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Preface 

This book is partly based on Calculus by H. Flanders, R. Korfhage, and J. J. Price, 
Academic Press, 1970, and on the spin-offs of that text: A First Course in Calculus with 
Analytic Geometry, Aca<temic Press, 1973, and A Second Course in Calculus , Academic 
Press, 1974. However, it is essentially a new text rather than a second edition. We 
have rethought our basic approach to calculus in general and to many topics in 
particular; we have rewritten virtually everything taken from Calculus, and we 
have made· many additions and subtractions of topics, examples, exercises, and 
figures. 
Our basic objective is teaching the student how to set up and solve calculus 

problems-in short, bow to apply calculus. Our initial approach to each topic is 
intuitive, numerical, and motivated by examples, with theory kept to a bare mini
mum. Later, after much experience in the use of the topic, we present an appropriate 
amount or theory. 
We have included more than enough accurate definitions, theorems, and proofs, 

but they are definitely or secondary importance in this text We believe that intuitive 
derivations students can remember are far more valuable than precise formal proofs 
they memorize for tests and promptly forget. 

Organization Some basic pre-calculus algebra and analytic geometry is reviewed 
in Chapter 1, enough analytic geometry to hold us until Chapter 9, the big chapter 
on plane analytic geometry-which concludes with some applications of calculus. 
There is also a brief review of the trigonometric functions in Chapter 4. 
Chapters 2-4 and 7 include differentiation, some usual and unusual applica

tions, and the basic transcendental functions and their inverses. Chapters 5, 6, and 8 
cover integration and applications. Chapters 1�12 form a unit on approximation, 
infinite series and integrals, and power series, winding up one-variable calculus. 
There is no separate chapter on differential equations as such, but there is a good 
deal of material in examples and exercises. 
Cbapers 13 and 14 contain solid analytic geometry, vectors, and curves. Chap

ters 15 and 16 contain the differential calculus of several variables, and the final 
Chapters 17 and 18, double and triple integrals. 
We tried to think of each section as a teaching unit and to keep the time required 

per section constant. We did not entirely succeed, but still we hope this will have 
a positive effect on the teachability of the text. Similarly, we have tried to keep chapter 
lengths more or less equal, thinking of each as a unit for a test. 

v 
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Applications Calculus was invented to solve real world problems and has 
proved indispensable in applications. We think the subject should be presented 
with this in mind, not as an abstract discipline. Therefore we have tried to include 
a variety of realistic and interesting applications. 

Examples and Exercises The worked examples are the core of this text. 
We have tried to select appropriate ones that illustrate how each topic in calculus 
is used, and to grade their difficulties. There are about 480 formal examples, many 
with two or three parts, and about 170 informal examples. 

Give or take a few, there are 5,010 exercises in the text, maybe 1,500 new, many 
unusual. About 35 % are easy and routine drill, about 40 % are middle level, and 
about 25 % are hard. (Very hard exercises are *-ed.) There is a high correlation 
between topics in the examples and in the exercises, particularly in the easy and 
middte level exercises. 

Each chapter ends with a set of 20--40 miscellaneous exercises. In the early chapters, 
they are mostly review exercises. Later when we have more material to work with, 
we use some or these exercises for interesting and off-beat material and applications. 

As far as possible, we have tried to include interesting exercises, exercises that 
arouse curiosity and make the student want to know their answers. We have also 
tried for a reasonable balance between exercises that come out with clean solu
tions and those that do not. 

Many exercises call for numerical answers. Today almost all calculus students 
have access to a scientific pocket calculator. This allows them to put their time into 
the set-up and solution of numerical exercises rather than into the drudgery of 
computations with tables. We recommend that those students without a calculator 
work just to slide rule accuracy, and we include absolutely minimal tables for this 
purpose. 

In many examples and exercises, the correct answer is an arithmetic expression, 
but we usually include a numerical estimate to reinforce the reality of the answer. 
For instance, an exercise on vectors calls for the dihedral angle between races or a 
regular tetrahedron. The answer is arc cos!. but we add� 70.529°. 

A short, but very practical integral table (plus some useful formulas) is printed 
inside the front and back covers. It includes some one- to three-dimensional definite 
integrals that are frequently needed in exercises. 

Figures The drawings are an intimate part or this text and have been designed 
to convey a maximum or information. Virtually every figure from Calculus has 
been redrawn or replaced. A guiding principle in all figures is clarity and lack or 
clutter. Another is accuracy. For contrast and emphasis we have introduced a second 
color. Sometimes we use different scales on the axes to achieve a more reasonable 
graph. Altogether there are about 880 figures in the text and exercises and about 
165 in the Answer Section. 

Space Geometry Inability to visualize in space is a key difficulty for students 
or calculus. We believe that lack of adequate figures is a major cause of this diffi-
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culty. We have put as much work into the space figures for this book as into the 
accompanying text. 

In our drawings, we have tried to choose projections that make the spatial aspects 
of the figures clear, usually not the standard oblique projections. To simplify our 
figures, we have transferred as much information as possible to legends. We have 
used a small computer to plot accurately the projections of curved figures. Finally, 
we have used a variety of techniques, for instance, varied line weights, color, degrees 
of shading, soft edges, overlap of black and color screens, and always breaking 
lines that pass behind others, all intended for greater clarity. 

Choice of Topics Because of the impact of computer science, numerical 
analysis, and new areas of application, there is considerable interest in having new 
topics and a shift in emphasis in the calculus course. We have chosen subject matter 
accordingly, and in most subjects we have included (possibly optional) material in the 
hope of satisfying the growing demand for new and diversified topics. 

Although nothing is marked optional as such, no one will want to cover every
thing. Besides the common core of standard material, there is wide variety of ad
ditional topics for the instructor to choose from, according to the needs of his or 
her classes. An instructor may want to cover more theory or less theory, more or 
less applications (more biological, less physical, more social science, etc.), and 
similarly for numerical analysis-computing oriented material, routine exercises 
versus harder ones, and so on. 

Notation We have taken special pains to keep the notation simple, clean, and 
visually pleasing. For instance, we prefer c rather than x0 for a special value of x 
because subscripts are always hard on students. We prefer f[g(x)] rather than the 
more syntactically correct f(g(_x)) because the double parentheses make one need
less additional hurdle to a student's reading. There are many other instances of this 
sort. 

At the same time, we do not deviate from the standard notation for calculus 
that students will meet in later courses. And in notes we alert students to alternative 
notations they may encounter in life. 

Design The design of this book, a natural evolution from several previous texts, 
places emphasis where it belongs, and we note the following features: (1) Each 
term that is defined is printed in bold face. That way, a student flipping pages to 
locate a half-forgotten definition finds the key words easily-it jumps out of the 
page. The usual italic type for definitions doesn't do this at all, and we reserve italics 
for stress in the text. (2) Main statements (theorems, rules, definitions, etc.) are 
boxed, usually with a bold face title in the box. (3) Formal examples begin and end 
with a solid square • in color. That way, a student is never left guessing where the 
solution ends. (4) Remarks, notes, warnings, etc., are set off from the text and used 
to give insights into what is really going on. (5) Vectors are printed in extra bold 
face sans serif type (v, w, etc.). This is by far the best method of emphasizing the 
distinction between scalar and vector quantities, and is attractive to read. (6) In 
each section, the examples are numbered simply Example l, Example 2, etc., and 
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the figures, Fig. l ,  Fig. 2, etc. Very few formulas at all are numbered and then only 
for immediate reference. We feel that the elaborate decimal system numbering of 
theorems, formulas, etc., of research writing has no place in a lower division text. 
(7) We have simplified the punctuation by deleting the usual (unnecessary) periods 
in titles, captions, exercises' numbers, etc. (8) We have made a conscious effort to 
keep our English simple and to write in a plain, active style, without fuss. (9) Finally, 
we hope our detailed index will be useful. 

History of Calcu lus Our experience is that most students are uninterested 
and bored by material on the historical development of the calculus. They are 
generally motivated to learn the use of calculus and they resent as wasted time, 
such cultural material. Therefore, we have included extremely little history and few 
names and dates. 

Acknowledgments We and our publisher acknowledge with pleasure the 
assistance rendered by the following individuals and organizations. First, the 
Department of Mathematics of University College, London where the authors 
were guests for the academic year 1974-75. Next, our co-author Bob Korfhage 
of Calculus, who was overcommitted and could not join us on this project, but whose 
influence we feel keenly. We are very grateful to Charles C. Alexander, University 
of Mississippi, Arthur Copeland, Jr., University of New Hampshire, Charles 
Miller, Foothill Community College, and William Ritter, Rose-Hulman Institute 
of Technology who reviewed the manuscript in several drafts and contributed 
numerous valuable suggestions. Our technical artist, Rino Dussi, did a superb job 
of executing our sketches. And finally, our typesetter, Santype, Ltd., produced 
remarkably accurate work from our handwritten manuscript. 



Functions and Graphs I 
1. INTRODUCTION 

Everyone is familiar with the use of graphs to summarize data (Fig. 1 ). The figure 
shows three typical graphs. There are many others; one secs graphs concerning 
length, time, speed, voltage, blood pressure, supply, demand, etc. 

All graphs have an essential common feature; they illustrate visually the way one 
numerical quantity depends on (or varies with) another. In Fig. l, (a) shows how the 
price of a certain manufactured item depends on the quantity available, (b) shows a 
"doomsday" estimate of world population versus time, and (c) shows how Fahren
heit readings depend on (arc related to) centigrade readings. 

price($) population 

supply 1980 :!020 oc 
(a) (b) (c) 

Fi&- l Typical graphs 

Graphs are pictures or functions. Roughly speaking, a function describes the 
dependence of one quantity on another or the way in which one quantity varies with 
another. We say, for instance. that price is a function of supply, or that population is 
a function or time, etc. 

Functions lurk everywhere; they are the basic idea in almost every application of 
mathematics. Therefore, a great deal of study is devoted to their nature and proper
ties. As Fig. l illustrates, a graph is an excellent tool in understanding the nature of a 
function. For it is a kind of" life history" or a function, to be seen at a glance. 

The functions and graphs we shall deal with concern quantities measured in the 
real number system. This consists of the familiar numbers of our experience. Before 

1 
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starting our study of functions and graphs, we shall devote a brief section to the real 
number system itself. 

2. REAL N U MBERS 

The real numbers are the common numbers of everyday life. Everyone is familiar 
with their arithmetic. In more advanced courses they are defined and developed 
rigorously. However, that is a deep and lengthy project, not in the spirit of this book. 
We shall be content simply to quote their properties as we need them. 

First of all. we list the basic rules of arithmetic that we use automatically when 
computing with real numbers. 

Arithmetic of Real Numbers 

Associative laws a +  (b + c) = (a +  b) + c a(bc) = (ab)c. 
ab= ba. 

a·  J = a. 
Commutat ive laws 
Zero and un it y laws 
Distribut ive laws 
l nverse laws 

a + b= b + a  
a + O = a  

a( b + c) = ab + ac 

If a is any real number, then there 
is a unique real number -a such 
that 

a +  (-a) = 0. 

(a + b)c = ac + be. 

If a is any real number different 
from 0, then there is a unique 
real number a-1 such that 

a ·  a-• = J .  

We write a - b = a +  (- b), and a/b = ab-1ifb=F0. 

Order Besides satisfying the rules of arithmetic, the real number system is 
endowed with an order relation; we can say that one number is greater or less than 
another. Recall the notation: 

a < b a is less than b, 
a 5 b a is Jess than or equal to b, 
a > b a is greater than b, 
a � b a is greater than or equal to b. 

The three most basic properties of the order relation are these: 

Properties of Order 
Rejlexivit y 
Ant i-symmetry 
Transit ivit y 

a 5 a .  
If a � b and b � a, then a = b. 
If a 5 band b 5 c, then a 5 c. 

Picturing the real number system as a number line (Fig. J) helps us visualize the 
order relation. Thus a < b means that a is to the left of b. 



2. Real Numbers 3 c>d d c a 
Fla. I The number line 

a<b b 
The set of all numbers between two fixed numbers is called an interval on the 

number line. An interval may include one or both of its end points, or neither. For 
example, -2 � x � 1 describes the closed intenal of all numbers between -2 and l, 
in cluding the end points, while 3 < x < 7 describes the interval strictly between 3 and 
7, that is, excluding the end points (Fig. 2). 
--1 ............ --�1--.... 1--..... � ...... --41--..... --.,._�--- 1--.... 1�·� 

-3 -2 -I 0 2 3 4 5 6 7 8 

(a) -2 <x <I (b) 3<x<7 
Fla. 2 Examples or intervals 

In working with the order relation, we use the following rules: 

Rules for Order 

( 1) If  a< band if c is any real number, then a± c < b ± c. 
(2) If a <  band c > 0 ,  then ac < be. 
(3) If a <  band c < 0, then be < ac. 
(4) If 0 < a  < b or a < b < 0, then l/b < 1/a. 
(5) The statement a <  bis equivalent to the statement b - a> 0. 

These rules apply just as well with � in place of < , except that in (4) you must have 

O < a�b or a� b < O  
because division by 0 is excluded. 

Examples From .Ji. < f follow 
(a) l + .Ji. < i (b) 2J2 < 3 (c) -2./i. > -3 (d) l /./i. > i-
Several natural extensions of the rules for order are practical in computations. 

(6) If a < A and b < B, then a + b < A + B. 
(7) If 0 < a < A and 0 < b < B, then ab < AB. 

Rules (6) and (7) apply also to three or more inequalities. For instance, if a < A, 
b < B, and c < C, then 

a+b + c < A + B + C. 
Examples From .Ji. < f and .j3 < i follow 
(a) .Ji. + .j3 < 11 (b) .ft <  lj. 

• EXAMPLE 1 l 
Solve --> 2. x + l 
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Sol•tio11 The left-hand side must be positive, so we must have x + I > 0, that is, 
x > - 1. Multiply both sides by the (positive) number x + 1; the result is 1 > 
2(x + 1) = 2x + 2. Add -2 to both sides: - I >  2x. Multiply both sides by ! to 
obtain x < -!. Answer - I  < x <  -! • 
Absolute Values Theabsolutevalueofa real number a, written l a l , is a measure 
of the sii.e of a, regardless of its sign. We define 

l a l  = ( a 
-a 

if a � 0 
ir as 0. 

For example, I -7 I = 7, I - 5.2 I = 5.2, I 3.6 I = 3.6, I 0 I = 0. Every real number 
except 0 has a positive absolute value. While it is false to say -6 > 4, it is correct to 
say l -61 > 141. 

Rules for Absolute Values 

(I) I a I = ±a, I a I > 0 if a + 0, I 0 I = 0. 
(2) I -a I = I a I· 
(3) l ab l  = l a l  · l b l . 
(4) 1 � 1 = ::: (b+O). 
(5) la+ b l  S l a l + l b l (triangle inequality). 

Examples 
Rule (3): 1(-6)(-5)1=1301 = 30 =  l-61·1-51. 
Rule (4): l -3/41 = 13/41 =3/4 = l -31/141. 
Rule (5) : 13 + 41=171 =7s l31 + 141. 

I -3 + {- 4) I = I -11 = 1 s 1-3 I + 1-4 I . 
15 - 21=131 = 3 < 151 + 1- 21. 

Rules (3) and (5) extend to three or more numbers. For instance 

labe l = lal · lb l  · l c l , la + b + c l  s la l + l b l  + l c l .  
Rule (5), the triangle inequality, is an equality if a and b have the same sign and is a 
strict inequality if they have opposite signs.- The triangle inequality has two useful 
corollaries: 

(6) la - b l  S l a l  + l b l . 
(7) l a l  - l b l  S l a - b l . 

To obtain (6), replace b by -b in (5). To obtain (7� apply (5) to the sum 
(a - b) + b = a: 

I a I = l (a - b) + b I $ I a - b I + I b 1. hence I a I - I b I $ I a - b 1. 
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Geometric Interpretation By its very definition, l a  I is the distance on the 
number line from a to 0. Thus the "size" of a is measured by its distance from 0, a 
non-negative quantity no matter whether a is right or left of 0. 

Given distinct points a and b on the number line, the distance between them is 
l a - b l .  See Fig. 3. Thus the distance between S and 9 is I S  - 91 = l -41 = 4. 
Since l a  - b l  = lb  - al. it doesn't matter which you subtract from which; the 
answer comes out the same. 

'---- 111 -hi ----

a b 
Fia. 3 Length of a segment: L= la-bl= lb-al 

Using absolute values and inequalities, we can develop a nice shorthand to express 
geometric facts involving distances. For example, Ix - 4 j < I describes the set of 
points x whose distance from the point 4 is less than I; in other words the interval 
3 < x < S. By the same token, I x  - 4 I 5 1 describes the closed interval 3 5 x 5 S. 

The inequality I x  - a I < r describes the interval (excluding end points) 

a - r < x < a +  r. 
The inequality Ix - a I 5 r describes the closed interval (including end points) 

a - r 5 x 5 a+ r. 

We can think of I x  - a I < r as representing the interval with center at a and 
"radius" equal to r. See Fig. 4. 

a-r a 
Fis. 4 The interval Ix - a I < r 

a +r 

Of course I x  I < r represents the interval with center 0 and radius r, since I x  I = 

I x  - 0 I· In calculus, the letter £ generally denotes a small positive number, so 
I x  - a I < £ describes a small interval centered at a. Here is a simple, yet important 
principle: 

I If Ix I < £ for each £ > o. then x = o. I 
In other words, if Ix  I is smaller than every positive number, then x = 0. For the only 
point contained in every interval centered at 0, no matter how small, is the point 0. 

The Triangle Inequality This inequality, Rule (5), is more subtle than Rules 
(1 )-(4), yet is extremely valuable in calculus. Here is a typical application. Suppose a 
is close to x and b is close to y. It seems that a + b should be close to x + y. How do 
you prove that? 

file://-/a-b/-
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Well, a close to x and b close toy mean 

I x  - a I < e 1 and 

where e1 and e2 are small positive numbers. To show that l(x + y) - (a + b) I is 
small, use the triangle inequality: 

l (x + y) - (a + b) I  = l (x - a) + (y - b) I  � Ix - a l + l y - b l  < £1 +e2 • 
Therefore a +  b approximates x + y to within e1 + e2• 

Example If I x  - l I < O.Gl and I y - 5 I < 0.02, then 3x + 2y should be close to 
13. By the triangle inequality, 

l (3x + 2y) - 1 31 = l (3x - 3) + (2y - 10)1 � l 3x - 31 + l 2y - lOI 
= I Jl·lx - 1 1 + l2 l · ly - 5 I  < 3(0.01 ) + 2(0.02) = 0.01. 

EXERCISES 

Prove, using the rules of arithmetic and inequalities 
l if ab + 0, then a + 0 and b + 0 2 if ab = 0, then a = 0 or b = 0 
3 if a + 0 and b + 0, then 4 if b + 0 and d + 0, then 

(abr 1 = a- •b- 1 (a/b) (c/d) = (ac)/(bd) 
5 if b + 0, c + 0, and d + 0, then 6 if b + 0 and d + 0, then 

(a/b)/(c/d) = (ad)/(bc) a/b + c/d = (ad+ bc)/bd 
7 if a+ 0 and b + 0, then (a/br1 = b/a 
8 if 0 < a < b, then 0 < a/b < I 
9 if a, b; c, d are not all zero, then a1 + b1 + c1 + d1 > 0 

10 
al+ bl� cl + dl = (al+ bl: cl+ dlr + . . .  + (al+ bi! cl + dir 

1 1  if asb and -asb, then l a l  Sb 
12 if a and b have the same sign, or if either is zero, then I a + b I = I a I + I b I 
13 if a and b have opposite signs, then la+ b l < la! + l b l  
14 I la l - lb l l  S la - bl. 
Express, using absolute values 
15 xis either 2 or -2 
16  x is farther from a than from b 
17 x is at least as close to a as to b 
18 x is either to the left of -3 or to the right of 3 
19 x is between 16 and 18 
20 x is within distance 2 of 7. 
Express in terms of intervals, without using absolute values, all numbers x such that 
21 l 3x l  S 12 22 l!xl s S 23 Ix! S 0.01 
24 0 <  lx - 3 1 < 10-• 25 l x - 3 1 SI 26 l x + 4 1 S 2  
27 1 - Sx l  < 10 28 0 <  lx + S I < Sx 10-3 29 l x - 4 1 < S 
30 I 2x - 1 I < 4 31 I 3x + 1 I > I 32 1 7  - x I < 6 
33 I x1 - 1 1  < s 34 I x I < Ix + s I 35 o < Ix + 2 1 < 0.1 
36 o < I x - 9 I < 2 37 I x I + I x - 4 I s 4 38 Ix I + Ix - 21 < 3. 
Solve the inequalities 
39 6x - I <  3 
42 3(x - 4) > !x - 6 

40 2x + 10 < 70 
43 -4 < 2x + 6 < 16 

41 4x - S > 8x + I 
44 6 < !(x + 3) < 10 
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l l 
45 --> x + S  8 
'8 -1- > � 49 _x_ <O  x + I  x x - 3  
51 Find all points that arc 3 times as far from 5 as from I. 

47 2x + 1 < 1  4x + I  
x � 8x - 3 > O. 

52 Find all points that are 10 times as far from 5 as from I .  
53 Explain how you can tell at a glance that there is no x for which both I x  - 1 I < 2 and 

l x - 121 < 3. 
5" Explain why I a I + I b I + I c I > 0 is algebraic shorthand for Kat least one of the num

bers a, b, c is different from O." 
55 Suppose Ix - a l < 10-6• Show that j7x - 1al < 10-'. 
56 Suppose Ix - 71 < 10- 6 and IY - SI < 10-6• Show that l(x + y)- 121 < 10-'. 

[Hint Use the triangle inequality.] 
57 Suppose Ix - SI < -la and IY - 71 < -/a. Prove that l.ty - 35 1 < 1.3. 

[Hint xy - 35 = x(y - 7) + 7(x - S).] 
58 (cont.) Suppose Ix - SI < 10-6 and IY- 7 1  < 10-6. Prove that lxy - 351 < 2 x 10-'. 
59 Suppose Ix - 3 1 < 10-6• Prove that l x2 - 9 1 < 10-'. [Hint Factor x2 - 9.] 
60 (cont.) Prove lx3 - 27 1 < 5 x 10-'. 

3. COORDI NATES 

The real numbers provide labels for the points on a line. First, choose a point and 
mark it 0. Then choose a point to the right of 0 and mark it 1 .  In other words, choose 
a starting point, a unit length, and a positive direction (the direction from 0 toward 
1 ). Then mark the points 2, 3, 4, · · · to the right and - 1, -2, - 3, · · · to the left. See 
Fig. 1. (It is perfectly possible to take the positive direction to the left ; perhaps that is 
the convention on some planet in some galaxy.) 

-4 -3 -2 

0 

0 

-1 0 
Fis. I The number line 

x 

2 3 4 x 

.. 
2 3 4 x 

Here we must make a fundamental assumption. We take it as an axiom that there 
is a perfect one-to-one correspondence between the points on the line and the system 
of real numbers. That means each point is assigned a unique real number labe� and 
each real number labels exactly one point. 

Because of this close association of the real number system and the set of points on 
a line, it is common to refer to a line as the real number system and to the real 
number system as a line. For instance, in a mathematical discussion, the real number 
5.2 and the point labeled 5.2 might be considered the same. Although this is not 
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correct logically, it almost never causes confusion; in fact it often sharpens our feeling 
for a problem. 

Once the identification between real numbers and points on the line has been 
made, many arithmetic statements can be translated into geometric statements, and 
vice versa. Here are a few examples: 

A�ITHM�IC STATEME':._j 

a 1s pos1t1ve. l a> b. 
a- b = c > 0. 
a< b < c. 

1 3 - 01 < !. lal < lbl. 

GEOMETRIC ST A TEMENT 

The point a lies to the right or the point 0. 
a lies to the right orb. 
a lies c units to the right orb. 
b lies between a and c. 

The point a is within ! unit or the point 3. 
The point a is closer to the origin than the point b is. 

This close relationship between arithmetic and geometry is extremely important; 
often we can use arithmetical reasoning to solve geometrical problems or geometrical 
reasoning to solve arithmetical problems. Thus we may have two different ways of 
looking at a problem and, hence, increased chances of solving it. 

If we denote a typical real number by x, we call the corresponding line the x-axis 
and draw Fig. 2. 

-3 -2 -1 0 2 3 4 x 
Fig. 2 The x-axis 

When measuring time, we generally use t in place of x and call the corresponding 
line the t-axis. Usually 0 on the t-axis represents the time when an experiment begins; 
negative numbers represent past time, positive numbers future time. 

Coordinates i n  the Plane When the points of a line are specified by real 
numoers, we say that the line is coonlinatized: each point has a label or coonlinate. It 
is possible also to label, or coordinatize, the points of a plane. 

Draw two perpendicular lines in the plane. Mark their intersection Oand coordin
atize each line as shown in Fig. 3a. By convention, call one line horizontal and name 
it the x-axis; call the other line vertical and name it the y-axis. 

Consider all lines parallel to the x-axis and all lines parallel to the y-axis (Fig. 3b). 
These two systems of parallel lines impose a rectangular grid on the whole plane. We 
use this grid to coordinatize the points of the plane. 

Take any point P of the plane. Through P pass one vertical line and one horizontal 
line (Fig. 3c). They meet the axes in points x and y, respectively. Associate with P the 
ordered pair (x, y); it completely describes the location of P. 

Conversely, take any ordered pair (x, y) of real numbers. The vertical line through 
x on the x-axis and the horizontal line through

· 
y on the y-axis meet in a point p· 

whose coordinates are precisely (x, y). Thus there is a one-to-one correspondence, 

P --(x,y� 

between the set of points of the plane and the set of all ordered pairs of real numbers. 
The numbers x and y are the coordinates of P. The point (0, 0) is called the origin. 
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y 
3 
2 
I 

-3 - 2  - 1  0 1 2 
- 1  --

-2 --

3--

-4 --

(b) Rectanaular arid 

Fi&-3 

lC 

3. Coordinates 9 

I' 

-rt -,__ -- -� l' 

I -·-' I I 
\' x 

->- -

--

(c) P has coordinates (x, y). 

Remarks The coordinate system we have introduced is called a rectuplar or Cartesiaa 
coordinate system. 

Some writers rerer to the horizontal coordinate or a point as its allecilla and the vertical 
coordinate as its onllnate. 

Sometimes the pair (x, y) is called (ungrammatically) the coordinates or the corresponding 
point. 

The coordinate axes divide the plane into four quadrants which are numbered as 
in Fig. 4. 

second quadrant 
(-, +) 

third quadrant (-, -) 

y 

first quadrant 
(+,+) 

fourth quadrant 
(+,-) 

Fla. 4 The rour quadrants 

x 

Sometimes the two coordinate axes are used to represent incompatible physical 
quantities. When this is the case, there is no reason whatsoever for choosing equal 
unit lengths on the two axes; on the contrary, it is usually best to take different unit 
lengths, or scales. For example, Fig. S shows the distance y in miles covered by a car 
in t seconds moving in city traffic. 

If we are interested in the car's progress for about one minute, a reasonable choice 
of unit on the t-axis is 10 sec. Since we expect the car's speed to be at most 40 mph 
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0.3 

o.� 

0.1 

10 2.0 30 40 50 bO ttm.:) 

Fi&- 5 Example of different scales on the axes 

(about O. l mi per lO sec) a reasonable choice for the unit on the y-axis is 0.1 mi. If we 
choose 1 sec and 1 mi for units, the graph will be silly and impractical. Try it! 

If, however, we wish to plot the car's progress for 10 or 15 min, then 10 sec would 
probably be too small as a unit of time. A more practical choice might be 1 min as 
the time unit and 0.5 mi as the distance unit. 

EXERCIS�t:: 

Plot and label the points on one graph 
I (-4, I), (3,2), (5, -3), (1,4) 
2 (0, -2). (3, 0), (-2, 2), (I, -3) 
3 (0.2, -0.5). (-0.3,0� (-1.0, -0.1) 
4 (75, -10� (-15, 60), (95, 40). 

Choose suitable scales on the axes and label the points 
5 (150, 0.3). (50, 0.6) 6 (-0.02. 5), (0.03, 12) 
7 (0.1, -0.003). (-0.3, 0.007) 8 (-0.02, 35), (0.00, -60). 

Indicate on a suitable diagram all points (x. y) in the plane for which 
9 x= -3 10 y=2 

I I  x and }' arc positive 12 either x or y (or both) is zero 
13 l�xs3 14 -l�y�2 
15 -2 � x � 2 and -2 s .r � 2 16 x > 2 and y < 3 
17 both x and y arc integers 18 x1 > 4 
19 Ix I � I and I y I s 2 20 Ix I � 2 and I y I � 2 
21 xy > 0 and Ix I S 3 22 I x I + 1.r I > o. 

Write the coordinates (x, y) of the 
13 vertices of a square centered at (0, 0), sides of length 2 and parallel to the axes 
24 vertices of a square centered at (1, 3), sides of length 2, at 45° angles with the axes 
25 vertices of a 3-4-5 right triangle in the first quadrant, right angle at (0, O� hypotenuse of 

length 15 
26 vertices of an equilateral triangle. sides of length 2, base on the x-axis. vertex on the 

positive y-axis. 
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Let the symbol x represent a real number, taken from a certain set D of real 
numbers. Suppose there is a rule that associates with each such x a real number y. 
Then this rule is called a funcrion whose domain is D. 

For instance, suppose that to each real x is assigned a number y by the rule y = x2• 
Then this assignment is a function whose domain is the set of all real numbers. As 
another example, take the assignment of +Jx to each real number x that has a 
square root. This assignment is a function whose domain is the set of non-negative 
numbers. 

The set of all numbers y that a function assigns to the numbers x in its domain is 
called the range of the function. For example, the range of the function given by the 
rule y = 2x is the set of all real numbers; the range of the function given by y = x 2  is 
the set of all non -negati ve real numbers. We sometimes say that a function maps or 
carries its domain onto its range. 

Notation The symbol used to denote a typical real number in the domain of a 
function is sometimes called the independenl variable. The symbol used to denote the 
typical real number in the range is called the dependent variable. 

Generally, but not always, variables are denoted by lowercase letters such as t, x, y, 
z. Functions are denoted by J, g, h and by capital letters. 

If/ denotes a function, x the independent variable, and y the dependent variable, 
then it is common practice to write y = / (x ), read "y equals/ of x" or "y equals/ at 
x." This means that the function/ assigns to each x in its domain a number/ (x) 
which is abbreviated by y. 

There are several common variations of this notation. For instance, if / is the 
function that assigns to each real number its square, then we write /(x) = x2 or 
y= x2. 

Warning 1 It is logically incorrect to say .. the function f (x�" or .. the function x2, .. or the 
function .. y = /(x)." The symbolsf(x� y, x2 represent numbers, the numbers assigned by the 
function f to the numbers x. A function is not a number, but an assignment or a number y or 
/(x) to each number x in a certain domain. Nevertheless, these slight inaccuracies arc so 
universal, we shall not try to avoid them. 
Warning 2 A function is not a formula, and need not be specified by a formula. It is true that 
in practice most functions arc indeed computed by formulas. For instance,/ may assign to each 
real number x the real number y computed by formulas such as y = x2, or 
y = (JX1"+1 )/(I + 7x4), etc. Yet there arc perfectly good functions not given by formulas. 
Herc arc a few examples: 
(a) f (x) = the largest integer (whole number) y for which y � x. 11 if x > 0 

(b) f (x) = 0 if x = 0 
- I if x < 0. 

(c) /(x) = I if x is an intcger,/(x) = - I if x is not an integer. 
(d) /(x) = the number or letters in the English spelling or the rational number x in lowest 

terms. For cxamplc.f(!) = 7.f(3) = 5. 
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Keep in mind that/(x) is the number assigned to x by the functionf. If, for instance, 
/(x) = x2 + 3, then /(1) = 4, /(2) = 7, /(3) = 12. By the same token /(x + 1) = 
(x + 1)2 + 3,/(x2) = (x2)2 + 3 = x4 + 3, etc. For this particular function, you must 
boldly square and add 3 to whatever appears in the window, no matter what it is 
called: 

f (x + y) = (x + y)2 + 3, i(H = H)l + 3. 

/[f (x)] = [f(x)]2 + 3 = (x2 + 3)2 + 3 = x4 + 6x2 + 12. 

Most functions arising in practice have simple domains. The most common dom
ains are the whole line, an interval (segment) a :s; x :s; b, a .. half-line " such as x � 0 
or x < 2 or some simple combination of these. Examples: 

FUNCTION J 
/(x) = 2x + I  I 
/(x)=JX+-2 
/(x)=� 

I /(x) • -
x 

DOMAIN 

all real x (the whole line) 
x � -2 (half line) 
- I s x s I (interval) 

all x except x = 0 (union of two half-lines) 

Construction of Functions There are several standard methods for building 
new functions out of old ones. We shall list the most common of these constructions. 

I . Addit ion of functions. If f and g are functions of x defined on the same domain, 
then their sum f + g is a function defined on the same domain by 

[! + g](x) = /(x) + g(x). 

For example, let/(x) = 2x - 3 and g(x) = x2 - x - 1. Then 

[! + g](x) = (2x - 3) + (x2 - x - I )= x2 + x - 4. 
2. Mult ip lication of a funct ion by a constant. If c is a constant and/is a function, 

the function cf is defined by 
[c/](x) = cf(x). 

For example, if /(x) = x2 - 2x - 1, then 

[-5/](x) = (-5)(x2 - 2x - 1) = -5x2 + lOx + 5. 

3. Multiplicat ion of functions. If f and g are functions of x defined on the same 
domain, then their product fg is defined by 

[fg](x) = /(x)g(x). 

For example, if/(x) = 2x - 1 and g(x) = 3x + 4, then 

[fg](x) = (2x - 1)(3x + 4) = 6x2 + 5x - 4. 
4. Composit ion of functions. If g is a function whose range lies in the domain of a 

second function f, then the composite f o g off and g is defined by the formula 

[! o g](x) = /[g(x)]. 
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Think of substituting one function into the other, or replacing the variable of /by the 
function g. Here are some examples: 

l .  f(y) = y2 + 2y, g(x) = - 3x. Replace y by g(x): 
(f o g)(x) = /[g(x)] = [g(x))2 + 2[g(x)] = (-3x)2 + 2(- 3x) = 9x2 - 6x. 

The domain off is all real numbers; hence the range of g certainly lies in the domain 
off 

2. f(y) = 3y - 4, g(x) = 2x2 - x + l .  

(f o g)(x) = /[g(x)] = 3g(x) -4 = 3(2x2 - x + 1 )  - 4 = 6x2 -3x - 1. 

Again the domain off is all real numbers. 

3. /(y) = JY=l, g(x) = -x2• 
The domain or f is the set or real numbers y with ?, I. �·· g(x) "' 0. Therefore the 
composition f[g(x)] is not defined. Stated briefly, -x - 1 makes no sense. 

If, however, g(x) = 4x2, then g(x) :2:: 1 provided x I ;;:::: ! . Hence 

(f o g)(x) = J4x2 - 1 
is defined for I x I ;;:::: ! . 
Graphs of Functions Given a function/, we construct its graph, a geometric 
picture of the function. For each number x in the domain of/, we find the associated 
number y = /(x) in the range and plot the point (x, y). The locus (totality) of all such 
points is called the anpb of /(x). For example, if/(x) = x, then for each real number 
x, the associated number is y = x; we plot all points of the form (x, x). The locus 
(Fig. la) is obviously a straight line. If /(x) = x + 1, we plot all points of the form 
(x, x + 1 ). The locus is again a straight line parallel to the graph of y = x and one 
unit above it (Fig. lb). 

,l' y 
'.! l/ / / / / / / 

x _., -1 /0 '.! x / / / / -1 

r/// / - 2 / 
(a) Graph of y • x (b) Graph of y • x + I 

Fla. I 
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Terminology Instead of referring to the" graph of/ (x) = x + 1," we often say" the graph of 
y = x + I," or when we are especially lazy, "the graph of x + I." 

• EXAMPLE 1 Graph the function f (x) = Ix I· 

So/11tio1t By definition, Ix I = x when x ;;::: 0, and Ix I = -x when x :5 0. Consider 
the two cases separately. If x ;;::: 0, thenf(x) = x, hence the graph is identical for x ;;::: 0 
with the one shown in Fig. la. However, if x s; 0, thenf(x) = -x. Therefore this 
portion of the graph consists of all points (x, -x� for instance, (- l ,  l ), (-2, 2), 
(-3, 3� etc. Plot a few points; obviously the graph for x s; 0 is a half line (ray) at 
angle 135° to the positive x-axis (Fig. 2). 

_, -\ I 
Fig. 2 Graph of y = lxl 

l • EXAMPLE 2 Graph y = - . 
x 

• 

Solution The domain of/(x) = l/x consi�ts of all real numbers except x = 0, so the 
graph is not defined at x = 0. Plot a few points to get a general picture: (1, l), (2, !). 
(3, !� etc. As x increases, y decreases, so the graph approaches the x-axis from above 
(Fig. 3a). As x decreases from l toward 0, the curve rises steeply as is seen from 
plotting (!, 2), (t, 3), fl. 4), etc. Hence the graph approaches the positive y-axis 
(Fig. 3b). 

Finally, plot a few points for x < O; for instance, ( -!. -2), ( -1, - I), ( -2, -!). 
(-3, -!).etc. This part of the curve is obviously symmetric to the part for x > 0, but 
below the y-axis. Combine all this information to sketch the complete graph (Fig. 3c). 

\' 

3 

� 3 4 x 

(a) y decreases 
as x increases 

3 

'.! 3 4 x 

(b) y increases rapidly 
asx-o 

Y ... 3 Graph of y = l/x 

1 4 x 

(c) Complete gaph. Note 
symmetry of the two 
branches 

• 
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Graphical Definition of Functions Not only does each function have a graph, 
but each graph defines a function. By a graph, we mean here, a collection of points 
(x, y) in the plane such that no two of the points have the same first coordinate (only 
one point can lie above a point on the x-axis). Such a graph automatically defines a 
function: to each x that occurs as a first coordinate of a point (x, y� it assigns the 
second coordinate y. In other words,f(x) is the " height " of the graph above x. 

Graphical definition of functions is standard procedure in science. For instance, a 
scientific instrument recording temperature or blood pressure on a graph is defining 
a function of time. There is hardly ever an explicit formula for such a function. 

The graph of a function provides a picture of its domain and range. The vertical 
projection of the graph onto the x-axis is the domain; the horizontal projection onto 
the y-axis is the range (Fig. 4). 

ra111e 

domain x 
Fi&- 4 Reading the domain and range of a function from its graph 

EXERCISES 

1 Let f (x) = 2x + 5. Compute 
(a) /(0) (b) /(2) (c) /(!} (d) f (l/x) (e) f (x - 3). 

2 Letf(x) = x1 + x + I. Compute 
(a) f(O) (b) /( -x) (c) f(x1) (d) f (Ji) (e) f(x + h) -f (x). 

Graph 
3 f(x) = x + 2 
6 J(x) = -x + 1 
9 /(x) = x + O.Ql 

12 f(x) = Ix - 1 1  

4 
7 

10 

13 

f(x) = x - 1 
f(x) ... - 17 
f(x) = -x - 2.5 
f(x) = {0• x s; O  

2x, x > O  

s f(x) = -x 
I J(x) = 0.03 

1 1  f(x) - l x l 
14 f(x) = {x - 1, x s; 3 

2, x > 3  
1 1. x > 0 

IS J (x) = <j 0, x = 0 
- 1, x < 0 

16 f ( ) { 1 if x is an integer x = - 1 if x is not an integer. 

Find the domain and the range of/{x) 
17 f (x) = 3x - 2 18 f (x) = -1x + 6 
20 f(x) = 7 - x 21 f (x) ... l/(2x - 3) 
23 f (x) = x/(3x - 5) 24 f (x) = l/v"f=X 
26 f(x) = J5 - 2x 27 f(x) = J4 - 9x2 
29 f (x) = fo-=-3 30 f(x) ,. -b ..;x + 4  

19 f(x) = 4x - 5 
22 f(x) = J(x + 2) 25 f(x) = x - 6 
28 f {x) =�+TI 
31 f (x) = Ji - x1 
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32 /(x) =
� 

33 /(x) = 
J
(x - l )(x - 4) 34 f(x) = FTI· 

Find [! + g)(x� and [fg)(x� where 
35 /(x) = 3x + I, g(x) = -2 
37 /(x) = x2, g(x) = -2x + I 

36 f (x) = 2x - I, g(x) = 2x + 3 
38 /(x) = x2 + I ,  g(x) = -x2 + x. 

39 Does it make sense to add the runctions y = .jf-=x and y = � ? 
40 A runction/is called strictly lncreuin& irwhenever Xa < X2' then/(xi) </(x2). Show that the sum of two strictly increasing runctions is strictly increasing. 
Find f o g and g o f, where 
41 /(x) = 3x + 1, g(x) = x - 2 42 /(x) = 2x - l, g(x) = -x2 + 3x 
43 /(x) = 2x2, g(x) = -x - l 44 /(x) = x + I, g(x) = -x + I  
4S /(x) = 2x, g(x) = -2x 46 /(x) = x + 3, g(x) = -x + l 
47 f (x) = x2, g(x) = 3 48 .f (x) = nx2, g(x) = 2x + 5. 
49 Ir /(x) = x and g(x) is any runction, find f o g. 
SO Ir g(x) = x and f (x) is any runction, find f o g. 
51 Let/(x) = l - x. Compute [! o /](x� 
52 Let/(x) = l/x ror x +. 0. Compute [! o f)(x). 
53 Find an example or a runction/(x) such that/(x2) + [f(x)]2. 
54 Find an example or a runction /(x) such that /(l/x) + l//(x). 
55 Does it make sense to form fo g ir f (x) = 

J
2x - 5 and g(x) = I - x2 ? 

56 Prove that ir/(x) = 3x - 5, then t( Xo; Xi) = /(xo); /(xa) . 
57 (cont.) Is the same true for f (x) = ax + b ? 
58 (cont.) Is the same true for /(x) = x2 ? 
59 Jr/(x) = l/x, show that t{ Xo ; Xa ) = 2f(x0 + xa). 
60 Ir/(x) = l/x2, show that/(x0 x 1 ) =/(x0)/(x i). 

5. L INEAR FU NCTIONS 

A functionf(x) is called linear if 

f(x) = ax +  b 
for all real values of x, where a and b are constants. In the special case that a = 0, 
f(x) = b, a constant function. It assigns the constant value b to each x. 

,. 

----i- b-

,. 

(a) y • b: constant function (b) y z ax, a > O  (c) y • ax, a < O  
Fie- I Graphs or certain linear runctions. 
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The graph of the constant function f(x) = b is obviously the horizontal line 
(Fig. la) at level y = b. 

The graph of f(x) = ax is the straight line through (0, 0) and (1, a). (This can be 
proved easily by means of similar triangles.) If a > 0, the line lies in the first and third 
quadrants (Fig. lb); if a <  0, it lies in the second and fourth quadrants (Fig. le). 

The graph of the general linear function y = ax + b is just the graph of y = ax 
moved up or down I b I units, depending on whether b > 0 or b < 0. Figure 2 shows 
the four possibilities. 

)' 

(a) a > O, b > O  (b) a > O, b < O  

\ )' 
' \ \ 

\ \ \ \ \ \ \ 

.1· = ax 

(c) a < O, b > O  (d) a < O, b < O  

Fig. 2 Graph or y = ax + b 

The graph of a linear function is a non-vertical straight line. 

Conversely, each non-vertical straight line is the graph of a linear function. 

Note that a vertical straight line is represented by an equation, x = c, but that it is 
not the graph of a function. 
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Slope We define slope, a measure of the steepness of a non-vertical line. Choose 
two points on the line (x0 , y0) and (x1 , yi). As x advances from x0 to x1 , the variable 
y changes from Yo to y1 , so the change in y is y1 -y0 • See Fig. 3. The slope is the 
ratio of the change in y to the change in x :  

I' I 

lo 

/ 

r--= = y,-- Yo-. --. L »•u� x, - Xo 

TO 

Fia. 3 

\ I - To 

1 
change in y 

s opc = 
change in x 

r I 

T l  

I 
I 

= Yi - Yo 
X1 - Xo 

' n  

T 

If the line rises as x increases, then both x1 - x0 and y1 -y0 have the same sign; 
hence the slope is positive. If the line falls as x increases, then x1 - x0 and y1 - Yo 
have opposite signs; hence the slope is negative. 

The more steeply a line rises, the greater is the change in y compared to the change 
in x; hence the greater is the slope. For a line making a 45° angle with the positive 
x-axis, y1 - Yo = x1 - x0 so its slope is 1. For a horizontal line, y1 - Yo = 0 so its 
slope is 0. 

Remark The slope formula is valid whether (x 1 , y 1) is to the right or (x0 , y0) or to the lert of 
(xo , y0). That is because 

Ya - Yo Yo - Yi -- = --
x1 - x0 Xo - x, 

To compute the slope of the line y = ax + b, use any two points on the line: 

Y1 - Yo (ax, + b) - (axo + b) a(x1 - x0) --- = = = a. 
x1 - x0 x 1  - x0 x1 - x0 

Because the line y = ax + b cuts the y-axis at (0, b), the number b is called the 
y-inten:ept of the line. 

L The line y = ax + b has slope a and y-intercept b. 

Eq n r l s Given that a line has slope a and passes through (0, b), the 
line is the graph of f(x) = ax + b, that is, y = ax + b is an equation for the line. 

Suppose a line has slope a and passes through a point (x0 , y0� not necessarily on 
the y-axis. How can we find its equation? Well, by the slope formula, a point (x, y) f 



(x0 , y0) lies on the line precisely when 

y - yo 
-- = a. 
X - Xo 

5. Linear Functions 19 

This is the desired equation. I t  is usually written in the form y - y0 = a(x - x0); in 
this form we may legally substitute x = x0 (without dividing by 0). 

How about the case in which we are given two points on a line, (x0 , y0) and 
(x1 , Yih where x0 + x1 • What is the equation of the line? We use the preceding 
result with a computed by 

a =  Ya - Yo
. 

X1 - Xo 

G II h 
. . . . 

h r. Y - Yo Ya - Yo enera y t e equation ts written m t e 1orm --= . 
x - x0 x1 - x0 

A special case of this formula is sometimes handy. If the x-intercept is c and the 
y-intercept is d, that is, the line passes through (c, 0) and (0, d1 then the equation 
becomes 

We leave the derivation as an exercise. 

Equations of lines 

Slope-intercept form y = ax + b 

Two-pointform y -Yo = Ya - Yo 
x - x0 x, - x0 

Point-slope form y - Yo = a(x - x0) 

Two-intercept form � + � = 1 

These formulas are used to obtain the equation of a line from data. Conversely, given 
an equation in one of these forms, it represents a line that can easily be identified. For 
example, y - 3 = 2(x - 1 )  is the equation of the line through (1, 3) with slope 2. 

Bear in mind that an equation ex + dy + e = 0 can be put in the slope-intercept 
form if d + 0. For example, 3x - 2y + 8 = 0 can be written as 

y = ix +  4; 

hence it represents a line of slope i and y-intercept 4. 

Angle between Lines A non-vertical line makes an angle </> with the positive 
x-axis (Fig. 4a) called the inclination angle of the line. The slope m is the tangent of 
this angle: m = tan </>. 

Two non-vertical lines with distinct inclination angles </>1 and </>2 intersect at angle 
6 = </>2 - </>1 • See Fig. 4b. By a formula from trigonometry, 

tan 6 = tan(</>2 _ </>a) =  
tan </>2 - tan </>1 

= 
m2 - m1 

• 

1 + tan </>1  tan </>2 1 + m, m2 
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(a) Inclination ansle: •· Slope: tan • (b) Angle of intersection: 6 • •2- •1 

In particular, the lines are perpendicular when (J = 90°. This happens when tan (J is 
undefined, that is, when the denominator 1 + m1 m2 = 0. 

The angle (J between two non-vertical lines of slopes m1 and m2 is given by 

tan (J = m2 - m, 
. l + m1 m2 

The lines are perpendicular when their slopes are negative reciprocals: 

J 
m2 = - - . m, 

Remark Clearly tan 9 is only determined up to sign. That is because there is no way to decide 
between 6 and its supplementary angle 1t - 9. 

EXERCISES 
Graph 

I y = 2x - 3. 0 s x s 4 
3 y = 2x + 9, 1 S x S 2 
5 y = - 3x + I, - 5 S x S 5 
7 y = 3x + 40, 25 S x S 50 
9 y = O. lx + 1.5, 2 s x s 3 

Graph; t in seconds. x in feet 

II  x = 0.2t - I, 0 s t  s 5 
13 x = 9t - 9, I s t s 2 
15 x = - t + 10, 25 s t s 50 

2 )' = 2x - 3, -2 s x s 0 
4 y = -3x + I ,  0 s x s I 
6 J = -2x + I , -20 S x S - 10 
8 y = 9x - 50, 100 s x s 200 

10 y = -0.3x + 0.2, - I s x s I .  

12 x = 25t + 15, 50 s t s 100 
14 x = - IOOt + 20, - I S t S I 
16 x = 40t + 40, 0 s t s 100. 

Find the slope of the line through the given points 

17 (0, 0), (3, 4) 18 (0, 0), (2, 6) 
20 ( - 1, 2� (I, 0) 21 (0, I�  ( I .  2) 
23 ( - 1. - 1), (1, 2) 24 (- 1, 2), (2, - 1 )  
26 (-2. -2). (3, -4). 

19 ( - 1. 2). (1. 2) 
22 (0, - I �  (1, 2) 
25 ( - 3, 1�  (-2, 2) 
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Find the equation of the line with given slope a and passing through the given point 

27 a =  I ,  ( I ,  2) 28 a =  - 1, (2, - 1) 29 a =  0, (4, 3) 
30 a =  2, (1, 3) 31 a = !. (2, -2) 32 a ... i. ( - 1, l). 
Find the equation of the line through the two given points 
33 (o. o). (1. 2) 34 (1. o� (3. o) 3S ( - 1, o� (2. 4) 
36 ( - 1. - 1� (2, 6) 37 (!, I), {!, 2) 38 (-2, 0� (-!, - 1 ) 
39 (O. l, 3.0), (0.3, 2.0) 40 (-2.01, 4.10� (-2.00, 4.00). 
Find the slope and y-intercept 
41 3x - y - 7 = 0 
43 3(x - 2) + y + S = 2(x + 3) 
Find both intercepts 

42 x + 2y + 6 = 0 
44 2(x + y + I )  = 3x - S. 

46 � + !'.  ... 1 a b. 
48 ax + by = l . 

49 Derive the two-intercept form of a line. 
SO Find the equation of the line through (4, 5) that is perpendicular to x - 3y - 4 = 0. 
Find the angle between the lines 
SI y - 2x + l ,  y = -3x - l 
S3 y = !x - 2, 2y + 4x = l 

S2 y = i(x - !), y = -ix 
S4 y = x../3 - l, y + x = 3. 

6 QUADRATIC FUNCTIONS 

A function/(x) is  called q•dntic if 
/(x) = ax2 + bx + c, 

where a, b, and c are constants and a + 0. The domain of a quadratic function is all 
real x. 

Let us graph the simplest quadratic, y = x2• We consider first only x :2:: O. As x 
increases, y increases but very slowly at first. For example (0.01)2 = 0.0001, and 
(0.1)2 = 0.01. The curve passes through (1 ,  1) and then begins to rise rapidly, passing 
through (2, 4), (3, 9), (4, 16), etc. Plotting some of these points gives a rough idea of 
the graph for x :2:: 0. See Fig. la. For x < 0, we note that (-x)2 = x2• Hence, for each 
point (x, y) on the curve, the point (-x, y) is also on the curve. It follows that the 
graph is symmetric in the y-axis (Fig. l b). The curve is called a parabola. 

Next we graph y = ax2, assuming first that a >  0. The graph of y = ax2 can be 
obtained from the graph of y = x2 in a simple way: Each point (x, y) on y = x2 is 
changed to (x, ay), in other words, the graph y = x2 is stretched (or shrunk) by the 
factor a in the y-direction only (Fig. 2). 

If a <  0, then -a > 0, and the graph of y = ax2 is obtained from the graph of 
y = ( -a )x2 by changing each y to - y, that is, by forming a mirror image in the 
x-axis (Fig. 3). Note that (0, 0) is the lowest point on the graph of y = ax2 if a > 0, 
and is the highest point on the graph if a < 0. 
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�· 

3 

(a) x ;> 0 

- 1  0 

_ , - I  

(b) Graph completed by symmetry 

Fig. I Graph of y = x2 

, I = y ·  

y ..,  

I' 

I 
(a) y = 4 x2•  - 2 <; x <; 2 (b) v "' � x2 - I <; x <; I . 2 

Fit. 2 Graphs of y = ax2 for a > 0 

The graph of y = ax
2 

+ c is obtained by shifting the graph of y = ax
2 up or down 

by I c I units (Fig. 4). 
Next, we graph y = a(x + h)2, assuming first that h > 0. For each point (x, y) on 

this curve, the point (x + h, y) is on the curve y = ax:z. Thus, if we start with 
y = a(x + h)2 and move each point h units to the right, we get the curve y = x2

• In 
other words, the curve y = a(x + h)2 is the curve y = x2 shifted h units to the left. If 
k < 0, similar reasoning shows that y = a(x + k)2 is the curve y = x2 shifted I k I 
units to the right (Fig. 5). 

Completing the Square To graph the most general quadratic function, we 
need an important technique called completing the square. (We can suppose a + 0, 



y 

-3 

1· = "(x + h)2 

,\' 
- 1  

Fl1- 3 Graphs or y = ax2 ror a < 0. 

·' = � x2 

I' =.!_xi - '.? 
• 2 

1· = - x1 

1· = - x2 - 2 

Fi&- 4 Graphs or y = ax2 + c. 

)' 

.I' 
y = 3x2 

x 

I' =  -Jx2 

y 

x 

.1 = u(x + k )2 

x 

Fi&- 5 Graph or y = a(x + h)2 for h > 0 and graph or y ,,.  a(x + k)2 for k <  0 
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otherwise the function is linear.) We write 

y = ax2 + bx +  c = a(x2 + � x  + �) 
and observe that the first two terms in the parentheses are part of a perfect square : 

x + - = x2 + - x + - . ( b ) l b b2 
2a a 4a2 

We " complete the square " by inserting b1/4a1 in the parentheses, and then com
pensate by subtracting the same quantity: 

y = a x1 + - x + - + - --( b bl c bl ) a 4a1 a 4a1 
= a(x1 + � x + !:..) + a(� -!:..) = a(x + l!._) 1 + (c _ b1) . a 4a1 a 4a1 2a 4a 

Hence for a + 0, the graph of y = ax1 + bx + c is the graph of 

( b )1 4ac - b1 Y = a  x + 20 + 4a = a(x + h)1 + c', 
where h = b/2a and c' = (4ac - b1)/4a. Therefore the graph of y = ax2 + bx +  c is 
the graph of y = ax2 shifted horizontally I b/2a I units and vertically I c' I units. The 
horizontal shift is left if b/2a > 0, right if b/2a < 0. The vertical shift is up if c' > 0, 
down if c' < 0. See Fig. 6. 

y = (.1'. + 1 )2 

I' = - x 2  - I 

I' 

I = l'.2 

I = :?.:c2 + I 

J' = (X - I )2 

3 4 \" - 2  - 1 

I = - � ,. ? - -, 
• 2 A • 

\ 
- 1 

I = - { >: - :!)2 - 1 / 
Fla. 6 Graphs of y = a(x + h)2 + c' 

.i 

2 3 4 x 
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Maxima and M i nima Completing the square enables us to write the quadratic 
y = ax2 + bx + c as 

y = a(x + h )2 + c'. 

From this form, we can just read off some valuable information. We see that if a > 0, 
then a(x + h)2 � 0 for all values of x. Hence the smallest value of y is c', and it occurs 
at x = -h. If a < 0, then a(x + h)2 � 0 for all values of x. Hence the largest value of y 
is c'; again it occurs at x = -h. Thus the range of the function/(x) = ax2 + bx + c is 
y0 

� c' if a > 0, and y � c' if a < 0. 

• EXAMPLE 1 (a) Find the lowest point on the curve y = x2 - 6x. 
(b) Find the highest point on the curve y = -2x2 - 4x + I. 

Sol•tion (a) Complete the square: y = x2 - 6x = x2 - 6x + 9 - 9 = (x - 3)2 - 9. 

The value of y is least at x = 3. The lowest point is (3, -9). See Fig. 7a. 

(b) Complete the square: y = -2x2 - 4x + 1 = -2(x2 + 2x) + 1 
= -2(x2 + 2x + 1)  + 2 + 1 = -2(x + 1 )2 + 3. 

The value of y is greatest at x = -1. The highest point is (-1, 3). See Fig. 7b. 

)' 
(-1 , 3 )  

( 3 ,  -9) 

y 

2 x 

(a) Graph of y • x2 - 6x (b) Graph of y =-lxl - 4x + I 
A� 7 • 

• EXAMPLE 2 What is the largest possible area of a rectangular rug whose 
perimeter is 60 ft? 

w 

x 

Fi� 8 
perimeter = 2x + 2w = 60 

w = 30 - x  
area = xw = x(30 - x) 
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Sol•tio11 Let x be the length of the rug. By Fig. 8, its area is A = x(30 - x). Since x 
is a length, x > 0. Since x is less than half the perimeter, x < 30. The problem, 
therefore. is to find the largest value of A for 0 < x < 30. Complete the square : 

A =  30x - x2 = -(x2 - 30x) = -(x2 - 30x + 152) + 152 = -(x - 15)2 + 225. 

Obviously the largest value of A is 225, which occurs for x = 15, an acceptable value 
of x. Answer 225 ft2• • 

In Chapters 2 and 3, we develop tools of calculus for finding maximum and 
minimum values of general functions. But for quadratic functions, no fancy methods 
are needed; completing the square docs the trick. 

EXERCISES 
Graph 

I y = 2x1 
4 y = !x1 
7 y = 2x1 - I 

10 y = -!x2 - 2. 

2 y - -2x2 
5 }' = x2 + 3 
8 y - -2x1 - I 

3 y = -!x2 
6 y = - x2 - 3  
9 y - -!x1 + 2 

Graph on the indicated range (use different scales on the axes ir necessary) 

II y = O.lx2, 0 S x S 100 12 y = -x2, -0.l s x s 0. 

Graph and locate the highest (or lowest) point 

13 y = x2 - 4x + I 14 y = x1 + 2x - 5 15 .)' = x2 + x + I 
16 y = x2 - x + I 17 y = -x2 - 2x 18 y = -x1 + 2x 
19 y = -x1 - 4x - 3 20 y = -x2 + 4x + I 21 .v = 2x2 - 6x + I 
22 y = 2x1 + 4x 23 y = 3x2 + 12x - 8 24 y = -3x2 + 12x - 8 
25 y = -2x2 + 8x - 10 26 y = -2x2 + 12x 27 y = -4x2 + x 
28 y = 2x2 + 2x + 2 29 y = 2x2 - 3x 30 y = x2 - 6x + 2 
31 y = x2 + x - 4 32 y = 3x2 + 3x 33 y = -x2 + x - 2 
34 y = -x1 - 2x 35 y = -2x2 + x  36 .)' - -2x2 - 6x + I. 

37 Show that the graph of y = ax2 + bx passes through the origin for all choices of a and b. 
38 For what value of c does the lowest point of the graph of y = x2 + 6x + c fall on the 

x-axis? 
39 Under what conditions is the lowest point of the graph of y = x2 + bx +  c on the y-axis? 
40 Show that the rectangle of given perimeter p and largest area is a square. 
41 Show that for 0 s x s l, the product x( l  - x) never exceeds ! .  
42 A farmer will make a rectangular pen with 100 ft of fencing. using part of a wall of his 

barn for one side of the pen. What is the largest area he can enclose? 
43 A 4-ft line is drawn across a corner of a rectangular room, cutting off a triangular region. 

Show that its area cannot exceed 4 ft2• (Hint Use the Pythagorean theorem and work 
with A2.) 

44 A rectangular solid has a square base, and the sum of its 12 edges is 4 ft. Show that its 
total surface area (sum of the areas of its 6 faces) is largest if the solid is a cube. 

7 M O R E  ON GRAPHING 

This section starts with a kind of  lazy man's guide to  graphs, featuring techniques 
and shortcuts that can reduce the work in graphing. Some of the ideas popped up in 
Section 6 when we graphed quadratic functions. It is a good idea to spell them out. 
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Symmetry Consider the graphs of y = x2 and y = x3 shown in Fig. 1. (The graph 
of y = x3 will be discussed shortly.) These graphs possess certain symmetries. The 
one on the left is symmetric in the y-axis. The one on the right is symmetric in the 
origin, i.e., to each point of the graph corresponds an opposite point as seen through 
a peephole in the origin. In either case we need plot the curve only for x � O; we 
obtain the rest by symmetry. Thus the work is .. cut in half." 

I' 

/ / / 

\' 

// 
/ / 

/ / 

(a) Symmetry in the y-axis (b) Symmetry in the oriain 

F11- 1 Symmetry 

When we plot y = /(x), how can we recognize symmetry in advance? Look at 
Fig. la. The curve y = f (x) is symmetric in the y-axis if for each x, the value of y at 
-x is the same as at x; in mathematical notation,/ ( - x) = /(x). If/(x) satisfies this 
condition, it is called an even function. 

Look at Fig. lb. The curve y = /(x) is symmetric in the ori1in if for each x, the 
value of y at -x is the negative of the value at x, that is,/ ( -x) = -f (x). If /(x) 
satisfies this condition, it is called an odd function. 

An even function f (x) is one for which f ( -x) = f (x ). 
The graph of an even function is symmetric in the y-axis. 

An odd functionf (x) is one for whichf ( - x) = -f (x). 
The graph of an odd function is symmetric in the origin. 

Vertical and Horizontal Shifts We know that if a positive constant c is added 
to or subtracted from/(x), the graph of y = f (x) is shifted up or down c units. Now 
let us consider horizontal shifts. How can we shift the graph of y = f (x) three units to 
the right? More generally how can we find a function g(x) for which the graph of 
y = g(x) is precisely that of y = /(x) shifted c units to the right? 

Consider Fig. 2. For each point (x, y) on the curve y = g(x), there corresponds a 
point (x - c, y) on the curve y = /(x). The values of y are the same. But on the first 
curve y = g(x� on the second, y = f (x - c). Conclusion:  g(x) = f (x - c). This makes 
sense. If x represents time, then the value of g "now" is the same as the value off 
at c time units ago. 
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I' = g(.\' ) = j (.\• - t ) 

Fla. 2 Horizontal shift (c > 0) 
.\' 

The same reasoning shows that the graph or y = f(x + c) is the graph or y = /(x) 
shirted c units to the lert. 

Let c > 0. The graph or 

y = f (x) + c ' up 
y =f

f
(
(
x) - c

)
{is the graph of y =f(x) shirted c units 

d
.
o
gh
w

t
n 

y =  x - c  n 
y = f (x + c) left. 

Stretching and Reflect ing If  c > 0, the graph of  y = cf(x) is  obtained from 
that of y = f(x) by stretching by a ractor or c in the y-dircction. Each point (x, y) is 
replaced by (x, cy). Note: " stretching" by a factor less than one is interpreted as 

shrinking (Fig. 3 ). 

Fie- 3 Stretching in the y-direction 

3 .I' = 2 J(x) 

I = j (.\') 

I I' = l f(X) 

The graph or y = -! (x) is obtained by reftccting the graph of y = f (x) in the 
x-axis (turning it upside down). That is because each point (x, y) is replaced by the 
point (x, -y). See Fig. 4. 

Free Information Very often you can get valuable inrormation about a graph 
for free, just by looking at the equation involved. It is good practice not to start right 
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y 

Fis- 4 Rcftection in the x-axis 

y = f(x) 

I' = - f(X ) 

off plotting points, but to take a minute to think. Look for symmetry, shifts, and 
stretching and reflecting. In addition, there are some further points you can check. 

Domain Is y defined for all real x or is there some restriction on x? For example, 
y = Jl=XI is defined only for Ix  I :5 1 and y = 1/(x - 1 )(x - 4) is not defined for 
x = 1 or x = 4. 

Range Is there some limitation on y? For example, if y = 1/(1 + x2� then by 
inspection, 0 < y s 1. The graph does not extend above the level y = 1 or below the 
level y = 0. 

Sign of y Can you tell where y > 0 or y < O? For example y = 1/x is positive for 
x > 0 and negative for x < 0. Also y is never 0. 

Increasing or decreasing? For example, 1/x decreases as x increases through 
positive values. 

You will not always be able to check all these points. At least see what you can find 
easily. 

1 
• EXAMPLE 1 Plot Y = -1--. · + x  

So/,,tio11 The graph is defined for all x. Obviously 0 < y :5 1 . In fact y = 1 only at 
x = 0, so the highest point on the curve is (0, 1 ). As x increases through positive 
values, y decreases toward 0. The function is even, so the graph is symmetric in the 
y-axis. This free information alone is enough for a fairly good idea of the curve. 
Plotting a few points helps fix the shape (Fig. S). 

y 

-1 -1 I 1 
l 

Fis- ! Graph or y = -1 --4 
+ x  

x 

• 
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Some mpo tant Graphs Let us study the graphs of y = x", where n is any 
positive integer. We are already familiar with y = x and y = x2, so we start with 
y =  xl. 

Sincef(x) = x3 is an odd function, its graph is symmetric in the origin. Therefore 
we concentrate on the right half of the graph, where x ;;::: 0. As x starts from 0 and 
increases, x3 also starts from 0 and increases. Let us compute some values for 
0 � x � I : 

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 LO 

x3 0.0 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 LO 

This table gives a pretty good idea of the graph from 0 to 1. See Fig. 6a. The curve 
is quite flat near x = 0, much flatter than the graph of y = x2• (See Fig. 8 below.) 
Now consider some larger values of x :  

x 0 

x3 0 

2 3 4 5 6 7 8 9 10 

8 27 64 125 216 343 512 729 1000 

The graph rises very fast as x increases (Fig. 6b). We now have a good idea of the 
graph for x ;;::: 0. 

By symmetry, we sketch the complete graph (Fig. 6c). 
J I' I' 

1000 � 0.8 
0.6 

500 7 0.4 I x 
0.2 

-I  0.2 0.4 0.6 0.8 I x s 1 0  'r 

(a) 0 < x  < l (b) O < x < IO (c) Complete graph 

F'11- 6 Graph of y = x3 
We obtain the graph of y = x" in a similar way. This timef(x) = x" is an even 

function, so its graph is symmetric in the y-axis (Fig. 7). 
It is interesting to compare the graphs of x2, x3, and x4 for small x and for large x. 

When x is small, x2 is very small, x3 is even smaller, and x4 is even smaller yet 
(Fig. Sa). But when x is large, x2 is very large, x3 is even larger, and x" is even larger 
yet (Fig. Sb). The accompanying Tables 1 and 2 and graphs (Fig. 8) show this clearly. 

The graphs of y = x5, y = x7, y = x9, • • · ,  y = x211+ 1, · · · , where the exponent is 
odd, are all more or less like the graph of y = x3• They are increasingly flat near 
x = 0 and grow increasingly rapidly for x large. They are all symmetric in the origin 
(Fig. 9). Similar remarks apply to the graphs of y = x4, y = x6, y = x8, y ""'  x•0, · • · , 
y = x2", • • · ,  where the exponent is even (Fig. 10). 
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.I' 

1 0  x - I  -0.5 0.5 x 

(a) x small (b) x Jarae (c) - I  <x < 1 

y 

O.'.! 

0.0 

0.00 
0.000 
0.0000 

JC 0 

JC2 0 JC3 0 
JC4 0 

F" .. 7 Graph of y = x' 

)' 

1 0000 

5000 

Y = xl 

)' =
x2 

0.4 0.6 0.8 x s 1 0  

(a) O <x < l  (b) O < x <  10  

0.1 

0.01 
0.001 
0.0001 

F .. 8 Graphs of y ... x2, y = xl, y = x' 

Table 1 Powers of small x 
0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 1.0 

----
0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.00 
0.008 0.027 0.064 0.12S 0.216 0.343 0.S12 0.729 1.000 
0.0016 0.0081 0.02S6 0.062S 0.1296 0.2401 0.4096 0.6S61 1.0000 

Table 2 Powers of large x 
2 3 4 s 

4 9 16 2S 
8 27 64 12S 

16 81 2S6 625 

6 7 8 9 

36 49 64 81 
216 343 S12 729 

1296 2401 4096 6S61 

10 

100 
1000 

10000 

x 
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I' 

(a) 

(a) 

(a) n = I , c > o  

(a') n • I ,  c < 0 

I' 

- I  

(b) 

I = x1 

.. 
\" 

Fi&- 9 Graph of y = x2• + 1 

I : \"8 

(b) 

Fig. 10 Graph of y = x2• 

,. 

(b) II odd, II > I ,  c > 0 

(b') n odd, 11 > 1 , c < O  

Fi&- 1 1  Graph of y = c(x - rr 

I' =  \"9 

- I  

(c) 

I = \" 10 

(c) 

r 

(c) n even, n > I, c > O  

\" 

(c') 11 even, n > I, c < 0 
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It is important to remember that the graph of y = x" crosses the x-axis at x = 0 if n 
is odd, but docs not cross if n is even. Algebraically this is obvious: if n is odd, x" 
changes sign as x changes from negative to positive; if n is even, x" is positive 
everywhere except at x = 0. Note that for n = 1, the graph of y = x" = x crosses the 
axis sharply, but for n = 3, 5, 7, · · · the graph of y = x" slithers across. 

The graph of y = c(x - rY' is similar to that of y = x", except it touches the x-axis 
at r instead of 0, and is stretched or contracted by a factor I c I in the y-direction (and 
reflected in the x-axis if c < 0). See Fig. 1 1 .  

Notation The graph of y = x" rises indefinitely (without limit) as x increases 
without limit. This behavior is commonly abbreviated by writing x" - oo as 
x - oo. 

If  n is even, the graph also rises indefinitely as x becomes more and more negative 
without limit. This is abbreviated by writing x" - oo as x - - oo. If n is odd, 
the graph falls indefinitely as x becomes more and more negative. We write 
x" - - oo  as x - - oo. 

We read "x approaches infinity " for x - oo. If a is a real number, we shall also 
say .. x approaches a" and write x - a when x takes values nearer and nearer to a. 

Graph of 1 /x'1 Finally, let us look at the graphs of y = 1/:x:". The function 1/x" is 
even or odd, according as n is even or odd. Hence, in either case, it is enough to 
sketch the graph for x > 0. 

All the curves pass through (1 ,  1 ). Since x" - oo as x - oo, the reciprocal 
1/x" - O as x - oo .  The larger n is, the faster 1/x" - 0. As x - 0 through 
positive values, x" - 0, hence 1/x" - oo. This gives the general shape of the 
graph for x > 0. We complete the graph using even or odd symmetry (Fig. 12). The 
graph of y = 1/(x - rr is a shifted version of that of y = 1/x", centered about 
the vertical axis x = r. See Fig. 13. 

I' 

(a) n odd 
I Fis- 12 Graph of y = 0 

x 

(b) n even 
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I 

__,) i� 
r 

(a) tr odd (b) n even 

I 
Fig. 13 Graph of y = -

( 
--)" 

x - r  

EXFRCISES 

Which of the functions arc even? 

2 J 4 
I 

x • x • -� • x2 + I . 

2 (cont.) Which arc odd? 
3 Plot on the same graph 

r = x, y = 3x, y = x - I ,  

4 Plot on the same graph 

x ( 1 ) s  
3 2 

xl + I • xi + I • xl + x 
• x + x + I .  

y = 3(x - I ), r = x + 4, )' = - 3(x + 4 ). 

.I' = 2x2, .r = 2(x - 1 )2, _r = 2(.� + 1 )2 • 

I 

_r = -2(x - 3)2• 
xi 5 Compute ![f (x) + f (- x)] if /(x) is x3 + I, 

x - 3 .  x + , . 

Show in each case that the answer is an even function. 

6 (cont.) Prove that for any function f (x), the function g(x) = ![f (x) + f ( - x)] is even. 
7 (cont.) Prove that for any function f (x), the function g(x) = ![f (x) - f ( - x)] is odd. 

x 

8 (cont.) Prove that any function can be expressed as the sum of an odd function and an 
even function. 

Graph 

9 .I' = !x4 
12 y = -x3 + I 
15 y = x4 - I 
18 y = -h,x5 
21 r = - (x +  1 )3 
24 y = - (x + I )4 - I 
21 y = (x - W - 1 

Graph accurately 

10 .r = - x4 
13 y = -x6 
16 )' = XS +  1 
19 y = (x + 1)3 
22 y = - (x - I )4 
25 .r = !(x + 2)4 
28 y = (x + !)6 - 2. 

I I  _r = ix3 
14 .r = x3 - 2 
17 .)' = -x5 
20 y = (x - 1)4 
23 r = (x - 1 )3 + I 
26 y = -!(x + 2)4 - 4 

29 y = (x - 2)3, I s x s 3 
31 y = - (x - 1)4, O s x s 2  

30 y = - (x + 1)3, - 2 s x s 0  
32 y = !(x - 2)4, 1 s x s 3. 
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Graph roughly; plot for the given values of x 
33 y = x3 - 4x, x = O, ± 1, ± 2, ± 3  
34 y = x3 + 2x2 - x - 2, x =  -3, -2, - 1, 0, l, 2 
35 y = !x3 - !x2 - 6x +  l, x =  -3, -2. - l, 0, 1, 2, 3, 4 
36 y = x3 - 3x + 3, x = -3. -2. - 1, 0, 1, 2. 

Graph 
l 

37 y = -x - 4  
- 1  38 y = 

(x + 2)2 
l 39 Y = (x + 1 )2 - 2 

8. POLYNOMIALS AND RATIONAL FUNCTIONS 

It is pretty hard to say much about the graph of a general polynomial 

f(x) = a,.x" + a11_ 1 x11- •  + · · · + a1 x + a0 , a,. =F 0. 

Given one, about the most we can do is plot a bunch of points and hope for the best. 
We shall show later (Chapter 10) that the graph off (x) changes direction at most 
n - 1 times, which is a little help. This means for instance that if Fig. I represents the 
graph of a polynomial, then its degree must be seven or more. 

I' 

Fis. I The graph changes direction six times. 

+ 00 

We can, however, say something about the behavior of the graph as x ---+ oo or 
x ---+ - oo. We write 

f(x) = a,.x" + a,._ 1 x"- 1 + · · · + a1 x + a0 

= a,.x + -- + · ·  · + ---- + -- . 
"( l a,,_ 1 a 1  a0 ) 

a,.x a,.x" 1 a,.x" 

For I x  I very large, the quantity in parentheses is very close to I, sof(x) is about the 
size of a,.x". Hence for I x  I very large, the graph of y = f(x) is like the graph of 
y = a,. x". As x ---+ oo or x ---+ - oo, it either zooms up or down, depending on the 
sign of a,. and (for x ---+ -oo) whether n is even or odd. 
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Factored Polynomials Polynomials of the form 
f(x) = (x - r 1 )(x - r2) • • • (x - r,,) 

are particularly easy to graph. Each r1 is a zero off(x), that is,f (r1) = 0. There are no 
other zeros of f(x) because the product 

(x - r. )(x - r2) • • • (x - r,,) 
can equal 0 only if one of the factors equals 0, that is, only if x is one of the numbers 
r1 , r2 , . . " r,, . 

Let us study factored cubic polynomials (n = 3). There are three possible cases to 
consider. 

Case I f(x) = (x - r)3
• We have already discussed this cubic. Its graph is a 

shifted v.ersion of the graph of y = x3• See Fig. I l b, p. 32. 
Case 2 f(x) = (x - r)2(x - s), where r + s. First of all, f(x) = 0 at x = r and 

x = s. Now suppose x + r. Then (x - r)2 > 0, so the sign off(x) is the same as the 
sign of (x - s). We conclude thatf(x) changes sign as x passes through s. However 
the function does not change sign as x passes through r. We summarize the signs of 
f(x) in Fig. 2a for the case r < s. Then we sketch the graph (Fig. 2b), using the 
additional information that f(x) --+ oo as x --+ oo and f(x) --+ - oo as 
x --+ - oo. For r > s, the situation is similar; the graph is shown in Fig. 3. 

f• O 

f <O 1 
, 

f•O  

f< O  J f> O  
s x 

(a) Signs 

(b) Roush sraph 

Fi&- 2 Graph of y ""' (x - r)2(x - s), r < s 
Case J f(x) = (x - r)(x ·- s)(x - r) with r < s < t. As x passes through each 

zero, the sign off changes. As beforef(x) --+ oo as x --+  oo andf(x) --+ - oo as 
x --+  - oo . The rough graph is now evident (Fig. 4). 

We are ready to examine the general factored polynomial of the form 
f(x) = (x - ri ) · · · (x - r,,). 

It is important how many times each factor (x - r1) occurs, so we write 
r, < '2 < . . . < r, • 

to show clearly each zero r1 with its multiplicity m1 • 
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Ff&. 3 Graph of y = (x - r)2(x - s� 
r > s  

Ff&. 4 Graph of y = (x - r)(x - s)(x - t� 
r < s < t  

x 

Let us choose one of the' zeros r of multiplicity m and study the graph of y = f (x) 
near x = r. We write /(x) = (x - rrh(x), lumping all the other factors together in 
h(x). Now h(r) =F 0 as can be seen from the factored form above, and near r the 
function h(x) docs not change sign. Thus, for x near r, the graph of y = /(x) looks 
pretty much like the graph of y = h(r)(x - rr; it must be close to one of the six types 
shown in Fig. 1 1, p. 32. The graph crosses the x-axis if m is odd, but does not cross if 
m is  even. 

We shall show later (Chapter 10) by calculus that there is a single peak (or pit) 
between successive zeros of a completely factored polynomial. 

• EXAMPLE 1 Sketch the graph of /(x) = (x + 1)3x2(x - 2)(x - 3)5• 

Sol•tion Since the degree of y = f(x) is 1 1, an odd number, y - - oo  as 
x - - oo and y - oo as x - oo. Taking the multiplicities into account, we 
find the various signs and sign changes (Fig. 5). Next we look closely at /(x) near 
each zero (Fig. 6). Now we can sketch the rough shape of the graph (Fig. 7). 

f • O  

f < O  l 
-1 

f • O  

I > O l f> O 

f• O 

J f< O 

f • O  

l 
0 2 3 

Ff&. 5 Signs of/(x) = (x + 1 )3x2(x - 2)(x - 3)5 

f >O 

4 x 

4 x 

/ ">< (- 3)(-4)5(x + 1 )3 

Ff&. 6 Behavior of /(x) = (x + 1}3x2(x - 2)(x - 3)5 near its zeros 
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Fit- 7 Rough graph of y = (x + 1)3x1(x - 2)(x - 3)5 

Rational Functions A rational function is the quotient of two polynomials : 

p(x) r(x) = q(x) . 

• 

Let us agree that all rational functions will be expressed in lowest terms, that is, the 
numerator and denominator will have no common polynomial factors. For example, 
we shall write 

1 r(x) = --1 , x +  
x -

1 
not r(x) = -2--1 . x -

Graphs of rational functions can be even more complicated than those of polyno
mials. Nevertheless many rational functions can be graphed without too much 
trouble. One important bit of information is that the behavior of r(x) as x ---+ ± oo 

is predictable. 

Suppose 

( ) a,..x"' + a,._ 1 x"'- 1 + · · · + a1 x + a0 r x  = , b,.x" + b11_ 1 x"- 1 + · · · + b1 x + b0 
Then as I x I ---+ oo, 

l r(x)I ---+ oo if m >  n, 
r(x)---+ O if m < n, 
r(x)---+ a,,. b,. if m = n. 

Thus, if the degree of the numerator exceeds the degree of the denominator (top
heavy case), then I r(x) I ---+ oo as I x I ---+ oo. In the opposite (bottom-heavy) 
case, r(x)---+ 0 as Ix I ---+ oo. If the degrees of the numerator and denominator 
are equal, then r(x) tends to a finite non-zero number, the quotient of the leading 
coefficients. 
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To prove this assertion, we use· the technique introduced at the beginning of this 
section. We write the numerator as a,. x'"h(x) and the denominator as b,. x"k(x ), where 
h(x) - 1 and k(x) - 1 as l x l - oo. Then for l x l large, 

r{x) = a.,x'"h(x) 
� 

a,.x• = a., x'"-", b,.x"k(x) b,.x" b,. 
and the conclusion follows. 

Notation The symbol ::: is shorthand for " approximately equals." 

Examples Assume I x  I is large. 

x5 + 3X X5 3 
1 .  r(x) = i 12 � 2 = x • x + x 

hence r(x) - oo as x - oo, and r(x) - - oo  as x - - oo. 

6x2 + 7x - 3 6x2 3 2. r(x) = 2x3 + xi + 1 � 2xJ = � • 
hence r(x) - 0 as x - ± oo. 

2x3 + 1 2x3 2 
3. r(x) = S J 4 2 7 � -5 3 = -5 '  x - x - x - x 

hence r(x) - i as x - ± oo. 

x 
• EXAMPLE Z Graph Y = -2--1 · x + 
Sohltio11 The function is odd; we need only plot the graph for x � 0. Obviously 
y = 0 for x = 0 and y > 0 for x > 0. Furthermore, by the preceding criterion, 
y - O as x - oo. 

One other piece of information is helpful: near x = 0, the denominator· x2 + 1 � 1 ,  
hence y � x. This suggests that the graph passes through (0, 0) at an angle of 45°. 

We sketch these clues in Fig. Sa. Apparently the graph starts upward from the 
origin at 45°, but soon starts to decline, ultimately dying out toward 0. Plotting a few 
points confirms this (Fig. Sb). 

,. 

-3 - 2  - 1  
-

- 1  

(a) Some clues 

-

3 x 
-3 - 2  - I 

- 1 

(b) Rouah paph 
x Fi&- 8 Graph of y = -2--1 x + • 
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Factored Rational Functions It is fairly easy to sketch the graph of a rational 
function that is completely factored into linear factors: 

(x - r,r•(x - r2r1 . . . (x - r,,r· y = (x - s,r•(x - Szr2 • · '  (x - Str• . 

We assume this expression is in lowest terms, hence none of the numbers r; is the 
same as any of the numbers s J . 

Suppose r is one of the zeros of the numerator. Write 

y = g(x)(x - rr. 
where g(x) is composed of all the other factors of the numerator and denominator 
lumped together. Note that g(r) + 0. If g(r) = c, then near x = r the graph is like that 
of y = c(x - rr. Similarly, near a zero s of the denominator, the graph is like that of 
y = d/(x - sr. 

We have further information too: we can find the behavior of y as x - ± oo, 
and we know that y changes sign at r1 or sJ if the corresponding exponent m1 or n1 is 
odd. 

x - 1  
• EXAMPLE 3 Graph y = -2- . 

x 

Sohltio11 First collect some free information. The graph is undefined at x = 0. Oth
erwise the sign of y is the same as that of x - 1 : 

undefined y ,. 0 

y < O  1 y < O l y > O 

0 x 

Further immediate information : the rational function is bottom-heavy, hence 
y - O as x - ± oo. 

Now look at how the function behaves near the critical point x = 0. Write 

g(x) y = -2 , where g(x) = x - 1 .  
x 

y 

(a) Behavior near critical points (b) Roush sraph 

x - 1 Fis- 9 Graph or y • -2-x 
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Since g(O) = - 1, 1 y �  - 2 · x near x = 0. 

Combine all the information (Fig. 9a); it suggests the desired graph (Fig. 9b). • 

x2 
• EXAMPLE 4 Graph y = (x + 2)(x _ l ) . 

Sohltion The graph is undefined at x = -2 and x = 1. It meets the x-axis at x = 0 
and nowhere else. The function is positive for large values of x and changes sign at 
x = 1 and x = -2, but not at x = 0: 

undefined y • O  undefined 

y > O  y < O  1 y < O  1 y > O  

- 2  - I  0 x 

Next, look at the behavior of the function near the critical points x = 0, -2, and 1. 
Near x = 0, the curve is like 

1 2 x2 y = (0 + 2 )(0 - 1) x = - 2 . 
(-2)2 1 4 1 

Near, x = -2 the curve is like Y = ( _ 2 _ 1) x + 2 = - 3 x + 2 · 

( 1 )2 1 1 1 Near x = 1, it is like y = ---- = 
- --(1 + 2) x - 1 3 x - 1 . 

x2 x2 Finally, since y = (x + 2)(x - 1) = x2 + x - 2 '  

I' 

J! I I I I I I I I I , I I I _,,,, I I 
----+-- I --- ----�--I 

I I \' 
I I I 
I 11 I 

I I I I I 
I I 

I' 

2 I 1 + --- - ----

'.! 

(a) Behavior near critical points (b) Rouah pph 

X2 
Fis- 10 Graph of y .. (x + i)(x _ l )  

.\' 
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our criterion shows that y - l as x - ± oo. One thing is not quite obvious 
however: does y - l from above or from below? For large positive values of x, the 
denominator is greater than the numerator, so y is below 1. Hence y - 1 from 
below as x - oo. For large negative values of x, it is just the other way around: 
y - 1 from above as x - - :t:>. 

Sketch all this information (Fig. lOa). A rough graph is suggested (Fig. lOb). • 

Two more rational functions are graphed in Fig. 1 1 . A glance at Fig. I la shows 
that the lines x = l ,  x = - l, and y = l play a special role. These lines are called 
asymptotes of the graph. In general the line x = a is called a vertical asymptote of the 
graph y = /(x) if I /(x) I - oo as x - a. A non-vertical line L is called an 
asymptote of a graph if the vertical distance between the line and the graph 
approaches 0 as x - ex: or x - - oo  (or both), for example, the line y = l in 
Fig. lOb. 

L I 
, I 
- I 
1 -+---

1 

x(x + 2) x2(x - 2) 
(a) y • (x + l ) (x - 1) (b) y • (x - J)l 

Fis. 1 1  Graphs of rational functions 

EXERCISES 

Draw a line graph of the signs and sign changes: then sketch the graph of y = f(x) 
I f(x) = x(x - l )(x - 2) 2 f(x) = (x + 2)x(x - 2) 
3 f(x) = (x + 2)(x + l)(x - 1 )  4 f(x) = (x + 2)(x - l )(x - 2) 
S f(x) = x2(x - I )  6 f(x) = (x - l )(x - 2)1 
7 f(x) = - (x + l )(x - 1)1 8 f(x) = - x2(x - I) 
9 f (x) = i(x - I )(x - 2)(x - 3)(x - 4) 10 f (x) = -h;c(x - 2)(x - 3)(x - 4) 

I I  f(x) = x1(x2 - 1 )  12  f(x) = i(x - 1 )1(x2 - 4) 
13 f(x) = -i(x + 1 )2(x2 - 4) 14 f(x) = -bx2(x - 2)(x - 3) 
IS f (x) = x(x - 1)3 16 f (x) = i(x2 - 1)2. 

Solve the inequality 
17 (x - 3)(x - 5)(x - 8) > 0 
19 x4 - 5x2 + 4 > 0 

18  (x + l)(x - 2)2 < 0 
20 (x - 3)2(x - 4)'(x - 5)6 < 0. 
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Graph 

21 
I 

22 
I I 

y = --z - l y = - + 3  23 }' = - - + l  x x x 
I x 2 

24 25 r = - 2 - 2  r = -- 26 -" = l + x' x Sx - 3 
- I -x x2 

27 Y = 
4 + x2 28 Y = 3x + 7 29 y = x + I 

30 
x - l y = ---xr . 

Describe the behavior of r(x) as x - oo 

I I l 31 r(x) = x + 1 - x _ 1 32 r(x) = x1 - ? . 

Graph 

33 
(x + l )(x - l) y =  x 

xl 
36 Y = (x -1)2 
39 x 2 y = x + 3 + 

(x + 2)(x - 3) 
42 y = (x + l )(x - 2) 

x4 + 2 
45 y = x(x - 1 )(2x2 + S) 

x2 + I  
47 y = x(x + J)(x2 + 4) 

34 

37 

40 

43 

46 

48 

xl 
y = (x + l )(x - I) 

-x2 
Y = (x + 1)2 

3x2 1· = - 2  . (x + 1)2 
(x + 2)x(x - 2) 

Y = (x + I )(x - I )  
x2 + 2 

J' = (x - l)(x + l )(x2 + 1) 
(x - 2)3 

y = (x + 1)2 " 

35 

38 

41 

.... 

(x + 2)2 r = �  
xl 

Y = 
(x + 1)3 

x(x - I }  
Y = (x + l )(x - 2) 

(x + l )(x - 1 )  y = (x + 2)x(x - 2) 

49 Suppose r(x) = f (x)/g(x) is expressed in lowest terms and deg/(x) = I + deg g(x). Why 
does the graph of y = r(x) have an oblique asymptote? 

SO Under what circumstances does the graph of a rational function have a horizontal asymp
tote? vertical asymptote? 

9. DISTANCE F O R M U LA AND APPLICATIONS 

Given two points (x a , y1 ) and (x 2 , y2) in the coordinate plane, what is  the distance 
between them? We show several cases in Fig. I . In each case we introduce the 
auxilliary point (x2 , y1� forming a right triangle as shown. The legs have lengths 
l x2 - x1 I and I Y2 - Ya I .  so by the Pythagorean theorem, 

d2 = l x2 - xa l2 +  I Y2 - Ya l2 = (x2 - xa )2 + (y2 - Ya)2. 

Distance Formula The distance between (xa , Ya ) and (x2 , y2) is 

J(x2 - xa )2 + (Y2 - }1a)2 . 
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I 
I 
I r-1 

--- � 
( \" 1 • ' 1 ) (\ � • I I l 

( \ I ' I I l 

, I r-1 
___ 4, ,� · ' • , 

F'11- I Distance between points 

,-

If (x 1 , >'i) and (x 2 , y2) lie on the same horizontal line or the same vertical line, the distance is I x  1 - x 2 I or I y1 - y2 I ;  there is no need to introduce an auxiliary point. 
Nevertheless, the distance formula still yields the correct answer. 
As applications of the distance formula, let us discuss a few locm problems, that is, 

problems of finding all points in the plane that satisfy certain geometric conditions. 

C ire les The locus of all points one unit from the origin is a circle of radius l ,  called 
the unit circle. By the distance formula, a point (x, >') is on the circle if and only if 
(x - 0)2 + (.r - 0)2 = 1 2, 

x2 + .1'2 = 1 .  
This formula is the equation of the unit circle. 

The unit circle consists of all points (x, .r) in the plane that satisfy the condition 
x2 + y2 = I .  

The equation is simply a restatement of the Pythagorean theorem for right triangles 
of hypotenuse I .  See Fig. 2a. 
In general, the locus of all points at a fixed distance r from a point (a, b) is the circle 

with center (a, b) and radius r. See Fig. 2b. By the distance formula, the distance from 
(x, y) to (a, b) is r if and only if 

(x - a)2 + (_r - b)2 = r2• 
Equation of a Circle The circle with center {a, b) and radius r is the locus of 
all points satisfying the equation 

{x - a)1 + (.r - b)2 = r2• 

Parabolas A parabola is the locus of all points equidistant from a fixed line Dand 
a fixed point P not on D. We call D the directrix and P the focm of the parabola. To 
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y 

x 

(a) Unit circle, x2 + y2 • I (b) Center (a, b), radiusr: (x - a)l + (y - b)l a ,2 

Fis- 2 Circles 

find an equation for a parabola, set up the coordinate system (Fig. 3a) so that 
P = (0, p) and D is the line y = -p. (This guarantees that (0, 0) will be on the curve.) 

By definition, a point (x, y) is on the parabola if and only ifthe distances d1 and d2 
are equal, or equivalently, if and only if df = d� . See Fig. 3b. By the distance formula, 

d� = (x - 0)2 + (y - p)2; also d� = (y + p)2. 

Hence (x - 0)2 + (y - p)2 = (y + p)2, 

x2 + y2 _ 2py + p2 = y2 + ipy + p2, x2 = 4py. 

The steps can be read backward; therefore if x2 = 4py, then (x, y) is a point of the 
parabola. 

The equation of the parabola with focus (0, p) and directrix y = -p is 

1 
y = - x2. 

4p 

.1· 

P = (0. p) 

x 

D: ." = - 11 (x,-p) 

(a) Choose convenient axes (b) The panbola is the locus of d1 • d2• 
Fis. 3 The parabola. 

x 
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With our choice of axes, the parabola is the graph of a quadratic function of the 
form y = ax2• Conversely, given any quadratic function y = ax2, its graph is the 
parabola with focus (0, p) and directrix y = -p, where a =  l/4p. It follows that 
the graph of any quadratic function y = ax2 + bx +  c is a parabola. For, by complet
ing the square, we can write the quadratic in the form y = a(x + h)2 + c'. Hence its 
graph is the parabola y = ax2 shifted horizontally I h I units and vertically I c' I units, 
still a parabola. 

Perpendicular Bisector of a Segment The perpendicular bisector of a line 
segment PQ is the locus of all points equidistant from P and Q. 

• EXAMPLE 1 Find the perpendicular bisector of the segment PQ, where 
P = ( I ,  2) and Q = (3, - 5 ). 

Sol11tio11 A point (x, y) is on the required bisector if and only if di = d2 , where di is 
the distance from (x, y) to ( I ,  2) and d2 is the distance from (x, y) to (3, - 5). It is 
easier to use the equivalent condition df = d� . By the distance formula, this condi
tion is 

(x - 1 )2 + (y - 2)2 = (x - 3)2 + (y + 5)2, 
x2 - 2x + I + y2 - 4y + 4 = x2 - 6x + 9 + y2 + IOy + 25, 

-2x - 4y + 5 = -6x + IOy + 34, y = n(4x - 29). 

Answer The line y = n(4x - 29). • 

Midpoints Jn Example I ,  we found the perpendicular bisector of a line segment 
PQ by solving a locus problem. There is a different approach: If we knew the 
midpoint M of PQ, we could write the equation of the line through M and perpendi
cular to PQ. So, how do we find the midpoint of a line segment? The answer is easy : 

Midpoint Formula The midpoint of the line segment joining (x0 , y0) and 
(x1 , Yi) is 

This formula seems reasonable: the coordinates of the midpoint are the averages of 
the coordinates. The proof requires a little geometry (Fig. 4). 

If (.x, .Ji) is the midpoint, then x is the midpoint of the interval x0 :s; x :s; xi , and ji is 
the midpoint of the interval y0 :s; y :s; y1 • But for intervals on an axis, it is obvious 
that the midpoint is the average of the endpoints. Thus 

x = !(x0 + x1) and ji = !(Yo +  y,). 

• EXAMPLE 2 Use the midpoint formula to find the perpendicular bisector of the 
segment joining (1, 2) and (3, - 5). 

Sol11tio11 The bisector is the line perpendicular to the segment and passing through 
its midpoint. The midpoint is 

(!(I + 3), !(2 - 5)) = (2, - i). 
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I 
I 

____ J_ __ _ 

I 
I 
I I I I 

' o  ----t-- - - -+- - --

1 I ,. I , . ., 

Fig. 4 Midpoint or a segment. 

.\ 

The slope m of the bisector is the negative reciprocal of the slope of the segment :  

3 - l 2 
m = - - s - 2 = 1 · 

Therefore, by the point-slope form of a line, the equation of the bisector is 

y - (-i) = i(x - 2), y = �x - � - i = i\(4x - 29� 
which agrees with the answer to Example l . • 

• EXAMPLE 3 Show that any pair or points (x, y) and (y, x), with x #: y, are 
mirror images of each other with respect to the line y = x. 

Solution ••Mirror images " means that y = x is the perpendicular bisector of the 
segment joining the two points (Fig. 5a). Check that it is. First of all the midpoint or 
(x, y) and (y, x) is 

(!(x + y), !(y + x)) = (z, z) [z = !(x + y)], 
which lies on the line y = x. Second the slope of y = x is l and the slope of the 
segment is 

x - y  -- = - 1, y - x 

th� negative reciprocal. Hence y = x is perpendicular to the segment and passes 
through its midpoint. • 

The symmetry of the points (x, y) and (y, x) relative to the line y = x is an impor
tant fact, which pops up often. For example, consider the graph of y = l/x. For each 
point (x, y) on the graph, the reversed point (y, x) is also on the graph because x and 
y can be interchanged in the equation y = 1/x. Therefore the graph is symmetric with 
respect to the line y = x. See Fig. 5b. 
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(a) (x, y)  and (.v, x)  are mi"or imaaes 
in the line y = .\'. 

EXERCISES 

Write the equation or the circle 
1 center (I ,  3), radius 6 
3 center ( -4, 3 ), radius 5 
S center ( I ,  5), through (0, 0) 
7 center ( -5, 2), tangent to y-axis 
9 diameter from (0, I )  to (3. 3) 

Write the equation for the most general circle. 
1 1  radius 3, tangent to x-axis 

(b) If x and y are interchangeable in the 
equation y = f(x), then the graph is 
symmetric in the line y = x. 

2 center (5, 12), radius 13 
4 center ( -2, - I), radius I 
6 center (3, 3 ), through ( - 2, -4). 
8 center (I ,  2� tangent to x-axis 

10 diameter from (-2, -3) to (4, I ). 

12 center in first quadrant, tangent to both axes 
13 passing through (0, 0) 
14 tangent to the line )' = 3. 

Do the circles intersect? 
IS x2 + y2 = 4 and (x - 3)2 + tr + 2)2 = I 
16 (x - I )2 + (y - 5)2 = 9 and (x - 4)2 + (y - 3)2 = 4. 

17 Show that each point or the circle (x - 4)2 + y2 = 4 is twice as rar from (0, 0) 
as from (3, 0). 

18 Prove that the circle (."< - I )2 + (x + 2)2 = 9 lies inside the circle x2 + y2 = 36. 

Plot 
19 x = y2 20 .\' = y2 - 2y + 7. 

21 Find the locus or the centers or all circles that are tangent to the x-axis and pass through 
the point (0, 2). 

22 Show that (x, .r) and ( - y. - x) are symmetric in the line x + y = 0. 
23 Show that (5x, 5.r) and (3x + 4r. 4x - 3y) are symmetric in the line 2.r = .\'. 
24 Find the mirror image or (2. 0) in the line y = h. 
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10. TANG E NTS 
This section contains an introduction to one of the main problems of calculus, the 

tangent problem: Given a function y = f(x) and a point (a, b) on its graph, find the 
equation of the line that is tangent to the graph at (a, b). In the following chapters we 
shall solve the problem completely by methods of calculus. In this section we shall 
solve it in a few special cases by methods of pure algebra alone. 

Perhaps it appears a bit peculiar in a book that, after all, is called Calculus to solve 
calculus problems by a primitive, pre-calculus method. We offer two excuses for 
doing so. First, this material provides a motivation for differential calculus. Second, it 
contains the germ of an idea (dividing out zeros) that grows in importance later. 

The C ircle Finding tangents to a circle is an easy problem in elementary 
geometry. The tangent is perpendicular to the radius, and that's all there is to it. 

• EXAMPLE 1 Find the tangent at (a, b) to the circle x2 + y2 = r2• 
So""io11 We are assuming that (a, b) is a point of the circle, so a2 + b2 = r2. The 
radius through (a, b) has slope b/a, so the tangent has slope -a/b, its negative 
reciprocal (Fig. 1 ). The tangent line has the equation (point-slope form) 

Simplify: a(x - a) + b(y - b) = 0, ax + by = r2• 

Fig. I Tangent to a circle 

,. 

• 

Dividing out Zeros Let us tum to the problem of finding the tangent at a given 
point to the graph of y =f(x), wheref(x) is a polynomial. For example, we might 
consider finding the tangent at (a, a2) to y = x2• 

To solve this and related problems, we recall an important tool from algebra, 
called the Factor Theorem. 
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Factor Theorem Let/ (x) be a polynomial of degree 11, and let x = r be a zero I 
off (x ). Then 

.f(x) = (x - r)g(x), 
where g(x) is a polynomial of degree n - 1. 

We can interpret the Factor Theorem as a statement about dividing out zeros: If 
/(x) has degree n and/(r) = 0, then/(x) is divisible by (x - r); hence 

g(x) = J_"(x) 
x - r  

is 2 polynomial of degree n - I .  
I t  may happen that the quotient g(x) also has x = r as a zero. In that case x - r can 

be divided out of g(x), so 

g(x) f (x) 
x - r - (;·_ r)2 

is a polynomial. Then x = r is called a multiple zero off (x ). 

ne Me hoc' Now for the tangent problem. We want the equation of the line 
tangent to the graph of the polynomial y = .f (x) at a given point (a, b). The most 
general (non-vertical) line through (a, b) is 

y - b = m(x - a). 
We must choose the slope m to make the line tangent. 

In general the line intersects the graph not only at (a. b) but at other points 
P 1 ,  P 2 , • • • . See Fig. 2a. If P 1 is very close to (a, b), then the line will be nearly 
tangent (Fig. 2b). Therefore we can think of the tangent as the line through (a, b) and 
P 1 when P 1 coincides with (a. b). In other words, (a, b) is a point of "multiple 
intersection." 

Let us translate this approach into algebra. We shall show that a multiple intersec
tion corresponds algebraically to a multiple zero. 

I = /(\) 

r--

(a) An arbitrary line through (a, b) meets 
y = f (x) in other points P1 , P2• etc. 

(b) The closer P1 is to (a, b), the nearer 
the line comes to beina tanaent. 

Fis. 2 Method for finding tangents 
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We look again to Fig. 2a. The points of intersection have x-coordinates 
a, r1 , r1 , · · · . To find these x-coordinates, we solve y = f(x) and y - b = m(x - a) 
simultaneously by eliminating y: 

f (x) - b - m(x - a) = 0. 

The polynomial 

p(x) = f(x) - b - m(x - a) 
has zeros a, r1 • r2 , • • · . so by the Factor Theorem, p(x) is divisible by x - a, x - r1 , 
x - r2 • • • · . To construct the tangent at (a, b), we choose m so that P 1 coincides with 
(a, b), or equivalently, so that r1 = a. Therefore, the problem becomes purely alge
braic: to choose m so that p(x) has x = a  as a multiple zero; equivalently, so that p(x) 
is divisible by (x - a)2• 

Now whatever m is, the polynomial p(x) is divisible by x - a, so 

p(x) = f(x) - b - m(x - a) 
= 

f(x) - b 
_ m = g(x) _ m 

x - a  x - a  x - a  
is a polynomial. We choose m so that this polynomial also is divisible by x - a, in 
other words, so that x = a  is a zero of g(x) - m: 

g(a) - m = 0, m = g(a). 
This proves that there is precisely one value of the slope m, namely, m = g(a), for 
which the line through (a, b) has a multiple intersector with y = f(x). The line with 
this slope is our solution to the tangent problem. 

• EXAMPLE 2 Find the tangent to y = x1 at x = a. 
So/11tio11 The corresponding point on the graph is (a, a1). The line with slope m 
through this point is 

y - a1 = m(x - a). 

(a) The other intersection is (b) It coincides with (a, a2 ) 
P • (m - a,(m - a)2 ). when m • 2a. 

Fia. 3 Tangent to y = x1 at (a, a1) 

x 
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It meets y = xl where 

xl - a2 = m(x - a). 

This quadratic equation has two solutions. One we know in advance is x = a; divide 
it out: 

x + a =  m. 

The other is x = m - a. It also is equal to a if and only if m = 2a. So here is our 
desired slope. Consequently the tangent line (Fig. 3) is 

y - al = 2a(x - a), that is, }' = 2ax - a1. • 

• EXAMPLE 3 Find the tangent to y = x3 at x = a. 

So/11tion The corresponding point on the graph is (a, al). The line with slope m 
through this point is 

y - al = m(x - a). 

It meets y = x3 where x3 - a3 = m(x - a). 

This cubic equation has at most three roots. One of them, x = a, is visible; divide it 
out: 

x3 - al -- -- = m, x - a 
that is, x1 + ax + al = m. 

Now choose m so that x = a is also a root of this last equation. The only possibility is 

m = al + a · a + a1 = 3al. 
This is the required slope. Consequently the tangent line (Fig. 4) is 

y - al = 3al(x - a), that is, y = 3a2x - 2a3• • 

T ,rn JC \' 1 x With a little modification. our method can be applied to 
certain functions other than polynomials. 

• EXAMPLE 4 Find the tangent to y = 1/x at x = a =I= 0. 

So/11tion The general line through (a. I/a) is 

I y - - = m(x - a). 
a 

It intersects y = l/x where 

I I 
- - = m(x - a). 
x a 

that is, 
- (x - a) 
---- = m(x - a). 

ax 

Divide the root x = a  out of this equation; the result is 

- I  
- = m. 
ax 
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This equation in tum has x = a as a root if and only if m = - l/a2• That is the slope 
of the tangent line (Fig. 5� so its equation is 

I I y - - = - - (x - a� a a1 

I' 

Fla- 4 Tangent to y = x3 

1 2 that is, y = - -x + - . a1 a 

I s lo pe = - -
ul 

)' 

a 

Fis. 5 Tangent to y = l/x 

• 

We have shown that the slopes of the lines tangent to y =  x1, y = x3, and y = 1/x 
are 2a, 3a2, and - l/a2• These facts and others will be obtained in Chapter 2 using 
calculus. Still it is remarkable that these difficult problems can be solved by pure 
algebra. 
EXERCISES 

Find the locus of the centers of all circles that are tangent both to the x-axis and to the 
circle x2 + (y - I )2 = I .  

2 Find the locus of t.he centers of aJI circles that are both tangent externally to the circle 
x2 + y2 =- I and tangent to the line y = - 2. 

3 Show that 2 is a multiple zero of/(x) = x5 - 4x' + 3x3 + 7x2 - 16x + 12. 
4 Show that - I is a multiple zero of/(x) = 3x' + 7x3 + 3x2 - 3x - 2. 

Find the tangent to the curve 

5 y = 3x2 at ( - I. 3) 
7 y = x3 - x2 at ( I .  0) 
9 y = - 3/x at (I . -3) 

6 y = x2 - x at (0, 0) 
8 y = 2x3 - I  at (1 , 1 )  

10 y = l/x2 at (a. 1/a2). 

1 1  MISCELLAN E O U S  EXERCISES 

Given /(x) = 3x + I : 
(a) Compute f (0�/( -2).f(/(x)]. (b) Show that / (a + b) = f (a) + /(b) - I. 

2 Find a linear function whose graph passes through (0, 3) and (1,  5� 
3 Graph and find the lowest point: y = 2.'{2 - 12x + 14. 

x 
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4 If /(x) = Jx and g(x) = 3 - x, compute (a) (/ o g)(x) (b) [g o /](x). In each 
case state the domain of the function. 

S Find a linear functionf(x) = ax +  b whose graph passes through (0, 6) and is parallel to 
the graph of y = -x. 

6 For what numbers b is the value of x2 + bx + l positive regardless of the choice of x? 
7 Plot on the same set of coordinate axes: (a) y = (x - 2)2 (b) y = -3(x - 2)2• 
8 Use the distance formula to find the perpendicular bisector of the segment from (0, 0) to 

(1, m). Hence give a proof of the formula relating the slopes of perpendicular lines. 

9 Find the domain of r(x) = (x _ l ):x2 + I ) +!�=:
. 

10 Find a cubic polynomial whose graph crosses the x-axis at x = - I ,  is tangent to the 
x-axis at x = 2, and crosses the y-axis at y = 8. 

11 Construct a rational function with vertical asymptotes x = 0 and x = 4, and horizontal 
asymptote y = 3. 

12 What is the relation between the graph of y = ax2 + bx + c and that of 
y = ax2 - bx + c ? 

Graph 
13 y = x3 - 3x 14 y = i(x + 2)(x - 1)3 
15 I 

16 
xl y = x + - )' = (x + 1)2(x - 2)(x - 3) · x 

17 y = x3 - 2x2 18 
x2 

19 
x(x - I )  

y = (x - 3)2 )' = x2 - 4 

20 
(x - 2)2 

21 
x2 + 4  

22 )' = lx2(x + 2)(x - 3)2 y = --;-+! y = x(x2 + 1 ) 

23 
x2 + x 

24 
x2 Y = x2 - 9 y = (x - 2)(x2 - I ) ·  

25 Find the locus of all points that are three times as far from (0, I )  as from (I ,  0). 
26• Show that (0, 0), (a, b), (- b, a), and (a - b, a + b) are the vertices of a square. 
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1 . T H E  SLOPE P R O B LE M  

In  the last section of Chapter l we constructed tangents to some simple curves, 
using special techniques that would be hard to apply to more complicated curves. In 
this chapter we shall solve the general problem of constructing tangents to graphs of 
functions y = /(x). This problem is far more important than it appears to be at first 
glance; its solution leads to the derivative, one of the most applicable ideas in 
mathematics. 

What shall we mean by the tangent to a curve y = f (x) at a point P on the graph? 
We sidestep this question slightly and instead look for a reasonable definition of the 
slope of the graph at P. Then the tangent will be simply the line through P having 
that slope. What should the slope of y = f(x) at P tell us? Well, it ought to convey 
somehow the idea of the "direction of the graph " at P. 

Here is the method for solving this problem, for getting at the elusive slope. (This 
method is really the basic idea of differential calculus.) First we choose a point Q11 of 
the graph, very close to P. Then we compute the slope of the secant• through P and 
the nearby point Q,,. Generally, as Q11 moves closer and closer to P the slope of PQ,. 
will become closer and closer to some number, and this " limiting value" will be the 
slope of the graph at P. See Fig. 1 .  

This attack sounds find, but docs it really work in practice? Let us try an example: 
y = x2 at P = ( 1 ,  1 ). See Fig. 2. A nearby point to ( 1 ,  1 )  is Q,, = ( 1  + h, ( 1  + h)2� 
where h is a small number, positive or negative. By the slope formula, 

I f PQ - (1 + h)2 - 1 - ( l  + h)2 - l 
s ope o " -

(l  + h) - I - h . 

So far so good; now we must test some small values of h and see if a message comes 
through. For instance, if h = O. l ,  then 

slope of PQ,, = ( l . 1 )2 - l = l .21 - I = 0.21 = 2.l. 0.1 0.1 0.1 

• The word 1ecut simply means a line through two or more distinct points of a curve. 

65 
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,. 

Fis. 1 As Q. -P. the slope of PQ. ap
proaches the slope of the graph at P. 

Let us compute a few other values: 

> ' = \"" 

( I  + h)2 -I 
slope • (I + h) _1 

Fig. 2 

h 0.1 o.oi 0.001 0.000001 

slope or PQ. 2.1 2.01 2.001 2.000001 

The message comes in loud and clear: As h gets smaller and smaller, so that Q. moves 
closer and closer to P, the slope of the secant gets closer and closer to 2. Conclusion : 
the slope of y = x2 at ( 1, 1 )  is 2. 

Now we shall test some other points on the same curve. The typical point P on 
the graph of y = x2 can be written P = (a, a2� The typical nearby point QA is 
QA = (a + h, (a + h)2). Therefore 

- (a + h)1 - a1 (a + h)1 - a1 
slope of PQ,. = 

(a + h) - a 
= h 

Let us try a = 2, so P = (2, 4 ), and various h :  

-0.01 0.001 -0.000001 

3.99 4.001 3.999999 

Again the message is clear: the slope of y = x2 at (2, 4) is 4. Here are two further 
examples: 

a =  - 7  

h 0.01 -0.001 

slope or PQ• - 13.99 - 14.001 

0.000001 0.01 

- 13.999999 20.01 

a - 10 

-0.001 -0.000001 

19.999 19.999999 
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The message: the slope of y = x2 at (- 7, 49) is - 14; the slope at ( 10, 100) is 20. 
This is our experimental evidence so far:  

P (1, I )  (2, 4) ( - 7, 49) (10, 100) 

slope 2 4 - 14 20 

For each point P = (a, a1) we have tried, we have found slope 2a. Let us now prove 
that this is the correct answer in general. To do so, we simplify the formula for the 
slope of a secant: 

- (a + h)2 - a1 (a1 + 2ah + h1) - a1 2ah + h1 
slope of PQ11 = h = h = h = 2a + h. 

Clearly, if h is very small, 2a + h is very close to 2a, as close as we please if h is small 
enough. Conclusion: the slope of y = x1 at (a, a1) is 2a. A glance at Fig. 3 shows we 
are in the right ball park: the predicted slope 2a is positive where a > 0, negative 
where a < 0, and zero for a = 0, which agrees with the figure. Furthermore, 2a 
increases as a increases, which agrees with graph's increasing steepness. Finally, the 
line through (a, a1) with slope 2a, hopefully the tangent line, is 

y - a1 = 2a(x - a), that is, y = a1 + 2a(x - a) = 2ax - a1, 
which agrees with the result found on p. 52 by an entirely different method. 

General Curves Let us return to the general graph y = /(x). Its typical point is 
P = (a,/(a)� and the typical nearby point is Q11 = (a +  h,f(a + h)). See Fig. 1 again. 

I' 

slope = 0 \' 

Fi&- 3 Slopes at various points or y = x2 Fis. 4 Slopes at various points of y = x3 
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The slope of the secant through P and Q,. is 

slope of PQ,, = f (a + h) -f(a) = f(a � 1tl -J'(a) . (a + h) - a Ii 
This ratio [f(a + /1) -f(a)]/lt is called the difference quotient of f(x) at x = a. The 
figure suggests that the difference quotient is close to the slope of the graph at P 
provided Q11 is close to P, that is, provided /1 is small (but not 0). So we hope to 
predict the slope at P by studying the difference quotient for small values of It. 

• EXAMPLE 1 Compute the slope of y = x3, first at ( -2, - 8), then at the general 
point (a, a3). 
Sol"tion The difference quotient for y = x3 at x = -2 is 

f(-2 + lt) -f(-2) (-2 + /1)3 - (-2)3 ( - 8  + 12/t - 6/t2 + h3) + 8 
------- - - --

,1
---- = . .  . - Ii- ·-

= 12 - 611 + h2• 
If It is small, then -6h and h2 are both small. Therefore, 12 - 611 + h2 is close to 12. 
The smaller h is, the closer 12 - 6/1 + h2 is to 12. 

Answer The slope of y = x3 at ( -2, -8) is 12. 
In general, the difference quotient at (a, a3) is 

(a + /1)3 - a3 (a3 + Ja2h + Jalt2 + lt3) - a3 -'---....;..._ __ = = Ja2 + Jah + lt2• " " 

When h is very small, both Ja/1 and lt2 are small. Thus as h approaches 0, both Jah 
and lt2 die out, while Ja1 remains fixed. 

Answer The slope of y = x3 at (a, a3) is Ja1. • 

The answer makes good sense geometrically. The slope Ja2 is always positive, 
except that it is zero at a = 0. As I a I increases, Ja2 increases rapidly, so the curve 
becomes very steep (Fig. 4, previous p.). 

EXERCISES 

Notation Given y = .f (x), a. and Ir, set 
P = (a,.f (a)) and Q,. = (a + 11.f(a + h)). 

Compute the slope of the secant through P and Q,. 
f (x) = 3x2 a = - 2 

I lr = O. I  2 lr = 0.01 3 h = 10-6• 
4 (cont.) Now compute the slope of .r = f(x) at (-2, 12). 

f (x) = x2 - .'< a = 0 

5 ,, = 0.1 6 Ir = -0.03 7 ,, = - 10- •. 

8 (cont.) Now compute the slope of y = f (x) at (0, 0). 

f (.x) = 2x2 + l'< a = 2 
9 ,, = -0. 1  10 ,, = 0.001 I I  Ir = - I0- 5. 
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12 (cont.) Now compute the slope of y = f(x) at (2. 14). 
f (x) = xl + x2 a = I 
13 h = 0.1 14 h = -0.002 l� ,, = - I0- 10. 
16 (cont.) Now compute the slope of y = /(x) at ( I, 2). 

f (.'{) = xJ - x + I a = 4 
17 Ii = O.QI 18 Ii = 0.001 19 h = 0.0001. 
20 (cont.) Now compute the slope of y = /(x) at (4. 61). 
21 Compute the slope of y = 3x2 at (a. 3a2). 
22 Compute the slope of J' = x2 - x at (a, a1 - a). 
23 Compute the slope of y = 2x2 + 3.'{ at (a. 2a1 + 3a). 
24 Compute the slope of y = xJ + x1 at (a, al + a1). 

2. LIMITS 

In the last section we computed the slope of }' = x2 at (a, a2) by examining the 
difference quotient for small values of h. It equals 2a + h, which is as close as we like 
to 2a when h is small enough. Notation for this assertion is 

lim(2a + h) = 2a, 
11-0 

read, "The limit of 2a + h as h  approaches 0 (tends to 0) equals (is) 2a." 
Similarly, when we computed the slope of y = x3 at ( -2, - 8), the crucial fact was 

that the difference quotient 12 - 6h + h2 is as close as we like to 12, provided h is 
close enough to 0. That is, 

lim(l2 - 6h + 112) = 12. 
11-0 

In general, suppose F(h) is a function defined for all small values of h, both positive 
and negative, but not necessarily for h = 0 itself. Precisely, assume the domain of F(h) 
includes all /1 satisfying 0 < I h I < A, where A is a fixed positive number. Now 
suppose there is a number L such that the values of F(h) are as close as we like to L, 
provided h is close enough to 0. Then we write 

lim F(h) = L 
11- 0 

An alternative and useful notation is 

F(h) -- L  as h -- 0. 

This is usually read, " F(h) approaches L as Ii approaches O." 
Limits will be defined carefully in Section 10. For the present, let us try to get an 

intuitive feel for limits and learn how to work with them. 

Examples I .  F(/1) = 6 - 111, Jim F(h) = 6. 

2. F(h) = 4 \1 • Jim F(/1) = 4
1 
. 

+ · I  11-0 
3. F(h) = (3 + 11)(5 - Ii). lim F(h) = 15. 

11-0 
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Warning It can perrectly well happen that lim�-o F(h) does not exist. That is, there simply 
may be no number that F(h) approaches as h approaches 0. For example, consider 

F(h) = 
{ I  � h if h > 0 

if h < 0. 

Then F(h) is near 1 if h is small and positive, and F(h) is near 0 (actually is 0) if h is small and 
negative. Clearly there is no number L such that F(h) is near L for all values or h near 0, both 
positive and negative. 

In the three examples above it is easy to compute the limit; just set h = 0 and the 
limit F(O) pops out. But things are usually not so simple. For example, consider 

I . 
sin h 

1m --
11-o h (h in radians). 

(We cannot just set h = 0 because the meaningless quotient 0/0 results.) Observe 
how different this is from something like 

I. 
2h - h2 ,. (2 h) 1m h = 1m - = 2, 

11-0 11-0 

because there is no apparent way to cancel h from sin h. Instead, let us test some 
small values of h. Since (sin h)/h is an even function, we can restrict attention to 
h > 0. Using tables or a calculator to 5-place accuracy, we find 

h 0.2 0.1 0.05 0.0 I 

sin Ii 0.198669 0.099833 0.049979 0.010000 

(sin li)/li 0.99335 0.99833 0.99958 1 .00000 

To slightly higher accuracy, the last entry is 0.999983. The numerical evidence 
strongly suggests 

I. 
sin h 1 

1m -- = .  
11-0 h 

We shall meet this limit again in Chapter 4. Here it illustrates an important principle: 
that Jim11_0 F(h) can exist even when F(h) is undefined at 0. What matters are the 
values of F(h) where h is very near to 0, but not 0 itself. 

l 'Tl it The idea of Jim F(h) as h ---+ 0 is important, as we know from 
studying slopes. Also important is the idea of lim F(h) as h ---+ a. Here a is a fixed 
number and F(h) is defined for all values of h near a, but not necessarily at h = a. 
That is, F(h) is defined at least for 0 < I h - a I < A for some A > 0. Then we write 

lim F(h) = L or F(h)---+ L as h---+ a 

if F(h) is as close to L as we please, provided h is sufficiently close to a. Another 
interpretation is that F(h) moves closer and closer to L as h  moves closer and closer 
to a. 
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Examples F(h) = h + 3h2, Jim F(h) = - 4 + 3 · 16 = 44. 

Jim F(h) = Jim 
(h + 2)(h - 2) 

= Jim (h + 2) = 4. 
11--2 •--2 h - 2 •--2 

Rules for limits In calculus we have to compute many limits. Some are obvious, 
such as 

lim c = c lim h = a lim h2 = 0 lim h3 = 0. 
•--o 

(In the first of these, F(h) = c is a constant function.) Others, such as 

sin h _ 1 
h 

as h - o. 

are not obvious and require special methods of proof. 
Once we have mastered a few basic limits, we can compute many others by a batch 

of rules that express new limits in terms of known ones. 

Rules for Limits Suppose lim F(h) and lim G(h) exist as h - a. Then 

1 .  lim cF(h) = c Jim F(h) (c constant); 

2. lim(F(h) ± G(h)] = lim F(h) ± Jim G(h); 
,. .... ..... ,. .... 

3. lim F(h)G(h) = [1im F(h) ] f lim G(h)] ; 
·-· ·-· ·-· 

. F(h) !� F(h) 
4. �1� 

G(h) 
=

Jim G(h) , 
provided Jim,. .... G(h) + O. 

·-· 

We postpone the somewhat technical proofs of these rules until Section 10. The 
rules themselves, however, are quite natural. Rule 1 means that if F(h) is near L when 
h is near a, then cF(h) is near cL when h is near a. The other rules say that if F(h) is 
near L and G(h) is near M, then F(h) ± G(h) is near L ± M and F(h)G(h) is near LM, 
while F(h)/G(h) is near L/M, provided M + 0. 

• EXAMPLE 1 Use the rules to find 

(a) Jim 
(3 + h) sin h 

(b) Jim 
4 - h2 

11-0 h 11-o 2 + Sh 
(c) lim [(1 + h2)(2 - h) + (3 - h3)(1 - h)). 

11 - - 1 
Sollltio11 

(a) Jim 
(3 + h) sin h 

= Jim [<3 + h) 
sin h ] 

11-0 h 11-0 h 

= lim(3 + h) Jim 
sin

h 
h 

= ( lim 3 + Jim h) · 1 
11-0 •-o 11-0 11-0 

= (3 + 0) . 1 = 3. 
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(b) As h -0, we have h2 = h · h - o · 0 = 0, 
4 - h2 -4 - 0 = 4, and 2 + Sh -2 + 5 · 0 = 2 =F 0. 

4 - h2 4 
Hence by Rule 4, 2 + Sh - 2 = 2. 

(c) As h- - 1, 
h2 = h · h -(- 1)( - 1 )  = 1 and h1 = h · h2 - (- 1)( 1 ) = - 1 . 

Hence ( I + h2)(2 - h)-(1 + 1 )(2 - (- 1)) = 6, 
( 3 - h1 )( l - h) - (3 - ( - l )][ l - ( - l )] = 8, 

( 1 + h2)(2 - h) + (3 - h1)(1 - h) -6 + 8 = 14. • 

In practice, limits like these are found by inspection, skipping obvious steps. For 
instance, 

r 3 + h2 3 + 4 1 ,.�"! ( 1 + h )(2 + h) = J.4 = 12 ' 
3h 3 3 

-- = - - = 3 as h-0. 
sin h (sin h)/h l 

Rule 2 holds for any number of summands, not just two, and Rule 3 holds for any 
number of factors. These statements can be proved easily by mathematical induction 
from Rules 2 and 3. 

Example 

= lim a1 + a2 lim h + a lim h2 + lim h1 
= a1 + a2 • a + a · a2 + a1 = 4a1. 

Notation There is really nothing special about the letter h for the variable in 
limits; the variable can be any suitable letter. Thus 

lim F(h) = lim F(x) = lim F(y), etc. 

Sometimes the variable is shifted, usually to 0. For instance x is near a if and only if 
x = a + h, where h is near 0, so 

For example, 

lim F(x) = lim F(a + h). 
x-• 11-0 

lim 3x2 = Jim 3(a + h)2 = 3 lim(a2 + 2al1 + h2) = 3(a2 + 0 + 0) = 3a2• 

EXERCISES 

Find the limit 

lim(3 + h2) 
•-o 

2 lim - 1-· 
•-o I + h 3 lim(2 + 11)3 

•-o 
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4 r 
I +  h 

1m --
•-o l - h 5 r 

( l  + !h)2 - 1  Im 
•-o h 6 r (2 + h)

3 - s 
1m 

•-o h 

7 
. (- l + h}4 - I  hm h 8 . (J - 2h)

3 
- I hm h 9 r (I + 2h)2 - I Im 

10 

•-o 
. (2 - /1)5 - 32 hm -

•-o h I I  

•-o 

r 
I 

• 
�

(h - 1)
3 12 

•-o h 

r 
h 

•
1!!:, ( J  + 2h)

3 
- I 

. 

13 Compute to five places (I - cos h)/h ror h = 0.1, 0.05, O.oJ, 0.001 .  Conclusion? 
14 Compute to five places (1 - cos h)/h2 for h = 0.1, 0.05, 0.01, 0.001. Conclusion? 
Find the limit 

15 lim(h2 - 1) 16 lim(h
3 

+ 3) 17 lim 1 - ik 18 lim 1 + 2Y 
•- 1 l + k r-- 1 1 - y •-2 •-3 

19 lim (I + h)(3 + h) 
·- - 2  5 + h 

20 lim(l + h + h2 + h
3 

+ · · · + h12) 

h - 1  21 lim h.----I •- 1 -
x6 - I 

24 lim :-r--;1 x-1 X -

22 lim h
' 

- 32 
•-2 h - 2 

h2 
25 lim -.

•-o sm h 

27 Find lim J2+x - .Ji . 
x-0 X 

•- 1 
23 lim x3 - 1 

x-- 1 x1 - I 

26 !��(si;
h 
hr 

[Hint " Rationalize" the numerator, i.e., multiply and divide by .jf+X + .Ji .] 
. (2 + x)•13 _ (2)113 28 Find hm . 

x-o x 
[Hint Proceed as in Ex. 27, using the identity y

3 
- z

3 = (y - z)(y2 + yz + z2).] 
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Given a functionf(x) and a point a of its domain, the derivative of f(x) at a is 

!'( ) _ 1. f(a + h) -f(a) 
a - im 

h 
, 

11-0 

provided the limit exists. The derivative f'(a) is a number, the slope of the graph 
y = f(x) at its point (a,f(a)). The derivative was described geometrically in Section 1 
in terms of slope, 

b
ut now is expressed mathematically as a limit. 

Examples 1 .  f(x) = x2• a = 3. 

!'( ) ,
. (3 + h)2 - 9 ,. 6h + 112 , . (6 h)  6 a = tm = tm = 1m + = . 
11-0 " 11-0 h 11-0 

2. f(x) = x
3
. 

!'( 
) 

1· (a + 
/J)

J 
- al 1· 3azh + 3ahz + /1l 1· 

(3 2 3 I h
i) 3 2 a = 1m = 1m = tm a + a 1 + = a . 

11-0 h 11-0 h 11-0 
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There is a useful alternative form of the limit defining the derivative. Replace a + h 
by x, and note that x - a as h - 0: 

Example f(x) = x2• 

f'(a) = lim 
f(x) -f (a) . 

,.... x - a 

f'(a) = lim 
x2 - a2 = lim 

(� - a)(x + a) = lim(x + a) =  a + a =  2a . 
.r-o x - a .x-• x - a x-o 

The derivative f'(a) is a number defined at each point a of the domain of f(x) for 
which a certain limit exists. Therefore f'(a) can be considered as a value of a new 
function, defined on part of the domain of /(x), maybe on the whole domain. This 
point of view suggests writing f'(x) for the slope of the tangent at (x.f(x)). The 
function f' (x) is defined by 

/'( ) - I· f(x + h) -f(x) 
X - Im h . 

�--o 
With this notation, we can restate Examples I and 2 as follows: 

I . f (x) = x2, f'(x) = 2x. 2. f (x) = x3, f'(x) = 3x2• 
In different notation : (x2)' = 2x, (x3)' = 3x2• 

Notation and Terminology A function whose derivative exists is called a dif
ferentiable function. You differentiate a function when you take its derivative: the 
process is called differentiation. 

Unfortunately, lots of different notations are commonly used for the derivative, 
and it is important to recognize them. If y = f(x), then the derivative may be denoted 
in any of these ways: 

f'(x), y'(x ), dy 
<ix • 

df 
dx ' 

df(x) 
� ·  

The first one you read "/ prime of x"; the fourth, .. DYDX." Note that the third, 
fourth, and fifth do not show the point where the derivative is to be evaluated. To 
show the value of the derivative at x = a, write 

y'(a), or 
dy I dx x•• '  or or 

df 
dx (a). 

Sometimes it pays to think of the derivative as an operation. The operator 
d 
<ix 

is applied to the function y = f (x) to produce its derivative dy/dx. 
The variable may be denoted by a letter other than x; that does not change 

anything. For instance, 
d 
du (u2) = 2u, 
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The letter t is usually used for time. There is a specia� and commonly used notation 
for time derivatives, a dot instead of a prime: 

,, 
dt [x(r)] = x(r). 

Thus if x(r) = t2, then x = 2t. 

Some Basic Derivatives Derivatives are so important that sooner or later we 
must learn how to differentiate every function in sight. Let us first attack some 
simple, but basic ones. 

The simplest is a constant functionf (x) = c. Clearly its graph is a horizontal line, 
with slope 0, so f '(x) = 0. More formally, 

f (x + h) -f (x) = c - c 
= � = 0 _ 0 h h h 

as h --+ O, sof '(x) = 0. 
Now consider a linear function f(x) = mx + b. The graph of y = mx + b is a 

straight line of slope m, so f '(x) = m. Formal verification: 

f(x + h) -f(x) [m(x + h) + b] - [mx + b] mh ----- = =-= m--+m  h h h 
as h --+  O, sof '(x) = m. 

Next we differentiatef (x) = x", where n is any positive integer. There are two ways 
to do this one, with factoring or with a binomial expansion. 

Metllod I 
f (x) - f (a) = x" - a" = (x - a)(x"- 1 + ax"- 2  + a2x"- 3  + · ·  · + a"- 2x + a"- 1� 

hence f '(a) = Jim 
f (x) -f (a) = lim(x"- 1 + ax"- 2 + a2x•-3 + · · · + a"- 1 ) • 

.x-• x - a x-• 

The limit of the sum equals the sum of the limits. Clearly as x --+ a, 

Jim ax•- 2 = a lim x"-2 = a · a"-2 = a"- 1, 

Jim a2x"- 3 = a2 lim x"-3 = a2 • a•-3 = a•- • , etc. 

Thus each term has the same limit, a"- 1• Since there are n terms in the sum, 
f '(a) = na"- 1 . 

Metllod 2 By the binomial theorem 

(x + h)" = x" + nx"- 1h + b2x"- 2h2 + · · · + b,.h", 
where b2 , • · · , b,. are binomial coefficients, whose exact values aren't needed. Hence 

.,
( ) J

" (x + h')" - x" . ( 
• b 2 • j x = 1m = hm nx"- + 2x"- h + · · · + b .. h"- ). 

•-o 11 •-o 

The first summand is constant as far as h is concerned; each of the others contains a 
power of h, hence has limit 0. Therefore f '(x) = nx"- 1 • 
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Note that the special cases n = 2 and n = 3 agree with previous computations: 
(x2)' = 2x and (x3)' = 3x2• 

Now let us differentiatef(x) = l/x, defined for x + 0. According to the recipe, 

. l/x - l/a . (a - x)/ax . - l - 1  - I 
f'(a) = hm = hm = hm - = - = -

2 
• 

,.-. x - a ,.-. x - a ,.-. ax a · a a 

Thereforef'(x) = - l/x2• 

Basic Differentiation Formulas 

d d 
- (c) = 0 - (mx + b) = m 
dx dx 

d -
dx 
(x") = nx" i' 

d ( 1 ) I 
dx x = - x2 ' 

n a positive integer 

Rate of Change The derivative has an important interpretation besides slope of 
a curve. Suppose, for instance, thatf'(a) = 3. This means that 

f(a + h) - f(a) 
_ 3 h as h - 0. 

Now J(a + h) -f(a) is the change in y = f(x) as x changes by amount h from a to 
a +  h. When h is very smal� the difference quotient, the ratio of these changes, is very 
close to 3. Thus, a change in x causes a change that is about 3 times as much inf(x). 
We say that the rate of change of y with respect to x is 3 at x = a. Geometrically, the 
curve y = f(x) is rising 3 times as fast at (a,f(a)) as it is moving to the right (Fig. 1). 

/ftl + /t) 

J(<t) 

"'' + h J  -/(<I) 

It 

,, ti + It 

Fla. I The difference quotient 
approximates the rate 
of change of y with 
respect to x. Its limit, 
the derivative, equals 
the rate of change. 



3. The Derivative 87 

In general,f'(a) is the rate of chaaae of y with respect to x at x = a. For a linear 
functionf(x) = mx + b, this interpretation of the derivative is natural. The graph is a 
straight line, and since f'(a) = m at all points, the rate of change of y with respect to x 
is everywhere equal to the slope m. For other functions, the graph y = f(x) is curved, 
and the rate of change of )' with respect to x varies from point to point. 

Take y = x2 for instance. At x = a, a small change h in x produces a change in y 
that is about 2ah. If x increases by h = 0.01 from LOO to l.01, the change in y is 

( 1.0 l )2 - l.00 = 0.020 l � 2(0.0 l )  = 2ah. 

If x increases by h = o.oi from 5.00 to 5.01, the change in )I is 

(5.01)2 - (5.0C>)2 = (5 + 0.01)2 - 52 = 2(5)(0.01 )  + 0.0001 � 2(5)(0.01) = 2ah. 

If x decreases from 3 to 2.99, so h = -0.01, the change in y is 

(2.99)2 - 32 = (3 - 0.01 )2 - 32 = 32 - 2(3)(0.01 )  + 0.0001 - 32 

= -2(3)(0.01 )  + 0.0001 � -2(3)(0.01 )  = 2ah. 

The symbol � in these examples is read "approximately equal to." 

EXERCISES 

Find 
d_r 

for 

.r 
= x2 2 Jx 

3 
dy for y = -4(x - 5) 4 dx 
d 

5 - (x) 6 dx 
7 df for f(x) = 3x + 2 8 dX 
9 f'(x) where f(x) = 8x 10 

I I  
dx 

for x = .rl 12 dy 
13 '!____ (43) Jx 

14 

15 
d_l' 

at x = 0, 3, -3, ir I' = xl 16 dx 
17 JG ' dz , for G(z) = z3 18 
19 V'(4� V'(a), if V(P) = P3 20 

Calculate 

JV 
where V =  pi 

JP 
ds 

where s = -3(4 - Sr) di 
'!._ (x2) dx 
df where f(x) = 12x - 7 Jx 
F'(z) for 
JF for dx 
'!_ (5) I Jr • ·  • 

F(z) = z2 
F(x) = x3 

ds 
for t = 0, I ,  2, 3 di 

Jy I Jx - 4
' 

.I' 
= xl 

ir s = r3 

s'(5), s'(r0), if s(t) = r3• 

21 f'(-6), /'(12� f'( I ), where f(x) = .l2 
22 G'(- 1), G'(O), G'(I� ir G(x) = x2 
23 f'( - 1 ), f'(I ), f'(a), f'( -a� where f(x) = l/x 
24 f'(-t� f'(t� f'(2). f'(3). iffM = l/:c 
25 

dy I and �[ I . if r = ! dx .... Jx .. = 1 ,. 
· .l 26 � 1 JV I I 

JP , _ 114 
and JP ,., , if V = p 
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21 �sH) l 
29 '!_ (x1' 3 7 I I  

Jx 
,. at x = , , 

J 
31 dx (13x + S� at .'( • 2 
33 dy I , r = x1 dx ... 3 

• 
35 � I, . .. - -32, + 200 

21 �xt�H 
J ( 1 30 dP P � at P = - I, I, o 
J 

32 dr (- 131 + r0� for t • 0 

JR I 34 di , where R = /1 
l • - 1 

36 �s I . s = ,2. dt 10 

37 Find aU points on J' = x2 where the tangent has slope 6. 
31 Find a point on .r • x1 where the tangent is parallel to the line x + 2.)1 + 7 • 0. 
39 Find aU points on the curve y = x3 where the slope is 12. 
41 Find where the curve ·'' ,., l/x has slope -i. 
41 Is the curve .r = l/x ever horizontal? 
42 Do the curves )' = l/x and J' = x3 ever have the same slope? 
43 Is the graph of J' .. x3 ever horizontal? 
44 Show there do not exist points on the curve .\' = x3 where the tangent is parallel to the line 

x + y + l = O. 
45 Find which of the two curves y - x1 and .1· • x3 is steeper at .'( - !. at x .. I, at x - 2. 
46 Find all positive values of x where .r = x1 is steeper than .r = x3• 
47 Find all positive values of x where .\' - .'(3 is steeper than J' .. x1. 
48 Give an interpretation to the identity 

x" - I 
--- .. I + x + x2 + · · · + x"- 1 .'( - I 

4. S U M S  A N D  P R O D UCTS 

for x - I. 

The definition of derivative in the last section is fine for theoretical purposes, but a 
nuisance to apply each time we differentiate a function. In practice, we use rules that 
express derivatives ofnew functions in terms of derivatives we already know. The two 
simplest rules are these: 

Let u(x) and 11(x) be differentiable functions and let c be a constant. Then cu(x) 
and u(x) ± v(x) are differentiable and 
Constant Factor Rule 

Sum Rule 

d d -d (cu(x)] = c d- u(x). that is. (cu)' = cu'; x x 

d d d dx (u(x) ± 11(x)] = dx u(x) ± Jx t•(x). that is, (u ± v)' = u' ± v'. 

Examples 
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'!_{ - � x•) = - �'!_ (x•) = - � (4x3) = - � x3• dx 3 3dx 3 3 
d d d - (x5 + x3) = - (x5) + -(x3) = 5x4 + 3x2. dx dx dx 

While these rules seem obvious, they really have to be proved. Differentiation is a 
new operation. Who says it must behave in the way we expect? For example, 

(u(x) + v(x)]2 + [u(x)]2 + [v(x)]2 and log[u(x) + v(x)] + log u(x) + log v(x), 
so why should 

d d d 
dx [u(x) + v(x)] = dx u(x) + dx v(x) ? 

Both rules hold because they reflect corresponding properties or limits. For the 
Constant Factor Rule, we use the definition of derivative and Rule 1 for limits 
(p. 61) :  

d [ ( )] 1. cu(x + h) - cu(x) 1 . u(x + h) - u(x) - cu x = 1m = 1m c --'--__;.._-� dx 11_0 h 11_0 h 
_ 

1. u(x + h) - u(x) 
_ 

d ( ) - C Im - C- U X . 
11-0 h dx 

For the Sum Rule, we use Rule 2 for limits: 

d 
[ ( ) ( )] 1. (u(x + h) ± v(x + h)] - (u(x) ± v(x)] 

d- U X ± V X = Im h x 11-0 

_ 1. f u(x + h) - u(x) v(x + h) - v(x)] 
- Im h ± h 11-0 

]. u(x + h) - u(x) 1. v(x + h) - v(x) = 1m + 1m -----
11-0 h -

11-0 h 
d d 

= dx u(x) ± dx v(x). 
By induction, the Sum Rule holds for any number of summands, not just two. For 

instance, 
(u + v - w)' = u' + v' - w'. 

• EXAMPLE 1 Differentiate (a) 5x3 - 8x2 - 7 

So/11tio• (a) We know the derivatives of x3, x2, and the constant 7. Apply the Sum 
Rule for three terms, then the Constant Factor Rule : 

d d d d 
dx (5x3 - 8x2 - 7) = dx (5xl) - dx (8x2) - dx (7) 

d d = 5 dx (x3) - 8 dx (x2) - 0 = 5 · 3x2 - 8 · 2x = 15x2 - l6x. 
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(b) Same procedure: 

= 1 � (xs) + 3 � ( �) = � (5x') + 3( -21) = � x' - 3
2 . • 2 dx Jx x 2 x 2 x 

Remark In practice, problems like these arc usually done in one step, by inspection. It's just a 
matter of knowing the rules cold so you arc confident of making no errors. 
Products For the derivative of a product u(x)v(x), a natural first guess is 
u'(x)v'(x). This time intuition fails. The natural guess is just plain wrong. For 
instance, if u(x) = x and v(x) = x2, then u'v' = I · 2x = 2x. But uv = x·'. so 
(uv)' = 3x2, certainly not 2x. Here is the correct formula. 

Product Rule If u(x) and v(x) are differentiable functions, then u(x)v(x) is 
differentiable and 

Briefly, 

Example 

" J ti -d [u(x)v(x)] = u(x)-1 v(x) + v(x) d-u(x). x ' x x 
(uv)' = uv' + vu'. 

d d d - (x · x2) = x - (x2) + x2 - (x) dx dx dx 
" = x · 2x + x2 • l = 3x2 = - (x3). dx 

How does this unexpected formula arise? Here is an argument that makes it 
plausible. (We give a proof in Section JO.) 

-� 

area = 11( tll 11( t + h) - 11(x ) j  

\ + h i It( 
II( \' ) .ir�.I = II( \ ) I t ( \ + JrJ - 1  (\· J I  

I ( \ )  -� 

---------- 1 (\ + lll ----------1 

Fig. I Estimate of change in area 
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Assume u(x) and r(x) are positive, and interpret u(x)v(x) as the area of a rectangle 
(Fig. l ). I f  x changes by a small amount to x + h, then u(x) and v(x) change to 
u(x + h) and t1(x + h), and the area changes to u(x + h)v(x + h). The change in area 
is the shaded region. If we ignore the tiny rectangle in the upper right comer (only a 
small part of the entire shaded region), then the change in area is 

u(x + h)v(x + h) - u(x)v(x) � u(x)[v(x + h) - v(x)] + v(x)[u(x + h) - u(x)]. 
Divide by h and let h - 0. It seems probable that 

d 
[ ( ) ( )] 1. u(x + h)ti(x + h) - u(x)v(x) - u x v x = 1m _.;_ _ _.;_-"-----"----'--'--� dx �-o h 

( ) I. v(x + h) - v(x) ( ) 1. u(x + h) - u(x) 
= U X Im h + V X Im h �-o �-o 

,, d = u(x) d- v(x) + t•(x) -1 u(x). x ' x  

• EXAMPLE 2 Differentiate 

(a) y = (3x - 2)(x2 + Sx + I )  

So/11tio11 (a) Apply the Product Rule with u(x) = 3x - 2 and v(x) = x2 + Sx + l :  

d
d)' = (3x - 2) '11 (x2 + Sx + l )  + (x2 + Sx + l) 

d
d (3x - 2) 

X tX X 

= (3x - 2)(2x + 5) + (x2 + Sx + 1 )(3) = 9x2 + 26x - 7. 

Check Multiply out first, then differentiate: 

y = 3x3 + l3x2 - 1x - 2, dy 
dx = 9x2 + 26x - 7. 

(b) Write y = (H H) and apply the Product Rule: 

• 

The last example suggests a formula for the derivative of the square of a function. 
By the Product Rule, 

Briefly, 

d d d d 
d- [u(x)]2 = u(x) d- u(x) + u(x) d- u(x) = 2u(x) -1 u(x). x x x ' x  

tl(u2) = 2u du . dx dx 
We can continue along this line with cubes and higher powers: 

d(uJ) = '!___ (u . u2) = u d(u2) + u2 du = u(2u du} + u2 du = 3u2 tlu ' dx dx dx dx dx dx dx 
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d(u4) = '!___ (u . ul) = u d(ul) + ul du = u(Jul du) + ul 
du = 4ul du dx dx dx dx dx dx clx ' 

d(u5) = '!___ (u . u4) = u d(u4) + u4 du = u(4uJ du) + u4 du = 5u4 du . dx dx dx dx dx dx dx 

Sl.m1'larly, 
d(u6) - 6 5 du d(u 7) - 7 6 du 
dx - u dx ' dx - u dx ' etc. 

Ir 
. . . . d(u") I du n ts a pos1t1ve mteger, then -d-

= nu"- - . x dx 

Special cas� u = x. Then the formula says that 

d(x") = nx.- ' dx = nx"- ' , dx dx 
a familiar formula. 

• EXAMPLE 3 Differentiate (a) (x2 + 1 )3 (b) (5x3 - 17x + 12)6• 
So/11tion (a) Take u(x) = x2 + 1 and n = 3 : 

d(u3) du d 
dx = 3u2 dx = 3(x2 + 1 )2 dx (x2 + 1 ) = 3(x2 + 1 )2(2x) = 6x(x2 + 1 )2. 

Check Expand (x2 + 1 )3 by the binomial theorem and differentiate: 

d d - (x2 + 1 )3 = -(x6 + 3x4 + 3x2 + 1 )  = 6x5 + 12x3 + 6x dx dx 
= 6x(x4 + 2x2 + 1 ) = 6x(x2 + 1 )2. 

(b) Take u(x) = 5x3 - 17x + 12 and n = 6: 
d(u6) du 
--;IX = 6u5 dx = 6(5x3 - 17x + 12)5(15x2 - 17). • 

Remark Part (b) could be done by expanding u6, then differentiating term-by-term. But the 
computation would be horrendous, which shows the great advantage or the formula. 
EXERCISES 

Find dy/dx for y = 

1 x2 + 3x 2 5x3 - x 
4 3x2 + 2x + I 5 x + (l/x) 
7 x3 - 3x + 1 at x = - 1 
9 x3 + x - (2/x) at x = 2 

1 1  (x + l )(x2 + 1 )  
13 (3x + 4)(x2 - 2x - 3) 

3 -x' + 2x2 - 1 
6 5x5 - (7/x) 

8 x2 + (2/x) at x = 3 
10 Sx' - 4x3 + x at x = 1 
12 (x2 - l)(x2 + 3) 
14 (2x - 7)(x3 + 1 )  
16 (x' - 2x)(2x3 - 3x) 15 (x5 - 2)(x3 + x - 3) 

17 (x2 - 1)5 18 (x3 - 2)4 19 (x2 - 2x + 1)3 
20 (!x - 1)6 
23 (x3 + 6)/x 

21 (x2 + 1)3(x - 1)2 22 (x2 + 1 )2(x - 1)3 
24 (x + 2)4/x. (Hint Treat as a product.) 



25 Find the derivative of l/x1. 
27 Find the derivative of (mx + br. 
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26 Find the derivative of l/x'. 

28 Write u"'" = (u"'\11 and differentiate: mnu"'"- 1  du = n(u"').- 1 du"' ' clx clx · 
Do the two sides agree? 

29 Prove (fgh)' = f'gh + fg'h + fgh'. 
30 Prove (f dd1/,)' =Ji fd1f, + f.J'd1f, + f.Jif)f, + fdd1!4 · 

Differentiate with respect to x 
31 (x + l )(x + 2)(x + 3) 
33 (2x + I )(x - 3)(3x + 4) 
35 (2x + l)'(x - 3)(3x + 4) 
37 (x2 - l )(x2 - 2)(x2 - 4)(x2 - 8) 

Find dy/clx at x = 0 for y = 
39 x3(6x + 5)(2x - 7) 

32 (x + 1 )(x2 + l )(x1 + 1 )  
34 (3x2 - l )(x - 1)(2x + 3) 
36 x(x + 1)2(5x + 1)3 
38 (x - l)(x + l )(x2 + l)(x' + 1). 

40 x(x + I )(x + 2)(x + 3). 

5. Q U OTIENTS A N D  SQUARE ROOTS 

Next on the program is a rule for the derivative of a quotient. The natural guess 

d 'u(x) j _ u'(x) 
dx v(x) - v'(x) 

is again wrong. (Find some examples showing that this formula is false.) To derive 
the correct formula, suppose u/v has a derivative and apply the Product Rule to 

u u = v - : v 
Now solve for (u/v)': (u) ' , (u) , vu' - uv' v - = u - - v =  , v v v 

(�) ' = vu' - uv' . v v2 

Quotient Rule If u(x) and v(x) are differentiable and v(x) + 0, then u(x)/v(x) is 
differentiable and 

Briefly, 

� ru(x) J = v(x)u'(x) - u(x)v'(x) dx v(x) (v(x)]2 • 

� (�) = vu' - uv' . dx v v2 

This is not just a restatement of the rule we derived above. There we assumed that 
u/v is differentiable, whereas the Quotient Rule says u/v is differentiable if u and v are 
(and v + 0). We postpone a proof of this technicality to Section 10. 

• EXAMPLE 1 Differentiate (a) (b) 
x2 - 7 
� -
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So/"tion (a) Take u = x and r = x1 + I :  
'!_ (_x_) = (x2 + l }(x)' - x(x2 + I )' = (x2 + _!.W .. L::- x(2.� 

_ . �- - = :� 2 _ _ 

tlx x2 + I (x2 + 1 )2 (x2 + I )2 - (x2 + I )2 • 

(b) Take u = x2 - 7 and r = x3 : 
:�
x 

( x2
x
� 7) = �J�� - 7)' �}x�-� 2l(x3)' = ��(2!) - (:: -!lPx2) 

-x4 + 2 1x2 -x1 + 2 1  
x4 

• 

Rec1 procals The special case u = I in the Quotient Rule yields a useful formula 
for the derivative of a reciprocal. 

Reciprocal Rule If L'(x) =I= 0, then �� C) = - ::: . 

This follows directly from the Quotient Rule, because if u = 1, then u' = 0. Therefore 

Example 

'!_ ( �) = v · 0 - 1 · v' = _ v' 
dx v v2 v2 • 

d ( 1 ) (x4 - 3x + 1 )' -4x3 + 3 
dx -� - 3x + 1 = -

(x4 - 3x + I )2 (x4 - 3x +-1 ·)2 · 

Derivatives of Powers In the last section we derived the rule 
t/(u") = nu"- I tfu 
tlx dx 

for positive integers n. The rule also holds for negative integers, provided u(x) =I= 0. 
For if n < 0, then u" = l/u-" and -11 > 0. Hence by the Reciprocal Rule and the rule 
for positive powers, 

'! _ (u") = '!...._ (-1- ) = ---=-!__ '!...._ (u-") = ( - u2")( - nu- " - 1 du) = nu"- 1  du
. tlx dx u-" (u- ")2 dx dx dx 

Power Rule I f  u(x) is differentiable and p is a positive or negative integer, then 
u' is differentiable and 

d(uP) _ I du - - = pu' - . dx dx 
If p < 0, then u(x) =I= 0 is assumed. 

• EXAMPLE 2 Differentiate 
Sol"tion Take u = x2 + Sx + l and p = -3 :  

ti _ 3  _
4

, 2 _
4 ) -3(2x + S) - (u ) = - 3u u = - 3(x + Sx + 1 )  (2x + 5 = ( 2 5 1 )4 · tlx x + x + 
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The result is valid for all x except for x = !( -5 ± J2i ). the zeros of the quadratic 
x2 + 5x + I .  Usually we shall not bother mentioning such obvious exceptions. • 

The special case u(x) = x of the Power Rule is important. 

cl - (xP) = pxP- •, clx p any integer. 

Here the usual exception applies, x + 0 if p < 0. If p = 0, then xP = x0 = I, so the 
formula only says ( I )' = 0. The cases p > 0 and p = - I agree with results we found 
in the last section. 

Examples 
cl ( I ) 6 
clx x6 = - x7 ' 

Square Roo!_:; Suppose u(x) > 0. We want to derive a formula for the derivative 
of v(x) = yfu{x). If we assume that v(x) is differentiable, then we can differentiate 
u(x) = [v(x)]2 by the Power Rule and solve for v' : 

u' = 2t•t:', I u' U 11 = - = --2v 2Ju · 
Square Root Rule If u(x) is differentiable and u(x) > 0, then JU(X) is differ
entiable and 

c!_ JU(X) = u'(x) . 
dx 2./U(Xj 

In particular, cl .fi I 
dx 

x = 2.fi for x > 0. 

In the derivation of the rule, we assumed Ju is differentiable. This will be proved in 
Section 10. 
Remark The Square Root Ruic can be written 

<!_ (u1'2) = ! u· 112u· 
dx 2 

(u > 0), 

which is the Power Ruic with p = !. 

• EXAMPLE 3 Differentiate 
(a) J5X (b) .fi (c) (p+l + 3)4• 

6x + I  

Solution 

and 

(a) Two possible solutions are 
c!_ J5X = '!__ ( J5 .fi ) = .j5 '!_, .fi = J5 
clx clx clx 2.fi 
cl__ J5X = (5x)� = _ _ 5_ = J5 
dx 2fo 2fo 2.fi · 
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(b) Use the Quotient and Square Root Rules: 
d d 6x + 1 r: 

r: (6x + 1 ) - Jx - Jx - (6x + 1 )  .,"{: - 6..;x d ( v _.. ) dx dx -� ........... x----.--dx 6x + 1 = (6x + 1 )2 = (6x + 1 )2 
Multiply numerator and denominator by 2.fi : 

d ( Jx ) 6x + 1 - l 2x -6x + 1 
dx 6x + 1 = 2.fi (6x + 1)2 = 2.fi (6x + 1)2 • 

(c) Use the Power and Square Root Rules: 
d d 
dx (

p+i + 3)' = 4(p+i + 3)3 dx (
p+i + 3) 

(x2 + l )' 2x = 4(p+i + 3)3 p+1 = 4(p+i + 3)3 p+1 2 x + 1 2 x + l 
4x(p+i + 3)3 

= p+1 
EXERCISES 

Test the " formula" (u/v)' = u'/v' 
1 U = X  V = X  
3 u = x v = x1 

Differentiate with respect to x 
x --
x + I  

8 
x - 2 
x + 2 
I 
x9 II  

I 
(2x - 3)6 14 

I 
(x2 + I )' 17 

x 
(x.:..±Jji 10 

13 
J

x

:

l Jx + ":  
x - a  16 

4 - x  J
sx - x1 29 

32 
P-
+ 3 rl x1 .XS 

6 

9 

11 

15 

18 

21 

14 

17 

30 

33 

x 
1 - x 
x1 + x + 3 
x + 4  

I 
(4x + 3)5 (�r x + 3  
(x - 1)2 
(2x + 3)7 

JX+3 

2 u = x1 v = x 
4 u = x' v = x3• 

7 

10 

13 

16 

19 

12 

( I + 2Jx )3 25 

xl� 18 

� 31 
x 
I 

Ji + 2x + 3x2 • 

• 

3x + I  
x + S  
xl 

xr+1 
I 

(x2 + x)4 
x2 - I 
x3 - I 
3x1 + I  
2x3 - I 

..;xr+X 
x J
i - x1 J
x +

·

.jx 
(Jxx

+ .r 
34 Show that the derivative of each rational function (quotient of polynomials) is a rational 

function. 



35 Prove (�)' = (fgh)'
h
-; lfgh' _ 36 Prove 

6. THE CHAIN R U LE 

6. The Chain Rule 77 

(!.)' u'v - nuv' 
v" .,. v"+ I . 

Composition or runctions is an important way or combining runctions to produce 
new ones. Recall that the composition or y = /(u) and u = g(x) is the runction 
y = f[g(x)]. For instance, the composition or y = u5 - 3u4 and u = 2x2 + 1 is 

y = (2x2 + J )S - 3(2x2 + l }". 

