain fora = 0 and o =
7/2 the partial derivatives of f:

Dof(x, y) = kimfE+ 0.9 = fx9) _

p~0 p

(%, ¥)

Deaf(, 5) = lim flx,y + "g =3 (CF) Ny

If f(x, y) is differentiable, we have

14 f(x + h,y + k) — f(x, y) = hfz + kfy + €p
= p(fz cos a + fy sin a + ¢)

Let p tend to 0; then, since ¢ tends to 0, we obtain for the derivative
of f in the direction a the expression

(14a) D f(x, y) = fz cos ¢ + fy sin a.

Thus the directional derivative Dwf is a linear combination of the
derivatives f; and fy in the x- and y-directions with the coefficients
cos a and sin o. This result holds in particular whenever the deriva-
tives fz and fy exist and are continuous at the point in question.

Taking, for example, for f(x, y) the distance r = yx2 + 52 from the
origin to the point (x, y), we have the partial derivatives

X .
== — = 0 d =T = - 9,
Tz ,———x2 T y2 r (0] an Ty sz T y2 r sin

where 0 denotes the angle that the radius vector makes with the x-
axis. Consequently, in the direction a the function r has the deriva-
tive

Dr =rz cos a + ry sin a = cos 0 cos o + sin 0 sin @ = cos (0 — a);

in particular, in the direction of the radius vector itself (i.e., in the
direction away from the origin), this derivative has the value 1, while
in the directions perpendicular to the radius vector, it has the value 0.

The function x has, in the direction of the radius vector, the
derivative De (x) = cos 0, and the function y, the derivative Ds (y) =
sin 0; in the direction perpendicular to the radius vector these
functions have the derivatives D+x92 x = —sin 0 and D@in2) ¥y =
cos 0, respectively.
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The derivative of a function f(x, y) in the direction of the radius
vector is in general denoted by 9df(x,y)/or. It is really the partial
derivative with respect to r of f(r cos 8, r sin 68) considered as a
function of r and 0. Thus, we have the relation

of _ f  inodf
ar = cos96x+ smeay,

which we write conveniently in symbolic form as the identity

d d . d
E_—COSGa—x+sm9—a&

between the differentiation operators d/dr, d/dx, d/dy.

It is worth noting that we also obtain the derivative of the function
f(x, y) in the direction « if, instead of allowing the point @ with
coordinates (x + h, y + k) to approach the point P with coordinates
(x, y) along a straight line with the direction a, we let @ approach P
along an arbitrary curve whose tangent at P has the direction o. For
then if the line PQ has the direction B, we can write A~ = p cos B,
k = p sin B, and in the formulae (14) used in the proof above we have
to replace o by B. But since by hypothesis § tends to o as p —» 0, we
obtain the same expression as for Do) f(x, ).

In the same way, a differentiable function f(x, y, 2) of three in-
dependent variables can be differentiated in a given direction. We
suppose that the direction is specified by the cosines of the three
angles that it forms with the coordinate axes. If we call these three
angles a, B, v and if we consider two points (x, y, 2) and (x + A,
y + k, z + 1), where

h = p cos a, k = p cos B, l=p cos v,
then just as in (14a), we obtain the expression
(14b) fr cos a + fy cos B+ f, cos y

for the derivative in the direction given by the angles (a, B, ¥).

Exercises 1.5b

1. What is the geometrical interpretation of the derivative Df(x, ¥) of
the function f in the direction defined by the angle of inclination «?
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2. Find D(of (%o, y0), @ = 0, 30°, 60°, 90° for the following functions:
(@) f(x,y) = ax + by, a,b constants, xo = yo =0
(b) f(x, y) = ax® + y2b, xo = yo = 1, (a, b constants)
© flx,y)=x2—y%,x0o=1y0=2
d) f(x,y) =sinx + cosy, xo=y0 =0
(e) f(x,y) =e*cosy,xo=0,y0o=m
@) fx,»)=v2x®+y% x0o=1,y =1
() f(x,y) =cos(x+y), x0=0, yo=0.

3. Find the directional derivatives of each of the following functions as
indicated:

(a) 22 — x2 — y? at (1,0, 1) in the direction of (4, 3, 0).
(b) xyz—xy—yz—2x+x+y+zat(? 2 1)

in the direction of (2, 2, 0).
(c) x2z2+ y? + 28 at (1, 0, —1) in the direction of (2, 1, 0).

4. Give an example of a function that has derivatives in every direction
at a point yet is not differentiable at that point.

5. Show for f(x,y) = ¥xy that fis continuous and that the partial deriva-
tives 9z/0x and dz[dy exist at the origin but that the directional deriva-
tives in all other directions do not exist.

6. Let f(x,y) = xy + v2x% + 2, r = V%2 + 2, y/x = tan 6. Find azflore for
6 = 0°, 30°, 60°,90°, and x, y = 1.

¢. Geometrical Interpretation of Differentiability.
The Tangent Plane

For a function z = f (x, y) all these concepts can easily be illustrat-
ed geometrically. We recall that the partial derivative with respect to
x is the slope of the tangent to the curve in which the surface re-
presenting the relation z = f(x, y) is intersected by a plane perpen-
dicular to the x,y-plane and parallel to the x-axis. In the same way,
the derivative in the direction o gives the slope of the tangent to the
curve in which the surface is intersected by a plane through (x, y, 2)
that js perpendicular to the x, y-plane and makes the angle a with
the x-axis. The formula Dwf (%, ¥) = fz cos @ + fy sin o now enables
us to calculate the slopes of the tangents to all such curves, that is, of
all tangents to the surface at a given point, from the slopes of two such
tangents.!

1For points (&, n, {) in that plane wehave{ = x + pcosa,n =y + p sin a, and thus
for points on the curve of intersection,
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We have approximated the differentiable function{ = f (€, 1) in
the neighhorhood of the point (x, y) by the linear function

#E, ) = f(x, ) + € — Ofz + (M — Wfy,

where £ and n are the current coordinates. Geometrically, this
linear function is represented by a plane, which by analogy with the
tangent line to a curve we shall call the tangent plane to the surface.
The difference between this linear function and the function f (&, 1)
vanishes to a higher order than vAZ + k2asf —x = handn—y =%
tend to 0. Recalling the definition of the tangent to a plane curve, how-
ever, this means that the line of intersection of the tangent plane
with any plane perpendicular to the x, y-plane is the tangent to the
corresponding curve of intersection. We thus see that all these tangent
lines to the surface at the point (x, vy, z) lie in one plane, the tangent
plane.

This property is the geometrical expression of the differentiability
of the function at the point (x, y, 2) where z = f(x, y). In running
coordinates (£, n, {), the equation of the tangent plane at the point

(x, 7, 2) s
C—2z=©E —2)fz+ (M — e

As has already been shown on p. 41, the function is differentiable
at a given point provided that the partial derivatives are continuous
there. In contrast with the case of functions of one independent
variable, the mere existence of the partial derivatives f. and fy is not
sufficient to ensure the differentiability of the function. If the deriva-
tives are not continuous at the point in question, the tangent plane to
the surface at this point may fail to exist; or, analytically speaking,
the difference between f(x + h, y + k) and the function f(x, y) +
hf«x, ¥) + kfy(x, y), which is linear in & and &, may fail to vanish to
a higher order than A% + k2, This is clearly shown by a simple
example:

L=f(x+p cos a, y+ p sin a).

Using p and { as coordinates, the slope of the tangent to the curveat{ = z,p =0
is given by

(Z_g) om0 Dwfix, y).

Hence, the tangent has the equation

€=z + pD@f(x,y) = f(x, y) + p cos a fz(x, ¥) + p sin a fy(x, y).
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u=f(x,y)=%yz if x2 + y2 £ 0,

vu=0 if x=0,y=0.

If we introduce polar coordinates this becomes

u = — sin 20.

I
2
The first derivatives with respect to x and to y exist everywhere in the

neighborhood of the origin and have the value 0 at the origin itself.
These derivatives, however, are not continuous at the origin, for

Uz =Y ( 1 - = ) = z
Vai 4y J(x2+ ¥R V(x4 ¥

If we approach the origin along the x-axis, u; tends to 0, while if we
approach along the y-axis, u, tends to 1. This function is not dif-
ferentiable at the origin; at that point no tangent plane to the surface
2z = f(x, y) exists. For the equations fz(0, 0) = f,(0, 0) = 0 show that
the tangent plane would have to coincide with the plane z = 0. But
at the points of the line 8 = n/4, we have sin 20 =1 and z =
f(x, y) = r/2; thus, the distance z of the point of the surface from the
point of the plane does not, as must be the case with a tangent plane,
vanish to a higher order than r. The surface is a cone with vertex at
the origin, whose generators do not all lie in one plane.

Exercises 1.5¢

1. Find the equation of the tangent plane to the surface defined by z =
f(x, y) at the point P = (xo, yo) in each of the following cases:

(@) f(x,y)=3x2+4y%, P=(0, 1)

(b) f(x,y) =2cos(x —y) + 3sin x, P = (ﬂ, %)
(¢) f(x,y) =cosh(x+y), P=(0,log?2)

@ fex,)=+vx2+y:, P=(,2)

(e) f(x,y) =evcosy, P= (1, g)
®) f(x,y) =cosnew, P=(log2 1)
® feon =" etd, P=(1,1)

() f(x, y) = ax® + bx2y+ cxy? + dy3, P =(1, 1), (a, b, ¢, d constants)
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2. Show that all tangent planes to a surface z = y f(x/y) meet in a common
point where f is any differentiable function of one variable.

3. Show that the tangent plane to the surface S: z = f(x, y) at the point
Py = (x0, yo) is the limiting position of the plane passing through the
three points (x:, yi, 21), i =0, 1, 2, of S where P1 = (x1, y1) and P; =
(x2, y2) approach P, from distinct directions, making an angle not equal
to 0° or 180°.

4. Prove that the tangent plane to the quadric surface
ax? 4+ by2+cz2=1
at the point (xo, yo, 20) is

axox + byoy + czoz = 1.

d. The Differential of a Function

As for functions of one variable, it is often convenient to have a
special name and symbol for the linear part of the increment of a
differentiable function u = f(x, y) which occurs in formula (14),

Au=f(x+ h, y + k) — f(x, y) = hfs(x, 3) + kfy(x, y) + eVhZ + E2.

We call this linear part the differential of the function, and write

(152) du = dftx,3) = L+ 2L L= T pe+ g—’;Ay.

The differential, sometimes called the total differential, is a function
of four independent variables, namely, the coordinates x and y of the
point under consideration and the increments A and & of the inde-
pendent variables. We emphasize again that this has nothing to do
with the vague concept of “infinitely small quantities.” It simply
means that du approximates to the increment Au = f(x + h, y + k)
— f(x, y) of the function, with an error that is an arbitrarily small
fraction & of VA2 + k2, provided that & and & are sufficiently small
quantities. For the independent variables x and y we find from (15a)
that

dx=a—xA +Q—39Ay Ax and dy:QZAx+

0y a. _
ox 3y Py Ay = Ay.

ox

Hence, the differential df(x, y) is written more commonly

ash)  dfep=2Lax+ ¥ I dy = 1z, ) dx + fulx, ) .
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Incidentally, the differential completely determines the first partial
derivatives of f. For example, we obtain the partial derivative df/dx
from df, by putting dy = 0 and dx = 1.

We emphasize that the total differential of a function f(x, y) as the
linear approximation to Af has no meaning unless the function is
differentiable in the sense defined above (for which the continuity,
but not the mere existence, of the two partial derivatives suffices).

If the function f(x, y) also has continuous partial derivatives of
higher order, we can form the differential of the differential df (x, y);
that is, we can multiply its partial derivatives with respect to x and y
by h = dx and k = dy, respectively, and then add these products. In
this differentiation, we regard % and %k as constants, corresponding
to the fact that the differential df = hf«(x, y) + Efy(x, y) is a function
of the four independent variables x, y, &, and k. We thus obtain the
second differentiall of the function,

& = d(df) = ax(al;h + k)h + ay(gfch + a’; B
=Sl a g ok a—’;kz

ox?

s af f 2 2
axzd +25°5 dxdy+ 5 dy?.

Similarly, we may form the higher differentials

&*f = d(df) = § fd3+3 % dxrdy+ 3 af s dx dy? + fdys

52 Oy 52
af = 7 axs +4aaf dx3dy+6382];2dx2dy2
+ 4 7% ;sdxdy3+ fdy,

and, as is easily shown by induction, in general

o or
drf = a—a_c}i" dx + (;’)a___xn_{ % dxntdy + - - -

1We shall later see (p. 68) that the differentials of higher order introduced formally
here correspond exactly to the terms of the same order in the expansion of the
function.

2Traditionally, one writes the powers (dx)?, (dx)3, (dy)?, (dy)? of differentials simply
as dx?, dx3, dy?, dy3. This is, of course, somewhat misleading, since they might be
confused with d(x?) = 2x dx, d(x3) = 3x2 dx, and so on.
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n i[__ n—k k e e e f n
+(k)ax"—k ayk dx"* dy* + . dy™.

The last formula can be expressed symbolically by the equation
il d n
dof = (s dx + @dy) f

where the expression on the right is first to be expanded formally by
the binomial theorem, and then the terms

9% gun 9" - orf
axnd 3L dy dx"ldy, . .. ,ayndy"
are to be substituted for
F] n d n-1/a bl n
e 1 (e (@)t - [59)F

For calculations with differentials the rule

d(fg) =fdg + g df

holds good; this follows immediately from the rule for the differen-
tiation of a product.

In conclusion, we remark that the discussion in this section can
immediately be extended to functions of more than two independent

variables.

Exercises 1.5d

1. Find the total differentials for the following functions:
(a) z = x2%y? + 3xy® — 2y

I AN

(b) 2=73 1 0y

(c) z=log(x*—y%
_x .,y

d z= y + 5

(e) z=cos(x + logy)
_x—y

® z=373

(g) z=arc tan (x + y)
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(h) z=xv
(i) w=cosh(x+y—2)

(G) w=x2—2xz+ y5.

2. Evaluate the total differential of f(x) = x — y + (x2 + y»1/3, for x =1,
y=2dx=.1,dy=.3.

3. Find d3f(x, y) for f(x, y) = e%® +¥2,

e. Application to the Calculus of Errors

The differential df = hfz + kfy is often used in practice as a
convenient approximation to the increment of the function f(x, y),
Af =f(x + h,y + k) — f(x, y) as we pass from (x, y) to (x + h, ¥y +
k). This use is exhibited particularly well in the so-called “calculus of
errors” (cf. Volume I, p. 490). Suppose, for example, that we wish to
find the possible error in the determination of the density of a solid
body by the method of displacement. If m is the weight of the body in
air and m its weight when submerged in water, then by Archimedes’s
principle, the loss of weight (m — m) is the weight of the water
displaced. If we are using the cgs (centimeter-gram-second) system
of units, the weight of the water displaced is numerically equal to its
volume and hence to the volume of the solid. The density s of the body
is thus given in terms of the independent variables m and m by the
formula s = m/(m — m). The error in the measurement of the density
s caused by an error dm in the measurement of m, and an error dm
in the measurement of 7 is given approximately by the total dif-
ferential

ds .

_0s 9s
ds = amdm+3rh dm.

By the quotient rule, the partial derivatives are

9 ___m __ and 9 __m __.
om~  (m — m)? om =~ (m — m)?’
hence, the differential is

—m_dm + m dm
(m — m)?

ds =

Thus the error in s is greatest if dm and dm have opposite sign, say,
if instead of m we measure too small an amount m + dm and instead
of m too large an amount m + dm. For example, if a piece of brass
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weighs about 100 gm in air, with a possible error 0.005 gm, and in water
weighs about 88 gm, with a possible error of 0.008 gm, the density is
given by our formula to within an error of about

88:.5-.1034100-8-103
122

~ 91073,
or about 1 percent.

Exercises 1.5e

1. Find the approximate variation of the function z = (x + y)/(x — y), as x
varies from x = 2to x = 2.5, and y, fromy = 4 to y = 4.5.

2. Approximate the value of log [(1.02)1/4 + (0.96)1/6 — 1].

3. The base length x and height y of a right triangle are known to within
errors of h, k, respectively. What is the possible error in the area?

4. If dz is the error of measurement in a quantity 2, the relative error is
defined as dz/z. Show that the relative error in a product z = xy is the
sum of the relative errors in the factors.

5. The acceleration g of gravity is to be determined by timing the fall in
seconds of a body dropped from rest through a fixed distance x. If the
measured time is ¢, we have g = 2x/t2. If x is about 1 m and ¢ about .45 sec
show that the relative error of measurement in g is more sensitive to a
relative error in ¢ than a relative error in x.

1.6 Functions of Functions (Compound Functions) and the
Introduction of New Independent Variables

a. Compound Functions. The Chain Rule

Frequently a function u of the independent variables x, y is given
in the form

u=fEmn,...)

where the arguments &, n, . . . of f are themselves functions of x
and y

E=4(x,9), n=v(xy),...
We then say that
(16) u=fEnm,...)=1fdx ), vxy),...)=Fx1y)

is a compound function of x and y (compare Volume I, pp. 52 ff.).
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For example, the function
(16a) u=F(x,y)=e™sin(x + y)
may be written as a compound function by means of the relations
(16b) u=f(§n) = e sinn,
where & = xy and n = x + y. Similarly, the function
(16c) u = F(x, y) = log (x* + y%) « arc sin VT — x2 — y?2
can be expressed in the form
(16d) u = f(€, M) =1 arcsin &,

where £ = y1 — x2 — y2 and 1 = log (x? + y%).
In order to make the concept of compound function meaningful we

assume that the functions & = ¢(x,y), n = w(x, y), . . . have the
common domain R and map any points (x, y) of R into points
(€, n, . . . ) for which the function u = f(§, n, . . . ) is defined, that

is, into points of the domain S of f. The compound function

u = f(§(x, y), v(x,5), . . .)=F(x,y)

is then defined in the region R.

A detailed examination of the regions R and S is often unnecessary,
as in (16b), in which the argument point (x, y) can traverse the entire
x, y-plane and the function u = et sin n is defined throughout the
¢, n-plane. On the other hand, (16d) shows the necessity for examin-
ing the domains R and S in the definition of compound functions.
For the functions £ = v1 — x2 — y2 and n = log (x* + y*) are defined
only in the region R consisting of the points 0 < x2 4+ y% < 1, that is,
the closed unit disk with center at the origin, the origin being deleted.
Within this region we have |§] < 1,1 < 0. The corresponding points
(€, n) all lie in the domain of the function n arc sin &, and thus the
compound function F(x, y) is defined in R.

A continuous function of continuous functions is itself continuous.
More precisely, if the function u = f(¢,n, . . . ) is continuous in the
region S, and the functions & =¢(x, y), n=w(x, y), ... are
continuous in the region R, then the compound function u = F(x, y)
is continuous in R.

The proof follows immediately from the definition of continuity.
Let (xo, yo) be a point of R, and let &o, Mo, . . . be the corresponding
values of £, M, . . . . Now for any positive & the absolute value of
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the difference
f(§9n" . ')_f(gosn()" . )

is less than ¢, provided only that the inequality

VE—E2+(M—mZ+ -+« <3

is satisfied, where 3 is a sufficiently small positive number. But by
the continuity of ¢(x, ¥), w(x, y), . . . this inequality is satisfied if

Vx — 202 + (y —y02 < 7,

where v is a sufficiently small positive quantity. This establishes the
continuity of the compound function.

Similarly, a differentiable function of differentiable functions is itself
differentiable. This statement is formulated more precisely in the
following theorem, which at the same time gives the rule for the
differentiation of compound functions, the so-called chain rule:

If ¢=¢(x, y), n=w(x, y),... are differentiable functions of
xandyintheregion Randiff(¢,n, . . . ) is a differentiable function
of &, n, . . . in the region S, then the compound function
17 u = f(§(x, y), v(x,9), . . .) = F(x,y)

is also a differentiable function of x and y, its partial derivatives are
given by the formulae

Fx=f£¢x+fn\|lx+ ’
Fy="{fcdy+fnvy+ ,

(18)

or, briefly, by

Uz = U +u + ,
(19) z ¢ &z n Nz

Uy = ur &y + un ny + )

Thus, in order to form the partial derivative with respect to x, we
must first differentiate the compound function with respect to each of
the variables &, n, . . ., multiply each of these derivatives by the
derivative of the corresponding variable with respect to x, and add all
the products thus formed. This is the generalization of the chain rule
for functions of one variable discussed in Volume I (p. 218).

Our statement can be written in a particularly simple and sug-
gestive form if we use the notation of differentials, namely,
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(20) du=ue dt + undn+ - - -

=ur Gedx+ & dy) + un(Madx +nydy) + + -+ «
=(uebs+unnz+ + « +)dx+ (uely + unny + + - +)dy

= uz dx + uy dy.
This equation shows that we obtain the linear part of the increment
of the compound function uw=f(¢, n,...)= F(x, y) by first
writing this linear part as if £, 1, . . . were the independent varia-
bles and then replacing d&, dn, ... by the linear parts of the
increments of the functions & = ¢(x, y), n = w(x, ¥),. ... This

fact exhibits the convenience and flexibility of the differential no-
tation.

In order to prove our statement (18) we have merely to make use of
the assumption that the functions concerned are differentiable. From
this it follows that corresponding to the increments Ax and Ay of the
independent variables x and y the quantities &, 7, ... change by
the amounts

(20a) AE = &z Ax + &y Ay + e1v/(Ax)% + (Ay)?

(20b) An =1z Ax + Ny Ay + e2v(Ax)% + (By)% - - -

where the numbers €1, €2, . . . tend to 0 for Ax — 0 and Ay —» 0 or for
V(Ax)® + (Ay)2 > 0. The derivatives ¢z, ¢y, ¥z, ¥, are taken for
the arguments x, y. Moreover, if the quantities &, n, . . . undergo
changes AE, An, ..., the function w=f(¢,n,...) changes by
the amount

(21) Au = feAE + foldn + « + « +OV(AE? + (AN + - - -

where the quantity d tends to 0 for A{ >0 and An — 0, and f, fo
have the arguments &, n. Using here for A%, An, . . . the amounts
given by formulae (20a, b) corresponding to increments Ax and Ay
in x and y, we find an equation of the form

(22) Au = (fepa + fr¥z + =+ *)AX + (fepy + fovy + + + +) Ay
+ VBT B

Here, for Ax =p cos o, Ay =p sin a, p = V(Ax)? + (Ay)?, the
quantity ¢ is given by
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€ = &fc + €afy + 84/(gs cos a + gy sin a + €1)% + (yz cos a

+yysin a+e2)2+ - 5 -«

For p — 0 the quantities Ax, Ay, €1, €2 tend to 0 and, hence, so do
AE, An, and 8. On the other hand, f¢, fn, . . ., 82, 8y, ¥z, Wy, . . . stay
fixed. Consequently,

lim € = 0.
p-+0

It follows from (22) that u considered as a function of the independent
variables x, y is differentiable at the point (x, y) and that du is given
by equation (20). From this expression for du we find that the partial
derivatives ugz, uy have the expressions (19) or (18).

Clearly this result is independent of the number of independent
variables x, ¥, . . .. It remains valid, for example, if quantities
£, M, . . . depend on only one independent variable x, so that u is a
compound function of the single variable x.

To calculate the higher partial derivatives, we need only dif-
ferentiate the right-hand sides of our equations (19) with respect to x
and y, treating fe, fn,...as compound functions. Confining
ourselves for the sake of simplicity to the case of three functions
€, n, and {, we obtain!

(23a) Uzz = [eela® + fanNa® + fula® + 2fenbaz + 2fanals
+ 2fec€als + febze + frMzz + flos,
(23b) Uzy = feebaby + fonMay + fulaly + fen(Eay + Eyne)

+ fae(aly + Myle) + fee(€aly + E4la)
+ feboy + faNay + floy,

(23¢c) Uyy = feeby® + franny® + fuly® + 2fen€ymy + 2fansly
+ 2fec€yly + felyy + faMlyy + flyy.

Exercises 1.6a

1. Find all partial derivatives of first and second order with respect to x
and y for the following:
1
= = x2 =

(a) z=ulog v, where u = x2, v ity
11t is assumed here that f is a function of §, n of class C2 and that &, n, { are
functions of x, y of class C2. It follows that the compound function u of x and y again
is of class C2.
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(b) z = e*?, where u = ax, v = cos y
Xy
x—)y

(c) z = u arc tan v, where u =
@) z=g (x*>+ y% e*V)
(e) z = tan (x arc tan y).

2. Calculate the partial derivatives of the first order for

yv=x%+y—x

1
(@) w= V(%% + y2 + 2xy cos 2)
. X
(b) w = arc sin Ty

(© w=2x2+ylog(l+ x2+y2+ 2%
(d) w= arc tan V(x + y2)

3. Calculate the derivatives of

(a) z=x%,
1 llz\ llz
® ==((]")
4. Prove that if f(x, y) satisfies Laplace’s equation
2f o2 _
a2t oy =0

x
so does ¢(x, y) = f (xz P ;y|_ yz)'

5. Prove that the functions
(a) f(x, y) =log vx% + y%,

1
b) g(x,5,2) = VW ’
1
x?+y% + 22 + w?’
satisfy the respective Laplace’s equations,
@) fzz+fow=0,

(b) 8zz + gyy + 822 =0,
(©) hzz + hyy + hzz + huww = 0.

(©) hix,y,2,w)=

Problems 1.6a

1. Prove that if f(x, y) satisfies Laplace’s equation

o 9 _
ax: T oyr = O
and if u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations,

du Ov du__ v
=Ty - Ox
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then the function ¢é(x, y) = f(u(x, y), v(x, ¥) ) is also a solution of
Laplace’s equation.
2. Prove if z = f(x, y) is the equation of a cone, then

Faafyy —fzuz =0
3. Let f(x, y, 2) = g(r), where r = vx2 + y% + 22,
(a) Calculate fzz + fyy + feo.
(b) Prove that if fzz + fyy + fzz =0, then f (x, 3, 2) = % + b, where a

and b are constants.
4. Let f(x1, x2, . . ., xa) = g(r), where

F=vxi12 4 x92+ « « o + x,2
(a) Calculate fzyz; + fzoz, + ¢ ¢ * + fzpzn(compare 1.4.a, Exercise 10).

(b) Solve fzyz; + frazs + ¢ ¢ * + fapsn = 0.
b. Examples!
1. Let us consider the function
u = exp (x? sin%y + 2xy sin x sin y + y?).
We put
U=, £ =yx2gin%, n=2xysinxsiny, {=y2
and obtain

&€z = 2x sin?y, Nz = 2y sin x sin y + 2xy cos x sin y, z = 0;
&y = 2x2 sin y cos y, Ny = 2x sin x sin y + 2xy sin x cos y, {y = 2y;

Ut = Un = u; = e§+n+C.
Hence

Uz = 2 exp (x? sin?y + 2xy sin x sin y + y2) (x sin%y + y sin x sin y
+ xy cos x sin y)

and

uy = 2 exp (x? sin%y + 2xy sin x sin y + y2) (x% sin y cos y

+ x sin x sin y + xy sin x cos y + y).

!We note that the following differentiations can also be carried out directly, without
using the chain rule for functions of several variables.
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2. For the function
u = sin (x2 + ¥?)
we put £ = x2 + y2 and obtain

uz = 2x cos (x2 + y2), uy = 2y cos (x2 + y2)
Uzz = — 4x2 sin (x2 + y2) + 2 cos (x2 + ¥?),
Uzy = — 4xy sin (x2 + ¥?)

Uyy = — 4y? sin (22 + y2) + 2 cos (x2 + y?).
3. For the function
u = arc tan (x2 + xy + y?),

the substitution & = x2, n = xy, { = y2? leads to

Yo = 2x +y
T4 ay )
Uy x + 2y

14 (a2 ay+

¢. Change of the Independent Variables

The application of the chain rule (19) to a change of the inde-
pendent variables is particularly important. For example, let u =
f(¢, m) be a function of the two independent variables §, n, which
we interpret as rectangular coordinates in the &n-plane. We can
introduce new rectangular coordinates x, y in that plane (see Volume

I, p. 361) related to &, n by the formulae

(24a) E=amx+ Py, N =ax+ Py
or
(24b) x=awmf+am, y=PpE+ P
Here,
a1 = cos v, a2 = —sin v, B1 = sin v, B2 = cos v,

where v denotes the angle the positive &-axis forms with the positive
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x-axis. The function u = f(§, n) is then “transformed” into a new
function

u = f(&, n) = floax + By, aex + P2y) = F(x,y),

which is formed from f(§, n) by a process of compounding as de-
scribed on p. 53. We say that the dependent variable u is ‘“‘referred
to the new independent variables x and y instead of £ and 1.”

The rules of differentiation (19) on p. 55 at once yield

(25) Up = Ut +UnO2, Uy = uebi + uqPs,

where uz, uy denote the partial derivatives of the function F(x, y),
and uz, un the partial derivatives of the function f(§, n). Thus the
partial derivatives of any function are transformed according to the
same law (24b) as the independent variables when the coordinate axes
are rotated. This is true for rotation of the axes in space as well.!

Another important change of the independent variables is that
from rectangular coordinates (x, y) to polar coordinates (r, 0). The
polar coordinates are connected with the rectangular coordinates by
the equations

(26a) x =r cos 0, y=rsinb
(26b) r = Jx2 + y2, 0 = arc cos 7;}:_—3)2 = arc sin :/#yz

Referring a function u = f(x, y) to polar coordinates, we have
u = f(x,y) = f(r cos 9, r sin 8) = F(r, 0),

and u appears as a compound function of the independent variables
r and 6. Hence, by the chain rule (19) we obtain

x sin 0
Uy = Uplz + UsBz = Uy ;—uer%zurcosﬂ—ue -

27
@ cos 0

Uy = Uy + Uely = ur% + ue—:;— = U, sin 0 + ue
These yield the useful equation
2 s_ 2L
(28) Uz +uy—ur +;‘2u9,

1But, in general, not for other types of coordinate transformation.



62 Introduction to Calculus and Analysis, Vol. IT

By the rules (23a, b, c), the higher derivatives are given by

- )

sin2? 6 cos 0 sin 0

Uzz = Urrc0s20 + uoo o Wwpg ————
sin2 0 cos 0 sin 0

+ ur + 2ue 2 ,
r r

cos 0 sin 0 cos?2 0 — sin2 0
r2 Ure r

Uzy = Uzy = Urr cOS 0 8in 0 — woo

sin2 0 — cos2 0 " sin 0 cos 0

u
[} 7'2 T r N
. cos2 0 cos 0 sin 0
Uyy = Uyr SIN% 0 + woo 2 + 2Urg
9 .
cos2 0 cos 0 sin 0
+u———— — U .
r r

This leads to the expression in polar coordinates of the so-called
Laplacian Au, which appears in the important “Laplace,” or ‘‘po-
tential,” equation Au = 0 (see p. 33):

1 1
(29) Au = uze + uyy = Urr + Uoo 5 + ur

_ 1[0 au  @u
‘rZ{'ar(’ar)+an}'

Conversely, we can apply the chain rule to express u, and ue in terms
of uz and uy. We find in this way

(30a) Ur = UzXy + UyYr = Uz cOS 0 + uy sin 0,
(30b) Ug = UzXg + UyYp = — Uzr sin O + uyr cos 6,

We can also derive these equations by solving relations (27) for u,
and we. Incidentally, equation (30a) has been encountered already
as the expression for the derivative of u in the direction of the radius
vector r on p. 45.

In general, whenever we are given relations defining a compound
function,

u=fGEn,...),
E=6dx), n=vxDy),...

we may regard these as referring u to new independent variables x, y
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instead of &, 1, . . .. Corresponding sets of values x, y and &,
1M, . . . of the independent variables assign the same value to u,
whether it is regarded as a function f(§, n. . .)of §,m,. . .or as a
function F(x, y) = f(é(x, y), w(x, y), . . . ) of x, y.

In differentiations of a compound function u = f(€, n, . . . ), we
must distinguish clearly between the dependent variable u and the
function f(€, m, . . . ), which assigns values of u to values of the
independent variables &, m, .. .. The symbols of differentiation
Ug, Un, . . . have no meaning until the functional connection between
u and the independent variables is specified. When dealing with
compound functions u = f(, m,...)= F(x, y), therefore, one
really ought not to write wue, un or usz, uy but instead fe(§, n),
[a(€, n) or Fu(x, y), Fy(x, y), respectively. Yet, for the sake of brevity
the simpler symbols ue, un, uz, uy are often used when there is no risk
of confusion. The chain rule is then written in the form

(31) ur = utkz + unz, uy = ueky + unMy,

which makes it unnecessary to give “names” f or F for the functional
relation between © and &, n or x, y.

The following example illustrates the fact that the derivative of a
quantity u with respect to a given variable depends on the nature of
the functional connection between u and all of the independent
variables; in particular, it depends on which of the independent
variables are kept fixed during the differentiation. With the ‘‘identity
transformation” & = x, 1 = y the function uz = 2£ + n becomes
u = 2x + y, and we have uz = 2, uy = 1. If, however, we introduce
the new independent variables & = x (as before) and & + n = v, we
find that u = x + v, so that ur = 1, u, = 1. Thus, differentiation
with respect to the same independent variable x gives different results
for different choices of the other variable.

Exercises 1.6c

1. Let u = f(x, y), where x = r cos 9, y = r sin 0. Express vu,% + u,? in
terms of ur and ue.

2. Prove that the expression fzz + fyy 1s unchanged by rotation of the
coordinate system.

3. Show that the linear changes of variables x = «f + P, y = y£ 4+
transform the derivatives fzz(x, ), fzyv(x, ¥), fyy(x, ¥) by the same rule
as the coeflicients a, b, ¢, respectively, of the polynominal

ax? + 2bxy + cy?
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4,

5.

Given 2 =r2 cos 6, where r and 0 are polar coordinates, find 2z, and
2y at the point 6 = =n/4, r = 2. Express z- and ze in terms of 2; and 2.

By the transformation £ =a + ax + By, v = b — Bx + «y, in which
a, b, o, B are constants and «2 + B2 =1, the function u(x, y) is trans-
formed into a function U, 1) of £ and 7. Prove that

UetUnn — U&ﬂz = Uzz Uyy — uzyz

. Show how the expression Ty — T:, is transformed under the intro-

duction of a variable z = x/vy in place of .

. (a) Prove that the function

h(x,y) =f(x —y) + glx + ¥)

for any twice continuously differentiable functions f, g, satisfies the
condition hzz = hyy.
(b) Similarly, show that

H(x, y) =f(x — iy) + g(x + iy),
with i2 = —1, satisfies the condition Hzz = — Hyy.

Problems 1.6¢

. Transform the Laplacian u:: + uyy + uz: into three-dimensional polar

coordinates r, 0, ¢ defined by

x=rsin 0 cos ¢
y =rsin 0sin ¢
z=rcos 6.

Compare with 1.6.a, Problem 3.

. Find values a, b, ¢, d such that under the transformation £ = ax + by,

n =cx + dy, where ad — bc + 0, equation Afzz + 2Bfzy + Cfyy =0
becomes

(@) fee+faim=0
(b) fen =0 (A,B,C, constants)
Is this always possible?

1.7 The Mean Value Theorem and Taylor’s Theorem for
Functions of Several Variables

a. Preliminary Remarks About Approximation by Polynomials
We have already seen in Volume I (Chapter V, p. 451) how a

function of a single variable can be approximated in the neighbor-
hood of a given point with an accuracy higher than the nth order
by means of a polynomial of degree n, the Taylor polynomial, provided
that the function possesses derivatives up to the (n + 1)th order.
Approximation by means of the linear part of the function, as given
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by the differential, is only the first step toward this closer approxi-
mation. In the case of functions of several variables, for example, of
two independent variables, we may also seek an approximate rep-
resentation in the neighborhood of a given point by means of a
polynomial of degree n. In other words, we wish to approximate
f(x + h, y + k) by means of a “Taylor expansion” in terms of the
increments h and k.

By a simple device this problem can be reduced to one for functions
of only one variable, Instead of just considering f(x + h, y + k), we
introduce an additional variable ¢ and regard the expression

(31) F(t) =f(x + ht, y + kt)

as a function of ¢, keeping x, ¥, h, and & fixed for the moment. As ¢
varies between 0 and 1, the point with coordinates (x + ht, y + kf)
traverses the line segment joining (x, y) and (x + A, y + k). The
Taylor expansion of F(t) according to powers of ¢ will yield for ¢t = 1
an approximation to f(x + h, y + k) of the desired kind.

We begin by calculating the derivatives of F(f). If we assume
that all the derivatives of the function f(x, y) that we are about to
write down are continuous in a region entirely containing the line
segment, the chain rule (18) at once gives!

(32a) F'(t) = hfz + kfy,
(32b) F"(t) = h*fzz + 2hkfzy + E2fyy,

and, in general, we find by mathematical induction that the nth
derivative is given by the expression
0 00 W (s
+ o o o+ kY,
1We have from the chain rule
PO = 2+ bty + k) = B, 1) + hfole

where & =x + ht, n =y + kt. We write here fz(x + ht, y + kt) for fe(x + ht,
y + kt) since (again by the chain rule)

g—x fc + ht, y + kt) = fe(x + ht, y + kD)

if x, y, h, k are considered independent variables.
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which, as on p. 51, can be written symbolically in the form
d a\n»
o)) = [h— =
Py = (s + ky) .

In this formula the symbolic power on the right is to be expanded by
the binomial theorem and then the powers of d/dx, 3/dy multiplied
by f are to be replaced by the corresponding nth derivatives a%f/dx",
onflox®=19y, . . .. In all these derivatives the arguments x + At and
y + kt are to be written in place of x and y.

Exercises 1.7a

1. For F(t) = f(x + ht, y + kt) find F'(1) for:
(@) f(x, y) =sin (x + y)

I
®) f&s, 3 =2

© f(x,y) = x% + 2xy* — y*
9. Find the slope of the curve 2(t) = F(t) = f(x + ht,y + kt) at t = 1, for
x=0y=Lh=1k=1, and
(@) f(x,y) =%+ y*
(b) f(x, y) = exp [x? + (y —1)7
(¢) f(x,y) = cos = (y — 1) sin nx?

b. The Mean Value Theorem

Before taking up higher order approximations by polynomials, we
derive a mean value theorem analogous to the one we already know
for functions of one variable. This theorem relates the difference
fix + h, y + k) — f(x, y) to the partial derivatives fr and fy. We
expressly assume that these derivatives are continuous. On applying
the ordinary mean value theorem to the function F(t) we obtain

F@) — FO) _
; = F'(8),

where 0 is a number between 0 and 1; using (31) and (32a) it follows
that

fx + ht,y J; kt) — %, 9) _ pe(x+ Oht, y + Okt) +Efy(x + Oht, y + Okt).
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Setting ¢ = 1, we obtain the required mean value theorem for functions
of two variables in the form

= hfs(x + Oh,y + Ok) + kfy(x + Oh, y + OF)
= hfs(€, m) + kfy(E, m).

Thus, the difference between the values of the function at the points
(x + h,y + k) and (x, y) is equal to the differential at an intermediate
point (&, n) on the line segment joining the two points. It is worth
noting that the same value of 8 occurs in both f; and f,.

Just as for functions of a single variable (Volume I, p. 178), the
mean value theorem can be used to obtain a modulus of continuity for
a function f(x, y) and, more precisely, to show that a function f as
above is Lipschitz continuous. In order to apply the mean value
theorem we must be able to join two points by a straight line segment
along which f is defined. Assume then that the domain R of f(x, y)
is convex, that is, that the line segment joining any two points of R
lies completely in R. Let f be continuously differentiable in R and
let M be a bound for the absolute value of the derivatives of f:

lf 2, D<M,  |fx, )< M

for (x, y) in R. Then formula (33) can be applied and yields the in-
equality

(34) If(x + h,y + k) — f(x, )| Z|h| | f2E W]+ k] f(E, n)
Z|h|M+ |R|M < 2M JRZ I E2

Hence, the numerical value of the difference in the values of f at two
points. whose distance p = VA2 + k2 does not exceed a fixed multiple
of the distance (namely, 2Mp). This is exactly what is meant by
Lipschitz continuity of f. In particular we have

Ifx+ h,y+ k) — flx,)|<e

for vhZ® + k% < ¢/2M. Thus f is uniformly continuous in R with the
“modulus of continuity” & = g/2M.

The following fact, the proof of which we leave to the reader, is a
simple consequence of the mean value theorem. A function f(x, y)
whose partial derivatives f; and fy exist and have the value 0 at every
point of a convex set is constant.
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Exercises 1.7b
1. Interpret the mean value theorem geometrically.
2. Find a value 6 for which
hfz(x + Oh, y + 0k) + kfy(x + Oh, y + 6F)
=f(x+h,y+ k) —f(x,)
in each of the following cases:
@ fx,y)=xy+y, x=y=0h=3 k=1
®) fx,y) =sint(x+y),x=y=4,h=3k=
3. Show that there is a number 6, 0 < 6 < 1 such that

00w
Ll

;2’._— = cos%6 + sin[g(l —_ 6)]
using the mean value theorem for the function
f(x, ¥) = sin =x + cos wy.
4. Derive the mean value theorem for a function f(x, y, 2) of three variables.
5. Find a number 6, 0 < 6 < 1, for which
o33 =rbz ) +2n(s) + 36029
where
(@ f(x, 3, 2) = xyz
®) f(x, 5, 2) = x® + y* + 2xz

Problems 1.7b

1. Let the domain of f(x, y) be a polygonally connected region; that is,
suppose that any two points P, @ of the domain can be connected within
the domain by a sequence of segments PoP1, P1Ps, . . ., Pn_1 Pn, where
Py = P and P» = Q. Prove that if the partial derivatives f: and fy have
the value 0 at every point of the domain, then f is constant.

c. Taylor's Theorem for Several Independent Variables

If we apply Taylor’s formula with Lagrange’s form of the remainder
(cf. Volume I, p. 452) to the function F(t) = f(x + ht, y + kt), use the
expressions (32a, b, c) for the derivatives of F, and put ¢t =1, we
obtain Taylor’s theorem for functions of two independent variables,

35  fix+ h,y+ k) =f(x,y) + {hfsx, ) + kfy(x, ¥)}

+ % {hzfxz(x’ y) + 2hkfxy(x, y) + szyy(x, y)}
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ool mnfanta, 5) + (7| hr-kfon,(x, 9)

oo+ B )|+ R
where R, denotes the remainder term

1

(36) Ry = m {h

n+lfxn+1(x + eh, Yy + ek) e U
+ k"1 f nii(x + Oh, y + OR)},

where 0 < 6 << 1. The increment f(x + A, ¥y + k) — f(x, y) is thus
written as a sum of homogeneous polynomials of degree 1, 2, . . .,
n + 1, which, apart from the factors

i1 1 1
1!’ 2! n!’ (n+ 1!’
are the first, second, . . ., nth differentials

af = hat My = (s + k) f
dof = (h—- Ty ) f = B¥faz + 2hkfsy + K2fon,
dnf:(hi+k—)f~h"f +()h"—1kf + o o+ kY,
ox " Tayl T T a1y v
of f(x, y) at the point (x, ¥) and the (n + 1)th differential d»*! f at an

intermediate point on the line segment joining (x, y) and (x + A,
y + k). Hence, Taylor’s theorem can be written more compactly as

@D  fix+hy+ k=[x +dflx,y) + 2,dzf(x, N+

where

1
(38) Ry (n+l)'d"+f(x+9h Y+ 0k, 0<0<]1.
In general the remainder R, vanishes to a higher order than the
term d*f just before it; that is, as A—0 and 2 —0, we have R, =
ol VR T 7).



70 Introduction to Calculus and Analysis, Vol. I1

From Taylor’s theorem for functions of one variable the passage

(n—o0) to infinite Taylor series led us to the expansions of many
functions in power series. With functions of several variables such a
process, even when possible, is in general too complicated. For us the
importance of Taylor’s theorem lies rather in the fact that the incre-
ment f(x + h,y + k) — f(x, y) of a function is split up into increments
df, d?f, . . . of different orders.

[N]

Exercises 1.7¢

. Find the polynomial of second degree that best approximates sin x sin y

in the neighborhood of the origin.

. For f(x, y) = x® 4+ 4y%x, approximate the value of f(2.1, 2.9).
. For f(x, y) = x/y + y/x, estimate the error in approximating the value

of (.9, .9) by (1, 1).

. Expand the function f(x + h, y + k) in powers of h, &, for

(a) f(x,y) = x® — 2x%y + 2

E]

(b) f(x,y)=cos(x+2y) at x = 0,y=—2—

(©) f(x, y) = x%y + 2y%x — V3x2,

. Expand f(x, y, 2) = xyz2 in powersof x, y — 1, z + 1.
. Obtain the first few terms of the Taylor expansions of the following

functions in a neighborhood of the origin (0, 0):

(a) z = arc tan (x2y—+1) ) z=log(Q~—x)log (1 —y)
(b) z = cosh x sinh y (8 z = es®v?

(¢) z= cos x cosh (x + ¥) (h) z=cos (x + y) e~=2

d) z=e*cosy (i) z = cos (x cos y)

© 2= () z=sin (2 + )

cos y

. Estimate the error in replacing cos x/cos y by

1 T
1-leroym  for Il Iyl<E.

Problems 1.7¢

. Find the Taylor series for the following functions and indicate their

range of validity.

@) 1—?%‘:;
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(b) ez+v,
2. Show that the law of cosines in spherical trigonometry,
COS 2 = €O0S X cos ¥y + sin x sin y cos 6,
reduces to the euclidean law of cosines,
22=x2+4+y2 — 2xy cos 0

in the neighborhood of the origin.
3. If f(x, ¥) is a continuous function with continuous first and second
derivatives, then

. 2h, ~1/2h) . 9 h, ~1/h + 0,0
fex0, 0) = lim f(2h, 72" f}(ﬁe ) + £(0, 0)

4. Prove that the function f(x, y) = exp (—3y2 + 2xy) can be expended in a
series of the form

that converges for all values of x and y and that the polynominals Ha(x),
the so-called Hermite polynomials, satisfy

(a) Ha(x) is a polynomial of degree n.
(b) Hy'(x) = 2nHp_1(x)

(¢) Huy1 — 2xHn + 2nHp_1 =0

(d) Hy” — 2xH,' + 2nH, = 0.

1.8 Integrals of a Function Depending on a Parameter

The concept of multiple integral of a function of several variables
will be taken up in Chapters IV and V. For the moment we shall only
study the single integrals arising in connection with such functions.

a. Examples and Definitions

If f(x, ) is a continuous function of x and y in the rectangular
regionao < x < B, a < y < b, we may think of the quantity x as fixed
and integrate the function f(x, y), considered as a function of y alone,
over the interval a < y < b. We thus arrive at the expression

J7 fex, ) dy

which still depends on the choice of the quantity x. Thus, we are con-

sidering not just one integral but the family of integrals f b f(x, y) dy
a

obtained for different values of x. The quantity x, which is kept fixed
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during the integration and to which we can assign any value in its
interval, we call a parameter. Our ordinary integral therefore appears
as a function of the parameter x.

Integrals that are functions of a parameter frequently occur in
analysis and its applications. For example, as the substitution xy =
u readily shows, we have

fl xdy .
0 1/—_—523,—2—arcsmx

for —1 < x < 1. Again, in integrating the general power function we
may regard the exponent as a parameter and write accordingly

[P
oY W T v

where we assume that x > —1.

We can represent the region of definition of the function f(x, y)
geometrically and consider the parallel to the y-axis corresponding to
the fixed value of the parameter x, as in Fig. 1.15. We obtain the func-
tion of y that is to be integrated by considering the values of the
function f(x, ¥) as a function of y along the line of intersection AB
of the parallel with the rectangle. We may also speak of integrating
the function f(x, ) along the segment AB.

y
Br-—T—T
|
|
|
|
|
ab—— |
| A
1
|
|
|
|
|
L x
(0] a b
Figure 1.15

This geometrical point of view suggests a generalization. If the
domain of definition R of the function f(x, ¥) has the shape shown in
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Figure 1.16

Fig. 1.16. such that any parallel to the y-axis cuts the boundary
in at most two points, then for a fixed value of x we can again
integrate the values of the function f(x, y) along the line AB in which
the parallel to the y-axis intersects the region R. The initial and final
points of the interval of integration will themselves vary with x. We
then have to consider an integral of the type

vy ()

(39) {2 fx, ) dy = F(x),

v1(z)

that is, an integral with the variable of integration ¥ in which the
parameter x is present both in the integrand and in the limits of
integration. If we represent the function f(x, y) by the surface
z = f(x, y) in x, y, z-space, then for a positive function f we can
consider the cylinder with generators parallel to the z-axis having
as its base the domain R of f in the x, y-plane and bounded on
top by the surface z = f(x, y). A fixed value of x corresponds to a
plane parallel to the y, z-plane, which intersects the solid cylinder in
a certain plane region. The area of that region is given by the integral
in formula (39). For example, the integral

Vi-a2
—1-z2

I —x2—y2dy
represents the area of the intersection of the hemisphere

0<z< VI —2x2— 92

with a plane x = constant.
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b. Continuity and differentiability of an integral with respect
to the parameter

The integral
b
F@) = [ fx,y) dy

is a continuous function of the parameter x, for a < x < B, if f(x, y)
is continuous in the closed rectangle R given by a < x < B,a <y < b.
For

Fae+ B = F@) | =| [ (6 + b 3) — iz, 0 ]
< ["|f+ by fe, )| dy.

In virtue of the uniform continuity of f(x, ¥), for sufficiently small
values of h the integrand on the right, considered as a function of
y, may be made uniformly as small as we please, and the statement
follows immediately.

We next investigate the possibility of differentiating F(x). We first
consider the case in which the limits of integration are fixed and as-
sume that the function f(x, y) has a continuous partial derivative
fz in the closed rectangle R.! We shall prove that instead of first in-
tegrating with respect to y and then differentiating with respect to
x we may reverse the order of these two processes:

TaeoreM. If in the closed rectangle o < x <P, a Sy = b the
function f(x, y) is continuous and has a continuous derivative with
respect to x, we may differentiate the integral with respect to the
parameter under the integral sign, that is,

(40) 9Py = 2" e, dy = [ fuln,9) dy.

Moreover, F'(x) is a continuous function of x.

Before proving this theorem, we remark that it yields a simple
proof of the fact (already established on p. 37) that in the formation
of the mixed derivative gy of a function g(x, y) the order of differ-
entiation can be changed, provided that gy and gzy are continuous and
gz exists. For if we put f(x, ¥) = gy(x, y), we have

1This means that f- exists in the open rectangle and can be extended into the closed
rectangle as a continuous function (see. p. 42).
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£(5,3) = g(x, ) + [ f(x, ) dn.

Since f(x, y) has a continuous derivative with respect to x in the
rectangle a < x < B, a <y < b, it follows that

gx(x, y) = gz(x’ a) +fayfx(x, T]) dn,
and therefore by the fundamental theorem of calculus

gyx(x, y) = ffl‘(x3 y)

Since also fi(x, y) = gsy(x, y) from the definition of f, we see that

8yz = Bay.
Proor. If both x and x + h belong to the interval o < x < B,
we can write

F+h) - F@) =[x+ b,y dy — [ fix, ) dy
=["1ftx + h, 3) — fex, 9 d.

Since we have assumed that f(x, y) is differentiable with respect to
x, the mean value theorem of differential calculus in its usual form
gives

fx+ h,y) —f(x,y) = hfs(x + 0h,y), 0<0<11

Moreover, since the derivative f; is assumed to be continuous in the
closed rectangle and therefore uniformly continuous, the absolute
value of the difference

fox + 6h, y) — fxx, y)

is less than any positive quantity € for all A with |h| <& where
8 = 8(¢) is independent of x and y. Thus,

F(x + h}i — F(x) _fab £, ) dy‘

1Here the quantity 6 depends on y and may even vary discontinuously with y. This
does not matter, for by the equation fz(x + 0h, y) = A1 [f(x + h, ¥) — f(x, y)] we
see at once that fz(x + 0h, y) is a continuous function of x and y and is therefore
integrable.
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b b
= |[7 fetxe + 0h, 3) dy = [ fulx. ) d|
a a
b
< — —
=L8@ &b — a),

for |h| < 8(¢), provided A = 0. This means, however, that the re-
lation

F(x)

lim Fx+ h

R0 f)L - = Lb fa(x, y) dy = F'(x)

holds. This proves the existence of F'(x) and formula (40). The con-
tinuity of F’ follows from that of the integrand fi«(x, y) (see p. 74).
In a similar way we can establish the continuity of the integral and
the rule for differentiating the integral with respect to a parameter
when the parameter occurs in the limits of integration.
For example, if we wish to differentiate

v2(Z)

F) = [ " f(x, 5 dy,
we start with the expression
F@) = [ fx, ) dy = $(u, v, 9),

where u = yi1(x), v = ya(x). Here we assume that yi(x) and ya(x)
have continuous first derivatives in an interval o < x < B and that

a < yi(x) <wyax) <b

for a < x < B. Let, moreover, f(x, ¥) and fz(x, y) be continuous in
the set

o<x=PB, a=y=sbh
The function ¢ of the three independent variables u, v, x is defined
then for
e x<ZB, aZu=ghb, alv=<h

Moreover, it has continuous partial derivatives, since by formula (40)

bulu,v,2) = 2 " fix, ) dy = [ fulx, ) dy
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and by the fundamental theorem of calculus (Volume I, p. 185)
a v
$u(u, v, %) = 5= fu f(x, ) dy = f(x, v)
0 v d ru
bults, 0, 0) = [ f(x,) dy = = [ " fx,9) dy = = fx, v).

We can apply the chain rule of differentiation (18) p. 55 to the
compound function

F(x) = ¢ [yi(x), y2(x), ]
and find
F'(x) = guy1'(x) + doy2'(x) + ¢a.

This proves the existence of a continuous derivative of F(x) for
a < x < B and yields the formula

d @
(41) Do Jor i fC )y

(z)
= [, ) dy = () W) + w2 @) fx, el
Taking, for example, for F(x) the function

F(x) = fox»sin (xy) dy

we obtain

d{;ix) f ’ y cos (xy) dy + sin (x2).

For the example

F(x) = f Jlx_d; 5 = arc sin x,

for — 1 < x < + 1, we obtain the relation

I dy _ 1
F(x)—fo VI — 2223 T V1 — x?

as the reader may verify directly.
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Other examples are given by the sequence of integrals

(42) Fam) = [ 2= fy)dy,  Fox) = [ 1) d,

where n is any positive integer and f(y) is a continuous function of
y alone, in the interval under consideration. Since the expression
arising from differentiation with respect to the upper limit x vanishes,
rule (41) yields the recursion formula

Fr'(x) = Fa-1(x)
forn=1,23,....8Since Fo'(x) = f(x), this gives at once
(42a) Fpt(x) = f(x).

Therefore Fyu(x) is that function whose (n + 1)th derivative is equal
to f(x) and which, together with its first n derivatives, vanishes for
x = 0; it arises from Fy_;(x) by integration from 0 to x. Hence, Fn(x)
is the function obtained from f(x) by integrating n + 1 times between
the limits 0 and x:

) Flw=[ fo)d, F@=[ F)dy,
Fuo= [P0 dy,. .., Fu@® = Faor(dy.

This repeated integration can therefore be replaced by a single in-

(x

tegration of the function y )" f(y) with respect to y.

The rules for dlﬁ'erentlatlng an integral with respect to a parameter
often remain valid even when differentiation under the integral sign
yields a function that is not continuous everywhere. In such cases,
instead of applying general criteria, it is more convenient to verify
directly whether such a differentiation is permissible in each special
case.

As an example, we consider the elliptic integral (cf. Volume I, p.
299).

+1 dx 9
Fo=) Tm—sa-mm P

The function
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1
k. ) = JT—50 = o)

is discontinuous at x = +1and at x = —1, but the integral (as an im-
proper integral) has a meaning. Formal differentiation with respect
to the parameter k gives

L[ kx? dx
Fk) = L VI — DA = Bxo)p

To investigate whether this equation is correct, we repeat the
argument by which we obtained our differentiation formula. This

gives

F(k + h}Z — F(k) _ f_ jl felk + Ok, %) dx

_ f+1 (k + Oh)x? dx
T Ja JA =20 — (k + 0h22 3

The difference between this expression and the integral obtained by
formal differentiation is

A J<+1 x2 ( k + Oh k )d
TJ)a T2 \VII— (& +omE3e V(1 - kxp)y "

We must show that this integral tends to 0 with A. For this purpose
we mark off about & an interval ky <k < k1 not containing the values
+1, and we choose A so small that 2 + 04 lies in this interval. The
function

__k__
V@ — k2x?)3

is continuous in the closed region—1<x <1, ko < k < k3, and is
therefore uniformly continuous. The difference

‘ k+ 0h k
VI =k + 02 V(1 — k2?3

consequently remains below a bound € that is independent of x and
k and which tends to 0 with A. Hence,

+1 2
= [ R,
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where M is a constant independent of €. That is, the integral A tends
to 0 as h does, which is what we wished to show.

Differentiation under the integral sign is therefore permissible in
this case. Similar considerations apply in other cases.

Improper integrals with an infinite range of integration and de-
pending on a parameter will be discussed on p. 462.

Exercises 1.8b
1. Let
b
F(by = [ a(x) B(x, b dx,

where B(x, k) and Bx(x, k) are continuous for ¢ < x < b, ko < k < ki,
and «(x) is continuous for ¢ < x < b, and J; b |a(x)|dx exists as an im-

proper integral. Prove that
Fy= | " u(x) Bex, By dx  for ko <k < ki
2. Let
Fk) = Ll (x — 1)x* log~x dx for —1<k.

Prove
(a) lkim kEFk)=1

2+k
1+k°

(b) F(k) =1log

¢. Interchange of Integrations. Smoothing of Functions

The theorem on p. 74 about differentiation under the integral sign
has the important consequence that we can interchange orders of
integration.

Let f(x, y) be continuous in the rectangle R given by

(42c) a<x=<b oo=y=}.
Then the integrals
b B B b
“2d) I=['de[ fEmydn and J= [ dn [ fc,made
have the same value. We call this value the double integral of f over

the rectangle (42c).
As an example we consider the function f(x, y) = ¥ sin (xy) in the



Functions of Several Variables and Their Derivatives 81

rectangle 0 < x<1,0<y=< E. Here

2
7 f déf 0 sin (En) dn = f T COS (1t §/2) sin (§1r2&/2) de

NIa

/2 1 . /2 n
J=f dnf nsm(én)d&_,:f (1 —cosn) dn—é—l
0 0 0

For the general proof of the identity I = <J, we introduce the in-
definite integrals

e, ) =["femdn,  uw = ["vE yde

Applying formula (40) we find

un(x, ) = [“vi&, ) de = [ fE, y) de

and thus
u(x, 3) = ulx, @) + [ uyx, ) dn = ["an ["fe, ) ag

For x = b, y = B it follows that I = J.
We have associated here with a continuous function f(x, y) in the
rectangle R a function u(x, ), which has continuous first derivatives

udz,y) = [ fx mdn,  uxy) = [ re v de
and a continuous mixed second derivative

uzy(x, y) = f(xx y)

We shall use the function for the purpose of “smoothing” f, that is,
for constructing uniform approximations to f that have continuous
partial derivatives.

For technical applications it often is essential to replace a con-
tinuous function f (itself perhaps only an approximation to an imper-
fectly known physical quantity) by a smooth function nearby. We
know from the Weierstrass approximation theorem (Volume I, p. 569)
that functions of one independent variable, continuous in an interval,
can be approximated uniformly by polynomials, which even have
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derivatives of all orders. The analogous theorem holds for functions
f(x, y) continuous in a rectangle.

We can construct simpler approximations with a more moderate
degree of smoothness by the process of “averaging” the function
f(x, y). It is convenient here to have extended the definition of f from
its rectangular domain (42c) to the whole x, y-plane so that f is con-
tinuous everywhere.! For any A > 0 we form the average of f over the
square of center (x, y) and sides of length 2h parallel to the axes:

(42¢) Fiz, ) = gy [ a2 [T fe myan

z-h

_ulx+hy+h)—uxt+hy—h—ux—hy+h)+ux—h,y—h)
- 4h?

It is clear that Fj(x, y) has continuous first derivatives and a con-
tinuous mixed second derivative.2 In order to see that Fu(x, y) ap-
proximates f(x, y) for small h, we note that

1 [tk y+h
@) Ry - =g [ [N - fe vl
4h? Jyp y-h
Since f is uniformly continuous in some rectangle R’ containing R
in its interior, we know that f for given € and sufficiently small A will

vary by less than € in every square of side 24 contained in R’'. Then
IfE, m) — f(x, y)| <& in (42f), and |Fa(x, y) — f(x, ¥)| < &. Hence

lgm Fy(x, ¥) = f(x, y) uniformly for (x, y) in R.
-0

Thus we can find a smooth function Fy(x, y) arbitrarily close to

f(x, ¥).
1.9 Differentials and Line Integrals

a. Linear Differential Forms

In Section 1.5d we defined the total differential du of a function
u = f(x, y, 2) as the expression

IThis can be achieved by continuing f as constant along rays perpendicular to one of
the four sides of the rectangle and by continuing f into the remaining points of the
plane as constant along rays from one of the four corners.

2In order to have Fa(x, y) defined for all points of the rectangle R, we have to have
f defined somewhat beyond R.
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_ 0f(x,5,2) of(x, 5, 2) of(x, 5, 2)
(43) du = F dx + 3y dy + e dz.

This definition for the differential of a function of several variables
is suggested by the chain rule of differentiation. For if x, y, z are given
functions of a variable ¢,

(44) x=0®), y=v@), z=x@0),

then the derivative of the compound function u = f[@(%), w(£), x(?)]
according to the chain rule (19) is

du_ofdx_ of dy  of d
(45) di —axdt Taydt Tozdt

For functions u of a single variable ¢ the differential has been defined

asdu = c(ii_z; dt. Hence, here by (45)
_(fdx_ 9fdy 9fdz
du _(ax dt + oy dt + azdt)dt
_ofdx .  ofdy,  9fdz
_axdtdt+aydtdt+azdt dt,

which formally agrees with (43) if we remember that x, y, z (as func-
tions of ¢) have the differentials

_dx _dy _dz
dx—dt dt, dy_dt dt, dz—dt dt.

Thus the differential du = df(x, y, 2) as given by (43) furnishes
immediately the differential du = Z—:‘ dt of u “‘along any curve’ repre-

sented parametrically in the form (44).

The differential du as defined by (43) is a function of the six varia-
bles x, y, 2, dx, dy, dz that is linear and homogeneous! in the variables
dx, dy, dz, with coeflicients that are functions of x, y, z. (There is, of
course, no requirement that the differentials dx, dy, dz have to be
“small” in any sense; such a restriction only arises if we want to use
du as an approximation to the increment

1The most general linear function of three variables &, n, { is A + Bn + C{ +
D with coefficients A, B, C, D not depending on &, 0, {; the linear function is called
“homogeneous” or is said to be a “linear form” when D = 0 (see p. 13).
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Au=f(x+dx,y+ dy,z+ dz) — f(x,, 2)

as explained on p. 42).
The most general linear differential form in x,y,z-space is repre-
sented by the expression

(46) L= A(x,y,2)dx + B(x,y,2)dy + C(x,y, 2) dz.

It is a function L of the six variables x, y, z, dx, dy, dz that is a linear
form in the “differential” variables dx, dy, dz, with coefficients de-
pending on x, y, 2. The total differentials du of functions are the
special linear differential forms L that have coefficients of the form

@7 A = ¥, 2), B = =, z), c = % z)’
ox ay 0z

for a suitable function f = f(x, y, 2). If a differential form L is the
total differential of a function, we say it is an exact differential form or
is integrable. Not every differential form is integrable; it is necessary
that the coefficients A, B, C of L satisfy certain “integrability con-
ditions’:

If the coefficients A, B, C of the differential form L are of class C!
(that is, have continuous first derivatives,; see p. 42) and if L is exact,
then the equations

dB aC aC dA dA 4B _
(48) az—@—o, — — =0, ay—ax_o
hold.

Equations (48) simply are consequences of the rules for inter-
changeability of second derivatives. If A, B, C have continuous first
derivatives and can be written in the form (47), then f has continuous
second derivatives. Hence, by the theorem on p. 36, the order of dif-
ferentiation does not matter. Thus, for example,

0A _09df dof 0B

dy ~ dyox oxdy ox’

and similarly for the other identities in (48).
Hence, for example, the linear differential form

L=ydx+zdy+ xdz

is not integrable, since here
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On the other hand, the integrability conditions (48) are satisfied for
the differential form

L=yzdx + zxdy + xy dz,

which, as a matter of fact, is the total differential du of the function
u = xyz. To what extent the conditions (48) also are sufficient for
expressing L as a total differential will be discussed in Section 1.10.

Similar conditions for integrability are obtained when the num-
ber of dimensions is other than three. For two independent variables
x, y the general linear differential form is L = A(x, y) dx + B(x, y) dy.
If L is the differential du of a function u = f(x, y) the coefficients
A, B satisfy the equation

04 2B _
dy ~ ox
In four dimensions, on the other hand, we obtain corresponding to
equations (48) six integrability conditions by forming all possible
mixed second derivatives of a function f of four variables.
The reason why it makes sense to consider a differential form L

even when it is not an exact differential is that, along any curve C
given parametrically in the form

x=0(), y=v@©O, z=x0,
L becomes the differential

_ (4%, pdy , dz
L _(Adt + Bdt + Cdt)dt

of a function of a single variable. This function is simply the one
given by the indefinite integral

_ (a8, g, (92
fL - f(Adt + B + CF)dr
b. Line Integrals of Linear Differential Forms

For the purpose of discussing integration of linear differential
forms over lines, it is important to have a clear picture of the con-
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cepts and properties of oriented arcs and closed curves. The reader is
advised to reread Volume I, pp. 333-340, where all the relevant re-
marks are made for the case of plane curves. These apply equally well
to curves in spaces of any number of dimensions.! Without restriction
of generality we shall talk about integrals over curves in three-dimen-
sional x, y, z-space.

A simple are T is a set of points P = (x, y, 2) that can be repre-
sented parametrically in the form

(49) x=0(), y=w), =z=x0; a=st=h,

where ¢, y, ¥ are continuous functions of ¢ for a <t < b, and dif-
ferent ¢ in that interval correspond to different points P. The parame-
tric representation (49) constitutes a 1-1 continuous mapping of the
interval on the t-axis onto the set I' in space.? The same simple arc
I' has many different parametric representations. The most general
one is obtained from the particular representation (49) by taking any
continuous monotone function p (t), mapping the interval a< t < B
onto the interval @ < ¢t < b, and setting

(50) x=¢@], y=vkh@], z=xk@]; e=tr=8.

There are two ways of ordering the points of I', which in any
particular parametric representation (49) correspond to ordering
according to either increasing or decreasing ¢ The choice of one of
these two orderings converts I' into an oriented simple arc T*. We
say that I'* is oriented positively with respect to the parameter ¢ if
the orientation of I'* corresponds to increasing ¢ and negatively if
it corresponds to decreasing t. The oriented simple arc with the
opposite orientation is denoted by —I'*. The orientation is fixed
completely if we know the order of any two points Py, P1on I'. If

1Specifically two-dimensional are only the notions of “‘positive and negative side”
of a curve and of “clockwise and counterclockwise sense.”

2The continuity of the mapping from ¢ onto P is obvious from the assumed continuity
of the functions ¢, v, . It is important to realize that the inverse mapping P — ¢
also is continuous. This means that given a sequence of points P, on I' converging
to a point P the corresponding parameter values ¢, converge to the parameter value
for P. For the proof we observe that by the compactness property of closed and bound-
ed intervals (Volume I, p. 95) a subsequence of the ¢, converges to some value ¢ with
a =t = b. By the continuity of the original mapping, ¢ is mapped on the limit P of
the P». Because of the assumed 1-1 character of the mapping, ¢ is determined unique-
ly by P. Hence, every convergent subsequence of the ¢» has as limit the parameter
value ¢ corresponding to P. This proves, however, that the whole sequence of the ¢x
converges to £.
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I'* is oriented positively with respect to the parameter ¢ and if ¢y and
t1 are the parameter values for Py, Pi, then ¢ < £i means that P;
follows Py or Py precedes Py on T'* (Fig. 1.17).

7
Py N /\A
s
s
P
“ 0
B
L1 | I ¢
a iy t1 b
L1 L ! r
a 71 TO B

Figure 1.17 Simple arc in space oriented negatively with respect to parameter T,
positively with respect to parameter ¢t = u(t), where p(a) = b, u(p) = a.

The end points of the oriented simple arc I'* correspond in the
parametric representation (49) to the values ¢t = a, b in some order. We
distinguish them respectively as ‘‘initial” and “‘final” point of I'*,
the initial end point being the one that precedes the other one. If I'*
has the initial point A and final point B we write

r* = AB
The oppositely oriented arc is then
—T* = BA

If T'* is oriented positively with respect to £, the initial point has
parameter value a, and the final point, parameter value b.

An oriented simple arc I'* = AB can be divided into oriented sim-

ple subarcs I't*, , . . ., I'x* by points Py, . . ., Pn_1 on I'* following
each other according to the orientation. We put Py = A, P, = B and
definefori =1, . . ., nthe arc I ¢* as the set of points on I'* consist-

ing of P;_1, P; and all points preceding P; and following P;_i, ordered
in the same way as on I'*, We write symbolically
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(51) M*=T*+T2*4+ .« « +T,*

If I'* is oriented positively with respect to the parameter ¢ in the
representation (49) and if #; is the parameter value corresponding to
P;, we have

a=tbhh<hi<fa<<e o o <ilp=0b.

The arc I';* is obtained when we restrict ¢ to the interval ;-1 <t <
t; (Fig. 1.18).

Figure 1.18 Oriented arc I'* = AB represented as sum of
arcs I'¢r1* = P; Pyyg such that I'* = I'i* + I'e* + I'g* 4+ Tg* + T's*,

We are able now to define the integral fL of the linear differential
form

(52) L= A(x,y,2)dx + B(x,y,2) dy + C(x, y, 2) dz

over a simple oriented arc I'*. We assume that the coefficients A,
B, C of L are continuous in a neighborhood of I'*. We make the
further assumption that the arc T* not only is continuous but
sectionally smooth, that is, that it can be represented parametrically
by functions

(63) x=0@), y=v@, =x{#); a=t=h,
which are sectionally smooth.!

1This means that ¢, y, % are continuous for a < ¢t =< b and have continuous first
derivatives in that interval except possibly for a finite number of jump-discontinui-
ties of the derivatives. Notice that we require only the existence of some sectionally
smooth parametric representation of I'*, while other representations need not be
smooth.
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Let Py, P1,. .., Py be any n + 1 points of I'* following each
other in the order determined by the orientation of I'*, where Py is
the initial, and P, the final, point of I'*,

We form the Riemann sum

(54) Fa= "g':(Av Axy + By Ays + Cy Az).

Here Ay, By, Cv are the values of A, B, C at some point @v that
precedes Pv,1 and follows Py on I'*, and Axv, Ayy, Azv stand for

x(Pv+1) — x(Pv), y(Pv+1) — y(Pv), Z(Pv+1) - Z(Pv).

We shall show that for n — o the sequence of F converges toalimit
F, provided that the largest distance between successive points P,
Py,; tends to 0. The value of F does not depend on the particular
choice of the points Py or of the intermediate points §@v. We call F the
integral of the form L over the oriented arc I'*, and write

(55) F=] L=[ Ads+Bdy+Cde

Since the definition of the integral does not refer to parametric re-
presentations, it is clear that the integral does not depend on the
choice of parameters. The existence proof will imply that the integral
is represented by the ordinary Riemann integral

_ . [°(49x dy dz
(56) fr*L— fa(Adt+Bdt+Cdt dt

Here the integrand is the function of the single variable ¢ obtained
by substituting for the arguments x, y, z of A, B, C their expressions
(53); moreover, € = +1 when I'* is oriented positively with respect
to ¢t and € = —1 when oriented negatively. Without distinguishing
cases we can also write (56) as

7) ﬁ A £y de + % 4,

tz dt

where t; is the parameter value for the initial point and #r that of the
final point of the oriented arc I'*; that is, i = a, ¢ = b when & =
+1,and ¢ = b, tf = @ when € = —1,

To prove convergence of the Riemann sums F,, we make use of the
sectionally smooth parametric representation (53) of I'*. Let ¢v be the
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parameter value corresponding to the point Pv. Since the corre-
spondence between parameter values and points on the curve is
continuous both ways for simple arcs (see footnote on p. 86), we see
that as the largest distance between successive points tends to 0,
the largest value of |tv+1 — ¢v| tends to 0 for n — co. The functions
o'(), v' (), Y () may have jump-discontinuities at a finite number
of points. We can assume that all those points of discontinuity occur
among our subdivision points to, 1, . . ., s, for since the A, B, C
are bounded and the largest of the Axv, Ayv, Azv tend to 0 for n — oo,
the effects of adding or subtracting contributions from a fixed finite
number of subdivision points in the Riemann sum, F», disappear in the
limit.

Since o(¢), y(?), x(?) are now differentiable in the interior of
each subinterval, we can apply the mean value theorem of differential
calculus (see Volume I, p. 174) and find

Axv = @(tvs1) — @(tv) = ¢'(W)(tvs1 — tv)
Ayv = W’(Tv’)(tw;.l - tv). Azy = X'(Tv")(tw;.l - tv),

with values 1v, v/, 1v/ intermediate between ¢v and tv;1. The point

Qv on T'* also corresponds to a parameter value ov intermediate

between tv and ¢v,1. Hence, the Riemann sum F;, in (54) takes the form
n—

Fu = 5 [A(G)O (1) + B(o) V(1) + C(ov) 1/()] [tvs1 — tul.

v=0

Here the points to, 1, .. . , t» form a subdivision of the parameter
interval [a, b]. If T'* is oriented positively with respect to £, the v
form an increasing sequence with to = @, t, = b, and Atv = tv;1 — tv
> 0. Otherwise, the ¢tv are decreasing, o = b, t» = a, and Atv << 0.
In our notation for the parameter interval, a always stands for the
smaller one of the values a, b and thus may correspond to either the
initial or the final point of the arc T'*.

If we now use the fundamental existence theorem for definite inte-
grals as limits of Riemann sums (see Volume I, pp. 192 ff.), we find that
F = lim F, exists and is given by formula (56).! The factor ¢ = *+ 1

n+ow

arises from the assumption made in that theorem that the points of
subdivision tv used in forming the Riemann sum constitute an in-
creasing sequence. When the orientation of I'* corresponds to

1The intermediate values 1y, Ty/, Ty, 0v need not be the same for convergence (see
the remarks on p. 195, Volume I).
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decreasing ¢, we have to run through the values tv in opposite order,
starting with ¢, and ending with ¢y, and change the sign of Atv.

It is clear that the definition of line integral and the formula (56)
can be extended to the case where I'* is an oriented simple closed
curve.l In this case we form the Riemann sum by selecting 7 points
Py, P, . . ., PyonT* that follow each other in the order determined
by the orientation, and we put Po = Py in the expression (54) for F.

Instances of integrals over curves in the x, y-plane have been
encountered already in Volume 1. Thus, the oriented area bounded by
a closed oriented curve I'* had been represented in the form
1 b(x dy dx

T2

dt yEZ) dt

(see Volume I, p. 365); that is, as the line integral
A= %f xdy —ydx
r*

Another example is furnished by the work W done by a field of force
with components p, ¢ in moving from a point Pp to a point P; along

a curve T* = PoP; referred to arc length s as parameter. Here (see

Volume I, p. 420)
_(nf,dx, _dy
W“Lo (v o) .

which can be written as
W= f p dx + o dy.
r‘*

In the same way we can define the work done by forces in space with
components p, 6, T, in moving along an arc I'* in the direction
given by its orientation as a line integral

W=f pdx + ocdy + tdz.
*

1Such a curve has a continuous parametric representation (53), with different ¢
corresponding to different points, except that ¢t = @ and ¢t = b yield the same point.
Moreover a cyclic order is specified on T'*, corresponding to either increasing or
decreasing ¢ (see Volume I, p. 339). We can always represent I'* as sum of oriented
simple arcs I':* in the form (51), where for i = 2, . . ., n the final point of I'i*.1 is
the initial point of I';* and where the final point of I'»* is the initial point of I'1*.
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Exercises 1.9b

1. Find
fzdx+xdy+ydz
(a) over the arc of the helix
x = cos i, y =sin ¢, z=t

joining the points (1, 0, 0) and (1, 0, 2 x);

(b) over the parabolic arc
x = xo(1 — t2), y =yo(l — 2), z=t
joining the points (0, 0, 1) and (0, 0, —1) (for constant xo, yo).

¢. Dependence of Line Integrals on End Points

We return to the general differential form L given by (52). Let I" be
a simple arc (not yet oriented) with a sectionally smooth parameter
representation (53).

For any two points Po, P1 on I' corresponding to the values fo, &
of the parameter ¢, we can form the integral

dz

dt)dt.

If —+B Y+ ¢

By formula (57), I is equal to L extended over the oriented subarc

Bob1 of T that has Po as initial and P; as final point. It follows that
I does not depend on the particular parameter representation. We

write
P
=L
Py

The value of I is determined by the ordered pair of points Py, P; and
the simple arc of which they are end points.

For fixed Py we can define a function f = f(P) along the arc I by
the indefinite integral

59) f(P) = f f A% R cPar
Py to
Taking f as a function of the independent variable ¢, we then have

(59) df _ 492 W

dt~ “dt dt + C

dt
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Writing this equation as
df
dfzgtdt=Adx+de+ Cdz=1,

we thus express the linear differential form L (which need not be
exact) as the differential of a function f; but we have to remember
that this relation holds only along a special curve I' on which f is
defined.

For any points P and P’ of T’

P’
(60) [ L=rp)- P

This follows immediately if we express the line integrals as integrals
over the variable ¢ and apply the fundamental connection between
definite and indefinite integrals (see Volume I, p. 190). If I'*, the arc
I' with a certain orientation, has the initial point A and the final
point B, we find, in particular, that

6D for=["1=1®-fa.

If Po,..., P, are points on I'* in the order determined by the
orientation of I'*, with Py = A, P, = B, we have

L=fB)— f(&) = & fPwr) — (PY)]
= V;O va L

If we denote by I'vi1* the subarc with initial point Pv and final point
Pv;1, we have

va+lL=[‘ L

Pv vr v+1*
Here the orientation of I'v* agrees with that of I' so that
F*=T1*+T* 4+« « « +Tp*

Therefore, line integrals are additive:

(62) fr L= L+---+f”L

1*+..-+l"'n* I‘l*
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Similarly, if we interchange the end points of T'*,

(63) J.or=-[,L

™*

These rules are of particular interest when applied to oriented
closed curves represented as sums of oriented simple arcs. Consider a
number of oriented simple closed curves Ci*, . . ., Cy*(see Fig. 1.19),

Cc* C*

Figure 1.19 Additivity of line integrals over closed curves.

which may have portions in common. Assume that a simple arc
I' common to two of the curves, C;* and Ci*, receives opposite orien-
tations from Ci* and Ci* and that the portions of the curves not com-
mon to any two of them add up to an oriented closed curve C*. Writing
each line integral over a curve C;* asthe sum of integrals over simple
arcs and adding all these integrals, the contributions of the common
arcs cancel out and we are left with the formula

Cn*

(64) fC,L=fCI*L+- -+ L

This situation arises, in particular, when the C;* are plane curves
forming the boundaries of nonoverlapping two-dimensional regions
R; that together form a region R with boundary curve C*, all C;* and
C* having the same orientation. More generally, the region R and
its boundary C* may lie on a surface, and R may be subdivided by arcs
into subregions R; with boundary curves C;* whose orientations fit
together in the manner described.

A somewhat different application of the same principle occurs in
the following theorem. Let two oriented closed curves C* and C'*
(see Fig. 1.20) be subdivided by the points A1, . . ., Az and AY/, . . .,
A/, respectively, in the order of the sense of orientation, and let each
pair of corresponding points A; and A;’ be joined by a curved line. If
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Figure 1.20

by Ci* we denote the closed oriented curve A;As1441"Ai’ (identifying
Ayl with A; and Anxii’ with Ay'), then

(65) 2

=1 v Ci*

=), L-] L

1.10 The Fundamental Theorem on Integrability of Linear
Differential Forms

a. Integration of Total Differentials

A particularly important class of differential forms
(66) L=Adx+ Bdy+ Cdz

are the total differentials of functions u = f(x, ¥, 2), with A, B, C of
the form

= _f _
(67) A—ax’ B_ay’ C_az’
where f is a function with continuous first derivatives. While in
general the value of fr, L depends not only on the end points but

on the entire course of the curve, the following theorem is valid
here:

The integral of a linear differential form L, which is the total dif-
ferential of a function f, is equal to the difference of the values of f at
the end points and does not depend on the course of I'* between those
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points. That is, we obtain the same value for fl_* L for all curves I'*

which lie in the domain of f and have the same initial point Pp and
the same final point Pi.

For the proof, let the curve I'* be referred to a parameter ¢ where
to corresponds to the initial point P and # to the final point P:. By

(57), p. 89
fr* ﬁ 2rc dt) dt.

By the chain rule of differentiation [see formula (18) p. 55] we then
have

(689 foui=J " Fa=r" = ey - feew,

where we write

f(Ps) = f(x(ts), y(t:), 2(t:))

fori =0,1.

We observe that instead of requiring that the integral is inde-
pendent of the path, we might just as well require that the integral
over a simple closed curve I'* has the value 0, for if we divide the
curve I'* by means of two points Py and P: into two oriented arcs
I'1* and I'2*, we have

* = I'i* + Do,

where, say, I'1 has initial point Py and final point Pi, while I'2* has
initial point P: and final point Py (see p. 94). Then

fr*L f L+ r*L ri* _I—rg*L

Here —I's* has the same initial point Po and the same final point
P; as T'1*. The vanishing of (L over the closed curve I'* means exactly
the same thing as the equality of L taken over the two simple arcs that
have Py as initial point and P; as final point.

b. Necessary Conditions for Line Integrals to Depend Only on
the End Points

Only under very special conditions is a line integral independent
of the path or, what is equivalent, is the line integral round a closed
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path 0. For example, if a closed curve C* in the x,y-plane forms the
boundary of a region of positive area, then the line integral
f (x dy — y dx) over C* is not 0. We proved in the preceding section
that for the independence of [ Lfrom the path joining the end points, it
is sufficient that L is a total differential. The chief task of the theory of
line integrals is to show that this condition is also necessary and then
to express this necessary and sufficient condition in a form convenient
for applications.

We shall investigate this question of independence for integrals
over curves in three-space. But the results and proofs are exactly
analogous in any number of dimensions. We make the assumption that
L = Adx + Bdy + Cdzisalinear differential form with coefficients
A, B, C that are continuous functions of x, y, z in an open set R of
space. The following theorem then holds:

The line integral (L taken over a simple oriented arc I'* in R is
independent of the particular choice of I'* and determined solely by
the initial and final point of I'* if and only if L is the total differential
of a function f(x, y, 2) in R.

We have already proved on p. 95 that this condition is sufficient;
that is, for an exact differential L = A dx + Bdy + C dz the integral
J L is independent of the path. It is easy to see that the condition is

necessary. Assume that fl‘* L depends only on the end points of I'*.

We want to show that there exists a function u(x, y, 2) defined in R
for which du = L. With no loss of generality we can assume that
every two points of R can be connected by a simple polygonal arc
that lies completely in R.! We pick a fixed point Py in R and define
the function u = u (x, y, 2) = u (P) at any point P of R as [ L extended
over any simple arc with initial point Py and final point P. In order
to compute the partial derivatives of u, we consider any point (x, y, 2)
= P of R (Fig. 1.21). Since R is open, all points (x + A, y, 2) = P’
will then also belong to R provided |A| is sufficiently small. Let y*
denote the oriented straight line segment joining P and P’, while I'*
shall denote a simple polygonal path joining Py to P. We can always
modify I'* slightly to bring about that the last side of this polygonal
arc, which has P as final point, is not parallel to the x-axis. Then I'*
and y* have no point in common besides P (at least for | 4| sufficiently

1The open set R can always be decomposed into connected subsets that have this
property (see Appendix 112). We then define u in each of these subsets by the con-
struction indicated.
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Figure 1.21

small), and I'* + y* represents a simple arc with initial point Py and
final point P’. It follows [see (62, p. 93)] that

ux + h,y,2) — wx,y,2) = wP) — uwP) = fr*w* L _fl'* L =J;* L

z+h
= [ Ay, 2) dt
z

Dividing by h and passing to the limit with A — 0, we find that indeed

ou(x,y,2) _
ox = 4,

and similarly du/dy = B and du/dz = C. This shows that du = L.

¢. Insufficiency of the Integrability Conditions

The theorem on independence of line integrals we just proved is,
however, of no great value unless we have some way of finding out
whether a given differential L is a total differential or not. It is
desirable to have some condition that involves only the coeflicients
A, B, Cof L= Adx + Bdy+ Cdz and is easily verified. We have
already recognized the integrability conditions

9B_aC_, 9C_0A_, 0A_03B_
®) 5 aH=% wTz=% 4 a0
as necessary for the existence of a function u = f(x, y, 2) with the
property that L = du. A form L satisfying (69) is called closed. Hence
every exact form is closed. Since line integrals can be independent of
the particular path joining any two points only when L is a total
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differential, we see that conditions (69) are necessary, if L is to depend
only on the end points of the path of integration. Are these conditions
also sufficient? They are sufficient if they permit us to construct a
function u = f(x, y, 2) for which

of _of _of

(70) A=53-C, B-—g&_, C—g.
The surprising result is that the integrability conditions (69) suffice
almost, but not quite, to ensure that L is the total differential of a
function u and, hence, to ensure the independence of [ L from the
path. The identities (69) in themselves are not sufficient but become
so if we add an assumption of quite a different character, one that
concerns a geometrical property of the region in space in which L is
considered.

A simple counterexample shows that conditions (69) alone are not
sufficient to guarantee that L taken over any closed curve is 0. We
consider the differential

_xdy—ydx
(1) L—_x2+y2

corresponding to the choice of coefficients

A x2 4+ y2° B x% 4 y2° c=0

which are defined except for points on the line x = y = 0 (the z-axis).
One verifies easily that the integrability conditions (69) are satisfied
and thus that L is closed. When we integrate around the unit circle
C*: x=cost, y=sin i, z = 0 in the x,y-plane, oriented positively
with respect to ¢, we find

_ 2r d_x d—y _J‘Zn -
L* L= fo (Adt + Bdt) dt = , (sin2¢ + cos?t) dt
= 2n = 0.

As a matter of fact, it is easy to calculate [L around any closed curve

C for the L given by (71). We introduce the polar angle 6 of a point
P =(x,y 2 by

R : S S
(72) cos 0 = VE Ly sin 0 = Ny
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that is, the angle formed with the x,z-plane by the plane through P
passing through the z-axis (see Fig. 1.22). Then

(73) do = d arc tan% =1L,

Figure 1.22

so that L is represented as total differential of the function u = 6.
The complications arise from the fact that formulae (72) define the
values of 0 only within whole multiples of 2rn. Starting with some
possible values 0y for 0 at a point Py, we can define 0 in any point
P by joining P to Py by a continuous curve and taking

e(P)=eo+fPPde=eo+fL
0

(See Volume I, p. 434). But 6(P) defined in this way is multiple-
valued depending on the choice of the curve: for a closed curve C*

the expression
1
G L d

represents the number of times C winds around the z-axis in the
clockwise sense (see Fig. 1.23). Hence, the value of

P
(74) | . 0
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fde=0

Figure 1.23

taken for two different paths with end points Py, P is the same only
if going along one path from Py to P and returning along the other
path to Py we go zero-times around the z-axis. We can prevent any
path from going around the z-axis by considering only points (x, ¥, 2)
with either y = 0 or with y = 0 and x > 0, erecting, in a manner of
speaking, a wall along the half-plane

which is not to be crossed. The points not excluded form a region R
in which we can assign to 0 a unique value with

—-r<O0<nm

that constitutes a continuously differentiable function 0 = 0(x, y, 2)
with differential L. The integral (74) extended over any path in
the region that joins P and Py has then a unique value 0(P) — 0(Po),
which does not depend on the particular path. Similarly, the integral
over a closed path in this region has the value 0.
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d. Simply Connected Sets

In order to formulate the fundamental theorem generally we need
the notion of a simply connected! open set. In such a set R, any two
points can be joined by a path lying in R, and any two paths in R with
the same end points can be deformed into each other without moving
the end points and without leaving R.

We give precise definitions of these notions. A path C in R joining
two points P’ = (¥, ¥/, 2)) and P” = (x", ¥, 2’) means three con-
tinuous functions ¢(f), y(?), x(¢) defined in the interval 0 <t <1
such that the point P(¢) = (o(t), w(?), x(?)) lies in R for all ¢ of the
interval and coincides with P’ for ¢ = 0 and P” for ¢ = 1.2 The set R
is called connected? if every two points P’ and P” of R can be joined
by a path in R. Actually it is easy to see that they can then be joined
also by a smooth simple arc in R, provided the set R is open.*

Trivial examples of connected sets are the convex sets R, charac-
terized by the property that any two of their points P’ and P” can be
joined by a line segment in R. Here we can choose as linear path with
end points P’ = (x', ¥/, 2) and P” = (x”, ¥/, 2’) simply the triple of
linear functions

e =AQ—-tx' +tx’, yO)=A-0y + 8",
W=Q-=0z +tz"

for 0 < ¢t < 1. Examples of such convex sets are solid spheres or cubes.
Examples of connected, but not convex, sets are a solid torus, a
spherical shell (i.e., the space between two concentric spheres), and
the outside of a sphere or cylinder. Any set R whatsoever in space
if it is not connected consists of connected subsets called the com-
ponents of R. Disconnected are, for example, the set of points not

1More precisely “pathwise simply connected.”