The Chain Rule allows us to differentiate composite runctions. 

Chain Rule Ir y = f(u) and u = g(x) are differentiable, then so is the composite 
runction y = f[g(x)] where defined, and 

'!._f[g(x)] = (df I ) (dg I )= df [g(x)] . dg (x). dx du ••t<xl dx x du dx 

Briefly, 
dy dy du 
dx = du . dx' 

This rule will be proved in Section 10. In the meantime, it is easy to check that the 
rule is reasonable. Interpret dy/du as the rate or change or y with respect to u and 
du/dx as the rate or change or u with respect to x. According to the Chain Rule, the 
rate or change of y with respect to x is the product or these rates. For instance, if y 
changes five times as fast as u, and u in tum changes three times as fast as x, then y 
changes 1 5  times as fast as x. 
Remark The brief version 

dy dydu 
dx = dudx 

in the DYDX notation contains a nice memory aid for the Chain Rule: "Cancel du." 
(However, do not think of du/dx as a fraction. So far the quantities du. dx, etc. have been given 
no meaning.) 
• EXAMPLE 1 Differentiate 

(a) y = 5(x2 + 1)6 - 8(x2 + 1 )2 + 9  (b) y = J3x4 + 2 .  
Sol•tio11 (a) The function is the composite or y = Su6 - 8u2 + 9 and u = x2 + l .  
By the Chain Rule, 

dy dydu d d 
dx = du dx = du (Su6 - 8u2 + 9) dx (x2 + l )  = (30u5 - 16u)(2x) = 4xu(15u4 - 8). 

Replace u by x2 + 1. Answer 4x(x2 + l )[ l5(x2 + 1 )4 - 8]. 
(b) Here y(x) is the composite of y = JU  and u = 3x4 + 2. By the Chain Rule, 

dy = dy du = '!.._ 
(JU ) '!.._ (Jx• + 2) = _1_ ( l2x3) = 6x3 = 6x3 

• • dx du dx du dx 2JU JU J3x' + 2 
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Special Cases The Chain Rule implies other useful rules. For instance, the 
Power Rule for integers p + 0, 

d du 
dx [u(x}]P = p[u(x)]P- 1 

dx ' 
follows from the Chain Rule and duP/du = puP- 1• The Square Root Rule 

� JUW = u'(x) 
dx 2Ji'W 

follows from the Chain Rule and d.jU/du = 1/(2.jU ). 
Now we look at two further special cases. 

Horizontal Shift Rule �xf(x + c) = f'(x + c). 

Write y = f (u) where u = x + c. By the Chain Rule, 
dy d d 
dx = du! (u) dx (x + c) = f'(u) · I = f'(x + c). 

For a geometric interpretation, recall that the graph of y = /(x + c) is the graph of 
y = f (x) shifted I c I units; left if c > 0, right if c < 0. The Shift Rule says that the 
slope of y = f(x + c) at P = (x.f(x + c)) equals the slope of y = f(x) at 
Q = (x + c.f(x + c)). See Fig. I. 

.I' = /(x) 

Fig. I Horizontal shirt (with c > 0): the slopes at P and Q are equal. 

Change of Scale Rule d 
dxf(kx) = kf'(kx). 

Write y = f (u) where u = kx. By the Chain Rule, 
dy d d - = -f(u) -d (kx) = f'(u) · k = kf'(kx). dx du x 

x 
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Let us examine the graphs for the case k = 2. The curve y = f (x) passes through all 
points (x,/(x)), hence through all points (2x,/(2x)). The curve y = /(2x) passes 
through all points (x,/(2x)). Thus this second curve runs through the same values of 
y as the first, but twice as fast (Fig. 2). Therefore the slope or y = /(2x) at 
P = (x, f (2x)) is twice the slope of y = f (x) at Q = (2x,/ (2x) ). That is, 

y 

d 
dxf(2x) = 2f'(2x). 

2x x 

Fis. 2 Scale change: k = 2 

x x 

Fractional Powers As an application or the Chain Rule, we shall find the deri
vative of the function/(x) = x', where r is rational, that is, a fraction. Here we shall 
assume that this function is defined for all x > 0 and is differentiable-these points 
will be discussed in Section 4, Chapter 7. 

Write r = p/q, where p and q are integers. Then 
f (x) = x' = x'''• so [f (x)]' = x'. 

Differentiate, using the Chain Rule: 
d d 
-[f(x)]' = - (x'), dx dx 

Solve for f'(x) and simplify, using [f(x)]' = x': 

, p x'- 1 x' /(x) x' /(x) /(x) x' _ 1 / (x) = q [/(x)).- 1 = r [/(x)]' 7 = r x, 7 = r7 = r -x = rx' . 

Power Rule If r is rational, then �xx' = rx'- 1 (x > 0). 

Notice the same pattern as found for integer powers: 
d 
dx (xP-••) = (power)x<P-•r>- 1. 

• EXAMPLE Z Differentiate (a) y = �2x + 3 1 (b) y = --=--=� · 
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Sol111ion (a) Here y = u1i3, where u = 2x + 3. By the Chain and Power Rules, 
dy = d)1 du = ! u _ 213 _ 2 =  2 
dx dudx 3 3(2x + 3)2'3 · 

(b) Here y = u- 114 and u = x2 + l, so 
dy = dydu = _ 

! u- 514 .  2x = -x 
dx du dx 4 2(x2 + 1 )514 • • 

Composition of Three or More Functions In applications one frequently 
meets composite functions involving two or more successive compositions, such as 

[(3x2 + 1 )113 + 1) 114. 

Such functions are differentiated by applying the Chain Rule repeatedly. For instance 
if y = y(u), u = u(v), and t' = v(x), then 

dy dy du 
dx = du dx · But 

• Differentiate 
(a) y = [(3x2 + 1 )113 + 1]114 (b) y = [(3x2 + 1 )113 + x] 114. 

Sol11tion (a) Write y = u114, u = v113 + l ,  and v = 3x2 + 1 .  Then 
dy _ dy du dv 

_ ( 1 _ 314) ( 1 _ 213) ( ) _ 
x 

dx - du dv dx - 4 u 3 v 6x - 2[(3x2 + 1) 113 + 1 ]31'(3x2 + 1 )213 " 

(b) This is different because of the x term inside the square brackets. The method 
still works, but you must use the Sum Rule also. Write y = u114, u = v 10 + x, and 
v = 3x2 + 1 . Then 

dy dydu l _ 314 du - = - - = - u -
dx du dx 4 dx ' 

du d d d _ = _ vlfJ + _ x = _ vl/3 + 1, dx dx dx dx 
Now put the pieces together: 

d d dv 1 
_ vll3 = _ v113 _ = - v- 2'3(6x). 
dx dv dx 3 

�� = � u- 3t4 [� v- 213(6x) + l ] = 4[{3x2 + 1�113 + x]3'4 r (3x2 � 1 )213 + 1 J ·  • 

Remark With some practice, you will soon do problems like these without using the inter
mediate variables u, v, etc., often by inspection. In num�rical work, however, the extra var
iables can be useful because they split the calculations into several stages, for which you may 
have sub-routines. For instance, in Example 3(a), suppose you had to compute dy/dx for 25 
values of x. Then it would make good sense to arrange the answer in the form 

dy x - 1/3 l d- = 2 314 20 , u - v + I ,  v = 3x + I, x u v 

and organize the computation accordingly. 
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A Friendly Tip Make a special effort to get the Chain Rule straight, because 
misuse of the Chain Rule is the cause of most mistakes in differentiation. Answers can 
end up rather long and messy, as Example 3 shows. Therefore keep coo� work 
systematically, and especially take care not to forget the innermost differentiation. 

Examples 

TYPICAL MJSTAKE 

�x (5x)3 = 3(5x)2 
d ( I ) - I  
dx 2x + 7 = (2x + 7)2 
d I -J3 + 4x2 • · 4 dx 2J3 + 4x2 
d 
dx (1 + 5(1 + 4x)2]3 

CORRECT ANSWER 

- 2  
(2x + 7)2 

1 ---- · 8x 2J3 + 4x2 

= 3(1 + 5(1 + 4x)2)2(10(1 + 4x)] 3(1 + 5( 1  + 4x)2)2(10(1 + 4x)] · 4 

EXERCISES 

Differentiate with respect to x 
l (x3 + 1)4 - 3(x3 + 1)2 
3 (x + �f - (x + �r 
s -3(2x - �) 'o 
7 I 

J2x + l 
9 [(x2 + 2x)•l3 _ 1p12 

1 1  

13 

(�)"2 + 1  
(x + 1 ) 1 12 _ 1 x - I 

1 
2 +{Tx 

Find dy/dx for y = 

2 (x2 - x)9 + 4(x2 - x)7 
4 5(2x - 1 )7 - 7(2x - 1)5 

3x6 + I  6 3x6 - I 

8 ((3x2 + 1)2 + 1)1 '5 

10 [(x2 + 2x)113 - 3x]ll2 
12 (x3 + 2x)3 + 2(x3 + 2x) 

14 xi.}x2 + a2 • 

I x - I 15 1 _ lu where u = � 16 -u + I  
u - 2  where 2x + I  U = --

X + l 
17 u2 + I where u = t•2 + I and v = x2 + 1 
18 u2 + I where u = v3 + I and v = x' + 1 
19 Jii'+I where u = x213 + 1 
20 u115 where u = v2 + 1 and 1· = l/x. 
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7. T H E  TANG E NT LINE 

In this section, we consider only differentiable functions. We sometimes refer to the 
graph of a differentiable function as a smooth curve. 

Let P = (a, f (a)) be a point on the graph of .r = f (x ). The tangent to the curve at P 
is defined as the line through P having slope f'(a). By the point-slope form, the 
equation of this line is 

.r -/(a) = f'(a)(x - a), that is, .r = f (a) + f'(a)(x - a) . 
• EXAMPLE 1 Find the tangent to y =  x2 at (-2, 4). 

Solution The slope at ( -2, 4) is dl
y = 2x I = -4. ( x - 2 

The line through ( -2, 4) with slope -4 is 
y - 4 =  -4(x + 2), that is, .r = - 4x - 4. • 

• EXAMPLE 2 Find the x-intercept of the tangent to y = l/x at (3, !). 
Sol11tion The equation of the tangent is 

.r =/(a) + f'(a)(x - a). 
In this case,/(x) = l/x and a = 3, so 

I - l 1 I /(a) = 3 • f'(a) = ?' 
J 

= - 9 .  
Hence, the tangent is y = ! - !(x - 3) = -!x + !. 
To find the x-intercept, set y = 0 and solve for x :  

-!x + i = 0, x = 6. • 

Approximating a Function Approximating complicated functions by simpler 
functions is one of the important ideas in calculus. Let us consider the simplest type 
of approximation, via linear functions. 

Under a high-powered microscope, a smooth graph y = /(x) appears nearly 
straight (Fig. I ). The tangent at P = (a.f (a)) is almost indistinguishable from the 
curve, at least very near P. See Fig. 2. Therefore, since the equation of the tangent is 

y =/(a) + f'(a)(x - a), 
we expect the linear function 

y = t(x) =/(a) + f'(a)(x - a) 
to be a good approximation to /(x) provided x is near a. 

To see how closely t(x) approximates f(x), we must measure the error in the 
approximation, that is, the difference between f(x), the true value, and t(x), the 
approximate value. So we set 

e(x) =f(x) - t(x) =f(x) -/(a) -f'(a)(x - a). 
In many cases, we can show by direct calculation that I e(x) I is smaller than a 
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Fig. I. Inspect the graph 
through a microscope. 

Fis. 2. Higher magnification : 
the curve and its tangent 
arc almost indistinguishable. 

constant times (x - a)2• That square is good news because (x - a)2 is very small 
when x is near a, much smaller than x - a itself. 

Example f(x) = x2, a =  -2. 
We found the tangent to y = /(x) in Example l :  

y = t(x) = -4x - 4. 
Hence e(x) = f (x) - t(x) = x2 - (-4x - 4) = (x + 2)2• 
Accordingly, if x is within 0.1 of -2, that is, if I x  + 2 I < 0. 1,  then e(x) 5 (O. l )2 = 
O.ol. If I x +  2 I < O.ol, then e(x) < 0.0001,  and in general, the error is the square of 
the distance from x to -2. 

Example f (x) = l/x, a = 3. 
We found the tangent to y =/(x) in Example 2 :  

y = t(x) = -ix + 1. 
The error is 

l ( l 2) e(x) = /(x) - r(x) = ; - - 9 x + 3 . 
Let us tabulate to six places a few values of e(x) for x near 3. 

,'( 2.8 2.9 2.99 3.01 3.001 

l/.'f 0.357143 0.344828 0.334448 0.332226 0.333222 

- i'{ + i 0.355556 0.344444 0.334444 0.332222 0.333222 

e(:c) 0.00 I 58 7 0.000384 0.000004 0.000004 0.000000 
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The approximation is extremely accurate. This is so because e(x) is divisible by 
(x - 3)2 : 

e(x) = ! + ! x _ � = x
2 - 6x + 9 

= 
(x - 3)2 

x 9 3 9x 9x 
If x ::::: 3, then 9x ::::: 27, so we can write 

e(x) ::::: f,(x - 3)2• 
More precisely, if x � 2.8, then 9x > 25, so 

e(x) < n(x - 3)2 

Thus, for instance, if I x - 3 I :::;; 0.2, then 
if x > 2.8. 

e(x) < n(0.2)2 = n(0.04) = 0.0016 < 0.002. 
Similarly, if I x - 3 I :::;; 0.1 , then e(x) :::;; 0.00004. If I x - 3 I :::;; O.ot, then e(x) :::;; 
4 x 10-6. Finally, if I x  - 3 I � 0.001, then e(x) � 4 x 10- s. These estimates com
pare very well to the exact values of e(x) in the table above. 
We shall return to this subject in Chapter 10. 

EXERCISES 

Find the equation of the tangent to the curve 
1 .r = x

2 
through (2, 4) 

3 y = l/x through (- 1, - 1 )  
I 

5 r = x - - at x = - I . x I 7 r = -2 at x = - 3 . x 

2 .r = x
3 

through (2, 8) 
4 .r = l/x through (2, !) 

6 r = _x_ at x = 0 
· x2 + 4 

8 y = Hx - I )5 at x = 4. 

Find the equation(s) of the tangent(s) to the curve 
9 r = x

2 
at all points where the slope is 10 

10 )· = x
3 

at all points where the slope is 27 1 1  y = x2 if the tangent crosses the y-axis at y = - 16 
12 .r = x

3 
if the tangent crosses the y-axis at y = - 128. 

Find the equation(s) of the tangent line(s) to the curve and determine where each crosses the 
coordinate axes 
13 y = x2 + 3x - I through (2, 9) 
14 y = x

3 
- 8x2 through ( 10, 200) 

15 y = l/x and the tangent has slope - 81 16 y = l/x and the tangent has slope -6. 

Find the area of the triangle bounded by the coordinate axes and the line tangent to .r = l/x 
17 at x = 2 18 at x = a, where a +  0. 
19 Show that the tangents to the parabola .r = x2 at (3, 9) and ( - 3, 9) cross on the y-axis. 

Where? 
20 Exactly one of the lines .r = 3.� + b is tangent to the parabola .r = x2• Which one? 
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Find the equation of the line tangent to the curve at the specified point; also find the error 
made in approximating the curve by its tangent 
21 r = I - x2 at (0, I )  22 y = 2x2 + 3 at (I, 5) 
23 }- = x3 at (3, 27) 24 J = x2 + x + 1 at (- 1, 1 )  

1 
25 _r = J."\" +· 4 at ( - I, I )  26 .r = ."\"2 - x3 at ( I ,  0). 

27 Let y = t(x) be the tangent to y =  Jx at (1, 1). Compute t(x) and tabulate Jx, t(4 
and e(x) = Jx - t(x) for x = 0.9, 0.98, 1.02, 1 . 1 .  

28 Let y = t(x) be the tangent to y =  x5 + 2x at (0, 0). Compute t(x) and tabulate x5 + 2x, 
t(x� and e(x) = (x5 + 2x) - t(x) for x = -0.2, -0.1, 0.1, 0.2. 

29 Let y = t(x) be the tangent to .r = ·'"3 at (2, 8). Prove 
1 -'"3 - t(x) I  < 7 l x - 2 12 for I x  - 2 1  < I . 

30 Let r = t(x) be the tangent to y =  l/x2 at (1. 1). Prove 1 :2 - 1(."\") j < l6 l x - J l2 for � < x < � . 
8. ANTIDERIVATIVES 

Basic Facts about Derivatives Suppose/(x) is adifferentiable functionwhose 
derivative f'(x) is zero at each point of an interval a < x < b. It seems almost obvious 
that /(x) is a constant function because the tangent at each point of the curve 
y = /(x) is horizontal. Surely then, the graph must be a horizontal straight line. 

If f'(x) = 0 for all x in the interval a < x < b, then f(x) = c, 
a constant function on the interval. 

Here is another way of looking at it. If the rate of change off (x) is always 0, then 
/(x) never changes, so /(x) must be constant. (We shall give a rigorous proof on 
p. 150.) 
Now suppose we are given two functions,/(x) and g(x), whose derivatives agree, 

f'(x) = g'(x� at each point of an interval a <  x < b. How are/(x) and g(x) related? 
Well, their difference f (x) - g(x) has derivative 0: 

[f(x) - g(x)]' = f'(x) - g'(x) = 0. 
But a function with derivative 0 is constant, so f (x) - g(x) = c. 

If f'(x) = g'(x) for all x in the interval a <  x < b, then 
f(x) = g(x) + c. 

The graphs of f(x) and g(x) are identical except for a vertical shift (Fig. I ). Con
versely, the derivative cannot distinguish between vertically shifted curves, because if 
/(x) = g(x) + c, thenf'(x) = g'(x). 

Example x3, x3 + I, x3 - ;, x3 + 15, etc. all have the same derivative, 3x1. 
Furthermore, any function with derivative 3x1 must be one of the functions x3 + c. 
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y 

Y •f(x) 
= g(x) + c 

x 

Fia. I Graphs of functions with equal derivatives 

Ant1differentiat1on Differentiation is the process of finding the derivative of a 
given function. Antidifferentiation is the reverse process: finding a function f(x) 
having a given derivative f'(x). There is not just one function whose derivative is 
f'(x), but a family of functions which differ from each other by additive constants. 

• EXAMPLE 1 Findf(x) for x > 0 if 
2 3 (a) f'(x) = x2 + 2 (b) f'(x) = 1 + r= .  X yX 

So/11tio11 (a) Determine an antiderivative for each term. From 

and from 

d 
- x3 = 3x2 
dx 

�(�) = - _!_ 
dx x x2 

follows 

follows 

�(� xJ) = x2 
dx 3 ' 

�(- �) = �  
dx x x2 • 

Therefore !x3 - 2/x is a function whose derivative is x2 + 2/x2• Any other function 
with the same derivative must agree except for an additive constant. 

(b) Clearly 

Therefore 

d -x = 1 dx ' and from 

d 1 -..fi=-
dx 2.jX 

follows 

Answer f(x) = !x3 - 2/x + c. 

d 3 - (6./X ) = - . 
dx .jX 

d 3 
dx 

(x + 6.jX) = 1 + 
.jX 

. 

Answer f (x) = x + 6.jX + c. • 

Antidifferentiation produces a family of functions, of the formf(x) + c. The corre
sponding graphs y = f(x) + c make up a family of parallel curves that differ from 
each other by vertical shifts. A particular choice of c singles out one curve of the 
family. Often c is chosen to make the curve pass through a given point. 
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• EXAMPLE 2 Graph the family of curves y = /(x) wheref'(x) = x - 2. Which of 
these curves passes through (2, l ) ? 
Sol11tio11 !x2 - 2x is an antiderivative of x - 2. Therefore the family of curves 
consists of the parabolas y = tx2 - 2x + c, where c is any constant (Fig. 2). To 
choose c so that (2, l )  is a point of y = tx2 - 2x + c, substitute x = 2. y = 1 : 

l = !(2)2 - 2 . 2 + c = -2 + c, c = 3. 

Answer y = !x2 - 2x + 3. 

Fi&- 2 The family y = !x2 - 2x + c of functions with dy/dx • x - 2 • 

Antid1fferentiation Formulas The technique of antidifferentiation is a vital 
tool in integration; we shall study it in detail in Chapters 5 and 8. Here we shall note 
some general principles. 
Each formula for the derivative of a function is also a formula for an antiderivative. 

For example, the differentiation formula 

� (!) = _ _!_ 
dx x x2 

becomes an antidifTerentiation formula when read fro� ri,g_ht to left. It sa,.rs that l /x is 
an antiderivative of - 1/x2• Similarly, d(.jX)/dx = 1/2.jx says that ..jx is an anti
derivative of 1/2.jX. 
We can adjust constant factors in antidifTerentiation by means of the formula 

d 
dx (af(x)] = af'(x� 

which says: If /(x) is an antiderivative of f'(x), then a/(x) is an antiderivative of 

file:///j2yjx
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af'(x). For example, 

from �(�) = - __!_ dx x x2 

from � Jx = -1-
dx 2Jx 

Recall the formula 

follows 

follows 

d - x'• 1 = (r + l )x• dx (r rational). 
If r -:/=  - 1, we can divide by r + 1 and obtain a basic antidifferentiation formula. 

r rational, r -:/=  - l 

The formula is written so as to show all antiderivatives of x'. It is valid on the domain 
of x' except possibly at x = 0. 
Remark An antiderivative or g(x) is orten called a primitive or g(x). 

EXERCISES 
Find all runctions with derivative 

I 4x 2 - 7  3 
4 5x + 6 5 -2x + I  6 
7 x2 - 2x 8 3x2 + 4 9 

10 8x3 - 6x2 + I  II 
I 

12 x + -x2 

13 (x - 2)(x - 3) 14 (x + �f 15 

16 (x - 3)5 17 
4 

18 (x - 3)3 
19 (2x + 1)6 20 (5x - 3)5 21 

I 2 
22 23 xl + 24 (2x - 1 )3 7x 
25 Jx 26 ifX 27 

28 
x 

29 3ax2 + 2bx + c 30 Jx
2 
+ 3 

Find the curve y = f (x) such that 
31 f'(x) = x - 5 and f(l )  = 2 
32 f'(x) = -(x + 3) and /(0) = 4 
33 

dy 2 I - = 3x - 4x + ::I dx x and the point (2, 9) is on the curve 

dr and the point ( I ,  2) is on the curve 34 ....::.. = (3x - 4)2 + 5x dx 
[Hint (3x - 4)2 = 9(x - 1)2.] 

-x 
3(x + 1) 
x3 + x - I 

2 2 X - XJ 
3 

x2 - x' 

(x + 1)3 - 2(x � 1)4 
(
!
x +
W 

I 
7x+1 

I 6x - ::Ji4 x 

(ax + br. " +  - 1. 
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Find an antiderivative of . 
35 f(x)f'(x) f'(x) 

36 [!(x)J2 . 

Suppose F(x) is an antiderivative of f(x). Find an antiderivative of 
37 [F(x)]2/(x) 38 f(x + 3). 

9. H I G H E R  D E R IVATIVES 

Second Derivati ves Start with a differentiable function/(x). Its derivativef'(x) 
is itself a function. If f'(x) in tum is differentiable, then 

:x [f'(x)] 
is called the second derivative of y = /(x) and is written 

J2y 
dx2 or r(x) or y". 

A function that has a second derivative is called 1wice differentiable. 
The symbol d2y/dx2 is usually read " D2YDX squared". This notation is natural in 

terms of operators. If we think of the second derivative operator as the compositve of 
the operator d/dx with itself, then 

d2 d d (d )
2 - = - o - = -dx2 dx dx dx · 

Examples 
f (x) = x3 - 4x, f'(x) = 3x2 - 4, 

dH = 8(t - 1)3 dt • H(t) = 2(t - 1 )4, 
• EXAMPLE 1 Compute the second derivative of 
(a) Y = .fi (b) y = (x3 + 6)5• 

So/11tio• (a) Jy = '!._ .fi = _I_ = ! x- •12. dx dx 2.fi 2 

f"(x) = 6x. 
d2H 
dt2 = 24(t - 1)2. 

d2y = '!._ (dy) = '!._(! x- 112) = ! '!._ (x- 112) = - ! x- 3/2. dx2 tlx tlx dx 2 2 tlx 4 
dy d (b) - = - (x3 + 6)5 = 5(x3 + 6)4(3x2) = 15x2(x3 + 6)4• dx dx 

By the Product and Chain Rules, 
d2 �· = '!._ ( ">') = '!._ [ I 5x2(x3 + 6)4) = 1 s f x2 '!._ (x3 + 6)4 + (x3 + 6)4 '!._ x2 j tlx dx tlx dx dx tlx 

= 1 5[x2 • 4(x3 + 6)3 • 3x2 + (x3 + 6)4 • 2x] 
= 30x(:c3 + 6)3[6x3 + (x3 + 6)] = 30x(x3 + 6)3(7x3 + 6). • 
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EXAMPLE 2 Find all functionsf(x) such thatf"(x) = 0 for all x. 

So/11tion �xf'(x) = f"(x) = 0, hence f'(x) is a function with derivative zero. 

Therefore f'(x) = a, a constant function. This means thatf(x) is an antiderivative or 
a. One antiderivative is ax, so the most general antiderivative is ax + b, where b is a 
constant. 

Answer f (x) = ax + b. • 

The second derivative f"(x) is the rate of change with respect to x of the first 
derivative f'(x), hence f"(x) measures how fast the slope of the curve y = f(x) is 
changing. This important information will be applied in the next chapter. 

_ If the second derivative of y = f (x) has a deri-
vative, it is called the third derivative of /(x) and is written 

or f"'(x) or J"". 

Examples 
/(x) = x10, f'(x) = 10x9, f"(x) = 90x8, 

r = x4 - 5x3 + 3x + 7, .r' = 4x3 - 15x2 + 3, 
_,�,, = 12x2 - 30x, y

"' 
= 24x - 30. 

Fourth, fifth, and higher derivatives are defined similarly by repeated differentia
tion. The 11-th derivative of .r = f(x) is written 

d"y 
dx" or /4"1(x) or 

Examples (continuing those above) 
f'41(x) = 720(7x6) = 5040x6, f451(x) = 5040(6x5) = 30,240x5, 

f'61(x) = 30,240(5x4) = 151 ,200x4, etc. 

EXAMPLE 3 Compute 
(a) y<4• for y = Hx - 3)8 

J(S) = 0, y'6J = yl1l = . . .  = 0. 

(b) y<5> for y = 19x4 + 36x3 + 499x2 - 125x - 62. 
So/11tion (a) Differentiate carefully four times, using the Chain Rule. Don't forget 
the factor t at each step: 

r' = 8(-lx - 3)7(!), y" = 8 . 7{!x - 3)6{!)2,_ )'"' = 8 . 7 . 6(!x - 3)5(!)3, 
y141 = 8 · 7 · 6 · S(!x - 3}4(t)4 = 105(!x - 3)4. 

(b) By inspection y151 = 0, because the derivative of a polynomial is a polynomial 
of one lower degree. Hence y, y', y", y"', y141 have degrees 4, 3, 2, l, 0, respectively. 
Thus y141 is a constant, so )�51 = 0. • 
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• EXAMPLE 4 Given J' = l/x, find 
So/11tio11 (a) Compute a few derivatives: 

, l 2 2 . 3 
y = - 2 . y" = 3 ,  y"' = - -.. - , x x x 

(41 - 2 . 3 . 4 y - s x 

A clear pattern emerges: The numerators are l !, 2 !, 3 !, 4!, etc., and the de
nominators are x2, x3, x4, x5, etc. The signs alternate, minus for odd-order 
derivatives, plus for even. According to this pattern, 

_y'251 - - 25! 
- x26 ' 

(b) By the same reasoning, 1111 = + (factorial) . y - (power or x) 
The factorial must be n ! with the same n as in y<111• The exponent or x is one larger, 
that is, n + l .  For the sign, introduce the factor (- 1 Y'. an automatic sign changer. Its 
value is + 1 for n even and - l for n odd. 

n '  Answer y'111 = (- IY' 
x11� 1 •  • 

Remark It is easy to make mistakes when finding general formulas as in Example 3(b). Be 
especially eareful in case of an alternating sign; note that ( - I )" +  1 is the sign changer that is 
+ I for n odd and - I for n eren. Check your answer for several low values of n and, if possible, 
prove it by induction. 

• EXAMPLE I Find the n-th derivative of y = JX. 
So/11tio11 Write y = x112 and compute a few derivatives: 

The pattern is 
(Ill _ 

(product or odd integers) (Hp•entl 
y - ± 211 x . 

Each differentiation lowers the exponent by one. Starting with exponent !. differen
tiation n times lowers the exponent to 

! - n = !( l - 2n) = -!(2n - l ). 
The numerator is the product l · 3 · 5 · 7 · · · ,  ending with the odd number just 
before 2n - 1, that is, with 2n - 3. Hence the numerator is I · 3 · 5 · · · (2n - 3). 
Finally, the sign is ( - Ir+  I' positive when n = I, 3, 5, etc. 

Answer 1111 = (- ir• • I . 3 . 5 . . . (2n - 3) -12-- 11 12 y 2· x .· 

Check it for n = 2, 3, and 4. • 
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Remark 1 Since there are tables for 11! but not for I · 3 · 5 · · · (2n - 3), it is convenient to 
express the numerator in terms of factorials. We fill in the missing even factors and divide them 
out again: 

I · 3 · 5 · · · (211 - J) = �- . 2 . 3_· 4_·..:_ j� -� 2 · 4 · 6 · 8 · · · (2n - 2) 

(211 - 2)! (211 - 2)!  = (2 -. -I )(,..,...2-· 2_,_)(
�
2. · 3) · -. · [2[11-:-_ T)J = 

2" =i(n - t)  ! . 
With this modification, the answer to Example 5 is 

rc•> = ( - l )•• • J�n - 2)! 
x-12.- 111 2 

· 22•- 1(11 - l )!' · 

This answer is correct for 11 = I, but the previous answer is not. Why? 

Remark 2 It may be difficult or impossible to find a formula for the 11-th derivative of a given 
function. Just try computing four or five derivatives of .I' = (x2 - 2)/{x3 + I )  for example and 
you will soon be convinced. 

The Formu la of Le1bn z Suppose you want the second or third derivative of 
y = x3(2x - 1 )1 0. You can expand (2x - 1 ) 1 0 by the binomial theorem, multiply by 
x3, then differentiate. But that's a lot of work ; it's much easier to treat y as the 
product of xl and (2x - 1 ) 10. 

In general, if y = ur, then y' = u1i' + vu'. Differentiate again, using the Product 
Rule on each term : 

.r" = (uv')' + (1iu')' = (ur" + u'v') + (vu" + u'v') = uv" + 2u'v' + u"11• 

For the third derivative differentiate again, using the Product Rule on each term. The 
result is 

Similarly, the fourth derivative is 

Note the similarity of these formulas to the binomial expansions 
(u + v)2 = r2 + 2uv + u2, 

Leibniz Formula The n-th derivative of a product y = uv is 
y•11> = uv1"1 + ( �)u'r••- I> + (;)u"v1.- 21 + · · · + (n � 

1
)u•11- 1 1v' + u1"1v. 

The coefficients are the binomial coefficients 
(n) = n(n - l )(n - 2) · · · (n - k + l) = n !  . k k !  k ! (n - k)! 
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• EXAMPLE 8 Compute 
(a) y", where y = x3(2x - 1 )10 (b) y•51, where y = x(x + 3)8• 

So/11tio11 (a) Let u = x3 and v = (2x - l ) 10. Then y = uv and by the Leibniz 
Formula 

y" = uv" + 2u'r' + u"t· 
= x3[ 10 · 9 · 22(2x - 1)8] + 2 · 3x2[10 · 2(2x - 1 )9] + 6x(2x - 1)1 0  
= 6x(2x - l )8[60x2 + 20x(2x - l )  + (2x - 1 )2] 
= 6x(2x - 1)8(104x2 - 24x + l ). 

(b) Let u = x and v = (x + 3)8. Use the Leibniz Formula for y<51 noting that 
u" = u'" = · · · = 0: 
y'5' = uvm + 5u'v141 + 0 + 0 + 0 + 0 

= x[8 · 7 · 6 · 5 · 4(x + 3)3] + 5[8 · 7 · 6 · 5(x + 3)4] = 5040(x + 3)3(3x + 5) . 

EXERCISES 

Find d2y/dx2 for y = 
1 3x2 - 2x + I  2 x3 - 7x 3 x2(1 - x) 
4 (x2 - l )(x2 - 2) s x'(x + 1 )2 6 x9 - 8x7 
7 

I 
8 

x 
9 x 

1 + x2 x2 + 4  x - 2  

10 x - 1 1 1  x2  + a  
12 x2 

x + I  x2 - a  x1 + 2  

13 
1 

14 
I 

15 Jxr+9 v'f-=3X l+7x 
16 x 17 vx - s{l'f+X 18 (x115 + 2)6• v1f=-? 
Find d2y I dt2 , •• 

19 Y = !nrl a = 2  20 1 
a = I  y = --3t - I 

3 
21 y = !r''' a = 8 1 ll y = - - 8110 a = - I t 
23 y = r2(r - 3)2 a = O 24 y = t8(4r - 5)2 a = I. 

25 Find a formula for ::. (x113). 26 Find a formula for �.(:�!)· 
27 For what values of x are the first and second derivatives of x3 - 2x2 - x equal? 
28 For what values of x is x3 + 6x + I equal to its second dcriv3tivc? 
29 Find all functionsf(x) such thatr(x) = 4x - I for all x. 
30 Find all functions satisfyinsr'(x) = 0 for all x. 

Use the formula of Leibniz to find 
d2 31 dx2 [x4(2x + 1)6) 

Jl 
32 dxl [Ji (x - 10)5] 

• 
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ds 
33 -[x(x - 3)9) dx5 
35 

d'o 
dx'o [(x + l )Jx] 

37 �[x3(x - 1 )10] JxS at x = 1 

Compute 

39 
d [ J (x) J dx x - f'(x) 

1 0. LIMITS A N D  CO NTI N U ITY 

34 

36 

38 

dl 
dxl [xs(x + 3)6] 
dz 
dxz [JX=l t/x - 2 ) 

JS 
dx' [xsJx3 + 1 6 )  at 

40 r[f(x)) - �(/'[/(x)]) · dx f'(x) 

x = 0. 

The idea of a limit is basic in calculus. We gave a rough definition of limit in 
Section 2; now it is time to be precise. 

We want to define 
lim /(x) = L 

We want this batch of symbols to say that the values of /(x) are as close to L as 
desired, provided x is close enough (but not equal) to a. By " as close to Las desired " 
we shall mean that for each positive number e we have I f  (x) - L I  < e. provided x is 
close enough to a. You should think of e as verJ• small : 10- 10, 10- 100, and even 
smaller. By "x  is close to a " we shall mean that x lies in a small segment centered at 
a, but with a itself excluded. Such a segment (Fig. 1 ) is described by an inequality 

0 < I x - a I < b, where b > 0. 
excluded 

1 
a - 6  a 

Fig. I The domain 0 < Ix - a l  < c5 :  

a +  6 

an interval a - c5 < x < a + c5 with x = a excluded 

Let us summarize the discussion with a formal definition : 

x 

Definition of Limit Suppose/(x) is defined on an interval x0 � x � x1 and 
that a is a point of this interval. Then 

lim /(x) = L 
if for each e > 0 there exists a number b > 0 such that 

l /(x) - LI < e whenever 0 < I x  - a l < b 
and x is in the interval. 
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lim f(x) = L 

is read : .. The limit as x approaches a of f(x) is L" Often it is abbreviated 
f(x)---+ L as x---+ a, 

read : "f (x) approaches L as x approaches a." 
In actual practice, the definition works this way. It challenges you with an e, and 

you must produce a suitable lJ. You must be able to do so for every e > 0, not just a 
particular e. 

Let us look at the definition of limit from a slightly different point of view. If 
f(x) ---+ L as x ---+ a, then the difference between! (x) and L becomes smaller and 
smaller as x---+ a. In other words, the difference approaches 0. Think of L as 
approximating f(x). Then this difference is the error in the approximation; call it 
E(x). Thus 

f(x) = L + E(x), where E(x) = /(x) - L 
The assertion that f (x) ---+ L as x ---+ a is exactly the same as the assertion that 
E(x)---+ 0 as x ---+ a, because I f(x) - L I  < r. is exactly the same as I E(x) I < e. 

Alternative Definition of Limit f(x)---+ L as x---+ a if and only if 
f (x) = L + E(x), 

where E(x)---+ 0 as x---+ a. 

We shall soon prove some important basic properties of limits. In order to clarify 
the proofs, we first state a preliminary lemma about limit 0. 

Lemma Suppose /(x)---+ 0 and g(x)---+ 0 as x---+ a. Suppose also that c 
and M :f. 0 are constants. Then 
(a) lim[cf(x)] = 0 (b) lim[f(x) ± g(x)] = 0 

(c) lim f(x)g(x) = 0 
x-a 

x-a 

(d) lim _
j� = O. 

x-a M + f(x) 

Proof (a) This is the easiest to prove; we leave it as an exercise. 
(b) Let e > 0 be given. We must find {J > 0 so that I f  (x) ± g(x) I < e whenever 

0 < Ix - a I < lJ. By hypothesis, lim f(x) = 0 and lim g(x) = 0 as x ---+ a. We 
apply the definition to each of these functions, but with the positive number te rather 
than e. (Note carefully this technique. We want to prove something about e, but we 
apply something we already know to !e instead of e. Watch to see why this pays off.) 
Sincef(x) ---+ 0, there is <51 > 0 such that · 

whenever 0 < I x - a l < <51 • 

Since g(x)---+ 0, there is lJ2 > 0 such that 
whenever 0 < I x - a l < '52 . 
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Now let o be the smaller of 01 and o2 , the minimum of 01 and o2 • Then o > 0 and 
whenever 0 < I x  - a l < o, both 

0 <  I x - a l < o1 and 
Hence both l f(x) I < !e and 

o < I x  - a I < 02 . 
l g(x) I  < !e, 

so l f(x) ± g(x) I  5 I J(x) I  + lg(x) I  < !e + !e = e. 
(We used the triangle inequality here.) To summarize, given e > 0, we have found 
o > 0 such that 

l f(x) ± g(x) I  < e whenever I x - a I < c5. 
Therefore f(x) ± g(x) - 0 as x - a, which completes the proof of (b). Please 
reread this proof carefully a couple of times until you are sure you really understand 
it. It is a model for other proofs, which will be presented with less detail. 
(c) Given e > 0, choose 01 > 0 and c52 > 0 so that 

l f(x) l < e 
l g(x) I < 1 

whenever 0 < I x  - a I < c5 1 , 
whenever 0 < I x - a I < o 2 • 

Let c5 be the minimum of <51 and o2 • Then c5 > 0 and 
l f(x) I  < e and l g(x) I  < 1 whenever 0 < I x - a l < o. 

Therefore l f(x)g(x) I = lf(x) l  lg(x) I  < e · I = e whenever 0 < Ix - a l < o. 
(d) The problem is to make the quotient 

f (x) 
M + f(x) 

small. We can make the numerator small, but if the denominator becomes small at 
the same time, we may lose control of the quotient. This doesn't happen because 
M :f. 0. If f (x) is very small, then M + f (x) is very close to M, hence not so close to 0. 
For instance, if I f(x) I is at most ! I M  I .  then it stands to reason that I M  + f(x) I is 
at least I M I  - ! I M I  = ! I M I .  Precisely, if l f(x) I < ! I M I , then by the triangle 
inequality 
I M I  = l [M +/(x)] + [-/(x)] I 5 I M +f(x) I + I J(x) l  5 I M +f(x) I  + ! I M I .  
Therefore I M + f(x) I  � ! I M I . 
We are ready for (d). Let F. > 0 be given. Sincef(x) - o. there exists o > 0 such 
that 

l /(x) I < min{t l M I ,  ! I M l e}, whenever 0 < I x  - a l < o 
(min{· · ·]- denotes the minimum of the numbers inside the braces). Since I f (x) I < 
! I M  I .  we have I M + f(x) I > 1 1 M I .  as just noted. Hence 

I M1�J(x) I = l /(x)l I M +
1
/(x) I 5 G I M l e} (! l� I ) = £ 

whenever 0 < I x  - a I < o. This completes the proof. 
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Remark Statements (b) and (c) of the lemma extend easily to three or more terms. For 
instance, iff(x) - 0, g(.l) - o. and h(x) - o. then g(x) + /r(x) -o. hence 

f(.l) + g(.l) + h(x) =JM + [g(x) + lr(x)] - 0, etc. 

The following theorem contains four basic properties of limits that are used time 
and time again. 

Theorem 1 Basic Limit Rules 

Assume lim f(x) = L and 

and let c be a constant. Then 

lim g(x) = M 

( 1 ) lim cf(x) = cL (2) lim[f(x) ± g(x)] = L ± M 

(3) lim f(x)g(x) = LM (4) lim f (x) = � 
x-a g(x) M 

(M ;f 0). 

Proof By hypothesis, f(x) = L + F(x) and g(x) = M + G(x), 

where F(x) --+ 0 and G(x) --+ 0 as x --+  a. 

( I )  Clearly cf(x) = cL + cF(x). By Lemma (a). we have cF(x) --+ O as 
x --+  a. By the alternative definition of limit, c/(x) --+ cL as x --+  a. 

(2) Clearly f(x) ± g(x) = (L ± M) + [F(x) ± G(x)). By Lemma (b), we have 
F(x) ± G(x) --+ 0 as x --+  a. Hencef(x) ± g(x) --+ L ± M. 
(3) We have 

f(x)g(x) = [L + F(x)][M + G(x)] = LM + [LG(x) + MF(x) + F(x)G(x)], 
so the error is a sum of three terms. By Lemma (b), the sum approaches 0 if each term 
does. Since L and M are constants, 

LG(x) --+ O  and MF(x) --+ O  as x --+ a  
by Lemma (a). Also F(x)G(x) --+ 0 by Lemma (c). Hence the error approaches 0; 
thereforef(x)g(x) --+ LM as x --+  a. 

(4) We split the proof into two parts. First we prove the special case 
l/g(x) --+ l/M. The error is 

so 

I I I I -G(x) - I ( G(x) ) 
gftj - M 

= f.i +  G(x) - M 
= M["M+ G{�}] 

= M :\T+-G(x) ' 

I I - I ( G(x) ) 
g(x) 

= 
M + -M M +"G(x) · 

By Lemma (d), with an assist from (a), the error approaches 0. Hence 
l/g(x) --+ l/M. 

Now iff(x) --+ L and y(x) --+ M, then 1/y(x) --+ l/M and by (3), 
f (x) = f(x) . I --+ L . I 

= 
L . y(x) y(x) M M 
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Remark Parts (2) and (3) of Theorem 1 are easily extended to more than two terms. 

One Sided Lin i ts Sometimes we want a limit as x - a, where x is restricted 
to the left of a, or where x is restricted to the right of a. We abbreviate 

by 

x - a  and x < a  

x - a - .  

Similarly, x - a +  means x - a  and x > a. For example 

lim JI=X = 0, 
.x- 1 -

lim M = 1 .  
x-o + x lim fl = - 1. 

.. - o - x 

Cont ., Jou Functions The concept of a continuous function is very important 
in calculus. 

Definition of Continuous Function Let f (x) be defined on an interval 
x0 � x � x1 and let a be a point of this interval. Then f(x) is cootinuous at a if 

lim f(x) = f(a). 

The functbn f(x) is continuous if it is continuous at each point of its domain. 

To say thatf(x) is continuous at a means that the valuef(a) is " predictable" from 
the values off(x) near x = a, namely, lim .. -. f(x) must exist, and it must equal the 
"correct value"f(a). Roughly speaking, a function is continuous if you can draw its 
graph without lifting your pencil. The word for continuous in some languages trans
lates literally into " unbroken," a term that expresses the concept well. 

Examples (See Fig. 2.) 

l. f(x) = � is continuous for all x =I= 0. It  is undefined at x = 0. 
x 

2 f(x) - l t  x < O  
x = O  
x > O  

is continuous for all x =I= 0. 

The limit lim .. _0 f(x) does not exist. 

3. f(x) = J
2x x =I= 1 

is continuous for all x =I= l .  
l - 1  x =  l 

The limit lim .. _ 1 f (x) exists and equals 2, not/( l )  = - 1 .  Knowing the values of/ (x) 
for x near 1, you still cannot predict /(1). 

4. f(x) = I x  I is continuous for all x. It is continuous even at x = 0, despite 
the corner in its graph, because 

lim /(x) = lim ! x i = 0 =f(O). 
x-o x-o 
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(a) f(x) = l/x: undefined at x • 0 

(c) � /lx) = 2x for x � I  

1 f{l ) = -1 

x 

,. 

Fie. 2 Examples 

l f(x) • ?  for x < 0 
(b) f(O) = 2 

. f(x) = I for x > 0 
I' 

(d) f(x) = I x I 

,. 

We translate Theorem 1 into the language or continuity to obtain the rollowing 
theorem. 

Theorem 2 Let/(x) and g(x) be continuous on the same domain and let c be a l 
constant. Then 
(1 )  cf(x) is continuous (2) /(x) ± g(x) is continuous 

(3) /(x)g(x) is continuous (4) �gJ is continuous wherever g(x) =I= 0. 

It is pretty obvious that f (x) = x is a continuous runction. From this ract and 
Theorem 2, it rollows easily that each polynomial is continuous and each rational 
runction (quotient or polynomials) is continuous except where the denominator 
equals 0. We IP.ave the details or the proor as exercises. 

Theorem 3 Each polynomial 

/(x) = a,,x" + a,,_ 1 x"- 1 + · · · + a0 

is continuous for all x. Ir/ (x) and g(x) are polynomials, then the rational runction I 
r(x) = /(x)/g(x) is continuous for all x such that g(x) :F 0. 



1 00  2. DER IVATIVES 

Let us add one more function to our repertory of continuous functions: the square 
root function. Recall that we needed its continuity for a detail in the proof of the 
Square Root Rule in Section 5. I Theorem 4 The lunctionf(x) � Jx � continuous for all_x_�_o_. ____ _, 

Proof We must prove for each a �  0 that 
lim.JX = Ja. 

First suppose a > 0. Then 

Hence 

r: r: r: r: JX + Ja x - a  
y A - v a =  (v x - v a )  r: r: = r: r: . 

y X + ya vx + ya 

JX = Ja + E(x), x - a  E(x) = r: r: . 
y X + ya 

Now JX + Ja � Ja since JX � 0. Therefore 
I x  - a l l I E(x) I = JX Ja � r: I x - a l . x + a ya 

Clearly I x  - a I !h - 0 as x - a, and i t  follows that E(x) - 0 as x - a. 
Hence Jx - Ja as x - a. 

The case a = 0 is special because we are onl):'. allowed x � 0. Let e > 0 be given. 
Set o =  e2 > 0. If O < x < o, then 0 < JX < .jo = e. This proves 

lim JX = 0 = JO, 
.. -o + 

continuity at x = 0. 

We finish this section by noting that the composite of continuous functions is 
continuous. This fact allows us to generate lots of new continuous functions out of 
old ones. For example, from the continuity of JX follows the continuity of JUW for 
any continuous function u(x) taking non-negative values. Thus 

?+I, J x 
v A T ' x• + 6x2 + 1 

are continuous, the first for all x, the second for x � 0. 

Theorem 5 If g(x) is continuous at a and /(x) is continuous at g(a� then the 
composite functionf[g(x)] is continuous at a. Briefly, the composite of continuous 
functions is continuous. 

The proof is very easy. By hypothesis, g(x) - g(a) as x - a. Also 
/[g(x)] -/[g(a)] as g(x) - g(a). Therefore /[g(x)] -/[g(a)] as x - a, 
which says thatf[g(x)] is continuous at a. 
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Find the limit and give a reason for your conclusion 

I. l 
1m 

..... 2 x 

3 I. I 1m � 
x - - z X + l 

xl S lim 1 
x-o X 

xl 
7 lim -

.. -o x 
9 limjT+X'3" 

.. -o 

. 3 + h + h2 
11 !·� 5 - 4h + h3 

I l h h2 
13 Show that - + ........,-___,. a + h - a - Ql a2(a + h) " 

2 lim 
J

2x + 3 ...... . .  
4 lim I x  I .. -o 
6 lim xl - 1 

.. - 1 x - l 

8 lim(3x5 - 7x3 + 2x2 + x - 5) 
.. - 1 

10 lim(Ji - x) 
.. -o 

What information docs this give about � (!) I ? dx x .... · 
h h2 

14 Show that ..;a+h = Ja + ;;-,=:_ - t: (f J: )2 • 2-.;a 2....,a v" + h + ...,a 

What information docs this give about � (Ji) I ? dx .... 
IS Suppose lim .. -4 /(x) = 10-6• Prove that there is a small segment centered at x = 4 on 

which/(x) > 0. 
16 lff(x) � 0 and the limit exists, show that lim .. -. /(x) � 0. 
17 Let/(x) = 1 for x � 0  and/(x) = 0 for x < 0. Show that lim .. -o + /(x)and lim .. _ 0 _  /(x) 

both exist, but lim .. -o /(x) docs not exist. 
18 Suppose both one-sided limits exist and lim .. -•- /(x) "' lim .. -• + f (x). Prove that 

lim .. -• f (x) exists. 
19 Prove (a) in the lemma, p. 95. 

Let/ (x) - L. g(x) ---+ M, and h(x) ---+ N as x ---+ a. Prove 
20 /(x)g(x)h(x) ---+ LMN 
21 /(x) + g(x) + h(x) ---+ L + M + N 
22 /(x)g(x)/h(x) ---+ LM/N if N + 0. 

23 Prove the first statement in Theorem 3, p. 99. 
24 Prove the second statement in Theorem 3, p. 99. 

Why is the function continuous for all x? 
2S x3 - 4x + 6 26 x2 + 3x 

x x2 + l 27 xl + 3 28 x• + l 
29 .jf+7 30 ..;�x�6 _+_3_x_2 -+-

1.  
31 Prove that Vx is continuous at x = 0. 
32 Prove that Vx is continuous at x = a > 0. [Hint x - a =  (Vx - Va) x 

<V? + va vx + ifti1 ).J 
33 Suppose /(x) ---+ 0 as x ---+ a and lg(x)I :S M  for all x:I:  a. Prove/(x)g(x) - 0 

as x ---+ a. 
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34 (cont.) Prove x sin(l/x) - 0 as x - 0. 
35 Supposef(x) - L as x - a. Prove f(x)3 - JJ as x - a. 

36 Find c5 > 0 so 1 3  : h I < 10- 5 when I h I < c5. 

37 Find c5 > 0 so 1 ��:- � 1 < 10-4 when l h l < c5. 
38 Where isf(x) = lx1 - 41  continuous? 
39 Let A be the area or a triangle with sides a, b, c. Let/ (i:) be the area or a triangle with sides 

a - &, b - e, c - e. Prove lim.�0 f{t:) = A. (Hint Heron's formula: A1 = s(s - a)(s - b) x 
(s - c), where 2s = a + b + c.J 

40 Can the runctions f (x) = x/x and g(x) = x/x1 be defined at x = 0 so as to be continuous 
there? Ir so, how? 

11 D I F F E R ENT1ABli: F U N CTIONS 

In Section 3 we defined f (x) to be differentiable at x = a if the limit 

l. 
f(a + h) -f(a) 

1m -----'--
11-o h 

exists. I f  the limit does exist, it is called the derivative off (x) at x = a  and is denoted 
by f'(a). Now according to the alternative definition of limit, p. 95, the number f'(a) 
is the limit of the difference quotient if and only if 

f(a + h) -f (a)
= f'(a) + E(h� where lim E(h) = 0. 

h 

We multiply through by h and obtain the following useful alternative definition of 
derivative. 

Alternative Definition of Derivative /(x) is differentiable at x = a  if and 
only if there is a number f'(a) and a function E(h) such that 

f(a + h) = f (a) + f'(a)h + E(h)h and lim E(h) = 0. 
11-0 

The number f'(a) is the derivative off (x) at x = a. 

Example f(x) = x3 

f(a + h) = (a + h)3 = a3 + 3a2h + 3ah2 + h3 = f(a) + (3a2)h + hE(h), 

where E(h) = 3ah + h2 -- o  as h -- o. 

Hence f'(a) = 3a2• 
Differentiability implies continuity; we state this fact as a theorem. 

Theorem Iff(x) is differentiable at x = a, thenf(x) is continuous at x = a. 

Proof By hypothesis, 

f(a + h) = f(a) + f'(a)h + E(h)h, where lim E(h) = 0. 11-0 



1 1 . Differentiable Functions 1 03  

It follows that 

But 

lirn /(a + h) = Jim /(a) + lim[f'(a)h] + lim[E(h)h]. 
Jim /(a) = f(a), lim[f'(a)h] = O. 

lim[E(h)h] = ( Jim E(h)) ( lim h) = 0. 
•-o •-o •-o 

Therefore lirn f(a + h) = f(a), that is. lim f(x) = f(a), 
•-o 

so f(x) is continuous at x = a. 
Warning The converse or this theorem is raise. A runction may be continuous at a point. yet 
not have a derivative there. For example,f(x) "" I x  I is continuous, but not differentiable at 
x = 0. 

Roughly speaking, the graph of a continuous function is an unbroken curve. The 
graph of a differentiable function is even more, an unbroken curve rounded enough 
to have a tangent line at each point. 
Proofs of Di fferentiation Rules The proofs of the differentiation rules of 
Sections 4 and 5 were not complete. We are now in a position to fiU the gaps. 

The proof of the Sum Rule needed 
lim[f(h) + g(h)] = lim f(h) + lim g(h). 
11-0 11-0 11-0 

which is part of Theorem I of the last section. Similarly. the proof of the Constant 
Factor Rule needed lim cf(h) = c limf(h), another part of the same theorem. 

What we lack are real proofs for the Product. Quotient. Square Root. and Chain 
Rules. 
Product Rule Assume u(x) and v(x) are differentiable at a. Write 

u(a + h) = A + A'h + F(h)h. v(a + h) = B + B'h + G(h)h. 
F(h)---+ 0 and G(h)---+ 0 as h ---+ o. 

where for brevity. 
A = u(a), A' = u'(a). B = v(a). B' = v'(a). 

Then u(a + h)v(a + h) = (A + A'h + F(h)h][B + B'h + G(h)h] 
= AB + (AB' + BA')h + E(h)h. 

where E(h) = AG(h) + BF(h) + h[A' + F(h)](B' + G(h)] 

A . t  + s . ! + �A' + !us· + AJ. 
Clearly E(h)---+ 0 as h ---+ O. so u(x)v(x) is differentiable at x = a. and its deriva
tive is 

AB' + BA' = u(a)v'(a) + v(a)u'(a). 
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Quotient Rule We use the same notation as above. We shall need 
v(a + h )-B as h -o. as given in the Theorem on p. 102, and the hypothesis 
B =f 0. Let us compute the difference quotient :  

� lu(a + /J) _ �1 = � IBu(a + h) - Av(a + h) l h t>(a + /J) B h Bt:(a + h) 
BA' - AB' BF(h) - AG(h) = +�.:.._;_---'-� Bv(a + h) Bv(a + h) 1 l BA' - AB' B · 0 - A · 0 BA' - AB' --- + = ---B2 B2 B1 

Hence u(x)/v(x) is differentiable at x = a, and the Quotient Rule follows. 

Square Root Rule Some notation: u(a) = A > 0, and u'(a) = A'. We compute 
the difference quotient and use the continuity of JuW , proved in the last section : 

Ju(a + h) - JA [Ju(a + h) - JA][Ju(a + h) + JA] 
h = h[Ju(a + h) + JA] 

u(a + /J) - A A' + F(h) A' = h[Ju(a + h) + JA] = Ju(a + h) + JA---+ 2JA 
as h ---+ 0. This proves JuW is differentiable at x = a, and the Square Root Rule 
for the derivative. 

Chain Rule We assume that u = g(x) is differentiable at x = a  and y = f(u) is 
differentiable at u = g(a). We must prove that the composite function y = f[g(x)] is 
differentiable at x = a, and that 

dy (a) = (df (b)) (dg (a)) . where b = g(a). dx du dx 
Sincef(u) is differentiable at u = b, we have 

.f(b + k) = f(b) + B'k + E(k)k, lim E(k) = 0, 
where B' = f'(b). We use this formula, with k = g(a + h) - g(a) = g(a + h) - b, in 
the difference quotient for f[g(x)]: 

f[g(a + h)] -f[g(a)] f(b + k) -f(b) 
h h 

- B'k \ E(k)I< - T + Tl lg(a + r g(a) l 
[B' + 0 ][ g'(a) ]. 

It follows that f[g(x)] is differentiable at x = a  and that its derivative is B'g'(a) = 
f'(b )g'(a ). Note that E(k) ---+ 0 as 11 ---+ 0 because k ---+ 0 as h ---+ 0 (continuity 
of g(x) at x = a). 
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Find E(h) satisfying/ (a + h) = f (a) + f'(a)h + E(h)h 

/(x) = x• a =  I 
3 /(x) = l/x a =  - 2  

2 /(x) = xz + x  a =  -3 
x2 4 /(x) = --

1 
a = 2. 

x -

5 Let /(x) = I + x for .'( :2: 3 and/(x) = 7 - x for x < 3. Show that/(x) is continuous at 
x = 3. Is it differentiable? 

6 Let/(x) = x2 for x > 0 and/(x) = 0 for x � 0. At what points is/(x) differentiable? 
7 Let/(x) = x2 for x :2: 0 and/(x) = - xz for x < 0. At what points is/(x) differentiable? 
8 Let/(x) = x3 for x � 0 and/(x) = xz for x < 0. At what points is/(x) differentiable? 
9 Suppose/(x) = b + (x - a)g(x) and g(x) is continuous at x = a. Show that/(x) is differ-

entiable at x = a  and find f'(a). 
x• - I 

10 Interpret the identity -- = x•- • + x•-2 + · · · + x + 1 
x - 1  

for x = I in terms of a derivative. 
1 1  Let f be differentiable on (a, b)  and suppose a < c < b. Define g by g(c) = f'(c) and 

g(x) = [f(x) -f(c))/(x - c) if x + c. Prove g is continuous. 
12 Suppose f is defined on (a, b) and a < c < b. Suppose f is differentiable at c. Prove tha� 

f(c + h) 2�J(c - h) _ f'(c) 
as h - 0. [Hint Express /(c + h) and f(c - h� using the alternative definition of 
derivative, p. 102.] 

12 MISCELLANEOUS EXERCISES 

Find all values of x at which the curves have equal slope 
27 I y = - - , y = x3 2 y = 2x3 - xz. .r = xz - 4. x 

Differentiate 

5 (x + I )(2x + 1 }2(3x + 1 )3 

4 I 
xJ9?+4 [ (�)1/) 1 1/2 6 I + I z . + x  

7 Show that y = l/x2 satisfies the relation x2yH + xy' - 4.r = 0. 
8 Find .r(x) if .r'(x) = 

Jsx
'+ 4 and .r( I )  = 0. 

9 Show that the tangents to the curve .r = x2 at (a, a2) and at (a + I, (a + I )z) intersect on 
the curve .r = xl - i .  

10 Find where the tangent line to .r = 1/(2x - 5) at x = 2 crosses the line :c = - I .  

Find 

I I  r I + Jx 
1m --

.. -o+ 3x3 - 2 12 r x - 2  
1m ::J--

.. -2 x - 8 
13 r • - Jf+X 14 Jim( I +  {/I +  7x )(3 - x) Im 

.. -o .'( .. - . 
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15 
� (3x +�} 
tlx2 x + 2 

17 Where isf(x) = I x + I I + l x + 2 1  + l x + 3 1  continuous? differentiable? 
18 Let f(x) = x2 for x :s; I and f (x) = 2x - I for x > I. Show that f(x) is continuous and 

differentiable for all x. 
19 Let r(t) denote the larger of the two roots of the quadratic equation x2 + tx - 3 = 0. 

Show that r(t) is a continuous function of t for all t. 
20 Compute �.( 1 � x) · 
21 Let h(x) = /

[
g(x)] - g[f (x)]. Suppose /(c) = g(<·) = c.  Prove that h'(c) = 0. 

22 Letf(x) = x• + (�)a1 x•- 1 + (;)a2x•-2 + · · · + (:)a • •  where {;} are the 
binomial coefficients. Show that 

I (" - I ) (" - I) (" - I) ;/'(x) = x•- 1 + 
I 

a1 x•-2 + 2 a2x.- l + · · · +  n - 1  a•- • ·  

Note the special case [(x + a)"] '/n = (x + ar 1 . 



Applications of 
Differentiation 

1 CU RVE S K ETC H I N G  

3 
The derivative of a function is the slope of its graph at each point. Where the 

derivative is positive. the graph slopes upward. Where the derivative is negative, the 
graph slopes downward. Where the derivative is zero, the graph is horizontal (level). 
This information is of great help in sketching curves. 

• EXAMPLE 1 Sketch y = x3 - 3x + l .  
Sollltio11 The derivative is y' = 3x2 - 3 = 3(x2 - I). Clearly 

y' > 0 if x2 > I, y' < 0 if x2 < I, y' = O if x2 = I .  
The curve increases and decreases as indicated: 

level level 

increases l decreases l increases 

y' > O  - I  y '<O  y' > 0 x 

This information indicates a high point where x = - I and a low point where x = I .  
So compute the corresponding values of y, that is, y(- I )  = ( - I )3 - 3( - I )  + 1 = 3 
and y(I )  = 1 3  - 3 + I = - I. Then plot the high point ( - 1, 3) and the low point 
(1. - I ). Also plot (O. I )  because that point is obviously on the graph. 

If x ---+ oo or x ---+ - oo, then 
y' = 3(x2 - 1) ---+ oo, 

so the graph is increasingly steep to the right and to the left. This is enough informa
tion for a reasonable sketch (Fig. I). • 

• EXAMPLE 2 Sketch 8y = 3 - x - x3• 
So/11tio11 Clearly 

)'1 = -t(I + 3x2) < 0. 

The derivative is always negative; the graph falls steadily from left to right. If 
x ---+ oo or x ---+ - oo, then y' ---+ - oo, so the graph becomes steeper and 

1 07  
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steeper. From the formula for y', the graph is least steep where x = 0, that is, at (O, j), 
and there the slope is -i .  This is enough information for a reasonable sketch 
(Fig. 2). 

H .  3 1  

C l .  - 1 J 

Fie. I y = XJ - 3.'< + I 

_, 

3 

I 
/ '  

I = - ii lca�t �teer 

- I  

- I  

Fig. l 8y = 3 - x - XJ 

C r ' 't The second derivative f"(x) is the first derivative of f'(x). Suppose 
f"(x) > 0. Then f'(x) increases, hence the slope of the graph y = f (x) increases. See 
Fig. 3 for the possibilities. The portion of the graph of y = f(x) where f"(x) > 0 is 
called convex from below, or briefly, convex. 

/ / 
/ .\ 

(a) Slope increases from small (b) Slope increases from large (c) Slope increases from negative 
positive to larF positive. negative to small negative. to zero to positive. 

Fig. 3 Convex graphs: f"(x) > 0 

If f"(x) < 0, then f'(x) decreases, and the graph .r = f(x) will have one of the 
shapes in Fig. 4. The portion of the graph of y = f(x) where f"(x) < 0 is called 
concave from below, or briefly, concave. 

A graph that is either convex or concave stays on the same side of its tangent at 
each point ; the graph touches the tangent line, but does not cross it (Fig. 5). 

A point at which the graph crosses its tangent is called an inflection point. Clearly 
f"(x) must be zero at an inflection point. Furthermore, in the immediate neighbor
hood,f"(x) > 0 on one side of the inflection point andf"(x) < 0 on the other side. In 
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)' y 

(a) Slope decreases from small (b) Slope decreases from larp (c) Slope decreases from positive 
neptive to larae neptive. positive to small positive. to zero to neptive. 

Fi&- 4 Concave graphs: r(x) < 0 

(a) Convex graph (b) Concave sraph 

Fla. 5 Convex and concave graphs do not cross their tangents. 

other words, the curve is convex on one side of the inflection point and concave on 
the other side (Fig. 6a). Note thatr(x) = 0 is not enough to guarantee an inflection 
point (Fig. 6b);f"(x) must also change sign. 

The graph of y = f(x) has an inflection point at (c.f(c)) if and only if f"(c) = 0 
andf"(x) changes sign at x = c. 

(a) Inflection point 

)I 

1' = .\'4 

- 1  f"= O  
.\' 

(b) / "(x) = 0 does not guarantee an inflection point 

Fla. 6 
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Knowledge of convexity, concavity, and inflection points really helps in  curve 
sketching. For instance, consider again the graph y = x3 - 3x + l of Example 1. We 
used the derivative y' = 3(x2 - l )  to plot the curve. Now we can exploit the second 
derivative: y" = 6x, so 

y" > 0 if x > 0, )'" < 0 if x < 0, y" = 0 if x = 0. 

The graph is convex for x > 0, concave for x < 0, and has an inflection at x = 0. This 
new information rules out a shape like that of Fig. 7a. 

·' 

(a) Impossible shape for y = x3 -3x +I (b) Impossible shape for y a  i (3 - x - _.-3 ) 

Fig. 7 

Again, consider y = t(3 - x - x3) of Example 2. The second derivative is 
y" = -ix, so the graph is convex for x < 0, concave for x > 0, and has an inflection 
point at x = 0. This rules out the shape of Fig. 7b. 

• EXAMPLE 3 Sketch y = (x - 2)3 + 1. 
SolMtion The first derivative is y' = 3(x - 2)2, so y' > 0 if x f 2 and y'(2) = 0: 

level: y' = 0 

increases 1 
y' > O  2 

The second derivative is y" = 6(x - 2): 
x < 2  y" < O 

x = 2  y" • O 

increases 

y' > O  x 

concave 

inflection 

convex 

Thus (2, l )  is an inflection point, and the tangent there is horizontal. This is enough 
information for a satisfactory sketch (Fig. 8). 
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3 

convex. incr�asing '-.. 

3 x 

- I  

Fi&- 8 y = (x - 2)3 + l 

Hints for Sketching Curves 

( 1) Get as much " free" information as you can by inspection. 
(a) If easily done, find where y is positive, negative, or zero. 

• 

(b) Look for symmetry. Hf(x) is an odd function, that is, ifj(-x) = -f(x), 
then the graph y = f(x) is symmetric through the origin (Fig. 9a). lfj(x) 
is an even function, that is, ifj(- x) = f(x), then the graph y = f(x) is 
symmetric about the y-axis (Fig. 9b ). 

y 

x 

(a) Odd function (b) Even function 
Fig. 9 

(c) Find the behavior of the curve as x - oo and as x - - oo. 
(d) Find values of x, if any, for which the curve is not defined. 

1 
Examples y = x + - not defined for x = 0, 

x 

y = v'f=X not defined for x > I. 
(2) Take the derivative. Its sign will tell you where the curve is rising, falling, or 
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level. Plot all points where the tangent i s  horizontal, i.e., where y' = 0. If you 
can, find the behavior of y' as x - oc and as x - - :x: .  

(3) Take the second derivative. Its sign will indicate convexity or  concavity. 
Locate and plot alt inflection points. 

(4) For greater accuracy, plot a few points. Look for points that are easy to 
compute. Try x = 0, for example, or if not too hard, see where y = 0. 

These hints are just suggestions; they are not sacred rules. Be flexible; there is no 
substitute for common sense. 

I 
• EXAMPLE 4 Sketch y = x + - . 

x 
So/11tio1t There is some important free information : .r( - x) = - y(x ), so the graph is 
symmetric through the origin. Once the curve is sketched for x > 0, it extends by, 
symmetry to x < 0. 

Further items of quick information : If x > 0, then .r > 0. The curve is undefined at 
x = 0, and y - oo as x - 0. If x is large, y = x + (1/x) is slightly larger than x. 
So as x - oc, the graph is slightly above the line y = x. 

Combining this information, you expect the graph to be something like Fig. IOa 
for x > 0. Check by inspecting the derivative .r' = I - (1/x2): 

y' < 0 if 0 < x < I, y
' > 0 if x > I ,  .r' = 0 if x = I .  

level 

decreases l increases 

0 x 
The curve indeed rises and falls as in Fig. lOa; also it has a lowest point at (I, 2). 
Finally, extend the curve by symmetry (Fig. lOb) to x < 0. 

/ 

(a) Sketch for x > 0 

I Fit- 10 Graph or .r = x + x 

x 

(b) Extended to x < 0 
by oddness • 
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EXERCISES 

Locate where _r = .f (x) is convex, concave, and has inflection points 
I f(x) = 4(.Y - J)2 2 f(x) = -3(x + 7)2 
3 f (x) = (x - 2)3 + 2x 4 f (x) = x3 + 3x2 + 1x + I 
5 f(x) = -x3 + 4x - 5 6 f(x) = x3 - 6x2 + 3x + I 

1 IM = J�- 8 /(x) = x' - 6x3 + 3x2 + 2 . 
.\'. + 5 

Sketch the curve 

9 
12 
15 
18 

21 

24 

27 

30 

33 

36 

39 
42 

2. 

_r = x3 - x 
r = 12x - x3 
.r = 4x3 - 2x2 
:r = x3 - 3x + 5 

y = x3 - x2 - 8x + 4 
I 

y = x - -x 
I r = x + --. .Y +  I 
16 

.I' = - x  - -·" 

.r = x2(x - 1)2 
x 

_r = l+ .Y2 
.r = Jt=X 
.r = x - JX . 

10 
13 
16 
19 

22 

25 

28 

31 

34 

37 

40 

y = 3.Y3 - 4.Y 
r = 3x3 + x .
r = 6x2 - x3 
:r = I + !x + x3 
y = 7 - 3.Y2 - 2x3 

x r = --· x +  I 
I r = x + --· x - I 

.r = x2(x - 3) 

.1· = x3(x + 2) 
x - I y = � 

.r =  JX+l - JX  

R ECTI LI N EAR MOTION 

11 
14 
17 
20 

23 

26 

29 

32 

35 

38 

41 

y = x3 - 3x 1· = - 12x3 - 4x 
:r = - x3 + 3x - 4 
.v = !x - x3 

I y = 2x + -x 
x r = --· x - 1 

2 y = x + -x 

y = x(x + l )(x + 2) 
I 

.I' = I +  x2 
x y = � 

y = x + JX 

Rectilinear motion is motion along a straight line. From its study arise two impor
tant concepts: velocity and acceleration. 

Velocity During the initial stage of flight, a rocket fired vertically reaches an 
elevation of 50t2 ft above the ground in t sec. How fast is the rocket rising 2 sec after 
it is fired ? 

This is a tricky question, because it is not really clear what is meant by velocity at 
an instant. Usually we compute avera1e nlocity by the formula 

. displacement 
average velocity = . -

time 

applied to a certain time interval. To be more precise, for the time interval between t 1 
and t 2 ,  

I 
. (position at time t2) - (position at time t a )  

average ve oc1ty = . 12 - ' • 



114 3. APPLICATIONS OF D I F F E R E NTIATION 

This formula does not apply to " instantaneous velocity." Nevertheless, we can com
pute the average velocity between t = 2 and, say, t = 2.01, or t = 2.001 .. or more 
generally, t = 2 + h. 

The average velocity between t = 2 and t = 2 + h is 
so(2 + h)2 - so . 22 = so (2 + h)2 - 22 = so4h + h2 = so(4 h) (2 + h) - 2 h h + . 

The smaller h is, the closer this average velocity is to 200 ft/sec. 
The average velocity between t = t0 and t = t0 + h is 

SO(t0 + h)2 - SOt� 
= 50(t0 + h)2 - t� = 502toh + h2 = S0(2to + h). (t0 + h) - t0 h h 

The smaller h is, the stronger the message: At t = t0 the instantaneous velocity is 
100t0 ft/sec. 

Here is an important observation. The preceding computation of velocity is 
exactly the same computation as that needed to find the slope of the curve 
s = s(t) = 50t2• Thus the velocity of the rocket at time t0 is numerically the same as 
the slope of y = 50t2 at t = t0 • 

This is no accident. The average velocity between t = t0 and t = t0 + h is 

displacement s(t0 + h) - s(t0) ----- = 
time h 

which is precisely the formula for the slope of the secant between two nearby points 
on y = s(t ). Thus the slope of the secant is like the .. average speed .. of y = s(t) 
between t0 and t 0 + h. As the interval gets smaller and smaller, the " average slope" 
approximates the " instantaneous slope" at t0 , that is, the derivative at t0 • 

Definition Let s = s(t) be the position at time t of a particle moving on the 
s-axis. Its velocity is v(t) = ds/dt and its speed is I v  I = I ds/dt I · 
Notice that ds/dt may be negative. This happens, for instance, in the case of a 

falling body whose position is measured above ground level. Then displacement in 
any time interval is negative, leading to a negative velocity. Speed ignores the sign of 
the derivative. It measures only the rate of motion, while velocity also takes into 
account the direction. 
Notation The use or a dot to indicate derivative with respect to time is common practice. 
Instead or ds/dt, you orten see s(r) or just s. 

• EXAMPLE 1 A ball is thrown straight up from a support 180 ft above the 
ground, which then moves aside. Assume the ball's height above ground after t sec to 
be s = 1 80 + 64t - l6t2 ft. Compute (a) its velocity after 1 sec, (b) its maximum 
height, and (c) its velocity as it hits the ground. 

Sol11tion The velocity of the ball after t sec is 

v(t) = s(t) = 64 - 32t = 32(2 - t). 
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(a) After 1 sec, the velocity is v( 1 ) = 32(2 - 1) = 32 ft/sec. (Since the velocity is 
positive, the ball is rising.) 

(b) We need the maximum value of s(t). Examine s(t): 
s(t) > 0 when t < 2, s(2) = 0, s(t) < 0 when t > 2. 

Therefore s(t) increases for t < 2 and decreases for t >  2. It must take its maximum 
value when t = 2. The maximum is s(2) = 244 ft. 

(c) The ball hits the ground when s(t) = 0. Solve for t :  

s(t) = 180 + 64t - 16t2 = 0, 4t2 - 16t - 45 = 0, 

t = 
16 ± J162 + 4 . 4 . 45 

= 2 + J16 + 45 
8 - 2 . 

There is only one positive time t for which s(t) = O; it is t = 2 + 1J6f. At this 
instant, the velocity is 

v(2 + !J6f) = 32(2 - (2 + !J6T)] = - 16J6l � - 125.0 ft/sec. 

The velocity is negative because the ball is falling. • 

Acceleration A falling weight moves faster and faster; its velocity increases; a 
car with brakes applied moves slower and slower; its velocity decreases. In many 
applications, it is important to know just how velocity is changing during motion. 

Definition If v(t) is the velocity of a moving particle at time t, its acceleration is 
a(t) = dv/dt = v. 

Acceleration is the derivative of velocity. It measures the rate of change of velocity 
during motion. Positive acceleration indicates increasing velocity; negative accelera
tion, decreasing velocity; zero acceleration, constant velocity. 

Remember that velocity itself is a derivative: 

v(t) = �: = s(t), 

where s = s(t) is the position at time t. Therefore, acceleration is a second derivative, 
being the derivative of a derivative: 

I . dis .. ( ) acce eratton = dt2 
= s t . 

• EXAMPLE z A ball is s(t) = 180 + 64t - 16t2 ft above the ground at time t sec. 
Find its acceleration at time t. 
So/"tion Differentiate twice: 

ds v(r) = dt = 64 - 32t ft/sec, • 
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Remark The negatire acceleration means that the velocity is decreasing (from positive to 
negative to more negative). 

• EXAMPLE 3 A bullet is shot straight up from the top of a hill s0 meters high 
with an initial velocity of r0 m/sec. Gravity causes a constant negative acceleration of 
- g  m/sec2• After t sec. what are (a) its velocity, (b) its height above ground level. 
and (c) the distance it has traveled? 

So/11tion (a) First find a formula for the velocity r(t ). Since acceleration is clr/dt, 
the data is 

dr 
· -· = -g. cit 

That means L'(t) is a function whose derivative is -g. In other words, r(t) is an 
antiderivative of -g. One antiderivative is -gt, therefore all antiderivatives are of 
the form -gt + c. where c can be any constant. Hence, 

r(t) = -gt + c. 

To find the constant c that fits this problem, remember that the value of l'(t) is given 
for t = 0. Set t = 0: 

Hence 

is the required formula. 

1•0 = r(O) = -g · 0 + c. 

r(t) = -gt + ro 
c = l'o . 

(b) Use the same sort of argument to find a formula for s(t ). the elevation at time 
t. Since 

tis ( ) I = I' t = -gt + l'o , " 

s(t) is an antiderivative of -gt + r0 . Therefore 

s(t) = -!gt2 + r0t + k 
for some appropriate constant k. To find the right value of k. remember that the value 
of s(t) is given for t = 0. Set t = 0: 

s0 = s(O) = 0 + 0 + k. k = s0 • 
Hence s(t) = - !gt2 + r0t + s0 meters. 

(c) The bullet ascends until it reaches its maximum height above ground, when 
its velocity is zero. that is, when t = v0/g. The maximum height is (v0) l v0 2 s""'" = s g = 2 g 

+ so . 

Then it descends until t = 2t,0/g. when it strikes the top of the hill (s = s0). Let D(t) 
be the distances traveled in t secs. There are two cases: 

(i) 0 � t � v0/g. Then D(t) = s(t ) - s0 = -!gt2 + v0t. 
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(ii) v0/g � t � 2v0/g. Then (distance) = (up) + (down) :  

D(t) = [smax - s0] + [s_ - s(t)] 
= � V; 2 + r ( � V; 

2 
+ So) - ( - � gt2 + Vo t + So) 1 

1 2 Vo
l 

= l gt - Vo l +  
g 

• 

In Example 3 you solved a differential equation. That is an equation involving the 
derivatives of a function in which the function itself is the unknown. The data of 
Example 3 can be written: 

cl2s 
- - -g "'2 - ' s(O) = s0 , s(O) = Vo . 

The first equation is the differential equation; the other equations are initial condi
tions. To find s(t), antidifferentiate twice. First you get ds/dt, then s(t) itself. Each 
antidifferentiation involves a constant to be determined. The two constants are ob
tained from the two initial conditions, s(O) = s0 and s(O) = L'o . 

• EXAMPLE 4 An alpha particle enters a linear accelerator. It immediately 
undergoes a constant acceleration that changes its velocity from 1000 m/sec to 
5000 m/sec in 10- J sec. Compute its acceleration. How far does the particle move 
during this period of 10- J sec? 
So/utio11 For convenience, assume the accelerator lies along the positive x-axis 
starting at the origin. Also assume the particle enters when t = 0, and t sec later 
reaches position x(r). Then 

x(r) = a, x(O) = 1000, x(O) = O, 
where a is the unknown constant acceleration. This is the same problem as Example 
3, with different numbers: a instead of - g, r0 = 1000, and x0 = 0. 

By exactly the reasoning of Example 3, 
L'(r) = at +  r0 = at + 1000, x(t) = !at2 + 10001. 

Use the first formula to find a. Since r(10- J) = 5000, 
5000 = 10-Ja + 1000, a =  4 x 106 m/sec2• 

From the second formula, 

x( lO- J ) = t(4)( 106)(10- J)2 + ( 1000)(10-J) = 2 + I =  3 m. • 
EXERCISES 

A projectile shot straight up has height s = - 16r2 + 980r ft after r sec. Compute its 
average velocity between r = 2 and r = 3. between r = 2 and r = 2. 1 .  Compute its instan
taneous velocity when r = 2. 

2 During the initial stages of Hight, a rocket reaches an elevation of 50r2 + 500r ft in r sec. 
What is the average velocity between r = 2 and r = 3 sec? Find the instantaneous velocity 
when 1 = 2 and when r = 3. What is the average of the two instantaneous velocities? 

3 A projectile launched from a plane has elevation s = - 5r2 + IOOr + 1500 meters after 
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1 sec. What is its maximum elevation'! Find its vertical velocity after 1 5  sec, and upon 
striking the ground. 

4 An object projected upward has height s = - 512 + 301 m after 1 sec. Compute its velocity 
after 1 .5  sec, its maximum height, and the speed with which it strikes the ground. 

5 A ball is thrown straight up from the top of a 600-ft tower. After 1 sec. it is s = - 1612 + 
241 + 600 ft above ground. When docs the ball begin to descend'! What is its speed when 
605 ft above ground, while going up. and while coming down'! 

6 A shell fired at angle 45 to the horizon with initial speed 300 m/sec has height 
y = 1 501J2 - 512 m and horizontal distance x = I 501J2 m from its initial position 1 sec 
after firing. How far from its initial point does it strike the ground? What is its maximum 
elevation? 

7 A body moves along a horizontal line according to the law s = 13 - 912 + 241 ft. (a) When 
is .� increasing and when decreasing? (b) When is the velocity increasing and when 
decreasing? (c) Find the total distance traveled between 1 = 0 and 1 = 6 sec. 

8 Solve Ex. 7 if the law of motion is s = t3 - 3t2 - 9t ft. 
9 A ball is thrown straight up with an initial velocity of 48 fl/sec. Gravity causes a constant 

negative acceleration, - 32 ft/sec2• How high will the ball go ifit is released from a height 
of 4 ft ? 

10 An object slides down a 200-ft inclined plane with acceleration 8 ft/sec2. If the object 
starts from rest with zero velocity, when docs it reach the end of the plane? How fast is it 
going? 

1 1  Starting from rest. with what constant acceleration must a car proceed to go 75 ft in 
5 sec? 

12 The makers of a certain automobile advertise that it will accelerate from 0 to 100 mph in 
I min. If the acceleration is constant, how far will the car go in this time? 

13 During the initial stages of flight after blast-off. a rocket shot straight up has acceleration 
61 m/scc2• The engine cuts out at t = 10 sec, after which only the gravitational acceleration, 
- 10 m/sec2, retards its motion. How high will the rocket go? How long does it take to 
reach its maximum height? 

14 An airplane taking ofT from a landing field has a run of 1000 m. If it starts with speed 
7 m/sec, moves with constant acceleration, and makes the run in 40 sec, with what speed 
does it take ofT'! 

15 A subway train starts from rest at a station and accelerates at the rate of 2 m/sec2 for 
10 sec. It then runs at constant speed for 60 sec, after which it decelerates at the rate of 
3 m/sec2 until it stops at the next station. Find the total distance it travels between the 
stations. 

16 Gravitation on the moon is 0.165 times that on the earth. If a bullet shot straight up from 
the earth will rise I km, how far would it rise if shot on the moon? 

Solve the differential equation 

17 1/y/1/.'C = - 16.'C, .r(O) = 1 2  
19  112y/1/12 = - 32. .r( I )  = 48, 
21 112y/d12 = 21 - I, y(O) = 5. 

3 �ELA1 E: O  RATES 

18 dy/1/1 = 312 + 4, .r( I )  = - 3  
.i"(O) = 64 20 i/2y/i/x2 = 8, .r(O) = 2, .r'(O) = I 
.i"(O) = 3 22 d2y/i/x2 = 3 - 4x • .r(O) = 2, .\"( I ) = 6. 

If two changing physical quantities are related, then their rates of change are also 
related. Quite a number of physical problems involve this idea. 
• EXAMPLE 1 A large spherical rubber balloon is inflated by a pump that injects 
10 ft3/sec of helium. At the instant when the balloon contains 972rr ft3 of gas, how 
fast is its radius increasing? 
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Solution Denote the radius and volume o f  the balloon at time t by r(t} and V(t). The 
derivative tlV/tlt = 10 ft3 /sec is given. The derivative tlr/dt is required at a specific 
time. 

The formula for the volume V of a sphere of radius r is V = !xr3• Hence 

V(t) = �n(r(t )]3. 

To find a relation between dr/dt and dV/dt, differentiate by the Chain Rule: 

�IV = JV tlr = � n . 3r2 . '!! = 4nr2 '.!!: . 
tit dr tit 3 dt dt 

Solve for dr/dt: 
dr I dV 10 
tit 

= 
4nr2 tit = 4nr2 • 

This formula tells the rate of change of the radius at any instant, in terms of the 
radius. At the instant in question, the volume is 972n ft3, so the radius can be found: 

But when r = 9, 

4 3 
-
3 
nr3 = 972n, r3 = - · 972n = 729 r = 9. 

4n ' 

dr 10 10 _ 3 
tit 

= 
4n . 92 = 

324n 
� 9.82 x 10 ft/sec. • 

Example I is typical of related rate problems. You are given the time derivative of 
one physical quantity and asked for the time derivative of a related quantity at a 
certain instant. Usually you must find a relation between the two quantities, then 
differentiate it with respect to time to get a relation between their derivatives. Finally 
you substitute the data at the instant in question. (Finding this data may require 
some side computations.) 

Recall the dot notation for derivatives with respect to time: x = dx/dt, y = dy/dt, 
etc. Since it is so common, we shall use this notation interchangeably with the 
notations J.\•/tlx and y'. 

-

I �  II ,. 

Fig. I 

• EXAMPLE 2 A 15-ft ladder leans against a vertical wall. I f  the top slides down
ward at the rate of 2 ft/sec, find the speed of the lower end when it is 12 ft from the 
wall. 



120 3. APPLICATIONS O F  D I F F E R ENTIATION 

Sol11tion Make a sketch placing axes as in Fig. l . We are given y = -2 and asked 
to find x at the instant when x = 12. There is an obvious relation between x and y:  

x2 + J'2 = 152. 

We differentiate with respect to time: 

2xx + 2y_)1 = o, .x = -r.i'/x. 

To find x at the instant in question, we need the values of y, y, and x at that instant. 
We are given y = -2 and x = 12. From the relation x2 + y2 = 152, we find y = 9. 
Therefore 

9(-2) 3 x = - -12- = 2 ft/sec. • 

• EXAMPLE 3 If the volume of an expanding cube is increasing at the rate of 
4 cm3/sec, how fast is its surface area increasing when the surface area is 24 cm2 ? 

Sol11tion Let x be the edge of the cube. Then its area and volume are 

A =  6x2 and 

Find a relation between A and V. Since x = V113 and A =  6x2, 

A =  6v213. 

Differentiate carefully with respect to time: 
A = 6(i)V- 113Ji = 4v- 1 13 v. 

Now find the value of V at the given instant, that is, when A = 24. From the relation 
A = 6 V213 follows 

24 = 6V213, y213 = 4, V =  8. 

Use this value V = 8 and the given value V = 4: 

A = 4(8)- 113(4) = 8 cm2/sec. 

Alternati11e Sol11tion Do not eliminate x. Differentiate the relations A = 6x2 and 
V =  x3: 

A =  l2xx, Ji =  3x2x = 4. 

When A =  24 cm2, x = 2 cm. From 3x2x = 4 follows x = !. Hence 

A = l2xx = 12(2)(!) = 8 cm2/sec. • 

• EXAMPLE 4 A rectangular tank has a sliding panel S that divides it into two 
adjustable tanks of width 3 ft. See Fig. 2. Water is poured into the left compartment 
at the rate of 5 ft3 /min. At the same time S is moved to the right at the rate of 
3 ft/min. When the left compartment is 10 ft long it contains 70 ft3 of water. Is the 
water level rising or falling? How fast? 

Sol11tion Let x be the length of the left compartment ; let .\' and V be the depth and 



I' 

\' 
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3 ft/min 

the volume of the water in the left compartment. Then x, y, and V are all functions of 
time. Given: 

�� = 3 ft/min, 
dV = 5 ft3/min. dt 

Compute: dy/Jt when x = 10 and V = 70. 
To do so, find a relation between x, y, and V. At any instant 

Differentiate with respect to t : 
V = 3xy. 

dV dy dx 
dt = )x dt + 3 dr y. 

Substitute the data at the instant in question: 

d)' 5 = 3 . 10 . - + 3 . 3 . y Jt ' 

At the given instant, V = 70 and x = 10; hence y = 7/3. Therefore 

d.r 5 - 9(7/3) 16 
cit = -30- = - 30 · 

The water level is falling at the rate of 8/ 15 ft/min. 

A/urnati"� So/111io11 I nstead of differentiating the equation V = 3xy, solve for .r 
first, then differentiate: 

l v r =  . . 3 x . 
cl)' 
Jr 

JV clx x - - v ·-· I . cit dt 
3 x2 
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dy I 10 · 5 - 70 · 3 
At the given instant, 

dt 
= J 102 

EXERCISES 

16 8 
-

30 
= -

1 5  
ft/min. • 

Two functions x = x(t) and y = y(t) satisfy the given relation. Find ,i· for the given data (and be 
sure to test the data for consistency). 

I x2 + 2 = ,r3 x = 5, y = 3, i = - 1 
1 

2 }' + - = x + 2 x = t .  .r = 3, .x = 10 
)' 
r +  I 3 x = ·-- x = - 1 ,  )' = 0, .x = 2 
_r - 1  

4 x2 + xy + ,r2 = 3 x = 1, y = -2, .x = - 5 

5 y + JT+? = x x = 3, y = t .  x = I 
6 x3(1 + y2) = 2  x = l, ,r = l, x = 2. 
7 A stone thrown into a pond produces a circular ripple which expands from the point of 

impact. When the radius is 8 ft, it is observed that the radius is increasing at the rate 
1.5 ft/sec. How fast is the area increasing at that instant? 

8 An inverted conical tank has height 4 m and radius I m at the top. When the depth is 2 m, 
oil flows in at the rate 2 m3 /min. How fast is the level rising? 

9 A 6-ft man walks away from a 15-ft lamp post. When he is 2 1  ft from the post, his walking 
rate is 5 ft/sec. How fast is his shadow lengthening at that instant? 

10 Two cars leave an intersection P. After 60 sec, the one traveling north has speed 50 ft/sec 
and distance 2000 ft from P, and the one traveling west has speed 75 ft/sec and distance 
2500 ft from P. At that instant, how fast arc the cars separating from each other? 

I I  A point P moves along the curve y = x3 - 3x2• When P is at (1 ,  -2), its x-coordinatc is 
increasing at rate 3. Find the rate of increase of the distance from the origin to P. 

12 A point P moves along the curve y = x4 + x + I .  When P is at (1 ,  3), its }'-Coordinate 
increases at rate l. Find the rate of increase of the distance from the origin to P. 

13 Yarn of radius 2 mm is being wound on a ball at the rate of 60 cm/sec. Assume that the 
ball is a perfect sphere at each instant, and consists entirely of thread with no empty space. 
Find the rate of increase of the radius when the radius is 5 cm. 

14 Two concentric circles arc expanding. At a certain instant the outer radius is 10 ft and it is 
expanding at rate 2 ft/sec, while the inner radius is 3 ft and it is expanding at rate 5 ft/sec. 
Find the rate of change of the area between the circles. 

15 Solve Ex. 14 for spheres and volume. 
16 An elevated train on a track 30 ft above the ground crosses a (perpendicular) street at the 

rate of 50 ft/sec at the instant that an automobile, approaching at the rate of 30 ft/sec, is 
40 ft up the street. Find how fast the train and the automobile arc separating 2 sec later. 

17 If a chord sweeps (without turning) across a circle of radius 10 ft at the rate of 6 ft/sec, 
how fast is the length of the chord decreasing when it is i of the way across? 

18 The power P in watts dissipated by an R-ohm resistor with V volts across it is P = V2/R. 
At a certain instant V is 1 12 volts, R is 10,000 ohms, and V and R arc changing at the rates 
of 3 volts/min and -200 ohms/min, respectively. Find the rate of change of P in 
watts/min. 

19 The volume V and pressure P of a gas in a constant-temperature engine cylinder arc 
related by PV = k, a constant. Express the time rate of change P in terms of P and Ji. 

20 Ship A sails due south toward a port P at 5 mph. Ship B sails due cast away from P at 
10 mph. At a given instant A is a miles from P and B is b miles from P. Show that the ships 
arc getting closer together if a > 2b and farther apart if a < 2b. 
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4. MAXIMA A N D  M I NI MA 

One of the most striking applications of calculus is in finding the largest or the 
smallest value of a function over a certain domain. In Chapter 1 we discussed this 
question for quadratic functions. To begin the general study of maximum and mini
mum values (briefly, maxima and minima, or extreme values), let us take a second 
look at quadratic functions. 

Quadratic Functions Our previous approach to extreme values of quadratic 
functions was based on completing the square: 

/(x) = ax2 + bx +  c = a( x2 + � x) + c = a( x + �r + 4ac� bl 

The extreme value off (x) occurs at x = - b/2a. It is 

(- b) = 
4ac - b2 

f 2a 4a • 

a minimum if a > 0, a maximum if a < 0. 
This formula is not easy to remember, so one usually rederives it for each particu

lar example in hand. Another, more systematic, procedure is suggested by calculus. 
Wherever /(x) takes its maximum or minimum value, the graph of y = f(x) has a 
horizontal tangent (Fig. l ) ;  hencef'(x) = O. In other words, if we solve the equation 
f'(x) = 0, we find the x for which /(x) is maximal or minimal. 

I' I' 

\' 

(a) Max (b) Min 

Fis. I At a max or a min, a quadratic has a horizontal tangent. 

• EXAMPLE 1 Find the maximum off(x) = 80x - 16x2• 

So/11tio11 1 (without calculus) 

f(x) = - 16(x2 - 5x) = - 16((x - i)2 - 1/] = - 16(x - i)2 + 100. 

The maximum is 100, taken at x = !. 

\" 
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Solution 2 (with calculus) Graph y = f (x) = 80x - 16x2 very roughly (Fig. la). 
At the maximum, the tangent is horizontal; hencef'(x) = 0. Since 

f'(x) = 80 - 32x, 
the condition is 

80 - 32x = 0, x = 1. 
The maximum is 

JH) = 80H) - 16(1}2 = 200 - 100 = 100. • 

General Functions Here is our basic problem: Find the maximal or minimal 
value of a differentiable function f(x) in an interval a �  x � b. 

In theory, it is easy to locate the maximum or the minimum: 

The maximum of a differentiable function /(x) in the interval a �  x � b occurs 
either at a value of x where f'(x) = 0, or at one of the end points, a or b. The same 
is true for the minimum of/(x). 

This statement is easy to see graphically (Fig. 2). At points where f'(x) > 0, the 
graph is rising (x = c1 for example). Neither the maximum nor the minimum can 
occur at such a point because the graph is higher to the right and lower to the left. At 
points where f'(x) < 0, the graph is falling (x = c2 for example), and for a similar 
reason neither the maximum nor the minimum can occur there. Hence if a < x0 < b 
and/(x0) is the maximum or the minimum value of f(x), thenf'(x0) = 0. 

11 c I c '  

T/1 
(' 4 

I 
I 

h \" 

Fi&- 2 Maxima and minima. Possible: a. c2 , ("4 • b. Impossible: c1 • c J . 

This argument does not apply at the end points a and b, however. (Why not?) The 
maximum or the minimum may occur at one of the end points without the derivative 
vanishing there (Fig. 3). 

This discussion suggests a procedure for solving the basic problem. 

To find the maximum and minimum of.f (x) in the interval a �  x � b. locate all 
points x wheref'(x) = 0. Call these x 1 , x 2 , • · · ,  x" . The maximum is the largest of 
the numbers /(a), f(x 1 ), f(x2), • • - ,f(xn), .f (b). The minimum is the smallest of 
these. 



max 

,. 

min 

• EXAMPLE Z Find the max and min of 
(a) f(x) = !x3 - 4x + l, - 3  � x � 3, 
(b) /(x) = x4 + 2x3, -2 � x � l .  

4. Maxima and Minima 1 26 

Fla. 3 The max off (x) occurs 
for x = b, not where 
f'(x) ... O; similarly, 
the min occurs for 
x = a. 

So/11tio11 (a) f'(x) = x2 - 4 = (x + 2)(x - 2), so f'(x) = 0 for x = -2 and x = 2. 
The corresponding values of /(x) are 

/(-2) = l/ and /(2) = -¥. 

max I' 
max 

3 

x 

min _ ,  

min 
(b) y = x4 + 2xl , -2 < x < I  
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These are candidates for the max and the min. The only other candidates are the 
values of f(x) at the end points of the interval, 

f(-3) = 4 and f(3) = -2. 
The largest of these four numbers is .1/- and the smallest is -¥. therefore 

max = f(-2) = .1/-. min = f(2) = -lf-. 
See Fig. 4a. 

(b) f'(x) = 4x3 + 6x2 = 2x2(2x + 3), sof'(x) = 0 for x = O and for x = -i . The 
corresponding values off (x) are 

f(O) = 0 and !(-!) = H - W  = -H.  
The only other candidates for max or min are the values off(x) at the end points, 

f( -2) = 16 - 16 = 0 and f ( I )  = 3. 

Therefore max = f(l )  = 3, min =f(-i) = -fi.  
See Fig. 4b. • 

Absence of End Poi n  s Some problems require the max or min of a function 
over an interval without end points, or with only one end point. 
• EXAMPLE 3 Find 

(a) min(x4 - 4x), - oc < x < oo, 
(b) max(

2x3
\ 

1
) . x � O. 

So/11tion (a) Set f(x) = x4 - 4x. Clearly 
f(x) - oo  as x - oo  or x - - oo, 

sof(x) must have a min someplace. At its min, y = f(x) has a horizontal tangent, that 
is,f'(x) = 0. Consequently, we first solve the equationf'(x) = 0: 

f'(x) = 4(x3 - l), x3 - 1 = 0, x = l .  
There is only one value of x for which the tangent (Fig. 5a) is horizontal; it must give 
the minimum: 

min = f( 1 )  = 1 - 4 = - 3. 

(b) Setf(x) = x/(2x3 + 1 ). Obviously f(x) > 0 for x > O.f(O) = 0, and 
f(x) - O+ as x - oo. 

The function increases starting from 0, but dies out to 0 as x increases indefinitely, so 
it must have a max someplace (Fig. 5b). Test for a horizontal tangent :  

, (2x3 + I )  - 6x3 1 - 4x3 f (x) = (2x3 + 1 )2 = (2x3 + 1 )2 '  
f'(x) = 0, l - 4x3 = 0, x = t/l = !z/2::::: 0.629961. 
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There is only one horizontal tangent for x > O; it must yield the max: 
max = f (!{/2) = !{/2 � 0.419974. 

min 

1 x 

(a) y=x4 -4x, -oo<x<oo 

)' 

1 .0 

0.5 

2 3 

x 
(b) )I • 2,x3 + 1 .  x > 0 

• 

In general, a functionf(x) need not have a max or a min unless x is restricted to an 
interval with two end points. For example, takef(x) = 1/(1 + x2), where x is unres
tricted. This function has maximum value l , but no minimum value (it takes all 
values between 0 and l, excluding zero). As another example, take j(x) = l/x for 
x > 0. This function has neither a maximum nor a minimum. 
EXERCISES 

Find the max and min 
I x2 - 4x + 6 
3 -x2 + 6x + 4 

l S 12x + Jx x > 0 

7 2xJ - 3x2 - 12x + 1 0 s x S 3 
1 

9 (x - 1)(2 - x) l < x < 2 
x l I I  3 + �  l s x s 3  
l l l 

13 - - --r - - -3 s x s - 1 X X� XJ 
1 IS 4x2 + - i s x s l x 

17 x4 - 2x2 + l - 1  S x S 2 
19 -3x4 - 16x3 - 18x2 - 12 
-3 s x s O  

2 2x2 - 9x + 12 
4 -3x2 + 3x + l  

1 6 12x + Jx x < 0 

8 2x3 - 3x2 - 12x + 1 -2 :::; x :::; 2 

l :::; x 

14 x - x4 0 s x s l 
x 

16 2 + x3 - 1  s x 

18 3x4 - 16x3 + 18x2 + 12 0 :::; x :::; 4 
2 

20 x3 + x + - x > 0. x 



1 28 3. APPLICATIONS OF D I F F E R E NTIATION 

2 1  
_x_ - 2 < x < 2 
x2 - 4 22 x3 - 9x + 1. 

5. APPLICATIONS OF MAX AND M I N  

EXAMPLE 1 An open box is constructed by removing a small square from each 
comer of a tin sheet and then folding up the sides. If the sheet is L cm on each side, 
what is the largest possible volume of the box? 

x L - 2x 

x 

�r-ix-J 

Solution Let each cutout square have side x. See Fig. 1 . Express the volume of the 
box as a function of x: 

Volume = (area of base) · (height). 
The base is a square of side L - 2x, and the height is x. So the volume of the box is 

V(x) = (L - 2x)2x = (L2 - 4Lx + 4x2)x = L2x - 4Lx2 + 4x3• 

By the nature of the problem, x must be positive but less than !L. half the side of the 
sheet. The problem can now be stated in mathematical terms: Find the largest value 
of V(x) in the domain 0 < x < !L. Differentiate: 

V'(x) = L2 - 8Lx + 12x2 = (L - 2x)(L - 6x). 
The factor L - 2x is positive because x < !L Therefore the sign of V'(x) is the same 
as the sign of (L - 6x): 

V'(x) > 0 for x < !L. V'(x) < 0 for x > !L. 

V'(x) = 0 for x = iL 
This information clearly indicates a maximum for x = iL 

level 

increases 1 decreases 

0 l. L  6 l. i 2 
x 
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Therefore 

( 2L) 2(L) (2L) 2(L) 2JJ V11111,. = V(iL) = L - 6" 6" = J 6" = 2"i cm3. • 

• EXAMPLE 2 A length of wire 28 ft long is cut into two pieces. One piece is bent 
into a 3 : 4 : S right triangle and the other piece is bent into a square. Show that the 
combined area is at least 1 8 ft2• 

4.x 
y 

3.x y 

perimeter • 1 2.x, area •t(3x)(4.x) = 6x2 perimeter • 4y, area = y2 

Solution This is just a disguised minimum problem: Find the minimum possible 
combined area and check that it is at least 18 ft2• 

To avoid fractions, name the sides of the right triangle 3x, 4x, and Sx. Let y denote 
the side of the square (Fig. 2). The combined perimeter is 

12x + 4y = 28, hence y = 7 - 3x. 
The combined area is 

A(x) = 6x2 + y2 = 6x2 + (7 - 3x)2 = 15x2 - 42x + 49. 
By the nature of the problem, x must be positive. But since the perimeter of the 
triangle is less than 28, 

12x < 28, that is, x < H = l 

So the problem reduces to this: Find the least value of A(x) in the domain 0 < x < l 
Take the derivative: 

A'(x) = 30x - 42. 
Hence A'(x) < 0 for 30x - 42 < 0, i.e., for x < !. 

A'(x) = 0 for x = !. 
A'(x) > 0 for 30x - 42 > 0, i.e., for x > 1-

This information indicates a minimum for x = !. 
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decreases 

0 

Therefore 

level 

1 
7 

5 

increases 

7 
) 

Amin = Am = 6m2 + (7 - 1!-)2 = 6(4J) + (.1/)2 = W = ¥ = 19.6 ft2• 

The combined area always exceeds 18 ft2• 

x 

EXAMPLE 3 Ship A leaves a port at noon and sails due north at 10 mph. Ship B 
is 100 mi east of the port at noon and sailing due west at 6 mph. When will the ships 
be nearest each other? 

.v N + t 
A 

I Ot 

1 00 - 61 x 

So/utio11 Set up axes with the port at the origin and the y-axis pointing north. The 
relative position of the ships at t hr past noon is shown in Fig. 3. The distance 
between the ships is 

.f(t) = J(IOO - 6r)2 + (10r)2 . 

The square root is annoying because when we differentiate, the resulting expression 
will be messy. A simple device for getting rid of the square root is squaringf(t). Set 

g(r) = [f(r)]2 = (100 - 6r)2 + (10t)2• 
The distancef(t) is smallest precisely when its square g(t) is smallest, and it is easier 
to minimize the quadratic function g(t) than to minimizef(t). We have 

g(t) = (100 - 6t)2 + (10t)2 = 10,000 - 1200t + 36t2 + 100t2 

= 10,000 - 1200r + I 36t2, 

hence g'(r) = - 1200 + 272t, 

g'(t) = 0 for t = 1Hf :::::: 4.41 :::::: 4 hr, 25 min. 

Answer The ships are closest at about 4 :  25 PM. 
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• EXAMPLE 4 Compute the volume of the largest right circular cone inscribed in 
a sphere of radius R. (See Fig. 4a.) 

(a) Cone inscribed in sphere 

Solution The volume V of a cone is 

Fig. 4 

V = ixr2h, 

R 

--
r 

(b) Crou-section 

where r is the radius of its base and h is its height. You cannot maximi:ze V directly, 
since V depends on two variables. In such cases, try to eliminate one of the variables, 
that is, express one variable in terms of the other. To do so, look for a relation 
between the variables. Often there is such a relation hidden in the conditions of the 
problem. 

In this example, the cone is inscribed in a sphere, so there should be a relation 
between r, h, and R. Make a careful drawing of a cross-section (Fig. 4b). From the 
drawing, 

,2 + (h - R)2 = R2, 

r2 = R2 - (h - R)2 = 2Rh - h2• 

Substitute this expression and you eliminate the variable r: 

V = !-nr2h = !x(2Rh - h2)h = ix(2Rh2 - h3). 

By the physical nature of the problem, 0 < h < 2R. Thus you must maximize 

V(h) = Yt(2Rh2 - h3) 

in the interval 0 < h < 2R. 
There are no end points, hence the maximum occurs at a zero of the derivative: 

dV x x - = - (4Rh - 3h2) = - h(4R - 3h) 
dh 3 3 

. 
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Therefore 
dV = O dh 

But h =  0 is excluded; the maximum must occur at 4R/3 : 
v. 

= 
v(4R· ) = � (4R) 2(2R) = 

32nR3 
max 3 3 3 3 81 . 

• 

Remark The answer has the correct form; a volume should be a cubic expression. Since the 
sphere has volume !JrR3, it follows easily that the volume of the largest cone that can be 
inscribed in a sphere is /, the volume of the sphere. 
• EXAMPLE I A 5-ft fence stands 4 ft from a high wall (Fig. 5). How long is the 
shortest ladder that can reach from the ground outside the fence to the wall? 

Fig. s 

Solution Take a moment to think. Note from Fig. 5 that if x is very small and 
positive, the ladder will be nearly vertical, certainly longer than is necessary. If x is 
large, the ladder will be nearly horizontal, again too long. The best choice of x seems 
to be somewhere around 5 or 6, surely between 2 and 10. In fact, as x increases 
starting near 0, it seems that L should decrease, reach a minimum, then increase 
thereafter. 

To start the computation, note that 

L2 = (x + 4)2 + y2. 
This is a function of two variables, but there is a relation between x and y: by similar 
triangles, 

Hence, 

y 5 
-- = -

x + 4  x '  
. 5(x + 4) that IS, y = 

. 
x 

r2 - ( 4)2 25(x + 4)2 - ( 4)2( 1 25) L. - X +  + 2 - x + + 2 · x x 

Rather than take the square root, minimize I!. The range of x is all positive values; 
there are no end points in this problem. 
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Differentiate L2: 
d ( 25

) ( - SO) r 
25 2S(x + 4)

] dx (L2) = 2(x + 4) l + x2 + (x + 4)2 y = 2(x + 4) l + x2 - x3 
_ 2( 4) l

x3 + 2Sx - 2S(x + 4)J- 2(x + 4)(x3 - 100) - x +  3 - 3 • x x 
There is only one positive value of x for which the derivative is zero : x = VJOO � 
4.64. The derivative is negative for x < 000. positive for x > 000· Thus our 
physical intuition was correct : L2 decreases, reaches a minimum near x = 5, then 
increases. 

From the formula for L2, 
L =  (x + 4)J1 + �� = ( 1  + �)Jx2 + 25 . 

Therefore �in = L(VJOO ) = ( I + ).oo)J100213 + 25 � 12.7 ft. • 

• EXAMPLE I The illumination of an object by a light source is directly propor
tional to the strength of the source and inversely proportional to the square of the 
distance between the source and the object. Two light sources, one five times as 
strong as the other, are I m apart (Fig. 6). At what point on the line between the 
sources should a screen be placed so that the illumination it receives is minimal? 

weak strong ' 
x 1 - x 

Sol11tio11 Apparently the screen should be closer to the weaker source; x < ! . Even 
though one source is five times as strong as the other, the screen cannot be too close 
to the weaker source because of the inverse square rule. A reasonable guess: x is 
around 0.3 or 0.4. The illumination from the weaker source is 

where the constant k depends on the units of measurement. The illumination from 
the stronger source is 

The problem is to minimize 

5k 12 = - - -- - (1 - x)2 • 

k 5k 
I = xl + ( l  - x)l '  
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for 0 < x < I .  There are no end points in this problem since I is defined neither at 
x = 0 nor at x = 1. Differentiate: 

This derivative is 0 for 

di 2k lOk 
- =  -- + ---
dx x3 (I - x)3 • 

2k I Ok that is, 5x3 = (1 - x)3• 
x3 

= (1 - x)3 ' 

Take cube roots: ({/5 )x = 1 - x, 
1 

x = J /C ::::: 0.369m. 
1 + {t5 

Since I - oo as x - 0+ or x - I - , this value of x must give the minimal I. 

EXAMPLE 7 Light travels between two points along the path that requires the 
least time. In different substances (water, air, glass, etc.) light travels at different 
speeds. Assume the upper half of the x, y-plane is a substance in which the speed of 
light is v1 and the lower half is another substance in which the speed of light is v2 • 
Describe the path ofa light ray traveling between two points in opposite halves of the 
plane. 

((} . . 1 )  

(l I 

Fia. 7 

So/11tion Let the two points be (0, a) and (b, - c) in Fig. 7. A ray will travel from 
(0, a) along a straight line to some point (x, 0) and then along another straight line to 
(b, -c). A value x must be found so that the time of travel is a minimum. Obviously 
o �  x � b. 
The time required for a ray to travel from (0, a) to (x, 0) is 

distance J x2 + a2 ft = = speed v1 
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The time required from (x, 0) to (b, -c) is 
J�(b,...._-x,...,..)2_+_c....,..2 t2 = �----V2 

Hence you must minimize 
Jx2 + a2 J(b - x)l + cl 

t =  + �---v, V2 
in the interval 0 s x s b. It is plausible physically that the minimum will not occur at 
either end point. 
Compute Jt/dx: 

dt x b - x 
- = ---;::=r==::;; dx v1 .Jxl + al v2J(b - x)l + cl · 

This derivative looks complicated, but from Fig. 7, 

x . b - x  J 2 2 = sm IX1 , J( )2 2 = sin a:2 • x + a  b - x  + c  
Hence the derivative has the simple form 

Jt sin 1%1 sin IX2 
dx = -v-,- - � 

The derivative is zero if x is chosen to satisfy 
sin IX1 sin IX2 -- =--

V1 V2 
This equation is known as Snell's Law of Refraction. To see that it describes the 

path of least time, note that dt/dx is the difference of two terms. As x increases from 0 
to b, the first term, (sin a:. )/v1 , increases steadily starting with 0. The second term, 
(sin a:2)/v2 , decreases steadily from some positive value to 0. Consequently, dt/dx 
starts negative at x = 0 and steadily increases to a positive value at x = b. There
fore, the minimum t occurs at the only x for which dt/dx = 0. 

Answer The path is the broken line for which 

EXERCISES 

sin a:1 sin a:2 -- = -- • 

A ball thrown straight up reaches a height of 3 + 40I - 16r2 ft in r sec. How high will it 
go? 

2 Show that the rectangle of largest possible area, for a given perimeter, is a square. 3 Find the maximum slope of the curve y = 6x2 - xl. 
4 The power output P of a battery is given by P = El - R/2, where E and R are constants 

and I is current. Find the current for which the power output is a maximum and find the 
maximum power. 

5 A man with 300 m of fencing wishes to enclose a rectangular area and divide it into 5 pens 
with fences parallel to the short end of the rectangle. What dimensions of the enclosure 
make its area a maximum? 

6 Find the dimensions of the rectangle of largest area that can be inscribed in an equilateral 
triangle of side .s, if one side of the rectangle lies on the base of the triangle. 
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7 Find the dimensions of the rectanaJe of largest area that can be inscribed in a right 
triangle with legs of length a and b, if two sides of the rectangle lie along the legs of the 
triangle. 

8 Find the maximal combined area in Example 2, p. 129. 
9 Suppose in Example 3, p. 130, ship A is already 70 mi north of the port at noon, but 

otherwise the problem is the same. Now when are the ships closest ? 
10 An open rectangular box has volume 15 ft3• The length of its base is 3 times its width. 

Materials for the sides and base cost 60¢ and 40¢ per ft1, respectively. Find the dimensions 
of the cheapest such box. 

1 1  What points on the curve xy1 a 1 arc nearest the origin? 
12 Find the point on the graph of the equation y = .JX nearest to the point (1, 0). 
13 Two particles moving in the plane have coordinates (2t, 8t3 - 24t + 10) and 

(2t + I, 8t3 + 6t + 1) at time t. How close do the particles come to each other? 
14 Find the minimum vertical distance between the curves y = 27x3 and y = - 1/x if x + 0. 
15 As a man starts across a 200-ft bridge, a ship passes directly beneath the center of the 

bridge. If the ship is moving at the rate of 8 ft/sec and the man at the rate of 6 ft/sec, what 
is the shortest horizontal distance between them? 

16 Suppose in Ex. IS, the bridge is SO ft high. Find the shortest distance between the man and 
the ship. 

17 Find the dimensions of the right circular cone having the greatest volume for a given slant 
height a. 

18 A closed cylindrical can is to have volume SOO cm3• For what dimensions will the total 
surface be a minimum? 

A window of perimeter 16 ft has the form of a rectangle surmounted by a semicircle 

19 For what radius of the semicircle is the window area greatest? 
20 For what radius of the semicircle is the most light admitted, if the semicircle admits half as 

much light per unit area as the rectangle admits per unit area? 

Suppose the cost of producing x units is f (x) dollars, and the price of x units is h(x) dollars. 
Calculate the maximum net revenue possible for a manufacturer if 
21 f (x) • 1.5x + 400, h(x) = I Ox - 0.000Sx2 
ll f(x) = SOx + 1200, h(x) = 65x - 0.001x2• 
23 The cost per hour in dollars for fuel to operate a certain airliner is 0.012v2, where v is the 

speed in mph. If fixed charges amount to $4000/hr, find the most economical speed for a 
l SOO mi trip. 

24 During a typical 8-hr work day the quantity of gravel produced in a plant is 60t + 
12r2 - r3 tons, where t rcpr�ts hours worked. When is the rate of production at a 
maximum? 

25 A cylindrical tank (open top) is to hold V liters ( l  liter - 1000 cm3). How should it be 
made so as to use the least amount of material? 

26 A page is to contain 27 in1 of print. The margins at the top and bottom arc l.5 in, at the 
sides I in. Find the most economical dimensions of the page. 

27 Find the largest possible area of an isosceles triangle whose equal legs have length L ft. 
28 Find the dimensions of the rectangle or maximum area that can be inscribed in the region 

bounded by the parabola y = - 8x2 + 16 and the x-axis. 
29 An athletic field of 500-m perimeter consists of a rectangle with a semicircle at each end. 

Find the dimensions of the field so that the area of the rectangular portion is the largest 
possible. 

30 Two posts, 8 ft and 12 ft high, stand 15 ft apart. They arc to be stayed by wires attached to 
a single stake at ground level. and running to the tops of the posts. Where should the stake 
be placed to use the least amount of wire? 
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31 A man in a rowboat 3 mi off a long straight shore wants to reach a point 5 mi up the 
shore. If he can row 2 mph and walk 4 mph, describe his fastest route. 

32 Suppose in Ex. 31 the boat has a motor. How fast must the boat be able to go so that the 
fastest route is entirely by boat? 

33 The strength ofa beam of fixed length and rectangular cross-section is proportional to the 
width and to the square of the depth of the cross-section. Find the proportions of the 
beam of greatest strength that can be cut from a circular log. 

34 The energy of a certain diatomic molecule is 
a b 

U = 12 - 6 • x x 

where a and b arc positive constants and x is the distance between the atoms. Find the 
dissociation ener&Y, the maximum of - U. 

35 The speed v of a surface wave depends on its wavelength .l according to 

V = - A + - , 
J g 2nu 

2n p.l 
where the constants arc g, the force of gravity, u, the surface tension of the ftuid, and p, the 
density of the ftuid. Find the minimum possible speed and the corresponding wavelength. 

36 A one-port network (Fig. 8) at fixed frequency w is to be terminated in a resistor x so the 
power 

E2x p = ---------
(2nwL)2 + R2 + 2Rx + x2 

dissipated by x (in heat) is maximal. Find x and P ...... 

,-------·----------, 
I 
I x 

I 
I 
L------�------------� 

Fig. 8 

37 Find the two positive numbers x and y for which x + .r = I, such that x3y' is maximum. 38 Given n numbers a1 • a2 , • • · , a. ,  show that 
(x - a.)2 + (x - a2)2 + · · · + (x - a.)2 

is least when x = a, the average of the numbers. 
39 Find the maximum for x � 0 of x/( 1  + x)2• 
40 Find the max and min of ( I + .'1:2)/(1 + x4). 
The object of the next two examples is to prove an important inequality: if a 1 ,  a2 , • • . , a.arc 
any positive numbers, then 
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In words, the aeometric mean of a set of numbers does not exceed the arithmetic mean 
(average). We abbreviate the inequality by the notation G. S A • .  

41• Show that the maximum value of the ratio 
•·)/a1a2 • • • a.x 

I -- (a1 + a2 + · · · + a  + x) 
n + I • 

occurs for x = A., and compute the maximum. Conclude that 

� < ___!! G (G )"'1•• I I  

A. + 1  - A. 
. 

42• By repeated application of Ex. 41 ,  show that G. < (G, ) 1'" 
A. - A1  ' 

and therefore G. ::s: A • .  Explain why G. = A. if and only if a1 = a2 = · · · = a  • .  
6 S E C O N D  D E R IVATIVE T E ST 

Examine the function graphed in Fig. I .  At each of the points x 1 , x 2 , • • · ,  x6 , its derivative equals 0. At the points x 1 ,  x 3 , x6 , the function is decreasing immediately 
to the left and increasing immediately to the right. The values /(x1), f(x3), /(x6) are accordingly called local minima of f(x), also relative minima. Correspondingly, the 
values/(x2) and/(x5) are local maxima. The value/(x4) is different; it is neither a local max nor a local min, even though f'(x4) = 0. 

" 

Fig. I 
Local min: x1, 
Local max: x2• 

II /I 
I 

I 

I I 
I I 
I I 
I I 
I I 

b 

When we solve f'(x) = 0, we find all six of the X; . Sometimes we can pick out the 
local maxs and mins by checking where f' > 0 and where f' < 0. But this may be 
tedious, so we seek another method. 
Generally speaking, a curve y = f(x) can have four shapes at a point where 

f'(x) = 0. Supposef'(c) = 0, but otherwisef'(x) =I= Oon an interval centered at c. The 
four possibilities are shown in Fig. 2. They are (a) local maximum, (b) local mini
mum, (c) and (d) horizontal inflection point. 
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.1· 

c 

(b 1 Convex: local min 

f'= 0 

c 
(c) Increasing; horizontal inflection (d) Decreasina; horizontal inflection 

Fia. 2 Possible shapes near a point wheref'(c) = 0, providedf'(x) + 0 for x + c. 

Let us summarize this discussion so far. 

Let f (x) be a differentiable function for a � x � b, and suppose f'(c) = 0, where 
a <  c < b. 
(1) If j'(x) changes from positive to negative as x increases through c, thenf (c) is 
a local max. 
(2) Ifj'(x) changes from negative to positive as x increases through c, thenf(c) is 
a local min. 
(3) Ifj'(x) does not change sign as x passes through c, then (c,f(c)) is a horizon
tal inflection point of y = f (x). 

x 

EXAMPLE 1 Classify the points of y = !x5 - ix4 + tx3 - 1 at which f'(x) = 0. 
Sohltio11 Examine the signs of f'(x) = x4 - 3x3 + 2x2 = x2(x - l )(x - 2): 

T T y' • O 

l y' > O  y' > O  y' > O  y'< O  

0 2 x 
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Accordingly: 
x = 0 horizontal inflection 

x = I local max 

x = 2 local min 

This information makes it quite easy to graph the function (Fig. 3). 

"' ( I .  - 0.8X r 111�.11 111111 

Fie. 3 .r = !x' - h·4 + ix3 - I 

luc.11 111.1 \  • 

Use o h ec 1 :J D r h e At a point x = c where f'(c) = 0, the sign of the 
second derivative indicates whether the graph has a locaf min or local max. Suppose, 
for instance, that f'(c) = 0 and r(c) > 0. Then f'(x) is increasing near x = c; as x 
increases through c, then f'(x)changes from negative to positive, so /(c) is a local min 
(Fig. 4a). If f'(c) = 0 and f"(c) < 0, then f'(x) is decreasing near x = c; hence f'(x) 
changes from positive to negative, so /(c) is a local max (Fig. 4b). 

(a) Local min; f'(x) increasin11 at x • c; 
graph convex near x • c 

Fi&- 4 

(!t l = O  

J "lcl < O  

(b) Local max; f'(x) dccreasin11 at x • c; 
graph concave near x • c 

Geometrically speaking, the sign of f"(c) indicates whether the graph is convex or 
concave. rrr(c) > o. the curve is convex, hence/(c) is a local min; iff"(c) < 0, the 
curve is concave, hence/(c) is a local max. 
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Second Derivative Test Suppose that /(x) is twice differentiable 
in an interval including x = c, and that f'(c) = 0. 
( 1 )  lfr(c) > 0, then/(c) is a local min. 
(2) lfr(c) < 0, then /(c) is a local max. 

Remark The case f'(c) = 0 and r(c) • 0 is inconclusive. For example, the functions 
/4(x) = x·\ /5(x) = x5, and /6(x) = -x6 all satisfy these conditions at c = 0. Yet /4(x) has a 
minimum at x = 0, and/6(x) has a maximum at x .. 0, whereas/5(x) has neither (Fig. 5) . 

,. = \ 4 I = ,. s 
.I 

J 
' ) � 

rr l 
.. - I  'I' - I I 'I' 

- I - I - I  
I = - �6 

(a) Local min at (0, 0) (b) Horizontal inflection at (0, 0) (c) Local max at (0, 0) 
Fla. 5 The second derivative test is inconclusive if r(c) = o. 

EXAMPLE 2 Find all local max and min of f (x) = -1 
x 

2 . + x  
Sol•tio11 

, ( 1  + x2) - 2x · x I - x2 f (x) = ( I  + x2)2 = (I + x2)2 ; 
hence f'(x) = 0 only for x = - I and x = I . Next, 

/N(x) = -2x(l + x2)2 - 4x(l + x2)(1 - x2) 
(1 + x2)4 

-2x(l + x2) - 4x( l  - x2) 2x(x2 - 3) 
( I  + x2)3 = ( I  + x2)3 . 

Test the two points whcrcf'(x) = 0: 
x - - 1  

x = l  

f"( - 1 )  = t > 0 /(- 1 )  = -t. local min 

r(1) = -t < 0 /(1) = t. local max 

.. x 

Co11ti""atio11 Let's graph y = /(x). We have already located all local extrema. For 
further information we look at the sign of f'(x): 

f < O  

, .. 0 

l f> O 

f =O 

1 f< 0 

- I  x 
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For information on convexity, concavity, and inflection points, we look at the sign of 
f"(x): 

/"= 0 f' = 0 f"= O 

f'< 0 l !" > O  1 t" < O  l t" > O  

-../3 0 ..[j x 
There are inflection points at x = ± J3. 
We note further that /(x) is an odd function, that f(x) --+ 0 as x --+ co or 

x --+ - co, and that 
/(1) = ! .  f(Jj ) = !J3. /(0) = 0, f'(O) = I. 

We now have adequate information for a fairly accurate sketch (Fig. 6). 

_ , VJ 
- 1  

11111\ 

Fi&- 6 Graph of y = -1 ·'" 1 + x  

1 I ma\ I I ,/T"�-� 
.JJ , 

Convex : -.jj < x < 0, .j3 < x Concave: - .jj < x, · 0 < x < .jj . • 

• EXAMPLE 3 Find all local max and min of /(x) = x4(1 - x)10• 
Solution 

f'(x) = 4x3( 1 - x)10 - 10x4(1 - x)9 
= 2x3(1 - x)9[2(1 - x) - Sx] = 2x3(1 - x)9(2 - 7x). 

Therefore f'(x) = 0 for x = 0, x = I ,  and x = ., . Next, 
f"(x) = 6x2(1 - x)9(2 - 7x) - 18x3(1 - x)8(2 - 7x) - 14x3(1 - x)9• 

We want the signs of f"(O),f"(I), andf"m. Clearly, each term is zero for x = 0 and 
for x = I, and the first two terms are zero for x = ; . Hence, 

r(o) = o. r(1) = o. rm = - (14)m3m9 < o. 
Thereforefm = m4(;)10 is a local max, and the second derivative test is inconclu
sive for x = 0 and x = I .  
However, we see that f (x) � 0 for all x, while /(0) = 0 and/( I ) = 0. Therefore 

f(O) = 0 and /( 1) = 0 are local mins by inspection. A rough graph is useful here 
(Fig. 7). 
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Fig. 7 Rough graph of y = x4(1 - x)10 

A/ternatioe So/11tion Rather than computef"(x), which is messy, examine the sign of 
f'(x) = 2x3( 1  - x)9(2 - 7x). 

For very large positive values of x, this polynomial is obviously positive. Since it 
changes sign at x = I, .;, and 0, the whole picture is clear: 

f= 0 f =O 

f < 0 1 (> 0 l 
0 2 

1 

(< 0 

f = O  

l f>O 
x 

The behavior of f'(x) indicates local mins at x = 0 and I, a local max at x = .;. • 

Remarks on Finding Maxima and M in1ria In most maximum and mini
mum problems there are only one or two zeros of the derivative to consider, and 
possibly two end points. Often you can rule out the end points by physical considera
tions. Then you have to decide which zero of the derivative gives the maximum or the 
minimum. If it is easy to compute the second derivative, do so. If not, or if the second 
derivative is zero, try observing the sign of the derivative near the point in question. 
Better yet, graph the function if that is easy. Be flexible. 
EXERCISES 

Find all local max and min 

I y = x4 - 2x2 
3 y = 3x4 - 4x3 - 12x2 + 2 

x 
5 J' = Jx4 + 16 

27 
7 J' = 2x - 2 x 

I I 
9 .r = ? - .? 

xz 
I I  r =  --. I +  x4 
Let n � 2. Find the maximum for x :?; 0 

x 
13 .\' = (x + 2)" . 

2 y = x' - 20x - 3 
4 r = x3 + 4x2 + 5x + 2 

, 
·
r = - A 
· 5x + 4 

27 8 I' = 2x + -. xl 
I 10 r = x2 - -. x 

XJ 
ll J' = 1 + x4 . 
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IS• Assume a >  0 and b > 0. Find all local maxs and mins or  .r = (a + x)J/i1 + (a - x)2 .  
Consider various cases. 

16• Show that the maximum or 
( I  + x)2 

r =  . l + JT+7 
is taken at x = c, where cl - c - 2 = 0. Conclude that c � 1.5214, and 
r-. = ( I + c)2/(2 + c) � 1.8054. 

17 Show that each inflection point or the graph .r = f(x) corresponds to a local max or min 
off'(x). 

18 Given that r(c) "" 0 and r'(c) > O. draw a conclusion about the graph y = f(x) near 
x = c. 

19 Find .r(x) ff .r(O) = y( I )  = 0 and .r"M = 0 ror all .'(. 
20• Let .r = x• + as .'(J + a2 x2 + a3x + a, .  Assume .r'(c) = 0 and y"(c) < 0. Prove that .r has 

exactly two local mins. Give an explicit example of such a runction. 

7 ON �HOBLEM SOLVIN G  

A major part of your time in Calculus and other courses is devoted to solving 
problems. It is worth your while to develop sound techniques. Here are a few 
suggestions. 

Think. Before plunging into a problem, take a moment to think. Read the prob
lem again. Think about it. What are its essential features? Have you seen a problem 
like it before? What techniques are needed? 
Try to make a rough estimate of the answer. It will help you understand the 

problem and will serve as a check against unreasonable answers. A car will not go 
1000 mi in 3 hr; a weight dropped from 10,000 ft will not hit the earth at 5 mph; the 
volume of a tank is not -275 gal. 

Examine the data. Be sure you understand what is given. Translate the data into 
mathematical language. Whenever possible, make a clear diagram and label it ac
curately. Place axes to simplify computations. If you get stuck, check that you are 
using all the data. 

Avoid sloppiness. 
(a) Avoid sloppiness in language. Mathematics is written in English sentences. A 

typical mathematical sentence is " y = 4x + I." The equal sign is the verb in this 
sentence; it means "equals " or" is equal to." The equal sign is not to be used in place 
of" and," nor as a punctuation mark. Quantities on opposite sides of an equal sign must 
be equal. 
Use short simple sentences. Avoid pronouns such as "it" and "which." Give 

names and use them. Otherwise you may write gibberish like the following: 
"To find the minimum of it, differentiate it and set it equal to zero, then solve it 

which if you substitute it, it is the minimum." 
Better: .. To find the minimum of/(x), set its derivativef'(x) equal to zero. Let x0 

be the solution of the resulting equation. Then/ (x0) is the minimum value of/(x)." 
(b) Avoid sloppiness in computation. Do calculations in a sequence of neat, 

orderly steps. Include all steps except utterly trivial ones. This will help eliminate 
errors, or at least make errors easier to find. Check any numbers used; be sure that 
you have not dropped a minus sign or transposed digits. 
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(c) Avoid sloppiness in units. I f  you start out measuring in  feet, all lengths must 
be in feet, all areas in square feet, and all volumes in cubic feet. Do not mix feet and 
acres, seconds and years. 

(d) Avoid sloppiness in the answer. Be sure to answer the question that is asked. 
If the problem asks for the maximum value of f(x), the answer is not the point where 
the maximum occurs. If the problem asks for a formula, the answer is not a number. 
• EXAMPLE 1 Find the minimum of f(x) = x2 - 2x + I .  
Solution I 2x - 2. x = 1, 1 2  - 2 · l + 1, 0 
Unbearable. This is just a collection of marks on the paper. There is absolutely no 
indication of what these marks mean or of what they have to do with the problem. 
When you write, it is your responsibility to inform the reader of what you are doing. 
Assume he is intelligent, but not a mind reader. 

Solution 2 t/f 
- = 2x - 2 = 0 = 2x = 2 = x = I dx 

= f (x) = 1 2 - 2 · I + I = 0. 
Poor. The equal sign is badly mauled. This solution contains such enlightening 
statements as "O = 2 = l," and it does not explain what the writer is doing. 

Solution 3 df 
= 2x - 2 = 0, dx 2x = 2, x = I. 

This is better than Solution 2, but contains two errors. Error 1 :  The first statement, 
.. df/dx = 2x - 2 = O," muddles two separate steps. First the derivative is computed, 
then the derivative is equated to zero. Error 2 :  The solution is incomplete because it 
does not give what the problem asks for, the minimum value off Instead, it gives the 
point x at which the minimum is assumed. 

Solution 4 The derivative off is 

f' = 2x - 2. 
At a minimum,!' = 0. Hence 

2x - 2 = 0, 
The corresponding value off is 

x = I. 

f ( l )  = 12 - 2 · I + l = 0. 
If x > l ,  then f'(x) = 2(x - I ) > 0, so f is increasing. I f  x < l ,  then f'(x) = 
2(x - l )  < 0, sofis decreasing. Hencefis minimal at x = l, and the minimum value 
off is 0. 

This solution is absolutely correct, but long. For homework assignments the fol
lowing may be satisfactory (check with your instructor): 

Solution 5 f'(x) = 2x - 2. 
At min,f' = 0, 2x - 2 = 0, x = I . For x > l,f'(x) = 2(x - l )  > O,ff; for x < l, 

f'(x) = 2(x - I ) < 0,f!. 
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Hence x = l yields min, !min = f( I )  = l 2 - 2 · l + I = 0. 
The next solution was submitted by a student who took a moment to think. 

Solution 6 /(x) = x2 - 2x + I =  (x - 1 )2 � 0. 

But f(l ) = (I - 1 )2 = 0. 

Hence the minimum value off (x) is 0. • 

Tt e w., t o r That legendary gunfighter survived many a shoot
out in the old West. Yet Earp carried only one gun and used no fancy tricks. His 
secret? He took an extra split second ro aim. While the bad guy blazed away wildly 
with two guns, Earp got his man on the first shot. 

1 ry to face a calculus exam the way Wyatt Earp faced a gunfight. Instead of 
differentiating wildly with both hands, take a minute to think. You may find the 
problem is simpler than it looks at first. Certainly you will have a better chance of 
winning the showdown. 

8 EXTREMA A N D  CO NVEXITY 

Our work on maxima and minima (extrema for short) has been based on the 
assumption that they exist. We are now going to state this assumption as a formal, 
precise theorem about continuous functions. 

Existence of Extrema Let f(x) be a continuous function with domain the 
closed interval a s x s b. Then there exist points c0 and c1 on this interval such 
that 

/(co) Sf(x) Sf(ci ) 
for all x on the interval. 

In other words, the continuous function f(x) has a minimum value f(c0) on the 
interval and has a maximum valuef(ci ). The minimum value may be taken at two or 
more points-the theorem says nothing about that. It does say that there is a mini
mum value, taken ar least once, and likewise for a maximum value. 

The existence of extrema is a deep property of continuous functions. Its proof is 
beyond the scope of this course, and we shall have to accept the theorem on faith. 

An important corollary uses only part of this property, the part that saysf(x) stays 
between two fixed numbers. 

Boundedness Letf(x) be a continuous function with domain the closed inter
val a s x s b. Thenf(x) is bounded, that is, there exist constants A and B such that 

A sf(x) s B 
for all x on the interval. Alternatively, there exists a constant C such that 

l f(x) I S C  
for all x on the interval. 
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Proof By the existence of extrema,f(c0) S/(x) S/(c.) for all x on the interval. 
Therefore the constants A = /(c0) and B = /(c.) do the trick. 

Having A and B, set C = max{ I A I .  I B l }. Then 

/(x) s B s  I B I  s c  and -/(x) s - A s I A I  s c, 

so I /(x) I 5 C. Conversely, given C such that I f  (x) I 5 C, then A = -C and B = C 
satisfy A Sf (x) 5 B. 

Locally lncreasi ng Functions The next result says that iff'(c) > 0, thenf(x) is 
larger than f (c) slightly to the right of x = c and smaller slightly to the left. A 
corresponding result holds for f'(c) < 0. Taken together, these results prove the first 
derivative test for extrema, as we shall see. 

Theorem Let /(x) be defined for a <  x < b, and let/(x) be differentiable at c, 
where a <  c < b. If f'(c) > 0, then there exists {J > 0 such that {f(x) > /(c) 

/(x) </(c) 
for c < x < c + {J 
for c - {J < x < c. 

Proof The proof is elementary, using only the definition of the derivative. Since 

Jim f (x) - /(c) = f'(c) > 0, 
.,-� x - c 

there exists {J > 0 such that 

/(x) - /(c) > 0 
x - c  

If c < x < c + o, then x - c > 0, so 

/(x) -/(c) > 0, 
If c - {J < x < c, then x - c < 0, so 

/(x) -f (c) < 0, 

for o < I x  - c I < o. 

that is, /(x) > f(c). 

that is, f(x) .</(c). 
Remark Suppose f'(c) < 0. Then -f'(c) > 0, so the theorem applies to -! (x). The conclu
sion is that f (x) > f(c) for c - {J < x < c and f (x) </ (c) for c < x < c + fJ. 

The Fi rst Derivauve Test We are now prepared to prove that the derivative 
must be zero at internal extrema. 

First Derivative Test Let f (x) be a differentiable function on the closed I 
interval a 5 x 5 b. Suppose that a < c < b and that.f (c) is either a local max or a 
local min of f(x). Thenf'(c) = 0. 

Proof There are just three possibilities: 

f'(c) > 0, f'(c) < 0, f'(c) = 0. 
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The last theorem rules out the first two. For if f'(c) > 0, thenf(x) > f (c) just to the 
right of x = c and f (x) <f (c) just to the left of x = c, so f(c) is neither a local max 
nor min. Similarly,f'(c) < 0 is impossible. The only way out isf'(c) = 0. 

We are preparing for a very fundamental theorem about differ
entiable functions called the Mean Value The<?rem. I t  is precisely what is needed to 
prove that a function with everywhere zero derivative is constant, that a function 
with everywhere positive derivative is increasing, and many other results. Its proof 
depends on the following preliminary result. 

Rolle' a Theorem Let f(x) be differentiable on the closed interval a �  x � b 
and suppose f (a) = f (b). Then there exists a point c such that a < c < b and 
f'(c) = 0. 

Proof Sincef(x) is differentiable, it certainly is continuous. Thereforef(x) has a 
max and min: 

f(c0) �f (x) �f (c. ) 

for all a �  x � b, where a �  c0 � b and a �  c1 � b. If a < c0 < b, thenf'(c0) = 0 by 
the preceding theorem. If a <  c1  < b, thenf'(c.) = 0 for the same reason. If neither, 
then c0 = a  or c0 = b a11tl c1 = a  or c1 = b. By hypothesis,f(a) = f(b). Hence 

f (co) = f (a) = f (b) 

Therefore for every x on the interval 

and f(c. ) = f(a) = f(b). 

f(a) = f(co) �f (x) �f (ca ) =  f(a), 

so /(x) = f(a). In other words, f(x) is constant. This implies f'(c) = 0 for every 
a < c < b, more than we wanted ! See Fig. I for the geometric meaning of Rolle's 
Theorem. 

-v {_ _ __ _ _ _ _  _ 

,, 

(a) f (c) • 0 at each interior 
local max or min 

b ,. u b � 

(b) Maybe there is no interior max 
(min). Then there certainly is 
an interior min (max)! 

Fig. I Meaning of Rolle's Theorem 
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Mea, ValL T ieor n The following result, known as the Mean Value 
Theorem or Law of the Mean, can be interpreted as an oblique form of Rolle's 
Theorem. Rolle's Theorem guarantees the existence of a horizontal tangent when 
/(a) = /(b), that is, a tangent parallel to the (horizontal) chord joining {a,f{a)) and 
(b.f{b)). The Mean Value Theorem guarantees the existence of a tangent parallel to 
the chord joining {a,/(a)) and (b,/(b)) without the assumption /(a) = /(b). See 
Fig. 2. 

y 

(<I ,f(11 ) )  
' '' j(b )  -}Ca) '' _...... � l o p� of chord = ---

..., � b ,, 

(h. f(b)) 

,, b \' 
Fig. 2 Meaning or the Mean Value Theorem. there exist tangent(s) parallel to the chord. 

Mean Value Theorem Let /(x) be differentiable on the closed interval 
a :s; x :s; b. Then there exists a point c such that a < c < b and 

f'(c) = /(b) -/(�.� . b - a 

The proof is not long or hard, but it involves an ingenious trick, subtracting a 
carefully chosen linear function from /(x) and applying Rolle's Theorem to the 
difference. 

Set m = [f(b) -f(a))/{b - a), the slope of the chord through (a,f(a)) and (b,f(b)). 
By the point-slope formula, the equation of the line containing this chord is 

y = g(x) =/(a) + m(x - a). 
Now set h(x) = /(x) - g(x). Then h(x) is a differentiable function for a :s; x :s; b since 
it is the difference of two differentiable functions. What is more, h(a) = 0 and 
h(b) = 0, so h(a) = h(b). Therefore h(x) satisfies the hypotheses of Rolle's Theorem. 
Hence there exists a point c such that a < c < b and /i'(c) = 0. But 

h'(x) = [f(x) - g(x)]' = f'(x) - g'(x) = f'(x) - m, 
so h'(c) = 0 impliesf'(c) = m = [f(b) -f(a))/(b - a). This completes the proof. 

Remark Both Rolle's Theorem and the Mean Value Theorem are valid even ir/(x) is differ
entiable only ror a <  x < b. But in that case you must also a.uume that/(x) is continuous at 
x = a  and at x = b. Thenf(x) is continuous on a :S x :S b and the existence or extrema follows, 
etc. For instance, the Mean Value Theorem applies to f(x) = Jx + jT-.:x on 0 :S x :S I .  
The runction is differentiable on 0 < x < I and continuous on  0 :S x :s; I .  I t  is not differentiable 
at x = 0 or at x = I .  
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Co rs ant Fune 10 s Our first application of the MVT (Mean Value Theorem) 
will be to prove that a function with zero derivative is constant. This is unfinished 
business from p. 85. 

Theorem Let f (x) be a differentiable I unction on the closed interval a s x ,; j 
and suppose f'(x) = 0 for all x on the interval. Then f (x) = c. 

Proof Suppose a < x ::;; b. By the MVT, there exists x 1 such that a < x 1 < x and· 

f(x) - f(a) = (x - a)f'(x1 ). 

Butf'(x a ) = 0, hencef(x) = f(a). Thereforef(x) = f(a) for each x on the interval, so 
f(x) is a constant function if you ever saw one. 

r c er,s r F , r Our next application of the MVT will be to prove that a 
function with everywhere positive derivative increases. Let us state this property 
precisely. 

Theorem Letf(x) be a differentiable function on the closed interval a ::;; x ::;; b.1 
Supposef'(x) � 0 for all x in the interval. Thenf(x) is an increasing function, that 
is, 

whenever a ::;; x0 < x 1 ::;; b. 

Suppose f'(x) > 0 for all x inside the interval. Then f(x) is a strictly increasing 
function, that is, 

whenever a ::;; x0 < x 1 ::;; b. 

Proof Let a ::;; x0 < x 1 ::;; b. Apply the MVT to the interval x0 ::;; x ::;; x 1 : There 
exists a point c such that x0 < c < x 1 and 

f'(c) = f(x, ) -/(xo)
, 

X 1 - Xo 
that is, /(xi) -/(x0) =f'(c)(x1 - x0). 

But x 1  - x0 > 0, so iff'(c) � 0, thenf(x1 )  -f(x0) � 0, that is,f(xi) �f(x0). And if 
f'(c) > 0, then f(xi) - /(x0) > 0, that is,/(x1) > f(x0). This completes the proof. 

Second Derivative Test 

Theorem Let f(x) be twice differentiable on a ::;; x ::;; b, and let a < c < b. If 
f'(c) = 0, andf"(c) > 0, thenf(c) is a local min off(x). 

Proof Since f"(c) > 0, it follows from the theorem on p. 147, applied to f'(x), that 
there exists b > 0 such that 

J f'(x) > f'(c) = 0 
lf'(x) <f'(c) = 0 

for c < x < c + <'> 
for c - {J < x < c. 
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Therefore f (x) increases just to the right of x = c and decreases just to the left: 

j/(x) > /(c) 
lf(x) > f(c) 

for c < x < c + f> 
for c - f> < x < c. 

It follows that f(c) is a local min off (x ). 
Remark The corresponding statement for a local max follows easily. 

Convex Functions We begin with a precise definition of a convex function and 
a strictly convex function. 

Definition Let/(x) be a twice differentiable function on an interval. Thenf(x) 
is convex iff"(x) � 0 andf(x) is strictly convex ifj"(x) > 0. 

We shall state two basic properties of (strictly) convex functions. The graph of a 
convex function lies ( 1 ) above all of its tangent lines; (2) below all of its chords. These 
properties are what the word " convex " usually brings to mind, for instance if one 
thinks of a convex lens. 

Tangent Theorem Letf(x) be a strictly convex function on the closed inter
val a s  x s b. Let a �  c s  b. Then the graph of y = f(x) for x f c lies above its 
tangent line at x = c. See Fig. 3a. 

\' ,I ' 

below chord 

u (' b a b 
(a) Tangent theorem (b) Chord theorem 

Fig. 3 Basic properties of strictly convex functions [r(:<) > O] 

x 

Chord Theorem Let f (x) be a strictly convex function on the closed interval 
a s x s b. Then the graph of y = f (x) for a < x < b lies below the chord joining 
(a,f(a)) to (b,f(b)). See Fig. 3b. 

Since these results. although important, are off our main line of thought, we shall 
leave their proofs as exercises. 
Remark 1 The Tangent and Chord Theorems have obvious modifications for convex 
functions rather than strictly convex functions. 
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Remark 2 They also have obvious counterparts for strictly concave (f" < 0)  and concave 
(f" S 0) functions. The observation that -! is (strictly) convex if and only if f is (strictly) 
concave makes everything routine. 

EXERCISES 

1 Use the first boxed theorem on p. 146 to prove that .f(x) = x4 + 4x3 - x - 1 has a 
minimum for x � 0, and that this minimum is negative. 

2 Prove that y = x(l - x)(x1 0 + x• + 1) has a positive maximum for 0 s x :S I . 
3 Give an example of a function that is bounded on a closed interval a :S x :S b, but does 

not have a maximum on this interval. 
4 Suppose f (x) is continuous and f (x) > 0 at each point of the closed interval a :S x :S b. 

Prove that 1// (x) is bounded on this interval. 
5 Show that the result of Ex. 4 is false on the domains 0 < x < 1 and - .-x:. < x < ex::. 
6 Is the function /(x) = x3/(1 + x4) bounded for all x? If so, find a constant C such that 

l /(x)I :S C  for all x. 
7 Is f (x) = ( l/x) - ( l/x2) bounded for x � O? 
8 Is the function in Ex. 7 bounded for x < - 1 ?  
9 Suppose /(0) = 0 and f'(O) = I .  Prove that there exists c5 > 0 such that f (x) < 2x for 

0 < x < c5. 
10 (cont.) Prove that/(x) > l.Olx for -b1 < x < 0, where c51 is some positive number. 
I I  Suppose f'(x) = f (x) for all x and f (0) = I .  Prove that f(x) > 1 for 0 < x < c5 for some 

h >  0. 
12 (cont.) Prove that /(x) is an increasing function for x � 0. [Hint Differentiate [f(x)]2. 

Conclude that [f (x)]2 is increasing, so f (x) � I, etc.] 
13 Prove that the sum of two convex functions is convex. 
14 If /(x) � 0 and f (x) is convex, prove that [f (x)]2 is convex. 
15 (cont.) Is the converse true? 
16 Let f (x) and g(x) be positive increasing convex functions. Prove that/ (x)g(x) is convex. 
17 Let/(x) and g(.l") be convex functions,/(x) increasing. Prove that the composite function 

/[g(x)] is convex. 
18 Let /(x) be convex. Prove the inequality 

/(ix + h) S lf(x) + lf(y). 
[Hint Use the Chord Theorem.] 

19 Let /(x) be strictly convex and f'(c) = 0. Prove that f(x) > f (c) for all x ./: c. 
[Hint Prove that f' < 0 for x < c and f' > 0 for x > c, etc.) 

20 (cont.) Now prove the Tangent theorem. 
[Hint Subtract a suitable linear function from /(x).) 

21 Suppose /(x) is strictly convex and f (a) = f(b) = O. Prove that /(x) < 0 for a < x < b. 
[Hint Locate max / and use the Second Derivative Test.] 

22 (cont.) Now prove the Chord Theorem. [Hint Read the hint in Ex. 20.) 
23 Letf(x) be strictly convex, x < y, and 0 < t < I .  Prove that 

f[t.l" + (1 - r)y) < r/(x) + (1 - r)f(y). 

24 (cont.) Let x < z < y. Prove that 

(.r - x)f (z) < (.r - z)/ (x) + (z - x)/(y). 

25 Let r > 1 be rational. Apply Ex. 18 to prove that 

(x + rr s 2•- 1 (x' + .r') 
for x > 0 and y > 0. 

26 Prove that the reciprocal of the average of two positive numbers does not exceed the 
average of their reciprocals. [Hint Use Ex. 18.) 
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1 Find a functionf(x) for which f'(x) = x - l/x2 andf( J ) = 3. 
2 A body moves along a horizontal line according to the law s = 12t - t3, where t C!: 0. 

(a) When is s increasing and when decreasing? (b) What is the maximum velocity? 
(c) What is the acceleration at t = 3? The units are feet and seconds. 

3 A train moving at 90 ft/sec slows up with a constant negative acceleration of 6 ft/sec2• 
How long is it until the train stops? How far docs it go? 

4 If x is a number between 0 and I, then x > x3. Find the positive number that exceeds its 
cube by the greatest possible amount. 

5 Find the largest value or x2y if x and y are positive numbers whose sum is 15. 
6 Graph _r = 2x3 - 9x2 + 12x - 5. Plot all points where the tangent is flat, and plot all 

points of inflection. 
7 A rectangular box with square bottom is to have volume 648 cubic inches. If the material 

on the top and bottom costs three times as much as that on the sides, find the most 
economical dimensions. 

8 Compute the largest area or all rectangles inscribed in the ellipse x2/9 + y2/4 = 1 with 
sides parallel to the axes. 

9 Compute the largest volume of all cones that can be generated by rotating a right triangle 
with hypotenuse c about one of its legs. [Hint V = !-nr2h.] 

10 A man M in a rowboat one km oft' shore wants to reach a point Q four km up the coast 
(Fig. I�  He rows to a point P, then walks the rest of the way. If he can row 4 km/hr and 
walk 6 kmjhr, how should he choose P to minimize the total time required? 

A P B -I - 4 km--·1 
2x + I  

II Graph .r = 
xl + 4 

. 

12 Where is y = (I +  x3)- 1  convex, concave, for x > O? 
13 A railroad will run a special train if at least 200 people subscribe. The fare will be $8 per 

person if 200 people go, but will decrease 1¢ for each additional person who goes. (For 
example, if 250 people go, the fare will be $7.50.) What number of passengers will bring 
the railroad maximum revenue? 

14 Of all lines of negative slope through the point (a, b) in the first quadrant, find the one 
that cuts from the first quadrant a triangle of least area. 

15 A wire 30 in. long is cut into two parts, one of which is bent into a circle, and the other 
into a square. How should the wire be cut so that the sum of the areas of the circle and the 
square is a minimum? 

16 What is the maximum volume of the cylinder generated by rotating a rectangle or per
imeter 48 cm about one or its sides? 
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17 Find the line tangent to the curve .r = 4 - x2 at a point of the first quadrant that cuts 
from the first quadrant a triangle of minimum area. 

18 One corner of a long rectangular strip of width a is folded over and just reaches the 
opposite edge, as shown in Fig. 2. Find the largest possible area A. 

Fig. 2 

19 A swampy region shares a long straighl border with a region of farm land. A lclcphonc 
cable is 10 be construcled connecling 1wo localions, one in each region. lls cost is '' • 
dollars per mile in lhc swampy region and ti 2 dollars per mile in the farm land. What path 
should the cable take for ils cosl to be leasl? 

20 The surface magnetic field strength B of a pulsar is related to its period P by 82 = kPP. 
Express iJ in 1crms of P and ils lime derivatives. 

(x4 + I ) 114 (x3 + I ) 1 13 
21 • Prove -2- 2: ·- -2- for all x � 0. 

22• An isosceles triangle is circumscribed about a circle of radius r. Find its ahitudc if its 
perimclcr is to be as small as possible. 

23 The drag on an airplane at (subsonic) speed r is 
b D = av2 + · 2 • 11 

where a > 0 and b > 0. 

Find lhc speed at which D is lcasl. (At this speed lhe range is grealest for a given fuel 
supply.) 

24 (conl.) At a s1eady speed r, the thrust of the engine just balances the drag, and lhc power 
developed by the engine is 

b P = (lhrust)(speed) = Dr = avl + - . v 
Find the speed at which P is lcasl. (Since P is proportional to the rate of consumption of 
fuel, the time airborne will be greatest at this speed.) 

25 The distances x and y from a thin convex lens to an object on its axis and to its image, 
respectively, arc related by 

I I I 
x + y = 7 ·  

where/ is the (constant) focal length. Minimize x + y. 
26 The magnetic force at a point on the axis of a conducting loop at distance x from its cenler 

is F = kx/(x2 + a2)512, where k and a arc positive constants. Find the maximum of F and 
the value of x where F has an inflection. 



Exponential and 
Trigonometric Functions 

1 . T H E  EXPO N E NTIAL FU NCTION 

4 
In the next four sections we study a function that is its own derivative. That 

such a function exists at all is not obvious. (We don't count the trivial function 
y(x) = 0.) To show that it does, we shall give a computational argument in this 
section and a geometric one in the next. 

The desired function is going to be an exponential function like y = 2", y = 3", or 
more generally y = a", where a > 1. Let us first recall a few properties of the functions 
y = a", where a > 1. In Fig. l we show some examples. The function y = a" increases 
rapidly as x increases and decreases rapidly to 0 as x decreases. We can say 

a" - oo  as x - oo ; 

a" - 0  as x - - oo. 

In addition, y = a" satisfies the rules of exponents: 

1 
a-" = - . 

a" 

1· 1• = 1 o x  

Fi&- I Examples of y = a" for a > I 

1 66 



166 4. EXPONENTIAL A N D  TRI GONOM ETRIC FU NCTIONS 

We claim that one of the functions y = a" is its own derivative. To see why, 
differentiate y = a": 

dy _ 1. a"+" - a" _ 1. a"(ah - I} _ " 1. ah - I 
d - tm h - tm h - a am h . x 11-0 •-o •-o 

Suppose the limit on the right exists; call it k. Then 

dy - = ka" = ky dx ' where k = lim 
a" � 1 

•-o 
The number k depends on a. If there is a choice of a for which k is I, then y = a" 
will satisfy dy/dx = y, that is, y = a" will equal its own derivative. 

Let us try to estimate k for a few values of a. (We used a pocket calculator in 
the computations that follow; tables or a slide rule would have served as well.) 

2" - I a = 2 k = lim -h- .  
•-o 

We tabulate (2" - l}/h for several small h: 

h 0.01 0.001 0.0001 -0.0001 

(2• - I )/h 0.6956 0.6934 0.6932 0.6931 

The numerical evidence suggests k � 0.693. 
3" - 1 a = 3 k = lim -h- . 

.... o 

h 0.01 0.001 0.0001 -0.0001 

(J• - I )/h 1.104 7 1.0992 l.O'J87 1.0986 

Conclusion : k � 1 .099. 
Assuming always that the limit k exists, we have found 

'!_ 2" = k2", k 0 693 dx � · ; '!_ 3" = k3" k I 099 dx ' � · · 

This suggests that there is a number a in the interval 2 < a < 3 for which k = 
1 . 

To get closer to a, we use linear interpolation (replacing 0.693 and 1 .099 by 0.7 
and I . I since the estimate is rough anyway). We find 

1 .0 - 0.7 2 75 a � 2 + I . I - 0. 7 = . • 

so we suspect that 2. 7 < a < 2.8. It is; another calculation shows 

�x (2.7)" = k(2.7)", k � 0.993; �x (2.8)" = k(2.8)", k � 1.030. 
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We narrow the gap further: 

d 
dx (2.71)x = k(2.7W, k � 0.9969; �x (2.12)x = k(2.12r. k � 1.0006. 

Now interpolation suggests ( 1 .0000 - 0.9969) 
( ) a �  2.71 + 1.0006 _ 0.9%9 0.01 � 2.7184. 

(Actually 2.7183 is closer because of some round-off error.) The numerical evidence 
is pretty convincing that there is a number a �  2.7183 that does the trick. This 
number is always denoted by e : 

The Exponential Function There is a number e � 2.7183 such that 

d - r = r. dx 
Thus the function y = r equals its own derivative (Fig. 2). 