2Different ¢ need not correspond to different P(f). Notice that the description of a
path does not only include the set of the points P(t) in space (the “support” of the
path) but also the choice of corresponding parameters . Every simple arc in space
determines many different paths corresponding to different parameter repre-
sentations of the arc. We can always bring about by a linear substitution that the
parameter values vary over the particular interval 0 < ¢ =<1.

3More precisely “pathwise connected.”

4Taking a sufficiently fine subdivision of the parameter interval and joining cor-
responding points P(t) by line segments, we first obtain a polygonal arc in R joining
P’ and P”. Omitting loops we get a simple polygonal arc. Replacing small portions
near a corner by suitable parabolic arcs, we get a smooth simple arc in R joining
P’ and P”. See also p. 112.
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belonging to a spherical shell or the set of points none of whose
coordinates is an integer.

Let Co and C: be any two paths in R, given respectively by
(90(2), wo(D), 1o(2)) and (9i(2), yi(t), x1(?)). Their end points P’, P", cor-
responding to £ = 0 and ¢ = 1, shall be the same. The connected set
R is simply connected, if we can “‘deform Cp into C1” or “join Cp and
C1” by means of a continuous family of paths Ci with common end
points P’, P”. This shall mean that there exist continuous functions
(o(t, A), w(t, ), x(t, \) of the two variablest,Afor0 <t<1,0<A <1,
such that the point P = (¢, v, x) always lies in B and such that P
coincides with (o, Wo, %0) for A = 0, with (¢1, y1, 1) for A = 1, with P’
for ¢t = 0 and with P” for ¢t = 1.1 For each fixed A the functions ¢, y, 1
determine a path C, in R that joins the points P’ and P”. As A varies
from 0 to 1, the path Ci. changes continuously from Cy to Ci, and in this
sense represents a “continuous deformation” of Cy into C; (see Fig.
1.24).

Figure 1.24

As is easily seen, convex sets R are simply connected. We only have
to associate with the two curves Co, C: having common end points
P’, P” the curves C». given by

o(t, A) = (1 — ) 9o(t) + Aoi(t)
v, ) = (1 — ) wo(t) + Aya(?)
x( A) = (1 = 1) x0(®) + Axa(®).

1The paths C and C: are called homotopic relative to P’, P".
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Here Ci is obtained geometrically by joining points of Co and C: that
belong to the same ¢ by a line segment and taking the point that
divides the segment in the ratio A/(1 — ). The points obtained in this
way all lie in R because of the convexity of R. A different type of
pathwise simply connected set is represented by a spherical shell. Not
simply connected, on the other hand, is the set R obtained by re-
moving the z-axis from x, y, z-space. Here the two paths (semicircles)

x = cos 7it, y = sin nt, z=0; 0=t=<1
and
x = cos nt, y = —sin 7t, z=0; 0t=1

have the same end points but cannot be deformed into each other
without crossing the z-axis, which does not belong to R.1

e. The Fundamental Theorem

We can now state the relation between the notions of closed and of
exact differential forms:

If the coefficients of the differential form L = A dx + B dy + C dz
have continuous first dertvatives in a simply connected set R and satisfy
the integrability conditions

(75&) Bz - Cy = 0, Cr — Az = 0, Ay — B = 0,
then L is the total differential of a function u defined in R:
(75b) A= Uz, B= Uy, C = u..

For the proof, it is sufficient to show that the integral of L extended
over any simple polygonal arc in R with initial point P’ and final point
P’ has a value that depends only on P’ and P’ (see p. 97). We represent
the two oriented arcs Co* and Ci* parametrically by, respectively,

(76a) x=¢o(t), y=vot), z=yx®), 0=t=1

and

(76b) x=¢(t), y=wi(®), z=xn@); 0=t=1

with ¢ = 0 yielding P’ and ¢ = 1 yielding P”. Using the simple con-
1This follows from the fundamental theorem below and the fact that there exists a

closed differential form, the one given by (71), whose integral over the whole circle
does not vanish.
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nectivity of R, we can “imbed” the paths (75a, b) into a continuous
family!
(76¢) x=¢@ 2N, y=vyithd, z=x¢ 1)

reducing to (76a, b) for A = 0, 1 and to P/, P” for t = 0, 1. We have by
formula (56), p. 89.

@ [ L-[ L

o CO*
1
= f [(Ax; + Byt + Cz:)| 3= — (Ax: + By: + Cz1)|a=0] dt
0

where x, y, z are the functions of ¢, A given by (76c). We assume, to
begin with, that those functions have continuous first derivatives with
respect to ¢, A and a continuous mixed second derivative for 0 < ¢t < 1,
0 < A < 1. Then by (76d)

ae [ L-[ L= fol dt fol (Ax: + By + Czin d)

Now using the chain rule of differentiation and the integrability
conditions (76a), we have the identity

(Ax; + By: + Czih = Axae + Byae + Caas + Agxaxe + Ayyaxs + Azzaxe
+ Bzxrny: + Byny: + Bozvy: + Crxanze
+ Cyrzt + Coznzy
= (Axr + Byr + Cz):

Interchanging orders of integration (see p. 80), we find that

fc LL- fc LL= foldk fol (Axr + Bys +Cz): dt = 0,
1 0

since xa, 1, 2 vanish for ¢ = 0, 1, because the end points are independ-
ent of A,

One sees the important part played in the proof by the assumption
that R is simply connected. It enables us to convert the difference ot
the line integrals into a double integral over some intermediate
region.

It is easy to remove the restrictions on the existence of derivatives
of the functions ¢, vy, . Assume only that the arcs Co* and C1* are

1The paths of the family need not to be simple for A # 0,1.
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smooth, that is, that the functions g(z, ), w(¢, 1), x(¢, A) have a continuous
t-derivative when A has one of the values 0 or 1 while being continuous
for other values of A. We can then (see p. 82) approximate these
functions uniformly by functions 4, ¥, ¥, which have continuous
first derivatives with respect to ¢t and A and a continuous mixed second
derivative. In order that the smoother functions obtained represent a
deformation of the paths Co* and C:i* into each other, they have to
agree with g4, y, x for A = 0, 1 and for ¢ = 0, 1. This can always be
brought about by a slight modification of ¢, ¥, ¥, by adding suitable
terms so that

x = ¢(t, 2) — (1 = VB, 0) — do(®)] — M4t 1) — $1(8)]
— (1 = [0, 1) — $o(0)] — ¢[$(1, 1) — go(1)]
+ (1= 1) (1 = 1) [$0,0) — $o(0)] + (1 — DA [$(0, 1) — $o(0)]
+ 41 — 1) [$(1, 0) — (D] + A [F(1, 1) — do(1)]

with analogous expressions for y and z. These functions have the
correct values for A =0, 1, and for ¢ = 0, 1, have continuous first
derivatives and mixed second derivatives, and can be made to
approximate the original ¢, y, x so closely that the corresponding
points (x, y, 2) still lie in the open set R.

Finally, the equality of the integrals of L can be extended to arcs
Co* Ci* that are only sectionally smooth, e.g. to polygonal arcs,
by approximating these arcs by smooth ones with the same end
points. The integrals over the approximating smooth arcs all have
the same values, and the same follows then in the limit for the
integrals over Co* and Ci*.

Appendix

Geometrical intuition and physical reality always have provided
powerful motivation and guiding ideas for constructive mathematical
thought. Nevertheless, with the advance of analysis since the begin-
ning of the nineteenth century, it has become a compelling necessity
to cease invoking intuition as the prime justification of mathematical
considerations. More and more, one has turned to rigorous proofs
based on axiomatically hardened precision and clearly formulated
concepts and procedures. In this development the notion of set, in
particular of point set, has played a major role and by now has been
absorbed into the fabric of analysis. Of some of these developments
this appendix gives a simple introductory account.
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A.l. The Principle of the Point of Accumulation in Several
Dimensions and Its Applications

To establish the theory of functions of several variables on a firm
basis, we can proceed in exactly the same way as in the case of
functions of one variable. It is sufficient to discuss these matters in the
case of two variables only, since the methods are essentially the same
for functions of more than two independent variables.

a. The Principle of the Point of Accumulation

We base our discussion on Bolzano’s and Weierstrass’s principle of
the point of accumulation. A pair of numbers (x, y) may be represented
in the usual way by means of a point with the rectangular coordinates
x and y in an x,y-plane. We now consider a bounded infinite set of
such points P(x, y), that is, a set containing an infinite number of dis-
tinct points, all of them lying in a bounded part of the plane, so that
Jx| < Cand |y| < C, where C is a constant. The principle of the point
of accumulation states that every bounded infinite set S of points has
at least one point of accumulation. That is, there exists a point @ with
coordinates (£, n) such that an infinite number of points of S lie in
every neighborhood of @, say, in every region

(x =82+ (y —m)? <8,

where 6 is any positive number. It follows that, out of the infinite
bounded set of points we can choose a sequence of distinct points
P1, Py, P3, . . . that converges to a limit €. The sequence of the P;
can be constructed by induction, giving 8 successively the values 1,
4,4 .. .; we choose P arbitrarily in S; if Pi, .. ., P, have been
defined, we take for Pn;1 any one of the infinitely many points in the
set S that have distance < 1/(n + 1) from @ and are different from
Q and from P, . . ., Pn.

This principle of the point of accumulation for several dimensions
can be proved analytically by the method used in the corresponding
proof in Volume I (p. 95), merely by substituting rectangular regions
for the intervals used there. An easier proof is obtained if we make use
of the principle for one dimension. To do this we notice that by
hypothesis every point P(x, y) of the set S has an abscissa x for which
the inequality {x]| < C holds. Either there is an x = xo that is the
abscissa of an infinite number of points P (which therefore lie vertical-
ly above one another) or else each x belongs only to a finite number
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of points P. In the first case, we fix upon xo and consider the infinite
number of values of y such that (xo, y) belongs to our set. These values
of y have a point of accumulation for one dimension. Hence, we can
find a sequence of values of y, say y1, ¥2, . . ., such that y, — 1o, from
which it follows that the points (xo, ¥a) of the set tend to the limit
point (xo, o), which is thus a point of accumulation of the set. In the
second case, there must be an infinite number of distinct values of x
that are the abscissae of points of the set, and we can choose a se-
quence xi, X2, . . . of these abscissae tending to a limit €. For each x4,
let Py = (xa, y») be a point of the set with abscissa x». The y, form
an infinite bounded set of numbers; hence, we can choose a sub-

sequence Yn;, Yu,, - . . tending to a limit . The corresponding sub-
sequence of abscissae xn;, Xny, . . . still tends to the limit £; hence, the
points Pny, Pn,, . . . tend to the limit point (£, n). Thus, in either case,

we can find a sequence of points of the set tending to a limit point, and
the theorem is proved.

b. Cauchy’s Convergence Test. Compactness

A consequence of the Bolzano-Weierstrass theorem is that every
bounded infinite sequence of points P1, Ps, . . . has a convergent sub-
sequence. Indeed, if the sequence contains an infinite number of
distinct elements, they form an infinite set of distinct points from
which, according to the Weierstrass principle, we can choose a
sequence converging to a point Q. If the sequence does not contain
an infinite number of distinct elements, then at least one of its ele-
ments must be repeated infinitely often; there exists then a point @
that appears infinitely often in the sequence, and the subsequence
formed by elements that equal @ converges to the point Q.

An important consequence is Cauchy’s convergence test:

A sequence of points P1, P, . . . in the plane (and similarly a se-
quence in n-dimensional euclidean space) converges to a limit if and
only if for every ¢ > 0 there exists a number N = N(¢) such that the
distance between P, and Py is less than ¢ whenever both n and m
are greater than N,

The proof proceeds exactly like the corresponding one for se-
quences of real numbers given in Volume I (p. 97). One sees im-
mediately that a sequence satisfying the Cauchy condition is bounded;
hence, by the preceding theorem, it contains a convergent sub-
sequence with a limit @, and it then follows immediately that the
whole sequence converges to Q.
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A set S of points in the plane was called closed if all boundary
points of S belong to S. The limit @ of every convergent sequence of
points of a closed set S is again a point of S (see p. 9). Since every
bounded infinite sequence has been seen to contain a convergent
subsequence of points, we find that every infinite sequence formed from
points of a bounded and closed set S of points in the plane contains a
subsequence that converges to a point of S. Generally we call a set S
compact! if every sequence formed from elements of S contains a
convergent subsequence with a limit in S. Hence, a closed and bound-
ed set of points in the plane (or in n-dimensional euclidean space) is
compact. The reader can easily verify the converse: Every compact
set of points in the plane is closed and bounded. In the future we shall
often refer to closed and bounded sets simply as compact sets.

¢. The Heine-Borel Covering Theorem

A striking consequence of the Bolzano-Weierstrass principle is the
Heine-Borel theorem.:

Let there be given a compact (i.e., closed and bounded) set S and a
system Y of infinitely many open sets that cover S in the sense that
euery point of S belongs to at least one of the open sets in Y. . Then we
can find a finite number of sets in Y that already cover S.

As an illustration consider the infinite set S of points on the x-axis
consisting of the points P, = (1/n,0)forn = 1,2, . . . and of the origin
Py = (0, 0). This is a closed set. For n = 1,2, . . ., let S, denote the
open disk

1
(x—1/n)% + y2 < 3

with center P, and radius 1/3n2, and let So denote the disk

——s 1
Vel + yt < 100
Clearly the infinite system of all sets So, S1,S2, . . . covers S. In agree-
ment with the Heine-Borel theorem we can pick a finite subsystem that
covers S, for example the system consisting of So, Si1, . . ., S100. Here
we immediately see the importance of the assumption that S be closed.
The set T of points consisting of Pi, Ps, . . . alone, without Py, is
covered by the system consisting of Si, Sz, . . ., but no finite sub-

1Sometimes more precisely ‘‘sequentially compact.”
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system of these sets, each of which contains only a single point of T,
can cover T.

To prove the Heine-Borel theorem, we use an indirect argument.
Suppose that the theorem is false. The set S, being bounded, lies in a
square Q. This square we subdivide into four equal squares. The part
of S lying in at least one of these four squares or on its boundary
cannot be covered by a finite number of the sets in }_; for if each of
the four parts of S could be covered in this way, S itself would be
covered. This part of @ we call @1. We now subdivide @1 into four
equal parts. By the same argument one of the four parts of @1 is a
square @2 such that the points of S lying in @: or on its boundary
cannot be covered by a finite number of the open sets in > . Continu-
ing in this way, we obtain an infinite sequence of squares @1, @2,
@3, . . . each contained in the preceding one, their size shrinking to
0, and such that the points of S in the closure of any @, cannot be
covered by a finite number of the setsin > . Clearly, for each n we can
find a point P, of S that lies in the interior or ontheboundary of ..
Then P1, Ps, . . . is a sequence of points of S. Since S is bounded, the
sequence is bounded and must have a subsequence converging to some
point A. Since S'is closed, A is a point of S and hence contained in an
open set Q belonging to D). But then a whole neighborhood of A
belongs to that open set 2, say, the neighborhood consisting of the
points having distance less than € from A. We can choose an n so large
that P, has distance less than €/2 from A and that the diagonal of
@» has length less than &/2. Then the whole square @ is contained in
the e-neighborhood of A and hence also in Q. We see that the single
set Q of the system 3 contains a whole square @» and its boundary,
contrary to the assumption for the sequence @. This completes the
proof.

d. An Applicalion of the Heine-Borel Theorem to Closed Sets
Contained in Open Sets

Let R be an open set in the plane.! By definition every point P of R
has a neighborhood that lies completely in R. For points P close to
the boundary of R the neighborhood has to be very small. It is re-
markable that for P confined to a closed subset S of R we can find a
uniform size for the neighborhoods that are contained in R:

If a closed and bounded set S is contained in an open set R, there
exists a positive ¢ such that the e-neighborhood of every point P of S

1Everything said in this paragraph applies equally well to higher dimensions if we
substitute the term “ball” for “disk.”
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is contained in R. In other words, the points not in R lie at least a
distance € away from all points of S.1

For the proof we make use of the assumption that R is open. For
every point P in R there exists a disk with center P that is contained
in R. The radius of this disk, call it r, depends on P; that is, r = r(P).
We take now for any Pin S the open disk of radius 4 r(P) and center
P. By the Heine-Borel theorem a finite number of these disks can be
found that cover the compact set S. Thus, we can find a finite number
of points Pi, . . ., Pnin S such that every point P of S is contained in
one of the disks of center Py and radius 4r(Px) fork=1,.. .,n.Lete
be the smallest of the positive numbers +r(Pi), . . .,4r(Ps). Then, for
every Pin S, the e-neighborhood of P lies in R, for P lies in some disk
of center P and radius 4 r(Px ). By construction the concentric disk
D of radius r(Px) lies completely in R. Since PP < 4 r(Px) and ¢ <
+7(Prx), the disk D contains the disk of radius ¢ about P. This shows
that the disk of radius ¢ and center P lies in R.

As an example, we consider a curve S lying in the open set R. Such
a curve is a set of points P = (x, y) that can be represented in the form

x=4), y=w@)

with the help of two continuous functions ¢ and v, where the para-
meter ¢ varies over a closed interval 0 < ¢ < 1.2 Such a curve Sis a
closed point set, for let Pi, Pz, . . . be a sequence of points on S con-
verging to a point P. We consider the corresponding parameter values
ti, t2, . . ., which all lie in the closed interval ¢ < t < b. Since a
closed bounded interval is compact, a subsequence of the ¢, converges
to a value ¢ in the interval. Since ¢ and ¥ are continuous, the cor-
responding P, converge to the point @ = (x(£), y(¢)) on S. Thus, a sub-
sequence of the sequence Pi, Pz, . . . converges to a point @ of S.
Since the whole sequence converges to P, we have P = @. and hence,
Plies in S. Thus, S contains all limits of sequences of points of S and
hence is closed.

If the curve lies in the open set R, we can find a positive number ¢
such that all disks of radius € with centers on Slie in R. Since fand g
are continuous, and hence uniformly continuous, we can find a
positive number § such that two points on S have distance less than
¢ if their parameter values ¢ differ by less than 5. We can divide the

11t is essential that S is bounded. If, for example, R is the open half-plane y > 0 and
S the closed set consisting of the points in the x,y-plane with y > 1/x, x > 0, the
boundary of R comes arbitrarily close to points of S.

2The curve need not be simple; that is, different ¢ may correspond to the same point
P. The pair of functions defines a “path,” and S is the support of that path.
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parameter interval by points ¢1, . . ., £x—1 such that
a=bh<h<ta<<s o e <lp1<ln=20b

where the length of every subinterval is less than 3. Let Po, Py, . . .,
P, be the corresponding points on S. Then P;;1 alwayslies in the disk
of radius € about P;. Also, the straight line segment joining P; and
Pi,1 lies completely in the disk of radius € and center P;, and hence
is contained in R. If we join successive points P; by straight line
segments, we obtain a polygonal curve that lies completely in R and
has the same end points Py, P, as the continuous curve S. We can
formulate this result as follows:

If two points of an open set R can be joined by a curve that lies in R,
then they can also be joined by a polygonal curve in R.

A.2. Basic Properties of Continuous Functions

For functions f defined and continuous in a closed and bounded set
S we can state the following two fundamental theorems:

The function [ assumes a greatest value (“maximum”) and a least
value (“minimum”) in S.

The function f is uniformly continuous in S.

The proofs of these theorems are like the corresponding proofs for
functions of one variable (see Volume I, pp. 100-101) and need not be
repeated.

The second theorem can also be obtained as an immediate con-
sequence of the Heine-Borel theorem. Prescribe an € > 0. If fis con-
tinuous at every point of S, there exists for every point P in S a &-
neighborhood of P of a certain radius 8 = 8(P) such that |f(Q) — f(P)]
< ¢/2 for any @ in S that lies in that neighborhood. Now for each
Pin S choose a neighborhood Qp of radius 4 8(P). The Qp clearly
cover S. We can select a finite number of them, say those with centers
Py, . . ., P, that also cover S. Let A be the smallest of the numbers
18(Py), . . ., +6(Pn). If then P and @ are any two points of S whose
distance is less than A, the point P has distance less than 4 8(Px)
from one of the points Pxy with 2 =1, . . ., n. Since A < 45(P%), we
see that both P and @ lie in the 8(Px)-neighborhood of Px. Hence,

(P) = POl <35 If@ —f(P)] <3,

and thus
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If(P) - f(Q)]<e.

This establishes the uniform continuity of f since A is independent
of the particular location of P and @.

A.3. Basic Notions of the Theory of Point Sets

a. Sets and Subsets

In more complicated arguments involving sets of points (particu-
larly in the theory of integration) it is convenient to use some stand-
ard notations for operations with sets. The sets of interest to us are
always sets of numbers, of points, of functions, or of sets of these
types. For example a “disk’ in the plane is defined as a set of points
(x, y) for which

(x — %02 + (y — yo)2 < 12

for fixed xo, yo, r. An example of a set of sets (or family of sets) would
be that consisting of all disks that contain the origin; that would be
those disks for which xo% + yo2 < r2.

We shall refrain from trying to reduce the basic notion of set to
still more fundamental ones or to analyze the logical difficulties in-
volved in this notion. For us a set S is defined if for every object a ex-
actly one of the two following statements is correct: (1) a belongs to
S; (2) a does not belong to S. In case (1) one also says that a is an ele-
ment of S or that a is contained in S, symbolically® one denotes this by

o< S,
and case (2) by
ae S

For example, if S is the disk given by the inequality x2 + y2 < r2,
then o € S means that a is a point in the plane with coordinates x, y
that has the property that x2 + y2 < r2. Generally the elements of a
set S can be characterized by some common properties (e.g., by the
property of belonging to S). We write the set S of elements a that have
the properties A, B, . . . symbolically as

S = {a: a has the properties A, B, . . .}.

1The symbol € must not be confused with the Greek letter €.
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For example, the disk S with center (xo, yo) and radius r can be de-
scribed as

S = {(x, y): x, y = real numbers; (x — x0)2 + (y — y0)2 < r2}.
The set described by
S = {n:n = integer; 2 < n < b}

consists of the two elements n = 3 and n = 4.

For many purposes it is convenient to introduce the “‘empty” (or
“null”) set with the special symbol @. This set has no elements:
a & O for all a. For example an open disk of radius 0 and center at the
origin coincides with ©:

{(x, ») : x, ¥ = real numbers; x + y* < 0} = ©.

Two sets S and T are equal when they have the same elements,
regardless of the different descriptions or properties used in their de-
finition: S = T'means that x € Sif and only if x € T.

A set S is said to be a subset of a set T'(*'S is contained in 7”°) if T'
contains all the elements that are contained in S, that is, if a € §
implies o € T. We write this symbolically:

ScT

or, more rarely,
ToOS.

Thus, if S is the disk of radius 1 about the origin and T the disk of
radius 4 about the point (1, 1), then S C T.. Similarly,® C Sand SC S
for all sets S.

The symbols C and D are chosen, of course, for their similarity to
the < and > signs of arithmetic (or more precisely to the < and >
signs). They share with the latter symbols the basic properties:

SCTand TCS implies S=T
SCTand TC R  implies SCR!
1This is the common syllogism from logic: If all objects with the property A have the

property B and all objects with the property B have the property C, then all objects
with the property A have the property C.
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A basic difference between the “contained in” signs for sets and the
order signs for numbers is that for real numbers we always have either
x < y or y < x, whereas for sets neither of the propositions S T or
T C S has to hold. The symbol  defines only a “‘partial” ordering
between sets; of two sets neither may contain the other one.

b. Union and Intersection of Sets

During the last decades a great number of logical symbols have
found wide acceptance in mathematics, so that it is now customary to
express many mathematical theorems completely in symbolic nota-
tions without the use of ordinary words or sentence structure.! Use of
proper symbolic notation has been essential for the development of
mathematics from the very beginning; in fact, in rare instances, pro-
gress in some field may have slowed down for centuries just for lack
of a suitable notation, as was perhaps the case with algebra in an-
tiquity. On the other hand, too concentrated a notation may prove a
great strain to the reader who tries to relate the information in the
“dehydrated” form to his ordinary experience. Authors of books not
primarily devoted to logic and foundations of mathematics compro-
mise on the use of logical abbreviations in accordance with their
tastes and the requirements of the special subjects under considera-
tion.

There are two further set-theoretical symbols that we shall find al-
most indispensable later in this book, namely, the symbols for the
operations of “‘union’ and “intersection’ of sets. Given two sets S and
T we write S U T for the “union” of the two sets, that is, for the set of
elements that are “either” in S “or” in T:

SUT={e:asSorac T}.2

Similarly, the “intersection” S N T of S and T is defined as the set of
elements that belong to both S and T

SNT=1{e:a€ S and a = T}.

1Examples of frequently used symbols follow:

{x1, x2, . . ., %n} : the set whose members are precisely x1, . . ., Xn

S X T the set of ordered pairs (a, b) with a € S and b € T (“Cartesian product”’
of the sets S, T)

—: “implies”

3 x: “there exists an x”

vx: “for all x.”

2Here the word “‘or”’ like the Latin vel is not exclusive. S U T consists of the elements
that belong to at least one of the two sets S, T but may belong to both.
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For example, if S and T are intervals on the real number axis and if

S={x:3<x<5},
T={x:4<x<6},

then

SUT={x:3<x<86}
SNT={x:4<x<5}

The operations |J and ) apply to any two sets S and T, provided we
use the symbol for the empty set, writing

SNT=0

when S and T are disjoint, that is, have no common element. Notice
that SUD =S, SN O = D for any S.

The operation | has many properties in common with addition. In
particular, if S and 7T are “disjoint” sets—that is, sets without com-
mon elements—and have finitely many elements, then the number of
elements in S U T'is just the sum of the numbers of elements in S and
in T. There is, however, generally no unique inverse operation to
union. Only if S and T are assumed to be disjoint and S C R, does the
equation

SUT=R

have a unique solution 7. For disjoint sets S, T' the union is often
denoted by S + T, and for S C R, the solution T of-the equation S + T
= R by R — S (“the complement of S relative to R”’). We shall use
the symbol R — S more generally for any sets R, S to denote the set of
elements of R that do not belong to S. Then S+ (R— S)=R U S.

The union of n sets S, . . . ., Ssis defined as the set of elements
belonging to at least one of the sets Si, . . ., Sx and is variously de-
noted by

{a:acsSioracs S or. . .or ac Sy}
=SIUS2U’ * 'USn

U Sk
k=1

in analogy to the summation and product symbols. Similarly, the in-
tersection of thesets Si, . . ., Su, defined as the set of elements com-
mon to all of them, is
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{a:acSiandas S: and . .. and a € Sy}

:Slﬂszn. . .ﬂsn=kélsk'

We can with equal ease form unions and intersections of an infinite
number of sets S1, Sz, . . ., S, . . ., which we write respectively as

k01 Sk = {@:a € S, for some n}

ﬁSk={a:aESn for all n}.

k=1
For example, if S, is the set of real numbers x < n
Ss = {x:x real, x <n},

we have

k@ Sk = {x: x real}

8

| 1Szc= {x : x real, x < 1}.

I

In fact, union and intersection can be formed for arbitrary large
families F of sets S even where the different sets S in ¥ are not, or
cannot be, distinguished by a subscript n with n=1,2 3, . ..
We write

U S={e:ea< S for some S with S € F}

SeF

N S={a:a= S for all S with S < F}.
seF

Thus the union of all disks in the x, y-plane containing the point (1, 0)
but not the point (—1, 0) is the set of all(x, y)for which either y = 0
or y = 0and x > —1. The intersection of the same family of disks con-
tains the single point (1, 0).

¢. Applications to Sets of Points in the Plane

Some of our earlier results and definitions (see pp. 6-8) can be
rewritten more compactly in the notation introduced in the last sec-
tions. Thus, given a set S of points in the plane, we obtain a decomposi-
tion of the whole plane 7 into three disjoint sets, namely, the set S°
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of interior points of S, the set S of boundary points of S, and the set
S. of exterior points of S:

t=8"UaSU Se
or more precisely,

t=2_8"4+0d5+ S,
Since the sets are disjoint:

S°NaS=05NSe=8.NS*=9.
Here
S0 Sc 8%+ 48S.

The set S defined by
1 S=8"+dS=8UaS

is the closure of S. We have S° = S for open S and S = S for closed S.
The reader may verify as exercises the following propositions:

3_? = 3S (“The boundary of a set is always closed.”)
S =S (“The closure of a set is always closed.”)
(S9° = 89, (S.)° = S, (“The sets S° and S. are open.”)

2(a) Seyrc@SuUTy, SUTcSUT
2b) dSUT)cISyaT

The union of open sets is open.

The union of a finite number of closed sets is closed.
The intersection of a finite number of open sets is open.
The intersection of closed sets is closed.

The last statements indicate a kind of symmetry (“duality”)
between the notions “open” and “‘closed,” “union” and “intersec-
tion.” This becomes more precise if we introduce the complement C(S)
of a set S, that is, the set of points in the plane © not belonging to S:!

C(S)={P:Pen, PeS} =n—-S.

1For sets S of points on three-space 3 the complement of S is defined as 3} — S, the
set of points of 3. not belonging to S.



Functions of Several Variables and Their Derivatives 119

We have
cs% = S,, dC(S) = a8, C(S.) = S°.

If S is open, C(S) is closed, and vice versa. The complement of the
intersection of several sets is the union of their complements.

In this notation the theorem of Heine-Borel takes a particularly
simple form. “A family F of sets covers a set S’ means simply that S
1s contained in the union of the sets of F. The theorem then simply
states:

If Fis a family of open sets in the plane and if S is a bounded and
closed set such that

Sc U T,

TEF

then we can find a finite number of sets Ty, T, . . ., Tn € F such that

Sc G Tk.
k=1

A.4. Homogeneous Functions

The simplest homogeneous functions occurring in analysis and its
applications are the forms or homogeneous polynomials in several
variables (see p. 13). We say that a function of the form ax + by is a
homogeneous function of the first degree in x and y, that a function of
the form ax? + bxy + cy? is a homogeneous function of the second
degree, and in general that e polynomial in x and y (or in a greater
number of variables) is a homogeneous function of degree h if in each
term the sum of the exponents of the independent variables is equal to
h, that is, if the terms (apart from constant coefficients) are of the
form x*, x*ly, xh—2y2 _ yk These homogeneous polynomials have
the property that the equation

f(tx, ty) = t"f(x, )

holds for every value of t&. More generally, we say that a function
f(x,y, . . .)is homogeneous of degree h if it satisfies the equation

fGx, ty, . . .)=thf(x, 5, ...).

Examples of homogeneous functions that are not polynomials are
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Y —
tan(;c) (h = 0),
x? sinf + yvx2 + y? logx—;y (h = 2).

Another example is the cosine of the angle between two vectors with
the respective components x, y, z and u, v, w:

xu + yv + 2w
Vi + y2 4+ 22 Vu? + v+ w?

(h = 0).

The length of the vector with components x, y, 2,
Va2 + y? + 22

is an example of a function that is positively homogeneous and of the
first degree; that is, the equation defining homogeneous functions
does not hold for this function unless ¢ is positive or 0.

Homogeneous functions that are also differentiable satisfy Euler’s
partial differential equation

xfx+yfy+2fz+ L =hf(x,y,z, .. )

To prove this we differentiate both sides of the equation f(ix, ¢y, . . .)
= tf(x,y, . . . ) with respect to Z; this is permissible, since the equa-
tion is an identity in ¢. Applying the chain rule to the function on the
left, we obtain

xfaltx, ty, . . )+ yfltx,ty, . . .)+ « « « =htr1f(x,y,...).

If we substitute ¢ = 1 in this, the statement follows.

Conversely, it is easy to show that the homogeneity of the function
f(x,y, .. .)is a consequence of Euler’s relation, so that Euler’s relation
is a necessary and sufficient condition for the homogeneity of the func-
tion. The fact that a function is homogeneous of degree & can also be
expressed by saying that the value of the function divided by x* de-
pends only on the ratios y/x, z/x, . . .. Itis therefore sufficient to show
that it follows from the Euler relation that if new variables

]Ik
[Tan
Il
®]in

E=x, n=

are introduced, the function
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L@y )= GGG )= gEnL . )

no longer depends on the variable & (i.e., that the equation g¢ = 0 is
an identity). In order to prove this, we use the chain rule:

g =(fs+nfy+- - -)Q—,,—g—,’}—ﬂf

1 h
=@fe+ v+ ) gm— gl

The expression on the right vanishes in virtue of Euler’s relation, and
our statement is proved.

This last statement can also be proved in a more elegant, but less
direct, way. We wish to show that from Euler’s relation it follows that
the function

gt) = tf(x,y,. . .) — fGx,ty, . . .)
has the value 0 for all values of ¢. It is obvious that g(1) = 0. Again,
gl(t) = hthﬁlf(x’yr s ) - xfx(tx, ty,. .. ) - yfy(tx, ty, . .. ) T e .

On applying Euler’s relation to the arguments ¢x, ty, . . . we find that

xfz(tx,ty, .. )+yfy(tx,ty, .. ')+ b =_thf(tx’ty’ e )’

and thus g(¢) satisfies the differential equation
, h
g@) =g, -

If we write g(f) = y(O*, we obtain g'(t) =—i—‘ 2(t) + t(f), so that Y(2)
satisfies the differential equation
ty'(t) =0,

which has the unique solution y = constant = c. Since for ¢ = 1 it is
obvious that y(f) = 0, the constant c is 0, and so g(t) = 0 for all values
of ¢, as was to be proved.



CHAPTER
2

Vectors, Matrices,
Linear Transformations

Vectors in two dimensions have already been studied in Volume I,
Chapter 4. Geometric concepts in higher dimensions make the use of
vectors even more essential. Vectors serve to express many com-
plicated equations concisely in a manner clearly exhibiting those fea-
tures that do not depend on a particular choice of coordinate systems.

2.1 Operations with Vectors

a. Definition of Vectors

We introduce vectors in n-dimensional space as entities that can be
added to each other and multiplied by scalars. Specifically, a vector
A is a set of n real numbers! a;, . . ., @, in a definite order

A =(ay, .. -,an)

(We always employ boldface type to denote vectors.) The numbers

ai,. . ., an are called the components of A. Two vectors A = (a1,. . .,
as) and B = (b1,. . ., bs) are equal if and only if they have the same
components.

The sum of any two vectors A = (a1, . . .,a@z)andB = (b1, . . ., ba)

is defined by
(1a) A+ B=(a1+ b, 02+b2,--.,an+bn);

1For our purposes it is sufficient to consider only real numbers as components, al-
though vectors over other number fields also are used in other contexts.

122
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we define the product of the vector A = (a1, . . ., as) by the scalar
(i.e., real number) A as

(1b) AA = (Aay, Aaz, . . ., Aan).l

More generally, we can form from any finite number of vectors A =
(@, az,...,a0), B=(b1,bs,...,ba),...,D=(d1,dz2...,ds
and an equal number of scalars A, u, . . .,y the linear combination
MA+puB+ - - «+yD=Qa1+pb1+ + + « +ydy1, . .., Aan + pby
+ « + + 4+7d,). In particular, any vector A = (a1, . . ., as) can be
represented as a linear combination of the n “coordinate vectors”

(2a) E:=(1,0,0,...,0), E:=(,1,0,...,0),...,
E.=(0,0,0,...,1).
Obviously,
(2b) A=aiE1 + a:Es + - + - + g,E,.
We use the symbol 0 for the ‘‘zero vector,” all of whose components
vanish: 0= (0, 0, ..., 0). We write —A for the vector (—1)A =
(—a1, —az, . .., —an).

It follows trivially from these definitions that sums of vectors and
products with scalars obey all the usual algebraic laws, as far as they
are meaningful.? Examples of objects conveniently represented by
vectors are furnished by functions that are linear combinations of a
finite number of suitably chosen functions. Thus, the general poly-
nomial of degree < n in the variable x

1Vectors differ from other objects that can be described by an ordered set of n real
numbers (e.g., points in n-dimensional euclidean space or on a sphere in n + 1 di-
mensions) just by the fact that they permit the “linear operations” A + B and AA.
Addition of points defined similarly in terms of their coordinates would have no
geometric meaning, at least no meaning independent of the special coordinate
system used. Vectors will be represented later by pairs of points (see p. 109).

2These laws are the following:

MDA+B=B+A A+B+C)=A+B+C

2) MA +B) =2A + AB, (A + pA = AA + pA, (WA = A(pA)

(3) There exists a unique element O such that A + O = A for all A

(4) There exists a unique element —A for given A such that A + (—A) =0

(5) 0A =0, 1A = A for all A.

Generally, sets of objects for which addition of the objects and multiplication by
scalars are defined, and obey these laws, are called vector spaces.
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P(x) = a0 + a1x + azx® + + + + + axn,

can be represented by the single vector A = (ao, a1, . . ., an)in (n + 1)-
dimensional space. Addition of vectors and multiplication by
scalars correspond then to the same operations carried out for the
polynomials. Similarly, the general nth degree trigonometric poly-
nomial

f(x) = %ao + kﬁ}l (ax cos kx + bk sin kx)

(see Volume I, p. 577) can be represented by the vector (ao, a1, . . .,
an, b1, b2, . . ., ba) in (2n + 1)-dimensional space. The general linear
homogeneneous function of three variables

U = aix1 + az2x2 + asxs

is represented by the vector (a1, a2, as) in three-dimensional space,
and the general quadratic form in three variables

u = a1x12 + aax22 + asxs® + 2aax2x3 + 2as5x3x1 + 2aex1X2
by the vector (a1, a2, as, as, as, as) in six-dimensional space.

b. Geometric Representation of Vectors

Vectors in n-dimensional space, just as in the plane, can be visual-
ized geometrically as certain mappings of space, the translations or

parallel displacements. The vector A = (a1, a2, . . ., az) may be
depicted as the translation of n-dimensional euclidean space R that
maps any point P = (x1, x2, . . . , Xs) into the point P’ = (x1/, x2/, . . .,

xn") with coordinates
(3a) x'=x1+a,x’ =x2+az,...,% =%+ ant!

The translation or the corresponding vector A is determined

uniquely if for a single point P = (x1, X2, . . . , X») We give the image
P = (x1, x2/, . . ., x4'); obviously by (3a)
(3b) A=(x1'—x1,x2 — X2, . .., %0 — Xn)

11t is understood that both points P and P’ lie in R* and that their coordinates are
taken with respect to the same coordinate system.
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We shall denote this translation by A = PP and say that the vector
A is represented by the ordered pair of points P and P’ We call P the
initial point and P’ the end point or final point in this representation.

In drawings the vector A = PP usually is indicated by an arrow
extending from P to P’. The same vector A has many representations

A = PP by a pair of points P and P’. The initial point P is completely
arbitrary, since the mapping defined by A can act on any point and
then determine an image P’.! The zero vector 0 corresponds to the
“identity mapping” in which each point is mapped onto itself: 0 =
PP.

As in the planar case (Volume I, p. 384) the sum of two vectors

A=(a,..., as), B=(b1,..., bs) yields the symbolic product
of the corresponding mappings. If A takes the point P = (x1, . . .,
xa) into the point P’ = (x1/, . . ., x4/) and B takes the point P’ into
P’ =(x1",...,xs"),then C = A + B corresponds to the translation

that takes P into P”, since

x'' =2 + b= (X + ai) + by = x: + (@ + by)

fori =1,. .., n. In vector notation we have
— —_— PR
@ A + B = PP + PP’'=PP".
—_—

" giving it the same initial point

If we represent B in the form P.
P as A, we find that A + B = PP” is represented by the diagonal of

the parallelogram with vertices P, P', P, P"’ (see Fig. 2.1).

Figure 2.1 Addition of vectors.

1Qccasionally the notation P’ — P is used for the vector PP’, which, in accordance
with formula (3b), suggests the notion of vectors as differences of points.
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Interchanging initial and end point of the vector A = PP =
(x1 — x1, x2’ — x2, . . ., xa — xs) leads to the opposite vector

PP=(x1—%/,% — %2, . .., %n — %) =(—1)A = —A.

The mapping P’ — P corresponding to — A is the inverse to the mapping
A; carrying out first A and then — A results in the identity mapping in
accordance with the formula

(—A)+ A =(-1+1)A=0A=0.

Corresponding to (4) we have the often used formula for the difference

of two vectors A = PP’ and B = PP” with common initial point:
(4a) B—A=PP ~PP =PP + PP=PP+ PP" = PP

The difference of the vectors PP” and PP’ is here represented by the
third side of the triangle with vertices P, P’, P".

We can associate with every point P = (x1,. . ., X») a unique
vector that has the origin as initial point and P as end point; this is
the vector

ﬁ:(xl, . e ,xn),

the so-called position vector of P. The components of the position
vector of P are just the coordinates of P. For example, the coordinate
vector E; = (,...,0,1,0,...,0)in formula (2a) is the position
vector of the point on the positive x;-axis that has distance 1 from the

Figure 2.2 The vector PP as difference of position vectors.
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origin. Any vector A = PP’ can always be written as the difference of
the position vectors of its end point and initial point:

(5) PP’ = OP — OP
(see Fig. 2.2).

¢. Length of Vectors, Angles Between Directions

The distance between two points P = (x1, . . ., x4) and P’ =
(xt, . . ., x4') in n-dimensional euclidean space R is given by the
formulal!

(6 r=vx' —x)?+ (x2’ — %22+« + « +(xa — xn)2.

Since only the differences of corresponding coordinates of P, P’ enter
into the expression for r, we see that the distance is the same for all

pairs of points P, P’ that represent the same vector A = PP’. We call
rthe length of the vector A and write r =|A|.The vector A = (ay, . . .,
an) has the length

(6a) |[Al=vaiZ + a2 + - + » +as?

The zero vector 0 = (0, 0, . . ., 0) has length 0. The length of any
other vector is a positive number.

In euclidean geometry, angles can be expressed in terms of lengths.
This is achieved by the trigonometric formula (“law of cosines’) that
gives in a triangle with sides a, b, ¢ the angle y between the sides a
and b:

_a®+ b2 — ¢?

(6b) Cosy=""p -

We apply this formula to a triangle with vertices P, P, P”. (Fig. 2.3a).
The sides @ and b of the triangle are the lengths of the vectors A =

PP , B = PP”, while side c is the length of the vector

In two or three dimensions the formula can be derived geometrically by applying
the theorem of Pythagoras. In higher dimensions the expression for r can be con-
sidered as the definition of distance between two points in n-dimensional euclidean
space, when referred to a Cartesian coordinate system.
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(@) (b)

Figure 2.3 Vector representation of a line through a given point with
a given direction.

C=PP'=PP" —PP' =B — A.

For

A=(y,...,a20), B=(b,...,bn)
we have

C=(1...,ca)=(b1—a1...,bn — an).
By (6b)

cosy = |ALZ 1Bl —]C|2

2|A| |B|

where

Alr=$er,  [BIP= 316t (CIP= G- a)
i= 1= =
Thus, for A = 0, B = 0,

@ c _ aibs + azbz + ¢ ¢+ + + anba
O8Y = o+ .+ + +» +an VD2 + + + + + ba?’

We see that the angle y in the triangle PP'P" depends only on the
vectors A = PP’ and B = PP". Accordingly, we call the quantity cos y
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given by formula (7) the cosine of the anglel between the vectors
A=(a,...,an)and B=(by, . . ., ba).

Formula (7) for cos y actually always defines real angles Yy
between any two nonzero vectors A, B, since it always yields a value
with |cos Y| < 1. This is an immediate consequence of the Cauchy-
Schwarz inequality (Volume I, p. 15)

)] (a1b1 + azbs + « « + + anby)?
S@%2+ a2+« o« +an?)(bi2+ b2+ o o o + byd).

In computing the angles between the vector A and any other
vector B from (7), we need to know only the quantities

ai
‘:
varr + « v« + an?

)] & i=1...,n)

which are called the direction cosines of A. All nonzero vectors
with the same direction cosines form the same angles with other
vectors and thus can be said to have the same direction. It follows
from (7) that the direction cosines of A can be interpreted as cosines
of certain angles:

(10) & = cos oy,

where a; is the angle between A and the ith “coordinate vector”
Ei=@©,...,0,10,...,0). The n direction cosines of the vector
A satisfy the identity?

(11) cos?a; +cos2ag+ ¢+ ¢+ - cos?a, =1,

The only vector without direction cosines (and thus without a direction)
is the zero vector.

Two vectors A and B not equal to 0 have the same direction if and
only if they have the same direction cosines, that is, if

!The angle v itself is determined uniquely only if we confine ¥ to lie in the interval
0 = v = n. Replacing ¥ by 2nr 4+ v (where n is an integer), we obtain all other
angles with the same value of cosy, and any of these will be considered as an angle
between A and B.

%In two dimensions the relation cos? a; + cos? az = 1 permits us to choose for a2
the value n/2 — a1. In three or higher dimensions the relation (11) between the
direction cosines does not correspond to any simple linear relation between the
angles a; themselves.
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1 1
a7A =57 B.
|A] :]

Clearly, this is the case if and only if A and B satisfy a relation A =
AB, where A is positive. Here A = |A|/|B] is the ratio of the lengths
of the vectors. A vector of length 1 is called a unit vector. The vector

(&1,...,&n)=ﬁA

whose components are the direction cosines of A is the unit vector in
the direction of A.

The vector —A = (—ai, . . . , —@y) opposite to A has the direction
cosines —&;. We call its direction opposite to that of A. Two vectors
A and B neither of which is the zero vector will be called parallel if
they either have the same or the opposite directions. It is necessary
for parallelism then that A = AB where A is any number = 0. The
components a1, . . ., @, of any vector A %= 0 parallel to a given
direction are called direction numbers for that direction.

If we assign to a unit vector (&1, . . ., &) the origin O as initial
point, the end point P = (€1, ..., &) is a point on the “unit
sphere” (i.e., the sphere of radius 1 and center at the origin O) &2 +
E22 + - - « + E,2 = 1. Since there exists exactly one unit vector in
any given direction, we see that the different directions in n-di-
mensional space can be represented by the points of the unit sphere.
The points on the sphere corresponding to opposite directions are
diametrically opposite.

Intuitively a straight line can be thought of as a curve of “constant
direction”. This suggests that a straight line in n-dimensional space
be defined as a locus of points with the property that all vectors = 0
with initial and end point on the line are parallel. This definition leads
immediately to a vector representation for lines. For any distinct

points P, @ on the line L the vector 1767 is parallel to a fixed vector A,
that 1s,

PQ =12A O = 0).

If we keep P and A fixed and let @ run through all points of the line
L we have for the position vector of @ the formula (see Fig. 2.3b)

12) 00 = OP + PQ = OP + AA.
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Here the parameter A varies over all real values; the value A =0
corresponds to the point @ = P. If @ has coordinates x1, . . ., Xn;
P, the coordinates y1, . . ., ¥»; and A, the components a1, . . ., a@n,
formula (12) corresponds to the parametric representation of the line

X = ¥i + Aaq Gi=1,...,n)

where the parameter A varies over all real A. The point P divides
the line L into two half-lines, or “rays,” distinguished by the sign

of A. For A > 0 the vector I_’é has the same direction as A (“points”

in the direction of A); for A < 0 the vector P_Q points in the opposite
direction.

d. Scalar Products of Vectlors

The quantity appearing in the numerator of formula (7) for the
angle v between two vectors A = (a1, . . . ,an)and B = (b1, . . ., by)
is called the scalar product of A and B and denoted by A - B:

(13) A-B=aibi + ab2+ -+ + « + anba.
Expressed in terms of geometric entities it can be written as
(14) A:-B=|A| |B] cosy.

The scalar product of two vectors is the product of their lengths
multiplied with the cosine of the angle between their directions. If
A= Pﬁ’, B = P—’\’, we can interpret p = |A| cos Y geometrically as
the (signed) projection of the segment PP’ onto the line PP” (see Fig.
2.4). We call p the component of the vector A in the direction of B. By
formula (14) we have

(14a) A-B=p|B|.

Thus the scalar product of the vectors A, B is equal to the component
of A in the direction of B multiplied by the length of B.1 If B is the
coordinate vector E; = (0,. .., 1,...0) in the direction of the
positive x;-axis, the component of A in the direction of B is simply
ai, the ith component of the vector A. One easily verifies from the

1t is, of course, also equal to the component of B in the direction of A multiplied by
the length of A.
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Figure 2.4 Scalar product of the vectors A=PP and B=IT;”.

definition (13) that the scalar product satisfies the usual algebraic
laws

(15a) A-B=B:-A (commutative law)
(15b) MA-B)y=(MA)-B=A.(B) (associative law)!

(15c) A-B+C)=A-B+A-C, A+B)-C=A-C+B-C

(distributive laws).

The fundamental importance of the scalar product stems from the
fact that, expressed in terms of the components of the vectors A and
B, it has the simple algebraic expression (13), while at the same time
it has a purely geometric interpretation represented by formula (14),
which makes no mention of the components of the vectors in any
specific coordinate system. Scalar products are not only useful in
describing angles but form the basis for deriving analytic expressions
for areas and volumes as well.

We conclude from the Cauchy-Schwarz inequality (8) that the
scalar product satisfies the inequality

(16) |A-B|=|A| |B],

which just expresses that |[cos v] < 1. We shall see (p. 191) that the

1Since the scalar product of two vectors is not a vector but a scalar, there is no
associative law involving scalar products of three vectors.
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equality in (16) holds only if the vectors A and B are parallel or if at
least one of them is the zero vector.
We notice that by (6a), (13) for B = A

(17a) A-A=|Al

That is, the scalar product of a vector with itself is the square of its
length. This also follows from (14), since the vector A forms the
angle y = 0 with itself. The important relation

(17b) A:-B=0

for nonzero vectors A, B corresponds to cos vy =0 or y = n/2. It
characterizes the vectors A, B as “perpendicular” or “‘orthogonal”
or “normal” to each other. On the other hand, A - B > 0 means
cos Y > 0; that is, we can assign to y a value with 0 < y < n/2; the
directions of the vectors form an acute angle. Similarly, A+ B < 0
means that the vectors form an angle with n/2 <y < n, an obtuse
angle, with each other.
For example, the two coordinate vectors (see p. 123)

E:=(@{1,0,0,...,0) and E:=(0,1,0,...,0)

are.orthogonal to each other, since
Ei-E2=1.0+0-14+0:0+4++ « + + 0.0 = 0. More generally, any
two distinct coordinate vectors E; and E; are orthogonal:

(17c) E:+Ex=0 @i # k).
For k = i, we have, of course,

174d) E:-E: =|E|2=1;

the coordinate vectors have length 1.

e. Equation of Hyperplanes in Vector Form

The locus of the points P = (x1, . . ., xs) in n-dimensional space
R» satisfying a linear equation of the form

(18) a1xX1 + @2x2 + ¢ ¢+ ¢ + ApXp =C

(where a1, @2, . . ., as do not all vanish) is called a hyperplane. The
prefix “hyper-” is needed because n-dimensional space contains
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“planes,” or “linear manifolds,” of various dimensions; the hyper-
planes can be identified with the (n — 1)-dimensional euclidean spaces
contained in the n-dimensional space R». They are the ordinary two-
dimensional planes in three-dimensional space, the straight lines in
the plane, the points on a line.

Introducing the vector A = (a1, @z, . . ., an) and the position

vector X = (x1, . . ., %n) = OP of the point P, we can write equation
(18) in vector notation as

(18a) A-X=c¢ (A #0).

Let Y=(y1,..., Y0 = 56\2 be the position vector of a particular
point @ of the hyperplane, so that A - Y = c¢. Subtracting this
equation from (18a), we find that the points P of the hyperplane
satisfy

(19) 0=A-X-A-Y=A-X-Y)=A-: PQ.

Hence the vector A is perpendicular to the line joining any two
points of the hyperplane. The hyperplane consists of those points
obtained by proceeding from any one of its points @ in all directions
perpendicular to A. We call the direction of A “normal” to the
hyperplane (see Fig. 2.5).

Figure 2.5 Law of formation of third-order determinant.
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The hyperplane with equation (18a) divides space into the two
open half-spaces given by A« X < ¢ and A « X > ¢. The vector A
points into the half-space A - X > c. By this we mean that a ray from
a point @ of the hyperplane in the direction of A consists of points
whose position vectors X satisfy A «- X > c¢. Indeed the position
vectors X of points P of such a ray are given by

X=0P=0Q+ M =Y +2A

[see (12) ], where Y is the position vector of @ and A is a positive
number. Then obviously

A-X=A-Y+A-AM=c+ArA|2>c.

More generally, any vector B forming an acute angle with A points
into the half-space A - X > ¢, since A + B > 0 implies that

A-X=A-X+AB)=A-Y+AA:-B>c

If the constant c is positive, the half-space A « X < ¢ will be the one
containing the origin, since A - O = 0 << ¢. Then A has the normal
direction “‘away from the origin”.

The linear equation (18a) describing a given hyperplane is not
unique. For we can multiply the equation with an arbitrary constant
factor A = 0, which amounts to replacing the vector A by the parallel
vector AA and the constant ¢ by Ac. If ¢ 7= 0—that is, if the hyper-
plane does not pass through the origin—we can choose

A= S8RC
|A]

Multiplying (18a) by A, we obtain the normal form of the equation
of the hyperplane

(20) B-X=p

Here p is a positive constant, and B is the unit normal vector pointing
away from the origin. The constant p in equation (20) is simply the
distance of the hyperplane from the origin 0, that is, the shortest
distance of any point of the hyperplane from 0. For let P be any point
of the hyperplane and let X be the position vector of P. Then the
distance of P from the origin 0 is given by

|OP|=|X|=|X| |B].
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It follows from (16), (20) that

|OP|=zB-X =p.

Equality holds for the special point P of the hyperplane with position
vector

OP = X = pB.

The line joining this point to the origin has the direction of the
normal to the hyperplane. More generally we can find the distance
d of any point @ in space with position vector Y from the hyperplane.
As the reader may verify by himself,

(20a) d=|B-Y-p|.

f. Linear Dependence of Vectors and Systems of Linear Equations

Many problems in mathematical analysis can be reduced to the
study of linear relations between a number of vectors in n-dimensional

space. A vector Y is called dependent! on the vectors A1, Az, . . ., An
if Y can be represented as a “linear combination” of Ay, . . ., An,
that is, if there exist scalars xi, . . ., xm such that

(21) Y =x1A1 + x2A2 4+ ¢ ¢+ ¢ + XnAm.

Here m is any natural number. The zero vector is always dependent,
since it can be represented in the form (21) choosing for all the
scalars x; the value 0. Dependence of Y on a single vector A; # 0
means that either Y = 0 or that Y is parallel to Ai. Choosing for
A, . . ., Ap the n coordinate vectors

(22) E:=(,0,...,0), E:=(,1,...,0),...,
E,=(0,0,...,1)

we see that the relation (21) holds for any vector Y = (y1, . . ., ya)
if we choose x1 = y1, X2 =¥2,. . ., Xn = Ya'

(23) Y= y1E1 + yzEz + oo o+ ynEn-
1What we call here “‘dependent” is often called “linearly dependent” in the liter-

ature. Since we do not consider any other kind of dependence between vectors, we
drop the word ‘‘linear.”
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Thus, every vector in space is dependent on the coordinate vectors.

On the other hand, none of the n coordinate vectors E; is dependent
on any of the others, as is easily seen. More generally, a vector Y = 0
cannot be dependent on vectors A1, Az, . . ., Anif Y is orthogonal to
each of the vectors Ay, . . . , An. For multiplying relation (21) scalarly
by itself yields that

1YI2=Y: Y=Y (x1A1 + x2A2 + + + + +2xnAn)
=x1Y A1+ xY A2+« ¢« +x,YAp=0,

and hence that Y = 0.

We call the vectors Ai, . . ., An dependent if there exist scalars
X1, X2, . . . , Xm that do not all vanish, such that
(24) X1A1 + x2A2 + ¢+ ¢+ ¢ + XnApm = 0.
If Ay, ..., An are not dependent — that is, if (24) holds only for
X1=%x2= ¢+ ¢« =xm =0—wecall Ay, ..., An independent. For
example, the coordinate vectors Ei1, . . . , E, are independent, since
=x1E1 + x2Ee + ¢ ¢« « +x4En = (x1, %2, . . ., xn)

obviously implies that x1 = x2 =+ « « = x, = 0.

The two notions of “dependence of a vector on a set of vectors”
and “dependence of a set of vectors” are closely related. A number
of vectors are dependent if and only if we can find one of them that
is dependent on the others. For, obviously, relation (21) expressing
that Y is dependent on A;, . . ., A can be written in the form

X1A1 + + ¢ - +xmAm+(—'1)Y:0,

which shows that the m + 1 vectors A1, Az, ..., Apn, Y are de-
pendent. Conversely, if Ay, . . . , An are dependent, we have a relation
of the form (24) where not all coefficients x; vanish. If, say, x; does
not vanish, we can solve equation (24) for Ak, expressing Ay as a
linear combination of the other vectors.

Dependence of the vector Y on the vectors Aj, . . ., Ammeansthat
a certain system of linear equations has solutions xi1, . . ., xm. For
let Y = (y1, . . ., ya), and let the vector A be given by
Ar = (aw, azk, - . . , Qnk).

Then the vector equation (21), written out by components, is equiva-
lent to the system of n linear equations
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aux1 + aizxg + ¢ ¢ ¢ + GmXm = Y1
az1x1 + a22x2 + ¢+ 4+ @G2mxm = Y2

(25)

an1X1 + Qn2x2 + ¢ * * + QumXm = Yn
for the unknown quantities x1, . . ., xn. Obviously, Y is dependent
on Aj, . .., Ap if and only if the system (25) posesses at least one
solution x1, . . ., Xm. Similarly, the vectors A1, ..., A, are de-

pendent if and only if the “homogeneous” system of equations

anx1 + aiexz + ¢+ + QGimxm =0

a21x1 + @22%2 + ¢ ¢+ + + AGomxm =0

(25a)
An1X1 + An2x2 + ¢+ ¢ + Gumxm = 0.

has a “‘nontrivial”’ solution xi1, ..., xm, that is, has a solution
different from the trivial solution!

X1=Xs=+ ¢ » =xm = 0.

We found one set of n vectors in n-dimensional space that are
independent, namely, the coordinate vectors Ei, . . ., E,. Basic for
the theory of vectors is the fact that n is the maximum number of
independent vectors:

FUNDAMENTAL THEOREM OF LINEAR DEPENDENCE. Every n + 1
vectors in n-dimensional space are dependent.

Before proving this theorem we consider some of its far-reaching
implications. We can conclude immediately that any set of more than
n vectors in n-dimensional space is dependent. For any dependence
(24) between the first n + 1 of m vectors can be considered a de-
pendence of all m vectors, if to the remaining vectors we assign the
coefficient 0. The fundamental theorem then implies: The system of
homogeneous linear equations (25a) always has a nontrivial solution if
m > n, that is, if the number of unknowns exceeds the number of
equations.

We can formulate the last statement geometrically in a different
way, if we interprete each of the equations (25a) as stating that a

1Equations of the type P(x1, x2, . . . , Xm) = 0 where P is a homogeneous polynomial
(see p. 13) are called homogeneous. They always have the trivial solution x1 =
xg =+ + » = xpn = 0. Moreover any solution x1, . . ., xn stays a solution if we
multiply all of the x; by the same factor A.
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certain scalar product of two vectors in m-dimensional space vanishes.
A nontrivial solution x1, . . ., xm then corresponds to a vector X =
(x1, . . ., xm) = 0. The vanishing of the scalar product of two non-
vanisﬁing vectors means that the vectors are perpendicular to each
other. Equations (25a) state that X is perpendicular to the n vectors
(au,alz, PR ,a1m), (a21, azz, . . . ,azm), ce ey (anl, An2y, « « « anm).We
have then: Given a set of nonvanishing vectors whose number is less
than the dimension of the space, we can find a vector that is perpen-
dicular to all of them (and hence, by p. 137, is independent of them).

Returning to vectors in n-dimensional space, we observe a further
consequence of the fundamental theorem: Every vector Y in n-di-
mensional space is dependent on n given vectors A1, . . . , Ay, provided
Ai, . . ., A, are independent. For since the n + 1 vectors Ay, . . .,
A,, Y must be dependent, we have a relation of the form

21A1 + 22A2 4+« ¢« +2ZAn + 2sn Y =0,

where not all of the quantities 21, . . ., zx+1 vanish. Then 2,+1 # 0,
since otherwise Ai, . . ., A, would be dependent, contrary to as-
sumption. It follows that

(26) Y = x1A1 + x2A2 4+ ¢« ¢+ ¢ + XAy
where
— _ R | =
X = o G=1,...,n).

Incidentally, the coefficients xx in the representation (26) of Y asa
linear combination of the independent vectors Ai, ..., A, are
uniquely determined, for if there were a second representation

Y =yA1+ y2As + ¢« ¢ o 4+ yaAy
it would follow by subtracting that
(1 — yD)A1+ (x2 — y2)As + ¢+« o + (Xn — Yn)Ar = 0.

Here for independent vectors Ai, ..., A, we conclude that all
coefficients vanish and hence that x1 = y1, . . ., Xn = ya.

On the other hand, if A;, . . ., A, are dependent, we certainly can
find a vector Y that does not depend on Ay, . . ., Ay, for in that case,
one of the vectors A1, . . ., A, is dependent on the others, say A,
onAi,...,Ap1;avector Y dependent onAji, . . ., Ay is then also
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dependent on Aj, . . ., Au-1. There are, however, vectors Y in n-di-
mensional space that do not depend on n — 1 given vectors (see
p. 139).

Since independence of Ai, . . ., A, is equivalent to the fact that
the corresponding system of homogeneous linear equations (25a) has
only the trivial solution, we have deduced the following basic theorem
on solvability of systems of linear equations from the fundamental
theorem:

The system of n linear equations

a11x1 + qi12x2 + *+ ¢ * + QiaXn = Y1

@7 a21Xx1 + aex2 + + + ¢ + GanXkn = Y2

Ap1X1 + Gu2X2 + ¢ * * + QuaXn = Yn

has a unique solution x1, . . ., xx for any given numbers y1, . . ., ¥u
provided the homogeneous equations

anx: + aigxz + « ¢+« + Gipxn =0

@7a) a21x1 + @22x2 + ¢+ « + + Q2pxn =0

aniX1 + an2x2 + ¢ + » + @uaxn =0

have only the trivial solution x1 = x3 = + + + = x4 = 0. If the system
(27a) has a nontrivial solution we can find values y1, . . ., yn for
which the system (27) has no solution.

We have here a pure existence theorem, that gives no indication,
how the solution x1, x2 . . ., xn, if it exists, can actually be obtained.
This can be achieved by means of determinants, as discussed in
Section 2.3 below.

We proceed to the proof of the fundamental theorem, using in-
duction over the dimension n. The theorem states that any n + 1
vectors A1, . . ., Ap, Y in n-dimensional space are dependent. For
n = 1, vectors become scalars, and the statement to be proved is the
following: For any two numbers ¥ and A we can find numbers xo, x1,
which do not both vanish, such that

x0Y + x1A = 0.

This is trivial. f ¥ = A = 0, we take xo = x1 = 1; in all other cases,
we take xo = A, x1 = Y.
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Assume that we have proved that any n vectors in (n — 1)-di-
mensional space are dependent. Let A1, . . ., As, Y be vectors in
n-dimensional space. We want to prove that A1, . . ., Ay, Y are de-
pendent. This is certainly the case, if A1, . . ., Ay, alone are already
dependent. Thus we restrict ourselves to the case that A1, . . ., Ax
are independent; we shall prove that then Y is dependenton Ay, . . .,
A,. It is sufficient to prove that each of the coordinate vectors Ei, . . .
E. in (22) is dependent on Ay, . . ., Ay, for any vector Y is, by (23), a
linear combination of the E; and hence also of the Ay if the E; can
be expressed in terms of the Ax. We shall prove only that E, is de-
pendent on Aj, . . ., Ay, since the proof for the other E; is similar.
We only have to show that the system of equations

ai1x1 + Qigxz + ¢+ ¢ + QGinxn =0 .
(28) ' e e Gi=1,...,n—1)
An1X1 + Quax2 + ¢ ¢+ + GunXn =1

has a solution x1, . . ., xx. Now the first n — 1 equations, which are
homogeneous, have a nontrivial solution x1, . . ., x» as a consequence
of the induction assumption that n vectors in (n — 1)-dimensional
space are dependent. For that solution, let

An1X1 + Ap2X2 + ¢ ¢ * + AuaXan = C.

Here ¢ = 0, since otherwise the vectors A1, . . ., A, would be de-
pendent. Dividing x1, X2, . . ., Xz by ¢, we obtain then the desired
solution of the system (28). This completes the proof of the funda-
mental theorem.

Exercises 2.1

1. Give the coordinate representation of the line passing through the
point P = (—2, 0, 4) and in the direction of the vector A = (2, 1, 3).

2. (a) What is the equation of the line passing through the points P =

3, -2, 2) and @ = (6, —5, 4)?
(b) Give the equation of the line passing through any two distinct
points P and Q.

3. If A and B are two vectors with initial point O and final points P and
@, then the vector with O as initial point and the point dividing PQ
in the ratio A: (1—2) as final point is given by

1 —2A +2B.

4, In Exercise 3, for what values of A does the position vector correspond
to a point on the ray in the direction of @ from P?

5. The center of mass of the vertices of a tetrahedron PQRS may be
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10.

11.

12

13.

14.

defined as the point dividing MS in the ratio 1:3, where M is the center
of mass of the vertices PQR. Show that this definition is independent
of the order in which the vertices are taken and that it agrees with the
general definition of the center of mass (Volume I, p. 373).

. Two edges of a tetrahedron are called opposite if they have no vertex

in common. For example, the edges PQ and RS of the tetrahedron of
Exercise 5 are opposite. Show that the segment joining the midpoints
of opposite edges of a tetrahedron passes through the center of mass of
the vertices.

. Let A1, ..., Ax be n arbitrary particles in space, with masses, m,

me, . . ., ma, respectively. Let G be their center of mass and let A;
. .., As denote the vectors with initial point G and final points
Ai, . . ., An. Prove that

miAi1 + meAz+ ¢ ¢ o + mrAn = 0.

. The real numbers form a one-dimensional vector space where addition

of “vectors” is ordinary addition and multiplication by scalars is
ordinary multiplication. Show that the positive real numbers also form
a vector space where addition of vectors is ordinary multiplication and
scalar multiplication is appropriately defined.

. Verify that the complex numbers form a two-dimensional vector space

where addition is ordinary addition and the scalars are real numbers.

Let P and @ be diametrically opposite points and R any other point on

a sphere. Show that PR meets QR at right angles.

(a) Obtain the normal form of the plane through the point P = (—3, 2,1)
and perpendicular to the vector A = (1, 2, —2).

(b) What is the distance of the point @ = (1, —1, —1) from the plane?

(c) Do O and @ lie on the same or opposite sides of the plane?

(a) Let the equation of a hyperplane be given in the form (18). Deter-
mine the coordinates of the foot of the perpendicular from a point
P to the hyperplane.

(b) In Exercise 11, give the feet of the perpendiculars from O and @ on
the plane.

Let A and B be nonparallel vectors. Show that

A-B

C=A-Tg2

B

is perpendicular to B. The vector C is called the component of A perpen-
dicular to B.

Find the angle ¢ between the plane
Ax+ By+ Cz+ D=0.
and the line

x=x0-+ at,y = yo + B, z2=20+ Yl
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2.2 Matrices and Linear Transformations

a. Change of Base. Linear Spaces

Every vector Y in n-dimensional space R” can be written asa linear

combination of the coordinate vectors Ei, . ., E, defined by (22);
namely, ’
(29) Y=yiE1+ ¢+ + « + yuEnq,

where the y; are the components of Y. We can generalize the notion of
coordinate vector and of components by considering any m inde-
pendent vectors A1, . . . ,Anin Sp. If Y is a vector dependent on the
A;, we have

(30) Y=xiA1+ ¢ ¢+ + + xnAn

where the coefficients x; are determined uniquely by Y. We call xi, .
. ., xm the components of Y withrespecttothebaseA:, . . . , Am. With
respect to this base, the base vector A has the components 1,0, . .
., 0; the base vector Az, the components 0,1, . . . ,0; and so on.
For any scalar A the vector

AY = Ax1A1 + ¢ ¢ - + AxmAn

also is dependent on the A; and has components Axi, . . ., Axm.
Similarly, if

Y =x'A1++ ¢« - + xn'An
is a second vector depending on the A;, the sum
Y+Y =1+ xX)A1+ + » « + (xm + x0))An

has the components x1 + x1', . . ., xn + xn’ With respect to our base.

For m < n not all vectors Y in n-dimensional space are dependent
on Ai, ..., An. The vectors dependent on m independent vectors
are said to form an m-dimensional vector space. We can visualize such
a space by choosing an arbitrary point Py with position vector B =

Uﬁo as initial point for all the vectors Ay, . . ., An. Let
(31a) A; = PyP; Gt=1,...,m

andlet Y = 1—’0_1\’ be the vector given by (30). Then the point P has the
position vector
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(31b) OP=0Py+PP=B+x1A1++ + + + nAn.

The points Pin relation (31b) are said to form the m-dimensional linear
manifold Sy through Po spanned by the vectors Ai, . . ., Ap. Every
point P in Sy uniquely determines values x1, . . . , xm, which we call
affine coordinates for P. In this affine coordinate system for Sp
the “origin” — that is, the point with x; = xa =+ + + = xp =0 — is
the point Po; the point with affine coordinates x1 = 1,x2 =+ + + = xp

= 0 is Py, the end point of the vector A; = PoP;, and so on. For two
points P and P’ of Sy, with position vectors

a—ﬁ=B+x1A1+---+xmAm, 51_57=B+x1’A1+---
+ xm’Am,

the vector

13?}=5_\P’—(7’\=(x1’—x1)A1+- o o+ (xn — xm)An

has as components with respect to the base A1, . . ., Anthe differences
of the affine coordinates of the points P and P’.

According to our definition a one-dimensional linear manifold S;
through the point Py is the locus of points P with position vectors of
the form

D?:B+x1A1

where B and A: are fixed vectors, (A1 7% 0) and x1 ranges over all
real numbers. Of course, S1 is merely the straight line through Py
parallel to the direction of the vector A; (see p. 130). A two-dimen-
sional linear manifold or two-dimensional plane Sz consists of the
points P with position vectors

-O_P\ =B + x1A1 + x2A-

where B, A, A: are fixed vectors (A1 and Az independent) and x1 and
%2 range over all real numbers. The n-dimensional linear spaces Sp
are identical with the whole space R”; for any vector Y is dependent
on n linearly independent vectors Ai, . . ., Ax (see p. 133), and hence
the position vector of any point P is representable in the form

ﬁ=B+x1A1+' . ‘+ann.
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The (n — 1)-dimensional linear manifolds can be seen to be identical
with the hyperplanes defined on p. 133. For given any n — 1 vectors A;,

,Au_11n n-dimensional space, we can find a vector A perpen-
d.lcular to all of them (see page 139.) Then for

OP=B+ xiA1+ + + + + Zn-1An

we have the relation

A-OP=B-A+x1-A1-A+-++ ++%1An1-A=B-A

= constant,

which is just a linear equation for the coordinates of P.

In general, the determination of the components x; of a vector
Y with respect to a base A1, . . ., An requires the solution of a system
of linear equations of the type (25). In one important special case, the
x; can be found directly, namely, when the base vectors form an
orthonormal system. We call the vectors Ay, . . ., Ay orthonormal
if each of them has length 1 and any two are orthogonal to each other,
that is, if

o0 weme 812

If a vector Y is of the form
Y = x1A1 + x2Az + ¢« ¢ +xnAn,
we find, using the orthogonality relations (32), that

B Y-Ai=xiA1-Ai+x2A2- A+« + +XnAn - A=
i=1,...,m).

In particular, Y = 0 implies x; = O0fori =1, . . ., m; thus orthonor-
mal vectors always are independent. Formula (33) shows that the
component x; of the vector Y with respect to an orthonormal base
A1, . . ., Ay is equal to the component Y - A; of the vector Y in the
direction of A;. The coordinate vectors Ei, . . . , E, defined by equa-
tions (22) form just such an orthonormal base, and the components
of the vector Y (y1, . . . ,ya) with respect to this base are the quanti-
tiesY - E; =

An orthonormal base is also distinguished by the fact that the
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length of a vector and the scalar product of two vectors is given by the
same formulae as in the original base Ej, . . . , E,. Given any two
vectors Y and Y’ of the form

(B4a) Y=x1A1+ ¢+ « + + xnAm, Y=x'A1++ + « +xn'An
we have
(B4b) Y . Y =(xA1+ ¢ + « + xnAnm) » (x1’'A1 + + « + + xn'An)
=x1A1 (X1A1+ ¢ ¢ ¢« + xn/An) + ¢ o -
+ xmAm ¢ (xl’Al + o+ xm’Am)

= x1x61" + X2x2’ + ¢ o ¢ + xXpxw'L

In the particular case Y = Y we find for the length of the vector
Y the formula

(34c) Y= /Y Y = var ¥ T

If the m-dimensional linear manifold Sy through the point Py is
spanned by m orthonormal vectors Ay, . . ., Am, the corresponding
affine coordinate system is called a Cartesian coordinate system for
the space Su. The coordinate vectors Ai, . . . , An are mutually per-
pendicular and of length 1. The distance d between any two points
with Cartesian coordinates (x1, . . ., xm) and (x1/, . . ., x») is given
by the formula

d= Vi —x)2+ + + « + (Xn — xm)?

More generally any geometric relation based on the notion of distance
(such as angle, area, volume) has the same analytic expression in any
Cartesian coordinate system.

b. Matrices
The relation
(35a) Y=xA1+ - + + + xnAn

between vectors Aj, . . . ,An, Yin n-dimensional space canbe written
as a system of linear equations [see (25), p. 138]

1Without the orthogonality relations we could only conclude that Y - Y’ is given
by the more complicated expression

Y. Y = Xk_‘, cixxixy ~ where  cix = Ai ¢ Ag.
2.
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ai11x1 + aiexe + + ¢ » + QnXm = Y1

az1x1 + ag2x2 + ¢ ¢+ + a2mXm = y2

aniX1 + an2xX2 + ¢+ * * + AumXm = Yn

connecting the components y1, . . ., y» of the vector Y in the original
coordinate system with the components xi1, . . . , xm of Y with respect
to the base vectors A; = (@11, @21, . . ., an) for i=1,. .., m. The
linear relations (35b) between the quantities x; and y; are completely
described by the system of n x m coefficients aji. The system of
coefficients arranged in a rectangular array

(36)

ail a2 b aim

az1 @22 ¢ a2m
a= . . . ,

Anl An2 * * * Qum

as they appear in (35b) is called a matrix.
(We shall usually denote matrices by boldface lower-case letters).
The matrix a in (36) has mn “‘elements”

aji;

j=1...,n; i=1,...,m.

These elements are arranged in m “‘columns”

or in n “‘rows”’

aii aiz Qlm

az21 az2 a2m
, e,

Anl an2 Anm

(@1 a2z + « + amm),

(@1 azz2 + + «  azm),

(anl (227 I anm)-

Two matrices are considered equal only if they agree in the number
of rows and columns and if corresponding elements are the same.
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The columns of the matrix a can be identified respectively with the
set of components of the vectors A1, Az, . . ., An. Weshall often write
the matrix a whose columns are formed from the components of the
vectors Ai, Az, . . ., Anr as

37 a= (A, Az ..., Ap).

The system of equations (35b) expressing the n quantitiesys, . . .,
ya as linear functions of the m quantities x1, . . . , x» can be compress-
ed into the single symbolic equation

(38) aX =Y,
where X stands for the vector (x1, . . ., xm) and Y for the vector
(y1, . . ., yn). If the column vectors Ay, . . ., An of the matrix a are

independent, we can interpret (38) as describing a change of base or
of coordinate system for vectors.

The equation connects the components xi1, . . ., xm of the vector
with respect to the base Aj, . . ., An in the subspace Sy with the
components y1, . . . ,¥Ys of the same vector with respect to the base
Ej, . . ., E, for the whole space S,. This might be called the “pas-
sive” interpretation of (38), in which the geometrical objects—the
vectors—stay fixed and only the reference system is switched.

There is another, “active” interpretation, in which the vectors
change rather than the coordinate system. Equations (36) then de-
scribe a mapping of vectors (x1, . . . , xm) in an m-dimensional space
onto vectors (¥1, . . ., ¥ys) inann-dimensional space. A mapping given
by equation (38), or in more detail by the equivalent system of equa-
tions (35b), is called linear, or affine.!

1In an affine mapping of vectors the components y; of the image vector Y are homeo-
geneous linear functions of components x: of the original vector X, as in formulae
(35b). If we identify X and Y with position vectors of points, formulae (35b) define a
mapping of points (x1, . . ., *m) in the space R™ onto points (y1, . . ., y») in the space
R». The point mappings obtained in this way are the special affine mappings that
take the origin of R™ into the origin of R". The mostgeneral affine mapping of points
is given by inhomogeneous linear equations

m .
® yj=,Zlaﬂx¢+b1 (G=1...,n)
=

(It can be obtained from a special mapping taking the origin into the origin by a
translation with components b;). Applying the mapping (*) to two points P’ =

&1, . .., xm), P = (01", . . ., ¥n") with images @ = (1, . . ., y»), @' =",
—_—
., yn"), we see that the corresponding mapping of the vectors P’ P" = (x1” — x1/,
NS Y
., xm” — xm)=(x1,..., xm) onto the vectors @ Q" =" —y', ...,

yu'"' —y) =0, . . ., yn) is given by the homogeneous equations (35b).
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For example the system of equations

2 1 1
(38a) y1=§x1-—5xz, y2=—§x1+§x2,

Il

11,
3 1 2

Js 3

corresponding to the matrix

|
wir i ik

o
I
Wik ol Wi

can be interpreted as a mapping of vectors X = (x1, x2) in the plane
onto vectors Y = (y1, y2, ¥3) in three-dimensional space. Here the
image vectors all satisfy the relation

(38b) y1+y:2+y3=0

and hence are orthogonal to the vector N = (1, 1, 1). Identifying the
vectors X, Y with position vectors of points, we have in (38a) a map-
ping of the x1 x2-plane onto the plane n in y:1 y2 ys-space with equation
(38b). Geometrically the point (y1, ¥z, ¥3) is obtained by projecting the
point (x1, x2, 0) perpendicularly onto the plane n.! Alternately, equa-
tions (38a) can be interpreted passively as a parametric representation
for the plane &, with x1 and x; playing the role of parameters.

Different matrices give rise to different linear mappings, for by
(35b) the coordinate vectors

E:1=(@Q,0,...,0), E:=(,1,...,0),...

are mapped onto the vectors

A1 = (a11, az1, . . . ,anl), Az = (alz, a2, . . ., anz), .
Thus, the column vectors A1, Az, . . ., A, of the matrix a are just the
images of the coordinate vectors E1, Es, . . . , E,. Hence, the matrix

a is determined uniquely by the mapping.

1The line joining (x1, x2, 0) and (y1, ¥z, ¥3) is parallel to the normal N of &.
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Of particular importance are the linear mappings Y = aX of the
n-dimensional vector space into itself; theymapavector X = (x1, . . .,
xn) onto a vector Y = (y1, . . ., ¥ys) With the same number of compo-
nents. Such mappings correspond to matrices a with as many rows
as columns, so-called square matrices.! Written out by components,
the mapping Y = aX corresponding to a square matrix a with n rows
and columns takes theform (27). p.140. The basic theorem of solvability
of systems of n linear equations for n unknown quantities (p. 140)
can now be stated alternatively as follows:

For a square matrix a there are two mutually exclusive possibili-
ties:

(1) aX == 0 for every vector X = 0

(2) aX = 0 for some vector X #= 0.

In case (1) there exists for every vector Y a unique vector X such that
Y = aX. In case (2) there exist vectors Y for which the equation Y = aX
holds for no vector X.?

We call the matrix a singular in case (2) and nonsingular in case
(1). Since existence of a nontrivial solution X of the equation aX =
0 is equivalent to dependence of the column vectors of the matrix
a, we see that a square matrix a is singular if and only if its column
vectors are dependent.

¢. Operations with Matrices

It is customary to denote the elements of a matrix a as in (36) by
letters bearing two subscripts, such as aj. The subscripts indicate
the location or address of the element in the matrix, the first subscript
giving the row number, the second the column number. For a matrix
with 7 rows and m columns having elements a;; the subscript j ranges
overl,2, . . .,n and the subscript i over 1,2, . . ., m. Equation (36)
is often abbreviated into the formula

a= (aﬂ)’

which only exhibits the elements of the matrix a but does not show
the numbers of rows and columns, which have to be deduced from the
context.? In the example

1The more general matrices with arbitrary numbers of rows and columns are referred
to as rectangular matrices.

2In case (1) the equation Y = aX represents a 1-1 mapping of the n-dimensional
vector space onto itself. In case (2) the mapping is neither 1-1 nor onto.

3The letter a in aj is the name of a real-valued function of the independent variables
j and i. The domain of this function consists of the points in the j, i-plane whose
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1! 21 3! «++ m!

2! 3! 4! o (m+ D!
a = (ax) = 3.! 4.! 5.! - (m:|-2)!

n! n+1)! (n+2)! - «(m+n—1)!

we have aj = (i + j — 1)!

Addition of matrices and multiplication of matrices by scalars are
defined in the same way as for vectors. If a = () and b = (bj)
are matrices of the same ‘‘size’’—that is, with the same numbers of
rows and columns—we define a + b as the matrix obtained by adding
corresponding elements:

a+ b= (aj+ bj).

Similarly, for a scalar 2 we define Aa as the matrix obtained by
multiplying each element of a by the factor A:

Aa = (Aaj).
One verifies immediately the rules
(39) (a + b) X = aX + bX, (Aa) X = MaX)

for the mappings of vectors X determined by the matrices.

More significant is the fact that matrices of suitable sizes can be
mudltiplied with each other. A natural definition of the product of two
matrices a, b is obtained by considering the symbolic product, or
composition, of the corresponding mappings (see Volume I, p. 52). If

a = (aj;)is a matrix with m columns and n rows,and if X = (x1, . . . , Xm)
is a vector with m components, then a determines the mappings
Y = aX of the vector X onto the vector Y = (y1, . . ., ya) with the

n components
C .
yj=_}__.1ajixi G=1,...,n).
o

If now b = (bx;) is a matrix with n columns and p rows, then the

coordinates are integers with 1 <j=n, and 1 =i < m. Ordinarily we write a
function f of two independent variables x, y as f (x, y), and a more consistent notation
here would be a(j, i) instead of the customary a;i.
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mapping Z = bY will map Y onto the vector Z = (21, . . . , 2p) with the
P components

m

n m
Zp = f‘i bry; = Zl Zl brs aji X0 = 3 cri xi,
7= 7=1i=

t=1

where
(40) Cki=.nzlbkjaji tk=1,...,p;i=1,...,m).
f=

Thus Z = cX, where ¢ = ba = (cx:) is the matrix with p rows and
m columns and with elements given by formula (40). Accordingly, we
define the product ¢ = ba of the matrices b and a as the matrix with
elements cx; given by (40).

We observe that the product ba is defined only if the number of
columns of b is the same as the number of rows of a. This corresponds
to the obvious fact that the symbolic product of two mappings can
only be formed, if the domain of the first factor contains the range
of the second one. Thus it could happen very well that the product
ba is defined but not the product ab with the factors in the reverse
order. But even where both ba and ab are defined the commutative law
of multiplication ab = ba in general does not hold for matrices.
For example, for

we have

b 0 -1 ba = 0 1)
a _<—1 0)’ a“(1 0/

However, one easily verifies from formula (40) that matrix multi-
plication obeys the associative and distributive laws

(41a) a(bc) = (ab)c,
(41b) a(b + ¢) = ab + ac, (a + b)c = ac + bc,

(for matrices of appropriate sizes). We might say that all algebraic
manipulations for matrices are permitted as long as the products
involved are defined and we do not interchange factors.
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The mapping of vectors determined by the matrix a, which we had
written as Y = aX, can be considered a special example of matrix
multiplication provided we write X and Y as “column vectors,” that
is, as matrices with a single column and with m and n rows, respec-
tively:

X1 Y1

X2 y2
X = . s Y = .

Xm Yn

d. Square Matrices. The Reciprocal of a Matrix. Orthogonal
Matrices

Of particular importance in applications are the matrices with the
same number of rows and columns, the so-called square matrices (the
more general matrices with arbitrary numbers of rows and columns
are referred to as rectangular matrices). The order of a square matrix
is the number of its rows or columns. Any two square matrices of the
same order n can be added or multiplied. In particular, we can form
powers of such a matrix:

a? = aa, a® = aaa, - - -.

The zero matrix 0 of order n is the matrix all of whose elements are
0, or all of whose columns are zero vectors:

(42a) 0=(0,0,...,0).
It has the obvious properties
(42b) a+0=0+a=a, a0l=0a=0
(for all n-th order matrices a),
(42¢) 0X = 0 for all vectors X with n components.

The unit matrix, of order n, denoted by e is the matrix correspond-
ing to the identity mapping of vectors X:

(43a) eX=X

for all vectors X. Since then in particular eE; = E; for all coordinate
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vectors Ex, we find that the unit matrix has the coordinate vectors as
columns:

(43b) e=ELE;, ... ,E)=

O+ O
S o o = O
Qe 0 e O O
e o o O O

One verifies immediately that e plays the role of a “unit” in matrix
multiplication:

(43c) ae=ea=a

for all n-th order a.
We call an nth order matrix b reciprocal to the nth order matrix
aif

(44) ab =e.

If b is reciprocal to a, then a corresponds to the inverse of the map-
ping of vectors furnished by b, for if b maps a vector Y onto X (i.e.,
if X = bY), then a maps X back onto Y, since aX = abY = eY =Y.
More concretely, if we know a reciprocal b of the matrix a = (az),
we can write down a solution X = (x1, x2, . . ., xx) of the system of
linear equations

a1x1 + aiex2 + ¢+ ¢+ ¢+ + QuaXa = Y1

az21X1 + a22%2 + *+ ¢ + + Q2rXn = Y2

An1X1 + @p2X2 + ¢ ¢ ¢ + QAuaXn = Yn

for any given (y1, . . ., ya) = Y. Since abY = eY = Y, we have in-
deed a solution given by X = bY, that is, by

x1=buyr+ * ¢+ + + biayn

Xn = bnlyl S IR o bnnyn-

Every real number a except zero has a reciprocal b for whichab = 1.
However, there are matrices different from the zero matrix that
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have no reciprocal. If a has a reciprocal, the equation aX = Y has for
every vector Y the solution X = bY, since

abY = eY =Y.

Hence (see p. 150) the matrix a must be nonsingular; that is, the
columns of a are independent vectors. Singular matrices have no
reciprocal. The condition ab = e for the reciprocal matrix b of a can
be written out in the form

(45) ﬁ_'.l ajrbrr = ej,

where ajr, brx, ejx denote respectively the general elements of the
matrices a, b, e. For fixed k& we have in (45) a system of n linear equa-
tions for the vector Bx = (bix, bak, . . . , buk), Which represents the
kth column of the matrix b. If the matrix a is nonsingular, there exists
a unique solution By of (45) for every k. Hence, a nonsingular matrix a
has one and only one reciprocal b.

Let a be any nonsingular matrix and b its reciprocal; that is, ab =
e. Take an arbitrary vector X and put Y = aX. Since both Z = X and
Z = bY are solutions of the equations Y = aZ and since the solution
is unique, we must have

bY = X
for every vector X. Hence (see p.149) a is the reciprocal of b:
ba = e.

The reciprocal of a nonsingular matrix a is usually denoted by
a~l. We have

(46) aal=ala =e,

where e is the unit matrix. The reciprocal can be calculated by solv-
ing the system of linear equations (45) for the b,x. Since the elements
ejx of the unit matrix have the value 0 for j # & and 1 for j = &, equa-
tions (45) state that the scalar product of the jth row of the matrix
a with the kth column of the matrix a~! has the value 0 for j = k and
1 for j = k. Furthermore, since a-1 a = e we see that the scalar prod-
uct of the jth row of a1 with the kth column of a also has the value
Oforj+# kand1forj==k.
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Multiplying by reciprocals enables us to “‘divide” an equation
between matrices by a nonsingular matrix. For example, the matrix
equation

ab=c¢,

where a is a nonsingular matrix, can be solved for b by multiplying
the equation from the left by a—!:

alc = aY(ab) = (aa)b = eb = b.

Similarly, the equation

leads to
ca’l =b.

From the point of view of euclidean geometry the most important
square matrices are the so-called orthogonal matrices, which cor-
respond to transitions from one Cartesian coordinate system to
another such system or to linear transformations that preserve
length. A square matrix a is called orthogonal if its column vectors

Aj, . . ., A, form an orthonormal system:

0 for i=k
47 A A =
“7 ! * 1 for i=%k

(see p. 145). Since vectors forming an orthonormal system are in-
dependent, it follows that orthogonal matrices are always nonsingular.
The vector relation aX = Y corresponding to the matrix a, inter-
preted passively, describes how the components y1, . . . , yx of a vector
with respect to the coordinate vectors Ei, . . ., E, are connected
with the components of the same vector with respect to the base
A, . . ., A, For an orthogonal matrix a the base A1, . . ., Ay con-
sists of n mutually orthogonal vectors of length 1, forming a “Car-
tesian” coordinate system, in which distance is given by the usual
expression (see p. 146). Interpreted actively, Y = aX represents a
linear mapping in which the coordinate vectors E; are mapped onto
the vectors A;. This mapping takes a vector

X=((x1,...,00)=x1E14+ ¢+ ¢+ « + x2En
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into the vector

Y=aX=a@E1++ ¢« « +xEs) =x1aE1 + « «+ + + xsaE,
=x1A1+ ¢ ¢ « + XpAn.