An alternative statement is that y = r satisfies the equation 

dy 
dx = y. 

Fig. 2 Graph of y = r; 
the slope at (x, y) is y. 

Every function y = ctr also satisfies the equation dy/dx = y because 

dy d d 
dx = dx (cex) = c dx r = er = y. 

We assert that these are the only functions that equal their own derivatives. To 
prove this, let y = f(x) be any function such that dy/dx = y. Then 

� (/(x)J = rf
'(x) - /(x)(r)' = r/(x) - /(x)r = 0 dx r (r)2 (r)2 • 
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Therefore /(x)/r = e, a constant; that is, /{x) = er. 

Fons y = f (x) of the equation 
dy - = y  dx 

are precisely the functions/(x) = er. 

If y = er, then y(O) = ee0 = e, so the constant e is the value y(O). Thus the value 
of y at x = 0 uniquely determines a solution of the equation dy/dx = y. 

There is a unique function y = y(x) satisfying 
dy - = y  and y(O) = e. dx 

It is y = er. 

Remark The equation dy/dx = y is an example of a dil'ereadal �doa Other examples are 

dy 2 dy d2y dy 4 

dx 
- y 

, 
- =- 2x - y - - 3x - = xy + 1 .  
dx ' dx2 dx 

D e 'l We shall discuss another approach to the exponential function 
in Section 2 and another approach still in the last section of Chapter 7. Meanwhile 
let us take it for granted that this function exists. By the Chain Rule, if u = u(x� then 

Examples 

[ � e" = e" du _  J dx dx 

d - el" = 3el1<, dx 
• EXAMPLE 1 Find all values of k for which y = ti-" satisfies the differential 
equation 

y" - 4y' + 3y = 0. 

SobttitHI y' = kei" and y" = k1�". Hence 
y" - 4y' + 3y = k2�" - 4k�" + 3�" = (k2 - 4k + 3)el". 

Consequently the differential equation is satisfied if and only if 
{k1 - 4k + 3)eA" = 0. 

But �" ':#:- 0, hence the condition is k1 - 4k + 3 = 0. This quadratic has the solutions 
k = l and k = 3; they are the required values of k. 
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EXERCISES 

Use a calculator or tables to show 

logao 2 ::::::: 0.6931, log,o 3 ::::::: 1.0986, log10 10 ::::::: 2.3026. 
log10 e log10 e log10 e 

l� - 1  
2 Compute -h- for h = 10-3, ± 10-', ± 10-'. Conclude that 

d 
dx lOX = k · IOX, k ::::::: 2.3026. 

3 On the basis of the numerical evidence in Exs. 1 and 2, guess a formuia for k in terms 
of logs, where 

d - a" =  k · a". 
dx 

4 (cont.) Test the formula numerically for a = 5. 
5 Why is it reasonable to say 2� ::::::: l + (0.693l)h when h is small? 
6 (cont.) Estimate �· Chec�J._our estimate using tables or a calculator. 
7 (cont.) Do the same for 1/1�3 .  8 Justify the formula e" ::::::: 1 + h for h small. Show that this approximation is consistent 

with eo.o•e-0.0 1 = 1. 
Differentiate with respect to x 
9 el.<1 10 e''" 

12 e"/(l + e-x) 13 e"/x 
15 

l 
l + e-" 16 ..fi -J; e 

18 
xe" 

19 
e" + e-" 

x2 + l e" - e-" 
Find all k such that y = �" satisfies 
21 yw - Sy' + 4y = 0 
23 y# - y' - 6y = 0 

1 1  e". 
14 x2e2" 
17 (e2"

x
+ 1r 

20 e'"(x2 - 3x + 6). 

22 y# - 4y' + 4y = 0 
24 y# + 3y' + 2y = 0. 

25 Show that y = e" and y = xe" are solutions of yw - 2y' + y = 0. 
26 Given k, find A so y =  A�" is a solution or yw - 4y' + 3y = �". For which values of k 

does this fail? 

2. PRO PERTIES OF EXPON ENTIAL FUNCTIONS 

01 rect1on cields Let us examine the differential equation y' = y geometrically. 
If a function y(x) satisfies the equation, how must its graph behave? Well, the very 
meaning of y' = y is that at each point (x, y) of its graph, the slope is y. For 
instance at any point where the graph touches the line y = I, its slope is 1 ;  at any 
point where the graph touches the line y = 2, its slope is 2. We are lead naturally 
to Fig. la. At each point of the line y = I, we imagine a short segment of slope 1 ;  
at each point of y = 2, we imagine a short segment of slope 2, and in general, at 
each point of y = k, a short segment of slope k. In this way we assign a direction 
to each point of the plane. This configuration is called the direction field of the 
differential equation y' = y. A solution of the differential equation is a curve whose 
tangent at each point agrees with the direction field (Fig. l b). 
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(a) Direction field (b) Solution curve 
Fis. I Geometric study or the differential equation y' = y 

Our graph suggests certain properties or the solution curves: 

I 
I 
I 
I 
/ 

.... 

\ 

( 1)  Each solution curve is the graph or a function y = /(x), because it crosses 
every vertical line exactly once. 

(2) Through each point or the plane passes a unique solution curve. 
(3) Each solution curve is either completely above the x-axis, or completely below 

the x-axis, or is the x-axis itself. 

Now we define a new runction y = E(x) to be the unique solution whose graph 
passes through (0, 1). Thus y = E(x) satisfies 

dy - = y, y(O) = 1 .  dx 
Each runction y = cE(x� where c is constant, also satisfies y' = y, so its graph is 
also a solution curve. Let us show that every solution curve is one or these. 

Given any solution curve, it is the graph or some runction y = y(x). Set c = y(O) 
and consider the runction z = z(x) = y(x) - cE(x). Then 

z' = y' - cE' = y - cE = z 
and 

z(O) = y(O) - cE(O) = c - c · 1 = 0. 
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By property (3), it follows that z(x) = O; that is, y(x) = cE(4 where c = y(O� 

Each solution y(x) of the dilfcrontial equation y' - y ;, given by I I y(x) = cE(x� where c = y(O). 
----

Remark The notation E(x) for r is makeshift for our purpose and is not usual. What is 
very common is the notation r = exp x. This is particularly useful when the exponent is 
complicated, for example, exp x3 instead or r'. 

or In the last section we found that the exponential function 
y = tr satisfies a relation 

dy, = 1«r dx ' dy I where k = dx 0 • 

We defined e to be that number for which 

�x r lo = 1' 
so that dr/dx = r. Therefore this new function E(x) that we have introduced from 
geometric considerations is nothing but the exponential function, that is, 

E(x) = r. 
Let us pretend, however, that we don't know the functions a" at all, but we do know 
the function E(x� defined by the two conditions 

dE = E, E(O) = 1 . dx 
We shall now prove that E(x) satisfies the law of exponents 

E(a + b) = E(a)E(b). 
For consider y(x) = E(a + x). By the Chain Rule, 

�� = � E(a + x) = E(a + x) · 1 = y. 

Therefore y satisfies y' = y. Hence y(x) = cE(x� where c = y(O) = E(a + 0) = E(a). 
But y = E(a + 4 hence 

E(a + x) = E(a)E(x). 
Next, we shall prove that E(x) behaves like powers of a fixed number. Set e = E(l). 

Then 

E(2) = E(l + 1 )  = [E(1 )]2 = e2, 
E(3) = E(l + 2) = E(l)E(2) = e · e2 = e3• 

Similarly, E(n) = e" for every positive integer n. Furthermore, 

E(-n)E(n) = E(-n + n) = E(O) = l, 
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hence 
I I E(-n) = E(n) 

=
";ti = e-". 

Therefore E(x) = e" for all integers x (even 0). 
Let us determine E(x) for rational x. From 

[ E{!)]2 = E{!)E(!) = E(t + !) = E( I )  = e 
Similarly, from 

follows E{t) = e112• 

follows EU) = e11". 

Now use m summands, each l/n: 

Finally, E(-m/n)E(m/n) = E(O) = I, so 

E( m) I 1 _ ,..,,. - n = E(m/n) = e"'1" = e . 
We have shown that E(x) = e" for each rational number x. The evidence is 
convincing: E(x) really is an exponential function. 

The Functions e� and Their Graphs The functions y = ff" are called ex
ponential functions. Let us start with k > 0. The graph of y = ff" is obtained from 
the graph of y = e" by a change of scale on the x-axis. For example y = e2" runs 
twice as fast over the same values as y = e". See Fig. 2a for several values of k. 

(a) k > 0 

\ = t'!x ,. = '  ? x  

x 

Fis- 2 Graphs of y = eh 

)' 

(b) k <O 
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The functions y = e"" share certain growth properties, suggested by Fig. 2. 

Growth Properties Let k > 0. Then 

( 1 )  e"" > 0 for all x. 
(2) e"" is a strictly increasing function. 

(3) e"" -- oo as x -- oo. 
(4) e"" -- o as x -- - oo. 

Property ( 1 )  holds because e" > 0 for any u, in particular, for u = kx. Property (2) 
follows from (e"")' = ke"" > 0, which implies that y = e"" always has positive slope, 
hence is strictly increasing. Not only is y' > 0, but also 

y" = (ke"")'= k2e"" > O; 

hence y = e"" is strictly convex in addition to strictly increasing. Therefore (3) follows 
from the Tangent Theorem (p. 151 ). Finally, (4) follows from 

...A:(-x' -b 1 0 ff. ' = e  = - --e"" as x -- oo. 

Now we consider y = e-h, with k > 0. Since e-tx = e"1-"1, the graphs of y = e-tx 
and y = e"" are reflections of each other in the y-axis. Hence we obtain Fig. 2b 
from Fig. 2a by reflection. We also deduce the following properties of y = e-tx from 
the relation e_.,, = 1/e"": 

Let k > 0. Then 
( 1 )  e-"" > 0 for all x. 
(2) e-"" is a strictly decreasing function. 
(3) e-tx --o as x -- oo. 
(4) e- tx -- oo as x -- - oo. 

[ If y = e"", then y' = ke"" = ky. Hence y is a 
solution of the differential equation y' = ky. So is each function y = ce"", where c is 
constant. Conversely, if y is any solution of y' = ky, then 

hence e-txy = c, so y = ce"". Evidently y(O) = c. 

dy 
Each solution y(x) of the differential equation - = ky is given by dx 

y(x) = ce"", where c = y(O). 
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ict o For each a > 0 there is an exponential function y = a;ic. We 
choose k so that a =  t, which we can do because e takes on alJ positive values. 
Then 

� = (t� = �. 
by the laws of exponents. Now we can differentiate: 

'!_� = '!_ jJC = k� = ktr. dx dx 

If a >  0, then d 
dx

� = k�. where a = eA.1 
Example � 2JC I = k . 2JC I· = k . 23 = 8k. dx 3 3 

To estimate k, we write 2 = eA and solve for k by logarithms: 
log 2 = log eA = k log e, k = log 2 :::::: 0.69315. log e 

Hence �x 2;ic 13 � 8(0.69315) = 5.5452. 
E '"IC � 

1 Plot the direction field of dy/dx = !Y for -2 :S x s 2 and -2 :S y :S 2. Use it to sketch 
the graph of y - r'2• 

2 Plot the direction field of dy/dx - -y for - 1  s x s l and - 1.S :S y :S 2.5. Use it to 
sketch the araph of y = e-". 

3 Verify that y = !(r + e-") satisfies y' + y :s r. 
4 (cont) Find the 78-th derivative of y = !(r + e-"). 

Sketch 

5 y = r- 1  6 y = e' -" 
7 y = !(r + e-") I y = !(r - e-"). 
9 Show that y = ae"' + be-u satisfies the differential equation y# = k2y. Here a, b, and k 

are constants. 
10 Show that y = aeZz + beb satisfies the differential equation y# 

- Sy' + 6y = O. 
11 Plot the direction field of dy/dx = 2xy for - l s x s l and 0 :S y :S 3. Show that y = cE(x2) is a solution. 
12 Plot the direction field of dy/dx = x + y for - I :S x :S l and -2 s y s 2. Show that y = cE(x) - l - x is a solution. 
13• Prove that (E(x)]' = E(xy) when y is an integer. 
14• (cont.) Prove the same formula when y is rational. 

Differentiate with respect to x 
15 1<>3" 16 10-4" 
18 5211.- I  19 1()411.-I  
21 (10" + 10-")2 22 a" where 11 = b". 

17 511.-I 
20 102-3z 
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Prove (using a" = �" where a = �) 
23 a"b" = (ab)" 
25 a"a' = a"+ 1 
Find an antiderivativc 

27 e2" 
30 xe"' 

Solve 

33 y' = e" + e-", y(O) = l 

24 (e")' = e"' 
26 (a")' = a"'· 

29 
32 

34 y' = e-b + l, 

3. APPROXI MATION A N D  G ROWTH RATES 

10" 
xe-". 

y(l) = 0. 

Approx mat ' ue of In our geometric approach to the exponential 
function, e is defined to be E(l ), where y = E(x) is the unique function satisfying 
y' = y and y(O) = 1 .  We can see in Fig. lb, p. HiO, that 2 < e < 3. To estimate e 
more closely, we shall approximate the curve y = E(x) by a polygonal line. 

The slope of y = E(x) at (0, 1 )  is 1. Construct a line segment of slope 1, starting 
at (0, 1 ). See Fig. la. This segment reaches (!, !). At level f, the slope of the direction 
field is f. Now change to a line segment of slope f. This segment reaches ( 1 ,  1). so as 
a crude estimate, e � 1 = 2.25. 

)' 

1.5 

1 . 5  

( I ,  e l  

1.5 

1 . 5  

0.5 f 0.5 

lope (1. )1 4 

.. 

(a) 2-step approximation (b) 4-step approximation 

Fia. I Polygonal approximation to y .. e" 

To refine the method, we approximate by a polygonal graph of n sides. At each 
comer, we correct the slope to conform with the direction field. For instance, let us 
take n = 4. Starting at (0, 1 )  we construct the segment of slope 1 for 0 s x s i- It 
terminates at (i, i), and from there we construct the segment of slope i for i s x s !. 
It terminates at (!, (i)2), because 

i + i . i = i(l + i) = (t)2• 
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From there we construct the segment of slope (t)2 for t � x � i. It  starts at height 
(i)2 and advances forward l unit. Its slope is (i)2, so it reaches height 

(i)l + i(i)l = ( l + i)(i)l = (i)3. 
Hence the segment terminates at (i. {i)3), and from there we construct the segment 
of slope (i)3 for i � x � l .  I t  terminates at (1, (i)'). The result is the estimate 

e ::::: (i)4 ::::: 2.44. 

The y-coordinates of the vertices in Fig. lb  are 

l, i. (i)3, 

More generally, we construct the polygonal graph with vertices 

(O, y0) = (0, l ), U· Yi)• (�. y2) . . . . , ( l , y.). 

The segment from (i/n, y1) to ((i + l )/n, Yi+ 1 ) has slope y1 • By the slope formula Y1+ 1 - Y1 
i + 1 ; = y,, 
n n 

Therefore y1 = ( 1 + �)· y2 = ( 1 + �)y1 = ( l + �) 
2, • • · ,  Y. = ( l + �)". 

But y11 is the height at x = l of the polygonal approximation to y = E(x). Hence 
y11 :::::: e. It  seems believable that as n increases, the polygons approximate the curve 
more and more closely, so the approximation y11 ::::: e gets better and better. This 
argument is a rough justification for the following basic fact: 

e = lim ( 1 + !)"· 11-+co n 

This is a fairly subtle limit. As n ---+ ao, the quantity ( 1 + l/n)---+ 1. The large 
exponent n tries to make ( 1  + l/n)" large, while l + l/n itself pulls it down toward 1 .  
The result i s  a compromise, neither 1 nor ao. Here are some tabulated values: 

n 10 10' 103 10' 105 IG6 

( I + �r 2.59374 2.70481 2.71692 2.71815 2.71827 2.71828 

Thus the number e is the limit of the sequence 1 + l, ( 1  + !)2, ( 1  + !)3, • · "  (The 
subject of limits of sequences is covered in Chapter 1 1 .) To 15 places, 

e � 2.71828 18284 59045. 

The number e, like the number n, is a fundamental constant of nature, independent 
of units of measurement. It has been computed to great accuracy. Many remarkable 
properties of e have been discovered; for example, e is irrationa� indeed, e is not a 
root of any equation x" + a1x"- 1 + · · · + a,, =  0 with rational coefficients. 
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The polygon method used to approximate e = E(l )  works equally well for 
r = E(x). We shall omit the computation and only state the result: 

r = Jim ( 1 + �)· 
... � "" n for each x . 

This formula has theoretical importance, but little practical value for computation 
where you want high accuracy for relatively small n. The preceding table shows that 
for x = 1, even n = 105 delivers only four-place accuracy. If x > 1, the situation is 
worse. Even if x is fairly small, the formula is impractical. For instance, take x = 0.1 :  

e0·1 � 1 .10517, ( 0 1) 10 ( 0 1 ) 100 1 + 10 � 1.10462, 1 + 
l
ix> � 1 .10512. 

Thus n = 100 gives four-place accuracy, but for hand estimates, 100 is a very large 
number. 

Polynomial Approximation We can approximate the curve y = r by graphs 
of polynomials as well as by graphs of polygonal functions. Polynomials that do the 
trick arc 

x x2 x x2 x" P (x) = 1 + x p (x) = 1 + - + - . .  · p (x) = 1 + - + - + · · · + - . 1 ' 2 1 ! 2 ! '  ' • 1 !  2 !  n !  
To sec why, note first that p.(O) = 1 = e0, and next that 

because 

d x x"- 1 x" 
d-p.(x) = 1 + -

1 1 + · · · + ( - l ) ' = p.(x) - -,. x . n . n .  
(d/dx)(xl/j!) = jxl-I /j! = xl- I /U - 1 ) ! . 

Hence p,.(x) is almost its own derivative, missing by the amount x"/nl .  This quantity 
is small if n is large relative to the si7.C of x. 

As an example take n = 10. If l x l  s 1, then 

I ��: I s l�, = 362!800 < 3 x 10- 1• 
Thus the two functions, r and p10(x) agree at x = 0, and furthermore, r equals its 
derivative, whereas p10(x) equals its derivative up to a small error if lx l s 1. We 
conclude that p10(x) must be a very good approximation to r, at least for l x l  s 1 . 

In general, if  x is not large, then p,.(x) is a good approximation to r, even for 
modest values of n. Figure 2 illustrates graphically the approximation for n = 2, and 
the following data illustrate numerically : 

x 0.1 0.5 1.0 2.0 - 1.0 -2.0 

p5(x) l.10517 l.64870 2.71667 1.26661 0.36661 0.06667 

p10(x) l.10517 1.64872 2.71828 7.38899 0.36788 0.13538 

� l.10517 l.64872 2.71828 7.38906 0.36788 0.13534 
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Fig. 2 Polynomial approximation to y = e" 

For x = 1, the numbers p11( l )  give excellent approximations to e. We can write 
e = Jim p11( 1 ), that is, 

e = lim { 1 + _!_ + _!_ + · · · + !) . 
,, .. ,,, 1 ! 2 !  n !  

Here is some numerical evidence, to be compared with e ::::: 2.71828 18285: 

n S 6 8 10 IS 

p0(I) 2.7167 2.71806 2.718279 2.71828 1801 2.71828 1 8285 

With n = lOwealreadyget seven-placeaccuracy, somethingthat requires n ::::: 2 x 107 
when we use e � (1 + l/nr. 

R a  0 "' t Certainly e" --+  oo as x --+  oo ;  but how rapidly? 
We tabulate some crude values: 

x I I 2 3 4 s 6 7 8 9 10 

r 2.7 7.4 20 SS ISO 400 1 100 3000 8100 22000 

x 20 30 40 so 100 1000 

r 4.9 x 10• I.I x 1ou 2.4 x l01' S.2 x 1021 2.7 x 10'3 2.0 x 10'34 
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Evidently e" increases very rapidly, much faster than x increases. I t  is a pretty safe 
bet that 

e" 
- ---+ 00 x as x ---+ oo. 

In fact much more is true: e" increases faster than x2, than x3, and even faster 
than any positive power of x. As an example, let us compare e" with x10, itself a 
rapidly increasing function : 

x 10 20 30 40 so 100 1000 

r/x10 2.2 x 10-• 4.7 x 10-5 1.8 x 10-2 22 S.3 x 104 2.7 x 1023 2.0 x 104°4 

After a slow start, e" completely overwhelms x10. The same holds for e" versus any 
power x". 

Rapid Growth of 111' For any positive n, 

I. 
e" 

tm x" = oo. 
" - "°  

It suffices to prove this fact when n is an integer. For instance x9·3 < x10 for 
x > l , hencee"/x9·3 > e"/x10• lfwe prove e"/x10 ---+oo, then certainly e"/x9·3 ---+ oo 
also. 

Let n � 0 be an integer. We shall prove, by induction, that 

x x" 
e" > p (x) = 1 + - + · · · + -- " 1 ! n !  for all x � 0. 

The polynomials p,,(x), which we have already met, have a useful property: the 
derivative of each one is the preceding one, that is, 

d x x2 x•- 1 
dx P.,(x) = 1 + TI + 2! + . . .  + (n - l) ! = p,,_ . (x). 

We start the induction at n = 0 :  
e" � 1 = p0(x) 

Now suppose we have proved 

for all x � 0. 

e" � Po(x), e" � P1(x), · · · , e" � P1c(x) 
for all x � 0. Set y(x) = e" - P1c + 1 (x). Then 

y'(x) = e" - P�+ 1 (x) = e" - P1c(x) � 0. 
Therefore, y(x) is an increasing function for x � 0, so 

y(x) � y(O) = e0 - pu 1 (0) = 1 - 1  = 0, 
that is, for all x � 0. 
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This completes the induction. We have shown that for each n � 0, 
r � p,,(x) for all x � 0. 

Our statement about the growth rate of r follows easily. Given n, we have 

x x11+ 1 x11+ 1 e" � P  .. + i (x) =  1 + Ii + · · · + (n + l ) !  
� (n + l ) ! '  

hence 

Clearly, 

r x - > for all x > 0. x" - {n + l) ! 
x 

----oo as x-oo, (n + l ) !  

since l/(n + 1 )  ! is a constant. Therefore 

r --oo x" as x-oo, 
because r/x" � x/(n + l ) !  and this latter quantity goes to infinity. 

If k > 0, then �JC has a similar rapid growth. For 

�JC = k" �JC = k" !.'.'.. x" (kxr Ii'' where u = kx. 
If x - oo, then u -oo; hence e"/li' -oo by the previous result. Therefore 
�JC/x"-oo. 

If k > 0 and n is positive, then 
�"' lim " = 00. 

JC .... X X 

For example, we are sure that r1100 will be much greater than x55, provided x is 
large enough. In fact, x55 > r1100 for x up to about 60,500, but for larger values 
the exponential dominates, and as x -oo there is no contest. 

Now consider e-b for k >  0. Since e-tx = l/�JC. the last result itnplies 

x" x"e-tx = --0 
�"' 

as x-oo. 

If k > 0, then for each n � 0, lim x"e-tx = 0. 

- - ':/SES 
Find 
I lim 2.re-.r 3 lim ( 1 - �)" 

..... ac n 

5 lim ( 1 + !) '" 6 lim ( 1 - �)" 7 lim
"
1 

,. ... ac n • - ao  n ,. ... oe 2" 

9 Show that log10(1 + l/n) ::=::; 0.4343/n for n large. 

4 lim ( 1 + �)" 
11-ac n 

8 lim (�)". •-cm n 
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10 Show that p2(x)p2(y) = p2(x + y) + (terms of degree at least three). 
Show that y has a max for x � 0 and find it 
1 1  y = xe-" 
13 y = 3e" - e2" 
15 Estimate e"/x" for x = 10, 100, 103, 106• 
16 Prove e"/x" - o as x - oo. 
4. APPLICATIONS 

12  y = x2e-" 
14 y = e-" - e". 

Exponential functions y = ct!-' arise often in applications of mathematics because 
they are the solutions of the differential equation 

dy 
dt = ky. 

For k > 0, this equation describes a quantity growing at a rate proportional to 
its own size; the larger y is, the faster it increases (the rich get richer). For k < 0, 
the equation describes a quantity decaying at a rate proportional to its own size; 
the smaller y is, the more slowly it decays. 

Bacteria Growth A colony of bacteria with unlimited food and no enemies 
grows at a rate proportional to its own size. We want a formula for n(t� the 
number of bacteria in the colony at time r. 

To attack the problem we make an approximation. The function n(t) is not 
continuous since it jumps by one each time a new bacterium is produced. However, 
since n(t) is generally very large, and bacteria are produced at tiny time intervals, 
we simplify the problem by treating n(r) as a continuous, even differentiable, 
function. In practice, this leads to satisfactory results. 

The growth law of n(t) is 
dn - = kn dt ' k > 0. 

If n0 is the number of bacteria at time t = 0, then 

n(r) = n0 tt'. 
In a particular problem, k is found from additional data. 

• EXAMPLE 1 There are 105 bacteria in a culture at the start of an experiment 
and 106 after S hours. Find a formula for n(r). 
Sollltio11 We are given n0 = 105 and n(S) = 106• First we have 

n(t) = n0 el' = 105tl-'. 
Also, n(S) = 106 = 105e5t. 
Therefore e51 = 10. To find k, take logs: 

Sk log e = log 10 = 1 , 
Hence 

1 
k = -5 1- ::::: 0.46. og e 
t in hours. 
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There is an alternative rorm or the answer that doesn't require logs. Since 
e5" = 10 we have 

n(t) • 105e"' = 105(e,.Y15 = 105 • 10'15 = 1o«2s +r>15• 

A radioactive element decays at a rate proportional to the 
amount present. Its half-life is the time in which a quantity decays to hair or its 
original mass. 

EXAMPLE 2 Carbon-14 has a hatr-lire or 5568 years. Find its decay law. 

Sohltio11 Let m(t) be the mass at time t, measured in years. Then 

dm Tt =  - hn, 

where the decay comtant l is positive. The solution is 

m(t) = m0 e-"', 

where m0 = m(O� the initial mass. We are given 

m(5568) = im0 = m0e-5568A. 

Tbererore e- 556u = !. that is, e556u = 2. To find l, take logs: 

55681 log e = log 2, 

Hence 

Alternatively, e556u = 2, so 

log 2 _4 l = 5568 log e ::::::: 1.245 x 10 . 

where l ::::::: 1.245 x 10-•. 

m(t) = mo(e556U)-•/5568 = mo 2-1/5568, 

U ...I I 

• 

EXAMPLE 3 $1000 is deposited in a savings account paying 5!% annual 
interest, compounded daily. Estimate its value in 6 years. 

Sollltio• There is an exact expression for the value. The daily interest rate is 
i = 0.055/365, and at each interest payment the current value is multiplied by 1 + i. 
The number of payments in 6 years is 6 x 365 = 2 190. Therefore the value after 
6 years is 

A = 1000(1 + ;)2190 = iooo( 1 + o���5) 2190
: 

To the nearest cent, A ::::::: $1390.93. 
Two methods are available for estimating A. First, suppose interest is compounded 

continuously, not daily. Then the investment grows at a rate proportional to itself. 
If A(t) is its value after t years, then 

dA dt - 0.05SA; 

hence A(6) = 1000e6<0•055> ::::::: $1390.97. 
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The other approximation uses the formula 

lim ( 1 + �)" = e". 
·-ao n 

( 0 055)365 Choose x = O.OSS and n = 365: 1 + �65 � e0·055• 

Therefore 1000( I + 0���5) 6·365 ::::: lOOOe6(0.oss1 ::::: $1390.97. • 

App ·o'<iria e Value o n t There is a useful estimate of n! for large values of n. 
Its proof is too hard to present here; however, we do want to state the formula 
because of its importance and because of the way it involves the exponential 
function. 

Stirling's Formula n! � .jfitnn"e-•. 

More precisely, Jim ( n ! ) - 1 
11-ao .jfitnn"e-" - . 

Here are some numerical examples, to 3 significant figures. We set 

/(n) = .jfitnn"e- •. 
" 4 6 10 20 so 

"' 24 720 3.63 x 1<>6 2.43 x 1011 3.04 x 10" 
/(n) 23.5 710 3.60 x 106 2.42 x 1011 3.04 x 1<>64 

Do not assume that n ! - /(n)-0 as n - oo. That is simply not true. For 
example, 

50!  - /(50) ::::: s x 1061• 
What is true is that the error n!  -/(n) is small compared to n !. For example, 

50 !  - /(50) s x 1061 
50! ::::: 3 x 1064 ::::: 0.0017. 

Hence for n = SO, the formula is accurate to within fa of one percent. 

Arms Rae& Here is a simplified model of an arms race. Nation X bas x(t) 
weapons at time t and nation Y has y(t) weapons. Each will increase its arsenal 
at a rate proportional to the arsenal of the other. Thus 

dx - = ay dt 
where a and b arc positive constants. 

and 
dy - = bx dt • 



1 74 4. EXPONENTIAL A N D  TRIGONOMETRIC F U NCTI ONS 

We solve this system of differential equations by a little trick; we seek a constant c 
such that z = x + cy is an exponential function, that is, 

dz 
- = AZ 
dt 

for a constant .l. Then z = z0 eA'. Now 

dz d dx dy ( a ) - = - (x + cy) = - + c - = ay + bcx = be x + - y . 
dt dt dt dt be 

Clearly we must choose c so that 

a - = c  be • that is, 
a 

c2 - -- b' 
Then .l = be =  ±fa. 

To fix signs, let us set .l = fa > 0 and c = .Jafb > 0. Then the other possibility is -.A and -c. We conclude that lx + cy = (x0 + cy0)eAI 

x - cy = (x0 - cy0)e-41• 

We solve for x and y by adding and subtracting these equations: 

l l ! x = x(r) = 2 (x0 + cy0)e41 + 2 (x0 - cy0)e- .1.1 . 
I l l 
y = y(t) = 

2c 
(xo + cyo)eAI - 2c 

(xo - cyo)e-At. 

If either x0 > 0 or y0 > 0, then x0 + cy0 > 0, and we easily conclude that 

x(t) - oo, y(r) - oo  as r - oo. 

An interpretation : war between X and Y is inevitable because at  a certain time one 
nation can no longer bear the cost of the arms race. 

E RC/ 

1 Thorium X has a half-life of 3.64 days. Find its decay law. How long will it take for i or 
a quantity to disintegrate'! 

1 Two pounds or a certain radioactive substance loses ! or its original mass in 3 days. 
At what rate is the substance decaying after 4 days? 

3 Money compounded continuously will double in a year at what annual rate or interest'! 
4 How long will it take a sum or money compounded continuously at 7.5 % per annum 

to show a 50 % return. 
5 A colony or bacteria has a population or 3 x 106 initially, and 9 x 106 two hours later. 

What is the growth law? How long does it take the colony to double? 
6 Assume that population grows at a rate proportional to the population itself. In 1950 

the US population was 15 1  million, in 1970 it was 203 million. Make a prediction 
ror the year 2050. 

7 Under ideal conditions the rate or change or pressure above sea level is proportional 
to the pressure. Ir the barometer reads 30 in. at sea leve� and 25 in. at 4000 ft, find the 
barometric pressure at 20,000 ft. 
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8 In a certain calculus course, it was found that the number or students dropping out 
each day was proportional to the number still enrolled. If 2000 started out and 10% 
dropped arter 28 days, estimate the number left arter 12 weeks. 

9 A 5-lb sample or radioactive material contains 2 lb or radium F, which has a half-life 
of 138.3 days, and 3 lb or thorium X. which has a hair-lire or 3.64 days. When will the 
sample contain equal amounts or radium F and thorium X? 

10 A salt in solution decomposes into other substances at a rate proportional to the 
amount still unchanged. If 10 kg of a salt reduces to 5 kg in ! hr, how much is left 
arter 15 hr? 

1 1  In  the Arms Race example, find the ultimate weapons ratio, lim,_00 x/y. 
12 A fixed region or area A is searched for oil. Let y denote the area of undiscovered oil, 

so 0 s y s A. The probability of discovery upon drilling is y/ A. Now let x denote the 
amount of exploratory drilling. Clearly y depends on x, and the larger x, the smaller y. 
The rate of discovery per unit of drilling is proportional to the probability of discovery; 

hence d(A - y) 
= k 

l'.. (k > 0). Express y in terms of x. 
dx A 

13 Suppose in a chemical reaction one molecule of A combines with one molecule of B 
to form a new substance X. The biw of mass action says that the rate of increase of the 
amount x(r) of X is proportional to the product (a - x)(b - x), where a and b are the 
initial amounts of A and B. That is, 

Suppose a # b. Show that 

dx 
dt = k(a - x)(b - x� k > 0. 

a(b - x) 
= t>i�- .,, 

b(a - x) 

provides a solution with x(O) = 0. (Hint Differentiate with respect to r by the Chain Rule.] 
14 (cont.) Find lim x(r) as r - oo, still assuming a 9' b. 
15 Suppose a quantity of hot ftuid is stirred so that at any time r its temperature u(r) is 

uniform (the same) throughout the ftuid. Let a denote the constant outside temperature. 
Newt•'• biw of coolin& says that the rate of decrease of u, due to heat loss at the 
surface, is proportional to u - a, that is, 

du - =  -k(u - a� dt k > o. 

Solve for u. Show that u(r) -a as r - oo. [Hinr Set 11(t) = u(r) - a.] 
16 (cont.) Suppose a = 0°C, and the ftuid cools from l00°C to 50°C in 5 minutes. How 

much longer will it take to cool to 5°C? 
17 The electric energy of a certain diatomic molecule is 

U = k(e- Ul"-'1 - 2e-�"-'1), 
where k, a, and c are positive constants and x is the distance between the atoms. Find 
the dissociation eaet'IY· the maximum of - U. 

18 The rate of growth of the mass m of a falling raindrop is Am, where A > O. Show that 
m = m0 e". 

19 (cont.) Newton's law of motion for the railing raindrop is 
d dt (mv) = mg, 

where v is its downward speed and g is the gravitational constant. Express v in terms 
of t and find the terminal velocity, lim,_00 v. [Hint See the hint to Ex. 15.] 

20 A rocket is traveling in a space region of negligible gravity. Let m = m(r) denote its mass, 
v = v(t) its speed, and u its constant speed of efflux (discharged hot gas). The rocket is 
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propelled forward because hot gases arc propelled backward (action equals reaction� 
and Newton's law of motion in this case says 

Show that 

d dm di (mv) - (v - u) Tt ·  
dv dm m- =- - u - . dt dt 

21 (cont.) Now use the Chain Ruic to show that dd
m = - � m. Deduce that m = m0 e-•1•, v " 

assuming v(O) = 0 and m(O) = m0 • 
22 (cont.) Let m1 be the mass of the initial fuel supply and Vthc maximum speed. Show that 

e-v1. = mo - m1 
mo 

23• (cont.) Suppose in addition that gravity is acting against the motion of the rocket. Then 
the equation of motion is 

d dm di (mv) = (v - u) dt - mg, 

where g is the gravitational constant. Show that m = m0 e-1•+,.11•. (Hint Set w ... v + gt 
and find dm/dw.] 

24• Suppose radioactive substance X decays into Y, which in tum decays into Z. Let x(t) and 
y(t) denote the amounts of X and Y at time t. Then 

dx dy 
dt = -Ax and dt - Ax - µy, 

where A and µ arc positive constants. Solve for x and y. Distinguish the cases A = µ 
and A � µ. (Hint After you find x(t� try y(t) • e-"'w(t) and solve for w(r).] 

25• Living wood absorbs atmospheric radiocarbon (14C, half-life 5568 yr) and the rate of 
absorbtion exactly balances the rate of loss by radioactive decay. Therefore the amount 
of radiocarbon per gram of all living wood is a constant and has always been the same. 
When wood dies, it no longer absorbs fresh 14C, and its 14C content decays at the 
rate of6.68 disintegrations per minute per gram (dpm). Wood excavated by archcologists 
in 1950 from a Babylonian city built in the time of King Hammurabi, the law-giver, 
measured 4.09 dpm. Show that Hammurabi lived about 1990 B.C. 

26 (cont.) Wood from the Lascaux Caves in France found in 1950 measured 0.97 dpm. 
Estimate the age of the famous cave paintings as of 1950. 

27 A bacteria colony grows in the presence of a toxin. Let n = n(r) be the quantity of 
bacteria and x = x(t) be that of the toxin. Then the toxin inhibits the growth of the colony 
by an amount proportional to the product of the amounts of toxin and bacteria. Hence 

dn - - kn - anx dt • a > O, k > O. 

Suppose x - ct, where c > 0. Verify that n(t) = n0 cxp(kt - act2/2). Find lim,-.. n(r). 
28 Herc is a model for the growth of a concentrated bacteria colony with limited space 

and food supply. The colony tends to squec:zc itself out, so its concentration decreases 
at a rate proportional to itself. If nutrient is added, however, the concentration also 
increases at a rate proportional to the rate of nutrient addition. Let x(t) be the 
concentration of cells, and assume that nutrient is added at a constant rate. Then 

dx 
dt = -ax + b, a >  0, b > 0. 
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Solve for x(r) and find the steady state concentration x00 = lim,_00 x(r). (Hinr Try 
x = e-•y. Alternatively, see the hint to Ex. 19.] 

29 Colonies of p(r) parasites and h(r) hosts live together. The hosts will tend to increase 
at a rate proportional to their number and tend to decrease at a rate proportional to the 
product ph. The parasites will tend to decrease at a rate proportional to their number 
and tend to increase at a rate proportional to the product ph. This leads to the 
Lotb-Voltern system 

where the a's and b's are constants. It applies in a variety of predator-prey situations. 
Show that 

h = 
az 
b • 

l 

is a solution (called the equilibrium solution). 
JO• (cont.) Prove for any solution that 

(Jr-ze-•z")(Jf •e-••') 

is a positive constant. Conclude that h - oo or p - oo as r - oo is impossible. 
31 When a population is smal� it grows at a rate proportional to itself. But as it gets 

larger, its members compete with each other for food and living space, and studies indicate 
that the population also tends to decline at a rate proportional to its square. This 
leads to a basic principle in ecology, the Vert.1st ioptic e11•tiom for population growth, 

dp l 
dr 

= ap - bp • 

where a and b are positive constants. Usually b is small relative to a. Show that 

and conclude that 

p 
-- = ke*, 
a - bp 

ak 
P = p(r) =

bk + e_., 
32 (cont.) The US population in 1790 was 3.93 x 106• Use a - 3.054 x 10-2 and 

b - 1.189 x 10- 10• What does the Verhulst equation predict for 1850, 1900, and 1950? 
If the constants a and b are correct, what is the ultimate US population? 

33 (cont.) For world population, some ecologists estimate a =  0.0290 and b = 2.94 x 10- 11• 
The UN Statistical Office estimates mid-1970 world population as 3.63 x 109• Estimate 
world population for 2000, 2050, and 2100. What is the ultimate population? 

34• "Double decay law" The problem is to solve the system 

dx 
dr 

= -ax, 
dy 
dr 

"" bxy, a > O, b > O, 

given x0 and y00 = lim,_00 y(ri [Hint You can find x(r); to find y(r� think of y as a 
function of x and find dy/dx by the Chain Rule.] 

3S• (cont.) Let p = p(h) denote the density of the atmosphere at heiaht h. Then the rate of 
decrease of p is proportional to p, that is, dp/dh ... -p/H, where H is a positive constant. 
Let R = R(h) be the intensity of solar radiation at height h. It is assumed that 
radiation is absorbed at a rate proportional to pR, that is, dR/dh - kpR, where k is a 
positive constant. Express R in terms of h. Assume p0 and R00 given. (Hint Translate 
the hint to Ex. 34 into this notation.] 
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36* (cont.) According to Chapman's theory or  the formation or the ionosphere, ions are 
produced at a rate J = J(h) proportional to the rate or absorption or radiation. 
Show that 

J = bkp0 R00 exp{(-h/H) - kHp0e-•1"]. 
Suppose J reaches its maximum at height h1 . Show that 

�,iH = Hkp0 and J.,.. = bR00/He. 

5 . TRIGONOMETRIC FU NCTIONS 

In this section, we review �he trigonometric functions, stressing those properties 
useful in calculus. We assume that the student is familiar with the elementary 
trigonometry of triangles. 

1 r r The unit of angle measurement in calculus is the radian. One 
radian is the angle which, placed at the center of a circle, subtends an arc whose 
length equals the radius (Fig. la). A central angle of 8 radians subtends an arc of 
length 8 times the radius (Fig. I b ). 

r 

Lo 0 

(a) 8 • I radian 

0 
0 

(b) s = r8 
Fig. l Radian measure 

0 
0 

(c) 

In a unit circle (r = 1 ), a central angle 8 subtends an arc of length 8. A central 
angle of 360° subtends the entire circumference, whose length is 2n. Hence we have 
a conversion relation between radians and degrees: 2n radians = 360°. 

n rad = 180°, I rad = ISO ::::::: 57.2958°, 1t 
1t 1° = 180 � 0.0174533 rad. 

We shaU follow the convention of omitting rad in radian measure. It is accepted 
procedure to write n = 180° and to speak of the angle }1r. 

Look at Fig. le. If OP starts at position OA and swings counterclockwise, then 
8 starts at 0 and increases. After a complete revolution, 8 = 2n. After another 
revolution (J = 4n, and so on. In general, starting from a given position, one 
counterclockwise revolution of OP increases 8 by 2n. If OP starts at OA and 
swings clockwise, then 8 is considered to be a negative angle. For example after 
a quarter revolution clockwise, 8 = -tn; after three full clockwise revolutions, 
8 = -3 · 2n = -6n. 
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According to this scheme, each real number 8 determines a unique position of OP 
and a unique angle. However, each position of OP corresponds to infinitely many 
angles. differing from each other by integer multiples of 2x. For example, if OP points 
straight up, then the corresponding angles are !?r. !1r ± 2x, Pr ± 4x, !?r ± 6x, etc. 

Sine and Cosine Each central angle 8 determines a point (x, y) on the unit 
circle x2 + y2 = I. See Fig. 2. 

I' 

j x • eos8 1 y • sin8 

Fla. 2 8 determines (x, y) 

Set x = cos 8 and y = sin 8. This defines two functions of 8 for all real 8. Note 
that (J and 8 + 2x determine the same point (x, y ). Therefore, 

I cos(8 + 2x) = cos 8, sin(8 + 2x) = sin 8. , 
Thus the values of cos 8 and sin 8 repeat when 8 increases by 2x. We say that these 
functions are periodic with period 2x. 

Since (cos 8,sin 8) isa point on the unit circle x2 + y2 = l ,  the two functions satisfy 
the relation 

cos2 8 + sin2 8 = I . 

We can see other basic properties of cos 8 and sin 8 from Fig. 3. 
From Fig. 3a, 

I cos( -8) = cos 8, sin(-8) = -sin 8., 
Thus cos 8 is an even function and sin 8 is an odd function. From Fig. 3b, 

I cos(8 + x) = -cos 8, sin(8 + x) = -sin 8. 1 
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(a) Reflection in the x-axis: 
(x,y)- (x, -y), 8- -8 

x 

x 

(c) Reflection in y • x: 
(x,y)- (y,

-
x), 8-.!•-8 2 

,. 

(b) Reflection in (0, 0): 
(x,y) - (-x, -y), 8-8 + •  

Fla. 3 Properties or sine and cosine. 

From Fig. 3c, 

._I co
_

s(
_
!n

_
-
_

8)
_

=
_

s
_

in
_

8
_

. 
__ 

sin
_

(!n - 8) = cos 8. 1 
Similar arguments yield the relations 

cos(n - 8) = -cos e. 
cos(!n + 8) = -sin 8, 

sin(n - 8) = sin 8, 
sin(in + 8) = cos 8. 

ldent1t1es Among the most basic formulas in mathematics arc the addition laws 
for sine and cosine. 

sin(er + /J) - sin er cos fJ + cos er sin /J, 
cos(er + /J) = cos er cos fJ - sin er sin /J. 
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For proofs, seep. 353. We obtain alternative versions of these formulas by substituting 
-P for P and using cos(-P) = cos P and sin(-P) = -sin P: 

sin(« - P) = sin IX cos p - cos IX sin p, 

cos(IX - P) = cos IX cos P + sin IX sin p. 

By setting IX = P = 8 in the addition laws, we obtain the double angle formulas for 
sin 28 and cos 28 in terms of sin 8 and cos 8: 

I sin 28 = 2 sin 8 cos 8, cos 28 = cos2 8 - sin2 8. ] 
The second formula has two alternative forms, both derived from cos2 8 + sin2 8 = 1 :  

I cos 28 = l - 2 sin2 8 = 2 cos2 8 - 1 . I 
G raphs Let us graph y = sin 8. Since sin 8 has period 2n, we need only plot sin 8 
on the interval -n � 8 s n. We can then extend the graph indefinitely to the right 
and left, making it repeat every 2n. Actually, since sin 8 is an odd function, we need 
only plot sin 8 for 0 s 8 s n; the part for -n s 8 s 0 is the reflection in the origin. 

We can get a fairly accurate graph by plotting the points for 8 = 0, O.ln, 0.2n, · · · ,  

1.07t with the aid of a sine table: 

8 I o.o 0.ht 0.2it 

0.31 0.59 

0.3lf 0.4lf 

0.81 0.95 

0.51t 0.61t 

1.00 0.95 

0.7lf 

0.81 

0.8ir 0.9ir 

0.59 0.31 0.00 

We plot this data in Fig. 4a, extend it to -n s 8 s 0 in Fig. 4b, then obtain the 
complete graph in Fig. 5. 

From the graph of y = sin 8, we obtain the graph of y = cos 8 free of charge. We 
use the relation cos 8 = sin(8 + !n), which shows that the graph of y = cos 8 is just 
the graph of y = sin 8 shifted !n units to the left (Fig. 6). 

y I� 
I - 1T 2 

(a) 0 < 8  < •  

)' 

1r 0 -1r 

(b) - • < 8  < •  

Fis. 4 Graph of y = sin 8 
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Fig. 5 Complete graph of y = sin () 

I I I I I 
31T -271' ' - JT +� 1T �7! ' 3lT 

- I 

Fig. 6 Graph of y = cos () 

� 
0 

r I r The graph of y = sin 0 makes one complete cycle on the 
interval 0 5 0 5 2n. The graph of y = sin 20 makes one complete cycle on the 
interval 0 � 0 � n because 20 runs from 0 to 2n as 0 runs from 0 to n. See 
Fig. 7a. Therefore sin 20 oscillates twice as fast as sin 0. Similarly, sin !O oscillates 
half as fast as sin 0. See Fig. 7b. 

31T 0 

(a) The IJ'IPh of y = sin 28 oscillates twice as fast as the graph of y • sin 8. 
) 

0 

(b) The araph of y = sin� 8 oscillatt.s half as fast as the IJ'aph of y • sin 8 
Fig. 7 

In general, sin kO and cos kO make k cycles on 0 5 0 5 2n, or equivalently, one 
full cycle on 0 s 0 s 2n/k. It follows that sin kO and cos kO are periodic functions 
with period 2n/k. To confirm this assertion, note that 

sin k(O + 2n/k) = sin(kO + 2x) = sin kO. 

The same for cos kO can be confirmed similarly. 
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EXERCISEt:: 

Convert to radians (for example 30° = ix) 
I 600 150° -240° 
2 900 - 120° 210° 
3 45° - 180° 270° 
4 _900 135° -315° 
Convert to degrees 

!I tx -ix f1t 3x 
6 -Jt -p ix 51t 
7 i1t tJn flit -h1t 
8 

i
1t -

h
t 
-o
x 

j
Jt 

390° -450° 
420° -330° 
630° - 135° 
405° -270° 

9000 
480° 
495° 
15°. 

Find the point on the unit circle with central angle 6 = 
9 i1t -ix Jjx 10 Pt -1'r l/1t 

11 1t -ill !/-x 12 in Vt -jx. 
Find all 6 in radians, 0 � 6 < 21t, such that 
13 sin 6 = !

Ji 
14 sin 6 = -t 

16 cos 6 = tJ2 17 sin(6 + n) = I 
19 sin 6 = cos 6 20 sin(6 - n) = - I. 

IS cos 6 = -tJ3 
18 cos(6 + 1t) = I 

21 There are some simple rules of parity in the multiplication of integers: 
even · even = even, even · odd = even, odd · odd = odd. 

Do the same rules hold in the multiplication of functions? 
22 lf/(x) is an odd function, show that/(O) = 0. 
Find the parity (odd or even?) 
23 sin 2x 24 sin4 x 
26 x sin3 x + 2 cos x 

Find the least period 

sin x 
27 x 

2!I x sin x 
28 e" cos x. 

29 sin 2nx 30 cos !x 31 sin x sin 3x 
32 sin 3x + cos 4x 33 cos2 x 34 cos x cos 2x. 
Show how the formulas (given on p. 180) are consequences of those in previous boxes 
� co•- � - -�� ·� - � -• 6  
36 cos(!lf + 6) = -sin 6, sin(!n + 6) = cos 6. 
What happens to the addition laws in the special cases 
37 /J = ±1t 38 /J = ±

i
n? 

Express in terms of sin 6 and � 6 
39 cos(6 - !n) 
42 cos 36 

40 sin(6 + ix) 
43 sin 46 

4!I Prove cos ex cos /J = t[cos(ex + /J) + cos(ex - /J)]. 

41 sin 36 
44 cos 46. 

46 (cont.) Find similar formulas for sin ex cos /J and sin ex sin /J. 
47* Prove 

cos x cos 2x cos 4x cos 8x = i(cos x + cos 3x + cos 5x + · · · + cos 13x + cos 15x). 
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48 Prove cos !8 = ± jt( I + cos oi If -211 s 0 s 211, when is the sign + and when - ? 
49 Prove sin !8 = ± J!( I - cos oi If -211 s 0 s 211, when is the sign + and when - ? 
50 (cont.) Compute sin 15° in two ways, using 15° = 45° - 30° = !(30°� 

to prove t(J6 - ji) = !J2 - ./3. 
Graph 
51 y = cos 39 52 y = sin 49 

55 y = cos 2m 
53 y = 2 - sin 9 

54 y = l + cos 9 56 x = cos(9 + !11). 

6. AD DITIO NAL TR IGONOMETRIC F U NCTIONS 

In the last section we reviewed the properties of sine and cosine. Now let us recall 
the definitions of the other trig functions: 

sin x 
tan x = --, 

cos x 
cos x 

cot x = -.- , SID X 
l 

sec x = --, 
cos x 

l 
csc x = -.- . SID X 

These four functions are defined in terms of sin x and cos x. We can easily see 
some of their basic properties. 

( 1 )  Domains. Because of zeros in the denominators, tan x and sec x are not 
defined where cos x = 0: at ±-in. ±Jn, ±in. etc. Similarly, cot x and csc x are not 
defined where sin x = 0: at 0, ±1t, ± 211:, etc. 

(2) Periods. The functions sin x and cos x are periodic with period 211:; the 
other four trigonometric functions inherit their periods. For example, 

l 1 
sec(x + 21t) = 

( 2 ) 
= -- = sec x, 

cos x +  1t cos x 

and similarly, csc(x + 21t) = csc x. Even more can be said about tan x and cot x. 
Recall that 

Therefore 

sin(x + 11:) = -sin x, cos(x + 1t) = -cos x. 

sin(x + 1t) -sin x 
tan(x + 1t) =  

( )
= = tan x, 

cos x + 1t -cos x 

and similarly for cot x. Thus tan x and cot x have period 11:. 

I The functions sec x and csc x have period 211:.j 
The functions tan x and cot x have period 11:. 

(3) Parity. Recall that sin(-x) = -sin x and cos(-x) = cos x. Hence, 

sin(-x) -sin x 
tan(-x) = = -- = -tan x, 

cos(- x) cos x 

and similarly, cot(-x) = -cot x, 

1 1 sec( -x) = = -- = sec x 
cos(-x) cos x ' 

csc(-x) = -csc x. 
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The functions tan x, cot x, and csc x are odd functions. 
The function sec x is an even function 

Graphs Let us graph y = tan x. Since tan x is an odd function and has period n, 
it suffices to sketch the part of the curve from 0 to lx· Then the complete graph 
can be obtained by symmetry and periodicity. 

Since tan x = sin x/cos x, we see that tan 0 = 0. Furthermore, as x increases from 
O toward !n, the numerator increases from 0 toward l ,  while the denominator 
decreases from 1 toward 0. Therefore tan x increases, and tan x - oo as x - lx· 
See Fig. la. 

I I I I I I I I -r C,- lT. J l  
I -t(� JT. I ) I 

.� I - - lT  
? 

\' 

- lT  
� 

(b) -l ir < x <.!. ,,  2 2 
Fig. I Graph of y = tan x 

By the oddness of tan x, we extend the graph (Fig. lb) from 0 to -!n. Then we 
obtain the complete graph (Fig. 2) of y = tan x by extending the curve in Fig. lb 
so as to have period n. 

By similar reasoning, we obtain the graph (Fig. 3) of y = cot x. Note that on each 
interval of length n, both tan x and cot x take every real value once. 

Let us sketch y = csc x. This function is odd and has period 2n, so by our usual 
argument, we need only plot the graph on the interval 0 < x < n. The points x = 0 
and x = n are excluded because csc x is not defined there. 

Assume 0 < x < n. Then 0 < sin x � I ,  hence csc x = I/sin x ;::: 1. Actually 
csc x = 1 only at x = !x. where sin x = 1, so the graph has a minimum point at 
(ix, 1 ). If x - 0 + or x -ix-, then I/sin x - oo since the denominator 
approaches 0. One other useful piece of information: the graph is symmetric about 
the line x = fn, a property it inherits from y = sin x. (You should check 1hat 
sin(!x - x) = sin(fn + x).) We now have enough data for a reasonable sketch of 
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-71' I I I I I I I I 
I 
I 

Fig. 2 Complete graph of y = tan x 

0 ll 
I I I I I I I I I 
I 
I 

Fig. 3 Graph of .r = cot ."( 

_l! I I I I 
I I I 
I 
I 

)' = csc x on 0 < x < x. We extend the curve to -x < x < 0 by oddness, then obtain 
the complete graph by periodicity (Fig. 4). There is another approach to the graph 
of y = csc x :  first sketch y = sin x, then sketch its reciprocal. 

We obtain the graph of J = sec x free of charge, just as we obtained the graph of 
y = cos x from that of J = sin x. From cos x = sin(x + !x) follows sec x = 
csc(x + !n). Hence the graph of )' = sec x is just the graph of J = csc x shifted 1x 
units to the left (Fig. 5). 
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Identities Start with the identity 

sin2 x + cos2 x = 1, 

and divide both sides first by cos2 x, then by sin2 x: 

I tan2 x + 1 = sec2 x, cot2 x + l = csc2 x. , 
These identities are helpful in expressing one trigonometric function in terms of 
another. For example, 

sin x = ±Jt - cos2 x, sec x = ± Jtan2 x + l, 

Ji - sin2 x 
cot x = ±v'csc2 x - 1 = ± . . 

sm x 

In each case, additional information is needed for the correct choice of sign. 

• EX.AMPLE 1 Express sin x and cos x in terms of tan x for 0 < x < Pt· 

So/11tion 

l 1 . tan x COS X = -- = , 
sec x ± Jtan2 x + 1 

sm x = tan x · cos x = . 
± Jtan2 x + 1 

Since sin x, cos x, and tan x are positive for 0 < x < !n, choose the positive square 
root. 

The addition laws for the sine and cosine yield an addition law for the tangent. 
Write 

( (3) 
_ 

sin(« + (3) 
_ 

sin IX cos /J + cos « sin (3 
tan « + - ( (3) - f3 . . f3 · cos IX + cos IX cos - sm « sm 

Divide numerator and denominator by cos « cos (3: 
sin « sin (3 -- +--

( (3) cos IX cos f3 tan « + tan f3 
tan « +  = = . 

1 _ 
sin IX sin f3 1 - tan « tan (3 
COS IX COS (3 

( (3) tan IX + tan f3 
tan « +  = . 

1 - tan IX tan f3 

In particular, for IX = (3 = 8, we have the double angle formula 

2 tan 8 
tan 28 = 

1 
l e · - tan 

EXERCISES 

I Express sin x in terms of cot x. l Express sin x in terms of sec x. 



3 Express cot2 x in terms of cos2 x. 
Prove 

.. ( 11) cot a. cot p + 1 ., cot a. - ,, = ----
cot /J - cot a. 

8 _ sin 26 
7 tan - 1 + cos 28 

Find the least period 
9 tan x - cot x 

Graph 
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.. Express cot x in terms of sec x. 

6 cot 28 - cot1 8 - 1 
2 cot 8 

. 2 tan 8 I sin 28 = l 1 8. + tan 

10 sec 8 - csc 8. 

1 1  y - cot 2x 
14 y - sec2 x 

12 y = l - csc x 
15 y ""  tan(x - ix) 13 y - tan1 x 

16 y .. -sec x. 

7. DER IVATIVES 

Let us start with the derivative of sin x. Once we have that, the derivatives of the 
other trig functions folJow easily. The derivative of sin x depends on two important 
limits: 

( ) I. 
sin h 1 a am -- = 

,. ... o h (b) Jim cos h - 1 = O. 
,. ... o h 

These limits express simple geometric facts, as we can see from the equivalent 
statements: 

I. 
sin(O + h) - sin O 1 am = , 

,. .. 0 h Jim cos(O + h) - cos 0 = O. 
,. ... o h 

Thus (a) asserts that the curve y = sin x has slope 1 at x = 0, and (b) asserts that 
y = cos x has slope 0 at x = 0. The first statement is believable because on p. (j() we 
found strong numerical evidence that sin h/h - 1 as h -o. The second statement 
is nearly obvious geometricalJy because the curve y = cos x has a maximum, hence 
a horizontal tangent, at x = 0. Let us accept these two limits for the time being; they 
are proved at the end of this section. 

It is not hard to guess the derivative of y = sin x. Since the graph of y = sin x 
repeats after 2x, the slope of the graph also repeats after 2n. (See Fig. 5, p. 182.) 
Therefore the derivative of sin x is a periodic function with period 2n. According 
to limit (a� the slope of y = sin x is 1 at x = 0. Looking at the graph, we see that 
the slope decreases to 0 as x goes from 0 to !Jt, then becomes increasingly negative 
and, by symmetry, reaches - 1  at x = n. Then the slope becomes less negative, 
returning to 0 at in. and finalJy becomes positive, returning to the value 1 at 2n. But 
this is exactly what cos x does! So an educated guess is that the derivative of sin x 
is cos x. A similar argument suggests that the derivative of cos x is -sin x. 

d . 
dx sm x = cos x, d . - cos x = -sm x. dx 
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These formulas are correct. We prove the first one by writing the difference 
quotient for sin x and using the addition law: 

sin(x + h) - sin x (sin x cos h + cos x sin h) - sin x ------ = -----------
h h 

cos h - 1 sin h 
= sm x  

h 
+ cos x -

h
- . 

This is where limits (a) and (b) come in. We let h - o: 
d . 1 .  sin(x + h) - sin x ( . )(t· cos h - 1 ) 

( )
(
l· 

sin h) d sm x = 1m 
h 

= sm x 1m 
h 

+ cos x 1m -
h
-x •-o •-o •-o 

= (sin x) · 0 + (cos x) · 1 = cos x. 
Thus sin x is differentiable and its derivative is cos x. 

We can differentiate cos x in a similar way, but it is quicker to use the identities 

cos x = sin(x + !n), sin x = -cos(x + in). 

By the Chain Rule, - cos x = - sm x + - n = cos x + - n · = -sm x. d d . ( 1 ) ( 1 ) 1 . 
dx dx 2 . 2 

Finally, if u = u(x) is differentiable, then the Chain Rule implies the formulas 

d . ( ) du 
dx sm u = cos u dx , 

• EXAMPLE 1 Differentiate 

d ( . ) du 
dx cos u = - sm u dx 

. 

(a) sin !x (b) Js - 7 cos 2x (c) cos2 x. 

Sollltion (a) Let u = tx. By the Chain Rule, 

d . du ( 1 ) 1 1 1 
dx sm u = (cos u) dx = cos J x · J = J cos J x. 

(b) Let u = 8 - 7 cos 2x. Then 

- JU = - - = - - (8 - 7 cos 2x) = - - 7 - cos 2x d 1 du 1 d 1 f d ] dx 2.fi dx 2.fi dx 2Ju dx 
1 . 7 sin 2x = - [ - 7(-sm 2x) · 2] = �====== 2.jU . Js - 7 cos 2x 

Note that two applications of the Chain Rule are needed. Don't forget the second. 

(c) Let u = cos x. Then � u2 = 2u du 
= (2 cos x)(-sin x) = - 2  cos x sin x. dx dx 

AherNltioe Sollltion From the double angle formula, cos2 x = !(cos 2x + 1 ). 



7. Derivatives 1 91 

Therefore, d 1 <!..___ cos2 x = ! _ (cos 2x + 1 ) = 2- (-sin 2x)(2) = -sin 2x. 
dx 2 dx 

Note that the two answers are the same. Why? • 

• EXAMPLE Z Show that <!..___ (sin x - ! sin3 x) = cos3 x. dx 3 

So1Mtio11 - sm x - - sm x = - sm x - - - sm x d ( . 1 . 3 ) d .  I d  . 3 
dx 3 dx 3 dx 

= cos x - ! (3 sin2 x)(cos x) = (cos x)(l - sin2 x) = cos3 x. • 
3 

• EXAMPLE 3 Sketch the curve y = cos 2x + 2 cos x. 
SohltiOll The curve is periodic with period 2n; it is enough to sketch it for 0 :s; x :s; 2n, 
then extend the curve periodically. For a reasonable sketch without too much work, 
first find a few points on the curve that are easy to compute: 

(0, 3 ), (!n, - I), ( n, - I ), (in, - I ), (2n, 3 ). 
Next, locate the critical points (where the derivative vanishes). From y = cos  2x + 
2 cos x, �� = -2 sin 2x - 2 sin x = -2(2 sin x cos x + sin x) = - 2 sin x · (2 cos x + I). 

• 
7r 

-
- -

-

• 

(a) A few plotted points and 
all horizontal tangents 

I' 

(c) Complete araph 

(b) The curve they sugest 
on one period 

Fig. I Graph of y = cos 2x + 2 cos x 

x 
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Therefore, dy/dx = 0 when either sin x = 0 or cos x = -!- The corresponding critical 
points are 

(0, 3 ), (1t, - l ), (21t, 3) and (fn, -i). (!n. -i). 
Plot all of these points, showing the horizontal tangents at the critical points 
(Fig. la). Then fill in a smooth curve (Fig. lb). Finally, extend the curve periodically 
(Fig. le). • 

Other Derivatives From the derivatives of sin x and cos x, we easily find the 
derivatives of the other trig functions: 

d 
dx 

tan x = sec2 x, 

d 
dx 

sec x = sec x tan x, 

d 
dx 

cot x = -csc2 x, 

d 
dx 

csc x = -csc x cot x. 

For example, 

d d . cos x 
d
d 

(sin x) - sin x 
d
d 

(cos x) SID X X X - tan x = --- = --------,,-------
dx dx cos x cos2 x 

Similarly, 

(cos x)(cos x) - (sin x)(-sin x) cos2 x + sin2 x 1 
2 = = = - - = sec x. 

cos2 x cos2 x cos2 x 

d 
d
- cos x . 

1 
. 

d d ( 1 ) x -SID x sm x 
dx 

sec x = 
dx cos x 

= -
cos2 x 

= -
cos2 x 

=
cos x cos x 

= sec x tan x. 

• EXAMPLE 4 Differentiate (a) tan4 3x (b) e2" sec x. 

d d 
Sohltion (a) - (tan 3x)4 = 4(tan 3x)3 - tan 3x 

dx dx 

= 4(tan3 3x)(3 scc2 3x) = 12  tan3 3x sec2 3x. 

d d d 
(b) - (e2x sec x) = e2" - sec x + sec x - e2x 

dx dx dx 

= e2" sec x tan x + (sec x)(2e2") = e2" sec x · (tan x + 2). • 

• EXAMPLE & Show that y = sin kx and y = tan x satisfy, respectively, the 
differential equations 

(a) y" + k2y = 0 (b) y' = 1 + y2• 
Sohltio11 (a) y' = k cos kx and y" = k(-k  sin kx) = -k2 sin kx. 

Therefore y" + k2y = -k2 sin kx + k2 sin kx = 0. 
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(b) y' = sec2 x = I + tan2 x = 1 + y2• • 

Remark Our differentiation formulas for the trig functions require angles to be in radians. 
We can also differentiate these functions when expressed in degrees or in some other system, 
but the formulas do not turn out as simple. For example, suppose we want d(sin 9)/d9 when 9 
is in degrees. We convert to radians, 9 deg = (Jr/180)9 rad, then differentiate using our 
standard formula: 

Therefore, 

- Sin - 9 = - COS - 9 ,, · ( 1[ ) 1r ( 1[ ) d9 180 180 180 . 

d . oo Jr oo 
dO sm = 

180 
cos . 

The awkward constant Jr/180 will appear in the derivatives of all trig functions if they arc 
expressed in degrees. 

Proofs of the Basic L 1m1ts Let us prove the limit statements (a) and (b) 
assumed at the beginning of this section. For (a) we need only consider sin h/h 
for h > 0 because sin( - h )/( - h) = sin h/h. 

A central angle of h radians in a unit circle (Fig. 2a) subtends a chord of length I 
and an arc of length h. Clearly sin h < I < h, hence 

(a) sin h < I <  h 

sin h 
1 -

h
- < .  

tan h 

(b) The area or the shaded sector is less than 
the area or the triangle: I h < tan h. 

The shaded sector in Fig. 2b has area }h because 

shaded area shaded area h = 
area of circle 

= 2X · 
The triangle has area = }(base)(height) = 1(1 )(tan h) = ! tan h. Since the area of the 
shaded sector is less than the area of the triangle, 

h I I sin h 
< - tan h = - -- , 

2 2 2 cos h 
sin h 

which implies cos h < -
h
- . 
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Combining inequalities, we have 

sin h 
cos h < -

h
- < I .  

But cos h - I as h - 0 and sin h/h is trapped between cos h and I .  Therefore 

1. sin h 1 1m -- = . 
.... o h 

Limit (b) follows from (a). Write 

cos h - I cos h - I cos h + I cos2 h - I -sin2 h sin h sin h 
h 

= 
h cos h + I 

= 
h(cos h + 1) 

= 
h(cos h + I) 

= - -
h
-

cos h + I '  

Both factors on the right-hand side have limits as h - 0. Therefore 

lim 
cos h - I 

= - ( lim 
sin h) ( lim 

sin h ) = -( l )(O) = O . 
.... 0 h .... 0 h .... 0 cos h + I 

EXERCISES 

Differentiate with respect to x 

I cos x2 
4 cos3 x 

7 (sin 2x)/x2 

2 e"ln • 
5 x tan x 

8 sin Jfx 
3 e" sin x - e" cos x 
6 x2 sin(l/x) 

9 (sec x)/(I + tan x) 

10 cot(tan x) I I  
sin x + cos x tan x 

12 Jx .  
sin x - cos x 

13 Find the 82-nd derivative of cos x. 
14 Compute the derivative of cos2 x - sin2 x in two different ways. 
15 Verify the formulas given in the text for the derivatives of cot x and csc x. 
16 Find the 20-th derivative of x sin x. 

Prove 

d 
17 - (sec" x - tan" x) = 4 sec2 x tan x 

dx 

Graph 

19 y = sin 2x - sin x 
21 y = sec x - csc x 
23 y = (sin x)/x 
25 y = sin(l/x) 

d sin x 
18 - (x + sec x - tan x) = . 

dx 1 + sm x 

20 y = sin x + cos 2x 
22 y = tan x + cot x 
24 y = e -• sin x 
26 y = x sin(l/x). 

27 Find all points on y = sin x where the slope is !-
28 Find k > 0 so that the curves y = sin kx and y = cos kx intersect at right angles. 
29 Show that sin x < x for all x > 0. 
30 (cont.) Prove that y = cot x - (1/x) is a decreasing function for 0 < x < Jr. 

8. APPLICATIONS 

• EXAMPLE 1 A point P moves counterclockwise at constant speed 1 rpm 
around a circle of radius SO ft. The tangent at P crosses the line OA at a point T. 
See Fig. I .  Compute the speed of Twhen (J = Vt· 
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-

Sohltio11 We are given dO/dt = 2n rad/min and are asked to find dx/dt, where x = M. 
The right triangle OPT suggests a relation between x and 0, namely, x = SO sec 0. 
We differentiate with respect to r: 

dx dO 
dt = 50 sec 0 tan 0 dt . 

When 0 = in, then sec 0 = .j2 and tan 0 = l. At that instant, dx/dt = 50.j2 · 2n. 
Answer: tOOn.j2 � 444.3 ft/min. • 

• EXAMPLE 2 A lighthouse stands 2 mi off a long straight shore, opposite a point 
P. Its light rotates counterclockwise at the constant rate of l.5 rpm. How fast is the 
beam moving along the shore as it passes a point 3 mi to the right of P? 

Sol11tion Set up axes with P at the origin and x-axis along the shore (Fig. 2a). 
The beam hits the shore at x. The rate of change of the angle 0 is given: 
dO/dt = 3n rad/min. The problem is to compute dx/dt at the instant when x = 3. 

liahthouse 

2 mi 2 
-

p ,. 

(a) 

The figure suggests a relation between x and 0: 
x l = tan 0, that is, x = 2 tan 0. 

3 
(b) 
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Now differentiate with respect to t: 

dx dx d8 
dt 

= 
d8 dt 

= (2 sec2 8)(3n) = 6n sec2 8. 

When x = 3, Fig. 2b shows that sec 8 = ifo. Therefore at this instant, 

�� = 6n0 fo) 2 = 
3�1t 

� 61.26 mi/min. • 

• EXAMPLE 3 A S-ft fence stands 4 ft from a high wait (Fig. 3a). Find the 
angle of inclination of the shortest ladder that can lean against the wait from 
outside the fence. 

high wall 

C L  = AC) 

S-ft fence 

s 

4 
l--4 ft-l c 

(a) (b) 

Sollltio• The shortest ladder must just touch the fence. If not, then a shorter ladder 
would reach from C to a point slightly below A on the wait (Fig. 3b). Let 8 be the 
angle of inclination. Clearly, if 8 is near 0 or near in, the ladder will be very long. 

Let L be the length of the ladder. Then 

L = AB + BC = 4 sec 8 + S csc 8. 

The :>roblem: find the angle 8 in the range 0 < 8 < in  that minimizes L = L(8). 
Now 

dL 
d8 

= 4 sec 8 tan 8 - S csc 8 cot 8 

= 4 _1 _ sin 8 _ 5 _1 _cos 8 
= 

4 sin3 8 - S cos3 8 
cos 8 cos 8 sin 8 sin 8 sin2 8 cos2 8 

As 8 increases, the numerator changes from negative to z.ero to positive. Therefore 
Lis minimiz.cd for just one value of 8: 

Hence 

dL
= O  

d8 
if 4 sin3 8 = S cos3 8, 

tan 8 = � . 8 � 47.13°. • 
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Note Compare Example S, p. 132, where we found L..u. ::::: 12.7 ft. 

• EXAMPLE 4 A man is in a rowboat 1 mi off' shore. His home is S mi farther 
along the shore. If he can walk twice as fast as he can row, what is his quickest way 
home? 

A C =  5 mi  

- walk 
A B c 

Fis. .. 

Sollttioll Draw a diagram (Fig. 4 ). He should row to a point B, then walk to his 
home at C. Express everything in terms of the angle 8: 

PB = sec 8, BC = S - AB = S - tan 8. 
Let v be his rowing speed and 2v his walking speed. The time required to reach 
home is PB BC sec 8 S - tan 8 t = - + - = -- + ---

v 2v v 2v 

Since B must be between A and C, angle 8 is at least 0 and at most the angle 
whose tangent is 5. Differentiate: 

dt sec 8 tan 8 sec2 8 sin 8 1 2 sin 8 - 1 

d8 = 
v 

- � = 
v cos2 8 -

2v cos2 8 = 
2v cos2 8 · 

The derivative is 0 if sin 8 = !. that is, 8 = in· Its sign changes from minus to 
plus as 8 increases through in· Hence t has its minimum there. Notice that *1t falls 
within the permissible range of 8 because tan i1r < S. 
Answer Row to shore at an angle of j1t, then walk the rest of the way. • 

• EXAMPLE I Describe the isosceles triangle of smallest area that circumscribes 
a circle of radius r. 

c 

M 
Filo 5 
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So"'tio11 Let 28 be the apex angle, and express the area in terms of 0. Sec Fig. S. 
Clearly 

CM = CO + OM = r csc 0 + r. 
From triangle ACM, observe that 

AM = CM tan 0 = (r csc 0 + r) tan 0. 

Therefore the area of the large triangle is 

f (0) = !AB · CM = AM · CM = (r csc 0 + r)2 tan 0. 
The problem is to minimize f(O) lor 0 < 0 < !x. Clearly /(0) > O on this domain 
and /(O) - +oo if o - o+ or O - fx-, so the minimum occurs where 
f'(O) = 0. Now do = r2 [ (csc O + 1)2 �

O 
(tan 0) + tan O �

O 
(csc O + 1)2 J 

= r2((csc 0 + 1 )2 sec2 0 + tan 0 · 2(csc 0 + 1)(-csc 0 cot 0)) 

= r2(csc 0 + l )[(csc 0 + I )  sec2 0 - 2 csc 0). 

Since csc 0 + I � 2 > 0 for 0 < 0 < fx, the derivative df/dO is 0 for 

(csc 0 + I )  sec2 0 - 2 csc 0 = 0. 
To solve, multiply by sin 0 cos2 0 and use cos2 0 = 1 - sin2 0: 

(1 + sin 0) - 2 cos2 0 = 0, 2 sin2 0 + sin 0 - I = 0, 

(2 sin 0 - 1 )(sin 0 + I )  = 0, sin 0 = ! or - I .  
Clearly sin 0 = - I is impossible, so sin 0 = !. and 0 = in. The triangle is equilateral, 

CM = r + rcscin = 3r, 
and the side is 

AB = 2AM = 2CM · tan in =  6r(!J3 ) = 2rJ3. 
Remark Since f (9) ---+ + oo at the end points and f'(9) = 0 for only one value of 9, that 
value must give us a minimum. 

c 

I Express the rate at which the chord x in Fig. 6 is lengthening in terms of the radius a, 
the central angle 9, and the angular speed w = 9·. (Recall that 9· denotes d9/dt.) 

2 Express the rate at which the segment x in Fig. 7 is lengthening in terms of a, b, 9, and 
w = IJ. 

3 A sector is cut from a circular piece of paper. The remaining paper is formed into a 
cone by joining together the edges of the sector without overlap. Find the sector angle 
that maximizes the volume of the cone. 

4 An 8-ft ladder leans against the top of a 4-ft fence. Find the largest horizontal distance 
the ladder can reach beyond the fence. 

5 A weight hangs at the end of an 8-m rope, rigged up by the pulley system shown in 
Fig. 8. The weight will seek equilibrium as far as possible below the level of the fixed 
pulleys (in order to minimize potential energy). How far is that? Ignore the small pulley 
diameters. 



fixed 
pulley 

0 u 
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1 2  

6 

6 A low-ftyingjet passes 450 ft directly over an observer on the ground. Shortly afterward 
its angle of elevation is 30° and decreasing at the rate of 20° /t«. Compute the plane's 
speed. 

7 Suppose Fig. 9 represents an electric clock of radius 3 in. and that Q is the tip of its 
second hand. How fast is the point P moving at 20 sec past 3:47 p.m.? 

I Find the length of the longest pole that can be moved horizontally around the comer 
(Fig. 10). 

E 

b 

Fla. JO Fis- II Diameter unknown 
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9 (cont.) Suppose the pole can be tilted so its ends touch the ftoor and the ceiling, 
which is c ft from the ftoor. Now how long can the pole be? 

10 In a tangent galvanometer (ammeter� current of I amps produces a deftection angle 9, 
where I - k tan 9. Compute the instrument's sensitivity, 

I/di 
s = 8 d9° 

Show that S � 1 for 9 � 0. 
1 1  The hour hand of an electric clock has length a cm and the minute hand has length 

b cm. How fast are the tips of the hands separating at 3:007 How fast at 8:007 
12 To measure the diameter D of a circular hole (Fig. 1 1� a needle gauge, of length L, 

less than D, is rocked back and forth. with end E fixed. Let 2x denote the "rock". 
Express D in terms of x and show that the sensitivity of the gauge, 

x dD x2 s .... - - - ---
D dx L2 - x2_" 

(Therefore for x small, D is relatively insensitive to a relative change in x, so the gauge 
is highly accurate.) 

13 Ir the target in Fig. 12 is 90 m from the range finder and running away at 11 m/sec, 
how fast is 9 increasing in deg/sec? 

binocular 

0 
3 m  

3 m  
0 

binocular 

r--------
1 I I I I I I 
I 

target 

Fis. 12 

a 

Fis. 13 

14• One comer of a long rectangular strip of width a is folded over and just reaches the 
opposite edge (Fig. 13� Find the minimum length Lof the crease. 

15• (cont.) Find the minimum area of the heavily shaded triangle. 
16• On p. 194, we proved the basic statement (I - cos 9)/9 -o as (J -o. Improve this 

proof to show that 

l - cos 6 
62 ___.2' 

1 
hence cos 9 � 1 - 2 92 

for 9 � 0. Use this estimate to show that if a surveyor tilts his 12-ft vertical leveling rod 
as much as 2° out of plumb, then his error will be less than 0.01 ft. 
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9. M ISCELLANEOUS EXERCISES 

Differentiate with respect to x 
3 x/r 4 r•, u - r. 

5 Show that r � 1 + x for all x. 

Find 

6 Find the maximum or xe-J ... 
e'' - l 

8 lim --
1•0 t 

9 lim (
r
� 1) 2 .s•O 

1 - x 
10 Jim -- . 

.... r - e 
1 1  Most pO(:ket calculators handle numbers in the range 10- 100 < x < 10100• How can you 

use a pocket calculator to estimate e1000 or e1•000•000 7 
12 Show that y = e- •/.sisstrictly increasing for x > 0. Where is it convex and where concave? 
13 Find the minimum or e-.sW for x � o. 
14 Show that the derivative or rp(4 where p(x) is a polynomial, is a runction or the 

same rorm. 
15 Show, for x >F 0, that 

d" p (x)e- 11 .. - e- ., .. = -"---,=---
dx" x2" ' 

where P0(x) is a polynomial or degree at most n - 1. 
d9 e•l.s - (x"- 'e'' .. ) • (- 1)"-- . 
dx" x•• 1  

16• Prove 

17 In radiation thcory. f(x) = x2r/(r - 1 )2 is known as an Eilllteia fmcdoa. Show that 
/(x) - 1  as x -o+, and/(x) -o+ as x - oo. 

11• (cont.) Show that/(x) is strictly decreasing ror x > 0. 
1,. Define <P(x) = 0 for x s 0 and <P(x) = e- 11 .. for x > 0. Show that <P(x) has derivatives 

of all orders for every x. [Hint Use Ex. 15.) 
20 (cont.) Graph y = f1(x) = e24'(1 + x)<P(l - x). 
21 Suppose a >  0, 0 < c < b, and /(t) = ,.e-••. Show that there is a constant K > 0 such 

that /(t) S Ke-n ror all t � 0. 
22 Let« > 1 and y = exp( -x") for x > 0. Find all x where the graph has an inflection point. 
23 Assume that the population or a certain city grows at a rate proportional to the 

population itself. If the population was 100,000 in 1930 and 150,000 in 1970, predict 
what it will be in 1990. 

24 The graph or y = /(x) has the following property. The tangent line at each point 
(x, y) meets the x-axis at (x - l, 0). Find f (x). 

25 When the switch is closed in the circuit (Fig. l )  the current I = l(t) satisfies the 

conditions 
di 

L 
dt 

+ RI = E, 10 = 1(0) = 0. Compute � (e"''LI). 
Use the result to find a formula for I. 

26 When the line from the boat (Fig. 2) is wrapped around the rough mooring post, 
friction causes the tension T in the rope, as a function of the length L or rope in 
contact with the post, to decrease at a rate proportional to itself. Precisely, 

dT µ - .. - - T  µ > 0. 
dL a ' 

Show that if n turns are taken, then a force of merely T0 e- 2•"" will hold the boat 
against the gale. 
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Fig. I 

Prove 

2 
1 - tan2 x 

27 cos x = 28 cot x - tan x = 
2 cot 2x 

I +  tan2 x 
29 sin ex - sin fl = 

2 sin !(ex - /J) cos !(ex + fl) 
sin 2n8 

JO (cont.) cos 8 + cos 38 + · · · + cos(2n - 1)8 = 2 sin 8 · 

(Hint Find 2 sin 8 cos(2j - I )8 by Ex. 29.] 

Find 

31 lim 
cos x 

•-ao I +  3x 
Find all local max and min 

32 
( nx3 ) 

lim tan 2�5 . 
•-ao X + 

33 y • sin x sin 2x 34 y = e-' sin x. 
35 A projectile is fired from the foot of a hill that rises at angle ex with level ground. 

If the gun's elevation is 8, where ex < 8 < !x. and v0 is the initial speed of the projectile, 
then the shell hits the hill at horizontal distance 

v 2 x = ....!L. [sin 28 - (tan cxX l  + cos 28)). 
g 

Find x..,., and interpret geometrically the maximizing angle 8. 
36 A line tangent to the unit circle at a point in the first quadrant meets the coordinate 

axes in points x and y. Minimize x + y. 
37 A spring of length I rt is hung vertically. A weight attached to the free end stretches 

the spring 4 ft. If the weight is displaced 2 rt lower and released, then its distance 
(measured down from the ceiling) after t sec is y = S + 2 cos wt, where w2 = g/4 and 
g = 32.2 ft/sec2• Describe the motion of the weight;  give its velocity and acceleration. 

38 A certain pendulum of length 2A swings out a circular arc when set into motion. 
If at time t the tip of the pendulum has horizontal position x = A sin 2nt, describe this 
horizontal motion (shadow of the pendulum bob� giving velocity, acceleration, and 
position at critical values oft. 

39 Suppose x = x(r) satisfies the differential equation x = c sin x. If y = 'Lx, show that 
y = c2 sin y. 
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40 The power radiated in direction (J by an accelerated relativistic particle is 

k sin2 8 
P =  , O < fJ < l. ( 1 - fl cos 8)5 

Find (J so P is maximal. 
41 Find the maximum of y = tx - sin x for 0 s x s 4x. 
42 A balloon rises straight up from the ground at a constant rate of 5 ft/sec. At the 

instant it reaches an .altitude of 100 ft, how fast is its angle of inclination changing as 
seen from the ground 100 ft from the point of release? 

43 Prove e'(t - l )  + { l - !t2) > 0 for all t > 0. 
44 Prove I sin n8I s I n  sin 61. 



Integration 5 
1 .  THE AR EA PROBLEM 

The ancient Greek mathematician Archimedes used ingenious methods to compute 
the area bounded by a parabola and a chord (Fig. la). In this chapter we shall 
develop tools of Calculus that make the solution of this and similar problems 
routine. Although motivated originally by such area problems, these tools turn out 
to have a wide range of scientific and technical applications. 

cl I• 

(a) Archimedes's problem (b) General problem: Find the area. 

We start with a general problem: Find the area under the graph of a (non
negative) functionf(x) defined on an interval a �  x � b. See Fig. lb. Just as the slope 
problem led to the first major concept in calculus, the derivative, this area problem 
leads to the second major concept, the integral. 

Part of the problem is the meaning of area. To be honest, we really know from 
elementary geometry only the areas of rectangles and figures derived from 
rectangles-triangles and other polygons. Therefore we need both a reasonable 
definition of area and, at the same time, a method for computing area. 

Prelimi naries Most of the functions in this chapter will be continuous. Recall 
that} (x) 1s a continuom function if 

lim f(x) = f(c) 
,. ..... 

204 
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for each c in the domain of /(x). Basic properties of continuous functions were 
given on pp. 98-100 and on pp. 146-147. In the discussion of maxima and minima, 
it was noted that a continuous function /(x) on a closed interval a s  x s b is 
bomcled. that is, there is a constant B such that If (x) I s B for all x in the interval. 

Intervals of the type a s x s b occur frequently in this discussion, so we introduce 
a useful notation : 

Closed Interval [a, b] denotes the set of all x such that a s  x s b. 

When we write [a, b], it is understood that a <  b. The word "closed .. means that 
the end points a and b are included, and rules out other kinds of intervals, like 
a < x < b or a s x < b, etc. 

Analys s o r  the Problem We return to Fig. lb, assuming/(x) is continuous 
on [a, b ]. How shall we find the shaded area? Recall how we found the slope of a 
curve (and its definition). Assuming that the curve had a well-defined slope, we 
approximated what the slope ought to be (slope of secant� then found the limit 
of better and better approximations. This limit we defined to be the slope. We shall 
attack the area problem similarly. 

Assume first that the shaded region in Fig. 1 b really has a well-defined area. 
To approximate this area, slice the region into thin vertical strips (Fig. 2a) and 
approximate each strip by a rectangle (Fig. 2b). The sum of the areas of these 
rectangles ought to approximate the shaded area. The thinner the strips, the better 
the approximation should be. 

y I' 

/J ,, a 

(a) Divide the area into thin (b) Approximate each strip 
vertical strips. by a rectangle. 

Fla. 2 Approximating the area under the curve 

The base of a typical approximating rectangle is a subinterval [c, d] of [a, b] ; its 
height must be chosen between the highest and lowest values of /(x) on [c, d]. See 
Fig. 3. 

Now here is one of the most important facts in calculus : our approximations 
will converge to a limit. (We postpone the proof until Section 9.) This limit defines 
the area of the region under the graph of a continuous function. What we are 
saying is that there exists a number A, the limit value, with the following property: 
Every sum of areas of rectangfes that can be produced by our approximation 
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'"/ / 
I 

+ 

/ / 

Fis- 3 The height or the approximating rectangle over [c, d] is chosen between the highest 
and the lowest values or/(x) on this subinterval. 

process will be as close as we please to A, provided the widths of the approximating 
rectangle are all sufficiently small, that is, provided the thickest of these rectangles 
is sufficiently thin. 

The limit value is usually written 

J:f(x) dx 

and read "the integral of f from a to b" or "the integral of /(x) dx from 
a to b". The intearal sip r is a distorted s, for sum, and it reminds us of the 
approximating sums of rectangles. The limits of integration a and b, lower and 
upper, respectively, remind us of the interval (a, b]. Of course /(x) is the function 
whose area we want. Only dx appears unnatural; its usefulness will be explained 
later when we study change of variables in integrals. For the moment we shall 
think of dx as a reminder of the widths of the very thin approximating rectangles. 

2. EXAM PLES OF I NTEGRALS 

We shall now compute several integrals. In each case we must find a computation 
process that leads to a numerical answer. This involves covering the region under 
/(x) by thin strips, that is, decomposing [a, b] into small subintervals, then choosing 
an appropriate height for each rectangle, then computing the area sum, and finally 
taking the limit. Some diabolically clever tricks, tricks that took centuries to 
discover, come into this work. 

We shall need two formulas for sums. One is the formula 

1 + 2 + . .  · + n = !n(n + 1 )  

for the sum of the first n positive integers. Recall its proof. For instance, if S6 
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denotes 1 + 2 + · · · + 6, then 

2S6 = (1 + 2  + 3 + 4 + 5 + 6) + (6 + 5 + 4 + 3 + 2 + 1) 
= (1 + 6) + (2 + 5) + (3 + 4) + (4 + 3) + (5 + 2) + (6 + 1) 
= 7 + 7 + 7 + 7 + 7 + 7 = 6 . 7. 

Enough said I The other is the formula 

x" - 1  1 + x + x2 + · · · + x•- 1 = -x - l 
(x fl: 1 )  

for the sum of a geometric progression. To prove it, multiply by x - 1 and watch 
the terms on the left-hand side telescope. 

In summation notation, the two formulas are written 

" L j = � n(n + 1 ), 
J• l 

b J ex dx. 0 
• EXAMPLE 1 Find 

11 - 1 L x" - l xl = -x - 1  J•O 
(x fl: I). 

SohltitHI The region under the graph of y = ex is a triangle of base b and height cb. 
By elementary geometry the area is !cb2• We shall show that the integration process 
leads to the same answer. 

)' 

'°11 I /1 = \',, \" 

(a) Equal division into 11 strips of width b/n 
• 

Fis. I J ex dx 0 

(b) Height of /·th rectangle is ex1 

Let us cover the region by n strips of equal width (Fig. la); later n will be taken 
larger and larger. The width of each strip is b/n. The points of subdivision of 
(0, b] are 

0 = x0 < x1 < x2 < · · · < x11_ 1 < x,. = b, 
where x1 = bj/n. Now we look at the j-th rectangle. Its base is the subinterval 
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bj b(j - l} b 
x1 - x1_ 1 = - - = -, 

n n n 

as already noted. For its height, we choose the highest possible (Fig. lb} 

ebj 
f(x1) = ex1 = -. n 

Thus the area of the j-th rectangle is 

We add the areas of these rectangles for j = 1, 2, · · · ,  n: 

The integral is the limit of this area sum as the widths approach 0, that is, as 
1/n ---+ 0. Since 

we can set t = 1/n and write 

i11
ex dx = lim 

0 1--0 + 

f 1 n + l J 1 . 2 b2c -- = 2 b2c hm (1  + t}. 
n 1--0+ 

Clearly 1 + t ---+ 1 as t ---+ 0, so our final result is 
" f ex dx = !b2e. 
0 

• 

Remark In working Example l, we made two choices. We chose rectangles of equal widths, 
and for each rectangle, the greatest allowable height. We did so not because of any 
requirement, but to make the computation as easy as possible. The only requirement is 
that the widths all approach 0. Sometimes a clever choice of unequal widths can pay off, 
as the next example shows. 

EXAMPLE Z Find 
" f x3 dx 

• 
for 0 < a <  b. 

Sobttio11 Divide the interval [a, b] into n pieces by the points of a geometric 
progression: 

-1��---r- 11-==t===========i��-
o u ur ur1 or3 ar4 b = ar" 

x 

This requires that b = ar", so the common ratio r of the progression must be 
r = (b/a)1'•. Later we shall let r ---+ 1 +, or equivalently, n ---+ oo. Note that the 
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widest strip (the one at the extreme right) has width 

a� - a�- 1 = v( 1 - H = b( 1 - �). 
which approaches 0 as r --+ 1 + .  

• 
Fla. 2 Approximating rectangle for f x3 dx 

• 

On the j-th strip construct a rectangle (Fig. 2). Its width is arl - ar1- 1 ; for its 
height choose (ar1)3• Thus the area of the j-th rectangle is 

(ar' - a,J- 1 )(ar')3 = a4(r4J - r•J- 1 ). 
Hence the approximating sum is 

• • 

A. = L a4(r4J - r•J- l ) = a4 L (r4J - r•J- 1 ). 

Now r•i - r•1- 1 = r•r•U- 1> - r3r•U- ll = (r4 - r3)r4u- 1 1 = r3(r - t)r•U- 1l, 
and j - 1 varies from 0 to n - 1 as j goes from 1 to n. Hence 

But a4(r4- - 1 )  = (a�)4 - a4 = b4 - a4, �o r - 1  A = (b4 - a4)r3 -- . • r4 - 1 
The integral is the limit of these approximating sums as n increases, that is, as 
r --+ 1. Hence 

f" ( r - 1 ) x3 dx = (b4 - a4) Jim r3 4 _ 1 . 
• ,� 1 r 
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Clearly lim r3 = 1. The remaining limit can be evaluated as follows: 

(; � �) - lim (�-=-f �;I , ... 1 + r - 1 dr , • 1 

Jim 1 
, ... , + 

Therefore f x3 dx = i(b4 - a4). • 

Remark What happens when a = O? The method doesn't quite work, but from the answer, 
a reasonable (and correct) guess is J: x3 dx = lb'. 

We take this for granted now since another derivation is coming soon. 

• EXAMPLE 3 Find J:r dx. 

Solution Divide [a, b] into n subintervals (Fig. 3) by equally spaced division points 
b - a  x1 = a  +--j, n 0 �j � n. 

Clearly x0 = a, x,. = b, and x1 - x1_ 1 = (b - a)/n. Choose r' for the height of the 
j-th rectangle. Because the typesetter of this page hates complicated exponents, write 
r = exp x for the exponential function. Then the height is 

r' = exp xJ = exp(a + b:a j) = (exp a) [exp(b:a j) J · 
Thus, the j-th rectangle has area 

b - a (b - a ) -n- e9 exp -n-j , 

so the approximating sum is 
" 

A., = 
b : a e9 L exp( b : a j). 

J• l 
This sum is a disguised geometric progression. In fact, if r = exp[(b - a)/n], then 

so 

But 

so 

• • 11- l L exp( b : a j) = L r1 = r L r1 = r � � 11 • 

J• l .J• l J•O 
b - a  r" - 1 

A = - e9 r -- . • n r - 1 
e9(r" - 1 )  = e9(eb-· - 1 )  = eb - e-, 

r 
A., = (eb - e9)(b - a) n(r _ l )  
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Clearly r = exp((b - a)/n] - 1 as 1/n - o, that is, as n - oo. Therefore, 

fr dx = (eb - e-')(b - a) !� n{exp((b _
1 
a)/n] - 1} . 

The limit is easier than it looks. Set t = 1/n. Then 

lim 
1 = lim 

r = [ lim 
e1•-•>r - 1 ]- 1 

11 .. co n{exp((b- a)/n] - 1} , .. 0 +  exp((b - a)t] - 1 , .. 0 •  t 

= r� e<•-·11 1 1 - 1  = (b - arl. dt t•O 

Consequently, fr dx = (eb - e-')(b - a)(b - ar 1 = eb - e-, 

a surprisingly simple answer indeed. 

6 
Fi&- 3 f r dx; equal subintervals 

• 

l' 

6 
Fl&- 4 J cos x dx; 

0 

• 

,. 

equal subintervals, height at midpoint 

For the next example we shall need a trigonometric identity: 

sin 2n6 cos (J + cos 36 + · · · + cos(2n - 1 )8 = -2 . 6 . SID 
See Exercise 30, p. 202. 

• 
• EXAMPLE 4 Find f cos x dx for 0 < b S !n. 

0 
Sol•tio11 Divide (0, b] into n equal parts by the points 

0 < � < 2b < . . . < (n - 1 )b < nb = b. n n n n 
On thej-th subinterval [U - l }b/n,jb/n] construct a rectangle, computing its height 
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at the midpoint of the interval (Fig. 4). The midpoint is U - f)b/n = (2j - l)b/2n, the 
width is b/n, so the area of the j-th rectangle is 

� cos(2j - l) !. . n 2n 
Add these areas for j = 1, 2, · · · ,  n to obtain the area sum: 

II 

A = � \' cos(i ·  _ l )  !_ = � sin 2n(b/2n) = b sin b 11 n L J 2n n 2 sin(b/2n) 2n sin(b/2n) · 
}• 1 

Therefore cos x dx = hm . . 
i" 

. b sin b 
o 11�"" 2n sm(b/2n) 

Set t =  b/2n so t -o+ as n- oo. Then the fraction can be rewritten as 

But 
1. sin t d . I 0 1 1m - = -d sm t = cos = ; 
r�o t t r•O 

" 
hence J cos x dx = sin b. 

0 
• 

Discussion Let us summarize the results of our four examples; they are all 
useful formulas: 

. " J ex dx = fb2c, 0 < b, J x3 dx = i(b4 - a4), 0 � a < b, 
0 • 
" . f ex dx = e" - e", a < b, f cos x dx = sin b, O < b :s; fn. 

• 0 
Their derivations involved some cunning tricks. We can hardly go through life 
expecting to find such tricks every time we have to integrate a function. Obviously 
we need a systematic method. 

A curious thing occurred in Examples 2-4. The final step, leading from the area 
sum A. to the integral, involved a certain limit. In each case, we could recognize 
the limit as a derivative ! Apparently there is some subtle relation between integrals 
and derivatives, between the area problem and the slope problem. 

EXERCISES 
b 

Find J x dx, 0 < a < b. Use equal intervals and the left end points . 
• 

2 (cont.) Find the same integral, using equal intervals and the midpoints. 
3 (cont.) Find the same integral, using division points in a geometric progression. 

b 
4 Find J x2 dx, 0 < a <  b. (Hint Geometric progression.] 

• 
5 (cont.) Find the same integral for a <  b < 0. 
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• 
6• Find f x" dx for p � - 1, 0 < a <  b . 

• 

7• Show that f � dx = i, (�)' lo (0 < a <  b) . 

8 Find 
• J �" dx (a < b). 

• 
9 Use your knowledge of the integral of cosine plus a geometric argument based on 

symmetry to find 
• J sin x dx, 
0 

0 < b s; Jt. 

• 
10 Find J x2 dx for 0 < a < b, using equal divisions . 

• 
[Hint 12 + 22 + · · · + n2 = in(n + 1)(2n + l).] 

• 
1 1  Find J x3 dx for 0 < a < b, using equal divisions . 

• 
[Hint 13 + 23 + · · · + n3 = in2(n + 1)2.] 

l 
12 Find f Sx3 dx. 

I 

3. THE DEFI N ITE INTEGRAL A N D  
THE F U N DA M E NTAL THEOREM 

The process we discussed for computing the area under the graph of a positive 
continuous function applies to many questions, not just problems of area, and to a 
broad class of functions, not just positive continuous functions. Let us examine the 
process carefully. 

We shall deal with a function/(x) whose domain is a closed interval (a, b]. We 
assume that /(x) is bounded, but assume nothing more, not even that /(x) is 
continuous. Boundedness means, that A �f(x) � B for some constants A and B 
and all x on the interval (a, b]. 

Partition of the Interval We shall be splitting the interval (a, b] into sub
intervals. A partition 0 of[a, b] into n subintervals consists of an increasing sequence 

a =  x0 < x1 < x2 < · · · < x,,_1 < x. = b 

of points of [a, b], indexed as written. The sabintenals of the partition are the closed 
intervals 

[xo , X1], [x1, X2], . . · ,  [x,,_2 ,  x.-1], [x,,_1 ,  xJ. 

Some partitions split [a, b] into subintervals all of which are small; some do not. 
As a measure of the coarseness or fineness of a partition n, we define its mesh: 

mesh(Il) = max{x1 - x0, x2 - x1, · · · , x,, - x._ 1 }. 

A partition is fine if its mesh is small. For instance, mesh(O) = 0.001 means that n 
splits [a, b] into subintervals, the largest of which has width 0.001. 
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Example Let n be the partition 

0 < f < i < i < i < ! < 3  
of the interval (0, 3]. Then 

mesh(fl) = max{t - 0, i - t. i - i. i - i. 1 - i. 3 - 1} = max{t, !. n. t. i. t} = l 
Approximating Sums Let us return to our bounded function /(x) on [a, b]. 
Let n be any partition of [a, b]. In each subinterval [x1_ 1, xi] of n, we choose a 
point xr See Fig. l. The choice of x1 is perfectly arbitrary. We use the symbol x to 
denote the whole choice of the points x1, x2 , · · · ,  x,.. 

\n = 11 

\" I 

\" . 
I \ 1  

\' I 

\" I 

Fia. I Arbitrary choice of XJ in [x1_ 1, x1] 
\" 

Now we evaluate /(x) at xi and multiply by xi - xi_ 1, the width of the j-th sub
interval. (This imitates computing the area of the j-th rectangle.) We add these 
products for j = 1, 2, · · · ,  n and call the sum an approximating sum or a Riemann 
sum for f on [a, b]. 

Approximating Sum 

S(f, n, x) =/(x1)(x, - Xo) + /(x2)(x2 - xi) + . . .  + f(x.)(x,. - x,.- 1) 
" 

= L f(x1)(x1 - xi_ 1). 
J• l 

The notation S(f, n, x) emphasizes that an approximating sum depends on ( 1 )  the 
function /, (2) the partition n, and (3) the choice x of the points xr 

We are going to define the integral as a kind of limit of approximating sums. 
But first we note three properties of approximating sums because they imply corre
sponding properties of integrals. 

Properties of Approximating Sums 

( I )  If c is a constant, then S(cf, n, x) = cS(f, n, x). 
(2) s(f + g, n. x) = S(f. n. x) + S(g. n. x). 
(3) If f (x) � O on [.1. b], then S(f, n. x) � 0. 

The easy proofs are left as exercises. 

The l ntegra Suppose /(x) is a function whose approximating sums S(f, n, x) 
approach a definite number L as the partitions get finer and finer, that is, as 
mesh(n) approaches 0. Such a function is called integrable, and the number L is 
called its definite integral (or just " integral") on [a, b]. 



3. The Definite Integral and the Fundamental Theorem 21 5  

Definite Integral A bounded function /(x) on [a, b] is called integrable on 
[a, b] if there is a number L such that 

S(f, O, .x)-L as mesh(O) - 0. 

Precisely, if 6 > 0, there exists � > 0 such that 
I S(f, n, x) - L I < e whenever mesh(O) < �-

Then L is called the integral of /(x) on [a, b], and we write 

L = fb /(x) dx = lim S(f, 0, x). 
a 111nll(Q)-00 

The definite integral is a complicated kind of limit, so complicated that it is not 
at all obvious whether a given function is integrable or not. About the only thing 
that is obvious is that constant functions are integrable: 

f:c dx = c(b - a). 

This is clear, because for each partition the approximating sum is the same: 
. " 

S(c, 0, x) = 2 c(x1 - x1_ 1 ) = C 2 (x1 - x1_ 1 ) = c(x,. - x0) = c(b - a). 
J• 1 }• I 

The sum telescopes. 

Continuous Functions The definition of integral is worthless unless the integral 
exists for a large class of useful functions. A basic theorem guarantees the existence 
of the integral for the important class of continuous functions. The proof will be 
discussed in Section 9. 

Continuous Functions If /(x) is continuous on [a, b], 
then /(x) is integrable. 

Thus we can be assured that the integrals 

f S f 7.S (x1 - 8x3 + 2) dx, Jx dx, 
I 3.1 f I X - 2  IO -2-- dx, e-x cos x dx 

- 4  x + 1 - l 
exist since each function being integrated is continuous on the interval of integration. 
Terminology The awkward phrase "function being integrated" is usually replaced by 
illtepand. 

P1ecew1se Continuous Functions We hinted earlier that the integration 
process might apply to some discontinuous functions. It does, to bounded functions 
that are continuous except at a finite number of points. Such functions are called 
piecewke continuom (Fig. 2). 
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) 

x 

Fla. 2 Example of a piecewise continuous function 

Theorem If /(x) is a bounded piecewise continuous function on [a, b], 
then /(x) is integrable. 

Thus if 

1 1, /(x) = 4, 
x2 

then/(x) is integrable on (- 10, 6]. 
' 

x < O 
0 5 x 5 3  

x > 3, 

Basic Properties In working with definite integrals, we frequently use the fol
lowing properties. 

Properties of Integrals ( 1 ) fcf(x) dx = c  f f(x) dx. 

(2) f [/(x) + g(x)] dx = f /(x) dx + f g(x) dx. 

(3) If /(x) � 0 on (a, b], then r /(x) dx � 0. 

(4) If a <  c < b, then f f(x) dx = f f(x) dx + r f(x) dx. 

Properties (1), (2� and (3) follow easily from the corresponding properties of 
approximating sums (p. 214). We leave the proofs as exercises. A detailed proof of 
Property (4) is rather technical, and we shall omit it. The idea is to lump together 
a partition of [a, c] with a partition of [c, b], making a partition of [a, b]. Then 
corresponding approximating sums for 

< 
J /(x) dx 

• 
and 

b J /(x) dx 
< 

b 

add up to an approximating sum for f /(x) dx . 
• 
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Geometrically, the result is reasonable for positive functions (Fig. 3). 

ti 

Fl1o 3 The areas add up, so 

h x 

b • • f f  (x) dx = f f(x) dx + f f(x) dx. 
• • • 

•/2 
• EXAMPLE 1 Find I =  f (3 cos x - e" + 8x3) dx. 

0 
Sobltiotl By ( 1 )  and (2� 

�2 � � 
I = 3 J cos x dx - J e" dx + 8 J x3 dx 

0 0 0 
= 3 sin !n - (e"12 - e0) + 8(i}(!n)4 = 3 - e"'2 + 1 + p4 = 4 - e"'2 + p4• • 

We have defined 
b J /(x) dx 

• 

for a <  b. Now we extend the definition to the cases a = b and a >  b. Property (4) 
in the box suggests how to proceed. Suppose (4) were true without any restrictions 
on a, b, c. For instance if a =  c < b, then 

b • b J f (x) dx = J f (x) dx + J f (x) dx, 
• • • 

so the first integral on the right must be 0. Now if a = b < c, then 
• • • 

0 =  J f(x) dx = J f(x) dx + J f(x)dx, 
• • • 

so the integrals on the right are negatives of each other. 

Definitions f: /(x) dx = 0, I: /(x) dx = -J:/(x) dx if a >  b. 
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With these definitions, property (4) holds without any restriction on the order of 
a, b, and c: 

Suppose/(x) is integrable on a closed interval and a, b, c are any three points of I 
this interval, not necessarily distinct. Then 

ft(x)dx = f t(x) dx + J:f(x) dx. 

We leave it for the reader to test the various possibilities. 

The FL ndamental Theorem of Cal cu us So far in this section we have had 
a rather complicated defin·ition of the integral and some of its formal properties. 
The definition is hardly an operational one; it does not give a practical method 
for integrating functions and getting answers. In the last section we needed a whole 
bag of tricks when working with approximating sums, so direct frontal attacks 
seem helplessly hard to use regularly. We did have a hint that integrals are somehow 
related to derivatives. Might that help? Where do we go from here? 
If we don't see how to proceed, that's not surprising since it took mathematicians 

about 2000 years to find the right techniques. The ancient Greeks, particularly 
Archimedes, solved the area problem in a few special cases, always by ingenious 
geometric tricks. Nothing much happened then until after the Renaissance, when 
the types of tricks we used in Section 2 were discovered by Fermat and others. 
The breakthrough came with the idea of changing the problem from a static one 

to a dynamic one. Instead of computing the area between two fixed lines, compute 
it between a fixed line and a second moving line. That is the key idea. At first, 
suppose/(t) is continuous and f(t) > 0. Denote by A(x) the area under the curve 
y = f (t) between t = a and t = x. See Fig. 4. Then 

A(x) = ( f(t) dt . 
• 

Clearly A(x) is a function of x. For instance, if /(t) = t3 and a = 0, then 

> 

a x 

Fi&- 4 Dynamics of area 



3. The Definite Integral and the Fundamental Theorem 219 

Our aim is to find an explicit formula for A(x� For this purpose, we study how 
A(x) varies as x varies. Figure 4 shows that as x increases the area builds up, so 
A(x) increases. But how fast? What change in A(x) results from a small change h 
in x? Figure 5 provides a clue. When /(x) is large, the corresponding change in 
A(x) is large; when/(x) is small, the change is small. Apparently the rate of change 
of A(x) relative to x is very much like the value of /(x). In the language of 
calculus, we suspect that the derivative dA/dx is proportional to /(x). Let us test 
our hunch in the case of /(t) = t3 and a =  0. Then 

x4 dA A(x) = 4 ;  hence dx = x3• 

Result : dA/dx is not only proportional to/(x), but dA/dx is actually equal to f(x) . 

... 

-

(/ x x + Ii  
(a) f(x) lal'lle: 

A(x) increases rapidly 

a ,. 

(b) ft.:x) small: 
A(x) increases slowly 

Fis. � The rate of growth of A(x) seems proportional to f (:x). 

,. + "  

We have hit upon the crucial fact:  that dA/dx = /(x) in general. Let us sketch 
a proof. By definition, 

dA = lim A(x + h) - A(x) . dx .... 0 h 
Now A(x + h) is the area under y = f(t) between a and x + h, and A(x) is the area 
between a and x. Hence A(x + h) - A(x) is the area between x and x + h. (See the 
dark shaded region in Fig. 6a.) This area is approximately that of a rectangle of 
base h and height/(x) as in Fig. 6b. Hence for small values of h, 

A(x + h) - A(x) � hf (x), th t . A(x + h) - A(x) _ /( ) & IS, 
h 

""' X . 

Furthermore, Fig. 6 suggests that these approximations improve as h - 0. Our 
rough argument indicates that 

dA = Jim A(x + h) - A(x) = /(x). dx .... 0 h 
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I' 

ti \" \" + Ii ti ,, 
(a) The change in area from x to 

x + h  isA(x + h ) - A (x). 
(b) It is approximately the area of a 

rectangle, base h and height JT..x). 

Fig. 6 

We shall show in Section 9 that this result holds for arbitrary continuous 
functions, not only positive ones. It is probably the most important theorem in all 
of calculus. 

Fundamental Theorem of Calculus Let/ (t) be continuous on the interval 
[a, b). For each x in [a, b], let 

A(x) = I: f(t) dt. 
Then A(x) is differentiable and 

dA d f .. dx 
= 

dx • 
f(t) dt = f (x). 

Thus A{x) is an antiderivative of /(x). 

We have almost achieved our goal of finding a formula for A(x). We know that 
A(x) is one of the antiderivatives of/(x), but which one? Well, since they all differ 
by constants, it shouldn't be hard to sort out. Let F(x) be any antiderivative of/(x). 
Then A(x) = F(x) + c. To find c, note that the area is 0 where we start, that is, 
at x = a: 

0 = A(a) = F(a) + c, c = -F(a). 
Therefore A(x) = F(x) - F(a), for every antiderivative F(x) of /(x). 

In particular, A(b) = F(b) - F(a). This gives us a supremely practical alternative 
version of the Fundamental Theorem: 

Evaluation Rule Let /(x) be continuous on [a, b] and let F(x) be any 
antiderivative of f(x). Then 

r /(x) dx = F(b) - F(a) = F(x) [. 
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We have reached the end of a chain of thought that began by thinking of the 
definite integral as a function of its upper limit. The evaluation rule transforms a 
difficult problem, evaluating integrals, into a much easier one. finding antiderivatives. 
To compute J! f(x) dx, beg, borrow, or steal an antiderivative F(x); then evaluate 
F(b) - F(a). 

For instance, in Section 2 we laboriously churned out the formulas 
b b J r dx = eb - e9 and J cos x dx = sin b. 

• 0 

Now they are obvious !--<:<>nsequences of 

d r =-r dx and 
d . 

cos x = dx sm x. 
Because we know many derivatives, we know 
integrals are now within our grasp. 

many antiderivatives, so many 

• EXAMPLE 2 Evaluate (a) f 12 x5 dx (b) f 5 �� (c) f,•'3 sec2 x dx. 3 .,, 
So/11tio11 (a) x5 = :x ( � x6) ; hence x5 dx = -x6 = - (26 - 16) = - = - . f 2 I 12 1 63 21 

I 6 I 6 6 2 

sec2 x dx = tan x = tan - - tan - = .J3 - 1 .  f,•I 3 1•/ 3 1t Jr • ,, .,, 3 4 2 
• EXAMPLE S Find J Ix + 1 1  dx. 
Sohltio11 

- 2 
lx + l l = J -(x + l ) l x + l x < - 1  

for -
1 x �  - • 

• 

so we decompose the integral into two parts and deal with each separately. We 
know that 

so f�2 lx + 1 1  dx 
= f�: lx + l l dx +  J� l lx + l l dx = s�: - (x + l )tfx +  f� .(x + l) dx 

1 1- I 1 12 1 1 = - - (x + 1 )2 + - (x + 1 )2 = - - (0 - 1 )  + - (9 - 0) = 5. • 
2 - 2 2 - 1 2 2 
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The next example shows another way to use the Fundamental Theorem. 

d r)JJ;l 
EXAMPLE 4 Find dx j 0 

te41 dt. 

Sol•tio• Set F(u) = (te4' dt. We want �x F(3x2). 
0 

By the Chain Rule (with u = 3x2) and the Fundamental Theorem, 

!!_ F(u) = 
dF · du 

= � [ f•
te41 dt ] [� (3x2)1 dx du dx du J 0 dx 

= (ue .. )(6x) = (3x2e12"1)(6x) = 18x3e 12"1• 
Remark The word primitive is sometimes used as a synonym for antiderivative, especially 
in connection with integration. 

Dummy Variable The integral 
b f f(x) dx 

• 

depends on three things: its lower limit a, its upper limit b, and its integrand f. 
We might write 

b f f (x) dx = I(a, b; f) 
• 

to display this dependence. The integral does not depend on x; for that reason x is 
sometimes called a dummy variable. Thus 

b b b f f (x) dx = f f (y) dy = f f(t) dt = etc. 
• • • 

EXERCISES 

Evaluate 

4 

7 

9 

I I  

14 

2 J x dx 
- I  
3a/2 J cos 3x dx 

•/2 
Jc J (cos x + sin x) dx 

0 
2 

J (3 + 2x - x2) dx 
- 2 

r (:2 + e• -x) dx 
• J (x - a)2 dx 
-· 

2 

5 

12 

15 

l • 

J (l - x) dx 3 J sin 2x dx 
0 0 

s- · 1 J�: (:2 + x) dx 2dx 6 
- 2  x 

• 
8 J (3 sin 3x + 2 cos 2x) dx 

0 
2 

10 J (x - l )(3x + l) dx 
- I  

I • 
J (elx - x2) dx 13 J (b - x)(x - a) dx 

0 • 
- 2 - I 

J St3 dt 16 f -t4 dt 
- I  I 
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I 
17 J (4u3 - 3u1) du 

0 
lw/4 

20 J csc 8 cot 8 d8. 
•/6 

Find dy/dx 

21 
" 

y =  f �8 d8 
0 
••• J: 

y = f ./t dt 
0 

23 

I 
18 J sin(u1) du 

I 

ll 

24 

y = - dt r+I l 
I t 
10 

y = J u4 du. 
Ja 

lS The point x moves to the right at the rate of 4 cm/�. Let A{x) be the area under 
the curve y • sin2 u between u = 0 and u - x. Find dA/dt when x - 1'l· The unit of 
length on the u- and the y-axes is the centimeter. 

26 Criticize: I l l l I' 2 dx - - - • - l - l -= - 2. 
- I X X - I 

4. A PPLICATIONS 

Area As applications of the definite integral. let us compute the areas of some 
regions bounded by curves. 

• EXAMPLE 1 Find the area of the region bounded by the curve y = 1 + x3, the 
two axes, and the line x = 1. 

Sohltio• The region (Fig. 1)  is simply the region under the graph of y = 1 + x3 
between x = 0 and x = 1. I ts area is 

• 

.I' 
1 = I  + x3 

)' 

x 

Fig. I 

• EXAMPLE 2 Find the area of the parabolic segment bounded by the curve y = x2 
and the line y = 2. 
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Sohttio11 Sketch the r�ion (Fig. 2). The line and the curve meet where x2 = y = 2, 
that is, where x = ± ..j2. To find the shaded area, compute the area under the curve 
and subtract it from the area of the rectangle: 

area = (2j2 )(2) - f /1. x2 dx = 4j2 = !x3 l.;z _ 

- .;J. - ./2 
= 4j2 - i{(J2)l - (-J2)l] = 4J2 - tJ2 = JJ2.  • 

I 1 b 1c r � When the integrand is J>O$itive, its definite integral is an area. 
How can we interpret an integral when the integrand is not always positive? First 
suppose/(x) < 0 on (a, b]. The integral of/(x) is the limit of approximating sums, 

. b  I f(x) dx = lim S(/, n, x� mesh(n)---o, 
. .  

" 

where S(/, n, x),= L f(x1)(x1 - x1_ 1 ). 

Each summand f (x 1)(x 1 - x J- 1) is the negative of the area of a rectangular strip 
(Fig. 3a) since /(x1) < 0. Therefore the limit is precisely the negative of the shaded 
area (Fig. 3b). In other words, the integral equals the negative of the shaded area: 

, b  J /(x) dx = -A . 
• 

y 

x, 
a XI I I Tl b u b 

I T x 

I / / I A I I I Y = f(x) I 

(a) Area of rectangle = -f(x1xx1 - x1_ 1 ) (b) Area of rqion: A = -J.b
f(x)dx 

Fia. 3 

In general, a continuous function on [a, b] may change sign several times, so its 
graph and the x-axis bound several regions, some above the x-axis, some below. 
We claim that its integral equals the algebraic swn of these areas-each area above 
the x-axis is added, each area below is subtracted. 
For instance consider the function in Fig. 4a. We have 

b t1 t2 b J /(x) dx = J /(x) dx + J /(x) dx + f f(x) dx. 
• • t1 ti 
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The middle term equals the area Al ,  but each of the two end terms equals the 
negative of an area, so 

. •  J /(x) dx = -A1  + Al - A3 • 
• 

So it goes in general. For example (Fig. 4b), we can sec without computing that 

2• J sin x dx = 0, 
0 

since the areas above and below the x-axis cancel. 
I' 

- I  

(a) Below, above, below (b) y • sin x 
Fig. 4 Continuous functions taking both signs 

x 

• EXAMPLE 3 One can of paint will cover SO ft2• How much paint is needed to 
cover the region bounded by y = sin x and the x-axis between x = 0 and x = 2x? 
Assume the unit on each axis is one yard. 

Sohdio• If we treat the problem carelessly and integrate sin x between 0 and 2x, 
we reach a ridiculous conclusion: it takes no paint at all to cover the region ! But 
remember, the integral 

• J f(x) dx 
• 

gives the actual area under y = f(x) only if f(x) � 0 between a and b. 
Look at Fig. 4b. The two humps of the curve have equal area: compute the 

area of the hump between 0 and x, then double the result . 
• J sin x dx = (-cos x) - (-cos 0) = 1 - ( - 1 )  = 2. 

0 

Thus the area of one hump is 2 yd2 = 18 ft2 ; the total area is 36 rt2• This will 
require ff =  0.72 cans of paint. • 

Mean Value of  a Function Consider this problem : Find the mean value 
(average value) of a function /(x) for a �  x � b. Now the (arithmetic) mean, or 
average, of numbers x1, • · . , x,, is defined by 

x 
= 

x, + . . . + x,, 
n 
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This formula won't work here because there are infinitely many values of f (x). 
Indeed, it is not at all clear what the "mean value" of a function is. So part of the 
problem is to define the problem, just as it was for slopes and areas. 

One possible approach is this. Take the mean of a large sample of the values off (x) : 
II 

M,,(f) = /(x1 ) + ·�. + f(x,,) = � L f(x1), 
J• l 

and see what happens to M 11(/) as n approaches co. For a fair sample, choose 
X1, . .  . ,  x,, well distributed throughout [a, b], just as a political pollster samples 
opinions in all parts of the country. 

This approach seems reasonable but hard to carry out. What saves the day is 
that M ,,(/) can be interpreted as an approximating sum of an integral. Partition 
[a, b] into n equal subintervals 

a0 = x0 < x 1 < · · · < x,, = b, b - a  with X} - XJ- l = -n (j = 1 2 · · · n) ' ' ' ' 

and let x1 be any point in the subinterval [x.1,_ 1, x1]. The sample X1, x2 , • . •  , x,. is 
then fairly well distributed throughout [a, bj. The corresponding approximating 
sum is 

II II 

\' ·b - a \' S(f, n. x) = L f(X1)(x1 - X1- d = -n- L f(x1>· 
J= l 1- 1 

Except for the factor b - a, the right-hand side equals the mean M,.(f) of the 
sample. Hence 

1 M,,(f) = b _ a  S(f, n, x). 

Now let n - co. The approximating sum approaches the integral; therefore 

l fb 
lim M,.(f) = .,,.-=--- /(x) dx. 
•-'° a • 

This reasoning motivates the following definition: 

Mean Value Let/(x) be an integrable function on [a, b]. Its mean value is 

M(f) = b �a f /(x) dx. 

The definition has a simple geometric interpretation: The algebraic area under /(x) 
between x = a and x = b equals the (algebraic) area of a rectangle with base b - a 
and height M(f). See Fig. S. 
• EXAMPLE 4 A 35-milligram (mg) sample of a certain radioactive substance 
decays in t days to 3Se-'110 mg. Compute the average mass ffl during the first three 
days. 
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Now 

,, /1 u " ,. 
Fis. 5 Geometric interpretation of the mean M(/): the shaded areas arc equal. 

The mean value of f(r) = 35e-1110 from t = 0 to t = 3 is 

m = _1 
_ 

13 f (r) dt = 35 13 e-1110 dt. 3 - 0 J0 3 J o 
e- 1110 = � (- l0e-1110� dt 

so an antiderivative of e-1110 is - lOe-1110. Therefore the average mass is 

m = Jf-(- l0e-1110) i: = -1¥(e-1110) 1: 
= -J¥(e-0·3 - I ) � -1¥(0.7408 - 1) � 30.24 mg. • 

Estimates of Sums The Evaluation Rule makes the computation of integrals 
easier than the computation of many finite sums. In certain cases, we can obtain 
estimates of difficult sums by relating them to integrals. The next example illustrates 
the idea. 
• EXAMPLE I Find a quick estimate for 

s,. = JI + J2 + . . .  + y'100. 
Sol11tion There is a connection between s,. and the integral of Jx on (0, 1]. Partition 
the interval by n equally spaced points, 

0 = Xo < X1 < x2 < · · · < X11 = 1, 
where xi = j/n. Choose xi = xi = j/n. The approximating sum is 

" " s(Jx , n, x) = Lf(xi)(xi - xi_ , ) = L'(�) � i• 1 i• I 

1 �Jj I � r: s,. = ;; L ;; = 
n3'2 L v 1 = n3'2 . i• I i• I 
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Now let n --+ oo :  

n��2 = s(Jx, n, x) --+ J: Jx dx = � x3'2 I: = � · 
Hence for large values of n, 

In particular, s100 � J(100)312 = J(1000) � 667. 
(Actually, to six significant figures, s100 � 671.463.) 
• EXAMPLE I Use the technique of Example 5 to estimate 12 + 22 + · · · + 3002• 
SollltiOll Let s,. = 1 2 + 22 + · · · + n2• As in Example 5, partition (0, 1), setting 
x1 = x1 = j/n. The approximating sum to the integral of f(x) = x2 is 

Let n --+  oo :  �; = S(x2, n ,  x) --+ J :x2 dx = �· 

Hence for large values of n, 

s,. 1 
- � n3 3 ' h . 1 3 t at is, s,. � J n . 

In particular, s300 � !(300)3 = 9 x 106• The precise value is 9,045,050. Our estimate 
is off by about 1 of 1 %. 

Remark 1 An exact formula for s. is known: 

n(n + I )(2n + I )  2n3 + 3n2 + n 1 3 1 
1 

1 s - = = - n  + - n  + - n. 
• 6 6 3 2 6 

As n increases, the term !n3 dominates the other two terms on the right. Thus s. � !n3 seems 
a reasonable estimate. But how can that be when the error, tn1 + in. increases as n does? 
The reason is simple: the relati� error approaches 0 as n - oo. For instance. when n is 
larae enough, !n3 will be more than 99.99°/o of the total !n3 + tn1 + in. 

Remark 2 Examples 5 and 6 illustrate order of mapit•e estimates, which predict ap
proximate values of large quantities. For example, 1 1  + 21 + · · · + 3001 is certainly large, but 
about how large? Is it on the order of 104 ? 101 ? 1010 ? 1010 ? 

EXERCISES 

Compute the area under the graph y = f(x) over the closed interval (a, b) 

I y - (x - 1)2, (1, 4) 2 y = 4 - x2, (-2, 2) 
3 y = 4(x - 3)1, (0, 6) • y - 4x - x2, (0, 4) 
5 y =cos x, [ -!x, !n] 6 y - sin 2x, (0, tir) 
1· y = sin x + 4 cos x, (0, 1'11 I y • x + sin x, (tt, 2ir) 
9 y - (x1 - 1 )1, [ - 1, 1) 10 y = e-2.., [ - I, 2). 



Find the area of the region determined by 

11 the y-axis, y = x3, and y = 8 
12 x � 0, y :2:: 0, and y = 1 - x2• 
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Find the geometric area of the region bounded by 

13 the x-axis, y = cos x, x = 0, and x = 11 
2 

14 the x-axis, y = x - 1• x = l, and x = 2 x 
15 the x-axis, y = x2 - Sx + 6, x = 0, and x = 3 
16 the x-axis, y = x2 - 1x + 12, x = l, and x = S. 
17 The graph y = x2, x � 0, may be looked at as the graph of x = Jy, y '2: 0. 

Show that this implies geometrically the relation 
. .I 

J x2 dx + J Jy dy = b3 (b > 0). 
0 0 

Now verify by computing the integrals. 
18 (cont) Find a similar formula for y = x3• 
19 Use your knowledge of the area of a circle to compute ( Ja2 - x2 dx. 

- ·  

20• (cont.) Find the area enclosed by the ellipse x2 y2 
- + - = 1 (a > 0, b > 0). az b2 

Find the mean value M(f) on [a, b) 

21 /(x) - x5, [ -2, 2] 
23 f (x) = x•, [O, 3) 
25 /(x) = r, [ - 1, I] 

ll /(x) = sin x, [ -!x, in] 
2' /(x) = 1/x3, [l, 2) 
26 /(x) = x", [O, b]. 

27 If x shares of a certain stock arc sold, the market value in dollars per share is 
V = 37 + (2.S x 11>6/(x + 500)2]. Find the average value per share on sales of 0 to 
2000 shares. 

28 Find the average area of circles with radius between l and 2 cm. 
29 The rainfall per day in Erewhon, x days after the beginning of the year, is R = 

(S.1 x 10-5)(651 1  + 366x - x2) cm. Estimate the average daily rainfall for the first 100 days of the year. 
30 A certain car, starting from rest, accelerates 1 1  ft/scc2• Find its average speed during the 

first 10 sec. 
31 Estimate 1 3 + 23 + 33 + . . · + n3 for large n. For n = 100, what is the relative error, 

given the exact expression in2(n + l )2 for the sum? 
32 Estimate J'l + .:/2 + J'3 + · · · + � for large n. 

5. APPROXI MATE I NTEG RATION 

In real-life situations, we must frequently approximate a definite integral rather 
than compute its exact value. This happens in two cases : 

Cue J The function to be integrated is given experimentally, say by a computer 
print-out. There is no formula for it. 

Ctue 2 We have a formula for the function, but we do not know an antiderivative. 
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Let us consider these cases. In Case l, we are given valuesf(x0�/(x1), • . .  ,/(x,.) 
at n + 1 points xr Usually the points are equally spaced on an interval : 

x0 = a, x1 = a  + h, x2 = a  + 2h, · · · ,  x,. = a +  nh = b. 
Thus, the interval (a, b] is divided into n equal subintervals, each of length 

b - a  h = - . n 
and we know the values of f (x) only at the division points x0 , • • · ,  x,.. We 
assume that there is a nice, smooth function/(x), having domain (a, b] and taking 
these values. 

Example (a, b] = (1 ,  3], n = 4, h = 0.5, 

x 1 1.0 l.S 2.0 2.S 3.0 

f(x1) 1.00 0.67 O.SO 0.40 0.33 

3 
Problem : From this data, find a reasonable estimate for f /(x) dx. 

1 
In Case 2, the problem is to estimate the integral of /(x) without knowing an 

antiderivative off (x ). 

Examples f3 dx , 
l x r.r. J o sin x2 dx, f•o r - dx. 

1 x 
Until now, we have not seen antiderivatives of the functions l/x, sin x2, r/x, so we 

cannot compute their integrals exactly. Still we should somehow be able to estimate 
them with reasonable accuracy. 

We shall handle Case 2 by computing values of /(x) at a number of equally spaced 
points and using these values to estimate the integral. Thus we shall treat both cases 
by the same method. It seems reasonable to expect better results in Case 2, however. 
Since we have a formula for f(x), we can compute more and more data points for 
greater and greater accuracy. In addition, we can use funher information aboutf(x) 
to find limits on the possible error in estimating the integral. 
Remark It is standard to use the letter h for (b - a)/n. The symbol iix is another standard 
notation. We prefer h here. 

Rectangu lar and Tr< pezo1dal Approxul'ations The simplest case of the 
problem is this: given/(a) and /(b)-nothing else-estimate 

• f /(x) dx . 
• 

Geometry (Fig. la) suggests two possible estimates by (algebraic) areas of rectangles: 
• • 

f f (x) dx ::::: (b - a)f (a) and f f (x) dx � (b - a) f (b). 
• • 

Notice that each uses only part of the data. Which is the better estimate? That 
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I' = j ( \ ) j(/1 ) 

h \' (/ b x 

(a) Two rectangular approximations (b) Over and under reel. approxi
mations, curve increasing 

. •  
Fis. l Approximations to J f(x) dx 

• 

depends onf(x). If f(x) is an increasing (or decreasing) function, at least we can say 
the following: 

If f(x) increases on [a, b], then (b _ •)/(•) ,;; r f(x) dx ,;; (b - •)f(b). 1 
This assertion is obvious geometrically (Fig. lb). 

Of the two rectangular approximations, (b - a)f(a) and (b - a)f(b), one is an 
overestimate and the other is an underestimate, at least when f(x) is increasing or 
decreasing on [a, b]. Common sense suggests averaging these estimates: 

f f(x) dx � (b - a) f(a); f(b) . 

Now we have used all the data-that is a good sign. Furthermore, the average 
!(b - a)[f(a) + f(b)] of the two rectangular areas is itself an area, the (algebraic) 

I' 

a ,, \" 

(a) Trapezoidal 
approximation 

II 

I 

h \" II h ,. 

(b) y = f(x) below chord; (c) y = f(x) above chord; 
trapezoid too large trapezoid too small 

b 
Fis. 2 Trapezoidal approximations to f /(x) dx . . 
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area of a trapezoid (Fig. 2a). The figure suggests that the trapezoidal area may be 
a reasonable approximation to the area under t'1e curve. 

Can we draw any conclusion about the trapezoidal approximation, knowing that 
/(x) increases? No. If /(x) lies below the chord (Fig. 2b), the trapezoidal estimate 
is too large; if /(x) lies above, it is too small (Fig. 2c). But if neither is the case 
(Fig. 2a), what happens is anybody's guess. 

ne TrapeLO de.I  Aul  The trapezoidal estimate of an integral may be inac
curate if [a, b] is a large interval (Fig. 3a). Hoping for a better estimate, we split 
[a, b] into n equal parts. On each subinterval we estimate the integral of /(x) by the 
area of a thin trapezoid, then add up these areas (Fig. 3b). The result is an ap
proximation called the Trapezoidal Rule. 

(/ 

(a) One bi& trapezoid: (b) Many thin trapezoids: 
inaccurate improved accuracy 

Fig. 3 Trapezoidal approximation 

To derive a workable formula, we write 

a = x0 < x1 < · · · < x,. = b, 
b - a  x1 - x1_ 1 = h = -n 

We apply the trapezoidal estimate on each subinterval : 

fb JJCI flCz JJC• /(x) dx = + + · · · + /(x) dx 
• .so .xa x.-1 

,.., (x _ x 
J(x0) + /(x1 ) + . . .  + (x _ x ) /(x,._ 1 ) + /(x,.) 

_, l of ·  2 II 11- l 2 
h 

= 2 [/(x0) + /(x1 ) + /(x1 ) + /(x2) + · · · + /(x,._1 ) + /(x,.)] 

h 
= 2 [/(x0) + 2/(x1) + 2/(x2) + · · · + 2/(x,,_ 1 ) + /(x,.)]. 

Trapezoidal Rule Let h = (b - a)/n, x1 = a +  jh, and Jj = /(x1). 

Then f /(x) dx � i [/0 + 2/1 + 2/2 + · · · + 2f,._ 1  + /,.]. 
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• EXAMPLE 1 Estimate 
f 3 dx with n = 2, 4, 10, 20, 100. 1 x 

Sol•tio11 When n = 2, we have x0 = 1 , x1 = 2, x1 = 3, and h = 1 ,  so 
f 3 dx 1 1 [ 1 2 1 ] 7 

1 � � 2 Uo + 2/1 + !21 = 2 1 + 2 + 3 = 6 � u 1. 

When n = 4, we have x0 = 1, x1 = ;, x2 = 2, x3 = ;, x4 = 3, and h = !. so 

f3 dx � � f 1 + 2(� + � + �) + �] = 
67� 1 . 1 17. 1 x 4 3 2 5 3 60 

For the larger values of n, we need some sort of computer facility. When n = 10, 
then h = 0.2 and f 3 dx � 0.2 [ 1 + 2(-l + _1 + . . .  + __!\ + -1] � 1.1016. 

1 x 2 1.2 1.4 2.8/ 3 
The corresponding results for n = 20 and n = 100 are 

Summary: 

J3 dx � 0. 1 [ 1 + 2(-1 + -1 + · · · + -l ) + �] � t.09935, 1 x 2 1 . 1 1.2 2.9 3 

fl dx � 0.02 f 1 + 2(-1- + . . .  + _1_) + !) � 1.098642. 1 x 2 1.02 2.98 3 
n 2 4 10 20 100 

approx. 1.17 1 . 1 17 1.1016 1.09935 1.098642 

Because/(x) = 1/x is convex on ( 1 , 3], each of the approximations is too large. Our 
computations yield approximations that decrease as n increases, a good sign. The 
actual value of the integral to nine places is 

J3 dx -� 1.098612289. 1 x • 

Rectang ular Rules We take the rectangle with base xJ - xJ- l and heightJj_ 1, 
the value of /(x) at the left end point of the interval (xJ_ 1, xl This leads to a 
left rectangular rule 

b J /(x) dx � h[/0 + /1 + · · · + f,._ 1). 
• 

See Fig. 4a. Similarly, we have a right rectangular rule (Fig. 4b) 
" 

f f(x) dx � h[f1 + f1 + · . . + fJ . 
• 

Since each of these ignores one datum, they are less desirable than the Trapewidal 
Rule. It should be no surprise that averaging these two approximations leads again 
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to the Trapezoidal Rule: 

f(x) dx � - Hfo + f1 + · · · + f,.- 1 ) + U1 + f2 + · · · + f..)] 
fb h 

• 2 

r 

u " 

(a) Left (b) Ri&ht 

Fi&- 4 Rectangular rules 

h � 

Terminology Formulas such as the Rectangular and Trapezoidal Rules for approximate 
integration are sometimes called numeric•I q1111drat•e formulas. The word quadrature by 
itself is an older term for integration. 

t:rror If /(x) is a linear function, then fb b - a  
• /(x) dx = -2- [!(a) + f(b)], 

as is easily checked. So the trapezoidal approximation is exact, which implies that 
the Trapezoidal Rule is exact for linear functions. Therefore the error in the 
Traperoidal Rule for a general function f(x) should depend on how far f(x) 
deviates from being linear. Now the second derivative of a linear function is zero, 
so the second derivative of a general function measures its deviation from linearity. 
Therefore we expect an error estimate in the Trapezoidal Rule to involve the second 
derivative of f(x). The following is such an estimate, but its proof is too hard to 
include. (However, see Ex. 18, p. 494.) 

Error in the Trapezoidal Rule Suppose lf"(x)I � M for a �  x � b. 

Then r f(x) dx = } Uo + 2/1 + . . .  + 2/,,- 1 + J..) + error, 

where I I Mnh3 M(b - a) h2 error < -- = . 
- 12 12 
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• EXAMPLE 2 Find an upper bound for the error in the Trapezoidal Rule 

f3 dx
_ with n = 100 for 1 x 

Sol11tio11 Setf(x) = l/x. Thenf"(x) = 2/x3, which has its largest value on [l, 3) at 
x = 1. Hence take M = f"(l) = 2. Since h = 0.02, we have 

I I Mnh3 2(100)(0.02)3 4 
10_4 1 4 10_4 error < -- ::;; = - x < . x . - 12 12 3 

• 

Remark In Chapter 10 we shall discuss more accurate methods or approximate integration. 

EXERCISES 

Approximate by the Trapezoidal Rule with n = 4 (three significant figures), n = 10 (four 
significant figures� and ir a programmable computer is available, n = SO (six significant figures) 

r dx r dx r x - 1  
2 3 --dx 

I X 0 x +  l I x + I 

f dx f x I 
4 

- 1 l + xl 5 --dx 6 r jt=7dx 
i l + xl • 0 

4 l 10 
7 r Jl+7 dx 8 r xr dx 9 J xe-• dx 

• 0 • 0 0 

10 ( exp(- x2) dx 11 f 2e - 1 '• dx 12 (r sin x dx 
• 0 • 1 • 0 

l l •/4 
13 f loglO x dx 14 r x loglO x dx 15 f tan x dx 

1 ' I 0 
• •/l •/4 

16 J x sin x dx 17 J x2 sin x dx 18 J sec x dx 
0 0 -� 
�l �l 

19 f sin2 x dx 20 J x cos x dx. 
0 0 

21 An automobile starting from rest accelerates for 15 sec. Velocity readings (in reet per 
second) taken at I-sec intervals are: 0, 0.5, 2.1, 4.7, 8.3, 13.0, 18.7, 25.5, 33.3, 43.1, 53.0, 
63.9, 75.9, 88.9, 102.9, 1 18.0. Estimate the distance the car traveled during this time. 

22 Soundings in reet are taken across a 90-ft river at 5-ft intervals, resulting in the readings: 
0, 1.0, 2.5, 5.0, 8.0, 10.5, 1 1.5, 12.0, 13.0, 12.5, 13.5, 16.0, 16.0, 14.0, 10.5, 9.0, 6.5, 4.0, 0. Ir 
the average current at this point in the river is 5 rt/sec, estimate, to the nearest million 
cubic reet, the daily flow or water . 

• 
The midpoint a,,..oxlmadoa is J f (x) dx � (b - a)f (x� x = !(a + b) . 

• 
More generally the interval is split into n equal subintervals and this approximation is used 
in each. Compare the exact value, Trapezoidal Rule with n = 2, and midpoint approximation 
with n = 2 
23 

( x2 dx 24 ( x3 dx 25 f 3 � dx 26 f 3 � dx. 
' 0  " I  1 X 1 X 

27 Show that the Trapezoidal Rule with n = 100 wiU yield at least four-place accuracy in 
approximating 

7 f e-• sin 2x dx. 
4 
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• 1  dx 
28 Show that the Trapezoidal Rule with n = 100 will approximate j -- to 

• 0 x3 + 10 
within 10-6. 

6 I NTEGRATION OF PROD UCTS 

The formula 

(U(x) + g(x)] dx = (!(x) dx + (u(x)dx . . . .. . .. 
gives us the integral of a sum of functions, provided we know the integral of each 
summand. Can we also find the integral of a product, 

b r /(x)g(x) dx, . .  
knowing the integrals of /(x) and g(x)? The answer in general is no. However, we 
can integrate many products of functions using two basic differentiation formulas, 
the Product Rule and the Chain Rule. 

Integration by Part: Recall the product rule for differentiation: 

d dv du 
dx [u(x)v(x)] = u(x) dx + v(x) dx . 

Turned around slightly, it reads 

dv d du u(x) dx = dx [u(x)v(x)] - v(x) dx . 

Now suppose we want an antiderivative for uv'. If we know an antiderivative F for 
the product vu', then uv - F is the desired antiderivative for uv'. Thus the problem 
of antidifferentiating (or integrating) the product uv' is transformed into the problem 
of antidifferentiating the product vu', which may be easier. Then again it may not be. 
These possibilities are illustrated in Example 1 .  

• EXAMPLE 1 Find an antiderivative of xex. 
Sohltion I Write xex = u(x)v'(x). There are two obvious choices: u(x) = x and 
v'(x) = ex, or the other way around. Try 

u(x) = ex, v'(x) = x. 
For v(x), take any antiderivative of x, say v(x) = !x2• Since u'(x) = ex, we have 

uv' = (uv)' - vu', d ( 1  2 ) 1 2 xex = dx 2 x ex - 2 x ex. 
This "reduces" the problem of antidifferentiating xex to that of antidifferentiating 
x2ex, hardly a simplification! 
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Sol•tio11 2 This time write 

xr = u(x)v'(x), u(x) = x, v'(x) = r. 

Then u' = I and one choice of v is v = r. Now the formula uv' = (uv)' - vu' reads 

d. 
xr = dx 

(x�) - r, 

which reduces antidiffcrentiation of xr to antidifferentiation of r. But we know an 
antidcrivativc of r, namely, r. Therefore 

d d d 
xr = - (xr) - - r = - (xr - r). 

dx dx dx 

We have integrated a new function ! 

(xr dx = (xr - r) r. 
. • J. • 

Because of the Evaluation Rule, this method of antidiffcrentiating uv' yields an 
important too) for computing integrals, called integration by parts. 

Integration by Parts If u(x), v(x), u'(x), and v'(x) are continuous on [a. b], 
then 

f u(x) :: dx = u(x)v(x) r. - r v(x) :: dx. 

Briefty, r uv' dx = UV L - r vu' dx. 

· " 
• EXAMPLE 2 Compute J x sin x dx. 

0 

Sohltio11 After the last example, we won't fall into the trap of "reducing" the 
integrand to x2 cos x. Instead we write 

x sin x = uv', U =  X, v' = sin x. 

Then v = -cos x is an antidcrivativc of sin x and u' = 1 .  Therefore 

(x sin x dx = uv j" 
- J "

vu' dx = - x cos x j" 
- J "

(-cos x) dx 
0 0 0 0 0 

= n + J cos x dx = n - sin x = n. 
" , .. 0 0 

• 

Successful appJication of integration by parts is tricky. It depends on "seeing" the 
integrand as a product uv', where you know both u and an antidcrivative of vu'. 
We shall return to this topic in Chapter 8. 
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Ch g We have exploited almost every differentiation formula 
we know to get integration formulas except one, the Chain Rule: 

d 
dx F[g(x)] = F'[g(x))g'(x). 

If we can "see" a product of two functions in the form F'[g(x)]g'(x), then we im
mediately have an antiderivative, F[g(x)]. This is not as hard as it sounds; with a 
little practice we can get used to looking at the Chain Rule the other way around. 

Examples 

sin3 x cos x = '!__ (! sin4 x). dx 4 
F(y) = y', g(x) = sin x. 

trl/l . x = '!__ trlJl, dx 
3x2 d 

--- = - J?+-4, 
2J?+4 dx 

F(y) = e', 

F(y) = Jy, 

1 g(x) = 2 x2. 

g(x) = x3 + 4. 

By the Fundamental Theorem, the Chain Rule allows us to evaluate integrals of 
products of the form F'[g(x)]g'(x): 

.( F'[g(x)]g'(x) dx = F(g(x)] (. 
The right-hand side of this relation can be interpreted in another way, again by 
the Fundamental Theorem: 

F[g(x)] r. = F[g(b)] - F[g(a)] = F(y) �b> = (b1F'(y) dy. 1 ... , . ... , 
This procedure is called a change of variable, since the problem is stated in terms 
of a variable x, but the computation is done in terms of a new variable y. 

Change of Variable Formula Assume F(y) and g(x) are differentiable 
functions with continuous derivatives, and that the composite function F[g(x)] is 
defined for a S x � b. Then 

Ib ( fflb) F'(g(x)]g'(x) dx = F[g(x)] = F'(y) dy. 
. ..� 

This is also called the Substitution Rule because y is substituted for g(x). We 
shall discuss the rule in more detail in Chapter 8, Sections 2 and 3. 

EXAMPLE 3 Compute 

So/11tio11 As noted before, 

•ll f sin3 x cos x dx. 
•/4 

sin3 x cos x = F'[g(x)]g'(x� where F(y) = h4 and g(x) = sin x. 
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Therefore an antiderivative is F(g(x)] = i sin4 x. Hence 

sin3 x cos x dx = - sin4 x = - l - - = -. 
f,•/2 1 ['2 l ( l ) 3 
•/4 4 /4 4 4 16 

As a slightly different approach, substitute y = sin x into F(y) = iY4• Then the 
formula in the box, with g(x) = sin x, yields 

, •/2 .l<•/21 I J sin3 x cos x dx = J F'(y) dy = f F'(y) dy 
•14 IC•/41 • ./2/2 

= F(y) 1· = ! y4 I ' = ! ( 1 - !) = ]__ . 
• ./2/2 4 .flil 4 4 16 

In practice, the Change of Variable Formula is often applied in a slightly different 
form, obtained by substituting the letter f for the continuous function F: 

J: f(g(x )]g'(x > dx � f:: f (y > dy. I 
ranslat1on As an application, we prove the following rule for translating 

(shifting) the variable. 

Translation Rule f b f(c + x) dx = fc+b 
/(x) dx. 

• c+• 

Let F(y} be any antiderivative of /(y), and set g(x) = c + x. Then 
F'(y) = /(y) and g'(x) = l, 

so 
b , b f(bl c+b c+b J f(c + x) dx = J F'[g(x)]g'(x) dx = J F'(y) dy = J /(y) dy = J /(x) dx. 
• • f(•) c+• c+• 

This translation formula has an obvious geometric interpretation (Fig. l ). 

y 

u h u + t' h + I' \' 

Fi&- I Translation rule: the shaded 
areas arc equal. 

h u u b \' 

Fig. l Rcftcction rule: the shaded areas 
arc equal. 
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Examples 
2 3 + 2 5 

J JX+ 3 dx = J JX dx = J .fi dx. 
1 3+ 1 4 

0 �4+0 �4 J cos(x + in) dx = J cos x dx = J cos x dx. 
-a/2 a/4-a/2 -a/4 

Reflection As a second application, we prove the following formula for reflection 
through the origin. 

Reflection Rule fb 

f(-x) dx = f-•
f(x) dx. 

• -b 

Again let F(y) be any antiderivative of /(y� but set g(x) = - x, so 

F(y) = f(y) and g'(x) = - 1. 
b b ICbl 

Then J /(-x) dx = -f F'[g(x)]g'(x) dx = -J F'(y) dy 
. . � 

-· -· -· 
= -J /(y) dy = J /(y) dy = J /(x) dx. 

-· -b -b 

This reflection formula, like the previous translation formula, also has a clear 
geometric interpretation (Fig. 2). We shall make good use of both formulas in the 
next section. 

Examples f: ( x2 - x - �) dx = f �: ( x2 + x + �) dx. 

EXERCISES 

Evaluate 

l 
• f x cos x dx 
0 
I J xe-2" dx 
- 1 

3 

10 - 1  
J e-"' dx = J e" dx. 

1 - 1 0  

1 
2 f xel>< dx 

• 0 
•14 

4 f x sin 2x dx. 
0 

5 Suppose F(x) is an antidcrivative or tan x. Find an antiderivativc or x sec2 x. 
6 Suppose. F(x) is an antidcrivativc or 1/x. Find an antidcrivative or xF(x). 

Evaluate 
I 

7 J 2x(x2 + 1)9 dx 
0 f2 9x2 

9 1 (x> + l )' 
dx 

Find an antidcrivativc 
ti x exp(x2) 

8 dx 
i• 4x3 + 2x 

0 (x4 + x2 + l )3 

10 f o 
( 

2 
x 

)
' dx. 

- I  X - 4  

12 r sin(r) 



13 (sin x) exp(cos x) 
15 (�x3 + l)Jx' + x 

Prove by inspection 
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3 0 2 1 
17 J .j2X+1dx = J J2x + S dx 0 - 1  18 f e-xl dx = f e-xl dx 0 -l 
19 f- 1 �= f'�dx 

_, e" + l I r + l 

l 1 
20 J (x2 - l )" dx - J X-(x + 2)" dx 0 - 1 

•• l• l 5 
22 J (x2 + 4x + 5)3 dx = J (x2 + 1)3 dx. 21 f r sin x dx = e1• I r sin x dx 

l• 0 -2 0 
7. SYM M ETRY 

Sometimes a definite integral 
" f f(x) dx 

• 
can be simplified because the integrand /(x) has certain symmetry. In this section, 
we discuss some labor-saving devices for evaluating integrals with visible symmetry. 
We always assume, without further mention, that the integrals in question exist. 

Even and Odd Functions 

Evan Functions If f (x) is an even function, that is, f ( -x) = f (x � then 

J:/(x) dx = 2 J:f(x) dx. 

• 0 • 
Since f f(x) dx = f f(x) dx + f f(x) dx, 

-· -· 0 
we must prove that 

/I 

0 • f f(x) dx = f f(x) dx. 
-· 0 

0 

Fig. I Even function : left area = right area. 

a 
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This is obvious from the graph (Fig. 1 ), and it follows easily by the reflection 
principle discussed in the preceding section: 

0 • • J f(x) dx = J f(-x) dx = f f(x) dx. 
-· 0 0 

•/2 f cos !x dx. 
-•/2 

EXAMPLE 1 Find 

So/11tio11 The integrand is an even function : 

cos(-!x) = cos(!x). 
•12 •/2 1"'2 Therefore J cos !x dx = 2 f cos !x dx = 6 sin ix = 6 sin ix = 3. 
-•/2 0 0 

Ldd Functions If /(x) is an odd function. that is, /(-x) = -/(4 then f:/(x) dx = 0. 

• 

This is obvious from a graph (Fig. 2), and it follows easily from the reflection 
principle: 

ti 

Examples 

• • • J f(x) dx = f f(-x) dx = -f
_/(x) dx, 

-· -· 

• 
2 f f (x) dx = 0, 

- · 

• f f(x) dx = 0. 
-· 

Fla. 2 Odd function : left area cancels right area. 

f•/4 
sin9 x dx = 0, 

-•/4 

f6 XS 
-4--

1 
dx = 0. 

-6 x + 
• EXAMPLE 2 Show that 

.>: 

3 

(a) J (x sin2 x - 14x3 + 1 )  dx = 6 
-3 

(b) f 10 -;----
4 dx = r•o -;----

4 
dx. 

- ·  x + J .  x + 

So/11tio11 (a) Write the integral as 

3 3 f (x sin2 x - 14x3) dx + f dx. 
-3 -3 
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The first integral is 0 because the integrand is odd; the second integral equals 6 by 
inspection. 

(b) The integrand is odd. Therefore f 10 x f 8 I 10 I 10 x --y--4 dx = + = 0 + --y--4 dx. 
- a x + - a  a a x + 

• 

0 the Sy in 'l... , The graph (Fig. 3a) of y = (x - 3)2 - 1 is symmetric with 
respect to the line x = 3. The graph (Fig. 3b) of y = i(x - 2)3 is symmetric with 
respect to the point (2, 0). It is clear from the figures that 

5 5 4 J [(x - 3)2 - I) dx = 2 J [(x - 3)2 - 1) dx, J i(x - 2)3 dx = 0. 
I 3 0 

,. 

I = ( X - J )1 - J I 
5 / 3 

(a) Symmetry with respect (b) Symmetry with respect 
to the line x = 3 to the point (2, 0) 

Fi&- 3 Other symmetries 

,. 

Symmetry with respect to the line x = c means that the value off at x units to the 
left of c equals the value of/ at x units to the right of c; that is,/(c - x) = f(c .+ x). 
Symmetry with respect to the point (c, 0) means that the value off at x units to the 
left of c equals the negative of the value off at x units to the right of c, that is, 
f(c - x) = -f(c + x). 

Other Symmetries 

( 1)  y = f(x) is symmetric with respect to the line x = c if  f(c - x) = f(c + x). 
Then 

r:: /(x) dx = 2 f +• /(x) dx. 

(2) y = f (x) is symmetric with respect to the point (c, 0) if/ (c - x) = -! (c + x). 
Then f•+• •-• /(x) dx = 0. 
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The integral formulas follow directly from the corresponding formulas for even and 
odd functions-via the translation formula discussed in the last section. For, set 
g(x) = f(c + x). If /(c - x) = f(c + x), then g(-x) = g(x), so g(x) is an even 
function. Then 

t+• • • 
J /(x) dx = J /(c + x) dx = J g(x) dx 

e-• -• -• 
• • t+• 

= 2 J g(x) dx = 2 J f(c + x) dx = 2 J /(x) dx. 
0 0 e 

If /(c - x) = -f(c + x), then g(x) = f(c + x) is an odd function, and a similar 
argument applies. 

• EXAMPLE 3 Find 
s f x(x - l )(x - 2)(x - 3)(x - 4)(x - 5)(x - 6) dx. 

. l 
So/11tion (3, 0) is a point of symmetry. To see this, set /(x) = x(x - l )  · · · (x - 6). 
Then 

/(3 + x) = (3 + x)(2 + x)(l + x)x( - 1  + x)(-2 + x)(-3  + x) 

is an odd function :/(3 - x) = -/(3 + x). Therefore 
s 3 + 2 

J f(x) dx = J /(x) dx = 0. 
l 3- 2 

Periodic Functions A function /(x) is periodic of period p if 
/(x + p) = /(x). 

• 

The most familiar periodic functions are the trigonometric functions. We now note 
two basic properties of integrals of periodic functions: 

Suppose/(x) has period p. Then 

fb+ p fb ( l )  f(x) dx = f(x) clx. a+p • 

" " 

fa+p f P (2) 
• 

/(x) dx = 
0 

/(x) dx. 

,, <l + /I �/I ,. 

Fis. 4 Translation for a periodic function 
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The first relation is a special case of the translation formula. Its geometric content 
is clear from Fig. 4. The second relation is of a different nature; it says that all 
integrals of f(x) over intervals of length p are equal. Its proof uses translation, but 
not directly (Fig. 5). 

/I (II - I )fl 8' u 

B" 
II/I 

Fig. 5 area B" = area 8': hence C + BH = C + 8' = 8' + C = A, 

• • p  , 
that is, f /(x) dx = r /(x) dx for any a. 

• • • 0 
Choose n so that (n - I )p � a < np. Then 

• + p  np • + p  J /(x) dx = J /(x) dx + J /(x) dx. 
. . ,., 

.+, • 

By periodicity, J f (x) dx = J f (x) dx. 
,., (1t- l )p 

•• , q • q 
Hence J f (x) dx = J f (x) dx + J f (x) dx = J f (x) dx. 

• • (1t- l)p (1t- l)p 

Clearly /(x) = /(x + p) = f(x + 2p) = · · · = /(x + (n - l )p), hence 
,.,, np-(11- l)p p J /(x) dx = J /(x) dx = J /(x) dx. 
(lt- 1), (lt- 1),-(,.- l)p 0 

This completes the proof of (2). 

• EXAMPLE 4 Let /(y) be continuous on [- 1, I). Prove 
• 211 211 J f (sin x) dx = J f (cos x) dx. 
0 0 

Sol•tiot1 The integrand has period p = 2n. Apply (2) with a =  in :  
2. 211 +•/2 J /(sin x) dx = J /(sin x) dx. 

0 11/2 

By the translation formula, 
2•+11/2 211 J /(sin x) dx = J /[sin(x + in)] dx. 
�2 0 

II + fl \" 
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But sin(x + !n) = cos x. so 
2• 2• J /(sin x) dx = J /(cos x) dx. 

0 0 

Example Take /(y) = Jf+?. Then 

2. 2• J J 1 + sin3 x dx = J J 1 + cos3 x dx. 
0 0 

2• 
EXAMPLE I Use Example 4 to find J sin2 9x dx. 

0 
So,,,tio• Set 

2• 
A = J cos2 9x dx 

0 
and 

2. B = J sin2 9x dx. 
0 

By Example 4, we have A = B, so A + B = 2B. But 
2• 2• A +  B = J (cos2 9x + sin2 9x) dx = J dx = 2n. 

0 0 

Therefore. A = B = n. 

Determine all lines of symmetry x = c and all points (c, 0) of symmetry 
1 y = (cos x) exp(x2) 2 y = x3 - 5x 
3 y = (x2 - l )(x + 3) 4 y = (x2 + 2x)(x + 3)(x + 5) 
5 y • Sin X + COS X 6 y = (x2 + X + tr I 
7 y = [ l  + (x + 1 )2)112 8 y = exp(sin x). 

• 

• 

Reduce by symmetry (and periodicity) to an integral over a shorter interval, but do not 
evaluate 

2 
9 f {x3 - 5x) dx 

- I 

1 1  r 2x - l 
_2 x2 - x + 1 dx 
l• 

13 f (sin x + cos x) dx 0 
l• 

15 f sin' x dx 
0 

' 
10 f sin(x2) dx 

_, 
12 

14 

0 f Jx2 + 4x + 6 dx 
_, 
• f (sin x + cos x) dx 

0 

16 dx f,3• sin x 
0 2 +cos x 

100. ' 
17 f sin(nx - 4) dx 18 f sin(11:x + 3) dx. 

- 1 00• I 

19 Find all functions/(x) defined on [-a, a) that are both even and odd. 
20 Suppose /(x) is defined for - oo < x < oo and has both x - 0 and x = c as axes of 

symmetry, where c > 0. Show that/(x) is periodic. 
A function y = /(x), defined on the interval [a - h, a +  h), is symmetric in (a, b) if 

f(a - x) + f(a + x) ... b, 
2 

0 s x s h. 
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•+• 

21 Show that b = f (a) and find J /(x) dx. 
·-· 

n• (cont.) Show that the Trapezoidal Rule on [a - h, a +  h], with any n, gives the exact 
integral. 

8. I N EQUALITIES A N D  ESTIMATES 

Inequalities The definite integraJ satisfies a number of inequalities that have 
useful applications. 

Inequalities Let/(x) and g(x) be integrable on [a, b]. 

( 1 ) If /(x)
. 
� 0, then f: /(x) dx � 0. 

(2) If /(x) $ g(x1 then r f(x) dx $ r g(x) dx. 

(3) If m sf(x) $ M, then m(b - a) � f f(x) dx $ M(b - a). 

(4) I r f(x) dx I s r l f(x) I dx. 

(5) If l/(x)I $ M, then 
I
r f(x)g(x) dx I $ M r lg(x) I dx. 

Inequality ( 1 )  was already given in Section 3. Inequality (2) follows easily, because 
if /(x) $ g(x1 then g(x) - /(x) � 0 and (1)  applies: 

• • • J g(x) dx - J /(x) dx = J [g(x) - f(x)] dx � 0, 
• • • 

so J/ $ J g. Now (3) is a direct consequence of (2). For instance, from m $ /(x) 
follows 

• • • J m dx $ J /(x) dx, m(b - a) $ J /(x) dx. 
• • • 

Inequality (4)also follows from (2) because/(x) $ l/(x)I and -/(x) $ l/(x)I. If we 
take for granted the (non-obvious) fact that l/(x)I is integrable, then 

• • • • J /(x) dx S J  l/(x)I dx and -J /(x) dx $ J l /(x)I dx. 
• • • • 

Therefore I ( /(x) dx I = max( ( /(x) dx, -( f(x) dx) $ (If (x) I dx. 

Inequality (5) follows easily: 

l (f(x)g(x) dx I $  (1/(x)g(x)I dx $ (Mlg(x)I dx = M (lg(x)I dx. 



248 5. I NTEG RATION 

We are taking for granted the (again non-obvious) fact that the productf(x)g(x) is 
integrable. 

• EXAMPLE 1 Prove 
•/3 • •/3 

(a) J sin5 x dx :s;; I sin4 x dx 
0 • 0 . 4  . 4 r 4 

(b) J'J I x2 dx 5 I x2J3 + e-" dx :s;; 2 x2 dx. ' l ' I ' I 
So/11tio11 (a) If 0 5 x :s;; !n. then 

0 5 sin x < 1, hence sin5 x 5 sin4 x. 

Now integrate this inequality, that is, apply (2). 
(b) If x :2:: 0, then 0 < e-" 5 1. Therefore 

J3+0 < J3 + e-" 5 J3 + 1 = 2, so x2.J3 :=::;; x2J3 + e-" :=::;; 2x2• 

Now apply (2). 

• EXAMPLE 2 Prove 
b b b 

2 J. f(x)g(x) dx 5 J 
• 

f2(x) dx + J 
• 
g2(x) dx. 

So/11tio11 From [f(x) - g(x)]2 � 0 follows 

f2(x) + g2(x) :2:: 2f(x)g(x) 

Now apply (2). 

• 

Remark Inequalities ( 1 )-(5) can be sharpened somewhat because of the following fact, which 
we give without proof. If /(x) � 0 and continuous on [a, b], and if /{x) > 0 at some point 
of the interval, then 

. •  J /(x) dx > 0 . 
• 

Thus for continuous functions, strict inequality implies strict inequality in ( 1 ). The same 
statement applies to (2� (3), and (5) as well. For instance, the result of Example l(a) can 
be stated as 

• ell c/J J sin5 x dx < J sin' x dx. 
0 0 

The inequality is strict because sin5 x < sin' x for 0 < x :;;; tn and both functions are 
continuous. 

Est1 nates We have seen that accurate estimates of difficult integrals can be 
obtained by approximate integration. Sometimes, however, only rough estimates 
are needed. In such cases, quick estimates are usually possible via simple techniques 
based on inequalities. 

• EXAMPLE 3 Show that 
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So/11tio11 
1 1 

-- < - for x > 0, hence 
1 + x4 x4 

f 3 dx f 3 dx - 1 13 1 1 1 
1 1 + x• < 

1 x4 = 3x3 1 
= 3 

-
81 

< 
3 · • 

Remark Example 3 illustrates an important technique: replacing the integrand by a slightly 
larger one that is easily integrated. Generally, this technique yields better results than does 
use of inequality (3). For instance, all we can deduce from (3) is fl 

I 
dx 

• < I. 
1 + x 

(Here a =  I, b = 3, and M = t. the largest value of 1/(1 + x4) in the interval l s; x s; 3.) 
Nevertheless, (3) is effective when great accuracy is not needed. 

• EXAMPLE 4 Estimate f 8 dx 
6 x3 + x + sin 2x · 

Sol11tio11 Find bounds for the integrand. Since - 1 S sin 2x ;s; 1 and x3 + x is 
increasing (positive derivative� 

221 = 63 + 6 - 1 < x3 + x + sin 2x < 83 + 8 + 1 = 521 

in the range 6 s x s 8. Take reciprocals (and reverse inequalities): 

1 .9 x l0-3 <
52

1 
< 

3 
1

. 2 
<

22
1
1

< 4.6 x lo- 3 for 6 s x s 8. 
1 x + x + sm x 

By inequality (3), 3 I, dx 
9 2 o-3 3.8 x 10- < 3 • 

2 
< . x 1 . 6 x + x + sm x 

• EXAMPLE I Show that I J: ( l
s� :)2 dx I S � · 

So/11ti011 Since l sin xi s 1, we use (5): 

I I: (t� =)2 dx I S J: I 1 �xl2 = J: ( 1::)2 = 1 �1
x I: - 3 - 6 = � · 

• 

• 

• 3 100 

• EXAMPLE I Show J e- "1 dx is a good approximation for J e- "1 dx. 
0 0 

How good? 

So1"ti01t The error in this approximation is 
100 3 100 f e- "2 dx - J e- xl dx = J e- "2 dx. 

0 0 3 
Since e-"2 is extremely small even for moderate values of x, the integral on the right 
is small. Estimate the integral by (3). Because e- "2 is a decreasing function, its 
largest value in the interval 3 � x s 100 occurs at the left end point; this value is 
e- 9• By (3), 

, 100 J e- "2 dx < (100 - 3)e-9 < (97)(1.3 x 10-4) < 1.3 x 10-2• 
3 
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A better estimate can be obtained using (2). Note that x2 � 3x when x � 3. In 
In this range therefore, e- "2 � e- J:ic (which can be integrated). Hence 

e-"2 dx � e- 3" dx = -- = - - -- < - < ----
f 100 f 100 e- l:ic 1100 e-9  e- 300 e- 9 1.3 x 10-• 
3 3 - 3  3 3 3 3 3 

< S x 10- s. • 

Remark This example illustrates an important labor-saving device. If you intend to estimate 

100 f e-"' dx 
0 

by an approximate integration method, like the Trapezoidal Rule, you can save a great deal of 
work by applying the method to 

• J I e-"' dx . 
• 0 

Ignoring the rest of the integral introduces an error less than 5 x 10- 5• If that is not precise 
enough, you might apply approximate integration to 

4 f 
e-"' Jx. 

0 

Then by the same argument as in the example, ignoring the rest of the integral introduces an 
error less than ie- 16 < 3 x 10-•. 

In the following exercises you are asked to find bounds for certain integrals. There are 
generally several ways to estimate each integral. Try to obtain the bound given or to improve 
on it. If you cannot, at least find some bound. 

Show 

3 

5 

7 

9 

I < I exp(x2) < e - I r dx r J3 + 2x r Jx 3 - < clx < 4 -3 x  J X 3 x  

foo 
0 

e-" sin2 x Jx < I 

6 < --·._-· - 1/x < 10 rl 
� 

5 .j5 + 4x 

< < 1t 1•12 J(J 1t 

2 o JI- k2 sin1 6 2J1 - k1 
(0 < k < I )  

2 

4 

6 

8 

10 

r dx r Jx I 

o 4 + � < 
O 4 + x3 < 4 

- <  < -I r dx I 

1 5  1 x3 + 3x + I 5 3 r dx 3 
10 

< 
1 x1 + x + I <

 4 
2 <  · · · · -· < 4 r dx 

0 I + sin2 x 

sin 26 cos 6 d6 < -f'J 3 
0 4 

I I  
1 5  fl 15 - < x32-" 1/x < -
16 I 8 

12 --(I - e- 1 )  < --- Jx < -9 f 10 I - e·" 9 
10 I X2 10 

13 f 1 sin x + cos x dx < ! .J2 14• Jo ( 1 + x)2 2 
[Hint sin x + cos x = J2 cos(x - in).) 

2 _ .J3 r·16 2 (lt) l/2 ·./2-- < Jo JSinX Jx < 
3 6 . 
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15 Prove - < - < -7 f 1 dx 5 

12 I X 6 by splitting the interval (1, 2] into two parts. fl dx b . ·1ar . 
16 (cont.) Obtain bounds for --1 y a s1m1 computation. 

I 1 + X 

17 Prove 2 - J2 < f 1 dx < 2(J2 - 1 )  by comparing the integrand to functions you 
I X 

can integrate. [Hint x112 < x < x3'1 for x > I.] 
18• (cont.) Prove the same inequality by splitting the interval into two cleverly chosen 

unequal pans. 10 100 
19 Estimate how closely J e-" sin2 x dx approximates J e-" sin1 x dx. 

0 � 

20 Find a as small as you can so that 

within 5 x 10- 5• 

f• 1 + s;n x dx 
I X 

f 200 1 + sin x 
approximates 5 dx 

I X 

• • 
21• Suppose J /(x)2 dx = 0. Prove that J f(x')g(x) dx = 0 for each integrable g(x� 

• • 

[Hint Use Example 2; replace g(x) by ±sg(4] 
n• (cont.) For any integrable/(x) and g(x� prove (( f(x')g(x) dx) 1 s (( f(x)2 dx) (( g(x)1 dx ) · 

[Hint Set Jf2 • A, Jfg • B, Jg2 • C  and consider J<JCf - JAg)1.] 
• • • 

23 (cont.) Prove J [f(x) + g(x)]2 dx s J /(x)2 dx + J g(x)2 dx. 
• • • 

[Hint Write (/ + g)2 = f (f + g) + g(f + g) and use Ex. 22.] 
24• Prove f [f'(t)]2 dt <!!: [f(b) 

b-!:a
)]2 • Assume a < b. [Hint Use Ex. 22.] 

9. I NSIG HTS I NTO I NTEG RATION 

In this section we modify the approach to integration via approximating sums, 
and examine the reasons behind certain fundamental properties of the integral. 
To a large extent we shall start from scratch. 
Step Function Our basic strategy will be to approximate integrable functions 
by functions of a very simple type, piecewise constant functions. 

Definition A step function on [a, b] is a function s(x) that is piecewise 
constant. That is, there is a partition n : 

a = x0 < x1 < · · · < x11_ 1  < x., = b 

of [a, b] into a finite number of subintervals such that s(x) is constant on each 
open interval x 1_ 1 < x < x 1 for j = 1, . . . , n. The values s(x 1) at the partition points 
can be anything. 
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See Fig. I for an illustration of a step function. 

y 
• 

I 
1----( ) ( 

a = xo x, Xl X3 

Fig. I Step function 

• 

• 

Step functions can be combined in various ways to form new ·step functions. 

I If s1 (x) and s1(x) are step functions on [a, b) and k is a constant, then each of 1 the following is also a step function: 

s1(x) + s1(x), ks1 (x), l s1 (x)I. s1 (x)s2(x). 

The proof is routine. You lump together all of the partition points for s 1 (x) 
with all of those for s2(x) into one long string: 

a = �o < z1 < z2 < · · · < z,,. = b. 

Then s1 (x) and s2(x) are both constant on z1_ 1 < x < z1 , etc. 
We define the integral of a step function in a natural way, motivated by the 

area of rectangles. 

f Definition Let s(x) be a step function on [a, b) with partition points 

a = x0 < x 1 < · · · < x,,, = b. 

Suppose s(x) = B1 for x1_ 1 < x < Xr The integral of s(x) on [a, b) is 
J11

s(x) dx = i Bj.x1 - x1_ 1 ). 
• /• l 

Note that the values s(x ) at the partition points do not enter into the formula. 
Note also that if some additional partition points are inserted, then the integral does 
not change. If s(x) is constant, then s(x) = B on a < x < b and 

" f s(x) dx = B(b - a) . 
• 

Here are the main properties of the integrals of step functions. The (easy) proofs 
are left as exercises. 
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Theorem Let s, s1, and s2 be step functions on [a, b]. Then 

( 1 )  f (s1 + s2)(x) dx = f s1(x) dx + f s2(x) dx. 

(2) f ks(x) dx = k f s(x) dx. 

(3) If s(x) � O  for all x e (a. b], then fs(x) dx 2: 0. 

(4) If s1(x) s; s2(x) for all x e [a, bj, then f s1(x) dx s; f s2(x) dx. 

(5) If a <  c < b, then f s(x) dx = f s(x) dx + f s(x) dx. 

' I" r We deal only with bounded functionsf(x) on [a, b]. If lf(x)I s; B 
for all x e [a. b1 then there exist some step functions s(x) and S(x) such that 
(*) s(x) s; f(x) s; S(x) for all x. 
For example s(x) = -B and S(x) = B. We are interested in all step functions that 
satisfy (*). By studying the integrals of all such functions we hope to squeeze down 
on the "area" under the graph off. See Fig. 2. 

l' 

ti \' 

Fig. 2 Squeezing a function between two step functions: s(x) s/(x) s S(x). 

Definition A bounded function /(x) on [a. b] is integrable if for each & > 0, 
there exist step functions s and S such that 
( 1)  s(x) s; f(x) s; S(x) for all x e [a, b], _J (2) f S(x) dx -f s(x) dx < &. 

Thus f (x) is integrable provided its graph can be squeezed between the graphs of 
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two step functions whose integrals are as close together as we please. If f (x) is 
integrable on [a, b], we can assign to /(x) a number called its integral. 

Theorem Let /(x) be integrable on [a, b]. Then there exists a unique real 
number I with the following property: If s(x) and S(x) are any step functions 
satisfying s(x) � /(x) � S(x), then 

f s(x) dx 5 J 5 f:s(x) dx. 

The number I is called the intep-al of /(x) on [a, b], and is written 

I = J: f (x) dx. 

The existence of at least one such number I follows from certain very basic 
propenies of the real number system that are beyond the scope of this course. 
However, the uniqueness of I is not hard to prove from the integrability of /(x). 
For suppose there were two numbers / 1 and I 2 , both satisfying 

b b 
f s(x) dx 5 I 5 f S(x) dx 

• • 

for every pair of step functions such that s(x) s; f (x) s; S(x ). Since f (x) is integrable, 
given any t > 0, there are such step functions satisfying 

b b f S(x) dx - f s(x) dx < t. 

• • 

This implies that / 1 and / 2 must be written t of each other, that is, I I 1 - 12 I < t. 

Since t can be any positive number, it follows that I I 1 - 12 I = 0, / 1 = / 2 .  

Remark The integral we have defined is called the Riema• intepal and integrable functions 
are also called R-latepable. There are other integrals that apply to even more functions 
than does the R-integral. (Riemann is pronounced rce'-mahn.) 

Cont nuous Functions Our next goal is to justify the very important theorem, 
asserted in Section 3, that every continuous function on an interval [a, b] is 
integrable. This fact depends on two properties of continuous functions that we shall 
have to accept since their proofs are too technical for this course. The first of these 
we have already met on p. 146: 

Let/(x) be continuous on a closed interval [a, b]. Then/(x) is bounded and has 
both a maximum and a minimum on [a, b]. That is, there exist points z and w 
in [a, b] such that 

f (z) s; f (x) s; f (w) for all x in [a, b]. 

The second property of continuous functions is called uniform continuity. 
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r
Definition A function /(x) with domain [a, b] is uniformly continuous if for 
each e > 0 there exists b > 0 such that 

l f(z) - /(w) I < £ whenever l z  - w l  < b. 

This looks much like the definition of continuity, but there is a difference lurking 
in the word "uniformly". Remember that/(x) is continuous on [a, b] provided /(x) 
is continuous at each point of [a, b]. Now /(x) is continuous at c if for each t > 0 
there exists b > O such that lf(x) - /(c)I < £ whenever Ix - c l < b. Here b depends 
on c. Change c and you may need a much smaller b. Uniform continuity means 
that, given e, there is one single b that works at all points of the interval. 

Now we can state the new basic property of continuous functions. 

I 
Theorem Let /(x) be continuous on a closed interval [a, b]. Then /(x) is 
uniformly continuous on [a, b ]. 

The operating word in the theorem is "closed". Without it, the theorem is false. 
For example, on the open interval 0 < x < 1, the function /(x) = 1/x is continuous 
but not uniformly continuous. Given £ > 0, the closer x is to 0 the smaller b must 
be. In fact '5 - 0  as x -o+. Therefore, no single b can work at all points 
of this interval. 

We are nearly ready to prove that every continuous function is integrable. We 
shall use a corollary of the last theorem. 

Corollary Let/(x) be continuous on [a, b] and let £ > 0. Then there exist step 
functions s(x) and S(x) such that 

s(x) � /(x) � S(x) and S(x) - s(x) < £. 

Proof By the theorem, /(x) is uniformly continuous on (a, b]. Hence there 
exists b > 0 such that 

lf(z) - /(w)I < £ whenever lz - wl < '5. 

Choose n so large that (b - a)/n < b. Then partition [a, b) into n equal subintervals; 
each will have length less than '5: 

Il :  a =  x0 < x1 < xl < · · · < x" = b. 
On thej-th (closed) subinterval [x1_ 1, x1], the values of/(x) vary very little. In fact, 
if z and w are any two points of this subinterval, then lz - w l  < t5, so 

Define 
l/(z) - /(w) I < £. 

M1 = max{f(x) I x1_ 1 � x � x1}. 
m1 = min{/ (x) I x1_ 1 � x � x1}. 

By the basic max and min property of continuous functions, M1 = f(z1) and 
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m1 = f(w1) for some points z1 and w1 of [x1_ 1, xJJ. By uniform continuity, 

Mi - mi < e (i = 1 ,  2, · · · , n). 

Now define step functions S(x) and s(x) by 

Clearly, 

- {Mi S(x) - f(xi) 
- {mJ s(x) - /(xi) 

s(x) � f(x) � S(x) 

if 
XJ- l  < X < XJ 
x = xi' 

if 
Xi- l  < X < Xi 

X = Xr 
and S(x) - s(x) < e. 

This completes the proof of the corollary. The main theorem now follows easily. 

Theorem Each continuous function on [a, b] is integrable. 

Proof Let /(x) be continuous on [a, b]. Given e > 0, we must produce step 
functions S(x) � /(x) � s(x) such that 

b b J S(x) dx - J s(x) dx < e. • • 
Apply the corollary, but with e replaced by e/(b - a): There exist step functions 
S(x) � /(x) � s(x) such that S(x) - s(x) < e/(b - a). It follows that 

f S(x) dx -f s(x) dx = f)s(x) - s(x)] dx < f b �a dx = (b - a) 
b �a = e. 

Therefore f (x) is integrable. 

Properties OT meJ als The various formal properties of integrals hat we 
have studied. such as 

b b b J [/(x) + g(x)] dx = J /(x) dx + J g(x) dx, 
. .. .. 

b f /(x) dx 2! 0 . if /(x) 2! 0, 
.. 

b t b 

J /(x) dx = J /(x) dx + J /(x) dx, 
• .. t 

can be proved in detail via step functions and the definitions we have given. The 
proofs, however, are tedious and not too useful to us at this point. 

The Fu ndamental Tneorem of Calculus We now come to the most im
portant thing in this section, a proof of the Fundamental Theorem, that important 
link between differential and integral calculus. Actually, there are two related 
theorems each of which is sometimes called the Fundamental Theorem. The first 
says that if /(x) is continuous, then 

F(x) = r /(t) dt 
.. 
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is an antiderivative of f(x) and 
b J f(x) dx = F(b) - F(a) . 

• 

The second says that if the derivative F'(x) is integrable, then 
b f F'(x) dt = F(b) - F(a) . 

• 

We shall prove both versions. 

Fundamental Theorem Let/(x) be continuous on [a, b] and set 

F(x) = t f(t) dt. 
Then F(x) is differentiable on [a, b] and 

d 
dx F(x) = f(x). 

Proof Given t > 0, we must produce {J > 0 such that 

I F(x + � - F(x) - f(x) I < t whenever I h I < fJ. 

Since f is continuous, there exists {J > 0 such that 

But 

and 

so 

l/(t) - f(x)I < t whenever I t - x i < fJ. 

F(x + h) - F(x) = ((+11 -()!(t) dt = (+11/(t) dt 
f(x) = f(x)(� f:Hdt} = � f :+11f(x) dt, 

I F(x + h� - F(x) - f(x) I = I � f :+11/(t) dt - � f :+11 f(x) dt I 
= I � f :+11[/(t) - f(x)] dt I �  I � f :+11 lf(t) - f(x)I dt I <  I � .r:Ht dt l = t, 

provided I h I < fJ. (The extra bars in the next to last expression are to allow for h 
negative.) This completes the proof., 

This theorem guarantees that every continuous function has an antiderivative. 
(But it is of little practical help for exhibiting an explicit antiderivative.) 
• EXAMPLE 1 (a) Find an antiderivative of f (x) = 1/(1 + x1). 

(b) Use it to evaluate J1 dx o I +  xz · 
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f" dt Sohttioll (a) Since/ (x) is a continuous function, F(x) = -
1 -2 0 + t  

is an antiderivative. f 1 dx 1 1 f 1 dt (b) -
1 -2 = F(x) = -

1 -2· o + x o o + t  • 

Remark This example shows that merely knowing that an antiderivative exists and giving 
it a name are insufficient for evaluating an integral. (See Example 2, p. 334 for the 
integral in (b).) 

Let us pass to the second version of the Fundamental Theorem. The proof will 
depend on the following lemma: 

Lemma Let F(x) be continuous on [a, b) and let F'(x) exist for a <  x < b. J 
Suppose 

n s F'(x) s M. 
Then m(b - a) S F(b) - F(a) S M(b - a). 

Proof Let us prove only the right-hand inequality. The other is proved similarly. 
We set 

G(x) =- M(x - a) - F(4 
Then G(x) is continuous on [a, b) and differentiable for a <  x < b. What is more, 

G'(x) = M - F'(x) � 0. 

Therefore G(x) is an increasing function (as proved on p. 150). Hence G(b) � G(a� 
that is, 

M(b - a) - F(b) � F(a� M(b - a) � F(b) - F(a). 

Fundamental Theor.,, Let F(x) be differentiable on [a, b), and assume that 
F'(x) is integrable on [a, b). Then 

J: F(x) dx - F(b) - F(a) - F(x{ J 
Proof Let s(x) and S(x) be any pair of step functions on [a, b) such that 

s(x) S F'(x) s S(x). 
Let a = Xo < Xi < X2 < . . .  < x,. = b 
be a partition of [a, b) such that both S(x) and s(x) are constant on each 
subinterval xJ_ 1 < x < Xr By the lemma, 

(' s(x) dx S F(xJ) - F(xJ_ 1) S r S(x) dx. 
"J- 1 "J- 1  
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Sum these inequalities; the inside sum telescopes: 
b b 

f s(x) dx s F(b) - F(a) s f S(x) dx. 
• • 

But F'(x) is integrable, so 
b 

I =  f F'(x) dx 
• 

is the unique real number such that Js :S I  :S JS for all step functions satisfying 
s(x) s F'(x) s S(x� We have just seen that F(b) - F(a) is such a number. Therefore 

b f F'(x) dx = F(b) - F(a� 
• 

Remark Note that F'(x) is merely assumed integrable, not necessarily continuous, in this 
version of the Fundamental Theorem. 

EXERCISES 

Prove the following parts of the theorem on p. 253. 

I �rt l 2 �rt 2 
4 �rt 4 5 �rt 5. 

3 �rt 3 

1 1 

6 Let f (x) = x on (0, 1). Find step functions s(x) S: f (x) S: S(x) so that f S - f s < 0.1. 0 0 l l 
7 Let /(x) = x2 on (0, 1). Find step functions s(x) s: f(x) s: S(x) so that J S - f s < !. 

0 0 
(Can you do it with two steps?) 

8 Suppose /(x) is continuous on (a, b], f (x) � 0, and J: /(x) dx = 0. Prove that 
f (x) = 0 on (a, b). 

9 Let /(x) be a bounded function on [a, b] that can be miformly a,,..oximatell by step 
functions. That is, given £ > 0, there exists a step function s(x) such that 
I /(x) - s(x)I < £ on (a, b]. Prove that f (x) is integrable. 

10* (cont.) Suppose /(x) can be uniformly approximated on [a, b] by integrable functions. 
Prove that f (x) is integrable on [a, b]. 

I I  Prove that if /(x) and g(x) are integrable on (a, b], then so is f (x) + g(x� and its 
integral is the sum of the integrals of f(x) and of g(x). 

12 Prove that if f(x) is integrable and k is a constant, then k/(x) is integrable and 
J! kf • k J! f (Be sure to take the sign of k into account.) 

13 Let/(x) be integrable on [a, b) andf(x) � 0. Prove that J: f 2!!: 0. 
14 Let f(x) be any increasing function on [a, b). Prove that /(x) is integrable. 

[Hint Partition the interval into n equal �rts.J 15 Let a < c < b and let f(x) be a bounded function on [a, bJ. Suppose f is integrable on 
[a, c J and on [ c, b J. Prove that f is integrable on [a, b). 

16 (cont.) Conversely, suppose f is integrable on [a, bJ. Prove that f is integrable on [a, c) 
and on (c, bJ, and that 

• c • f f(x) dx = f f(x) dx + f f(x) dx. 
• • c 

The next four exercises will prove that the product of integrable functions is integrable, 
a deeper property of the integral that is not at all obvious. 
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17 Let s1(4 · · · .  S1(x) be step functions on (a, b] such that 

Prove 

0 $ s1(x) $ S1(x) $ M, 0 $ s2(x) $ S2(x) $ M, 
b b 

J S1 - J s1 < e, 
• • 

and 
b • f S2 - f Sz < t. . . . 

, b  • J S1S1 - J s1s1 < 2Me. 
• • 

(Hint s,sl - s,sl = s,(Sl - S2) + S2(S, - s,).] 
18 (cont.) Supposef(x) is integrable on (a, b) and 0 $ f(x) $ M. Given e > 0, prove that 

there are step functions s(x) and S(x) such that 
• b 

0 $ s(x) $ f (x) $ S(x) $ M and J S - J s < &. 
• • 

19• (cont.) Suppose f(x) and g(x) are integrable on (a, b], f (x) � 0, and g(x) � 0. Prove 
that f (x )g(x) is integrable. 

20 (cont.) Supposef(x) and g(x) are integrable on (a, b]. Prove that f(x)g(x) is integrable. 
(Hint Add constants to f (x) and to g(x� and use Exs. 1 1  and 12.] 

21• Suppose/ is bounded on [a, b]. Suppose for each & > 0, there exist integrable functions 
g and G such that ( I }  g(x) $ f(x) $ G(x) for all x and (2) f! G dx - f! g dx < &. Prove 
that f is integrable. 

22• Letf'(x) be integrable on [a, b] and lf'(x)I $ M. Suppose also that f(a) = f(b) = 0. 
Prove I .( f(x) dx I $ iM(b - a)2• 

23 Supposef(x) is twice differentiable and periodic with period p. Supposef"(x) is integrable. 
Prove 

.+, •+ ,  J f"(x) dx = J f'(x) dx = O. 
• • 

24• Supposef(x) is continuous on 0 $ x < oo and 

(f (x)]2 = 2 ( f(t} dt 0 foraU x � 0. 
Find f(x). [Hint Differentiate, then be careful.] 

1 0. MISCELLANEOUS EXERCISES 

Evaluate 
1 

3 

5 

7 

9 

2 J (x2 - 4)2 dx 
- 1 r (x - :2) dx 

-- dx r XJ 
_2 I + x• 

(:XI: Jt:1

+ 3) lz• I 

d r dx z 

exp(- t2) dt 

2 

.. 

6 

8 

10 

-· J 14(x - a)6 dx 0 
7•/4 

J cos x dx 
,.,, 
•/J J x cos 3x dx 0 

( d r· dt ) I dx o ./'2 + 9  z•l 
- t3e-• dt. d 

r· · dx z 
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11 Find the area bounded by the x-axis, x = - 2, x = 0, and the curve y = x3 + 4x + 5. 
12 Find the area bounded by x = l, x = 2, y = x2, and y = x4• 
Find the mean value off 
13 f (x) = x sin x, 0 � x � 1t 14 f(x) = r1•, - k � x � k. 

••• 
15 Let c > 0. Suppose y = /(x) is symmetric in (0, 0) and in (c, 0). Prove f f(x) dx 

·-· 

is independent of a. 
16• Let f(x) be strictly convex for a � x � b and let c = !(a + b). Prove 

f (a + b) < M(f) [ = -•- f • f(x) dx] < /(a) + f (b) . 
2 b - a • 2 

17 Find /(x) = (ltl dt. 
0 

18 Graph 

19 Estimate 

20 Estimate 

f" 
{f(t) = l  y = 

0 
f (t) dt, where f(r) = _ 1 

for 4n - 1 � t < 4n + 1 
for 4n + 1 � t < 4n + 3. 

1 1 1 1 -- + -- + -- + · · · + -Jn+. Jn+1 Jn+3 fo" 
1 l 1 

--=== + + · · · + -.,Yin + 1 .,Yin + 2 .y3ii · 



1 INTRODUCTION 

The definite integral 

pplications of 
Integration 

b f f(x) dx, 
II 

& 

which was introduced in order to compute areas, turns out to be a powerful tool, 
not only in area problems, but in a surprisingly large number of other applications. 
The reason for its great versatility is basically this: the integral is a practical device 
for adding up lots of tiny quantities. 

For example, take the problem of computing the area of a region under the curve 
y = f(x). The region can be sliced vertically into a large number of thin pieces. each 
approximately a rectangle of areaf(x1) Ax, where Ax is the width of the slice. The 
integral "adds up" these tiny areas. Even the notation is suggestive: f(x) dx 
represents f (x1) Ax, and the symbol 

b f f(x) dx 
• 

means "sum" the quantitiesf(x) dx between x = a  and x = b. The integral sign J was 
originally an S for sum. 

It happens in many applications other than area, that a complicated quantity can 
be divided into a large number of small parts, each given by an expression of the 
type f (x1) Ax. The integral "adds up" these parts just as it does for area. Here are 
three typical examples. 

o "l r c A vase is being shaped on a potter's wheel (Fig. 1 ). 
For each x between a and b, its cross section is a circle of radius f (x ). What is the 
volume of the vase? 

Slice the vase into thin slabs by cuts perpendicular to the x-axis. Each slab is 
nearly a cylindrical disk of volume 

(area of base) · (thickness) =  [nf2(X1)] Ax . 

The integral 
• f nf2(x) dx 

• 

"adds up" these small volumes and gives the total volume of the vase. 

282 
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Fi&- I Radius of slice :::/(x) 

Area of slice :::: 1l/(x)1 

Volume of slice :::: x/(x)1 � 
• 

Volume ofvase: V = f 1l/(x)1 dx 
• 

Work Suppose at each point of the x-axis there is a force of magnitude f(x) 
pulling a particl�. How much work is done by the force in moving the particle from 
x = a  to x = b? 

Slice the interval from a to b into a large number of small pieces of length Ax. 
In the i-th piece the force is nearly constant, so the work it does there is 
approximately 

(force) · (distance) = f(x1) Ax . 

The integral 
• 

f f(x) dx 
• 

"adds up" these little bits of work and gives the total work done. 
D stance If a particle moves to the right along the x-axis with velocity v(t) at 
time t, how far does it move between t = a  and t = b? 

Divide the time interval into a large number of very short equal time intervals, 
each of duration At. In the i-th short time interva� the velocity is practically constant, 
so the distance traveled in this short period of time is approximately 

(velocity) · (time) = v(i1) At. 
b 

The integral f v(t) dt • 
"adds up" all these little distances and gives the overall distance traveled. 
Stmmary The integral "adds up" many small quantities: 

AREA = sum of thin rectangles of areaf(x1) Ax; 
VOLUME OF REVOLUTION = sum of thin cylindrical disks of volume 
1tf 2(.x,) Ax; 
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WORK = sum of small amounts of work,/(x1) Ax ;  
DISTANCE = sum of short distances. v(i1) �t. 

2. AREA 

Suppose we want the area of the region (Fig. 1 ) bounded by two curves y = /(x) 
and y = g(x� where g(x) Sf(x� and the lines x = a  and x = b. We think of the 
region as approximately a large number of thin rectangles. A typical one, shown in 
Fig. 1, has height [/(X1) - g(X1)], width Ax, and area [/(X1) - g(X1)] Ax, which we 
shall abbreviate by [/(x) - g(x)] dx. The integral 

b 

A = f [f(x) - g(x)] dx, 
• 

"adds up" these areas, so it is the required area. 

ti 

I 
--------�,-�----' - gl \ I I I 

I> 

Fis. 1 Length ohcctangle: �/(x) - g(x) 

r-1 
J( � ) - g(\ ) _I 

Area of rectangle: � (f(x) - g(x)] &x 
• 

Area of region: A = J [f(x) - g(x)] dx 
• 

It is important to keep straight which is the upper boundary and which is the 
lower boundary. If we get the upper and lower boundaries reversed, then we compute 

b r (g(x) -f (x)] dx, . .  
which is the negative of the area. If the curves cross, the upper and lower boundaries 
reverse (Fig. 2). Then we compute the shaded area by 

b t J [f(x) - g(x)] dx + J [g(x) -/(x)] dx. 
• b 
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Under each integral sign, the upper curve comes first. If we compute just 

r[/(x) - g(x)] dx • • 
the two areas will be counted with opposite signs and the result will not be the 
geometric area. 

u h 

Fig. 2 The geometric area is 

A = A1 + A1 
• t 

= f [f(x) - g(x)] dx + f [g(x) -f(x)] dx. 
• • 

In genera� the absolute value l/(x) - g(x)I always has the right sign for measuring 
geometric area, so we can state a principle: 

The geometric area of the region bounded by the curves y = /(x) and y = g(x) 
and the lines x = a and x = b is 

• 
f l/(x) - g(x) l dx . 

• 

In particular, if g(x) �/(x� then the geometric area is simply 
• 

f [! (x) - g(x)] dx . 
• 

• EXAMPLE 1 Compute the area of the region bounded by the curves y = r12 
and y = l/x2, and the lines x = 2 and x = 3. 
Sohltio11 Sketch the region (Fig. 3 ). Think of it as being composed of thin rectangular 
slabs. The area of a typical slab is 

dA = 
(r12 -

:
2
) dx. 
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Hence A =  J: (r'2 _ 

x
1
2) dx = 2r'2 + � 1: 

= (2e312 + !) - (2e + !) = 2(e312 - e) - l 
• 

0 

Remark We sneaked a new notation into the solution: dA, the element or area. This is 
harmless, but it is a suggestive terminology for setting up applications of integration. 
• EXAMPLE 2 Compute the area of the region bounded by y = x2 - 4 and 
y = !x + 1. 
Sohltio11 It is not clear from the statement of the problem what the region is; a 
graph is essential. A rough sketch (Fig. 4a) shows that region is a parabolic segment. 
But Fig. 4a is not accurate enough; the crucial points P and Q must be found. 
They can be computed by solving simultaneously 

y = x2 - 4 and y = !x + 1 . 
Eliminate y: x2 - 4 = !x + 1 , 2x2 - x - 10 = 0, (2x - 5)(x + 2) = 0. 
The solutions are x = -2 and x = i. The corresponding y values are 0 and !. 
Therefore, P = ( -2, 0) and Q = (i, !). Now Fig. 4a can be replaced by a more 
accurate sketch, Fig. 4b. 

Slice the region between x = -2 and x = i into thin vertical rectangles. The area 
of a typical rectangle, the element of area, is 

Hence 
dA = [(!x + I) - (x2 - 4)] dx = (5 + !x - x2) dx. 

5/2 15/2 A =  f_
2
(5 + !x - x2) dx = (5x + ix2 - !x3) _ 2 

= (5(i) + i(i)2 - !(i)3] - (5(-2) + i(-2)2 - !(-2)3] = 1N = ¥(. 



2. Area 2fS7 

(b) More accurate sketch (showing positions of P and Q): 
(a) Rough sketch =f./2 I A =  tc2 t + l ) - Cx2- 4)) dx 

- 2 
• 

• EXAMPLE 3 Compute the (geometric) area of the region bounded by the 
graphs y = /(x) = x3 - 2x2 - Sx + 6 and y = g(x) = -x3 + 8x2 - 9x - 10. 
Sohdiolt To sketch the region we need the intersections of the graphs. By trial and 
error we find /(x} - g(x) = 0 has the roots x = - 1, 2, 4, so the intersections are 
(- 1, 8� (2, -4� (4, 18� This information plus our general knowledge of the shape 
of cubic8 is enough for an adaquate graph (Fig. 5). Clearly, g(x) s/(x) for 
- 1  S x S 2 and/(x) � g(x) for 2 � x � 4. Therefore 

4 l 4 
A =  J l/(x) - g(x)I dx = J [f(x) - g(x)] dx + J [g(x) -/(x)] dx. 

- 1  - 1 l 
Now f (x) - g(x) = 2x3 - 10x2 + 4x + 16, so 

f �. c1(x) - g(x>1 dx = ;x• - -'fx3 + 2x2 + 16x r . = v-. 
4 

Similarly, J [g(x) -/(x)] dx = ¥. so A = ¥ + ¥ = lp. • 
l 

Remark The algebraic area is 
4 J [/ (x) - g(x)] dx = ¥ - ¥ = .ip. 
- 1  

The ideas of this section apply word for word to regions bounded by curves 
x = /(y) and x = g(y) and lines y = c and y = d. The area of such a region is 
given by the integral 

d f l/(y) - g(y) I dy. 
c 
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,. 

Fig. 5 

• EXAMPLE 4 Compute the area of the region bounded by the curves y = x, 
y = 1/x2, and the line y = 2. 
Sol•tion Sketch the region (Fig. 6). The curves obviously intersect at (1, 1). If you 
compute the area by vertical slicing, you will need two integrals because the lower 
boundary is made up of two different curves. So slice horizontally instead. Then the 
right-hand boundary is x = y and the left-hand boundary is y = 1/x2, that is, 
x = 1/./Y. The typical horizontal slice has area 

dA = (y -jy) dy. 

Hence the area of the region is 

f: (y -jy) dy = G yl -2JY) 1: = � - 2J2. • 

Practical hint When you slice horizontally, you obtain dA - (something) dy. That "some
thing" must be expressed in terms of y before you can integrate. That's why in Example 4 
we wrote the boundaries as x = y and x = t/Jy. 
EXERCISES 

Compute the area of the region bounded by 
I y = 8 - x2 and y = - 2x 
2 y = x2 + 5 and y = 6x 
3 y = 3x2 and y = -3x2, and the lines x = - I and x = 1 
4 y = I - x2 and y = x2 - I 
5 y = x3 - 5x2 + 6x and y = x3 
6 y = x2 - 8x and y = x 
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7 y = cos x and y • sin x, between x = *7r and x = in 

8 y = 2 sin(i'irx) and y = (x - 3)(x - 4� between x = 2 and x = 4 
9 y • e", y = e-", and y - e1 

10 y = cos x - l and y = l - cos 2x, between x = 0 and x = 2x 
II y = l/x2, y = x, and y • 8x 
12 y = l/x1, y = 0, y = x1, and x = 3 
13 y1 = 2x and y = !x - 3 
14 x = y2 and x = 6 - y''. 
IS Find a so that the area bounded by y = x2 - a1 and y -= a2 - x2 is 9. 
16 Find the fraction of the area of one hump of the curve y = sin x that lies above y = !. 
17 Let P = (a, ka2) and Q = (b, kb2) be two points of the parabola y = kx2• Find the area 

bounded by the parabola and the segment PQ. 
18 (cont.) Prove that this area is t the area of the triangle PTQ, where T is the point of the 

parabola whose tangent is parallel to PQ. (This is Archimedes' quadrature of the 
parabola.) 

3. VO L U M E  

Before computing volumes, let us look at a simple area problem whose solution 
involves some useful ideas. 

• EXAMPLE 1 Find the area of a circle of radius r. (Assume the formula c = 2nr 
for circumference.) 

Fla. I Area of circle by concentric rings. 

Sol11tion Cut the circle into thin concentric rings (Fig. l ). Let x denote the radial 
distance of a ring from the center; 0 � x :s;; r. The typical ring has length 2nx and 
width dx, hence area 2nx dx. Therefore, the area of the circle is 

A = ( 2nx dx = nx2 r = nr2• 
· o lo • 

The strategy used in solving Example l is important and worth reviewing. First 
we sliced the circle into thin pieces, each having area/ (x) = 2nx dx. Then we add up 
these small areas by integrating from 0 to r. Similar strategy applies to computing 
the volume of a solid. First we slice the solid into many thin pieces, each of which 
is approximately a familiar shape of known volume. The element of volume is 
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f(x) dx, the base areaf(x) or the typical slice multiplied by its thickness dx. Then 
we add these little volumes by integrating. 
Thus the general plan or attack on a particular solid consists or four steps: 
( I ) choose a method of slicing the solid; (2) choose a variable x that locates the 

typical slice, and find the range a :S x :S b that applies to the problem; (3) compute 
the volume f(x) dx of the typical slice; (4) find an antiderivative of f(x) and 
evaluate 

" 
V = f f(x) dx . 

• 

) R ,, ,, 
Fig. 2 The solid swept out when R revolves about the y-axis 

Let R be the region in the y, z-plane under the curve 
z = f(y), where a s y s  b. If R is revolved about the y-axis, a solid of revolution is 
swept out (Fig. 2). What is the volume of this solid? 
We ronow the strategy outlined above. First we slice R into thin rectangles (Fig. 

3a). Each of these sweeps out a circular slab (Fig. 3b� so we have sliced the 
solid into slabs. The typical slab is identified by the variable y, where a :S y :S b. 
It has radius f(y� base area nf(y)2, thickness dy, hence volume nf (y)2 dy. 

: 

/> 

(a) Thin "rectangle", dimensions/(11) X dy 

_( __ -�------- - -) ' 

(b) Resulting slab has base area "f(y)2 and 
thickness dy, hence volume d V = "fly )2 dy, 

Fig. 3 
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Consequently, the volume of the solid of revolution is 
• 

V = J x/(y)2 dy . 
• 

• EXAMPLE 2 Find the volume of a sphere of radius a. 

Sol•tio11 The sphere is a solid of revolution obtained by rotating a semicircle 
about its diameter. Take the semicircle bounded by the y-axis, and 
z = Ja2 -y2. See Fig. 4a. 

: =�----\ \ \ I 

II u 
- ---------�- --��:-<!...-

(a) Rotating the semi-circle about its diameter 
aenerates a sphere. The thin "rectangle" has 
dimensions z X dy. 

/ 
I I I I f�' 

(b) Resulting slab has volume 
dV c ul dy = lf(al - y2) dy. 

Each slab in Fig. 4b has radius z = J a2 - y2 and thickness dy, so the element of 
volume is 

dV = xz2 dy = x(a2 - y2) dy. 

Now integrate dV from y = -a to y =  a: 

v = r x(a2 - y2) dy = 2x f <a2 - y2) dy 
-· 0 

= 2x(a2y - !Jl) t = 2x(al - !al) = !Ml. • 

• EXAMPLE 3 A right circular cone of height h is constructed over a base of 
radius a. Compute its volume. 

Sollltio• The cone is a solid of revolution, obtained by revolving a right triangle 
about one leg. Choose the triang]e indicated in Fig. Sa, and rotate it about the y-axis 
to generate the cone (Fig. sbi Slice the cone into thin slabs, each of width dy. Note 
that the triangle is the region under the curve z = (a/h)y, where 0 :::; y :::; h. Thus 
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-----1r ------1 

/lllr. u l \ a \ u : = // I  

Ir 
(a) Rotate the triangle about the y-axis. 

(b) The result is a right circular cone. 

F"aa. 5 Volume of cone by disks 

each slab has radius (a/h)y, hence volume 

dV = n(� y) 2 dy. 

Therefore the volume of the cone is 

[" al al ( l ) � a1 ( 1 ) l 
V = Jo n 

hl y
l dy = 7t hl 3 yl lo = n 

hl 3 hJ = j na1h. 

,------ -\ 
,.. ... -' ---- -

1 .!!.:. : ) 
u 

" 1· = ; a (11 , a) 

< I \I 
I , \ r------- c1i' z )  
I I I  \ I I  

I I  
I I I  ' 1 1  ,, ______ -

/ 

.. 

I I II ,. 

Fig. 6 Volume of cone by cylindrical shells 

Slice the cone into cylindrical shells rather than slabs 
(Fig. 6a� and choose z as the variable. This corresponds to slicing the triangle into 
thin strips parallel to the y-axis (Fig. 6b ). Each strip sweeps out a thin cylindrical 
shell with radius z, height h - (h/a)z, and thickness dz. The volume of this shell is the 
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product of its three dimensions: 

dV = (circumference) · (height) · (thickness) = (2nz)( h - �) dz. 

Therefore V = J:(2nz)(h - � z) dz = 2nh J:(z - :2) dz 

= 2nh( ;2 - �:) t = 2nh(a22 -�2) = � na2h. • 

11 EXAMPLE 4 The region in the y, z-plane bounded by the parabola z = y2, 
the line y = a,  and the y-axis is revolved about the z-axis. (Assume a >  0.) What is 
the resulting volume? 

: : 

(ti. "2)  

a 

a� 
.I 

(a) Slice into strips parallel {b) Cut-away view of the solid of 
to the y-axis. revolution, showing a typical ''washer". 

Fis. 7 Solution by washers 

Sohttio11 Slice the plane region into thin rectangles parallel to the y-axis (Fig. 7a). 
When the typical resulting strip is revolved about the z-axis, it sweeps out a thin 
circular washer (Fig. 7b ). The base of the washer is the region between two concen
centric circles of radii a and Jz. Hence its area is na2 - n(.ji )2 = n(a2 - z). 
Since its thickness is dz, the element of volume is dV = n(a2 - z) dz. Integrate 
these small volumes from the level z = 0 to z = a2: 
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See Fig. 8. The region under the parabola is split into thin 
"rectangles" by parallels to the z-axis. Now y is the variable, and the solid of 
revolution is sliced into thin cylindrical shells. The typical shell has radius y, height 
y2, and thickness dy, hence volume dV = (2ny)y2 dy. The volume of the solid is 

.• .• 

v = 1 (2n.r)y2 dy = I 2ny3 d.r = 2n(iJ4) r = lira•. • 
• 0 • 0 lo 

: 

' 
.i· 

Cl 

Fig. 8 Solution by cylindrical shells 

0 

\ ---

tr� .1 = I · r ' l� " 

Fig. 9 Cone with irregular base 

The volume of certain figures other than solids of revolution can also be found 
with the tools at our disposal. 

EXAMPLE I A cone of height h has an irregular base of area A. Find the 
volume of the cone. 
Sohltio11 Let x denote distance measured from the apex towards the plane of the 
base (Fig. 9). The typical cross section of the cone by a plane parallel to the base, 
distance x from the apex, is a plane region similar to the base. This cross section 
has linear dimensions proportional to x, hence area proportional to x2• 
Let /(x) denote. this area. Then f (x) = cx2• To find the constant c, note that 

f(h) = A, hence ch2 = A. Therefore c = A/h2 and 
f(x) = � x2• 

Slice the cone into slabs by planes parallel to the base. A typical slab has base area 
f(x� thickness dx, and volume A dV = /(x) dx = Iii x2 dx. 
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Hence the volume of the cone is 

l' = [" A x2 dx = A (! x3) r = ! Ah Jo h2 h2 3 � 3 · • 

Area of a Sphere We know that the volume of a sphere of radius a is fna3. 
Let us use this information to find the surface area of the sphere. We don't yet know 
.. officially" what surface area is. Nevertheless, let's assume that it exists alright and 
that, as with plane area, it has the property that if all linear dimensions are 
stretched by a factor k, then surface area is multiplied by the factor k2• 
• EXAMPLE I Find the surface area A of a sphere of radius a. 

\" 

Fia. 10 Cutaway view of sphere and a concentric spherical shell 

Sohttio11 Find the volume of the sphere by slicing it into concentric spherical 
shells (Fig. 10). Let/(x) by the surface area of the typical shell at distance x from 
the center (0 � x � a). Then f(x) is proportional x2 and /(a) = A, hence /(x) = 
Ax2/a2• The volume of the shell is 

Hence 

But 

therefore 

EXERCISES 

A dV = f(x) dx = 2 x2 dx. a 

V = f: ; x2 dx = Ji 0 x3) t = � Aa. 
V = fnal, 

f,ra3 = !Aa, so A = 41ta2• • 

The region of the '" z-plane whose boundary curves are given is revolved about the y-axis. 
Find the volume �f the resulting soiid of revolution. 
I y-axis, z = 2y + 3, .l' = 0, y = 3 
2 y-axis, 2z + .1· = 3, y = - 1, y = l 
3 y-axis, (y + l)z = I, y = 0, y = 4 
.C y-axis, (y + 4)z + 3 "" 0, y = - 1 , y = I 
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5 y-axis, z = 3./Y, y = 0, y .. 4 
6 y = 16z2, y = 2, y = 4. 

7 The region of the x, y-plane bounded by the x-axis, y = x + l, x = 1, and x = 4 is 
revolved about the line y = - 3. Find the volume of the resulting solid. 

8 The region of the x, y-plane bounded by the lines x = l ,  y = x, and x = -2y + 6 is 
revolved about the line y = -2. Find the volume of the resulting solid. 

9 The region of the x, z-plane bounded by z = - l ,  z = e2 .. , x = 0, and x = 2 is revolved 
about the line z = - 1. Find the volume of the resulting solid. 

10 The region of the y, z-plane bounded by the z-axis, y2 = sin z, z = 0, and z = n is 
revolved about the z-axis. Find the volume of the resulting solid. 

1 1  Find the volume of  a frustum of a right circular cone with lower radius b, upper radius 
a, and height h. 

12 Find the volume of a sphere of radius a with a hole of radius h drilled through its 
center. 

13 A plane at distance h from the center of a sphere of·radius a cuts off a spherical cap 
of height a - h. Find its volume. 

14 Find the volume of the solid formed by revolving the triangle in the x, y-plane with 
vertices (1, l �  (0, 2� and (2, 2) about the x-axis. 

15 A circular hole is cut on center vertically through a sphere, leaving a ring of height h. 
Calculate the volume of the ring. 

16 A circle of radius a is revolved about a line in the same plane at distance b from 
the center of the circle. Assume b > a. Show that the resulting torus has volu"me 
2x1a1b. [Hint Use washers; then identify the difficult integral as the area of a circle.] 

17 The rectangle - 1  s: x s: J, -2 S: y S: 2, z = 0 moves upwards, its center always on the 
z-axis, and rotates counterclockwise at a uniform rate as it rises. Suppose it has turned 
90° when it reaches z = 1. Find the volume swept out. 

18 The region bounded by the x-axis, y = f(x) = k/x, x = a, and x = b is revolved aboul 
the x-axis. Assume k > 0 and 0 < a < b. Let g(a) denote the limit as b - oo of the 
resulting volume. Find k so g(x) = f (x) for all x > 0. 

4. WORK 

In elementary physics, we are taught that the work done by a constant force F 
in moving an object through distance D on a line is W = FD, that is, work equals 
force times distance. 

When the force is variable, work is defined by an integral. The definition is 
motivated as follows. Suppose a continuous force f(x) acts over an interval [a, b] 
of the x-axis, and suppose an object is moved from a to b by the 'force. We divide 
[a, b] into many small subintervals. On the typical one, of length lix1, the force is 
almost a constant/(X1). Therefore, in any reasonable definition, the work over this 
interval must be approximately liW = f(x1) lix1 . Now we sum these approximations 
and take limits to define work. Thus the element of work is 

dW =f(x) dx, 
and the work done by the force in moving the object from x = a to x = b is 

b 

W =  J f(x) dx . 
• 
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Units In the English system, work is measured in foot-pounds (ft-lb). In the CGS metric 
system, the unit of work is one era = one dyne-centimeter; and in the MKS system, it is one 
jcMlle (J) = one newton-meter. Here one joule = 107 ergs and one ft-lb =::: 1.356 joules.• 

• EXAMPLE 1 At each point of the x-axis (marked off in feet) there is a force of 
Sx2 - x + 2 pounds pulling an object. Compute the work done in moving it from 
x = I  to x = 4. 

4 
Sohltio11 W = f (Sx2 - x + 2) dx = (jx3 - !x2 + 2x) t' 

• l Ii = j(64 - 1 ) - !(16 - 1 )  + 2(4 - 1)  = 103.S ft-lb. • 

• EXAMPLE 2 According to Newton's Law of Gravitation, two bodies attract 
each other with a force F proportional to the product m1m2 of their masses and 
inversely proportional to the square of the distance r between them: 

F - G 
m1m2 - ,2 ' 

where G is the gravitational comtant t If one of the bodies is fixed at the origin, 
how much work is needed to move the other from r = a to r = b, where a and b 
are positive? 
Sohltio11 The element of work is dW = F dr = G m

1�2 dr, 
r 

hence 
' W f• m1m2 ( 1) r ( I l ) = • G -;r dr = Gm1m2 - ; � = Gm1m2 a - b · • 

Remark When a < b the work is positive because you do work against the gravitational 
force. But when a > b the free mass moves towards the fixed mass, opposite to your 
direction of pull. Hence you do negative work. Imagine moving the free mass from a to b 
and then back to a. The total work is zero Why? 

• EXAMPLE 3 When a spring is stretched a small amount, there is a restoring 
force proportional to the distance of the moving end from its equilibrium point 
(Hooke's Law). Suppose 2 joules work are needed to stretch a certain spring 10 cm. 
How much work is needed to stretch it 25 cm? 
Sohltio11 Let x denote the displacement of the free end from equilibrium (Fig. l ). 
The force needed at x to oppose the restoring force is kx, so the work in stretching 
the spring from x = 0 to x = b is 

W = (kx dx = !kb2 • 
• 0 

When b = 10, then W = 2, hence 2 = !k( l0)2, k = -fJ. When b = 25. 
w = ·!(-!J)(25)2 = 12.5 J. 

• The MKS force unit, the HWt• (N) is the force that applied to a one-kg mass will impan an 
aciccleration of one mfr.eel. One kg of force = g newtons. where g � 9.807. 

t In the MKS system. m1 and ml are in kilograms. r in meters. F in newtons. W in joules. 
and 
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restoring force = kx 

0 
(a) Rest position of spring 

tQJLll� I I I I : I I I 
0 

(b) Stretched position 
Fig. I Hooke's Law 

,. 

• 

• EXAMPLE 4 A sunken tank (Fig. 2a) has the shape of an inverted right circular 
cone. Compute the work done in pumping a tankful of water to ground level. 
(The density of water is 62.4 lb/ft3.) 

z 

4 

1 0  l l  1 0  

L 
(a) (b) 

Fis- 2 

Sol11tion Set up axes so the vertex of the cone is the origin and the axis of the cone 
is the z-axis. Imagine the tank sliced into thin slabs perpendicular to its axis. The 
idea is to compute the work done in raising each slab of water to the level z = 10, 
then to add up these elements of work by integrating. 
Consider a typical slab at level z. It must be raised a distance 10 - z. The upward 

force required equals its weight (to overcome the downward force of gravity). Since 
weight in pounds equals density b times volume, 

dW = (10 - z)<5 dV. 
By similar triangles (Fig. 2b), the radius r of the slab satsifies 

r 
z 

4 
10' 

2 so r = S z. 



Hence dV = n(jz)2 dz, 
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dW = /Jnc5(10 - z)z2 dz. 
Therefore the total work done is 

10 10 W = /!nc5 f (10 - z)z2 dz = !Jnc5(ljz3 - iz�) � 0 
= �c57t = �(62.4)1t � 26138 ft-lb. • 

• EXAMPLE I A heavy buoy of weight w in the shape of a cone of revolution 
(Fig. 3a) floats in a lake with its lowest point at depth h. The buoy is raised by a 
winch until it just clears the water. How much work is done? 

[(:) 

(c) 

Sohltio11 Fix the z-axis as in Fig. 3b, and denote by a the radius of the buoy at the 
water level. By Archimedes' principle for floating bodies, the buoy is acted on by an 
upward buoyant force of the water equal to the weight of the water displaced. When 
the buoy floats, this balances the downward force of gravity w. Thus, 

w = ina2 Mg, 
where c5 is the density of the lake water and g is the gravitational force per unit 
mass. 

Suppose the buoy is hoisted zunits (Fig. 3c). The force/(z) required to hold it in this 
position is the weight of the buoy minus the buoyant force of the water. But now the 
part submerged has radius (a/h)(h - z) and height h - z. Hence 

1 ra 12 f (z) = w - 3 7t h (h - z) (h - z)c5g. 
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Therefore the work done lifting the buoy out of the water is 

EXERCISES 

f" na2bg f" W = f(z) dz = wh --2- (h - z)3 dz 
0 3h 0 

= wh - bna2bgh2 = wh - iwh = iwh. • 

1 Find the work done by a force/(x) = 3x + 2 newtons in moving an object from x = 1 m 
to x = 7 m. 

2 At each point of the x-axis (marked off in feet) there is a force of x2 - 5x + 6 lb 
pushing to the right against an object. Compute the work done in moving it from 
x = I to x = 5. 3 A 50-ft chain weighing 2 lb/ft is attached to a drum hung from the ceiling. The 
ceiling is high enough so that the free end of the chain docs not touch the floor. How 
much work is required to wind the chain around the drum? 

4 In the previous exercise, suppose that a 200-lb weight is attached to the free end. How 
much work is required to wind up the chain? 

5 The force in pounds required to stretch a certain spring x ft is F = 8x. How much work 
is required to stretch the spring 6 in., 1 ft. 2 ft? 

6 A 3-lb force will stretch a spring 0.5 ft. How much work is required to stretch the 
spring 2 ft? 

7 A IOO-lb bag of sand is hoisted 50 ft at a rate of 5 ft/sec. Because of a hole in the bag. 
2 lb of sand is lost each sec. Compute the work done. 

8 A 5-lb monkey is attached to the free end of a 20-ft hanging chain that weights 0.25 
lb/ft. The monkey climbs the chain to the top. How much work does he do? 

9 How much work is required to lift a 500-kg payload from the surface of Earth to an orbit 
500 km high? 1000 km high? You may assume .rE � 6.37 x 106 m and F = GmEm/x2, 
where G �·6.67 x io- 1 1  N-m2/kg2 and mE � 5.98 x I024 kg. 

10 How much work is required to fill the tank in Fig. 4 with water pumped from the 
level of its base. The tank is in the shape of a paraboloid of revolution, obtained by 
revolving a parabola about its axis. 

1 1  How much work is required to pump water from the bottom of the pipe and fill the 
spherical tank in Fig. 5? 

" 

" I 
Fig. 6 
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12 A tank is obtained by revolving a parabolic segment as indicated in Fig. 6. How much 
work is required to pump a tankful of ftuid of density lJ to the level of its top? 

13 Suppose in Example S that the top of the buoy is ih from the water's surface. How 
much work is required to push the buoy down until its top is at water level? 

14• A spherical mine has enough ftotation so its average density equals 1030 kg/m3, 
that of the seawater it ftoats in-just touching the surface. Suppose its radius is 0.60 m. 
How much work is required to lift it so it just clears the water? 

15 A particle of mass m is constrained to move on a vertical circle of radius a. (Think 
of a pendulum bob.) Suppose it is pushed from its downward rest position through a 
central angle q,. How much work is done? (Hint Resolve the gravitational force into 
components parallel and perpendicular to the circle; only the former must be opposed.] 

16• An open-top cylindrical tank of radius R and height H is filled with water. A 
cylindrical buoy of radius r ftoats on end in the tank, its base at depth h, where r < R 
and h < H. How much work is required to raise the buoy until its base just clears the 
water. (Note that the water level goes down as the buoy comes up.) 

5.  FLUID PR ESSUR E  

Fluid pressure is measured by the force it exerts on any piece of surface immersed 
in the fluid. At each point of the surface this force is exerted against the surface in 
the direction perpendicular to the surface. 

c/ F = I' c/,1 

(a) Inside the fluid (b) At the boundary 

Fig. I Element of force due to pressure 

Technically, pressure is force per unit area. In Fig. la the pressure p exerts a force 
dF against the element of area dA. Of course it also exerts an equal but oppositely 
directed force against the opposite surface (so nothing happens). However, if dD is 
part of the boundary of the fluid, i.e., part of the container wal� then the force is 
not opposed by fluid pressure on the other side (Fig. lb). The wall's own strength 
must hold it up. 

The pressure at depth y in a fluid is p = bgy, where b is the density of the fluid 
and g the constant of gravity. (We often take g = I by measuring mass and force in 
the same units.) The total pressure against a plane surface submerged in the fluid is 
obtained by "summing" the elements of force dF = p dA over the surface. Since p 
is constant at depth y, this can usually be done by an integration. The result is (the 
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magnitude of) a force that is directed perpendicular to the plane surface. Total pres
sure is important in the design of tanks, dams, large buildings (wind pressure� and 
airfoils (lift). We are using the slightly inaccurate expression "total pressure" as an 
abbreviation for "magnitude of the total force due to pressure." 
Units The English system units arc the lb/in.2 and the lb/ft2• The MKS unit is the N/m2 
(newton/meter squared� which sometimes is too small to be practical. The unit kg/cm2 
( �9.807 x 104 N/m2) is common. Herc kg means one kg of force, not mass. One kg is the 
force gravity at the surface of Earth exerts on one kg of mass. A tire guagc in Europe 
might read 2. l kg/cm2, equivalent to about 30 lb/in. 2. • 

Pressure Zero We shall work at the surface of the Earth at "o.rdinary" pressures, so 
atmospheric pressure will be our reference point for zero. For instance 25 lb/in.2 pressure in 
a tire means 25 lb/in.2 above atmospheric pressure, which itself is about 14.7 lb/in.1 above 
vacuum, thus the tire pressure iS about 39.7 lb/in.2 above vacuum. 

For low pressure work, the reference point for zero is usually the true zero pressure of a 
vacuum. Thus 3 lb/in.1 pressure in a space ship en route to Mars means 3 lb/in.2 above the 
outside pressure. 

• EXAMPLE 1 The ends of the cylindrical tank of watert in Fig. 2a are parabolas 
with vertical axes. Find the total pressure the water exerts on each end of the tank. 

I I 1r j II : ,,, I I 
__. 

(a) 

I' 

2 

- 1 I Y 
(b) 

Sol11tio11 Choose axes for one end as in Fig. 2b, the scale in meters. The strip shown, 
at height y from the bottom of the tank, has area dA = 2,x dy and lies at depth 2 - y. 
The average pressure against the strip is p = c5(2 - y) = 1000(2 - y) kg/m2, so the 
element of force against the strip is 

dF = 1000(2 - y)(2x dy) = 2000(2 - y)x dy. 
The total pressure in kg against the end of the tank is 

2 F = 2000 I (2 - y)x dy. 
0 

• Other common units: ( 1 )  1he atmoafhett, where I atm :::: 1.01325 x 105 N/m2 :::: 1.033 kgtcm2 :::: 
14.70 lb/in.2; (2) 1he Mr =  105 N/m2 (common in meteorology-just I atm rounded off); (3) lhe 
torr :::: 1.316 x 10-3 N/m2 (used in low pressure work� 

t The density of waler is 1000 kgtm3 = I g/cm3 :::: 62.4 lb/n3. 
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To evaluate the integra� first we must express x in terms of y. The equation of the 
parabola has the form y = kx2• Since (I, 2) lies on it, k = 2 so 

Therefore 
y = 2x2, x = !J2JY . 

2 2 F = 1000J2 f (2 - y}Jy dy = 1000j2 f (2y112 - y3'2) dy 
0 0 

= 1000J2 (ty3/2 - jy512) � = 1000J2 (JJ2 - JJ2 ) 
= HID>(-l- !) = !(6400) = 2133! kg. • 

Vertical Slicing Sometimes it is convenient to compute total pressure by slicing 
into vertical strips. To do so effectively we need a property of rectangles. 

Suppose a vertical rectangle is submerged in a ftuid (Fig. 3 ). Choose axes as 

indicated. Then the element of force against the horizontal strip at depth y is 

Therefore 

dF = (<Sy)(a dy) = <Say dy (<S = density). L+ll IL+ll F = f <Say dy = !<Say2 = !<Sa(2Lb + b2) = (ab)[<S(L + !b)]. L L 
But ab is the area of the rectangle and L + !b is the depth of the midpoint of the 
rectangle. 

The total pressure against one side of a vertical rectangle submerged in a ftuid is its 
area times the pressure at its midpoint. 

Remark The result is a special case of a much more general fact; the total pressure against 
one side of any submerged plane plate equals the area of the plate time the pressure at its 
center of gravity. This will become clear after our discussion of centers of gravity in a later 
chapter. 

T 0 ,. 

, l -

j l 

y b l + � b  
( \'. I' ) 

l + b  - I  ,. 
a 

I' .I' 

Fi&- 3 Fla. .. 



284 6. APPLICATIONS OF I NTEGRATION 

EXAMPLE 2 Solve Example l by vertical slicing. 

So/11tion The vertical strip in Fig. 4 has area (2 - y) dx, and its midpoint lies at 
depth !(2 - y) so the pressure at the midpoint is p = !(2 - y) {> = 500(2 - y) kg. 
Therefore the element of force against this vertical strip is 

dF = [500(2 - y)][(2 - y) dx] = 500(2 - y)2 dx. 
But y = 2x2 so dF = 500(2 - 2x2)2 dx = 2000(1 - x2)2 dx and 

• I f I F = I 2000(1 - x2)2 dx = 4000 (1  - 2x2 + x') dx " - I • 0 

= 4000(x - jx3 + !x5) C = 4000( 1  - j + !) = (4000)(/J) = 2133! kg. • 

Each figure is the end of a tank filled with a fluid of density fJ. Express the total pressure on 
the end of the tank in terms of the data. 

1 

4 

7 

b 2 3 a 

,, ,, _L 
b b 

I' s 6 
I I . 1 1  \: 

I = <l) 
, 

\ "  

( � <1 ,  4a) 

,. 
8 9 

/7_7 
(Hint for 6-8 Don't overlook the area of a circle when you see it. Also differentiate 
(a2 - x2)312 and see what you get.] 
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10 A tank or water has the shape or a high rectangular column with square base and 
height h meters and its volume is I ml. Let F be the total pressure against one or the 
vertical sides and A be the area or the side. Find c so FA' is independent or h. 

11 Let F be the total pressure against one end or a tank. Suppose a second tank (filled 
with the same ftuid) is exactly the same shape as the first tank except that each linear 
dimension is enlarged by the ractor k. Find the total pressure against the corresponding 
end or the second tank. 

12 One end or tank one has area A and height h. and the total pressure against it is F 1• 
Tank two is the same as tank one, except upside down, and the total pressure against 
the corresponding race is F 2 •  Find the relation between F 1, F 2 ,  A, k, and the ftuid 
density 6. 

13 One end or a tank has area A and height h. Suppose the end is symmetric in the 
horizontal line at level !h. Express the total pressure against the end in terms of A. h, 
and the ftuid density 6. 

14 Air pressureat height hmetersabovesea level isp = p0 e-• kg,tm2, wherep0 = 1.03 x 104 
and a =  1.25 x 10-•. (See Exs. 16-17 below for a derivation.) A balloon made or 1 kg or 
reinforced plastic in the shape or a vertical cylinder or height 5 m and radius i m is 
filled with helium (density 0.18 kg/ml) and tethered near the ground ; say its lower base 
is 50 m above sea level. What force is required to hold the balloon? 

15 (cont.) Find the total pressure against a rectangular wall 40 m wide and 120 m high 
whose base is 200 m above sea level. 

16* In a gas. density is proportional to pressure. (This is a consequence of the gas law 
pV = k-at constant temperature.) Let 6 = 6(h) denote the density or the atmosphere at 
height h above ground. By computing the pressure in a long narrow cylinder or air, 
show that d6/dh = -6/H. where H is a constant. Conclude that 6 = 60 e-�18• (See 
Ex. 35, p. 177.) 

The height or the cylinder may be limited to 100 km since 6(h) is known to be 
negligible above that height. This distance is small compared to the Earth's radius, so 
gravity may be assumed constant. 

17 (cont.) At sea level (and 0°C) air pressure is 1.03 x 104 kg/m2 and air density is 
1.29 kg/ml. Use these data to derive the pressure formula in Ex. 14. 

18 (cont.) At what height is the air pressure 10- 2 kg/m2? How many atm pressure on top 
of Mt. Everest (8848 m)? 

6. M ISCELLAN EOUS APPLICATIONS 

The previous topics, area, volume, work, and pressure, should conyince anyone of 
the enormous applicability of integration. As further evidence, we include some 
topics from a variety of directions: growth of money, suspension bridges, rotating 
fluids, shape of ice cubes, absorption of radiation, and escape velocities. A couple 
of additional applications are contained in the exercises. 

Present Value of Future Income We discussed compound interest briefly in 
Chapter 4, p. l 72. Let us recall that if amount A is invested at annual interest rate 
r, compounded continuously, then its value after r years is Ae''. 

Now we consider compounding of funds invested not in one lump sum, but over 
a period of time. Suppose money is deposited into a certain account continuously 
at the rate of/(r) dollars per year at time r. If the constant annual interest rate is r, 
what will be the value of the account after T years? Also, what is its fair present 
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value, that is, the largest amount you would be willing to pay today for ownership 
of the account in T years? 
To answer these questions, we divide the time interval (0, T] into many small 

pieces of duration dt. In the typical short interval at time t, the "element of money .. 
deposited isf(t) dt. This remains in the account for T - t years, hence grows to 
e<T-'Y(t) dt. The total amount A of the account at time T is the total of all these 
small sums: 

. T  . T  
A = I e<T-'Y(t) dt = e'T j e-"f(t) dt. 

· o  · o 

The present value of the account is the amount V which, if deposited today, will 
grow to amount A in T years. Therefore 

T 
Ve'T = A = e'T f e-"f(t) dt, 

• 0 

T v = r e-"f(t) dt . 
• 0 

Suppose that money is deposited continuously into an account at the rate of /(t) 
dollars per year and that r is the constant annual interest rate. Then the value of 
the account after T years will be 

. T A(T) = e'T j e-"f(t) dt . 
• 0 

Its present value is 
. T  

V(T) = I e-"f(t) dt . 
• 0 

For example, if funds are deposited at a continuous rate of $10,000 per year, and 
the interest rate is 6 %. then the value of the account after 10 years will be 

. 10 
A(lO) = e1010 .061v(l0) = eo.6 1 e- co.o6>r 10,000 dt 

• 0 

= e0·6( 10,000 e�•�::') �o � (1.8221)(75,198) � $137,020. 

The present value is V( 10) � $75 198. This is the lump sum which, deposited today at 
61/'00 will grow to $137,020 in 10 years. 
Remark In economics the function V = V(T) is called the capital value of the income stream 

f(t). 

The S spen ion Br Jge The problem is to find the shape of the cable that 
supports the roadway (Fig. la). Our model is based on the following simplifying 
assumptions: 
( I ) The weight of the cable and of the suspension rods is negligible. 
(2) The weight of the roadway is uniform, {J per unit length. 
(3) The suspension rods are so close together that the horizontal loading of the 

cable is the uniform weight of the roadway: {J per unit length. 
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uli 
(b) 

Fi&- I Suspension bridge 

We choose axes as in Fig. lb  and consider the portion of the cable for 
0 � x � a. Three forces act to hold it in equilibrium:  the horizontal tension at the 
left end of magnitude T0 , the tension at the right end in the tangent direction with 
magnitude T(a� and the downward weight ab. 

We suppose the cable has the shape of a curve y = /(x). If 6 denotes the angle of 
the tangent at a, then clearly 

tan 6 = �� l· 
Since the three forces balance, their horizontal components balance, as do their 

vertical components. This gives us two relations: 

Therefore 

T(a) cos 6 = T0 , T(a) sin 6 = ab. 
(} _ T(a) sin 6 _ b tan - T(a) cos (} 

- To a. 

Smee this is true for any a, we deduce that 

By integration, 

We conclude that the cable has the shape of a parabola. (Compare the hanging 
cable problem in Section 7 of the next chapter.) 

Free Sur ac11:: o a Ro at1,g Fluid A partially filled bucket of water (Fig. 2a) 
is rotating at a steady speed. It was brought to this state gradually, so the water 
inside rotates with the bucket. The surface of the water is a surface of revolution, 
and our problem is to describe it. 

Imagine that this surface is obtained by revolving y = /(x) about the y-axis (Fig. 
2b). Now consider a small particle of mass dm at the water's surface. As it rotates 
with the fluid, it keeps its relative position on the surface because of three forces: 
(1)  a buoyant force (pressure) of the fluid acting perpendicular to the surface, 
(2) its weight acting downwards, (3) centrifugal force acting horizontally outwards. 
These forces are shown in Fig. 2c. The centrifugal force has magnitude xw

2 dm, 
where w is the angular speed in rad/sec. 
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(b) 

(a) 

Fis. 2 Rotating fluid 

(c) Detail of (b): xw2dm is 
centripetal force. 

These forces must balance; in particular their components in the direction tangent 
to the curve must balance. hence 

(g dm) cos(!n - 9) = (xw2 dm) cos 9, 
that is, g sin 9 = xw2 cos 9. (1)2 tan 9 = - x. g 
(The pressure acts perpendicularly to the curve. hence makes no contribution to this 
tangential relation.) But tan 9 = dy/dx. so we have obtained the relation 

dy (1)2 -= - X dx g · 
Here w and g are constants. By integration, 

(1)2 y = 2g x2. 
Therefore the rotating surface is a paraboloid of revolution. 

Freezing ot L1qL 1ds The top of an ice cube is never flat; it is always curved a 
bit and often has a sharp peak. The following is a simplified model to explain this 
surface .shape. 
At the moment water freezes to ice, its volume expands by a factor I + {J. where 

{J > 0. Actually {J = i for water. but we shall retain {J since the model applies to other 
fluids as well. 
Suppose that water is frozen in a cylindrical container having perfect radial 

symmetry. and that freezing takes place from the outside curved wall inwards. At 
an intermediate stage of the freezing, there is a flat cylinder of unfrozen water 
surrounded by a cylinder of ice (Fig. 3a). The water is higher than its initial level h 
because the expanding ice is squeezing it. forcing it up. Therefore. when freezing is 
complete, the top of the ice is peaked (Fig. 3b). The problem is to describe the 
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Ca) Can of frozen water (b) Partly frozen (c) Cross-section 
Fis. 3 Formation of cylindrical ice cube 

a \" 

shape of the frozen surface, that is, to identify the profile curve y = f(x) in Fig. Jc. 
At an intermediate stage, the central core of water is a cylinder of radius r, where 

0 < r < a, having volume nr2/(r). Eventually this core will freeze into a solid of 
revolution whose upper surface is swept out by the curve y = /(x). Its volume 
will be 

, f 2nxf(x) dx . 
• 0 

But this volume of ice is 1 + p times the volume of the water it came from, hence 

· ' I 2nx/(x) dx = (1 + P)nr2.f(r� 
• 0 

0 < r < a  . 

The desired function f (x) must satisfy this equation subject to the initial condition 
/(a) = h. 

To find /(x� we first differentiate with respect to r: 

� E 2nxf(x) dx = (1 + P)n *' [r2/(r)], 
2nrf(r) = (1 + P)n[2rf(r) + r2f'(r)]. 

We cancel nr and replace r by x: 

2/(x) = ( 1  + P)(2/(x) + xf'(x)]. 

( I  + P)xf'(x) = - 2Pf(x� 

xf'(x) = pf(x� 

We know a function that behaves this way under differentiation, /(x) = x', where 
p is rational.• Obviously,f(x) = kx' also satisfies the equation, and we can choose k 

• We shall jump the gun a little and take it for granted that such functions exist also for any real p. 
The gap will be filled in the next chapter. 
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so that/(a) = h, that is, kaP = h. Thus we arrive at the surface shape given by 

For 0 < P < l ,  this curve is shown in Fig. 4a. Note that p < 0. If the liquid is a 
molten meta� then it contracts upon solidifying instead of expanding. Hence p is 
slightly less than 0. The same analysis applies, only this time O < p < l, yielding 
the shape shown in Fig. 4b. 

y y 

I 

� 
y • 1t(!)' 

0 
I p =  0.1 

I � /i / 
,,/ " r I I I I I 

-o 0 x -o x 
(a) Fluid expands on freezing. (b) Fluid contracts on freezing. 

Fie. 4 Solution of the freezing fluid model 

Remark 1 The model fails when the cylinder is very thin because factors like surface tension, 
which we have ignored, become significant. 

Remark 2 The mathematics in this e�ample consisted of deriving a differential equation by 
differentiating an equation involving an integral with a variable (upper) limit. This is an im
portant technique in physics. and the next topic provides another example. 

Abso The problem is to derive a differential equation for 
R(h), the intensity of solar radiation in the atmosphere at height h above the 
Earth's surface. To get a feel for the meaning of "intensity of radiation .. you 
might lie on the beach for an hour on a summer midday and measure your 
sunburn. More precisely, you hold a unit area of a perfect light absorber 
perpendicular to the Sun's rays for a unit time, then measure (by its temperature 
rise for instance) how much radiation it has absorbed. Thus "intensity of radiation" 
is measured by amount of (radiant) energy per unit area per unit time. 

We shall make three simplifying physical assumptions: 

(1) We work in a "steady state," that is. everything is indpendent of time. 
(2) Energy from the Sun radiates directly downwards through the atmosphere. 
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(3) The amount of radiant energy absorbed by the atmosphere per unit volume 
per unit time at height h is ccS(h)R{h� where cS(h) is the density of the atmosphere 
at height h and c is a positive constant. 

" 

b 

a 

l I 1 I l 

Fla- 5 Some of the radiation entering into 
the imaginary cylinder leaves; the rest is 
absorbed. 

We imagine a vertical cylinder of air (Fig. 5) with base area A and extending 
between heights a and b. In a unit of time, the radiation passing into the cylinder of 
air through its upper base is R{b)A and that passing out through the lower base is 
R{a)A. Hence, the net amount of radiant energy absorbed by the column of air per 
unit of time is 

R(b)A - R(a)A = [R(b) - R(a)]A. 
Let us compute this quantity by slicing. We slice the column of air into thin 

horizontal slabs. In the typical slab, lying at height h and with thickness dh, both 
R(h) and cS(h) may be considered as constant. By assumption (3) the element of 
radiation absorbed by the slab of air per unit time is 

ccS(h)R{h)A dh. 
Consequently, the total radiation absorbed by the cylinder of air per unit time is 

, b  , b  I ccS(h)R(h)A dh = A  I ccS(h)R(h) dh. . . . . 
We equate the two expressions for this quantity, then cancel A: 

, b  

R(b) - R{a) = j ccS{h)R(h) dh . 
. . 

Finally, we let b vary and differentiate this equation with respect to b, then substitute 
h for b: dR 

dh = ccSR. 
This is the desired differential equation. For further details see Exs. 34-36, p. 177 
and Ex. 16, p. 285. 
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csc o Velocity A particle of mass m0 is fixed at the origin on the x-axis. A 
second particle of mass m is initially (t = 0) at x0 > 0 with initial velocity v0 • See 
Fig. 6. The only force F acting on m is the gravitational attraction of m0; thus 
F = - Gmm0/xl when m is at x. (See Example 2, p. 277.) 

mo ,,, __ ...,.� tu 111 _......,.� u 

Fig. 6 

By Newton's law of motion, the position x = x(t) of m satisfies 

x(O) = Xo , x(O) = Vo ·  

Our problem, only partially solved here, is to describe the motion. 
It is convenient to set c = � and v = v(t) = x. Then the equation of motion 

and the initial conditions can be written as a system : 
dx - = v  dt 
dv -cl 
dt = 2x2 

lx(O) = x0 > 0  

v(O) = v0 • 

Clearly dv/dt < 0, so v(r) is a strictly decreasing function. 
We derive a relation between v and x by multiplying the second differential 

equation by v: 
dv -c2 -cl dx v - - - v - - -dt - 2x2 - 2x2 dt ' 

Now we integrate: 

that is, 

f: :1 (i vl) dt = I: :t (;:) dt, 1 1 c2 cl 
2 v(t)2 - 2 v5 = 2x(t) - 2xo

. 

This relation can be written simply as 
c2 v2 = - + b, x where b = v5 - c2 

= v5 - 2mo G . Xo Xo 
We now examine cases according to the signs of v0 and of b. 
Cae l v0 < 0. Since vis strictly decreasing, v(t) < v0 for t > 0, that is, dx/dt < v0 

for t > 0. Hence, by integrating this inequality, 
I I 

x(r) - x0 = f v dt < J v0 dt = v0 t, 0 0 
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so x(t) < x0 t for t > 0. The expression x0 + v0 t is zero at time t = -x0/v0 > 0, so 
the particle collides with the fixed particle in at most this time. 

Cas� 2 v0 = 0. Since v is strictly decreasing, v( t 1) < 0 for some t 1 > 0, and Case 
1 applies. 

C� J Vo > 0, b < 0. Then 
c2 - = v1 - b � -b > 0, x so 

(Note that -c1/b > 0 since b < 0.) This implies an estimate for v. First, 

then by integration 

c4 1 b1 dv -c1 -b1 2 x S b1 ' x2 � c4 ' dt = 2x2 :s;; 2c1 ; 

b2 [' dv [' (-b1) -b1t v(t) - Vo = Jo dt dt S Jo 2c2 dt = 2cl ' v :s;; Vo - 2c2 t. 

Clearly, v < 0 for t >  2c2v0/b2, so we are back to Case 1 and a collision. 

C� 4 Vo > 0, b > 0. Then 

c2 v1 = 2 + b > b > 0, x v > .fl . 

(The sign of .../ is correct because v0 > 0.) By integrating, x(t) - x0 = 
Io v dt > t.jb for t > o, so 

x(t) > x0 + t.jb. 
Clearly, x(t) - oo as t - oo and 

cl v2 = - + b- b, x so v - .jb . 

The particle moves off to oo (escapes) while its speed decreases towards its 
terminal speed .jb . 

Case 5 v0 > 0, b = 0 (that is, v� = 2m0 G/x0). This is the critical case be
cause it separates the collision values of b from the escape values of b. What happens? 
Does the particle crash, escape, or something else? 

Since b = 0 and v0 > 0, we have (dx)l = vl = cl 
dt x . dx c 

dt = Jx 
for as long as dx/dt > 0. We rewrite the last relation in the form 

By integrating, 

that is, 

r.. dx yA dt = C, that is, 

jx312 - jx�11 = ct, 
x = (Jct + x�fl)l/J = (Jt� G + x�'2)11J. 
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Clearly, x --+  CX> as t --+  CX>, and v = c/Jx--+ 0. The particle decelerates towards its 
terminal speed 0, but goes off to CX>, thus escapes the gravitational attraction of mo . 
Remark The value v0 "" J2mo G/x0 is the escape •elocity for a particle starting at x0 • 
Applied to the Earth it works as follows. It is known that the gravitational attraction of the 
Earth on an external particle is the same as the gravitational attraction of a particle at the 
center of the Earth with mass mE• the Earth's mass, on the external particle. If we start at 
the Earth's surface, then x0 = 'E• the radius of Earth, and the escape velocity is 
v0 = J2mE G/rE . Now G :::::: 6.67 x 10- 1 1  N-m2/kg2, mE :::::: 5.98 x 1024 kg. and rE :::::: 
6.37 x 106 m, so v0 :::::: 1.12 x 104 m/scc :::::: 25,100 mile/hr. 

EXERCISES 

Find the capital value V(T) of the constant income strcam/(t) = c, interest rate r, time 
T years. 

2 (cont.) A company deposits funds continuously at the constant rate of Y dollars per 
year in an account paying 8 % interest, compounded continuously. Find Y so that the 
investment will be worth 107 dollars in 10 years. 

3 Find the capital value V(T) of the income stream /(t) = bt, interest rate r, T years. 
[Hint Differentiate te-".] 

4 (cont.) A company deposits funds continuously in an 8 % account, starting initially at the 
rate of $106/yr and increasing the rate steadily to $2 x 106/yr at the end of 5 years. 
What is the value of the account at that time? [Hint Differentiate re-".) 

In Exs. 5-10, the income stream /(r) at annual interest rate r for T years has capital value 
V = V(T). 

5 Suppose money is steadily invested for one year, steadily withdrawn at the same rate 
the next year, then again steadily invested, etc. (cyclic behaviori Thus /(r) = c for 
2n s; t < 2n + I and/(t) = -cfor 2n + I s; t < 2n + 2. Find V(T) for T an even integer, 
T = 2N. 

6 (cont.) Find the ultimate capital value, lim V(2N� N -+  co. 
7 Suppose /(t) - c sin Jtt, the simplest possible smooth periodic function in certain 

respects. Find V(T� [Hint Differentiate e-"(r sin 'rt +  x cos Jtt).] 
8 (cont.) Find limN-ao V(2N). 
9 Find/(T) if V(T) = cT. 

10 Find/(T) if V(T) = cTe-•T. 

1 1  Suppose that the interest rate r =  r(r) varies for  t ;;::; 0. Show that an initial amount Ao 
will grow in time t to 

A(r) = A0 �'>, 
I 

where <f>(t) = J r(u) du. 
0 

12• (cont.) Find the capital value V(T) of the income stream /(t). 
13 Express the tension T(x) in the suspension bridge cable in terms of T0 , l>, and x. 
14 Suppose the roadway of the suspension bridge is thicker at the ends than in the middle, 

say its linear density (weight per unit length) is l>(x) = A + Bx2• Find the shape of the 
cable. 

15 Where docs a teeter-totter (seesaw) balance? A thin, still', horizontal rod (Fig. 7) 
of varying linear density l>(x) is to be balanced on a fulcrum at x. Each clement of 
mass is acted on by gravity, causing a turning moment (torque) about X equal to the 
product of the mass by its distance from the fulcrum. Set up integrals for the moments 
on either side of the fulcrum. Equate these to find x. 

16 Solve the ice cube problem when the container is a thin rectangular slab (Fig. 8) and 
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Fla. 7 Fis. 8 

cooling is applied only at the ends (symmetrically). The ftat faces and bottom are 
insulators. 

17 Assume the mass of the Sun is m, � 1.99 x 1030 kg and the (mean) radius of the 
Earth's orbit is RsE � 1.49 x 1011 m. Find the escape velocity from a point on Earth's 
orbit to escape from the solar system. 

The kiMdc eDel'IY of a particle of mass m and speed v is K ,.  !mv1. For a finite system of 
moving particles, the kinetic: eMrlY of the system is the mm of their individual kinetic 
energies. For a moving rigid body (or ftuid� K = ! Jv1 dm. 
18 The mass m in Fig. 9 hangs at the end of a weightless spring with spring constant k. 

It is released from A. Write down the differential equation and initial conditions for 
its motion, and show that x(t) = A cos wt, where w1 = k/m, is the solution. (An example 
of simple harmonic motlOll.) 

- \' 
<'t1111hhrn1111 k'�' 0 

. I 

19 (cont.) Find the average kinetic energy over one period. 

Fla. 10 

20 The cylindrical wheel (Fig. 10) rotates about its axis with steady angular speed w rad/sec. 
It has uniform density (mass per unit volume) and total mass M. Find its kinetic energy. 
(Hint The cylindrical shell at distance x from the axis has speed v = xw and 
thickness dx. Find its element of kinetic energy.) 
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21 (cont.) Solve the same problem for a right circular cone or base radius a and height h 
rotating about its axis. 

22 Suppose a spherical planet or mass M and radius R has unirorm density (mass per unit 
volume). A·narrow tunnel is bored straight through the planet's center C from one side 
to the other. It is known that the gravitational attraction or the whole planet on a 
particle or mass m in the tunnel at distance x from C is the same as that due to a 
particle at c whose mass is that or the part or the planet within the sphere or radius 
x and center C. Express this rorce in terms or M, R, and x. Take the origin at C and 
the x-axis in the tunnel. 

23 (cont.) At time 0 a particle or mass m is dropped into the tunnel from the planet's 
surface. Set up its differential equation or motion and initial conditions, and show that 
the solution is simple harmonic motion. (See Ex. 18.) 

24 A mass m is towed, starting from rest, through a viscous fluid by a constant force F. 
Assume the opposing friction force or the ftuid is kr, where k > 0. Set up the 
differential equation or motion and initial conditions, and show that 

Fm F 
x = kl (e·tt1 .. - 1) + k r 

is the solution. (This is a crude model or a tugboat towing a barge through an 
oil spill.) 

25 (cont.) Find the terminal speed. Find the kinetic energy K at hair terminal speed. 
26* (cont.) Find the work W done by the towing rorce in bringing the mass to hair terminal 

speed. Show· that W > K and explain the discrepancy. (This assumes you understand 
the conservation or energy principle.) 

7. MISCELLANEOUS EXERCISES 

1 Compute the area or the region bounded by the curves .r = x3 and J = 2x2• 
2 Compute the area or the region bounded by the curves .r = eh, .r = -x2, x = 0, 

and x = 3. 
3 Let R be the region under the curve .r = 1/x2 from x = I to x = 10. Find a vertical 

line that divides R into two regions or equal area. 
4 In Fig. 1, we have a <  x < b. Find the maximal area or the triangle. 

' ' = '(" 
: 

Fig. 2 
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5 Find the area bounded by y = x2, y = l/x2, and y = 3. 
6 Find the area bounded by y = x2, y • l/x2, and x = 3. 
7 At time t = 0, a point is at the origin. It moves to the right along the x-axis, its speed 

at time t given by l/j3t+l . Find its position at t = 4. 
8 One particle is at x = 0 and another at x = S. Each attracts a third particle p with a 

rorce k/(distance)1. Compute the work done moving p from x = 10 to x = IS. 
9 Find the gravitational force or the uniform rod or linear density {J in Fig. 3 on the 

10 Do the same ror Fig. 4. By symmetry, the horizontal component or the force is 0, so only 
the vertical component is required. [Hinr The integration is easy ir you use an angle as 
the variable.) 

11 Compute the volume or a pinch-waist tank in the shape or the solid generated by 
rotating the region - I s x s .y2, - 3 s .r s 3 about the line x = - I . Take reet as the 
units. 

12 (cont.) How much work is required to fill the tank with water from the level or its 
bottom? Assume water weighs 62.4 lb/ft3• 

The tank in Fig. 2 has its rectangular base on the horizontal x, y-plane. Its sides are 
trapezoids; the back sides are vertical, the two rorward sides are oblique to the horizontal. 
The tank is filled with fluid or density {J. 

13 Find the volume V or the tank. [Hint Slice by horizontal planes.) 
14 How much work is required to fill the tank with fluid from the level or its base? 
15 Compute the total pressure FL on the (shaded) left end or the tank. 
16 Find the total pressure Fa on the (shaded) right end or the tank. (Remember that 

pressure acts perpendicularly to any surrace, even an oblique one.) 

The tank in Fig. S consists or a standing right circular cylinder cut off by an oblique plane 
that cuts the horizontal x. y-plane at angle 2. It is filled with fluid or density {J. 

17 Use slabs perpendicular to the .r-axis to set up the volume as an integral. 
18 Evaluate this integral. Can you interpret the result geometrically? 
19 Set up an integral for the work required to fill the tank with fluid from the level or its 

base. 
20 The wedge in Fig. 6 has been cut from a right circular cylinder by a plane oblique to 

the horizontal base. Set up in two ways the volume as an integral and compute it. 
21 In Ex. 17, p. 285 we show that the atmospheric pressure at height h is p(h) = p0e-•. 

By using a first order approximation for p(h1 ) - p(h2� where, h1 < h2 and h2 - h1 is 
small, show that Archimedes' principle ror the buoyancy or a fluid on a submerged 
object is a good approximation to the buoyant force on a balloon. Compare Ex. 14, p. 285. 

22 A metal weight of density S gm/cm3 has the shape or a truncated pyramid with square 
cross section. Its top measures 10 x 10 cm, its bottom 20 x 20 cm, and its height is 10 cm. 
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The weight is barely submerged in a lake of density I gm/cm3. How much work (in 
gm-cm) is needed to lift the weight just clear of the water? 

23 The piston of Fig. 7 has cross-sectional area A, and it is kept at constant temperature. 
When the piston is initially at x0 • the gas pressure inside the cylinder equals the outside 
atmospheric pressure Po. Use the gas law (pressureXvolume) = const. to derive a formula 
for the pressure p(x) when the piston is at x. 

24 (cont.) Set up an integral for the work done by the external force F to move the piston 
from x0 to x. (Don't forget that atmospheric pressure is helping you.) 

Fig. 7 

25 The office space part of the Transamerica Building in San Francisco (Fig. 8) consists of 
a truncated pyramid. Its height is 621 ft, its base is a square of side 152 ft, and its top 
is a square of side 40 ft. Find its volume by integration, then use the Trapezoidal rule 
to estimate the total ftoor space of its 46 ftoors. 

26 Find the area between the three semicircles in Fig. 9. 

Fig. 8 



Inverse Functions 7 
1 . INVERSE FUNCTIONS A N D  THEIR DER IVATIVES 

We shall create new functions by turning old functions inside out. Here is the idea. 
A function f assigns to each x in its domain a unique number y in its range (set of 
values). We ask whether each y in the range off comes from a unique ancestor x. 
Given y, does the equation y =f(x) determine a unique x? Equivalently, doesftake 
on each of its values exactly once? 

Suppose f has the property that each y in its range corresponds to exactly one 
x in its domain. Then y determines x, that is, x can be considered as a function of y. 
We think of solving the equation 

/(x) = y 

for x in terms of y. 
For example, take /(x) = 2x - 5. Given any y, the equation y = 2x - 5 determines 

precisely one x. To find it, just solve the equation for x: 

x = !(y + 5). 
For another example, take f(x) = x3. The equation y = x3 determines a unique x, 
namely, x = y113• 

Not every function is so cooperative. The function/(x) = x2 takes every positive 
value twice. Given y > 0, the equation y = x2 determines two values of x, namely, 
x = Jy and x = -Jy. Worse yet isf(x) = sin x. This function takes every value in 
its range - J $ y $ l in.finitely many times. For instance, the equation 0 = sin x has 
the solutions x = -0, ± n, ± 2n, ± 3n, · · · . For such functions we cannot expect 
/(x) = y to determine x as a function of y unless we somehow restrict the set of 
values of x. 

When can we be sure that x is determined as a function of y? There are two 
favorable situations: 

( J )  f(x) strictly increasing, that is,f(xi) </(x2) whenever x1 < x2 ; 
(2) /(x) strictly decreasing, that is,f(x1) > /(x2) whenever x1 < x2 • 

This is clear geometrically as illustrated in Fig. l. In both examples, the graph 
intersects each horizontal line y = c exactly once if c is in the range of the function. 

299 
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I = x3 

y = c 

I 
x 

\' 
\� = f .x 

)' = c 

(a) Strictly increasing; range: ally (b) Strictly decreasing; range: y > O 

Fi&- 1 The graph y = f (x) crosses each horizontal line y = c exactly once. 
where c is in the range of/(x). 

When a function/(x) is not strictly increasing or strictly decreasing, the equation 
y = /(x) may fail to have a unique solution x for some values of y in the range of 
/(x). See Fig. 2 for examples. 

y 

+ ,. 

7 2 

I x 

-2 T 
(a) xl - 3x • y has a unique solution (b) sin x • y has infinitely many solutions 

if lyl> 2, two solutions if ly I• 2, if ly I< I .  
and three solutions if I y I < 2. 

Fi&- 2 Graphs that cross some horizontal lines more than once 

x 

Def n1t1 F c "'IS Suppose / is a function such that the 
equation/(x) = y determines a unique x for each y in the range off Then we turn 
/inside out (inven /) and consider x as a function of y. We write x = g(x) and call 
g the inverse function off By definition, the domain of g is the range off 

Remark Sometimes the inverse function is denoted 1 - 1• We shall avoid this notation 
because of possible confusion with the reciprocal 1/ f. 
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Examples ( 1 )  y = f(x) = 2x - 5, domain all x: x = g(y) = !(x + 5). 
(2) y = f(x) = x3, domain all x :  x = g(y) = y1'3. 
(3) y = f(x) = x2, domain all x :  no inverse function. 
(4) y = f(x) = sin x, domain all x: no inverse function. 
It is pretty clear from Figs. 1 and 2 that a continuous function (defined on an 

interval) has an inverse function if and only if it is strictly increasing or strictly 
decreasing. (A proof of this assertion will be sketched in Section 9.) Hence if /(x) 
is differentiable andf'(x) > 0 for all x in the domain off. then/is strictly increasing 
so its inverse function exists. Likewise, if f'(x) < 0, then the inverse function exists. 
Let us summarize these facts, assumingf(x) is defined on an interva� possibly an 
infinite interval. 

Existence of Inverse Functions 

( 1 )  A continuous function /(x) has an inverse function if and only if /(x) is 
strictly increasing or. strictly decreasing. 
(2) A differentiable function/(x) has an inverse function if either f'(x) > 0 for 
all x in the domain off or f'(x) < 0 for all x in the domain off. 

Remark Inverting known runctions sometimes produces brand new functions. Consider ror 
example /(x) = x' + x with domain all x. Then f'(x) = Sx' + l � l > 0, hence f has an 
inverse runction g. But we cannot solve the quintic equation x5 + x = y explicitly for x, 
that is, we cannot express g(y) by a formula involving familiar functions. So x' + x = y 
defines a "new" function x = g(y). 

Properties of I nverse Functions Suppose/ is a function having an inverse 
function g. By the very meaning of the inverse function, 

y = f (x) and x = g(y) 
are equivalent statements; they say the same thing. If f assigns the number y to x, 
then g assigns the number x to y. Thus the action of g undoes the action off. and 
conversely / undoes the action of g: 

g[f(x)] = g(y) = x, f[g(y)] = /(x) = y. 
Examples ( 1 )  f(x) = 2x - 5, g(y) = !(y + 5): 

g[f(x)] = ![J(x) + 5] = ![(2x - 5) + 5] = x, 
f[g(y)] = 2g(y) - 5 = 2[!(y + 5)] - 5 = y. 

(2) f (x) = x3, g(y) = y113 : 
g(f(x)] = [/(x)]113 = [x3]t/3 = x, 
f[g(y)] = [g(y)]3 = [yl/3]3 = y. 

Obviously f and g play symmetric roles with respect to each other. Not only is g 
the inverse off. but f is the inverse of g. Therefore we often speak of pairs of inverse 
functions. 
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Suppose f (x) is a function having an inverse function g(y). Then 
( 1) y = f (x) and x = g(y) are equivalent statements. 
(2) g[f (x)

] 
= x, /

[
g(y)

) 
= y. 

(3) f is the inverse of g. 

Restricting he Dom i n  This is a technique for salvaging a kind of inverse 
for certain functions not having genuine inverses. The idea is simple: restrict the 
domain of the function to a smaller domain on which the graph is either increasing 
or decreasing. 
For example, take/(x) = x2 on the domain - oo  < x < oo. This function has no 

inverse because its graph is neither increasing nor decreasing throughout the 
domain. But suppose you restrict the function to the smaller domain x � 0. There 
y = x2 is strictly increasing (Fig. 3a� hence the restricted function /(x) = x2 has 
an inverse. 

,. 
' I = �-

(a) Domain restricted to x ;;a. 0 

I' 

I = �10 \' 

\ 

(b) Domain restricted to ( -I ir, + ir I 

F11- 3 

All this makes good sense algebraically. The inverse of y = x2 ought to be 
x = Jy. But every positive number has two square roots, for instance 36 = (±6)2• 
By insisting on x � 0, you accept only the unique positive square root of each 
positive number. 
As another example, takef(x) = sin x on the domain - oo  < x < oo. This func

tion is far from having an inverse, as Fig. 2 shows. But on the subdomain 
[ -!n, !n1 the sine function is strictly increasing (Fig. 3b). Therefore /(x) = sin x, 
restricted to this domain, has an inverse function g(y). Again this makes sense: if 
- 1  s; y s; l , then g(y) is the unique angle x in the domain [ -p, !n] whose sine 
is y. 



1 .  Inverse Functions and Their Derivatives 303 

Gra phs Suppose f has an inverse g. What is the relation between the graphs of 
these two functions? The points on the graph of y = /(x) can be written in two 
ways. as 

(x,/(x)) or as (g(y� y). 
Hence the graph of x = g(y) is the graph of y = f (x � 

That should be all there is to it. Yet the notation x = g(y) seems awkward since 
we are accustomed to x as the independent variable and y as the dependent 
variable. So we reverse the roles of x and y, and study y = g(x) instead. Then 
each point (x, y) on the graph of y = g(x) corresponds to a point (y, x) on the 
graph of x = g(y� that is. the graph of y = /(x). See Fig. 4 (and compare Example 3, 
p. 47). 

(a, b )  
... 

I' 

( I .  3 )  
' 

). (b, a )  

/ 

(a) Reflection in y • x (b) Graphs of inverse functions 

Fl .. 4 Graphs or inverse runctions are reflections or each other in y = x. 

Graphs of Inverse Functions Let/and g be a pair of inverse functions. Then 
the graphs of y = f (x) and y = g(x) are mirror images of each other in the line y = x. 

Some explicit examples are shown in Fig. 5. 
Remark Ir two non-horizontal lines are reflections of each other in y = x. then their slopes 
are reciprocals. For example, in Fig. Sa the slopes are 2 and t. In general. suppose one of 
the lines passes through two distinct points. (a, b) and (c, d� By the slope formula, its slope 
m1 is 

b - d  m1 = -- . a - c  
The other line passes through the reflected points (b, a) and (d, c). Its slope m2 is 

a - c I 
m2 - -- = -b - d '"•

. 
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Fla. S Pairs of inverse functions 

D v"1t1v Suppose y = /(x) is differentiable and has inverse function x = g(y). 
We suspect that g(y) is also differentiable and that there is a rule for computing 
g'(y) in terms of f'(x). We can guess a rule, reasoning this way: if y is changing 
k times as fast as x, then x is changing l/k times as fast as y. Therefore, 

d Id 
dy g(y) = 1 dx 

f(x� 

provided f'(x) :#: 0. We shall prove the following precise statement in Section 9. 

lnerlvatlve of an Inverse Function Let y = f (x) be a differentiable function l tlt�t has an inverse function x = g(y). Then g(y) is differentiable at each point 
y =/(x) wheref'(x) :#: 0, and 

Briefty, 

� g(y) I = -. ·- . 
dy ,.11,,1 f (x) 

, 1 dx /dy g (y) = f'(x) 
or 

dy = 1 dx · 

Note that/' is evaluated at x, but g' is evaluated at y = /(x). 
The rule has a geometric interpretation (Fig. 6). The graphs of y = /(x) and 

y = g(x) are reftections of each other in the line y = x. At corresponding points 
(x, y) and (y, x� the tangents F and G are also reftections of each other, so their 
slopes are reciprocal: 

1 (slope of G) = (slope of F) 
However, the slope of F is the derivative off evaluated at x, and the slope of G 
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y 

F 
Fi&- 6 The tangents at corresponding 

points have reciprocal slopes. 

;r: 

is the derivative of g evaluated at y. Therefore 

g'(y) = 
r:xr 

If F happens to be horizontai then G is vertical The slope of G is undefined, and 
g(y) is not differentiable at the corresponding y. 
• EXAMPLE 1 Differentiate x1'3• 
So1Mtio11 The function g(x) = x1'3 is the inverse function of /(x) = x3• Therefore 

g'(y) l,.x, = f':x) = 3!2 (x � 0). 

But y = x3 is equivalent to x = ylf3, so 

'(y) 1 1 g = 3x2 = 3(y''J)2 
= 3y21J (y � 0). 

Interchange x and y if you prefer the formula in terms of x: 

� x'f3 _ _ 
1_ dx - 3x213 (x � 0). • 

Remark At x = 0, the graph y = x3 has a horizontal tangent. Therefore the reflected curve 
y = x113 has a vertical tangent, hence no derivative (Fig. Sb� Nevertheless, it is reasonable 
to write d(x1'3)/dx = oo at x = 0, as justified by the limit calculation 

g(x) - g(O) x113 I 
x - 0 = x = x213 -+ 00 as X -+  0. 

• EXAMPLE 2 Show that /(x) = xs + x has a differentiable inverse g(y) and 
compute g'{2). 
Sollltion Since f'(x) = 5x4 + 1 > 0 for all x, the graph of y = xs + x is strictly 
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y 

Fig. 7 Graphs of .r = x5 + x and its 
inverse function .r = g(x) 

increasing (Fig. 7). Hence /(x) has an inverse function g(.r). Since /(x) is dif
ferentiable andf'(x) is non-zero, g(.r) is also differentiable. 

We cannot solve .r = xs + x for x. so we have no workable formula for g(.r). 
Still we can find g'(.r) by the rule 

'( ) 
I I 

g .r = f'(x) 
= 

5x4 + 1 · 

where .r = xs + x. Now .r = 2 corresponds to x = 1 since 2 = 1 s + 1. Therefore, 

g'(i) = 5(1); + 1 
= � · 

EXERCISES 

Give the inverse function in the form x = g(,r) 
I .r = 3x - 7 

3 

5 

7 

9 

I .r = - -
.\' 

2x - 7 \' =--. .'( + 4 
.� + 2 r = --. .'( + 3 
.'() + 2 r =--. .'() + 3 

(:< #:- 0) 

(x #:- -4) 

(x #:- -3) 

(x3 #:- - 3) 

I I  .r = J2x - 8 (x � 4) 
I 13 ,r = x + - (x � I ) 

.\" 

2 

4 

6 

8 

10 

12 

14 

.r = -2x + 5 

3 r =--. 10.\' - 7 
(x #:- To-l 

x + I r = --· x - 1 (.\' #:- I )  

3x + 4 \' = --. h + 3  (x ,;. -i) 

I' = (3x + 4) 3 . 2:< + 3 
.r = -"5 + I 

9 .r = - - 7  
.\' + 7 

(x #:- - i) 

(x ,;. - 7). 

• 

Docs .r = f (x) for - x < :< < x have an inverse function? ( lf  so. you need not compute 
it.) 

15 .r = r' 16 .r = tan .'( 
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17 .r = !x5 + J.\'.3 + x + 12 

19 Let .r = f(x) be an even function for Ix I <  b. Show that it has no inverse function. 
20 Let .r = f (x) be an odd function for I x  I < b that has an inverse function x = glr). 

Show that the inverse function is odd. 
21 Show that .r = x3 + x has an inverse x = g(.r� and graph .r = g(x). 
22 (cont.) Show that g(x)3 = -g(x) + x. 

Find g'(c� where x = g(.r) is the inverse function of .r = f(x) 
23 f(x) - x3 + x. c = 30 24 /(;1;) • x1 1  + 2x5 + x. c = 4 

25 

27 

29 

x3 
f(x) = --2 ·  I + x 

I I 
f(x) = 3 + 9 . 

:< :< 

Find � x' 3 1  dx 0 

c = -J 

C= -2  

by use of 

26 /(:() = -:<5 - Sx + 2. c = 8  

28 f(x) = 2.\'.3 - 9.\'.2 + 18x + 5. 

� !M l  = lim f(x) -f(O) . 
d.\'. 0 .. -o :< - 0 

30 (cont.) Generalize to f (x) = x" for p/q > I .  

c = 5. 

31* Suppose .r =f(x) has the inverse function x =f - 1(.r) and : = g(.r) has the inverse 
function .r = g - 1 (:). Assuming the composites arc defined. show that (g = fr 1 = 1 - 1 : g- 1 . 

32 (cont.) Verify this result for f (x) = I x and g(.r) = I - y. 
33• Suppose .r = f(x) is differentiable at x = a  and /(a) = b. Suppose also f(x) has the 

inverse function .\'. = g(.r) and it is differentiable at .r = b. Prove that f'(a) :;. 0. 
34* Suppose f(x) is strictly increasing on (0. 1) and equal to its own inverse. Prove 

f(x) - .\'.. 

2. TH E LOGARITH M FUNCTION 

The inverse of the strictly increasing function _r = r is denoted 

_r = In x 

and is called the natunl logarithm function. Figure I shows the graph of y = In x, 
the reflection in y = x of the graph of y = r. 

Certain basic properties are immediate from Fig. l. next page. 

( 1 ) In x is defined only for x > 0; 

(3) In x < 0 for 0 < x < 1 ; 
(2) In x is an increasing function ; 

(4) Jn 1 = 0; ( S) In x > 0 for x > 1. 

Because In x and e• are inverse functions, two further statements are automatic: 

�6) .r = r is equivalent to x = Jn _r: (7) ln(e") = x and e1" r = _r. j 
Examples In e4 = 4. In e - i..3 = -2.3. In e" = n. e1" 7 = 7. e1" •0·6 = 10.6, t'ln I l = !. 



308 7. I NVERSE F U NCTIONS 

Fig. I In x is the inverse function of ex. 

Be sure you understand these examples. They are easy, but unless you get the 
principle right, you are in for trouble. For instance. without any further informa
tion you should be able to differentiate e1" ". How? 

• EXAMPLE 1 Given 2.5 < e < 3. show that 2 < In 10 < 3. 

Solution Because e" is strictly increasing, the desired inequality is equivalent to 
this one: 

that is, e2 < 10 < e3. 

But e < 3, so e2 < 32 = 9 < 10. Similarly, e > 2.5. so e3 > (2.5)3 > 2 x 2 x 2.5 = 10. 
Therefore. e2 < 10 < e3• • 

From Fig. 1 it is not clear whether the graph of .r = In x rises arbitrarily high 
or not. Actually, the graph reaches all levels because each .r > 0 is the natural log 
of something. namely of e)'. For example, 

10 = In e10, 100 = In e100, 1000 = In e1000, • · · .  

Therefore the graph of .r = In x increases beyond all bound as x increases. 
Similarly, each y < 0 is ln of something. .r = ln e>'. For example, 

- 100 = In e- 100, - 1000 = In e- 1000, 

Therefore the graph of y = In x decreases beyond all bound as x - 0 + .  

I in x - :x: as
_

x
_

-__ :x:_; __ in_x_-__ -_:x: __ a_
s 
__ 

x
_
-
__ o_+_._. 
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Alg ebra ic  Properties of I n  x Let us justify the name natural logaritlrm by 
showing that In x behaves the way a logarithm should. Recall some algebraic 
properties of the exponential function e" :  

I ( I )  ,.,. _ ,... 

- 1 (2) e " =  -
e" 

(3) � = e"_,, (4) 
(e'f - ...

. 1 
Somehow, these properties ought to rub off onto the inverse function In x. They 
do: each of the four statements can be translated into a corresponding statement 
about natural logarithms. Set e" = x and e" = .r: that means a =  In x and b = In y. 
Then property ( l )  can be translated as follows: 

e"e" = e"+", x.r = e'" x+tn r
, 

hence ln(x.r) = In x + In .r. 

Similarly, properties (2� (3� and (4) can be translated into properties of In x: 

( 1 ' ) ln(x.r) = In x + In .r (2') tn (�) = - In x 

(3') tn(�) = In x - In .r (4') In x" = b In x. 

Warning There arc no nice formulas for ln(x + .r) or (In x)(ln y). 

• EXAMPLE 2 Simplify 
(a) e0" 251 2 (b) In 2 + In 4 + In 8 + . .  · + In 128. 

So/11tio11 (a) etln 251 2 = e'"· 25 = e•" ' = 5. 

(b) In 2 + In 4 + · · · + In 128 = In 2 + In 22 + . .  · + In 27 
= In 2 + 2 In 2 + · · · + 7 In 2 = ( 1 + 2 + 3 + · · · + 7) In 2 = 28 In 2. • 

Relation of Natural  Logs to Common Logs Natural logarithms are 
logarithms to the base e; common logarithms are logarithms to the base 10. There 
is a simple relation between the two logarithm systems. We express a positive 
number x in two ways, 

then take logs to the base 10: 
(In x)(log10 e) = log10 x. 

Therefore 

1 In x = M log10 x, where M = log10 e � 0.43429. 

Thus natural logs are proportional to common logs and can be computed from a 
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table of common logs by this formula. Of course tables of natural logs are 
available. While natural logs are important for theoretical purposes, they are not 
nearly as well suited for practical computations as are common logs, which go so 
well with our decimal representation of numbers. 
Der va ive o I The natural logarithm function inherits some useful algebraic 
properties frc;>m r. It also inherits a simple derivative: [ d 1 - (In x) = -, 

dx x 
x > O. l 

This follows easily from the rule for differentiating inverse functions. Let/(x) = r 
and g(x) = In x, the inverse function. Then 

g'
(y) = 

r:x) ' 
Sincef'(x) = r, 

'( ) 1 1 
g y = - = - , r Y 

·Now replace y by x. 

where y = f(x) = r. 

that is, d 1 - (In y) = - .  dy y 

The formula agrees with the graph of y = In x in Fig. 1. The slope 1/x is 
always positive, it becomes very large as x - 0 +, and it dies out as x -oo. 
If u(x) is differentiable and u(x) > 0, then the composite function In u(x) is 

differentiable. By the Chain Rule, 

• EXAMPLE 3 

Sol11tio11 

d (d ) (du) 1 du 
dx In u(x) = du In u dx = u(x) dx · 

d u' - ln u = dx u (u > O� J 

Differentiate y = ln(x2 + 1 ). 
dy u' (x2 + l)' 2x 
dx = ; = x2 + 1 = x2 + 1 · 

EXAMPLE 4 Differentiate 

Y = tn( l + x) 
1 - x  

for - 1  < x < 1. 

• 

Sohdio11 Clearly, l + x > 0 and 1 - x > 0 for - 1 < x < 1 .  By one of the rules for 
logs, 

Hence 

y = ln(l + x) - ln(l - x). 
dy ( l + x)' (1 - x)' - 1  2 
dx = 1 + x l - x = l + x - l - x 

= 
1 - x2 • • 
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Note An alternative, but more complicated, method is 

dy 
= 
( 1 + x) '/ l + x

. etc. dx 1 - x 1 - x 

Antiderivative of 1 The formula 
d (x"+ ' ) x" = dx n + 1 (n :F - 1) 

supplies an antiderivative for each integral power x" except x-1 = 1/x. Now we can 
fill the gap at - 1 because 

1 d - = - ln x x dx for x > 0. 

Thus In x is an antiderivative of 1/x, at least for x > 0. But what about x negative? 
The trouble is that In x is not defined for x < O; however In(-x) is, because 
-x > 0. By the Chain Rule, 

3 

d (-x)' - I  1 - ln(-x) =-- = - = dx -x -x x 

A .d . . f 1 . f In x n anti envat1ve o � is \ln(-x) for 

for x < 0. 

x > O  
x < O. 

In other words: An antiderivative of - is In lx l for x :F 0. x 

EXAMPLE I Compute 

}' 

- I 

I )' = -x 

(a) - dx fl 1 
I X 

3 

(b) f �: 1 - dx. x 

x 

Fis. 2 The areas arc equal; 
the integrals have 
opposite signs. 
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Sobltio11 Use the result above and the Fundamental Theorem: 

(a) f 3 ! dx = In x 13 = In 3 - In 1 = In 3. 
1 x 1 

(b) - dx = In(-x) = In 1 - In 3 = In l 
J

- 1 1 ,- 1 - 3 x - 3 
• 

Remark The two answen are negatives of each other. A glance at Fig. 2 shows why; 
the integrals represent areas that are equal but of opposite sign. 

Warning If a < 0 and b > 0, then 

f. 1 
- dx 

• x 

is undefined, because l/x is undefined at x = 0. 

In x as an Are The function In x can be expressed as an integral: 

f" 1 In x = - dt, 
1 t x > O. 

Therefore In x represents an area if x > I, or the negative of an area if 0 < x < 1. See Fig. 3. 

)' 

y 

I I' = -
x 

x x 
(a) x > I :  A • In x 

}' 

x 

I 1 = 
\' 

(b) O < x <  I :  A a-lnx 

Fia. 3 In x as an area 

A = l;---1----
(' 

• dx 
Fi&- 4 e is defined by f - = I. l x 

x 
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From In e = I, we obtain a geometric interpretation of the number e. It is the 
unique number greater than I such that the area under y = 1/x from I to e equals 
one (Fig. 4). 
From this viewpoint, we can give an easy geometric proof that 2 < e < 4. See Fig. 5. 

y 

,. 

12dx 
(a) - <  1 ,  hence 2< t. x (b) 1.• dx > ! + ! + ! • 1 3 > l , x 2 3 4 1 2  

hence e <4·. 

Fi&- 5 Geometric proof that 2 < e < 4 

Antiderivat1ve of In x We needed a new function, In x, to integrate l/x. Do we 
need another new function in order to integrate In x in tum? We do not: 

d x 
dx (x In x - x) = ln x + x - I =  In x. 

How did we ever guess this? Well, that is a little secret until the next chapter. 
EXERCISES 

Find the inverse function 
l y = e-" 2 y = e-"> 

' y = 1/ln x, 0 < x < I 5 y = ln(x + 5� x > -5 
Simplify 
7 In e-•2 

10 el lni+ "" , 
8 exp(ln x2) 

II In Je 
Differentiate with respect to x 
13 In 5x 14 3 In 4x 
17 ln(l/x) 18 ln(x2 + x) 

21 tn(�) x - 1 22 ln(ln x) 

25 
I 

In x 26 tn(:.X: 2
1) 

15 2 In x2 
19 ln(sin x) 

23 � 

27 ln(x + p+l ) 28 ln(scc x + tan x) 

3 y = 1/ln x, x > 1 
6 y = In(ln x� x > e. 

9 e-lni 

12 ln(l/e312). 

16 In x' 
20 ln(cos x) 

2' (In x)2 

2 
I (2 + J x2 + 4 ) 9 - - In --'---2 x 
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l 
30 b ln(a + bx). 31 (In x)"/n, n " 0 32 x"(ln x - l/n)/n, n "I: 0. 

Prove the boxed property on p. 309. 
33 (2') 3' (3') 35 (4') 

36 Find the tangent line to y = In x that passes through (0, 1 ). 
Find the integer n for which 

37 e" < 1()()() < e"+ I 
39 Minimize y = x In x for x > 0. 

38 10" < e100 < 10-• 1• 

40 Show that y - (Jn x)/x for x > e has an inverse function x :z g(y� and compute 
g'(3/e3). 

41 Show that y = In x is strictly concave. 42 Find lim,_ 1 ((r - 1)/ln r]. 

f 100 dx . 10 dx '3 Prove - = 2 I - . " dt "dt Solve for x: f - = 3 f - . • 1 x · 1 x • 1/l t • 1 t 
45 Let l < x. Prove In x < x - 1. 46 Let 1 < x. Prove (x - 1)/x < In x. 
47 Use Exs. 45 and 46 to prove Napier's inequality: if 0 < x < y, then 

1 ln y - ln x  I - < < - . y y - x  x 

48• Find lim (-1- + -1- + · · · + 
2
1 ) · [Hint Relate the sum to an integral.] 

.-,,, n + I n + 2 n 
49 Use 1/r < t/.ji for t > I to prove In x < 2(Jx - l )  for x > 1. 
50 (cont.) Similarly, prove In x < n(x11" - I )  for x > l and n ;::: l .  

51 (cont.) Prove ( 1 + �r < e" for x > 0 and n ;::: 1. 

52• Modify your solution to Ex. SO to deduce that n(l - x- 11•) < In x for x > 1 and 
n ;::: 1. 

53 (cont.) Prove e" < ( 1 - �) -• for x > 0 and n ;::: 1. 

( 1)" ( t)• + l  
Use the results of Exs. St  and 53 to prove 1 + � < e < 1 + � for all n ;::: 1. 

55 Show that 1/x > ! - i(x - 2) for 1 S x < 2 and l/x > t - !(x - 3) for 
2 � x < 3. 

S6 (cont.) Deduce that In 3 > l ,  hence e < 3. 

I I ( 1 l ) 
Show by algebra that - < - m + m x 2 x x 

for x > 1. 
1 

(cont.) Show that ln x < JX 
- JX for x > l .  Deduce Kepler's inequality: if 

ln y - ln x  1 
0 < x < y, then < r.::. . 

y - x ...; XY 

59 Compare the results of Exs. 45, 49, and 58 by completing the table to S places: 
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x In x x - I 2(Jx - 1 )  Jx - l/Jx 

1.2 
l.S 2.0 
e 

3.0 

60• Generalize Ex. 58: ror x > 1 and n � 2, ln x < 2(n � 1 )  (x••- ll/• - x••� 
Ill·)· 

3. FURTHER PROPERTIES O F  LOGAR ITH MS 

Logarithmic D ifferentiation Differentiation of products, quotients, and 
powers can often be simplified by taking logs before differentiating. Be carefu� 
however, to take logs of positive functions only. 

• EXAMPLE 1 Find the derivative of = (�) 1/3 y x4 + I  for x -:;:  0. 

Sohltio11 In y = !(In x2 - ln(x4 + I )] = ![2 In x - ln(x4 + l )]. Therefore 
y' 1 (2 4x3 ) 
- = (In y)' = - - - -- , y 3 x x4 + l 

, y (2 4x3 ) I ( x2 ) 1/3(2 4x3 ) y = 3 x - x4 + I = 3 x4 + I x - x4 + l · • 

For the next example, we need a slight extension of the formula for the derivative 
of In u(x). If u(x) takes negative values, then In lu(x)I = ln[- u(x)] is defined. By 
the Chain Rule, 

'!__ In l u l  = '!__ ln( -u) = 
( - u)' 

= �.  dx dx - u u 
Again the derivative turns out to be u'/u. We combine the cases u(x) > 0 and 
u(x) < 0 into a single formula: 

d u' - In l u l  = - ,  dx u u -:;: O. 

The next example concerns derivatives of factored polynomials and rational 
functions. If f(x) = (x - a)(x - b� then 

f' (x - b) + (x - a) I I 
- = = -- + --! (x - a)(x 

-
b) � - a x - b · 

If f has three or more factors, a similar formula holds, but it is clumsy to derive 
by direct differentiation. Logarithmic differentiation comes to the rescue. 
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• EXAMPLE Z Prove 
( 1 )  If /(x) = (x - a1) • • · (x - aP� then 

(x :F a1). 

(2) If f(x) = (x - a1)"'1 • • • (x - ap)"'', where the m, are positive or negative 
integers, then 

p 
f'(x) _ � � 
f(x) - � x - a1 

I• l 

(x :F a1). 

So6ttiola It suffices to derive (2) since ( I )  is the special case m1 = m2 = · · · = 
mP = I. The natural impulse is to take logs first, but to be safe take the log of If (x ) I : 

Now differentiate : 

lf(x) I = Ix - a1 1"'1 Ix - a2 l1112 · · · Ix - ap l"'', 
p 

In lf(x) I = ,2 m1 In Ix - a, j. 
I• I 

p p 

-- = m1 - ln lx - a1 1  = -- . f'(x) L d L m1 
/(x) dx x - a, 

I• I I• l 

• 

Rate of Growth of In  x We know that In x is strictly increasing and that 
In x - oo as x - oo. 1ts graph (Fig. I ,  p. 308) increases slowly, being the mirror 
image of the rapidly increasing graph of y = r. 

Actually, the rate of increase of y = In x is agonizingly slow. The curve does not 
reach the level y = 10 until x = e10 � 22,000; it does not reach the level y = 100 
until x = e•00 � 2.7 x 1�3• Obviously, the larger x is, the smaller In x is by 
comparison. More precisely, 

In x
_0 x u x � oo. J 

This assertion will be proved if we can show that for any positive integer n. no 
matter how large, 

In x 1 
- < -, x " 

for x sufficiently large. We use a fact proved on p. 169: given any positive integer 
n. then r/x" - oo as x - co. Hence x" < r for x sufficiently large. Taking 
natural logs, we have 

n In X < X, 

which is what we wanted to prove. 

In x 
- < -, x " 
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Perhaps comparing In x with x is unrealistic. Maybe we should compare In x with 
a smaller function, for example with Jx, which is much smaller than x. How does 
In x compare with JX or with �, which is smaller yet? The answer is that 
any positive power of x overwhelms In x. I II p > O, lhen �-o as x-00. 1 
This follows from the behavior of (In x)/x. For if we set x' = y, then x = y11' and 
y - oo as x - oo. Therefore 

In x = In y
11' = ( 1/p) In y = � In Y -o x' Y Y P Y 

as x-oo. 

As a check, let us tabulate (In x)/x113 for some large values of x: 
x 103 106 109 1030 10100 

0.691 0.138 0.0207 6.91 x 10-9 6.91 x 10-91 In x 
xm 

The function In x increases so slowly that not only is In x small compared to x 
but any positive p<'>wer (In x )' is small compared to x : I II p > O. lhcn J¥'.-o as x - 00. 1 
This follows from the last result: since l/p > 0, 

Therefore 

In x 
-1-/ -o x , as x-oo. 

(In x)' = [In x]' -o X Xl/p as x-oo. 

As a check, let us tabulate (In x)5/x for some large values of x: 

x 10 102 10' 106 1020 10100 

6.47 20.7 6.63 0.503 2.07 x 10-12 6.47 x 10-19 

Behavior as x · O  We have seen that ln x - -oo as x-o+. We 
ask how fast In x approaches -oo, for instance, fast enough that x In x also 
approaches -oo as x -0 +, or less fast? Here is the precise answer: 

If p > 0, then x' In x-o- as x-o+. 
In particular, x In x -0- as x -0 + .  
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To prove this assertion, replace x by 1/y, so y- oo as x - O+. Then 

Jim x' In x = Jim ln(lty) = Jim -I� Y = O. 
x-o + 1-00 Y 1-00 Y 

Clearly (-In y)/y' < 0 for large y, so the approach to 0 is from below, that is, 
through negative values. 
Again, let us check this numerically, say for x1'4 In x. To simplify the tabulation, 

we shall change signs. 

-x11' In x l.29 l.46 0.437 4.61 x 10-• 2.30 x 10-n 
Limits Logarithms are sometimes used to prove assertions about limits. The 
function In x is continuous, being the inverse of the continuous function e"'. There
fore, if a > 0 and b > 0, and if a - b, then In a - In b. Conversely, by the 
continuity of e"', if In a - In b, then el"• - el" b, that is, a - b. Combining 
these facts, we have the principle 

[:"-b if and only if In a - In b, a > 0, b > o.J 
Here is an application of this principle. 

[If a is any positive number, then .:fa - 1 

It is enough to show that In .:fa - In l, that is, 
1 - ln a- o 
n 

as n - oo. 

But this is obvious since In a is a fixed number and l/n -0. 
You can test this result on a pocket calculator with a square root key. Start 

with any number a > 0. Take repeated square roots, obtaining 
Ja, :IQ, _ya, �. . . .  , 

and watch the numbers approach 1 . Starting with a = 500 for example, you obtain 
22.36068 
1.04975 

An lnequall y 

4.72871 
1.02457 

2.17456 
1.01221 

1 .47464 
1.00609 

1.21435 
1 .00304 

1 . 10197 
1.00152 etc. 

• EXAMPLE 3 (a) Find the largest value of y = (In x)/x for x > 0. 
(b) Show that x� ::5 e"' for all x > 0, with equality only for x = e. 

1 x · - - ln x  dy x 1 - ln x  
Sohdimt (a) ----.-- = -....,,....--

dx = x2 x2 
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It follows that y' = 0 if x = e, and 
y' > 0 if 0 < x < e; y' < 0 if e < x. 

Consequently, y increases steadily as x goes from 0 to e and decreases steadily as x 
continues beyond e. Therefore the max of y is y(e) = (ln e)/e = l/e. 

ln x 1 
(b) By (a) we have - ::::;; -

x e 

for all x > 0, with "<"  unless x = e. Consequently, for x > 0 and x ¢ e, 

e In x < x, In x• < x = Jn r. 

It follows that x• < r. 

Remark In particular, It� < e-. 

EXERCISES 

Differentiate where valid by logarithmic differentiation 

y = (x3 + 2)111 

{x + l)(x + 2) 
4 Y = (x + 4)(x + 5) 

7 y = r(x3 - I) 
J2x + I 

Compute y'/y 

= [ x + I ] ''3 
2 Y 

(x + 2)4 

8 y = J:: � �. 

3 Y = (x1 + 4)' 

x + 1  

9 y = x516 10 y = (2x" + 1 )- 1/7 
1 1  y = (x - 3)(x - 5) 
13 y = (x + 2)(x + 7)3 

12 y - (x - l){x - 3)(x - 5) 
14 y = (x + 2)2{x + 3)3/(x + 4)4. 

Find 

15 r 
x 

tm 6 ,. ..... 10 In x 
16 

r (x + 1) In x 
1m 1 

18 

21 

24 

r 
log,o x 

tm --,. ... .. x 

lim x(ln x)20 
x-o+ 

lim 
ln{ln x)

. 
,. ..... ln x 

19 

22 

.x-oo x 

r x1 + 1 
1m --

,. ..... x(ln x)1 

r x ln x 
1m --

,. ..... x" + I  
(p > 1 )  

25 Let p > 0 and q > 0. Prove lim 
{In x )" - O. 

x - ao  x• 

26 Let p > 0 and q > 0. Maximize y =
(In;)" 

for x � 1. 

27 Graph y = (In x)/x for 0 < x :S 6. 
28 Graph y = x In x for 0 < x :S 1. 

17 r 
{In x)3 

1m � 
ll'-GD X 

20 lim Jx In x 
.-o+ 

23 r 
3(1n x)2 + I 

Im ,. ..... x 

• 
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4. APP LICATIONS OF LOGAR ITH M S  

� po nt1 I Fu s With natural logarithms we shall define certain new 
functions involving exponents like x.fi and x". The first question is precisely what 
we mean by <I, where a > 0 and b are any real numbers, for example (sin 2)"'3 or 7t11•. We define � by the formula 

.____if = f! In•. =i 
This formula is really nothing new. On p. 164 we discussed a" for any x and a >  0. 

Our definition of a" was 
(l" = #!" where a = t!. 

But a = t! means k = In a; therefore 
a" = e" ln •, 

which agrees with the given formula. 
From the preceding expression for a", we can derive a neater formula for the 

derivative of a" than we had before. By the Chain Rule, 
d d d - a" = - e" ln11 = e" In • - (x In a) = a"(ln a). dx dx dx 

....___�_x 
_

a" - (In a)a'. � 
• EXAMPLE 1 Find lim 31 - I . 

... o t 

Sobdiolt The limit is the derivative at 0 of /(x) = 3" because 

f'(O) = lim/(O -t t) -f (0) = lim 3' - 1 . 
... o t ... o t 

Butf'(x) = (In 3)3", hencef'(O) = In 3. Answer In 3. 
Remark By tables or a calculator, In 3 � 1.09861. Let us tabulate some values of the func
tion in question for small t: 

3' - l --
, 

1.10467 1.09922 1.0986 7 1.09861 

og to Base a We defined the function In x as the inverse of the exponential 
function e". In exactly the same way, we now define the function log. x for a > 1 
as the inverse of the exponential function a". Since a" is strictly increasing, the 
inverse exists; we call it the "log to the base a of x." (The common logarithm 
log x = log10 x is a special case; the natural logarithm In x = In. x is another.) 
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By definition, 
a1,..x = x  and log. � =  x. 

Apply In to the first of these relations: 
(log. x )(In a) = In x, 

In x log. x = In a . 

Thus log. x is proportional to In x. To remember the constant of proportionality, 
we can reason as follows: log. x = c In x. Set x = a and use log. a = L Result: 
c = 1/ln a. 

It follows that the derivative of log. x is proportional to the derivative of In x: 

L d 1 - log. x = -- . dx x In a 
��- -����� 

Power F unctions Let 11 be any real number, not necessarily rational. We define 
the power function x" by 

(x > 0). 

When 1% = n. a positive integer, this agrees with our old power function 
x" = x · x · · · x  

because e" 1nx = (e1n x)" = (x)". 
It can also be shown, without much difficulty, that x" agrees with the usual power 
function when 11 is a negative integer or a rational number. 

The power functions x" have three basic properties: 

If 11 and fJ are any real numbers and x > 0, then 

(1) x"x' = x"+I (2) (x")' = x"' (3) �x x" = llx"- 1. 

The first two are familiar laws of exponents. In the present context we derive 
them from corresponding properties of ei. First (1) : 

x"xl = e" In xe1 In x = e" In x+I In x = eC•+ll ln x = x"+I. 
Now set y = x•, so In y = O! In x. Then 

(x")' = y1 = e' In 'I = e'C• ln xl = et•ll ln x  = �. 
We use the Chain Rule for Property (3): 

� x" = � e" ln x  = (e" ln x) [� (« In x) ] = (x")(IXX- 1 )  = «(x"x- 1 ) = llx"- l . 
dx dx dx 
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Note how different this approach is from our earlier treatment of the derivative of 
x" for n = 2, 3, · · · . 

Ration I Powers The special case ·a =  p/q, a rational number, is worth a 
second look. Assume p/q is in lowest terms and q > 0. 
First take p = 1 ,  that is, a = 1/q. where q is a positive integer. On p. 79, we 

found the derivative of y = x119 without worrying about the meaning of this func
tion. Now let us regard y = x119 as the inverse function of y = x'. If q is odd, x• 
is strictly increasing for all x, so it has an inverse function. But if q is even, we 
consider only the restricted domain x � O; there x' is strictly increasing and has an 
inverse function (Fig. I ). 

(b) q even 

(a) q odd 

Fig. I Graphs of y = :c• for q = 2. 3, 4. 5, · · · 

Set y = f(x) = x•. Then f'(x) = qx•- 1• so f'(x) � 0 if x � 0 (q odd} or x > 0 
(q even). Therefore the inverse function y119 is differentiable on its domain except 
where x = 0, that is, at .r = 0. By the rule for differentiating inverse functions, 

d Id I x 
dy y

''' = 1 dx x' = qxr 1 = qx' 
But x = y119 and y = x". so it follows that 

Therefore 

d y1� l _ l'l/9 = _ = _ J'll/q)- I 
dy . qy q 

'.!.___ Xz = axs - I 
dx 

(x � 0). 

The formula for the derivative of x2 where a = p/q now follows from the Chain Rule 
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applied to x''' = (x119)": 

<!___ (x''') = <!___ (x''•)" = p(x''')"- ' (! x<l i•1- 1 ) = !!. x<Ptt1- 1. 
h h q q 

Derivative of Rational Powers Let a: =  p/q be a fraction in lowest terms 
with q > 0. Then 

<!___ xm = (XX2- • .  dx 
If q is odd, this rule holds for all x :I= 0. If q is even, it holds for x > 0. 

Thus we have an independent verification of the rule for differentiating x2 when 
« is rational. Actually we have a little more: those cases in which x < 0 is 
allowed (odd denominator). They are not included in the pattern x« = ri •n x 
because In x is undefined when x < 0. There is more than one way to skin a cat. 

General Powers Suppose! and g are functions such thatf(x) > 0 for all x in 
their common domain. We definef(xfx> by the formula 

The compound function f (x rx) is a differentiable function if f and g are differentiable. 
While we could easily write down a formula for its derivative, the formula is not 
particularly memorable. Instead we shall concentrate on an example. 

• EXAMPLE Z Find (a) �x xx (b) lim xx. 

So/,,tio11 (a) Write xx = e", where u = x In x. By the Chain Rule. 
<!___ xx = <!___ e" = de" du = e"(� + In x) = r(I + In x). dx dx d_u dx x 

Alternatively, set v = xx so In v = x In x. Differentiate: 
tl' d d 
� = dx In v = dx (x In x) = I + In x, t1' = ( 1  + In x)v = ( I +  In x)r. 

(b) Write x2 = e", where u = x In x. Then 

hence 

lim u = lim (x In x) = 0, 

lim xx = lim e" = elim 11  = e0 = 1 . 
x-+0+ x-+0+ 

Remark The following table illustrates the result of part (b): 

-� 0.1 0.01 0.001 0.0001 io-6 

,'(• 0.79433 0.95499 0.993 12 0.99908 0.99999 

• 
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Applications to E o n om1cs We noted in Chapter 4 that the exponential 
function occurs in many diverse natural phenomena. It is not surprising that its 
inverse, the logarithm function, also occurs in nature as do the related power 
functions. For example, in the subject of psychophysics, Fechner's law says that a 
stimulus of magnitude x causes a sensation of magnitude y = k In x. In the study of 
winged animals, Greenewalt's equation for soaring birds is W = 16.2446 11°·8787, 
where W is the wingspan and H the length of the humerus (bone from shoulder 
to elbow) in cm. Lawson's equation for the ancient ftying reptile Pterodactylus is 
W = 13.909 Hi.os•8. 

Further examples: When a mole of an ideal gas undergoes a reversible 
isothermal expansion from volume V0 to V" its entropy increase is S 1 - S0 = 

R ln(V1/V01 where R is the universal gas constant. If n(n) denotes the number of 
prime numbers from 2 to n, then n(n) � n/ln n for n large. (A prime number is a 
number like 19 or 67 that has no smaller factors. Thus 77 = 7 x 1 1  is not a prime.) 

We now consider an important concept in economics. Suppose that x and y are 
positive variables and that y depends on x. The elasticity of y with respect to x is 

Ey d(ln y) x dy 
Ex = d(ln x) 

= 

y dx · 
Elasticity is the ratio of the percentage change in y to percentage change in x since 
these are dy/y and dx/x respectively. 

• EXAMPLE 3 For what functions y = y(x) is Ey/Ex constant? 

Sohltio11 If 
Ey - d(ln y) - k, 
Ex - d(ln x) -

then 

hence 

In y = k Jn x + In a = In �. 

y = �. • 

In economics, a good is anything that is supplied and purchased, like bread, 
furnace repair, soybean futures, or life insurance. To each possible price p of the 
good corresponds a demand x, the amount of the good that would be purchased at 
price p. Thus we can write x = x(p1 or inversely, p = p(x). We usually assume 
that x is a strictly decreasing differentiable function of p. The revenue is R = xp, 
the total money taken in by the sale of x units of the good at price p. 
• EXAMPLE 4 Express the marginal revenue dR/dp in terms of the demand x and 
the elasticity '1 of demand with respect to price. 

Ex p dx 
Sohltio11 First, '1 = - = - - . Ep x dp 

dR d dx p dx 
Next, - = - (px) = x + p - = x + x - - = x + x,,, dp dp dp x dp 

dR 
hence dp = x(l + '1)· 

The result is important in economics. • 



4. Applications of Logarithms 326 

Poisson's Gas Equation Suppose a fixed quantity of a diatomic gas (such as 
02 , N2, or CO) is subject to a reversible adiabatic process.• Then the pressure p and 
the volume v of the gas satisfy 

dp dv 
- + y- = 0, p v 

This relation says that dp/p, the percentage change in pressure, is negatively 
proportional to dv/v, the percentage change in volume. 
• EXAMPLE I How are p and v related? 

Sohltio11 The given differential relation can be written 

that is, 

Hence 

d(ln p) + y d(ln v) = 0, 
d(ln(pv7)] = 0. 

pv1 = c. 

This result, known as Poisson's equation, is important in meteorology. • 

EXERCISES 

Find 
l lim x11" 2 lim x11" 

.... o+ 
3 lim (x)"" 4 lim n(a11• - 1) (a > 0). 

Differentiate with respect to x 
5 y • x"- 1 6 y = (x + 2)"+l 

9 y - 3•n.s 

... .., 

7 y = x11" 

1 1  y = 10"1 

13 y = {In x)" 
16 y ... Jog" x 

14 y • (2 + sin x )" 
17 y = x•n.s 

Graph 
19 y = x213 
23 y = x" 
Maximize for x > 1 

In x 
25 y = -• • a > O x 

20 y = x312 
24 y = x11". 

XlO 
26 y = 

l()K 

21 y = x-213 

8 y = 22" 

12 y = x"" 

15 y = log" b 
18 y = x-•n.s. 

22 Y = x-312 

27 y = x- 111•". 

28 Arrange these functions according to increasing size as x -+ oo :  
Y - 2" y ... ..... x)> y - ( r:x)" y - xii y - ..... l - t 2 .... ' 3 - yA • 4 - • 5 - °' • 

29 Letf(x) and g(x) be differentiable with/(x) > 0. Prove/(x)'« .. ' is differentiable. 

• Rennlltle means that the process can go forward and then back to its oriainal state and that no 
energy is dissipated. AdiMedc means that no heat is transferred to or from the gas. You can think or 
the process as taking place in a Thermos bottle. 
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JO• Let a > I. Prove the inequality of James Bernoulli: 

( 1 + x r � 1 + ax for x > - 1 
with equality only for x = 0. 

31 Let e < a < b. Prove ti > b-. 
31 Find all integers m and n such that I s; m < n and m" = rf". [Hint Refer to the graph 

of y = (In x)/x, Ex. 27 of Section 3.] 
The functions in the next two exercises arc called Einstein functions in radiation theory 

33 Show that J' = ln(l - e- .. ) is strictly increasing. 

34 Show that .r = _
x
_ - ln(l - e- •) is strictly decreasing for x > 0. e" - 1 

35 A projectile is shot straight up. If we assume air resistance is proportional to its 
velocity. then the equation of motion is 

dr dx di = - kr - g, where r = dt 
and k and g arc positive constants. Show that 

d."C I g ( I ) 
dr 

= -
k 

+ k1 r + g/k · 
36 (cont.) Find the relation between x and t-. taking x0 and r0 for their initial values. 
37 A measure of the strength of a visible star S is its llux tl>(S). This is the amount of 

radiant energy from the star falling on a unit area of Earth (perpendicular to the 
light from the star) per second. Another measure is the nuipitulle m(S) of the star. 
This is defined so that if tl>(S2) = kt/>(S1� then m(Sa) - m(S2) depends only on k. Guess 
this dependence, the relation between m(S1)  - m(S1) and tl>(S1)/tl>(S a )  if a flux ratio of 
100 yields a magnitude difference of S (and m(S) decreases as tl>(S) increases). 

38• Find the most general continuously differentiable function y = y(."C) defined for all x > 0 
and satisfying .r(ur) = .r(u) + y(r). 

39 Find the equation of the general straight line plotted on semi-log paper (Fig. 2). 
40 Find the equation of the general straight line plotted on log-log paper (Fig. 3). 

:?O :?O 

1 0  1 0  

7 7 

5 5 
-1 4 

J 3 

:? :? 

l 
:? J -1 5 6 � I :? l 4 5 b 8 1 0  

Fig. l Fig. 3 

:?O 
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Prove the following formulas for elasticity 

41 E(aw) = 
Eu + Ev 

Ex Ex Ex 
E (u) Eu Ev 42 
Ex ; = Ex - Ex 

Ey Ey Eu . 43 - = - - (cham rule) Ex Eu Ex 44 ___£ (y + c) = _Y_ Ey . 
Ex y + c Ex 

Find 

45 E 
Ex (ex

") E 
46 Ex (ax +  b) 48 :x (xy). 

a 

b 
I' 

49 The region in Fig. 4 is one end of a tank that is filled with ftuid of density l>. Find 
the total pressure on the end of the tank. 

SO In a reactor, the uranium oxide fuel generates heat energy at the rate of Q = 
362 watts/cm3• This heat is extracted by a coolant passing over the surface of the fuel. 

Suppose a long cylindrical fuel element has radius a cm. It is known that 

Q = 42 f Toµ dT, 
Q T1 

where T0 is the temperature on the axis, T1 is the surface temperature or temperature 
of the coolant, and µ is the thermal conductivity of uranium oxide. At high temperatures, 
µ = 3 1.7/T watts per cm per degree kelvin, where the temperature T is measured in °K. 
Given that a = 0.610 cm and T1 = 820°K, compute To .  

5. INVERSE TRIGONO M ETRIC FUNCTIO NS 

I nverse of Sine The sine of an angle does not completely determine the angle. 
For example, if sin x = !J2, then x may be in, or in. or !n. or Jfn, etc. Figure 1 
shows that the curve y = sin x intersects y = c infinitely often if - 1 s; c s; 1 ;  hence 
there are infinitely many values of x for which sin x = c. 
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Certainly sin x, defined ror all x, has no inverse runction. To obtain an inverse, we 
restrict the domain to the interval [ -!n. !n]. There the graph or y = sin x increases 
strictly and takes all values or y for - 1 :s;; y :s;; 1. See Fig. 2a. Hence there exists 
an inverse runction, called the arc sine. Jr - 1  :s;; y :s;; 1, then arc sin y is the unique 
angle from -!n to !n whose sine is y. 

(a) The araph of y = sin x is increasing 

on 1-f •, t • I. (b) Reflected graph: y a  arc sin x 
Fia. l 

The graph or y = arc sin x is the reflection or the curve in Fig. 2a across the 
line y = x. See Fig. 2b. The graph has vertical tangents at (1, !n) and ( - 1, -in), 
reflecting the horizontal tangents or y = sin x at (!n, 1 )  and (-!n, - 1). 

The runction sin x restricted to the domain -!n :s;; x :s;; !n has an inverse runction, 
called arc sine. 

The function arc sin x is defined for - 1  :s;; x :s;; 1 ,  is strictly increasing, and its 
values range from -!n to 'in· 

Examples 
arc sin 1 = in 
arc sin ! = in 

arc sin(- I) = -in 
arc sin(-!J2 ) = -in 

arc sin 0 = 0  
arc sin 1J3 = ln· 

Since the sine and arc sine are inverse runctions, we have 

arc sin(sin x) = x, -!n :s;; x :s;; !n, sin(arc sin x) = x, - 1  :s;; x :s;; 1. 

Because sin x is an odd function, it follows that arc sin x is also odd : 

arc sin(- x) = - arc sin x. 

Inverse of Cosine Just as ror sin x, the inverse of cos x can be defined only ir 
x is suitably restricted. A logical choice is to restrict x to the interval 0 :s;; x :s;; n. 
See Fig. 3a. On this interva� the graph of y = cos x decreases strictly and takes 
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- 1  

(a) The graph of y • cos x is decreasing 
on [ 0, • I .  

x 

,. 

- I  

(b) Reflected graph: y • arc cos x 
all values of y for - 1 � y � 1. Hence there exists an inverse function, called the 
arc cosine. If O � y � n, then arc cos y is the unique angle from 0 to n whose cosine is y. 

The graph of y = arc cos x is the reflection of the curve in Fig. 3a across the 
line y = x. See Fig. 3b. 

The function cos x, restricted to the domain 0 � x � n, has an inverse function, 
called arc cosine. 
The function arc cos x is defined for - 1 � x � l,  is strictly decreasing. and its 
values range from 0 to n. 

Examples 
arc cos 1 = 0 

arc cos 1 = !n 
arc cos( - 1)  = n 
arc cos 1J2 = in 

arc cos 0 = !n 
arc cos( -1J2 ) = in. 

Since the cosine and arc cosine are inverse functions, we have 

arc cos(cos x) = x, 0 � x � n, 

We note two other useful relations: 

arc cos x + arc cos(- x) = n, 

cos( arc cos x) = x, - l � x � 1. 

arc sin x + arc cos x = !n. 

To prove the first, set y = n - arc cos(- x). Then 
( 1 )  O � y � n  and (2) cos y = x  

since on the one hand, 0 � arc cos( -x) � n, and on the other hand, 
cos y =  cos[n - arc cos(-x)] = -cos[arc cos(-x)] = - ( -x) = x. 

By (1 ) and (2� the number y is that unique number from 0 to n whose cosine equals x, 
that is, y = arc cos x. The first relation follows. 
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For the second relation, set y = Pr - arc cos x. Then by similar reasoning we have 

(3) -!?r � y � !1t 
so y = arc sin x foUows. 

and (4) sin y = x, 

Remark 1 It is very easy to make mistakes in arguments of this sort. You must always 
check that a number falls into the right range before concluding that it is an inverse anything 
of another number. For instance, if 0 s y s  II'. and sin y = x, we do not conclude that y = arc sin x. 

Remark 2 The last two relations can be proved graphically by symmetries of the sine and 
cosine curves (Fig. 4). 

I' 
1T 1 = arc cos ,. 1T 

( x, arc cos( x)) 

1· = arc cos � - .!. 11 2 

(x, arc cos � )  

- I 

(a) y "' arc cos x is symmetric in (0, f •), 
hence arc cos(-x) - f • = t • - arc cos x, 

that is, arc cos(-x) • • - arc cos x. 

Fig. 4 

(b) The curve y = arc  cosx, pushed down � • units is the curve y • arc sin ( - x ), 

the renection of y = arc sin x in the 

x-axis. Therefore arc cos x -} • • 
arc sin(-x) • - arc sin x. 

Inverse of Tangent RecaU the graph of tan x {Fig. Sa). If we want an inverse, 
it is natural to consider just one branch of the graph. So we restrict the domain of 
tan x to -!?r < x < !1t. The graph increases strictly and takes aU real values. Hence 
there exists an inverse function, caUed the arc tangent. If y is any real number, then 
arc tan y is the unique angle between -!1t and !1t whose tangent is y. 
The graph of y = arc tan x is the reflection of the heavy curve in Fig. Sa across the 

line y = x. See Fig. Sb. The graph approaches the height !1t as x - oo and the 
height -!1t as x - - oc. 
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y y 

x x 
------- -�Ir-------

(b) Reflected araph: y .  arc tan x 
(a) The lflph of y = tan  x is  inc:reasina 

for -1 • <x < 1 •· 

The function tan x restricted to the domain -!n < x < !n has an inverse function 
called the arc tanpnt. 

The function arc tan x is defined for all x, is strictly increasing. and its values 
range between -!n and Pt· 
As x - oo, arctan x - !n; as x - - oo, arc tan x - -!n. 

Examples 
arc tan 0 = 0 

arc tan(-J3 ) = -in 
arc tan 1 = in arc tan .j3 = in 

arc tan !.JJ = in arc tan 100 � 1.5608 � 89.43° 
arc tan 1000 � 1 .5698 � 89.94° (note: !n � 1.5708). 

Since the tangent and arc tangent are inverse functions, we have 

I arc tan(tan x) = x, -!n < x < !n. tan(arc tan x) = x. 

Since tan x is an odd function, it follows that arc tan x is also odd: 

arc tan(-x) = -arc tan x. 

Notation The folJowing alternative notation is very common for inverse trigonometric 
functions: 

arc sin x = sin - •  x, arc ten x = tan - 1 x, etc. 
Do not confuse 

with 
sin x 

The notation sin - •  x is a bit awkward because we do write sin• x for (sin xr when n > 0. 
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Inverses of the Other Trigonometric Functions Inverses of the functions 
cot x, sec x, and csc x can be defined in a similar manner. Rather than discuss 
them in detaii we shall show their graphs (Figs 6-8) and list a few basic relations. 

I' 

x 

1 11- - ---------
2 

11 

I ------- 2 rr----------

Fig. 6 Graph of y = arc cot x; strictly 
decreasing for -co < x < co 

.!.11 
2 

I' 

- IT ---- -----

Fie. 7 Graph of y = arc sec x; defined for Fie. 8 Graph of J = arc sec x; defined for 
- co < x s - 1 and for I s x < co. - oo < x s - 1 and for 1 s x < co. 

Strictly increasing. Strictly decreasing. 

The following relations hold among the various inverse functions: 

For all x, 

For lx l � l ,  

EXERCISES 

Evaluate 
I arc sin(tJ2 ) 
3 arc tan .j3 
5 arc csc(i./3 ) 

arc tan x + arc cot x = !n. 
arc sec x + arc csc x = !n, 

1 . l arc csc x = arc sm -
x 

arc sec x = arc cos -,  x 

2 
4 
6 

arc cos( -tJ2 ) 
arc sec 1 
arc cot( - 1 )  

7 arc sin t - arc sin(-t./3 ) 8 arc cos t - arc cos(-!) 
9 arc tan(tan ;ir) 10 cos[arc cos(0.35)] 

II cos(arc sin i) 12 cot(arc tan 2) 
13 arc sin i + arc cos t 14 arc tan 6.2 + arc cot 6.2. 

Find the inverse function x = g(y) and its domain 
15 y • In sin x, 0 < x s tir  16 y = (arc tan x)3• 



17 

18 
19 
20 
21 
ll 
23 
24 

25 

26 

27 

28• 
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Prove arc tan x + arc cot x = fn. (Hinr See the corresponding proof for arc sine and 
arc cosine. J 
Prove arc sec x = arc cos(l/x) for lx l  � 1. (Hint Split into two cases.] 
Prove arc sec x + arc csc x � !n for Ix I � 1. (Hint See hint to Ex. 17.) 
Prove arc sin x + arc cos x = !n for 0 < x < 1 by a right triangle argument. 
Prove arc tan(l/x) = arc cot x for x > 0. 
(cont.) Find and prove the corresponding formula for x < 0. 
Prove sin(arc cos x) =� for - 1 s x s 1. 
For which x is r = arc tan(cot x) defined? For these x, express y in terms of x without 
using trigonometric functions. 
Prove arc cos(2x2 - 1 )  = 2 arc cos x for 0 s x s 1 .  (Hint What trig identity does 
this suggest?) 
(cont.) Find the corresponding formula for - 1  s x s 0. 

x +  )' . Prove arc tan x + arc tan r = arc tan -- provided I arc tan x + arc tan y I < !ir. 1 - xy 
(cont.) Find the corresponding formulas in the other cases. 