The mapping preserves the length of any vector, since by (47)

1YI2=Y Y=(@x1A1+ +» *+ » + x2Ap) « (x1A1+ ¢+ ¢ « + x,Ap)
x4 e+ =X

More generally the mapping preserves the scalar product of any
two vectors and hence also angles between directions, as is easily
verified. Such length preserving mappings are known as orthogonal
transformations, or rigid motions. In two dimensions they are
easily identified with the changes of coordinate axes discussed in
Volume I (p. 361). A vector A; of length 1in two dimensions is of the
form Ai = (cos v, sin y) with some suitable angle v. The only
vectors Ag of length 1 that are perpendicular to A; are

T

Az = (cos (7 + 2), sin (y + g)): (——sin Y, COS y)

and

A: = [cos [y = &), si ~ ) = (si —cos
s = [cos (1 =) sin 1~ 5)) = [sin v, —cos1).
Thus the general second-order orthogonal matrix is either of the form

cos Y —sin ¥y cos ¥ sin y
(48) a=1| . or a=| . .
sin y cos ¥ sin Yy —cos Y

The orthorgonality relations (47) permit one immediately to write
down the inverse a~! of an orthogonal matrix a. We just take for a-!
the matrix that has the Ay as row vectors; the scalar product of the
Jjth row of a-1 with the kth column of a is then 0 for j = k& and 1 for
J = k, as required by the relation a1 a = e. Generally, for any matrix
a = (ajr), one defines the transpose aT = (bjx) as the matrix obtained
from a by interchanging rows and columns. More precisely bjx =
arj;.l For an orthogonal mutrix we simply have

1Thinking of a as written out as a rectangular array, one defines the “main diagonal”
of a as the line running from the upper left-hand corner downward at slope —1. 1t is
the line containing the elements ai1, a2z, ass, . . .. The transpose of a is obtained by
“reflecting’’ a in the main diagonal.
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49) a1l = aT,
For example,

( cos Y -—sin y )'1 ( cos ¥ sin vy )
siny cosy "\ —siny cosy/

Following (46) we can write relation (49) as

(49a) aTa = e, aaT = e.

The second relation shows that in an orthogonal matrix the scalar
product of the jth row with the kthrow is O forj = kand 1 forj = k.
Thus in an orthogonal matrix the row vectors also form an orthonormal

system.

Exercises 2.2

. In each case describe the space through P spanned by the vectors Ag.
(@ P=(-1,2,1); Ai=(4,0,3)

® P=2 1, -4 Ai=(3,—-2,1), A2=(1,0,-1)

) P=(2,1,—4,2), A1=@,—-2,1,2), A2=(,0, -1, 2).

. Verify that Ei = (2/3, 2/3, — 1/3), Ez2 = (1/v2, —1/V2, 0), Es = (v2/6,
v2/6, 2v2/3) form an orthonormal base and obtain the representations
of the given vectors in terms of this base:

(@ A1=W2, V2, v2)
(®) Az=(3,—-3,3)
(©) A3=(1,0,0)

. Given linearly independent vectors Ai, Az, . . . , Am, construct mutual-
ly perpendicular unit vectors Ei, Ez, . . . , En with the property that
Exis a linear combination of A1, Az, . . ., Ay, fork=1,2,...,m.

. From the result of Exercise 3, prove the fundamental theorem of linear
dependence.
. What is the distance of the point P = (xo, o, 20) from the straight line
given by

x=at+b y=ct+d, z=et+/[?
(Hint: Find the foot of the perpendicular from P to the line.)
. Does the following system of equations have a nontrivial solution?
x+2y+32=0
2+ 3y+2z=0
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Ix+y+2z2=0

7. Find the representation of the vector (a1, az, as) with respect to the
base A1=(1,2,3), A2=1(2,3,1), Aa=(3, 1, 2).

8. Determine the matrix for changing from Cartesian coordinates for the
base Ei, E2, E3 to affine coordinates for the base Ai, Az, As given in
Exercise 7.

9. Prove that if the matrix a is singular, there exist vectors Y for which
Y = aX has no solution.

10. Obtain the products ab and ba for the matrices
1 20 -2 1 0
a=001,b=(01—2
210 1 0 1
11. Find conditions that the 2 X 2 matrix

( a b
c d

has a reciprocal and give that reciprocal if it exists.
12. Show that there is only one unit matrix.

13. Find the reciprocal of ab, if neither a nor b is singular.

14. Sometimes a singular n X n matrix is defined as a matrix that maps n-
dimensional space onto a space of lower dimension. Show that this
definition is equivalent to the one given here.

15. Interpret the matrices in (48) geometrically.

16. Prove that a is orthogonal if and only if aZ = a-1.

17. Show that the transpose of a product ab is the product bZaT of the
transposed matrices in reverse order.

18. Show that the product of orthogonal matrices is orthogonal.

19. Verify that mapping by an orthogonal matrix preserves scalar prod-
ucts; that is, if a is orthogonal, then (aX)+« (aY)=X .Y

20. Show that any length-preserving matrix is orthogonal.

21. Prove that an affine transformation transforms the center of mass of
a system of particles into the center of mass of the image particles.

2.3 Determinants

a. Determinants of Second and Third Order

Mathematical analysis includes the study of nonlinear mappings
in spaces of several dimensions. Such a study, however, has to be
preceded by one of the linear mappings Y = aX where X and Y are
vectors and a a matrix. In particular, it is of basic importance to
analyze the structure of the inverse of such a mapping or—what
amounts to the same thing—analyze the structure of the solutions of
a system of n linear equations



160 Introduction to Calculus and Analysis, Vol. 11

a11xX1 + 12Xz + ¢+ ¢ - + Q1a¥Xn = Y1

(50) a21X1 + Q22X2 + ¢« * * + GanXn = Y2

Ap1X1 + AGn2X2 + ¢ * * + AuaXn = Ya

for n unknown quantities x1, . . ., %a.

The process of solving n linear equations in n variables leads to
certain algebraic expressions called determinants, which have a great
number of terms. In the beginning, the explicit definition and the prop-
erties of determinants appear somewhat mystifying. The mystery
will disappear when we base the definition of determinant on one
single property, that of being a multilinear alternating form of n
vectors in n-dimensional space. From this conceptual approach all the
important properties of determinants can easily be derived. We shall
see in later chapters of this book that determinants are of the utmost
importance in extending differential and integral calculus to higher
dimensions.

It is instructive to write out the explicit solution of equations
(50) for the first few values of n. For n = 1 we have the single equation

a1x1 = yi
with the solution
Y1
0. X1 =,
(502) 1= an

For n = 2 we have the system

a11xX1 + a12X2 = y1
az1x1 + a22X2 = y2.

Multiplying the first equation by a3z, the second by a1z and sub-
tracting, we eliminate x; and find a single equation for x1; similarly,
multiplying the first equation by @21 and the second by @11 and sub-
tracting eliminates xi1. In this way we find for x1, x2 the expressions

(50b) xy = 2221 d12yz g = 21LY2 T G21Y1

T aua — aiza’ 11022 — Q12021

For n = 3 we have the system
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aixi + ai2xz + @i3xs = yi1
(50c) a21X1 + G22Xx2 + a23X3 = Y2

a31X1 + as2x2 + a33xsz = ys.

We can reduce this system to two equations for x1, x2, thus eliminat-
ing x3, by multiplying the second equation by ais/azs and subtracting
it from the first and by multiplying the third equation by ais/ass and
subtracting it from the from the first. The two resulting equations for
x1, x2 alone can then be solved as before. After some algebraic ma-
nipulation we find that

(50d)
___@22a33Y1 + @12a23y2 + a13a32y2 — @13Q22Y3 — A23G32Y1 — G12033Y2
Q11022033 + 012023031 + G13¢21A32 — A13G22A31 — @11G23032 — A12021333

with similar formulae for x2 and xs. For n = 4, the computations be-
come completely unwieldy and it is clear that only a systematic ap-
proach can bring order into the results.

We notice that in each case the solution x; takes the form of a
quotient, where the denominator is a function of the coefficients as
alone, that is, a function of the matrix a = (as;). For n = 1 this func-
tion is simply the coefficient a1 itself. For n = 2, the denominator

aiiaz22 — aizazi,
formed from the elements of the matrix
( air aiz )
a= ,
az1 az2
is called the determinant of the matrix a and written

ail ai2
(61a) a11a22 — ai12a21 = det(a) =

az1 Q22

It is clear that the numerators in (50b) also can be written as deter-
minants, giving rise to the expressions

‘ Y1 aiz ail Y1

2 @22 aiz 2
(51b) x, =12 @2 © o xp = a2 Y2 |

ail a2 a1 Q12

a1 a2 az Q22
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Of course, these formulae make sense only if the determinant in the
denominator does not have the value 0.

Formula (50d) suggests introducing as determinant of the third-
order matrix

ail aiz ais
a= az1 az2 Q23
as1 asz ass

the expression

(62a) Q1102233 + @12a23031 + A13A21Q32 — A13022a31
— 011023032 — 012021033
a1 a1z a13
= det(a) = | aa1 Qg as3
asi asz as3

The law of formation of such a third-order determinant can be ex-
pressed by theeasily remembered “‘diagonal rule” (Fig. 2.5a). We repeat
the first two columns after the third; form the product of each triad
of numbers in the diagonal lines, multiplying the products associated
with lines slanting downward to the right by +1 and to the left by
—1; and add. (This rule holds only for third-order determinants!).

With the help of third-order determinants we can write the solution
of the system (50c) in the more concise form

Y1 @12 Q13

Y2 Q22 @23

X1 =
a11 Q12 @13

az1 Q22 23

as1 asz ass

N\

| ¥3 asz ass

ail1 y1 ais a1 a12 y1
agz1 Y2 Qazs3 az1 az2 y2
as1 y3 ass as1 asz yss
Ty X2 = 24 y X3 = Y
ai ai12 a3 ai1 ai2 a13
az1 az2 az3 a1 @22 az3
as1 asz ass as1 a3z ass
aiy 12 a3 .a11 .a12
\ d R < ,//
azi 022 a3 a2 a2
7~ 7
7 Vd Va

dg @3 G3f ez 032

e
P yd \\\
s s //

/

\

Figure 2.5a
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By analogy we define the determinant of the first order matrix
a = (au)
on the basis of (50a) as
a1 = det(a).

We see then that in each of the cases n = 1,2,3 the solution (x1,

. ., xn) of the system (50) can be described as follows (“*Cramer’s
rule”): Each unknown x; is the quotient of two determinants. In the
denominator we have the determinant of the matrix a = (ajx),; in the
numerator we have the determinant of the matrix obtained by re-
placing the ith column of the matrix a by the quantities y1,y2, . . . ,¥n
appearing on the right-hand side of the equations.

b. Linear and Multilinear Forms of Veclors

In order to define determinants of higher order and to formulate
their principal properties, it is necessary to make use of some general
algebraic notions.

A function f(ai, . . ., as) of the n independent variablesay, . . .,ax
can be considered as a function of the vector A = (ay, . . ., ax) and writ-
ten in the form f(A). We call f a linear form in A, if

(53a) f(A + B) = f(A) + f(B)
for any two vectors A, B and
(53b) f(AA) = M(A)

for any vector A and any scalar A.
The two rules (53a, b) can be compressed into the single requirement
that

(54a) fOA + uB) = AM(A) + pf(B)

for any vectors A, B and scalars A, p. Written out in detail, the rule
(54a) becomes

(54b) fOuar + pby, . . ., Aan + pbn)
=M, . . .,an) + Wby, . . ., ba).

For example, the function
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f(A) = 3a2 — 27as

is a linear form, while

fA) =lAl=va?++ + « + ax?

is not.
Relation (54a) immediately implies the more general rule for linear
forms

(b4c) fO1AL + -« + hnAm) = Mf(A1) + «  + + Anf(Am)

valid for any m vectors Aj, . . .,Apandscalarsii, . . ., An.Thisrule
yields an explicit expression for the most general linear form in the
vector A. Using the coordinate vectors Ei, . . ., E», wehave by (2b)
the representation

A=(a,.. .,an)=a1E1+azEz+ « + v+ azE,
for the vector A. Hence, by (54c¢), f is of the form

(65a) f(A) = aif(E1) + aef(B2) + » + + + anf(En)
=cia1+ceaz + - * - + Cn@n

where the ¢; have the constant values

(55b) ci = f(Ey).
Combining the coefficients ¢; into the vector C = (ca, - . ., ca), we have
(55¢c) f(A)=C-A.

The most general linear form in a vector A is the scalar product of A
with a suitable constant vector C.

A function f(A, B) of two vectors A=(a1, . . ., as), B=(by, . . .,
by) is called a bilinear form in A, B if f is a linear form in A for fixed
B and a linear form in B for fixed A ; this means that we require that

(56a) f(AA + 1B, C) = M (A, C) + pf(B, C)
(56b) f(A,AB + 1C) = M(A, B) + uf(A, C)

for any vectors A, B, C and scalars A, p. The simplest example of a bi-
linear form is the scalar product
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f(A,B) = A - B.

In this example, the rules (56a, b) just reduce to the associative and
distributive laws (15b, c), p. 132 for scalar products.
We find more generally from (56a, b) that

(56c)  f(aA + BB, yC + SD) = of(A, YC + 3D) + Bf(B, yC + D)
= ayf(A, C) + adf(A, D) + Byf(B, C) + BSf(B, D).

Thus, we can operate with bilinear forms as with ordinary products in
“multiplying out” expressions. Using again the decomposition

A=(a1, e ,an)=a1E1+ ¢ o . +anEn
B=(by,...,b0)=b1E1+ « « + + b E,
for the vectors A, B, we arrive at the formula

f(A,B) = f(aiE1 + a:Ea + + « « + a,E,,
biE1 + 02Ez2 + « « « + bsEp)

= kz: asbif (By, Ex)

7.k=1

Hence, the most general bilinear form in A, B is given by
(572) fA, B) = ,kﬁjl crnasbe
i

with constant coeflicients
(57b) cik = f(Ey, Eg).

For B = A the bilinear form f goes over into the quadratic form
(57c) fA ) = 3 cnaam.

In a similar way one defines ¢rilinear forms f(A, B, C) in three
vectors A, B, C as functions that are linear forms in each vector
separately. One finds, exactly as before, that the most general trilinear
form is given by an expression

(582) f(A,B,C) = 5 curasbucr

Jokr=1
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where
(58b) Cikr = f (Ej, Ek Er).

More general multilinear forms f in any number m of vectors can be
defined in an obvious manner. It is only the matter of notation that
injects a new element, since we can no longer associate different
letters with different vectors. We denote the vectors by A1, Az, . . .,
Ay, and introduce their components a;z by

Al = ((111, a1, . . -, anl), A = (012, a2, . . ., anz), ey
Am = (alm, A2my « « « anm).

The function f is a multilinear form f(Ai, . . . ,An) inAy Az, . . .,
A, if it is a linear form in each vector when the others are held fixed.
We can also consider f as function of the matrix

a=(A1Az...,An) = (aw)

that has Aj, Ag, . . ., An as column vectors. In analogy to (58a) the
most general multilinear form in Aj, Az, . . ., Ap is given by

(592) flAs, Az .. Am) =23 ____iCnst t C m@nGn2t G
JL1ed2s 00 m
=1,..., n

wherel

(59b) Ciz* * 2 im =FEj, Epy .« o, Egp).

¢. Alternating Multilinear Forms. Definition of Determinants

The determinants of second and third order defined in formulae
(51a) and (52a) are special multilinear forms. The determinant of
second order in (51a) p.161 is a bilinear form of the two 2-dimensional
vectors

(60a) A = (a1, az21), Az = (a1, az2);

1The use of subscripts of subscripts in these formulae is somewhat cumbersome.
Herej1, j2, . . - ,jmstands for any combination of m numbers selected from the set of
numbers 1,2, . . ., n. Such a combination could also be considered as a function
j (k) whose domain is the set of numbers k = 1,2, . . . , m and whose range is in the
set of numbers j =1,2, . . ., n. Any one of these combinations or functions gives
rise to a term in the sum in formula (59a).



Vectors, Matrices, Linear Transformations 167

the determinant of third order in (52a) is a trilinear function of the
three 3-dimensional vectors

(60b) A1 = (a1, @21, a3s), As = (a12, aze, asz),
A3 = (a13, @23, ass).

(The linearity of determinants in each vector separately follows by
inspection from the fact that each product in the explicit expansion
contains exactly one factor with a given second subscript). The extra
feature that sets the determinants apart from other multilinear
forms, is their alternating character.

A function of several arguments (which could be vectors or scalars)
is called alternating if it just changes in sign, when we interchange
any two of the arguments. Examples of alternating functions of scalar
arguments are

(61a) #x,y) =y —x
(61b) #(x,,2) =(z — y)(z — ) (y — ).
A function f of two n-dimensional vectors Ai, A: is alternating if
f(A1, A2) = — f(Az, Ay)
for all A1, As. This implies in particular for A; = Az = A that
f(AA) =0.

Let n = 2 and f be an alternating function of the vectors Ai, A2
given by (60a), which is also a bilinear form. Then

f(Ey, E1) = f(Ee, E2) =0,  f(E2, E1) = — f(Ey, Eo).

It follows from (57a, b) that

(62a) f(A1, As) = f(a11E1 + a21E2, a12E1 + a2E»)
a a
= c(an@z2 — a12a21) = ¢ H R ¢ det(A;, Ay),
az1 Qaz2

where the constant ¢ has the value

(62b) ¢ = f(Ey, Es).
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Thus, every bilinear alternating form of two vectors Ai, Agz in two-
dimensional space differs from the determinant of the matrix with
columns A1, Az only by a constant factor c.

More generally, an alternating bilinear form of two vectors in n
dimensions can be written

f(A1, Ag) = g CikQj1a k2,

jk=1
where
Cjk = —Ckj, ¢y = 0.

Combining the terms with subscripts differing only by a permutation,
we can express f as a linear combination of second-order deter-
minants:

n
(62c) f(A1, Az) = > ci(anaxz — arase)
ey
n
=3 e a1 @r1 |
&3 ajz ax2

For an alternating function f of three vectors, we have the re-
lations

(633.) f(A; B9 C) = —f(Ba A: C) = —f(A! C9 B) = _f(C! B9 A)a
from which it follows that also
(63b) f(A,B,C) = f(B,C, A) = f(C, A, B).

In particular, f vanishes whenever two of its arguments are equal.
Let A1, Az, As be the three-dimensional vectors given by (60b). By
(58a, b) the general alternating trilinear form f in A1, Az, Asis

f(A1, Az, As) = Zs‘.= Cikr@j10k20r3

f.kr=1
Here, using (63a, b),
cir = f(Es, Ex, Er) = g (Ea, Ez, Es),

with egr = G, if two of the numbers j, k, r are equal and
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(64a) €123 = €231 = €312 =1, €213 = €132 = €321 = —1.

Using the fact that the function é(x, y, 2) in formula (61b) changes
sign whenever two of its arguments are interchanged, we find for

&5 the concise expression

(64b) enr = sgn ¢(j, k, T)
= sgn (r —k) (r — j) (k — j).

Comparison with the expression (52a), p. 162 for a third-order determi-
nant shows that

an are ais
(64c) f(A1, Az, A3) =c | an1 az2 aszs |,

asi asz ass3

where ¢ = f(E1, Ez, E3) is a constant. We have the same result as in
two dimensions: The most general trilinear alternating form in three
8-dimensional vectors Ai, Az, As differs from the determinant of the
matrix with columns A1, As, As, only by a constant factor c. Obviously,
then, the third-order determinant of the matrix with columns Aj, As,
As is that uniquely determined trilinear alternating form in the
vectors A1, Az, Az that has the value 1 when Ai, Az, Aszare respectively
equal to the coordinate vectors Ei, Ez, Es.1

It is clear now how we can define determinants of higher order.
Let a be the matrix

(65a) a=| " . . ,

anl An2 * = * Qan

with column vectors Ai, A, . .., A Let f be a multilinear alter-
nating form in Aj, . . ., Ax. Then f is given by (59a). Here the coef-
ficients cjj5 . . . 3, have the form

(65b) cigz -+« in = f(Ei, Egyy . . ., Egn).

They change sign, whenever we interchange any two of the numbers
J1, j2, - . ., jn. Denote by ¢(x1, . . ., xx) the product

1The last condition expresses that the unit matrix e has the determinant 1.
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(65¢) #(x1, x2, . . ., %Xn)
=(xn — Xn-1) (Xn — Xn-2) *+ » » (xn — x2) (xn — x1)

(Xn-1 — Xn-2) * * * (Xn-1 — x2) (Xn-1 — x1)

(x3 — x2) (x3 — x1)
(22 — x1)
=,| 1 | (e — ).
ek

Itis easily seen that ¢ is an alternating function of the scalars x1, . .
xn, that vanishes only when two of those scalars are equal. Then,

*

(65d) €i1iz - - - in = SENG(J1, j2, . . . ,Jn)

is an alternating function of ji, . . ., ja, which only assumes the
values +1, 0, —1.For j1, . . ., jn restricted to the values 1, 2, . . ., n,
we have €7, . . . 5, = 0, unless the numbersji, . . ., ja are distinct,
that is, unless they form a permutation of the numbers 1, 2, . . ., n.
One calls j1, . . ., jn aneven permutationof 1,2, . . ., nif ey . . . 1,
= +1 and an odd permutation if €;,j,. . .;,= —1. An even permutation
can be rearranged in the order 1, 2, . . ., n by an even number of
interchanges of two elements, an odd permutation by an odd number
of such interchanges.
Obviously, by (65b),

(65e) Citsg + - - tn = Ejriz - - - in f(EL, . . . Ea).

We define the determinant of the matrix a in (65a) as

a1 iz * * ° Qin
(66a) det(a) = | @21 Q22 ° ° *  Q2n
Anl an2 Ann
n
= E - €fyd2 « + « in @j11Q422 . . . Qjpn.
110 oo fy=]

We have then the result: The most general multilinear alternating
form f in n n-dimensional vectors Ai, . . ., A, differs from the deter-
minant of the matrix with columns A, . . ., A, only by the constant
factorc = f (E1, . . ., En).
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d. Principal Properiies of Delerminanis

Formula (66a) gives the explicit expansion of an nth-order deter-
minant in terms of its n? elements aj. Counting only the terms with
nonvanishing coefficients 55 . . . jn, the determinant is an nth-degree
form in the ajx consisting of n! terms. Each term (aside from the
coefficient &5, . . . 7, = + 1) is a product of n of the elements, one from
each column and from each row. In principle, the expansion formula
makes it possible to compute a determinant for any given values of
the elements. In practice, the formula has too many terms to keep
track of (120 in the case of fifth-order determinants; 3,628,800 in the
case of tenth-order determinants) to be useful for numerical com-
putations, and more efficient ways of evaluating determinants have
been devised.

The basic properties of determinants already are incorporated in
our definition as alternating multilinear forms of n vectors Ai, As,
. . ., Ay in n-dimensional space. If a is the matrix with these vectors
as column vectors, we write

det(a) = det(Ay, . . ., An).

It follows immediately that the determinant of the square matrix a
changes sign if we interchange any two columns of a; in particular,
the determinant of a matrix a with two identical columns vanishes.
Using the linearity of the determinant in each of its column vectors
separately, we find that multiplying one column of the matrix a by a
factor A has the effect of multiplying the determinant of a by A.1 For
example,

(67a) det(AA1, Az, . . ., Ay) = Adet(As, As, . . ., Ap).
In particular, we find for A = 0 and A; arbitrary that

(67b) det(0, Az, . . ., As) = 0.

The same considerations apply, of course, to any other column, and
we find that the determinant of a matrix a vanishes if any column of a
is the zero vector. From the multilinearity of determinants, we con-
clude more generally that

1Multiplying all elements of the nth order matrix a by the factor A is equivalent to
multiplying each of its n columns by A and, hence, results in multiplying the deter-
minant of a by A% Thus, det (Aa) = A" det (a).
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(67c) det(A1 + LAz Az, . . ., Ag)
= det(A1, Az, . . ., As) + Adet(Asz, Az, . . ., Ayp)
= det(A1, As, . . ., Ay),
since the matrix (Az, Az, . . ., Ay) has two identical columns. General-

ly, the value of the determinant of the matrix a does not change if we
add a multiple of one column of a to a different column.!

Of fundamental importance is the multiplication law for deter-
minants:

The determinant of the product of two nth-order matrices a and b
is the product of their determinants:

(68a) det(ab) = det(a) « det(b).
Written out by elements, the rule takes the form
a1 iz ¢+ +  Qa b biz + + ¢ bin
az1 az + -+ + Qo ba1 bz ¢+« ¢ boa
(68b) . . . X - . .
anl an2 L Ann bn1 baz L ban
C11 C12 L Cin
c21 C22 - Con
Cnl Cn2 ¢+ ¢ Can
where

n
(68¢c) cik = anbie + ajebox + ¢ ¢ ¢ + ambax = Zlajrbrk.
=

This law is a simple consequence of our definition of determinants.
Let ¢ = ab be the product matrix. We hold the matrix a fixed and
consider the determinant of ¢ in its dependence on b. By (68c) the
kth-column vector of the matrix ¢

Cr = (c1x, Coky - - - 5 Cnk)
has elements c; which are linear forms in the kth-column vector B

10bviously multiplying a column by the factor A and adding it to the same column
changes the value of the determinant by the factor 1 + A.
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of the matrix b. It follows that det (¢) is a linear form in the vector By
when the other columns of b are held fixed. It is also clear that inter-
changing two columns of b corresponds exactly to interchanging the
corresponding columns of c. Hence, det(c) is an alternating multi-
linear form in the column vectors of the matrix b. Consequently
(see p. 170),

det(c) = v det(b),
where 7 is the value of det (¢) for the case where
Bi=E;,Bo=E;, ...,B,=E,

or where b is the unit matrix e. Now, if b = e, then obviously ¢ =
ab = ae = a, and consequently y = det (a). This proves (68a).

On p. 157 we defined the transpose aT of the matrix a as the matrix
obtained from a by interchanging rows and columns. We have the
surprising fact that a square matrix and its transpose have the same
determinant:

(68d) det(aZ) = det(a)

or
a1 azr ¢+ c an1 ai aiz - - - Q1n
aiz 227 Qn2 a1 227 Qazn

(688) 0 - - = . . .
ain azn  * ¢ * Qan an1 an2 °* * * Ann

For n = 2,3 one easily verifies this identity from the explicit ex-
pressions (51a), (52a), pp. 161-2. We only indicate the proof for general
n, which can be based on the expansion formula (66a) for det (a). In
each term of the sum with nonvanishing coefficient, we can rearrange
the factors according to the first subscripts, so that

ajllaj22 o e . ajnn = alkla2k2 - e . ankn,

where ki, ke, . . ., ks form again a permutation of the numbers 1, 2,
. ., n.! One easily shows that

1Looking at ji, je, - - . ,Jn» as a function mapping the set 1,2, . . ., n onto itself, we
have in ki, k2, . . . ., ks just the inverse function; that is, the equation jr = s is

equivalent to ks = r.
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E1f2 « - - dn = Ekikg - - - kn

(this is left as an exercise for the reader). Hence,

n
det(a) = X - Ek1kg - - - knOlk Q2kg - - - Qnk, = det(a”).
 CERRTY. 77

An immediate consequence of formula (68d) is that a determinant can
be considered as an alternating multilinear function of its row vectors.
In particular a determinant changes sign if we interchange any two
rows.

The multiplication rule (68a) states that the product of the determi-
nants of two square matrices a, b is equal to the determinant of the
matrix ab whose elements are the scalar products of the row vectors of
a with the column vectors of b. We use now that the determinant of a
matrix a is equal to the determinant of its transpose aT, which is ob-
tained by interchanging rows and columns of a. It follows then that

det(a) - det(b) = det(aT) + det(b) = det(aTh).
Hence, the product of the determinants of the matrices a and b is also
equal to the determinant of the matrix aTbh, obtained by forming the
scalar products of the columns of a with the columns of b. If

a=(Ay ..., Ap and b=(B,. .., B,

we obtain the identity

(68f) det(A1, ..., Ap) - det(By, ..., By
A;-B1 A;-B: .. .A1-B,
A2-B1 A:+B: . . .As-B,
An'Bl An‘Bz - .An'Bn

A simple application of these rules to orthogonal matrices a, for
which [see formula (49), p. 158] a—! = aT or aTa = e, yields

det(aZTa) = det(aT) - det(a) = [det(a)]? = det(e) = 1.
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Consequently, the determinant of an orthogonal matrix can only have
the values +1 or —1. The geometric interpretation of this result will
be given on p. 202.

e. Application of Determinants to Systems of Linear Equations

Determinants provide a convenient tool for deciding when n
vectors Ai, Ag, ..., A, in n-dimensional space are dependent or,
equivalently, when the square matrix a with columns Ay, . . ., A,
1s singular.

The necessary and sufficient condition for a square matrix to be singular
is that its determinant vanishes.

Let indeed a be singular. Then the column vectors A1, As, . . ., Ay
are dependent. Thus, one of the column vectors, say Ai, is dependent
on the others:

Al = Az + A3A3 + ¢« ¢+ + AzAj.

It follows from the multilinearity of determinants that

det(a) = det(heAz + A3A3 « « « + ApAg, Az, Az, . . ., Ap)
= Aedet(Az, Az, As, . . ., Ay) + Az det(As, Az, As, Ay),
L . det(An, A2, A3, . e ey An)
=0,

since each of the matrices has a repeated column.!
Conversely, if a is nonsingular, there exists (see p. 155) a reciprocal
b=a7lof a:

ab=e,

where e is the unit matrix. By the multiplication rule for deter-
minants, it follows that

det(a) - det(b) = det(e) =1

and, hence, that det (a) = 0. This proves that a is singular if and only
if det(a) = 0.
We consider now the system of linear equations

IMore generally, this argument shows that an alternating multilinear form in m
vectors in n-dimensional space vanishes identically for m > n, since then the vectors
are necessarily dependent.
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a1nx1 + aieXe + ¢+ ¢+ + QupXn = Y1

(692) azx1 + ag2xz + ¢+ + Q2Xn = Y2

® & & & 8 e s e 3 8 e s e s s s e

Ar1X1 + Qn2X2 + = ¢ ¢ + QuaXn = Yn

corresponding to the matrix a. Following the discussion on p. 150 we
have to distinguish the two cases (1) det (a) 0 and (2) det (a) = 0.
In case (1) equations (69a) have a unique solution for every yi, . . .,
yn. In case (2) there does not always exist a solution, and it is never
unique. We now have not only an explicit test to distinguish between
the two cases with the help of determinants but also shall find the
means to calculate the solution in case (1). Introducing the vector

Y = (yly yZ’ b yn),
we can write the system (69a) in the form
(69b) X1A1 + XAz + ¢+« + XA =Y,

where the Ay are the column vectors of the matrix a. Then,

det(Y, Ag, As, . . ., Ap)

= det(x1A1 + x2A2 + + » « + xnAn, A2, A3, . . ., Ap)

= x1 det(A1, A2, As, . . ., An) + x2det(Az, Az, Az, . . ., Ay)
+ x3 det(As, Az, Az, . . .,Ap)+ -+
+ xn det(An, Az Az, . . ., Ap)

= x1 det(A1, Az, . . ., An)

and similarly,
det(A1, Y, A, . . ., Ap) = x2 det(Ay, Ao, ..., Ay)

and so on. If the matrix a is nonsingular, we can divide by its deter-
minant and obtain the solution xi, x2, . . ., x» expressed by deter-
minants:

_det(Y, A, .. ., An) _det(ALY, ..., As)
*1 = det(AL As, . . ., An) 2= det(Ay, Ay, . . ., An)

_ det(ApAs, . . ., Y)
© ¥ = Get(ALAs, . . ., An)
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This is Cramer’s rule for the solution of n linear equations in n un-
known quantities.

Exercises 2.3

1. Evaluate the following determinants:

3 45 1 11
(8|4 5 6 |2 3 4
5 6 17 3—-1 7
111 1 x «3
b1 2 4 @|1 y »
139 1 z 28

. Find the relation that must exist between a, b, ¢ in order that the system
of equations

3x+4y+5z2=a
4x + 5y + 62=0>
5x+6y+T7z=c

may have a solution.
. (a) Verify that the determinant of the unit matrix is 1.
(b) Show that if a is nonsingular, then det (a—!) = 1/det (a).

. Obtain the values of
(a) esa, (b) e2143, (c) eso3, (d) es4321
. Show that the determinant

a b
d e
g h k

[+

~

can always be reduced to the form

0
0

Y

S O R
S ™ O

merely by repeated application of the following processes: (1) inter-
changing two rows or two columns, and (2) adding a multiple of one
row (or column) to another row (or column).

. A matrix is diagonal if a;; = 0 whenever i # j. Show that the determi-
nant of the n X n diagonal matrix (a:) is the product @11 a2z . . . ann.
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7. The matrix (ay) is upper-triangular if a;s = 0 whenever j < i. Show that

det(aij) = anazz * * * ann.

8. Evaluate
(a) 1 x x2
1y
1 z 22
(b) 1! 2! 3!
2! 3! 4!
3! 4! 5!
(c) 1! 21 3! 4!
2! 3! 4! 5!
3! 4! 5! 6!
4! 5! 6! T!

9. Solve the equations
2x — 3y +4z=4
4x — 9y + 162 =10
8x — 2Ty + 64z = 34.
10. Prove the identity
(@? + b?) (c® + d?) = (ac + bd)? + (bc — ad)?

by forming the product of the determinants

a b c d
and
—b a —d ¢
11. If A = x% + y2 + 22, B = xy + yz + 2x, show that
B A B
D=|B B A |=(x®+y+ 2% — 3xy2)2
A B B

12. Show that
ti+x a+x a+x a+x
b+x t24+x a+x at+x
b+x b+x ta+x atx
b+x b+x b+x ltatx

is of the form A -+ Bx, where A and B are independent of x. By giving
particular values to x, prove that



13.

14.

15.

16.

17.

18.
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__af(b) — bf(a) B () —f(a)
- a—b -

A b—a

?

where
fO =@ —1t)@t2—1) (s —t) (ta—2).
Prove that any bilinear form fin A and B may be written
A+(B)=(cTA)-B
Prove that in a nonsingular affine transformation the image of a quadric
ax?+by?+cz2+dxytexz+fyz+gx+hy+iz+j=0
is another quadric.
If the three determinants
b1 b2

C1 C2

air a2
b1 b

do not all vanish, then the necessary and sufficient condition for the
existence of a solution of the three equations

a az

’

C1 C2

aix + azy =d
bix + bey=e
cax+cy=f
is
a1 az d
D=|b b2 e|=0.
Ci1 C2 f

State the condition that the two straight lines x = ait + b1, y = ast
+ bs, z=ast + bs and x = cit + d1,y = cat + d2, 2 = c3t + ds
either intersect or are parallel.

Prove (68d) by verifying that it does not matter whether the factors in
each term of the expansion (66a) are ordered by their first or second
subscripts, namely, with

Qj11 Qjg2 * * * Qjpn = QAlky A2kg * * * Anky,
that
€j14g + + -in = Ekikg - . - kn.
Prove that the affine transformation
x’' =ax + by + cz
y=dx+ey+fz
2Z2=gx+ hy+ kz

leaves at least one direction unaltered.
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2.4 Geometrical Interpretation of Determinants

a. Vector Products and Volumes of Parallelepipeds in Three-
Dimensional Space

In Volume I (p. 388) we defined the “‘cross product” of two vectors
A = (@1, a2) and B = (b1, b2) in the plane as the scalar

(70a) A x B = aib: — asb1.

Here |A x B| represents twice the area of the triangle with vertices

Po, Py, P;, where A = PoPy, B = PoPs. We call |A x B| the area of
the parallelogram spanned by the vectors A, B, that is, of the paral-
lelogram with successive vertices Py, Pi, @, P:. The sign of A x B
determines the orientation of the parallelogram.! In determinant no-
tation the cross product takes the form

a1 b

(70b) AxB= = det(A, B).

~az b

Thus, |det(A, B)| can be interpreted geometrically as the area of the
parallelogram spanned by the vectors A, B. Analogous interpretations
will be found for higher-order determinants.
For three vectors A = (a1, az, as), B = (b1, bs, bs), C = (c1, c2, c3)
in three-dimensional space, it is natural to form the determinant
a1 b a
det(A,B,C)=| a2 bz c2

a3 bs c3
Written out as a linear form in the vector C we have, by (52a),
(71a) det(A,B,C) = (az2b3—asbz)c1+ (asb1—ai1bs)ca+ (a1b2 —azbi)cs
=Z-C,

where Z = (21, 22, z3) is the vector with components

az b
(71b) 21 = asbs — asbs =

t]

az b3

1We have A x B > 0 if the sense (counterclockwise or clockwise) in which the
vertices follow each other is the same as that for the “coordinate square” with
successive vertices (0, 0), (1, 0), (1, 1,), (0, 1).
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a3 bs
22 = agb1 — a1b3 = ,
a b
a b
z3 = a1bz — azb1 = .
az b

We call the vector Z the ‘‘vector product,” or “cross product,” of the
vectors A, B and write Z = A x B.! Then, by definition,

(71c) det(A,B,C) = (A x B) - C.

Because of this formula the scalar det (A, B, C) is sometimes referred
to as the triple vector product of A, B, C.

The components z; of the vector Z = A x B are themselves second-
order determinants and, hence, are bilinear alternating forms of
the vectors A, B. This leads immediately to the laws for vector
multiplication:

(72a) (MA) x B = A x (\B) = A(A x B);
(72b) (A +A")x B=A’x B+ A" x B;

Ax(B +B)=AxB +AxB
(72¢) AxB=-BxA

Relation (72¢) could be called the ‘“‘anticommutative’ law of multi-
plication. It has the important consequence that

(72d) A X A =0 for all vectors A.

More generally, the vector product of two vectors A, B vanishes if
and only if A and B are dependent. For by (71c) the relation A x B
= 0 is equivalent to

det(A, B, C) = 0 for all vectors C,

or to the fact (see p. 175) that A, B, C are dependent for all C. Now we
can always find a vector C that is independent of A and B (see p. 139)
Then the dependence of A, B, C implies that A and B are dependent.

1The vector product of two vectors in three-dimensions is again a vector, in contrast
to cross products of vectors in two dimensions and scalar products in any number of
dimensions, which are scalars.
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The vector product A x B is perpendicular to both of the vectors
A and B, since by (71c¢),

(72¢) (A x B) + A = det(A, B, A) = 0, (A x B) - B = det(A, B, B) = 0.

Hence, for A = PoP: and B = PoP;independent, the direction of A x B
is one of the two directions perpendicular to any plane PoP:iP»
spanned by A and B. The length of the vector A x B also has a simple
geometric interpretation. We have, by (71b),
(72f) |A x B|2 = (a2bs — 3b2)? + (asb1 — a1b3)? + (@1b2 — a2b1)?

= (@12 + @22 + a3z?) (b12+ b2? + bs?)

— (a1b1 + azb2 + azbs)?
= |AI?|B|2 - (A - B 1

Using the fact [formula (14), p. 131] that
A.B=|A||B]cosy,

where ¥ is the angle between the directions of A and B, we find from
(72f) that

|A x B| = V]AR|B2 — JAR|B2 cos?2y = |A|B|siny

For A = 133—13\1, B = ITP; we have in |B|sin v (where v is assigned
a value between 0 and =) the distance of the point P; from the line
PoP: (Fig. 2.6). Hence (exactly as in two dimensions), the quantity
|A x B]| gives the area of the parallelogram with vertices Po, P1, @, P2
“spanned” by the vectors A, B or twice the area of the triangle with
vertices Po, Pi1, Po.

The individual components of the product A x B = (21, 22, 23) also
can be interpreted geometrically. For example, the expression

23 = a1b2 — az2b1
is just the cross product of the two-dimensional vectors (a1, az) and

1This identity incidentally yields an immediate proof of the Cauchy-Schwarz in-
equality

|A-B|=|A]| |B|
(see p. 132). It also supplies the additional piece of information that the equality sign
holds if and only if the vectors A and B are dependent.
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Figure 2.6 Area |A x B| of parallelo-
gram spanned by two vectors A, B.

Figure 2.7 Components of vector product A X B =
(21, 22, z3) interpreted as projected areas.

(b1, b2) [see (70a)]. If Po has the coordinates &1, &2, £3, we have in |z3]
the area of the parallelogram in the xi1, x2-plane with vertices (€1, £2),
1+ a1, &2 + @2), (€1 + a1 + by, &2 + az + b2), (E1 + b1, E2 + b2). This
parallelogram is just the projection onto the x1, x2-plane of the paral-
lelogram with vertices Py, P1, @, Ps, spanned in space by the vectors
A, B (see Fig. 2.7). If A x B has the direction cosines cos Bi, cos Ps,
cos B3, we have [see (9), p. 129]

lz3| = |A x B||cos Bs|
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Thus | cos P3| gives the ratio of the area of the parallelogram spanned
by A and B to the area of its projection on the x1, x2-plane. Here B3
1s the angle between the normal of the plane through Py, P1, P> and the
xz-axis. This is, of course, the same angle as that between the plane
containing the parallelogram spanned by A and B and the x3, x2-plane.!

If A = PyP1 and B = PyP; are independent vectors, we have A x B

= Po_R\, where the point R lies on the line through Py perpendicular
to the plane PoP1P; and at a distance from Py equal to twice the area
of the triangle PoP1P;. This fixes R almost uniquely. There are only
two points with these properties, lying on opposite sides of the plane.

Which of these points is the end point R of the vector A x B = IW?T
can be decided by the following ‘“‘continuity” argument. The vector
product A x B depends continuously on the vectors A, B since its
components are bilinear functions of those of A, B. Then the direction
of A x B also depends continuously on A and B, aslongas A x B =
0, that is, as long as A and B are prevented from becoming 0 or paral-
lel. We can always change the two vectors A and B continuously
in such a way that A and B are never 0 or parallel until finally
A coincides with the coordinate vector E; = (1,0,0) and B with
the vector E; = (0,1,0). This amounts to deforming the triangle
PyP1P; continuously and without degeneracy, so that Py goes into
the origin and Pi, P: come to lie respectively on the positive x;-
and xq-axis at the distance 1 from the origin. In the process, the point
R on the line through Py perpendicular to the plane PoP:1P: never
crosses that plane. Now, by (71b),

E1 x E2 =(0,0,1) = E3

In a “right-handed” coordinate system, the kind we usually employ,
the direction of Ej is fixed unambiguously as normal to E; and Ezin
such a way that the 90° rotation about the xs-axis that takes E; into
E: appears counterclockwise fromthe point (0,0, 1). Then, generally, if

our coordinate system is right-handed, the direction of A x B = PoR
is such that the rotation about the line PoR of the vector A = PoP:

into the vector B = PoP: by an angle ¥ between 0 and © appears coun-
terclockwise when viewed from R (see Fig. 2.8). Similarly, in a left-
handed coordinate system the 90° rotation from E; into E2 appears

1Tn general, the area of the projection of a plane figure onto a second plane equals the
product of the area of the original figure with the cosine of the angle between the
two planes, as will become clear when we discuss transformations of integrals.
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Eg

E 1 90°

Figure 2.8 Vector product A X B in
right-handed coordinate system.

clockwise from (0, 0, 1), and so also does then the rotation from A into

B appear from the end point R of A x B = PoR.
Generally, an ordered triple of three independent vectors A, B, C

. . . _—— e
defines a certain sense or orientation.If A = PoP1, B = PoPs,andC =

m, we can rotate the direction of A into that of B by an angle be-
tween 0 and = in the plane PoP1P:. The sense of the triple A, B, C by
definition is the sense (counterclockwise or clockwise) that rotation
appears to have, when viewed from that side of the plane to which C
points.! The triple B, A, C has the opposite orientation. The orientation
of the triple A,B, A x B is always the same as that of the coordinate
vectors Ei, Eq, Es.

We call the triple A, B, C oriented positively with respect to the xi,
x2, x3-coordinate system if it has the same orientation as the triple of
vectors E1, E2, E3, and oriented negatively if it has the opposite orien-
tation. For the triple A, B, C to be oriented positively with respect to the
x1,x2x3,-coordinales it is necessary and sufficient that

1The same type of orientation determines the difference between left-handed and
right-handed screws. The motion of a screw consists of a combination of translatory
motion along an axis and rotation about that axis. The distinction between the two
types of screws is defined by the sense of the rotation, clockwise or counterclockwise,
when viewed from that direction of the axis in which the translation proceeds.
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(73) det(A,B,C) >0

For let A = PoPi, B = PoPy, C = PoPs. Relation (73) means that
(A x B)- C> 0,

that is, that the directions of the vectors A x B and C form an acute
angle. Since A x B is normal to the plane PoP1P;, thisimplies that the

vector ITP% points to the same side of the plane as the vector A x B.
Hence, A, B, C and A, B, A x B have the same orientation, which is
that of E;, E2, Es.