Use Ex. 27 to prove 

29 arc tan ! + arc tan ! = in 
31 2 arc tan t + arc tan ' +  2 arc tan t = in 

30 2 arc tan ! + arc tan ' = lit 
32• 4 arc tan 1 - arc tan m - Vt· 

6. DER IVATIVES AND APPLICATIONS 

The derivatives of the inverse trigonometric functions are: 

d ( . ) 1 -d arc sm x = � x v 1 - x2 
d 1 -d (arc tan x) = -1--2 x + x  

d - l  
d- (arc cos x) = y1f=-x2 x l - x2 

d - l  
d- (arc cot x) = -1-

-2 x + x  

d d Ix�· 
- (arc sec x) = -- (arc csc x) = � dx dx l - 1  

xJx2=1 ' 

x > l  

x < - 1 . 

The top two formulas are by far the most important; let us justify them. First, if 
y = arc sin x, then x = sin y. By the rule for differentiating inverse functions, 

dy ;dx Id . • 
dx = 1 dy 

= 1 dy sm y = cos y · 

Now cos y > 0 because y is between -in and in by definition of the arc sine. 
Therefore, 

� (arc sin x) =-1- = = 1 
dx cos y + Jt - sin2 y y'i=-x2' - 1  < x <  l. 



334 7. INVERSE F U NCTIONS 

Next if y = arc tan x, then x = tan y; hence 
dy = i/dx = _1 _ = 1 = _1 _ 

dx dy sec2 y I + tan2 y I + x2 • 
The derivative of arc cos x follows from the derivative of arc sin x. Since 

arc cos x = !n - arc sin x, we have 
d d - 1  - (arc cos x) = -- (arc sin x) = . dx dx v'f=7 

Derivations of the remaining formulas are left as exercises. 
These new differentiation formulas may be used in conjunction with the Chain 

Rule. For instance, if u = u(x� then 

d . I du 
d- arc sm u =  �d-, lu l < l , x v 1 - u2 x 

d 1 du 
d- arc tan u = -1--2 d-. x + u x 

• EXAMPLE 1 Differentiate 
(a) arc sin(Jx ), 0 < x < 1 (b) arc tan(5x2 + 1 ). 

So/,,tion (a) Write y = arc sin u, where u = JX ! Then 
dy I du I 1 1 1 
dx = Jt=U2 dx = Jt _ (Jx)2

. 
2JX 

= � . 2JX = 2Jx - x2 • 

(b) Write y = arc tan u, where u = 5x2 + 1. Then 
dy _ _ l_ du __ 1_ . 10x = lOx 
dx - 1 + u2 dx - 1 + u2 1 + (5x2 + 1 )2 • • 

App 1cauorn An important use of inverse trigonometric functions is in evaluating 
integrals. 

EXAMPLE 2 Find the area under the curves 
I 1 (a) y = JI=X2 from 0 to !. (b) Y = 1 + xi from 0 to 1. 

Sol•tion From the differentiation formulas for inverse trigonometric functions, we 
see that 

Therefore 

arc sin x is an antiderivative of JI=Xl' 
arc tan x is an antiderivative of 1 + x2• 

f 112 dx 1•12 1t n 
� = arc sin x = -6 - 0 = -6 , 

0 y • - A 0 
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and I: 1 !
x
x2 = arc tan x I: = i - 0 = i · i, dx n · • EXAMPLE 3 Show that --2 < 

2
- no matter how large t is. 0 1 + x 

So/11tio11 [ ' � = arc tan x r = arc tan t. Jo 1 + x lo 

• 

By definition, all values of arc tan t are between !n and - !n so the integral is less 
� �  . 
Remark As r - ::c ,  the quantity arc tan t - !n. For this reason, we write 

f " dx 1t 
Jo l + x2 = 2 · 

In geometric terms, the area under the curve y = 1/(1 + x2) between 0 and t is close to !n 
when r is large (Fig. 1). Furthermore, the larger t is, the closer the area is to !n. Integrals 
of this type will be studied in Chapter 1 1. 

\' 

Fis. 1 The shaded area approaches !n as t - ::c .  

x 

The next three examples illustrate further applications of inverse trig functions. 
• EXAMPLE 4 The circle shown in Fig. 2 has radius r meters. As the point P 
moves to the right at the rate of v m/sec, how fast is the length of the arc BQ 
increasing? 
So/"tio11 Express the arc length s in terms of the angle 6. From plane geometry, 
s = 2r6, where 6 is measured in radians. From the triangle AOP, 

x 
6 = arc tan -. r 

Differentiate with respect to time: 

hence x s = 2r arc tan - . r 

d ( x) 1 (x) 2r2 2r2v s = 2r d- arc tan - = 2r 1 ( I )2 - = 2 2 • 1: = 2 2 t r + x r  r x + r  x + r  m/sec. • 

Remark As a rough check, we sec from Fig. 2 that BQ should increase most rapidly when 
x = 0, then less rapidly as x increases. According to the answer. it docs. 

• EXAMPLE I The Statue of Liberty is 150 ft tall and stands on a 150-ft pedestal. 
How far from the base should you stand so you can photograph the statue with 
largest possible angle? Assume camera level is 5 ft. 
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A 

Sohltio11 Draw a diagram, labeling the various distances and angles as indicated 
(Fig. 3). The problem is to choose x in such a way that the angle 8 is greatest. 
If x is very small or very large, 8 will be small. Certainly the optimal value of x 
is between, say, SO and 1000 ft. 

Express 8 as a function of x. From Fig. 3, 

Hence 

8 = {J - a, x cot a =  145 ' 

x x 8 = arc cot 295 - arc cot 145 . 

This is the function of x to be maximized. The domain of x is x > 0; there are no 
end points. Differentiate: 

d8 
1 1 

295 145 - 295 145 ( x )2 + ( x )2 = (295)2 + x2 + ( 145)2 + x2 • 1 + 295 1 + 145 
d8 _. 

0 1"f 145 295 Therefore - - -,------.,-:----= dx ( 145)2 + x2 - (295)2 + x2 • 

Solve for x2: (145)(295)2 + 145x2 = (295)(145)2 + 295x2, 
x2(295 - 145) = (145)(295)(295 - 145), x2 = (145)(295). 

The only positive root of this equation is 
x = J(l45)(295) = 5Jiill � 5(41.36) = 206.8. 

Answer Approximately 206.8 ft. • 

• EXAMPLE I Maximize 8 in Fig. 4a for x > 0. 

Sol11tio11 By Fig. 4b, we have 8 = arc cot !(x - 2) - arc cot(x - 1). 
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>' >' 

(2, 2) / 
2 2 

2 x x x 

(a) Problem: maximize fJ for x > 0 (b) fJ • arc cot(x -2 ) - arc cot(x - I )  2 
Fla. 4 

(You should check the validity of this formula for all positions of x.) Hence 

d(} -! - I 
dx 

= l + [!(x - 2))2 - l + (x - l )2 • 
Therefore dO/dx = 0 for l + i(x - 2)2 = ! + !(x - 1)2. 

that is, for 4 + (x - 2 )2 = 2 + 2(x - l )2• 
This equation simplifies to x2 = 4, hence x = 2 and 

(} = arc cot 0 - arc cot l = !x - in = ix. 

Since o - 0 if x -o+ or x - oc, this value of (} is the maximum. • 

Query What does the solution x = - 2 of x2 = 4 mean ? 
EXERCISES 

Differentiate 

arc sin !x 2 arc cos 2x 
4 x arc sin(2x + I )  5 (arc sin 3x)2 

I 
8 

x 7 arc cot - arcsin --
3 x x +  

10 I 
1 1  arc tan - + arc cot x 

x 
12 x arc cot x + In JI+? 13 
14 !(x2 + I )  arc tan x - !x. 

Derive the formula on p. 333 for the derivative of 

15 arc cot x 16 arc sec x 

18 Show that f '  1 
dx 

2 
'"" 3 J_.j �. Jo + x 1 I +  x 

Compute 

3 arc tan(x2) 
6 arc tan Jx 

9 
x - 1 

arc tan --1 
x +  

2x arc tan 2x - In Jt + 4x2 

x arc sin ix + � 

17 arc csc x. 

19 
fJ312 dx Jo � 20 Jii dx 

2Jl/3 Xp-=t • 
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21 A balloon is released from eye level and rises 10 ft/sec. According to an observer 
100 ft from the point of release, how fast is the balloon's elevation angle increasing 
4 sec later? 

Express (f in terms of x, x. and the constant lengths a and b 
22 23 24 

26 

x x 

27 (cont.) Show from Ex. 25 that 8 increases as x increases. 

z 

>' 

a 

28 Find the maximum of 8 in Fig. 5. Here a and b are constants and x � 0. 
29 (cont.) Find 8 + 2ci when 8 is maximal. 

x - - - P- I M--���- c �����· 

x 

b 

30 In Fig. 6 the lengths a, b, and c are constant and P varies over the segment of 
length c. Prove th1at if ci + p is minima� then b sin2 ci - a sin2 p. 

31 (cont.) Suppose a - b. Find min(ci + fl). 
32• (cont.) Suppose a > b. Show that ci + p achieves its min for P strictly inside the 

segment if and only if c2 > b(a - b). 

7. HYPERBO LIC FUNCTIONS 

The hyperbolic functions are certain combinations of exponential functions, with 
properties similar to those of the trigonometric functions. They are useful in solving 
differential equations and in evaluating integrals. 
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The three basic hyperbolic functions are the hyperbolic sine, the hyperbolic cosine, 
and ·the hyperbolic tan1ent: 

...x -.x • II:' - e smh x = 
2 

, 
r + e-.x cosh x = 

2 
, 

sinh x r - e-.x tanh x = --h- = 
r -.x · cos x + e  

These functions are defined for all x. Tables of their values are available. 
From the definitions, 

sinh(-x) = -sinh x, cosh(-x) = cosh x, tanh(-x) = -tanh x. 

Thus sinh x and tanh x are odd functions, while cosh x is an even function. Other 
immediate consequences of the definitions are that cosh x > 0 for all x and that 
I tanh x I < 1 for aJI x. (The numerator of tanh x is always a bit less in absolute 
value than the denominator.) Furthermore, since e-.x - o as x - oo and 
r - o  as x - - 00, we have 

sinh x � !r. cosh x � !r. tanh x � 1, 

tanh x � - 1, 

as x - oo ; 
as x - - co. 

The less commonly used hyperbolic cotangent, hyperbolic secant, and hyperbolic 
cosecant are defined by 

1 coth x = --h- , tan x 
1 sech x = --h- , cos x 

1 csch x = -.-h-. sm x 

Derivatives Here are the derivatives of the hyperbolic functions. 

�x sinh x = cosh x, d 
dx coth x = -csch2 x, 

�x cosh x = sinh x, d 
dx sech x = - sech x tanh x, 

d 
dx 

tanh x = sech 2 x, d 
dx csch x = -csch x coth x. 

These formulas are very easy to check. For example, 
d d r + e-.x r - e-.x - cosh x = - = = sinh x. dx dx 2 2 

• EXAM�LE 1 Show that y = sinh 3x satisfies the differential equation 
y" - 9y = 0. 
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Sohltion Use the differentiation formulas for sinh x and cosh x, and the Chain 
Rule. If y = sinh 3x, then 

y' = 3 cosh 3x, y" = (3 cosh 3x)' = 9 sinh 3x. 

Therefore y" - 9y = 9 sinh 3x - 9 sinh 3x = 0. • 

G P Let us graph the three basic hyperbolic functions, using our knowledge 
of their derivatives. For sinh x and tanh x, the derivatives are positive; hence these 
functions are strictly increasing. For y(x) = cosh x, we observe that 

y'(O) = sinh 0 = 0, y"(x) = cosh x > 0. 
Hence the graph of y = cosh x is convex upwards, with a minimum at x = 0. We 
now have plenty of information to sketch sinh x, cosh x, and tanh x. See Fig. l .  

(a) y • sinh x 

,I 

(b) y = cosh x  

l ----------
(c) y • tanh .x 

Fil- I Graphs or hyperbolic functions 

x 

dent 1 s The hyperbolic functions are related to each other by identities similar 
to trigonometric identities. For example, since 

and 

(e" + e-")2 1 cosh1 x = 
2 

= 4 (e1" + 2 + e-1"), 

(e" - e-") 1 1 sinh1 x = 
2 

= 4 (e1" - 2 + e-lx� 
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it follows that 

cosh2 x - sinh2 x = 1. 

Easy consequences are the identities 

I tanh2 x + sech2 x = 1, coth2 x - csch2 x = 1. I 
Note the similarity to trig identities, except for signs. Virtualiy every trigonometric 
identity has a hyperbolic analogue. But you must be careful with signs. 
• EXAMPLE 2 Prove the identity cosh(u + v) = cosh u cosh v + sinh u sinh v. 

Sohltion Express the right-hand side in terms of exponentials and simplify 
algebraically: 

cosh u cosh v + sinh u sinh v 

e".., + e"- p + e-•+P + e-11-11 e"+p _ e"-11 _ e-•+P + e-11-11 
= +-----------

4 4 

• 

Inverse Hyperbolic Functions The function sinh x increases strictly, taking 
each real value once. Hence sinh x has an inverse, written• sinh- 1 x or arg sinh x. 
Thus the statements 

y = sinh- 1  x and x = sinh y 

are equivalent. The graph of y = sinh - 1 x, shown in Fig. 2, is the reflection of 
y = sinh x in the line y = x. 

y 

Fig. 2 Graph or y = sinh - I x 

• When y = sinh x, usually x is not an angle (arc� and x is called the 11r111meat or sinh x. Hence 
the name arg sinh. 
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Warning Do not confuse sinh - 1 x with l/sinh x. 
Since sinh x is defined in terms of exponentials, it seems reasonable that sinh- 1 x 

should be expressible in terms of logarithms. Indeed, if y = sinh - 1 x, then 

Hence 

e' - e-1 x = sinh y = 2 
e1 - 2x - e-1 = 0, e21 - 2xe1 - 1 = 0. 

This is a quadratic equation for e'. By the quadratic formula, e' = x ± p+i . 

Since e' > 0, the correct choice of sign is plus: 
e' = x + p+i , therefore y = ln(x + JX2+l ). 

sinh- 1 x = ln(x + JX2+l ). 
To obtain an inverse for cosh x, we restrict the domain to x � 0, where cosh x 

increases strictly, taking each value y � 1 once. Hence, there is an inverse function 
cosh - 1 x defined for x � 1 .  It can be expressed in terms of logarithms by a 
derivation similar to the one given above for sinh - 1 : 

cosh - 1  x = ln(x + Jx2=l ),  x � 1 .  

The inverse hyperbolic tangent is defined for - 1  < x < 1 and can be expressed 
by the formula 

1 ( 1 + x) tanh - 1 x = l In 
1 _ x , 

- 1 < x < 1. 

Graphs of cosh- 1 x and tanh - 1 x are shown in Fig. 3. ,. 

x 

Fig. 3 

y 

}C 
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Derivatives of Inverse Hyperbolic Functions If y = sinh- 1 x, then x = 

sinh y. Therefore, 
dy = 1/�� = _l 

_ = 1 = 1 
. dx dy cosh y Jt + sinh2 y .jl+X2 

In this way, we obtain the formulas 

d . h- 1 1 -Sin X = - ·---== , dx v"i + x2 
d . - 1 - 1 
d-cosh x - r. 2 , x ...;x - l 

d - I ) 
d- tanh x = -1--2 •  x - x  

These formulas are useful for integration since they provide antiderivatives for 
the functions on the right-hand sides. 

• EXAMPLE 3 Express r � .j dx 2 in terms of natural logarithms. Jo 1 + x 
Solutiolf An antiderivative of 1/ y'l+X2 is sinh- 1 x = ln(x + JX2+t ). Therefore 

J: k = ln(x + JX2+t )  1: = ln(S + .j26 )  - In 1 = ln(S + .j26 ). • 

We shall mention an interesting consequence of the formula for the derivative of 
cosh- 1 •  First we write the formula in Chain Rule form: 

d _ 1  l du 
d- cosh u = r::r-t d-. 
x ...; u2 - 1 x 

The expression Ju2-=l suggests taking u = sec  x : 

Conclusion: 

d 1 
d- cosh- 1 (sec x) = -- (sec x tan x). x tan x 

a 

dx cosh- 1 (sec x) = sec x. 

We have found an antiderivative for sec x. 
The Hanging Cable As an application, we shall find the slope of a uniform, 
heavy, flexible cable suspended between two points at the same level (Fig. 4a). 
Here "flexible" means that the only internal force in the cable is tension acting in 
the tangential direction. "Heavy" means that gravity must be taken into account. 
"Uniform" means that the density of the cable, in weight per unit length, is a 
constant, fJ. 
We choose axes as in Fig. 4b, so the lowest point of the cable is on the y-axis. 

The shape of the hanging cable is then some curve y = f(x), to be found. 
Let us look at the portion of the cable for 0 ::5; x � a. Three forces act on it: a 

horizontal tension of magnitude T0 at the left end, a tangential tension of magni
tude T(a) at the right end, and a downward gravitational force L{J, where L is the 
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)' T(u) 

'--I 
(a) Flexible, heavy, 

I I 
unifonn cable I I To I 

lJ I I I 
Cl x 

tly 

(b) The forces on an arbitrary 
sepnent of the cable 

dx 

(c) An "infinitesimal" 
piece of curve 

Fla. 4 Hanging cable 

length. When the chain hangs in equilibrium, these forces balance; in particular the 
horizontal components balance, and similarly the vertical components. 
Let 8 = 8(x) be the angle between the tangent and the positive x-axis. At the right 

end, the tension has components T(a) cos 8 and T(a) sin 8. Therefore, 
T(a) cos 9 = T0 , T(a) sin 9 = Ll>. 

Division yields tan 9 = � L. To 
It will help to express L in terms of 8. Figure 4c shows that the "element" of arc 
length• is ds = sec 8 dx. Hence L is the sum of these elements: 

" 
L = f sec 8 dx . 

• 0 
Thus our equation for the balance of forces becomes 

{J [" tan 9 = To Jo sec 8 dx. 

Now we consider a as a variable in this equation, differentiate both sides with 
respect to a, and apply the Fundamental Theorem of Calculus, 

Hence 

'!..._ tan 8 = '!..._ r!._ ["sec (J dx ] = !... sec 8. da da To Jo To 
2 8 

d(J - {J 8 
d(J {J 1 sec da - To sec • da = To sec o · 

• This is all we need know about arc length here. 
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Next we replace a by x and take reciprocals: 
dx T0 
dO = � sec o. 

Here is where the antiderivative of sec 0 comes in; we can express x in terms of 0: 

x = �o cosh- 1(sec 0) + C. 

When x = 0, then 6 = 0 so cosh- 1 (sec 6) = cosh- 1(1)  = 0, hence C = 0 and 

This is very good, but we still need to find y = /(x). Now 
dy = tan  6 = Jsec2 6 - 1 = Jcosh2(!_ x) - 1 = sinh(!_ x). dx To To 

so we find y by antidifferentiating: 

y =  � cosh(� x) + c. 

We can make C = 0 by choosing y(O) = T0/l>. Then the equation of the hanging 
cable is simply 

The shape of a hanging cable is called a catenary after the Latin for chain. We 
now see that a catenary is simply a hyperbolic cosine curve. 
EXERCISES 

Prove 
l sinh(u + v) = sinh u cosh v + cosh u sinh v 

l h( ) tanh u + tanh v tan u + v = ------1 + tanh u tanh v 
3 cosh 2x = cosh2 x + sinh2 x 
4 sinh(u + v) - sinh(u - v) = 2 cosh u sinh t' 
5 sinh 3x = 3 sinh x + 4 sinh3 x 

6 I 2L h k _ sinh(n + !)x 
+ COS X - .1 • 

sinh 1x 

Differentiate with respect to x 
7 sinh Sx 8 cosh Jx 9 tanh(x2 + 1) 1 '2 

10 tanh3 x 1 1  je2"(2 cosh x - sinh x) 11 x cosh x - sinh x 
14 Jcosh 4x 
16 isinh 2x - !x. 

13 In cosh x 
15 x2 sinh x - 2x cosh x + 2 sinh x 
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Find lim,,_ x of 
17 e- "  sinh x 

20 e2"( 1  - tanh x) 

18 e-" cosh x 

cosh x 21 
cosh 2x 

19 e" sech x 
In sinh x 22 

x 
Prove 

d 
23 dx tanh x = sech2 x d 

24 dx 
cosh x = - cosh x coth x 

25 cosh - 1 x = ln(x + JX'2=l ) 
d I I 27 ·- cosh - .l = ---dx JX'2=l 

29 sinh - 1 (tan 8) = cosh- 1(sec 8) 

30 �; tanh- 1 (sin 0) = sec 8. 

Express in terms of logarithms 

26 tanh - 1 x = 1 In ( 1 + x) 
2 1 - x 

d - I  I 28 d tanh x = -1 --2 x - x  

31 r · dx 32 fl tlx 33 r •1• � Jo JI+? 2 Jx2 - I Jo I - x2 
f 11• xl 

34 - -2 dx. 
0 I - x 

35 Show that y = a sinh ex + b cosh ex satisfies y" = c2 y. 
36 (cont.) Find y = y(x) such that y" = 4y, y(O) = 6, and >"(0) = - I .  
37 Prove sinh x > x for all x > 0. 
38 Find a formula for the tension T(x) in the hanging cable. 
39 Let R be the region bounded by y = cosh x, the y-axis, and y = b, where b > I .  Find 

the volume of the solid obtained by revolving R about the y-axis. [Hint d/dx(x sinh x -
cosh x) = ?) 

40 Let R be the region bounded by y = sinh x, the x-axis, and x = a, where a > 0. Find 
the volume of the solid obtained by revolving R about the x-axis. [Hint Use Ex. 16.) 

8. BASIC PROPERTIES 

The existence of inverse functions and many of their properties depend on certain 
basic facts about continuous functions. Like uniform continuity and the existence of 
maxima and minima, these facts are too hard to prove in a first calculus course. 
Nevertheless, they all follow from one basic principle, which is quite natural and 
easy to understand. 
Intermediate Value Theorem The idea is simple. To draw a continuous 
graph, you cannot lift your pencil from the paper. If the curve is below the x-axis 
at x0 and above at x1, then somewhere between it must cross the axis; it cannot 
jump over. Here is the general statement : 

Intermediate Value Theorem Letf(x) be a continuous function defined on 
an interval. Suppose that x0 and x 1 are in this interval, and that y is a number 
betweenf(x0) andf(xi). Thenf(x) = y for some x between x0 and x1• 
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Rather than attempt the technical proof, let us accept this principle and give some 
examples of its use. One practical application is in finding roots of difficult equations 
such as x5 - x + 1 = 0, or cos x = x. A natural approach to root finding is a search 
technique based on a simple idea : 

Suppose thatf(x) is continuous on an interval (a, b] and thatf(a) andf(b) have 
opposite signs. Then f(x) = 0 for some x with a <  x < b. 

This is a direct corollary of the Intermediate value Theorem. The search technique 
squeezes down on a root of an equation f (x) = 0 by finding a sequence of smaller 
and smaller intervals, [a0, b0], [a1, bi], [a2 , b2], etc., each one inside the previous 
one, such that f (a1) and f (b1) have opposite sign. 
• EXAMPLE 1 Estimate to six places a root of the equation 

f(x) = X5 - X + J = 0. 
So/11tio11 By trial and error,/ (-2) = - 29 < 0 and/ (- 1 )  = 1 > 0, so there is a zero 
on the interval (-2, - 1] by the Intermediate Value Theorem. On this interval 
f'(x) = 5x4 - 1 > 0, so f(x) is strictly increasing; there is precisely one zero. 

Now divide [ - 2, - 1] into 10 equal subintervals 

[ -2.0, - 1 .9], [ - 1.9, - 1.8], . . . ' [ - 1 . 1 ,  - 1.0], 

and test the signs of f(x) at the end points. We find f(- 1.2) = -0.29 and 
f(- 1.1) = 0.49, so there is a zero in (- 1.2, - 1. 1]. Next, divide this interval into 
ten equal parts and repeat the process. Here is the table of results: 

k 0 2 3 4 5 6 

a• -2 - 1.2 - 1.17 - 1. 168 - 1. 1674 - 1.16731 - 1.167304 
bl - 1  - I.I - 1.16 - 1.167 - 1.1673 - 1.16730 - 1.167303 

/(a.) -29 -0.29 -0.022 -5.8 x 10-3 -8.0 x 10-• - 5.0 x 10-5 - 1.8 x 10-1 
/(b.) 0.49 0.060 2.5 x 10-3 3.3 x 10- 5 3.3 x 10-5 8.1 x 10-6 

Clearly, to six places, x = - 1 . 167304 is a solution. • 

Of course, the calculations are laborious by hand, but are relatively easy on a 
scientific calculator. 

There is another statement of the Intermediate Value Theorem that is useful in 
applications. 

If f(x) is continuous on an interval and does not take the value 0, then either 
f(x) > 0 throughout the interval or f(x) < 0 throughout the interval. 

For if f(x0) and /(xi) have opposite signs, then f(x) = 0 somewhere between x0 
and x1• 
• EXAMPLE 2 Supposef(x) is continuous on [O, t] andf(O) =f(l). Show that 
the graph of /(x) must have a horizontal chord of length !. See Fig. 1. 
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\' 

Fis. I Assumptions: f(x) continuous and 
/(0) • /(1 ). Conclusion : there is a 
horizontal chord of length t. 

Sol11tion The problem is to prove that there is a point x with 0 � x � i and 
/(x) = /(x + ·!). 

To do so. consider 

g(x) = /(x + !) -/(x). 
It is a continuous function on [0. 1]. We want to prove that g(x) = 0 for some x. 
If not. then either g(x) > 0 throughout the interval or g(x) < 0 throughout the 
interval. In either case. g(O) + gH) + g(i) # 0. But 

g(O) + gH) + g(j) = [f(!) -/(0)) + [!(1) -/(!)] + [/( 1 ) -/(i)]=/(1 ) -/(0) = 0. 
a contradiction. Therefore g(x) = 0 for some x. that is..f (x) = f(x + !) for some x . 

• 

Remark The assumption f (0) = f ( 1) is crucial. Without it. the graph could be increasing. 
for example. and not have any horizontal chords at all. 

1nvE:r::.t:: unctions 

Let /(x) be a strictly increasing continuous function whose domain is a closed I 
interval [a. b]. Then the range of/(x) is the closed interval [/(a�/(b)]. For each 
.r in [f (a).f(b)] there is a unique x in [a. b] for which .r = /(x). 

The proof consists of three parts. First. suppose a �  x s b. Then/(a) sf{x) Sf (b) 
because f (x) is strictly increasing. Therefore each point of the range of /(x) lies in 
[/(a).f(b)). Second. suppose/(a) s .r S/(b). By the Intermediate Value Theorem. 
there is an x in [a. b] such that f (x) = .r: hence .r is in the range of [a. b]. These 
two conclusions show that the range of /(x) is precisely the interval [!(a), f (b)). 
Finally, suppose .r is in the range off (x ). Then .r = f (x) for exactly one x in [a. b ]. 
because/(xi )  '#/(x2) if x1 '# x2 since/(x) is strictly increasing. This completes the 
proof. 

A similar result holds for strictly decreasing continuous functions. For simplicity. 
we shall discuss only the increasing case. 

The last result says that f maps or carries the interval [a, b] onto the interval 
[/(a). /(b)) in a one-te>-one manner. Each x in [a. b] goes to one point .r in 
[/(a)./(b)). conversely. each .r in [/(a�/(b)) comes from exactly one x. Thus there is 
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a one-to-one correspondence between the two sets: each x corresponds to a unique 
.r and each .r corresponds to a unique x. When that happens. we can write x = g(y). 
Then g is the inverse function off The domain of g is [!(a). f(b)]. the range off 
For example. f(x) = x3 maps [- 1. 2) in a one-to-one manner onto [ - 1 . 8]. The 
inverse function g(.r) = .YY maps [ - 1, 8] onto [ - 1. 2]. 

Theorem Let f(x) be a strictly increasing continuous function with domain 
[a. b]. Then f(x) has an inverse function g(.r� and g(.r) is a strictly increasing 
continuous function with domain [f(a).f(b)]. 

The new part of this assertion is that 9(.r) is continuous. To prove it, suppose 
g(_r0) = x0 • (We shall assume a <  x0 < b. The cases x0 = a  and x0 = b require a 
slight modification of the argument that follows.) Take any e < 0. We can assume 

a :S x0 - e < x0 < x0 + e � b. 

We must find a b >  0 so small that 

19(.r) - xo l < e whenever 1 .r - Yo I < b. 

In geometric language, we must produce an interval of radius b centered at .ro that 
is carried by 9 to the inside of the interval of radius e centered at x0 • 

We concentrate on f(x� restricted to the interval (x0 - e. x0 + e]. Since f(x) is 
strictly increasing and continuous. it maps this interval onto the interval [f(x0 - e), 
f(x0 + e)], containing .ro . See Fig. 2a. We simply choose b > 0 small enough that 
[r0 - b, _r0 + b] is contained in [f(x0 - e), f(x0 + e)]. See Fig. 2b. Then 9 maps 
[.ro - b, .ro + b] into [x0 - e, x0 + e). In other words, 19(.r) - x0 1 < e whenever 
1.r - .ro I < b. This completes the proof. 

)I 

f<x0 + e) ------------

-

-

f(.\·o E)  I 
t t j 

\"o E " o XO + C 

(a) y •f(::c) maps (::c0- t, ::c0+ t) 
onto (f(::c0- t), f(::c0 + t)I. 

y 

1•0 + 6 
-

Yo· �--
-

J'o 6 

.. x 

I I U I  
\" 0 

(b) The inverse function x • l(y) maps 
(y0- 5, y0 + 5 ]  into (::c0- t, ::c0 + t ] .  

Fig. 2 Proof of  the continuity of  the inverse function 

Derivatives of Inverse Fu nctions There remains one more basic fact whose 
proof we postponed earlier. Let us state the result in a precise form. 
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Theorem Let /(x) be a strictly increasing continuous function with domain 
(a, b]. Let g(.r) be the inverse function of /(x). Suppose that a <  c < b. that 
f(x) is differentiable at x = c. and that f'(c) > 0. Then g(,r) is differentiable at 
.r = /(c) and 

g'[f (c)] = f'�c) . 

Proof Consider the difference quotient of g(.r) at /(c). Take .r '#f(c). that is . 
.r = /(x). where x = g(y) '# c. Then 

�(.r) - g(/(c)] = x - c  = [/(x) - /(c) 1 - 1  
.r - .f(c) .f(x) -.f(c) x - c 

Let y ----+ /(c). Since g(,r) is continuous (previous theorem). we have g(_r) ----+ 
g(.f(c)]. that is. x ----+ c. Therefore 

/(x) -f(c) ----+ f'(c) > O. x - c  

Recall that in general lim(l 1/1(t)] = l 1(1im h(t)], provided lim h(t) #- 0. Applied here. 
this rule yields 

lim 
g(y) - g(f(c)] = _l_. 

)'-/1c1 .\' - /(c) f'(c) 

Consequently g(.r) is indeed differentiable at .r = f (c). and its derivative has the 
specified value. For a geometric interpretation of this proof, see Fig. 3. 

x 

f(c) I = /C r l  

Fig. 3 Slope of the chord: Fig. 4 

g(,r) - g[/(c)) = x - c = [/(x) - /(c)J - 1  
.r -/(c) f (x) -f (c) x - c 

I' 

[i<x) dx 
" h 

The sum of the two shaded areas 
plus the area Aa of the smaller 
rectangle equals the area Bb of 
the larger rectangle . 

Integrals of Inverse Fu nctions There is a useful relation between the 
integrals of a function and of its inverse function. 
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Let/(x) be a strictly increasing continuous function with domain [a, b]. Let g(.r) 
be the inverse function of /(x), so that the domain of g(.r) is [A, B] = 
[/(a)./(b)]. Then 

• b • II 
I /(x) dx + I g(.r) d.r = Bb - Aa. 
• a  • A  

The proof is entirely geometrical (Fig. 4). We illustrate it in the simplest case, 
0 < a < b and 0 < A < B. Other cases can be reduced to this one by shifting. 

, b  
• EXAMPLE 3 Show that I In x dx = b In b - b + 1 .  

• 1 
Solution Apply the formula with /(x) = In x, g(.r) = e,., a = 1 .  A =  0, 
B = In b: 

But 

so the result follows. 

. b  . ln b I In x dx + I e,. dy = b In b . 
• 1 • 0 

• l n b  I n  b 
I e,. dy = e,. J = b - 1, 

. 0 0 
• 

Logarithm and  Exponential When you get right down to it, our discussion of 
the exponential function in Chapter 4 was based on an assumption : that there 
exists a differential function .r = .r(x) satisfying .r' = .r and .r(O) = 1 .  While we gave 
plausible reasons for the existence of such a function, we never really proved it. 
Undaunted, we went on to define the logarithm function as the inverse of the 
exponential function. Therefore we are not on solid ground with In x either. 

Clearly, we must start someplace. If we prove the existence of either the 
exponential or the logarithm function, we get the other one from the theory of 
inverse functions. There are several satisfactory approaches to the problem; here is 
the way one of these works. I t  is based on the theorem that every continuous 
function on a closed interval has an integral. 

Definition 
f JC dt ln x = -. 

I t x > O. 

This definition yields a function y = In x having domain x > 0 and satisfying 

d.r - = - r(t) = o. dx x ' 
Now the algebraic properties follow easily. 

For instance, suppose a > 0 and x > 0. Then 

d 1 1 d 
- In ax = a · - = - = - In x. dx ax x dx 
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Hence In ax = In x + c. To find the constant c, we set x = l ,  obtaining c = In a. 
Therefore, 

In ax = In x + In a. 
Once the logarithm function is firmly established, we define e" to be the inverse 

function and derive the usual properties; in particular, 

e" > 0 for all x, d - e" = e" dx ' eo = 1. 
Let us now settle a point discussed also in Chapter 4. There we asserted that any 

differentiable function satisfying y' = y and y(a) = 0 for some a, is identically zero. 
Suppose y is such a function. Then 

hence 
But 
Therefore 

'!._ (ye-") = y'e-" - ye-" = ye-" - ye-" = 0, dx 
ye-" = c, so y = ce". 

0 = y(a) = cit' and ft' :F 0, hence c = O. 

y(x) = 0 for all x. 

Tngonornetr c Fune ons The trigonometric functions also can be put on a 
rigorous foundation along the same lines. One way is to start with arc tan x, defined 
by an integral. 

Definition f" dt l arc tan x = J 0 1 + � 
This definition yields a function y = arc tan x defined for all x and satisfying 

arc tan(-x) = -arc tan x. 

Thus dy/dx > 0, so arc tan x is a strictly increasing function. Less obvious is that 
arc tan x is a bounded function. For, if x > l ,  then i" dt i' dt f" dt arc tan x = -1--2 = -1--2 + -1--2 0 + t 0 + t I + t  

< r I dt + f" d! = l + ( l - !) = 2 - ! . Jo 1 1 t x x 
Therefore arc tan x < 2 for all x. From this boundedness follows (for a theoretical 
reason we skip here) that arc tan x approaches a limit as x -- oo. We call this limit 
fn, that is, we define n by the relation 

1t • i" dt ix dt 
2 = !:"! 0 1 + t2 

= 
0 l + r2 · 

Since arc tan x < 2, we have !n � 2, hence n � 4. Of course, better estimates of 7t 
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are available. Incidentally, we can also prove that 
n [ 1 dr 4 = arc tan 1 = J o 1 + ,2 , 

but that requires a trick. See p. 558. 
The function y = arc tan x is defined for all x, is strictly increasing, and takes all 

values in the range -!n < y < !n. It has an inverse function y = tan x defined for 
-!n < x < !n, strictly increasing, taking all real values, and satisfying 

d 
dx tan x = 1 + tan2 x. 

We extend the domain of tan x by defining tan(x + n) = tan x. Finally, we define 
functions sin x and cos x motivated by the half-angle formulas: 

. 2r 1 - r2 sm x = 
1 + ,2 , cos x = 

1 + ,2 , 

where t = tan !x. After several applications of the Chain Rule, we get the formulas 
d . d . 
dx SID x = cos X, dx cos x = -SID x. 

Previously (p. 190) we used the Addition Laws for the sine and cosine functions 
to derive the formulas for their derivatives. Also. we promised (p. 181 )  a proof of 
these Addition Laws. Obviously, up to now a proof based on the derivatives of sine 
and cosine would have been circular. Now, however, a valid proof is possible. Set 

J S(x) = sin(a + x) - sin a cos x - cos a sin x, \
C(x) = cos(a + x) - cos a cos x + sin a sin x. 

Then S(O) = C(O) = 0, S'(x) = C(x), and C'(x) = -S(x). 
Set f(x) = S(x)2 + C(x)2• 
Then f(O) = 0 and f'(x) = 2SC - 2CS = 0, so F(x) = 0 for all x. This implies 
S(x) = 0 and C(x) = 0 for all x, precisely the Addition Laws. 
This has been only a sketch of a rigorous development of the trigonometric 

functions. Filling in the details is a big job. 
EXERCISES 

Show that/(x) has exactly one zero 

l /(x) = x3 + px + q. p > 0 

Show that the equation has a solution. 
3 x4 = 3 + e·i cos 7x 

Locate a solution within an interval of length 0.1. 

2 /(x) = x - a sin x + b, la l < 1. 

4 ln x =  -x. 

5 r = 2 cos x 6 r = - 3x. 

7 Let /(x) be continuous on [a. b] and /(a) = f(b). Let n be a positive integer. Prove 
that the graph .r = f(x) has a horizontal chord of length (b - a)/n. (Hint See 
Example 2.] 
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s• (cont.) Assume that the temperature at the Earth's surface at any instant of time 
varies continuously. At a fixed instant of time, prove there exists a pair of antipodal 
points on the equator (opposite ends of a diameter) where the temperatures are the 
same. 

9 Let .r = f(x) be twice continuously differentiable on a < x < b and suppose f'(x) is 
never 0. Let x = g(.r) be the inverse function. Express gH(.r) in terms off (x) and its 
derivatives. 

10 (cont.) Suppose .r = f (x) is increasing and strictly convex. What can you say about 
x = g(y)? 

I I  Prove that In .'{" = p In x if In x is defined by an integral as on p. 35 1 .  
12 Prove that (sin x)' = cos x and (cos x)' = -sin _'{ if sin x and cos x are defined in 

terms of tan !x as on p. 353. line 10. 

Define f(x) = f" � for x � 0. J o 1 + t 

13 Show that .r = f(x) has an inverse function x = g(_r). 
14 Prove g'(.r) = 1 + [g(y)]'. 15 Prove f (x) < ! for all x ;;::: 0. 
16 Prove f(x) = arc tan x has a solution x > 0. 

9. MISCELLANEOUS EX ERCISES 

Differentiate with respect to x 
I {x In x)41

3 
2 x1"l1 

. (x + a) 4 arc sm --x - a  
5 Jl+7 arc tan x 

3 10·" 

6 sinh
3 

2x 

7 
1 I ( 1 + x + x2) 1 (h + 1 ) - n 

( 
)2 + fi arc tan fi 

6 1 - x .._,3 v3 

1 ( 1 + x) 1 8 - In -- + -
2 
arc tan x. 

4 1 - x 

By computing numerically, guess the value of 
9 20 arc tan � + 8 arc tan ;\ 

10 24 arc tan n + 16 arc tan ft - 10 arc tan rl-J. 
Find 

I I  
. Sx + I  hm --.. - r  2x + In x 

12 r sinh x 
.. �"! sinh{x + 1 )  

Solve for x to 3 significant figures 
13 In In x = 3 14 In In x = 6. 
15 Find the point of intersection of the tangents to the graph .r = In x at (e, 1 )  and 

( 1/e, - 1 ). 
16 Suppose 8 = arc sin x in degrees. Find d8/dx. 
17 The "doomsday" equation ofvon Foerster et al., predicts the population N(t) in year t as 

1.79 x 101 1 
N(t) = (2026.87 - t}°-99 {t < 2026.87). 

(See Fig. lb, p. 1.) Find the inverse function t = t(N). 
18 Prove that e -.. = x3 has exactly one solution. 

file:///0.99
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Prove 

19 
99n f 100 arc tan .'< 

d 
99n 

40() < 
I X2 .'C 

< 2()() 20 
f 10 I _ ,-,, 

( l - e- 1 ) ln 10 < -- d.'< < ln 10. 
I .'C 

21 Suppose JM > 0 and .r = f (.'<) is strictly concave for a < x < b. Show that z = Inf (x) 
is strictly concave. 

22 Suppose a >  0. Find lim.-x n(� - I ). 
23 Use the Trapezoidal Rule to prove 

. • 
![In I + 2 In 2 + 2 In 3 + · · · + 2 ln(n - I) + In n] < I In x d.'<. • I 

24 (cont.) Prove 11! < v';(u")e-•• 1 •  (Hint x In .'< - x is an antiderivative of In .'<.] 
2S Prove !n + arc tan x > 2 arc tan h. 
26 Prove In x > 2(x - l )/(x + I )  for x > I. 
27 Some programming languages (Algol 60, Pasca� etc.) contain only sin, cos, and arc tan 

as standard trig functions. so it is necessary to express other trig functions in terms 
of these. Find a formula of the form arc cos x = arc tan(?� and state where it is valid. 

28 (cont.) Find a similar formula for arc sin x. 
29 (cont.) Find a formula of the form arc cos x = 2 arc tan(?). 

JO• Express .r =- arc tan{;: ; ) - arc tan x as simply as possible in terms of x. 

Prove 

31 cosh4 x - sinh4 x = cosh 2x . 2 tanh x 
32 2 cosh x smh x • 

h2 I - tan x 

33 

3! 

2 
tanh x = I - ------

sinh 2x + cosh 2.'< + I 

Find a function of the form .r = a  sinh ex + b sinh e(L - x) that solves the bouMary 
•alue problem y# - k2y = 0, .r(O) = .ro ,  y(L) = YL , where the constants satisfy k > 0 
and Yo < YL · 
A quantity of gas undergoes ionization at the constant rate p. Let n = n(r) denote the 
number of positive ions at time t. At the same time, the ions tend to recombine with 
electrons at the rate :rn2, where :r is the coetBcleat of recombilllltion. Thus 

dn 
dt 

= P - :rn2. 

Solve for n in terms of t, given that initially n(O) - 0. 
36 A model for the thermal breakdown of dialectrics leads to the initial value problem 

d2u 
dx2 + /Je" = 0, u(O) = u0 , u'(O) = 0. 

Find a solution of the form u = a + b In cosh ex. 
37• Graph x1 = y" and indicate by shading where x1 > y". (Hint Use the solution to 

Ex. 27 of Section 3.) 
38• Let .r = f (x) be continuous and strictly increasing for a s x s b, where 0 s a. Let 

A =/(a) and B = /(b). Finally, let x - g(y) be the inverse function. Prove geometrically 
that 

.• . •  
2 I xf (x) dx + I g(y)2 dy - Bb2 - Aa2• • a • A  



368 7. INVERSE FUNCTIONS 

39• Find the most general linear substitution 
j.� = a1 1x + a12 .r 
l.r = a21x + a22.r 

such that �2 - _r2 = x2 - y2 for all x and .I'· (If x is distance and .r = ct, where t is 
time and c the speed of light in a vacuum, this is the Lorentz transformation of 
relativity.) 

40• Let f(x) = x - Jn(I + x). Show that y = f(x) restricted to - 1  < x s; 0 has a strictly 
decreasing inverse function x = g(y), and restricted to 0 s; x < x has a strictly in
creasing inverse function .'< = h(y). Both g(.r) and h(.r) have domain 0 s; .r < x..  Prove g(y) + h(.r) > 0 for .r > 0. 

41 Let 0 < 2 < I. Prove (x + yf < x• + y• for 0 < x. 0 < y. 
42 Let 0 < x < I .  Apply Ex. 23, p. 152. to f(x) = - In x to prove Holder's inequality 

x•y1 - • S %X + ( I - 2)y for x > 0, y > 0. 



Techniques of 
Integration 

1 . INDEFIN ITE INTEGRALS 

8 
We have developed rules for differentiation of most functions that arise in practice. 

The reverse process, antiditrerentiation, is much harder. There is no systematic 
complete procedure for antiditrerentiation, rather, a few important techniques and 
a large bag of miscellaneous tricks. What is worse, there are functions that are not 
derivatives of any common function, for example 

- .111 e • 
sin x 
x 

1 

In this chapter, we discuss some basic techniques of antiditrerentiation, a few of 
the more common tricks, and the use of integral tables. 

First, some notation. The symbol 

J /(x) dx, 

called the indefinite integral of /(x). denotes the most general antiderivative of 
/(x). For example, 

f xl x2 dx = 3 + C, f cos x dx = sin x + C. 

To each differentiation formula, there corresponds an indefinite integral formula. For 
instance, to 

d - (tan x) = sec2 x dx corresponds f sec2 x dx = tan x + C. 

A Short Tab le of I ntegrals Let us list some of the indefinite integrals we 
know. All of these come from differentiation formulas derived so far. 

f x"+ l x" dx = -- + C (n � - 1 ) 
n + l  

f e"' dx = e"' + C 

367 
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f sin x dx = -cos x + C 

f cos x dx = sin x + C 

f sec2 x dx = tan x + C 

f sec x tan x dx = sec x + C 

f csc x cot x dx = -csc x + C 

f csc2 x dx = - cot x + C 

f dx 
· c ( I I ) v'f=X2 = arc sm x + x < 1 

f xF. = arc sec x + C (x > 1) 

f � = sinh- 1  x = ln(x + JX2+l )  + C x2 + 1 

f F. = cosh-1  x = ln(x + �) + C (x > 1 ). 
x2 - 1 

Our aim is to develop techniques for extending this table to cover a wide class of 
integrands. 

Surr and Cor t"ln "tcto ·s We can extend our formulas to sums and constant 
factors by two basic principles : 

The first formula splits an integration problem into two parts. The second allows 
constant factors to slide across the integral sign. Both are derived from simple 
properties of differentiation. If F'(x) = f(x) and G'(x) = g(x� then the two formulas 
are restatements of the differentiation formulas 

[F(x) + G(x)]' = F(x) + G'(x) = f(x) + g(4 [cF(x)]' = cF'(x) = cf(x). 
Warning Although constants can slide across the integral sign, variables cannot: 

x J x1 dx � J x3 dx. 
• EXAMPLE 1 Find 

f (sr - 2x3) dx = s fr dx - 2 f x3 dx. 
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Both integrals on the right are known : 

Therefore 

f e" dx = e" + C, f x3 dx = ix4 + C'. 

f (Se" - 2x3) dx = 5 f e" dx - 2 f x3 dx = 5(e" + C) - 2(ix4 + C') 

= Se"  - !x4 + (5C - 2C'). • 

Warning Since both Cand C' are arbitrary constants, so is SC - 2C'. Therefore the preceding 
answer can just as well be written 5e" - !x4 + C. Hencefonh, we shall lump together all 
arbitrary constants into one. So don't be surprised if 2C, or C + 1, or C1 + 3C2 + 1n 5 
end up as just plain C. 
Reminder In this subject you can always check your work. If you have a suspected 
indefinite integral of/(x� take its derivative and see if that really equalsf(x). 

2. SUBSTITUTIONS AND D I FFER ENTIALS 

Let us see how we might adapt known integration formulas to new situations. 
The first observation is that we must be careful. For example, the formula 

f x3 dx = ix4 + C 

does not imply that f sin3 x dx = i sin4 x + C. 

To check, we differentiate using the Chain Rule: 

�x (i sin4 x) = sin3 x cos x, not sin3 x. 

A correct formula is 
f sin3 x cos x dx = i sin4 x + C. 

Similarly, the formula 

f e" dx = e" + C does not imply 

because 

A co"ect formula is 

f e"2 . 2x dx = e"2 + C. 

Obviously, this business involves careful use of the Chain Rule. Let us set things 
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straight. (Actually we did so in Chapter 5, Section 6, but it is easy enough to do 
again from scratch.) 

Suppose F(x) is an antiderivative of /(x) and g(x) is a differentiable function. 
Then by the Chain Rule, 

d du 
dx F(u(x)] = F'[u(x)]u'(x) = J[u(x)] dx . 

We express this relation as an integration formula: 

F(x) is an antiderivative of /(x) and u(x) is differentiable. Then 

I 
du f[u(x)] hdx = F(u(x)] + C. 

Use of this formula requires spotting an integrand in the form /[u(x)]u'(x), a skill 
that comes with practice. 

Examples 

( 1 )  I sin3 x cos x dx = I (sin x)3(�x sin x} dx = i sin4 x + C; 

/(x) = x3, F(x) = ix4. u(x) = sin x. 

(2) I r2 • 2x dx = I r2(�x x2) dx = r1 + C; 

/(x) = r, F(x) = r, u(x) = x2• 

(3) I cos(Jx ) .  
2
Jx dx 

= I  cos(Jx )ex 
Jx) dx = sin(Jx ) + C; 

/(x) = cos x, F(x) = sin x, u(x) = Jx. 

Dirferentials The indefinite integral symbol I f(x) dx denotes the general anti
derivative of/(4 The "differential" dx is a formal notation that is not absolutely 
necessary, but helps simplify integration formulas. 

For each function u = u(x� we introduce the formal dUl'ereadal 

du = u'(x) dx. 
With this notation we replace f du f[u(x)] dx dx by I f(u) du. 

Not only is the notation simpler, but also it reminds us of the important factor 
du/dx. 

Properties of differential which will be used repeatedly: 

d(u + v) = du + dv; d(cu) = c du, c constant; df (u) = f'(u) du. 
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The last property follows from the Chain Rule: 
d du df (u) = dx [f(u)] dx = f'(u) dx dx = f'(u) du. 

Using the notation of differentials, we can abbreviate the basic integration 
formula of this section: 

Suppose F(x) is an antiderivative of /(x) and u(x) is differentiable. Then f /[u(x)] �: dx = f f(u) du = F(u) + C. 

• EXAMPLE 1 Find f (r + x)2(r + 1 )  dx. 

Sohttion The integrand is of the form u2(du/dx ), where u = r + x. So let u = r + x. 
Then 

du du = dx dx = (r + 1 )  dx. 

Hence f (r + x)2(r + 1 )  dx = f u2 du = !u3 + C = !(r + x)3 + c. • 

Remark The technique used in Example l is called the method of AIMdtwtioa, or chaase 
of variable. We simplified the integral by substituting u = e" + x. 

• EXAMPLE 2 Find (a) f �c:;/ dx. (b) J� x dx. 
Sohttion (a) Notice that d 1 -d (arc tan x) = --2 • x l + x  
Therefore set u = arc tan x. Then du 1 du = -d dx = -1 --2 dx. 

Hence 

x + x  f arc tan x f 1 1 
1 + x2 dx = u du = 2 u2 + C = 2 (arc tan x)2 + C. 

(b) Set u = ln x. Then du = dx/x; so 

J
in x d f d 1 2 1 ( 2 x x = u u = 2 u + C = 2 ln x) + C. 

• EXAMPLE 3 Find f4x - 5  (a) xr+l dx 

Sohdion (a) Split the integral into two: 

(b) f dx . J3x + 5  

f 4x - 5 dx = 4 f x dx - 5 f �. x2 - 1 x2 + 1 x2 + 1 

• 

In the first integral on the right, the numerator is nearly the differential of the 
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denominator. Set u = x1 + I , so du = 2x dx, and throw in the needed factor 2: 
4 f x dx = 2 f 2x dx = 2 f du x2 + 1 x1 + 1 u 

= 2 ln �u l + C1 = 2 ln(x2 + 1) + C1 = ln(x2 + 1)1 + C1 • 
The second integral is arc tan x + C1 . Therefore 

f4x - S  
x2 + 1 dx = ln(x1 + 1)2 - S arc tan x + C. 

(b) Set u = 3x + S. Then du = 3 dx and 

f dx f ! du 1 f du J3x + S = Ju = 3 Ju 
= � f u- 111 du = � (2u111) + C = � J3x + S + C. 

Ahnlllitioe 101Mti011 Set u1 = 3x + S. Then 2u du = 3 dx and f_d_x_ = � fu_d_u = � u + C = �J3x + S + C. J3x + S 3 u 3 3 • 

Definite Integrals The method of substitution, or change of variables, applies 
to definite integrals as well as indefinite integrals. There is one crucial twist : the 
limits of integration must be suitably changed when a substitution is made. 

Change of Variable Fonnula 

fb du f' • f(u(x)] dx dx = c f(u) du, where c = u(a) and d = u(b). 

As shown above, if F(x) is an antiderivative of f(x� then F(u(x)] is an antiderivative 
of/[ u(x ))u'(x ) .. Therefore, by two applications of the Evaluation Rule, 

f. • ( f' /[u(x)] - dx = F[u(x)] = F(u(b)] - F[u(a)) = F(d) - F(c) = f(u) du. 
• b c 

Thus once the integral is changed into an integral in u, the computation can 
be done entirely in terms of u, provided the limits of the integral are changed 
correctly. 

• EXAMPLE 4 Compute .• J JXI+:9 · 2x dx. 
0 

Sobdioll (Old way) First evaluate the indefinite integral 

J JXI+:9 · 2x dx. 
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Make the substitution u = x2 + 9, du = 2x dx: 

J Jx2 + 9 · 2x dx = J u112 du = ju312 + C. 

Now change back to x: 

Thererore 

J J x2 + 9 · 2x dx = j(x2 + 9)312 + C. 

(Jx2 + 9 · 2x dx = j(x2 + 9)3'2 [ = j(S3 - 33) = 1¥. 
0 0 

Sohltion (New way) Again substitute u = x2 + 9. Note that 

Therefore 

u = 25 for x = 4 and u = 9 ror x = 0. 
4 2S 12

S J Jx2 + 9 · 2x dx = f u112 du = ju312 = j(S3 - 33) = 1¥. 
0 • 9 9 

A/tenuatirJe 10/11tio11 (avoiding fractional exponents) Set u2 = x2 + 9. Then 
2u du = 2x dx. Now 

Therefore 

u = s ror x = 4 and u = 3 ror x = o. 
4 s Is f Jx2 + 9 · 2x dx = f u · 2u du = ju3 = j(S3 - 33) = �. 

0 • 3 3 
• EXAMPLE I Evaluate 

f 11Ji arc sin x �dx. 1/2 y I - A 

Sohltion Substitute u = arc sin x, 

and note that u(!) = in. 

dx du = �· v l - x2 
u(l/J2) = tn· 

• 

Therefore f I /Ji arc sin x 
_dx = f,

•/4 u du = u2 ,
R/4 = ! 

(7t2 - 7t2) = Sn2 . • . 112 Ji - x2 •16 2 R/6 2 16 36 288 
EXERCISES 

Find the indefinite integral. Make free use of the formulas on pp. 357-358. 

J sin x cos x dx 2 J sin4 x cos x dx 3 J 5e5 .. dx 

4 J (e'" + 3x)(e'" + 3) dx 5 f 2x 
(1 + x2)3 dx 6 f (In 

x
x)2 

dx 

7 
f -sin x 

dx 
cos2 x 

8 J ( I  + sin x)3 cos x dx 9 f 
e'" + 2x 

d r + x2 +I x 

10 f 3x2 

4 + x3 dx I I  J tan3 x scc2 x dx 12 f -2x 
Jt=X2 dx 

13 - dx f eJ .. 

2Jx 
14 J 8x(I + 4x2)5 dx 15 J (3x + 1)4 dx 
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16 J (x2 + 1)2 dx 17 J cos 3x dx 18 J x2e-"3 dx 

19 J sec4 x tan x dx 20 J cos 2 x sin x dx 21 
f dx 

Ji+5x 
22 

f e" dx 
1 + e2" 23 f ln(2x + 7) dx 2x + 7 

24 
f e" - e-" 

e" + e-" dx 

25 
f dx 

(S - 3x)2 26 
f Jx - 4 Jx I +  x2 27 

f (x + �r dx 
28 J tan2 x dx 29 J (ax + br dx, n f' - I 30 J xJcx2 + d dx 

31 
f xl 

I + x• dx 32 
f 2x 

1 + x• dx 33 
f dx 

x In x 

34 J tan 2 tx sec2 tx dx. 

Compute the definite integral by making an appropriate substitution and changing the limits 
of integration. 

I 
35 J 2x(x.l - 2)3 dx 36 0 

3 
38 r xe"2 dx 39 

• 1 

f"'4 cos x 
41 -.-2- dx "'6 sm x 

f e" dx 
0 (e" + 1 )2 r x dx 
o Jx2 + 9 

42 

37 

40 

1• 
J x sin x2 dx 0 
f' arc tan x 

1 l dx 
0 + x 

•/4 J (1 + tan x)3 sec2 x dx. 0 

3. OTH ER SUBSTITUTIONS 

Frequently an integral can be simplified by an appropriate substitution. 

• EXAMPLE 1 Find J xJX+l dx. 

Sohdion Set u1 = x + I. Then JX+1 = u and x = u1 - 1, so dx = 2u du. 
Therefore 

J xJX+l dx = J (u1 - I) · u · 2u du = 2 J (u4 - u1) du 

where u = JX+l. Hence 

= 2  - - - + C = - (3u1 - 5) + C, 
(us "3 ) 2u3 

5 3 15 

f 2(x + 1)311 2 xJX+l dx = 
15 [3(x + 1) - 5) + C = IS (x + 1)3'1(3x - 2) + C. 
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Ahent11tioe '°"'""" Set u = x + 1. Then 

J xJX+l dx = J (u - l)Ju du = J (u3'1 - u111) du 

as before. 

• EXAMPLE 2 Find 

(u5/l ul/l) 2(x + l)3/l 
= 2 S - 3 + C = 15 (3x - 2) + C 

f (xx::)3 · 
Sohttio11 Set u = x - a. Then x = u + a  and dx = du: 

f x dx = f (u + a) du = f (_!_ + �) du = _ ! _ � + C (x - a)3 u3 u1 u3 u 2u1 
1 a -2x + a  = - x - a - 2(x - a)1 + C - 2(x - a)1 + C. 

• EXAMPLE I Find f 1 :�· 
Sobdio11 Substitute x = u3 and dx = 3u1 du: 

By long division, 

Hence 

f dx = 3 f u1 du l +J'x l + u ' 
u1 1 --= u- 1 +--. l + u  l + u  

f 1 +d
x 
.yx = 3 f ( u - 1 + 1 ! u) du = 3 ( � - u + 1n 1 1  + u I ) + c 

• 

• 

= 3 H xl/3 - xl/3 + In 1 1 + x1'3 I ) + C = � xl/3 - 3xt/3 + In 1 1 + x1'3 l3 + C. 
• 

Often a suitable substitution can change an integral into one that is already known. 

• EXAMPLE 4 Find (a) f al� x1 (b) f Ja:� xl a >  0. 

So/11tio11 (a) We already have the formula f 1 :x1 = arc tan x + C. 
The given integral is so like this one, we try to change it into this form. We set x = ay; then dx = a dy: 

f dx f a dy 1 f dy 1 1 x al + xl = al + (ay)l = a 1 + yl = a arc tan y + c = a arc tan a + c. 
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(b) This integral recalls the fonnula f p = arc sin x + C. 
1 - x1 

Again we set x = ay: f dx f a dy f dy 
Jal - xl = Jal - (ay)l 

= v1t="? 
. c . 

x c = arc sm y + = arc sm - + . • a 

• EXAMPLE I Find (a) f dx 
Jxl + al 

f dx (b) 
J 2 l . x - a  

Sobltio11 (a) We already have the fonnula f � = ln(x + JXI+1) + C. 
x + 1 

Set x = ay: f dx 
= f a dy = f dy = ln(y + Jy2+1) + C Jx1 + al J(ay)l + al Jy2+t 
= 1n(� + J(�f + 1 ) + C = 1n(� (x + Jx1 + a1 )) + C 
= ln(x + J x1 + a1 ) - In a + C = ln(x + J x1 + a2 ) + C. 

(b) The solution is practically identical. We obtain f dx = ln(x + Jx1 - a1 ) + C. x > a >  0. Jx1 - a1 
For x < -a < o. a similar result holds. and generally f dx = ln lx + Jx1- a1 1 + C. lx l > la l . Jx2 - al 
This can be checked by differentiation. • 

The integration formulas found in Examples 4 and 5 will be useful in the next 
section. 
EXERCISES 

Find the indefinite.integral 

1 f xJX+ldx 2 

4 f dx 
1 + b2x2 s 

7 f dx 
t + .fi  • 

J (sin x)ecoox dx 

f x2 dx (x - 1)3 

f e2x j1+ei dx 

3 

6 

9 

f x d J2x + S 
x 

f dx 
Jt - 4x2 f 
x:ffe 
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10 fx - l) dx 
� 1 1  --dx f el• 1 + e4" . 

12 J x3Jx2+l dx 

13 f dx 
1 + (5x + 2)1 

14 f x +  1 d al + b1x1 x 15 f x3 dx � 
16 

f-x dx 
1 + Jx  

17 f sin 2x dx 
3 +cos 2x 18 f 

Jx 
+ 1 dx x + 3  

19 J x�2x + I  dx 20 f xl - 5 
(x + 2)1 dx 21 f xl 

xl + 1 dx 

22 f x1Jx+"3dx 23 f dx 
J9�1 + 1 

2" f (x1 + x + 1 )Jx"+l dx. 
Compute the definite integral by making an appropriate substitution and changing the 
limits of integration 

l . 
25 f x3Jx4 + 9 dx 

0 

5 
28 f xj.X+4dx 

0 

31 fl dx Jo 1 +y"l+X 

3" f1 dx Jo (x + 2)Jx+l" 
I 

36 f [x• - (1 - x)"] dx. 
0 

4. USE O F  ID ENTITI ES 

l 
26 f (x - 1)3(x + 2) dx 

I 
27 f: (x � 2)3 dx 

l f-11n ll/l e" dx 29 f x(2x - 1)5 dx 30 
0 - l n l  J1 - e1" 

f a1 xl f1 xl dx 32 Jo � dx 33 Jo J4- x2 
4 

35 f (x - l)(x - 2)(x - 3) dx 
0 

When working integration problems, keep in mind the possibility of simplifying 
the integrand by algebraic manipulation. Such tactics as long division, factoring, 
combining fractions, and using trigonometric identities may convert a function into 
an equivalent form easier to integrate. 

• EXAMPLE 1 Find f 1 :4x2 dx. 

x4 1 
Sohltio• By long division, 2 1 + 1 + x2 = x - 1 + x2 • 

Hence, f 1 :4
x2 dx = f (x2 - 1 + 1: x2) dx = � x3 - x + arc tan x + C. • 

• EXAMPLE 2 Find 
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Sohttion 

Then 

8. TECHN IQUES OF I NTEG RATION 

Simplify the integrand by writing 

JI + .x  J1 + x  .jf+X 1 + x  
1 - x =  1 - x · .jf+X= � 

fJ1 + x  f dx f x dx . � 
1 _ x dx = � + ft=?= arc sm x - v 1 - x2 + C. 

• 

I ntegrals of sec x and csc x The integral of sec x is done by a trick : 
sec x(sec x + tan x) sec x tan x + sec2 x sec x = = -------
(sec x + tan x) sec x + tan x 

1 d = d- (sec x + tan x). sec x + tan x x 

Hence f sec x dx = f d(sec x + tan x) = In I sec x + tan x i  + C. sec x + tan x 
In a similar manner, we may derive the formula 

J csc x dx = -In I csc x + cot x I + C. 

Trigonometric Identities 

• EXAMPLE 3 Find (a) J cos3 x dx (b) J cos3 x sin2 x dx. 
Sohttiolt (a) Convert the integrand into powers of sin x, reserving a factor of 
cos x for the differential: 

cos3 x = cos2 x cos x = (1 - sin2 x) cos x. 

Hence f cos3 x dx = f cos x dx - f sin2 x cos x dx = sin x - sin; x + c. 

(b) Same technique: 
cos3 x sin2 x = cos2 x sin2 x cos x = ( 1 - sin2 x) sin2 x cos x, 

f f f · 3 
· 5 

cos3 x sin2 x dx = sin2 x cos x dx - sin4 x cos x dx = sm3 
x - sm

5 
x + C. 

• EXAMPLE 4 Find (a) f sin2 x dx (b) J sin4 x dx. 
Sohltion (a) Use the identity sin2 x = !(1 - cos 2x): 

f 
. 

1 f 1 f x sin 2x sm2 x dx = - dx - - cos 2x dx = - ---+ C 2 2 2 4 . 

• 



4. Use of Identities 389 

(b) f sin4 x dx = f (sin2 x)2 dx = f r� ( 1  - cos 2x) r dx 
= � f dx - � f cos 2x dx + � f cos2 2x dx = � - sin

4 
2x + � f cos2 2x dx. 

Now use the identity cos2 2x = i(l + cos 4x): 
f cos2 2x dx = � f dx + � f cos 4x dx = i + sins 4x + C. 

Combine results: 

f . 4 d x sin 2x 1 (x sin 4x c) 3x sin 2x sin 4x c sm x x = 4 --4- + 4 2 +-8- + =g --4-+32+  · 

• EXAMPLE I Find (a) f tan x dx (b) f tan2 x dx 
(c) J tan3 x dx. 

Sohltion (a) By definition of tan x, 
f tan x dx = f sin x dx = J -du' cos x u 

where u = cos  x. Hence J tan x dx = -In lcos x i + C = In  lsec x i + C. 

(b) Use the identity tan2 x = sec2 x - 1 :  

J tan2 x dx = J (sec2 x - 1 )  dx = J sec2 x dx - f dx = tan x - x + C. 

(c) J tan3 x dx = f tan x(sec2 x - 1 )  dx = f tan x sec2 x dx - f tan x dx. 

• 

The first integral is of the form J u  du, where u = tan x; the second integral 
was done in (a� Hence J tan3 x dx = ! tan2 x + In  !cos xi + C. • 

Completing the Square In Examples 4 and S of the previous section, we 
derived the following formulas : 

f dx 1 x 
2 2 = -arc tan -+ C, x + a  a a 

f dx . x C ---;::::;;====::.: = arc sm - + , Ja2 - x2 a 

a >  0, 

lx l < a, 

f dx 
= ln(x + J x2 + a2 ) + C, 

Jx2 + a2 

a > O, 

a > O, 
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I dx = In Ix + Jx2 - a2 1 + C, Jx2 - a2 lx l > a >  0. 

One other integral of this type will be obtained in the next section : 

I dx = _!_ In I 
a + x 

I + C. a2 - x2 2a a - x 
These formulas are useful when the integrand involves a quadratic polynomial 

or the square root of a quadratic polynomial. The basic trick is completing the 
square. 

• EXAMPLE I Find I x2 -:;x + 29 · 
Sollltio11 Complete the square: 

x2 - IOx + 29 = x2 - IOx + 25 + 4 = (x - 5)2 + 22 = u2 + a2, 
where u = x - 5 and a = 2. Therefore 

• EXAMPLE 7 Find I J3 _d:- x2 • 
Sollltio11 Complete the square: 

3 - x - x2 = 3 - (x2 + x) = 3 - (x2 + x + i) + i = .1/ - (x + !)2 = a2 - u2, 

where u = x + ! and a = !v'13. Therefore 

I J3 -
d: - x2 = I J1/ -

d;x + !)2 
= I J a�� u2 

• EXAMPLE I Find 

. u C 
. (2x + 1 ) C = arc SID a + = arc SID .jl3 + . 

I J5x�x- 2x · 
Sollltio11 Complete the square: 

5x2 - 2x = 5(x2 - ix + n - n) = 5[(x - t)2 -n] = 5(u2 - a2� 
where u = x - ! and a = !. Therefore 

I dx I dx 
J5x2 - 2x = 

JSJ(x - !)2 - n 

• 
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1 f du 1 
= IC  = 1c ln lu + Ju2 - a2 l + C  
...; 5 Ju1- a1 ...; 5 

1 = JS (In l 5x - 1 + J25x2 - JOx l - In 5) + C. 

Hence f dx = � In l Sx - 1  +J2sx2 - 1ox 1 + c. Jsx1- 2x ..., s • 

EXERCISES 

Compute 

1 

5 

9 

12 

15 

18 

21 

24 

f l +  x• dx 
9 + x2 ·2 

rx + 1)3 dx x2 6 

J sec x csc x dx 
J (cos x - sin x)2 dx J cos5 3x dx 
f sin2 � cos2 � dx . 3 3 
J x tan(x2) dx 
f · 

Jsecx + l d sm x x. secx - 1 

f x2 dx x2 + 3 3 
f 2x + J dx x - 4  4 --dx f xz x - 1 f x• + 1 dx x2 + 1 

7 f JI +  ax dx I - ax 8 f dx 
..JX+S - Jx  

10 f cos x csc x dx I I  J cos3 x sin4 x dx 
13 J sin3 x cos2 x dx 14 J sin3 ax dx 
16 J tan3 x dx 17 J cos4 x dx 
19 J tan4 x dx 20 J sec4 x dx 
22 J tan2 x sec4 x dx 23 f dx 

1 - sin x 

Evaluate the definite integrals 

( tan x dx f- 1 d s/2 I 
25 26 - 2 J4x:- l 27 r sin 2x dx 28 J cos2 JU dx 

• h/4 • 0 0 
l• l• 

29 J cos 3x cos 4x dx [(cos A)(cos B) ,,. !(cos ? + cos ?�] JO r sin x cos 3x dx. 
0 • 0 

Compute 

31 f dx x2 + 2x + 5 
32 f dx 2x2 + x + 6 

33 f dx J6x - x2 34 
f 3x + JO d Jx2 + 2x + 5 

x 
35 f x dx J4x - x2 36 f x2 dx x2 - 4x + 9 

(long division) 

37 f x dx J3x4 - 4x2 + l 38 f 2x dx 
1 - x2 - x4 

39 f dx bx - ax2 a > O, b > O  40 f dx a1.�2 + x ' 
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5. PARTIAL FRACTIONS 

Any fraction of the form 
ex + d  

(x - a)(x - b) 

can be split into the sum of two simpler fractions: 
A B -- + -- . x - a  x - b  

This decomposition into partial fnctions simplifies integration since each term is 
easy to integrate. 

EXAMPLE 1 

Sobdio11 Write 

2x + 1 
Decompose into partial fractions. (x - 3)(x - 4) 

2x + l  A B 
----- = -- + --, (x - 3)(x - 4) x - 3 x - 4 

where A and B are constants to be determined. Multiply through by (x - 3)(x - 4): 

2x + 1 = A(x - 4) + B(x - 3) = (A +  B)x - (4A + 38). 
The coefficients of x on both sides of this identity must be equal, and so must the 
constant terms. Hence 

A + B = 2, -4A - 3B = 1. 

The unknowns A and B must satisfy these two equations simultaneously. 
Solve: A = -7, B = 9. Therefore, 

2x + l  -7 9 ----- = -- + --. (x - 3)(x - 4) x - 3 x - 4 

AlterutiDe sohltio11 There is a different way to compute A and B. Return to the 
equation 

2x + 1 = A(x - 4) + B(x - 3). 

This must hold for every value of x, in particular for x = 3 and x = 4: 

Therefore 

x = 3: 6 + 1 = A(3 - 4) + 0, A =  -7;  

x = 4: 8 + 1 = 0 + B(4 - 3� 

2x + l  - 7  9 

B = 9. 

--.,....,...---:- = -- + -- . (x - 3)(x - 4) x - 3 x - 4 

EXAMPLE 2 Find f dx 
al - xl ' 

1 1 A B 
Sobttio11 Write - - -- + --a1 - x2 - (a - x)(a + x) - a - x a + x · 
Multiply through by (a - x)(a + x): 

1 = A(a + x) + B(a - x). 

• 
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Set x = a  to obtain A =  1/2a; then set x = -a to obtain B = 1/2a. Hence 

al� x2 = � (a� x + a! x)· 
Therefore 

f dx 1 (f dx f dx ) a2 - x2 = 2a a - x + a + x 
1 1 

1
a + x

1 = 2a (-ln la - x l + In la + x l ) + C = 2a ln a - x + C. • 

Rational Functions A rational function is the quotient of two polynomials. To 
integrate a rational function p(x)/q(x), use partial fractions. However, in case 
degree [p(x)] ::?:: degree [q(x)], first divide p(x) by q(x� This yields 

p(x) s(x) 
q(x) = r(x) + q(x) ' 

where r(x) is a polynomial and s(x) is a polynomial whose degree is less than 
that of q(x ). 

• EXAMPLE I Find f x3 + 4 dx. x2 + x  

Sohltitnl Divide x3 + 4 by x2 + x: X3 + 4 = x - 1 + x + 4 . x2 + x x2 + x 

Hence f x3 + 4 f f x + 4 x2 f x + 4 --dx =  (x - l ) dx + --dx =- - x +  --dx. x2 + x x2 + x 2 x2 + x 

The problem is now reduced to evaluating the last integral. Write 

Multiply by x(x + 1): 

x + 4  x + 4  A B -- = = - +--
x2 + x x(x + 1) x x + 1 · 

x + 4 = A(x + l ) + Bx. 
x + 4  4 3 Set x = 0 and x = - 1 to obtain A = 4 and B = - 3. Thus x2 + x = � - x + I '  

f 
x + 4 

f
dx f dx -2-dx = 4 - - 3 --1 = 4  ln lx l - 3 ln Ix + 1 I + C. x + x  x x +  

Therefore f ;: : � dx = ;2 - x + In I (x :• 1 )3 1 + C. • 

Partial fractions are useful in the integration of rational functions p(x)/q(x� 
provided the denominator can be completely factored into linear and quadratic 
factors. In practice, this is hard to do for polynomials of degree 3 or more, e�cept 
in special cases. 
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Assume the degree of q(x) exceeds that of p(x), and assume that q(x) is factored 
into linear and quadratic factors. Then for each factor x - a there is a term 

A 
x - a  

If (x - a)2 occurs, there are two terms: Ai Az 
x - a + (x - a)2 ' 

If (x - a)3 occurs, there are three terms: Ai A1 Al -- + + -.....::....-x - a (x - a)2 (x - a)3 • 

For each quadratic factor x2 + ax·+ b there is a term Ax + B  
x2 + ax +  b '  

If (x2 + ax + b)2 occurs, there are two terms: Ax + B + Cx + D 
x2 + ax +  b (x2 + ax +  b)2 

and so on. For instance: 
1 A B C ------- = -- + -- + --(x - a)(x - b)(x - c) x - a  x - b  x - c' 

1 A B C 
(x - a)2(x - b) = x - a + (x - a)2 + (x - b) ' 

1 A Bx + C ------- - -- + ----(x - a)(x2 + bx + c) - x - a x2 + bx +  c' 
1 A Bx + C Dx + E 

(x - a)(x2 + b2)2 = x - a + x2 + b2 + (x2 + b2)2 '  
1 1 A B Cx + D --- - --+ -- + -...,,--x4 - 1 - (x - 1 )(x + 1 )(x2 + 1) - x - 1 x + 1 x2 + 1 · 

• EXAMPLE 4 Find f dx 
x• - l '  

Sohtti"" Write 1 A B Cx + D 
-x.---1 = -x---1 + -x -+-1 + _x_2 _+_1_ · 

Multiply through by (x - l )(x + l)(x2 + 1): 
l = A(x + l)(x2 + l) + B(x - l )(x2 + 1) + Cx(x - l )(x + 1) + D(x - l)(x + 1). 

Set x = l and x = - 1 to obtain A = -B = i· Set x = 0 to obtain 1 = A - B - D = 
i + i - D. Hence D = -!- Choose any other value of x to find C. Try x = 2, for 
example: 

1 = l SA + SB + 6C + JD = .1/ - i + 6C - i. 
from which C = 0. Therefore 
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Sobttio11 Write 2.x + S  A B C 
(x - l )(x + 3)2 = -x 

-
-

-
1 + -x -+-3 + ..,....(x_+_3�)2 • 

Multiply through by (x - l)(x + 3)2 : 
2x + S = A(x + 3)2 + B(x - l)(x + 3) + C(x - l). 

• 

Set x = 1 to obtain A =  "Jl; set x = - 3  to obtain C = i. Choose any other value 
of x to find B, for example, x = 0: 

S = 9A - 38 - C = �!- 38 - �, 
from which B = -"fl. Therefore, 

• 

Rational Functions of Sine and Cosine In theory, partial fractions aJJow 
the integration of any rational function r(t). An interesting substitution, based on 
the haJf-angJc formulas of trigonometry, reduces any rational function of sin 8 and 
cos 8 to a rational function r(t). Thus, at least in theory, integrals such as 

f d8 
3 + cos8  and f 1 + sin3 8 cos 8 dB 

4 cos5 8 - 3 sin 8 
can be computed explicitly. However, the computations may be quite formidable. 
When a definite integral is required, approximation methods like the Trapezoidal 
Rule and the rules to be discussed in Chapter 10 usuaJJy involve less work. 

Now we state the half-angle formulas in the form needed for computing integrals. 

Half-Angle Formulas Set r = tan !8- Then 

sin 8 . 8 
2t SID = -

1
--2 ,  + t  

1 - t2 cos 8 = -1--2 ,  + t  1 = -1 
_

+
_

c
_

o
_
s _6' d8 = -3.!!!_. 1 + t2 
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The first three formulas are usually given in trigonometry courses, and they follow 
easily from the standard double-angle formulas. We shall give a geometric derivation 
in Section 9 of Chapter 9. 
The last formula, the relation between d8 and dt, is obtained by differentiating 

t = tan  18: 
dt = !(sec2 18) d8 = !(I + tan2 18) d8 = !(I + t2) d8. 

With this preparation we can state a rule for transforming integrals of functions 
of sin 8 and cos 8. Suppose /(x, y) is a polynomial in two variables or a quotient 
of two polynomials. Then 

f . f ( 2t I - t2) dt f (sm 8, cos 8) d6 = 2 f 1 + 12 , 1 + 12 1 + r2 , where t = tan 18. 

• EXAMPLE I Compute f d(J 
3 + cos o · 

Sollltion Set t = tan 18. Then 

f d(J - 2 f dt/(1 + t2) - 2 f dt 
3 + cos (J - 3 + [(1 - t2)/(1 + t2)] - 3(1 + t2) + ( 1 - t2) 

f dt. f dt 1 t = 2  4 + 2r2 = 2 + 12 = J2
arc tan 

J2
+ c 

1 ( 1 (J) = 
J2 

arc tan 
J2 

tan 2 + C. • 

EXERCISES 

Decompose into partial fractions 

I 
I 

2 
x 

3 
xz (x + l)(x - I) (x + 2)(x + 3) (x + l )(x - 2) 

4 
I 

5 
x 

6 
1 (x + l)(x + 2)(x + 3) (x + l)(x + 2)(x + 3) (x + l)(x2 + 4) 

7 
x• 

8 
x3 - 1 

9 
x + I  (xl + 1)2 x(x2 + I) (x - l )(x2 + 4) 

10 
I x(x + w· 

Compute 

1 1  f dx x2 - 3x + 2 12 f dx (x - 2)(x + 4) 
13 f x + 3  dx x2 + x 

14 f xl + 1 x2 - Sx + 6 dx 15 f 2x + 3 dx x3 + x 16 f x dx (x + 1)2(x - 3) 
17 f dx (x - 2)2(x2 + 9) 

18 f dx 3x2 - 13x + 4 
19 f x4 dx x3 - I 
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20 f x��\ f x3 dx 21 x2 + 3x + 2 

J x2 + x + 1 d 23 (x - 3)(x2 + 2x + 2) x 

Evaluate the definite integral 
25 f: x2 -d;x + 6 

28 f3 x dx 
Jo (x + l )(x2 + 9) 

30 J: JX(l + ;)(2 + JX)'  
Compute 
31 J sin 9 d9 2 + cos 9 

24 J x(x d� 3)2 . 

27 f' -dx_ 
l x3 + 8 

29 --,,..-���-f "'2 cos (J d(J 
0 sin2 9 + 7 sin 9 + 10 

32 J4 - sin 9 d9. 3 - cos 9 

6. TRIGONO M ETRIC SU BSTITUTIONS 

Integrals involving a1 - x2 or a1 + x1 are often simplified by trigonometric 
substitutions. The substitution x = a sin 9 changes a1 - x1 into a1 cos1 9; the sub
stitution x = a tan 9 changes a1 + x1 into a2 sec1 9. 

• EXAMPLE 1 Find f dx 
x2�· 

Sobltio11 Set x = 2 sin 9. Then 

I dx I 2 cos 9 d9 I 2 cos 9 d9 I I d9 x2J4 - x1 = (2 sin 9)1J4 - 4 sin2 9
= 4 sin1 9 · 2 cos 9 = 4  sin29" 

Hence f x2 p = � f csc2 9 d9 = - � cot 9 + C. 

As a final step, express cot 9 in terms of x. This can be done quickly by drawing 
a right triangle (Fig. I) showing x = 2 sin 9. It follows that 

-� I dx - -� c cot 9 - x • 

x2�
- 4x + . • 

• EXAMPLE 2 Find f Ja�: x2 • 
Sohltio• Set x = a  tan 9. Then 

I dx f a sec1 9 d9 fa sec2 9 d9 
Ja2 + x2 = Ja2(l + tan2 9) 

= a sec 9 

= f sec 9 d9 = In l sec 9 + tan 81  + C. 
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x 

l sin 6 • ..! 
cot B •

n x 
2 

,/4 -xl 
Fig. I 

x 

l tan 8 • .!. 

sec 8 • � 

a 
Fig. 2 

Draw a right triangle (Fig. 2) showing x = a tan (}, and read off sec 0. Thus 

f dx = In I J a2 + x2 + � I + C 
Ja2 + x2 a a 

= In 1Ja2 + x2 + x i - In la l + C = ln(x + Ja2 + x2 ) + C. • 

• EXAMPLE 3 Compute the definite integral r · dx Jo ( 1  + x2)2 . 

Sol11tion Substitute x = tan 8. Then 8 = 0 for x = 0, and 8 = in for x = 1 .  Hence 

r I dx ra/4 sec2 (} d(} ra/4 d(} ra/4 Jo (1 + x2)2 = Jo ( I + tan2 0)2 
= Jo sec2 (} = Jo cos2 (} dO. 

Use the identity cos2 8 = !(1 + cos 20): 

Sollltion From the solution of the last example, 

f dx 8 sin 20 
( 1  + x2)2 = 2 + -4- + C, x = tan 8. 

It remains to express this function of (} in terms of x. Obviously, 8 = arc tan x. To 

x 
Fig. 3 

tan 8 = � = X  
I 

sin 28 = 2 sin 8 cos 8 

= 2 ( x ) ( I ) _ 2x 
� � - l + x2 
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express sin 28 in terms of x, draw a right triangle (Fig. 3) showing x = tan 0. It 
follows (via sin 28 = 2 sin 0 cos 0) that 

f dx 1 x 
( l  + x2)2 = 2 arc tan x + 2(1 + x2) + C. • 

Hyperbolic Substitutions In integrals involving Jx2 ± a2 , a hyperbolic 
substitution is often useful. Because cosh2 t - sinh2 t = l , the substitution x = 
a sinh t transforms x2 + a2 into a2 cosh2 t; the substitution x = a  cosh t transforms 
x2 - a2 into a2 sinh2 t. 

• EXAMPLE I Find f dx 
J 2, x > a >  0. x2 - a  

Sohltion Let x = a cosh t. Then dx = a sinh t dt, and 
f dx f a sinh t dt f sinh t dt f d C h- 1 

x C --;::::::;;:::==::::: = = = t = t +  = COS - + Jx2 - a2 Ja2 cosh2 t - a2 Jsinh2 t a 

= 1n(� + J(�f - 1 ) + C = ln(x + Jx2 - a2 ) + C. • 

Some r· cks Integrals involving J x2 ± a2 can also be handled by certain 
formal tricks. Make the substitution 

natural enough. Now fiddle with the differentials dx and dy: 
dx dy y dy = x dx, hence -= -y x 

The first trick is to observe that if then 

a fact from elementary ratios and proportions. 

Hence dx = dx + dy = d(x + y), f dx = f d(x + y) = In Ix + Y I + C. y x + y  x + y y x + y 
Therefore f dx = In Ix + Jx2 + a2 j + C. Jx2 ± a2 -
For the next trick write 

d y2 dx x2 ± a2 d x2 dx 2 dx d 2 dx y x =--= x =--± a  - = x  y ± a  -. y y y y y 
But also y dx = d(xy) - x dy. Add: 

Integrate, using the first integral: 

dx 2y dx = d(xy) ± a2 -. y 
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Similarly one can evaluate 

EXERCISES 

Use a trig substitution to find 

etc. 

I f dx 

Ji+? 2 f dx 
I - x2 3 f x3 dx 

J4 - x2 

' f J
9x� 

x2 
dx 5 f dx 

x1Jl6 - x2 
6 f x2 dx 

Jal - xl 

f Jx1 + al 
8 f x2 dx 

9 f x1 dx 7 2 dx 
( I  + xl)lfl ( 1 + x1)2 x 

10 f dx 
x2
J
i+?" 

Use a hyperbolic substitution to find 
II J� 12 fJx2 + a2 dx 13 f xl dx 

x2 + al J x2 + al 

14 f7dx 15 f
a1�x2 16 f

x�· 
Use the "Some Tricks" method with y1 = x2 ± a1 soy dy = x dx and (by the text) 

(1 ) fd
:

= fd: = ln lx + yl (2) f y dx = � xy ± � a2 ln lx + y l . 

Reduce each integral to one that does not involve a radica�.and evaluate it 
17 f dx 18 f y dx 19 f y dx 20• f dx . 

xy x x1 x1y 

Now let y2 = a2 - x� so y dx = - x d:c Hence f dx = -f dy = arc sin �. Reduce the y x a 
integral to one without a radical and evaluate it 
21 f dx 22 f y dx 23 xy x2 

7 INTEG RATION BY PARTS 

f dx 
xly u• f y dx. 

This important technique, which we introduced in Chapter 5, p. 236, converts an 
integration problem into a different integration problem, hopefully an easier one. 
Let us recall how it goes. 

Integration by parts comes from the Product Rule: 

d dv du 
dx (uv) = u dx + v dx ' 

where u and v are functions of x. 
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This rule can be expressed in terms of differentials. Multiply through formally 

by the symbol dx: 

d dv du 
dx 

(uv) dx = u 
dx dx + v 

dx 
dx. 

The term on the left is d(uv). On the right we have 
dv 
dx 

dx = dv, 
du 
dx 

dx = du. 

Product Rule in Differential Fonn d(uv) = u dv + v du. 

Rearranging the terms, we have 

and consequently, 

But 

u dv = d(uv) - v du. 

f u dv = f d(uv) - f v du. 

f d(uv) = uv + C, 

so we obtain the following formula: 

Integration by Parts f u dv = uv - f v du. 

The constant is absorbed into the second integral. 
This formula converts the problem of integrating u dv into that of integrating 

v du. With luck, the second integration is easier. There is no guarantee, however, 
that it need be. 

• EXAMPLE 1 Find f x cos x dx. 

Sobdiolt Interpret the integral as f x d(sin 4 

Apply the formula for integration by parts with 

to obtain 
u = x,  du = dx; dv = cos x dx, v = sin x, 

J x cos x dx = uv - J v du = x sin x - f sin x dx. 

This is a bit of luck ; the integral on the right is easy. Conclusion : 

J x cos x dx = x sin x + cos x + C. • 
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Remark We could have chosen u and v differently: 

J x cos x dx = J u dv, 
where u = cos x, du = -sin x dx; dv = x dx, v = !x2• 
Then integration by parts yields f xl f x2 x cos x dx = cos x · l + l sin x dx, 
which is true but does not help; the integral on the right is harder than the given one. 
Thus, it may be crucial how we factor the integrand into u and dv. It is also possible that 
no choice of u and dv helps. 

• EXAMPLE 2 Find J arc sin x dx. 
Sobltion Use integration by parts with 

. d dx u = are�n x  u =  · 

' � · v l - x dv = dx, v = x. 

Then f arc sin x dx = uv - f v du = x arc sin x - f p. 
There are several ways to do the integral on the right. For example, substitute 
y2 = l - x2, y dy =  -x dx: 

Therefore 

-f x dx = fy dy = fdy = y + C =.JT=7 + C. Jf:7 y 

f arc sin x dx = x arc sin x + Jf:7 + c. • 

Note .. y" was used in the substitution step because .. u" was used in the first step. Always 
take care not to confuse variables. 

2 
• EXAMPLE 3 Compute J In x dx. 

l 

Therefore 

Use integration by parts with 
dx u = In x, du = -; x dv = dx, v = x. 

f 2 12 f 2 12 f 2 dx In x dx = uv - v du = x In x - x · -

l 1 l l l x 
= (2 ln 2 - 1 ln 1 ) - x 1: = 2 ln 2 - 1 .  

EXAMPLE 4 Find 

• 
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Sohltio11 Substitute y = x2, dy = 2x dx: 
J x3e"2 dx = J x2e"2 • x dx = J ye' · !  dy. 

Now integrate by parts with u = y, du = dy; dv = e' dy, v = e': 
f ye' dy = ye' - f e' dy = ye' - e' + c = (y - 1 )e' + c. 

Therefore • 

Repeated Integration by Parts Some problems require two or more integra
tions by parts. 

• EXAMPLE I Find f x(ln x)2 dx. 
Sohdio11 Integrate by parts with 

_ (In )2 d _ 2 In x dx. d dx x2 u - x , u - x , v = x , v = 2 · 

Therefore f x(ln x)2 dx = x2(� x)2 - f ;2 • 
2 � x dx = x2(� x)2 - f x In x dx. 

The problem now is to evaluate f x ln x dx, 
which is similar to the original integral except that In x appears only to the first 
power. Therefore another integration by parts should reduce the integral to 

f x dx. 
Try it. Integrate by parts again with 

dx u = In x, du = -· x , 
Therefore 

x2 dv = x dx, v = 2 . 

f x In x dx = 
x2 Jn x - f xl . dx = x2 In x - ! f x ·dx = x2 ln x - x2 + C 2 2 x  2 2 2 4 · 

Combine the results: f x2(1n x)2 
(
x2 Jn x x2 ) x2 x(ln x)2 dx = 2 - -

2
- - 4 + C = 4 [2(ln x)2 - 2 ln x + 1) + C . 

• 

• EXAMPLE I Find 



384 8. TECHNIQUES OF INTEGRATION 

Sohltio11 Integrate by parts three times: J x3r dx = x3r - 3 J x2r dx, 
J x2r dx = x2r - 2 J xr dx, J xr dx = xr - J r dx = xr - r + c. 

Combine the results : 

J x3r dx = x3r - 3x2r + 6xr - 6r + c = r(x3 - 3x2 + 6x - 6) + c. • 

• EXAMPLE 7 Find Jr cos x dx. 
Sohldo11 Denote the integral by J. Integrate by parts with 

" =  r, du = r dx; dv = cos x dx, v = sin x. 
Therefore J = r sin x - J r sin x dx. 
Integrate by parts again with 

Therefore 

" =  r, du = r dx; dv = sin x dx, v = -cos x. 
Jr sin x dx = -r cos x + fr cos x dx. 

The integral on the right is J again ! Hence f r sin x dx = -r cos x + J. 

Have we gone in a circle? No, because substitution of this expression in the first 
equation for J yields 

J = r sin x + r cos x - J. 

The minus sign on the right saves us from disaster. Solve for J :  

J = i(r sin x + r cos x). 
Don't forget the constant of integration : 

Jr cos x dx = !r(sin x + cos x) + c. • 

EXERCISES 

Find 

J x sin x dx 2 J x cos 3x dx 3 J xel" dx 

' f x secl x dx 5 J JX tn x dx 6 J arc cos x dx 
7 J arc tan x dx 8 J ln(x2 + I )  dx 9 J x arc tan x dx 

10 J x5e"2 dx 11 J el" sin 3x dx 12 J x2e-" dx 
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13 f x cosh x dx 
16• f scc3 x dx. 
Compute 

la 
17 f x cos x dx 

a 
1/l 20 f arc sin 2x dx 

0 
a/3 

23 f x sin1 x cos x dx 0 

14 J x2 sinh 3x dx 

It 
18 f (ln x)1 dx 

I 
I 

21 f r(x + 3)2 dx 
0 
ail 

24 J x sin1 x dx. 
0 

I I 
25 Prove that f x2r1 dx = e - ! f r2 dx. 

- I - I  

15 J x2 cos ax dx 

2 
19 f x1 In x dx 

I 
11/l 

22 f e1" sin x dx 
0 

I I 
26 (cont.) Find a relation between f x4r2 dx and f r2 dx. 

- I  - I 
2a la 

27 Show that f /(x) cos x dx = -J f'(x) sin x dx. 
0 0 

• • 
28 Ir /(a) = /(b) = 0, show that f /(x) dx ""' -! J (x - a)(b - x)r(x) dx. 

• • 
la 

29 Show that f cos x cos 2x dx = 0 by integrating twice by parts. 
0 

30 Let P(x) be a polynomial Show that f P(x) r dx = (P - P' + P" - P"' + · · ·)e". 

31• Prove -dt > 0 ror all x > 0. 
f .. sin t 

0 t 

32• Supposc/(x) has a continuous derivative on [a. b). Prove 

8. R EDUCTION FOR M U LAS 

The integral J x1r dx 

I 
Jim f /(t) sin(xt) dt = 0. x•m 0 

requires two integrations by parts. Each integration lowers the power of x by one 
until x disappears. In the same way 

and J e4r dx 
require three and four integrations by parts, respectively. It is convenient to have 
a reduction formula. a formula that reduces J x"r dx to 

Repeated use of such a formula reduces J x"r dx to J rdx. 
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• EXAMPLE 1 Derive a reduction formula for f x"tr dx. 
Sohltion Integrate by parts with 

Therefore 

u = x", du = nx"- 1 dx; dv = tr  dx, v = e-": 
f x"r dx = x"tr - f tr ·  nx"- 1 dx. 
f x"tr dx = x"r - n f x"- 1tr dx. 

Remark For abbreviation, write J,. = J x"e" dx. 

Thm the reduction formula is J,. = x"e" - nJ,,_ 1• 

• EXAMPLE 2 Find f x5tr dx. 

• 

Sol•tion Use the reduction formula just derived to find J, . With n = 5, the reduction 
formula yields 

Hence 

J 0 = f x0r dx = r + c. 

J3 = r(x3 - 3x2 + 6x - 6) + C, 
and conse'luently 

J s = x5r - Sx4r + 20e"(x3 - 3x2 + 6x - 6) + c. 

= r(x5 - Sx4 + 20x3 -60x2 + 120x - 120) + c. 
Question Study the polynomial in the answer. How does each term follow from the 
preceding term? Can you write down the value of f x6e" dx by inspection? 

• EXAMPLE 3 Derive a reduction formula for J cos" x dx. 
Sohltion Write J,. = J cos" x dx = f cos"- 1  x cos x dx 
and integrate by parts with 

u = cos..- • x, du = - (n - 1)  cos"- 2 x sin x dx; dv = cos x dx, v = sin x: J cos" x dx = cos"- 1 x sin x + f (n - 1) cos"-2 x sin2 x dx 
= cos"- 1  x sin x + (n - 1 ) f cos"- 2 x(l - cos2 x) dx. 
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Therefore, J. = cos"- 1 x sin x + (n - l)J._ 1 - (n - l)J,. .  
Combine the terms in J,.: nJ,. = cos11- 1 x sin x + (n - l )J,,_ 1 .  
Now dividing by n gives the desired reduction formula: 

f 11 
d 

cos"- 1 x sin x + n - 1 f 11_ 1 d cos x x = -- cos x x. 
n n 

• 

Remark This reduction formula lowers the power of cos x by two. Therefore, repeated 
application will ultimately reduce J. to J0 or J 1 ,  according as n is even or odd. But both of 
these are easy: 

J 0 = J cos0 x dx = J dx = x + C, J 1 = J cos x dx • sin x + C. 

.J2 
• EXAMPLE 4 Compute J cos6 x dx. 

0 

Sollltio11 Set 
•/2 

I,. = J cos• x dx. 
0 

Then by the reduction formula of the last example, 
cos"- I x sin x r2 n - 1 i-'2 I. = + -- cos..- 2 x dx. n n 0 

Hence, n - 1 
1. = 0 + -- /11- l •  n 

Apply this formula with n = 6, then repeat with n = 4 and n = 2 :  

Therefore, 

EXERCISES 

Find a formula reducing J. to J •- I 

1 J. = f (In xr dx 

4 J - f dx 
• - (al + xlr 

2 J. = J x"e-Zx dx 

5 J. = f (xl �x 
alr 

Find a formula reducing J. to J._ 1 
7 J" = J tan• x dx 
10• J • - J e"" sin" bx dx 

8 
J = f dx 

• x"Jxl ± al 

11 J. = J sin• x dx 
Compute by means of an appropriate reduction formula 

ail 
13 J sin' x dx 

0 
ail 14 J sin1 x dx 
0 

3 J. = f x1(1n xr dx 

6 J. = Lal �x3r· 

9 J. = J sec" x dx 

12• J. = f (arc sin xr dx. 

sl' 
15 J tan10 x dx 

0 

• 
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2 
17 r (In x)4 dx 

' I  
11• r .  x4 sin x dx. 

• "12 

19 Set J. = J f!"• tan" x dx. Express J. in terms of J0_ 1 and J0_2 •  

f
• 

m!n !  20• Prove (x - ar'(b - xr dx = ( ) (b - ar+-- • .  
• m + n + I !  

9. INTEGRAL TAB LES 

A busy scientist does not want to bother with various tricks each time he encounters 
an integral ;  he uses integral tables. Not only do they save time, but they help 
eliminate errors. 

Inside the two covers of this book is a short table of indefinite integrals. Much 
longer tables are available, for example those in the C.R.C. Standard Mathematical 
Tables. We suggest that you get one of the more complete integral tables and 
spend some time browsing through it. Become familiar with the type of integral 
you can expect to find there. Not every integral is listed in a .  table, but many can 
be transformed into integrals that are listed. 

• EXAMPLE 1 Use integral tables to find J x3 J3 - 4x2 dx. 

Sohdion Most tables include a section on integrals involving J'a2 - x2• A formula 
in the C.R.C. tables states that 

· 

f x3 Ja2 - x2 dx = -G x2 + �S a2 )(a2 - x2)312. 

This is very close to what is wanted, except that J3 - 4x2 appears instead of 
Ja2 - x2 • There are two simple ways of modifying the integrand: write either 

J3 - 4x2 = J4(� - x2) = 2 '4- x2, 
or J3 - 4x2 = J3 - (2x)2 = J3 - u2, where u = 2x. 
By the first method with a2 = i 

f x3J3 - 4x2 dx = 2  f x3/4- x2 dx =  -2G x2 + :s · �) (� - x2f'2 + C. 
By the second method with u = 2x and a2 = 3 

f x3 J3 - 4x2 dx = f (�) 3 � • � du = 1
1
6 f u3 �du 

= - - -u2 + - · 3 (3 - u2)312 + C = - - - · 4x2 + - (3 - 4x2)3'2 + C 1 ( I 2 ) 1 
( 1 2) 16 s 15 16 s s . 

A little algebra shows that both answers agree. • 
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• EXAMPLE 2 Use integral tables to find f e1" sin3 x dx. 
Sohdion In the C.R.C. integral tables under Exponential Forms is the formula 

f tfU sin" bx dx = a2 +l n1b2 f (a sin bx - nb cos bx}e° sin"- 1 bx 

+ n(n - l)b1 f tfU sin"- 2 bx dx J . 
This is a reduction formula which lowers the power of sin bx by two. Apply it with 
a = 2, b = 1, n = 3 : 

f e1" sin3 x dx = 4 ! 9 f (2 sin x - 3 cos x)e2" sin1 x + 6 f e1" sin x dx J. 
The integral on the right is also given in the C.R.C. tables. Its value is 

}e1"(2 sin x - cos x). 
It follows that 

f e1" sin3 x dx = �� f (2 sin x - 3 cos x) sin1 x + � (2 sin x - cos x) J + C. • 

Integral tables use abbreviations for common expressions. For instance, one 
section of the C.R.C. tables contains formulas involving X and JX, where 
X = a +  bx + cx1• 
• EXAMPLE 3 Use integral tables to find f J5x1 : 2x + 3 dx. 
Solidi"" According to one of the formulas in the C.R.C. tables, 

fJX dx =JX+ � f dx + a f�. x 2 JX xJX 
The integrals on the right are also given in the tables: 

f �= jcm(ft + xJC + 2jc). c > O, 

f � = - -1- in(ft + Ja + _b_)• a >  0. xft Ja x 2.ja 
Setting X = 3 + 2x + 5x1, and a =  3, b = 2, c = 5, yields 

f J 5xl + 2x + 3 dx = ft + _1 
ln I ft + x../5 + _1 I x .j5 .j5 

where X = 5x1 + 2x + 3. - jJ ln I ft + J3 + -· I + c. x .fi 
• 
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EXERCISES 

Find, using tables 
J e-2 .. sin Sx dx 2 J J4 - x2 dx 3 J x2J1 - 4x2 dx 

4 
f x2 dx 

J4 - 3x2 5 
f x2 dx 

2 + Sx2 6 
f 
(4 - xl)l/2 dx . 

7 f . 
x x3 sin 2 dx 8 J (In x)4 dx 9 

f x2 - 6x - 2 

xJ10x2 + 7 
dx 

10 
f (x + 3)2Jx2 + 2x + S dx. 

Compute 
l l  r x4 + 2xl - 3 12 ft x2 dx J •eh cos6 x dx dx 13 o x4 + 2x2 + I  o l + 3x2 0 

l• f dx l 
14 J cos2 x sin' x dx 15 

0 ( 1 + 3x)2(2 + Sx) 16 f (x In x)3 dx. 
0 I 

1 0. MISCELLAN EOUS EXERCISES 

Compute 
f dx 

(x - a)(x - b) 2 
f x2 dx 

Jx+l 3 
f sin 2x dx 

JS +��2;-

4 
f dx 

(2 - Sx)2 5 J sec4 3x tan3 3x dx 6 J tan5 x dx 
7 J sin6 x cos3 x dx 8 J sin4 x dx 9 J x5Jl + x2 dx 

10 
f x3 dx 
x2 + 4x + 13 l l  J sin Jx dx 12 

f dx 
e" + 1 

13 
f x dx 
J2x - x2 14 f dx 

(I _ xl)ltl 15 J x2 arc tan x dx 
16 f'x + t)e" dx xe" + I 17 f dx 

a4x2 + bl� 18 ---- dx f x4 + a4 
x4 - a4 

19 
f dx 

e" + s + 4e-.. 20 J 'n(2 + �) dx Jx 21 
f dx 

x(ln x )(In In x) 
22 

f x dx 
Ji - 9x4 23 J x2 sin x dx 24 f e" dx 

Jl.+ e2 .. 

25 
f dx 
xJl + x2 26 f Jx: :_ a2 dx. 
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27 Evaluate ( Ja2 - x2 dx by inspection. [Hint lnte�pret as an area.] 
- ·  

28 r sec x dx = ln(sec x + tan x) r = ln(sec GI! + tan O!) - ln(sec GI! - tan O!) 
- 111 - ·  

and by symmetry 

r sec x dx = 2 (sec x dx = 2 ln(sec x + tan x) r = 2 ln(sec GI! + tan «). 
- a  · o o 

The answers appear different. Explain. 
29• Suppose a quantity of hot fluid is stirred so that at any time t, its temperature u(t) 

is uniform throughout the fluid. Suppose it loses heat to the outside only by 
radiation. Then it is known that 

du = -k(u4 - a4� dt 

where k > 0 and a is the (constant) outside temperature. Express the inverse function 
t = t(u) in terms of u. [Hint See Example 4, p. 374.] f x2 + ax - 2a - 3 JO• Find 

( )2 e" dx. 
x - 1 

b 
31 Find f x(b - x)" dx. 

• 0 
32• Find f 

J 
dx 

. � - e" 



Plane Analytic Geometry 9 
1 TRANS LATION AND C IRCLES 

Rene Descartes ( 1596- 1650) slept till noon every day and invented analytic 
geometry. Analytic geometry is the study of geometry via algebra and coordinate 
systems. In honor of Descartes, rectangular coordinate systems are called Cartesian. 

o., o s A useful skill in working with coordinate systems is 
knowing where best to place the axes. While doing a problem in a given coordinate 
system, it may be convenient to introduce new coordinate axes parallel to the given 
ones. This operation is called shifting or translating the axes. 

After a translation of axes, a point with coordinates (x, y) relative to the original 
axes acquires new coordinates (x, Ji) relative to the new axes. It is easy to express 
the relation between the old coordinates and the new ones. The translation sets up 
a new origin 0 at a point (h, k) in the old coordinates (Fig. l ). From the figure, 
x = X + h and y = Ji +  ·k, no matter what quadrant 0 lies in. Conversely, x = x - h 
and Ji =  y - k. 

392 

y 

0 1 

(Ir. J.) (Ir, J, )  

0 x Ii 

k 

l (\, 1 I -- -. : ) I I I : 

� 

\ 

\" 

(a) Choice of new origin and axes (b) By comparina horizontal distances 
(with due regard for sign): x • x + h. 
Similarly, y = y +  le. 

Fi&- I Translation of axes 
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Translation of Axes If the coordinate axes are translated so that the origin 
is moved to (h, k), then the new coordinates (X, y) and the old coordinates (x, y) 
of a point are related by the equations {x = x - h 

ji = y - k  
{x = x+ h 
y = ji + k. 

To get the signs right, remember that x = h and y = k must imply X = 0 and y = 0, 
and vice versa. 
Translation of axes is helpful in simplifying equations and computations. For 

example, take the equation y + 3 = (x - 2)2• If we introduce a new coordinate 
system with origin at (2, -3), then x - 2 = X and y + 3 = y. Therefore the equa
tion becomes ji = x2 in the new coordinates. Thus the graph of y + 3 = (x - 2)2 is 
just the familiar quadratic curve y = x2, but with its vertex shifted (Fig. 2). 

I Y  I 

\I 
\" 

(2. - 3) 

<•> >' + 3 • (x - 2)2 (b) y • i2 

Fie. 2 Simplifying an equation by translation of axes 

In general, given an equation in x and y and new axes with origin at (h, k), it is 
easy to write the equation in x and ji that describes the same locus. Simply 
substitute x = x + h and y =  y + k for x and y in the given equation. For example, 
the equation of the line ax + by = c is transformed into the equation a(x + h) + 
b(ji + k) = c, that is 

ax + by = c - (ah + bk). 
Note that the equation of the line is the same in either coordinate system except for 
the constant on the right side. Can you explain why geometrically? 
o·vision of a Segrr ent Here is an example of a problem that is solved neatly 
using translation of axes. Given two points Pt = (xt, Yt) and p2 = (x2 , y2), find the 
point on the segment PtP2 that is i of the way from Pt to p2 • More generally, if 
0 ;:S; r ;:S; 1, find the point r of the way from Pt to p2 • 
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0 

/ 
P2 / 

p 

(a) Special cue: p1 • 0 (b) General case: translate axes so p1 = 0 
Fit- 3 Division or a segment 

'\' 

In the special case that p1 = 0. the solution is obvious (Fig. 3a). The desired point 
is (rx2, ry2). In the general case (Fig. 3b), translate axes so the new origin is at 
p1 = (x1, yi). Then the new coordinates of p2 are (x2 , y2) = (x2 - x1• y2 - yi). 
According to the special case, the new coordinates of the division point p are 
(rx 2 , ry2) = (r(x 2 - x . ), r(y1 - yi). But the coordinate translation is x = .f + x 1 and 
y = y + y1, so the old coordinates of p are 

(r(x2 - xi) + x1, r(y2 - y1) + y.) = (( 1 - r)x1 + rx2 ,  ( l  - r)y1 + ry2). 

Division of a Segment lfO :s; r :s; l, then the point that is r of the way from 
P1 = (x1, yi) to p2 = (x2 , y2) is 

p = (x, y), 
where x = (l - r)x1 + rx2 and y = ( l - r)y1 + ry2 • 

Examples The point that is i of the way from p1 to p2 is 

(jx l + JX2 • iY1 + iY2)· 
The midpoint ofp1p2 is (!(x1 + x2� !(y1 + y2)). 

1 ne "1 rc1e Recall the equation of a circle, p. 44: 

The equation of the circle with center (a, b) and radius r is 

(x - a)2 + (y - b)2 = r1• 

This equation is the algebraic statement of the fact that the distance from each point 
(x, y) on the circle to the center equals the radius. If new axes are centered at (a, b), 
the equation becomes simply .f1 + y2 = r1• 

Let us examine the general equation of a circle. In expanded form the equation is 

(x1 - 2ax + a1) + (y2 - 2by + b2) = r1, 
x2 + y2 - 2ax - 2by + (a2 + b2 - r2) = 0. 
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Now suppose we start with an equation of the form 

x1 + y2 - 2ax - 2by + c = 0. 
What is the locus of all points (x, y) that satisfy it? (Of course we suspect a circle.) 
We complete the squares for both the x and the y terms: 

(x2 - 2ax + a1) + (y1 - 2by + b1) + c = a1 + b1, 
(x - a )1 + (y - b )1 = a1 + b1 - c. 

Now here is a hitch : the left side is a sum of squares, hence non-negative. But 
the right side is not guaranteed to be non-negative! We are forced to consider three 
cases: 

(1) a1 + b1 - c < 0. Then no point (x. y) satisfies the equation; the locus is 
empty. 

(2) a1 + b1 - c = 0. Then only (x, y) = (a, b) satisfies the equation because the 
left side is positive for any other point;  the locus is the single point (a, b). 

(3) a1 + b2 - c > 0. Then we set r = Ja2 +-b2 -:..._ c . and the equation becomes 

(x - a)1 + (y - b)1 = r1• 

The locus in this case is an honest circle. 

• EXAMPLE 1 Describe the set of points (x, y) that satisfy 

(a) x1 + y1 - 2x + 4y - 4 = 0, (b) x1 + y1 - 2x + 4y + 5 = 0, 
(c) x2 + y2 - 2x + 4y + 6 = 0. 

So/11tio11 Complete the squares in x and y: 

x2 - 2x + y1 + 4y = (x - 1 )2 + (y + 2)1 - 5. 

Hence the three cases become 

(a) (x - 1 )1 + (y + 2)1 = 9 = 31 :  
(b) (x - l )2 + (y + 2)1 = 0: 
(c) (x - 1 )1 + (y + 2)1 = - 1 : 

circle; center ( 1, -2� radius 3. 

single point: (1 ,  - 2). 
empty locus. • 

Intersect on of line and Circle Given a circle and a line, there are three 
possibilities: ( I )  they do not intersect, (2) they have exactly ooe common point
the line is tangent to the circle, (3) they intersect in two distinct points. 

From the equations of the circle and line, we can find explicitly the intersections 
(if any). The algebra is simplest if the circle has its center at the origin. Otherwise, 
we make a preliminary translation to move the origin to the center. 

Suppose the equations are 

J xl + .1'2 = ri 
\ax + l>y = c, a2 + b2 > 0. 

The points of intersection are the common solutions (x, y) of the two equations. 
Either a :;: 0 or b :;: O; assume a :;: 0 and multiply the first equation by a1: 

a1x2 + a2y2 = a2r2. 
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Substitute c - by for ax, eliminating x: 
(c - by)l + alyl = alrl, (al + b1)y1 - 2bcy + (cl - a1r2) = 0. 

This is a quadratic equation for y; it has 0, I, or 2 solutions, depending on the 
discriminant A. 

If A < 0, then there are no real solutions, hence no points of intersection. If 
l1 � 0, solve for y by the quadratic formula. then find x from the relation 
ax =  c - by. Note that if A =  0, there is one point of intersection (tangency� and if 
A > 0, there are two points of intersection. (In case a = 0, then b #: 0 and a similar 
argument applies.) 

• EXAMPLE 2 Find the intersections of x1 + y1 = 4 and x + 2y = I .  

So/11tion Replace x1 by (l  - 2y)1 : 
( I  - 2 y )2 + y2 = 4, I - 4 y + 5 y2 = 4, 5 y2 - 4 y - 3 = 0. 

The discriminant of the quadratic equation is 

A = (-4)1 - 4(5)(- 3) = 16 + 60 = 76 > 0. 
The quadratic has two solutions: 

y = 4 ± fi = �± 2fo 
= � + ! fa 

JO JO 5 - 5 . 

The corresponding values of x are 

x = l - 2y = l - j(2 ± fa) = ! + !fa. 
See Fig. 4. Hence the two intersection points are 

(! - !fa . 1 + !fa) and <! + !fa . 1  - !fa). 

y 
(x - I )2 + (y 4)2 = 25 

x2 + >'2 = 25 

x 

\• 

� p· (-2, 0) l q • (S, 7) 

Fi&- 5 

• 

x - ,. = :! ( 
x ) = I  I 
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• EXAMPLE 3 Find the intersection of (x - 1)2 + (y - 4)1 = 25 
and x - y = -2. 
Sol•tio11 Translate the origin to (1, 4). Then x = x - l, Ji =  y - 4. The new equa
tion of the circle is x1 + Ji1 = 25, and the new equation of the line is 

(x + 1) -(.Y + 4) = -·2; that is, 

Now solve the system of equations 

Eliminate x: 
{x1 + y2 = 25 
x - y = l. 

(y + l )1 + y2 = 25, 2y2 + 2y - 24 = 0, 
(y + 4)(.Y - 3) = 0, y = - 4, 

x- .Y = l :  

j/1 + y - 12 = 0, 
jl= 3. 

The corresponding values of x = y + 1 are x = - 3 and x = 4, so the two points of 
intersection are (x, Ji) = ( - 3, -4� (4, 3). The (x, y) coordinates of these points are 

(x, y) = (x + l, Ji + 4) = (-2, 0), (5, 7). 
See Fig. 5. • 

Remark Example 3 can be solved without shifting axes. For instance x can be eliminated 
Crom the original pair of equations and the resulting quadratic solved for y. The computa
tions involved are a bit longer. 

I ntersection of Two C ircles Given two non-concentric circles, find their inter
section. This problem can be reduced to the previous problem of a circle and a line. 
Let the equations of the circles be 

( 1 )  

(2) x2 + y2 - 2a1x - 2b1 y = c1 • 
The centers are (a1, bi) and (a1 , b1) respectively, as can be seen by completing the 
squares. Subtract the two equations: 

(3) 2(a1 - a1)x + 2(b1 - b1)Y = c1 - c1 . 
Because the circles are not concentric, (a1• bi) #= (a1 • b2); hence a1 - a1 and 
b1 - b1 are not both 0, so (3) is the equation of a line L. 

This line L intersects either circle in precisely the same points where the circles 
intersect each other. Why? Because the intersections of the circles are the simultaneous 
solutions of the equations ( 1 )  and (2). The intersections of L and the first circle are 
the simultaneous solutions of equations ( 1 )  and (3). In either case the answers are 
the same. For if (x, y) satisfies both ( 1 )  and (2), then (x, y) also satisfies (3� the 
difference of (1)  and (2). Likewise if (x, y) satisfies ( 1 )  and (3� then (x, y) also 
satisfies (2), the difference of ( l )  and (3). Similarly, the intersections of L and the 
second circle are the same points. 

Thus finding the intersection of two circles is equivalent to finding the intersection 
of a circle and a line. But we know how to do that ! 
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• EXAMPLE c Find the intersections of the circles 
x2 + y2 = 25, 

Sollltio11 Subtract the equations: 
x2 + y2 + 2x + 2y = 31.  

2x + 2y = 31 - 25 = 6, x + y = 3. 

This is the equation of a line. To obtain its intersection with the first circle, solve 
the system {x2 + y2 = 25 

x + y =  3. 

Eliminate y: x2 + (3 - x)2 = 25, 2x2 - 6x - 16 = 0, 

x2 - 3x - 8 = 0, x = !(3 ± fo). 
The corresponding values of y = 3 - x are y = !(3 + J4l ). Therefore the two 
intersection points are 

(i + !fo. i - !fo) and (i - !fo. i + !fo ). • 

Tangents In Chapter l, we found the tangent to a circle at one of its points 
(Example l, p. 49.) The basic fact is that a line tangent to a circle is perpendicular 
to the radius at the point of contact. Thus, if (u, v) is a point on the circle 
x2 + y2 = r2, the tangent at (u, v) is perpendicular to the radius [segment from (0, 0) 
to (u, v)). Since the radius has slope v/u, the tangent has slope -u/v. Therefore 
the equation of the tangent is 

u 
y - v = - - (x - u� 

v 
ux + vy = u2 + v2 = r2• 

The problem of finding the two tangent lines to a circle from an external point 
is harder, but the basic idea is the same. 
• EXAMPLE I Find the two tangents to the circle x2 + y2 = 4 from (3, 0). 

)' 

Fig. 6 
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Sohltiolt Suppose a tangent meets the circle at (x, y). Then the segments (Fig. 6) 
(0, O)(x, y) 

are perpendicular. Therefore 
y y - ·-- = - I, x x - 3  

and (3, O)(x, y) 

that is, x2 + y2 = 3x. 

Therefore the points of contact satisfy two equations: 
x2 + y2 = 4, x2 + y2 = 3x. 

Subtract: 3x = 4, x = f. Hence 
yl = 4 - m2 = Y - .y = "· y = ±iJS. 

Each tangent passes through (3, 0) and one of the two points (f, ±!JS). By the 
two-point form, the equations of the two tangents are 

Y - O = ±iv"S = ±iJS = +iJS that is, y = ±iv"S (x - 3). x - 3 t - 3  -i . 
Aher1111me 111latiolt The tangent lines are of the form ux + vy = 4, where (u, v) is 

the point of contact. Find the points (u, v) for which the tangent line passes through 
(3, 0). The condition is simply 3u + 0 · v = 4, that is, u = f. But 

u2 + v2 = 4, v2 = 4 - (f )2 = '\2, v = ±iJS. 
Therefore the tangent lines are 

!x ± iJ5y= 4, that is, y = ±iJS(x - 3� • 

Remark The algebra in the solution of Example 5 turned out to be fairly simple because (3, 0) 
is on the x-axis. For an external point off the axes, the algebra will be more complicated. 

EXERCISES 

An .f, y-coordinate system is introduced with its origin at ( - 7, 3). Find the .f, y-coordinates 
of the point (x, y) 
1 (1, 6) 2 (5, 4) 3 (0, 0) 4 (-8, l )  s (-5, -6) 6 (0, 2). 

With the .f, JI-Coordinate system as above. find the x, y-coordinates of the point: 
7 (.f, Ji) = (l , 3) 8 (.f, Ji) = (4, - 2) 9 (.f, ,P) = ( - 6, -7) 

10 (.f, Ji) =  (0, 3) 1 1  (.f, .P) = ( - 7, 3) 12 (.f, .P) = (1, 6). 
Describe a translation of axes that converts the first equation into the second 
13 3x - 2y = 1, 3.f - 2y = 0 14 x + 2y = 5, .f + 2y = 0 

IS y = x1 + 2x + 2, y = .f1 + 1 

17 y = sin(x - p) - I, y = sin .f 

x - 1  16 y = 3 + I + (x - I )2 , .P 

18 y = cos x + cos(x + �) + cos(x + iJt� y = cos(.f - �) + cos .f + cos(.f + j1r). 
Find the point 
19 f of the way from (1, 1) to (4, - 5). 
20 t of the way from (4, 0) to (0, 4� 
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21 Interpret (x, y) = ((l - r)x1 + rx2 , ( l - r)y1 + ry2) when r > l. 
n (cont.) Do the same when r < 0. 

Describe the set or points that satisry 
23 x2 + y2 - 4x - 4y = 0 
25 x2 + y2 + 2x + 6y = 26 
27 x2 + y2 - x + 2y = 0 
29 2x2 + 2y2 - 3x -,)y + l = 0 
Find the intersection or the circle and the line 

l4 x2 + y2 - 6x = 0 
26 x2 + y2 - x + y = ¥ 
28 x2 + y2 + 6x - Sy = 2S 
30 3x2 + 3y2 - x - y = 0. 

31 x1 + y2 = 9, y = x + I 32 x2 + y2 = JO, x + y = l 
33 x2 + y2 • S, x + 2y = S 34 x1 + y1 = 6, y = 2x - 7 
35 x2 + y1 - 4x - 2y + 4 = 0, 2x - Sy = 6 36 x2 + y2 + 4x + Sy ""' 0, x - 4y = J 
37 circle with center (J, J )  and radius S, line through (0, 2) and (4, 0) 
31 circle with center at (3, 4) and passing through (0, O� line through (J, l )  parallel to 

y =  3x. 

Find the point or points or intersection (ir any) or the circles 

39 x2 + y1 = 9, x2 + y2 + 8x + 12 = 0 
.tO x1 + y2 - 2x - 2y = 0, (x - 2)2 + (y - 3)2 = 4 
41 x2 + y1 - IOx + 6y + 33 = 0, x2 + y2 + 2x + 4y - 4 = 0 
42 (x - 1 )2 + (y - 2)2 "" i. (x - 3)2 + (y - 6)2 = �-
Find the tangent to x2 + .Y2 = I at 

a ( - 1. o) 44 (o. - l) 45 HJ2. -!J2) 
46 ( -!J2, -!J2) 47 HJ3. !) .aa ( -!. !J3 ). 
49 Find the tangents to (x - 1 )2 + (y - 2)2 = I that pass through (0, 0). 
SO Find the tangents to x2 + y2 = l that pass through (2, 2). 
51 Find the tangents to x1 + y2 = 13 that pass through ( - S, I�  
52 Find the tangents to (x - l)2 + y2 - I that pass through (0, -2� 53 Show that the circles x2 + y2 - 2x - 4y - 6i = 0 and x2 + y2 - 6x - l2y + 43i = 0 

arc tangent. (Hint Compute the distance between their centers.) 
54• Find all common tangents to the circles x1 - 2x + y1 • 0 and x2 + 4x + y1 = 0. 
55 Show that the circles x2 + y1 = l and 2Sx2 + 2Sy2 - 8x - 6y = IS are tangent. 
56 (cont.) Show that the tangent to (x - a)1 + (y - b)2 = r1 at a point (u, v) on the circle 

is (u - aXx - a) + (v - b)(y - b} = ,2, 
57 Find the tangents to x2 + y2 = 2S with slope i. 
51 Find the circle with center (2. - I )  tangent to 3x + y = 0. 
59 Find the circles through (1, 8) tangent to both axes. 
60 Find the circle tangent to the x-axis at (a, 0) and passing through (b, c� c i' 0. 
61 Prove that the circles x2 + y2 - 8x + 2y + 8 = 0 and x2 + y2 - 2x + IOy + 22 = 0 

are tangent and find their point or tangency. 
62 Find the circle through (2, 2� (4, I �  and (3, - I). 

2. LOCUS 

A geometrical figure is called a locus (plural, loci) i f  it i s  described as the set of 
all points that satisfy a certain condition. For example, the locus of all points at 
a distance 3 from a fixed point p is a circle of radius 3 centered at .P· The locus 
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of all points equidistant from fixed points p and q is the perpendicular bisector of 
the segment pq. The locus of all points (x, y) for which y = /(x) is the graph of 
the function /(4 
• EXAMPLE 1 Find the locus of all points that are twice as far from the point 
(6, 0) as from the origin. 

Sohltiolt The condition is satisfied by a point (x, y) if and only if 

J(x - 6)2 + y2 = 2JXr+Y2. 
Square both sides: 

(x - 6)2 + y2 = 4x2 + 4y2, 3x2 + 3y2 + 12.x = 36, x2 + y2 + 4x = 12. 
This is the equation of a circle (Fig. 1). For more precise information, complete 
the square in x: 

(x2 + 4x + 4) + y2 = 12 + 4, (x + 2)2 + y2 = 16. 
The locus is the circle with center ( -2, 0). radius 4. 

16, 0) \' 

Fis. l Locus of all points twice as far 
from (6, 0) as from 0 

Fi&- 2 Locus of all midpoints x of segments 
pz, where z traces the circle C • 

• EXAMPLE 2 Let p be a point and C a circle. Find the locus of the midpoint of 
the segment .. as z traces C. 

Sohltil>• Choose coordinates so that C is x2 + y2 = r2 andp = (a, 0). Let z = (u., v). 
Since z traces the circle, u2 + v2 = r2• The midpoint of .. is (x, y) = (!(a + u). fv� 
Thus 

x = !(a + u). y = !v. where u2 + v2 = r2• 
The probl�m asks for the locus of (x, y). that is, a relation between x and y. Therefore, 
express u and v in terms of x and y and substitute into u2 + v2 = r2: 

u = 2x - a, v = 2y, (2.x - a)2 + (2y)2 = r2, 
hence (x - !a)2 + y2 = (!r)2• 
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The locus is the circle with center (!a, 0) and radius !r. In geometric language, it 
is the circle with center m, the midpoint of the segment from p to the center c of 
C, and radius half the radius of C. See Fig. 2. • 

Remark Example 2 illustrates a basic technique in locus problems. The point x that generates 
the locus is usually related to a point z that satisfies a known equation (locus). Express z 
in terms of x, then substitute into the equation for z. This yields an equation for x. 

• EXAMPLE 3 Let z trace the parabola y = x2• Find the locus of the point x 
that is ! of the way from ( -6, 0) to z. 

SobttiD11 This is precisely the kind of situation discussed in the preceding remark. 
Here z traces the curve y = x2, so we can write z = (z, w� where w = z2• We write 
x = (x, y) and seek the relation between x and y. [Note carefully the change in 
notation. You cannot write both x = (x, y) and z = (x, y) because x and z are 
completely different points. So if you want the answer in x and y, you must give the 
coordinates of z some other names.) By the rule for division of a segment 

hence 

x = j(-6) + !z = !z - 4 and y = j · 0 + !w = !w, 
z = 3x + 12 and W =  3y. 

Substitute into w = z2: 
3y = (3x + 12)2 = 9(x + 4)2, 

The result is another parabola (Fig. 3 � 
y 

) = l'2 

that is, y = 3(x + 4)2• 

Fis. 3 Locus of all points x one-third of 
the way from (-6, 0) to z 

• 

• EXAMPLE 4 Let p lie inside a circle C. Find the locus of the midpoints of all 
chords through p. 

Sohttio11 Take axes so that p is at the origin and C is the circle (x - c)2 + y2 = r2 
with 0 < c < r. The typical chord through p is y = mx. The line through the center 
(c, 0) of C perpendicular to this chord is y = ( - 1/m)(x - c). This line meets the 
chord precisely in the chord's midpoint x .. Thus x = (x, y) is the solution of the 
system 

We easily find 

y = mx, -my = x - c. 
(x, y) = ( 1:m2• 1 :mm2) · 
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To find the locus of (x, y) we eliminate the parameter m. The quickest way is to 
observe that 

c1 + (cm)1 c1(1 + m1) c 
x2 + y2 = ( 1  + ml)l = (1 + m1)2 = c 

1 + m2 = ex, 

x
2 + y2 - ex = 0. 

Now we complete the square: (x - !c)2 + y2 = {!c)2. 

Therefore the locus is the circle with diameter pc, where c is the center of the given 
circle C. See Fig. 4. 

Fla. 4 Locus or midpoints x or all 

EXERCISES 

x chords or c through p 
(p taken at O) 

• 

I Let L be a line and p a point not on L. Find the locus of the midpoint of .., 
where z varies over L. 

2 A 10-ft ladder leans against a wall, and its foot slides along the ftoor as its top slides 
down the wall Find the locus of its midpoint. 

3 Find the locus of the midpoints of all chords of length 6 of a circle of radius 5. 
4 At each point of a circle of radius 1 is drawn a segment of length 3, tangent at one 

end to the circle. Find the locus of the other ends of the segments. 
S Find the locus of all points whose distance from (0,0) is five times the distance from (3, 4� 
6 Do Example 2 by choosing the origin at p. 
7 Let z trace the parabola y • x2 and let • be any point of the plane. Find the locus of 

the midpoint of a 
8 Find the locus in Example 4 ifp lies on C, outside C. 
9 Find the foot of the perpendicular dropped from the point (u, 11) to the line ax + by = c. 

to• (cont.) Given lines L1, L2, and L. For each z on L, let Pi be t!te foot of the 
perpendicular from z to L1 • Describe the locus of the midpoint of p1p2 • 

1 1  Let z = (u, 11 )  trace a circle C passing through 0. Find the locus of 

x = (x, y) = (u2 : 112 • u2 : 112) · 
12 (cont.) Solve the same problem where z traces a line L not passing through O. 
13 Let C 1 and C 2 be two circles that are external to each other, and let a > 0. Describe 

the locus of all points x such that the length of the tangents from x to C 1 is a times 
the length of the tangents from x to C 2 • 
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14* Let C 1 and C 1 be circles through 0. Each line L through 0 meets C 1 in a second 
point x1 and C 1 in another point x1 . Find the locus of the midpoint of x1 and x1 
as L varies. 

15 Find the locus of the centers of all circles that are simultaneously tangent to the 
x-axis and to the circle x2 + y1 = 2y. 

16 Let X and Y be fixed perpendicular lines and • a point on neither. A variable line L 
through • meets X in u, and the line M through • perpendicular to L meets Y in v. 
Find the locus of the midpoint of uv. 

3. PARABOLA AND ELLIPSE 

The ancient Greek geometers discovered that on cutting a right circular cone by 
various planes, they obtained three types or remarkable curves called conic sections, 
or conics (Fig. 1 ). 

(a) Parabola: plane 
parallel to generator 

I 

� I I 
, __ ! l 

plane 
(on edge) 

(b) Ellipse: plane cuts one nappe. 
not parallel to generator 

Fis. l Conic sections (conics) 

plane Con edge) 

I 

(c) Hyperbola: plane 
cuts both nappes 

A special case or the ellipse is a circle, obtained by cutting the cone by a plane 
parallel to its base. 

A section or the cone by a plane through its apex is called a deaenerate conic 
(Fig. 2). 

It is possible to define the conic sections as certain geometric loci. We shall do 
so because this is less complicated than starting from plane sections or a cone. We 
shall discuss the parabola and the ellipse in this section and the hyperbola in 
Section 4. 

The P rabola A parabola is the locus of all points x equidistant from a fixed 
line D and a fixed point p not on D. See Fig. 3a. We call D the directrix and p 
the focus of the parabola. For convenience let us take (0, p) with p > 0 as the rocus 
and y = -p as the directrix. Then the equation or the parabola follows easily, as 
was shown on p. 45, Chapter l .  The curve is shown in Fig. 3b. 
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(a) Sinale point (b) line (counted twice!): 
the plane ii taftlent (c) Distinct intenectina lines 
Fla- 2 Degenerate conics 

The equation of the parabola with focus (0, p) and directrix y = -p is  
1 

y = 4p xl. 

For our choice of axes, the parabola is the graph of a quadratic polynomial. 
Conversely, the graph of any quadratic polynomial y = ax2 + bx + c (with a #- 0) 
is a parabola. This is just a matter of completing the square: 

y = a(x - h)2 + k, y - k - a(x - h)2, 
where h and k are easily determined. Relative to new axes defined by X = x - h, 
y = y - k, the curve is y == aX2, a parabola with 4p = 1/a. If a >  0, the curve opens 
upward : if a < 0, it opens downward 

y 

�/ 
D = d ire c t rix  D. y = fJ 

(a) Definition as a locus (b) Equation: y • ix2 (p > 0) 

Fla- 3 The parabola 

x 

The line through the focus perpendicular to the directrix is called the axil of the 
parabola. The point of intersection of the axis with the parabola is the nrtex of the 
parabola (Fig. 4 ). 
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By interchanging the roles of x and y. we see that a parabola whose axis is 
parallel to the x-axis is the locus of an equation x = ay2 + by + c. Some examples 
are shown in Fig. 5. 

vertex 
directrix 

Fl1o 4 Geometry of the parabola Fig. 5 Parabolas with horizontal axes 

The equation y - k = a(x - h)2 
represents a parabola with vertex at (h, k) and axis vertical. The parabola opens 
upward if a > 0, downward if a < 0. 
The equation x - h = a(y - k )2 

represents a parabola with vertex at (h, k) and axis horizontal. The parabola opens 
to the right if a > 0, to the left if a < 0. 

• EXAMPLE 1 Sketch the curve x = 2y2 + 4y + 5. Find its vertex, axis, focus, 
and directrix. 

Solution Complete the square: 

x = 2(y2 + 2 y + I )  - 2 + 5, x - 3 = 2(y + I )2. 
The curve is a parabola, vertex (3. - I �  axis y = - I, horizontal opening to the right. 
To find the focus and the directrix, write the equation in the form x - 3 = 
( 1/4p)(y + 1)2. where p = !. The focus is (3 + i. - I ) =  (¥. - I ) ;  the directrix is 
x = 3 - i = 1/. See Fig. 6. • 

• EXAMPLE 2 Find the equation of a vertical parabola, vertex ( I , 2), passing 
through (5. 0). 
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Solutio11 The equation is of the form 
y - 2 = a(x - 1 )2. 

To find a, set x = 5, y = 0: 
-2 = a(5 - 1)2. a =  -t. 

Hence the desired parabola is y - 2 = -i(x - I )2• 
)' 

x 

- I 

- 2  

y 

rtg. 7 From the right triangle, 
D2 = £1 - I =  (x2 + (y - 1)1) - I 

Parabolas arise in many locus problems. Here is an example. 

• 

x 

• EXAMPLE 3 Find the locus of all points x whose distance to the x-axis equals 
the length of the tangent(s) from x to the circle x2 + (y - 1)2 = 1. 
So/11tio11 Draw a careful figure (Fig. 7). The condition on the distance is 

y2 = 02 = [x2 + (y _ I )2] _ I .  
Simplify: x2 - 2y = 0, 
The locus is a parabola. • 

The E l l ipse An ellipse is the locus of all points x such that the sum of the 
distances of x from two fixed points p and q is a constant [greater than d(p, q� the 
distance from p to q]. The points p and q are the foci (plural of focus) of the 
ellipse. 

We take the distance sum to be 2a and the distance between the foci to be 2c. 
Thus c < a. See Fig. Sa. To find an equation for the ellipse, we choose coordinates 
so that the x-axis goes through the foci and the origin is their midpoint (Fig. Sb� 
A point (x. y) is on the ellipse if and only if its distance sum is 2a. that is, if and 
only if 

d1 + d2 = J(x - c)2 + y2 + J(x + c)2 + y2 = 2a. 
This unpleasant expression is an equation for the ellipse. To derive an equivalent 
equation without radicals requires squaring the equation twice and doing some 
algebra. It also requires a tedious check that no undesired points creep in. [Squaring 
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)( 

d(p, q) = 1c 

(a) Locus of all x for which 
d(x, p) + d(x, q) = 2a 

(b) Standard position: 
center (0, 0), foci (± c, 0) 

Fig. 8 The ellipse 

is tricky. For instance squaring x = 2 leads to x1 = 4 which has a solution that is 
not a solution of x = 2.] We shall postpone the derivation until Section 6, where a 
much easier method saves a lot of blood, sweat, and tears. For the time being. we 
shall just state the result. 

The equation of the ellipse witn foci ( - c, 0) and (c. 0) and length sum 2a is 
xz yz 
� + j;i = l, 

where b2 = a1 - c2• 

Let us sketch this ellipse. Because both terms on the left-hand side of the equation 
are non-negative, it follows that 

xi 
- < 1 x2 < a1• a 2 - t - ' 

Yl < l y2 <_ bi. 
bl - • 

Therefore the curve lies in the box - a :s; x :s; a, -b :s; y :s; b. 
Next, we note symmetry : if (x, y) satisfies the equation then so do (-x, y), (x, - y) 

and (-x, -y). Therefore the curve is symmetric in both axes and in the origin. We 
need plot it only in the first quadrant, then extend the curve to the other 
quadrants by symmetry. 

We solve for y: 

b r,:i -:· )' = - v a2 - xz . 
a 

(The positive square root applies in the first quadrant.) If x starts at 0 and increases 
to a, then y starts at b and decreases to 0. The curve has a horizontal tangent 
at (0, b), a vertical tangent at (a, O� and is strictly concave. We leave the proofs of 
these assertions as exercises. We now have enough information for a reasonable 
sketch (Fig. 9). 
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b / vertex a • semi-major axis 

b • semi-minor axis 
a2 • b2 + c2 

vertex 
/ 
a x 

Fie. 9 Geometry of 
the ellipse 

The points ( ±a. 0) and (0, ±b) are called the vertices of the ellipse. The numbers 
a and b are known (historically) by the names semi-major axis and semi-minor axis. 
The point halfway between the foci is called the center of the ellipse. 

As Fig. 9 shows, the distance from a focus to one of the vertices (0, ±b) is a; 
that is because a2 = b1 + c1. 

If a = b, the equation of the ellipse becomes 
xl y2 
- + - - 1 that is, x2 + y2 = a2, a2 a2 - , 

the equation of a circle of radius a. Thus a circle can be considered as a limiting 
(extreme) case of an ellipse. where c = 0. (The foci come together at one point, the 
center.) 

If a <  b, then 
xl Y2 
- + - = 1 al b2 

is an ellipse with major axis along the y-axis instead of the x-axis and foci at (0, ± c ). 
To see why, interchange the roles of x and y in the preceding discussion. 

By a translation of axes, we get 
(x - h)2 (y - k)2 

al + bl = l , 

the equation of an ellipse centered at (h, k� 
Remark To construct an ellipse, tie a string of length 2a to two fixed pins 2c units apart 
(a > c). Place your pencil against the string and move it so the string is taut The locus 
generated is an ellipse, Why? If you move the pins closer and closer together (c -O� the ellipse becomes more and more like a circle. 
• EXAMPLE 4 Show that 

4x2 + 9y2 - 8x + S4y + 49 = 0 
defines an ellipse. Locate its center, vertices, and foci. 
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Sol11tion Complete the squares in x and .r: 

4(x2 - 2'" + I )  + 9(y2 + 6y + 9) + 49 - 4 - 81 = 0, 

4(x - I )2 + 9(.r + 3 )2 = 36, (x � I )2 + (.r : 3 )l = I . 
This is an ellipse with horizontal major axis, center at ( I, - 3 � semi-major axis = 

a = 3, semi-minor axis = h = 2. Hence its vertices are 

that is, 

The foci are 

( 1  ± a, -3)  and 

(4, - 3), ( - 2, - 3) and 
( 1 .  - 3 ± b). 

( 1 .  - 1 ), ( I , -5). 

( I ± c, - 3), where c2 = a2 - bl = 5, c = ± J 5 .  

Therefore the foci are the points ( 1 ± J 5 .  - 3 ). • 

• EXAMPLE 5 Find the equation of the ellipse having foci at ( ± 3, 1 )  and vertices 
at ( ±4. 1 ). 

Sol11tion The center is (0, I ), halfway between the foci. Therefore. the equation is 
of the form (x - O)l (y - I )2 

? + b2 = I . 

Now a = 4, the distance from the center to either vertex on the major axis of the 
ellipse (through the foci). To find b, use bl = al - c2, where c is the distance from 
the center to either focus. Clearly, c = 3, so b2 = 42 - 32 = 7. Hence the equation of 
the ellipse is xl (y - 1 )2 

16 + -7- = I. 
Parameterization of the El l •  se Consider again the ellipse 

xi r2 
a2 + iJ2 = I . 

Since (�r + (�r = 1. 

there is an angle 0 such that x/a = cos (J and y/b = sin 6, so 

x = a cos 0, y = b sin 0. 

• 

As (} runs from 0 to 21t, the point (x. y) = (a cos 6, b sin 9) traverses the ellipse once 
in the counterclockwise sense, starting at (a, 0). Note from Fig. 10 that the parameter 
(} is not the central angle of (x, y); rather (} is the central angle of two circles, one 
inscribed in the ellipse and the other circumscribed about the ellipse. 

• EXAMPLE 8 A 12-ft ladder leans against a wall. Its bottom is pulled along 
the ftoor away from the wall and its top slides down the wall. Find the locus of 
the point 4 ft from the top of the ladder. 
Sol11tion Choose axes as indicated, and let (} be the angle the ladder makes with 
the ftoor (Fig. 1 1  ). Obviously. x = 4 cos (} and y = 8 sin 0, that is, the point moves 
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)' 

r 

-a a x 

I " = a cos o i Y = b sin 0 ....................... ____ 
x 

Fig. 10 Parameterization or the ellipse 
xi \'2 al + i,2 = I  

Fi&. I I  

on an ellipse. As the ladder slides, 9 runs from !n to 0, so the locus is a quarter 
of the ellipse, traversed clockwise. The standard equation of this ellipse is 

Note that its major axis is vertical. 

EXERCISES 

x2 y2 
42 + S2 = I. 

Give the focus, directrix. axis, and vertex 
1 x - 3 = 3 y2 2 x + 2 = -.r2 

• 

4 2y = - 3(x - 2)2 5 x2 + 4x - 6y = 0 
3 x = 2(y + 1)2 
6 2y2 - 4y + x ·+ 2 = 0. 

Find the equation or the parabola 
7 vertex (0, O� through the point (I , 3� axis vertical 
8 vertex (0, O� through the point (6, - I ), axis vertical 
9 vertex (I , 2� through the point (- 3, 4� axis horizontal 

10 vertex ( - 5, 0). through the point (0, 8), axis horizontal 
I I  vertex (2, -3) focus (2, I )  12 vertex (2. -n focus (10, - 3). 

Find the locus or the centers or all circles that are simultaneously tangent to the y-axis and 
the circle 
13 x2 + .r2 = 2x 
15 (x - I )2 + y2 = 4 

14 x2 + y2 = I  
16 (X - 3)2 + .\'l = J .  

17 Let P be a parabola and L a line. Find the locus or the midpoints or all chords or P 
parallel to L. 

18 Find the locus or all points x whose distance to the x-axis equals the length or the 
tangents from x to the circle x2 + (y - b)2 = r2, where b � 0, r > 0. 
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19• Let P be the parabola x2 = 4py. Prove that all chords x1x2 or P such that LX10.C2 
is a right angle pass through a common point. 

20• (cont.) Find the locus or the midpoints or all x1x2 • 

Let P be the parabola x2 = 4py, and let x1x2 be an arbitrary chord or P through p 

21 • Find the locus or the midpoint or x1x2 • 
n• (cont.) Prove that the circle with diameter x1x2 is tangent to the directrix or P. 
13 Show that the circle with diameter x1p is tangent to the x-axis. 
24 Suppose a circle C meets 4py = x� in four points (x1, y1), i = I ,  · · · ,  4. Prove 

that X1 + Xz + X3 + x, = 0. 

Give the center, foci, major and minor semi-axes (a and b� and vertices 
25 x2/25 + y2/9 = I 26 x2 + 4y2 = 4 
27 2(x + 1 )2 + (y - 2)2 = 2 
29 2x2 + y2 - 12x - 4y =  -21  

28 4x2 + y2 - 2y = 0 
30 x2 + 2y2 + 8.1· = 0. 

Write the equation or the ellipse 

31 center at (1, 4� vertices at ( 10, 4) and (I, 2) 
32 center at (-2, -3� vertices at (7, -3) and (-2, -7)  
33 foci at (2, 0) and (8, O� vertex at (0, 0) 
34 roci at (0, 3) and (0, - 3), semi-major axis = 10 
35 roci at (- I, 0), (3, O� c/a = t 
36 vertices at (0, 2� (0, 6� c/a = i. major axis vertical. 

37 Show that x2/a2 + y2/b2 = I has horizontal tangents at (0, ±b) and vertical tangents 
at (±a, 0). 

38 Show that the upper hair or the ellipse x2/a2 + y2/b2 = I is strictly concave. 
39 Prove that the points on an ellipse rarthest from its center are the two vertices on the 

major axis. 
40 Prove that the points on an ellipse nearest to its center are the two vertices on the 

minor axis. 
41 A rod moves with one end on the x-axis and the other on the y-axis. Describe 

the locus or any other point or the rod. 
42• A gadget (Fig. 12) consists or two disks glued together and a point P on their line or 

centers. The smaller disk can move only in the vertical tracks, and the larger disk can 
move only in the horizontal tracks. Describe the locus or P. 

0 Fia. 12 



4. Hyperbola 41 3 

43 Find the locus of the centers of all circles that are simultaneously tangent to the 
circles x2 + y2 = lax and x2 + y2 = 2bx, where 0 < a < b. 

44 Find the locus of the midpoints of all chords of slope m of the ellipse x2/a2 + y2/b2 = I . 
45 Let D be a fixed diameter of a circle of radius r. At each point p of the circle drop a 

perpendicular to D. Find the locus of the midpoints of these perpendiculars. 
46 (cont.) Extend each perpendicular beyond the circle so that its length increases by a 

factor k > I. Find the locus of the end points of these segments. 

4. HYPER BOLA 

A hyperbola is the locus of all points x such that the difference of the distance of 
x from two fixed points p and q has constant absolute value, 2a. The points p and q 
are the foci of the hyperbola. If Jf.p, q) = 2c, then 2a < 2c because p, q, and x form 
a triangle (Fig. la). 

x 

p 

d(p, q) = 2c q 
c > a  

(a) Locus of all x for which 
ld(x, q) - d(x, p) I= 2a 

.I' 

xl yl 
(b) Standard position: 2 --1 • 1 ,  

a b 
where b1 = cl - al 

Fig. l The hyperbola 

To obtain an equation for the hyperbola, we set up coordinate axes so the foci 
are ( ± c, 0). See Fig. lb. Then a point (x, y) is on the hyperbola if and only if 

kf(x - c)2 + y2 - J"(x + c)2 + y2 j = 2a. 
As for the ellipse, we postpone the messy simplification of this equation until 
Section 6, and merely state the result : 

The equation of the hyperbola with foci ( -c, 0) and (c, 0) and absolute length 
difference 2a is 

where b1 = c2 - a2• 

x2 
a2 

l'2 i,2 = I, 
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The size of b depends on the relative sizes of c and a; both b � a  and b > a  are 
possible for the hyperbola. For the ellipse with foci on the x-axis, however, only 
b :s; a is possible since bl = al - cl. 
Let us sketch the hyperbola 

xl yl 
al - bl = 1. 

The curve is symmetric in both axes and in the origin; we need plot it only in the 
first quadrant, then extend the curve to the other quadrants by symmetry. 
We solve for y: 

b y = -Jxl - al. a 
(The positive square root applies for the first quadrant.) Since the quantity under 
the radical must be non-negative, the locus is defined only for x � a. Now when 
x starts at a and increases, y starts at 0 and increases. When x is very large, we 
suspect that y is slightly less than bx/a. To confirm this suspicion, we write 

� x - y = � (x -J xl - al ) = � (x -J xl - a2 ) x + J xl - al a a a x + J xl - al (b
} 
xl - (xl - al) ab ab = a x + Jxl - al = x + Jxl - al < -x · 

It follows that (b/a)x - y is positive, but becomes smaller and smaller as x becomes 
larger and larger. This means the curve approaches the line y = bx/a (from below) 
as x increases; the line is an asymptote of the hyperbola. 
Further information : the hyperbola has a vertical tangent at (a, 0) and is strictly 

concave in the first quadrant. (See Exs. 19-20.) We can now make a reasonable 
sketch of the curve (Fig. 2). 
The lines y = ±bx/a are the asymptotes of the hyperbola. A neat way to remember 

this fact is to write 
xl 

_ 
yl = 

(� 
+ 

�
} 
(� 

_ 
�
} a2 bl a b a b · 

The expression on the left is zero if and only if one of the factors on the right is 
zero, that is, if and only if y = ±bx/a. 

The asymptotes of the hyperbola 

b y = - x a and 

xl yl -- - = 1 are the lines a2 bl 
b y =  - - x, a 

or equivalently, the locus of the equation 
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y 

-conjugate axis 

b 

principal axis 

-b 

---- asymptotes ----
1 

Fis- 2 Geometry of the hyperbola x1 yl 
- - - = I al bl 

I 
x 

Here is some of the official terminology for hyperbolas. A hyperbola consists of 
two branches: one where d(x, p) - d(x. q) = 2a, and the other one where 
d(x, q) - d(x, p) = 2a. The point halfway between the foci is the center of the 
hyperbola. The line through the foci is the principal axis, and the line through the 
center perpendicular to the principal axis is the conjupte axis. The points where 
the hyperbola meets its principal axes are its vertices. 

A hyperbola is rectanplar if its asymptotes are perpendicular. This happens 
when the slopes of the two asymptotes are negative reciprocals of each other: 

Thus the locus of 

is a rectangular hyperbola. 

By translation, 

b2 = a2, b = a. 
x2 _ y2 = 02 

(x - h)2 
-

(y - k)2 = 1 
a2 b2 

is the equation of a hyperbola with center at (h, k) and horizontal principal axis. 
Its asymptotes are the lines 

b y - k = - (x - h ). a 
By interchanging the roles of x and y, we see that the equation 

y2 x2 
a2 - b2 = 1 

defines a hyperbola with center at the origin, vertical principal axis, and foci at (0, ± c ). 
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Remark The equations xi yi - + - = I a2 b2 and x2 y2 - - - = I  a2 b2 
differ by a little minus sign, but that makes all the difference in the world. The first equation, 
where the sign is plus. requires x2 � a2 and y2 � b2; the locus is confined. The second 
imposes no such restriction ; x2/a2 and y2/b2 can both be enormous. yet differ by I .  

EXAMPLE 1 Sketch the curve 3x1 - 12x - 8y2 = 12. Locate its center, axes, 
foci, and asymptotes. 
Sobdion Complete the square in x: 

3(x - 2)2 - 8y1 = 12 + 12 = 24, 
The curve is a hyperbola with center (2, 0) and a2 = 8, b2 = 3. Its principal axis is 
the x-axis and its foci are 

(2 ± c, O), 
Its asymptotes are 

See Fig. 3. 
_I' 

where c = Ja1 + b1 = .jTI. 

x 

Fis. 3 3x2 - 12x - 8y2 = 12 

• EXAMPLE Z Find the equation of the hyperbola 
(a) vertices (- 1, 11 (- 1, 51 foci (- 1, 0), (- 1, 6); 
(b) foci (0, 21 (10, 21 asymptotes having slopes ±3. 

• 

Sobdio11 (a) The principal axis is vertical and the center is (- 1, 3). Therefore the 
equation is of the form 

(y -/)2 - (x +2
1)2 = 1 . a b 

Now 2a is the distance between the vertices, hence 2a = 4, a = 2. Similarly, 2c is 
the distance between the foci, hence 2c = 6, c = 3. Finally, b2 = c1 - a2, so 
b1 = 9 - 4 = S. Hence the desired equation is 

(y - 3)1 _ (x + 1)2 = 1. 
4 s 
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(b) The principal axis is horizontal and the center is (5, 2). Therefore the 
equation is of the form 

(x - 5)2 - (y - 2)2 - 1 a2 b2 - . 
The distance between the foci is 10 = 2c, hence c = 5. It follows that a2 + b2 = 

c2 = 25. Furthermore, the slopes of the asymptotes are ±3 = ±b/a, so b2 = 9a2. Therefore 
25 = a2 + b2 = 10a2, a2 = i. 

Hence the equation of the hyperbola is 
2(x - 5)2 _ 2(y - 2)2 = 1 5 45 . 

b2 = ¥. 

• 

• EXAMPLE 3 Find the locus of the centers of all circles that are tangent to the 
x-axis and cut off a segment of length 2k on the y-axis. 

y 

x 

Sohltio• Draw a picture (Fig. 4). If the center of a circle is (a, b) and the circle is 
tangent to the x-axis, then its radius is lb l (absolute value in case b < 0). The 
equation of the circJe is 

(x - a)2 + (y - b)2 = b2, that is, x2 + y2 - 2ax - 2by + a2 = 0. 
Suppose the circJe intersects the y-axis in (0, y1) and (0, y2) with y1 < y2 • Then the 
segment condition is y2 - Yi = 2k. 
To find y1 and y2 , set x = 0 and solve for y: 

y2 - 2by + a2 = 0, y = b ± jb2 - a2• 
Assume b2 > a2; otherwise the circle does not intersect the y-axis, or is tangent to il 
Then 

Y2 - Y1 =�=2k, 
Hence the centers (a, b) all lie on the rectangular hyperbola 

y2 _ x2 = k2. 
Conversely, each point on this hyperbola is a point of the locus, as is easily 

checked. • 



418 9. PLANE ANALYTIC GEOMETRY 

• EXAMPLE 4 Find all points that are 10 units from the origin and two units 
closer to (3, 0) than to (- 3, 0). 
Sot.tiotl The first condition means that the point (x, y) lies on the circle 
x1 + y1 = 101. The second condition means that it lies on one branch of the 
hyperbola with foci ( ± 3, 0) and difference of the distances 2. This hyperbola is in 
standard position with principal axis horizontal, so its equation is or the form 

xl yl 
al - bi = 1. 

From the data 2a = 2, and the distance between the foci is 2c = 6. Hence a = 1 
and c = 3. Therefore b1 = c1 - a2 = 8, so l/b2 = i. 
The desired points are the intersections of the circle and the right-hand branch of 

the hyperbola (where the points are closer to (3, 0) than to (- 3, 0)). Solve 
simultaneously: 

x2 + y2 = 100, xl - tYl = 1. 
Subtract: ty1 = 99, y1 = 88, y = ±J88, 
from which x1 = 100 - y2 = 100 - 88 = 12, x = ±JU. 

On the right-hand branch of the hyperbola, x > 0, so o� the value x = J12 is 
acceptable. Therefore the desired points are (J'f2, ±y'88 ). 
EXERCISES 

Find the principal axis, center, foci, and asymptotes 

1 x1'/4 -y2/9 = 1 2 x2/9 - y2/4 -= 1 
3 -x2/9 + y2/4 = 1 4 -x2/4 + y2/9 = 1 
5 (x + 1)2 - (y - 1)2 = 1 6 -(x - 2)2 + 4(y + 1)2 - 4  
7 x2 - 5y2 + 4x - 20y = 0 8 -x2 + 2y2 - 6x - 20y + 47 = 0 
9 4x2 - y2 - 24x - 2y + 31 ... 0 10 3x2 - 3y2 - 3x - 2y = 31/12. 

Write the equation of the hyperbola 

11  foci (0, ± 5� vertex (0, -4) 12 vertiCICS ( ± 3, 0) focus (-5, 0) 
13 asymptote y = -2x, vertiCICS (±2, 0) 14 foci (I. 7� (1, -3� vertex (1, 6) 
15 asymptotes y = ± (x - 1 � curve passes through (3, 1) 
16 asymptotes y = ±2x. curve passes through {1, 1). 
17 Show that x2 - y2 + ax + by + c = 0 represents a rectangular hyperbola. 
18 Show that 3x2 - y2 + ax + by + c = 0 represents a hyperbola whose asymptotes form 

a 60° angle. 
19 Show that x2/a2 - y2/b2 � 1 has a vertical tangent at each vertex. 
20 (cont.) Show that the right branch is convex with respect to the y-axis. 
21 Let 0 < s < r and r + s < 2a. Describe the locus of the centers of all circles that arc 

simultaneously tangent externally to the circles (x + a)2 + y2 = r2 and (x - a)2 + y2 = s2. 
22 (cont.) Identify geometrically the other branch. 
23• (cont.) Find another hyperbola lurking in this configuration. 
24 A rifle at point • on level ground is shot at a target at point b. Find the locus of 

all observers who hear the shot and the impact of the shell simultaneously. 
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2! Three listening posts, A, B, and C record an explosion. Post A is 10 km west of post B, 
and post C is 8 km south of B. Posts B and C bear the explosion simultaneously; 
A hears it 6 sec later. Assuming the speed of sound in air is 1 km/sec, locate the 
explosion. 