The three independent vectors A, B, C when given the same initial
point Py “span” a certain parallelepiped, namely, the one that has the
end points Py, P, Ps of A, B, C as vertices adjacent to the vertex Py.
We call the parallelepiped oriented positively or negatively with re-
spect to the xi, x2, x3-coordinate system according to the orientation
of the triple A, B, C. An interchange of any two of the vectors A, B, C
reverses the orientation for the parallelepiped spanned by the vec-
tors.!

Let 0 be the angle formed by the direction of the vectors C and A x B.
By (71¢),

(74a) det(A,B,C) = |A x B||C| cos 6

Figure 2.9 Volume V = |A X B|h of parallelepiped.

1The orientation of the parallelepiped can be visualized as an orientation ascribed to
each face of the parallelepiped (i.e., as a sense assigned to the boundary polygon of
the face) such that a common edge of two neighboring faces is assigned opposite
senses in the orientation of the two faces. The orientation of all faces is determined
uniquely if for a single face the sense of one edge is prescribed. For the orientation
of the parallelepiped spanned by A, B, C, the sense of the edge PoP: in the face

—— N . .
spanned by the vectors PoP: and PoP; is that of proceding from Py to P; (see Fig. 2.9).
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Since A x B is perpendicular to the plane PoP1P;:, the angle between
the line PoPs3 and the plane PoP1P: is 4n — 6. Thus,

sin5 — 0) '

is the distance of the point Ps from the plane PoP1P», that is the al-
titude of the parallelepiped from Ps. Since the volume V of the paral-
lelepiped is equal to the area |A x B| of one face multiplied with the
corresponding altitude A, it follows from (74a, b) that

(74b) h = |C||cos 8] = |C]

(T4c) V=|Ax B|h = |det(A,B,C)|.

In words, the volume of a parallelepiped spanned by three vectors A,
B, C is the absolute value of the determinant of the matrix with columns
A, B, C. Thus, the value of det(A, B, C) determines both the volume
and the orientation of the parallelepiped spanned by A, B, C. We
express this fact by the formula

(74) det(A,B,C) = &V,

where V is the volume of the parallelepiped spanned by the vectors
A, B, C and € = +1 if the parallelepiped is oriented positively with
respect to x1,xsx3,-coordinates and € = —1 if oriented negatively.

b. Expansion of a Determinant with Respect to a Column. Vector
Products in Higher Dimensions

Only in three dimensions can we define a product A x B of two vec-
tors A, B that again is a vector.! The closest analogue in n-dimensions
would be a “vector product” of n — 1 vectors. Taking n vectors,

A1=(a11, .. .,anl), .. .,Anz(aln, .. .,ann)

in n-dimensional space, we can form the determinant of the matrix
(A1, . . ., Ay) with those vectors as columns. The determinant of this
matrix is a linear form in the last vector A, and can be written as a
scalar product

(75) det(A1, . . ., Az) =zia1 + 2202+ + » + + 2nan = Z + Ay,

1In higher dimensions we cannot associate with two vectors A, B a third vector
C outside the plane spanned by A, B in a geometric fashion, that is, by a construction
that determines C uniquely and does not change under rigid motions.
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where the vector Z = (21, . . ., 2») depends only on the n — 1 vectors
A1, As, . . ., An_1.Obviously, Zis linear in each of the vectors Ay, . . .,
A,_1 separately and is alternating. We can call Z the vector product
of Aj, ..., As1 and denote it by

(76) Z=A1x Az X« X Apu1.
It is clear from (75) that
Z-Ai=Z-Ay=...=2Z-A,41=0;

we see that the vector product of n — 1 vectors is orthogonal to each
of the vectors, as in three dimensions. The length of the vector product
Z also can be interpreted geometrically as volume of the oriented
(n — 1)-dimensional parallelepiped spanned by the vectors Aj, . . .,
A,_1, as we shall see later.

Just as in three dimensions, the components of Z can be written
as determinants in analogy to formulae (71b). We first derive such
a determinant expression for the component z, of Z. By (75),

2n — Z . En = det(Al, e ey An—l, En),
where
E.=00,...,01)

is the n-th coordinate vector. Taking A, = E, in the general ex-
pansion formula (66a) p.170 for determinants amounts to replacing the
last factor aj,» in each term by 1 for j» = n and by 0 for j» = n. For
Jn = n the coefficient €;; . . . j,_y5, vanishes, unless ji, . . ., ja-1
constitute a permutation of the numbers 1, 2, . . ., n — 1. In that
case, the coefficient (65¢, d) reduces to

€1 -+ - dn—tin =1+ « - fn—1n = 8GN P (J1, . . ., J-1, n)
=sgn(m—jn-1)* « +(n—=Jj)e0L .. .,ju1)
=s8gn @ (j1, - - -, Jjn-1) = &y - - . jny

It follows from (66a) that

n—1
—_—
(77a) Zn = Z____l. €j1° * *in-1@j1l Qje2 = * ¢ Qjy-in-1
J1sees In—-1=
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aii aiz2 .. .41 n-1
a1 a2 ... @2 n-1
An-11QGn-12 . . .Qn-1 n-1

We see that 2z, is equal to the determinant of the matrix obtained
from the matrix (A, . . ., Az) by omitting the last row and column.
Generally, one defines a minor of a matrix a as the determinant of
a square matrix obtained from a by omitting some of the rows and
columns, whilé preserving the relative positions of the remaining
elements. The minor complementary to an element a;z of a square
matrix a is the one obtained by omitting from a the row and column
containing the element ajx. Thus z» is equal to the minor comple-
mentary 10 ann.

The other components of the vector Z have similar representations.
We have, for example, by (75),

Zn-1 = det(Al, .« ey An_l, En_l).

To evaluate this determinant, we interchange the last two rows (see
p. 174) which changes the sign of the determinant. The last column
Ex_1 then goes over into E», and we find from our previous result that
—2n-1 18 equal to the determinant obtained by omitting the last row
and column of the new matrix or, equivalently, is equal to the minor
complementary to the element a1 » in the original matrix. Similarly,
one finds that +2; foreachi =1, . . ., nis equal to the minor com-
plementary to the element a:s, where the positive sign applies for
n — i even, the negative one for n — i odd.

Formula (75) thus constitutes an expansion of an nth-order deter-
minant in terms of (n — 1)-order determinants, the minors com-
plementary to the elements in the last column. For example, for
n =4 we have the formula

a1l a1z Q13 Gia
b az @22 Q23 Qa2
(77 ) az1 a32 Q33 asg
a41 Q42 Q43 Qa4

az1 G22 Q23 a1l a2 a3

= —Q14| 31 Qa32 (33 | + A24 | @31 Q32 Q33

a41 Q42 @43 Q41 Q42 Qa3
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a1l Qa2 ais a1l Q12 ais
—a31| @21 Q22 Q23| + @44 | Q21 Q@22 Q23

a41 Q42 Q43 aslr az2 ass

Interchanging columns, we can derive similar formulae for ex-
panding a determinant in terms of the minors complementary to
the elements of any given column. Expansions of this type play a role
in many proofs that involve induction over the dimension of the space,
as we shall see in the next sections.

¢. Areas of Parallelograms and Volumes of Parallelepipeds in Higher
Dimensions

Surfaces in space can be built up from infinitesimal parallelo-
grams. Thus, formulae for areas of curved surfaces and for integrals
over surfaces require knowledge of an expression for the area of a
parallelogram in space. Similarly, formulae for volumes or volume
integrals over curved manifolds have to be based on expressions for
volumes of parallelepipeds in higher dimensions. Such expressions are
easily derived in greatest generality with the help of determinants.

The basic quantity associated with vectors is the scalar product
of two vectors

A=(a,...,an) and B=(by,...,bn),
which in any Cartesian coordinate system is given by
A-B=aib1+ + ¢« + anba.

While the individual components a; and bx of A and B depend on the
special Cartesian coordinate system used, the scalar product has an
independent geometric meaning:

A.B=|A||B|cosy,

where |A|, |B| are the lengths of the vectors A and B, and vy the
angle between them. If follows that any quantity that can be express-
ed in terms of scalar products has an invariant geometric meaning
and does not depend on the special Cartesian coordinate system
used.

The simplest quantity expressible in terms of scalar products is the
distance of two points Py, P1 which is the length of the vector A =

— . 3 .
PyP,. The square of that distance is given by
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(78a) |A]2=A-A,
With two vectors A, B in n-dimensional space, we can associate the

area of a parallelogram spanned by the two vectors if we give them a

common 1initial point Py. Let A = _}Tﬁl and B = 1_3?\2. The vectors
then span a parallelogram Py, P1, @, P that has P1 and P; as vertices
adjacent to the vertex Py. By elementary geometry the area a of the
parallelogram is equal to the product of adjacent sides multiplied by
the sine of the included angle y:

a=|A||B] siny
= J|AP|BP—|AP|BP cos®
= V|AP|BPF—(A - B)?

as we found already on p. 182 for the special case n = 3. We can write
this formula for the area o more elegantly in the form of a deter-
minant for the square of a:

A-A A-B|

78b 2=(A-A)B-B)—(A-B)YB:A)=
(18b) o= (A-A)XB-B)-(A-BB-A)= L . Lo
The determinant that appears here on the right-hand side is called
the Gram determinant of the vectors A, B and denoted by I'(A, B).
It is clear from the derivation that

I'A,B) =20

for all vectors A, B and that equality holds only if A and B are
dependent.!

We can derive a similar expression for the square of the volume V
of a parallelepiped spanned by three vectors A, B, C in n-dimensional
space. We represent the vectors in the form

A=PP, B=DPP, C=DPP;

and consider the parallelepiped that has Pi, P;, Ps as vertices ad-
jacent to the vertex Po. Its volume V can be defined as the product
of the area a of one of its faces multiplied by the corresponding
altitude A. Choosing for o the area of the parallelogram spanned

1That is, if either one of the vectors vanishes (JA] or | B| = 0) or if they are parallel
(sin vy = 0).
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by the vectors A and B, we have to take for h the distance of the
point Ps from the plane through Py, P1, Ps. Thus,
A-A A-B

V2 = h%a2 = h?'(A,B) = h? .
B-A B-B

We interpret h to stand for the “‘perpendicular” distance of Ps from

the plane Py P1 Ps, that is, the length of that vector D = PP3 which
is perpendicular to the plane and has its initial point P in the plane.

For a point P in the plane PoP1P:the vector PoP must be dependent on,
A = PyP: and B = PyP; (see p. 144):

PoP = AA + uB.

Hence, the vector D has the form

D = PP; = PoP; — PoP=C — A — 1B

with suitable constants A,p. If D is to be perpendicular to the plane
spanned by A and B, we must have

(79a) A-D=0, B.-D=0.
This leads to a system of linear equations for determining A and p:
(79p) A.-C=1A-A+ pA-.B, B-C=AB-:-A+pB-B.

The determinant of these equations is just the Gram determinant
I'(A, B). Assuming A and B to be independent vectors, we have
I'(A, B) = 0. There exists, then, a uniquely determined solution

A, u of equations (79) and, hence, a unique vector D = PP; per-
pendicular to the plane PoP1 P> and with initial point in that plane.
The length of that vector is equal to the distance A, so that by (79a)

h2=|D|2=D-D=(C—-*AA—-uB):-D
=C-D—2A-D—puB-D
=C-D=C.-C—-AC-A—-pC-B.

This results in the expression

(79¢) V2=(C-C—-2A.C—-puB-C)I'(A,B).



Vectors, Matrices, Linear Transformations 193

This expression for the square of the volume of the parallelepiped
spanned by A, B, C can be written more elegantly as the Gram
determinant formed from the vectors A, B, C:

A-A A-'B A.C
(79d) Vi=|B-A BB B.C|=TI(A,B,OC).

C-A C-B C-C
To show the identity of the expressions (79c) and (79d) for V2, we
make use of the fact that the value of the determinant I'(A, B, C)

does not change if we subtract from the last column A-times the first
column and p-times the second column:

A‘A A.-B A.C—-A-A-pA.B
I[AB,C)=/B-A B.B B.C—AB-A—uB-.B|
C-A C-B C-C—AC-A-puC-B

It follows from (79b) that

A-A A.B 0
I'(A,B,C)=|B-A B-.B 0 .
C-A C.-B C:-C—AC-A—pC-B

Expanding this determinant in terms of the last column leads back
immediately to the expression (79c).

Formula (79d) shows that the volume V of the parallelepiped spanned
by the vectors A, B, C does not depend on the choice of the face and of
the corresponding altitude used in the computation, for the value of
I'(A, B, C) does not change when we permute A, B, C. For example,
I'B, A, C) can be obtained by interchanging in the determinant
for T (A, B, C) the first two rows and then the first two columns.

Formula (79¢) can be written as

I'(A,B,C) = |D|2I(A,B).
It follows that
I'(A,B,C) 20
for any vectors A, B, C. Here the equal sign can only hold if either

I'(A, B) = 0 or D = 0. The relation I'(A, B) = 0 would imply that
A and B are dependent. If D = 0, we would have C = AA + pB, so
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that C would depend on A and B. Hence the Gram determinant
I'(A, B, C) vanishes if and only if the vectors A, B, C are dependent.

For n = 3 formula (79d) follows immediately from the formula
(74c) for the volume V of an oriented parallelepiped spanned by three
vectors A, B, C in three-dimensional space. This is a consequence of
identity (68f) p. 174 according to which

det(A, B, C) det(A,B,C) =T'(A, B, C).

The expression for V2 as a Gram determinant has the advantage of
showing that V is independent of the special cartesian coordinate
system used, and hence that V has a geometrical meaning.

We can proceed to “volumes” V of four-dimensional parallelepipeds

spanned by four vectors A = }ﬁ, B = 1’0_1’;, C= Po_P;, D= m
in n-dimensional space (n = 4). Defining V as the product of the
volume of the three-dimensional parallelepiped spanned by the three
vectors A, B, C with the distance of the point Ps from the three-
dimensional “plane’” through the points Py, P1, Pq, P3, we arrive by the
exactly same steps as before at an expression for V2 as a Gram deter-
minant:

A-A A-B A-C A-D
s vio B'A BB B.C B.D|_ . .
2 “|c-A C-B C.C C.D| W™

DA D-B D-C D-D

If here n = 4, the Gram determinant becomes the square of the de-
terminant of the matrix with columns A, B, C, D, and we find that

(80b) V = |det(A, B, C, D)|.

More generally, m vectors Ai, . . ., Ap in n-dimensional space,
to which we assign a common initial point Py, span an m-dimensional
parallelepiped. The square of the volume V of that parallelepiped is
given by the Gram determinant
A A Al A « o A1 Ap
Az A1 Az-Ax ¢ - c A Ap

Bla) Vi=| - : : =T(Ay, . . ., An)

An A1 Apn+As « « cApcApn
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For m = n we obtain for the volume of the parallelepiped spanned by
n vectors in n-space the formula

(81b) V = |det(Ay, . . ., An)|.
One proves by induction over m that
I'Ay, .. .,An) 20,

where equality holds if and only if the vectors Ai, ..., An are
dependent.!

d. Orientation of Parallelepipeds in n-Dimensional Space

Later on, in Chapter 5, when we need a consistent method to fix
the sign of multiple integrals, we have to make use of signed volumes
and orientations of parallelepipeds in n-dimensional space.

For the volume spanned by n vectors A, . . ., As in n-dimensional
space we have by (81b) the expression

V=|det Ay, .. ., An)l.
We call det (A1, . . ., Az) the volume in (x1 - - - xn)-coordinates of
the oriented parallelepiped spanned by Ai, ..., Ax. The parallel-
epiped or the set of vectors A, . . ., Apis called positively oriented
with respect to the coordinate system if det (A1, . . ., Ayn)is positive,

negatively if the determinant is negative. Thus,
(81c) det(Ay, . . ., An) =€V,

where V is the volume of the parallelepiped spanned by the vectors
Ai, .. .,Asand € = +1 or —1 according to whether the parallelepi-
ped is oriented positively or negatively with respect to the coordinate
system.

While the square of det (A1, . . ., Ax) has a geometrical meaning
independent of the Cartesian coordinate system, this is not the case
for the sign of the determinant. Interchanging, for example, the
x1- and x2-axes results in the interchange of the first two rows of the
determinant and, hence, in a change of sign in det(Aj, . . ., Ajp).
What has an independent geometric meaning, however, is the state-

In the case of dependent vectors Ai, . . ., Am with common initial point Po the
parallelepiped spanned by these vectors “collapses” into a linear manifold of m-1
dimensions or less and has m-dimensional volume equal to 0.
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ment that two n-dimensional parallelepipeds in n-dimensional space
have the same or have the opposite orientation.

Consider two ordered sets of vectors A1, . . ., Apand By, . . ., B
in n-dimensional space, where we assume that each set consists of
independent vectors. Obviously, the two sets have the same orienta-
tion—that is, are both oriented positively or both negatively with
respect to the x1 « « « x4-system—if and only if the condition

(822) det(Ay, . . ., An) - det(By, . . ., Bn) >0

is satisfied. Using the identity (68f), we can write this condition in the
form

(82b) [A1, . .., Agz; By, .. .,Ba >0,
where the symbol on the left denotes the function of 2n vectors defined
by

Ai-B: Ai+B: --.A; B,
A:-B1 A2-B: ---A:-B,
(82¢)[A1, . . ., An; By, .. ., By] = y ° .

An'Bl An‘Bz "'An‘Bn

Notice that for B1 = Aj, . . ., B» = A, the symbol [Ay, . . ., Ayp;
Bi, . . ., Bi] reduces to the Gram determinant I'(Ai, . . ., Ay).
Formulae (82b, c) make it evident that having the same orientation is
a geometric property that does not depend on the specific Cartesian
coordinate system used. We denote this property symbolically by

(82d) QA1 ..., A)=QB1, ..., By
and the property of having the opposite orientation! by

1The individual orientation Q of an n-tuple of vectors does not stand for a *‘number.”
Formula (82f) only associates a value -1 with the ratio of two orientations, while
formulae (82d, e) express equality or inequality of orientations. It is, of course,
possible to describe the two different possible orientations of n-tuples completely by
numerical values, say, giving the value Q = +1 to one orientation, the value Q =
—1 to the other. This involves, however, the arbitrary selection of a ‘‘standard
orientation” we call 4+1—for example, that given by the coordinate vectors—
whereas the relations (82d, e, f) are meaningful independent of any numerical value
assigned to . Analogous situations are common throughout mathematics. For
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(82e) QA1 ..., A)=—-QB,, .. ., B

Then, generally, for two sets of n independent vectors in n-dimen-
sional space,

82f) QBy, . . .,Br) =sgn[A1, .. .,As; By, . . ., Bg]QA1, . . ., Ap).

The set A1, . . ., Ay is oriented positively or negatively with respect
to x1+ « + xs-coordinates according to whether

(83a) QA1 .. . ,An)=QFE, ..., Es)

or

(83b) QA ..., An) = —QE,, . . ., Eyp),

where Ei, . . ., E, are the coordinate vectors. On occasion, we shall

denote the orientation Q(Ei, . . ., E,) of the coordinate system by
Q(x1, x2, . . ., Xn).

For two sets of n vectors in n-dimensional space Aj, . .., A, and

Ar, . . ., Ay we have by (82c), (81b)

(84a) [Ay, . . LA AY, .. LAY ] =€’ VV

Here V and V' are, respectively, the volumes of the parallelepipeds
spanned by the two sets of vectors; the factors ¢, € depend on their
orientations and those of the coordinate vectors:

(84Db) e=sgnfAy .. .,An; Ey .. ., Ey4

(84c) g =sgn[Al,..., A E1, ... E4l

The product
(84d) g’ =sgnfAy, ..., An; AY,. . ., AL

example, in euclidean geometry, equality of distances and even the ratio of distances
have a meaning even when no numerical values are assigned to the distances (as in
Euclid’s Elements). It is true that we can describe distances by real numbers, such
that the ratio of distances is just that of the corresponding real numbers. This
requires the arbitrary selection of a “standard distance” (e.g., a meter), to which all
other distances are referred, and thus introduces in some sense a “nongeometrical”
element.
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is independent of the choice of the coordinate system and has the
value +1 if the parallelepipeds have the same orientation but —1 if
the opposite orientation.

Using the definition in terms of scalar products, we can form the
expression

(85a) [A1, . . ., An; AY, . . ., An]

A - AY A - AY s Ay - Ay
Az - AY As - Ay coecAg - A,

Am‘AI’ Am'Azl "'Am'Am,

for any 2m vectors A1, . . ., Ay’ in n-dimensional space. It is clear
from the definition that this expression is a multilinear form in the
2m vectors. For example, the vector A1’ occurs only in the first column
and the elements of that column are linear forms in A;’. Since the
whole determinant is a linear form in the elements of the first column,
it follows that it is a linear form in Ay'. It also is evident from (85a)
that the expression is an alternating function of the vectors Ay, . . .,
Ay’ for fixed Aj, . . ., Ar and an alternating function of Ai. . . ., Ap
for fixed AY/, . . ., An'. It follows (see the footnote on p. 000) that

(85b) [AL, . . ., An; A, .. ., Ax]=0

whenever the m vectors Ai, . . ., An or the m vectors AY/, . . ., A,/
are dependent. In particular (85b) always holds when m > n.
Assume then that m < n and that the vectors Ay, . . ., Ay and the
vectors A1, . . ., Ay are independent. We can assume that all these
vectors are given the same initial point, say the origin O of n-dimen-
sional space. Then Ai, . . ., Ax span an m-dimensional linear manifold
n through O and Ay, . . ., Ay’ another such plane n’. Introduce an
orthonormal system of vectors E1, . . ., En as coordinate vectors in
7 and another orthonormal system of vectors Ei/, . . ., Ex/ in 7.1
For fixed Aj, . . ., Ay the function (85b) is an alternating multilinear
form in the vectors Ay, . . ., An’ and, hence (see p. 149), is given by

1These two systems of coordinate vectors in © and n’ do not have to be related
to each other in any way nor to the coordinate system to which the whole n-di-
mensional space containing © and 7’ is referred.
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[Ay, . . ., Am; AV, . . ., Aw]
=[Ay .. .,Am; Er, . . ., Ex/] det(Ar, . . ., Aw),

where det (Av/, . . ., Ap') is the determinant of the matrix formed by
the components of the vectors Ay, . . ., Ay’ referred to Ev/, . . ., Ey’
as coordinate vectors. Obviously the coefficient [A1, ..., An;
EY, . . ., Ex']itself is an alternating multilinear form in Ai, . . ., An

and, hence, given by
[El, e o ey Em; Ell, « ey Eml] det(A], “ e ey Am),

where the last determinant is formed from the matrix of components
of Ai, . . ., Ay referred to the coordinate vectors Eq, . . ., Ep.
Using formula (81c), we obtain the identity

(85¢) [Ay, . . ., An; AY, . . ., Ap'] = pee’ VV..

Here V and V' are respectively the volumes of the parallelepipeds
spanned by the vectors Ay, . . ., An and A/, . . ., An’. The factors
g, & relate the orientations of the parallelepipeds to those of the
coordinate systems in n and n’:

e=sgnl[Ay ..., An;Ey, . . ., Eyl
¢ =sgnAY,.. ., Ax; E/,. .., Ex]
Finally, the coefficient
p=[Es ..., EsE/, ..., Ey]

depends only on the spaces m and n’ and the coordinate systems
chosen in those spaces. If # = 7’ we can choose

E' =Ei, .. . Ew = Ep;

in that case p = 1, as in formula (84a).

For u # 0, we can use formula (85c) to relate orientations in two
distinct m-dimensional linear manifolds= and n’, both lying in the same
n-dimensional space.! Replacing, if necessary, one of the coordinate

!One verifies easily that p = Oonly when = and n' are perpendicular to each other,
that is, when #’ contains a vector orthogonal to all vectors in n. More generally,
the coefficient p can be interpreted as cosine of the angle between the two manifolds
(see problem 13, p. 203).
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vectors by its opposite, we can always contrive that p > 0. Then,
by (85c),

(85d) sgn Ay, . . ., An; AY, . . ., An'] = &€
Thus, the condition
[Al,. . .,Am; Al,,. . .,Aml]>0

for any A1, . . ., Amwinmand Ay, . . ., Ay in 7’ signifies that both
sets of vectors are oriented positively or both oriented negatively
with respect to the coordinate systems in those spaces.

e. Orientation of Planes and Hyperplanes

The choice of a particular Cartesian coordinate system in an m-
dimensional linear manifold n determines a certain orientation

Q(El, s e ey Em),

where E1, . . ., E5 are the coordinate vectors. This choice fixes which
sets of m vectors Ai, . . ., Ay in © are called positively oriented,
namely, those with the same orientation as Ei, . . ., En. We denote
by n* the combination of the linear space m with the selection of a
particular orientation in n and call n* an oriented linear manifold. We
write Q(n*) for the selected orientation and call m independent
vectors Aj, . . ., An in 7 oriented positively if

QA . . ., An) = Q(7*).

We call n* oriented positively with respect to a particular Cartesian
coordinate system if the orientation of the coordinate vectors is the
same as that of n*.

An oriented two-dimensional plane n* can be visualized as a
plane with a distinguished positive sense of rotation. If a pair of vectors
A, B is oriented ‘““positively’” with respect to n*, the positive sense
of rotation of n* is the sense of the rotation by an angle less than 180°
that takes the direction of A into that of B.!

If the oriented two-dimensional plane ©* lies in an oriented three-
dimensional plane 6*, we can distinguish a positive and negative side

1Notice that the orientation of n* can only be described by pointing out a specific
positively oriented pair of vectors B, C in & or a specific rotating object in = (e.g.,
a clock) that has the distinguished sense of rotation. There is no abstract way of
deciding whether a given rotation is clockwise or counterclockwise, anymore than
there is an abstract way of saying which is the right and which the left side. These
questions can only be decided by reference to some standard objects.
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of n*. Let Py be any point of n*. We take two independent vectors
B = PyP1, C = PyP; in n* for which

(862) Q(B, C) = Q(n*).

A third vector A = PyP3, independent of B, C is said to point to the
Dpositive side of n* if

(86Db) Q(A, B, C) = Q(c*).

If 6* is oriented positively with respect to a Cartesian coordinate
system, we can replace condition (86b) by

(86¢) det(A,B,C) >0

in that system. If o* is oriented positively with respect to the usual
right-handed coordinate system, then the positive side of an oriented
plane n* is the one from which the positive sense of rotation in =n*
appears counterclockwise.

The same terminology applies to oriented hyperplanes n* in

n-dimensional oriented space o*. Given n — 1 vectors Az, . . ., Ag
in ©* with
(87a) Q(Asz, . . ., Ap) = Q(*),

a vector A is said to point to the positive side of n*, if

(87b) QAs, . . ., An-1, Ap) = Q(c¥),

f. Change of Volume of Parallelepipeds in Linear Transformations

A square matrix a = (a;z) with n rows and columns determines a
linear transformation or mapping Y = aX of vectors X in n-dimen-
sional space into vectors Y of the same space. Here we assume that
X and Y are referred to the same coordinate vectors Ei1, . . . , Ey. For
X=(x1,..., xn), Y=(y1,. .., yn) the transformation, written
out by components, has the form

Z .
Yi = rglajrxr G=1,...,n).
A set of n vectors B1 = (b11, . . ., bu1), . . ., Ba = (b1n, . . ., bun) is
transformed into the set of n vectors C1 = (c11, . . ., ¢p1), . . .,Cn =

(Cln, ce ey Cnn), where
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n

cie = 21 @jrbrx
—

By the rule for the determinant of a product of matrices (p. 172), we
have

(88a) det(Cy, . . ., Cn) = det(a) - det(By, . . ., By)
This formula contains the two formulae
(88b) |det(Cy, . . ., Ca)| =|det(a)| |det(Bs, . . ., Bn)|
(88c) sgn det(Cy, . . ., Cp) = [sgn det(a)][sgn det(By, . . ., Ba).

These two rules can be formulated immediately in geometrical lan-
guage:

The linear transformation of n-dimensional space into itself cor-
responding to a square matrix a multiplies the volume of every
parallelepiped spanned by n vectors by the same constant factor |det(a)].
It preserves the orientation of all n-dimensional parallelepipeds, if
det (a) > 0, and changes the orientation of all of them if det (a) < 0.1

For a rigid motion, the matrix a is orthogonal and, hence (see p.
175), has determinant +1 or —1. Thus, rigid motions preserve the
volume of parallelepipeds. Those for which det (a) = +1 preserve
sense; the others invert it.

Exercises 2.4

1. Treat number 5 of Exercises 2.2 in terms of vector products.

2. In a uniform rotation let («, B, v) be the direction cosines of the axis of
rotation, which passes through the origin, and « the angular velocity.
Find the velocity of the point (x, y, 2).

3. Show that the plane through the three points (x1, y1, 21), (x2, ¥2, 22),
(x3, y3, 23) is given by

X1—X y1—y 21— 2
X2—x y2—y 2e—2z2 |=0.
X3—X Yys—y Rs—2

1t is important to emphasize the assumptions in this theorem. Only volumes of n-
dimensional parallelepipeds are multiplied by the same factor; lower-dimensional
ones are multiplied by factors that vary with their location. Also, we have to assume
that image and original refer to the same coordinate system if the statement about
orientations is to hold.
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. Find the shortest distance between two straight lines ! and I’ in space,

given by the equations x =at+ b, y=ct+d, 2=et + f and x =
at+b,y=ct+d,z=¢et+f.

. Show that the area of a convex polygon with the successive vertices
Pi(x1, y1), Pa(x2,¥2), . . ., Pn(xn,yn)is given by half the absolute value of
X1 X2 X2 X3 o0 0t Xn-1 Xn Xn X1
Y1 Y2 Y2 y3 Yn-1 Yn Yn Y1
. Prove that the area of the triangle with vertices (x1, ¥1), (x2, ¥2), and
(x3, y3) is
1 x1 y1 1
5 X2 Y2 1
x3 y3 1

. If the vertices of the triangle of the preceding exercise have rational

coordinates, prove the triangle cannot be equilateral.

. (a) Prove the inequality
a b ¢
D=|a bV ¢ |=V@+b02+cDH@?F b2+ D@2+ b2+ 2.
a” bII c!l

(b) When does the equality sign hold?

. Prove the vector identities

@ AXBXC=A-C)B—(A-B) C
XY X xY)=X-X)(X-Y)-X-Y)(X-X)
© XX (Y XD {[¥YX(ZxX)]XI[ZxXxY)]} =0.

Give the formula for a rotation through the angle ¢ about the axis
x:y:2 = 1:0: —1 such that the rotation of the plane x = z is positive
when looked at from the point (—1, 0, 1).

If A, B, and C are independent, use the two representations of X =
(A X B) X (C X D) obtained from Exercise 9a to express D as a linear
combination of A, B, and C.

Let Ox, Oy, Oz and Ox’, Oy, Oz’ be two right-handed coordinate
systems. Assume that Oz and Oz’ do not coincide; let the angle zOz’ be
6 (0 < 6 < =n). Draw the half-line Ox: at right angles to both Oz and Oz’
and such that the system Oxi, Oz, Oz’ has the same orientation as Ox,
Oy, Oz. The Ox1 is the line of intersection of the planes Oxy and Ox’y’.
Let the angle x0x1 be ¢ and the angle x10x’ be ¢ and let them be meas-
ured in the usual positive sense in their respective planes, Oxy and
Ox’y’. Find the matrix for the change of coordinates.

Let = and =’ be two m-dimensional linear subspaces of the same n-
dimensional space with respective orthonormal bases Ei, Eg, . . .,
En and Ev, Ey, . . ., En'. Show that wu = [Ey, Eo, . . ., En; E{, E?,
.. +En’] = 0if and only if = and =’ are orthogonal, that is, one space
contains a vector perpendicular to all the vectors of the other.
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2.5 Vector Notions in Analysis
a. Vector Fields

Mathematical analysis comes into play when we are concerned
with a vector manifold depending on one or more continuously vary-
ing parameters.

If, for example, we consider a material occupying a portionof space
and in a state of motion, then at a given instant each particle of the
material will have a definite velocity represented by a vector U =
(u1, ue, us). We say that these vectors form a vector field in the region
in question. The three components of the field vector then appear as
three functions

ui(x1, x2, x3), w2Ax1, X2, x3), uUs(x1, x2, x3)

of the three coordinates x1, x2, x3 of the position of the particle at the
instant in question. We would usually represent U as a vector with
initial point (x1, x2, x3).

The forces acting at different points of space likewise form a vector
field. As an example of a force field we consider the gravitational force
per unit mass exerted by a heavy particle, according to Newton’s law
of attraction. According to that law the field vector F = (f1, f2, f3) at
each point (x1, x2, x3) is directed toward the attracting particle, and
its magnitude is inversely proportional to the square of the distance
from the particle.

Field vectors, like U or F, have a physical meaning independent of
coordinates. In a given Cartesian x1, X2, x3-coordinate system the
vector U has components u1, u2, us that depend on the coordinate
system. In a different Cartesian coordinate system the point that
originally had coordinates x1, x2, x3 receives the coordinates y1, y1, y3
where the y; and xx are connected by equations of the form

y1 = auX1 + a12%2 + a13x3 + b1
(89a) y2 = a21%1 + a22x2 + a23x3 + b2
y3 = asix1 + as2x2 + assxz + bs

or
(89b) ¥ =k4_§1 e + by (=1,23).

The components v1, vz, vs of the vector U in the new coordinate system
are then given by the corresponding homogenenous relations
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3 .
(89¢) v = kgl kUi (j=1223).

The matrix a = (ajx) is orthogonal, so that (see p. 158) its re-
ciprocal is equal to its transpose. Consequently, the solutions of
equations (89b), (89¢c) for xr and ux take the form

(89d) xr = 3 an(y; — by) (k=1,23),

7

-

(89¢) ur = ki—:l QjxUj *k=1273).

Any three functions ui, us, us of the variables xi, x2, x3 determine
a field of vectors U with components u1, uz, us in x1, x2, x3-coordinates.
If the field is to have a meaning independent of the choice of coordi-
nate systems, the components v; of U in a Cartesian yi, y2, ys-coordi-
nate system have to be given by formula (89c) whenever the y; and
x: are connected by formulae (89a).

b. Gradient of a Scalar

A scalar is a function s = s(P) of the points P in space. In any
Cartesian coordinate system in which the point P is described by its
coordinates x1, x2, x3 the scalar s becomes a function s = f (x1, x2, x3).
We may regard the three partial derivatives

as
U =g = far(x1, x2, x3),

as
Uz = é?z = fxz(x1, x2, xs),

ds
us =5 - = fg(%1, X2, x3).

as components in x1, X2, x3-coordinates of a vector U = (w1, u2, us).

In any new Cartesian y1, y2, ys-coordinate system connected with
the original one by relations (89a) or (89d), the scalar s is represented
by the function

s = g(y1, ¥2, ¥3)
=f ( i ar(yx — br), 23'. ax2(ye — b)), i ar3(yr — bk))
=i = =
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By the chain rule of differentiation (p. 55) we have

s
v = 5 = 8yi(y1, y2, ¥3)

s Oxx
1 0xk 0yj

i
1Moo

k

Mw

UkQjk.

k=1

Using the relations (89c), we see that the vector U has the com-
ponents v; = 9s/dy; in the y1, y2, ys-system. Thus the partial derivatives
of the scalar s formed in any cartesian coordinate system form the
components of a vector U that does not depend on the system. We
call U the gradient of the scalar s and write

U = grad s.

By formula (14b), p. 45 the derivative of s in the direction with direc-
tion cosines cos o, cos Oz, cos O3 1s given in x1, x2, x3-coordinates by

ds ds ds
(90) D@ys = Py cos a1 + %s cos oz + s cos a3,

Introducing the unit vector R = (cos o1, cos oz, cos ag) in the
direction with direction angles a1, a2, a3, we can write the deriva-
tive of s in that direction in vector notation as

(90b) D@s = R - grad s.
We find from the Cauchy-Schwarz inequality (see p. 132) for |R| = 1.
| Dws|<|R||grad s| =|grad s|

Thus, the derivative of s in any direction never exceeds the length of
the gradient of s. Taking for R the unit vector in the direction of grad
s, we find for the directional derivative the value

1
D s = m(grad s) - (grad s) = |grad s|
Thus, the length of the gradient vector of s is equal to the maximum
rate of change of s in any direction. The direction of the gradient is
the one in which the scalar s increases most rapidly, while in the
opposite direction s decreases most rapidly.
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We shall return to the geometrical interpretation of the gradient
in Chapter 3. We can, however, immediately give an intuitive idea
of the direction of the gradient. Confining ourselves first to vectors
in two dimensions, we have to consider the gradient of a scalar
s = f(x1, x2). We shall suppose that s is represented by its level lines
(or contour lines)

s = f(x1, x2) = constant = ¢

in the xi1, x2-plane. Then the derivative of s at a point P in the direc-
tion of the level line through P is obviously 0, for if @ is another
point on the same level line, the equation s(@) — s(P) = 0 holds;
dividing by the distance p of @ and P and letting p tend to 0 we find in
the limit (see p. 45) that the derivative of s in the direction tangential
to the level line at P is 0. Thus, by (90b), R « grad s = 0 if Ris a unit
vector in the direction of the tangent to the level line, and therefore,
at every point the gradient vector of s is perpendicular to the level line
through that point. An exactly analogous statement holds for the
gradient in three dimensions. If we represent the scalar s by its level
surfaces

s = f(x1, x2, x3) = constant = c,

the gradient has component zero in every direction tangential to the
level surface and is therefore perpendicular to the level surface.

In applications, we frequently meet with vector fields that repre-
sent the gradient of a scalar function. The gravitational field of force
due to particle of mass M concentrated in a point @ = (€1, £2, £3) may
be taken as an example. Let F = (fi, fz, f3) denote the force exerted
by the attractive mass M on a particle of mass m located at the
point P = (x1, x2, x3). Denote by R the vector

R=—Q_}\3=(x1——§1,x2—§2,x3—§3).

By Newton’s law of gravitation, F has the direction of —R and the
magnitude C/|R|2, where C = ymM (here y denotes the universal
gravitational constant). Hence,

or
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& — %

i=¢C VE1 — x1)2 + (€2 — x2)2 + (€3 — x3)2° (=123
By differentiation, one verifies immediately that
7 C _
=547 €1 — x1)® + (€2 — x2)2 + (Es — x3)? (G=123).
Hence,
(91) F= grad;C ,
where

r= V(& — x1)% + €2 — x2)% + (€3 — x3)? =|R|

is the distance of the two particles at P and Q.

If a field of force is the gradient of a scalar function, this scalar
function is often called the potential function of the field. We shall
consider this concept from a more general point of view in the study
of work and energy (pp. 657 and 714).

¢. Divergence and Curl of a Vector Field

By differentiation we have assigned to every scalar a vector field,
the gradient. Similarly, we can assign by differentiation to every
vector field U a certain scalar, known as the divergence of the vector
field U. For a specific Cartesian x1, x2, xs-coordinate system in which
U = (u1, us, us), we define the divergence of the vector U as the func-
tion

. dui . Ousz dus
(92) divU = dx1 + 0x2 + ox3’
that is, as the sum of the partial derivatives of the three com-
ponents with respect to the corresponding coordinates. We can show
that the scalar div U defined in this way does not depend on the
particular choice of Cartesian coordinate system.! Let the coordinates

1This would not be the case for other expressions formed from the first derivatives of
the components of the vector U, for example,

dus , ous _ dus

dx1 ' oxz  0xs
or

0x2 : oxs o0x1°
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¥1, ¥2, y3 of a point in a different Cartesian system be connected with
%1, X2, X3 by equations (89b); the components v1, vz, vs of Uin the new
system are then given by relations (89c). We have from the chain rule
of differentiation

U= 0wk _ & duk Oy
div U _kgl oxx _kg’il dy; 0xk

3 auk i i
= E (12117
k=1 ok ay, J=1 ay Te

which shows that we are led to the same scalar div U in any other
coordinate system.

Here we content ourselves with the formal definition of the diver-
gence; its physical interpretation will be discussed later (Chapter
V, Section 9).

We shall adopt the same procedure for the so-called curl of a vector
field U. The curl is itself a vector

B = curl U.

If in a x1, x2, x3-coordinate system the vector U has the components
u1, u2, us, we define the components b1, bs, bs of curl U by

(93) by = dus _ ous _Oux a_u_3 _Ouz ow

Oxz Oxs’ T Oxs  0x1’ T Ox1  Oxz”

We could verify as in the other cases that our definition of the curl of
a vector U actually yields a vector independent of the particular
coordinate system, provided the Cartesian coordinate systems con-
sidered all have the same orientation. However, we omit these
computations here, since in Chapter V, p. 616 we shall give a physical
interpretation of the curl that clearly brings outits vectorial character.

The three concepts of gradient, divergence, and curl can all be
related to one another if we use a symbolic vector with the com-
ponents

9 a d
dx1’ Oxg’ Oxs’

This vector differential operator is usually denoted by the symbol V,
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pronounced ‘“‘del.” The gradient of a scalar s is the product of the
symbolic vector V with the scalar quantity s; that is, it is the vector

94) grad s = Vs =(

K 0 a \1
dx1 )

s, 3_.’)62 S, éx—s S
The divergence of a vector U = (u1, us, us) is the scalar product

0
uz +

Y us.
dxz

. d a
(94b) dlvU-V-U—é—x—lu1+ 3%s

Finally the curl of the vector U is the vector product

(94c) curlU=V xU

0 d 7} 7} 7} 7}
(Eua 3x3 uz, %ul—ﬁus, 5&1“2_5&;”1)
[see (71Db), p. 180. The fact that the vector v isindependent of the Car-
tesian coordinate system used to define its components follows from
the chain rule of differentiation; under the coordinate transformation
(89d), we have by the chain rule

3 v 0 3
ay] kgl dy; Oxk Z=:
which shows that the components of v transform according to the
rule (89c) for vectors. This makes it obvious that also Vs, V «+ U and
V x U do not depend on coordinates.2

In conclusion, we mention a few relations that constantly recur.
The curl of a gradient is zero; in symbols,

(95a) curl grads =V x (Vs) =0.

1We are forced here to write the vector in front of the scalar in the product v s,
contrary to our usual habit, since the components of the symbolic vector v do not
commute with ordinary scalars.

2This statement has to be qualified in the case of the curl. Generally, magnitude and
direction of the vector product of two vectors has a geometrical meaning, as explain-
ed on p. 185, except that the product changes into the opposite when we change the
orientation of the Cartesian coordinate system used. This implies for a vector U
that curl U = V x U behaves like a veetor, as long as we do not change the orien-
tation of the coordinate system (i.e., as long as only orthogonal transformations with
determinant +1 are used). Changing the orientation of the coordinate system
results in changing curl U into its opposite.
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The divergence of a curl is zero,; in symbols,
(95b) diveurl U==V.-(Vx U)=0.

As we easily see, these relations follow from the definitions of diver-
gence, curl, and gradient, using the interchangeability of differentia-
tions. Relations (95a, b) also follow formally if we apply the ordinary
rules for vectors to the symbolic vector V, since then

Vx(Vs)=(VxV)s=0, V-(VxU)=det(V,V,U)=0.

Another extremely important combination of our vector differential
operators 1s the divergence of a gradient:

d%s d%s

33(?22 e 3x 2 = As.

(95¢) divgrads =V - (Vs) = 75 + =

Here

52 52 32
(95d) A=V .V= anJrsz s

is known as the “Laplace operator” or the “Laplacian.” The partial
differential equation

0%s d%s 0%s
(95e) B = ope V oxt T gz = 0

satisfied by many important scalars s in mathematical physics is
called the “Laplace equation” or “‘potential equation.”

The terminology of “vector analysis” is often used also when the
number of independent variables is other than three. A system of
n functions w1, . . ., us of n indenpendent variables xi1, . . ., xa
determines a vector field in n-dimensional space. The concepts of
gradient of a scalar and of the Laplace operator then retain their
meaning. Notions analogous to the curl of a vector become more
complicated. The most satisfactory approach to analogues of rela-
tions (95a,b) in n dimensions is through the calculus of exterior
differential forms, which will be described in the next chapter.

d. Families of Vectors. Application to the Theory of Curves in
Space and to Motion of Particles

In addition to vector fields we also consider one-parametric
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manifolds of vectors, called families of vectors, where the vectors U =
(u1, uz, us) do not correspond to each point of a region in space but to
each value of a single parameter . We write U = U (). The derivative
of the vector U can be defined naturally as

dUu

(96a) e 1}393% [U + k) — UE)L.

It obviously has the components

duy dus dus
(96b) di’ dt’ dt

One easily verifies that this vector differentiation satisfies analogues
of the ordinary laws for derivatives:

d d

(972) (U +V) = U + V3 (kU) U +12U
d _y.dv _ du

(97b) ZU-V=U-F+2.V
d dV dU

(97¢) ZUXV)=Ux Z5 4+ = x V.

We apply these notions to the case where the family of vectors con-

sists of the position vectors X = X (f) = OP of the points P on a curve
in space given in parametric representation:

= $1(t), x2 = ga(t), x3 = P3(f).
Then
X = (x1, X2, x3) = (31(2), P2(2), 3(2)).

The vector dX/d¢ has the direction of the tangent to the curve at the
point corresponding to f. For the vector AX = X(t + At) — X(?)
has the direction of the line segment joining the points with parame-
ter values ¢ and t + Af. The same holds for the vector AX/A¢t, when
At > 0. As At - 0 the direction of this chord approaches the di-
rection of the tangent. If instead of ¢ we introduce as parameter the
length of arc s of the curve measured from a definite starting point,
we can prove that
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dX
ds

2 _dX dX _,

(%) “ds " ds ~

The proof follows exactly the same lines as the corresponding proof
for plane curves (see Volume I, p. 354). Thus, dX/ds is a unit vector.
Differentiating both sides of equation (98) with respect to s, using rule
(97b), we obtain

dX d?’X  d’X dX _,dX dX _

(99) ds " de? Tds? ' ds —2ds ds "

This equation states that the vector

d?X _(d2x1 d%xs d2x3)
dsz ~ \ds?2’ ds?’ ds?

is perpendicular to the tangent. This vector we call the curvature
vector or principal normal vector, and its length

d*X

1
(t00) e

we call the curvature of the curve at the corresponding point. The
reciprocal p = 1/k of the curvature we call the radius of curvature,
as before. The point obtained by measuring from the point on the
curve a length p in the direction of the principal normal vector is
called the center of curvature.

We shall show that this definition of curvature agrees with the one
given for plane curves in Volume I (p. 354). For each s the vector
Y = dX/ds is of length 1 and has the direction of the tangent. If we
think of the vectors Y(s + As) and Y(s) as having the origin as
common initial point, then the difference AY = Y(s + As) — Y(s)
is represented by the vector joining the end points. The angle B
between the tangents to the curve at the points with parameters s
and s + As is equal to the angle between the vectors Y(s) and
Y(s + As). Then

|AY|=|Y(s + As) — Y(s)| = 2 sin b,

since

[Y(s)| =|Y(s + As)| = 1.
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Using
Z%ﬁ/fé_)l for B—-0,
we find that
X _‘@_f — lim A_\_l‘ B
ds? | |ds | aAs-o | As _Alsr»r}) As

Hence, k is the limit of the ratio of the angle between the tangents at
two points of the curve and the length of arc between those points as
the points approach each other. But this limit defines curvature for
plane curves.!

The curvature vector plays an important part in mechanics. We
suppose that a particle moving along a curve has the position vector
X(#) at the time ¢. The velocity of the motion is then given both in
magnitude and direction by the vector dX/d¢. Similarly, the ac-
celeration is given by the vector d2X/d¢2. By the chain rule, we have

dX _ds dX
dt ~ dt ds
and
X _ d%s dX | (ds)?d’X
(101) de ~ de? ds (dt) ds?

In view of what we know already about the first and second deriva-
tives of the vector X with respect to s, equation (101) expresses the
following facts: the acceleration vector of the motion is the sum of
two vectors. One of these is directed along the tangent to the curve
and its length is equal to d2s/dt?, that is, to the acceleration of the
point in its path (the rate of change of speed or tangential accelera-
tion). The other is directed normal to the path toward the center of
curvature, and its length is equal to the square of the speed multiplied
by the curvature (the normal acceleration). For a particle of unit mass

1In the case of space curves, we cannot, as for plane curves, identify B with the
increment Aa of an angle of inclination a. The reason is that the angle between
Y (s) and Y (s + As) is generally not equal to the difference of the angles the vectors
Y (s) and Y (s + As) form with some fixed third direction. Angles between directions
in space are not additive, as in the plane.
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the acceleration vector is equal to the force acting on the particle. If
no force acts in the direction of the curve (as is the case for a particle
constrained to move along a curve subject only to the reaction forces
acting normal to the curve), the tangential acceleration vanishes and
the total acceleration is normal to the curve and of magnitude equal
to the square of the velocity multiplied by the curvature.

10.

Exercies 2.5

—_—
. Verify that the position vector PQ of a point  with respect to a point P

behaves like a vector in a change of coordinates.

. Derive the following identities.
(a) grad («B) =agrad B + B grad «
(b) div («U) =Uegrada +adivU

) curl(@U) =gradaX U+ acurl U
@ div(iUxV)=VecurlU-U-curl V.

. Let U « v be the symbol for the operator

a a a
Uza + Uy@ + Uz’a“z“
Show that

@ grad(UeV)=Uevy W+ VevU4+UXcurl V4+V Xcurl U
®) curl UXV)=UdivV—-VdivU+V.vyU—-TU . vV,

. For the Laplacian operator A establish

AU = grad div U — curl curl U

. Find the equation of the so-called osculating plane of a curve x = f(¢),

y = g(t), z = h(t) at the point ?o, that is, the limit of the planes passing
through three points of the curve as these points approach the point
with parameter to.

. Show that the curvature vector and the tangent vector both lie in the

osculating plane.

. Let C be a smooth curve with a continuously turning tangent. Let d

denote the shortest distance between two points on the curve and ! the
length of arc between the two points. Prove that d — | = o(d) when d
is small.

. Prove that the curvature of the curve X = X(¢), ¢ being an arbitrary

parameter, is given by
{X7]2 |X" ]2 — (X"« X)) 12,

k= b4E

. If X = X(s) is any parametric representation of a curve, then the vector

d?X/dt? with initial point X lies in the osculating plane at X.

If C is a continuously differentiable closed curve and A a point not on
C, there is a point B on C that has a shorter distance from A than any
other point on C. Prove that the line AB is normal to the curve.
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11.

12

13.

14.

15.

16.

17.

A curve is drawn on the cylinder x2 + y2 = a? such that the angle
between the z-axis and the tangent at any point P of the curve is equal
to the angle between the y-axis and the tangent plane at P to the
cylinder. Prove that the coordinates of any point P of the curve can be
expressed in terms of a parameter 8 by the equations

x=acosb, y=asin0, z=c=alogsinb,
and that the curvature of the curve is (1/a) sin 6 (1 + sin2 6)1/2,
Find the equation of the osculating plane (cf: Exercise 5) at the point
6 of the curve x =cos 6, y =sin 6, z=f(0). Show that if f(0) =
(cosh A0)/A, each osculating plane touches a sphere whose center is
the origin and whose radius is v(1 + 1/A42).

(a) Prove that the equation of the plane passing through the three
points t1, ¢z, 3 on the curve

1 1
x=§at3, y=:sbt?, z=ct

2
is
3
Fx — 2(t1 + t2 + t3) % + (tots + tat1 + titz) % — titats = 0.

(b) Show that the point of intersection of the osculating planes at t1,
t2, t3 lies in this plane.

Let X = X(s) be an arbitrary curve in space, such that the vector X(s)

is three times continuously differentiable (s is the length of arc). Find

the center of the sphere of closest contact with the curve at the point s.

If X = X(s) is a curve on a sphere of unit radius where s is arclength,
then

Xjz— | X|4= X]P - X X=X X x X])2.
holds.
The limit of the ratio of the angle between the osculating planes at two
neighboring points of a curve and of the length of arc between these two
points (i.e., the derivative of the unit normal vector with respect to the
arc s) is called the torsion of the curve. Let £1 (s), 2 (s) denote the unit
vector along the tangent and the curvature vector of the curve X(s);
by E3(s) we mean the unit vector orthogonal to £1 and €2 (the so-called
binormal vector), which is given by [E1 X Ea].
Prove Frenet’s formulae

él—’: 2_2’
R G
C;Z——p+ T ?
'E3: —E—z',

where 1/p = k is the curvature and 1/t the torsion of x(s).

Using the vectors &1, &2, £ of Exercise 16 as coordinate vectors, find
expressions for (a) the vector X, (b) the vector from the point X to the
center of the sphere of closest contact at X.
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Show that a curve of zero torsion is a plane curve.

Consider a fixed point A in space and a variable point P whose motion
is given as a function of the time. Denoting by P the velocity vector of
P and by a a unit vector in the direction from P to A, show that

L \PAl=—a-P

(a) Let A, B, Cbe three fixed noncollinear points and let P be a moving
point. Let a, b, ¢ be unit vectors in the directions PA, PB, PC,
respectively; express the velocity vector P as a linear combination
of these vectors:

P = au + bv + cw.
Prove that

é,:l—g-i—PI—{[(a-b)v+(a-c)w]a—vb—wc}.

(b) Prove that the acceleration vector P of the point P is

P =oa 4+ B8b + ye,
where

s a‘b 1 ) tu ( a.c 1 )
C=ERTUWNAZP T B-P)T¥\laA=P] T ]C—P]
with similar expressions for § and .

Prove that if 2z = u(x, y) represents the surface formed by the tangents
of an arbitrary curve, then (a) every osculating plane of the curve is a
tangent plane to the surface and (b) u(x, y) satisfies the equation

UzzUyy — uzy2 =0.



CHAPTER
3

Developments and Applications
of the Differential Calculus

3.1 Implicit Functions

a. General Remarks

Frequently in analytical geometry the equation of a curve is given
not in the form y = f(x) but in the form F(x, y) = 0. A straight line
may be represented in this way by the equation ax + by + ¢ = 0,
and an ellipse, by the equation x2/a2 + y2/b2 = 1. To obtain the equa-
tion of the curve in the form y = f(x) we must “solve” the equation
F(x, y) = 0 for y. In Volume I we considered the special problem of
finding the inverse of a function y = f(x), that is, the problem of
solving the equation F(x, y) = y — f(x) = 0 for the variable x.

These examples suggest the importance of methods for solving an
equation F(x, y) = 0 for x or for y. We shall find such methods even
for equations involving functions of more than two variables.

In the simplest cases, such as the foregoing equations for the
straight line and ellipse, the solution can readily be found in terms
of elementary functions. In other cases, the solution can be approxi-
mated as closely as we desire. For many purposes, however, it is pref-
erable not to work with the solved form of the equation or with these
approximations but instead to draw conclusions about the solution by
directly studying the function F(x, ¥), in which neither of the varia-
bles x, y is given preference over the other.

Not every equation F(x, y) = 0 is the implicit representation
of a function y = f(x) or x = §(y). It is easy to give examples of
equations F(x, y) = 0 that permit no solution in terms of functions

218
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of one variable. Thus, the equation x2 + y2 = 0 is satisfied by the
single pair of values x = 0, ¥y = 0 only, while the equation x2 + y2 +
1 = 0 is satisfied by no real values at all. It is therefore necessary to
investigate more closely the circumstances under which an equation
F(x, y) = 0 defines a function y = f(x) and the properties of this
function.

Exercises 3.1a

1. Suppose that for some pair of values (a, b), f(a, b) = 0. If a is known, give
a constructive iterative method for finding b. Under what conditions
on f will this method work?

b. Geometrical Interpretation

To clarify the situation we represent the function F(x, y) by the
surface z = F(x, y) in three-dimensional space. The solutions of
the equation F(x, y) = O are the same as the simultaneous solutions
of the two equations z = F(x, y) and z = 0. Geometrically, our prob-
lem is to find whether the surface z = F(x, y) intersects the x, y-
plane in curves y = f(x) or x = §(y). (How far such a curve of
intersection may extend does not concern us here.)

A first possibility is that the surface and the plane have no point
in common. For example the paraboloid z = F(x, y) = x2 + y2 + 1
lies entirely above the x, y-plane. Here there is no curve of inter-
section. Obviously, we need consider only cases in which there is at
least one point (xo, y0) at which F(xo, yo) = 0; the point (xo, yo) con-
stitutes an “initial point” for our solution.

Knowing an initial solution, we have two possibilities: either the
tangent plane at the point (xo, y0) is horizontal or it is not. If the
tangent plane is horizontal, we can readily show by means of ex-
amples that it may be impossible to extend a solution y = f(x) or
x = ¢(y) from (xo, y0). For example, the paraboloid z =x2 + y2 has the
initial solution x = 0, y = 0, but contains no other point in the
x, y-plane. In contrast, the surface z = xy with the initial solution
x = 0, y = 0 intersects the x, y-plane along the lines x = 0 and y = 0;
but in no neighborhood of the origin can we represent the whole
intersection by a function y = f(x) or by a function x = ¢(y), (see
Figs. 3.1 and 3.2). On the other hand, it is quite possible for the
equation F(x, y) = 0 to have such a solution even when the tangent
plane at the initial solution is horizontal, as in the case F(x,y) =
(¥ — x)* = 0. In the exceptional case of a horizontal tangent plane,
therefore, no definite general statement can be made.
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Figure 3.1 The surface u = xy.

Figure 3.2 Contour lines of u = xy.

The remaining possiblity is that the tangent plane at the initial
solution is not horizontal. Then, thinking intuitively of the surface
z = F(x, y) as approximated by the tangent plane in a neighborhood
of the initial solution, we may expect that the surface cannot bend
fast enough to avoid cutting the x,y-plane near (xo, yo) in a single
well-defined curve of intersection and that a portion of the curve
near the initial solution can be represented by the equation y = f(x)
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or x = ¢(y). Analytically, the statement that the tangent plane is
not horizontal means that Fi(xo,y0) and Fy(xo, yo) are not both
zero (see p. 47). This is the basis for the discussion in the next sub-
section.

Exercises 3.1b

1. By examining the surface of z = f(x, y), determine whether the equation
f(x, ¥) = 0 can be solved for y as a function of x in a neighborhood of the
indicated point (xo, yo) for

(@ fx,y)=x2—3%, xo=y=0

() f(x,y) =[log (x + M2, x0o=15 yo=—.5
©) fx,y)=sin[z(x+y]—1, xo=yo=1/4
D fxy)=x24+y2—y, xo=y0=0.

¢. The Implicit Function Theorem

We now state sufficient conditions for the existence of implicit
functions and at the same time give a rule for differentiating them:

Let F(x, y) have continuous derivatives F; and Fy in a neighborhood
of a point (xo, ¥o), Wwhere

§)) F(xo, yo) = 0, Fy(xo, yo) # 0.
Then centered at the point (x,, y,), there is some rectangle
2 Xo—0Sx=x%+0a Y-—P=Sy=y+B

such that for every x in the interval I given by xo —a < x < x0 + @
the equation F(x, y) = 0 has exactly one solution y = f(x) lying in
the interval yo — P < y = yo + B. This function f satisfies the initial
condition yo = f(xo) and, for every x in I,

3) F(x, f(x)) = 0.
(3a) Yo—B=fx)<yo+B
(3b) Fy(x, f(x)) # 0.

Furthermore, f is continuous and has a continuous derivative in I, given
by the equation

@ y=f@=-f.
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This is a strictly local existence theorem for solutions of the
equation F(x, y) = 0 in the neighborhood of an initial solution
(%o, y0). It does not indicate how to find such an initial solution or
how to decide if the equation F(x, y) = O is satisfied for any (x, y)
at all. These are global questions and beyond the scope of the theorem.
Uniqueness and regularity of the solution y = f(x), also, can be
guaranteed only locally, that is, when ¥ is restricted to the interval
yo — B <y < yo + B. The need for such restrictions is evident from
the simple example of the equation

Flx,y)=x2+y2—-1=0.

For every x with—1 < x << 1 the equation has two different solutions
y = + 41 — x2. A single-valued solution y = f(x) is obtained by pre-
scribing arbitrarily one of the signs at each x. It is clear that in this
way we can find solutions that are discontinuous for every x,
choosing, for example, the positive sign for rational x and the nega-
tive one for irrational x. Continuous solutions y = f(x) are obtained
if we restrict y to a constant sign. This sign can be fixed by choosing
foragiven xo in —1 < xo < 1 one of the two possible values yo for which
x0%2 + yo2 = 1. A unique continuous solution y = f(x) with yo = f(x0)
is obtained thenforall x in —1 < x < 1 by requiring y to satisfy x2 +
y2 = 1 and to have the same sign as yo. Geometrically, the graph of
f is either the upper or the lower semicircle, whichever contains the
point (xo, yo). The function f has a continuous derivative

F,_ _x__ x

YETRT Ty Tiw

for — 1 << x < 1. With y defined to be zero for x = + 1, the solution
y = f(x) will be continuous in the closed interval — 1 < x < 1. How-
ever, the derivative y’ then becomes infinite at the end points of the
interval, since Fy = 0 there.

We shall prove the general theorem in the next section. We observe
here only that once the existence and the differentiability of the
function f(x) satisfying (8) have been established, we can find an
explicit expression for f/(x) by applying the chain rule [see (18) p. 55]
to differentiate F(x, y). This yields

Fy + Fyf'(x) =0,

and leads to formula (4) as long as Fy = 0. Equivalently, if the equa-
tion F(x, y) = 0 determines y as a function of x, we conclude that
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and, hence, that

@:%M:-%m

An implicit function y = f(x) can be differentiated to any given
order, provided the function F(x, y) possesses continuous partial deriv-
atives of that same order. For example, if F(x,y) has continuous
first and second derivatives in the rectangle (2), the right side of equa-
tion (4) is a compound function of x:

_ Fulx, f(x))
Fy(x, f(x))

Since, by (3b), the denominator does not vanish and since f(x) already
is known to have a continuous first derivative, we conclude from (4)
that ¥ has a continuous derivative; by the chain rule y” is given by

v FyFzz + FyFoyf — FoFay — FaFyyf’
= 7 )

Substituting the expression (4) for f, we find that

w _ FyfFas — 2F:FyFuy + Fi'Fyy
©®) y' == 73 :

The rules (4) and (5) for finding the derivatives of an implicit func-
tiony = f(x) can be used whenever the existence of fin an interval has
been established from the general theorem on implicit functions, even
in cases where it is impossible to express y explicitly in terms of ele-
mentary functions (rational functions, trigonometric functions, etc.).
Even if we can solve the equation F(x,y) = 0 explicitly for y, it is usu-
ally easier to find the derivatives of y from the formulae (4) and (5),
without making use of any explicit representation of y = f(x).

Examples
1. The equation of the lemniscate (Volume I, p. 102)
F(x,y) = (x* + )% — 2a%x* — y?) = 0

is not easily solved for y. For x = 0, y = 0 we obtain F = 0, F; = 0,
Fy = 0. Here our theorem fails, as might be expected from the fact that
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two different branches of the lemniscate pass through the origin. How-
ever, at all points of the curve where y 7 0, our rule applies, and the
derivative of the function y = f(x) is given by

,__ Fr_ 4x(x® + y?) — 4a%x
Yy = Fy 4y(x® + y?) + 4a2y’

We can obtain important information about the curve from this equa-
tion, without using the explicit expression for y. For example, maxima
or minima might occur where y’ = 0, that is, for x = 0 or for x% + y2 =
a?. From the equation of the lemniscate, y = 0 when x = 0; but at the
origin there is no extreme value (cf. Fig. 1.S.3, Volume I, p. 103). The

two equations therefore give the four points | + g V3, + 9) as the

maxima and minima.
2. The folium of Descartes has the equation

F(x,y) =x3+ y3 — 3axy =0

(cf. Fig 3.3), with awkward explicit solutions. At the origin, where
the curve intersects itself, our rule again fails, since at that point
F = F, = F, =0. For all points at which y2 # ax we have

, F, x2 — ay

y=—3E=_= "2

Fy™ y2—ax’

Accordingly, there is a zero of the derivative when x2 — ay = O or, if
we use the equation of the curve, when

y
oV

Figure 3.3 Folium of Descartes.
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x=a¥%, y=a¥d.

Exercises 3.1c

1. Prove that the following equations have unique solutions for y near the
points indicated:

(@ 22+xy+y2=7 (21
(b) xcosxy=20 Qa, =/2)
() xy+logxy=1 (1,1
d x54+y5+xy=3 (1, 1).

2. Find the first derivatives of the solutions in Exercise 1 and give their
values at the indicated points.

3. Find the second derivatives of the solutions in Exercise 1 and give their
values at the indicated points.

4. Which of the implicitly defined functions of Exercise 1 are convex at
the indicated points.

5. Find the maximum and minimum values of the function y that satisfies
the equation x2 + xy + y% = 27.

6. Let fy(x, ) be continuous on a neighborhood of the point (xo, y0). Show
that the equation

y=yo+ j:o fE, y)dE

determines y as a function of x in some interval about x = xo.

d. Proof of the Implicit Function Theorem

Existence of the implicit function follows directly from the inter-
mediate value theorem (see Volume I, p. 44). Assume that F(x, y) is
defined and has continuous first derivatives in a neighborhood of the
point (xo, y0), and let

F(xo,50) =0, Fy(xo,yo) #= 0.

Without loss of generality we assume that m = Fy(xo, yo) > 0. Other-
wise, we merely replace the function F by — F, which leaves the points
described by the equation F(x, ¥) = 0 unaltered. Since Fy(x, y) is con-
tinuous, we can find a rectangle R with center (xo, y0) and so small
that R lies completely in the domain of F and Fy(x, y) > m/2 through-
out R. Let R be the rectangle

—a=x=x0+a Yy—-BZy=Zy+B

(see Fig. 3.4). Since Fi(x, y) also is continuous, we conclude that F;
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Y.
yo"’ﬁ““ T i
P
LR
yom - -—-LA——
! x
0 Xo=at x Xota
Xo—a Xo Xota
Figure 3.4

is bounded in R. Thus, there exist positive constants m, M such that
®  Fey>3, |Fdxy)lsM  for  (5)inR

For any fixed x between xo — a and xo + @ the expression F(x, y) is
a continuous and monotonically increasing function of y for yo — B
Sysy+B If

@) F(x,yo + B) >0, F(x,y0o — B) <0,

we can be sure that there exists a single value y intermediate between
yo — B and yo + P at which F(x, y) vanishes. For the given x the
equation F(x, y) will then have a single solution y = f(x) for which

yo—B<y<yo+B.
To prove (7), we observe that by the mean value theorem
F(x, y0) = F(x, y0) — F(x0, y0) = Fu(&, yo)(x — x0).,

where £ is intermediate between xo and x. Hence, if a denotes a number
between 0 and a, we have

| F(x, y0)| < | Fa(§, y0)| |x — %o| < Mo for |2 — x| = a.

Similarly, it follows from Fy > m/2 that

F(x, 0+ B) = [F(5, 30 + B) = F(x, yo + F(x, y0) > 3 mp — Ma,

Fiz, 30— B) = — [F(x, y9) — F(x, 30 — B)] + F(x,50) < — 3 mp + Ma.

Thus, the inequalities (7) hold for any x in the interval xo — a < x <
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x0 + o provided we take o so small that a < ¢ and a < mB/2M.

For any x with |x — xo| < a this proves existence and uniqueness
of a solution y = f(x) of the equation F(x, y) = 0 such that |y — yo| =
B and Fy(x, y) > m/2 > 0. For x = xo the equation F(x, y) = 0 has the
solution ¥y = yo corresponding to our initial point. Since yo certainly
lies between yo — P and yo — B, we see that f(x0) = yo. Continuity and
differentiability of f(x) now follow from the mean value theorem for
functions of several variables applied to F(x, y) [see (33) p. 67]. Let x
and x + & be two values between xo — o and xo + a. Let y = f(x) and
y + k = f(x + h) be the corresponding values of f where y and y + &
lie between yo — p and yo + B. Then F(x,y) = 0, F(x + h,y + k) = 0.
It follows that

0=F(x+ h,y+ k) — F(x,y)
= Fu(x + 0h,y + Ok) h + Fy(x + Ok, y + Ok)k,

where 0 is a suitable intermediate value between 0 and 1.1
Using Fy # 0, we can divide by Fy and find that

® k _  Fix + 6h,y + 0k)
h =~ Fy(x + 6h,y + 0k)"

Since |Fz| < M, |Fy|> m/2 for all points of our rectangle, we find
that the right-hand side is bounded by 2M/m. Thus

o< 2.

Hence, k = f(x + h) — f(x) > 0 for o — 0, which shows that y = f(x)
is a continuous function. We conclude from (8) that for fixed x and

fory = f(x),
lim flx +h) —fx) _ lim Fux +0h,y + 0k)  Fux,y)

) — -
h=0 h T heo Falx+0hy +0k) T Fy(x,y)’

This establishes the differentiability of f and at the same time yields
formula (4) for the derivative.

The proof hinges on the assumption Fy(xo, yo) # 0, from which we
could conclude that Fy is of constant sign in a sufficiently small

10bserve that the mean value theorem can be applied here, since the segment
joining any two points of the rectangle |x — xo0]=<a, |y — y0/|=< 8 lies wholly
within the rectangle.
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neighborhood of (xo, yo) and that F(x, y) for fixed x is a monotone
function of y.

The proof merely tells us that the function y = f(x) exists. It is a
typical example of a pure‘‘existence theorem,” in which the practical
possibility of calculating the solution is not considered. Of course,
we could apply any of the numerical methods discussed in Volume I
(pp. 494 ff.) to approximate the solution y of the equation F(x, y) = 0
for fixed x.

Exercises 3.1d

1. Give an example of a function f(x, y) such that (a) f(x, y) = 0 can be
solved for y as a function of x near x = xo0, ¥ = yo, and (b) fy(xo, y0) = O.

2. Give an example of an equation F'(x, y) = 0 that can be solved for y as a
function y = f(x) near a point (%o, yo), such that f is not differentiable at
Xo.

3. Let ¢(x) be defined for all real values of x. Show that the equation
Fx, =3 —3y4+ (1 + x2) y — ¢(x) = 0 defines a unique value of y
for each value of x.

e. The Implicit Function Theorem for More Than Two
Independent Variables

The implicit function theorem can be extended to a function of
several independent variables as follows:

Let F(x, y, . . ., 2, u) be a continuous function of the independent
variables x,y, . . . 2, u, with continuous partial derivatives Fy, Fy, . . .,
F,, Fu. Let (xo0, Y0, . - ., 20, o) be an interior point of the domain of

definition of F, for which
F(xo,y0, . . .,20,u0) =0 and Fu(xo, yo, . . ., 20, uo) = 0.

Then we can mark off an interval uo — B < u < uo + P about uoand a
rectangular region R containing (xo, yo, . . ., 20) in its interior such that
forevery (x,y, . . ., 2)in R, theequation F(x,y, . . .,z,u) = 0issatisfied
by exactly one value of u in the interval uo — p < u < uo + p.1 For
this value of u, which we denote by u=f(x,y,. . ., 2), the equation

F(x,y,.. .,z f(x,y,...,2)=0
holds identically in R; in addition,
1The value B and the rectangular region R are not determined uniquely. The as-

sertion of the theorem is valid if B is any sufficiently small positive number and if
we choose R (depending on B) sufficiently small.
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Uo = f(xo, Yo, . . ., 20),
uO_B<f(x,yy' . -,Z)<u0+B;Fu(x,y,- - f(x,y,- . .,Z))io.

The function f is a continuous function of the independent variables x,
Y,. ..., 2, and possesses continuous partial derivatives given by the

equations
(93.) Fx+Fufx:O,Fy+Fufy=O,. . .,Fz+Fufz:O.

The proof follows exactly the same lines that were given in the pre-
vious section for the solution of the equation F(x, u) = 0 and offers
no further difficulty.

It is suggestive to combine the differentiation formulae (9a) in the
single equation

(9b) Fydx + Fydy + +«+ + F.dz+ Fudu = 0.
In words, if the variables x, y, . . ., 2, u, are not independent of one
another but are subject to the condition F(x,y, . . ., 2,u) = 0, then the

linear parts of the increments of these variables are likewise not inde-
pendent but are connected by the linear equation

dF = Fydx + Fydy + « + + + Fodz + Fudu = 0.

If we replace du in (9b) by the expression uzdx + u,dy + - - «
+ u.dz and then equate the coefficient of each of the mutually independ-
ent differentials dx, dy, . . ., dzto zero, we retrieve the differentiation
formulae (9a).

Incidentally, the concept of implicit function enables us to give a
general definition of an algebraic function. We say that u = f(x, v,
. . .)1isanalgebraic function of the independent variables x, y, . . .if
u can be defined implicitly by an equation F(x, y,. . . . u) = 0, where
F is a polynomial in the arguments x,y, . . ., u; briefly, if © “satisfies
an algebraic equation.” A function that satisfies no algebraic equa-
tion is called transcendental.

As an example, we apply our differentiation formulae to the
equation of the sphere,

Flx,y,u) =22+ y2+u2—1=0.

For the partial derivatives, we obtain
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Ug = — —, Uy = —

x VA
u u

and by further differentiation

S l+£u o x2+u?

(2 u u2 z u3 ’
x xy

Uzy = S U 'y

Y o2 Y ud’

u ——l+lu ——y2+u2

vy u ul Yy ud

Exercises 3.le

1. Show that the equation x 4+ y + z = sin xyz can be solved for z near
(0, 0, 0). Find the partial derivatives of the solution.

2. For each of the following equations examine whether it has a unique
solution for z as a function of the remaining variables near the indi-
cated point:

(@) sin x+cosy+tan z=0 (x=0,y=g,z=n:)
(b) x2+2y2+4+322—w=0 xx=1lLy=22=—-1, w=2_8)
(© 1+ x4+ y=-cosh(x+ 2)+ sinh (y + 2) x=y=2z=0).

3. Show that x + y + 2 + xyz® = 0 defines z implicitly as a function of x
and y in a neighborhood of (0, 0, 0). Expand =z to fourth order in powers
of x and y.

3.2 Curves and Surfaces in Implicit Form

a. Plane Curves in Implicit Form

The description of a plane curve by an equation of the form y = f(x)
gives asymmetric preference to one of the coordinates. The tangent
and the normal to the curve were found (see Volume I, pp. 344-345)
to be given by the respective equations

(10a) M=—y)—-CE-2f(x)=0
and
(10Db) n—fx)+E—x=0,

where &, 1 are the “running coordinates” of an arbitrary point on the
tangent or normal, and x, y are the coordinates of the point on the
curve. The curvature of the curve is



Developments and Applications of the Differential Calculus 231

(IOC) k= (leflzngz

(see Volume I p. 357). For a point of inflection the condition
(10d) f'(x)=0

holds. We shall now obtain the corresponding symmetrical formulae
for curves represented implicitly by an equation of the type F(x, y) = 0.
We do this under the assumption that at the point in question Fy
and Fy are not both 0, so that

(11) F.? + F,2 0.

If we suppose that Fy = 0, say, we can substitute for f'(x) in (10a,
b), its value from (4), p. 221, and at once obtain the equation of the
tangent in the form

(12a) E—-0F:+(M—yF,=0
and that of the normal in the form
(12b) E—-x)Fy—(m—yF:=0.

For Fy = 0, F; # 0 we obtain the same equations by starting from the
solution of the implicit equation F(x, y) = 0 in the form x = g(y).

The direction cosines of the normal to the curve at the point (x, y)—
that is, the direction cosines of the normal to the line with equation
(12a) in the &, n-plane—are given by

COS 0l = TH——r=, siln 0 = =
VE2 + F2°

(12¢c)

[see (20), p. 135] Similarly, the direction cosines of the tangent to the
curve—that is, of the normal to the line (12b)—are

—‘Fy . Fz
(12d) cosb= Ut R P TR R

There are actually two directions normal to the curve at a given
point, the one with direction cosines (12c) and the opposite one. The
normal given by (12c) has the same direction as the vector with com-
ponents Fy, Fy, the gradient of F (see p. 205). We saw on p. 206 that the
direction of the gradient vector is the one in which Fincreases fastest;
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thus, at a point of the curve F(x, y) = 0 the gradient points into the re-
gion F > 0 and the same holds for the normal direction determined by
the formulae (12c).

Formula (5), p. 223 gave the expression for the second derivative y”’ =
f"(x) of a function given in explicit form F(x, y) = 0. It follows
that the necessary condition f” = 0 for the occurrence of a point of
inflection can be written as

(13) Fyzez - 2FxFnyy + szFyy =0

for curves given implicitly. In this formula there is no preference for
either of the two variables x, y. It is completely symmetric and no
longer requires the assumption that Fy #= 0. This symmetric charac-
ter reflects, of course, the fact that the notion of point of inflection has
a geometrical meaning quite independent of any coordinate system.

If we substitute formula (5) for f”/(x) into the formula (10c) for the
curvature & of the curve, we again obtain an expression! symmetric in
x and v,

_ Fy?Fps — 2F:FyFay + F.*F,,
(14a) k= (F2 + F,2)2 .

Introducing the radius of curvature

(14b) P

& bt

we find for the coordinates &, n of the center of curvature, the point on
the inner normal at distance p from (x, y) (see Volume I, p. 358),

F, Fy
(140) &;:x—p‘/Fxg_*_Fyg,n=y—p‘/Fz2+ﬁv¥

If instead of the curve F(x,y) = 0, we consider the curve
F(x,y) =c,

where c is a constant, everything in the preceding discussions remains
the same. We only have to replace the function F(x, y) by F(x, y) — ¢,
which has the same derivatives as the original function. Thus, for

1For the sign of the curvature, see Volume I, p. 357. The curvature k& defined by
formula (14a) is positive if F increases on the “outer” side of the curve, that is, if the
tangent to the curve near the point of contact lies in the region F = 0.
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these curves, the form of the equations of the tangent, normal, and
so on are exactly the same as above.

The class of all curves F(x, y) — ¢ = 0 that we obtain when we
allow ¢ to range through all the values of an interval forms the family
of “contour lines,” or “level lines,” of the function F(x, y); (see p.
14). More generally, we obtain a one -parameter family of curves from
an equation of the form

F(x,y,¢) =0,

which for each constant value of the parameter ¢ yields a curve I',
in implicit form. For a point (x, y) lying on the curve I'; —that is, sat-
isfying the equation F(x, y, ¢) = 0—all the formulae derived pre-
viously apply. In particular, the gradient vector (Fu(x, y, ¢), Fy(x, y, ¢))
is normal to I'; at the point (x, y).

As an example, we consider the ellipse

(15a) F(x, y)——+i)—2 1.

By (12a) the equation of the tangent at the point (x, y) is
E-D+0-N%=

hence, from (15a),

We find from (14a) that the curvature is

a'b?
(15b) k= m .

If a > b, this has its greatest value a/b? at the verticesy =0, x = +a.
Its least value b/a? occurs at the other vertices x = 0, y = +b.

If two curves F(x, y) = 0 and G(x, y) = 0 intersect at the point (x, y)
the angle between the curves is defined as the angle @ formed by
their tangents (or normals) at the point of intersection. If we recall
that the gradients give the direction of the normals and apply formula
(7), p. 128 for the angle between two vectors, we find that
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© = Fsz + FyGy
COSO=VUF2 + Fe VG2 + G2

(16)

Here cos o is determined uniquely by the choice of ® as angle be-
tween the normals of the two curves in the directions of increasing
F and G.

Putting @ = /2 in (16), we obtain the condition for orthogonality,
that is, for the curves to intersect at right angles at the point (x, y):

(163.) FzG:p + FyGy =0.

If the curves touch—that is, have a common tangent and normal in the
point where they meet—their gradient vectors (F;, Fy) and (Gz, Gy)
must be parallel. This leads to the condition

(16b) Fsz - Fny = 0.

As an example, we consider the family of parabolas

(17a) F(x, y, ¢) =y% — 2c(x + g) =0

(see Fig. 3.9, p. 245), all of which have the origin as focus (*confocal
parabolas”). If ¢1 > 0 and c2 < 0, the two parabolas

F(x,y,c1) =y — 2C1(x + %1—) =0

and
C2
F(x,y,c2) = y? — ZC2(x + —2*) =0

intersect each other perpendicularly at two points; for at the points of
intersection

x = — %(cl + ¢2), y2= — cic,

and hence,

Fz(x, Y, Cl) Fx(x, Y, 02) + Fl/(x: Y, Cl) Fy(x, Y, C2)
=4(cicz + y?) =0.
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By (14a) the curvature of the parabola (17a) is given by

c2

k= (2 + 232"

At the vertex x = —c/2, y = 0, this reduces to

1
k=
lel
The center of curvature or center of the osculating circle at the vertex
has then by (14c¢) the coordinates

¢

€= 2+|CIsgnc=, n=20

NI

so that the focus (0, 0) lies halfway between the vertex and the center
of curvature.

Exercises 3.2a

1. Find the equations of the tangent and normal for the curves given
implicitly by the following relations:
(@) x24+2y2—xy=0
(b) e*siny +eYcosx =1
(¢) cosh(x +1)—siny=0
(d) x24+y2=y +sinx
(e) x3+ y4=coshy
) xv+yz=1,
2. Calculate the curvature of the curve
sin x +cosy =1
at the origin.
3. Find the curvature of a curve that is given in polar coordinates by the
equation f(r, 6) = 0.
4. Prove that the intersections of the curve
x+y—a)®+2Taxy =0
with the line x + y = a are inflections of the curve.
5. Determine a and b so that the conics
4x2 4+ 4xy + y2 — 10x — 10y + 11 =0
b+bx—1—0b2—alby—x+1—0b)=0
cut one another orthogonally at the point (1,1) and have the same
curvature at this point.
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6. Let K’ and K” be two circles having two points A and B in common. If
a circle K is orthogonal to K’ and K”, then it is also orthogonal to every
circle passing through A and B.

b. Singular Points of Curves

In many of the formulae of the preceding section the expression
F,? + F,® occurs in the denominator. Accordingly, we may expect
something unusual to happen when this quantity vanishes, that is,
when F; = 0 and Fy = 0 at a point of the curve F(x,y) = 0. Atsuch a
point the expression ' = — F;/Fy for the slope of the tangent losesits
meaning.

We call a point P of a curve regular if in a neighborhood of P either
variable x or ¥ can be represented as a continuously differentiable
function of the other. In that case, the curve has a tangent at P and is
closely approximated by that tangent in a neighborhood of P. If not
regular, a point of the curve is called singular or a singularity.

From the implicit function theorem we know that if F(x, y) has con-
tinuous first partial derivatives, then a point of the curve F(x, y) = 0
is regular if at that point F,2 + Fy2 £ 0, for if F, 0 at P, we can
solve the equation F(x,y) = 0 and obtain a unique continuously
differentiable solution y = f(x). Similarly, if F; = 0 we can solve the
equation for x.

An important type of singularity is a multiple point, that is, a point
through which two or more branches of the curve pass. For example,
the origin is a multiple point of the lemniscate (Volume I, p. 102)

(x2 + y2)% — 2a%(x2 — y2) = 0.

It is clear that in the neighborhood of a multiple point we cannot
express the equation of the curve uniquely in the form y = f(x) or x =

8().
An example of a singularity that is not a multiple point is furnished

by the cubic curve
Flx,5) = y* — 22 = 0.

(see Fig. 3.5). Here at the origin F, = Fy = 0. Solving for y, we can
put the equation of the curve into the form

y=fx)=¥x2,

where f is continuous but not differentiable at the origin. The curve
has a cusp at that point.
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Figure 3.5 The curve y3 — x2=0.

A curve can be regular at a point where both F;and Fy vanish. This
is exemplified by

Flx,y) =y —xt=0.
Here again F; = Fy = 0 at the origin. But solving for y, we find
¥ =f(x) = ¥x¢,

where f(x) is continuously differentiable for all x. Thus, the origin is
a regular point. Since F is an even function of x, the curve is sym-
metric with respect to the y-axis. It is convex and touches the x-axis
at the origin, like the parabola y = x2. Yet the origin is a somewhat
special point for the curve, since there f becomes infinite, and there
the curve has infinite curvature.

The trivial example of the equation

Fx,y)=(y—x2=0

representing the straight line y = x shows that no peculiar behavior
has to be associated with points of a curve F(x, y) = 0 for which
F.2+ Fy2 = 0. We shall treat singular points more systematically
in Appendix 3.

Exercises 3.2b

1. Discuss the singular points of the following curves at the origin:
(a) F(x,y) =ax® + by  —ecxy=0
() F(x,y) =(y*—2x)> —x* =0
© Fx,y)=@0+et?)y —x=0
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@ F(x,y)= y*2a—x) —x*=0
(&) F(x,y) =(y —2x)* — x> =0.
2. The curve x® 4+ y® — 3axy = 0 has a double point at the origin. What are

its tangents there?

3. Draw a graph of the curve (y — x?)2 — x5 = 0, and show that it has a
cusp at the origin. What is the peculiarity of this cusp as compared with
the cusp of the curve x2 — y3 = 0?

4. Show that each of the curves
(x cos « — y sin & — b)3 = ¢(x sin « + y cos «)2,
where « is a parameter and b, ¢ constants, has a cusp and that the cusps
all lie on a circle.

5. Let (x, ¥) be a double point of the curve F(x, y) = 0. Calculate the angle ¢
between the two tangents at (x, y), assuming that not all the second
derivatives of F vanish at (x, y). Find the angle between the tangents at
the double point

(a) of the lemniscate,
(b) of the folium of Descartes (cf. p. 224).
6. Find the curvature at the origin of each of the two branches of the curve
y(ax + by) = cx® + ex®y + fxy? + gys.

c. Implicit Representation of Surfaces

Hitherto, we have usually represented a surface in x, y, z-space by
means of a function z = f(x, y). For a given surface in space the pref-
erence for the coordinate z implied in this representation may prove
inconvenient. It is more natural and more general to represent sur-
faces in space implicitly by equations of the form F(x, y, 2) = 0 or
F(x, y, 2) = constant. For example, it is better to represent a sphere
about the origin by the symmetric equation x2 + y2 + 22 — r2 = 0
than by z = + +r2 — x2— 2. The explicit representation of the sur-
face appears then as the special implicit representation F(x,y, 2) =
4 —f (x’ Yy ) = 0.

In order to derive the equation of the tangent plane at a point P
of the surface F(x, y, z) = 0, we make the assumption that at that point

(18) F22 + Fy? + F.2 = 0,

that is, that at least one of the partial derivatives is not 0.1 If, say,
F; # 0, we can find an explicit equation z = f(x, y) for the surface near
P. The tangent plane at P has the equation

1Just as for curves, the vanishing of the gradient of F'usually corresponds to singular
behavior of the surface. We shall not discuss the nature of such singularities.
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(19a) C—z=CE—2fz+ M-y

in running coordinates &, 1, { (see p. 47). Substituting for the deriva-
tives of f their values fz = — F3/F,, fy = —Fy/F: in accordance with
formulae (9a), p. 229, we obtain the equation of the tangent plane in the
form

The normal to the tangent plane (19b) has the same direction as the
gradient vector (Fy, Fy, F;) (see p. 134). Hence, the direction cosines
of the normal are given by the expressions

_ F, 5 F,
COSO=VF2r FR+ F2 B PTUF2+ FE+ F2’

F,
VE2 + F2 + F2°

(19¢)

cosy =

Here, more precisely, we have taken that normal of the plane that
points in the direction of increasing F (see p. 206).

If two surfaces F(x, y, 2) = 0 and G(x, y, 2) = 0 intersect at a point,
the angle o between the surfaces is defined as the angle between their
tangent planes or, what is the same thing, the angle between their
normals. This is given by

COSO= e Fl+ F2 VG2 + G2 + G2 °

(20a)

In particular, the condition for perpendicularity (orthogonality) is

Instead of a surface given by an equation F(x, y, z) = 0, we may con-
sider more generally surfaces given by F(x, y, z) = ¢, where cis a con-
stant. Different values of ¢ yield different level surfaces of the function
F (see p. 15). At any point (x, y, 2) the gradient vector (Fy, Fy, F;)
is normal to the level surface passing through that point. Similarly,
equation (19b) gives the tangent plane to the level surface.

As an example, we consider the sphere

X%+ y2 + 22 =r2

By (19b), the tangent plane at the point (x, y, 2) is
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E—x2x+M—y2y+@C—2)22=0
or
Ex +ny +lz=r2

The direction cosines of the normal are proportional to x, y, 2, that is,
the normal coincides with the radius vector drawn from the origin
to the point (x, ¥, 2).

For the most general ellipsoid with the coordinate axes as principal
axes

x2 y2 22
a® b2

the equation of the tangent plane is

Ex my Gz
ﬁ-i--b—z‘+c§=1.

Exercises 3.2¢c

1. Find the tangent plane
(a) of the surface

x3+2xy2 —T722+3y+1=0

at the point (1, 1, 1);
(b) of the surface
4+y)2+x2—y2+Txy+3x+2t—2=14
at the point (1, 1, 1);
(¢) of the surface
. 3
s1n2x+cos(y+z)=z

at the point (n/6, =/3, 0).
(d) of the surface
1+ xcosnz+ysinnz—22=0

at the point (0, 0, 1);
(e) of the surface

cosx+cosy+2sinz=20

at the point (0, 0, —=/2);
(f) of the surface

x2+y*=22+sinz

at the point (0, 0, 0).
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2. Prove that the three surfaces of the family of surfaces

X,
?y=u, V2 + 22 +VyR422=0v, Vx24 22 —VyPt+2P=w
that pass through a single point are orthogonal to one another.