26 A point moves in the plane starting at time r = 0. If its coordinates at time r are 
x = a cosb t and y = b sinb r, where a, b > 0, describe its path. 

5. POLAR COORDINATES 

The usual rectangular coordinate system is fine in some situations but clumsy in 
others. Sometimes another coordinate system, called the polar coordinate system, 
fits much more naturally. The idea of polar coordinates is that you identify a point 
by telling how far it is from a given point 0 and in what direction. (This is the 
principle of the radar screen.) 

In a rectangular coordinate system, two families of grid lines, x = constant and 
y = constant, fill the plane. Each point x is the intersection of two of these lines, 
x = a  and y = b, and receives the coordinates (a, b). See Fig. la. 

I I I 
I I 

y 

' I b I x = (a . b )  I I I I I I I I I I I 
a I 

I 
(1) Rectanaular sricl lines: x • conat. 

and y • const. 

x 

(b) Polar llrid lines: r • const. 
and 8 • const. 

Polar coordinates work on a similar principle. There are two families of grid 
lines: all circles centered at 0, and all rays from 0. See Fig. lb. Each point x different 
from 0 is the intersection of one circle and one ray. The circle is identified by a 
positive number r, its radius, and the ray is identified by a real number 6, its angle 
in radians from the positive x-axis. Thus x is assigned the polar coordinates {r, 6}. 
Since 6 is determined only up to a multiple of 2n, we agree that 

{r, 6 + 2nn} = {r, 6} (n any integer). 

The point 0 does not determine an angle 6. Nonetheless, it is customary to say 
that any pair {O, 6} represents 0. 
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y 

Y ------- (r, Bl (x,y) 

I 
i 
x x x 

(b) Rectanaular to polar: 

x 

(a) Polar to rectanaular: 
x • r cos 8, y • r sin 8 , • ,;;r:t;I cos 8 • .! sin 8 • l ' , . , 

Given the polar coordinates of a point, what are its rectangular coordinates? 
If its polar coordinates are {r, 6}, then the point is r units from 0 in the direction 6. 
Hence x = r cos 6, y = r sin 6. See Fig. 2a 
Conversely, given the rectangular coordinates (x, y� what are the polar 

coordinates? Figure 2b shows that r = Jx2 + y2, and that cos 8 = x/r and 
sin 6 = y/r. 

Polar to Rectangular 

l x = r cos 8. 
y = r sin 8. 

Rectangular to Polar 

r = Jx2 + y2 
x x cos 6 =  =-Jx2 + y2 r 

sin 8 =  y = :!:'.  Jx2 + y2 r 

• EXAMPLE 1 (a) Convert (2, -2J3) to polar coordinates. 
(b) Convert {3, in} to rectangular coordinates. 

Sollltioll (a) r2 = 4 + 12 = 16, r = 4. Also cos 8 = t = i and sin 8 = i(-2J3) 
= -iJ3 , so 6 = Yt· Answer {4, f1t}. 
(b) x = r cos 8 = 3 cos in = !J3, and y = r sin 8 = 3 sin in = l 

Answer (iJ3, !). • 

Negative r 1n applications it is convenient to allow points {r, 8} with r < 0. 
Consider a ray and a point {r, 8} on the ray (Fig. 3a). Suppose the point moves 
towards 0, through 0, and keeps on going! Then r decreases, becomes 0, but then 
what? So that 6 won't jump abruptly to 6 + x. we agree that 6 remains constant, 
but r becomes negative. This amounts to agreeing that 

{ -r, 6} = {r, 6 + n}. 
See Fig. 3b. For example, the point (- 1, - 1 ) has polar coordinates {-.Ji,, in} as 
well as {.Ji,, in}. 
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JC 

(a) Hold 6 fixed and move {r, Bl throu&h the ofiain. 
Fia. 3 

{r, Bl  

JC 

(b) Identify I- r, BI and {r, 8 + ir}. 

Polar Equation of a Line In polar coordinates, the equation of a line through 
0 is 8 = 80, where 80 is the angle the line makes with the positive x-axis. What 
is the equation of a line L not through the origin? Drop a perpendicular to L 
from 0. It has length p > 0 and polar angle cc, See Fig. 4. 

The figure shows that for each point {r, 8} on the line, r cos(O - cc) = p. 

The polar equation of a line not passing through 0 is 

r cos(O - cc) = p, p > 0. 
Here p is the distance from 0 to the line and the point {p, cc} is the foot of the 
perpendicular from 0 to the line. 

x 

Fi&- 4 From the right triangle, 
p = r cos (8 - «). 

The equation r cos(O - cc) = p has an analogue in rectangular coordinates. Use 
the trig identity for cos(O - cc� then replace r cos 8 by x and r sin 8 by y: 

r cos 8 cos cc + r sin 8 sin cc = p, x cos cc + y sin cc = p. 

The latter equation is called the normal form of the line. Note that even lines 
through the origin satisfy such an equation with p = 0. 

Normal Form Each line in the plane has an equation 

x cos cc + y sin cc = p, p ;;:: O. 

If p > 0, then (p cos cc, p sin cc) is the foot of the perpendicular from 0 to the Hue. 
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There is a trick for converting an equation ax + by = c into normal form: just 
divide by ±Ja1 + b1 , taking the sign the same as that of c:  

Since 

a b c --===X +  y =  . ±Jal+ bl ±Jal + bl ±Jal + bl 
( a ) 1 + ( b )1 = l ,  ±Jal + bl ±Ji2+"b2 

there is an angle oc such that the equation can be written 

(cos oc)x + (sin oc)y = p, p :2:. 0. 

Example Given x - 3y = 7, divide by + J1'2+3I = JIO. The normal form is 

x 3y 7 l . -3 7 JIO - JlO = JIO' SO COS OC = JIO' SID OC = JIO' p = JIO' 
The point on the line closest to 0 is (p cos oc, p sin ix) = (n. --f!). 

Polar Equation of a C i rcle In polar coordinates, the equation of a circle of 
radius a, center 0, is simply r = a. 

Consider next the circle of radius a and center (a, 0). Its Cartesian equation is 

(x - a2) + y2 = a1, that is, x2 + y1 = 2ax. 
Substitute x = r cos 6 and y = r sin 6: r1 = 2ar cos 6. 
If r ¢ 0, then r = 2a cos 6. But r = 0 represents only the point 0. which is already 
on the locus r = 2a cos 6 for 6 = Pt· Hence canceling r does not change the locus, so 

r = 2acos 6  
is the polar equation of the given circle. The right triangle in Fig. 5 shows that 
the relation r = 2a cos 6 is satisfied by every point on the circle. 

Let us see how {r, O} moves on the circle r = 2a cos 6 as 0 makes a complete 
revolution. H 0 starts at 0, then r starts at 2a. If 6 increases to !n. then r 
decreases to 0. (Think of an arm rotating counterclockwise and shrinking.) Hence 
{r, O} traces the upper half of the circle (Fig. 6a). 

If 6 increases from !n to n, then r decreases from 0 to -2a. Since r is negative, 
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the point {r, 8} is measured "backward" and moves through the fourth quadrant, 
tracing the lower half of the circle (Fig. 6b ). 

Thus the full circle is described as 8 runs from 0 to n. As 8 runs from n to 2n, 
the same circle is traced again. For when 8 is in the third quadrant, r < 0, so 
{r, 8} describes the semicircle in the first quadrant; when 8 is in the fourth quadrant 
r > 0, so {r, 8} describes the semicircle in the fourth quadrant. Therefore, in one 
complete revolution of 8, the circle is traced twice. 

y )' 

(a) As 8 increases from 0 to!•. (b) As 8 increases from l• to •, r decreases from 2a to 0. r decreases from 0 to - 2a. 

Fia. 6 The circle r = 2a cos 8 traced as 0 s 8 s n 

The graph of the equation 

r = 2a cos 8  

x 

is a circle of radius a and center {a, O}. The circle is traced twice as 8 makes 
a complete revolution. 

Distance Formula In rectangular coordinates, the distance formula follows 
from the Pythagorean Theorem; in polar coordinates it follows from the Law of 
Cosines (which contains the Pythagorean Theorem as a special case.) See Fig. 7. 

According to the Law of Cosines 

d2 = r12 - 2r1r2 cos(82 - 81) + r./ . 

0 x 

Fi&- 7 Apply the Law of Cosines to 
express d in terms of the polar 
coordinates. 
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Distance Formula If d is the distance between the points {r1, 91} and {r2 , 92} 
then 

An immediate corollary is the polar equation of the circle of radius a, center {p, a}. 

The graph of the equation 

r2 - 2rp cos(9 - a) + p2 = a2 
is a circle of radius a and center {p, a}. 

Note two special cases: If the center is 0, then p = 0, and the equation boils down 
to rl = a2, that is, r = a, or r = -a. If the center is at the point (a, O� then p = a, 
a = 0 and the equation becomes 

r2 - 2ra cos 9 + al = al, r - 2a cos 9 = 0. 

EXERCISES 

Give the rectangular coordinates 
l {I, Pt} 2 {I,  -ix} 3 {I, -1't} 4 {I ,  *1r} 5 {2, -in} 6 {2. ix}. 

Give polar coordinates 
7 (1, 1 )  

10 (-!. !J3 ) 
8 (0, - 1) 

1 1  (J3, - 1) 

Find an equation in polar coordinates 
13 line through 0 and {3, ix} 
15 line through { 1, O} and { 1, !x} 

17 circle, center {a, 1t}, radius a 
19 circle through 0, center { I, -ix} 
21 line through (1, 2� slope -! 
23 circle, center {5, i1t}, radius 4 
24 circle, center {5, ix}, through {3, -!x}. 

Give the line in normal form 
25 3x - 4y = 5 
27 7x + 24y = -25 
29 through ( 1, 2) and (2, 1) 

9 ( - 1, 1) 
12 (j2, -J2 ). 

14 circle, center 0, radius 5 
16 line perpendicular to 6 = in. 

tangent to circle r = 1 
18 circle, center {a, !n}, radius a 
20 circle through 0, center {2, i1t} 
22 line through ( -2, 1 � slope 3 

26 - 5x + 12y = -26 
28 5x - 3y = 2 
30 through (- 1, - 3� slope 2. 

Suppose the normal form of a line is x cos IX + y sin IX = p. 
31 If the origin is translated to (h, k� find the normal form in the new coordinates. 
32 (cont.) Find all translations of coordinates that convert the equation to 

% COS IX + }' sin IX = 0. 
33 Thecirclewithccntcr{p, 1X)and radius a has polar equation r2 - 2pr cos(6 - IX) + p2 - a2• 

Solve for r. Discuss the domain of 6 and corresponding values of r for the case a > p. 
3' (cont.) Now consider the cases a = p and a < p. 

file://{-/Ayfi
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Graphing a function r = /(8) in polar coordinates is tricky at first, because you 
must change your point of view. For y = /(x1 you think of x running along the 
horizontal axis. with the corresponding point (x, y) measured above or below. 
Basically your mental set is "left-right" and "up-down." 

In polar coordinates. however, you must think of the angle 8 swinging around 
(like a radar scope) and repeating after 2n. For each 8, you must measure forward 
from the origin a distance /(81 or backward if/(8) < 0. Your mental set must be 
.. round and round" and .. in and out." 

Because of the special nature of points {r, 8} where r < 0, pay close attention to 
the sign of /(8) and be sure to plot points "backwards" if /(8) < 0. 

Look for symmetries and periodicity. For example if /(8 + 2n) = /(81 the polar 
graph r = /(8) will repeat after 2n. There are many symmetries possible; we 
mention only two, /(8) even and /(8) odd. If /(8) is even, that is. /(-8) = /(81 
then the point {r, -8} is on the graph whenever {r, 8} is; the curve is symmetric 
in the x-axis (Fig. la� If /(8) is odd, /(-8) = -/(81 then the point {-r, -8} is 
on the graph whenever {r, 8} is; the curve is symmetric in the vertical axis (Fig. l b). 

0 

r = f(O) 

(a) Graph of an even function: 
/(- 8) = /(8) 

(b) Graph of an odd function: 
/(- 8) . -/(8) 

F11- I Polar symmetry 

• EXAMPLE 1 Graph the "spiral of Archimedes" r = 8. 

x 

Sollltio11 If 8 increases starting from 0, then r increases steadily, also starting 
from 0. Hence the locus goes round and round, its distance from 0 becoming 
greater and greater. The result is a spiral (Fig. 2a). Since /(8) = 8 is ac odd 
function, we obtain the locus for 8 < 0 by reflection in the vertical axis (Fig. 2b � 
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r = O  

I r, O f  l r ,  O I  

(a) 8 "> 0 (b) 8 � 0: symmetry in the vertical axis 

Fig. 2 Spiral of Archimedes: r = 0 

• EXAMPLE 2 Graph the "rose" r = a  cos 20, where a >  0. 

Sol11tion Since cos 2(0 + 21t) = cos 20, the curve repeats every 21t, so we need plot 
it only for 0 � 0 � 2Jt. 

The sign of cos 20 fluctuates. so we make a preliminary sketch showing the 
proper signs (Fig. 3a). If 0 starts at 0 and increases to !Jt, then cos 20 starts at I 
and decreases to 0. Since cos 20 is an even function, this part of the graph is 
repeated below, forming a loop (Fig. 3b). 

If 0 increases from in to !Jt to iJt, then cos 20 is negative and goes from 0 to 
- I and back to 0. Thus we get another loop, but between in and Vt· See Fig. 4a. 
For 0 going from iJt to iJt, we get a third loop plotted forward, and from in to hr a fourth loop plotted backwards. Figure 4b is the complete graph. 

(a) Signs of r 

() = I 1T � 

x 

0 = - � 1r 

Fi&- 3 Partial graph of r = a cos 20 

• 
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- a  

0 = I 7r 4 

x - a 

u 

a 

(b) Complete graph 

Fi&- 4 Graph of r = a cos 20 

ti 
x 

Hhulsig"t It is necessary to plot only one of the petals in Fig. 4b. From 
cos(O + n) = -cos 0 follows cos 2(0 + Pt) = - cos 20. Hence cos 20 repeats itself 
negatively after Pt· Therefore the first loop plotted (for -in � 0 � in) is repeated 
negatively as 0 continues from in to Vt· In other words, rotate the first loop 
backward by Pt; the result is another loop of the curve. Rotate again, and once 
again, and you have generated the whole curve. 

For an accurate picture of the petals, plot some points. One thing can be said 
without plotting; the petals are rounded at their ends, not pointed. That stems 
from a property of the cosine: for small angles, cos 20 is very close to 1. Hence for 
0 small (near the tip of the petal to the right) the curve r = a  cos 20 looks like 
the circle r = a. • 

Equation of the E l l ipse The orbit of a planet around a fixed star is an 
ellipse with the star at one focus. Because in astronomy one measures angles rather 
than distances, it is natural to study the polar equation of an ellipse with one 
focus at the origin. 

Place the origin at one focus and take the polar axis through the other focus, 
{2c, O}. See Fig. Sa. By definition of the ellipse, r + d = 2a, hence d2 = (2a - r)2• 
On the other hand, by the Law of Cosines, 

d2 = r2 + (2c)2 - 2r(2c) cos 0 = r2 + 4c2 - 4rc cos 0. 
Equate the two expressions for d2: 

(2a - r)2 = r2 + 4<.·2 - 4rc cos 0, 4a2 - 4ar = 4c2 - 4rc cos 0. 
Solve for r: 

r(a - c cos 0) = a2 - c2 = b2, that is, 
( c ) bl r l - a cos 0 = �· 

Either form is the polar equation of the ellipse. 
From the polar equation follows easily the rectangular equation of the ellipse, 
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r + d • 2a; foci: 0, (2c, 0) 

(a) Polar form: 
r(a - c cos 6) • a1 - c1 • b1 

(b) Rectangular form: 
(x - c) l yl -- + - = I  al bl 

Fig. 5 Equation of the ellipse 

as promised in Section 3. Substitute r cos (} = x and ,i = xi + yi : 
r(a - e cos 9) = bi, ar - ex = bi. airi = (ex + bi)2, 

a2(xi + yi) = eix2 + 2cb2x + b4. 
Now complete the square: 

b2(x2 - 2cx) + aiyi = b4, b2(x - c)2 + aiyi = b4 + bic2 = aibi, 

(x - c)2 Yi 
a2 + bi = 1. 

,. 

This is the rectangular form when the foci are (0. 0) and (2c, 0). See Fig. Sb. 
Translation of the foci to ( ± c, 0) produces the standard form x2 /a2 + y2 /b2 = I. 
Eccentricrty Define the eccentricity of the ellipse to be the number e = c/a. 
Since c < a, it follows that 0 < e < I. Define also p = b2/a = b2/ce. In this notation, 
the polar equation of the ellipse becomes 

Polar Equation for the Ellipse r( l - e cos 9) = ep. 

The eccentricity determines the shape of the ellipse. If e is near zero, then c is 
small compared to a. That means the foci are close together relative to the semi
major axis, hence the ellipse is circlelike. If e is near l, the foci are relatively far 
apart and the ellipse is cigar-shaped. See Fig. 6. Once e is given, the scale factor p 
determines the size of the ellipse (as the radius does for a circle). 

Q c  
e = O.I e = O.S e = 0.8 e • 0.97 

Fi&- 6 Ellipses of various eccentricities 
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• EXAMPLE 3 Find the equation of the ellipse having eccentricity i and foci at 
( -5, - I ) and ( I, - I ). 
Sol•tio11 The center is ( -2, - I ) so the equation is of the form 

(x :/)1 
I 
(y ;i' )l = I, 

where a > b because the major axis is horizontal. 
The distance between the foci is 6 = 2c, hence c = 3. By the definition of 

eccentricity, c = ae, hence a = c/e = 3/i = 4. Finally, b1 = a1 - c1 = 16 - 9 = ·7. 
Therefore, the equation of the ellipse is 

(x + 2)1 (y + I )1 
- I • 16 + 

7 - . 

• EXAMPLE 4 An ellipse has semi-major axis a and eccentricity e. Find in 
terms of a and e the length of the chord through one of the foci perpendicular 
to the major axis. 
So/11tio11 Choose coordinates so that the ellipse is in standard position with foci at 
(±c, 0). The length of the chord is 2y, where y > 0 is evaluated at x = c. From 

xl yl ( xl) 
- + - = I follows y1 = b2 I - - . al bl al 

Set x = c: y1 = b1( I - ;:) = b1(1 - e1) = (a1 - c2)(1 - e1) 
= (a1 - a2e1)(1 - e1) = a1(1 - e1)1. 

The ref ore the length of the chord is 
2y = 2a( l - e1). • 

Equation of the Hyperbola Fix the polar coordinate system so the foci of a 
hyperbola are the origin and {2c, O}, and let the absolute distance difference be 2a, 
so c > a. See Fig. 7. 

Fla. 7 Set-up for the hyperbola in polar coordinates 

x 
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Branch 1 is defined by d - r = 2a and branch 2 by r - d = 2a. Therefore both 
branches are defined by d = r ± 2a, hence d1 = r1 ± 4ar + 4a2• However, by the law 
of cosines, d1 = r1 + 4c1 - 4cr cos 8. Equate these expressions for d1: 

r1 ± 4ar + 4a2 = r1 + 4c2 - 4cr cos 8, ±4ar + 4a1 = 4c1 - 4cr cos 8, 

r(e cos 8 ± a) =  c1 - a1 = b2• l 
The .. + ., determines branch 1 in Fig. 7, the " -", branch 2. 

The rectangular form is derived from this form exactly as for the ellipse: 

ex ± ar = b2, ±ar = b2 - ex, a1r1 = (b1 - cx)2, 
a2(x2 + y2) = b4 - 2b2ex + e2x2, a2y2 = b4 - 2b2ex + (e2 - a2)x2, 

Complete the square: 

b2x2 - a1y1 - 2b1ex = -b4• 

(x - e)l yl 
a2 - b1 = 1. 

The standard form, with the foci at (±e, o� follows by translation. 

The eccentricity of the hyperbola is e = e/a > 1. If we set p = b1/a = b2e/e, the 
polar equation becomes 

l Polar Equation of the Hyperbola r(e cos 8 ± 1) = ep. 1 
y 

)' 

x x 

(a) e • l . l  

Fi&- 8 Eccentricities near 1 and far from 1 ;  note the relative positions of the foci. 
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The eccentricity determines the shape of the hyperbola. Suppose 
x2 12 
a2 - b2 = 1 

is a hyperbola in standard position with foci at ( ± c, 0). Its asymptotes have slopes 
± � 

= 
± J cl - al 

= ±Jc: 
- 1 = 

±JeCI. 
a a a 

Hence if e is near 1, the asymptotes have small slopes and the hyperbola is 
squeezed into a narrow angle. The larger the eccentricity, the broader the hyperbola 
(Fig. 8� 

EXERCISES 

Graph 

I r • 2 sin 28 
3 r = cos 39 
5 r = Bl 
7 the cilloW r = sec 8 - cos 8 

= sin 9 tan 9 

2 the rose r = sin 58 
4 r = -cos 48 
6 the lenudlc8te rl = cos 28 
8 the stro,lloid r • cos 28 sec 8 

[Hint for 7 and 8 Use x = r cos 8 to find the vertical asymptote.] 

9 the cardioid r = 1 - cos 8 10 the ll1mp111 r = 2 + cos 8 
11 the llmap111 r = 1 + 2 cos 8 12 the blfoUmn r .. sin 8 cosl 8 
13 the coaclioid r = csc 8 - 2 
14• Graph r = a + b cos 8, a > 0, b > 0, in general. [Hint Use Exs. 10 and 11.] 
15 If an ellipse has eccentricity e and we write e = cos cc where 0 < cc < 90°, then we call 

the ellipse an .. cc degree ellipse". Interpret tz geometrically and express b/a in terms of cc. 
(Templates for drawing ellipses go by degree.) 

16 (cont.) Draw ellipses of 15°, 30°, 45°, and 60°. 
17 The orbit of the Earth is approximately an ellipse with the Sun at one focus and scmi

major and semi-minor axes 9.3 x 107 and 9.1 x 107 miles, respectively. Compute the 
eccentricity of the orbit. 

18 (cont.) Find the distance from the Sun to the other focus of the ellipse. 
19 Fix p and e with 0 < p and 0 < e < 1. Find the locus of all points x whose distance 

from 0 is e times its distance from the line x = -p. 
20 (cont.) Solve the problem for e �  1. 
21 What is the eccentricity of a rectangular hyperbola? 
22 Show that the distances of any point (x, y) of the ellipse xl/al + yl/bl = l to its foci 

arc a ±  ex. 

7. ROTATION O F  AXES 

Suppose we start with a polar coordinate system and create a new system by 
rotating the polar axis forward through an angle oc. See Fig. 1. A point with 
coordinates {r, O} acquires new coordinates {f, 11}. From the figure it is clear that 
f = r and B = 0 - oc. 
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Rotation of Ax• ( Polar Coordinat•) If the polar axis is rotated by an l 
angle ix, a point {r, 8} acquires the new coordinates {t, 6}, where 

f = r, 9 = 8 - or. 

8 = 0  
l 

(j = 0 

0 8 = 0 8 = 0  

Fis. I Rotation of polar coordinates Fis. 2 Polar equation of line: 
fcos lJ = p, r cos(8 - «) = p 

As an application, let us find the polar equation of the line L that is p units from 
the origin, perpendicular to the ray 8 = or. See Fig. 2. Relative to the tilted axis, 
the line has equation f cos 9 = p. Its r, 8-equation therefore is r cos(8 - or) = p. 

This is a quick derivation of the equation given on p. 421 .  
By the same reasoning r = /(8 - or)  represents the curve r = /(8) rotated forward 

through angle or. For example, knowing that r = 2a cos 8 represents the circle of 
radius a and center {a, O}, we can instantly write down the equation of the circle 
of radius a and center {a, !n}. The equation is 

r = 2a cos(8 - -in) = 2a cos(!n - 8) = 2a sin 8. 

Rota ion of Reeta g u  ar Coordinate Systen s Now let us look at the 
effect on rectangular coordinates of a rotation of axes. Suppose we rotate the x- and 
y-axes through an angle ix, obtaining new axes which we can the x- and 
J-axes (Fig. 3� They define a new rectangular coordinate system. 

)' 
I cx, y >  

• 1 (x , Y> 

x 
Fl1- 3 Rotation of rectangular coordinates 
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A point p in the plane with coordinates (x, >\) now acquires new coordinates 
(.x, y). From Fig. 3 it is not obvious what relation exists between x, y and x, y. Stil� 
knowing a, we should be able to express x, J1 in terms of x, y and vice versa. The 
trick is passing through polar coordinates, for which the rotation rule is so easy: 
f = r, lJ = 8 - «. Indeed, 

x = r cos lJ = r cos(8 - «) = r cos 8 cos a +  r sin 8 sin « =  x cos « +  y sin a, 

y = r sin lJ = r sin(8 - «) = - r  cos 8 sin « + r sin 8 cos a = -x sin « + y cos «. 
Similarly, 

x = r cos 8 = r cos(lJ + a:) =  r cos lJ cos « - 1'  sin lJ sin « =  x cos « - y sin a, 
y = r sin 8 = 1' sin(lJ + «) = r cos lJ sin « +  r sin lJ cos « =  x sin « +  y cos «. 

Rotation of Axes (Rectangular Coordinates) Suppose the plane is 
rotated through angle « and the x- and y-axes, under this rotation. become the 
x- and y-axcs. Then the x, y-coordinates and x, y-coordinates of any point are 
related by 

{x = x cos « - y sin « 
y = x sin « + y cos « 

{� = X COS
.
« + y sin « 

y = -x sm « + y cos a. 

For example, if « = 45°, then 
x = !J2(.x - y� y = !J2(.x + y). 

For another example, if « =  -30°, then cos « = ! and sin « = -!J3; hence 
x = !(x + J3 y), y = !( -J3 x + y). 

Conics We have learned how to graph quadratic equations of the form 

axl + cyl + dx + ey + f = 0 (al + cl > o� 
By completing squares, we generally obtain one of the conic sections (sometimes a 
degenerate conic, or no locus at all). Now we tackle the most general quadratic 
equation 

axl + bxy + cyl + dx + ey + f = 0. 
It is the term bxy that makes life difficult. Where does it come from and how can 
we get rid of it? We can learn a good deal from two experiments. 

xl yl 
• EXAMPLE 1 Find the equation of the ellipse 9 + 4 = 1 m the x, Y-
coordinate system that results from a in rotation of the x, y-coordinate system. 
SohltiOll The rotation formulas are x = !J2 (x - y� y = !J2 (x + y� 

Substitute: 
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y 

l l 
(a) !.... + l.: • I 9 4 

x 

<b> Hx1 + �xp+  Hr · • 
Fi&- 4 Rotation of an ellipse 

Therefore the x. p-equation of the ellipse (Fig. 4) is 

13 l 10 13 l 
72 x + 12 X.Y + 72 Y = 1 . • 

The experiment suggests that the xp term is due to the tilt of the coordinate 
axes relative to the axes of the ellipse. If that is so, then the same should be true 
for hyperbolas and parabolas. Let us try a parabola. 

• EXAMPLE 2 Apply the rotation of Example 1 to the parabola y = x2
• 

SohltitHt Substitute x = !J2 (x - y) and y = !J2 (x + p): 
!J2 (x + y) = HJ2 (x - p)]2 = !(x1 - 2.xp + p1� 

J2 (x + p) = .x1 - 2xp + p1. 
Therefore the x, y-equation of the parabola (Fig. S) is 

(a) Y • .xl 

x1 - 2.xp + p2 - J2 x - J2 y = o. 

I 
(b) i2 - lij + y1- R./i-J1./i • 0 

Fla. � Rotation of a parabola • 
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Examples 1 and 2 suggest that an xy term occurs when the axes are " incorrectly" 
placed. Perhaps it can be eliminated by rotating the axes through a cleverly chosen 
angle. Let us look for a suitable angle. Now a rotation of coordinates, {x = .f cos QC - y sin QC 

y = x sin QC + y cos QC, 

changes a linear polynomial dx + ey +f in x and y into a linear polynomial in x 
and y. Of more interest to us is what it does to the quadratic ax2 + bxy + cy2• 
Substitute: 

ax2 + bxy + cy2 = a(.f cos QC - y sin QC)2 + b(.f cos QC - y sin QC)(X sin QC + y cos QC) 

+ c(.f sin QC +  y cos QC)2• 

Multiply out and collect terms in x2, xy, and y2• 

Under a rotation through an angle ac, the quadratic polynomial 

ax2 + bxy + cy2 + dx + ey + f 

is changed to 

where 

�2 + 5xy + ey2 + ilx + ey + J. 

I a= a cos2 QC +  b cos QC sin QC +  c sin2 QC 
6 = 2(c - a) sin QC cos QC + b(cos2 QC - sin2 QC) 
l = a  sin2 QC - b sin QC cos QC +  c cos2 QC. 

We are most concerned with the formula for 5, which we can write as 

5 = (c - a) sin 2QC + b cos 2QC. 

It is always possible to choose the rotation angle QC so that 5 = 0, that is, so that 
(c - a) sin 2QC + b cos 2ac = 0. For if c = a, we take QC = ±ix; if c # a, we choose 
IX SO that 

A quadratic locus 

b 
tan 2QC = -- . a - c  

ax2 + bxy + cy2 + dx + ey + f = 0 
is changed into a quadratic locus 

ax2 + ly2 + ilx + ey + 1 = O 
without an .fy term by rotating the axes through angle ac, where 

b 
tan 2ac = -- if a #  c; IX =  ±in if a =  c. a - c  
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Because the tangent has period x, the angle 2a is determined up to a multiple of 
x, hence a is determined only up to a multiple of !7t. Therefore we can always 
choose a in the first quadrant. 
In numerical examples, we must compute a and c, having a, b, c, and tan 2a. We 

write the formulas for a and c in the form {a = a cos 2 a + !b sin 2a + c sin 2 a 
c = a  sin2 a - !b sin 2a + c cos2 a. 

From tan 2a we can find sin 2a and cos 2a: 
. +tan 2a sm 2a = - ;-= = · J I +  tan2 2a 

From cos 2a we can find cos2 a and sin2 a: 
cos2 a =  !(I + cos 2a), 

Everything ties together neatly. 

+ I  cos 2a = /I - 2 • v I +  tan 2a 

sin2 a =  !(I - cos 2a). 

• EXAMPLE 3 Describe the locus of xy = I .  

Solution In this case a = c = 0, b = I. Therefore we choose a = ix to make 5 = 0. 
The rotation is 

x = tJ2 (x - .V). y = !J2 (x + y), 
so by direct computation, 

xy = !(x - y)(x + y) = !(x2 - y2). 
The locus is 
a rectangular hyperbola (Fig. 6). 

I' 

x 

(a) Before rotation: xy "' I 
,rl _ yl = I (b) After rotation: 2 2 

Fis. 6 Locus of xy = I • 
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• EXAMPLE 4 Describe the locus of x2 - 2xy + 3y2 = 1. 
Sollltion Rotate the axes through angle « where 

b -2 
tan 2« = -- = -- = l ,  2« = in, « = p. 

a - c  1 - 3  
Hence sin 2« = cos 2« = !J2 , and 

cos2 a =  !( l + !J2 ), sin2 a =  !( 1  - !J2 ). 
Substitute these values with a = l, b = -2, c = 3 into the formulas for a and t: lii = !( 1 + !J2 ) - !J2 + !( l - !J2 ) = 2 - J2 ' 

t = !( l - !J2) + !J2 + !( l + !J2 ) = 2 + J2 . 
Therefore, in the X, ji-coordinate system, the locus is 

(2 - J2 )x2 + (2 + J2 )ji2 = l .  

Because 2 - J2 and 2 + J2 are both positive, this is an ellipse in standard form: 

x2 .Y2 
Ai + 82 = l, 

where A 2 = 1/(2 - J2) and 82 = 1/(2 + J2 ). See Fig. 7. 

(b) After rotation: 

(a) Before rotation: x2 y2 
--- + • I  

EXERCISES 

x2- 2xy + Jy2 = I !<2 + ./f) !<2 - ./f) 
Fi&- 7 Locus o( x2 - 2xy + 3y2 = I • 

l Solve the system of linear equations 

x = x cos ex - y sin ex, y = x sin ex + y cos ex 

for x and y. Explain your answer. 
2 Let x = x cos ex - y sin ex and y = x sin ex + Jf cos ix. Compute x2 

+ y
2
• Explain your 

answer. 
3 Let (x1, y1 ) and (x2, y2) be two points in the x, y-coordinate system. Let (x1, y1) and 

(x2 , .V2) be their coordinates in the x, y-coordinate system obtained by a rotation. 
Compute x1x2 + y 1y2 in terms of x1, x2 , y1, y2 , and ex, the angle of rotation. Explain 
your answer. 
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4 Follow a rotation through angle tx by a rotation through angle /J. The result is 
obviously a rotation through angle tx + /J. Use this observation and the rotation 
formulas to verify the addition laws for sine and cosine. 

5 Let (x, y) = (cos 8, sin 8) be a point on the unit circle. Rotate the axes by an angle tx 
and show geometrically that (K, y) = (cos(8 - tx� sin(8 - tx)). 

6 (cont.) Combine this result with the rotation formulas to get a new verification of the 
addition laws for the sine and cosine. 

Make a suitable rotation and write the x, J-cquation (without an KJi term) 

7 x2 - xy = I 8 xy - y2 = I 9 xy + y2 = I 10 2xy + y2 = I .  
Determine the type of the conic and the directions of its principal axes 
I I  x2 + xy + y2 = I 12 x2 - xy + y2 ,. 1 13 x2 + xy - y2 = I 
14 x2 - xy - y2 = I 15 x2 + xy + 2y2 = I 16 x2 - xy + 2y2 = I 
17 x2 - 2xy + y2 = 2y 18 x2 - 4xy + 4y2 = x 19 2x2 - 6xy + y2 = I 20 x2 + 3xy - y2 = I .  

Suppose a rotation converts ax2 + bxy + cy2 into ax2 + 5xy + cy2• Prove 

21 a +  c = 4 + � 22• 4ac - b2 = 4ac - 52• 
8. CALCULUS APPLIED TO CONICS 

In this section we shall use calculus to learn more about conics. 

Tangents to the Parabo a Let us find the tangents to the parabola y = ax2, 
where a >  0, at one of its points (u, v). The slope of the tangent is 

�� I. = 2ax l = 2au, 
hence the equation of the tangent is 

y - v = 2au(x - u� y - v + 2au2 = 2aux. 
But au2 = v since the point (u, v) is on the parabola, so the tangent can be written 
y + v = 2aux. See Fig. la. 

The tangent to the parabola y = ax2 at (u, v) is y + v = 2aux. 

The equation of the tangent has a remarkable symmetry property: the roles of 
(x, y) and {u, v) are interchangeable ! Therefore y + v = 2aux holds if a line through 
an outside point (x, y) is tangent to the parabola at (u, v) and also if a line 
through (u, v) is tangent at (x, y). 

The equation of the tangent provides a tool for finding all tangents to a parabola 
from a given exterior point (u, v): the points of tangency (x, y) must satisfy y + v = 
2aux. Hence they are the points of intersection (Fig. lb) of the parabola y = ax2 
and the line y + v = 2aux, that is, solutions of the system { y = ax2 

y + v = 2aux. 
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y I' = a\:l I' 

x 

y + II =  '.!aux 
(b) (u, v) outside the parabola: Then y + v • 2aux 

(a) (u, v) on the parabola: Then y + v = 2aux is the line through the points of tangency 
is the equation of the tangent at (u, v). of the tangent lines from (u, v). 

Fla. I Tangents to the parabola 

To solve the system, we eliminate y: 

ax2 + v = 2aux, ax2 - 2aux + v = 0, 
au ± Ja(au2 - v) x =  . a 

The solution is valid if au2 - v � 0. If equality, au2 = v, then (u;v) is on the parabola 
and x = u; nothing new. I f  au2 - v > 0, then (u, v) is outside of the parabola and 
there are two values of x, hence two tangents. In the remaining case, au2 - v < 0, 
then (u, v) is inside of the parabola and there are no (real) solutions, hence no 
tangents. 
Remark 1 The line y + v = 2aux is called the pol8r of the point (u, v) with respect to the 
parabola y = ax2• 
Remark 2 This discussion can be worked out for any parabola, not just y = ax1• 

• EXAMPLE 1 Find the tangents to y =  x2 from (- 1, -3). 
So/11tio11 Here (u. v) = (- 1, -3) and a =  I . The tangents through ( - 1, -3) touch 
the parabola at (x, y� where 

y =  x2 and 

Eliminate y: x2 - 3 = -2x, 
y - 3 = - 2x. 

x2 + 2x - 3 = 0. 

There are two solutions, x = I, x = -3. The corresponding values of y are y = I and 
y = 9, so the two points of tangency arc (1, I ) and ( - 3, 9). Since the tangent to 
y = ax2 at (u. v) is y + v = 2aux, the two tangent lines in this case arc 

y = 2x - l and y = -6x - 9. • 

Angle between Lines We shall shortly need a formula for the angle, measured 
counterclockwise, between two directed lines in terms of the slopes of the lines. With 
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the notation chosen in Fig. 2 we have fJ = P - (X. By the addition formula for tangent, 
tan P - tan (X tan fJ = tan(P - (X) = 1 

p· + tan (X tan 
Since tan (X and tan P are the respective slopes of the given lines, this 1s the 
required formula. 

y slope: t3n f3 

�?'-/""• � (J tan p - tan er 
tan = -----1 + tan « tan P 

r le on Prope 'tY of the Parabo a The parabola has a remarkable 
geometric property with practical applications. Think of the inside of the parabola 
as a mirror. 

If a point source of light is placed at the focus, the light rays striking the 
mirror at various places will all be reflected parallel to the axis of the parabola, forming 
a beam (Fig. 3ai This is the principle of the parabolic searchlight. 

Conversely, light rays from infinity entering the parabola parallel to its axis will 
bounce oft' the mirror to the focus (Fig. 3b). Thus they are concentrated (focused) 
at this single point. This is the principle of the parabolic receiving antenna and 
the telescopic mirror. 

/ 

... 

(a) Uaht from the focus is reflected 
in a parallel beam. 

... ... 

(b) Uaht from "infinity" is reflected 
to the focus. 

Fla. 3 Reflection property of the parabola 
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Let us prove this property of the parabola. We take the standard parabola 
4py = xl with p > 0. A light ray from the focus (0, p), striking the parabola at 
(u, v� is reflected so that "the angle of incidence equals the angle of reflection," in 
other words, so that « = fJ in Fig. 4. 

We shall verify that fJ, the angle from the tangent to the reflected ray, equals 
the angle from the tangent to the vertical line through (u, v� This will show that 
the light ray is reflected vertically, parallel to the axis of the parabola 

First we compute tan fJ = tan oc. Now « is the angle between the ray, of slope 
(v - p)/u, and the tangent, of slope dy/dx l .. = u/2p. We use the formula we just 
learned (and the relation 4pv = ul): 

u v - p 
2p --u- ul - 2p(v - p) 2pv + 2pl 2p(v + p) 2p 

tan « = = = = =-
1 + (

v � p
) (;p} 

2up + u(v - p) up + uv u(v + p) u · 

Hence tan fJ = 2p/u. (Note that v + p ::;: 0 since p > 0 and v � 0.) 
Now we find the angle /J1 from the tangent to the vertical line through (u, v� 

Clearly, /J1 + 8 =Pi. where 8 is the angle the tangent makes with the positive x-axis. 
Hence 

1 1 2p tan /J1 = cot 8 = tan 8 = u/2p = -;= tan /J. 

Therefore /J1 = fJ, which completes the derivation. 

y I 2 y = - X  
4p 

slope = tan 8 = -L = -d··1 u 
dx u 2p 

x xl y 2  
- + - = I  al bl 

y 

Fie. 4 Proof of the reflection property Fla. 5 Tangents to the ellipse 

Tangents to the E l l ipse Let us find the tangent to the ellipse 

xl yl -+-= 1 (a > O, b > O) al bl 
at one of its points (u, v). See Fig. 5. 

x 
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For the slope, we need dy/dx at x = u. The equation of the ellipse actually defines 
two functions of x, corresponding to y >  0 and y < 0: 

However, both satisfy 

J-x2 r = b  I - � · 

x2 y2 
a1 + b2 = I , 

J--_;2 y = -b l - a2 . 

so we can simply differentiate this relation with respect to x and set (x, y) = (u, v): 
2x
a_2 + 

2
b
� 
d
d_x>� = O, �l' l = - b:� l = - ��u 

· dx ... v) a }' ... '" a v 
(The sign takes care of itself.) Now we can write down the equation of the tangent: 

b2u u v ux vy u2 v2 y - v = - a2v (x - u), ai (x - u) + b2 (y - v) = o. �2 + b2 = a2 + b2 = I . 

xi y2 
The tangent to the ellipse a2 + -;,2 = I at (u, v) is 

ux vy = 1 I ·a2 + b2� 
Remark The reasoning fails if r = O. but the result is still correct-just reverse the roles of 
x and y to prove it. 

As in the case of the parabola, (u, v) and (x, y) are interchangeable in the tangent 
formula. It follows, as for the parabola, that if (u, v) lies outside of the ellipse and 
(x, y) is the point of contact with the ellipse of one of the two tangents through 
(u, v), then ux/a2 + vy/b2 = I. 
Remark The line ux/a2 + vy/b2 = I is called the polar of (u, v) with respect to the ellipse 
x2/a2 + y2/b2 = I .  

• EXAMPLE 2 Find the two tangents from (6, 4) to the ellipse ix2 + b2 = I. 
Sobttion Here (u, v) = (6, 4� a2 = 9, and bl = 4. The tangents through (6, 4) touch 
the e!Hpse at (x, y), where 

Eliminate y: 

xl yl 2x 
9 + 4 = l and 3· + y = I .  

xi + ! ( I - 2x)2 = I 9 4 3 
• 8x2 - 12x - 27 = 0. 

6 + J6f +·f·27 3 3 Solve: x = -=--8 . -- = 4 ± 4 J7, 
y = l - ix = I - i(i ± iJ7) = l + !J7. 

Therefore the two points of tangency are (i(l ± J7� !( I + J7)). 
We know that the tangent to x2/al + y2/b2 = l at (u, v) is ux/a2 + vy/bl = I .  
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Hence the two tangent lines in this case are 

i( l ± J7 ) !(I + J1 )  -9-x + - 4 y= I .  

Simplify: 2( 1 ± .j7 )x + 3(1 + J7 )y = 24, 
-2(1 ± J7 )x + 24 -2(1 ± J7 )2x + 24(1 ±J7 ) 

y = 3(1 + j7 ) = 3(1 - 7) 
- -2(8 ± 2j1)x + 24(1 ± j7 ) - - 18 

so the tangents are y = 1(8 ± 2jf )x - !(1 ± J1 ). • 

Remark 1 It is a bit simpler to start with one of the values of x, say x = i + i.J7 and 
follow it through: 

y = ! - !J7, m = I  + iJ1 . y = (I + iJ7 )x + (-t - t.J7 ). 

Then replace J1 by -J7 for the second tangent line. 

Remark 2 If (u, 11) is inside the ellipse, that is, if u2/a2 + v2/b2 < I, there arc no tangents. 
When you eliminate y (or x). the resulting quadratic will have negative discriminant, hence 
no (real) roots. 

Reflect on Propert of the E l l ipse Like the parabola, the ellipse has a 
remarkable reflection property. Think of an elliptical pool table. Then a ball cued 
from one focus will always pass through the other focus after one rebound off the 
side. This is the principle of whispering galleries. Sound waves emanating from one 
focus of an elliptical chamber will bounce off the walls and pass through the other 
focus. Hence a listener at one focus hears clearly a whisper from the other focus. 

Let us prove this property of the ellipse. We take the standard ellipse 
x2/a2 + y2/b2 = 1 with foci at (±c, 0). See Fig. 6. 

We must verify that a =  p. For then, the ray from (c, 0) will strike the ellipse and 
be reflected through the focus at ( -c, 0). 

By the formula for the angle between two lines, 

b2u v - a2v - u - c -b2u(u - c) - a2v2 tan a = = - - -- -- --'---�-

l + 
( v -) (- b2u) a2v(u - c) - b2uv · 
u - c a2v 

To simplify this expression, we use the relations c2 = a2 - b2 and u1/a1 + v2/b2 = 1 
in the form b2u1 + a1v2 = a1b1: 

b1cu - (b1u1 + a1v2) b1cu - a1b1 b1(cu - a1) b1 tan a =  · - - - - - -- = - = = -(a1 - b1)uv - a1cv c1uv - a1cv cv(cu - a1) cv 
Note that cu - a1 � 0 because c < a and l u l � a, hence !cul < a1. 

Now we look at the corresponding angle fJ with respect to the other focus (- c, 0). 
We can use the preceding formula for tan ix with c replaced by -c. By Fig. 5, 
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however, the angle from the ray to the tangent is -{J, so the formula yields 

bl bl 
tan( - {J) = -- , that is, tan fJ = - = tan er. (-c)v cv 

The ref ore fJ = a. 

/ (' 
�lor .: =� / ___;, 

Fig. 6 Reflection property: IX = /J Fig. 7 Convexity property 

n 1 The region inside the ellipse x1/a1 + y1/b1 = 1 is 
characterized by the inequality 

xl yl 
al + bl � 1. 

(This includes the boundary, the ellipse itself.) We propose to prove that this region 
is convex in the following sense: if (u, v) and (z, w) are any two points in the region; 
then the segment joining them is completely in the region. 

The typical point p of this segment (Fig. 7) is t of the way from (u, v) to (z, w� 
where 0 � t � 1. Hence (p. 394) 

p = ((1 - t)u + tz, ( 1  - t)v + rw). 
What we must prove is that the assumptions 

O � r � l  

imply 
[(1 - t)u + tz]1 [(1 - t)v + rw]1 1 a1 + bl � . 

Let us call the left-hand side f(r). This function is defined for 0 � t � 1, takes 
non-negative values, and satisfies 

We must prove that /(t) < 1 also for 0 < t < 1 .  

\ 
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2 2 
f'(t) = a1 [(1 - t)u + rz](z - u) + b1 [(1 - t)v + rw](w - v� 

f"(t) = :2 (z - u)2 + :2 (w - v)2• 

Hence f"(t) > 0, so the graph of /(t) is strictly convex. By the Chord Theorem 
(p. 151)/(t) < 1 for 0 < t < I. 

EXERCISES 

Find the tangent to 

1 4y = x2 at (-2, 1) 
3 y • (x - 1)2 at (3, 4) 

Find the tangents to 

!§ 4y = x2 from ( - 1, - 1 ) 
7 y = (x - 1)2 from ( - 1, 3) 

2 x =. 2y2 at (2, 1) 
4 x - -3y2 at ( - 3, - 1� 

6 x = 2y2 from (0, -2) 
8 x = - 3y2 from (3, o� 

9 Let (u, v) lie inside the parabola y = ax2, a >  0, and let (x, y) lie on the polar of (u, v). 
Show that (x, y) lies outside the parabola. 

10 Show that the region inside y = ax2 is convex. 

Find the tangent to 

1 1  x2 + 2y2 = 1 at (1, 0) 
13 nx2 + -Jrsy2 = 1 at (3, 4) 

Find the tangents to 

12 ix2 + ny2 = l at (2, -3) 
14 !x2 + b2 - 1  at (-2, 1). 

15 x2 + 2y2 ""' l from (1, 3) 16 x2 + 2y2 = 1 from (2, 0) 
17 3x2 + 2y2 = 3 from ( - 1, 1 )  18 3x2 + y2 = l from (-2, - 1). 
19 Let (u, v) be a point of the hyperbola x2/a2 - y2/b2 = l. Show that the tangent at (u, v) 

is xu/a2 - yv/b2 - l. 
20 (cont.) Find the tangents to 2x2 - y2 = l from (2, 3� 
21 Find the (acute) angle of intersection of the two tangents to the parabola y = x2 from 

the point (2, l � 
22 Find all points on the coordinate axes from which the two tangents to the ellipse 

x2/a2 + y2/b2 = 1 are perpendicular. 

9. MISCELLANEOUS EXERCIS ES 

1 Let (x - a1)2 + (y - b1)2 = r12 and (x - a2)2 + (y - b2)2 = r22 be two non-concentric 
circles. The ndlcal axis of the two circles is the locus of 

(x - a1)2 + (y - b.)2 - (x - a2)2 - (y - b2)2 = r/ - r22• 

Show that the radical axis is a line perpendicular to the line of centers. 
2 (cont.) Suppose the circles intersect in two points. Prove that the radical axis is the 

line through these points. 
3 (cont.) Suppose the circles are tangent. Prove that the radical axis is their common 

tangent line. 
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4 (cont.) Suppose the circles do not meet. Prove that the radical axis is the locus of all 
points x such that the tangents from x to the two circles all have the same length. 

5 Show that r = mx is tangent to the circle x2 + y2 + 2ax + 2by + c = 0 if and only if 
(a + mb)2 = c(l + m2). 

6• Show that if the circles x2 + y2 - 2a1x - 2b1y + c1 = 0 and x2 + y2 - 2a2 x - 2b2 y + 
c2 = 0 intersect at right angles, then 2(a1a2 + b1b2) = c1 + c2 , and conversely. 

7 Let 0 < b < a. Show algebraically that the ellipse x2/a2 + y2/b2 = l and the circle 
x2 + y2 = r2 have four intersection points if b < r < a and none if 0 < r < b or r > a. 

s• Find the locus of all points x such that the two tangents from x to the ellipse 
x2/a2 + y2/b2 = I are perpendicular. 

9 Find all parabolas with focus 0 and axis the y-axis. 
10 (cont.) Show that any two that open in opposite directions intersect at right angles. 
1 1  Show for the ellipse in Fig. I that ur;/w2 = const. 

Fig. 1 

12 (cont.) Give a similar result for the hyperbola. 

y 

x 

13 Find the equation of the rectangular hyperbola with foci (c, c) and (-c, -c� 
14 Show in Fig. 2 that d is independent of x. 
15 For what values of m docs .r = mx intersect the hyperbola x2/a2 - y2/b2 = I ? 
16* Prove that an ellipse and a hyperbola with the same foci always intersect at right angles. 
17 Find the polar equation for the locus of all points, the product of whose distances 

from ( - a, 0) and (a, 0) is a2• 
18 Show that the region x � a, x2/a2 - ,r2/b2 � 1 is convex. 
19 Two firms arc 2c km apart, and they both sell an item at the same price. However, 

the shipping cost per km (as the crow flies) for one firm is k times that for the other. 
Find the curve of equal cost. 

20 (cont.) Suppose the shipping costs per km arc equal, but one factory price is k times 
the other. Now solve the problem of equal cost. 

Here arc two drawing board and string constructions for curves. The string ends arc 
attached at P and A. Find the curve in 
21 ll 

A 

Fig. 3 



Approximation ID 
1 .  INTRODUCTION 

It is not always possible to solve a problem with an exact numerical answer, 
even though in theory a precise answer may exist. Examples: find exactly the 
solution of cos x = x; find exactly the value of 

J J e-"1 dx. 
0 

The next best thing is approximating the answer. In this chapter we shall learn 
some methods of approximating numbers and functions to as high an accuracy as 
desired. 

From a practical point of view, approximate answers are just as good as exact 
answers because you cannot have greater accuracy than your data and your measuring 
tools. For instance, suppose a surveyor finds that the side of a square field measures 
135.2 m. This means that the exact length is between 135.15 and 135.25 m. Hence 
it is useless to say that the diagonal is 

135.2y12 ::::: 135.2 x 1.414214 ::::: 191.201674 m. 

Such accuracy is unjustified. All that can be said is that the true value is between 

135.15J2 ::::: 191.13 and 135.25J2 ::::: 191.27. 
This chapter is a brief introduction to a vast subject called Numerical Analysis. 

The main topic of the chapter is approximations of functions by polynomials, and 
their applications. Two kinds of polynomial approximations are discussed. The first 
uses data at a single point: values of the function and its successive derivatives. 
This approach leads to Taylor polynomials. The second uses values of the function 
at several points. This technique is called interpolation. 

An approximation is useful only when we are able to tell how accurately it 
approximates, that is, to estimate its error. Estimation of error leads us to a second 
topic, a deeper study of Rolle's Theorem and the Mean Value Theorem than we 
made in Chapter 3. 

Among the various applications of these theorems are the following three: 
(1) iteration methods for estimating zeros of functions, (2) Simpson's Rule for 

447 
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approximate integration, (3) Lhospital's Rule for limits of the form lim., .. ,. /(x)/g(x), 
where/(x)-0 and g(x)-0 as x-a. 

2 FIRST AND SECO N D  DEGREE APPROXIMATIONS 

We begin with a basic application of differential calculus, approximating functions 
by linear functions. Graphically, this amounts to approximating a curve by its tangent. 

-" 

a x 

(a) Graph of a function (b) Enlarsemcnt of a small nciahborhood 

Under a microscope a smooth curve appears nearly straight. Its tangent at 
(a, /(a)) is quite close to the curve, at least in a small neighborhood of that point 
(Fig. 1). The slope of the tangent is f'(a� Hence by the point-slope formula, the 
equation of the tangent line is 

y - f (a) = f'(a)(x - a� that is, y = f (a) + f'(a)(x - a� 
Since the tangent is close to the curve, it is reasonable to expect that the linear 
function /(a) + f'(a)(x - a) is a good approximation of /(x� at least for x near a. 
Just how good the approximation is depends on the error e(x � where 

e(x) = /(x) - [/(a) + f'(a)(x - a)]. 
• EXAMPLE 1 How closely does the tangent to y =  !x2 at (3, 3) approximate 
the function? 

So/lltion First check that (3, 3) is on the curve: !(32) = 3. Next, 

y' = JX, y'(J) = 2, 
so the tangent at (3, 3) is 

y = 3 + 2(x - 3) = 2x - 3. 
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We want to know how closely 2x - 3 approximates !x2 near x = 3. See Fig. 2. Let 
e(x) denote the error in this approximation: 

e(x) = !x2 - (2x - 3) = i(x2 - 6x + 9) = i(x - 3)2• 
This is good news: the error equals the square of the distance from x to 3 times a 
factor !. Therefore if Ix - 3 I is small, e(x) is very small. For instance, if 
Ix - 3 1 < 10- 3, then le(x)I < !(10- 3)2 < 4 x 10-1• • 

y = 9( x +  I )  

(- 1 . 0) 

x 

y y = (x + I )(x - 2)2 

1 x 

• EXAMPLE Z How closely does the tangent to y =  (x + l )(x - 2)2 at ( - 1, 0) 
approximate the function? 

Sollllion Clearly y( - 1 ) = 0, so the given point lies on the graph (Fig. 3 ). Next, 

y' = (x - 2)2 + 2(x + l)(x - 2� y'(- 1) = 9. 
The tangent at ( - 1, 0) is y = 9(x + 1). 
Therefore, the error made in approximating the curve by its tangent is 

e(x) = (x + l)(x - 2)2 - 9(x + 1 ) = (x + l)[(x - 2)2 - 9] 
= (x + 1 )(x2 - 4x - 5) = (x + 1)2(x - 5). 

Suppose we limit attention to Ix + 1 I < 1, that is, -2 < x < 0. Then Ix - 5 1 < 7, so 

le(x)I < 7lx + 1 12• 
For instance, if Ix + 1 1 < 10-4, then le(x)I < 7 x 10- • < 10- 1• 

There is a lesson in these two examples. In each case the error 

e(x) = /(x) - /(a) - f'(a)(x - a) 
is more or less equal to a constant times (x - a)2• In Example 1, 

e(x) = i(x - 3)2 ; 
and in Example 2, 

e(x) = (x - 5)(x + 1)2 � -6(x + 1)2 

• 
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near x = - 1 .  Later we shall prove that this is typical behavior provided f(x) is 
smooth enough. 

Se ond Degre Approximation The linear or first degree approximation to 
f (x) at x = a is 

P1 (x) = f(a) + f'(a)(x - a). 

Near x = a, the function p1 (x) appears to be a good approximation to f(x ). This is 
not surprising since 

P1(a) = f(a� P11(a) = f'(a); 

hence both y =  p1(x) and y = f(x) pass through the point (a, f(a)) with the same 
slope. 

For greater accuracy, we shall approximate f(x) by a polynomial whose graph 
passes through (a, /(a)) with the same slope as y = f(x� and which also curves 
the same amount as y = f(x� Now the curving of a graph is due to change in its 
slope. The slope is !'(4 and the rate of change of the slope is the second 
derivativef"(x� Therefore, we seek a polynomial p2(x) such that 

p2(a) = f (a), P2(a) = f'(ah and P2(a) = f"(a). 

Let us try a quadratic 

p2(x) = A + B(x - a) + C(x - a)2. 

We note that P2(a) = A, Pi(a) = B, P2(a) = 2C. 

(Verify these statements.) Since we want 

P2(a) = f(ah 

there is no choice but 

A = f(ah 

Pi(a) = f'(a), Pi(a) = f"(ah 

B = f'(a), C = !f"(a). 

The second degree approximation to f(x) at x = a is 

P2(x) = /(a) + f'(a)(x - a) + if"(a)(x - a)2. 

The polynomial p2(x) agrees with /(x) at x = a, and its derivative and second 
derivative agree with those of f(x) at x = a. 

The first two terms of p2(x) are /(a) + f'(a)(x - ah which is p1(x). Thus p2(x) 
consists of the linear approximation to f(x) plus another term, !f"(a)(x - a)2, 
which (we hope) corrects some of the error in linear approximation. 

• EXAMPLE 3 Approximate r near x = 0 by the first and second degree 
polynomials p1(x) and p2(x). Test their accuracy. 

Sol11tion Use the formula 

P2(x) = f(a) + f'(a)(x - a) + -!f"(a)(x - a)2, 
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where /(x) = r and a =  0. In this case /(x) = f'(x) = f"(x) = r, so /(0) = 
f'(O) = f"(O) = I. Therefore 

and 

Table 1 compares r with p1(x) and p2(x) for various values of x. 

Table 1 

Small values of x Larger values of x 

x r p,(x) Pz(x) x r p,(x) P2(x) 

-0.4 0.6703 0.6000 0.6800 - 2.0 0.1353 - 1.0000 1.0000 
-0.3 0.7408 0.7000 0.7450 - 1.5 0.2231 -0.5000 0.6250 
-0.2 0.8187 0.8000 0.8200 - 1.0 0.3679 0.0000 0.5000 
-0.l 0.9048 0.9000 0.9050 -0.5 0.6065 0.5000 0.6250 

0.0 1.0000 1.0000 1.0000 0.0 1.0000 1.0000 1.0000 
0.1 1.1052 l . 1000 1. 1050 0.5 1.6487 1.5000 1.6250 
0.2 1.2214 1.2000 1.2200 1.0 2.7183 2.0000 2.5000 
0.3 1.3499 1.3000 1.3450 1.5 4.4817  2.5000 3.6250 
0.4 1.4918 1.4000 1.4800 2.0 7.3891 3.0000 5.0000 

From the table we see that p1(x) and p2(x) are good estimates of r for x near 0, 
but that p2(x) is considerably better than p1(x). Both estimates become poor as x 
moves away from 0, but p2(x) stays accurate in a wider range because its graph 
is curved like that of r near x = 0. Sec Fig. 4. 

Fla- 4 Second degree approximation to y = r  at x = O  

• 

• EXAMPLE 4 Estimate y = l/x near x = 1 
approximations. Test their accuracy. 

by its first and second degree 

So• • ..:-n 1 I 1 ••• .., y = -, y = - 2• 
x x 

" 2 y = 3· x 
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hence y(l) = 1, y'( l ) = - 1, y"(l) = 2. Therefore 

P1(x) = 1 - (x - l� p2(x) = 1 - (x - 1)  + (x - 1)2• 
Since we are dealing with numbers near l, it is convenient to leave p1(x) and 
p2(x) in terms or x - 1. 

Table 2 compares l/x with p1 (x) and p2(x). 
Table 2 

x near 1 Other values of x 

x l/x P1(x) P2(x) x l/x P1(x) P2(x) 

0.85 1 . 1765 1.1500 1. 1725 0.25 4.0000 1.7500 2.3125 
0.90 1.1 1 1 1  1 . 1000 1. 1 100 0.50 2.0000 1.5000 1.7500 
0.95 1.0526 1.0500 1.0525 0.75 1.3333 1.2500 1.3125 
1.00 1.0000 1.0000 1.0000 1.00 1.0000 1.0000 1.0000 
1.05 0.9524 0.9500 0.9525 1.25 0.8000 0.7500 0.8125 
1.10 0.9091 0.9000 0.9100 1.50 0.6667 0.5000 0.7500 
1.15 0.8696 0.8500 0.8725 1.75 0.5714 0.2500 0.8125 

From the table, we see that p1(x) is a good approximation to l/x provided x is 
near 1, but that p2(x) is much better. Both estimates become poor as x moves away 
from 1, but p2(x) is accurate in a wider range. • 

Erro Est1ri s In our examples or linear approximations, the error had order 
or magnitude Ix - al2• By analogy, we might expect the error in second degree 
approximations, 

e(x) = /(x) - p2(x� 
to have order or magnitude Ix - a l3• By that we mean 

e(x) ::::::: c(x - a)3 ror x near a, 

where c is a suitable constant. We shall prove this conjecture in Section 4. Meanwhile, 
let us veriry it in an example. 

• EXAMPLE I How closely does p2(x) approximate the runction y = l/x 
near x = 1 ? 
Sohltion By Example 4, 

e(x) = ! _ p2(x) = ! _ 1 + (x - 1) - (x - 1)2• x x 
Hence e(x) = 1 : x + (x - 1) - (x - 1 )2 = (x - 1 ) [- � + I - (x - I)] 

= (x _ 1) rx: 1 _ (x _ 1 ) ] = (x _ 1 )2G - 1) = _ � (x _ 1 )3• 
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For x near 1, e(x) � - (x - 1 )3, 
so the order of magnitude of the error is as expected. 

For a more precise estimate, not involving the vague symbol �. let us restrict 
our attention to a neighborhood of x = l, say ! < x < i· On this interval I l/x I < 2, 
hence we get the specific estimate 

le(x)I = I- � I Ix - 1 13 < 2 lx - 1 13• 
For instance, if Ix - I I < 10- 3, then le(x)I < 2 x 10-9; the approximation is very 
close indeed. • 

EXERCISES 

Given f(x) and x = a; find p1(x) and the error in the form e(x) = (x - a)2g(x) 
l 1 - x2 a = 0 2 2x2 + 3 1 3 x3 - 1 
4 x3 2 S 1/x t 6 x2 - x3 1 
7 x4 1 8 x5 - 1 9 1/x2 - 1 

10 1/(x3 + 1) 1. 

Given f(x) and x - a, find p1(x) 
1 1  cos x a = O  
13 xr 0 

12 sin x in 
14 11(1 + r) o. 

Given f(x) and x = a, find p2(x) and the error in the form e(x) = (x - a)3g(x) 
15 x + 1 0 16 (x - 2)3 + 3(x - 2)2 - 4(x - 2) + 1 2 
17 l/x - 2  18 1/(x2 + 1 )  0 
19 x2/(x + 1 )  0 20 x3/(x + 1) 1. 

Given f(x) and x = a, find p2(x) 
21 e2z 0 
23 tan x 0 

Complete the table (4 place accuracy) at x = 0 

22 COS X 0 
24 sinh x 0. 

� � 

x 

0.1 
0.2 
0.3 
0.4 

0.5 

x 

0.1 
0.2 

0.3 
0.4 
0.5 

27 Justify the approximation In x � 2(x - l) near x = 1. Test it numerically for x = 0.5, x + l  
0.8, 1.2, 1.5, and 2.0, and compare it to p2(x). 

28 Find a, b, c so e -z � ax + b near x = 0 in the sense that both sides have the same ex + 1 
p2(x ). (This is called Pade approximation.) 
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3 TAYLOR APPROXI MATION S  

Let us extend the ideas of Section 2 to the approximation of functions by 
polynomials of arbitrary degree. We shall need an algebraic fact : every polynomial 
can be expressed not only in powers of x, but also in powers of x - a, where a is 
any number. This form of the polynomial is convenient for computations near x = a. 

Examples ( 1 )  p(x) = x2 + x + 2, a =  l .  
Set u = x - I so x = u + 1 :  

p(x) = x2 + x + 2 = (u + 1)2 + (u + 1 )  + 2 
= (u2 + 2u + 1 )  + (u + 1 )  + 2 = u2 + 3u + 4 

= (x - 1 )2 + 3(x - 1 )  + 4. 

(2) p(x) = x4, a =  - 1. 

p(x) = x4 = [(x + 1 )  - 1 )4 

= (x + 1 )4 - 4(x + 1 )3 + 6(x + 1 )2 - 4(x + 1 )  + l. 

In genera� to express 

p(x) = B0 + B1x + B2 x2 + B3 x3 + · · · + B,.x" 

in powers of x - a, we write u = x - a, then substitute u + a for x:  

p(x) = B0 + B1(u + a) +  B2(u + a)2 + · · · + B,.(u + a)". 

Now we expand each power by the Binomial Formula and collect like powers of u. 
The result is a polynomial in u = x - a, as desired. 

This method is laborious when the degree of p(x) exceeds three or four. If 

p(x) = A0 + A1(x - a) + A2(x - a)2 + · · · + A,.(x - a)" 

is the desired expansion of p(x) in terms of x - a, we would like a way of computing 
the coefficients A0 , A1, etc. directly, without a lot of algebra. 

Obviously p(a) = A0 , so finding A0 is no problem at all. But how shall we get A 1 ? 
The trick is to differentiate p(4 then set x = a: 

p'(x) = A1 + 2A2(x - a) + · · · + nA,.(x - a)"- 1, p'(a) = A1 •  
This trick can be repeated: 

p"(x) = 2A2 + 3 · 2A3(x - a) + · · · +  n(n - l)A,.(x - a)"- 2, p"(a) = 2A2 , 

pm(x) = 3 · 2A3 + · · · + n(n - l)(n - 2)A,.(x - ar-3, p'"(a) = 3 · 2A3 = 3 !  A3 
Continuing in this way, we find 

p141(a) = 4! A4, p<51(a) = 5 ! A5 , • • • , p<"1(a) = n! A,. .  

(Here p<"1 is the k-th derivative.) 
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If p(x) is a polynomial of degree n and if a is any number, then 
1 p(x) = p(a) + p'(a)(x - a) + 2 1 p"(a)(x - a)2 

+ ;, p"'(a)(x - a)3 + · · · + 
n
l
! t"1(a)(x - a)". 

• EXAMPLE 1 Express p(x) = x3 - x2 + 1 in powers of x - !. 

Sobttio• 

p(x) = x3 - x2 + 1, 

p(!) = •• 
Therefore 

p'(x) = 3x2 - 2x, 

p'(!) = -i. 

p"(x) = 6x - 2, 
p"(!) = 1, 

p"'(x) = 6, 

p"'(!) = 6. 

• 

The next example illustrates the computational advantages gained by expanding 
polynomials in powers of x - a. 

• EXAMPLE 2 Let p(x) = x3 - x2 + 1 .  Compute p(0.50028) to 5 places. 
Sohttio• Use Example 1 :  

p(0.50028) = p(! + 0.00028) = .  - i(0.00028) + !(0.00028)2 + (0.00028)3• 
The last two terms on the right are smaller than 10- 7• Therefore to 5 places, 

p(0.50028) � • - i(0.00028) = 0.87500 - 0.00007 = 0.87493. • 

Summat ion N otation Because we shall write polynomials frequently, it is con
venient to use summation notation: 

" L A1 x; = A0 + A1x + A2x2 + · · · + A,. x". 
l•O 

The formula for an n-th degree polynomial in powers of x - a can be abbreviated : 

" Ip111(a) p(x) = -
.
-1 (x - aY. t .  

l•O 

Here pl11(a) denotes the i-th derivative of p(x) evaluated at x = a, with the special 
convention p<0>(a) = p(ai (Also recall the convention O!  = 1.) 
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ol" no 1ia Appro 1mations Let us return to the problem: given a function 
/(x) and a number a, find a polynomial p(x) of degree n that approximates /(x) 
for values of x near a. In view of the way we found p2(x), it now seems reasonable 
to construct a polynomial p,.(x) so that 

p,.(a) =/(a), p�(a) = f'(a), p;(a) = f"(a), · · · , p,.1">(a) = /'"1(a). 
Thus p,.(x) mimics /(x) and its first n derivatives at x = a. 

Let us find p11(x) explicitly. We write 

p,.(x) = Ao +  A1(x - a) + Az(X - a)2 + · · · + A11(x - ar 

and choose the coefficients At appropriately. We know that At = p,.•t1(a)/k !. Since 
we want p,.•t>(a) = p•l(a), we must choose At = p•1(a)/k !. 

The n-th dep-ee Taylor polynomial of /(x) at x = a  is 

1 l p,.(x) = /(a) + f'(a)(x - a) + 
2 ! f"(a)(x - a)2 + . . . + 

n! J'11>(a)(x - ar 

II 

= f (a) + .l !':�a) (x - a'f. 
t• I 

Remark When /(x) is itself a polynomial of degree n, then p11(x) = /(x) is precisely the 
expression for /(x) in powers of x - a. Furthermore, in this case, 

p,.(x) • P11+ 1(x) = P11+2(x) = · · · · 

(Why?) Thus for an n-th degree polynomial /(x� the n-th degree and all higher Taylor 
polynomials eq114l /(x). 

Here are the first three Taylor polynomials explicitly: 

P1(x) = /(a) + f'(a)(x - a), 

P2(x) = /(a) + f'(a)(x - a) + !f"(a)(x - a)2, 
p3(x) = /(a) + f'(a)(x - a) + !f"(a)(x - a)2 + if"'(a)(x - a)3• 

The first two are old friends from the previous section. In general, each Taylor 
polynomial is derived from the preceding one by addition of a single term: 

P11+ 1 (x) = p,.(x) + (n: 
l ) !  

J'11• 1>(a)(x - ar• •. 

We anticipate that p11(x) is a good approximation to f(x); the error is /(x) - p,.(x). 
We try to reduce this error by adding an additional term /'..+ 11(a)(x - ar• 1 /(n + 1 ) !  
to p,.(x), thereby obtaining p,.. 1(x), an even better approximation (we hope). 

EXAMPLE 3 Find the n-th degree Taylor polynomial of 
(a) /(x) = r, at x = 0 (b) /(x) = In x, at x = 1. 
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Sobttio• (a) Compute successive derivatives or /(x) = r and evaluate them at 
x = O: 

/(x) = r, 
f(O) = 1, 

f'(x) = r, 
f'(O) = 1, 

f"(x) = r, . .  · ;  

f"(O) = l, · · "  

Hence, according to the recipe, 

1 1 
p (x) = f (0) + f'(O)x + -f"(O)x2 + · · · + -f'11'(0>x-11 2 ! n ! 

II 

= l + x +- +-+ · · · + - = -x2 xl JC' L� 
2 ! 3 !  n !  k t '  

t•O 
(b) Compute successive derivatives or /(x) = In x and evaluate them at x = 1 :  

!' - �  !" = - �. f,,, _ 2 1 JC4, _ _  3 ! . . . P' = (- 1f- 1 (k - 1)! - x' x -x3 ' - x4' ' � ' 
hence /(1) = 0, f'(l ) =  1, f"(l) = - 1, /"'(1) = 2 !, 

/'41(1) = -3 !, . . .  ,p•>(1 ) = (- 1f- 1(k - 1)!. 

Therefore 
p•1(1) (- 1f-1(k - l)! (- 1f- 1 
----;(! = k ! = k 

II 

and P11(x) = L (- lf- 1 (x � lf 
•- 1 

Remark Table l gives some evidence on the accuracy of these approximations for r. 
Teble 1 

x r P2(x) p,(x) p4(x) 

O. l l.10517 1.10500 l.10517 1.10517 
0.2 l.22140 1.22000 1.22133 1.22140 
0.3 l.34986 l.34500 1.34950 1.34984 
0.4 l.49182 l.48000 1.49067 1.49173 
0.5 l.64872 l.62500 1.64583 1.64844 
0.75 2. 1 1700 2.03125 2.10156 2.1 1475 
l.O 2.71828 2.50000 2.66667 2.70833 

• EXAMPLE 4 Compute the Taylor polynomials at x = 0 for 
(a) /(x) = sin x, (b) /(x) = cos x. 
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So•tio11 (a) Compute derivatives: /(x) = sin x, 

f'(x) = cos x. f"(x) = -sin x, f"'(x) = -cos x, J'41(x) = sin x, · · · ,  

repeating in cycles of four. At x = 0, the values are 

0, 1, 0, - l ,  0, 1, 0, - l ,  0 . . .  
. . 

Hence the n-th degree Taylor polynomial of sin x is 

x3 xs x1 x9 
P.(x) = x -

3 ! 
+ 

5 ! - 7 ! + 9 ! - . . . 
' 

where the last term is ±X-/n! if n is odd and ±x"- 1/(n - 1 ) !  if n is even. For 
example, 

X3 XS 
Ps(x) = p6(x) = x - - + - , 

3 !  5 !  
x3 xs x' 

p,(x) = Pa(x) = x - 3 !  + 5!  - 7 ! ° 

In general, p2,._ 1 (x) = p2,.(x � and the sign of the last term is plus if m is odd, minus 
if m is even: 

xl xs x2111- 1 
P2.- 1(x) = P2.(x) = x - 3 !  + 5 !  -

. . .  + ( - 1)"'- 1  
(2m - 1 ) !  

(b) Since cos x is the derivative of sin x, we can read off its derivatives at  x = 0 
from those of sin x found in (a). They are 

l ,  o. - l, 0, l ,  0, - l ,  0, 

repeating in cycles of 4. Using these values, we obtain 

• 

Remark Table 2 gives further evidence on the accuracy of Taylor polynomials for 
approximation. Table 2 

x sin x p1(x) = P2(x) p,(x) = p4(x) p,(x) - p,(x) 

0.1 0.09983 0.10000 0.09983 0.09983 
0.2 0.19867 0.20000 0.19867 0.19867 
0.3 0.29552 0.30000 0.29550 0.29SS2 
0.4 0.38942 0.40000 0.38933 0.38942 
0.5 0.47943 o.soooo 0.47917 0.47943 
1.0 0.84147 1.00000 0.83333 0.84167 
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Express in powers of x - a 
I x2 + Sx + 2 a = l 
3 2x3 + 5x2 + l3x + 10 - 1  
5 2x4 + 5x3 + 4x + 16 - 2 
7 5x5 + 4x4 - 3x3 - 2x2 + x + l - l 

Compute p(a) to 5 places 
9 x3 - 3x2 + 2x + l a = l .004 

I I  4x4 - 3x2 + lOx + 12 -0.995 

Compute the S-th degree Taylor polynomial of 
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2 x3 - 3x2 + 4x a = 2 
4 3x3 - 2x2 - 2x + 1 l 
6 x4 - 5x1 + x + 2 2 
8 x5 + 2x4 + 3x2 + 4x + S -2. 

10 x4 + x3 + x2 + x + l l .999 
12 x5 + 2x2 - 6x - S -3.0001. 

13 xe-" at x = 0 14 x2 cos x at x = 0 
15 (sin x)/( l + x3) at x = 0 16 x3/(1 + x2) at x = 0 
17 sin x. at x = in 18 cos x at x = ix 
19 l/x3 at x = - 1  20 e"1 at x = 0. 

4. TAYLOR'S FORMULA 

We introduced the Taylor polynomial p,,(x) in the last section with the hope that 
p,,(x) would be a good approximation to a given function /(x). Our optimism will 
be justified if the error 

r,,(x) = f(x) - p,,(x) 

is very small compared to x - a. The next two statements assure us that it is. The 
first gives an explicit formula for the error, the second an estimate of its size. 
In this subject the error is usually called the remainder. That is why we wrote 

r11(x) above rather than our usual e11(x). 

Taylor's Formula with Remainder Suppose /(x) has continuous deriva
tives up to and includingj<•+ 11(x) near x = a. Write 

/(x) = p.(x) + r11(x), 

where p.(x) is the n-th degree Taylor polynomial at x = a  and r11(x) is the 
remainder (or error� Then 

1 f" r11(x) = 1 (x - t)"/11'+ 11(t) dt. n . • 

Usually the integral expressing r11(x) cannot be computed exactly. Nevertheless, 
the integral can be estimated. One important estimate depends on a bound for the 
(n + 1)-th derivative,J<•+t l(x). 
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Estimate of Remainder Let 

f(x) = p,.(x) + r,.(x� 
where p,.(x) is the n-th Taylor polynomial of /(x) at x = a. Suppose that 

IP"+ 11(x)I S M  

in some interval including a, say b s a � c. Then 

for b s x s c. 

Let us assume Taylor's Fonnula temporarily. (It will be derived at the end of this 
section.) The remainder estimate then follows easily: 

lr,.(x)I =� I f"(x - t)"j<"+ ' '(t) dt I s �  I f" l(x - t)"f'"+ 11(t)I dt I n . LJ. n.  LJ. 
S � If: l(x - t)"I dt I = (n � l ) !  Ix - al11• 1• 

Note We have used inequality (5). p. 247. The absolute value signs outside of the integral 
take care of the possibility that x < a. 

• EXAMPLE 1 Suppose that the function e" is approximated by its n-th degree 
Taylor polynomial at x = 0. Estimate the remainder assuming Ix I s B. 

So"'ti°" The (n + 1 )-th derivative is JI"+ 11(x) = e". If x � 0, the largest value of 
p•+ ll(x) between 0 and B is e11 < 38. By the remainder estimate with M = 38, 

for 0 S x S B. 

If x � 0, the largest value of JI"+ ''(r) between 0 and -B is e0 = 1. By the 
remainder estimate with M = I ,  

Ix I"+ a lr,.(x)I S 
(n + l ) ! for x s 0. • 

How could we compute a 5-place table of e" for a certain range of x? One 
method is to approximate e" by a Taylor polynomial p,.(x) with n large enough that 
lr,.(x)I < 5 x 10-6 on the given range. (For the sake of economy we should use the 
smallest n that does the trick.) This is a practical method because computing many 
values of a polynomial is relatively easy, especially with a computer. f'Ne remark 
that there are other ways of approaching this problem, for instance by inter
polation. See Sections 7 and 8.) 

• EXAMPLE 2 Use the conclusion of Example 1 to estimate the smallest n such 
that the remainder in Taylor's Fonnula for e" at x = 0 satisfies lr,.(x)I < 5 x 10-6 
for 

(a) l x l < 0.5 (b) l x l < 1 .  



4. Taylor's Formula 

Sollltioll By Example 1, lr.(x)I S (n :• l)! 11'+ 
1 for lx l  S B. 

The problem is to choose n as small as poaible so that 

3• 
11'+ 1 s lo- 6 (n + 1)! < x · 

(a) Here B = !. so we want 

3112 ( l)•+ 1 ,J3 
(n + l)! 2 < S x l0-6, that is, 2•• 1 (n + l) ! > S x l0_ 6 • 

,J3 2 Now T x 106 < S x 106 = 4 x 105, 
so it suffices to choose n such that 

2••1(n + l) ! �4 x 105• 
By trial and error, 

27 x 7 ! > 6 x 105 but 

The correct choice is n + 1 = 7, that is, n = 6. 
26 x 6! < s x 10". 

(b) This time B = 1. By similar reasoning, n must satisfy 

(n: 1)! < S x 10-6, 

so it suffices to choose n such that 

3 (n + 1)! > S x 106 = 6 x 105• 
Since 9! < 4 x 105 and 10! > 3 x 106, the correct choice is n + 1 = 10, that is, 
n = � • 

Remark By calculation, lr5(0.S) I  � 2.3 x io- 5, so n • S doesn't work; 6 is the smallest 
possible n for part (a� For part (b� n = 9 is not the smallest possible. It can be shown 
with some difficulty that lr1(x)I < 4 x 10-6 for lxl  < 1. Since lr7(1)1 � 2.8 x 10-5, we sec that 
n = 8 is the smallest possible. Can you sec where we lost ground in our estimates? 

• EXAMPLE 3 Estimate the remainders in Taylor's Formula for 
(a) sin x (b) cos x. (Refer to Example 4, p. 457.) 
Sollltio• (a) A bound for the (n + 1 )-th derivative is easy: Ip•+ 0(x)I s 1 
becausej<•+ l)(x) = ±sin x or ±cos x. Hence 

Ix !•+ 1 lr.(x)I S (n + l)! . 

By Example 4a. Pz.- 1(x) = p2.(x); it follows that 

Ix 12111• 1 l r2.- 1(x)I = lrz.(x) I S (2m + l)! 
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(b) The estimate for l r,.(x) I  is exactly the same as in (a). This time. by Example 4b, p2,,.(x) = p2,,. + 1 (x) and it follows that 
lxl2111 + 2 l r2..,(x) I = l r:z,,.+ ,(x)I = (2m-+ 2) ! .

 • 

EXAMPLE 4 Find the lowest degree Taylor polynomial for sin x at x = 0 such 
that the estimate of Example 3a implies 

l r,.(x)I < 5 x 10- 11 

Sol"tiolf By Example 3a, 

for Ix I � i7t. 

hence we want to choose m so that 
(11t)2m+ I 

(2� + I ) !  < 5 x 10- 11• 
By trial and error we find 

(t7t)7 > (�)7 > 2 x 10- s 7 ! 7 ! and 

Therefore the correct choice is 2m + I = 9, that is, m = 4, and the corresponding 
Taylor polynomial is 

xl xs x1 P2 ... - 1 (x) = P1(x) = x - 3 ! + 5 ! - 7! . 
by Example 4a, p. 457. • 

Remark Since lr5(in:)I � 3.6 x io-5• the smallest Possible n is 7. Compare the remark 
arter Example 2. 

• EXAMPLE I If f(x) = In x is approximated by its n-th degree Taylor poly
nomial at x = I, estimate the remainder for Ix - l I <  0.5. (Refer to Example 3b, 
p. 456.) 
Sol"tiolf As was shown in that example, JC"+ 1 1(x) = ±n!/x11• 1. If lx - 1 1 < 0.5, 
then x > 0.5 and hence 

Therefore 

since 

If'"+ •i(x) I < (o.;� .·· = 211+ 'n !. 

211• •n !  11+ 1 l2(x - 1 ) 111+ 1 I r  (x) I < 
· -- -· Ix - J I = · -- - ·-- - < - • 

" - (n + l ) !  n + l  n + l 
l 2(x - l ) I  < l for Ix  - l I <  0.5. • 

D ividing out Zeros If f(x) is a polynomial• and x = a  is a zero of multiplicity 
m. then (x - ar can be divided out of/(x); the quotient is another poly�omial g(x): 

/(x) = (x - ar'g(x). 

• For a review of some basic properties of polynomials. sec pp. 49-50. 
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It is remarkable that an analogous result holds for arbitrary functions that have 
enough continuous derivatives. 
Let us first look at the easiest case, that of a simple zero. Suppose /(a) = 0 and 

f(x) is differentiable at x = a. Then 

lim /(x) = lim/(x) -/(a) = f'(a) . .., .... 11x - a .., .... 11 x - a 
We define a function g(x) by 

J g(x) = /(x) x - a  for x :#: a  
j g(a) = f'(a). 

Then /(x) = (x - a)g(x) 
(even at x = a). Furthermore, g(x) is continuous at x = a  because 

lim g(x) = lim /(x) = f'(a) = g(a). 
x-• x-• X - a 

(Also, g(x) is continuous at each x where /(x) is continuous.) 
Example 

sin x = xg(x� 
! ( ) sin x g x  =--

where � x 
I g(O) = 1, 

for x :#: 0 

and g(x) is continuous, even at x = 0. 

Assuming thatf'(x) is continuous, we can find a neat formula for g(x) by starting 
with 

J(x) = r/'(t) dt, f(a) = 0 . 
.. 

We change variables, setting t = a +  (x - a)u, so u  goes from 0 to I as t goes from 
a to x. Then dt = (x - a) du and 

f... f I . J I f(x) = /'(t) dt = f'[a + (x - a)u](x - a) tlu = (x - a) f'[a + (x - a)u] du. 
.. 0 0 

. 1 

Thus /(x) = (x - a)g(4 g(x) = j f'[a + (x - a)u] du . 
• 0 

The continuity of /'(t) implies the continuity of g(x) (we skip the details); hence 
f I 

. I 
g(O) = f!(a + 0) du = J f'(a) du = f'(a). · o o 

Now we state the general case; the proof is left for the exercises. 
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Dividing out Zeros Suppose f(x) has n + 1 continuous derivatives near 
x = a  and 

f(a) = f'(a) = f"(a) = · · · =!'"'(a) = 0. 

Then f(x) = (x - ar+ 1g(4 where g(x) is a continuous function near x = a  and 

What is more, 

( ) I. f(x) 1 1c11+ "( ) g a  = 1m -
( --r+ •

= (--I ) ' 
a .  

x-• x a n + . 

1 1· g(x) = -1 ( 1 - u)"f'"+ l l[a + (x - a)u] <iu. 
n . o 

Example f(x) = 1 - cos x at x = 0. Thenf(O) = f'(O) = 0 and f"(x) = cos x, so 

1 - cos x = x2g(x� 
· ' 

g(x) = I ( 1 - u) cos(xu) du, 
· o  

I. 1 - cos x  (O) i' ( 1 
1m ----2 -- = g = I - u) du = . 

x-o x 0 2 

Derivation of Taylor's Formula  Recall that p,.(x) is constructed so that 

p,,(a) = f(a). p�(u) = f'(a� p;(a) = f"(a), · · · • p/'1(a) = f'"1(a). 

Consequentlv the remainder, r,.(x) = f(x) - p,.(x). satisfies 

r,.(a) = r�(a) = r;(a) = · · · = r,.c"1(a) = 0. 

The following lemma asserts that such a function can be expressed as an 
integral. 

Lemma Let g(x) have continuous derivatives near x = a  up to and including 
g«"+ 1 1(x� and suppose 

g(a) = g'(a) = gH(a) = · · · = gc"1(a) = 0. 

Then 1 f x g(x) = 1 (x - rrgcn+ l l(r) dr. 
,, . . 

The lemma is proved by repeated integration by parts. Fix a and x, and set 

Then 

( ) 
(x - rr 

U ( = -� 
n!  

( ),.- I 
J - X - (  d U =  t (n - I ) !  

and v(t) = g'"'(t). 

and 
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The integral in the lemma is 

I f" f" I (x - rrg'"+ 1 1(r) dt = u(r) dv(r) n . " • 

= u(r)t·(r) r - f." v(r) du(r) = 0 - 0 + (n � l )! f."
(x - rr- 1tt"'(r) dt, 

because g1"1(a) = 0. Thus n has decreased by one. Repeat the process until the 
exponent of x - t reaches 0: 

- (x - rrg'"+ 1 1(t) dt = (x - rr- 1g1"1(r) dt I f" I f" n! .. (n - I ) ! .. 

I f" I f" = 1 (x - t"f- 2g1"- 1l(r) dt = · · · = 1 g'(r) dt = g(x) - g(a) = g(x). 
(n - 2). .. o . • 

This completes the proof of the lemma. 
To derive Taylor's Formula from the lemma. take g(x) = r,.(x) = .f(x) - p,.(xi 

Then g(x) satisfies the hypotheses of the lemma and g1" + 1 1(x) = !'" + ' '(x) since p,.(x) 
is a polynomial of degree n or less. Hence 

I f" r,,(x) = 1 (x - t"ff'"+ 1l(r) dt. n . • 

EXERCISES 

Find p.(x) and an upper bound for l r.(x)I 

I sin 2x a = 0 2 sin 2x a • tx 
4 xr a x I 5 x2 In x a = I 
7 x2e-" a =  0 8 x2e-" a =  1 

10 x sin x a =  f1t I I  sin x + cos x a =  0 
13 sinh x a = 0 14 I + r + eb a = 0 
16• x/(I + x4) a =  0. 

3 xr a = 0  
6 x2 ln x a =  e 
9 x sin x a = O  

12 cosh x a =  0 
15 1/(1 + x) a =  I 

17 Estimate the error in approximating/(x) = ln(l + x) for -! s x s ! by its 10-th degree 
Taylor polynomial about x = 0. 

18 Approximate /(:c) = 1/(1 - x)2 for -i s x s i to 3 decimal places by a Taylor 
polynomial about :c = 0. 

19 Approximate sin2 :c by its 4-th degree Taylor polynomial about x = 0. Estimate the 
error if l x l  S 0.1. [Hint sin2 x = f(I - cos 2x).] 

20 Show that for 100 s x s IOI, the approximation Jx ::t: 10 + �(x - 100) is correct 
to within 0.0002. 

Let r.(x) be the remainder for sin x at a =  0. Show that 
21 lr3(x)l < S  x 10-6 for lx l < 0.22 =: 12.6° 
22 lr,(x)I < S x 10-6 for Ix I < O.S9 ::t: 33.8> 
23 lr,(x)I < S x 10-6 for lx l  < 1.06 ::t: 60.7° 
24 l_r9(x) I  < S x l0"6 for lx l  < 1 .6 1 ::t: 92.2°. 

25 Find k so that r2(x) for cos x at a = 0 satisfies lr2(x)I < S x 10-6 for Ix I < h. 
26 (cont.) How can you estimate quite simply sin(i§ir) to S places? 
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27 How many terms or the Taylor Polynomial for In x at a = 1 are needed to compute 
In 1.25 to 5 places 7 

28 (cont.) The same for In 0.75. 
29 Show that p3(x) yields 5-place accuracy in the approximation or sin x at a =  tit when Ix - titl < 0.1 � s.1°. 
30 (cont.) Show that p3(x) yields 8-place accuracy ror 44° < x < 46°. Write out p3(x). 
31 Find p3(x) for /(x) = jl-=x at a =  0, and estimate the error. 
32 In Ex. 12, p. 200, we found the diameter D or a hole in which a needle gauge of length 

L has "rock" x is D = E;JE - x
1
. Justiry the approximation 

Find 

33 
r - I - x - 1x1 lim 3 

.z .... o x 

x1 3x4 
D � L + 

2L 
+ 

8L3 . 

34 
tan x - x - !x3 

lim 5 • 
.. �o x 

35 Suppose/(O) = g(O) = O,f'(x) and g'(x) are continuous near 0, and g'(O) # 0. Prove 

lim/(x) =f'(O) . .. �o g(x) g'(O) 
36• (cont.) More generally, suppose /(0) = f

'
(O) = · · · = p•

1
(0) = 0, g(O) = g'

(O) = · · · = 
g1•1(0) = 0, p•+ 11(x) and g<.+ 11(x) are continuous near 0, and g1•+ ''(O) + 0. Prove 
g(x) -:;. 0 for 0 < lx l < l> with l> sufficiently small and 

. f (x) /'.+ 11(0) hm -( ) = (•+ "(O) " 
"�o g x g 

37• Suppose/'..+ 11(x) is continuous near x = a  and f'(a) = r(a) = · · · = f'•>(a) = 0. Sup
pose n is odd. Prove ir !'..+ 11(a) > 0, then /(a) is a local min; ir p•+ 11(a) < 0, then 
/(a) is a local max. (This generalizes the second derivative test.) 

38• (cont.) Suppose n is even andf'•+ 1 1(a) + 0. What conclusion? 
39• Use Taylor's Formula to derive the formula/(x) = (x - ar+ 1g(4 where g(x) is given 

by the last expression in the first box on p. 464. 
40• (cont.) Prove g(x) is continuous near x = a. 

5. ROLLE'S TH EOR E M  

In Chapter 3, on pp. 148-149, we introduced Rolle's Theorem and the Mean 
Value Theorem in order to prove some basic properties of differentiable functions. 
In this and the next section we shall take a second look at these theorems and their 
applications. 
Let us recall the statement of Rolle's Theorem, in its greatest generality. [ Let/(x) be a continuous function on the closed interval [a, b], and supposef'(x) 
exists for a < x < b. Assume f (a) = /(b). Then f'(c) = 0 for some c between a 

and b. 

If you read the proof in Chapter 3 carefully, you will see that this is exactly what 
was proved. 
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Sometimes we won't bother with the fussy "continuous on [a, b) and differentiable 
on a <  x < b," but merely say "differentiable on a s  x s b," which assumes slightly 

more. You should keep in mind the example /(x) = y'T=X2 on [- 1, l] to 
remember the difference between differentiable at the end points and just continuous. 

A number of interesting results are obtained by applying Rolle's Theorem to some 
cleverly chosen auxiliary function. The Mean Value Theorem itself is one case in 
point. Here is another. 

• EXAMPLE 1 Let /(x) be differentiable on [a, b], let /(a) = /(b) = 0, and let k 
be a constant. Prove that 

f'(c) = kf (c) 

for some c satisfying a < c < b. 

Sobltio• Set g(x) = e-1.Y(x). Then g(x) is differentiable, g(a) = 0, and g(b) = 0, 
so g(a) = g(b). By Rolle's Theorem, g'(c) = 0 for some c between a and b. But 

g'(x) = e-u(-k/(x) +f'(x)1 hence f'(c) = k/(4 • 

Application to Polynomials Long ago (p. 35) we claimed that the graph of a 
polynomial y = /(x) of degree n can go up and down at most n times. From the 
calculus point of view this is obvious because /'(4 a polynomial of degree n - 1, 
has at most n - 1 zeros, hence at most n - 1 sign changes. If these zeros are 
x1 < x2 < · · · < x1, where k s  n - l ,  then f'(x) has constant sign on each of the 
intervals 

Therefore/(x) is strictly increasing or strictly decreasing on each of these at most n 
intervals. 

For instance if n = S, then in the most extreme casef'(x) has 4 sign changes, so 
(assuming /(x) has positive leading coefficient) /(x) goes up-down-up-down-up, 
S ups and downs in all See Fig. 1. 

f' = O f • O  f' = O  f' = O 
/'>O l /'< O 1 f>O l r< o l  f >O • x, Xl X3 X4 x ft n ft n ft 

Fis. I 

Factored Polynomials A polynomial f (x) of degree n has at most n real 
zeros.• (We shall not discuss complex zeros here.) If x = r1 is a zero, then /(x) is 
divisible by x - r1, that is,/(x) = (x - r1)g(x� where g(x) is a polynomial of degree 
n - 1. If x = r2 is another zero, then g(x) is divisible by x - r2 • Hence /(x) = 
(x - ri)(x - r2)h(xi where h(x) is a polynomial of degree n - 2. Thus we can factor 

• Compare the Factor Theorem. p. SO. and p. 462. 
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out successive zeros. In the important case that f(x) has n zeros (the maximum 
possible� then 

/(x) = a(x - r1)(x - r2) ·  • · (x - r.) (a :F 0). 

If the r1 are distinct we say that/(x) has n simple zeros. Otherwise some zeros are 
simple zeros, and others are multiple (repeated) zeros. Collecting like factors, we 
write 

f(x) = a(x - r.) .. •(x - r2r1 • • • (x - r,r. 

Such a polynomial of degree n is called a polynomial in factored form, or a poly
nomial with n real zeros. Here r1, • · · ,  r, are the distinct zeros of /(x) and 
m1, • • · ,  m, their multiplicities.* The simple zeros are those r1 for which m1 = l ,  
and the multiple zeros are those r1 for which m1 2:: 2. Since deg/(x) = n, we have 

m1 + m2 + · · · + m, = n. 
Let us study the derivative of a polynomial/(x) in factored form. First we look 

at the nature of f'(x) at a zero of /(x). Suppose x = r is a zero of multiplicity m 
of /(x). Then 

/(x) = (x - r)"'g(x� g(r) :F 0. 

Consequently 

f'(x) = m(x - r)"'- 1g(x) + (x - r)"'g'(x) = (x - r)"'- 1h(x� 

where h(x) = mg(x) + (x - r)g'(x). 

Clearly h(r) = mg(r) ::!: 0. Hence if m = l, thenf'(r) = h(r) + O; if m 2:: 2, then x = r 
is a zero of f'(x) of multiplicity m - 1. 

Let x = r be a zero of multiplicity m of a polynomial /(x). If m = 1, then 
f'(r) ::!: 0. If m 2:: 2, then x = r is a zero of f'(x) of multiplicity m - 1. 

This result is important in itself. But our main purpose is using it and Rolle's 
Theorem to derive the basic result about derivatives of factored polynomials. 

Factored Polynomial• Let 

/(x) = a(x - r1)"'1 • • • (x - r,f', 

where r 1 < r2 < · · · < r, , be a polynomial of degree n with n zeros. Then f'(x) is a 
polynomial of degree n - 1 with n - 1 zeros. More precisely,f'(x) has one simple 
zero between every two successive r1 and a zero of multiplicity m1 - 1 at r1 if 
m1 2:: 2. 
In particular, if/(x) has all simple zeros, then f'(x) has all simple :zeros, and the 
zeros of f'(x) alternate with the zeros of f(x). 

• The multipliciay or a zero is also called its anler. 
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The proof is a matter of counting. By Rolle's Theorem,f'(x) has a zero between 
every two successive zeros of /(x). Thus f'(x) has at least one zero between r1 and 
r 2 ,  at least one zero between r 2 and r 3 , • • •  , and at least one zero between r •- 1 and 
r • .  These total to at least s - I zeros between the r's. Also f'(x) has a zero of multipli
city m 1 - I at r 1, a zero of multiplicity m2 - 1 at r 2 , • • •  , and a zero of multiplicity 
m. - I at r • .  These total to exactly 

(m1 - 1 )  + (m2 - 1 )  + · · · + (m. - 1)  = n - s 
zeros at the r's. The grand total is at least 

(s - l ) + (n - s) = n - 1 
zeros off'(x). But degf'(x) = n - I ,  sof'(x) has at most n - I zeros. Therefore it has 
precisely n - 1 zeros. Furthermore, there can be just one simple zero in each interval 
r1 < x < r2, r2 < x < r3 , etc., or the grand total would ex

'
ceed n - I .  This completes 

the proof. 

• EXAMPLE 2 Let f (x) = (x
2 

- 4)5x3(x + 1)2(x - 3)(x - sr. 
Locate the zeros of f'(x). 

Sohltioa Rewrite f (x) in the form 

/(x) = (x + 2)5(x + 1 )
2

x3(x - 2)5(x - 3)(x - 5)4, 
exhibiting the successive zeros and their multiplicities (Fig. 2). 

I multiplicity s 2 3 s 4 1 l 1 l l 1 
- 2  -I  0 2 3 4 s 

Fig. 2 Zeros of/(x) = (x2 - 4)5x3(x + 1 )2(x - 3)(x - 5)4 

x 

By inspection, we get a picture of where the zeros of f'(x) are located. However, 
we do not get the exact location of every zero. For example, there is one simple zero 
of f'(x) between 2 and 3, but we cannot pinpoint it further by the methods of this 
section. The result is shown in Fig. 3. Note that /(x) has degree 20 and 20 zeros, 
counting multiplicities, while f'(x) has degree 19 and 19 zeros. 

I multiplicity 4 I 2 4 I 3] 
1 1  l 1 1  1 1 1 1 
I I I I I I I I I I I I • 

- 2 ? -1 ? 0 ? 2 ? 3 ? 4 s x 

Fi&- 3 Zeros off'(x) • 

Generalized Rol le's Theorem The following result has applications in ap
proximation theory. We shall see one in Section 8. 
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Generalized Rolle's Theorem Let/(x) be an n-times differentiable function 
on an interval [a, b] and suppose 

/(x0) = 0, /(x1) = 0, · · · , /(x,.) = 0, 
where x0 , x1, • • · , x,. are n + 1 distinct points of the interval. Then J<•>(c) = 0 
for some point c of the interval a < c < b. 

The proof is by repeated application of Rolle's Theorem, first to /(x), then to 
f'(x), then to f"(x), etc., to p11- 1>(x). 
We may assume 

a :s:; Xo < x, < X2 < . . .  < X,.- 1  < x,. :s:; b. 
Since/(x0) = /(x1), there is a point x0 such that 

xo < x0 < x1 and f'(x0) = O. 
Similarly, there is a point x� such that 

and f'(x'i ) = 0. 
Continuing, we find points 

a <  Xo < X11 < . . .  < X�- 1 < b 
such that f'(x0) = f'(x'i ) = · · · = f'(x�- i ) = 0. 
The same reasoning applied to f'(x) yields points such that 

a <  x;; < xi < · · · < x;_ 2 < b 
and f"(x0) = f"(xl) = · · · = f"(x;_ 2) = 0. 
Continuing, we find n - 2 zeros of /"'(x), n - 3 zeros of /'41(x), etc., and finally 
n - (n - 1 )  = 1 zero of J<">(x ). That does it. 

EXERCISES 

Interpret Example l ror 

l cos x on [ -!x, !xJ 2 � on [ - 1, 1). 

3 Show that/(x) = 10x9 - 16x7 + 6x1 - 1 has a z.ero on 0 < x < 1. (Hint Integrate.] 

4 (cont.) Suppose � + 
a, + · · · + a..- i + a,. = 0. Show that 

n + l n 2 
/(x) = aox• + a1x"-1 + · · · + a. has a z.ero on 0 < x < 1. 

5 Suppose/(x) is differentiable on [a, b) and/(a) =/(b) = 0. Prove there exists c such 
that a <  c < b and/(c) + cf'(c) = 0. 

6 (cont.) What does Ex. S imply if/(x) • sin x? 
7 (cont.) What does Ex. S imply if/(x) - x2 - 1 + sin nx? 
8 Suppose 0 < a <  b; /(x) is differentiable on [a, b), and /(a) = /(b) ..., 0. Prove there 

exists c such that a < c < b and f (c) - cf'(c) • 0. 
9 (cont.) Apply Ex. 8 to sin x. 

10 (cont.) Apply Ex. 8 to x4 - l lx1 + 30. 
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11  Let/(x) and g(x) be differentiable on [a, b] and/(a) =/(b) = 0. Supposef'g -/g' has 
no zeros in [a, b). Prove g has a :zero in a < x < b. 

12 (cont.) Find an example of Ex. 1 1. 
13 Let/(x) be differentiable on [a, b]. Prove there exists c such that 

a <  c < b and f'(c) =
/(b) -/(c)

. 
c - a  

14 Apply Ex. 13 to/(x) = sin2 x on [O, !1r]. 
IS Let/(x) be a polynomial with n distinct :zeros, and let k '1' 0 be a constant. Prove that 

g(x) = /(x) + kf'(x) has at least n - 1 distinct :zeros. 
t6• (cont.) Assume/(x) has degree n and n simple zeros. Prove that g(x) has n simple zeros. 

[Hint By considering g(x)//(x� show that g(x) has a zero either in - co  < x < r1 
or in r. < x < co.] 

17 Suppose the polynomial /(x) has n zeros in [a, b], counting multiplicities. For each 
k = 1, 2, · · "  n, show thatf'11(x) has n - k zeros in [a, b). 

18 (cont.) Show that :. [(x2 - l )"] has n simple zeros in - 1  < x < 1. 

19 Let a <  c < b, let r exist on [a, b1 and assume /(a) = /(c) = /(b) = f'(c) = 0. Prove 
/"' has a :zero in a < x < b. 

20 Let/(x) be a polynomial Assume/(a) =/(b) = 0 and/(x) 9' 0 for all x on a <  x < b. 
Prove f'(x) has an odd number of z.eros, counting multiplicities, on a <  x < b. 
[Hint Logarithmic differentiation.) 

21 Suppose a polynomial /(x) has a z.ero of multiplicity n + 1 at x = a. Express /(x) in 
powers of x - a, and write the corresponding expression for p• + 11(x ). 

22 (cont.) Apply the Dividing out Zeros formula, p. 464, to prove 

f' n!k ! Jo (1 - u)"if du • (n  + k + l )!' 

23• Use the Generalized Rolle's Theorem for a new proof of a result on convex functions 
(Ex. 21, p. 152): if/(a) =/(b) = 0 and /" > 0 on a <  x < b, then /< 0 on a <  x < b. 
[Hint Consider g(x) = f (x) - k(x - a)(b - x) for various k.) 

24• (cont.) Suppose/(O) • /(l) = 0 and lf"(x)I � 1 on [O, l]. Prove l /(x)I � i on [O. l]. 

6. M EA N  VALUE THEO R E M S  A N D  LHOSPITAL'S R U L E  

Let us recall the Mean Value Theorem (MVT) of differential calculus. (As we 
shall see later, there is also a mean value theorem of integral calculus.) 

Let/(x) be a continuous function on the closed interval [a, b], and �upposef'(x) 
exists for a < x < b. Then 

for some c between a and b. 

/(b) -/(a) = f'(c) b - a  

This was proved in Chapter 3, p. 149. Note carefully where the Mean Value Theorem 
differs from Rolle's Theorem. In the latter, we add the hypothesis f (a) = f (b) and 
draw the conclusion tbatf'(c) = 0 for some c between a and b. 
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Geometrically, the Mean Value Theorem says that somewhere between x = a and 
x = b, the tangent is parallel to the chord (Fig. la). Rolle's Theorem is the special 
case where the chord is horizontal (Fig. lb). Or you might say that the MVT is a 
tilted version of Rolle's Theorem. 

)' 

a 

slope = f (b) f(a) 
b - a  

b x 

y 

x 

(a) Mean Value Theorem: Somewhere the (b) Rolle's Theorem: If /(a) • ft..b), then 
tlJllent is parallel to the chord. somewhere the tanaent is horizontal. 

In most applications, the. MVT is expressed in the form 
f(b) -f(a) = f'(c)(b - a) (a < c < b) 

and is used to estimate the difference between the values of f(x) at two points. 
Examples I. l sin b - sin a l � lb - al. 

Setf(x) = sin x. Then lf'(x) I = lcos x i � l, so 
I sin b - sin a I = I cos c 1 1  b - a I � I b - 4 

2. IJI02 -J10t I < o.os. 
Setf(x) = Jx. Then 

IJIOO -JIOtl = lf'(c) l I 102 - 101 1 = 'I 
Ir.: <  'I � = 0.05. 

�c � 100 

3. If j'(x) > 0 for a �  x � b, thenf(b) > f(a). 
f(b) -/(a) = f'(c)(b - a) = (positive)(positive) > 0. 

Appl ication to Second Derivatives The derivative of /(x) is defined by the 
formula 

) . f(c + h) -f(c) -/'( ) 1m h - c . 
11�0 

With the Mean Value Theorem we can establish an analogous formula for the 
second derivative. 
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Let f(x) have a continuous second derivative on the interval a <  x < b. If c is 
any point of this interva� then 

1. f(c + h) - 2/(c) + f(c - h) -f"( ) tm h2 - c . 
11--0 

Proof The idea is to show that the big fraction after the limit sign equals r(w) 
for some w near c. 

Note that the fraction is unchanged if h is replaced by -h. If h < 0, we do so; 
hence we can assume h > 0. We hold h fixed for the moment and write 

f(c + h) - 2f(c) + f(c - h) = [f(c + h) -f(c)] + [f(c) -f(c - h)] 
= g(c + h) - g(4 

where g(x) = /(x) -f(x - h). 
By the MVT, g(c + h) - g(c) = hg'(z� 
where c < z < c + h. Now g'(z) = f'(z) -f'(z - h), 
and by the MVT again, f'(z) -f'(z - h) = h/"(w� 
where z - h < w < z. Note that c - h < w < c + h. 

Putting the pieces together, we have 

f(c + h) - 2/(c) + f(c - h) 
h2 

g(c + h) - g(c) hg'(z) 
h2 = h2 

=f'(z) -�'(z - h) = hf�w) = f"(w). 

Now we let h - 0. Since w is squeezed between c - h and c + h, we have 
w-c. Butf"(x) is continuous; hencef"(w)-f"(c). Therefore 

1. f(c + h) - 2/(c) + f(c - h) -f"( ) tm h2 - c .  
,, ... o 

• EXAMPLE 1 Find ( ) l. e" + e-11 - 2 a 1m h2 11--0 

• . e" + e-11 - 2 . e" - 2e0 + e-11  d2 l I Sohlt1on (a) hm h2 = hm h2 = -d 2 e" = e" = 1. 
11 ... 0 11 ... 0 X •O .s•O 

(b) 
l - cos 0 I 2 cos 0 - 2 I cos 0 - 2 cos 0 + cos( -0) 

02 = - 2 02 = - 2 02 

and 

Hence 

1. cos 0 - 2 cos 0 + cos( -0) d2 0 I ,'� 92 = d62 cos � = - I .  

li 1 - cos O _ !  m 92 - 2 ·  •--o 
• 
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The MVT compares the change in/(x) to the change in the 
function g(x) = x :  

f(b) - f(a) f(b) -f(a) 
b - a 

= 
g(b) - g(a)' 

The following generalized MVT compares the change in /(x) to the change in a 
more general function g(x). The only restriction is that like x, the function g(x) must 
be increasing (or decreasing). 

Generalized Mean Value Theorem Let f(x) and g(x) be differentiabJ 
functions on [a. b) and suppose g'(x) > 0 (or g'(x) < 0) for all x. so that g(x) is 
a strictly increasing (decreasing) function. Then 

.f(b) -/(a) _ .f'(c) 
g(b) - g(a) - g'(c) 

for some c between u and b. 

It is tempting to give a phony proof. Apply the MVT to .f(x) and g(x) separately, 
then divide: 

/(b) -f(a) = g'(c)(b - a), g(b) - g(a) = g'(c)(b - a) 

Therefore. 
f(b) -/(a) f'(c)(b - a) f'(c) 
g(b) - g(a) 

= 
g'(c)(b - a)

= 
g'(c) · 

Very nice. but WRONG ! The c that works for /(x) and the c that works for 
g(x) are usually not the same. Try /(x) = x3, g(x) = x2• [a. b) = [O. 1) if you are 
not convinced. 

For a correct proof, set 

h(x) = [g(b) - g(a)][/(x) -/(a)] - [f(b) -f(a)J[g(x) - g(a)J. 

Then h(x) is differentiable and h(a) = h(b) = 0. By Rolle's Theorem, h'(c) = 0 for 
some c such that a < c < b. But 

Therefore 

h'(x) = [g(b) - g(a))f'(x) - [f(b) -/(a)]g'(x). 

[g(b) - g(a)Jf'(c) = [f(b) -/(a)]g'(c). 

Since g'(c) #: 0 and g(b) - g(a) #: 0 by hypothesis. we can divide to obtain the 
desired formula. 

Lhospital's Aul  We sometimes have to find limits of the form 

lim 
/(x) 

x-• g(x) 

where/(a) = g(a) = 0, what we might loosely call " limits of the form 0/0." 

Examples I. tan x 
1m -" _ 1 , 

;r-0 C' 
x - 1t 

lim --

x- • sin x '  
I
. !x - arc tan x 
Im 

- I  
· . 

x- x  x 
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Lhospital's Rule helps evaluate such limits. We shall look at several forms of the 
rule, and also limits of the form oo/oo. (Incidentally, Lhospitat• is pronounced 
10'-pee-tal.) 

Lhospital's Rule I Let /(x) and g(x) be differentiable functions near x = a  
such that/(a) = g(a) = 0. Suppose that g(x) :#: 0 and g'(x) :F 0 for x :F a. If 

limf'(x) = L. 
"-• g'(x) 

where L is a real number or ± oo, then also 

Briefty, 

lim/(x) = L. 
"-• g(x) 

lim/(x) = lim/:(x). 
"-• g(x) "-• g (x) 

This rule is an easy consequence of the Generalized MVT. If x + a, then there 
exists c between a and x such that 

/(x) /(x) -/(a) f'(c) 
g(x) 

= g(x) - g(a) = g'(c) · 
If x-a, then c -a. so 

• EXAMPLE Z Find 

/(x) =f'(c) _ L. 
g(x) g'(c) 

( ) I
. tan x a 1m -" - 1 J<-0 I:' 

(b) lim 
I - c�s x 

J<-0 x 
Sol11ti011 (a) tan 0 = e0 - I = 0, so Lhospital's Rule applies: 

lim 
tan x = lim (tan x)' = lim sec2 x = sec2 0 = 1 

"-o e" - 1 
"-o (e" - I )' "-o e" e0 · 

(b) I - cos 0 = 02 = 0, so Lhospital's Rule applies : 

I
. 

1 - cos x 1. (1 - cos x)' 1. sin x 1m 2 = 1m 2 , = 1m -- . 
"-o x "-o (x ) "-o 2x 

This is another limit of the form 0/0, so Lhospital's Rule applies a second time: 

I. I - cos x 1. sin x 1. cos x I 1m 2 = tm -- = 1m -- = - . J<-0 x J<-0 2x J<-0 2 2 • 

• The spelling or Lhospital varies. and in ract our spelling or the name is not a common one. Yet 
according to an article by R. P. Boas in the American Mathematical Monthly. 1969. it is the spelling 
the Marquis De Lhospital used himsclr. 



478 1 0. APPROXIMATION 

Lhospital's Rule II Let/(x) and g(x) be differentiable functions near x = a  
such that 

and g(x) - oo  

as x -a. Suppose that g(x) :F 0 and g'(x) :F 0 for x :F a. If 

lim f'(x) 
= L, 

.s .. • g'(x) 

where L is finite or ± oo, then also 

lim/(x) 
= L . 

.s ... g(x) 

If the first limit is a one-sided limit (say x - a+� then so is the second. 

The proof of this rule is tricky. Let us just sketch the idea for the case when L 
is finite. 

Let a < x < z. Then 

f (z) -f (x.) f'(c) 
g(z) - g(x) 

= 
g'(c) 

for some x < c < z. Choose z very close to a. Then c is very close to a, hence 
f'(c)/g'(c) is close to L. Therefore, 

/(z) -/(x) � L, 
g(z) - g(x) 

and this is true for any x such that a < x < z. 
Now hold z fixed and let x - a. By hypothesis, /(x) and g(x) grow over

whelmingly large. Hence 

/(z) -/(x) 
=

f(x) ( 1 -/(z)/f(x)) �/(x)
. 

g(z) - g(x) g(x) 1 - g(z)/g(x) g(x) 

Therefore/(x)/g(x) is very close to L when x is close to a. 

• EXAMPLE 3 Find lim.s .. o + x In x. 

So1Mtio11 Write In x x In x = 
l/x , 

which is of the form/(x)/g(x� where 

/(x) = In x - - oo  

as x -O+ . By Lhospital's Rule II, 

and 1 g(x) = - - oo  
x 

Ii In Ii In x 1. 1/x 1. ( ) 0 m x  x =  m - = un --2 = un -x = . 
.s .. o +  .s .. o +  l/x .s .. o + - 1/x .s .. o + 

• 
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Remark Compare to the discussion on p. 317, bottom, to p. 318. 

Lhospital's Rule Ill Let/(x) and g(x) be differentiable functions for x large 
such that either 

J/(x) -0 
\ g(x) -o or {/(x) - ±oo 

g(x) - oo  
as x - oo. Suppose that g(x) � 0 and g'(x) � 0. If 

lim f'(x) 
= L, 

x-ao g'(x) 
where L is finite or ± oo, then also 

lim /(x) 
= L. 

x-ao g(x) 

We shall omit the rather complicated proof of this rule. 

• EXAMPLE 4 Find (a) limx arc cot x (b) lim (In x)l
. x-ao X 

Sobdiolt (a) Write arc cot x x arc cot x = ---1/x 
which is of the form/(x)/g(x), where 

/(x) = arc cot x - O  and 1 g(x) = --0 x 
as x - oo. By Lhospital's Rule, 

limx arc cot x = lim arcl
�t x = lim - l/(l \x2) = lim � = 1. 

x-ao x .... ao X x .... ao - 1/x x .... ao 1 + X 

(b) This is a form oo/oo, so Lhospital applies: 

Once again: 

lim (In x)2 = lim 2(ln x)/x = 2 1im In x . 
x .... ao X x .... ao 1 x .... ao X 

lim (In x)l 
= 2 lim In x 

= 2 lim l/x 
= 2 lim � = 0. 

x-ao X x-ao X x .... ao 1 x .... ao X 

Remark Compare to the discussion on the middle of p. 317. 

• 

Many limits of the form lim/(x)l<x> can be handled by Lbospital's Rule. The 
trick is to take logs first, then use the continuity of In x and its inverse function e". 

. • EXAMPLE I Find 
Sobttio11 

limx .... o +  r1 • 

In r1 = x2 In x. 
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By Lhospital's Rule (or what we know about the rate of growth of In x), 

Jim In r1 = Jim x2 In x = 0. 

Hence lim r1 = e0 = 1. 
x .. O +  

• 

The Lhosp11al Hab  t Try to resist the bad habit of automatically applying 
Lhospital's Rule to every limit problem you face. Often there is a simpler way, for 
instance, use of limits already known or algebraic simplifications. 

• EXAMPLE I Find (a) lim 
J2 + Sx2 

x .. oc x 

. l 
(b) lim 

sm 
2 

x 
x .. O X 

Sollltio11 (a) This is a form oo/oo, so by Lhospital, 

1. J2 + Sx2 1. Sx/J2 + Sx2 
lDl = lDl -�---

x .. oc X X .. 00 1 

= lim 
Sx 

= 
x .. oc J2 + Sx2 

back to where we started. Ugh ! 

AhnlUltiu 10httio11 for (a) 

5 5 

J2 + 5x2
= 1 ' 

Jim --'----
x 

J2 + 5x2 g;:-s 
H\:C I< �-- = 2 + 5 - v0 + 5 = v5 ·  

x x 

(b) This is a 0/0 form, so by Lhospital, 
• 2 2 . l . l r sm x lim sm x cos x r cos x - sm x 

x'! Xl = 
x .. O 2x 

= 
x� 1 

= lim cos2 x - lim sin2 x = 1 - 0 = 1. 
x .. O x .. O 

This solution is correct, but long-winded. 

Aher1111tiu sobltiolt for (b) As we have seen dozens of times, sin x/x-1 as 

x -0. Therefore 
. l ( . 

)
l sm x _ sm x 12 _ 1 l - - - . 

x x 
• 

Be alert to the possibility of adapting known limits to new situations. For example, 
from (sin x)/x - 1 as x -0 follow (without Lhospital) 

x x cos x cos x 1 
- - -- = 1, 

tan x - sin x - (sin x)/x 1 

sin 3x 
= 

sin 3x . 3x _ 1 . � = �, 
2x 3x 2x 2 2 

sin(xl) = 
sin(:l) . x - 1 . 0 = 0. 

x x 
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MVT of Integ ral Calc u l us The MVT of differential calculus starts with a 
function on an interval [a, b] and gives some information about its derivative at an 
intermediate point. The MVT of integral calculus starts with a definite integral oo 
[a, b] and gives some information about the integrand (or a factor of it) at an 
intermediate point. 

Mean Value Theorem of Integral Calculus Let f(x) and g(x.) be 
continuous functions on the interval [a, b1 with g(x) � 0. Then 

" " f f(x)g(x) dx = /(c) f g(x) dx 
• • 

for some c on the interval. 

Proof We may assume 

" f g(x) dx > 0 . 
• 

For ir not, then g(x) = 0 and both sides of the desired relation equal O; any c will 
do then. 

Since f(x) is continuous on the closed interval [a, b] it takes on its max and 
min (see p. 146): 

/(c0) �/(x) �f(c1� 
where c0 and c1 lie in the interval. Since g(x) � 0, we have 

/(c0)g(x) Sf(x)g(x) Sf(c1)g(x). 

Therefore 

that is, 

" " " 
f(c0) f g(x) dx � f f(x)g(x) dx S/(ca) J g(x) dx, 

• • • 

f:J(x)g(x) dx /(co) � f: g(x) dx Sf(ca ). 

Thus the quotient in the middle falls between two values of /(x). By the Inter
mediate Value Theorem (p. 346� it is equal to f(c) for some c in [a, b]. This 
completes the proof. 

Examples 1. f "x sin x dx = c f "sin x dx = 2c, where 0 s c s n . 
• 0 • 0 

The other way: J "x sin x dx = (sin c) f"x dx = fn2 sin c, where 0 s x s n. 0 . 0 
2. The special case g(x) = 1 is worth noting. Then 

" " 
J/(x) dx = /(c) f 

• 
dx = (b - a)/(c). 

We conclude that the average value of f(x) on [a, b] is equal to one of its values. 
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Let/(x) be a continuous function on the interval [a, b]. Then 

b �a J: /(x) dx = /(c) 
for some c on the interval. 

EXERCISES 

Prove 
1 In Sl - In SO < 0.02 2 ..YiOOt < 10.00034 
3 arc tan 6 - arc tan S < 0.04 
!§ arc sin t < 37.5° 

Find 

7 

10 

13 

16 

19 

22 

lim -x-
.. -o e" - l 
r cos x - 1 + !x2 tm 4 .r-o x 

lim (x - !n) tan x 
.x-t·-

lim xlftC• +.ri 
a-o+ 
r (In x)l 1m --

•-111 x 

Jim x2(arc cot x )3 
.r-111 

8 

1 1  

14 

17 

20 

23 

r 1n x 
im --

·- · 1 - x 

4 tan j1r > 0.82 
6 arc sin i > 23°. 

9 

Jim cosh x - 1 
12 

.. -o x2 
lim (x - n) csc x 15 

x-•+ 

lim [Jn(l + x)]" 18 
z ... O+ 

li e" m 1o x-CI) X 
21 

lim (p+l - x) 2" 
.. -... 

[Hint for 22 Don't overdo the Lhospital habit.] 

lim (! _ _  
l ) 

.. -o x sin x 

28 lim(! - -. 1 )/<r - 1) . 
.r-o X SID X 

26 limx3(1  - e- •1.rz) 27 
.. -.. 

lim x - sin x 
.. -o xl 

tan x1 lim -.-2-.. -o sm x 
lim x•an " 

x-o+ 
lim ( . + -;r 

x .... co x 

lim x(!n - arc tan x) 
.. - 111 

r P+t im 
• - 111 x 

lim x arc tan x 
.. -.. 

29 Supposef'(x) is continuous for Ix - a l < l>. Use the MVT to find 
lim•-o (!(a + h) - f(a - h)l/2h. 

JO Suppose/(x) is continuous for Ix - a l < l> and differentiable near x = a  except possibly 
at x = a. Suppose lim,.-.f'(x) = L. Prove f(x) is differentiable at x = a  and f'(a) = L. 

31 Supposef(x) is differentiable for a <  x < b and lf'(x) I �  M. Provef(x) is uniformly 
continuous. (See p. 2SS.) 

32 Suppose /(x) is differentiable for x ;;::: a and f'(x) ;;::: m > 0. Prove f (x) - oo as 
x - oo. 

33 Let/(x) - ao x" + a1x"- 1 + · · · + a  • •  where 1Jo > 0. Find lim,._111f(x)11". 3" Let f(x� g(x� h(x) be continuous on [a, b] and differentiable for a < x < b. Prove 
there exists c such that a < c < b and 

f (a) g(a) h(a) 
f(b) g(b) h(b) = 0. 
f'(c) g'(c) h'(c) 

file:///iml-
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35 Suppose /(x) is differentiable for x � a, /(x) - L  and f'(x) - M  as x - oo, 
where L is finite. Prove M - 0. 

36• Suppose f'(x) --+ ex> as x - oo. Prove /(x)/x - oo. 
37 Supposef'(x)/r is bounded for x � a. Prove that/(x)/r is also bounded. 
31• (cont.) Suppose f'(x)/r - o  as x - oo. Prove f(x)/r - o. 
39 Suppose g(x) + g'(x) --+ O as x --+ oo. Prove g(x) - 0. (Hint Ex. 38.) 
•• Suppose/(x) --+  L andf"(x) - O as x - oo, where L is finite. Provef'(x) --+ O. 
41• Suppose /(x) is continuous on (a, b), f'(x) exists and satisfies lf'(x)I s M on 

a <  x < b, and/(a) •/(b) • 0. Prove 

I( f(x)dx I S  iM l b - al2• 

(Compare Ex. 22, p. 260, where f' is also assumed integrable.) (Him Consider the 
intervals [a. c] and (c, b), where c is the midpoint of (a, b), and use the MVT.) 

42• Another proof of Taylor's Formula. Supposef'(x�f"(x� · · · ,p•>(x) are continuous for 
a s  x s b and/"'+ 11(x) exists for a <  x < b. (Or if b < a, b S x S a. etc.) Set 

I 
g(x) = /(b) -/(x) -f'(x)(b - x) - 2/"(x)(b - x)2 

I A - • • •  - -/"'1(x)(b - x)" - -- (b - xr•. n! (n + I ) !  

Then g(b) - 0. Choose the constant A so g(a) • 0. Apply Rolle's Theorem to g(x� 
Conclusion? 

7. INTERPO LATION 

An important scientific technique is fitting a function to data. In this and the 
next section, we develop methods for doing so using polynomials. 

Suppose in an accurate experiment, a quantity x is measured at 1 1  time 
readings. For example, 

0 0.1 0.2 

.JC 2. 783 3.142 4.003 

0.8 0.9 1.0 

2.001 1.833 1.801 

In order to find a mathematical relation between these readings, we seek a function 
that fits the data, that is, a function x(t) defined for all values of t in the 
interval 0 � t � 1 and satisfying the conditions x(O) = 2.783, x(O.l) = 3.142. · · · ,  

x(l.O) = 1.801. In other words, we want a function whose graph passes through 1 1  
given points. Finding such a function is called interpolation. 

Linear l nte polat1on The simple case of linear interpolation is familiar. For 
example, from a 5-place table, 

log 3.1920 � 0.50406 and log 3.1930 � 0.50420. 

To estimate log 3. 1927, add � of the difference (0.50420 - 0.50406) to 0.50406: 

log 3.1927 � 0.50416. 
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This is equivalent to finding the linear function /(x) that fits the two points 
(3.1920, 0.50406) and (3.1930, 0.50420), and writing 

log 3. 1927 �/(3. 1927). 

As is easily computed, 
f(x) = 0.50406 + (0.14)(x - 3. 1920). 

Hence 
log 3. 1927 � 0.50406 + (0.t4)(3.1927 - 3.1920) = 0.50406 + (0. 14)(0.0007) � 0.50416. 

In this illustration, the data consisted of two points only, so we could fit a linear 
polynomial (straight line graph). When the data consist of more than two points, we 
sha!l seek a higher degree polynomial that fits. 

Polynoni•�· •-• ·001�··- Here is the basic problem. Given n points 
where x 1 < x2 < · · · < x., 

find a polynomial y = p(x) of least degree whose graph passes through the given 
points, i.e., 

p(xi) = Yi• p(x2) = Y2 • · · · , p(x,.) = Y,. · 
Let us start with three points. Suppose we wish to interpolate 

(xi, Yi � (x2 ' Y2� (x3 ' YJ� Xi < X2 < X3 ' 
by a polynomial of least degree. A first degree polynomial generally won't do since 
its graph is a straight line. So we try a quadratic polynomial 

y = A +  Bx + Cx2 
and hope to choose its three coefficients so that its graph passes through the three 
given points. 

EXAMPLE 1 Fit a quadratic to the points (0, l� (1, 21 (2, 4� 

Solatioll Set y = p(x) = A + Bx + Cx2. 
Substitute (x, y) = (0, 11 (1, 21 and (2, 4): l � + B +  c : �  

A + 2B + 4C = 4. 

The solution of this linear system is A = 1, B = !. C = !. hence the answer is 
p(x) = 1 + !x + !x2. 

This example illustrates the method of undetermined coefticiencs. The next example 
demonstrates the method for four data points. 

• EXAMPLE 2 Fit a cubic to the four points ( - 1, n (0, l� (1, 2� (2, 4). 

Solatio11 Set p(x) = A +  Bx + Cx2 + Dx3. 
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To fit the four points, the coefficients must satisfy 
l A - B +  C - D = !  

A = 1 
A +  B +  C +  D = 2  
A + 28 + 4C + 8D = 4. 

After some labor one finds the solution: 
A = 1, B = j, C = i, D = n. 

Therefore p(x) = 1 + ix + ix2 + nx3• • 

Polynomial interpolation is important in approximation problems. For example, 
we may need many values of a function /(x) that is difficult to compute. Then it 
is convenient to have a polynomial (easy to compute) that approximates /(x). A 
basic method of finding one is fitting a polynomial to several points on the graph of 
y =/(x). 
• EXAMPLE 3 Fit a quadratic to y =  2x that is exact at x = 0, 1, 2. 
Sohltioa We want the quadratic p(x) that interpolates 

(0, 2°) = (0, 1 ), (1, 21) = (1, 2), (2, 22) = (2, 4). 

By Example 1, p(x) = 1 + !x + !x2• • 

Remark The approximation of 2 .. by p(x) is quite good on the interval 0 $ x $ 2. Let 
e(x) denote the error: 

e(x) = 2x - ( 1 + !x + !xl � 
Table 1 shows values of 2 .. , p(x� and e(x) to 3 places. 

Table 1 
x 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

iz 1.000 1.149 1.320 1.516 1.741 2.000 2.297 2.639 3.031 3.482 4.000 

p(x) 1.000 1.120 1.280 1.480 1.720 2.000 2.320 2.680 3.080 3.520 4.000 

e(x) 0.000 0.029 0.040 0.036 0.021 0.000 -0.023 -0.041 -0.049 -0.038 0.000 

Newton Interpolation The method of undetermined coefficients involves a lot 
of computation when there arc more than a few points. We shall examine two 
more satisfactory methods, Newton interpolation and, in the next section, Lagrange 
interpolation. 
Newton interpolation applies when the x1 are equally spaced, as often happens 

with experimental data To simplify the notation, we shall consider first the special 
case 

X1 = 1, X2 = 2, · · · , X11 = n. 

By shifting and changing the scale, we can easily pass to the general case 

x1 = a + h, x2 = a + 2h, · · · , x,. = a + nh. 
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Newton interpolation uses a set of standard polynomials, made to fit the problem: 

p0(x) = 1, P1(x) = (x - 1), p2(x) = (x - l)(x - 2� 
· · · , p11(x) = (x - l)(x - 2) · · - (x - n). 

Thus p11(x) is a polynomial of degree n and leading coefficient 1, having zeros at 
x = 1 ,  2, · · · ,  n. 

Let us apply these polynomials to the interpolation problem. Suppose we want 
to fit a polynomial of degree n - 1 to the data 

We try 

(1, Y1� (2, Y2� · · · , (n, y,.). 

p(x) = tloPo(x) + a1P1(x) + · · · + a,,- 1P.- 1(x) 
= ao + al (x - 1 )  + a2(x - 1 )(x - 2) 

+ · · · + a.- 1 (x - 1 )(x - 2) · · · (x - n + 1 � 
hoping to find suitable coefficients a1. We set x equal to I, 2, · · · ,  n successively : 

Yi = tlo 
Y2 = tlo + ai 
Yl = ao + 2a1 + 2a2 
y4 = a0 + 3a1 + 3 · 2a2 + 3 · 2 · la3 

y. = ao + (n - l )a1 + . . .  + (n - l) !a,,- 1 · 
The value of ao is obvious from the first equation. Having a0 , we find a1 from the 
second equation. Having a0 and a1, we find a2 from the third equation, and so on. 
Each successive equation determines one more a1 until finally we find a,,_ 1 from the 
last equation. 

• EXAMPLE 4 Fit a cubic to the points (1, 4� (2, - 1� (3, 0� (4, 1� 

So•tion Try a cubic of the form 

p(x) = ao + a1p1(x) + a2 p2(x) + a3 p3(x) 
= ao + a1(x - 1) + a2(x - l)(x - 2) + al(x - l)(x - 2)(x - 3� 

Now set x = 1, 2, 3, 4 successively. This produces a linear system for the unknown 
coefficients a1: 

1 4 = ao 
- 1 = ao + a1 

o = ao + 2a1 + 2a2 
1 = ao + 3a1 + 6a2 + 6a3 . 
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Solve successively: 

ao = 4, a, = - 1 - 4 = - 5, 2a2 = - 4 + 10 = 6, a2 = 3, 

6a3 = 1 - 4 + 15 - 18 = - 6, a3 = - 1 . 

The answer is 

p(x) = 4 - 5p1(x) + 3p2(x) - p3(x) 
= 4 - 5(x - 1) + 3(x - l )(x - 2) - (x - l )(x - 2)(x - 3). • 

The 0 ifference 0 perator A more systematic method for finding the coefficients 
a0, a1, · · · ,  a..- 1 involves the dil'ermce operator 11. For any function /(x), we define 

4f(x) = f(x + 1) - /(x). 

For example, 

111 = 0, ll.x = (x + 1) - x = 1, ll.x2 = (x + 1 )2 - x2 = 2x + 1. 

More generally, 

ll.x" = (x + I)" - x" = (x" + nx"- 1 + · · ·) - x" = nx"- 1 + · · · .  

Therefore the operator /1 transforms a polynomial of degree n into a polynomial of 
degree n - 1, like the derivative operator d/dx does. 

The standard polynomials behave very nicely under the operation 11. We compute 
11p,.(x): 

p,.(x) = (x - l )(x - 2) · · · (x - n). 
l1p11(x) = p,.(x + 1 )  - p,.(x) = x(x - 1 )  · · · (x - n + 2)(x - n + 1 )  

- (x - l)(x - 2) · · · (x - n + l )(x - n) 
= [x - (x - n)](x - l)(x - 2) · · · (x - n + 1 )  

= n(x - l )(x - 2 )  · · · (x - n + 1 )  = np,,_ 1(x). 

11p,.(x) = np,, _ 1 (x ). 

Remark Notice the analogy to the differentiation rormula �x x" = nx"- 1• 

The operator 11 can be applied several times in succession. We denote the operation 
of applying /1 twice by 112, three times by 113, etc. Bear in mind that 113 is not the 
cube of anything, but merely the operation of applying /1 three times, as d3/dx3 is 
the operation of applying d/dx three times. 

Examples ll.2x3 = 11(ll.x3) = 11[(x + 1)3 - x3] = 11(3x2 + 3x + 1 ) 
= [3(x + 1)2 + 3(x + 1 ) + l] - [3x2 + 3x + 1] = 6x + 6; 

113p�(x) = 112[11p4(x)] = 112[4p3(x)] = ll.[114p3(x)] = ll.[4 · 3p2(x)] = 4 · 3 · 2p1(x); 
11"x"- 1 = 0. 
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Now suppose p(x) is a polynomial expressed in the form 

p(x) = tJo + a1P1(x) + · · · + a,.- 1P11-1(x). 
To compute the coefficients. apply A successively n - 1 tim�: 

Ap(x) = a1p0(x) + 2a2 p1(x) + · · · + (n - l)a11_ 1p"_ 2(x) 
A2p(x) = 2a2p0(x) + 6a3 p1(x) + · · · + (n - l )(n - 2)a11- 1p11-3(x) 

A"- 1p(x) = (n - l ) ! a,._ 1po(x). 
Substitute x = 1 into all n of these equations. Since p0(1) = 1 but p1(1) = p2(1) = 
· · · = p,. _ 1 ( 1 )  = 0, only the first term on the right side of each equation survives: 

p(t) = ao 
Ap(l) = a1 

Azp(l) = 2az 

Alp(l) = 6a3 

To summarize: 

Newton's Interpolation Formula If p(x) is a polynomial of degree n - 1, 
then 

1 
p(x) = p(l) + Ap(l)p1(x) + 2 1  A2p(l)p2(x) 

1 1 
+ 3 1 A3p(l)p3(x) + · · · + (n - l) I  A1"- 11p(l)p11_1(x). 

Difference Tables Newton's lnterpolation Formula is important because it gives 
a complete solution to the problem of fitting a polynomial to data. It is also 
practical because there is a convenient way of computing the required differences 

Ap(l� A2p(l� · · · , A1.- 11p(l). 
Given p(l) = Yh p(2) = y2 , • · • , p(n) = y,. , 

we construct a dil'erence table. In the first row we enter y., y2 , • • • , y,. . In the second 
row, we enter the differences 

Y2 - Yi• Yl - Y2 • • • ' • Y,. - Y11- 1· 
In the third row we enter the differences of these differences, that is, the second 
differences. and so on. Then the left-hand entries of successive rows form the sequence 

p(l� Ap(l� A2p(l� · · · , A1.- •1p(l). 
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8 EXAMPLE I Fit a polynomial or degree 4 to 
(1, 4), (2, - 1), (3, 0), (4, 1), (5, 44� 

Sobttio11 Compute the difference table starting with 4, - 1, 0, 1, 44 in the first row: 
- 1  0 1 44 

1 1 
0 42 

42 
48 

43 

The sequence of first entries is 
4 -s 6 -6 48. 

Therefore, by Newton's Interpolation Formula, 
6 6 48 p(x) = 4 - Spi(x) + 21 p1(x) - 3 1 p3(x) + 

41 p4(x) 

= 4 - Spi(x) + 3p1(x) - p3(x) + 2p4(x) 
= 4 - S(x - 1)  + 3(x - l)(x - 2) 

- (x - l)(x - 2)(x - 3) + 2(x - l)(x - 2)(x - 3)(x - 4). • 

Remark Compare Examples 4 and S. The data in Example 4 arc part of the data of 
Example S where one additional point is given. The answer in Example S equals the answer 
in Example 4 plus a multiple of p4(x� 

This iUustratcs an important feature of Newton interpolation : further data points can be 
added without changing the result of previous computations. 

The General Case Suppose the data points are 
(xi. Yi). (x1 .  Y1). · · · , (x., y.), 

where the xJ are equally spaced, that is, points in an arithmetic progression. Let 
h be the common increment; then the sequence of x/s is 

Xi, X1 = Xi + h, X3 = Xi + 2h, · X• = Xi + (n - l)h. 
The corresponding standard polynomials are 

1 P1(x) = h1 (x - xi)(x - x1), · · " 

1 P.(x) = ,,. (x - xi)(x - x1) · · · (x - x.). 

Thus 1 P.(x) = ,,. (x - xi)(x - Xi - h)(x - Xi - 2h) ' . .  [x - Xi - (n - l )h]. 
The corresponding difference operator � = �,. is defined by 

L\f (x) = f(x + h) - /(x). 



488 1 0. APPROXIMATION 

The basic formula-verified directly as before-is 

dP,.(x) = nP.- 1 (x). 
To fit a polynomial P(x) of degree at most n - 1 to (x1, y1� · · · ,  (x,., y.), we write 

P(x) = a0 P0(x) + a1P1(x) + · · · + a11- 1P.- 1(x). 
1 

Exactly as before, aJ = 71 dJP(x1). ) . 
The number diP(xi) is the first entry in the j-th row of the difference table whose 
0-th row is y., y2 , • • · , y,.. 

EXAMPLE I Fit a polynomial of degree 4 to 

(0, l�  (2. 1 1  (4, 3� (6, 3 �  (8, 3). 

Sohttio11 The x-coordinates 0, 2, 4, 6, 8 are equally spaced with common increment 
h = 2. The corresponding standard polynomials are 

P0(x) = l, P1 (x) = !x, P2(x) = ix(x - 2), 
P3(x) = ix(x - 2)(x - 4), P,(x) = i\x(x - 2)(x - 4)(x - 6). 

The difference table for the y-coordinates is 

3 3 
0 2 0 0 

2 -2 0 
-4 2 

6 
Therefore the required polynomial is 

2 4 6 P(x) = 1 · P0(x) + 2 1  P2(x) - 3 ! P3(x) + 4 , P,(x) 

3 

1 1 1 = 1 + 4 x(x - 2) - 12 x(x - 2)(x - 4) + 64 x(x - 2)(x - 4)(x - 6). • 

Warning When you use this method, don't forget the denominators: first the powers of h, 
second the factorials. 

EXErCISES 
Find the polynomial of least degree that fits the data 

I (-2, 6� (I, O� (2, 2) 2 (1, -3� (2, 3� (4, 27) 
3 (0, 1 �  (1, 3� (3, 13) .. (-3, 15� ( - 1, 5� (0, 3) 
s (3, 5� (4, 1� (7, 13) 6 (-2. - 1 1� (- 1, - 8� (1, -2) 
1 (-2. - 5� (- 1, 1 �  (0, 1 �  (2. 7) s ( - 1. -6� (-t. - 1 �  (t. o� (1. 2) 
' ( - 1. o� (o. 1� (1. o� (2, o� (4, 45) 

10 ( - 3, 25� (-2, 0� ( - 1, - 3� ( l, -3� (2, 0). 

Fit the data by Newton interpolation 

II ( l, l � (2, - 1 � (3, 0) 
13 (1. 4� (2, 3� (3, - 1 ) 

12 (1, 4� (2. 3� (3, 0) 
... (1, - 1� (2, - 1� (3, l )  
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15 
17 
18 
19 
ll 
23 
2' 

{l, l� (2, 2� (3, 3� (4, 10) 
( 1, l� (2, 2� (3, 5� (4, 16� (5, 65) 
{l, l� (2, l� (3, 2� (4, 4� (5, 8) 
(1, l� (3, l �  {S, 2) 
(-2, 1� ( - 1, 0� (0, 1� {1, 0) 
(-2, 1� ( - 1, 0� (0, 1� (1, 0� {2, 1) 
{-4, l �  (0, 2� (4, 3� (8, O� 

16 

20 
ll 

(1, o� (2. o� (3, - 1� 

(0, - ·� (1, l �  (2, 3) 
(- 3, ·� (o, - 1� (3, o� 

25 Fit a quadratic to sin x that is exact at x = 0, Pt, it. 

(4, - 1) 

(6, 1) 

26 (cont.) Compute to 4 places the actual error ir the quadratic is used to approximate 
sin p, sin J,r. 

27 Fit a fourth degree polynomial to sin x that is exact at x = - x, -ln. 0, 1't, n. 
l8 (cont.) Estimate the error if this polynomial is used to approximate sin ix. sin lit. 
29 Use the interpolation polynomials in Exs. 25 and 27 to approximate JS sin x dx. Which 

gives the closer approximation? 
30 Fit a fourth degree polynomial to 1/(1 + x1) at x - -2, - 1, 0, l, 2. 

8. LAGRANGE INTER POLATION 

Newton's Interpolation Formula provides a neat solution to the interpolation 
problem, provided the points x1 are equally spaced. But what if they are not? 
Then all we have to fall back on is the method of undetermined coefficients-bad 
news. This method requires solution of a linear system of n equations. Even if we 
knew that the system is consistent (which is proved by linear algebra1 computing 
the solution when n is more than 3 or 4 can be a hard grind. 

Fortunately, there is a way around undetermined coefficients. The method, called 
Lagrange Interpolation, uses an important principle: solve the problem first with 
the simplest possible data, then superpose the resulting elementary solutions. In 
applied linear mathematics, this is called the principle of superposition. 

The general interpolation problem is to fit a polynomial to any n points 

(x., y11 (x2 . Y21 · · · , (x,., y,.1 
provided only that x1 < x2 < · · · < x,. . In Lagrange Interpolation, we solve the 
problem first for the points 

(xh 11 (x2 , 01 (x3 , 01 · · · , (x,., O). 
This is what we interpret as .. simplest possible data". We want a polynomial p1(x) 
of degree at most n - 1 such that 

Obviously, 

P1(x2) = P1(x3) = · . .  = p1(x,.) = 0 and p1(x1) = 1 . 

q1(x) = (x - x2)(x - x3) · · · (x - x,.) 
satisfies the first conditions, and q1(xi) .,,t.. 0. We simply divide by the number q1(x11 
obtaining a polynomial equal to 1 at x 1 . Therefore 

p,(x) = q,(x) 
= 

(x - x2)(x - x3) • • • (x - x,.) 
q1(x1) (x1 - x2)(x1 - x3) • • • (x1 - x,.) 
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is the answer. For example, the polynomial 

(x - 4)(x - 5)(x - 8) 
(2 - 4)(2 - 5)(2 - 8) 

takes the value 0 at x = 4, 5, 8 and the value 1 at x = 2. 
Similarly, for each j = l, · · · , n, we set 

'ft 
)

- (x - xi) · . . (x - x1_ i)(x - x1+d . . · (x - x.) p x - (x1 - x1) · · · (x1 - x1_ i )(x1 - x1+ 1 ) . .  · (x1 - x.) '  
(There is no factor x - x 1 in the numerator and no factor x 1 - x 1 in the denominator.) 
Then p fix) has degree n - 1 and 

p1(x1) = 1, but pi(x1) = 0 if i ::;:  j. 

Thus pi(x) solves the interpolation problem for the simple data 

Y1 = 0, . . .  , Y1- i = 0, YJ = l, YJ+ 1 = 0, · · · , y,. = 0. 
Now we superpose these elementary solutions to solve the problem for the general 

data 

We set 

(x1, Y1� (x2 . Y2� · · · , (x. , y,.). 

p(x) = Y1P1(x) + Y2P2(x) + · · · + Y.P,.(4 
This is it ! Check : 

p(x1) = Yi · 1 + Y2 · 0 + · · · + y,. · 0 = y., 
p(x2) = Yi · 0 + Y2 · 1 + · · · + y,. · 0 = Y2 , 

p(x,.) = Yi · 0 + Y2 · 0 + · · · + y,. · 1 = y,. . 
Since p(x) is the sum of (n - 1)-th degree polynomials, p(x) has degree at most n - 1 
(some terms may drop out). The formula for p(x) is the Lagrange interpolation 
formula. 

Lagrange Interpolation Fonnula The polynomial of degree at most n - 1 
that fits n points 

with x 1 < x2 < · · · < x,., is 

p(x) = Y1Pi(x) + Y2P2(x) + · · · + y,.p,.(x� 
where for j = 1, · · · , n, 

pi(x) = 
(x - x1)(x - x2) · · · (x - x1_ i)(x - x1+ d · · · (x - x,.) 

(x1 - xi)(x1 - x2) · · · (x1 - x1- i)(x1 - x1+ i)  · · · (x1 - x,.) 

EXAMPLE 1 Fit a cubic to (1, 4� (2, - 1� (3, o� (4, 1). 
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Sobttioll Compute the polynomials pj(x) for j = l, 2, 3, 4: 

q1(x) = (x - 2)(x - 3)(x - 4), q1(1 )  = -6, p1(x) = -iq1(x), 
q2(x) = (x - l}(x - 3)(x - 4), q2(2) = 2, p2(x) = !q2(x), 
q3(x) = (x - l )(x·- 2)(x - 4), q3(3) = -2, p3(x) = -!q3(4 
q,(x) = (x - l )(x - 2)(x - 3), q,(4) = 6, 

By the Lagrange Interpolation Formula, the answer is 

p(x) = 4p1(x) - p2(x) + p,(x) = -i(x - 2)(x - 3)(x - 4) - !(x - l)(x - 3)(x - 4) 
+ i(x - l)(x - 2)(x - 3). • 

Remark We did not need p3(x) because y3 = 0. Actually it would have been wise at the 
outset to note that p(x) = (x - 3)r(x� where 

r(l) = 
p( l) 

• -2. r(2) = p(2) "" I, r(4) = p(4) = I. 1 - 3 2 - 3  4 - 3  
This reduces the problem to fitting a quadratic to (I, -2� (2. I� (4, I� Hindsight! Also 
an excuse for testing the method on unequally spaced points, as we do next. 

• EXAMPLE 2 Fit a quadratic r(x) to (1, -21 (2, l� (4, 1 ). 

Sobttion q1(x) = (x - 2)(x - 41 q1(1 )  = 3, P1(x) = iq1(x1 
q2(x) = (x - l )(x - 4), q2(2) = -2, P2(x) = -!q2(x� 
q3(x) = (x - l )(x - 2� 

By Lagrange Interpolation, 

r(x) = -2p1(x) + p2(x) + p3(x) 
= -i(x - 2)(x - 4) - !(x - l )(x - 4) + i(x - l)(x - 2). • 

Remark The answer multiplied by x - 3 is the answer to Example I, as predicted. 

U n1queness Lagrange Interpolation shows that there always exists a polynomial 
of degree n - 1 whose graph passes through any n points 

(x1. Y1� (x2 . Y2� · · · , (x,, , y,,) 

provided x 1, x 2 , • • • , x,. are distinct. But is there only one? If we use undetermined 
coefficients or Newton Interpolation, do we find others? The answer is that there 
is exactly one polynomial that fits the points. No matter how you find it, you've 
got it. 

Existence and Uniqueness of Interpolation Polynomials 
Given n points 

(x1. Yi ), (x2 . Y2). · · · , (x,, , y,.), 
where x 1 < x 2 < · · · < x,., there exists a unique polynomial p(x) of degree at most 
n - 1 that passes through these points. 
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In the particular case n = 2, this amounts to saying there is one and only one 
straight line (linear function) through two points. 

To prove uniqueness in general, suppose there were two polynomials. p(x) and 
q(x1 that interpolate the given points. Set r(x) = p(x) - q(x). Then 

r(x1) = p(x1) - q(x1) = y1 - y1 = 0. 
for j = 1, 2, · · · ,  

n. Consequently r(x) is a polynomial of degree at most n - 1 with n distinct zeros. This implies r(x) = 0, because r(x) must be divisible by 
(x - xi)(x - x2) • • • (x - x,.� a polynomial of too high degree to divide r(x) unless 
r(x) = 0. Therefore p(x) = q(x). 

Error in Interpolation An important application of interpolation is the 
approximation of functions. The idea is to approximate a given function on an 
interval [a. b] by an interpolating polynomial that agrees with the function at n 
values of x in [a, b]. The following estimate gives a bound for the worst possible 
error in this type of approximation. 

Error in Interpolation Let f (x) be an n-times differentiable function on 
[a, b] and suppose 

for a :=;; x :=;; b. 
Let p(x) be a polynomial of degree at most n 

- 1 such that 

p(xi) = f(xi), p(x2) = f(x2� • • • • p(x,.) = f(x,.), 
where x1 < x2 < · · · < x,. are n given points in [a, b]. Then 

for all x on the interval. 

Proof Set g(x) = f(x) - p(x). We must prove the inequality 

M jg(x)I � n ! l (x - x1 ) • • • (x - x,.) j , a 5. x � b. 
We have some information about g(x). First, 

g(xi) = g(x2) = · · · = g(x11) = 0. 
Second, g1"1(x) = j<"1(x) because deg p(x) � n 

- 1. Therefore jg1"1(x) I � M. 
The desired inequality is certainly true if x = x 1, x 2 , · • · , x,. . Suppose x = x0 , 

different from x1, x2 , • • · ,  x,.. Choose k so that 

g(x0) = k(x0 - x1 )(x0 - x2) • • • (x0 - x,.� 
and set 

h(x) = g(x) - k(x - xi)(x - x2) • • • (x - x11). 
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Then h(x) has n + 1 distinct i.eros in the interval [a. b], at x1, x2 , • • · ,  x,. and at x0 • 
By the Generalized Rolle's Theorem (p. 470� h1"1(c) = 0 for some c in the interval. 
Therefore 

1t follows that 

g<">(c) k = --
1 • n .  l k l  = I g<·>�c) I s �. n .  n .  

But x0 was arbitrary on the interval. This completes the proof. 

• EXAMPLE 3 The polynomial 1 + !x + fx2 interpolates 2x at x = 0, l, 2. Show 
that 

for 0 s x s 2. 
Solutio11 Set /(x) = 2x. Then f'"(x) = (In 2)32x, so for 0 S x S 2. 

lf'"(x)I s (In 2)322• 

Therefore 

To complete the estimate we need the maximum value of 

P(x) = x(x - l)(x - 2) = x3 - 3x2 + 2x 
on the interval [O, 2]. Since P(O) = P(2) = 0, we rule out the end points and set 
P'(x) = 0: 

3x2 - 6x + 2 = 0, 3 ± J3 hence, x = 3 . 
A computation yields 

P(!(3 ± J3 )] = + iJ3, so IP(x)I S iJ3. 
Therefore 1 2x - 1 - tx - tx2 1 s nJ3 (In 2)3 < 0.086. • 

Remark A careful calculation based on maximizing 1 2  .. - 1 - fx - fx2 I on 0 s x s 2 
gives the more accurate bound 0.05. This agrees well with the table on p. 483. Also see 
Exs. 29 and 30. p. S i l. 

EXERCISES 

Use Lagrange interpolation to fit a polynomial to the data 
1 (-3, 4� (-2. o� {o, -2� (1. 1) 
2 (- 2, -2� ( - 1, 2� (0, 3� (1. 0� (2, 1) 
3 (0, 8), (2, 4� (4, 2� (6, 1) 
4 (-3. - 1� ( - 1, 0� (1, 0� (3, 1)  
s (-2, -5� (0, 2� (2, 0� (4, -2� (6, 3) 
6 ( - 1. o� (1. o� (2. 2� (S, o� (8, - 1�  (10. o� 
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Use Lagrange interpolation to fit the function at the given points 

7 y = sin fxx, x = 0, 1, 2, 3, 4 
8 y = e-" cos fxx, x = 0, l, 2, 3 
9 y = ( 1  + sin nx)(cos f1u1 x = !, i. 1 

10 y = x1{x + 1)1, x = - 1, 0, 1, 2. 

1 1  By inspection prove the identity 

x3 = 
(x - 2)(x - 3)(x - 4) 

+ 8 
(x - l )(x - 3)(x - 4) 

+ 27 
(x - l)(x - 2)(x - 4) 

( 1  - 2)(1 - 3)(1 - 4) (2 - 1)(2 - 3)(2 - 4) (3 - 1)(3 - 2)(3 - 4) 

(x - l )(x - 2)(x - 3) 
+ 64 (4 - 1 )(4 - 2)(4 - 3) 

. 

12 Suppose x1, x1 , · · · , x. are equally spaced and p(x) is a quadratic polynomial that 
fits (x1, y11 (x1 , y2), • • · ,  (x., y.). Give the third row of the difference table whose 
zero-th row is y1, y1 , • • · , Y • . 

13 Suppose S = {x1, x2, • • · ,  x.} is a set of n distinct real numbers such that 
S = { -x1, -x1 , - · . , -x.}. Suppose /(x) is an even function and p(x) is a polynomial 
of degree at most n - 1 that fits /(x) at x = x1, x1 , • · · ,  x • . Prove that p(x) is also even. 

14• Suppose/(x) has 4 derivatives on [ -3, 3] and l/'41(x) I s M. Show that 

l f(O) - M -/(- 3) + 9/(- 1) + 9/(1) -/(3)] 1 s jM. 

15 The polynomial (4/n2)x(n - x) fits sin x at x = 0, f1r, n. Estimate the error on (0, n]. 
16• The polynomial (8/3ir3)x(ir1 - x1) fits sin x at x = -n, -fx, 0, fx, ir. Estimate the 

error on [ - n, n]. 
11• Suppose /(a) =/(b) = 0 and lr(x)I s M on [a, b]. Prove 

lf/(x) dx I s �  (b - a)3• 

18 (cont.) Prove the error estimate in the Trapezoidal Rule, p. 234. 

9. APPROXIMATE INTEGRATIO N 

In Chapter 5 we learned two methods of approximate integration, rectangular 
approximation and the more accurate Trapezoidal Rule: 

J:f(x) dx � � h[fo + 2/1 + 2f2 + · · · + 2.r..- 1 + .r..], 

where h = (b - a)/n and Jj = f(a + jh). We also stated the error estimate 

M(b - a) lerror l :s:; 12 h2, M � lf"(x) I .  