3. The points A and B move uniformly with the same velocity, A starting
from the origin and moving along the z-axis, B starting from the point
(a, 0, 0) and moving parallel to the y-axis. Find the surface generated
by the straight lines joining them.

4. Show that the tangent plane at any point of the surface x2 + y> — 22 =1
meets the surface in two straight lines.

5. If F(x, y, 2) = 1 is the equation of a surface, F being a homogeneous
function of degree h, then the tangent plane at the point (x, y, 2) is given
by

EFz + nFy + CF; = h.
6. Let z be defined as a function of x and y by the equation
x3 4+ y3 + 2% — 3xyz = 0.
Express z; and zy as functions of x, y, z.

7. Find the angle of intersection of the following pairs of surfaces, at the
indicated points:

(a) 2x% + 3y3 — 422 = —4, 1+ x24+y2=22%at(0, 0,1)

(b) x¥ +y:=2, cosh(x+y—2)+sinh(x+z—1)=1at(,1,0)
(c) x2+ y2 = e?, x2 4 22=ev, at (1,0, 0)

(d) 1 + sinh (x/vz) = cosh (y/vz), %2+ y*=22—1,at(0,0,1)

(e) cos n(x2+ y) + sinn(x2+ 2) =1, x3 4+ y3 = 23 at (0, 0, 0).

3.3 Systems of Functions, Transformations, and Mappings

a. General Remarks

The results we have obtained for implicit functions now enable us
to consider systems of functions, that is, to discuss several functions
simultaneously. In this section we shall ccnsider the particularly im-
portant case of systems in which the number of functions is the same
as the number of independent variables. We begin by investigating the
meaning of such systems in the case of two independent variables.
If the two functions

(21a) E=¢(x,y) and 1 =v(xy)

are both continuously differentiable in a set R of the x, y-plane, the
domain of the functions, we can interpret this system of functions in



242 Introduction to Calculus and Analysis, Vol. 11

two different ways. The first ("‘active”) interpretation is by means of a
mapping or transformation. (The second, as a coordinate transforma-
tion, will be discussed on p. 246). To the point P with coordinates (x, ¥)
in the x, y-plane there corresponds the image point IT with coordinates

(¢,m) in the &, n-plane.
An example is the affine mapping or transformation

€ = ax + by, =cx + dy

where a, b, ¢, d are constants (see p. 148).

Frequently (x, y) and (§, n) are interpreted as points of one and the
same plane. In this case we speak of @ mapping, or a transformation of
the x,y-plane into itself.

The fundamental problem connected with a mapping is that of its
inversion, the question whether and how x and y can in virtue of the
equations & = ¢ (x, y) and n = y(x, y) be regarded as functions of £ and
n and how to determine properties of these inverse functions.

If for (x, y) varying over the domain R of the mapping the images
(€, M) vary over a set B in the &, n-plane, we call B the image set of R
or the range of the mapping. If two different points of R always corre-
spond to two different points of B, then for each point (€, 1) of B thereis
a single point (x, y) of R for which (€, n) is the image. (The point (x, y)
is called the inverse image, as opposed to the image). That is, we can in-
vert the mapping uniquely, determining x and y as functions

(21b) x=gEm), y=hEn),

which are defined in B. We then say that the mapping (21a) hasa
unique inverse or is a 1-1 mapping, and we call the transformation
(21b) the inverse mapping or transformation of the original one.

If in this mapping the point P = (x, y) describes a curve in the
domain R, its image point (§, n) usually will likewise describe a curve
in the set B, which is called the image curve of the first. For example,
to-the line x = ¢, which is parallel to the y-axis, there corresponds in
the &, n-plane the curve given in parametric form by the equations

(22a) £ =4y, n=v(),

where y is the parameter. Again, to the line y = k there corresponds
the curve

(22b) £ =d(x, k), n=vylx,k).
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If to ¢ and k we assign sequences of equidistant values ci, c2,c3, . . .
and ki, ko, ks, . . ., then the rectangular “coordinate net” consisting
of the lines x = constant and y = constant (e.g., the network of lines
on ordinary graph paper) gives rise to a corresponding net of curves,
the curvilinear net, in the &, n-plane (Figs. 3.6 and 3.7). The two
families of curves can be written in implicit form. If we represent the
inverse mapping by the equations (21b), the equations of the curves
are simply

p
y=k;
yi y=ky
kj I= c_,
k2 XeCy
ki
[4 Tz 0 >
' G Gy §

Figure 3.6 and Figure 3.7 Nets of curves x = constant and y =
constant in the x, y-plane and the &, n-plane.

(22¢) g&m)=c and AE M) =k

respectively. In many situations the curvilinear net furnishes a useful
geometric picture of the mapping (21a) preferable to the interpretation
of the equations as a two-dimensional surface in four-dimensional
x, ¥, £, n-space.

In the same way, the two families of lines § = y and n = x in the &,
n-plane correspond to the two families of curves

#x,y) =7 and y(x,y) = K

in the x, y-plane.

As an example, we consider the inversion (also called mapping by
reciprocal radii or reflection with respect to the unit circle). This trans-
formation is given by the equations

— x — J
(233.) &.»—x2+y2’ Tl—x2+y2

To the point P = (x, y) there corresponds the point IT = (€, n) lying on
the same ray OP and satisfying the equation
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1

or OH='O—P;

2 | . cl—
(23b) N P

thus, the length of the position vector OP is the reciprocal of the
length of the position vector OIL. Points inside the unit circle x2 + y?
= 1 are mapped on points outside the circle and vice versa. From (23b)
we find that the inverse transformation is. .

4 n

Terw YTEen

which is again an inversion; that is, the inverse image of a point coin-
cides with its image.

For the domain R of the mapping (23a) we may take the whole x, y-
plane with the exception of the origin, and for the range B the whole
€, n-plane with the exception of the origin. The lines & = yand n =
in the &, n-plane correspond to the respective circles

x2+y2—%x=0 and x2+y2—%y=0

in the x, y-plane. In the same way, the rectilinear coordinate net in
the x, y-plane corresponds to the two families of circles touching the
E-axis and n-axis at the origin.

As a further example we consider the mapping

E=2a%—y% m =2y

The curves £ = constant give rise in the x, y-plane to the rectangular
hyperbolas x2 — ¥ = constant, whose asymptotes are the lines x = y
and x = — y. The lines 1 = constant also correspond to a family of
rectangular hyperbolas having the coordinate axes as asymptotes.
The hyperbolas of each family cut those of the other family at right
angles (Fig. 3.8). The lines parallel to the axes in the x, y-plane corre-
spond to two families of parabolas in the &, n-plane, the parabolas n2 =
4c?(c? — &) corresponding to the lines x = ¢ and the parabolas n2 =
4k2(k? + E) corresponding to the linesy = k. All these parabolas have
the origin as focus and the &-axis as axis; they form a family of
confocal and coaxial parabolas (Fig. 3.9).

One-one transformations have an important interpretation and ap-
plication in the representation of deformations or motions of continu-
ously distributed substances, such as fluids. If we think of such a sub-
stance as spread out at a given time over a region R and then deformed
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Figure 3.8 Orthogonal families of rectangular hyperbolas.

Figure 3.9 Orthogonal families of confocal parabolas.

by a motion, the substance originally spread over R will in general
cover a region B different from R. Each particle of the substance can
be distinguished at the beginning of the motion by its coordinates
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(x, y) in R and at the end of the motion by its coordinates (€, 1) in B.
The 1-1 character of the transformation obtained by bringing (x, ¥)
into correspondence with (&, n) is simply the mathematical expression
of the physically obvious fact that separate particles remain separate.

Exercises 3.3a

1. Find the image curves of the lines x = const., ¥y = const. under the
following transformations:
(a) £ =e*cosy, n=-e%*siny
(b) E=(x—»/2, n=7xy
(¢) £=Vx[y, n=cos(x+y)
@ E=x+y2 n=y+x*—1
(e) E=ua¥, n=y"
(f) £ = sinh x, n = coshy
(g) E=sin(x+y), n=cos(x—y)
(h) a = g¢08 T, n= esin ¥,
2. Find the image of the region bounded by the curve cosh? x + sinh?2y =1
under the mapping £ = e%, n = e¥.
3. Find the image of the rectangle 1 <x <3, 4 <y <16, under the
mapping { = Vx +y, n=+vVy—x.
4. Is the transformation £ = x — xy, n = 2xy one-to-one?

b. Curvilinear Coordinates

Closely connected with the first interpretation (as a mapping) of
the system of equations & = f(x, y), 1i = y(x, y) is the second interpreta-
tion as a transformation of coordinates in the plane. If the functions
¢ and v happen not to be linear, this is no longer an “affine” trans-
formation but a transformation to general curvilinear coordinates.

We again assume that when (x, y) ranges over a region R of the
x, y-plane the corresponding point (£, ) ranges over a region B of the
g, n-plane and also that for each point of B the corresponding (x, ¥)
in R can be uniquely determined; in other words, that the transfor-
mation is 1-1. The inverse transformation we again denote by x =
g, m), y = h(, m).

By the coordinates of a point P in a region R we now mean any
number-pair that serves to specify the position of the point P in R
uniquely with respect to a given coordinate frame. Rectangular coordi-
nates form the simplest system of coordinates that extend over the



Developments and Applications of the Differential Calculus 247

whole plane. Another familiar system is the system of polar coordi-
nates in the x, y-plane, introduced by the equations

E=r= VT
n = 0 = arc tan y/x 0 <06 < 27).

When we are given a system of functions & = d(x, y), 1 = v(x, y)
as above, we can in general assign to each point P(x, y) the corre-
sponding values (£, n) as new coordinates, for each pair of values (€, 1)
belonging to the region B uniquely determines the pair (x, y), and,
thus, uniquely determines the position of the point P in R. The “co-
ordinate lines” & = constant and n = constant are then represented
in the x, y-plane by two families of curves, which are defined implicitly
by the equations ¢(x,y) = constant and w(x,y) = constant, respec-
tively. These coordinate curves cover the region R with a coordinate
net (usually curved), for which reason the coordinates (§,1) are also
called curvilinear coordinates in R.

We shall once again point out how closely these two interpreta-
tions of our system of equations are interrelated. The curves in the
E,n-plane that in the mapping correspond to straight lines parallel
to the axes in the x, y-plane can be directly regarded as the coordinate
curves for the curvilinear coordinates x = g(€,n), ¥y = h(§,n) in the
€, n-plane; conversely, the coordinate curves of the curvilinear system
E= d(x, ), n = y(x, y) in the x, y-plane in the mapping are the images
of the straight lines parallel to the axes in the &, n-plane. Even in the
interpretation of (§,m) as curvilinear coordinates in the x,y-plane,
we must consider a &,m-plane and a region B of that plane in which
the point with the coordinates (£,m) can vary if we wish to keep the
situation clear. The difference is mainly in the point of view.! If we are
chiefly interested in the region R of the x, y-plane, we regard &, 0
simply as a new means of locating points in the region R, the region
B of the &, 1-plane being then merely subsidiary; while if we are equal-
ly interested in the two regions R and B in the x,y-plane and the &, 7-
plane, respectively, it is preferable to regard the system of equations
as specifying a correspondence between the two regions, that is, a
mapping of one on the other. It is, however, often desirable to keep the
two interpretations, mapping, and transformation of coordinates,
in mind at the same time.

IThere is, however, a real difference, in that the equations always define a mapping,
no matter how many points (x, y) correspond to one point (€, ), while they define a
transformation of coordinates only when the correspondence is 1-1.
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If, for example, we introduce polar coordinates (r, 0) and interpret
r and 0 as rectangular coordinates in an r,0-plane, the circles r =
constant and the lines 8 = constant are mapped on straight lines
parallel to the axes in the r, 8-plane. If the region R of the x, y-planeis
the circle x2 4+ y2 < 1, the point (r, 0) of the r, 6-plane will range over
arectangle0 <r =<1, 0= 0 < 2rn, where corresponding points of the
sides 8 = 0 and 8 = 2= are associated with one and the same point of
R and the whole side r = 0 is the image of the origin x = 0, y = 0.

Another example of a curvilinear coordinate system is the system
of parabolic coordinates. We arrive at these by considering the family
of confocal parabolas in the x, y-plane (cf. also p. 234 and Fig. 3.9)

y2 = 2c(x + g),

all of which have the origin as focus and the x-axis as axis. Through
each point of the plane but the origin there pass two parabolas of the
family, one corresponding to a positive parameter value ¢ = £ and the
other to a negative parameter value ¢ = 1. We obtain these two values
by solving for c¢ the quadratic equation y2 = 2¢c(x + c/2) using the
values of x and y corresponding to the point; this gives

E=—x+ Va2 +y% n=-—2x— Va2 fy2

These quantities £ and n may be introduced as curvilinear coordinates
in the x, y-plane, the confocal parabolas then becoming the coordinate
curves. These are indicated in Fig. 3.9 if we imagine the symbols (x, y)
and (&, n) interchanged.

In using parabolic coordinates (£, 1) we must bear in mind that the
one pair of values (§, n) corresponds to two points (x, y) and (x, —y),
the two intersections of the corresponding parabolas. Hence, in order
to obtain a 1-1 correspondence between the pair (x, ¥) and the pair
(¢, 1), we must restrict ourselves to a half-plane, y > 0, say. Then every
region R in this half-plane is in 1-1 correspondence with a region B
of the &, n-plane, and the rectangular coordinates (£, n) of each point in
this region B are exactly the same as the parabolic coordinates of the
corresponding point in the region R.

Exercises 3.3b

1. Prove that forx + 1, 0 < y < n/2,£ = (sin y)/(x — 1), » = x tan y, define a
system of curvilinear coordinates.



Developments and Applications of the Differential Calculus 249

2. Find the equation for the circle x2 + y2 = 1 in terms of the curvilinear
coordinates
E=x3+1, n=xy.

3. For what points of the x, y-plane can we not use £ = xy and n = x2 4+ y2
as curvilinear coordinates?

¢. Extension to More Than Two Independent Variables

For three or more independent variables the state of affairs is an-
alogous. Thus, a system of three continuously differentiable functions

E=6(x.5,2), nN=vw(xy2), {=xxy2),

defined in a region R of x, y, z-space, may be regarded as the mapping
of the region R on a region B of &, n, {-space. If this mapping of R on
Bis 1-1, so that for each image point (€, n, {) of B the coordinates
(x, 5, 2) of the corresponding point (original point or inverse image) in
R can be uniquely calculated by means of functions

X = g(&’ n, C)’ y= h(&, n, C)x zZ= l(&: n, C);

then (&, n, {) may also be regarded as general coordinates of the point
P in the region R. The surfaces £ = constant, n = constant, { = con-
stant, or, in other symbols,

#(x, y, 2) = constant, w(x,y, 2) = constant, x(x,y, 2) = constant,

then form a system of three families of surfaces that cover the region
R and may be called curvilinear coordinate surfaces.

Just as for two independent variables, we can interpret 1-1 trans-
formations in three dimensions as deformations of a substance spread
continuously throughout a region of space.

A very important system of coordinates are the spherical coordi-
nates, sometimes called polar coordinates in space. These specify the
position of a point P in space by three numbers: (1) the distance r =
Vx2 + y% + 22 from the origin; (2) the geographical longitude ¢, that
is, the angle between the x, z-plane and the plane determined by P and
the z-axis; and (3) the polar inclination or complementary latitude
0, that is, the angle between the radius vector OP and the positive
z-axis. As we see from Fig. 3.10, the three spherical coordinates r, ¢, 0
are related to the rectangular coordinates by the equations of trans-
formation
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Z)

Figure 3.10 Spherical coordinates.

x =r cos ¢ sin 0,
y =rsin ¢ sin 0,
z=rcos 0,

from which we obtain the inverse relations

r=JVx2+y2 4+ 22

¢ = arc cos ‘/m = arc sin ‘/m
0= oz . VaZ 4y
= arc cos \/mzw = arc sin _\/—f—m

For polar coordinates in the plane the origin is an exceptional point
in that the 1-1 correspondence fails because the angle is indeter-
minate there. In the same way, for spherical coordinates in space the
whole of the z-axis is an exception in that the longitude ¢ is indeter-
minate there. At the origin itself the polar inclination 8 is also indeter-
minate.

The coordinate surfaces for three-dimensional polar coordinates
are as follows; (1) for constant values of r, the concentric spheres
about the origin; (2) for constant values of ¢, the family of half-planes
through the z-axis; (3) for constant values of 0, the circular cones with
the z-axis as axis and the origin as vertex (Fig. 3.11).

Another coordinate system that is often used is the system of
cylindrical coordinates. These are obtained by introducing polar co-
ordinates p, ¢ in the x, y-plane and retaining z as the third coordinate.
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Figure 3.11 Coordinate surfaces for spherical coordinates.

Then the formulae for transformation from rectangular coordinates
to cylindrical coordinates are

X = p cos ¢,
y=psing,
z=2z

and the inverse transformation is

p=ViT ¥yt

_x  _ Y
¢ = arc cos N i arc sin Ve 5t
z2=2z

The coordinate surfaces p = constant are the vertical circular cyl-
inders that intersect the x, y-plane in concentric circles with the
origin as center; the surfaces ¢ = constant are the half-planes
through the z-axis, and the surfaces z = constant are the planes paral-
lel to the x, y-plane.

Exercises 3.3c

1. Find the inverse of the curvilinear coordinate transformation

E= — > -y (=— 2
T X2 4 y2 4 g2 n_x2+y2+22’ T X2 4 y2 4 22’
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2. Invert the coordinate transformation w =r cos ¢, x = r sin ¢ cos ¢,
y=rsinésin{ cos 6,z = rsin ¢ sin ¢ sin 0. What are the sets r = con-
stant, ¢ = constant, ¢ = constant, 6 = constant?

d. Differentiation Formulae for the Inverse Functions

In many cases of practical importance it is possible to solve the
given system of equations explicitly, as in the above examples, and
thus to recognize that the inverse functions are continuous and pos-
sess continuous derivatives. If we may presume the existence and dif-
ferentiability of the inverse functions, we can calculate the deriva-
tives of the inverse functions without actually solving the equations
explictly in the following way: We substitute the inverse functions
x = g€, ),y = h(§, m) in the given equations & = g(x,y), n = y(x, ¥).
On the right we obtain the compound functions ¢(g(§, n), A(€, n)) and
w(g(€, n), h(, n)) of £ and n; but these must be equal to £ and n, respec-
tively. We now differentiate each of the equations

(242) & = ¢(g(&, m), h(E, )
n = w(g(&, n), h(E, m)

with respect to £ and to n, regarding £ and 1 as independent variables!
and applying the chain rule to differentiate the compound functions.
We then obtain the system of equations

(24b) 1 = @28t + dyhe, 0 = gugn + dyhn,
0 = vagt + Wyhe, 1= Yagn + Yyhn

Solving these equations, we obtain expressions for the partial deriva-
tives of the inverse functions x = g(§, n) and y = h(§, n) with respect
to £ and m, expressed in terms of the derivatives of the original func-
tions ¢(x, y) and y(x, ¥) with respect to x and y, namely,

(240) ga:ﬂ, gﬂz_%’ hiz—%, hﬂ—¢x

or

1These equations hold for all values of § and n under consideration; as we say, they
hold identically, in contrast to equations between variables that are satisfied only
for some of the values of these variables. Such identical equations or identities, when
differentiated with respect to any of the variables occurring in them, again yield
identities as follows immediately from the definition.
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o"

(24d) x¢=%, xn=——%’, yo= B,  yy=

For brevity we have here written
(24e) a& adg
dox dy

on o
dx dy

D=Emy — &Mz =

This expression D, which we assume is not zero at the point in ques-
tion, is called the Jacobian or functional determinant of the functions
£ = é(x, y) and n = y(x, y) with respect to the variables x and y. It
plays a major role wherever we consider transformations, as will
become apparent in the sequel.

Above, as occasionally elsewhere, we have used the shorter notation
E(x, y) instead of the more detailed notation & = ¢(x, y), which dis-
tinguishes between the quantity & and its functional expression
#(x, ¥). We shall often use similar abbreviations in the future when
there is no risk of confusion.

For polar coordinates in the plane expressed in terms of rectangular
coordinates,

E=r=+vx2+y and n=9=arctan‘y£,

the partial derivatives are

x x _ y __y

=

I ) _x
ez”xz_*_yz_—rz’ 0y ~ r2c

rETmie T VT iy
. x
x2 + y?
Hence, the Jacobian has the value
1

sza_%_zk_,

and the partial derivatives of the inverse functions (rectangular co-
ordinates expressed in terms of polar coordinates) are, by (24d),

Xr =

N IR
N

» Xo = —Y, Yr = » Yo = X,
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as we could have found more easily by direct differentiation of the in-
verse formulae x = r cos 0, y = r sin 0.

The Jacobian occurs so frequently that a special symbol is often
used for itl:

_dE,n)
(25) D= Aoy

The appropriateness of this abbreviation will soon be obvious. From
the formulae for the derivatives of the inverse functions (24b), we find
that the Jacobian of the functions x = x(€, n) and y = y(&, n) with
respect to £ and 1 is given by the expression

dx,y) _ _ _ &y =&z _ 1 _ (d(E, n)) 1
@ g = o w = S = p=ge)

That is, the Jacobian of the inverse system of functions is the reciprocal
of the Jacobian of the original system.?

We can also express the second derivatives of the inverse system
of functions in terms of the first and second derivatives of the given
functions. We have only to differentiate the linear equations (24b)
with respect to £ and to n by means of the chain rule. (We assume, of
course, that the given functions possess continuous derivatives of the
second order.) We then obtain linear equations from which the re-
quired derivatives can readily be calculated.

For example, to calculate the derivatives

02 02
5*;26 =g& and a_—g}; = hg

we differentiate the two equations

1 = Epar + Eyye
0 = naxe + Nyye

once again with respect to £ and by the chain rule obtain

(27a) 0 = Egaxe? + 2Eayxeye + Eyyye? + Eaxee + Euyee,
10ften the Jacobian is written with the partial derivative sign as
_ & m
ax, y)

2This, of course, is the analogue for the rule for the derivative of the inverse of a
function of a single variable (Volume I, p. 207).
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(27b) 0 = MazXe? + 2NzyXey: + Nyyye? + NaXer + Eyyee.

If we solve this system of linear equations, regarding the quantities
xee and yee as unknowns (the determinant of the system is again D,
and therefore, by hypothesis, not zero) and then replace x: and y: by
the values already known for them, a brief calculation gives

1 | EzaNy® — 262yNany + EyyMa® &y
(27¢) Xeg = — e 9 o
NzaNy? — 2E2yMaMy + NyyN™ My
and
1 | Ezany® — 2EayNany + EyyMa® &
@) oy | 2
NzzNy® — 2NeyNally + NyyNa? Mo

The third and higher derivatives can be obtained in the same way,
by repeated differentiation of the linear system of equations; at each
stage we obtain a system of linear equations with the nonvanishing
determinant D.

Exercises 3.3d

1. Find the Jacobians of the following transformations:
(a E=ax+ by, wn=cx+dy
(b) r=+vVx2+ %, 0 =arc tan y/x
(© E=x% n=y?
(d) & =1log (x2 4 y?), 7 = arc tan %
(e E==xy2, 71 =x2
®) E=x*—y, n=y"+nx

2. For each of the transformations given in Exercise 1, give the points
(x, ) lacking neighborhoods where the transformation has an inverse.

3. Find the Jacobian of the transformation & = f(x, y), n = g(x, y), as well
as all partial derivatives of x, y with respect to £, n through those of
second order, in each of the following cases:

(a) £ =e% cos y, n=e%siny

(b) E=x2—y%  n=2xy

(c) &€ =tan (x + ¥), 1 = cos (x — y), —nf2<x+y<m2
(d) & = sinh x + cosh y, n = —cosh x + sinh y

(e E=x+y%,  n=uxy
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4. A transformation is said to be “conformal” (see p. 288) if the angle
between any two curves is preserved
(a) Prove that the inversion

_x R

Taxt gz T g2y
is a conformal transformation;

(b) prove that the inverse of any circle is another circle or a straight
line;

(c¢) find the Jacobian of the inversion.

5. Let K1, K2, K3 be three circles passing through 0 and having distinct
pairwise intersections, say Pi, P2, Ps3, at other points. Show that the
sum of the angles of the curvilinear triangle P1 Pz P3, formed by circular
arcs, is =.

6. A transformation of the plane

u=19e(xy), v=4yx1y)
is conformal if the functions ¢ and ¢ satisfy the identities
Pz = Yy, Py = — Ya.

7. Prove that if all the normals of a surface z = u(x, y) meet the z-axis,
then the surface is a surface of revolution.

8. The equation

£

x® Y
a—t+b—t_1 (@a>b)

determines two values of ¢, depending on x and y:
L= )‘(x, Yy )a
t2 = w(x, ).

(a) Prove that the curves {1 = constant and {2 = constant are ellipses
and hyperbolas all having the same foci (confocal conics).

(b) Prove that the curves ¢1 = constant and ¢z = constant are orthogo-
nal.

(c) t1 and 2 may be used as curvilinear coordinates (so-called focal
coordinates). Express x and y in terms of these coordinates.

(d) Express the Jacobian d(t1, £2)/d(x, ¥) in terms of x and y.

(e) Find the condition that two curves represented parametrically in
the system of focal coordinates by the equations

t=fid), t2=fo(}) and h =g, & =g
are orthogonal to one another.
9. (a) Prove that the equation in ¢
x2 y2 22
a—t+b—t+c—t—

has three distinct real roots t1, Z2, t3, which lie respectively in the
intervals

1 @>b>c)
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—o<t<e, c<t<b, b<t<a,

provided that the point (x, y, 2) does not lie on a coordinate plane.
(b) Prove that the three surfaces {1 = constant, t2 = constant, {3 = con-
stant passing through an arbitrary point are orthogonal to one an-
other.
(c) Express x, y, z in terms of the focal coordinates t1, t2, ts.

10. Prove that the transformation of the x, y-plane given by the equations
_y = )\ 1 _y
°= 2(x+x2+y2)’ 1""2("_xz+y2)
(a) is conformal;

(b) transforms straight lines through the origin and circles with the
origin as center in the x, y-plane into confocal conics ¢ = constant
given by

&2 1]2
i+ 12T i—12
11. For £ =f(x,y), 1 = g(x,¥), and D = 9(,7)/d(x,y) #+ 0, demonstrate the
identities
9D _ 9y, m) | 9, my)
@ Gy =36 Ty
(b) D73 [Ez(nyy D — nyDy) — Ey(nayD — nyD3)]
= D73 [12(8yyD — EyDy) — ny(EayD — EyD2)].

=1.

e. Symbolic Product of Mappings

We begin with some remarks on the composition of transformations.
If the transformation

(28a) E=4¢(x,5, n=v(x1y)

gives a 1-1 mapping of the points (x, y) of a region R on points(§,n) of
the region B in the &, n-plane and if the equations

(28b) u=0¢E ), v=YEn)

give a 1-1 mapping of the region B on a region R’ in the u, v-plane,
then a 1-1 mapping of Ron R'is generated. This mapping we naturally
call the resultant mapping or transformation and say that it is obtained
by composition of the two given mappings and that is represents their
symbolic product. The resultant transformation is given by the equa-
tions

u=0@(x, y),v(x,5), v="Tx 3),v);

from the definition, it follows at once that this mapping is 1-1.
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By the rules for differentiating compound functions, we obtain

du du

(292) ax Qcdsr + Pnyz, @ = Qedy + Dnyy,
d ad

(29b) 5y = ¥ibs + Pavs, 5o = Wby + Fayy.

In matrix notation (p. 152)

ou o
dx 0 o: D

30) y =( 3 n)<¢z ¢y).
dv dv Ye ¥a/\Wz Yy
dx 0Jy

On comparing this with the law for the multiplication of determinants
(cf. p. 172) we find?! that the Jacobian of u and v with respectto x and

y is
Bla) o - — oo A = (D¥n — OnPe)(Bayy — FyWa).

In words, the Jacobian of the symbolic product of two transformations
is equal to the product of the Jacobians of theindividual transformations,
namely, in the notation (25),

d(u, v) _ d(u,v) dE, n)
d(x,y) d@E,n) dx, )’

This equation brings out the appropriateness of our symbol for the Ja-
cobians. When transformations are combined, the Jacobians behave
in the same way as the derivatives behave when functions of one variable
are combined. The Jacobian of the resultant transformation differs
from zero, provided the same is true for the individual (or component)
transformations.

If, in particular, the second transformation

u = ®E,n), v="YEmn)

(31b)

is the inverse of the first,
E=4(x,5), n=vxy)

1The same result can, of course, be obtained by straightforward multiplication.
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and if both transformations are differentiable, the resultant transfor-
mation will simply be the identical transformation; that is, u = x,
v = y. The Jacobian of this last transformation is obviously 1, so that
we again obtain the relation (26).

From this, incidentally, it follows that neither of the two Jacobians
can vanish:

d@E,n) dx,y) _
d(x,y) dE,m)

For a pair of continuously differentiable functions ¢(x, y) and vy (x, ¥)
that has a nonvanishing Jacobian, we can find formulae for the
corresponding mapping of directions at a point (xo, y0) = Po. A curve
passing through P can be described parametrically by equations x =
f(®), y = g(t), where f(to) = xo, g(to) = yo. The slope of the curveat Po
is given by

_ &(t)
™= F)

Similarly, the slope of the image curve

& = o(f(t),g®), n=w(f(t),g@)

at the point corresponding to Py is

(32) = dn/dt _ Vof + g _c+dm
dt/dt  ¢.f + dug' a+ bm’

where a, b, ¢, d are the constants
a = ¢x(x0, yO), b = ¢y(x0, yO), c= "’x(xos yO), d = \I/y(xO, yO)-

The relation (32) between the slope m of the original curve at Py and
the slope p of the image curve is the same as for the affine mapping

& = @(xo, y0) + a(x — x0) + b(y — yo),
n = y(xo, y0) + c(x — x0) + d(y — yo).
that approximates our mapping near Py. Since

dp _ ad — be
dm ™ (a + bm)?’
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we find that p is an increasing function of m for ad — bc > 0 and a de-
creasing function for ad — bc < 0.1

Increasing slopes correspond to increasing angles of inclination
or to counterclockwise rotation of the corresponding directions. Thus,
dp/dm > 0 implies that the counterclockwise sense of rotation is pre-
served, while it is reversed for du/dm < 0. Now, ad — bc is just the
Jacobian

$z Py
Yz Yy

dE,m) _
d(x, y)

evaluated at the point Po. It follows that the mapping £ = #(x,y),n =
y(x, y) preserves or reverses orientations near the point(xo, yo) according
to whether the Jacobian at that point is positive or negative.

Exercises 3.3e

1. For each of the following pairs of transformations find (u, v)/d(x, )
first by eliminating £ and =, then by applying (31b):

1
@ {u=§10g(E2+n2) {E=elcosy
v=arctan£ n=e%sin y
u=E—n? £ =1xcosy
(b) {U:ZEn {7)=xs1ny
u = et cos v £ = x/(x2 + y?)
© {vzeﬁsinn {v):—y/(x2+y2)

2. In which of the following successive transformations can x, y be defined
as continuously differentiable functions of «, v in a neighborhood of the
indicated point (uy, vy)?

(a) £E=e%cosy, n=e%siny;
u==E82—m2 v=2Em uo=1, vo=0;

(b) £ = cosh x + sinh ¥, n = sinh x 4+ cosh y,
u=etM v=e" uo=ve=1,;

() E=x8—y3 n=2x+ 2xy%
u=8+nv=9>"—E uw=1 vo=0.

3. Consider the transformation

{u=¢(ﬁ,n) {E=f(x)
v =Em) n = &(y).
Show that

1More precisely, this holds locally, excluding the directions where m or p become
infinite.
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ow,v) o . 0u,v)
3y =@ ED 5 0
4. If z =f(x, y) and £ = ¢(x,y), 1 = ¢ (x, ¥), show that

9z _(z,m) |9, M)
£~ d(x,y) | ax,y)

and

9z 9, 2) ) 9E,m)
o~ A(x,y)/ 9(x,y)
provided a(¢, n)/a(x, y) # 0.

f. General Theorem on the Inversion of Transformations and of
Systems of Implicit Functions. Decomposition into Primitive
Mappings

The possibility of inverting a transformation depends on the
following general theorem:

Let ¢(x, y) and w(x, y) be continuously differentiable functions in a
neighborhood of a point(xo, yo), for which the Jacobian D = ¢zyy — dy ¥z
is not zero at (xo, ¥o). Put uo = ¢(xo0, y0), Vo = w(xo, y0). Then there
exists a neighborhood N of (xo, yo) and N’ of (uo, Vo) such that the map-

ping

(33a) u=¢@xy), v=yxy)

has a unique inverse

(33b) x=g(u,v), y=hu,v

mapping N’ into N. The functions g and h satisfy the identities
(33¢c) u=¢@gu,v), h(u,v), v=y@Ek,v), hu,v)

for (u, v) in N', and the equations

(33d) x0 = g(wo, vo), ¥o = h(uo, ve).

The inverse functions g, h have continuous derivatives for (u, v) near
(uo, Vo), given by

w_1av  ax_ 1w
(33e) 3u=D 3y’ = " Day

dy _ _1av oy _ 1 du
(33f) = "Dox’ v-Dax



262 Introduction to Calculus and Analysis, Vol. I1

The proof follows from the implicit function theorem on p. 228,
which permits one to solve an equation for a single variable. In es-
sence, we invert equations (33a) by solving the first equation for one
of the variables x, y and substituting the resulting expression into the
second equation, obtaining an equation for the second variable alone.

Since by assumption the Jacobian D does not vanish at the point
(x0, ¥0), at least one of the first derivatives of ¢(x, y) differs from zero
at that point. Let, say, (%o, ¥0) = 0. We can then solve the equation

(34a) u = ¢(x,y)

for x. More precisely, we can find positive constants A1, k2, 3 such that
for

(34b) |l —uo| < h1, |y — yol<hz

equation (34a) has a unique solution x = X(u, y) for which|x — x| <
hs. The function X(u, y) has the domain (34b) and satisfies the equa-
tions

(34c) #(X(u,y),y) = u, X(uo,yo) = xo,
and the inequality
(34d) | X(u, y) — xo| < hs.
Moreover, X(u,y) has continuous derivatives, for which, by (34c),
(34e) 3 X (1, 3), ) Xu(u, y) = 1
(34f) $(X (1, 3), 1) Xu(u, ) + 64(X(u, ), y) = 0.
We assume here that Az, ks are so small that the rectangle
(34g) |x — xo|l < hs, |y —yol<he

lies in the domain of g(x, ), ¥(x, y). Substituting the expression
X(u,y) for xinto the functions y(x, y), we obtain a compound function

(34h) v(X(w, »),y) = 1w, )
with domain (34b). Here, by (34c, f),

(34i) x(o, y0) = W(xo, y0) = Vo
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; D
(341) Xill(u09 yO) =‘|’sz + yy= —\[ngf + Yy = ¢—z- = 0,

we have ¢, # 0 from (34e). It follows that we can find positive con-
stants ha4, hs, he such that for

(34k) lu — uol<< ha, |v— vo|<hs
the equation
(34m) 1w, y) =v

has a unique solution y = h(u, v), for which |y — yo| < he. We can
assume here that hs < h1, he < h2 (see footnote on p. 228).
Finally, we set

(34n) X(u, Mu, v)) = g(u, v).

The two functions g(u, v), h(u, v) have the domain (34k). By (34c, h)
they satisfy the equations

#(g(u, v), h(u, v)) = dX(u, h(u, v)), Ay, v)) = u
v(g(u, v), k(u, v)) = ¥(X(u, h(y, v), K, v)) = x(u, h(y, v)) = v
and the inequalities
|g(u, v) — xo0| << hs, |h(u,v) — yo| << he.
Formulae (33e, f) for the derivatives of g and h were derived earlier,

on p.253.
To show the uniqueness of the inverse functions, assume that x,

y, u, v is any set of values that satisfy the equations (33a) and the
inequalities

lx — xol<hs, |y—yol<he, |u— uol<hs |v— vo|<hs.
Since (34a,b) hold, we conclude that
(340) x = X(u, y).

From (34h) we obtain the equation

v =vy(x,y) = v(X(w,y),y) = 1u,3),
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which has the unique solution y = A(w, v). The relation x = g(u, v)
then follows from (34n, o). The relations (33d) for g and A follow from
the uniqueness of the solution and the assumption that uo = g(xo, yo),
vo = y(xo, Yo).

We have assumed so far that g«(xo, yo) # 0. If gz(xo, y0) = 0, but
dy(x0, ¥0) # 0, the inversion of the mapping (33a) proceeds similarly.
In this case we solve the first equation of (33a) for y and substitute the
resulting function y = ¥(u, x) into the second equation, obtaining an
equation for x alone.

The inversion of the plane mapping (33a) has been reduced to inver-
sions of mappings in which only one variable is transformed at a time.
Generally, we call the transformation (33a) primitive, if it leaves one
of the coordinates unchanged, that is, if either the function ¢(x, y)
is identical with x or the function y(x,y) is identical with y. The effect
of a primitive transformation of the type u = ¢(x, ), v = y is to move
each point in the direction of the x-axis, keeping its ordinate un-
changed. After deformation the point has a new abscissa, which de-
pends on both x and y. If the Jacobian ¢ of the primitive mapping is
positive, u varies monotonically with x for fixed jy.

We shall prove that we can decompose an arbitrary transformation
(33a) with nonvanishing Jacobian into primitive transformations in a
neighborhood of a point. This follows readily from our construction of
the inverse mapping. If g=(xo, yo) # 0, we represent the mapping (33a)
as the symbolic product of the primitive mappings

(34p) E=4¢(x,5), n=y
and
(34q) u=¢§ v=xEn.

Here the domain R of the first mapping in the x, y-plane shall be a rec-
tangle so small that

lx — x| <hs, |y— yol<he, |f(x,y)— tho|<h,
while the second mapping has the domain
1€ — wo| < h1, |m — yol<< he.

It follows that the image (€, n) of a point (x, ) of R in the mapping
(34p), lies in the domain of the mapping (34q) and that

x = X(, ).
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Consequently, also

(84r) x = X(#(x, ¥), ).
For the mapping compounded from (34p, q) we then have by (34 h, r)

u = ¢(x,y)
= x(8(x, ), y) = ¥(X (§(x, ¥), ), y) = v(x, y).

An analogous decomposition of the mapping (33a) is obtained when
Bz(x0, y0) = 0 but gy(x0, yo) = 0. We only have tointerchange the roles
of the variables x and y.

We cannot expect to resolve a transformation into primitive trans-
formations in one and the same manner throughout the whole open
region R. However, since some type of decomposition can be carried
out near each point of R, every bounded closed subset of R can be sub-
divided into a finite number of sets! such that in each one of those
sets one of the decompositions is possible.

The inversion theorem is a special case of a more general theorem
that may be regarded as an extension of the theorem of implicit func-
tions to systems of functions. The theorem of implicit functions (p.
228) applies to the solution of one equation for one of the variables.
The general theorem is as follows:

If é(x, y, u, v, . . ., w) and y(x, y, u, v, . . ., w) are continuously
differentiable functions of x, y, u, v, . . ., w, and the equations

#x,y,u,v,...,w)y=20 and yix,y,u,v,...,w)y=0

are satisfied by a certain set of values xo, yo, uo, Vo, . . ., wo and if in ad-
dition the Jacobian of ¢ and v with respect to x and y differs from zero
at that point(thatis, D = ¢zyy — dyYz # 0), thenin the neighborhood of
that point the equations ¢ = 0 and y = 0 can be solved in one, and only
one way for x and y, and this solution gives x and y as continuously dif-
ferentiable functions of u, v, . . ., w.

The proof of this theorem is similar to that of the inversion theorem
above. From the assumption D 7 0 we can conclude that at the point
in question some partial derivative does not vanish, say ¢, = 0. By the
main theorem of p. 228, if we restrict x, y, u, v, . . ., w to sufficiently
small intervals about xo, yo, 4o, vo, . . ., wo, respectively, the equation
#(x, y, u, v, . . ., w) = 0 can be solved in exactly one way for x as a

1This follows from the covering theorem, p. 109.
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function of the other variables, and this solutionx = X(y, u, v, . . ., w)
is a continuously differentiable function of its arguments and has the
partial derivative Xy = — #y/dz. If we substitute this function x =
X(y,u,v,. .., w)iny(x,y,u,v,. . ., w), we obtain a function y(x, y, u,
v,...,w)y=xy u, v ... w),and

- _u.t _D

Ay = \I’z¢x+‘l’y—¢x-
Hence, in virtue of the assumption that D = 0, we see that the deriva-
tive yy is not zero. Thus, if wer estricty, u,v, . . ., w to intervals about
Yo, Uo, Vo, . . . Wo contained in the intervals to which they were pre-
viously restricted, we can solve the equation ¥ = 0 in exactly one way
for y as a function of u, y, . . ., w, and this solution is continuously dif-
ferentiable. Substituting this expression for y in the equation x =
X(y,u,v, . ..,w), wefind xasafunctionofu,v, . . ., w. This solution is
unique and continuously differentiable, subject to the restriction of
x, ¥ u,v,. .., wtosufficiently small intervals about xo, yo, uo, vo, . . .,
wo, respectively.

Exercises 3.3f

1. Which of the following systems of equations may be solved for x, y as
continuously differentiable functions of the remaining variables near
the indicated points?

(@) e*sinu —e?cos v+ w=20
x cosh w — u sinh y — v2 = cosh 1
x=1Ly=06bu=0v=0w=1
(b) ucosx —vsiny+ w?=1
cos (x +y) +v=1,
x=0,y=r2,u=1v=1Lw=1
© x*+y2+ut—v=0
x2—y24+2u—1=0
x=y=u=v=1
(d) cosx+tsiny=20
sin x — cos ty = 0,
x=xny=rn2t=1.

g. Alternate Construction of the Inverse Mapping by the Method
of Successive Approximations

In the preceeding proof the problem of inverting a mapping was re-
duced to the one-dimensional case and ultimately to the elementary
fact that the mappings furnished by continuous monotone functions
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of a single variable can be inverted. This line of argument has two un-
desirable features. We are forced to distinguish different cases leading
to quite different resolutions (say, for ¢, # 0 and ¢, = 0), which donot
correspond to any radical change in the character of the original
transformation. Moreover, the existence proof is not constructive;
it does not furnish a practical numerical scheme for inverting map-
pings. Both of these objectionable features are absent in the method
of iteration or of successive approximation that follows the pattern of
the numerical methods given in Volume I (p. 502) for the solution of
equations for a single unknown quantity. The basic idea is to apply
successive corrections to an approximate solution, where the cor-
rections are determined from the linear equations best approximating
the functional relation in a neighborhood of a point.
We again consider the equations

(35a) u=¢x), v=vx,y),

where ¢ and y are continuously differentiable functions in an open set
R of the x, y-plane. Let (xo, y0) be a point of R at which the Jacobian

9 Py

(35b)
Yz Vy

has a value different from zero, and let (o, vo) be the image of (xo, yo)
in the mapping (35a). We want to show that for (u, v) sufficiently close
to (uo, vo) there exists a uniquely determined value (x, ¥) near (xo, yo)
for which u = é(x, y) and v = y(x, y).

To obtain the solution we shall use an iteration scheme identical
with that for functions of one variable discussed in Volume I (p. 502)
in a notation appropriate to the two-dimensional case. We introduce
the vectors U = (u, v), X = (x, y). We can write the mapping (35a)
concisely in the form

(35¢) U = FX),

where F is the nonlinear transformation mapping the vector with com-
ponents x, ¥ onto the vector with components ¢(x, y), y(x, y). The dif-
ferentials dx, dy and du, dv satisfy the linear relations (see p. 49)

(35d) du = dp = ¢, dx + ¢y dy

(35e) dv =dy = y; dx + yy dy.
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If we combine the differentials into vectors dX = (dx, dy), dU = (du,
dv), we can write! the relations (34d, e) as

(35f) dU = F' dX,

where F’ is the square matrix formed from the first derivatives of the
mapping functions

- Y

Obuiously the matrix ¥’ plays the role of the derivative of the vector
mapping function F. The determinant of F’ is just the Jacobian (35b)
of the mapping.2 Generally we shall write F/ = F/(X) to emphasize the
dependence of the matrix F’ on the vector X = (x, y). For a linear
mapping the matrix F’ is constant.

The “size” of the elements of the matrix F’ limits how much the
mapping F can magnify distances. Take two points (x, y) and (x + A,
y + k) such that the whole straight line segment joining them lies in
the domain of the mapping. By the mean value theorem for functions
of several variables (p. 67),

$(x + h,y + k) — §(x,5) = dzh + $uk,

y(x + h,y + k) — w(x,y) = y