Simpson's Rule When n = l ,  the Trapezoidal Rule says 

J:t(x) dx � 
b
; 

a [!(a) +  f(b)] = J:p1(x) dx, 

where p1(x) is the linear function that interpolatesf(x) at the two end points (a,f(a)) 
and (b,f(b)). For greater accuracy, we shall approximate f(x) by a quadratic p(x) 
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that interpolates the function at the two end points and the midpoint: 

(a,f(a)), (b,f(b)). 

Then we shall approximate the integral of /(x) by the integral of p(x). 
Let us use the notation 

b - a  h = -2-· x0 = a, Xi = a +  h, X2 = a +  2h = b. 

Given a quadratic polynomial p(x), we need a formula for 
" J p(x) dx 

• 

in terms of Po = p(x0), Pi = p(xi), and p2 = p(x2)· 
If p(x) is a quadratic polynomiai then 

" J p(x) dx = ih(po + 4pi + P2] . 
• 

Proof Write p(x) = A +  B(x - xi) + C(x - xi)2. 
Then by symmetry, the left side is 

" ... , + 11  
f p(x) dx = f [A + C(x - Xi)2] dx = 2Ah + fCh3. 

• ...,-11 
The right side is 

ih(po + 4pi + p2) = ih[(A - Bh + Ch2) + 4A + (A + Bh + Ch2)] 
= !h{6A + 2Ch2) = 2Ah + fCh3• 

The two sides agree. 
Remark Both sides are zero, hence agree if p(x) = D(x - x1)3• We conclude that the 
formula is correct not only for quadratics, but also for cubics, an important bonus. 

Given a continuous function /(x) on [a, b], we interpolate /(x) by a quadratic 
p(x) at x = x0, x" and x2 . Then Po = lo , Pi =Ji. and p2 = /2 . Since p(x) is an 
approximation to f(x), its integral is an approximation to the integral of f(x). 
Therefore 

" " 
f/(x)dx � f/(x)dx = !hCPo + 4pi + P2] = !h[fo + 4/i + f2

J
. 

Simpson's Three-Point Rule 

where h = !(b - a) and 

fo = f (a), fi = f (a + h), 

" 
f f(x) dx � ih[fo + 4/i + !2]. 

• 

!2 =f(a + 2h) =f(b). 
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Remark As noted above, Simpson's Three-Point Rule is exact if /(x) is a polynomial of 
degree three or less. 

• EXAMPLE 1 

(a) (sin x dx 
• 0 

Use Simpson's Three-Point Rule to estimate 
. l 

(b) I r dx to 4 places. What is the error? 
• 0 

Sol11tion (a) Here h = !n. so 
• f sin x dx � !(!n)(sin 0 + 4 sin !n + sin 7t) = j7t � 2.0944. 

0 

The exact value is f sin x dx = -cos x = 2. 
. ,. · o  o 

To 4 places the error is 0.0944. 

(b) In this case h = !. and 
l f r dx � !{!)(l + 4e112 + e) � l.7189 . 

• 0 

Exact value: (r dx = r I� = e - • � 1.7183. 

To 4 places the error is 0.0006. • 

General Simpson's Rule Does the Three-Point Rule always provide a good 
approximation to 

,, f f(x) dx 1 . .. 
That depends on the graph of /(x). See Fig. 1 .  

y y 

x x 

(a) Good approximation (b) Poor approximation 

Fig. l 
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The same interpolating quadratic p(x) appears in Fig. la and Fig. lb  since the 
three points that determine p(x) are the same. Yet the approximation 

b b f /(x) dx � f p(x) dx 
. . . . 

is good in Fig. la and poor in Fig. 1 b. 
In the first case, p(x) approximatesf(x) closely. Furthermore, 

( 1
p(x)dx < (J(x) dx, whereas (2

p(x)dx > (2
f(x) dx, 

• Xo • .Xo • Xi • X1 
so the errors tend to cancel. 

In Fig. 1 b, however, p(x) is a poor approximation to fl4 To make matters worse, 
the errors do not cancel, they accumulate. The trouble is that the points x0 , x1, x1 are 
too widely spaced. It is much better to apply the Three-Point Rule twice, once 
from x0 to x 1 and once from x 1 to x 1 (Fig. 2 ). 

y 

Fla. 2 Three-point rule applied twice; on 
[x0 , x1] and on [x1, x2] 

In genera� to improve the approximation we divide [a, b) into an even number of 
equal pieces and apply Simpson's Three-Point Rule serially, taking three division 
points at a time. 

h h h h h h 

Let us divide [a, b) into 2n subintervals, each of length h = (b - a)/2n. We write 

fb f "'J (' f "'' 

"'2 
f(x) dx = + + + · . .  + f " , 

• J<o "'Z "'' "'J.-2 
and apply three-point approximation to each integral on the right side: 

Adding these estimates, we obtain Simpson's Rule. 
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Simpson's Rule 

f f(x) dx � � h[fo + 4/1 + 2/2 + 4f3 + 2f• + 4fs + · · · + 2f2n-2 + 4f2r 1 + /2,.], 

where h = (b - a)/2n and/0 ,/1 , • · • ,/2,, are the values off at the successive points 
of division of a s x s b into 2n equal parts. The rule is exact whenever /(x) is 
a polynomial of degree 3 or less. 

Note the sequence of coefficients: 

l, 4, 2, 4, 2. 4, . . . • 4, 2, 4, l .  

The number of subintervals of a s  x s b is 2n (even). The number of points of 
division, counting the end points, is 2n + l (odd� These odd numbers are used to 
describe various versions of Simpson's Rule. Thus a 7-point Simpson approximation 
refers to the division shown here: 

�ffic_ie_nt_s: 
____ 

4 
___ 2_ 4 2 

In this case n = 3, 2n = 6, 2n + l = 7, and the rule states 

4 
- i] 

" f f(x) dx � !h[f0 + 4/1 + 2/2 + 4/3 + 2f• + 4/5 + /6] • . .. 

• EXAMPLE 2 Use Simpson's Rule with 5 and with 1 1  points to estimate 

, I  I x4 dx 
• - 1 

to 4 places. Compare to the exact value. 

Sol"tio• The exact value is 

1 f X4 dx = ix5 I�  1 = ! = 0.4000 . 
• - 1 

If 2n + 1 = 5, then n = 2 and h = (b - a)/2n = l The approximation is 

. l I X4 dx � ih[fo + 4/1 + 2/2 + 4/3 + /4] • - 1 
= ![l + 4(-!)4 + 0 + 4(!)4 + l] 
= i . i = 

f
2 � 0.4167. 
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Similarly, if 2n + I = 1 1, then n = S, h = fir, and 
l r x4 dx � Mt +  4(-�)4 + 2(-i\)4 + 4( -�)4 + 2(-rlr)4 . - l 

+ 0 + 2(flr)4 + 4(�)4 + 2(i\)4 + 4(�)4 + 1] 

= -h x 10-4( 104 + 4 x 84 + 2 x 64 + 4 x 44 + 2 x 24) 

= -h x 10-4 x 30032 � 0.4004. 

The 5-point error is about 0.017 and the 1 1-point error is 0.0004. • 

It pays to exploit symmetry when applying Simpson's Rule. You can generally 
improve accuracy with no additional computation. Compare the following example 
to the last one. 

• EXAMPLE 3 Use Simpson's Rule with 5 points to estimate 

to 4 places. Exploit symmetry. 

Solutio11 The integrand is an even function, hence . . r . I x4 dx = 2 x' dx . 
• - l • 0 

l 
J x4 dx 

- ·  

Now use Simpson with 5 points on (0, 1 ], which is practically as good as using 
Simpson with 9 points on [ - 1, 1]. The result is 

• l I x' dx � AfO + 4(!)' + 2(!)4 + 4(i)4 + 1] � 0.4010 . 
• - 1 

The error is only 0.001, much smaller than the error 0.017 in Example 2 for the 
5-point Simpson approximation. • 

A Further Example The exact value of 

is not known, but to 11 places it is 

0.88208 10350 6. 

In the following table we show the results of several trapezoidal and Simpson 
approximations to this integral. 

Table 1 

Trapezoidal Approximations (2n + 1 )-Point Simpson Approximations 
2 , l 2 l 

n f e-x• dx n I e-x• dx 2n + I  f e-x• dx 2n + 1 f e-x• dx 
· o  · o  • 0 0 

2 0.877037 1 8 0.881704 3 0.829944 9 0.882066 
4 0.880618 10 0.881837 s 0.881812 1 1  0.882073 
6 0.881415 20 0.882020 7 0.882031 21 0.882081 
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Table 1 shows that Simpson's Rule is much more precise than the Trapezoidal 
Rule. For instance, with 5 points of subdivision, the errors are approximately 
0.001463 (Trapezoidal) versus 0.000269 (Simpson); with 1 1  points of subdivision, 
0.000244 (Trapezoidal) versus 0.000008 (Simpson). 

An Ap!Jl i  ation t V I in A prismoid is a region in space bounded by two 
parallel planes and one or more surfaces joining the planes (Fig. 3). There is a nice 
formula for the volume V of a prismoid whose cross-sectional area /(x) is a cubic 
function of the height x, measured along an axis perpendicular to the base planes: 

h V = 6 (A0 + 4M + A 1 � 

where h is the distance between base planes, A0 and A 1 are the areas of the bases, and 
M is the cross-sectional area halfway between the bases. This is sometimes called the 
Prismoidal Formula. The proof is a direct application of Simpson's Rule. See Ex. 45. 
Note that .. cubic.. includes linear and quadratic polynomials, the usual cases in 
applications of the Prismoidal Formula. 

x 

a + h  

x 

a 

Fig. 3 Prismoid: A{x) = a cubic in x. 

• EXAMPLE 4 Find the volume of a sphere of radius a by the Prismoidal 
Formula. 

So/11tio11 The cross-sectional area is a quadratic function of the height, hence the 
formula applies with 

Conclusion: 

h = 2a, A0 = A1 = 0, M = 7ta
2

• 

2a 4 V = 6 (0 + 41t02 + 0) = 3 7ta
3

• • 

E r r n Sir pso 1 R ule Simpson's Rule is exact for cubic polynomials. Now 
/(x) is a cubic if and only if J'">(x) = 0. Hence J'">(x) measures how far /(x) differs 
from being a cubic, so it is reasonable that I f'41(x) I should appear in error estimates 
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for Simpson's Rule. The following estimate for the Three-Point Rule is proved in 
numerical analysis. (See Exs. 53 and 54.) 

Error in Simpson's Rule Suppose /(x) has a continuous fourth derivative 
on [a. b], and l/'41(x)I � M. Then 

f
. 

h /(x) dx = 3 (/0 + 4/1 + /2) + e, 
Mh5 

where le I :5; 90 . 

To obtain an error estimate for the General Simpson's Rule, we divide the interval 
into 2n parts, and apply the preceding estimate n times taking h = (b - a)/2n. This 
yields 

Mnh5 M (b - a)5 lcrror l � 9() = 90 
x 2

' 
n• 

Thus the maximum error is proportional to 1/n4• That is why a large n yields high 
accuracy. 

• EXAMPLE I Estimate In 2 by Simpson's Rule with h = 0.1. Find a bound for 
the error. 

In 2 = f 2 dx = f 1 .2 + f 1 .4 + f 1 .6
+ f 1.8

+ f2.0. 1 x 1 .0 1 .2 1 .4 ,l.6 1 .8 Sohltion Write 

and apply the three-point Simpson's Rule to each integral on the right. In each 
case the error is at most 

M(0.1)5 90 

where M is a bound for the fourth derivative of /(x) = l/x. Since 

and 

take M = 2 · 3 · 4 = 24. Thus each of the S errors is at most 

24(0. 1)5 
90 

and the combined error is at most S times this much: 

lcrror l < 5 x 
2�l )

' 

< l.4 x 10-5. 

So much for the accuracy. The estimate is 

0.1 ( 1 4 2 4 2 4 2 4 2 4 I )  1n 2 � 3 I + ii + 1.2 + t .3 + 1.4 + 1.5 + 1.6 + t. 1 + 1.s + 1.9 + 2 
� 0.693150. 

To 6 places, In 2 � 0.693147, so the actual error is smaller than 4 x 10- 6• • 
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Gaussian Quadrature In addition to the Trapezoidal Rule and Simpson's Rule, 
there are many other rules for approximate integration based on interpolation. We 
shall look at the easiest case of a series of rules that go under the name 
Gaimian Quadrature. 

For simplicity of notation, we shall work only on the interval [- 1, 1]. Any other 
interval can be transformed into this one by shifting and changing scale, so there is 
no real loss of generality. 

Simpson's Rule is based on quadratic interpolation through the points 

(- 1,
/

( - 1)), (0,
/

(0)1 (l,
/

(1)1 
and is exact for cubics. The Trapezoidal Rule is based on linear interpolation 
through the points 

( - 1.
/

(- 1)) and (1,
/

(1)1 
and is exact for linear functions. We now ask : Is it possible that linear interpolation 
through two other points could produce a rule that is exact for quadratics at least? 

Two other points would be 

(a,
/

(a)) and (fJ.J(fJ)1 
where - l s a < fJ s 1. The linear function through these points is 

g(x) =
/

(a) +
/

(
{J

) -
/

(a) (x - a) =  
{J/

(a) - a
/

(
{J

) +
/

(
{J

) -
/

(a) x, 
{J

- a  
{J

- a  
{J

- a  
and it follows easily that 

f 1 g(x) dx = 2 
{J/

(a) - a
/

(
{J

) . - 1  P - a 
Therefore we obtain the approximation 

f 1 /(x) dx � 2 

{Jf
(a) - a

/
(
{J

), - 1  P - a 
which is exact for linear functions. 

Can we make this approximation exact for quadratics as well? It will be enough 
to make it exact for 

/
(x) = x2• Now 

f 1 x2 dx = � and 2 pal - a
{J

2 
= -2a

{J
, - 1  3 

{J
- a  

so the condition for equality is -2a
{J 

= j, that is, a = - 1/3
{J

. Since - 1 � a < fJ s 1, 
we may choose fJ to be any number satisfying ! S fJ s l. Once fJ is chosen, a is 
determined (and satisfies - l s a s  -!). 

To summarize the discussion: if! � fJ � 1 and a = - l/3
{J
, then the approximation 

f 1 /(x) dx � 2 
{J/

(a) - a
/

(
{J

) 
- I  

{J
- a  

is exact for quadratic functions. 
We still have some freedom in the choice of 

{J
. So why not shoot the works and 
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see if we can make the approximation exact for cubics? It will suffice to make it 
exact for /(x) = x3• Now 

f 1 x3 dx = 0 and 
- 1 

pa.l «/J3 
2 /J _ IX = -2«/J(« + /J� 

so the condition for equality is « + P = 0, that is, « = -JJ. But «P = -!. hence 
«2 = /J2 = !. Therefore we choose p = !J3 and IX =  -!.J3 , so 

2 /J/(«) -ef(/J) = 2 !
J3 /(-!J3) + iJ3 JHJ3 ) = !(-iJ3 ) + JHJ3 ). /J - (X iJ3 

Gaussian Quadrature If /(x) is continuous on (- 1, l], then 
1 f /(x)dx :::::/(-!J3 ) + J(!J3) . 

• - 1 

The approximation is exact if /(x) is a cubic polynomial. 

• EXAMPLE I Estimate f 1 
l 
dx 
2 - 1  + x 

by Gaussian Quadrature, and compute the error. 

Sollltio11 Set/(x) = 1/(1 + x2), an even function. The estimate is 

f 1 dx 2 2 3 - 1 l + xi ::::::: f 
HJ3 ) + f ( -!J3 ) = 2/ HJ3 ) = 

l + HJ3 )2 = I + i = 2 = 1.5. 
The exact value is 2 arc tan 1 = 2 x in = !n; the error is !n - 1.5 ::::::: 0.07. • 

Like Simpson's Rule, Gaussian Quadrature is exact for cubics; hence the error 
must depend on the siu of f<4'(x ). The following error estimate is proved in 
numerical analysis. (See Exs. 55 and 56.) 

Error in Gaussian Quadrature Suppose /(x) has a continuous fourth 
derivative on [ - I, 1] and I /'41(x) I S M. Then 

1 J /(x) dx = /(-!J3 ) + /(!J3 ) + &, 
- 1  

where 

• EXAMPLE 7 Check the error estimate for /(x) = x4• 
Sollltio11 f 1 x4 dx = � 

- 1 5 and 

so the actual error is i - i = -IJ. In this case, f'4>(x) = 4 ! = 24, so the theoretical 
maximum error is 

exactly equal to the error. 

M 24 8 
135 
-
135 = 45' 

• 
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Remark Generally the actual error is smaller than M/135. If /(x) = r, for example, the 
error is about 40% or M/135. See Ex. 40. 

EXERCISES 

Estimate to 4 places by Simpson's Three-Point Rule, and give lerrorl 
s/2 r sin x dx .,, 

1 J sin x dx 2 3 r cos x dx 
0 •/2 . ·al' 
0 2 f dx 4 f r dx 5 f r dx 6 

o 1 + xl - I I 
r dx I 

7 8 f x5 dx. I xl -
I 

[In Exs. 9-26, remember that Simpson's Rule with n implies 2n subintervals.] 
Estimate to 5 places by Simpson's Rule with n = 2 and n = 4 

9 

12 

15 

18 

I f r dx 
0 
2 J Jf+X3dx 

0 
I 

J sin x2 dx - I 
f 2• cos x --dx • x 

10 

13 

16 

19 

Estimate to 7 places with n = 10 

• f sin x dx 1 1  
0 
3 f �dx 14 I 

J"'2 sin x --dx 17 
- a12 x 
3 J jl+eidx 20 I 

21 J 'r dx 22 (sin x dx. 
0 0 

I J x9 dx 
0 

fl x2 dx I 1 + x' 
' J el/x dx 
I 
3 

J eli dx. 
I 

23 Compute exactly the Simpson approximation to (1/n) f�· J 4 + sin x dx with n = 2. 
24 (cont.) Exploit symmetry in the same problem. 
25 Using error estimates, show that the error in Ex. 21 is at most 10·1• 
26 Show that the error estimate in Example 5 can be improved to about 4. 7 x 10-6 by 

using the ractor l/x5 carerutly, not just bounding it by I. 

Estimate to 4 places by Gaussian Quadrature 

27 (Ir dx 28 (I Jx1+l dx 29 ( I X6 dx JO f I } :
2 
x' dx. 

31 Show that the Gaussian Quatrature formula for the interval [c - h, c + h] is , .. f f (x) dx ::=:: h[f(c + !hJ3) + f (c - ihJ3 )]. 
<-• 

32 (cont.) Find the corresponding error estimate. 
Divide each interval into 4 equal parts and apply the Gaussian Quadrature of Ex. 3 1  to each 
part, then sum the results. Carry your work to 6 places 

I 

33 f r dx 
0 

34 (sin x dx 
0 

5 
35 J ..yf+xdx 

I 
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fs11 sin x 
36 - dx 

-s/l x 
4 

37 f e11" dx 
l 

l 
38 f e.fi dx. 

l 
39 The integral in Ex. 29 equals ; == 0.286. The answer to the exercise is 0.0741. Why 

is it so bad? Does use or Ex. 3 1  and symmetry help? 
40 Compute the ratio of the actual error in Ex. 27 to the error estimate M/135. 
Show that the Prismoidal Formula applies to the solid of revolution and compute the volume 

41 the region bounded by x = y1 and x = a revolved about the x-axis 
42 the region bounded by the x-axis, y = x311, and x = a  revolved about the x-axis 

x1 y2 
43 the ellipse 01 + b1 = I revolved about the x-axis 

xl yl 
44 the region bounded by the hyperbola - 02 + bl ... l, x - -c, and x = c, revolved about 

the x-axis. 
45 Prove the Prismoidal Formula. 
46 Use the error estimate to find the least n for which it is safe to estimate 

to 5 places by Simpson's Rule. 
47• Suppose /(x) + f(b - x) = 1 for 0 s; x s b. Show that Simpson's RuJe with any n is 

exact ror the integral of/(x) on (0, b). 
48• (cont) Apply this idea to evaluate 

rs11 sin x Jo sin(x + ix) 
dx and . dx. f s11 (x - ix)2 sin x o SID X + COS X 

The remaining exercises concern proofs of error estimates and are necessarily harder. 

49 Supposer(x) is continuous on [a, b) and/(a) •/(b) - 0. Prove 

f1(x) dx = - � f (x - a)(b - xr(x) dx. 

!O (cont.) Suppose also lr(x)I s M. Prove IJ:J(x) dxl s; nM(b - a)1. 
51• Sharpen the reasoning used to prove Error in Interpolation (p. 492) to prove the 

foUowing: if a <  c < b,f(a) = /(c) = /(b) • f'(c) • 0, and l/'41(x)I s; M on (a, b), then 

l/(x)I s nMl(x - a)(x - c)2(x - b)I. 
52• (cont.) Prove the error estimate in Simpson's RuJe (p. 501). 
53• Suppose /(a) ""f'(a) = /(b) = f'(b) = 0, that /'41(x) is continuous on (a, b), and 

lf'41(x)I s; M. Use the method indicated in Exs. 51 and 52 to prove 

l
ff(x) dx I s;  

7
�

0 
(b - a)'. 

54• The midpoint approximation is 
• f /(x) dx == (b - aY[!(a + b)] . 

• 
M 

Suppose lr(x)I s M on [a. b]. Prove thal I error I ::s; 
24 

(b - a)3• 
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(Hint Set c = !(a + b). Subtract a suitable linear function from/(x) so the result g(x) 
has g(c) = g'(c) = O.] 

55• Let 0 < c S l, 3c2 � l . Suppose JHJ3 ) ,.  /(-!J3 ) = 0. Show that there is a cubic 
p(x) such that if g(x) = /(x) - p(x� then 

I I f f(x) dx = r g(x) dx, g(tJ3 ) = g(-tJ3 ) = 0, 
- 1  • - 1 

and g(c) = g(-c) = 0. 
!§6• (cont.) Suppose also 114•1(x)I S M  on ( - 1, l]. Obtain the error in Gaussian Quadra

ture (p. 503). (Hint See Ex. 53.] 

1 0. ROOT APPROXIMATION AND H I L L  CL IMBING 

One of the bread-and-butter problems of mathematics is solving equations, or at 
least approximating solutions to high accuracy. Suppose we want to solve an equation 

/(x) = 0, 

where/(x) is continuous on an interval [a, b], and somehow we know there is at 
least one solution in the interval. How do we go about finding a solution to say 
5 decimal places? 

One possibility is to use the Intermediate Value Theorem : if /(c) < 0 and 
/(d) > 0, thenf(x) = 0 somewhere in the interval [c, d]. Hence if we can find a tiny 
interval of this type, we shall have a solution nearly pinpointed. These remarks 
suggest a brute-force way of squeezing down on a solution in a sequence of steps, 
each of which adds one additional decimal place accuracy to the preceding estimate. 

For instance, suppose/(4) < 0 and/(5) > 0. Then/(x) has a uro between 4 and 
5. We compute 

/(4. J1  /(4.2), /(4.3), . . .  

until we find the first positive one. This will require from one to nine computations 
of/(x). Suppose we find 

/(4. 1 ) < 0, /(4.2) < 0, · · ·, /(4.7) < 0, but /(4.8) > 0. 

Then there is a uro in [4.7, 4.8]. We repeat the process relative to this interval, 
computing 

/(4.71), /(4.72), /(4.73), . . .  

until the first positive value, again as many as nine evaluations. This time we might 
find 

/(4.74) < 0 and f (4.75) > 0. 

Then there is a uro in (4.74, 4.75]. If we stop here, we choose either x � 4.74 or 
x � 4.75 depending on which of 1/(4.74)1 or l/(4.75) 1  is smaller. 

Continuing this way, we can grind out one additional decimal place accuracy at a 
time, but at the cost of computing as many as nine values of /(x) in each step. The 
method works, but has a Neanderthal quality. 
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• EXAMPLE 1 Estimate to 4 pJaces the soJution of cos x = x. 

)' 

x 

Fia. I Intersection of y = cos x and 
y = x. 

Sohltion A rough sketch (Fig. 1) shows that the graphs y = x and y = cos x inter
sect for a value of x between 0 and I. We setf(x) = x - cos x. Then /

(0) = - 1  < 0  and f(l ) = 1 - cos l > 0, 
so we are ready to start. By tables or a calcuJator, /

(0.7) � -0.065 < 0 and 
/

(0.8) � 0.103 > 0. 
At the next step, /

(0.73) � -0.015 < 0 and 
/

(0.74) � 0.002 > 0. 
Twice more: 

f(0.739) � -0.00014 < 0 and 
/

(0.740) � 0.00153 > 0 /
(0.7390) � -0.00014 < 0 and 

/
(0.7391) � 0.00002 > 0. 

We conclude that x � 0. 7391 is accurate to 4 places. • 

Remark 1 The result of the second step is f(0.73) � -0.015 and f(0.74) � 0.002. Since 
0.002 < I - 0.015 I, it seems more likely at this stage that the zero off (x) in the interval 
[O. 73, 0. 74] is closer to 0. 74 than to 0. 73. Therefore ournext tests should be f (0. 739� f (0. 738� · · · 
rather than f(0.73 1� f(0.732� · · · .  

In genera� it is good computing practice to start at the point where lf(x)I is least and 
work toward the other point. Instead of ! x 9 = 41 tests, you can expect about ! x 5 = 2! 
tests on the average to find a sign change. 
Remark 2 The method in Example 1 is a modification of the method called Bisection, in 
which the interval is split into two, not ten, parts. If /(a) > 0 and f(b) < 0, you compute 
f(x) at the midpoint c = !(a + b� If f(c) < 0, you next check the midpoint of (c, b]; if 
f(c) > 0, you next check the midpoint of (a, c), etc. This method does not fit as well with 
our usual representation of numbers by decimals as does the method used above, which might 
be called 10-section. 

The Secant Method Our next method is based on Jinear interpoJation. Suppose 
that 

/
(a) < 0 and f(b) > 0 and that f(x) increases on (a, b]. The linear function 

through (a, 
/

(a)) and (b, 
/

(b)) is an approximation to f(x) on (a, b], so its zero 
should be a reasonabJe approximation to the zero of f(x). See Fig. 2. 



608 1 0. APPROXIMATION 

y 

Fi&- 2 Secant method: The line through 
(a, f (a)) and (b, f (b)) determines c, 
an approximation to a zero orf(x). 
As drawn.f(c) > 0, so the next 
approximation is based on (a.f(a)) 
and (c.f (c)� 

Call this uro c. To compute c, note that the interpolating linear function is 

y = /(a) + /(b) - /(a) 
(x - a). 

b - a  

Set y = 0 and x = c, and solve for c: 

/(b) - /(a) b - a 0 = /(a) + 
b _ a 

(c - a� c - a =  -/(a) 
/(b) - /(a) ' 

b - a a[f(b) - /(a)] - f(a)(b - a) 
c = a - /(a) 

/(b) - /(a)
= 

/(b) - /(a) 

af(b) - bf(a) 
c = 

/(b) - /(a) · 

The computation of c does not involve any new values of /(x); presumably you 
have computed /(a) and /(b) earlier to test their signs. This is a labor saving 
feature of the method. 

Having c, compute /(c). If /(c) < 0, repeat the process on the interval [c, b]; if 
/(c) > 0, repeat the process on [a, c]. Continue until you reach a c such that 
/(c) :::=: 0 to the desired degree of accuracy. 
Remark For historical reasons, this method is known as the Mediod of False Position. 
The name Secut Metboli generally denotes a slightly modified process; however, we shall 
use this latter name here. 

• EXAMPLE 2 Find an x by the Secant Method such that cos x :::z x to 4-place 
accuracy. 

Sohltion Set /(x) = x - cos x. Then /(0) = - 1, /(1) :::z 0.4597, so apply the Secant 
Method to [a, b] = [O, l]: 

0 - /(0) 1 
c = 

/(1) - /(0) 
= 

0.4597 + 1 
:::=: 0·6851. 

Since f(c) :::z -0.0893 < 0, 

the solution is in the interval [ c, I]. 
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The new c is 

_ cf(l )  - /(c) _ (0.6851)(0.4597) + 0.0893 _ 0 7363 Ci - /(1) - f(c) - 0.4597 + 0.0893 
,.., . . 

Since /(ci) � -0.0047 < 0, 
the solution is in [c" l]. Next 

Since 

c = 
cif(l) - /(c1 )  - o  7390 2 /(1 ) - /(ci ) 

- · · 

f (c2) � -0.0001 < 0, 
the solution is in [ c2 ,  1 ). Finally, 

= C2f(l) - f(c2) _ 0 7391 Cl f(l ) - f(c2) -
. 

' 

so x � 0.7391 is an answer. • 

Remark In working Example 2 by the Secant Method, we evaluated /(x) at 6 points: 
0, 1, c, c1, c2, c3 • In Example 1, to get the same accuracy by the IO.section method, we 
needed evaluations at 

0, l, 0.1, 0.2. . . . • 0.8, 0.71, 0.72, 0.73, 0.74, 

0.731, 0.732. . . .  ' 0.739, 0.7391, 

a total of 24 points. (However, if we follow the suggestion of Remark 1, p. 507, then 1 1  
evaluations suffice.) 

We end our discussion here. More sophisticated methods or root finding based on 
interpolation exist, but they are generally less satisractory than the methods we shall 
discuss in the next section. Also, error estimates ror interpolation-based methods 
are difficult to obtain. 

Hill C l imbing Another bread-and-butter problem of calculus, frequently called 
opdmi7.adon, is to maximize a function /(x) on an interval a �  x � b. In practice, 
the First Derivative Test may not help because f'(x) may be complicated and the 
equation f'(x) = 0 hard to solve. Such situations require numerical techniques. We 
shall describe a method called bill climbing. which is something like the 10-section 
method for root approximation. 

The idea is to start at a value x0 where the function is fairly large, then to 
move by small steps "uphill" until you pass a peak. To be precise, take a guess 
x0 and compute f (x0). Then move a fixed amount h to the left and right, computing 
f (x0 - h) and /(x0 + h). If (say) f (x0 + h) > f (x0� move again to the right. If 
f(x0 + 2h) > f(x0 + h� move once again to the right, etc. Keep going to the right 
until the first time you go down. For instance, suppose 

/(x0) < f(x0 + h) < f(Xo + 2h) < · · · < f(x0 + nh) 
but f[x0 + (n + l )h) < f(x0 + nh). 
Then obviously the graph has a peak near x0 + nh. 
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Now start at x 1 = x0 + nh and repeat the whole process, but with flrh instead 
of h, etc. In this way you sneak up on the point x where f(x) has a max. The 
method only requires f(x) to be continuous, not even differentiable. 

• EXAMPLE 3 Set f(x) = 2 sin x - x2• Estimate to 2 places the point x = c 
where f(c) is a max, and estimate f(c). 

max 

Solutio1t A rough graph (Fig. 3) shows f(x) has a single local max, around 
x = 1. So start at x0 = 1 with h = (l. l : 

f(0.9) � 0.7567, f(l)  � 0.6829, f ( 1.1 ) � 0.5724. 
The curve climbs to the left. Keep going to the left in steps of 0. 1 until the first 
time you go down : 

/(0.8) � 0.7947, f (0. 7) � 0. 7984, but f (0.6) � 0.7693. 
Now take x1 = 0.70 and h = 0.01 : 

f (0.69) � 0. 7970, 
This time you climb to the right: 

f(0.71) � 0.7996. 

f (0.72) � 0.8004, f(0.73) � 0.8008, f(0.74) � 0.8010, /(0.75) � 0.8008. 
The winner is x � 0.74, and f(0.74) � 0.8008. • 

Remark The First Derivative Test leads to the equation cos x - x = 0, for which the only 
solution is x � 0.7391 as we know from the previous examples. 

Hill climbing obviously has its ups and downs. You might end up at a local max instead 
of the actual max. Or, you might miss the max altogether if your first h is too large. Each 
example requires some common sense, a good feel for the function involved, and perhaps a 
rough graph. On the positive side, however, the method is easy to program on a computer. 

EXERCISES 

Estimate the root (or roots) to 2 places by 10-section 
I x3 = 5 2 x3 = 60 
4 x5 = - 20 5 x' = 7 
7 x3 + x2 - x + l = 0 
9 r = x + 2  

3 x5 = 100 
6 X16 = 35.5 

8 3x3 = 7x + 3 
10 4 cos x = 2 - x. 
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Use the Secant Method to find an x near each root or the equation for which the equation 
is correct to S decimal places. 

1 1  x3 = 29 
14 x2·3 = 10 
17 x lo x =  I 

12 x3 • - 17 13 x3 = !x + S 
15 ix3 + 1 = x2 

18 
16 !x3 = x2 + x + 1 

19 x + tan x = 1 (0 < x < 2it) 
21 x2·5 = X + 3 
23 sin2 x = cos x (0 < x < !it) 

20 
x = e"'s 
x + ln x = O  

22 sec x = J 4 - x2 
I 24 xl/2 _ _ _ - 1 + x2 • 

By hill climbing (descending) estimate to 3 places the required extremum or /(x) 
25 max((ln x)/r] 26 max(x/2") 
27 max[x(x2 - l )(x2 - 4)), 0 < x < 1 28 min(x(x2 - l )(x2 - 4)], 1 < x < 2 
29 max(2" - 1 - !x - !x2� 0 < x < 1 JO min(2" - 1 - !x - !x2� 1 < x < 2  

31 min [sin x - :
2 

x(n - x)]. 0 < x < n 

32 min [sin x - 3!3 x(x2 - x2)]. 0 < x < n 

33 max (sin x - 3!3 
x(n2 - x2) J. 0 < x < n 

1 
34 max 

x
s
(e

•'" 
- 1 ) ' 0 < x. 

35 Solve x" = S by the Secant Method, starting on (2, 3]. Stop when your answer is stable 
to 4 places. How many steps? 

36 (cont.) You will notice that the method is slow because the right end point 3 never changes, 
so the successive intervals all have length :=::; 1. To avoid this, try alternating secant with 
bisection. Now how many steps are required for the same accuracy? Count each secant 
as one step and each bisection as one step. 

1 1 . ITERATION AND N EWTON'S M ETHOD 

Choose any real number x0 •  Set x1 = cos x0 ; then x2 = cos x1, then x3 = cos x2 , 
etc. You will notice that the successive x. tend to stabilize as n grows. 

For instance starting with x0 = 1, a 4-place computation yields successive 
values or x,, as shown in Table 1. 

n XR 

I .5403 
2 .8576 
3 .6543 
4 .7935 
s .7014 
6 .7639 

Teble 1 XR + I  = cos XR , Xo = 1 

n XR 

7 .7221 
8 .7504 
9 .7314 

10 .7442 
1 1  .7356 
12 .7414 

±R 

13 .7375 
14 .7402 
I S  .7383 
16 .7396 
17 .7387 
18 .7393 

n XR 

19 .7389 
20 .7392 
2 1  .7390 
22 .7391 
23 .7391 
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Conclusion: To 4-place accuracy, 

cos(O. 7391 )  � 0. 7391. 

If we start afresh with x0 = 0.739100 and work to 6-place accuracy, we find 

X9 = X10 = 0.739085, 

hence cos(0.739085) � 0.739085 to 6-place accuracy. 
The equation x = cos x is an example of an equation of the form x = <J>(x). Such 

equations are common in practice and arise, as we shall see, in connection with 
root finding. 

Under certain conditions, an equation x = <J>(x) can be solved (approximately) 
by iteration. We start with an initial value x0 and define successively 

x3 = </>(x2� • • • , x,.+ 1 = </>(x,.). 

We hope these values stabilize, and do so rapidly; then the process yields an 
approximate solution of x = </>(x). For x,. � x,.+ 1 is the same as x,. � </>(x,.); hence 
x,. is an approximate solution. 

The process does not always work. For instance, if </>(x) = 2 cos x, then x = 
1.02986653 is a solution of </>(x) = x to 8 places. However, set x0 = 1 and iterate 
to 5-place accuracy : 

x 1 = 1.08060, 

X5 = 1.43942, 

X2 = 0.94160, 

x6 = 0.26200, 

X3 = 1.17699, 

x, = 1.93175, 

X4 = 0.76741, 

X9 = -0.70633. 

The message is clear: even though we started within 0.03 of the answer, the process 
is unstable. 

We can salvage this iteration by modifying it slightly. Instead of defining x,.+ 1 

as 2 cos x,., let's try the average of x,. and 2 cos x,.. Therefore, we define a new function. 

</>(x) = 
x + 2 cos x

. 
2 

If we can solve x = <J>(x� then x = 2 cos x, so we shall have solved the original 
equation. Let us again start with x0 = 1 and iterate (Table 2� 

Table 2 4'(x) = !(x + 2 cos x� Xo = 1 

n x. n x. n x. 

l l.040302 6 l.029806 1 1  l.029867 
2 l.0261 1 1  7 l.029888 12 l.029866 
3 l.031204 8 1.029859 13 1.0298667 
4 l.029388 9 1.029869 14 l.0298665 
5 1.030037 10 1.029866 15 l.0298665 

We conclude that x = 1.0298665 approximates the solution of x = 2 cos x to 6 
places. 



11 . Iteration and Newton's Method 513 

Ex pl a nat ion This method has its ups and downs; sometimes it works. sometimes 
it fails. We need a way of testing 4>(x) in advance to be sure the method will work. 
The key is the size of 4>'(x) near the solution. If l4>'(x)I < 1, the method works; 
otherwise, it generally fails. 

Examples If 4>(x) = cos x, then lti>'(x)I = I - sin x i < 1 near x � 0.7391. Itera
tion works. 

If (j)(x) = 2 cos x, then I 4>'(x) I = I -sin x I > 1 near x � 1.0299. Iteration fails. 

If (j)(x) = !(x + 2 cos x), then lti>'(x)I = I! - sin x I < 1 near x � 1.0299. Iteration 
works. 

Let us state a precise result. 

Iteration Let tf>(x) be a differentiable function which maps an interval [a, b] 
into itself, that is, a :s; 4>(x) :s; b whenever a :s; x :s; b. Let 

lti>'(x)I :s; M < 1 
on the interval, where M is a constant. Finally, assume there exists a point c in 
the interval such that c = (j)(c). Choose x0 on the interval arbitrarily and define 

Xi = (j)(xo� X2 = (j)(xi), X3 = 4>(x2). · · · . 

Then x. becomes as close as we please to c as n increases, so x., approximates 
c to any required degree of accuracy. 

To prove this assertion, let x be any point of the interval. By the MVT, 

4>(x) - 4>(c) = (x - c)4>'(z� 
where z is between x and c. Therefore 

ltf>(x) - tf>(c)I = l ti>'(z) l Ix - cl :s; Mix - cl . 
But 4>(c) = c, so this implies 

ltf>(x) - cl S Mix - cl. 
Now we lift ourselves up by our bootstraps, starting with x = x0: 

lx1 - c l = l4>(xo) - c l  S M lxo - cl . 
We continue with x = x. , x2 , etc.: 

lx2 - cl = ltf>(x1) - c l :s; Mlx1 - cl :s; M2 lx0 - cl, 
lx3 - cl :s; ltf>(x2) - c l :s; Mlx2 - cl S M3 IXo - cl, 

Ix., - cl S ltf>(x.,- 1 ) - c l S M lx .. - 1 - c l S M"lxo - cf. 
Since 0 :s; M < l, it is clear that M" - 0 as n - oo. Therefore x., -c. 
Remark 1 According to the final inequality, I x. - c l s M•lx0 - cl .  
the powers or M control how fast x. approaches c. Ir  M s 0.1, then each x. is less than 
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one-tenth the distance from c of x._ , , so its accuracy is at least one more place. But if M = 0.9, 
then it takes about 22 more x's to be sure of one more decimal place accuracy, because 
(0.9)21 > 0.1 and (0.9)22 < 0.1. 

Remark 2 Since 11/>(x) - cl $ M ix - cl,  

the distance from f/>(x) to c is less than the distance from x to c by a factor of M or less. 
This is fine. but we would much prefer an inequality like 

11/>(x) - cl $ K lx - cl2• 

Then the distance from l/>(x) to c is at most proportional to the square or the distance from 
x to c. No matter what the constant K is. once x is close to c, then l/>(x) is very close to c. 
Remark 3 It is known that the assumption c = l/>(c) for some c is not necessary;  the other 
assumptions guarantee the existence or a unique solution. 

Root and Fixed o 'l s A point c such that <J>(c) = c is called a fixed point 
of the function <J>(x ). It is a value of x where the graphs of y = x and y = <J>(x) 
intersect (Fig. l ). It is also a root of the equation <J>(x) - x = 0. 

Fig. I Fixed points of f/>(x): points c 
where l/>(c) = c 

The idea of fixed points is important in solving equations. For given an equation 
/(x) = 0, we can set </>(x) = x + f(x)g(x), where g(x) is any convenient function. 
Then each root of the equation f(x) = 0 is a fixed point of the function <J>(x). 
Conversely, if <J>(c) = c and g(c) '#- 0, then c is a root of /(x) = 0. 

We shall now look at several powerful methods for estimating roots of /(x) = 0. 
In each case we associate with /(x) a function <J>(x) whose fixed points are roots 
of /(x) = 0, and whose iterates estimate the fixed points very rapidly. 

l\J ew•o., R aphso M thod The Newton-Raphson method (also called 
Newton's method) is based on linear approximation. Suppose x = c is a zero of 
/(x). We guess an x, take t�e tangent to the graph y = f(x) at (x, /(x)), and let 
<J>(x) be its x-intercept (Fig. 2). It appears that </>(x) is a lot closer to c than x is. 

The equation of the tangent is 

y - /(x) = f'(x). X - x 



y 

I I I 

I I I 

( >:, f(x)) 

tanpnt 
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x 

Y • f(x) 

Fig. 2 Newton-Raphson method : lj>(x) is 
the x-intercept of the tangent to y = f(x) 
at (x,f(x)). 

For the x-intercept, we set Y = 0 and solve for X:  

-/(x) = f'(x), 
X - x  

/(x) 
X - x = -

f'(x)' 
/(x) 

X = x -
f'(x) ' 

Therefore, given /(4 we define 
f(x) 

l/>(x) = x -
f'(x) ' 

assuming f'(x) ¢ 0. Obviously, if /(c) = 0, then lf>(c) = c. Conversely if lf>(c) = c, 
then /(c) = 0,assuming f'(c) ¢ 0. Thus the root problem for /(x) = 0 is transformed 
into the fixed point problem for lf>(x). 

Still assuming that c is a root of /(x) = 0, we want to approximate c by iteration. 
We know that the smaller 11/>'(x)I is near x = c, the faster the iterates x0, x1 = lf>(x0� 
x2 = lf>(x1 � etc. will tend to stabilize at x = c. So let us compute the derivative: 

l/>'(x) = '!__ fx _ 
f(x) J = 1 _ 

[f'(x)]2 - /(x)f"(x) 
dx f'(x) (f'(x)]2 ' 

hence "''(x) = f(x)f"(x) 
'f' [f'(x )]2 

Consequently t/>'(c) = O; great ! That means 11/>'(x) I is very small in the neighborhood 
of x = c. Therefore, if x0 is chosen sufficiently close to c in the first place, the 
iterates x,, will tend to x = c rapidly (Fig. 3). 

Let us summarize this discussion. 

Newton-Raphson Method Suppose /(c) = 0, f'(c) ¢ 0, and f"(x) is 
continuous near x = c. Set 

/(x) 
lf>(x) = x -

f'(x) ' 

If x0 is sufficiently close to c, then the iterates 

x1 = t/>(x0� x2 = t/>(x1� • • · ,  x,. = lf>(x,,_ 1� • • • 
approach as close as we please to c. (Also lf>'(c) = 0, so the convergence is rapid.) 
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)' )' 

Fia. 3 Typical cases in which x. ---+ c rapidly 

• EXAMPLE 1 Estimate to 6 places the roots of xs - x + 1 = 0. 
Sohdion A graph of y = /(x) = xs - x + 1 will show how many roots there are 
and their approximate locations. The derivative 

f'(x) = 5x4 - 1 
is 0 at x = ±� � ±0.67 and changes sign at these two points. This gives useful 
information about the graph: 

level level 

increasina 1 decreasing 1 increasina 

- 2  -I -� 0 � 2 x 

Clearly f (x) has a local max at - (!)114 and a local min at {!)114• Their values are 

!-... = /[ -(!)114] � 1.53 and fmta = /[(!)114] � 0.47. 
This is enough for a rough sketch (Fig. 4). 

y 

Fig. 4 

- 2 - 1  2 x 

- I  
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The graph shows that there is exactly one root, and it is negative. By some trial 
and error, f (-2) = -31, and /(- 1) = 1, hence the root is between - 2  and - 1, 
probably close to - I .  

Now the work starts. Set 

/(x) x5 - x + 1 4x5 - 1 tf>(x) = x - f'(x) = x - 5x4 - 1 = 5x4 - 1 

and x0 = - I .  Then 
Xi = t/>(- 1) = -i = - 1.25, X2 = t/>(- 1.25) � - 1.178459, 
x3 = tf>(x2) � - 1.167537, x4 = tf>(x3) � - 1.167304, 

x5 = tf>(x4) � - 1.167304. 
The process has stabilized, so - 1. 167304 is the one root of /(x) = 0, to 6 places. 
(Compare Example 1, p. 347.) • 

• EXAMPLE 2 Estimate the root of cos x = x to 6 plaocs. 

SohdiOll Set /(x) = x - cos x and 

tf>(x) = x _ f(x) = x _ x -� x = x sin x � cos x. f'(x) 1 + s1n x 1 + s1n x 
Start with x0 = 1. Iteration yields 

Xi = tf>(x0) � 0.750364, x2 = tf>(x.) � 0.7391 13 
x3 = tf>(x2) � 0.739085, x4 = tf>(x3) � 0.739085. 

Therefore 0. 739085 is a root of cos x = x to 6 places. • 

Eff1c1ency of N ewton's Method Suppose /(c) = 0 and f'(c) :F 0, and set 

f(x) tf>(x) = x - f'(xf 
As pointed out in Remark 2, p. 514, it would be nice if tf>(x) satisfied an inequality 
of the type 

l<P(x) - c l � Klx - c j2• 
For that would imply that the iterates of </> approach c rapidly. Such an inequality 
does hold, and it can be derived using Lhospital's Ruic. 

We have already found 

Now by Lhospital's Ruic, 

"''(x) = f(x)f"(x) .,, (f'(x)]2 

I. tf>(x) - c 1. t/>'(x) 1. /(x)f"(x) im ( )2 = am ( ) = im ( )[ '( )]2 
Jr�C X - C J<�C 2 X - C J<�C 2 X - C f X 

f"(c) . f(x) f"(c) , = 2[f'(c)]2 �·� x - c = 2[f'(c)]2 f (c) 
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. </>(x) - c f"(c) !1� (x - c)l = 2/'(c) · 

It follows that ir K is any constant larger than l!f"(c)/ f'(c)I, then 

l</>(x) - c l < K Ix - ell 
for x sufficiently close to c. 

This result is fine for theoretical purposes, but totally impractical for applications. 
It only guarantees the inequality for .. x sufficiently close to c." That's too vague 
to be of any use. Furthermore, in practice we do not know c, so we cannot compute 
the constant K > f"(c)/2/'(c) needed for error estimates. 

Using more sophisticated techniques, we can prove a practical result 

Let /(x) have continuous first and second derivatives on the interval [a, b], 
satisfying 

lf'(x)I 2:: m > 0 and lf"(x)I � M, 

where m and M are constants. Suppose f(c) = 0 for some c on the interval. Set 

f (x) </>(x) = x - f'(xf 
Then 

Proof 

M l<!>(x) - cl � 2m Ix - ell· 

I /(x) I 1 , l4>(x) - cl = x - f'(x) - c = lf'(x)I 1 -f(x) - f (x)(c - x)I . 
Since /(c) = 0, we can write 

l</>(x) - c l =  l f':x)I lf(c) - f(x) - f'(x)(c - x)I = lf'�x)l lr1(c)I, 
where r1(c) is the remainder in the approximation of f(c) by its first degree Taylor 
polynomial. (Note that the roles of x and c are reversed.) By Taylor's Formula 
with n = 1 , 

lr1 (c)I = If (c - t)f"(t) dt I �  M I f le - t i  dt I = � M Ix - ell· 

Therefore 
1 l<!>(x) - cl =  lf'(x) l lr1(c)I 

S 2 l�x)l Ix - ell S � Ix - ell· 
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• EXAMPLE 3 Suppose Newton's method is used to estimate J2, starting with 
x0 = 1. How far should the process be continued to guarantee 20-place accuracy. 

Sohltiott Set /(x) = x2 - 2 and 

/(x) tf>(x) = x - f'(x) . 
x2 - 2 x2 + 2 = x - 2X= 2X. 

Since f ( 1 )  = - 1 and f (2) = 2, we should seek our solution on the interval [1, 2). 
There lf'(x) I = 12xl � 2 > Oand lf"(x) I = 12 1 = 2,sowe choose m = 2 and M = 2. 
Consequently, by the estimate in the last box, 

ltf>(x) -.Ji. I � !Ix -./i. 12· 
Since J2 < 1.5, 

Now pull the bootstrap: 

and in genera� 

1x. -.Ji. I � �  1xo -..fi. l2 < � Gf = ;3 . 

lx2 -.Ji. I � J lx1 - J2 l2 < � (2�) 
2 = 2

1, , 

1x3 -..fi. 1 < � (21,f = 2!s . 

lx. -.Ji. I < � (2!sf = 2! • • 

I Ix., - vfi I < 2N • where N = 2" + 1 - 1. 

We want Ix,, - J2 I < 5 x 10- 21• This will be so provided that 

that is, 

1 
5 10- 2 1 

2N <  X ' where N = 211• 1 - I, 

But 267 � 1 .5 x 1020 (by logs or a calculator� so we choose N � 68. The least n for 
which 2"+ 1 - 1 � 68 is n = 6. Thus x6 provides 20-place accuracy. • 

x2 + 2 I ( 2) . 
Remark 1 Note that cf>(x) = � = 2 x + � , so cf>(x) 1s the average or x and 2/x. 

This is reasonable since .J2 is that number c for which c ... 2/c. 
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Remark 2 The first six x. are 

Xo -=  1, 17 
Xz -

12' 
577 X3 • -
408' 

665857 x, = 
470832' 

88 67310 88897 x -s - 62 70135 66048
. 

We find by a computer that 
J2 :::::: 1.41421 35623 73095 04880 169, 

X4 :::::: 1.41421 35623 747, 

Xs :::::: 1.41421 35623 73095 04880 1690. 

The theory predicts that lx4 - J21 < r31 < 5 X 10- ao, hence that X4 is accurate to at least 
9 places. But error estimates usually lose something; actually x4 is accurate to 1 1  places. 
Similarly the theory predicts that lxs - .fi. I < r63 < 1.1 x 10- •9, assuring only 18-place 
accuracy for x5; actually x5 is accurate to at least 23 places. (See Ex. 42.) 
Third Order Methods The Newton method of solving /(x) = 0 is a second 
order method, which means that </>(x) satisfies 

l</>(x) - c l 5 Klx - cl2 
near a zero x = c of /(x). By a third order method we mean iteration with a function 
l/l(x), defined in terms of /(x) and its derivatives, such that 

ll/l(x) - c l 5 Klx - c l3• 

We shall describe two third order methods. Each can be considered a refinement 
of Newton's method. Their derivations will be omitted except for some hints in the 
exercises. 

We assume that /(x) has a zero at x = c and use the notation 

f(x) u(x) = f'(x) ' 
t/>(x) = x - u(x), 

I/I-Method 
I Y,(x) = t/>(x) - 2 u(x)2v(4 

f"(x) v(x) = f'(x) " 

Y,(x) - c � K(x - c)3, where K = (! v2 - ! /"') l 2 6 f' . 
•c 

Halley's Method 
u(x) O(x) = x - I - !u(x)v(x)' 

( ' 1 /"') l I O(x) - c � H(x - c)3, where H = 4 v2 - 6-f' . 
• •  

Presumably u(x) will be very small for x near c. Therefore the second term in the 
I/I-method can be considered as a small correction to t/>(x). (Without that second 
term we would be back to Newton's method.) In Halley's method, 

u(x) O(x) � x - - = x - u(x) = t/>(x) 
1 - 0 

for x near c. Therefore Halley's is also a modification of Newton's method. 
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• EXAMPLE 4 Estimate the root of cos x = x by the I/I-method; start with 
x0 = 1, and compute x2 • 
Sohltiolt Set /(x) = x - cos x. Then 

f x - cos x U = - =  ' f' 1 + sin x </> = x s'in x:cos x, 1 + sm x 
l 

t/f(x) = </> - - u2v 
2 

cos x v = ' 1 + sin x 

x sin x + cos x l (x -cos x )2 cos x = 1 + sin x - 2 (1 + sin x)3 
Now iterate, starting with x0 = 1 :  

x1 = l/t(x0) � 0.74122 15391, 
X2 = l/f(X1) � 0.73908 51352, 

which is accurate to 8 places (to 10 places, the root is 0.73908 51332� • 

• EXAMPLE I Approximate .J2 by Halley's method; start with x0 = 1 and 
compute x2 • 
Sohltion Set /(x) = x2 - 2. Then 

If x0 = 1, then 

f xl - 2  
U =  1, = �, V = �, 

u O(x) = x 
- 1 ! - UV 

x2 - 2 
2x = x -

l - � (x
l; 2) (�) 

2x(x2 - 2) = x - �---'--�---'--
4x2 - (x2 - 2) 

2x3 - 4x x3 + 6x = x - 3x2 + 2 = 3x2 + 2 · 

7 x1 = 8(x0) = S = 1.4, 

1393 X2 = 8(x1) = 985 � 1.41421 3198, 

accurate to 6 places (to 8 places, .J2 � 1.41421 356). • 
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EXERCISES 

Use iteration to estimate the solution of <J>(x) = x; work to 4-place accuracy 
I </>(x) = e-"12 x0 = I  2 </>(x) = e-" .'<0 = I  
3 </>(x) = J3-+ x x0 = 3 4 </>(x) = J3 +-x x0 = 100 
5 </>(x) = 2 arc tan x x > 0 x0 = 2 6 </>(x) = n + arc tan x x0 = 0 
7 </>(x) = J!(I + x) x0 = 0 8 </>(x) = J!(I+ x) x0 = 1000 
9 </>(x) = x(i - x2) x0 = I 10 </>(x) = x(i - x2) x0 = 1.25. 

I I  Set <J>(x) = 0.63 16x + 0.7368 cos x and x0 = I. Find x
3 and x4 to 8 places. 

12 (cont.) </>(x) = x is equivalent to what simple problem previously considered? 

Use the Newton-Raphson method to estimate all roots to 5 places (10 places) 
13 x2 = 10 14 x3 = 10 15 5x' = I 
16 x ln x = I  17 x3 - x + 1 = 0 18 e-5" = x  
19 x3 + .'(2 - 4 = 0 20 x3 + .'< + 5 = 0 21 e" + X = 0 
22 x3 - 2.'<2 + .'< + 3 = 0 23 5x2 + 4x - 3 = 0 24 x3 - 3.'< + I = 0 
25 x3 - 2x2 - x + 3 = 0 26 x3 - 6x2 + 9x - I = 0 27 e" = 2 cos .'< x > -n 
28 e" = 3x 29 x = 2 sin x 30 x = 2 cos 2x 
31 x5 - 5x + I = 0 32 x3 + l.5x2 - 5.75x + 3.37 = 0 

33 10 cos x - 8 + x2 = 0 34 x4 - IO'x + I = 0 
36* x4 - l.73x2 + 0.46.'< + 1.275 = 0. 

35 

37 Find to 5 places the largest c such that .r = <'x is tangent to .r = cos .'<. 
38 Find to 5 places the largest c such that cosh x � c.'< for all .'<. 
39 Find to 5 places the minimum vertical distance between the graphs .r = I .5e" and 

I' = x3. 
40 .Estimate to 3 place accuracy the solutions of the system {x2 + y4 = 100. e" - e1 � I : .  
41 Show in Example 3. p. 5 18. that jx6 - J21 < 10-•3• 
42* (cont.) Show that x1 > x

2 
> .'<

3 
> . . . > J2. Conclude that lx5 - J2 1 < 5  x 10- 23, 

43 Let .'<0 > 0 and </>(x) = J!(t + x).  Show that x. - I.  
44• Let </>(x) = x(a - x2). where I < a <  2. and set b = J a - I . Verify that 0 < b < I and 

</>(b) = b. Show that there is a K < I such that l</>(x) - hi < K j .'< - bl whenever 
b s x s I .  If b s .'<0 s I. conclude that x. - b. 

45 (cont.) For what particular a does x. - b the fastest? 
46* Set </>(.'<) = e-u and choose x0 = I .  Show that </>(e- 1 )  = e- • . Convince yourself by 

calculation that .'<. - e- 1, although painfully slowly. How can you speed up the 
process? 

47 Estimate the positive root of x2 = 2 by the !/I-method. Take x0 = I and find x 1• x 2 •  
and .'<3 to 5 ( 10) places. 

48 Estimate the root of .'<3 = 10 by Halley's method. Take x0 = I and find .'< 1 ,  .'<2 • x3 • and 
x4 to 5 ( 10) places. 

49• Show that Y,'(x) = u2(� r2 - � ·j�} : then use Lhospital's Rule to find 

lim (Y,(x) - c]/(x - c)3• 
,-o 

uJ,.2 50• (cont.) Show that O(.'<) = Y,(x) -
( 

1 
)

: then find lim,_0 (O(x) - c·)/(x - <Y 
4 I - 1ur 
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1 2  MISCE LLANEOUS EXERCISES 

1 Find the 5-th degree Taylor polynomial of cos x at x = jn. 
2 Find the 15-th degree Taylor polynomial of e- "3 at x = 0. 
3 Examine the graphs y = cos x and y = � near (0, l ). Is the cosine curve inside 

or outside of the circle? 
4 Show that 

l 
tan 6 �

Pt _ 6 
for 6 � Pt· 

5 Let p(x) be the 4-th degree Taylor polynomial of r at x = 0. Which gives the best 
approximation to e: p{l � (p(0.5)]2, (p(0.1 )) 10 ? 

6 Let p1(x) be the second degree Taylor polynomial of Jx at x = 100. Show that 

IJx - p1(x)I < 5 x 10-6 if 100 s x < 102. 
7 How good is the estimate sin x � ix(lO(tax2 + W 1 - 7) 
s• Show that 

sin x � !(r - e- ") - jx3(1 + m(x' + �x')]. 
with error less than 5 x 10-9 for Ix I < !x. 

9 Assume/(x) is continuously differentiable near x = c. Find 

I
. .f(c + h) - f(c + x) 
Im . 

x-0 X 

10 Find lim,._"' [ I + a(b11" - l ))". 

for x small? 

II Suppose/(O) = f'(O) = f"(O) = · · · = /'"1(0) and p•• 1 1{x) � 0 for all x 2:: 0. Prove that 
f(x) � 0 for all x > 0 and that if .f(c) = 0 for some c > 0, then f(x) = 0 for all 
0 :::;; x :::;; c. 

12• The ends of a long straight metal rod of length L are clamped. When the rod is 
slightly warmed, its length increases to L + 1:, so it bows into a (we shall assume) 
circular arc. Show that the center of the arc rises H � iJ6Lt . Estimate H in feet 
when L = l mile and 1; = l inch. 

Estimate to 4 places 

13 

15 

17 

. l e"  
I 11x 
• I  ,'{ 

. . . , I In tan .'{ 1/x • 0.6 
• 3 I x sin1(iu) dx 

• 0 

Estimate to 5 (10) places the roots of 

19 e-" 1 = x + 3 
21 (2n + x) tan x = I 0 < x < !n 

1.5 Jx 14 
• 2 In x 
• • l 

16 I JI + cos2 .'{ Jx 
• 0 
, 4  

18 I {In .'{)1 dx. 
• I 

20 2 arc tan x = x 
22 0.4x = tan .'{ !n < x < fn. 
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23 For what choice of the constant c, 0 < c < I, does the weighted average 
a 

lf>(x) = ex + {I - c) -x2 

iterate as .rapidly as possible toward .J'O ? 
24• Let 0 < x < y < 0.4°. Show that 

log sin y - log sin x � log y - log x, 
with error <5 x 10-6• (Here log = log10 .) 



Convergence I I  
1 . S EQUENCES AND LIM ITS 

A sequence is a collection of numbers (elements) in a definite order. 

Examples 

2, 4, 6, 8, 10, 12 
1 

' 256 

1, 3, 5, 7, 9, . . .  6 7 8 9 10 
s•  6 '  7' 8 '  9· · · . 

The first two examples are finite sequences; they stop. The other two examples are 
infinite sequences; they go indefinitely and have no last element. We shall study 
infinite sequences in this chapter. The word sequence will always mean infinite 
sequences. 

N otation Standard notation for a sequence a1, a2 , a3 , · · · is  
{a.} or {a,.}:.. 1 or {a.}i. 

The first element of a sequence need not be a1 ; it may be a0 , or a3 , or a10 , etc. 
We write 

and 

Other enumerations are possible too. For example, 

Many sequences we encounter have some mathematical rule of formation, 
generally a formula for the n-th element. 

Examples 

1 
( 1 )  a n ' l : .. = 311• � 

4n + 1 
(2) a,. = � · n � O: 

1 5 9 13 
2' 22' 23 • 2" . 

626 
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(3) 

(4) 

(5) 

(- l )"n a,, = 10n + 3 '  

a,, = ( 1 + �r 
n � 2: 

n � 1 :  

a,, = 
1 · 3 · 5 · · · (2n - 1 )  

n !  ' 

2 -3  4 - 5  
23 ' 33 '  43 ' 53 . . 

( 1 + 1 ), ( 1  + if· ( 1  + jf. ( 1 + �f . . . .  
n � I : 

1 · 3  1 · 3 · 5  1 · 3 · 5 · 7  
1 - -- . . . 
' I · 2' 1 · 2 · 3' 1 · 2 · 3 · 4' 

Not every sequence has a simple formula, or even any formula at all, for example 
{d,,}, where d,, is the n-th digit in the decimal representation of Jt, or {p,,}, where p,, 
is a patient's blood pressure n minutes after an operation. 

A subsequence of {a,,}i is a sequence {a,,)j.1, where {n1}i is a strictly increasing 
sequence of positive integers. For example, 

are subsequences of {a,,}f. 
l1m1ts of Sequences Consider the sequence {a,,}, where a,, = (n + l )/n: 

3 4 5 
2
• 2 · 3 ' 4 '  

n + l 
n 

These numbers seem to "approach" the number 1 .  But what does that mean exactly? 
By "a,, approaches l "  we mean that the numbers get close to 1. How close? To 

within 0.0 1?  That is not good enough; the sequence 

l.005, 1.005, 1.005, . . .  

gets within 0.01 of the number l, yet this sequence does not "approach" 1 .  To 
within 0.001? Again not good enough; the sequence 

0.9999, 0.9999, 0.9999, . . .  

gets within 0.001, yet does not "approach" 1 .  No matter what accuracy we specify, 
examples like these show that it is not good enough. The trick is to require that the 
numbers a,, approximate 1 to within every possible degree of accuracy. 

Let us try to say that "in math". We specify a "degree of accuracy" by a positive 
number e (usually very small). Given e, we want a,, eventually to come within e of 1 ;  
written "in math", we want I I - a,, I < e. Now we should clarify the vague word 
"eventually". This should mean "from a certain point on in the sequence". Now a 
"point in the sequence" is indicated by a subscript, so we want 1 t - a,, I < e 
starting with a certain subscript N. 

With these ideas in mind we formulate the general definition: 

Limit of a Sequence A sequence {a,,} has limit L if for each positive e, there 
exists an integer N such that 

IL - a,,I < e  for all n � N. 

The definition requires all terms beyond some point to be within e of L. In 
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other words, the inequality IL - a.I < e must hold with only a finite number of 
exceptions. In geometric terms, given any interval centered at L, no matter how 
small, the elements of the sequence eventually get into that interval and stay there 
(Fig. I ). 

tarset interval 

L f 

a5 a4 a9 a6 a1 0  
I I I 

L 

l f l 

L + E 

l + E x 

Fi&- Eventually all a. fall into the target interval L - e < L < L + e. (As shown, 
"eventually" means starting with a6 .) 

A sequence need not have a limit. 

Examples l, 2, 3, 4, · · · , 0, !. 0, i. 0, j, · · · .  
The first sequence just marches off the map; it does not get close to any number. 
The second does get close both to 0 and to 1, but does not eventually stay close 
to either. 

If {a,,} has a limit L, we write 

lima. = L, or simply lim a,. = L . 
... ao 

We also write 

a11---+ L as n---+ oo, or simply a11---+L. 
If a,, ---+ L, then {a,,} converges to L. A sequence that has a limit is convergent, and 
a sequence without a limit is divergent. 

If a sequence does have a limit, then it has only one limit since its elements 
cannot simultaneously be arbitrarily close to two different numbers. 

Uniqueness of the Limit If a,,---+ Li and a,, -L2 , then Li = L2 • 

We leave a formal proof as an exercise. Because of this theorem, we may speak of 
the limit of a convergent sequence. 

Proving that a,,---+ L is a kind of game; I challenge you with an e, and you must 
find some appropriate N. It is not necessary to find the smallest N such that 
I L  - a,, I < e for all n � N; that may be hard. But for each e, you must find some N. 

• EXAMPLE 1 If a,, = 1/n, prove that a,, ---+ 0. 

Sohttion Let e > 0 be given. We must find an N such that 

IO - a.I = la11 I < e 
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for all n � N. We simply choose N larger than 1/e. (For example, if e = 0.001, we 
take any integer N > 1/e = 1000.) Then 1/N < e, hence 

1 1 la I = - :S: - < & for all n � N. " n N 
This completes the proof. • 

Remark The proor is valid for each choice or e. Ir you produce an N that works only for 
t = 0.1 or e = 0.001, that is not sufficient. In general the smaller t is, the larger N must be. 
That makes sense: the closer you want to approximate the limit, the rarther out in the 
sequence you must go. 

n2 
• EXAMPLE 2 If a,. = 2n2 + 1 , prove that a,. - !. 

Sol11tion Write out a few terms: 

1 4 9 16 25 
3 ' 9'  19 ' 33 ' 51 ' 

These numbers do appear to approach l· To prove this is so, let e > 0 be given. 
You must find an N such that 11 - a,. I < & for alt n � N. Now 

I � - a,. I = I � - 2n

:: 

I I = 2(2
) 

+ I )  
< 4

!
2 • 

Choose N so large that 

4
!

2 < e, that is, N2 > !· N > Jf. 
(For example, if & = 0.001, then N > Jl/0.004 � 1 5.8, so N > 15 does it.) Then for 
all n � N, 

This completes the proof. • 

The idea of the limit of a sequence is fundamental to the real number system. For 
what does it mean really to express a number as an infinite decimal, for instance, 

x = 3.141592654 . . .  ? 

It means that n is the limit of the sequence {a,.}, where 

a1 = 3.1, a2 = 3.14, a3 = 3.141, a4 = 3.1415, etc. 

Note that Ix - a,, I is the error when x is approximated by n places of its decimal 
expansion. Hence 

Ix - a,. I < 10-·. 
Before continuing, we wish to dispel two old-wives' tales concerning limits of 

sequences: 



1 . Sequences and Limits 629 

Tll/e 1 If a,. - L, then the numbers � get closer and closer to L without ever 
reaching L. Not necessarily ! Examples: 

3, 3, 3, 3, . .  · ,  1 1 1 0, 2 '  0, 3' 0, 4' . . .  

The first sequence converges to 3, the second to 0. Each "reaches it limit" infinitely 
often. 

Tiiie 2 If a,. - L, the numbers increase toward L or decrease toward L. Not 
necessarily! Example: 

This sequence converges to 0 but jumps around. In fact, take the sequence 
1 1 1 l , 2 '  3 ' 4' . . . 

and sprinkle in minus signs at random. The resulting irregular sequence still con
verges to zero. 

An even more striking example is this one: 
1 2 1 2 3 1 2 3 4 

10' 102 ' 102 ' 103 ' 103 ' 101' 104 ' 10' ' 104 ' 10' ' 
This sequence converges to zero, yet it has longer and longer strings of terms that 
move away from zero! 

Two Principles The e, N definition is important in making the concept of limit 
precise, but tedious to apply. In practice, we use certain properties of limits that allow 
us to derive the convergence of many sequences from that of known convergent 
sequences. A very simple property of this type concerns subsequences of convergent 
sequences. 

Convergence of Subsequences If a,. - L, then any subsequence of 
{a,.} also converges to L. 

The proof is not hard; we leave it for an exercise. As an application of this 
principle, we easily deduce that the following sequences {b,.} all converge to zero 
because each is a subsequence of {1/n}, which we know converges to zero: 

1 1 1  1 1 1 1 1 1 
(l) 1· 3 · 5 · 7 · · · ·  b,. = 2n - 1  (2) 2 ' 4 ' 8 ' 16 ' b,. = 211 

1 1 1 (3) 1, 22 • 32 ' 42 ' . . .  1 b = -11 n2 
1 1 1 (4) 1, 23 ' 33 ' 43 • " " "  

1 b = -3 · II n 
The next principle says that a sequence trapped between two sequences that con

verge to the same limit is itself squeezed to the same limit. 
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Trapped Sequences Suppose {a,,} and {c,,} are convergent sequences with the 
same limit L, and suppose {b,.} is a sequence such that a,. ::s; b,. ::s; c,. for n � 1 . 
Then {b,.} also converges to L. 

Proof Let e > 0 be given. There exist integers N 1 and N 2 such that 

IL - a,. I < e for all n � N 1,  IL - c,. I < e for an n � N 2 • 

If N = max{N 1, N 2}, the larger of N 1 and N 2 , then both inequalities hold for an 
n � N. In particular, 

L - e  < a,. and c,. < L + e. 
Since a,. ::s; b,. ::s; c,., 
Hence 

L - e < a,. ::s; b,, :s;; c,. < L + e. 
IL - b,. I < e for all n � N. 

This proves that b,.--+ L. 
The special case a,. = 0 of this theorem is particularly useful. 

Corollary Suppose 0 ::s; b,. ::s; c,., and c,. --+ 0. Then b,.--+ 0. 

As applications of the corollary, we deduce immediately that the following 
sequences {b,,} all converge to zero: 

{ l/n312}, { 1/n2}, {(sin2 n)/n}. 
In each case, 0 < b,, ::s; l/n. Since 1/n--+ 0, the corollary shows that b,.--+ 0. 

Arithmetic of Convergent Sequences Given a sequence {a,,} we can form a 
new sequence { la. I } by taking absolute values and another new sequence {ca,,} by 
multiplying each term by a number c. Given two sequences {a,.} and {b,.} we can 
form new sequences {a,. + b,.}, {a,, b,.}, {aJb,.} by adding, multiplying, or dividing 
termwise. Here are the basic rules concerning convergence. 

Rules for Limits Suppose a,,--+ A and b,,--+ B. Then 

( 1 ) la,. 1--+ IA I (2) ca,.--+ cA 
(3) 
(5) 

a,, ± b,.--+ A ± B 
a,. A ---b,. B (b,, � 0, B � 0). 

(4) a11b11--+AB 

We shall omit the proof, which is close in spirit to that of the corresponding 
result on limits of functions. 

• EXAMPLE 3 Find lim (2 + !) (3 - 42) . 
,, ... Cl) n n 
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Sohltio11 We know that 1/n - 0 and 1/n2 - o. By Rule (2), with c = 4, we 
have 4/n2 - o. By Rule (3), 

Finally, by Rule (4), 

1 
2 + - - 2  

n 
and 

4 
3 - 2 - 3. 

" 

• EXAMPLE 4 Find . n2 - 2n - 5 
hm 3 

Sohltio11 Write 

n 

a,,
= n2 - 2n - 5 = ! - 2(_!_) - s(_!_)· n3 n n2 n3 

By the various rules, we have 

Jim a,, = 0 - 2 · 0 - 5 · 0 = 0. 

• 

• 
Remark In practice, we skip many of the steps illustrated in the solution of Example 2. 
For example, to find 

r 
3n2 + n - 7 

im 4n2 + 3n + 6' 
we divide all terms by n2, then use the various rules, combining some obvious steps: 

1 7 3 + - - -
lim 

3n2 + n - 7 
= lim 

n n2 
= 

3 + O - O = � .  
4n2 + 3n + 6 

4 
3 6 4 + 0 + 0 4 

+ - + -n n2 

• EXAMPLE 5 Let 0 < a < 1. Prove a" -O. 

1/a > 1, hence 1/a = 1 + p with p > 0. By the Binomial Theorem, 

Therefore 

� = ( 1  + pr =  1 + pn + (positive terms) > pn. 

1 1 1 O < a" < - = - · -. 
pn p " 

Since 1/n - o  and l/p is fixed, a" - 0. 

EXERCISES 

If the sequence is denoted by {a,,}j, find a formula for a. 
1 1 1 1 2 3 4 5 
3 ' 7 '  ii . 1 5 ' . . . 2 25 • 36. 49 ' 64 • . . .  

3 
3 · 5  5 · 7  7 · 9 9 · 1 1 

- 2-J · 2 · 3 · 3 ' - 2 · 3 · 3 · 3 ' 2 · 3 · 3 · 3 · 3 ' 

• 
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4 l, l + 2, l + 2 + 3, l + 2 + 3 + 4, . . .  
s !'( •� r(n /"'(1). P'1( 1� · · · 

' f'(O), r(o� r(o). P''(o� · · · 

Find N so that for n � N, 
1 I 3n + • _ � I < _._ 4n + S 4 1000 

Using the definition of limit, show that 

l f(x) = Jx 
f(x) = r12• 

9 Jim -1- = 0 .-.. Jn 10 
ni Jim = l. 

•-oo (n + l )(n + 2) 
Find Jim a. if a. = 

11 
n + l  

12 
4n 2n + 3 n2 + l 13 

n2 + 2n - 8 n3 + 7n + 9 
14 

n2 + S IS n 3n2 + 12n + S Jn2+l 16 
2n Jn3 + 6  

17 
Jn 

18 3 + 2Jn n2 + sin n 19 ( . + �r 
20 ( 3n r 21 

10" l + --n2 + S nl 22 
(n + l}(n + 2}(n + 3) (n + 4)(n + S)(n + 6) 

23 [n�1J [• - GrJ 24 
7• + l 

s· 25 
sin n 

" 

26 27 
n(2 - e-•) 1 + log n 3n + l 28 

e9 - l 
e9 + 1 · 

29 If {a.} converges and a. � 0 for n � l, show that Jim a. � 0. 
30 (cont.) If {a,,} and {b.} converge and if a,, � b. for n � l, show that lim a. � lim b • .  
31  lf la.. 1 - lal, does a. - a? 
32 If {a,,} and {b.} diverge, does {a. + b.} diverge? 
33 If {a,,} and {b.} diverge, does {a.b.} diverge? 
34 If lim a. = 0, prove that Jim a. 2 = 0. 
JS Prove that inserting or deleting a finite number of terms does not affect the convergence 

of a sequence. 
36 If a. - L and b. - L, show that the sequence 

also converges to L. 
37 Under what circumstances can a sequence of integers have a limit? 
38 Show by examples that a sequence may diverge yet contain subsequences which converge. 
39 Suppose a. - 0 and I b. I :s; B, a positive constant. Show that a. b. - 0. 
40 (cont.) Prove that 3 + e-• 

( . ' > - o. n 2 + san nn 
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41 Prove that if a. - L. then any subsequence or {a,,} also converges to L. 
41 Prove that if a. - L1 and a. - L1, then L1 = L1 • (Hint Write L1 - L1 = 

(L1 - a.) - (L2 - a,,).) 

2. PROPERTIES O F  LIM ITS 

Cont inuous Functions of Limits There is a useful principle relating limits 
of sequences with continuous functions. It allows us to deduce things like 

sin a. - sin L and e9" - e'-
from a. - L. 

Let a. - L, and suppose /(x) is continuous at x = L. Then 

/(a.) - /(L) as n - oo. 

Proof We combine the two facts (1) when x is near L, then /(x) is near /(L); 
and (2) when n is large, then a. is near L. Let e > 0. Then there exists o > 0 such that 

lf(x) - /(L)I < e whenever Ix - L I  < o. 
Now choose N so la. - L I < o whenever n � N. 

Then l/(a,,) - /(L)I < e whenever n � N. 

This completes the proof. 

• EXAMPLE 1 Let a > 0. Prove .:ja - 1. 

Sobniolt The idea is to use 

.:ja = a1'" = exp(ln a11•) = exp[(ln a)/n] = el'n1"""· 

Now (ln a)/n - o  as n - oo, hence 

.:fa = el'" •>I• - e0 = 1 

since /(x) = � is continuous. • 

Existence of L1m1ts Each time we have proved that a sequence converges, we 
have actually found its limit. As we shall see, sometimes it is hard or impossible 
to find the e.xact limit. However, in some applications the limit itself is not needed, 
only the knowledge of whether or not a given sequence converges. 

In such situations we need "intrinsic" criteria for convergence. These are tests 
for convergence that use the nature of the sequence itself and do not require knowledge 
of the limit. We shall state two intrinsic criteria, one for monotone sequences and 
one for Cauchy sequences. Both are equivalent to a deep property of the real 
number system called completeness. We shall leave the theoretical discussion to 
more advanced courses. 

M onotone Sequences A sequence {a,,} is called increasing if 

a1 S a2 S a3 � • • • • 
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Similarly, {a,.} is decreasing if 

a1 � a1 � a3 � . . . . 

A sequence that is either increasing or decreasing is called monotone (moving in 
one direction). 

A sequence {a,.} is bounded above if there is a number B such that a,. s B for each 
element a,.. A sequence is bounded below if there is a number A such that a,. � A for 
each a,. . 

Convergence of Monotone Sequences An increasing sequence that is 
bounded above converges; a decreasing sequence that is bounded below 
converges. 

If a1 S a1 S a3 S · · · S B, 
If a1 � a1 � a3 � · · · � A, 

then lim a,. S B. 

then lim a,. � A. 

Thus an increasing sequence is either bounded above and crowds in upon a 
limit, or is unbounded above and marches off the map to oo. An analogous 
statement holds for decreasing sequences. 

• EXAMPLE 2 Prove {a,.} converges, where 

a = ( 1 - _!_) ( 1 _ _!_) ( 1 - ..!_) · · · ( 1 _ _!_) II 2l 32 42 n2 ' 
Sohltio11 Clearly a,. > 0 and 

a,.+ 1 = a,.( 1 - (n� 1)2) < a. ,  

so a1 > a1 > a3 > · · · > 0. 
In other words, {a11} is a decreasing sequence that is bounded below; hence {a11} 
converges. • 

• EXAMPLE 3 Define a sequence {a,.} by 

Prove that {a,.} converges. 

1 1 1 a,. = 1 + -1 , + 2 ' + . . .  + 1 · . . n . 

Sohltio11 Since a11+ 1 = a,. + l/(n + l ) !  > a11, the sequence is increasing. To prove 
convergence, we shall show the sequence is bounded above. We use an important 
technique: replacing the terms making up a11 by slightly larger terms that can be 
summed easily. Now the one thing we can sum for sure is a geometric progression. 
This suggests the comparison 

n ! = 1 · 2 · 3 · · · n > 1 · 2 · 2 · 2 · · · = 211- 1, 1 1 
I < 211- 1 • n . 



1 - 112· ( 1 ) = 1 + 1 - 1/2 = 1 + 2 1 - 2• < 3. 
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Therefore {a.} increases and is bounded above by 3, so {a.} converges. We can say 
(from this proof) that lim a. ::s; 3, no more. • 

Remark In elementary calculus it is shown that the sequence in Example 3 actually 
converges to e �  2.718281828. 

It is also shown that b. -e, where b. = (1 + lfnr. The sequence {b.} is increasing and 
bounded above, but that is rather tricky to prove. See Exs. 29-32. 

• EXAMPLE 4 Define a sequence {a.} by 

Prove {a.} converges and find its limit. 

Sohttio• Compute a few elements: 

a 1 = 2, a2 = � ( 2 + �) = � = l.S, 

1 (3 2) 17 1 ( 17 2 ) 577 a3 = 2 2 + J = 12 � 1.4167, a4 = 2 12 + H = 408 � 1.4142. 
The sequence appears to be decreasing. Since its elements are bounded below by 0, 
we are optimistic about the chances of convergence. Probably the sequence con
verges to a positive limit L, somewhere around 1.4. 

Assuming the sequence does converge, what is its limit? We exploit the defining 
relation 

a.+ 1 = � (a. + !)· 
If a. -L. then the right-hand side approaches !(L + 2/L� The left side approaches 
L because {a.+ 1} is a subsequence of {a.}. Therefore, the limit L must satisfy 

L = � ( L + �)· 2Il = I} + 2, I} = 2. 
Since L � 0, the only possibility is L =.Ji.� 1.414213562. 

This reasoning is correct provided {a.} converges. To prove it does, we need only 
show that {a.} is decreasing. We would like to argue as follows : 

a.+ 1 = � (a. + �j ::s; � (a. + a.) =  a., 
hence a. + i  ::s; a • . 
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This argument is valid provided 2/a,. S a,. , that is, provided 2 s a,.2. So the final 
step is to prove this inequality for n � 2. Now 

a,.2 = [� (a,.- 1 + a,.�J r = � (a.- 1 - a.�J
2 + 2 � 2. 

This ties up the last loose end. 
Remark Sometimes a sequences {a.} jumps around a lot at first, then eventually settles 
down to a nice behavior. This doesn't matter, because convergence depends on what happens 
in the long run, not at first. 

In general, convergence tests arc unaffected by a finite number of exceptions. This is an 
important practical point, and should be remembered. For instance, a sequence that is 
bounded above and ultimately increasing converges. 

Cc1uchy Sequences If a. - L. then the numbers a,. get close to L, hence 
close to each other. More precisely, suppose e > 0 is given. There exists an N such 
that if m � N and n � N, then both l a .. - L I < !e and ja,. - L I < !e. Consequently 

la. - a,. 1 = l (a .. - L) - (a,. - L}I S la .. - L I + la,. - LI < !e + !c = e. 

Cauchy Sequences A sequenoe {a,.} is called a Cauchy sequence if for each 
e > 0, there is a positive integer N such that 

la .. - a,.1 < e for all m � N and all n � N. 

(A Cauchy sequence is sometimes called a fundamental sequence.) 

(Cauchy is pronounced koh'-shee.) As an example of a Cauchy sequenoe, take {a,.} 
where a,. = l/n. Then 

Therefore la .. - a,.I < e if 
1 £ - < m 2 and 

la - a  I = - - - < - + - . 1 1  l I l l 
"' " m n m n 

l £ - < n 2 '  h . 'f 
2 

d 
2 

t at IS, 1 m > - an n > - . £ £ 

For example, if e = 0.001, then la111 - a,.1 < e if m > 2000 and n > 2000. For 
instance, ja2 171 - a1.uos l < 0.001. 

Not only is every convergent sequence a Cauchy sequence, but conversely every 
Cauchy sequence is a convergent sequence. 

Cauchy Criterion A sequence converges if and only if it is a Cauchy sequence. 

We proved the "only if" part of this assertion: each convergent sequence is a 
Cauchy sequence. The converse, the "if" part, is deep and beyond the scope of this 
course: if a sequence is a Cauchy sequence, then it converges. 
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The Cauchy Criterion is intrinsic; it depends on the sequence itself and on 
nothing else. Often it enables us to prove the convergence of a sequence without 
knowing its limit. 

In certain situations we need only compare successive terms of the sequence. 
Two important consequences of the Cauchy Criterion guarantee that if successive 
terms are always close together, then the sequence converges. 

First Comparison Test Suppose 0 < c < 1 and 0 < B, and suppose {a,.} is a 
sequence for which 

la,. - a,.+ 1  I S Be" for all n. 

Then {a,.} converges. 

Proof Suppose m < n. We use the triangle inequality and the sum of a geometric 
progression to estimate la,. - a,. I :  

la,. - a,. 1  = l(a,. - a,.+1 ) + (a..+1 - a..+2) + · · · + (a,.- 1 - a,.)I 
:5 la,. - a111+ d + la,.+ 1 - a,.+2 1 + · · · + la,._ 1  - a,. 1 
:5 Be"' + Be"'+ 1 + Be"'+ 2 + · · · + Bc"- 1 

1 - c"-• Be"' = Bc"'(l + c + c2 + · · · + c"-"'- 1) = Be"' <--. 1 - c  1 - c  
Since c"'--+ 0 as m --+  oo, this is quite good enough to show that {a,.} is a Cauchy 
sequence. In fact, if e > 0, we can choose N so that Bc"'/(1 - c) < e for all m � N. 
Then for all m � N and n � N, we have la,. - a.I < e, so {a,.} is a Cauchy sequence, 
hence convergent by the Cauchy Criterion. 

• EXAMPLE I Given an infinite decimal O.d1d2 d3 · · · , where 0 :5 d1 :5 9, define 
a,. = O.d1d2 • • • d,. . Prove that {a,.} converges. 

Sohttion I I 
d,.+ 1 9 9 ( 1 )" a,. - a,.+ 1 = 10"+ t :5 10"+ 1 = 10 10 . 

The Comparison Test applies with B = TI; and c = to· • 

Second Comparison Test Suppose 0 < c < 1, and suppose {a,.} is a sequence 
for which 

la,.+ 1 - a,.+2 1 :5 cla,. - a,.+ 1 I  
Then {a,.} converges. 

Proof We work recursively back to GO: 

for all n. 

la,. - a,.+ 1 I S cla,._ 1 - a,. 1 :5 cl la,.- 2 - a,.- 1 I 
S · · · :5 c"- 1 la1 - a2 I = Be", 

where B = la1 - a2 l/c. Now the previous test applies. 
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Remark. Note carefully the distinction between these tests. In the first you must show that 
the difference la. - a.+ 1 I decreases geometrically. In the second you must show that each 
difference is at most a fixed proportion of the previous difference. 

• EXAMPLE I Set a1 = 1 and a,,+ 1 = 1/(1 + a,,). Prove that {a,,} converges and 
find its limit. 

Sohltion The first four terms are 1, !. j, i. j, /J. They seem to increase and 
decrease alternately ; apparently 1 is the largest, ! the smallest. We can easily prove 
this last guess by induction. For if ! S a. S 1, then i S I + a,, s 2, so 1 � °" + 1 = 
1/(1 + a,,) � !. Hence certainly ! S a.+ 1 S 1. 

Next, we compare successive terms: 

I I I I I I I a.+ 1 - a,, I a,,+ 1 - a,,+ 2  = -- - = . 
I + a. I + a,,+ 1 ( 1 + a,,)(1 + a  •• i ) 

But ( 1 + a,,)(1 + a,,+ i ) � (1 + !)2 = 1. hence 

l a,,u - a.+2 1 S tla,, - a,,+ 1 I for all n. 

Therefore {a,,} converges by the Second Comparison Test. 

Let a,,--+ L. Then L > 0, and from a.+ 1 = 1/(1 + a,,) follows L = 1/(1 + L). 
Hence 

l! + L - 1 = 0, JS - • L = - -2- � 0.61803399. 

Note that a15 � 0.61803445, so the sequence converges rapidly. • 

EXERCISES 

Find lim a., where a. = 
21t 

e- I/• 2 COS --Jn 3 arc tan(n: 3) 4 (n2 + Sn +  1) 1'2• 
4n2 + 3 

Prove convergence of the sequence {a.} by showing it is monotone and bounded 

I · 4 · 7 . .  · (3n - 2) 
5 a - -----

• - 2 · 5 · 8 . .  · (3n - 1 )  6 a. = ( 1 - �) ( I  - �) · · · ( I -:1) 
l I I 

7 a. = 1 + (2 !)2 + (3 !)2 + . . · + (n!)2 
1 1 I s• a = -- + -- + . . . + -• n + 1 n + 2 2n 

9 a0 = c", O < c < l 10 a0 = 1, a1 = ../5 , · · · , a.+ 1 = J5i. 
1 1  a0 = 1, a1 ... j, . .  . , a.+ 1 - t + fa. 
12 a0 = fn, a1 = sin fn, · · · .  a.+ 1 = sin a • .  

Use the method of Example 4 to evaluate the limit 
13 in Ex. 10 14 in Ex. 12. 
15 Define {x.} by x0 = 0, x1 = 1, and x.+2 = f(x. + x.+d· Prove {x.} is convergent. 
16 (cont.) Find lim x • .  

17 Define a1 = .j2 and a.+ 1 = J2 + a. for n = 1, 2, · · · .  Prove that {a.} is convergent. 
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18 (cont.) Find lim a • .  
19 Suppose x > 0. Define a1 ... Jx and a •• 1 -J x + a. for n = l, 2, · · · . Prove that 

{a.} is bounded. 
20 (cont.) Prove {a.} is increasing, hence has a limit. Find the limit. 
21 Suppose 0 < a <  l and p > 0. Find Jim n'O-. [Hint (In n)/n -o.) 
22• Let a1 = fa  and a.+ 1 = J12 - a. for n = 1, 2. · · · . Analyze {a.}. 
23 Suppose 0 < x < y. Define two sequences {a.} and {b.} by a0 = x, b0 = y, 

2 a_. 1 .. (l/a.) + (l/b.)' b _ a. +  b. .+ 1 - 2 . 

Prove a0 < a1 < a2 < · · · < b2 < b1 < b0 • 
24 (cont.) Find Jim a. and lim b • .  
25 Suppose 0 < x < 2. Define {b.} by b0 = 1 - x and b.+ 1 = b. 2. Show that b. -0. 
26 (cont.) Define {a.} by a0 = 1, a.+ 1 = a.(l + b.� Prove that a. - 1/x. (Hint Show 

that a. = ( 1 - b.)/x.] (This provides an algorithm for division on a calculator that has 
only +, -, and x .) 

27 Suppose 0 < x < 2. Define {b.} by b0 = l - x and b.+ 1 = ib.2(3 + b.� Prove b. -o. 
28 (cont.) Define a b ao = x and a_.1 • a.(1 + fb.). Prove a. - Jx.  [Hint Show 

that a. = x( 1 - b.) .] (This provides an algorithm for r in terms of +' -' and x . ) 
29 Let 0 < x < y. Prove 

ya• •  x-+ 1  
(n + l )x- < < (n + l)ya, y - x 

hence x1(n + l )y - nx) < ya• •  and _v1(n + l )x - ny) < x-+ • .  
30• (cont.) Set a. ,. ( 1 + 1/n)". Prove {a.} is increasing and a. < 4. 
31• (cont.) Set b. = ( 1 + 1/nr•. Prove {b.} is decreasing. 
32 (cont.) Conclude that {a.} and {b.} converge to the same limit. 
Use the First Comparison Test to prove the convergence of {a.}, where 

33 a = 1 - .! + _!_ _ _!_ + . . . + ( - l )" 
34 a = ! _ ! + � + . . · + ( - tr- • .!!. • 1 ! 2 ! 3 ! n ! • 2 22 23 2• · 

35 Suppose 0 < x. Set b0 = f(x + 1/x) and b.+ 1 = Jf( l + b.). Show that b. - 1. 
36• (cont.) Set a0 = f(x - 1/x) and a.+ 1 = a.fb.+ 1• Prove that a. - In x. (Th!!,J>rovides 

an algorithm for computing logs on a calculator with +, -, x , and .J . ) [Hint 
Express b. and a. in terms of x.) 

3. I N F I N ITE S ER I ES 

One of the most important topics in mathematical analysis, both in theory and 
applications, is infinite series. The basic problem is how to add up a sum with infinitely 
many terms. At first that seems impossible; lire is too short. However, suppose we 
look at the sum 

I I I I + - + - + · · · + - + · · · 
2 4 2" 

and start adding up terms. We find I , J, j, l/, ti. · · · , numbers getting closer and 
closer to 2. The message is clear: these finite sums have limit 2. Therefore in some 
sense, the infinite sum equals 2. 
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If we try to add up terms of the sum 

l + l + l + · " ,  

we find I, 2, 3, 4, · · · , numbers becoming larger and larger. The situation is hopeless; 
there is no reasonable total. 

Let us now consider in some detail two important infinite sums. 

G orr 1 A geometric series is an infinite sum in which the ratio of 
any two consecutive terms is always the same: 

a + ar + ar2 + · · · + ar" + · · · 
Let s. denote the sum of all terms up to ar", 

(a # 0, r # 0). 

s,. = a + ar + ar2 + · · · + ar". 
If r = I, then s. = a + a + · · · + a  = (n + 1 )a, so s11 - ± ex:>. If r # 1, there is a 
simple formula for s,.: ( I ,-+ 1) s. = a( I + r + r2 + · · · + r") = a ; _ r 

. 

(To check, multiply both sides by I - r.) If  lr l < I, then r"+ 1 - o  as n increases. 
Hence 

1. a 
1m s = --" 1 - r ' l r l < 1, 

so a logical choice for the "sum" of the series is a/( 1 - r). But if lr l > I, then 
,-+ 1 grows beyond all bound, and the situation is hopeless. If r = - 1, then s,. is 
alternately a and 0. There is no reasonable sum in this case either. 

f An infinite geometric series 

I . a + ar + ar2 + · · · + ar" + · · · � the sum a/(1 - r) if l r l < 1, but no sum if l r l ;;:::: 1. 

H armonic Series The series 

1 1 1 
1 + - + - + · · · + - + · · ·  

2 3 n 
is known as the harmonic series. Although it is not at all obvious, the sums s. = 
l + ! + i + · · · + 1/n increase beyond all bound, so the series has no sum. To see 
why, we observe that 

1 
S1 = l > 2 '  ( I  I) ( 1 1) 2 1 3 54 = 52 + j + 4 > 52 + 4 + 4 > l + l = l' 
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( 1 1 1 1) ( 1 1 1 1) 3 1 4 
58 = 54 + S + 6 + 7 + S > 54 + S + S + S + S > l + l = l . 

Similarly, s16 > S/2. s32 > 6/2, · · ·, s2• > (n + 1)/2. Thus the sequence of sums s,. 
increases, and our estimates show s,. eventually passes any given positive number. 
('Ibis happens very slowly it is true; around 21 5  terms are needed before s,. exceeds 
10 and around 229 terms before it exceeds 20.) 

Remark Both the geometric series for 0 < r < l and the harmonic series have positive terms 
that decrease toward :zero, yet one series has a sum and the other docs not. This indicates 
the subtlety we must expect in our further study of infinite series. 

Convergence a nd Divergence It is time to formulate our ideas more 
precisely. 

An infinite series is a formal sum L a,. = a1 + al + a3 + · · · . 
Associated with each infinite series is its sequence {s,.} of partial 1U1111 defined by 

A series converges to the number S, or has sum S, if Jim s,. = S. A series 
diverps, or has no sum, if lim s,. does not exist. A series that converges is called 
converpnt; a series that diverges is called diverpnt If a series converges to S, 
we shall write 

00 
or equivalently, L: a,. = S. 

... . 

We have a precise definition for Jim s,. = S. Let us rephrase the definition of 
convergence of series accordingly: 

The infinite series a1 + al + a3 + · · · converges to S if for each e > 0, there is a 
positive integer N such that 

I (a1 + al + · · · + a,.) - S I < e 

whenever n � N. 

Thus, no matter how small e, you will get within e of S by adding up enough terms. 
For each e, the N tells how many terms are "enough." Naturally the smaller e is, 
the larger N will be. 

• EXAMPLE 1 Consider the series 3 + i + i + i + · · · .  
(a) Show that its sum is 6. Find N so that 
(b) Is., - 61  < 10-4 for n � N (c) Is., - 61  < 10-• for n ;;:::: N. 
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Sohltio11 (a) This is  a geometric series with first term a =  3 and common ratio 
r = !. Since Ir I < 1, the series converges to 

(b) The n-th partial sum is 

a 3 - = - = 6. 1 - r 1 - !  

s. = 3( 1 + � + � + . . .  + 
2
.� l) = 3 l 1

-
-
(t· 

= 6 r 1 - ur J. 
Hence Is. - 61 = 6(!)". 
Therefore Is. - 61 < 10-4 provided 

6m· < 10-4, m· < 1 x 10-4, 
Now 215 < 33000 and 216 > 65000, hence N = 16 works. 

(c) As in (b) we must have 2" > 6 x 108, that is, 

8 + log 6 
n log 2 > log(6 x 108) = 8 + log 6, n > 

log 2 
:::::: 29.2. 

Therefore N = 30 works. • 

Convergence Tests When we study the convergence of an infinite series 
L a. ,  we really study the convergence of the sequence {s.} of partial sums. Thus 
we actually have two sequences involved, the sequence {a.} that defines the series 
and the derived sequence {s.} of partial sums. The definition of convergence con
centrates on {s.}, and we can apply everything we know about the convergence of 
sequences to {s.}. However, what we really want are tests for the convergence of 
L a,.  in terms of the sequence {a.} . . 

For example, we know that adding a constant to each term of {s.} does not 
affect its convergence or divergence. Consequently inserting, deleting, or altering a 
finite number of terms of an infinite series only adds a constant to each s,. beyond a 
certain point. hence does not affect its convergence or divergence. For instance, if 
we delete the first 10 terms of the series a1 + a2 + a3 + · · · , then we decrease 
each partial sum s,. (for n > 10) by the amount s10 • If the original series diverges, 
then so does the modified series. If it converges to S, then the modified series 
converges to S - s10 •  
Warning In problems where we must decide whether a given infinite series converges or 
diverges, we may, without prior notice, ignore or change a (finite) batch of terms at the 
beginning. This docs not affect convergence. 

Recall the Cauchy Criterion for convergence of sequences: 

A sequence {s.} converges if and only if for each e > 0, there is a positive integer 
N such that 

I s,. - s,.I < t 

whenever m, n � N. 
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Thus all elements of the sequence beyond a certain point must be within t of each 
other. The advantage of the Cauchy Criterion is that it depends only on the elements 
of the sequence itself; you don't have to know the limit of a sequence in order to show 
convergence. That's a great help since often it is very hard to find the exact limit 
of a sequence; besides, you may only need to know that the sequence does indeed 
converge to some limit. 

Let us apply the Cauchy Criterion to the partial sums of a series. We simply 
observe (for m >  n) that 

s,,. - s,. = (a1 + a2 + · · · + a,. + a,.+ 1 + · · · + a,,.) - (a1 + a2 + · · · + a,.) 

Cauchy Teat An infinite series L a,. converges if and only if for each t > 0, 
there is a positive integer N such that 

la,.+1 + a,.+2 + . . .  + a,,. I < t 
whenever m > n � N. 

Thus beyond a certain point in the series, any block of consecutive terms, no matter 
how long, must have a very small sum. 

An important corollary of the "only if" part of the Cauchy Test is a necessary 
condition for convergence of an infinite series. If a series does converge, then the 
Cauchy Test is satisfied. Jn particular, it is satisfied in the special case n = m - l. 
Then the block consists of just one term, a,,., so la,,. I < t when m � N. In other 
words, a,,. ---+ 0. 

n-th Term Test If L a,. converges, then lim,. .... 00 a,. = 0. 

If Jim a,. docs not exist, or if Jim a,. exists but Jim a,. #: 0, then L a,. diverges. 

For emphasis we have stated the test in two equivalent forms. We remark that 
it can easily be proved from scratch, independently of the Cauchy Test. For, if 
L a,. = S, then s,. ---+ S, hence 

a,. = s,. - s,,_ 1 ---+ S - S = 0. 

Warning Pay attention here, because misuse of this test causes Jots of errors. It is really a 
test for divergence, not a test for convergence. It says that if Jim a,. * 0, then L a,. diverges. 
It says nothing if lim a,. = 0. In that case the series may diverge-or it may converge. Keep 
in mind the harmonic series, where a11 = 1/n; then Jim a,. = 0 and L a,. diverges. 

EXERCISES 
Compute the finite sum 

J J l 
l + - + - + · · · + -

3 31 39 
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32 33 3•+ •  5 3 + - + - + . . · + -x x2 � 
7 ,112 + r + rl/2 + . . .  + r" 

Sum the infinite series 

, l - � + Gr - Gr + 
-

. . · 
1 1 1 

1 1  
2•0  

+ 2TI + 
2 1 2  

+ . . .  

4 + 1 8 + 1 16 + 1 13 -
9
- + 27 + -

8-l
- + . . . 

1 1 1 15 -- + + + · · · 
2 + x2 (2 + x2)2 (2 + x2)3 

6 l - y2 + y" - + . . . + y20 

8 (x + l )  + (x + 1 )2 + · · · + (x + 1)5• 

1 1 1 1 lO 2 - 4 + 8 - 16 
+ - . . .  

l I 1 
12 3 + 

27 
+ 

243 + . . . 

3 3 14 12 - 6 + 3 - - + - - . . .  
2 4 

cos () cos2 () cos3 () 16 -
2-

+ -4
- + -

8
- + · · · . 

17 A cc.rtain rubber ball when dropped will bounce back to half the height from which it is 
released. If the ball is dropped from 3 ft and continues to bounce indefinitely, find the 
total distance through which it moves. 

18 Trains A and B are 60 miles apart on the same track and start moving toward each 
other at the rate of 30 mph. At the same time, a fty starts at train A and fties to train B 
at 60 mph. Then it returns to train A, then to B, etc. Use a geometric series to compute 
the total distance it fties until the trains meet. 

19 (cont.) Do Ex. 18 without geometric series. 
20 A line segment of length L is drawn and its middle third is erased. Then (step 2) the 

middle third of each of the two remaining segments is erased. Then (step 3) the middle 
third of each of the four remaining segments is erased, etc. After step n, what is the total 
length of all the segments deleted? 

Interpret the repeating decimals as geometric series and find their sums 

21 0.1 1 1 1 1  . . . 22 0.101010 . . . 23 0.434343 . . . 24 0.185185185 . . . . 

Show that the series diverge 

25 i + i + i + i + · " 26 l + i + ! + � +  . . · . 

l l l 
27 Find n so large that - + - + · · · + - > 2. 101 102 n 
28 Aristotle summarized Zeno's paradoxes as follows: 

I can't go from here to the wall. For to do so, I must first cover half the distance, 
then half the remaining distance, then again half of what still remains. This process can 
always be continued and can never be completed. 

Explain what is going on here. 

Use partial fractions to sum 

31 Describe all convergent series of integers. 

� 2n + l 
30 L (n(n + 1)]2 · 

· - ·  

32 Show how the harmonic series fails the Cauchy Test for t = i. 
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4. SERIES WITH POSITIVE TER MS 

In this section we deal only with infinite series having non-negative terms. The 
partial sums of such a series form an increasing sequence, s1 s s2 s s3 s s4 s · · · . 
Recall that an increasing sequence must be one of two types: either (a) the sequence 
is bounded above, in which case it converges; or (b) it is not bounded above, and 
it marches off the map to + co. 

We deduce corresponding statements about series: 

A series a1 + a2 + a3 + · · · with a,. � 0 converges if and only if there exists a 
positive number M such that 

for all n � 1. 

Using this fact, we can often establish the convergence or divergence of a _ given 
series by comparing it with a familiar series. 

Comparison Test Suppose L a,. and L b,. are series with non-negative terms. 

(1)  If L a,. converges and b,. � a,. for all n � 1 ,  then L b,. also converges, 

(2) If L a,. diverges and b,. � a,. for all n � 1, then L b,. also diverges. 

Proof Let s,. and t,. denote the partial sums of L a,. and L b,. respectively. Then 
{s,.} and {r,.} are increasing sequences. 

( 1 )  Since L a,. converges, s,. � Li a,. = M for all n � 1. Since b1: � a1: for all k, 
we have r,. S s,. for all n. Hence r,. S s,. s M for all n � 1, so L b,. converges. 

(2) Since L a,. diverges, the sequence {s,.} is unbounded. Since b1: � a1:, we have 
r,. � s,. . Hence {r,.} is also unbounded, so L b,. diverges. 

Remarks It is important to apply the Comparison Test correctly. Roughly speaking, ( l )  says 
that "smaller than small is small" and (2) says that "bigger than big is big." However the 
phrases "smaller than big" and "bigger than small" contain little useful information. 

The Comparison Test. as well as the other tests we shall derive, applies if the given 
condition holds from some point on, not necessarily starting at n = 1. For example, if I a,. 
converges, and if b,. s; a. for n :<!:: SOO, then I b,. converges. The finite sum b1 + b2 + · · · + b499 
can be anything; only the ultimate behavior of a series counts toward convergence or 
divergence. 

• EXAMPLE 1 Test for convergence or divergence: 

(a) Is�: n 
(b) I )n (c) I 2n: r 

Sohltion (a) (sin2 n)/3" s 1/3". But L 1/3" converges, so the given series converges. 

(b) l/Jn � 1/n. But L l/n diverges, so the given series diverges. 

(c) Diverges because a,. = n/(2n + 1 ) - ! :#: 0. • 

p- Series The comparison test is useful provided you have a good supply of 
known series. An excellent class of series for comparisons are those of the form 
L 1/nP. 
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I The series \' .1. diverges if p :s;; 1 and converges if p > 1 . 
LnP 

Proof IfO < p :s;; 1, then 1/nP � 1/n and the series diverges by comparison with the 
divergent series L 1/n. 

If p > 1, we shall show that the partial sums of the series are bounded. We use 
an important trick : we interpret s., as an area and compare it with a region below 
the curve y = 1/xP. See Fig. 1 . 

1 /k p \ I area = 1 /kP 

4 II I II 

Fi&- I The rectangular sum is less than the area under the curve. 

k 

The combined areas of the rectangles shown is less than the area under the 
decreasing curve between x = I and x = n. Therefore 

I + 
I 

+ . . .  + I < f" dx = -
1 I I" = I ·- ( I _ _ _ 

I_ ) . 2P JP nP I xP p - I xp- 1 i p - 1 np- 1 
Since p - l > 0, the right side is a positive number, a little less than 1/(p - I )  for 
all values of n. Hence ( I I I ) I 

s., = I + 2P + JP + . . .  + nP 
< I + p - I 

for n � 1 . Thus the partial sums are bounded if p > I, so the series converges. 

Furth r omo 1 t'> t�  Suppose La., is a given series, and c � 0. Then 
the two series La., and L ca., either both converge or both diverge. For the partial 
sums of the series are {s.,} and {cs.,}, sequences that converge or diverge together. 

We can extend these remarks to a pair of series La., and L b., where the ratios 
b,ja., are not constant, but restricted to a suitable range. 

Let L alt and L b., be given series with positive terms. Suppose there exist positive 
numbers c and d such that 

b 
c :s;; � :s;; d a., 

for all sufficiently large n. Then the series both converge or both diverge. 
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Proof If L a,, converges, then so does L da,. . But b,. S da,. , so L b,, converges. 
If L a,, diverges, then so does L ca,. . But b,, � ca,. , so L b,. diverges. Done. 
The conditions of the preceding test are automatically satisfied if the ratios b,.la,, 

actually approach a positive limit L. Then, by the definition of limit with e = !L. 
all ratios satisfy !L < b,.la,. < iL. except perhaps for a finite number of them. 

Let L a,. and L b,, have positive terms. If lim b,.la,, = L exists and if L > 0, then 
either both series converge or both series diverge. 

• EXAMPLE Z Test for convergence or divergence: 
\' 1 \' 4n + l  (a) Ln + Jn (b) L3n3 - n2 - 1 · 

So"'tio11 (a) When n is very large, n is much larger than Jn. This suggests that 
the terms behave roughly like 1/n, so we begin to smell divergence. Let a,, = l/n 
and b,. = 1/(n + Jn ). We could establish divergence right away if it were true that 
b,, > a,.. Unfortunately that is false. (It would be true if b,. were l/(n - Jn�) 
Instead we examine the ratios of b,. to a,.: 

b,. n 1 1 = = - -- = l, a,, n + Jn 1 + 1/Jn 1 + 0 as n-oo. 

The ratios have a positive limit. Therefore L b,, diverges since r 1111 diverges. 
(b) When n is very large, the terms appear to behave like 4n/3n3 = 4/3n2. This 

suggests comparison with the convergent series r 1/n2• Let a,, = 1/n2 and b,. = 
(4n + 1)/(3n3 - n2 - 1). Then 

b,, (4n + l)n2 4 + 1/n 4 
a,. = 3n'3 - n2 - 1 = 3 - 1/n - 1/n3 - 3 · 

The ratios have a positive limit. Therefore r b,, converges because r 1/n2 converges . 
• 

The Ratio Test In a geometric series, the ratio a,,+ 1/a,, is a constant, r. If 
Ir I < l, the series converges, basically because its terms decrease rapidly. By analogy, 
we should expect convergence in general if the ratios are small, not necessarily 
constant. 

First Ratio Test Let L a,. be a series of positive terms. 

( ) Th . .f a.+ 1 r. • 1 e senes converges 1 -- S r < 1 arom some pomt on. a,, 
(2) The series diverges ifa11• 1 � 1 from some point on. a,, 
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Proof (1) Suppose a,,+i/a,, s r < 1 starting with n = N. Then 

and by induction, aNH S aN r", that is, a,, S aNr"-N = (aN r-N)r" for all n � N. It 
follows that the series L a,, converges by comparison with the convergent geometric 
series L r". 

(2) From some point on, a,,+ 1 � a,. .  The terms increase, hence the series diverges. 

Warning Note that the test for convergence requires a.+ .fa. � r < I, not just a11+ .fa. < I. 
The ratios must stay away from 1 .  If a .. + .fa. < I but a .. + 1/a. - I, we may have divergence. 
For example, take a11 = l/n. Then a.+ 1/a. = n/(n + I )  = I - 1/(n + I) < I, but L l/n diverges. 

It often happens that the ratios a,,+ i/a,. approach a limit. Then we can cast the 
Ratio Test in a different form. 

Second Ratio Test Let L a,. be a series of positive terms. Suppose 

I. 
a,.+ t 1m --= r. 

,. ... ao a,. 
( 1) The series converges i f  r < 1 . 
(2) The series diverges if r > 1. 
(3) If r = 1, the test is inconclusive; the series may either converge or diverge. 

Proof ( 1 ) If r < 1, choose e so small that r + e < 1. By definition of the statement 
a,.+ i/a,. -r, there is a positive integer N such that a,.+ iJa,, < r + e < 1 for all 
n � N. Therefore the series converges by the preceding test. 

(2) Similarly, if r > 1, then a..+ 1/a,, � 1 from some point on. The series diverges. 

(3) If r = l, this test cannot distinguish between convergent and divergent series. 
For example, take a,. = l/n'. The series converges for p > 1, diverges for p � 1 . But 
for all values of p, 

a
,,+ 1 = n' = (-"-)' = ( 1  - _l_)' -(1 - 0)' = 1. a,, (n + l)' n + l n + l 

• EXAMPLE 3 Test for convergence or divergence 

(a) I;.. (b) I��. 
So1Mtio11 (a) Set a,, = n/2". Then 

a,.+1 = " + l1� = n + 1 = ! ( 1 + !) -! . 
a,, 2" + 1 2" 2n 2 n 2 

Since ! < l, the series converges by the ratio test. 

(b) Set a,. = 10"/n !. Then 

a .. + 1 = 10"+ • I 10" = �-o 
a,. 1 · 2 · · · n(n + 1) 1 · 2 · · · n n +  1 · 

Since 0 < 1, the series converges by the ratio test. • 
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EXERCISES 

Determine whether the series converges or diverges 

I 
L

n2 � l 2 L 2• � 
, I

(2n � •)2 
7 

I
2n

:: 
7 

JO 
L

(n + l )(n
: 

3)(n + sr 

3 
I

4n
:

3 

6 
I

. +
"
.y;, 

9 I� 
I I  Prove that if L a. and L b. converge, then so does L (a. + b.� and find the sum. 
12 If L a. and L b. diverge, show by examples that L (a. + b.) may either converge or 

diverge. 
Let L a. be a convergent series of positive terms 
13 Prove that L a. 2 converges 
14 Show by examples that L .Ji. may either converge or diverge. 
Test for convergence or divergence 

15 
I

n1
�

3 16 
L

J2n
!

- n  17 

18 
Is

+ Jn 

l + n 19 In3 

n !  20 

21 L: ne-· ll I 3· + .  
Se" + n 23 

24 
L

(ln
1
n)" 25 

I "' 
1 · 3 · 5 · · · (2n - 1 )  26 

Find all real numbers x for which the series converges 

27 
Ixla 

n! 
Lsin2 nx 

28 � 29 L: (3x)2• 30 L: nxl•. 

I4n� . 
I n

3(�f 

I2
·

+ n 
J• - n 

I(n!)l 
(2n)! · 

31 (Root Test) If a. > 0 and if .:JO. :S r < 1 for n � l, show that L a. converges. 
32 Let L a. and L b. be series with positive terms. Suppose bJa. - 0. Find an example 

where L b. converges while L a. diverges. Does this contradict the text? 

5. S E R I ES WITH POSITIVE AND N EGATIVE TER M S  

Infinite series with both positive and negative terms are generally more complicated 
than series with terms all of the same sign. In this section, we discuss two common 
types of mixed series that are manageable. 
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Alternating Series An alternating series is one whose terms are alternately 
positive and negative. Examples: 

1 1 1 • - 2 + 3 - 4 + - + - · · · 

1 - x2 + x4 - x6 + - + - · · · 

x2 x3 x4 x - 4 + 9 - 16 + - + - . . .  

(alternating for all x � o� 

(alternating only for x > 0). 

Such series have some extremely useful properties, two of which we now state. 

Alternating Series Test If the terms of an alternating series decrease in 
absolute value to zero, then the series converges. 

Remainder Estimate If such a series is broken off at the n-th term, then 
the remainder (in absolute value) is less than the absolute value of the (n + 1 )-th 
term. 

These assertions provide a very simple convergence criterion and an immediate 
remainder estimate for alternating series. Let us show geometrically that they make 
good sense. (A formal proof is outlined in Exs. 25 and 26.) 

Suppose L a. is an alternating series whose terms decrease in absolute value 
to zero. (To be definite, assume a1 > 0.) The partial sums s. = a1 + a2 + · · · + a. 
oscillate back and forth, as shown in Fig. 1. But since the terms decrease to zero, 
the oscillations become shorter and shorter. The odd partial sums decrease and 
the even ones increase, squeezing down on some number S. Thus. the series converges 
to S. 

'•• I  s 
Fis. I The partial sums of an alternating series 

If the series is broken off after n terms, the remainder is IS - s. 1 . But from 
Fig. 1, 

IS - s. I  < ls.+ 1 - s  .. I = la.,+ d· 
Thus, the remainder is less than the absolute value of the (n + 1 )-th term. 

• EXAMPLE 1 Prove convergent 

1 1 1 
(a) 1 - - + - - - + - · . . 

.Ji J3 J4 
1 .Ji J3 J4 (b) - - - + - - - + - · " 2 3 4 5 . 
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Sohnioll (a) If La,. denotes the series. then la,.I = 1/jn . The numbers la,. I 
clearly decrease toward 0. Hence the series converges by the alternating series test. 

(b) This time l a,.1 = jn/(n + 1� The series alternates, and la..1-0. It will 
be enough to show that the sequence {jn/(n + I )} decreases. To do so show that 
the function y(x) = Jx/(x + 1) decreases. Compute its derivative: 

'( ) - (x + 1 )/iy'x -Jx _ I - x y x - (x + I )1 - 2JX (x + 1 )2 • 
Clearly y'(x) < 0 for x > I, therefore y(x) decreases. In particular, 

y(n + I ) <  y(n� or equivalently, la,.+ 1 I < la.I .  
Hence the series converges by the alternating series test. 

• EXAMPLE z Find all values of x for which the series converges 

xl x3 x4 l + x +2 +3 + 4 + · · · . 
Sobltioll First take x :?:: 0. Then all terms are positive, and 

a,.+ 1 x-+ 1/(n + I ) n --= = x ----+x. a,. x"/n n + 1 

• 

By the ratio test, the series converges for 0 s x < I and diverges for x > I. The 
test is inconclusive for x = I. However, in that case the series is 

l + ! + i + i + · · · ,  
the harmonic series, which diverges. 

Now take x < 0. Then the series alternates. If x < - 1, then Ix r1n - 00 ;  hence 
the series diverges. If - 1  s x < 0, then l x l"/n decreases to O; hence the series con
verges by the alternating series test. 
Answer The series converges precisely for - 1 s x < I .  • 

• EXAMPLE 3 It is known that the series L,.00•0 x"/n! converges to r for all x. 
Use this series to estimate 1/e to 3-place accuracy. 

Sohnioll Set x = - 1. Then e- 1 = L,.°". 0 ( - If /n !. The signs alternate and the terms 
decrease in absolute value to 0. Therefore, 

where 

1 I (- 1)" e- 1 = I --+ -- + · · · + --+ remainder I !  2 ! n ! ' 

I remainder I < ( 
1 
) n + l !  

For 3-place accuracy, we need I remainder I < 5 x 10-4, so we want an n for which 

1 (n + l)! > S x 104 =2000. 
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Now 6! = 720 and 7! = 5040. So we choose n + 1 = 7, that is, n = 6. Therefore 

e- 1 � 1 - 1 + ! - t + -h - � + � � 0.368. • 

Absolute Convergence How is it that the harmonic series L l/n diverges but 
the alternating harmonic series L(- 1  r- · /n converges? Essentially the harmonic 
series diverges because its terms don't decrease quite fast enough, like l/n2 or 1/2" 
for example. Its partial sums consist of many small terms which have a large total. 
The terms of L 1/2", however, decrease so fast that the total of any large number 
of them is bounded. 

The alternating harmonic series converges, not by smallness of its terms alone, 
but also because strategically placed minus signs cause lots of cancellation. Just look 
at two consecutive terms: 

1 1 1 
+ n - n + 1 = n(n + 1) . 

Cancellation produces a term of a convergent series! Thus L( - 1r- 1 /n converges 
because its terms get small and because a delicate balance of positive and negative 
terms produces important cancellations. 

Some series with mixed terms converge by the smallness of their terms alone; 
they would converge even if all the signs were +. We say that a series L a,. 
converges absolutely if L la .. I converges. As we might expect, absolute convergence 
implies (is even stronger than) convergence. 

If a series L a,. converges absolutely, then it converges. 

Proof Suppose L la,. I converges. By the Cauchy Test, for each t > 0 there is an N 
such that 

m > n � N. 

But l a .. + 1  + a,.. 2 + · · · + a,.1 � la11+d + · · · + l a .. I < t 
by the triangle inequality. Therefore La,. converges by the Cauchy Test. 
Remark In studying series with mixed terms, it is a good idea to check first for absolute 
convergence. Just change all signs to +, then test for convergence of the positive series. 

• EXAMPLE 4 Test for convergence and absolute convergence 
1 1 1 1 1 (a) 1 + - - - + - + - - - + + - · · · 22 32 42 52 62 ' 
1 1 1 

(b) 1 - - + - - - + - · . .  .j2 .j3 .j4 . 
Sohltio11 (a) The series of absolute values is L l/n2, which converges. The series is 
absolutely convergent, hence convergent. 

(b) The series of absolute values is L t/Jn, which diverges. Hence the given 
series does not converge absolutely. It does converge, nevertheless, because it satisfies 
the test for alternating series : the terms decrease in absolute value to zero. • 
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EXERCISES 

Test for convergence and absolute convergence 

l I(- •r 1n
1
n 2 L(- 1r; 

' L(- 1r
1n
n
n 

s L(- 1r (1�11r 

" 

lO L(- 1r In -�oo.s 1 
12 L (- 1r I + (n � 100)2 

14 �( 1)2.- 1 
n - I 

L - <n + •>l 

, I (
- •r sin 2: 

ll 

13 

3 I(- • ,. _
n
_ 3n + I  

6 L 
Sn1 

(- •r 2n3 - 1 

9 Lsin n 
nl 

ls 1 -ill + ! -n + t - n- + - · · · 

17 I + ! - ! + i + ! - ! + + - · · · 

19 ! - I + i - ! + i - ! + - · · · 

16 <• - ill> + <t - tr> + H - n> + · · · 
18 I + ! - i - i + ! + i - - + + . . .  
20 (! - I) + (i - t) + (! - !) + · · · . 

Estimate to 4 places by the method of Example 3 
21 l/Je 22 I/�. 
23 Suppose I a,. 2 and � b,.1 both converge. Show that I a. b. converges absolutely. 

(Hint 2xy s x2 + y .) 
24• Suppose I a. converges, but not absolutely. Let I b1 and I c• be the series made of the 

positive a,.'s and negative a,.'s respectively. Prove that both I b1 and I c• diverge. 
is• Suppose a1 - a2 + a3 - a4 + · · · is an alternating series whose terms decrease in 

absolute value toward 0. Suppose the first term is a1 > 0. Ir {s,.} denotes the sequence 
of partial sums, show that the subsequence {s2,.} is increasing and bounded above and 
the subsequence {s2,._ 1} is decreasing and bounded below. 

26• (cont.) Conclude that the two sequences converge and have the same limit S. Show that 
I a  . ... s. 

6 I M PROPER INTEGRALS 

In scientific problems, one frequently meets definite integrals in which one (or 
both) of the limits is infinite. Here is an example. 

Imagine a particle P of mass m at the origin. The IJ1l•itatioaal potential at a point 
x = a due to P is the work required to move a unit mass from x = a to infinity, 
against the force exerted on it by P. According to Newton's Law of Gravitation, this 
force is km/d2, where d is the distance between the two masses and k is a constant. 
The work done in moving the unit mass from x = a to x = b is 

f (rorce) dx = J: �� dx = km( - H r = km(� - �)· 
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Let b- oo. Then l/b-0, hence 

- dx- km - - 0  = -. f• km ( 1  ) km 
.. x2 a a 

Thus km/a is the work required to move the mass from a to oo. It is convenient to 
set 

f 00 km . f b km km 2 dx =  hm 2 dx = - . 
.. x ..... 00 .. x a 

A definite integral whose upper limit is oo, whose lower limit is - oo, or both, is 
called an improper integral 

n In order to give a precise definition of infinite integrals, we must recall the 
meaning of the statement lim" .... 00 F(x) = L. 

r-
Let F(x) be defined for x � a, where a is some real number. Then 

lim F(x) = L 

if for each e > 0, there is a number b such that 

IF(x) - L l < e  for all x � b. 

For increasing and decreasing functions the basic fact about limits is analogous to 
the one for sequences. Its proof is left for a more advanced course. 

r;:-; be an increasing function. Then lim" .... 00 F(x) exists if and only if F(x) is I ���ded above, i.e., if and only if there exists a number M such that 

F(x) � M lfor all x � a, that is, on the domain of F. 
Similarly if F(x) is a decreasing function, then lim" .... 00 F(x) exists if and only if 
F(x) is bounded below. ������������������--' 
Another important fact, also similar in spirit to one for sequences, is the Cauchy 

Criterion : 

Cauchy Criterion Jim" ... 00 F(x) exists if and only if for each e > 0, there exists 
b such that 

I whenever x � b and z � b. 

IF(x) - F(z)I < £ 

There is a similar discussion for limits of the form lim" .... _ 00 F(x ). Obviously, if we 
set G(x) = F( -x 1 then lim" .... _ 00 F(x) is equal to lim" .... 00 G(x 1 so limits at -oo 
involve nothing new. 
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Definition of Improper Integrals Suppose f(x) is defined for x � a  and is 
integrable on each interval a � x � b for b � a. Set 

b 
F(b) = J f(x) dx . 

• 

Now lim ... 00 F(b) may or may not exist. 

Define 
00 " 

f f(x) dx = lim J f(x) dx, 
• ,, .. 00 • 

provided the limit exists. If it does, the integral is said to converge, otherwise 
to divqe. 

Similarly, define 
. " J f(x) dx = Jim f f(x) dx, 
- co  •- - ao  • • 

provided the limit exists. 

Finally, define 
00 0 00 

f f(x) dx = J f(x) dx + J f(x) dx, 
-oo - oo 0 

provided both integrals on the right converge. 

Remark An integral from -oo to oo may be split at any convenient finite point just as well 
as at 0. 

An improper integral need not converge. For example, the integral f"" dx 
diverges because 

I X 
I. s• dx 1· I am - =  tm n b  
b-m 1 X •-«> 

does not exist. 

• EXAMPLE 1 Evaluate ( 1 )  coo _!!!__ 
J o 1 + x2 

( 1 )  i" dx � -1 --2 = arc tan x = arc tan b. 
0 + x 0 

Let b--+ oo. Then arc tan b --+  in- Hence 

(2) 

iao dx f" dx 1 
-1 --2 = Jim -1 --2 = Jim arc tan b = -2 n. 

0 + x ... 00 0 + x ... 00 

3 13 f tr dx = r = e3 - e°. 
• • 

Let a--+ - oo. Then e°--+ 0. Hence 
3 3 f r dx = lim f r dx = lim (e3 - e°) = e3• 
- oo  • - - ao  • • - - ao  

• 
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Remember that a definite integral of a positive function represents the area under 
a curve. We interpret the improper integral 

J 
00
/(x) dx, f(x) � 0, 

• 
as the area of the infinite region in Fig. 1. If the integral converges, the area is finite; 
if the integral diverges, the area is infinite. 

) 

--
x 

Fis. I Area of an infinite 
region 

At first it may seem unbelievable that a region of infinite extent can have finite 
area. But it can, and here is an example. Take the region under the curve y = r JC 
to the right of the y-axis (Fig. 2). The rectangles shown in Fig. 2 have base 1 and 
heights 1, !, i, i, · · · . Their total area is 

1 1 1 1 + 2 + 4 + g + · · · = 2· 

Therefore, the shaded infinite region has finite area less than 2. 
)' 

Fis. 2 Area under y = 2 -" from 0 to oo 

2 3 4 

• EXAMPLE 2 Compute the exact area of the shaded region in Fig. 2. 
Sobdioll The area is given by the improper integral 

ao b f rJC dx = lim f rJC dx. 0 b-ao 0 

An antiderivative of r JC is -r JC /In 2 (because r JC = e-JC In 2 ). Hence 

fbrJC dx = (- -1 rJC) r = -
1 (1 - rb) Jo In 2 � In 2 ' 

x 
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Remark The answer is reasonable. Since the darker shaded region in Fig. 2 has area 
l l l - + - + - + · · · z: l 2 4 8 ' 

the answer is between l and 2. A closer look shows it is slightly less than LS. Why? 
The improper integral 

J .., e-u /(x) dx 0 
arises in various applications such as electrical circuits, heat conduction, vibrating 
membranes, and in the solution of differential equations. It is called the Laplace Tramfonn of f (x). 
• EXAMPLE 3 Evaluate 

Cl) J e-u cos x dx, s > 0. 
0 

Sobdioll From integral tables or integration by parts, 

i. -u � e-u cos x dx = +-
1 

(-s cos x + sin x) 
0 s + 0 

Now let b - oo : 

e-• s = -2-1 
(-s cos b + sin b) + -2-1

. s + s + 

f00e-u cos x dx = lim r·e-u cos x dx = 0 + � = �· • Jo .... .., Jo s + 1 s + 1 

Now let us try an integral where both limits are infinite. 

• EXAMPLE 4 Evaluate 

Sobdioll By definition, the value of this integral is 

L.., Je2" � e- 2 ... + J:.., 3e2" � e-2 ... • 
provided both improper integrals converge. From integral tables, 

r· 
3 2 

... dx 
- 2 ... = 

.., 
1 f.i arc tan(e2" .JJ l = .., 1;:; [arc tan(eu .J3 )  - arc tan .J3]. Jo e + e "'V'3 lo "'V 3 

Now arc tan(eu .J3 ) - Pt as b - oo. Note that arc tan .j3 = in· Hence 

[Cl) dx . c· dx 1 (1t 1t) 
Jo Je2" + e 2 ... = !� Jo 3e2" + e- 2 ... = 2.j3 2 - 3 . 
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Similarly, fo dx 1. f. dx 
--::,-----=-= 1m 

- co  3e2" + e- 2" .... - co  • 3e2" + e- 2.x 

= 1/i [arc tan J3 - arc tan O] = 1/i (� - o) . 2y3 2y3 3 
Thus both improper integrals converge. The answer is the sum of their values: 

f co dx 1t 
- ao  3e2" + e- 2.x = 4J3. • 

Remark Do you prefer this snappy calculation? f 00 dx I I"" 3 l.r _ 2 .. = ., r.; arc tan(J3 e1"') 
_.., e + e  "v'3 - oo  I I x x = - (arc tan oo - arc tan 0) = - - = - . 

2J3 2J3 2 4j3 

Warning Try the same method on f"" dx 
2 . 

- ao  X 
It fails! Why? 

The Defi n1t1on of A good starting point for a rigorous development of the 
trigonometric functions is the definition 

ix dt arc tan x = -1--2 • 0 + t 
Example 1 shows that this function arc tan x has a limit as x - oo and suggests 
the definition of n by the convergent integral 

1 rco dt 
2 n = J 0 1 + t2 • 

If we define n this way, can we work with it? For example, can we show, 
starting from scratch that arc tan l = in. that is, 

We can as follows. First, 

! 1t = 11 __!!!_ ? 4 Jo 1 + t2 
1 f"° dr f 1 dr f co dt 
2 n = Jo 1 + t2 = Jo 1 + t2 + 

1 1 + t2 • 
The two integrals on the right-hand side are equal. To prove this, we make the 
change of variable t = 1/s in the second integra� but we must be careful with oo :  

Therefore 

f co dt . [ dt . f 11" -ds/s2 
--2 = hm --2 = hm ( )2 l 1 + t 11-+co l 1 + t 11-+co l 1 + 1/s 

- hm -- - -- - --
. f' ds i' ds i l dt -

11-+co l/11 1 + s2 - o 1 + s2 - 0 1 + t2 • 
1 11 dr f 1 dr 1 
2 n = 2 J 0 1 + t2 ' J 0 1 + t2 = 4 n. 
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EXERCISES 

Evaluate 

fm dx ("'e-" dx m 
1 2 3 J xe-" dx 

i xl s 0 

f- 1  d� 5 f- 1  dx 
6 fm dx 4 

-m 1 + xl ' xJx -m X 

7 J
"" 
e-lxl dx I f 00 xe_"J dx 9 fm dx 

• xJ9 + x2 - m - m 
10 fm dx 

1 x(x + 3) 1 1  im x dx 
0 x' + 1 

(let u = x2) 12 f"" dx 
t (x2 + 1)2 

13 fm dx 
14 (" e-lx-21 dx 15 J mxe-"" dx (s > 0) -m 1 + x2 -.. 0 

16 f m x2e-"" dx (s > 0) 17 f m.x"e-"" dx (s > 0) 11 J me""e-u dx (s > a) 
0 0 0 

f m e-u sin x dx m 
19 (s > 0) 20 J e-u cosh x dx (s > 1 )  

0 0 

21 f m xe""e-"' dx (s > 0) 22 J00xe-"" sin x dx (s > o� 
0 0 

Is the area under the curve finite or infinite? 
23 y = l/x; from x = S to x = oo 24 y = l/x2; from x = 1 to x = oo 
25 y = sin2 x; from x = 0 to x .. oo 26 y = (1.00tr"; from x = o to x = oo 

27 y = l/(3x + SO); from x = 2 to x = oo 
21 y = x/(x2 + 10); from x = 0 to x = oo. 
Solve for b 

. .. 
29 J e-" dx = J e-" dx 

0 • 

Find b such that 99 %  of the area under y = /(x) between x = 0 and x = oo is contained 
between x = 0 and x = b 

I 
32 y = ( )3 . x + S  

Mental calculus. Without pencil and paper compute 

33 x5e-" dx � f m J ...... f _
m

m 

sin 2Jrx dx 
-.. x' + 7 · 

35 Suppose a > 0 and (J(x) dx - L. Find f mf(ax) dx . 
• 0 • 0 

36 Suppose f m f(x)dx = L. Find f 00 /(x + b) dx. 
· -�  · -� 

7. CONVERGENCE AND D IVER G EN C E  TESTS 

Whether an improper integral converges or diverges may be a subtle matter. Let 
us illustrate with a useful class of improper integrals. These are analogous to p-series 
discussed in Section 4. 
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The improper integral f
'X d� 
x' • 

(a > 0) 
diverges if p :5 1 and converges if p > 1. 

Proof Suppose p -:#: 1. Then 

r � = - p � } �)- I r = p � 1 (aP� I -
bP� I) · 

Now it makes a big difference whether p - 1 is positive or negative. For as 
b-oo, 

Hence 

1 {o 
bp- 1 - 00 

if p - 1 > 0 
if p - 1 < 0. 

1. f
" dx 1m -

l>�<D • xP 
exists if p > l, does not exist if p < 1. That means the given integral converges if 
p > 1, diverges if p < 1. 

If p = l, f
" dx - = In b - In a -oo .. x 

the integral diverges. 

as b-oo ;  

For a graphical interpretation of these results, see Fig. 1 .  For p > 0, the curves 
y = l/xP all decrease as x increases. The key is in their rate of decrease. If p :5 1, the 
curve decreases slowly enough that the shaded area (Fig. la) increases without 
bound as b - oo. If p > I, the curve decreases fast enough that the shaded area 
(Fig. lb) is bounded by a fixed number, no matter how large b is. 

\' > 

a b x a b x 

(a) 0 < p < I ;  diversence (b) p > I ; converaence 



7. Convergence and Divergence Tests 681 

The figure suggests that for a positive function/(x) the convergence or divergence 
of 

«> J /(x) dx 
• 

depends on how rapidly /(x) - 0  as x - oo. For /(x) = e-", which decreases 
very fast, the integral converges with plenty to spare. But for /(x) = l/x . .  01, which 
decreases much more slowly, the integral just about makes it. 

Comparison Tests We shall obtain comparison tests for convergence and 
divergence of improper integrals. In spirit, the discussion will parallel that for infinite 
series. First, a basic principle: 

Let /(x) � 0 for x � a. Then 

«> J /(x) dx converges 
• 

• 
if and only if J /(x) dx s M 

• 

for some constant M and for all b � a . 

Proof Let 
• 

F(b) = f /(x) dx. 
• •  

By definition, the improper integral exists provided J.Un. .... ao F(b) exists. But/(x) � 0, 
so F(b) is an increasing function of b. Therefore lim ..... 

00 
F(b) exists if and only if F(b) 

is bounded above, that is, if and only if 
• 

F(b) = f f(x)dx s M 
• 

for some constant M. 

Now we can state the comparison test 

Comparison Teat for Integrals Suppose /(x) � 0 and g(x) � O for x � a. 

(1) If g(x) 5;/(x1 then the convergence of f 00/(x) dx implies the convergence 
• 

of J «> g(x) dx . 
• 

(2) If g(x) �/(x� then the divergence of 

f 00 
g(x) dx . 

• 

Proof ( 1) Let 
• 

F(b) = f /(x) dx, 
• 

J 00/ (x) dx implies the divergence of 
• 

• 
G(b) = f g(x) dx. 

• 
Since /(x) � 0 and g(x) � 0, both F(b) and G(b) are increasing functions of b. By 
hypothesis, lim• .... ao F(b)exists,hence F(b) 5; M for some constant M. But g(x) 5;/(x� 
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therefore G(b) � F(b) � M. It follows that limb-oo G(b) exists, that is, 
00 

J g(x) dx converges . 
• 

(2) This time G(b) :2: F(b) and F(b) is unbounded. so G(b) is unbounded. Hence 

J "° g(x) dx diverges. 
ii 

• EXAMPLE 1 Show that the integrals converge 

(a) f 00 dx i"° e-" f"° sin2 x (b) --1 dx (c) � dx. i x2 + JX o x + 3 x 

I I 
Soltttio11 < - ( I  � x < oo ), 

xl + JX xl 
e-" 

...- - x  -- ;:::, e 
x + I  (0 � x < oo) and 

sin2 x I 
---x3 � x3 (3 � x < oo). 

Since the integrals f "° dx l000 e-" dx, f "° 
dx 

' xl ' Jc 3 xl 
all converge, the given integrals converge by the Comparison Test. • 

• EXAMPLE 2 Show that the integrals diverge 

(a) f "° 1JX dx (b) f"° r: dx 
3r: (c) f "° In  x dx. 

1 + x J2 v x - v x 3 x 
JX I 

Sobltio11 -- ..... -- (I � x < oo) l + x i::;. l + x 
1 1 In x In 3 1 

--- > - (2 � x < oo) and - :2: - > -, (3 � x < oo). JX - .;(X  JX x x x i"° _dx 
, f "° dx f "° dx 

Since the integrals 
1 l + x  1 JX ' 3 X 

all diverge, the given integrals diverge by the Comparison Test. • 

Another Comparison Test The following test does not require the integrand to 
be non-negative. 

Suppose/(x) :2: 0 and g(x) is bounded, that is, lg(x)I � M for some constant M. 
Then the convergence of 

f 
00
/(x) dx 

ii 

00 
implies the convergence of J /(x)g(x) dx. 

ii 

. Proof Let 
b 

F(b) = J f (x) dx, 
ii 

b 
H(b) = J /(x)g(x) dx. 

ii 
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We are given that lim•�ao F(b) exists, and we must show that lim.�00 H(b) exists. 
By the Cauchy Criterion, given t > 0, there exists B such that 

8 IF(c) - F(b)I < M 
It follows that 

whenever c > b � B. 

IH(c) - H(b)I = IL! (x)g(x) dx I � f: l/(x) l lg(x) I dx 

r e � M J/(x) dx = M[F(c) - F(b)) < M · M = e 

whenever c > b � B. Thererore by the Cauchy Criterion, lim•�ao H(b) exists, that is, 

f 00/(x)g(x) dx converges . 
• 

• EXAMPLE 3 Show that the integrals converge 

iao 
f "° In x f °" arc tan x (a) e-" sin3 x dx (b) -3 dx (c) 1 3 dx. 0 1 x - 112 + x 

SohltitHI Apply the above criterion. 

(a) Since 
ao 

f e-" dx 0 
converges and lsin3 x i � 1, the given integral converges. 
(b) Write 

The integral 

ln x 1 ln x 

f00 dx 
1 x2 

converges and (In x)/x is bounded. (Its maximum value is l/e.) Hence the given 
integral converges. 

(c) Break the integral into a sum: f 00 arc tan x f 1 f 00 --,3,..- dx = + . - 112 1 + x - 112 l 

The first integral on the right is an integral or a continuous runction on a finite 
intervai so it exists. Therefore the problem is equivalent to showing that f ao arc tan x dx 

t 1 + x3 
converges. But larc tan x i < !n. and 

fao � < f00 dx 
1 1 + x3 1 x3 ' 

which converges. Hence the given integral converges. • 
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Remark The splitting of the integral in ( c) was necessary. You cannot prove the convergence 
of 

f 00 � by comparison with 
- 111 1 + xl f00 dx 

- 112 xl 
because the latter integral is undefined, due to the z.ero in the denominator at x = 0. 

Abso u e Conve e .c An improper integral J:' /(x) dx is called absolutely 
convergent if 

ao 

f lf(x)I dx 
• 

is convergent. Just as with infinite series, an absolutely convergent integral is con
vergent. This statement will follow easily from the next comparison test. 

If r·f(x) dx 
• 

is convergent and if lg(x)I S/(x) for a S x < oo, then J 00g(x) dx 
• 

is convergent and absolutely convergent. 

This is proved using the Cauchy Criterion almost exactly as the last test was. 
We omit the details but note the critical step: 

I rg(x) dx l s ng(x)I dx s f J(x) dx < e. 
• b b 

The special case/(x) = lg(x)I implies 

If J 00 g(x) dx is absolutely convergent, then it is convergent. 
• 

A series may converge, but not converge absolutely. Similarly, an integral may 
converge, but not converge absolutely. An example is f 00/(x) dx, 1 
wheref(x) = (- t r/n for n s x < (n + 1 �  Is this cheating? Not really, but 

rao sin x dx J o x 
is another example, this time with a continuous integrand, as we shall see in the next 
section. 

EXERCISES 

Test for convergence 

1 fo00 x�l 2 f.. dx t x2 + x 
3 



.. 

7 

10 

13 

15 

16 

17 

18 
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{"'e-"1 dx 5 ('cosh x dx 6 
r· x dx 
0 Jx2 + 3 2 0 

f.. sin x J00sin x dx f
oo COS X  -- dx 8 9 dx 

_ .., 1 + x2 0 i JX(x + 4) 

f .. dx 
2 In x I I  -- dx f"' xl 

3 x4 - 1 
12 f"' dx 

0 l + x + e" 
0 

f.. dx J x2e" dx 14 
-s J(x + 6)(x + 7)(x + 8)" - ..,  

Show that Jz"' x(�x
x)' converges ir p > l, diverges if p s 1. [Hint Use the substitu

tion u = In x.) 

f"' h ·r d. if 1 Show that [ ( )] converges 1 p > 1, 1verges p s . 
3 x ln x ln ln x "  

Show that f 00 In x dx converges if p > l, diverges if p s 1. (Hint Recall that 
l x" 

(In x)/x' - O  as r - oo  if r > 0.) 
Denote by R the infinite region under y • 1/x to the right or x • 1. Suppose R is 
rotated around the x-axis, forming an infinitely long horn. Show that the volume or 
this horn is finite. Its surface area, however, is infinite (the surface area is certainly 
larger than the area of R). Here is an apparent paradox: You can fill the horn with 
paint, but you cannot paint it. Where is the rallacy? 

Find all values of s for which the integral converges 

19 
i .. x dx 

20 J 00 (x + 3)' dx 
0 Ji+X' - 1 

f 111 e-u dx f 111e-"e" dx 22 23 
-111 

0 
Ill 

f.., r 25 f e-""e-"1 dx 26 
l (1 + xl)' dx. 

0 
Denote the Laplace Transform (p. 557) orf(x) by 

L(f)(s) = J "'e-u /(x) dx. 0 

21 f.. dx 
- 111 (x2 + 1)' 

flll -u 
24 -(---i dx 

o + x  

27 Suppose/(x) is continuous ror x � 0 and l/(x)I s ex" for constants c and n and all x 
sufficiently large. Prove L(/)(s) converges for all s > 0. 

21• (cont.) Suppose /(x) is differentiable for x � 0 and f'(x) satisfies the conditions of 
Ex. 27. Prove for s > 0 that 

L(f''J(s) = -/(0) + sL(/'J(s). 
[Hint Use integration by parts.) 

29 (cont.) Check this for /(x) = sin x, where L(/'J(s) = 1/(1 + s2� and g(x) = cos x, where 
L(g)(s) - s/(1 + s2� 

30 (cont.) For /(x) as in Ex. 27, set g(x) = JU(r) dt. Prove 
1 L(g)(s) = -L(f)(s) for s > 0. s 
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8. RELATION B ETWEEN I NTEGRALS ANO SERIES 

We have already seen a number of similarities between infinite series and infinite 
integrals. In this section we discuss a useful test for convergence or divergence of a 
series in terms of a related integral. This is important. for usually it is easier to find 
the value of an integral than the sum of a series. 

Consider the relation between the series 

I I 1 
- + - + · " + - + · · ·  21 31 "1 

Joo dx 
and the convergent integral 1 . l x 

(See Fig. 1.) The rectangles shown in Fig. 1 have areas 1/21, 1/31, · · · .  Obviously 
the sum of these areas is finite, being less than the finite area under the curve. 
Hence, the series converges. This illustrates a general principle: 

y 

) 
4 

I 2 

! 
• 

'! 3 4 x I '! 3 4 x 
Y11- l f ""f(x) dx > /(2) + /(3) + /(4) + · · · 

I 
Fig. 2 /(J) + /(2) + /(3) + · · · > J ""f(x) dx 

I 

Integral Test Suppose/(x) is a positive decreasing function. Then the series 

/(1) + /(2) + · · · + /(n) + · · · 
converges if the integral J 00/(x) dx 1 
converges, and diverges if the integral diverges. 

Proof The argument given above for f (x) = 1/x2 holds for any positive decreasing 
function/(x). Figure 1 indicates that 

• 

/(2) + /(3) + · · · + /(n) S J f(x) dx. 
1 
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If the infinite integral converges, then 

s,. = f(l )  + /(2) + · · · + f(n) �f(l ) + J i(x) dx �f(l) + J "'f(x) dx. 
1 1 

Hence the increasing partial sums are bounded; the series converges. 
If the infinite integral diverges, the rectangles are drawn above the curve (Fig. 2). 

Their areas are f ( 1 ), f (2 ), · · · . This time 
11- 1 

s,. = /(1) + /(2) + · · · + f(n) � J f(x) dx. 
1 

But the integrals on the right are unbounded. Hence the increasing sequence {s,.} is 
unbounded; the series diverges. 
Remark As usual we may ignore a finite number of terms or a finite part of the integral. 
The series can start atf(k) and the integral can just as well be 

(t(x) dx, a >  0 . 
• 

• EXAMPLE 1 Does the series 

converge or diverge? 
Sobttio11 Let a,. = 1/(n In n). On the one hand, a,. < 1/n, but that doesn't help 
because L l/n diverges. On the other hand, since In n increases so slowly, 
a,. > l/n2, or even a,. > l/n' for p > 1 .  But that again does not help because L l/n' 
converges. In both cases, the inequalities go the wrong way. 

However,f(x) = l/(x In x) is a positive decreasing function, so we can use the 
preceding test. Setting u = In x, we have 

f"' �- f"'-1 (! dx) - j"' ! du 
l X ln X - l In X X - J in l U • 

This integral diverges. Hence the series diverges. • 

Convergence of Integrals Sometimes we can tum the tables and use the 
convergence of a series to establish the convergence of an integral. If the integrand 
changes sign regularly, we may be able to compare the integral with an alternating 
series. 

• EXAMPLE 2 Prove the convergence of -- dx. f"' sin x 
0 x 

Sobttio11 First sketch the graph of y = (sin x)/x. See Fig. 3. There is no trouble at 
x = 0 because (sin x )/x - 1 as x -o. so the integrand is continuous, even at 
X = O. 

The figure suggests that the integral is given by an alternating series. To be 
precise, let 

a. = -- dx = -- dx. II,,.+ 1 •• sin x I f'"+ 1 1• I sin x i  
1111 x ... x 
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.I' 

Fie. 3 J 00 sin x dx 
0 x 

Then a11 is the area of the n-th shaded region in Fig. 3. Now a,. - 0 since 

a11 = 
--- dx < - dx < - = -. J111+ 11a l sin x i  . J111+ 11s 1 1t 1 

,.. x ,.. x mr n  

Furthermore, the sequence {a,.} decreases since i<n+ 21" lsin x I f,«..+ 11" I sin(x + n)I f,<" + 11" l sin x I 0..+ 1 = -- dx = dx = -- dx (• + 11• x "" x + 1t ... x + 1t f <11+ ''" I sin x I < --- dx = a,. .  •• x 

By the alternating series test, a0 - a, + a2 - a3 + · · · converges. But 1<11+ 11" sin x a0 - a, + a2 - • • • + (- t ra,.  = -- dx, 
0 x 

so we have the existence of hm -- dx, 
. l«•+ 1>• sin x 

.... Cl) 0 x 

where n can take only integer values. This is a giant step in the right direction, but 
we are not quite finished yet. 

If b is any positive real number, then there is an integer n such that nn � b < 
(n + I )n. We write lb sin x l«•+ 11" sin x i«"+ 11" sin x -- dx =  -- dx - -- dx. 

0 x 0 x b x 
If b - oo, then n - oo, so the first term on the right converges to a limit. The 
second term approaches 0 because 

Therefore 

I i<11+ 1 1" sin x I I J.<•+ 11" sin x I -- dx � -- dx = a,. - 0. b x ... x lc:o sin x d 1. 1• sin x d -- x =  1m -- x 
0 x ... Cl) 0 x 

converges. 
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Ahnwatir1e sol11tio11 First we get away from O; then integrate by parts: 

f. . f . . SID X d K 
SID X d -- X = + -- X, 

0 x • x where K = -- dx, f• sin x 
0 x 

f• sin x f• ( 1 ) cos x r. f• cos x 
-- dx =  - - d(cos x} = - -- - -2- dx . 

• x . x  x • •  x 

As b - co, 

and 

cos x r. cos JI: cos b cos JI: 1 - -- = -- - -- - -- = - - , 
x .  JI: b JI: 1t 

f. cos x f 
� 

cos x 
-2- dx - -2-dx, 

• x • x 
a convergent integral by the comparison lcos x/x2 I s l/x2• Therefore the given 
integral converges: 

f � sin x d _ 1. 1• sin x d _ 
f • sin x d 1 f 

� 
cos x d -- x - am -- x - -- x - - + -2- x. 

0 x ·--� 0 x 0 x 1t • x 

Remark Clearly f.
"+ 11• 1sin xl I s·#+ I)• . - 2 

dx � 
( )1t I sin x I dx -

( 
)1t, 

• x n + l .. n + l  

so foo I sin x I dx Jo x 

• 

diverges by comparison with the harmonic series. Thus the integral in Example 2 converges, 
but not absolutely. 

EXERCISES 

Use the Integral Test to test for convergence 
I l l 1 I + - + - + - + · · · 2 

I 2 3 

3 

8 

1 1  

12 

.fi .j3 J4 - + - + - + · · ·  e e2 e3 

1 l 
I + - + - + · · ·  

23 33 4 

6 Ln{� n)3 

9 L (1 - tanh n) 

7 L
I +n"ln n 

10 L (Vt - arc tan n). 
1 1 1 Show geometrically that the sum of 1 + - + - + - + · · · is less than 2. See Fig. 1 .  22 32 42 

(It is known that the exact sum is ;n2, a remarkable fact.) 
Use the method of inscribing and circumscribing rectangles to show that 

I 1 1 ln(n + 1 )  < 1 + 2 + J + · · · + � < 1 + In n. 
I 1 1 Is I + - + - + · · · + -- more or less than 10? 2 3 1000 
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13 

14* 

15 
16 

17 

18 

19 

20 

Estimate how many terms of the series 

the sum exceeds 1000. 

1 1 1 1 + 2 + j + 4 + · · · must be added before 

1 1 1 (cont.) The same for -- + -- + · · · + - -- > 10. 
2 In 2 3 In 3 n In n 

Show geometrically that ln(n !) > fi In x dx. Conclude that n !  > e(n/e)". 
(cont.) Show that 100! > 10157• 
Prove f,.., sin x dx = f,"' 1 - c�s x dx. 

0 x 0 x 

Flg. 4 

Letf(x) be the saw-toothed function (Fig. 4). Prove f,"" f(x) dx converges. 
0 x f.., sin x Prove that 1 Jx dx converges. [Hint Integrate by parts.] 

(cont.) Prove that fi sin(x2) dx converges. [Hint Set x2 = u.] 

9. OTHER IM PROPER INTEGRALS 
b 

A definite integral J f(x) dx, a and b finite, 
.. 

is called improper if f(x) "blows up" at one or more points in the interval a �  x � b. 
Examples are 

jl dx Ji� j'o dx 
J 0 x ' 1 x2 - 4 ' J 6 ln(x - 5)" 

The first integrand blows up a• x = 0, the second at x = 2, the third at x = 6. 
Such bad points are called singularities of the integrand. 

We shall concentrate on integrals 
b J f(x) dx, 
.. 

where f(x) has exactly one singularity. We consider first 
i3 � 
Jo Jx' 

whose integrand has a singularity at x = 0. What meaning can we give to this 
integral? Except at x = 0, the integrand is well behaved. Hence if h is any positive 
number, no matter how small, the integral 

i3 � 
J ,, Jx 
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makes sense and is easily computed: 
fl dx r J ,. Jx = 2.fi '· = 2(J3 - .jh ). 

It is reasonable to define 
- = lim - = 2J3 . fl dx il dx 

0 Jx 11-0 • Jx 
Next, we consider the integral 

fl dx . 0 x 
We try to sneak up on the integral as before. We compute 

fl dx = In 3 - In h, J 11 x 
then let h -o. But In h - - oo as h -o. Hence 

il dx 
- --+ 00 

• x as h --+ 0. 

There is no reasonable value for this integral. 
Motivated by these examples, we make the following definitions : 

Suppose f(x) has one singularity, at x = a, and that a <  b. Define 
b b f f(x) dx = lim J f(x) dx, 

· a  •-o+ 11+11 
provided the limit exists. If it does, the improper integral connrges; otherwise, 
it diverges. 

Similarly, if f(x) has one singularity, at x = b, define 

provided the limit exists. 

b b - 11  f f(x) dx = lim J f(x) dx, 
• .. 11-0+ .. 

Finally, if f(x) has one singularity, at c where a <  c < b, define 

(!(x) dx = (f(x) dx + (f(x) dx, 
provided both improper integrals on the right converge. 

Tests for Convergence Just as for other types of improper integrals, the 
convergence or divergence of 

b J f(x) dx, 
.. 

where f(x) has one singularity, is often established by comparison with known 
integrals. 
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Comparison Test Suppose that f(x) � 0 and g(x) � 0 on the interval [a. b] 
and that each function has one singularity at x = a. 
( 1 )  If g(x) 5 f(x) for a <  x 5 b, then the convergence of 

( f(x) dx implies the convergence of ( g(x) dx. . . . . 
(2) If g(x) � f(x) for a <  x :=:;; b, then the divergence of b b J. f(x) dx implies the divergence of J. g(x) dx, 

Similar statements hold if both functions have one singularity at x = b. 

We omit the proof because it is nearly identical to the proof of the comparison 
test given in Section 7. 

Now that we have a comparison test, we need some integrals to compare with. 

The improper integral [b dx 
Jo xP 

More generally, the integrals 

converges if p < 1 and diverges if p � I .  

fb dx 
• (x - a)P' 

f" dx 
• (b - x)P 

converge if p < 1 and diverge if p � I .  

Proof By definition, 
ib dx . f,b dx - =  hm -p p • 0 x 11--0+ It x 

provided the limit exists. The case p = I was just discussed; the integral diverges. 
Now assume p :;: 1 : 

s: �: = - p � 1 X:- l r = p � 1 (hP� l - bP� l )· 
But, as h--+ O+, 

1 {o hp- I --+ 00 

if p - 1 < o. 
if p - 1 > 0. 

Hence the limit exists only if p < I. In that case [b d� = lim f," d� = - 1 I . Jo x 11--0 + 11 x (p - l )b"-

The assertions about f b dx 
and f b dx 

• (x - a)P • (b - x)P 
follow by appropriate changes of variable. 
Remark If p � l, the curve y = l/x' increases so fast as x --0 that the area of the 
shaded region (Fig. la) lends lo infinity. If p < l, the curve rises so slowly that the area of 
the shaded region (Fig. lb) is bounded. 
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y 

,, b x ,, 
(a) p > I (b) 0 < p  < I  

Fia. 1  (dx as h -0+ 
· •  x' 

Caution Do not confuse these results with those of Section 7 concerning f,. dx. 
I x' 

In fact, 

b 

ft dx 
J o xP 

Jconverges if p < 1, ldiverges if p � l ,  Joo dx 1 xP 
jdiverges if p � l, 
l converges if p > 1. 

• EXAMPLE 1 Show that the integrals diverge 
fl e-x f io In X (a) Jo Jx dx (b) 7 �

dx (c) 

SobltiOll Observe that 

f2 dx 1 �· 
e-x 1 ln x In 10 

r._x � r._x (0 < x � 3� � (7 < x S 10), yA yA � �  
1 1 1 I 

= � r-;--: < r-;--: ( 1 s x < 2). � y6. T A y2 - X y2 - X  
Since the integrals f 3 1 

0 .fi dx, JIO dx 
, � · 

f2 dx 
1 �  

all converge, the given integrals converge by comparison. 

• EXAMPLE 2 Show that the integrals diverge 
f •13 cos x f 2 1 + x2 

(a) Jo -x- dx (b) - 1  ( I + x)3/2 dx J3 dx (c) 2 (x2 - 9)2 .  

x 

• 
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Sohltion Observe that 
cos x 1 1 1 + x2 1 
-x- � 2 . � (0 < x :s:; f1r� (1 + x)l/2 > ( 1 + x)3/2 (- 1 < x :s:; 2), 

1 1 1 1 
(x2 - 9)2 = [(x + 3)(x - 3)]2 > 

36 · (x - 3)2 (2 :s:; x < 3). 

f•/3 dx Since the integrals - ,  
0 x J2 dx 

- 1  ( 1  + x)l/2 ' f3 dx 
2 (x - 3)2 

all diverge, the given integrals diverge by comparison. • 

Another Test Let us state (without proor) the rollowing convergence criterion 
analogous to one proved in Section 7. 

Suppose that /(x) � 0, and that f(x) has a singularity at x = a or at x = b. 
Suppose g(x) is a bounded runction. Then the convergence or 

b b J f(x) dx implies the convergence or J f(x)g(x) dx. 
• • 

Now any continuous runction on a closed interval is bounded; hence g(x) may be 
any continuous runction on [a, b]. 

Examples The following integrals converge: 

1. 

2. 

16• cos x . Jx dx, 
0 x 

J2 x3r 
2 dx; - 1 � 

EXERCISES 
Test for convergence 

1 r dx 0 .yx 
4 r dx 

o xl - I 
7 r dx 

3 Jx2 - 9 

10 r dx 
o Jx(J + x) 

13 f dx 
i .J'x3 - 4x2 + 4x 

16 --dx i•/2 cos x 
0 .yx 

1 f(x) = Jx' g(x) = cos x, 

1 x3r f(x) = Jl=X' g(x) = Jf+X . 
2 + x 

•/4 
l J cot x dx 3 0 
5 r dx 

o (l - x2)2 6 

8 --dx 
15 sin3 2x 
0 Jx 9 

1 1  f'2� 
0 x In x 

12 

•/2 
14 J secx dx 15 0 
17 f dx 

0 r - t 18 

fr -dx 0 x 
--dx f 3 sin x l � 
I 

J ln x dx 0 f 4 dx 
2 J-x2 + 6x - 8 

r Jl + x  dx 0 l - x  

r dx 
0 JSiDx 
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19 f"" dx o Jx + x2 20 f"" dx 
2 x2 - 2x 21 --dx f"' e-"2 

- oo  x + 5 

f"' dx •/2 1• e- 11" dx 
22 

- oo  .:/x5 + x 23 J tan x dx 24 o xs 0 
2S f x 

- 1 lxl312 dx 26• 
f,"' dx 
,. x2�· 

27 Let 0 < a <  b. Prove convergent: f"' cos ax - cos bx dx. [Hint Separate the dif-Jo x · 

ficulties at 0 and oo.] 

28• Let 0 < a <  b. Prove convergent: f"' arc tan bx - arc tan ax dx. Jo x 
Evaluate 

I 
29 J x In( 1 + x) dx 30 0 

I J x In( 1 - x) dx 0 
•/2 

31 J In tan x 0 
32 f"' dx Jo (1 + x)Jx f 00 sech x dx "' 

34 J x3e-"2 dx 0 0 33 

35 

37 

38 

I f (ln xr dx (n � 0) 0 
•/2 

J6• J (log sin x )(sin x) dx. 0 i"' dx i"' x dx Without evaluating, prove -3-- = -3--. 0 x + l 0 x + I 
(cont.) Evaluate f00 �- [Hint Add the two integrals in Ex. 37.) Jo x + 1 

1 0 M ISCE LLANEOUS EXERCISES 

Let a - (l + l)(l + 4)(l + 9) · · · ( l  + n2) Prove that {a.} converges. • - (2 + 1)(2 + 4)(2 + 9) · · · (2 + n2) " 
2 (cont.) Prove that I a. diverges. 
Test for convergence 

1 1 1 
3 5 + 15 + 25 + 

. . . 4 
1 + 2 1 + 2 + 4  1 + 2 + 4 + 8  

' n(n + 1) 
L(n + 2)(n + 3)(n + 4) 

00 

8 

"' 

' In n  
L I + nl 

For which x does the series converge? 
00 

--+ + + · · ·  1 + 3 l + 3 + 9 l + 3 + 9 + 27 
6 In3 

2• 
00 "' 

9 L 
n2e-• 

10 LJn
1
tn n . 1 + n2 

a • I  • • 2  

12 L(2xr 
Jn . 
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13 If  a series of positive terms L a. converges, show that L ala also converges. 
14 Show by example that the statement in Ex. 13 is false without the assumption a. > 0. 
IS Suppose {�} converges. Show that 

also converges. 

16 Without using integration, prove that l� > 2Jn+'l - 2. 
I 

[Hint 2.jk < .fi + Jk+l.] 
17 Let 1 :s; x < 2. Define two sequences recursively as follows: a0 = x and c0 = 0. If  

a/ < 2, then a0+ 1 = a/ and c.+ a  = c •. If a,.2 � 2, then a.+ a = !�2 and c •• 1 = 
c. + (!)"+ 1• Prove that 

log2 a. 
c,. + -r = log2 x. 

18 (cont.) Prove that 1 s a. < 2, that {c.} is increasing, and that lim.-.. c. = log2 x. (This 
provides an algorithm for logs on a computer that only adds, squares, and divides by 2.) 

19 Suppose 
f"" 

/(x) 
dx converges. Find 

f"' 
/(ax) 

dx for a >  ti. Jo x Jo x 
20• (cont.) Suppose f (x) is continuous for x � 0 and for each e > 0, the integral 

converges. Let 0 < a < b. Prove 

f"' /(x) 
dx 

• x 

f"" /(ax) - /(bx) 
dx = /(0) In � . Jo x a 

The exponenlbl lntepal for x < 0 is Ei(x) = J.. � dt. Set 
- a:i  t 

21 

n 

23 

f .. - ·  
E(x) = - Ei( -x) = !..___ dt 

" , 
for x > 0. 

Clearly E(x) is very large for x near 0. How large? Prove the •ymptodc expa111k. 

E(x) = -e-.. In x + J""e-' ln r dt = -e-x(ln x + x In x - x) + J"'
re-'(ln r - 1) dt. 

" " 
(cont.) Clearly E(x) is very small for x large. How small? Prove 

E(x) = e-.. (� - _!_ + 
2! - . .  · + (- tr-• (n - l)!) + ( - l)"n! f"' e-• 

dt. 
x x2 xl x" .. t"+ a 

Let K. = Jef x"e-.. 2 dx. Prove K0+ 2 = !(n + l)K. . Conclude that 

Kla+ 1 = !(n!) and K211 = 2
(�n) ! K0• (It is known that K0 = !Jn. See p. 873.) "n ! 

Prove K112 < K11_1K.+a· [Hint Show that K.+ a + 2rK. + t2K.- 1 > O.] 
Set F(x) s 

f"" arc tan�xt) dt. Jo 1 + r 

Find F(x) + F(l/x) for x > 0. [Hint Use the change of variable t = l/u.) 
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26* Let {a.} be a convergent sequence with limit 0. Define the averages 

a + · · · + a  
b. = l • .  

n 

Prove lim b . .. 0. [Hint Choose N so that la.I < !s for n > N and write 

b a 1 + a2 + · · · + aN a,,+ 1 + · · · + a,,+ 1 ] 
N+J = 

N +j 
+ 

N + j 
. 

27 (cont.) If lim a. = L, prove that lim b. = L. [Hint Write a. = L + c •. ] 
28 Let L a,, and L b. be series with positive terms. Suppose L b. converges and 

a.+ 1/a. :S: b.+ ifb. for all n. Prove L a. converges. 

An lnftaite product is an expression of the form 
00 
n ( 1 + a.) = ( 1  + a1)(l + a2)(l + 03) . . . . 

• • 1  

Its sequence of partial prodacts is {p.}, where P. - ( 1  + ai)(l + a2) · · · ( 1  + a.). In  the 
following exercises we shall assume a. � 0. 
29 Show that p. � 1 + a1 + · · · + a,, . 
JO (cont.) Suppose {p.} converges. Prove that L a. converges. 
31 (cont.) Show that 1n P. :S: a1 + · · · + a. = s • .  
32 (cont.) Suppose L a,, converges. Prove that {p.} converges. 
33 A certain model of a freezing ice cube involves solving the integral equation 

( if(t) dt = !{1 + /l)f(x). 
0 

for f(x� We claim that f(x) • x' is a solution. What condition docs this impose 
on /l? 

34 Define {a.} by a0 = 1 and a.+ 1  = 0• + 
2
1 . Prove {a.} is convergent and find its limit. 

a,, + 

Given 
1 1 1 n2 1 1 1 x2 

1 + - + - + - + · · · = - show that 1 + - + - + - + · · · = -22 32 42 6 • 32 52 72 8 . 

36 (cont.) Find 
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1 . BASIC PROPERTIES 

In this chapter we study power series 
ao + a.(x - c) + a2(x - c)2 + . . . + a,.(x - er + . . . 

and their applications. Many of our examples will have c = 0, but the discussion will 
apply as well if c :;: 0. 

Power series serve a number of important purposes in both theoretical and applied 
mathematics. First, they are particularly suitable for computation and are indis
pensable in many numerical problems. Second, they provide an alternative way of 
expressing many familiar functions and so aid in our understanding of these functions. 
Finally, with power series we can define functions that are hard or impossible to 
specify otherwise. Certainly nobody objects to defining a function by a polynomia� 

f(x) = ao + a1x + a2 x2 + · · · + a,.x". 
Then why not define a function by a power series, 

f(x) = a0 + a1x + a2x2 + · · · + a,.x" + · · · ,  

provided, of course, that the series converges? 

Convergence and Divergence Given a power series, we first ask : Does it 
converge? If so, where? Now for each fixed x, a power series is an infinite series 
of constants. So whatever we know about infinite series applies. In particular, con
vergence and divergence are defined in terms of the sequence or partial sums. 

Convergence of Power Series A power series L."°-o a11(x - c'f converges 
at a point x if the sequence of partial sums 

II 

s,,(x) = 2 a11(x - c'f 
1:•0 

converges. The power series diverges at x if the sequence {s,.(x)} diverges. 
If lim,. ... 00 s,.(x) = F(x) for each x in a set D, we write 

F(x) = ao + a1(x - c) + a2(x - c)2 + . . . , for x in D. 

578 
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For example, take the geometric series 1 + x + x2 + x3 + · · · . 

Its n-th partial sum is 
1 - x"+ I 

l l ' x '# l, s,,(x) = 1 + x + x + · · · + x" = 1 - x 
n + l ,  x = 1 . 

If  lx l < 1 , then x"• 1 - o, hence s,,(x) - 1/(1 - x). If  lx l ;;::: 1 ,  the sequence 
{s,.(x)} diverges. Therefore 

1 1 + x + x2 + x3 + · · · = --
1 - x 

and the series diverges for all other values of x. 

if - 1  < x < l, 

The geometric series is especially nice because there is a neat formula for its 
partial sums. This not only helps the discussion of convergence and divergence, 
but also leads to a neat formula for the sum of the series where it converges. 
Generally there is no nice formula for the partial sums of a given power series. 
Still we can use the techniques of the last chapter to investigate convergence and 
divergence. As an example, consider the power series 

x2 xl x" 1 + x + - + - + · · · + - + · . .  22 33 n" . 

For any fixed x, eventually n > 2 lx l .  Then 

hence the series converges (absolutely) by comparison with the geometric series 
L 1/2". There is no obvious formula for the sum; we consider the power series as 
defining a new function /(x) whose domain is all real x. 

One further example: 
1 + x + 22x2 + 33x3 + · · · + n"x" + · . . . 

Obviously, this power series converges at x = 0. However, it diverges everywhere 
else; if x ':F 0, then 

l n"x" I  = lnxl"- oo as n - oo. 

Interval of Convergence What is the domain of convergence of a power 
series? The preceding examples show that there are at least three possibilities: 
the domain may consist of a single point, a finite interva� or the entire real axis. 
In fact, these are the only possibilities. 

Interval of Convergence Given a power series L a,,(x - c)", precisely one 
of the following three cases holds: 
( 1 )  The series converges only for x = c. 
(2) The series converges for all values of x. 
(3) There is a positive number R such that the series converges for each x 
satisfying Ix - c l < R and diverges for each x satisfying Ix - c l > R. 
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The proof will be given in Section 7. 
Case ( l )  is an extreme case. It occurs when the coefficients a,, increase so rapidly 

that the power series can converge only if all terms after a0 vanish. An example is 
L rt'x". Power series of this type are of no earthly good to anybody. 

Case (2) occurs when the coefficients become small very rapidly. An example is 
L x"/rt', where for any x the general term x"/rt' eventually tends to zero quickly 
because the coefficients a,, = l/rt' become small so fast. Power series of this type 
are the nicest kind since they never cause any problems with convergence. 

Case (3) lies between. The coefficients do not increase so rapidly that the series 
never converges (except for x = c� nor do they decrease so rapidly that the series 
always converges. A typical example is the geometric series L x", where each a,. = l . 
This series converges for Ix I < l and diverges for Ix I > l, hence R = I. 

In Case (3) the set of all points x for which the series L a,,(x - er converges is 
called its interval of convqence (or domain of convergence� This set consists of the 
interval c - R < x < c + R and possibly one or both of its end points. The number 
R is ca11ed the raclim of convergence of the power series (Fig. 1 � 

By convention, R = 0 in Case ( l � convergence for x = c only; and R = oo in 
Case (2� convergence for all x. The interval of convergence in Case (1) is the 
single point c; in Case (2) it is the entire x-axis. 

? ? 

diverges l converges !1 diverges 
• • 

c - R  c c + R  

Fis. I Interval of convergence 

• EXAMPLE 1 Find the sum, radius of convergence, and interval of convergence 
of the power series 

(a) l + 4x + 42x2 + 43x3 + · · · , 
1 l l (b) 1 + 2 (x + 3) + 22 (x + 3)2 + 23 (x + 3)3 + · · · ,  

(c) l - x2 + x4 - x6 + · · · . 
Sobltio11 Each of the three series is of the form 

1 l + y + y2 + y3 + . . .  = -- ' 1 - y which converges for IY I < I .  
(a) Here y = 4x. The sum is l/(l - 4x) and the series converges if  and only if 

l4x I < 1, that is, Ix I < !. Hence R = !and the interval of convergence is -! < x < !. 
(b) y = !(x + 3� The sum is 1/(1 - !(x + 3)] = -2/(1 + x) and the series 

converges if and only if l!(x + 3)1 < 1, that is, Ix + 3 I < 2. Hence R = 2 and the 
interval of convergence is -5 < x < - 1 .  

(c) y = - .-c2. The sum is 1/(1 + x2) and the series converges if and only if 
I -x2 I < 1, that is, Ix I < 1. Hence R = 1 and the interval of convergence is 
- l < x < l. • 
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• EXAMPLE 2 Find the interval of convergence 
x2 xl x" (a) x + 2 + T + . . .  + -; + . . . . 

x x2 x3 x" (b) 10 + 1()4 + 109 + . . .  + 10"2 + . . . . 

Sohltiotl (a) Since lx"/n I < Ix r. the series converges for Ix I < 1 by comparison 
with the geometric series. Hence its interval of convergence includes the interval 
l x l  < 1. However, the series diverges at x = 1 (harmonic series) and converges at 
x = - 1 (alternating harmonic series� Therefore its interval of convergence is 
- l � x < l. 

(b) For any fixed x, choose a positive integer p such that l x l  < H>". Then if n > p, 

I x" I 10"' 1 1 
10"1 < 10"2 = 10"'"-'1 � 10" . 

Hence the series converges by comparison with the geometric series L 1/10". The 
interval of convergence is the entire x-axis. • 

Remark The geometric series diverges at both end points of its interval of convergence. The 
series in Example 2a converges at one end point, x - - I, of its interval of convergence 
(alternating harmonic series) and diverges (harmonic series) at the other end point, x ,.,  I .  
There exist power series that converge at both end points. See Ex. 32. 

Ratio Test Often the radius of convergence of a given power series can be found 
by the following ratio test, a consequence of the ratio test for series of constants. 

Ratio Test Suppose the power series 
a0 + a1(x - c) + a2(x - c)2 + · · · + a.,{x - c)" + · · · 

has non-zero coefficients. If 

I a,. I R a,,+ 1 
- as n-oo, 

where R is 0, positive, or oo, then R is the radius of convergence. 

Proof For simplicity of notation assume c = 0. Suppose 0 < R < oo. If lx l < R, 
then 

I a.+ • x" + • I = l a,,+ • j 1 x I - M < 1. la11x"I a,. R 

Hence the series L a,.x" converges (absolutely) by the ratio test for a series of 
constants (p. 548). If Ix I > R, then 

la,.+ 1x"+ 1 I lx l 1 la.x"I - If > . 
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Henoe for n sufficiently large, { la,. x" I }  is an increasing sequence. Therefore L a,. x" 
diverges because its terms do not approach 0. Thus the series converges for Ix I < R 
and diverges for Ix I > R. In other words, its radius of convcrgenoe is R. 

Suppose laJa.+ 1 I --+ R = 0. If x -:;. 0, then 

la11+ 1X:+ i I = I a,.+ • I l x l --+ oo. la,.x I a. 
Hence the series diverges for all x -:;.  O; its radius of convergence is 0. FinaJly, 
suppose l aJa,.+ i i --+  R = oo. Then for any x, 

I a,.+ 1 X: + i I = I a,.+ • I 1 x I --+ 0. la. x I a,. 
Hence the series converges for all x; its radius of convergcnoe is oo. This completes 
the proof in all cases. 

• EXAMPLE 3 Find the radius of convergence 
x x2 x3 x" (a) 1 + - + - + -+ · · · + -- + · · · 4 7 10 3n + 1 

(b) (x - 1) - 4(x - 1)2 + 9(x - 1)3 - · · · + (- 1r- •n2(x - lr + . .  . , 
x x2 x3 x" (c) 1 + 2 + 1 + 22 + 2 + 23 + 3 + . . .  + 2" + n + . . .  

x3 x4 x" (d) --+ + . . .  + + . . .  1 · 3 · S 1 · 3 · S · 7 1 · 3 · S · · · (2n - 1 ) ' 
xl x6 x9 xl" (e) -+-+-+ · · · +-+ · · ·  . .j3 .fl v'9 .j3n 

Sol•tio11 In each case apply the Ratio Test. 
(a) Here a,. =  l/(3n + 1) and 

I a,. I 
1 I 1 3n + 4 

a,.+ 1 = 3n + 1 3n + 4 = 3n + 1 · 

Hence la�:. l-1 as n --+ oo ;  R = l. 
(b) a,. = (- 1r- 1n2• As n --+  oo, 

I a::. I = (n : 1 )2 = (" : .r -1; 
(c) a,. = 1/(2" + n). As n --+  oo, 

R = 1. 

I a I 1 I 1 2•+ 1 + n + 1 
a,.: 

1 
= 2" + n 2"+ 1 + n + 1 = 2" + n 
= 2 + (n + l) · i- "_2 + 0 = 2· R = 2. 1 + n · i-• 1 + 0 ' 



(d) a. = 1/(1 · 3 · S · · • (2n - l)]. As n -ao, 
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-•- = = 2n + 1-00; I a 
I 

1 · 3 · S · · · (2n - 1 )(2n + 1) 
a,,+ 1 1 · 3 · S · · · (2n - 1 )  R = oo. 

Notice that these ratios make sense only for n � 3 because a0 = a1 = a2 = 0 in the 
given series. However, it is perfectly OK to apply the Ratio Test from some point 
on since we may ignore a finite number of terms when studying convergence and 
divergence. 

(e) The Ratio Test does not apply directly because .. two-thirds" of the coefficients 
in this power series are zero. Nevertheless, the series may be written 

y y2 yl y" 
- + - + - + · · · + -- + · · ·  .j3 J6 .j9 J3r1 

where y = x3• The Ratio Test does apply to the series in this form: 

J3(n + 1) = Jn+1_1. J3r1 vn-
Hence the y-series converges for IY I < 1 and diverges for IY I > 1 . Therefore, the 
original series converges for lx3 I < 1 and diverges for lx3 I > l, that is, for Ix I < 1 
and lx l > l, respectively. Hence R = 1. • 

EXERCISES 

Find the radius of convergence 
l 

3 

7 

9 

JO 

11  

13 

14 

15 

16 

17 
II 

1 + x + 2x1 + 3x3 + · · · 
x2 x' x' x - - + - - - + " ' 3 5 7 x x2 x3 3 + 2 + 31 + 22 + 33 + 23 + . . . 

x + ./i.x2 + J3x3 + ./4x" + · · · 
(e2 - 2)x2 + (e3 - 3)x3 + (e4 - 4)x4 + · · · 2x 3x2 4x3 5x4 Ti + y + y + 43 +; . . 

2 

6 

I 

x2 x3 x4 (ln 2)2 + (In 3)3 + (In 4)4 + . . .  12 

x2 x3 x4 
-- + -- +--+ · "  2 + ln 2  3 + ln 3  4 + ln 4  

x2 x3 x4 x + - +- +- + · · ·  4 9 16 x x2 x3 I + N + 2 . 22 + 3 . 23 + . . . x - 1 (x - 1)2 (x - 1)3 --+ + + · "  1 · 2 · 3 2 · 3 · 4 3 · 4 · 5  I x x2 x3 x4 - - - + - - - +- - + · " 2 22 24 21 216 

1 + x + 2!x2 + 3!x3 + · · · 

ab a(a + l)b(b + 1) 2 a(a + l)(a + 2)b(b + l)(b + 2) 3 - x +  x + x + · " (c > 0) I ·  c 2!c(c + 1) 3 !c(c + l)(c + 2) 1 + xl + x'o + xu + x20 + xu + x30 + x3l + . . . x4 x' x16 I + 24 + 29 + 216 + . . . 
4 · 5x4 + 8 · 9x8 + 16 · 13x12 + 32 · 17x16 + 64 · 2tx20 + . . . ( I + 2)x + (I + 2 + 4)x2 + ( 1  + 2 + 4 + 8)x3 + · · · 
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1 . 4 1 . 4 . 7 1 . 4 . 7 . 10 -x1 + -- x3 + x4 + · · · 2 · 5  2 · 5 · 8  2 · 5 · 8 · 1 1 
(2!)3 (3!)3 (4!)3 -x1 + -x3 + -x4 + · · · . 61 9! 12! 

Find the domain of convergence 
"' "' 

21 22 �(x1 + 1)" L n(n + 1) • • 1  

"' 

Find the sum of the series and its domain of convergence 
25 1 + (x - 3) + (x - 3)1 + (x - 3)3 + . .  · 
26 i + Gr + (if + (i)' + . . . 27 1 - r + el" - ell< + . . .  
28 cos1 x + cos4 x + cos6 x + cos• x + · · · 
29 In x + ln(jX) + In(�) + In(�) + . . .  1 I I I 
30 - + - +- +- + · · · . x x1 x3 x4 
31 Give an example of a power series with radius of convergence 1f. 

"' 

32 Give an example of a power series that converges at both end points of a finite 
interval of convergence. 

33 Suppose that infinitely many coefficients of a power series are non-zero integers. Show 
that the radius of convergence is at most 1. 34 Suppose L a,,.x" has radius of convergence R. If lb. I s; la.I for each n, what can be 
said about the radius of convergence of L b0 x"? 

35• (Root Test) Suppose la.I > 0 for all n and l/'7TaJ - R as n - oo. Prove that 
L a0 x" has radius of convergence R. 

36• (cont.) Prove that if laJa..+ i 1 - R, then also l/"'10J - R. Conclude that the 
Root Test applies whenever the Ratio Test applies. (Hint Use Ex. 27, p. 577.) 

37 (cont.) Verify that the converse is not true. Show that the Root Test applies to the series 

x x1 x3 x4 x5 x6 
101 + 10 + 104 + 103 + 106 + 105 + . . . 

but the Ratio Test fails. 
31• Give the interval of convergence of the following modifications of the harmonic series, 

with particular attention to the end points: 
x1 x3 x4 x5 x6 x' x• (a) x + 2 -3 - 4 + 5 +6 -7- -g + · ·  · 
x1 x3 x4 x5 x6 x' x• x9 (b) x + 1 - 3 + 4 +5 - 6 + 1 + -g - 9 + · . . 
x1 x3 x4 x5 x6 x' x• 

(c) x + 2 + 3 - 4 + S + 6 + 7 - 8 + · · · · 
2 TAYLOR SERIES 

The function /(x) = 1/(1 - x) can be expressed as the sum of the power series LO' x" for lx l  < 1. Is this just a quirk or can other functions be expressed as power 
series? lf so, how do we find a power series for a given function? 

A systematic approach to these questions is based on Taylor polynomials. Let us 
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recall their definition: if /(x) has n derivatives at x = e, we associate with /(x) its 
n-th degree Taylor polynomial at x = e, 

P11(x) = /(e) + /�(�) (x - e) + 1;r (x - e)2 + . . . + f':�e) (x - er. 

Hopefully, p11(x) approximates/(x) near x = e, and the approximations improve as 
n increases. This suggests associating with/(x) the infinite series whose partial sums 
are the Taylor polynomials p11(x) at x = e. 

Taylor Series Suppose /(x) has derivatives of all orders at x = e. We 
associate with /(x) its Taylor series at x = e: 

co 
f'(e) f"(e) \' f'111(e) 

/(e) + LJ (x - e) + 2! (x - e)2 + . . .  = � ----;i- (x - er. 
11•0 

(We are using the conventions thatj<01(e) = /(e) and O! = 1.) 
Terminology The Taylor series of/(x) at x • c is often called the Taylor expulioa of/(x) 
at x = c. We speak of e:xpuillq or �/(x) in a Taylor series. A Taylor series at 
x = 0 is sometimes called a Madasin series. 

• EXAMPLE 1 Find the Taylor series at x = 0 of 
(a) r (b) sin x (c) cos x. 

Sohdio11 (a) lf/(x) = r, thenf'"1(x) = r for each n. Hence/'111(0) = 1 for each n. 
Substitute these values into the formula. The desired Taylor series is 

co 
xl xl I x" l + x + -
2 , + -

3 , + . .  · =  -. . . n! 
11•0 

(b) Compute derivatives: 

/(x) = sin x, f'(x) = cos x, f"(x) = -sin x, 

/m(x) = -cos x, f'41(x) = sin x, · · · ,  
repeating in cycles of four. At x = 0, the values are 

0, 1, 0, - 1, 0, 1, 0, - 1, . . . . 
Hence the Taylor series is 

(c) Since cos x is the derivative of sin x, read off its derivatives at x = 0 from 
those of sin x found in (b ). The values are 

l, 0, - l ,  0, l ,  0, - 1, 0, . . . , 
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repeating in cycles of four. Hence the Taylor series is 

• 

Remark The three series in Example I converge for all x as can be verified by the 
Ratio Test. We shall omit this, however, since the convergence will come out in the wash 
shortly when we make a closer study of these series. 

• EXAMPLE 2 Find the Taylor series of/(x) = ln{l + x) at (a) x = 0, (b) x = 2. 
In each case, determine the interval of convergence. 
Sohltio11 Compute successive derivatives : 

Hence, 

f'(x) = 1 � x' - 1  
f"(x) = ( 1 + x)2 ' 

/l'l( ) - -2 . 3 x - (1 + x)' ' 
p•1(0) (- 1 )"- 1 
-- = -'----'---
n! n 

/l•I( ) = (- 1)"- l(n - 1)! 
' x ( 1 + x)" · 

p•1(2) ( - 1)"- 1 
--;;-;- = n · 3• · 

Substitute these values into the formula with c = 0 in (a) and c = 2 in (b). The 
constant terms in the two series are respectively ln(l + 0) = 0 and ln(l + 2) = In 3. 
The resulting Taylor series are 

00 
x - 2  (x - 2)2 � (- 1)"- 1 (b) ln 3 +�- 2 _ 32 + · · · = ln 3 +  

L 
,, . 3,, (x - 2)". 

11• I 
Now find the radius of convergence R by the Radio Test. In (a� the n-th coefficient 

is a. = (- 1)"- 1/n, so 

1� 1 =�-1
. 

a,,+ 1 n 
Hence R = 1 ;  since the series diverges at x = - 1 and converges at x = 1 (compare 
Example 2a, p. 581 h the interval of convergence is - 1 < x s 1 . 
In (b h the n-th coefficient is a. = (- 1 )"- 1 /n3•, so 

I� I
= (n 

+ 1�3•+ 1 = 3(n + 1)--+ 3_ a.+ 1 n3 n 
Hence R = 3 ; as above the interval of convergence is - 1 < x S 5. • 

• EXAMPLE 3 Find the Taylor series of /(x) = 1/.jX at x = 9 and determine 
its radius of convergence. 



2. Taylor Series 687 

SohnitM Compute successive derivatives: 

/(x) = x�12 • f'(x) = ;3�2 • f"(x) = 22�s12 • 

/"'(x) - -3 . s . . . Jl">(x) - ( - 1 r1 . 3 . s . .  - (2n - 1 )  
- 23x 112 • • - 2,,x(2r1+ 1112 

The product in the numerator of Jl">(x) can be expressed in terms of factorials: 

1 . 3 . 5 . . .  (2n _ 1) = 1 · 2 · 3 · 4 · S • • • · (2n - 1 )(2n) = (2n) ! . 2 · 4 · 6 · · - (2n) 2"n ! 
It follows that /(•>(9) = <- •rC2n)! = 

<- •r<2n)! 
(n!)22•32r1+ 1  3(n !)62• . 

(Note that this formula is correct for n = 0.) Therefore the desired Taylor series is 
GO GO � Jl">(9) < _ 9"" = � c- •rc2n)! < _ 9)" 
L n !  x ' L 3(n !)262" x . 
r1•0 ••O 

To find the radius of convergence, apply the Ratio-Test: 1�1 = (2n)! 3((n + 1}!)262"+2 
= 

36(n + 1)2 -
-+

9. a.+1 3(n!)262" (2n + 2)! (2n + 1 )(2n + 2) 
Henoe R = 9. • 

Validity of Taylor Series In the preceding examples, we formally wrote down 
the Taylor series associated with various functions; we did not prove that the 
functions actually equal the sums of their Taylor series. There is no guarantee that 
they do. In fact, there exist functions that are not the sums of their Taylor series. (See Exs. 2 1-24.) 

Suppose/(x) has derivatives of all orders at x = c. Write 

f (x) = /(c) + f'(c) (x - c) + · · · + p•>(c) (x - c"" + r (x). I !  n! / " 

lben/(x) is the sum of its Taylor series if and only if the remainders r,,(x)--+O 
as n ----+ oo .  Our trump card in dealing with r,,(x) is Taylor's Formula; it says that 

1 f" r,,(x) = I (x - tY' JI" + 11(t) dt. n . � 

There follows a useful estimate for the remainder. Suppose that 

IP"+l)(x)I S M  
in some interval including c, say a s x s b. Then 

a �  x � b. 
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Let us now prove that some familiar functions are actually equal to the sums of 
their Taylor series. 

r:, 
(2) 

CID 
xl IX' 

r = l + x + - + · · · =  -
2 1  , .  . n . 

11•0 

- co < x < co  

-co < x < co  

- co < x < co. 

Proof By Example 1, each series is the Taylor series associated with the given 
functions. In each case, we must write the function as /(x) = p,.(x) + r,.(x) and 
prove that r,.(x)--+ 0 for all values of x. 

( 1 )  Let f (x) = r and assume at first that - B s x s B. In this interval, 
IP"+ ll(x)I = r s �. Apply the estimate for the remainder, with M = �: 

lxl"+ 1 B"+ 1 lr,.(x)I � � (n + 1)! = � (n + 1)! ' lx l  � B. 

Since � is fixed, it is enough to show that A,. --+ 0, where 

B" A,. = -,, n .  
for if so, then lr,.(x)I S �A,.+ 1 --+O, so r,.(x)--+O 
for lx l S B. 

But we know that the exponential series L X' /n ! converges for all x, in particular 
L B"/n! converges, hence A,. = B"/n!-0. Therefore lr,.(x) l-O for all lx l  S B. 
The argument is valid for each positive B, hence r,.(x)--+ 0 for all x. 

(2) Let/(x) = sin x and assume that - B  s x � B. Note that for sin x, 

Pllft- 1(x) = Pllfl(x� hence rllfl- i(x) = r2,..(x). 
Therefore, it will be enough to show that r2,..(x)--+ 0 as m --+  co. 

Now lf'llfl+ 1>(x)I = I  ±sin x i s I. Apply the estimate for the remainder, with 
M =  1 :  

Thus lr2,.(x)I S A2,.+ 1• where {A,.} is the sequence in ( 1�  But {Allfl+tl is a sub
sequence of {A,.} and A,.--+O; hence A2,..+ 1 --+O. It follows that r2,.(x)--+O, 
provided Ix I � B. This is true for every positive B. Therefore r llfl(x) --+ 0 for all x. 
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(3) The proof is nearly the same as in (2). This time lr1.(x)I = lr1.+ 1 (x)I S 
A1.+1 •  and the conclusion follows in the same way. • 

Another valid Taylor series expansion is 

1 
ao 

-- = 1 + x + x2 + x3 + · · · = )' X', - 1 < x < 1 .  1 - x .......... 
• -o 

We have already proved the equality (p. 579� but we have not shown that the series 
actually is the Taylor series of 1/(1 - x) at x = 0. We shall omit the routine verifica
tion since it will come out free of charge when we discuss uniqueness of power 
series in the next section. 

• EXAMPLE 4 Find the sum of the series and its domain of convergence 
(2x )l (2x )4 (2x )6 (a) 1 - --+ -- --- + · · · 2 !  4 !  6 !  

• 

x4 x6 x8 x10 (b) 2 !  - 3 !  + 4 !  - 5! + . . · , 
(In x)2 (In x)3 (c) 1 + ln x + � + � + · · · . 

Sobttioa (a) The series has the form 
yl y• y6 1 - - + - - - + · · ·  2 !  4 !  6 !  

with y = 2x. This series converges to cos y for all real y. Therefore, given any real 
x, it is legitimate to substitute y = 2x. Thus the sum of the given series is cos 2x, 
for all x. 

(b) The series has the form ( y yl y3 ) 
1 + 1 !  + 2 !  + 3 !  + . . .  - 1  - y 

with y = -x2• The series in parentheses converges to e' for all real values y, in 
particular for y = -x2• Thus the given series converges to e -"2 - 1 + x2, for all x. 

(c) The series has the form Lg> �/n! which converges to e' for all real y. In 
particular, it converges for y = In x, where x > ·o. The series that results from 
substituting y = In x is not a power series; nevertheless it converges to e1n "  = x 
for x > 0. • 

In Sections 3 and 4 we shall discuss ways of establishing the validity of 
various Taylor series without investigating the remainders. Such methods will be of 
great use since estimates of r.(x) can be tricky. For example, proving the validity of 
the series 

x2 xl In( 1 + x) = x - - + - - · · · 
2 3 



590 1 2. POWER SERIES 

(Example 2) is difficult via remainders, but comes out easily in Section 4. (See 
Example 3, p. 599.) Let us accept it for the time being. 

c ER IS c; 

Find the Taylor series of the function at x = c 
1 e3", c = 0 2 e", c = 2 

4 sin x, c = in 
l 

c = i 

7 ln(a + x� c = 0, a > O  8 a + bx' 
9 (l + x)e", c = O  10 � + it", c = O  

12 
l 

xl ' c = l 13 Sx3 + l2x - 7, c = O  

Find the sum of the series 

3 

6 

cos x, 

l - x' 

c = in 

c = 3  

c = O, a, b > O  

1 1  Jx, c = 4  

14 x4 - 6x2, c = - l .  

l 
(x - l)2 (x - 1 )4 (x - l )6 n2 n4 1t6 

15 -
l !  + 2 !  - -3-,- + · · · 16 2 ! xl - 4! x• + 6! x6 - +  . . · .  

17 Let � a. x" be the Taylor series associated withf(x) at x = 0. Find the Taylor series 
associated with F(x) = fOf(r) dt at x = 0. 

18 Suppose the derivatives of/(x) have this property: for each interval Ix - c l � B, there 
exist positive constants a and k such that lf'"1(x)I � al<". Prove that the Taylor series of 
f(x) at x = c converges tof(x) for all x. (The constants a and k may depend on B.) 

19 Compute the Taylor series of cosh x at x = 0 and prove that it converges to cosh x for 
all x. [Hint Use Ex. 18.] 

20 Show that the Taylor series of e" cos x at x = 0 converges to e" cos x for all x. Do not 
compute the series. (Hint Use Ex. 18.] 

The following exercises establish the existence of a function that is not equal to the sum of 
its Taylor series. 

21• Define f(x) = 
{e-1'"Z. x " O, 
o. x = 0. 

Show thatf(x) is differentiable at x = 0 and thatf'(O) = 0. 
n (cont.) Let x � 0. Prove by induction that f'"'(x) is a sum of terms of the form 

ae- 11"'' /xk for n � l .  
23 (cont.) Prove by induction that f(x) has derivatives of all orders at x = 0 and that 

p•>(o) ., 0 for n � l. 
24 (cont.) Conclude that the Taylor series of f(x) at x � 0 converges for all x but not to 

f(x). 

3. EXPANSION O F  FUNCTIONS 

We have obtained Taylor series for various functions by computing coefficients 
from the formula a,. = /'"1(c)/n !. But computing successive derivatives can be ex
tremely laborious. Try the 7-th derivative of tan x or of x2/(1 + x3) and you will 
soon agree. In some cases we were able to prove the validity of Taylor expansions 
by showing r,.(x)--0. But that also can be very hard. To avoid these difficulties, 
we shall discuss techniques for obtaining new valid Taylor expansions from those 
already known. 
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Uniqueness One basic principle underlies all the techniques we shall develop: 

Uniqueness of Power Series Suppose 
CID 

f(x) = ao + L a..(x - er 
11 • 1  

in some interva� Ix - c I < R.  Then 

Jl">(c) a,. =--,- . 
n .  

Thus if f(x) is expressed as the sum of a power series, then that series must be 
the Taylor series of f(x ). 

This principle says that there is only one possible power series for a given f(x). 
Once you find a power series with sumf(x) by any method, fair or fou� then you 
have its Taylor series. 

For example, we showed in Section 1 that 

1 --= 1 + X + x2 + x3 + · · · , 1 - x  lx l < 1, 

but we never actually verified that this series is the Taylor series of 1/(1 - x) at 
x = 0. Now that follows automatically by the uniqueness principle. 

The proof of uniqueness is based on a property of power series that will be 
discussed in Section 4 and proved in Section 7 :  a power series can be differentiated 
term-by-term infinitely often within its interval of convergence. Assuming this, the 
rest is easy. If f(x) = L a11(x - c"f, we differentiate n times, then set x = c: 

!<•>( )  1 (n + 1) !  
( ) (n + 2) ! 

( )2 x = n . a,. +  l ! a,.+ 1 x - c  + 2 1 a,..2 x - c  + · · · , 

j<">(c) a = --" ' . 
n . 

Addition and Subtraction Our first principle is straightforward. 

Suppose 
CID CID 

f(x) = L a,.(x - c)" and g(x) = L b,.(x - c)", 
11•0 11•0 

in an interval Ix - c l < R. Then 
CID 

f(x) ± g(x) = L (a,, ± b,.)(x - cf, Ix - cl <  R. 
11•0 

Thus two power series may be added or subtracted term-by-term within their 
common interval of convergence. 
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Proof Let s,,(x) and t,,(x) denote the partial sums of the two series. Then 
s,,(x) ---+/(x) and t,,(x)---+ g(x) provided Ix - c l < R. By a basic property of 
limits, 

II 

s,,(x) ± t,,(x) = L (aa ± b1J(x - c'f ---+ /(x) ± g(x). 
A:•O 

ao 

In other words L (a,, ± b,,)(x - er = /(x) ± g(x� 
11•0 

• EXAMPLE 1 Express as a Taylor series at x = 0 
(a) cosh x (b) sinh x. 

Sollltion We know that 

hence x x2 x3 x4 e-" = 1 - - + -- - + - - · · ·  l !  2 !  3 !  4! ' 

Add these series term-by-term, then divide by 2: 

Ix - c l < R. 

- 00  < x < 00, 

- 00  < x < 00. 

1 x2 x4 x6 
cosh x = - (e" + e-") = 1 + - + - + - + · · · 2 2 !  4!  6 !  ' -oo < x < oo. 

Subtract and divide by 2: 
1 x3 x5 X 7 sinh x = l (e" - e-") = x + 3 ! + S ! + 7 1  + · . .  , - 00  < x < oo. • 

A polynomial counts as a power series with infinite radius of convergence. Hence 
it may be legitimately added to or subtracted from any power series. 

Examples 

e" + 4 + 3x + x2 = ( 1 + ;, + �: + �: + · · ·) + (4 + 3x + x2) 

3 x3 x4 
= 5 + 4x + - x2 + - + - + · · · - oo < x < oo, 2 3 !  4!  

1 
-- - (1  + x + x2 + 3x3) = (1 + x + x2 + x3 + x4 + · · ') - (1 + x + x2 + 3x3) 1 - x  

= -2x3 + x4 + x5 + x6 + · · . , - l < x < l. 

M ult pl icat on Our next technique is formal multiplication of power series. To 
simplify notation, let us take c = 0. Formal multiplication of two power series 
L a,,x" and L b,,x" is the operation of multiplying each term a1x1 of the first by 
each term ba x" of the second and collecting terms, just as in multiplication of 
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polynomials. Start with the lowest terms and work up: 

(a0 + a1x + a2x2 + · · ·)(b0 + b1x + b2x2 + · · ·) 
= aobo + (aob1 + a1bo)x + (aob2 + a1b1 + a2bo)x2 

+ · · · + (aob11 + a1b,,_ 1 + · · · + a.,b11_., + · · · + a,,b0)x" + · · "  

� � 

Suppose /(x) = L a,, x" and g(x) = L b,,x" 
11•0 11•0 

in an interval lx l  < R. Then /(x)g(x) = i.,(� a.,b11_.,)x", l x l < R. 

Thus two power series may be formally multiplied within their common interval 
of convergence. 

The proof is difficult and best postponed to a more advanced course. 
Since a polynomial counts as a power series, we can deduce by inspection such 

expansions as 
xs x1 x9 x3 cos x = x3 - - + - - - + · · · 
2 !  4 !  6 !  ' - 00  < x < 00, 

- 00 < x < 00. 

• EXAMPLE 2 Find the Taylor series of _l_ ln _
l
_ 1 - x  1 - x  at x = 0. 

Sobttio11 In Example 2, p. 586, we found the Taylor series for ln(l + x) at x = 0. 
Replacing x by -x, we have 

1 x2 x3 
ln

1 _ x
= -ln{l - x) = x + 2 + 3 + · · · , lx l < l. 

Hence by formal multiplication, 

-- In -- = (1  + x + x2 + · · ·) x + - + - + · · · 1 1 ( x2 xl ) 
l - x  1 - x  2 3 

= x + ( 1 + �)x2 + ( 1 + � + �)xl + . . . 

� 

= I ( . 
+ � + � + . . .  + �)x". lx l  < 1 . 

11• l 
• 

• EXAMPLE 3 Compute the terms up to x6 in the Taylor series of x2r sin 2x 
at x = 0. 

x2r sin 2x = x2 1 + - + - + - + · · · 2x - --- + -- - · · · ( x xl xl ) ( (2x)3 (2x)s ) l !  2 !  3 !  3 !  5 !  ' 



694 1 2. POWER SERIES 

where the series on the right are valid for all x. Since only terms involving x6 and 
lower powers are required, it suffices to compute the product 

x2 l + - + - + - 2x - -- = x2 l + x + - + - 2x - -( x x2 x3) ( (2x)3) ( x2 x3) ( 4x3) 
l ! 2 ! 3 !  3 !  2 6 3 

= x2 [2x + 2x1 + ( l - �)x3 + 0 - �)x' + · · · J. 
Indeed, each higher term in <r or in sin 2x contributes only to powers of x higher 
than x6• For instance, the lowest power of x that the term x4/4! in <r contributes 
to is 

We conclude that 

x2c sin 2x = 2x3 + 2x4 - !x5 - x6 + · · · , -oo < x < oo. • 

s L u This is a technique we have used already: if a power series �),.x" 
converges for lx l < R and if jg(x)j < R, then we may substitute g(x) for x. 

Examples: 
l 

l + xl = l + ( -xl) + ( -x2 )1 + ( -xl )3 + . . .  

= l - x2 + x4 - x6 + · · · ,  lx l < l ,  

--
1
___,, = l + 2x3 + 4x6 + 8x9 + · · · l - 2x3 

' lx l < l/.J'i, 

e-xz12 = l + (- x;) + 2
1
! (- ;2) l + 31! (- ;2) 3 + . . .  

x2 x' x6 = l - 2 + 22 · 2 ! - 23 · 3 ! + · · · , lx l < oo. 
There is a more sophisticated type of substitution than the type illustrated in 

these examples. Under certain circumstances we can actually substitute a power 
series into a power series ! 

Letf(z) = LO'  a,.z" for l z l < R, and let 

g(x) = b1x + b2 x2 + b3 x3 + · · · , 
a power series with zero constant term. Set z = g(x) and write formally 

f(g(x)] = a0 + a1g(x) + a1(g(x)]2 + · · · . 
The series on the right can be converted into a power series by formally 
squaring, cubing, etc., and collecting terms. The resulting power series converges 
tof(g(x)] in the largest interval lx l < r in which jg(x) j < R. 
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A proof of the assertion is beyond the scope of this course. (Without the restriction 
b0 = 0, infinitely many terms would contribute to each coefficient, a difficult situa
tion to handle.) 
• EXAMPLE 4 Compute the terms up to xs in the Taylor series of 
/(x) = 1/(1 - sin x2) at x = 0. 
SohltiOll Expand/(x) as a geometric series in sin x2 : 

/(x) = 
1. = 1 + sin x2 + (sin x2)2 + (sin x2)3 + (sin x2}4 + · · · 1 - SlD x2 

From the power series for sin x, 
x6 x•o sin x2 = x2 - - + - - · . . 6 120 . 

Substitute this series into the expression for /(x). Square, cube, etc. and collect 
powers of x up to xs: 

/(x) = I + (x2 - :6 
+ . .  -) + ( x2 - �6 

+ . . ·r + ( x2 - x; + . . ·r 
+ (x2 - x

6
6 + . . -

} 
• 

+ . . .  

= 1 + ( x2 - x; + . .  -) + ( x• - x
3
s + . .  -) + (x6 + . . .  ) + (xs + . . . ) + . . . 

= I + x2 + x4 + ( 1 - �)x6 + ( 1 - �)xs + · · · 

5 2 
= 1 + xl + x• + 6 x6 + 3 xs + . . . . 

This expansion is valid in the largest interval Ix I < r in which I sin x2 I <  1. Hence 
x2 < !n, that is, Ix I < J{1t. • 

Even and Odd Functions The power series at x = 0 of the odd function sin x 
involves only odd powers of x; the power series of the even function cos x involves 
only even powers of x. These examples illustrate a gl.fileral principle : 

If /(x) is an odd function, /(-x) = -/(x), then its Taylor series at x = 0 has 
the form 

a1x + a3 x3 + a5x5 + a7x7 + · · · . 
If /(x) is an even function, f(-x) = /(4 then its Taylor series at x = 0 has 
the form 

ao + a2 x2 + a4X4 + a6x6 + . . . . 

Thus the Taylor series of x = 0 of an odd (even) function contains only odd 
(even) powers of x. 
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The proof follows easily from the basic fact that the derivative of an odd function 
is even and the derivative of an even function is odd. See Ex. 31  and Exs. 33 and 
34 for another proof. 

Not all functions are even or odd. However, every function defined in an interval 
Ix I < R can be expressed as the sum of an even function and an odd function. 

Letf(x) be defined in an interval !x i < R. Then 

f(x) = f(x) + f(-x) + f(x) -f(-x) = g(x) + h(x� 2 2 
where g(x) is an even function and h(x) is an odd function. If 

co 

f(x) = L a,.x", then 
•-0 

co co 

g(x) = L a2,.x2" and h(x) = L a2,.+ 1x2"+ 1 • 
11•0 11•0 

Thus the Taylor series at x = 0 of f(x) splits into two power series, one cor
responding to the "even part" of f(x) and the other corresponding to the "odd 
part" of f(x ). 

Example: 

x x2 x3 x4 f(x) = e' = 1 + l! + 2 ! 
+ 3 ! + 

4!  
+ · · · , 

f(x) + f(-x) e' + e-..  x2  x4 
g(x) = 2 = 2 = cosh x = 1 + 2 , + 4, + · · · , 

h(x) = f(x) -f(- x) = e' - e-.. = sinh x = � + xJ + xs + · · · 
2 2 1 !  3 !  5 ! . 

• EXAMPLE & Find the sum of the series 
x3 XS X7 

x + 3 + 5 + 7 + · · · . 

So"'tio11 This is the "odd part" of the series 
x2 x3 x4 f(x) = - ln( I - · x} = ,. -i 2 � 

3 
! 4 � 

(See Example 2.) Therefore the sum of the given series is 

f(x) -f( - x) _ - ln( l - x) + ln{ l + x) _ ! 1 l + x 
2 - 2 - 2 n l - x · • 

U ndetermined Coeff 1c 1e nts In this technique, we assume a power series 
LO' a,.x" for a given function f(x� then try to determine the coefficients a,. from 
some property off(x). 
• EXAMPLE 6 Compute the terms up to x 7 in the Taylor series for tan x at 
x = O. 
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Sollltion In theory, the problem merely requires long division of the series for 
sin x by the series for cos x. In practice, the long division is carried out using 
undetermined coefficients. Set 

tan x = a1x + a3 x3 + a5 x7 + a9 x9 + · · · .  
(Only odd powers are necessary since tan x is an odd function.) Now write the 
identity tan x cos x = sin x in terms of power series : 

(a1x + a3x3 + a5 xs + a7x1 + · · ·) 1 - - + - - - + · · ·  ( x2 x• x6 ) 
2 24 720 

x3 xs x1 = x - 6 + 
120 - 5040 + . . . . 

Multiply the two series on the left, then equate coefficients. 
x: a1  = l ;  

x3 : al - !a1 = -i; 
xS: as - !a3 + na1 = Th; 
x7: a, - !as + na3 - �al = -�. 

Solve these equations successively for a1, a3 , a5 ,  a, :  

a 1  = 1 ,  a3 = i, as = -lJ, a1 = M. 
Hence tan x = x + ix3 + -hxs + Mx 1 + · · · .  • 

Remark It can be shown that the Taylor series for tan x at x = 0 converges to tan x for 
Ix I < ix- This is the largest interval about x = 0 in which the denominator cos x is 
non-zero. See Exs. 37-38. 

EXERCISES 

Find the Taylor series of the given function at x = 0 
l I x 

l - 5x2 2 
I - x3 

4 
I +  x2 

x(sin x + sin 3x) I +  x4 5 

7 
l - cos x sin x - x  

xl 8 xl 

10 (x2 - l )  cosh x 1 1  sin2 x 

Compute the terms up to x6 in the Taylor series at x = O 
l 

13 
( I  - 2x2)( l  - 3x2) 

16 
l 

1 + x + x3 
19 r, cos x 
Compute /171(0) 

21 
2x + 3 
1 - x3 22 

14 r sin(x2) 

17 sin3 x 

20 x cot x. 

x cos !x 23 tan x 

l - x  
3 l + x 

6 sinh x + cosh x 

9 
2 - 2x + 3x2 

1 - x 
12 

l 
1 + x + x2 + x3 • 

15 
I - x2r 

18 ln cos x 
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25 If/(x) = LO a.x". show that 

00 

-
1
-/(x) - � (a + a  + · · · + a  )x" 

1 - x - f...i o t • . 

••O 

26 (cont.) Find the sum of the series LO (n + l )x". 

Find the sum of the series 

27 x + x2 - x3 + x4 + x5 - x6 + + - · · · 28 

x4 x' x1 2 29• l + - + - + - + · · · 4! 8 1  12! 
30 

31 Prove that the derivative of an odd (even) function is even (odd). Conclude that the 
Taylor series at x = 0 of an even (odd) function contains only even (odd) powers of x. 

32 Prove that a function defined for lx l  < R can be written in only one way as the sum 
of an even function and an odd function. 

33 Suppose /(x) = Lo a. x" is even. Use uniqueness to prove that a2.- 1 = 0. 
34 (cont.) Give the corresponding proof for odd functions. 
35 Set/(x) = LI" nx". Compute ( I  - x)/(x) and use your result to find/(x). 
36 (cont.) Set g(x) = Li n(n + l)x" and use the same technique to find g(x). 
37 Use sec x = l/[l - ( 1  - cos x)] to find the terms up to x6 in sec x at x = 0. What is 

the radius of convergence? 
38 (cont.) Use the same technique to compute the Taylor series of tan x = sin x/cos x at 

x = 0 up to x 7• What is the radius of convergence? 
39 Suppose the coefficients of /(x) = LO a.x" are periodic of period p. That is, p is a 

positive integer and a.+, =  a. for all n. Prove that/(x) is a rational function. 
40• Suppose p(t) is a polynomial and/(x) = LO p(n)x". Show that/(x) is a rational function. 

[Hint See Exs. 35 and 36, and use induction on the degree of p(r).] 

Find the Taylor series at x = 0 up to x5 of 

� � "  � r �  

4. FU RTH ER TECHN IQU ES 

Differentiat ion and l ntegratton These are important techniques for deriving 
new power series from known ones. The proof will be given in Section 7. 

Let 

Then 

and 

CJ) 

f(x) = a0 + a1x + a2 x2 + · · · = L a11r', 
.-o 

CJ) 

f'(x) = a1 + 2a2 x + 3a3 x2 + · · · = L na,.ro- 1, 
11• l 

CJ) 

I" 
a1 a2 L a. + 1 /(t) dt = a x + - x2 + - x3 + · · · = -- r' 

0 ° 2 3 n + l  ' 

11•0 

lx l < R. 

lx l < R, 

lx l < R. 

Thus a power series may be differentiated or integrated term-by-term within its 
interval of convergence. 
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• EXAMPLE 1 Find the Taylor series at x = 0 for 1/(1 - x)2 and 1/(1 - x)3• 
SohltUHI First observe th�t ( l � x)2 = � (. � x) · Then expand 1/(1 - x) in a 
Taylor series and differentiate term-by-term. For Ix I < 1, 

I d 
--� = - (1 + x + x2 + · · · + x" + · · ·) ( 1 - x)2 dx 

d d d d = dx (l) + dx (x) + dx (x2) + . .  · + dx (x") + · . . 
co co 

= 1 + 2x + 3x2 + · · · + nx"- 1 + · · · = L nx"- 1 = L (n + 1 )x". 
Differentiate again: 

·- · .-o 

2 = '!.... ( 1 ) ='!.... ( t + 2x + 3x2 + . .  · + nx"- • +  . . ·). ( 1 - x )3 dx ( 1 - x )2 dx 
Hence 1 = ! [2 + 6x + 12x2 + . .  · + n(n - l)x"- 2 + . . ·] ( 1 - x)3 2 

co co 
= � n(n - 1) x"_ 2 "" � (n + 2)(n + 1 ) • L i L i x". 
••2 ••O 

• EXAMPLE 2 Find the sum of the series x3 xs x211- 1 x + - +- + . .  · +-- + . . .  3 s 2n - l  
. 

Sohltioll By the Ratio Test, the series converges for lx l < 1 to some function 
xl xs x2•- • /(x) = x + -+ -+ · · · + -- + . .  · . 3 S 2n - l  

Each term is the integral of a power of x. This suggests that f (x) is the integral of 
some simple function. Differentiate term-by-term: 

f'(x) = I + x2 + x" + · · · + x2•-2 + · · · =-l-2 · l - x  
Therefore, f (x) is an antiderivative of 1/( 1 - x2� Since f (0) = 0, it follows that 

/(x) = f" _!!!__2= J1n !±_ti "= J1n 1 + x for lx l < 1 . • J o I - t 2 1 - t 0 2 1 - x 
• EXAMPLE 3 Find the Taylor series at x = 0 of ln(I + x). 
Sohdiolt Integrate the derivative 1/(1 + x) = 1 - x + x2 - x3 + · · · for lx l < 1 :  

ln(l + x ) = -= (1 - t + t2 - + . .  · + (- l)"r- + . . ·) dt f" dt f" 0 1 + t 0 

= r dt _ rt dt + r t2 dt _ . . .  + ( _ 1 )" r r- dt +- . . . . 
0 0 0 0 
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x2 x3 x"+ l ln(l + x) = x - - + - - · · · + (- 1)" -- + · · · 
2 3 n + 1 

lx l < 1. 

• EXAMPLE 4 Find the TayJor series at x = 0 of arc tan x. 
Sohltio11 The derivative is 1/(1 + x2) = 1 - x2 + x4 - • • • for !x i < 1 .  

Therefore arc tan x = --2 = ( 1 - t2 + t4 - t6 + · · ·) dt f" dt f" 0 1 + t 0 

lx l < 1. 

• EXAMPLE I Find the sum of the series 
ao 

x + 4x2 + 9x3 + · · · = L n2x". 
11 • 1  

• 

• 

Sohltio11 By the Ratio Test, the series converges for Ix I < 1 to a function f(x). 
Write 

where 

Now 

/(x) = x + 4x2 + 9x3 + · · · + n2x" + · · · = xg(4 
g(x) = 1 + 22x + 32x2 + · · · + n2x"- 1 + · · · . 
d g(x) = - (x + 2x2 + 3x3 + 4x4 + · · · + nx" + · · ·) dx 
d = dx [x(l + 2x + 3x2 + 4x3 + · · · + nx"- 1 + · · ·)]. 

By Example l, 1 + 2x + 3x2 + . . .  + nx"- i + . . . = 1 
( 1 - x)2 • 

Hence g(x) = �x [c1 � x)2 ] = (1
1 � :)3 ' 

so x + x2 /(x) = xg(x) = 
(1 - x)3 ' 

Clleck Test the answer at x = 0. 1 where 

lx l < 1. 

1 4 9 16 25 /(O. l ) = 10 + 102 + 103 + 104 + 
105 + . . . · 

According to the answer, 

/(0 1) = (0. 1) + (0.1)2 = O.l l  � 0 15089 16324 . (1 - 0. 1 )3 (0.9)3 • • 

• 
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It is easy to make a convincing numerical check. Start with the first term and add 
successive terms: 0.1, 0.14, 0.149, 0.1506, 0.15085, 0.15088 6, 0.15089 09, 0.15089 154, 
0.15089 1621, 0. 15089 16310. 

An Appl1cat1on to Probabil ity Imagine an experiment in which the outcome 
is one of the integers 0, l, 2, · · · ,  such as counting the number of cars that pass a 
certain spot in a given hour, or the number of tails that precede the first head in a 
sequence of tosses of a coin. Suppose the probability of the outcome n is a number 
p,., where 0 � p,. � 1 and LO' p,. = 1 .  We say that {p,.} is a probability distribution 
on the set {O, 1, 2, · · ·}. 

The expected value (mean) of this distribution is defined to be 
co 

E =  L np,. . 
11•0 

Since L p,. = 1, we can think of E as a weighted average: each integer is weighted 
by the probability that it will oa:ur. The •ariance of the distribution is defined to be 

co 

u2 = L (n - E)2p,. . • -o 
It is a measure of the spread of the various outcomes about their expected. value. 

Since L p,. = 1 and L np,. = E, we have 
00 co 00 00 

u2 = L (n2 - 2nE + E2)p,. = L n2p,. - 2E L np,. + £2 L p,. 
11•0 11•0 11•0 11•0 

00 co 

= L n2p. - 2£ . E + £2 . 1 = L n2p. - £2 . 

• -o .. -o 
The quantity L n2p,. is called the second moment of the distribution. Sometimes the 
mean, L np,., is called the first moment. 

• EXAMPLE I In a sequence of throws of a dice, what is the expected number 
of the throw at which the first 4 occurs? 

Sobltion The probability of a 4 turning up is i; the probability of any other 
number turning up is i· The first 4 occurs at throw n provided that the first n - 1 
throws are not 4, but the n-th throw is 4. The probability of this event is 

5 5 5 1 1 (5)"- 1 p,. = 6 . 6 . . .  6 . 6 = 6 6 ' n = l, 2• 3• . . " 

(You should confirm that Li p,. = 1.) By definition, the expected number of throws 
until a 4 shows up is 

00 co co � � 1 (5)..- I  l � (5)11- I 
E == L np,. = L n . 6 6 == 6 L n 6 . 

11•1 • • 1  • - 1 
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We can find this sum explicitly. According to Example 1 ,  
ao 

I nx"- 1 = ( I � x)2 ; 
• • I  

The expected number of throws is 6. • 

• EXAMPLE 7 Compute the variance <12 of the probability distribution in 
Example 6. 

Sohltio11 Compute the second moment: 

By Example 5 

ao 

Since E = 6, <12 = I n2p. - E2 = � · 5 · 36( 1 + �) - 36 = 36 · � = 30. 

•• I 
• 

Part1 I r First let us mention a standard trick for exploiting the 
geometric series. To expand 1/(2 - x), just write 

Similarly, 
ao 

1 1 '\' X-
x - 5 = - 5(1 - !x> = 

- L 5"+ 1 · 
1t•O 

1 
• EXAMPLE 8 Find the Taylor series at x = 0 of (x - 2)(x - 5)' 
Sohltio11 By partial fractions 

1 1 ( 1 1 ) (x - 2)(x - 5) = 3 x - 5 - x - 2 · 

Expand each fraction, using the preceding trick : 

Both series converge in the interval lx l < 2. For these values of x, 
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• EXAMPLE 9 Find the Taylor series at x = 0 of 

Sol"tio11 The denominator can be factored: 
x2 + x - 1 = (x - a)(x - b� 

- 1  
x2 + x - 1 · 

where a and b are the roots of the equation x2 + x - 1 = 0. By the quadratic 
formula, 

- 1  +JS a = 2 ' 
- • -JS b = 2 

. 

Notice that ab = - 1  because the product of the roots of x2 + px + q = 0 is q. 
Express the given function in partial fractions: 

- 1  - 1  I ( 1 1 ) 
x2 + x - 1 = (x - a)(x - b) = a - b x - b - x - a · 

Now expand each fraction in power series, which is permissible if lxl < !(JS- l� 
the smaller of the numbers I a I and I b I :  

Note that a - b = - l +JS _ - I -JS = 15 
2 2 

y J, 

and (since ab = - 1) ! = -b = 1 + JS, a 2 
1 1 -fi 
b = -a = 2 · 

Hence, for lx l < !(fl - I� 

• 

Remark It may not seem so, but the numbers c. are actually integers ! The first 
few are 1, 1, 2, 3, S, 8, 13, · · · ; each is the sum of the previous two. See Exs. 25-28. 

• EXAMPLE 10 Find a power series for 

Sollltio11 By partial fractions, 

I 
(1 - x)(l + x2)" 

1 1 ( 1 l + x ) I ( 1 1 x ) 
( 1 - x)(l + x2) = 2 1 - x + l + x2 = 2 1 - x + l + x2 + 1 + x2 

I = 2 ((1 + x + x2 + x3 + · · ·) + (1 - x2 + x4 - x6 + - · .  ·) 
+ (x - x3 + xs - x 7 + - · · . )] 

= I + x + x4 + xs + x8 + x9 + · · · . 
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Thus 
ao 

1 - � ( .. + 441+ 1) 
(1 - x)(l + x2) - � x x 

1t•O 

for lxl < 1. • 

Remark This example also can be done by multiplying together the series for (1 - xr I 
and ( 1 + x2r 1, also by multiplying the series for (1 - x't 1 by 1 + x. 

EXERCISES 

Verify by expressing both sides as power series 

1 � (sin x) = cos x 2 
dx 
dl 

3 dx2 (cosh kx) = k2 cosh kx 4 i" 2t dt 
S -1 -2 = - ln( l  - x2i lx l < 1 0 - t  
6 (arc tan t dt = x arc tan x - ! ln(l + x2i 
1 I: ( l  :

t
t2)2 = � [ 1: x2 + arc tan x] 

I (r2 sin t dt = 2x sin x + (2 - x2) cos x - 2. 0 

� (eh) = kt>" dx 
d2 
dx2 (xr) - (x + 2)e" 

lx l < 1 

Find the sum of the power series by using differentiation and integration 

9 4 + Sx + 6x2 + 7x3 + · · · 10 1 + 4x + 9x2 + 16x3 + 25x' + · · · 
x' x• x12 x16 x2 x3 x' x' 1 1  4 + 8 + 12 + 16 + . . . 12 ..-:-2 - 2 . 3 

+ 
3 . 4 - 4 . 5 + . . .  

13 
x3 x5 x1 x - - +- - - + · · ·  32 52 72 

[Express as an integral] 

Find the sum of the numerical series 

15 

17 

18 

19 

20 

3 5 7 9 1 2 3  4 
2 · I ! - 22 · 2 ! + 23 • 3 ! - 2' · 4 ! + . . . 16• 2! + fl + 4! + 5! + . . .  
(Hint Start with the power series for e-"''2.] 
Before the advent of fertility drugs. an empirical law asserted that one out of 87 births 
resulted in twins, 1/872 in triplets, 1/873 in quadruplets, etc. Assuming this law, 
compute the expected number of babies born per 100,000 live births. 
A coin is tossed repeatedly until either two consecutive heads or two consecutive 
tails occur. What is the expected number of tosses? 
Let's play this game. We toss a coin. If heads, I pay you $1 and the game ends. 
If tails, you pay me $1 and we toss again. This time, if it's heads, I pay you $2 and 
the game ends. If it's tails, you pay me $2 and we play again for $3, etc. Compute 
your expected gain or loss, Ii' a. p., where a. is your payoff (gain or loss) at throw n, 
and p. is the probability that the game ends at throw n. 
A certain dime slot machine has three identical wheels, each with ten different fruits. 
You continue to play without gain until you hit three lemons, when the payoff is the 
jackpot, SJ. Find J so the game is fair, assuming all outcomes of the spinning 
wheels are equally likely. 
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Expand in Taylor series at x = 0 

21 

23 

x + l  
x2 - 4x + 3 

l 
(x - l )(x - 2)(x - 3) 

22 
(2x + 1)(3x + 4) 

l 
(x - 3)(x2 + l f  

Define a sequence of integers {c.} by c0 - c1 • l and c.+ 2 '""' c_. 1  + c • . Thus the sequence 
begins l ,  l ,  2, 3, S, 8, 13, 21, 34, SS, · · · .  These numbers are called the Filloucd ..mben. 
It is remarkable that there exists an exact formula for them. 

2S Let f(x) = L"°-o c.x". This power series is the aeaentiaa fmcdon of the Fibonacci 
sequence. Show that ( 1  - x - x2)f(x) = 1. 

26 (cont.) From Example 9, derive an exact formula for c •. 

27 (cont.) Conclud� that c. is the closest integer to 
l [ • ( ) ]"+ l .15 2 • + ./5 . 

28 (cont.) Leonardo of Pisa (nicknamed Fibonacci, sometimes translated "son of an ass") 
in 1202 modeled rabbit breeding as follows: suppose it takes a pair of rabbits one 
month to mature and one month to produce a litter. Assume the parents and one 
pair from the litter survive for future generations, and dead rabbits are replaced. How 
many pairs of rabbits will there be after n months if there is one newborn pair 
initially? 

29 Show that the Fibonacci sequence {c.} of Ex. 2S satisfies c2• 2 - 1 = c1.- 1 Cz.+ 1. 

30• (cont.) Evaluate ('\' arc tan _!__) + arc tan -1-. � C.u C2•+ l 
• · t  

31 Define a sequence {a.} by a0 = 0, a1 = l, and a.+ 1 = Sa.+ 1 - 6a • . Use the method of 
Ex. 2S to find the generating functionf(x) = L: a_x". 

32 (cont.) Expandf(x) in power series and deduce an exact formula for a_. 

5. B INOMIAL  S E R I ES 

The Binomial Theorem asserts that for each positive integer p, 

(1 + x)" = 1 + px + p(p - l )  x3 + p(p - l)(p - 2) xl + . . .  
2 !  3 !  

p(p - l)(p - 2) · . . (p - n + 1) p! + x" + · · · + - x'. n!  p! 
Standard notation for the binomial coefficients is 

(�) = 1, (p) = p ! = p(p - l)(p - 2) · · · (p - n + 1 )  

n n !  (p - n)! n !  ' 

With this notation the expansion of ( 1 + x )" can be abbreviated: 
p 

(1 + x)" =I (�)x". 
••0 

1 � n � p. 
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A generalization of the Binomial Theorem is the binomial series for ( 1  + x)", 
where p is not necessarily a positive integer. 

Binomial Series For any number p, and Ix I < l, 
«> ( 1 + x)" =I (:)x-. 

••O 

where the coefficients are 

(�) = l, (p) = p(p - l )(p - 2) · · · (p - n + 1), 
n n !  

n � 1. 
Remark In case p happens to be a positive integer and n > p, then the coefficient (:) 
equals 0 because it has a factor (p - p� In this case, the series brcaJcs off after the term in 
x'. The resulting formula, 

, 
( • + x)' =I (:)x-. ••O 

is the old Binomial Theorem again. But if p is not a positive integer or zero, then each 
coefficient is non-zero, so the series has infinitely many terms. 

The binomial series is just the Taylor series for y(x) = (1 + x)" at x = 0 because 

y'(x) = p(l + xy- 1, 

y"(x) = p(p - 1)(1 + xy-2, 

y<•>(x) = p(p - l )(p - 2) . . · (p - n + 1)( 1 + x)'-•. 

Therefore the coefficient of X- in the Taylor series is 

y<•>(o) = p(p - l)(p - 2) · · · (p - n + 1)  = (P). 
n !  n !  n 

The binomial series converges for l x l  < 1. When p is an integer this is obvious 
because the series terminates. When p is not an integer the Ratio Test applies: 

I a.� l I = I (:) I("� 1) I = I:�! l- 1· 
so the radius or convergence is 1. This, however, does not prove that the sum 
or the series is (1 + x)-9. That requires a delicate piece or analysis beyond the scope 
or this course. 

• EXAMPLE 1 Find the Taylor series for 
( I  � x )

2 at x = 0. 
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Sollltio• Use the binomial series with p = -2. The coefficient of x" is 

(-2) =  (-2)(-3)(-4) · · · (-2 - n +  1) 
n n! 

Hence for lxl < 1, 
= (- l)" 2 · 3 · 4 · · · n · (n +  1) = (- l)"(n + 1� n! 

= 1 - 2x + 3x2 - 4x3 + · · · . 
1 = -'!.._ (-1-) = - '!.._ ( 1 - x + x2 - x3 + - · · ·) (1 + x)2 dx 1 + x dx 

= - ( - 1 + 2x - 3x2 + - · · · ). 
The following example will be useful in Section 6. 

• EXAMPLE 2 Find the Taylor series for � at x = 0. 

• 

Sobttk>lt Use the binomial series with p = ! and x replaced by -x. The constant 
term in the series is 

(�) = I. 
The term in x" is (!)(-x)" = H) ( - �)( - ��!· . ( -�) (-x)" 

= (- l)"_ 1  1 · 3  · s · · · (2n - 3) (- l)"X-. 2• · n! 
But 1 . 3 .  S • . .  (2n - 3) = 1 . 2 . 3 . 4 . . .  (2n - 2) 

2 · 4 · 6 · 8 · · · (2n - 2) 
_ (2n - 2)! _ (2n)! - 2•- 1 (n - 1)! - (2" · n!)(2n - 1)' 

so the term in X- is (2n)! . _1 
_ x- = _ (2n)! x" (2" · n !)(2n - 1) 2" · n! (2" · n!)2(2n - 1) · 

ti) 

Therefore 
� 1 � (2n)! • " �  - x = -L <2· . n!)l(in - 1 )  

x for lx l < I. 
•• l 

• EXAMPLE 3 Find the Taylor series for )x at x - 9. 

• 



808 1 2. POWER SERIES 

Sohltio11 Write Jx = J9 + (x - 9). Then 
� 

1 1 1 ( x - 9) - 1 '2 1 � (-!) (x - 9)" 
Jx = 3J1 + i(x - 9) = 3 

1 +
-9- = 3 L n 9" · 

11•0 
The constant term is 1. For n � 1, the coefficients are 

1 · 3 · 5  . .  · (2n - 1) (2n)! 
= (- 1)" 211n! = (- 1)" 2211(n!)2 .  

(This formula is correct also for n = 0.) Therefore 
� 

1 � ( - 1)"(2n)! 
Jx = L 3 . 2211 . 9"(n!)2 (x - 9)". 

11•0 

This answer checks with Example 3, p. 586. 

• EXAMPLE 4 Find the Taylor series for arc sin x at x = 0. 

• 

Sobttio11 Expand its derivative 1/JT"'=X2 in power series and integrate term-by
term. For Ix I < 1 , 

«' " � � r(-1) f 211 � (2n)! 211+ 1  • = L (- 1 n t dt = L 2211(n !)2(2n + 1) x . 
11•0 0 11•0 

Remark The rormula can be written 

because 
. x3 1 · 3 , 1 · 3 · 5 7 arc sm x = x + 2 · 3 + 2 · 4 · 5 x + 2 · 4 · 6 · 7 x + " · (-! )  1 · 3 · 5 · : · (2n - 1) 1 · 3 · 5  . .  · (2n - 1) 

( - l)" n = 2•n! = 2 · 4 · 6 . . · (2n) · 
EXAMPLE I Estimate .j"lOOi to 8 places. 

Sohltioll Write J'100T = (1000(1 + 10-3))1'3 = 10(1 + 10-3)1'3• 
Use the binomial series with x = 10- 3 and p = !: 

10(1 + 10- 3)1'3 = •o [ . + (t) (lo- 3) + (n(•o-3)2 + . . ·] 
= 10 r 1 + � . 10-3 _ � .  10-6 + . . · I· 
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The first three terms yield the estimate 
J1iOOI � 10.00333 22222 . . . . 

The error in this estimate is precisely the remainder 

r3 = 1o [(!)c10- 3)3 + (!)c10- 3r + · · · ]. 
Now I (!) I = �! I H) ( �2

) (  �S) . . .  (- 3n; 4) I = j .  � .  � . . . 3n3: 4. 
This is a decreasing sequence. Therefore 

lr3 1 � 10 [ 1 (!) 1 10-9 + I (!) I 10- 12 + · · ·1 
< 10 l (!) l c10-9 + 10- 12 + · · ·> =  1o · � · � · � c10-9 + 10- 12 + · · ·) 
100 = 162 (10-9 + 10- 12 + . .  ·) < 10-9. 

Hence the estimate is accurate to at least 8 places. • 

Remark There is a table of the most used power series inside the front cover of this book. 

EXERCISES 

Expand in power series at x = 0 

I l 
(1 + x)3 2 (1 - x)''l 3 

4 
l 

(3 - 4x2)2 5 ( 1 + 2xl)11• 6 

7 
x2 

8 � 
(-x ro 
1 - x  9 

10 x arc sin x + JI=Xl. 
Expand in power series at x = l 

l l  Ji+x 12 l 
(3 + x)2" 

Compute the terms up to x4 in the Taylor series at x -= 0 

13 Ji + x2r 14 
l 

15 
{l + sin x)2 

16 
l cos 2x 

Jt + x + x2 17 
{l  + !x2)4 II 

Compute to 4-placc accuracy, usins the binomial series 

19 Ji61 l 21  {1.03)' 
23 Derive the approximation lo( 1 + x) =:: - l + J l + 2x. 

( 1 - 4x2)2 
� 
sinh- 1  x 

(sin 2x}Jf+X 

.;cosx. 

22 
l 

.y970· 
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24• Derive - - !x i <  I .  
2 f w/2 d8 
n 0 I - x2 sin2 8 - �· 

26 
27 

Show that 1/J I - 2xz + z2 = LO P.(x)z", where P.(x) is a polynomial of degree n, 
and compute P1(x� P2(x� and P3(x). The polynomials P.(x) are called the Leseadre 
polynomials; they are important in applied mathematics, for instance, in the study of 
heat flow in spherical bodies. 
(cont.) Find formulas for P.(O) and P.( 1). 
Let p. = 2n sin(n/n) be the perimeter of the regular polygon of n sides inscribed in a 
unit circle. Show that there is a relation of the form 

28 (cont.) Show that 3n =:: 2p. - 1p2 • •  Estimate n to 4 places using n = 3 and n = 6. 
29• (cont.) Obtain a similar estimate involving p., p211 , and p.., . Test it to 5 places with n = 3. 
30 Show that ,/i = J.,Of(l + t)1'1• where t = 0.0082. Estimate ,/i by expanding up to t2• 
31 (cont.) Estimate J3 similarly. [Hint Find an integer k for which 3k1 is near 105.) 
32• (cont.) The general idea for ,/i is to find a =  10" and an integer b so 

2 = (�r( 1 + 2b2a� al) 
and (2b2 - a2) is as small as possible. Find b for a = 1000 and use it to estimate ,/i. 

6 N U M E R ICAL APPLICATIONS 

A �r"l C' 1e In  Chapter 1 1, Section 5 we saw the great advantage of 
working with alternating series whose terms decrease in absolute value toward 0. 
For such series, remainder estimates are immediate and quite accurate: if a series is 
broken off, then the remainder is less than the absolute value of the first term omitted. 

EXAMPLE 1 The powerseriesat x = Ofor ln(l + x2) is broken off after n terms. 
Estimate the remainder. 
So"'tio" The series is obtained by integrating from 0 to x the series for the 
derivative of ln(l + t2): 

d 2t 
dt [ln(l + t2)] = l + 12 = 2t(l - t2 + t4 - t6 + - . .  ·) 

= 2(t - r3 + t� - t1 + - . .  ·) 
for It I < I .  It follows that 

ln(l + x2) = -- = 2 - - - + - - - + - · · · f" 2t dt (x2 x4 x6 x1 ) 0 1 + t2 2 4 6 8 

x4 x6 x1 = x2 - - + - - - + - · · ·  2 3 4 
for Ix I < I. This series alternates; since Ix I < l, its terms decrease in absolute value 
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to zero. Therefore, the remainder after n terms is less than the absolute value of 
the (n + 1 )-th term: 

x211+ 2 
I remainder I < -

n + l 
• 

Occasionally we encounter an alternating series whose terms ultimately decrease 
in magnitude, but whose first few terms do not. If successive terms decrease 
starting at the k-th term, the series will still converge, and the remainder estimate 
is still valid-beyond the k-th term. The front end of the series, up to the (k - 1 )-th 
term, is a finite sum; it causes no trouble. The important part is the tail end, 
that is, the series starting with the k-th term. It is this series that we test for 
convergence. 

• EXAMPLE 2 The power series for e -:x at x = 0 is broken off after n terms. 
Estimate the remainder for positive values of x. 

x2 xl e- :x = 1 - x + - - - + - · · · 
2 !  3 !  

So/lltio11 The power series 

alternates for positive x. If 0 < x � 1, the terms decrease to 0, and the above 
remainder estimate for alternating series applies. If x > 1, however, the first few 
terms may not decrease. (Take x = 6 for example: 

62 63 
e-6 = 1 - 6 + - - - + 

- · · · = 1 - 6 + 18 - 36 + - · · · 

2 !  3 !  
. 

Nevertheless, for any fixed x, the terms do decrease ultimately. To see why, note 
that the ratio of successive terms is 

For x fixed, 

x" + '  Ix" x 
(n + l ) !  n !

= 
n +  1 ·  

x 
-- < 1  
n + 1 

as soon as n + 1 > x; from then on the terms decrease. Furthermore 

x 1 
-- < 
n + 1 2 

as soon as n + 1 > 2x. From then on each term is less than one-half the preceding 
term. Hence, the terms decrease to 0. 

Therefore if the series is broken off at the n-th term, the remainder estimate 
for an alternating series applies: 

x"+ I 
l remainder l < 

(n + l ) !  
for n + 1 > x. • 

App ica ons to  Defrn te Integrals Power series are useful for approximating 
definite integrals that cannot be computed exactly . 

• EXAMPLE 3 Estimate r e-rl dt to 6 places for Ix I � !. 
0 
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Sobnio11 A numerical integration formula such as Simpson's Rule would work. 
but a power series method is simpler. Expand the integrand in a power series: 

-t2 
1 ( l) (- tl)l (-tl)3 1 l , .. t6 e = + -t +�+)!+ · · · =  - t  + 2! - 3 ! + · · · .  

Since this series converges for all x. it can be integrated term-by-term: 

[" e_,z dt = [" ( 1 - t1 + 14 - 16 
+ · · ·) dt Jo Jo 2 ! 3 ! 

x3 x5 x7 x9 = x - 3 
+ 

s .  2! - 7 . 3 ! + 9 . 4 ! - . . . . 

Because of the large denominators. this series converges rapidly if x is fairly small. 

For Ix I :::;; !. the sixth term is at most (0 1 1 1 1  � 5 ! < 4 x 10- 7• 
Since the series alternates. the remainder after five terms is less than 4 x 10- 7• 
Therefore five terms provide 6-place accuracy. Consequently if Ix I :::;; !, then 

where ltl < 4 x 10- 1• • 

Remark The series converges for all value of x, but for large x it converges slowly. For 
10 

example, it would be ridiculous to compute f e-11 dt by this method, since more than 
0 

100 terms at the beginning are greater than 1. 

Ell1pt1c lntegr al... A fairly simple problem can lead to a difficult definite integral 
An example is the problem of computing the arc length of an ellipse. Suppose an 
ellipse is given in the parametric form 

x = a cos 8, y = b sin 8, 
where b > a. Then, as will be shown in Chapter 14, its arc length is 

L = ro . (dx) 1 (
dy) 1 Jo d8 + d8 d9. 

The expression under the radical is 

(-a sin 8)1 + (b cos 8)1 = b1(sin1 8 + cos1 8) - (b1 - a1) sin1 8 = b1(1 - k1 sin1 8� 
where k2 = (b2 - a2)/b2 < 1. Hence 

The definite integral in the last expression, called an elHpdc intearaJ, is impossible 
to compute exactly. (More precisely, it is called a "complete elliptic integral of 
the second kind.") 
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11/l 
• EXAMPLE 4 Express f Ji - k2 sin1 t dt as a power series in k. 0 
So,.,.,,, By Example 2. p. flJ7, for lx l < l, 

GO 

Jt=X = (• _ x)''l = • _ I (!)x-. •• I 
If k1 < l, then k1 sin1 t � k1 < l, so we can substitute x = k1 sin1 t: 

GO 

Ji - k2 sin2 t = l -L (!)k1• sin1• t. 
••I 

Now integrate term-by-term: 

ill/l • 2- (2n)! K From a table of integrals (also see Ex. 24, p. 610) Jo sm x dx = 
(2"n!)1 2· 

Therefore 

(!) J:1
sin1" t dt = [(2• . n����n - 1)] [(2��n�:)1 . �] = [(2���:)l r (2n � l )

. � ·  
Substitute this expression to obtain the answer: for k2 < l, 

• 

Period of a Pendulum A pendulum consists of a bob at the end of a uniform 
string of length L. When displaced from the vertical by an angle ex < ix and 
released from rest it will oscillate with a period T = T(ex� It can be shown• that 

T - 4 {L j• d6 
- v29 Jo Jcos 8 - cos ex .  

• Briefly (Fig. 1) 

kinetic energy + potential energy -const., 

i112 + Lg( l  -coa 8) • 0 + Lg(l + COICI� 
io2 -Lg(cos 8 -cos 11� 

But " = fh/dt • L d8/dt, 

IO dt JL 1 

dfJ - '4 JCOI 8 - C01 11 ° 
etc. 

F11- l 

--- ' L - L cos l 
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We shall see that this is a type of elliptic integral and expand it in a Taylor series. 
We change its form in two steps. First we write 

Jcos 9 - cos tX = J(l - 2 sin2 !8) - (1  - 2 sin2 !<x) = .j2 Jsin2 !<x - sin2 !8 .  
Next, we set k = sin !<x and change the variable from 9 to </> via 

sin !8 = k sin </> = sin !<x sin </>. 
Then </> varies from 0 to !n as 9 varies from 0 to tX, and 

Jcos 9 - cos tX = .j2 Jk2 - k2 sin2 </> = k.j2 cos <f>. 
Furthermore, from sin tB = k sin </> follows 

t cos t9 d9 = k cos "' d</>, 

d9 = 2k cos "' d</> = 2k cos "' d<f> 
= 

2k cos "' d<f> 
• cos tB Jl - sin2 !8 Jl - k2 sin2 </> 

Collecting all this information, we express the integral for T in terms of </>: 

T = 4  = 4  -f "'2 2k cos "' d</> A f "'2 d<f> 
o (k.j2 cos </> )Jl - k2 sin 2 </> g o J 1 - k2 sin2 </> • 

The final integral is called a complete ellipdc integral of the first kind. Since 
k2 sin2 </> = sin2 !<x sin2 </> < 1, we can expand the integrand in a binomial series 
and integrate term-by-term: 

T - 4l [rdqi + t. (:!)(-k'r f:"
•in'" qi dqi} 

But (see pp. 608 and 613) 

( �i) f :12 sinln "' d</> = [< ;l�r��)�) ! ] [  2!;�,')2 � J. 
Therefore we obtain the expansion 

T = 2n ff ( 1 + � f (2n) ! ]\2 .. ) ... rii L 22"(n !)2 
11• l 

= 2n A f 1 + G) 2 k2 + G: !) 2 k. + G: ! : �) l k6 + . . . J. 
where k = sin ftX. For tX smalL k � ftX and 

T � 2nl ( I + ;�)· 

Differential Equations Suppose we must solve an initial value problem like 
dly dxz = xy, y(O) = a, y'(O) = b. 
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One method is to assume that the solution y = y(x) can be expanded in a Taylor 
series at x = 0, substitute the series into the differential equation, then solve for 
the coefficients. 

• EXAMPLE I Solve by Taylor's series 

dy 
dx 

= xy + 1, 
00 

y(O) = a. 
00 

Sollltion Assume y = a +  I a11x", dy � x"- 1  so dx = � na11 . 
11• l 11• l 

The initial condition y(O) = a is satisfied, and the differential equation becomes 
00 00 

L na,.x"- 1 = 1 + ax +  L a,.x"+ 1. 
•• 1 ••1 

We want to equate coefficients. To keep the indices straight we rewrite the equation 
as 

00 00 
L na11x"- 1 = 1  + ax + L a11- 2x"- 1. 
11•1  11m3 

Now we equate coefficients: 

a1 = 1, 4a4 � a2 , · · · • na. = D11- 2 • · • • · 

Clearly the odd indices and the even indices go their separate ways: 

Hence 

a1 = 1, 

a a2 = 2' 

a1 1 a3 1 
a3 = 3 = w· a5 = 5 = • .  3 . 5 ' 

1 2"n ! a211- 1 = 1 · 3  · 5 · · · (2n - 1) = (2n)! ' 
a2 a a a a4 = 4 = 2 · 4' · · · ' a211 = 2 · 4 · · · 2n = 211n ! · 

00 00 
x n .  211- 1  I 

:z. I 2· ·  
y = a 211n ! + (2n)! x · 

11•0 11• 1 
• 

Remark The first sum is e"1'z. The second sum can be expressed in terms of exponential 
functions and an integral See Ex. 32. 

• EXAMPLE 8 Solve 

00 

y(O) = a, y'(O) = b. 

00 

Sohltio11 Assume y = a +  bx + L a,.x", so �� = L n(n - l )a.,x"- 2• 
11•2 11•2 
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The initial conditions are satisfied, and the differential equation becomes 

that is, 

� � 

L n(n - l)a.,x"- 2 = ax +  bx2 + L a.,x"+ 1, 
11•2  11•2  
� � 

L n(n - l)a11x"- 2 = ax +  bx2 + L a11_ 3x"-2• 
11•2 11•5 

Equate coefficients: 

Solve: 

Therefore 

2 · 1 · a2 = 0, 3 · 2 · a3 = a, 

6 · 5 · a6 = a3 , • • • 

a, = 0, · · · ,  a311- 1 = 0, 

4 · 3 · a4 = b, 
n(n - l )a11 = a11 _ 3 ,  

a6 1 · 4  · 7 a9 = 8 . 9 = 9!a, . . · , 

b 2 
a. = 3 · 4 = 4 ! b, 

a4 2 · 5 
a = - = - b  . . .  
7 6 . 7 7 !  ' . 

y = a  1 + - x3 + - x6 + -- x9 + · · · ( 1 1 · 4  1 · 4 · 7  ) 
3!  6! 9! 

+ b(x + � x• + 2
. S x' + 2 . S . 8 x10 + . . ·) 4! 7 !  10! . 

Remark The function y is sometimes written A(a, b; x) and called an Airy r..moa. 

• 

Convergence to e We know that the sequence (1 + 1/nY' converges to e, but 
rather slowly. Using power series we shall determine just how slowly and also 
construct related sequences that converge to e rapidly. 

The key is the power series for the function y(x) = (1 + x)11x for 0 < lx l < 1, 
y(O) = e. It is hard to compute this series directly, so we use the following important 
technique: we show that y(x) is the solution of a certain initial value problem, then 
find a power series solution. 

By logarithmic differentiation, 

where 

y' 
- = Z, y 

x/(1 + x) - ln(l + x) Z = . x2 

Thus y(x) is the solution of the initial value problem 

dy 
- = zy, dx y(O) = e. 
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To find a power series solution, we first expand z: 

(x - x2 + x3 - x4 + . .  ·) - (x - !x2 + !x3 - !x4 + · . .  ) z =  1 x 
= -! + ix - ix2 + !x3 - • • • . 

Next we assume a solution in the convenient form 

y = e( l + a1x + a2x2 + a3 x3 + · · ·). 
The differential equation becomes 

a1 + 2a2x + 3a3 x2 + 4a4x3 + · · · 
= (-! + ix - ix2 + !x3 - • • ·)(1 + a1x + a2x2 + a3 x3 + · . .  ). 

We multiply on the right and equate coefficients: 

a1 = -!, 2a2 = i - !a1 = H. 
3a3 = -i + ia1 - !a2 = -f1, 

4a4 = ! - ia1 + ia2 - !a3 = fm, 
That is enough. We conclude that 

(1 + x)11" = e(l - !x + ffx2 - �3 + OOx' + · · ·). 
Hence for large n, 

This shows clearly why it takes very large values of n to make ( 1  + 1/nY' anywhere 
near e. 

To do better, we multiply the power series for (1 + x)11" by a polynomial of the 
form 1 + b1x + b2 x2 + · · · ,  chosen to knock out terms in x, x2, etc. For instance, 

(1 + x)11"(1 + !x) = e(l + j.x2 - -f.x3 + · · ·). 
Now the left-hand side approximates e with a second order error term, j.ex2, 
which is much smaller than the previous first order error term, -!ex. For x = 1/n 
we have 

1 + - 1 + - - e  ::::: -- < - . I ( 1)"( 1 ) l Se 0.6 
n 2n 24n2 n2 

A numerical comparison to e ::::: 2.718282 is striking: 

n 10 SO 100 200 

(1 + l/n'r 2.594 2.6916 2 70481 2.711517 

(I + l/n)"(I + l/2n) 2.723 2.7185 2.71834 2.718296 
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EXERCISES 

1 

2 

3 

4 

Compute e- 115 to 5-place accuracy, using power series. 
x2 x4 For what x is cos x ==:: 1 - 2 + 24 accurate to S places? 

How many terms of the power series for In x at x = 10 are needed to compute ln(lO.S) 
with 5-place accuracy? (Assume the value of In 10 is known.) 
How many terms of the binomial series for Jl+X will yield 5-place accuracy for 
0 < x � 0.1? 

Compute to 5-place accuracy 

7 

9 
10 

f 0.1 0.2 e"1 dx 6 J e-"J dx 
0 0 

� dx 8 -- dx [Expand at x = 3.). f 1/4 
f 

3.0 1 e" 
0 3.00 1 + x 

Compute to 4-place accuracy the arc length of an ellipse with semi-axes 40 and 41. 
Estimate the value of x for which 

f" t --, dt = 0. 1. 
0 1 + t 

[Hinr Approximate the integral by the first significant term of its power series.) 
1 1  (cont.) Refine your estimate of x to 4-place accuracy by taking the first two significant 

terms of the power series. Use Newton's Method to solve approximately the resulting 
equation. 

12 The quantity w = 2n/T is the anplar frequeacy of the pendulum. Expand w in terms of 
ex up to terms in ex2• 

13 (cont.) Expand T in terms of ex up to terms in cx4• 
14 (cont.) Expand w in terms of ex up to terms in ex'. 

Solve with the initial condition(s) y(O) = a  (and y'(O) = b if second order) 

15 
dy 

16 
dy 

3 

e" 

17 
dy 2 

dx = x + y dx + y = dx = x + y 

d2y d2y dy d2y 
18 dx2 + 4y = 0 19 dx2 + x dx - y = 0 20 x dx2 - y 

d2y dy d2y dy 
21 x2 

dx2 + (xl + x) dx = y 22 x dx2 + dx + xy = 0. 

Find the power series solution up to the x' term 
23 d

d
y
x = l - x2 - y2, y(O) = 2 24 

dy = x , y(O) = 0 
dx x + y + 1 

dy d2y e" 
25 dx = I - y + x3y2, y(O) = - 1  26 + y - y(O) = y'(O) = 1. dx2 - l - x ' 
27 Compute /(x) = ( 1  + x)1'"(l + !x - �x2) up to x4• 
28 (cont.) Compute g(x) = (1 + x)11"(1 + !x - -fix2 + nx3) up to x4• 

( l2 + 1 1x) 
29 (cont.) Compute h(x) = ( 1  + x)11" 

2 
up to x3• 1 + 5x 

30 (cont.) Tabulate/(1/n� g(l/n� h(l/n) for n = 10, 20, 50, 100. 
31• We know that x" - 1- as x -o+. How fast? That is, estimate 1 - x" for x 

small positive. 



32• Prove 

11• 1  
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[Hint See Example S.] 

7. SEQUENCES AND SER IES O F  FUNCTIONS 

Interval of Convergence Let us prove the theorem stated in Section 1: a 
power series converges either at a single point, on an interva� or on the whole line. 
For simplicity of notation, we shall take all power series at x = 0. First, an 
important preliminary result: 

Lemma If a power series L a,. x" converges at x = c, where c rl: 0, then it 
converges absolutely in the interval - lc l < x < 14 
If  the series diverges at x = b, then it diverges at each x for which l x l  > l b l . 

Proof If L a,. c" converges, its terms approach 0, that is, a,. c" ---+ 0 as n ---+ oo. 
It follows that the terms are bounded, that is, there exists a positive number M 
such that la11 c"I S M  for all n. Hence for any x, 

In particular, if - lc l < lx l < le!. then Ix/c l < 1, so La,.x" converges absolutely by 
comparison with the convergent geometric series ML Ix/cl"· 

If L a,. b" diverges and Ix I > I b I. then L a,. x" must diverge. For otherwise it 
converges, and then so does L a,. b" by the first statement in the lemma (with c 
replaced by x and x by b ). End of proof. 

Now to the proof of the theorem on p. 579. Let La,. x" be any power series and 
let D be its domain of convergence, the set of all points x for which the given series 
converges. There are two cases :  

Ca.t� 1 D is unbounded. Then there are numbers c with lcl arbitrarily large and 
L a,. c" convergent. By Lemma 1, for ea�h such c, the set D contains the whole 
interval Ix I < I c I ·  Since c can be taken arbitrarily large, this means that D contains 
all real numbers. 

C.u 2 D is bounded. We draw upon the basic completeness property of the 
real number system; it asserts that D has a unique least upper bound. This means 
there is a smallest number R such that x S R for all x in D. Clearly R � 0 since 
0 is in D. We claim R is the radius of convergence. 

On the one hand, suppose I c I < R. If L a,. c" diverges, then by Lemma 1, 
L a,.x" diverges whenever lx l > lc l . This means that lc l is an upper bound for D, 
smaller than R, the least upper bound. Impossible. Therefore L a,. c" converges 
whenever I c I < R. 

On the other hand, suppose l c l  > R. If L a,.c" converges, then by Lemma 1, 
L a,. x" converges for all x such that Ix I < I c l . in particular for any x satisfying 
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R < x < I c I. so R is not an upper bound for D. Impossible. Therefore L a,, C- diverges 
whenever I c I > R. 

Suppose R > 0. Then it follows from the preceding two paragraphs that D 
consists precisely of the interval -R < x < R, possibly including one or both of its 
end points. 

Finally, if R = 0, then the series diverges for all x with Ix I > 0. Hence it converges 
only at the single point x = 0. This completes the proof. 

A power series converges absolutely at each point of its interval of convergence ] 
except perhaps at the end points (if any). 

PTOO/ If x is any interior point of the interval of convergence, there exists 
another interior point c > 0 with c > lx l .  According to Lemma 1, L a,,x" converges 
absolutely. 

Sequences of Funct O"'ls Our next goal is to prove that power series can be 
differentiated and integrated term-by-term. These properties are actually special 
cases of something much more general, and it is worth while to look at the general 
situation. 

Whenf(x) = LO'  a.x", thenf(x) is the limit of the sequence of partial sums: 

f(x) = lim s,,(x� ,, ... "" 

ror each x in the interval or convergence. Thus a function can be the limit of a 
sequence of functions. Another example: 

valid for all x. 

r = lim ( 1 + �)". 
,, ... "" n 

Now we shall study the general situation in which a function is the limit or a 
sequence of runctions. What we are after are conditions under which the derivative 
or the limit is the limit of the derivatives or the integral of the limit is the limit of 
the integrals. For this we need an important new concept called uniform 
convergence. 

U niform Convergence 

Unifonn Convergence Let {u,,(x)} be a sequence or runctions, all with the 
same domain D. The sequence converges wliformly on D to u(x) ir given any 
£ > 0, there exists an N such that 

lu,,(x) - u(x)I < e 

for all n � N and all x in D. 
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The words "all x in D" are the key to this concept. We can control the degree 
of approximation of u11(x) to u(x) independently of x. The next three results show the 
usefulness of uniform convergence. 

Continuity of the Limit Let {u11(x)} be a sequence of continuous functions 
on D, and let u11(x)-u(x) uniformly on D. Then u(x) is continuous on D. 

Proof Let t >  0. Then there is an N such that luN(x) - u(x)I < !e for all x in D. 
Take any point c in D. Since uN(x) is continuous at c, there exists {> > 0 such that luN(x) - uN(c) I < !e for all x in D such that Ix - cl < f>. If x is such a point, then 

lu(x) - u(c)l - lu(x) - uN(x) + uN(x) - uN(c) + uN(c) - u(c)I 
S lu(x) - uN(x)I + luN(x) - uN(c)I + luN(c) - u(c) I 
< !e + !e + !e = e. 

This proves the continuity of u(x) at c. 

Integral of the Limit Let {u11(x)} be a sequence of continuous functions on 
a closed interval a s  x s b, and let u.(x)-u(x) uniformly on this interval 
Then f.• u(x) dx = lim 1• u11(x) dx. 

• 11�co • 

Proof By the preceding result, u(x) is continuous, hence integrable. Let e > 0. 
Then there exists an N such that lu11(x) - u(x)I < e/(b - a) for all n � N and all x 
in the interval [a, bJ. If n � N, it follows that 

I ( u11(x) dx -( u(x) dx I =  I (cu.(x) - u(x)] dx I 

Therefore 

S f1u.(x) - u(x)l dx < f  b�adx = e. 

• • J u.(x) dx-J u(x) dx. 
• • 

Derivative of the Limit Let {u,.(x)} be a sequence of continuously dif
ferentiable functions on an interval a s  x s b, let u,.(x)-u(x) for each x on 
the interva� and let u�(x)-v(x) uniformly on the interval. Then u(x) is 
differentiable and u'(x) = v(x). 
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Proof If a :s; x :s; b, then 
x x 

u11(x) - u11(a) = J u�(t) dt -J v(t) dt, 
• • 

by the previous result. But u11(x) - u(x) and u11(a) - u(a); hence 

u(x) - u(a) = r v(t) dt. 
ii 

By the Fundamental Theorem of Calculus, the right-hand side is differentiable and 
its derivative is v(x). Hence so is the left-hand side and u'(x) = v(x). 

Remark The last two results can be interpreted in terms or interchanging operations. 
They say, under suitable hypotheses, that 

f • lim = lim f • and !!___ lim = lim !!___ . 
• •-CD •- «> • dx ••«> •• cm dx 

Note the essential role played by uniform convergence. 

Infinite Series It is a routine matter to translate, via partial sums, statements 
about limits of sequences into statements about infinite series. We shall simply 
state the analogues for series of the three previous results. 

Series of Functions 

(a) Let {u,.(x)} be a sequence of continuous functions on a :s; x :s; b, and let 
00 

u(x) = L u,.(x) 
11• l 

uniformly on a :s; x ::;; b. 

Then u(x) is continuous on a :s; x :s; b and 

,, 00 ,, J u(x) dx = L J u,.(x) dx. 
• 11• l • 

(b) Let {u,.(x)} be a sequence of continuously differentiable functions on 
a :s; x :s; b, let 

00 

u(x) = L u,.(x) 
11• l 

00 
and let v(x) = L u�(x) 

for each x on a ::;; x :s; b, 

uniformly on a :s; x :s; b. 

Then u(x) is differentiable on a :s; x :s; b and 
00 

du(x) = v(x) = � du,.(x)
. 

dx � dx 
11•1 



7. Sequence• and Serie• of Function• 823 

The \f-test In applying these results, the first step is always proving the 
uniform convergence of some series. The following Weientrala M-test for uni
form convergence is often adequate. 

M-test Suppose {u.(x )} is a sequence of functions on the domain D and {M .} 
is a sequence of constants such that 

(a) L M. converges 

(b) lu.(x)I S M. for all x in D and all n. 

Then L u.(x) converges uniformly on D. 

Proof Let e > 0. By the Cauchy Test (p. 543) there is an N such that 

M.+ 1  + M.+2 + . . .  + M. < !£ 
whenever N S n < m. Therefore 

I i ui(x) I S i l ui(x)I S i Mi < !e 
i••+l i••+ l i••+ l 

for all x in D and for all m and n such that m > n � N. 
By the Cauchy Test again. for each x in D. the series L u.(x) converges to a 

number u(4 Because of this convergence we may let m - oo in the last displayed 
inequality: 

I i ui(x) I s  !e < e. 
i••+ l 

that is. I u(x) - i ui(x) I < e 
i • l  

for all n � N and all x in D. Therefore u(x) = L u.(x) uniformly on D. 

Power Series We are almost ready to prove that a power series L a.(x - er 
can be differentiated and integrated term-by-term. We shall simplify the notation by 
assuming c = O; it is a routine matter to pass from the case c = 0 to a general c. 
First we use the M-test to establish the necessary uniform convergence. 

Lemma 2 Suppose L a.X- has radius of convergence R > 0. Let 0 < R1 < R. 
Then 

and .L na..x-- • 
converge uniformly on lxl  S R1. 
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Proof By Lemma l ,  L la,.R1" 1 converges. If lx l S R1, then 

la,.x" I s M,. = la..R1"I , 
hence L a,.x" converges uniformly by the M-test. 

The second assertion looks and is a little harder to prove. That extra factor n 
might make na,.x"- 1 grow out of control. Not so, because we can compensate for 
it by increasing R1 slightly and using the natural tendency of geometric growth 
to overwhelm arithmetic growth. 

Precisely, we choose, R1 so R1 < R1 < R. Then L la,.R1" 1 converges by Lemma 1. 
This implies L la,.R1"- 1 I converges. Now let lxl S R1. Then 

1na,.x"- 1 I s M,, = 1na,.R1"- 1 I =  [n(=:)"-
1 
J la..R1"- 1 I. 

But 0 < Ri/R1 < 1 so n(R1/R1'f- 1 - o (by Lhospital's Rule for instance). 
Therefore L M,. converges, so L na,.x"- 1 converges uniformly by the M-test. 

Term-by-Term Operations on Power Series Suppose/(x) = L a,.x" has l 
radius of convergence R > 0. Then 

(a) /(x) is continuously differentiable on Ix I < R, and 

(b) rlf/(t) dt = � � x11• l Jo L n + 1 

f'(x) = L na,.x"- 1 ; 

for l x l < R. 

Proof If lx l < R, fix R1 so lx l < R1 < R. By Lemma 2, La,,x" and rna,.x"- 1  
converge uniformly on lx l S R1, so 

and l/(t) dt == 
� � x"+ l Jo L n +  1 

by the results on series of functions, p. 622. 

Remark 1 (a) can be applied to f', then tor. etc. Thus f can be differentiated repeatedly, 
and 

Cl) 

- • n(n - 1 )  · . . (n - k + l )x"  • 
'J I _ 

dx' 
·-· 

for lx l  < R. 

Remark 2 We have carefully avoided the end points of the interval of convergence. If 
f (x) • L a,, x" has radius of convergence R, we do not know what happens at x = R and 
x _, - R. But suppose for instance that L a,, R" converges. Then it can be proved that 
L a,, x" converges uniformly on -R < x s R, and hence that f (x) is continuous and can be 
integrated on 0 s x s R. This result is fairly deep, and its proof is beyond our scope. It is 
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needed to prove statements like 

1n 2 - f1 � - 1 - ! + ! _ ! + · · · , Jo 1 + x 2 3 4 

� = arc tan I =  f 1 � = 1 - ! + ! _ ! + · · · .  

4 0 I +  x2 3 S 7 

EXERCISES 
1 Lct/.(x) = 

2 

3 
.. 
5 
6 
7 

8 

9 

1 nx for 0 s; x s; -, n 
l 2 2 - nx for - s; x s -, n n 

Prove that f.(x) -0 on 0 s; x < oo, but not uniformly. 

2 0 for - S x. n 

Lctf.(x) = X-. Show that {f.(x)} converges uniformly on 0 s x s; 1\,  but not uniformly 
on 0 s; x s; I. 
Prove that xe-"" -o uniformly on 0 s; x < oo. [Hint Find max xe-"".] 
Determine whether or not x2e-"" -o uniformly on 0 s x < oo . 

Prove that Li (sin nx)/n2 is continuous for - oo  < x < oo. 

Prove that Li I/( I + X-) is continuous for x > I. 
Prove that/(x) • Li e-"" sin nx is continuous for x > 0. 

l .. l 
(cont) Justify the formula J /(x) dx = L J e-.,. sin nx dx. 

1 •• 1 1 
.. .. 

UStJ - -- = --. J .fyd L 
sin nx 

L 
cos nx 

dx n3 n2 
,. . ,  · - ·  

10 Find an example whcrc/.(x)-/(x) uniformly on a S x s; b and lim.-.. /�(x) :f. f'(x). 
1 1  If L a. is absolutely convergent, prove L a. sin nx is uniformly convergent. 
12• Suppose that in the "Derivative of the Limit" box on p. 621 we replace the assumption 

that u.(x)-u(x) for all a s;  x s; b by the assumption that u.(c)-u(c) for some 
c such a s;  c s;  b. Prove that u.(x)-u(x) for all a s;  x s; b follows anyhow. 

Expand in a power series at x • 0 

13 f: e"'1 dt 1 1· 14 J0(x) = - cos(x cos 8) d8. 
JI: 0 

The next four exercises show how one can start .. from scratch" with power series and derive 
the main properties of the exponential function. Set E(x) = LO X-/n!. 
15 Show that E(x) is continuously differentiable for all x and E(x) = E(x� Also E(O) = I. 
16 Prove E(x)E(-x) • I, hence E(x) > 0 for all x. [Hint Dift'crcntiate.] 
17 Prove E(c + x)E(-x) - E(c). 
18 Prove E(c + x) = E(c)E(x� 
The next 10 exercises show how properties of the trigonometric functions can be derived 
"from scratch" using power series. Define S(x) = Li (- 1)"- 1 x2•- 1 /(2n - I)! and C(x) -
LO (- l )"x2•/(2n)!. 
19 Prove that S(x) and C(x) are continuously differentiable for all x, that S'(x) = C(x� 

and that C(x) = -S(x� 



828 1 2. POWER SERIES 

20 Prove that S(O) = 0, C(O) = l, S(x) is odd, and C(x) is even. 
21 Prove that S1(x) + C1(x) - 1 . Conclude that IS(x)I s; 1 and IC(x)I s; 1. [Hint Use 

Ex. 19.] 
ll Prove S(a + x) - S(a)C(x) + C(a)S(x). [Hint Expand S(a + x�] 
23 Deduce from Ex. 22 that C(a + x) = C(a)C(x) - S(a)S(x). 
24 Use C(x) = 1 - !x1 + r1(x) to prove C(x) > 0 for 0 s; x s; 1 and C(2) < 0. From these 

results the first positive zero of C(x) is a number in such that 2 < n < 4. 
25 Prove S(p) = 1. 
26 Prove S(1t) = 0 and C(1t) = - 1. 
27 Prove S(x + n) = -S(x) and C(x + n) - -C(x). 
28 Finally, prove S(x) and C(x) are periodic of period 2n. 

8 MISCELLANEOUS EXERCISES 

Expand in a Taylor series at x = 0 
1 x cos x - sin x 

4 r· 1 -�s t  dt 
Jo t 

Sum the series 
1 3 5 7 

7 4 + 16 + 64 
+ 256 + . . .  

x' x9 x13 
9 x + 51 + 9! + 13 ! + · · · 

2 [ln( l - x))/x 

5 -- dt i" t 
o 1 + r4 

3 
f" sin t dt 

0 t 

6 (sin r1 dt. 
0 

2 3 4 1 
11 1 + - + - + - + . . . 12 1 + 300 + -- + + . . . . 3 9 21 50,000 7,000,000 
13 How many terms of in = 1 - ! + ! - ; + · · · are needed to estimate 1t to 4 decimal 

places? 
14 (cont.) Use the formula in = 4 arc tan ! - arc tan m and the series for arc tan x to 

estimate n to 4 places. 
15 Solve (x1 - l)y• = 6y, y(O) = a, y'(O) = b. 
16 Solve ( 1  - x1)y• - xy' + 49y = 0, y(O) • 0, y'(O) - 1. 
Evaluate 

17 d
d1:0 (x6 cos 2x) I 18 

d
d' 5 (e" sin x) l . X ••O X •O 

19 Is this game fair? We roll a die. If a 6 turns up, I pay you $5 and the game ends; 
otherwise you pay me $1 and we play again for $10 or $2, then for $15 or $3, etc. 
until a 6 appears. 

20 Let a,, be the number of ways that a sum of n cents can be made using only pennies, 
nickels, and dimes.• Prove that 

21 Let p. be the probability that in n tosses of a coin, two consecutive heads do not 
appear. Show that p1 • l, p1 • l. and P.+1 - !P.+ 1 + iP • .  [Hint Any such sequence of 
tosses must start with either T or HT.] 
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ll (cont.) Find the generating function I:f p.x" and derive an exact formula for p • .  

23 Explain why the approximation sin x 
� Jl - fx2 is accurate for lx l  small. 

x 
24 Show for each integer p � I that Lf n'/n ! is an integer times e. 



Space Geometry and 
Vectors 

1 . R ECTANGULAR COORDINATES 

13 
In this chapter we shall present the analytic geometry of three-dimensional 

euclidean space, denoted R3• This subject is traditionally called solid analytic 
aeometry; our treatment will emphasize vector algebra. Three-dimensional geometry 
is important and interesting in its own right, and it is the key to our future study 
of geometric applications of calculus and of the calculus of functions of two or 
more variables. 

Space Coordinates Plane analytic geometry begins with the introduction of 
two perpendicular coordinate axes in the Euclidean plane R2. One is directed 
(oriented) and called the x-axis. Then the other, called the y-axis, is directed so that 
th� pair in the order x, y is a right-handed system, that is, so a positive (counter
clockwise) rotation through 90° from the positive x-axis brings us to the positive 
y-axis (Fig. la). 

Having this in mind, let us pass to space. Solid analytic geometry begins with 
the introduction of three mutually perpendicular coordinate axes in R3. They must 
pass through a fixed point 0 called the origin. Any two of these axes are chosen, 
directed, and labeled the x-axis and the y-axis respectively (Fig. lb). The third axis 
is labeled the z-axis, and its direction is determined by the right-hand rule (Fig. le): 

(a) Axes in R2 

628 

x 

to be the 
z·axis 

(b) Axes in R3 

y 

Fig. I Placing coordinate axes 

= 

(c) Right hand rule 
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when a right hand curls around the z-axis with its fingers going from the positive 
x-axis to the positive y-axis, its thumb points in the positive z-direction. 

Since many people have trouble at first "seeing" space figures from plane 
drawings, a few more words and figures are in order. In Fig. 2a, drawn in perspective, 
we are facing the far wall of a rectangular room, and the origin of the coordinate 
system is the far left comer of the ftoor. The x-axis is chosen running toward us at 
the intersection of the floor and left side wall. The y-axis runs along the back of 
the ftoor to the right. Thus the z-axis runs straight up or straight down; by the 
right-hand rule it is up. 

= D D 

y 

(a) Axes in comer of room 

L y 
(b) Problem: Place 

the .x·axis. 

I' P Calculus 629 

: 

y 

Solution: Pencil 
pointi111 stniaht up 

In Fig. 2b, the right-hand page of the open book is ftat on a desk. The y, z-axes 
are drawn on the page in the usual position. The problem is to place a pointed 
pencil representing the x-axis, eraser end at 0. The solution, in agreement with the 
right-hand rule, is shown in Fig. 2c. 

The three axes determine three coordinate planes. For instance, the plane of the 
y- and z-axes is called the y, z-plane, etc. (Fig. 3a). 

Now take any point p in space. Through p pass planes parallel to the three 
coordinate planes. Their intersections with the coordinate axes determine three 
numbers x, y, z, called the coordinates of p. See Fig. 3b. Conversely, each triple 
(x, y. z) of real numbers determines a unique point p in  space. We shall write 

p = (x, y, z). 
A point (x, y, z) is located by marking its projection (x, y, 0) in the x, y-plane 

and going up or down the corresponding amount z. (From the habit of living in the 
x, y-plane for so long, we think of the z-direction as "up".) See Fig. 3c for 
examples. 

The portion of space where x, y, and z are positive is called the first octant (No 
one numbers the other seven octants.) In our figures so far, we have projected into 
the y, z-plane, that is, we have taken the y, z-plane in the plane of the page. Then 
the angle at which we draw the x-axis is arbitrary. We try to choose it so our 
drawing is as uncluttered as possible. We can just as well project into one of the 
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: 

)'. :-plane 

y 

x, .v-planc 

(a) The coordinate planes (b) The plane through p parallel 
to the z, x-plane determines 
they-coordinate of p. 

Fig. 3 

= 

('.!. 3, 7) 
4 

'.! 
3 6 

)' 

(4, 6, - 3) 

(c) Locatina points 

other two coordinate planes. or into some other plane altogether. But no matter 
how we set up our axes, points are located in basically the same way (Fig. 4). 
A little care is needed to make sure the drawing is right-handed. 

x ; 

: 
x 

x 

(a) Projection into 
z, x-plane 

(b) "Isometric" projection (c) Cone in isometric 
projection 

Fig. 4 Various projections 

EXERCISES 

In Fig. 2a, draw the coordinate axes from the given origin along edges of the room 

I origin rear lower left, y-axis forward 
2 origin rear lower right, x-axis to left 
3 origin rear upper right, z-axis drawn 
4 origin rear upper left, y-axis down 
5 origin front lower left, x-axis to right 
6 origin front upper left, y-axis down. 

Locate the points in Fig. S 
7 (1, 2, 3� (1, 3, 4) 
9 (I. -2. l), (2. -3, - 1) 

8 (2. 4, 3� (2, -3, 3) 
10 (1, - 3, -2), (3, 2, -2). 



z 

4 

2 

2 4 
y 

Locate the points in Fig. 6 
I I  (3, 4, - 1), (-3, -3, 1) 
13 (3, -2. 2) (-2. 4, 4) 
Locate the points in Fig. 7 
14 (1, 2, 3� (0, 1, 4) 
17 (3, -2. 3� (4, 4, 4) 

2. VECTOR ALGEBRA 

JC 

4 

2 

2. Vector Algebra 

2 4 
% 

12 (0, 0, -3� (-2, -2. 3) 
" (0, -3, 2� (3, 3, 3). 

16 (3, 4, 2� (2. -3, 3) 
18 (2. 4, - 1 � ( -3, 2. 4 � 

z 

4 

2 

831 

y 

We now introduce the concept of a vector. Vectors are useful for handling problems 
in space because ( I )  equations in vector form are independent of coice of coordinate 
axes, hence are well suited to describe physical situations, (2) each vector equation 
replaces three ordinary equations, and (3) several frequently occurring procedures 
can be summarized neatly in vector form. 

Let the origin 0 be fixed once and for all. A vector in space is a directed line 
segment that begins at 0; it is completely determined by its terminal point. We 
shall denote vectors by bold-faced letters x, v, F, r, etc. (In written work use 
x or x.) A point (x, y, z) in space is often identified with the vector x from the 
origin to the point. The zero vector (origin) will be written 0 = (0, 0, 0). For this 
vector only, direction is undefined. When we write x = (x, y, z� the numbers x, y, 
and z are called the compoaenll, or coordinates of x. 

Notation We shall frequently call the three axes the x1-axis, the x2-axis, and the x3-axis 
instead or the x-, y-, and z-axes. This has the big advantage that as soon as we give a 
name to a vector, we automatically have names for its components. Thus 

x = (x1, x2 • x3� v = (v1, v2 , v3� • - (ai. a2 , a3� etc. 

A vector is determined by two quantities, length (or magnitude) and direction. 
Many physical quantities are vectors: force, velocity, acceleration, electric field 
intensity, etc. 

Remember that the origin 0 is fixed, and that each vector starts at 0. We often 
draw vectors starting at other points, but in computations they all originate at O. 
For example, if a force F is applied at a point x, we may draw Fig. la because it is 
suggestive. But the correct figure is Fig. 1 b. One must specify both the force vector F 
(magnitude and direction) and its point of application x. 
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0 

x 
(a) Picturesque (b) Correct 

Fla. l Drawing vectors correctly 

Add1t1on o V ctor The sum u  + v of two vectors is defined by the parallelo
gram Jaw (Fig. 2). The points 0, u, v, u + v are the vertices of a paralJeJogram, 
with u + v opposite to O. 

Vectors are added numericaJly by adding their components: 

G_: .. U2 , U3) + (vi. V2, V3) = (ui + Vi, Uz + Vz , U3 + � 
For example. 

( - 1, 3, 2) + (1, 1, 4) = (0, 4, 6� 

0 

u 

(0, 0, 1) + (- 1, 0, 1 ) = (- 1, 0, 2). 

Fla. 2 Parallelogram law for 
vector addition 

Let us prove that the sum of vectors, defined geometrically by the paraJlelogram 
Jaw, can be computed algebraically by adding corresponding components. We pass 
planes P, Q, R through u, v, and w = u + v paraJlel to the x3 , xi-plane (Fig. 3). 

w = u + v  

Fia. 3 Proof that vector addition 
is componentwise 
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They meet the x2-axis at u2 , v2 , and w2 • Because vw and Ou are parauei the 
directed distance from Q to R equals the directed distance from the x3 , x1-plane to P. 
Hencew2 - v2 = u2 , that is, w2 = u2 + v2 . Similarly, w1 = u1 + v1 and w3 = u3 + v3 • 

M u lt1plicat1on by Scalars Let v be a vector and let a be a number (scalar). 
We define the product av to be the vector whose length is la I times the length of 
v and which points in the same direction as v if a > 0, in the opposite direction if 
a < 0. If a = 0, then av = 0. 

There is a simple physical idea behind this definition. If a particle moving in a 
certain direction doubles its speed, its velocity vector is doubled; if a horse pulling 
a cart in a certain direction triples its effort, the force vector triples. Figure 4 
illustrates multiples of a vector. 

Scalar multiples are computed in components by the following rule. 

This rule is proved by similar triangles (Fig. 5). The triangle Ov2 v is similar to 
Ow2w, hence w2 = av2 , etc. 

Fis- 4 Scalar multiples 

w = av 

Fla. 5 Proof that scalar multiplication 
is componentwise 

The difference v - w of two vectors is defined by 

V -W = V  + (-w). 

See Fig. 6. (The vector -w has the same length as w but points in the opposite 
direction.) 

w 

-w 
(a) 

\L; 
0 v w 

(b) 

Fis. 6 Difference of vectors 
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The segment from the tip ofw to the tip of v (the dashed line in Fig. 6b) has the 
same length and direction as v -w. Hence if two points are represented by vectors 
v and w, the distance between them is the length of v -w. 

R ules of Vector Algebra The basic rules of vector algebra follow directly from 
the coordinate formulas for addition and multiplication by a scalar. 

Rules of Vector Algebra 

v + O =O + v = v  
u + v = v +u 

Ov = 0 lv = v  
(a + b )v = av + bv 

v + (-v) = ( -v) + v = 0 
u + (v + w) = (u + v) + w 

a(bv) = (ab)v 
a(v + w) = av + aw 

n 1\/1 1d o  1 t rormu d As an example of the convenience of vector algebra. 
let us find the midpoint m of a segment w. It is clear in Fig. 7 that m is the 
midpoint of the segment from 0 to u + v (because the diagonals of a parallelogram 
bisect each other1 hence m = !(u + v). 

Midpoint Formula lfu and v are any two points in R3, then their midpoint 
is 

u 

Fi&- 7 The midpoint of w is 

m = t(u + v� 

u 

Jw 

Fi&- 8 Vector operations in the plane 

"1  

Vectors in the Plane The Euclidean plane R2 can be considered as part ofR3, 
for example as the x 1• x2-plane. By itself, this plane consists of all vectors u = (u,, u2). 
But as part ofR3, it consists of all vectors u = (u1, u2 , 0). 

Vector addition and multiplication by scalars are defined in the plane (Fig. 8) just 
as in space. In coordinates, 



EXERCISES 

Compute 
I (I, 2, -3) + (4, 0, 7) 
3 (4, o. 7) - (1, 2, -3) 
5 (1, 2, 3) - 6(0, 3, - l) 
1 3(1, 4, 2) - 2(2, l, l ) 
9 3(1, 1, 0) - 2(0, l, 1 ) + (l, 0, 1) 

Prove 

I I  u + v = v + u  
13 (a + b)u = au + bu 
15 (ab)u = a(bu) = b(au). 

3. length and Inner Product 636 

2 (- I, - 1, 0) + (3, 5, 2) 
.. (2, 1, 1) - (3, - l, -2) 
6 4(( 1, -2, -7) - ( l, l, l)] 
8 4(1, - 1, 2) - 3(1, - I, 2). 

10 -5(3(1, l, l ) - (2, I, 4)] + 4(-2, -2, 1). 

12 u + (v + w) = (u + v) + w 
14 a(v + w) = av + aw 

16 Show that the segments joining the midpoints of opposite sides of a (skew) quadri
lateral bisect each other. 

17 (cont.) Find the point of intersection of these segments when the vertices of the 
quadrilateral in order are 

v, =0. V2 = (l, 0, o� V3 = (0, l, o� V4 = (0, 0, l). 
18 Find the intersection of the medians of the triangle with vertices a, b. c. 
19 (cont.) In a tetrahedron, prove that the four lines joining each vertex to the centroid 

(intersection of the medians) of the opposite face are concurrent. 
lt)• Space billiards-no gravity. An astronaut cues a ball toward the comer of a rectangular 

room, with velocity v. The ball misses the comer, but rebounds off of each of the three 
adjacent walls. Find its returning velocity vector. 

3. LENGTH AND INNER PRODUCT 

The length of a vector v, denoted Iv  I. is the distance of its terminal point from 
It. From Fig. la, we may regard lv l  as the length or a diagonal of a rectangular 
;olid. From the figure: 

Length Formula 

rhe following properties of length are clear geometricaUy: 

Properties of Length 10 1  = 0, 
lavj = l a l · j vj, 

I v I > o ir v � o, 

triangle inequality: Iv +  w j :s; !v i + jwj. 

The distance between two points can be expressed in terms of vector length. In 
lCt, by Fig. 1 b, the distance between the points v and w equals the length or the 
·xtor v -w. 
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;111, I v'v� + vf /I I v2 I 

x .  

w 

L • 
�2 I v  w I 

(b) d(v, w) • I v  - w I 

v w 

v 

because opposite sides of a 
parallelosram have equal lelllths. 

Fis- I Length and distance 

Cance fonnulo The distance between two points v - (v,, v, . v,) and I = (w1, W2 , W3) JS 

d(v, w) = Iv - wl =J(v1 - w1)2 + (v1 - w1)1 + (v3 - w3)2 . 

Examples (1) The distance from (1, 2, 4) to (3, 0, - 1) is 

1 (1, 2. 4) - (3, 0, - 1)1 = j(l - 3)1 + (2 - 0)1 + (4 + 1)1 = J4 + 4 + 25 = J33 . 
(2) The set of all points (v" v2 , v3) satisfying 

v,2 + v22 + v32 = l  
is the sphere with center 0 and radius 1. 

(3) A vector equation for the sphere with center Xo and radius r is 

I• - •o l = r. 

r ne t d Another important vector operation is the imer product of two 
vectors, also called the dot product 

Inner Product Let v and w be vectors and 8 the angle between them. Their 
inner product is 

v ·w - lv l · lwl cos 8 

(Ifv = 0 orw = 0, we define v ·w = 0.) 
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See Fig. 2a. The angle 6 between the vectors can be measured either from v to w 
or from w to v. We shall always take 0 � 6 � n. We see from Fig. 2b that lwl cos 6 
is the (signed) projection of w on v, hence v · w is I v  I times the projection of 
w on v. 
Warning The inner product of two vectors is not a vector; it is a scalar (number). 

v 

0 

(a) 

w 

w 

w 

(b) 

Fig. 2 Inner product 

v 

To work with inner products effectively, we need a formula for computing v ·w 
in terms of the components of v and w. Fortunately there is a remarkably simple 
rule: 

Formula for Inner Products If v = (v1, v2 , v3) and w = (w1, w2 , w3� 
then 

Examples (5, - 1, 3) . (2, 7, 2) = 5 . 2 + ( - 1) . 7 + 3 . 2 = 9, 

(3, 4, 0) · (1, -5, 6) = 3 ·  1 + 4(-5) + 0 · 6 =  - 17. 

Proof of tire fortn11lll By Fig. 3 and the Law of Cosines 
Iv  - wl2 = lv l2 + lwl2 - 2 lv l lwl cos 6 = lv l2 + lw l2 - 2v · w. 

v - w 
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Hence 

2v · w =  lv li + lw l2 - lv - w l2 
= l(vi. v2 , v3}12 + l(wi. w2 , w3}12 - l(v1 - w., v2 - w2 , v3 - w3)12 
= (v,2 + V22 + V32) + (w, 2  + W22 + W32) 

- (v1 - w1)2 - (v2 - w2)2 - (v3 - w3)2 
= 2(v1W1 + Vz Wz + V3 W3). 

The main algebraic properties of the inner product follow easily from the formula: 

Properties of the Inner Product 

(av) • w = v • (aw) = a(v • w) 

The proofs are left as exercises. 

(u + v) • w = u • w + v • w. 

Perpendicular Vectors Two non-z.ero vectors v and w are perpendicular when 
the angle between them is 8 = Pt· Then v • w = Iv I • I w I cos 8 = 0, and conversely. 
We shall consider the z.ero vector 0 as perpendicular to all vectors. 

Perpendicular Vectors Vectors v and w are perpendicular if and only if 

v ·w = O. 

For example, (1, 2, 3) • (- 1, - 1, 1 )  = - 1  - 2 + 3 = 0, so (1, 2, 3) and ( - 1, - 1, 1) 
are perpendicular. 

Terminology When speaking ofvectors, ordtopnal is a frequent synonym for perpendicular. 
Thus (1, 2, 3) and (- 1, - 1, 1)  are Ol'thogonal vectors. 

Relations I nvolving I nner Products There are several useful relations 
between length, inner product, and the angle between vectors. First, length can be 
expressed in terms of the inner product: 

lvl2 = V  · v  = v,2 + v22 + V32. 

Conversely, the inner product can be expressed in terms of length by means of a 
short calculation: 

therefore 

Iv +  wl2 = (v + w) • (v + w) = lv l2 + 2v • w + lw l2• 

Iv - w l2 = (v - w) • (v - w) = lv l2 - 2v • w + lwl2• 
Iv + w l2 - Iv - w l2 = 4v • w. 

The angle 8 between v and w can be found from 

v · w =  lv l lw l cos O 
by solving for cos 8. 
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Relations Let v and w be two vectors and let 8 be the angle between them. 
Then 

v · w  cos 8 =
l v l lwl  (v � O. w � O). 

• EXAMPLE 1 Find the angle between v = (1, 2, I } and w = (3, - I, 1). 

Hence 

v · w  = 3 - 2 + I =  2, 
lvl2 = I +  4 + I =  6, lwl2 = 9 + I +  I =  1 1 . 

v · w  2 ( 2 ) cos (} =  
lv l lwl  = 

J6JTI ' 8 = arc cos .j66 . • 

• EXAMPLE 2 The point (I, I, 2) is joined to the points (I, - I, - 1) and 
(3, 0, 4) by lines Li and L2 • What is the angle 8 between these lines? 
Sobttio11 The vector 

v = (I, - I, - 1) - (1, 1, 2) = (0, - 2, - 3) 
is parallel to Li (but starts at 0). Likewise 

w = (3, 0, 4) - (I, I, 2) = (2, - I, 2) 
is parallel to L2 • Hence 

-4 cos O =  v · w  = 0 + 2 - 6 
lv l lwl Jo+ 4 + 9J4 +  I + 4  feJ9' 

8 = arc cos(3fa) · • 

Note When we find cos 6 < 0 for an angle between two lines, then 6 is an angle in the 
second quadrant. hence 6 is not the smaller angle between the lines, but its supplement. The 
basic ract here is that cos(x - 6) = -cos 6. 

Direction Cosines The three unit-length vectors along the positive coordinate 
axes (Fig. 4) are denoted by 

1 = (1 , o, o� J = (O, 1, o� k = (O, o, 1� 
They provide a useful way of expressing general vectors. For ifv is any vector, then 

v = (vi. V2 ' V3) = Vi (1, 0, 0) + v2(0, l, 0) + v2(0, 0, 1) = Vil + v2J + V3 k. 
Thus v is the sum of three vectors vi I, v2j, v3k that lie along the three coordinate 
axes. The components Vi, v2 , v3 can be interpreted as dot products: 

V · I =  (v1, V2 , V3) • (1 , 0, 0) = Vi· 
Similarly, v2 = v · j and v3 = v · k. 
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r 
k 

Fla. 4 The basic unit vectors 

/ 
y 

Each vector v = (v1, v2 , v3) can be expressed as 

v = v,I + VzJ + V3k ,  

where v1 = v · I, 

Now suppose u is any unit vector, that is, a vector of length one (Fig. Sa). Let 
oc be the angle from I to u. Define p and y similarly. Then u · i = cos oc, u · j = cos p, 
and u · k = cos y. Hence 

u = (cos oc)I + (cos P)J + (cos y)k = (cos oc, cos p, cos y). 

Since l u l  = l, cos2 oc + cos2 p + cos2 y = 1. 

Unit vectors are direction indicators. Any non-zero vector v is a positive multiple 
of a unit vector u in the same direction as v. In fact v = lv lu, so 

(v � 0). 

Direction Cosines Each non-zero vector v can be expressed as 

v = l v lu, u a unit vector, or as v = lv l (cos oc, cos p, cos y). 

The numbers cos a, cos p, cos y are called the direcdon cosines of v. They satisfy 

cos2 oc + cos2 p + cos2 y = 1 .  

The Plane In R2 the formulas of this section specialize as follows: if v = (v1, v2) 
and w = (w1, w2

� then 

Non-zero vectors v and w are perpendicular if v · w = 0, that is, if 

(provided the divisions are permissible). This is just the familiar condition that 



k 

u 

(a) In R3 
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u 

0 

(b) In R2 

Fig. 5 Direction cosines 

the slopes of perpendicular lines are negative reciprocals of each other. (The slope 
of a line in the direction of v = (v1, v2 ) is v2/vi-) 

The basic unit vectors in R2 are 

i = (I ,  0) and j = (0, l ). 

If u is any unit vector (Fig. Sb), then 
u = (cos 1X)i + (cos p)j, 

and cos2 IX +  cos2 P = l u l2 = l .  

By the figure, IX + P = !n. hence cos p = sin IX, so 

u = (cos IX, sin IX) = (cos 1X)i + (sin 1X)j. 
The assumption I u I = 1 simply means cos2 IX + sin 2 IX = l .  

EXERCISES 

Compute 

I (8, 2, l) · (3, 0, S) 
3 ( I, 0, 2) • ((1, 4, 1) + (2, 0, -3)) 
5 1 31 - J + kl 
1 HJ3(- 1. l, 1 ) 1 

Find the angle between the vectors 

9 (4, 3, o� (-3. o, 4) 
I I  (6, 1 ,  S� (-2, -3, 3) 
13 (1, I, - I� (2, 0, 4) 
Compute the distance between the points 

15 (0, I, 2� (S, -3, I )  
11 (7, o. o� (2, 3. 4) 
Find the direction cosines 

2 ( - I, - I, - I ) • ( I, 2, 3) 
4 1 (2, -4, 7) 1 
6 1 (- 1, - 1, 0) - (3, s, 2) 1 
8 [3J - (1, 1, 2)) . (4j - k). 

10 (1, 2, 2� (-2, l. -2) 
12 (-5, 6, I), (2, 3, -8) 
14 (2. 2, 2� ( - 2, 2, -2). 

16 ( l, 1, 1� (1, - 1, 2) 
18 (8, 5, - I� (7, 9, 3i 

19 (1, 0, l )  20 ( - 1, - 1, - 1 ) 21 (2, l , -3) 22 (4, - 7. -4i 
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23 Find two non-collinear vectors perpendicular to ( I. - I, 2). 
24 Find the angle between the line joining (0, 0, 0) to (I, I ,  I) and the line joining ( I .  0, 0) 

to (0, I ,  0). 

Prove 

25 v · w = w · v 26 (av) · w = v · (aw) • a(v · w) 
27 (u + v) · w = u · w + v • w. 
28* Let u be a unit vector. Show that the formula v = (v · u)u + [v - (v · u)u] expresses 

v as the sum or two vectors, one parallel to u. the other perpendicular to u, and is the 
only such expression. 

29 Prove the Cauchy-schwarz Inequality: 

l v · wl s l vl · lwl. 
30 (cont.) Now prove the triangle inequality: Iv + wl S lv l + lwl. 

[Hint Iv + wl2 = l (v + w) · (v + w)I • l(v + w) · v + (v + w) · wl 
s Iv + wl · lv l + Iv +  wl · lwl . ] 

4. LIN ES AND PLAN ES 

In this section we shall learn how to describe lines and planes in R3 by equations. 
Let us begin with lines. A line in space can be given geometrically in three ways: 
as the line through two points, as the intersection of two planes. or as the line 
through a point in a specified direction. Let us start with the third way. 

Parame ric orr of a ine A direction in space is described by a non-zero 
vector a in that direction. Let L be the line (Fig. la) through 0 in the direction of 
a. Then, as Fig. la shows. each point x of L is a multiple t• of a, where t > 0 if x 
is on the same side ofO as the terminal point of• and t < 0 ifx is on the opposite 
side of 0. Therefore L is the set of all multiples x = ta of a, including 0 = 0 · a. 

(a) The line of multiples of 1 (b) The line throu&h b parallel to I 

Fig.. I Line in parametric form 

Now suppose we are given a -F 0 and a point b. We want the line through b in 
the direction determined by a, that is, the line through b parallel to a 

Take any point x of this line. The line through x parallel to the vector b 
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meets the line through a, determining a parallelogram (Fig. lb) with vertices 0, b, 
x, and ta. By the parallelogram rule for vector addition, x = ta +  b. 

Conversely, each point of the form x = ta +  b is on the line through b parallel 
to a, again by the parallelogram rule for vector addition. 

Parametric Vector Equation The line through b parallel to a "'" 0  consists 
of all points 

x = ta + b, 

where the parameter t varies over all real numbers. 

The vector equation x = ta + b can be expressed as a system of three scalar 
equations by writing out its components: 

Parametric Scalar Equations The line through (b1, b2 , b3) parallel to 
(a1, a2 • a3) # (0, 0, 0) consists of all points (x1, x2 , x3) such that 

I

X1 = a1t + b1 
X2 = a2 t + b2 X3 = a3 t + b3 

where - oo  < t < oo. 

• EXAMPLE 1 Find all points (x, y, z) on the line through ( -2, I, 2) parallel to 
(2, - l, 3). Are (0, 0, 4) and (-6, 3, -4) on this line? 

Sohltio11 (x, y, z) = t(2, - 1, 3) + (-2, 1, 2) = (2t - 2, - t + 1, 3t + 2). 
In scalar form, the line consists of all (x, y, z) such that 

x = 2t - 2, y = -t + l, z = 3t + 2, - oo < t < oo. 
Clearly x = 0 only if 2t - 2 = 0, that is, t = l. But then y = 0 and z = S "'" 4, so 
(0, 0, 4) is not on the line. However, x = -6  implies 2t - 2 = -6, t = -2; then 
y = 3 and z = -4. Hence (-6, 3, - 4) is a point of the line. • 

Suppose we want the line through two distinct points a and b. Its direction is 
determined by the vector b - a. Hence the line we want is the line that passes 
through a (or b) and is paralJel to b - a. This line we know is 

x = t(b - a) + a =  ( 1  - t)a + tb, -oo < t < oo. 

line through Two Points Given a "'" b, the line through a and b consists of 
all points 

x = (1 - t)a + tb - 00  < t < oo. 
In scalar form, 

X1 = (1 - t)a1 + tb,, x2 = (1 - t)a2 + tb2 , 

• EXAMPLE Z Find the line through (3, - 1, 2) a.1d (4, 1, 1 ). Where does it meet 
the x., x2 - plane? 



844 1 3. SPACE GEOMETRY AND VECTORS 

Sohltio11 x = (1 - t)(3, - 1, 2) + r(4, l, 1 )  = (r + 3, 2t - l, - r + 2� 
The line meets the x1, xi-plane where x3 = 0, that is, where -t + 2 = 0, t = 2. Then 
x1 = 5 and x2 = 3, so x = (5, 3, 0). 

Div ion o S qn ., Suppose we want the point on a segment ab that is 1 
of the way from • to b. By vectors this is easy; we just add J(b - •) to a. The 
result (Fig. 2a) is • +  !(b - •) = i• + Jb. 

In genera� if 0 s t s 1, the point (Fig. 2b) that is t of the way from • to b is 
• = .  + t(b - •) = ( 1  - t)e + tb. 

Do you see why this formula agrees with the parametric vector equation of a line 
(at least for 0 s t s 1 )? The special case t = 1 yields the midpoint formula 

m = 1• + !b 
for the midpoint of ab. 

0 

(a) The point � of the way 
from 1 to b 

0 

x = a + t (b al = I I I )  1 i tb b 

(b) The point • th1t is t of the 
way from 1 to b 

Fig. 2 Division of segments 

Points on the segment ab can be thought of as weighted averages of e and b. 
For instance the point i of the way from • to b is i• + jb. This is a weighted 
average with weights i assigned to • and i to b. (The point is closer to b, so b gets 
the larger weight.) Its coordinates arc weighted averages of the coordinates of e and 
b: 

ie + J> = (ia1 + ib1, ia2 + ib2 , ia3 + ib3). 
Remark Bear in mind that the sum of the weights is 1. This applies also to weighted 
averages of more than two points. 

Eq J ion o A plane can be described in several ways, for example as 
the plane through three non-collinear points, as the plane through a line and a point 
not on the line, or as the plane through two intersecting (or parallel) lines. 

We begin our study of planes with yet another possibility: the plane P through 
a point c and perpendicular to the direction determined by a vector • '::/= O. See Fig. 3. 
Now a point x lies on P if and only if the segment xc is perpendicular to a. that is, 
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Fig. 3 The plane through c 
perpendicular to • 

the vector x - c is perpendicular to a. But two vectors are perpendicular if and 
only if their inner product is 0. 

The plane that passes through a point c and is perpendicular to a vector a � 0 
consists of all points x such that 

(x - c) · a = 0, 
The corresponding scalar equation is 

that is, x · a = c · a. 

a1(x1 - c.) + Oz(Xz - Cz) + o3(x3 - c3) = 0, 
that is, o1x1 + Oz Xz + o3 x3 = b, 
where b = o1c1 + Ozc2 + o3 c3 • 

Conversely, each equation 
01X1 + Oz X2 + 03 X3 = b, 

where (ai. Oz, o3) � (0, 0, 0), is the equation of a plane. For set a = (o1, Oz, o3). 
Then the equation can be written 

• . •  = b. 
We need one definite solution of this equation, one vector c such that a · c = b. 
Not hard to find! For instance, if o3 � 0, then c = (0, 0, b/o3) fits the bill. More 
systematically, c = (b/l• lz)• does the trick in all cases because 

• .  c = • •  (b/ l• lz>• = (b/ l• IZ)a . • = b 
since l• lz = a ·  a. 

Thus there is a vector c such that a · c = b, so the equation a · x = b can be 
written 

that is, a · (x - c) = 0. 
This is exactly the condition that x is on the plane through c perpendicular to a. 

Example 3x1 - Xz - 4x3 = 2. 
Obviously, c = (0. -2, 0) is a point on this locus, so the locus car. be written as 

(3, - }, -4) · ({X1, X2 , X3) - (0, -2, 0)] = 0. 
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This equation describes the plane through (0, -2, 0) orthogonal to (3, - 1, -4). 
Normal Form We have seen that a given plane P can be described by an 
equation of the form 

a · x  = b, a "# 0. 
If the vector a is a unit vector (length one� we say that the equation is in 
normal form. 

Suppose a · x = b is not in normal form. Then there is an equivalent equation for 
P that is. For the equation 

(ca) · x = cb 

describes P just as well. In particular, there are two choices of c that make ca a unit 
vector, 

l c =
T8i 

and 

We choose either one of these to obtain a normal form. Thus we set 

and 

and obtain n · x = p, 

l p = ±18ib 
ln l = l. 

Basically, all we do is replace the vector a, which is perpendicular (normal) to the 
plane P, by a unit vector n in the direction of a, hence equally perpendicular to P. 

Let us show that the constant p in the normal form has a neat geometric 
interpretation (Fig. 4). 

p 

� 
0 

pn 

(a) p > O  (b) p < O  

Fla. 4 Normal form of a plane: n · x = p where lnl = 1 

Since n is perpendicular to P, the line x = tn of the vector n pierces P at the point 
of P closest to 0. This must be the point pn, because pn obviously lies on the line 
and also lies on the plane since 

n · (pn) = p(n-· -n) = p. 
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Therefore the distance from 0 to the plane P is IPn l = IP I · The number p itself is 
the signed distance from 0 to P. If n points toward P, then p > O; if n points away 
from P, then p < 0. 

Normal Form Each plane P has two normal forms 

n · x = p, l n l = l. 
(There are two choices of the unit vector n.) The constant p is the signed distance 
from 0 to P. 

• EXAMPLE 3 Give a normal form for the plane 

2x1 - x2 + 2x3 = - 15. 

Find the distance from the origin to the plane. 

Solution Set a =  (2, - I, 2) so the given equation in vector form is a ·  x = - 15. 
Now 

1a 12 = 22 + (- 1)2 + 22 = 9. so 1 • 1 = 3. 
Set n = ( 1/ l• l )a = !• = (!. -!. J). 
Then n is a unit vector. From the given equation a ·  x = - 15 we have (la) · x = 
1( - 1 5� that is, 

n · x  = - 5, 

Either of these is a normal form. Here p = - 5, and the distance from 0 to the 
plane is IP I  = 5. • 

Distance from a Point to a Plane Suppose we are given a plane P and a 
point c in space. We want the distance D from c to P. See Fig. 5a. 

0 

c 

n 

x = c + rn 

D 

p 

'\ 

0 

c 

I n 
(c • n) n 

(b) D = lpn - (c • n) n l  

p 

r 
pn 

(a) D s l t l = l p - c • nl • Ip - c • nl • l n l  • I p  - c • nl 

Fig. 5 Distance from a point to a plane 
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First we express the plane in normal form x • n = p. Then we drop a perpendicular 
from c onto P. It is parallel to n, hence lies on the line x = c + tn. Its foot is the 
point x on this line that satisfies the equation of the plane: 

(c + tn) • n = p, that is, c • n + t = p. 
Thus t = p - c • n and x = c + (p - c • n)n. The required distance is 

D = I• - c l = l (p - c • n)n l = IP - c • n l 
since In I = 1. In Fig. Sb we show another way to find the same formula. 

Distance Rule The distance from a point c to a plane P in normal form 
n · x = p is 

D = lp - c · n l . 

• EXAMPLE 4 Find the distance from (2, - 1, -4) to the plane 

3x - 6y + 2z = 28. 

Sobdio1t Since 31 + (-6)1 + 21 = 49 = 71, a normal form is 

�x - 'y + iz = ¥ = 4. 
Thus n = (�. _,, i) and p = 4, so by the Distance Rule the required distance is 

D = 14 - (2, - 1, -4) . (�. _,, 1) 1 = 14 - �I =¥. 
We shall continue our study of planes after a digression to develop some 

necessary tools. 

EXERCISES 

Find whether or not c is on •b, where ., b, c are 

l (0, l, O� (1, 0, l �  (2, 2, 2) 
3 (3, 3, -2� (-2, 3, -2) (2, 3, -2) 

2 (2, 1, - 1� (5, -2, l� (1, 2, - 1) 
4 (2, 2, -2� (4, -6, l� (3, -2, - 1� 

Find an angle between 9b and eel, where ., b; c, d are 

5 (3, 3, l� (-2, l, - 1); (1. 1, l�  (2, l, -2) 
6 ( - 1, - 1, -3� (1, 1, l); (2, 2, 2� (0, l, 1 ). 
7 Find the point i of the way from ( l, l, 1 )  to (0, 0, 0). 
8 Find the point � of the way from (1, 0, 1 )  to ( - 1, - 1, - 1). 

Find the intersections of the line •b with the three coordinate planes, where • and b are 

9 (-2, 3, -4� ( - 1, -2, 5) 10 (-3, 4, 4� ( -4, 4, -3) 
I I  ( - 1, 1, - 1� (2, -2, - 1) 12 (1, 1, 1� (-3, -3, -3). 
13 Find the distance from 0 to the line through (I, 1, I) and (1, 0, 1). 
14 Find the distance from ( 1, 1, 1) to the line through ( 1, 2, 3) and ( -3, -2, - I� 
15 If t is time, when and where does the parametric line x = t(4, 4, 1) + (3, 2, -5) hit the 

x, y-plane7 
16 Describe the locus x(t) • t1(4, 4, 1) + (3, 2, -5) as - oo < t < oo.  
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17 Give a parametric vector equation for the line through e parallel to be. 
18 Give parametric equations for the line thro:.igh (I, 2, -2) perpendicular to the plane 

x + y + z = 0. 
Express in normal form 

19 x1 - 2x2 + 2x3 = I 
22 3x 1 - 2x 2 - 6x 3 = 4 

20 2x1 + 6x2 - 3x3 = 14 
2J X1 + Xz + X3 = 3 

Find the distance from the plane to the point 

21 -Sx, + Xz - 4X3 = 27 
24 X1 - Xz + X3 = - 12. 

25 x + y + z = 2, (I, I, I )  26 
27 - 3x - y + 4z = 8, (0, 0, 2) 28 

2x - y - 2z = 4, (0, 0, I)  
- 3x + 12y + 4z = l3, ( 1, 0, - 1� 

29 Find the angle 0 between the line x = re + b and the plane in normal form n · x = p. 
JO Find the distance between the parallel planes 4x - y - 3z = I and 4x - y - 3z = 6. 
Let x = re + b be a line and n · x = p be a plane in normal form 

31 Prove that the line and plane are parallel if and only ife • n = 0. 
32 (cont.) Prove that the line is on the plane if and only if e · n = 0 and b · n = p. 
33 (cont.) Suppose e · n � 0. Prove that the point of intersection of the line and the plane 

is z = [(p - n · b)/(e · n)]e + b. 
34 Let m · x = p and n · x = q be two non-parallel planes in normal form. Let 8 be one 

of their (dihedral) angles of intersection. Find cos 8. 

Let x = tu + b be a parametric line, where u is a unit vector, and let c be a point 

35* Find the point on the line closest to c. 
36* Find the distance D from c to the line (in terms of u, b, and c). 

5. LINEAR SYSTEMS 

Introduction Suppose we are given three planes 

·· · • = d,, 
How can we find their intersection? In coordinates, the problem is to solve the 
system of three linear equations l a1x + b1y + c1z = d1 

a2x + b2 y + c2 z = d2 a3 X + b3 y + C3 Z = d3 
for x, y, z, where a1, · • · , d3 are given constants. Generally, there is a single com
mon point (Fig. la). However, if the planes are parallel or if one is parallel to the 
intersection of the other two, then there is no common point (Fig. lb). In this case, 
the corresponding system of equations is called incoosistent. For example, the system l x + y +  z =  I 

x +  y +  z = 2  
3x - 2y + 4z = 7 

is obviously inconsistent ;  the first two equations cannot both be satisfied. 
Geometrically, the first two planes are parallel. (From their equations, we see that 
both planes are perpendicular to the vector ( I, 1, I ).] 
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Three planes have more than one common point if they pass through a common 
line (Figs. le, Id) or if all of them coincide. In this case, the corresponding system 
of equations is called undenletermined. For example the system 

I x - 2y + 3z = 5 
8x + 1y + z = 2 
2x - 4y + 6z = lO 

is underdetermined; the third equation is twice the first. Geometrically, the first and 
third planes coincide. The system represents two distinct planes that have a line in 
common. 

three parallel lines 

2 7  
two planes 

(a) Point 

(c) Line 

-=::::::::::::: ___ ::--::-....... __ � 
parallel I ________ ::--::--....._� 

-=::::::::::::: ___ ::--::--..... __ 
(d) Plane 

(b) No intersection 

Fla. I Possible intersections or three planes 

three planes 

[ wu a '> "I Geometric reasoning shows that the set of solutions of a linear system 
of three equations in three unknowns is either (a) empty (b) a single point, (c) a 
line, (d) a plane, or (e) the whole space R3. Let us review briefly two methods of 
solving linear systems. Probably you have seen them in previous courses. The first, 
elimination, is practically self-explanatory. 

EXAMPLE 1 Solve the system 1 2x - y +  z = 4  
3y + 2z = - I 

-z = 3. 
So•tion By the third equation, z = -3. Substitute this into the first two equations. 
The result is a new system of two equations for x and y: 

J2x - y = 4 - ( -3) = 7 l 3y = - I - 2(-3) = 5. 
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By the second equation, y = i. Substitute this into the first equation; the result is a 
single equation for x: 

The solution is 

2x = 7 + i = Jf, 
• = (.lf, j, - 3). 

x = lf. 
• 

This example was very easy because we could solve for the unknowns one at a 
time. To solve a more general system, we reduce it to a system of this type by 
eliminating the unknowns one by one. 

• EXAMPLE 2 Solve the system 1 2x - y +  z = 4  
2x + 2y + 3z = 3 
6x - 9y - 2z = 17. 

Sohltio11 Eliminate x from the second and third equations as follows: subtract the 
first equation from the second, and subtract 3 times the first equation from the 
third. The result is an equivalent system of three equations (the first the same as 
before): 1 2x - y +  z = 4  

3y + 2z = - 1  
-6y - Sz = 5. 

Now eliminate y from the third equation. Add twice the second equation to the 
third, but keep the first two equations: 

2x - y +  z = 4  
3y + 2z = - 1  

-z = 3. 
This is the system in Example I, so x = (1/, j, -3� • 

Practical hint When you apply the method of elimination, you do not luwe to eliminate first 
x and then y. Eliminate any two of the unknowns in an order that makes the computation 
easiest. 

• EXAMPLE 3 Solve 

l 3x + y - 2z = 4 
- Sx + 2z = 5 
- 7x - y + 3z = -2. 

Sol•tio11 Since y is missing from the second equation, add the first to the third; then 
y is eliminated from two equations: 

I 3x + y - 2z = 4 
- Sx + 2z = S 
-4x + z = 2. 
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Now add -2 times the third to the second; this eliminates z: 

I 3x + y- 2z = 4 3x = 1 
-4x + z = 2. 

By the second equation, x = l By the third equation, z = 2 + 4x = 2 + 4(!) = Jf. 
Finally, 

so 

y = 4 - 3x + 2z = 4 - 1 + 1.f = lf, 
• = (1. lf, Jf). 

• EXAMPLE 4 Solve 1 x +  y +  z =  1 
(a) x - 2y + 2z = 4 

2x - y + 3z = S I x + y +  Z =  1 (b) 2x + 2y + 2z = 2  
3x + 3 y + 3z = 3. 

Sobltio11 (a) Eliminate x from the second and third equations: 

l x + y + z = l 
-3y + z = 3  
-3y + z = 3. 

• 

The last two equations both say the same thing. Therefore the system is equivalent 
to the system 

Jx + y + z = 1 l -3y + z = 3, 
and that is as far as the elimination method will go. Geometrically, this reduced 
system represents the intersection of two planes. These planes are not parallel since 
their normal vectors, (1, 1, 1) and (0, -3, 1� point in different directions. Hence it 
is a safe bet that the solutions form a line. To get a parametric solution, set y = t. 
Then z = 3 + 3 y = 3 + 3t, and 

x = 1 - y - z = 1 - t - (3 + 3t) = -2 - 4t. 
The most general solution is 

(x, y, z) = (-2 - 4t, t, 3 + 3t� 
where - oo < t < oo. The set of solutions is the line 

x = t( -4, 1, 3) + ( -2, 0, 3 � 

As a geometric check, note that this line is in the direction of the vector ( -4, 1, 3 ). 
Since the line supposedly lies in both planes, it should be perpendicular to both 
normals, that is, ( -4, 1, 3) should be perpendicular to both (1, 1, 1 )  and (0, - ;\ 1). 
It is perpendicular : 

(-4, 1, 3) . {l, 1, 1 ) = -4 + 1 + 3 = o. (-4, l, 3) - {0, -3, 1 ) = 0 - 3 + 3 = 0. 
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(b) This system is obviously equivalent to the single equation x + y + z = 1. 
Therefore the set of solutions (x, y, z) is a plane in space. • 

Review of Determ inants We recall from elementary algebra the definition of 
determinants of orders two and three: 

a1 b1  c1 

ai bi ci = a1bic1 + aib1 ci + a1bici - aib1ci - aibic1 - a1 bici .  

al bl C1 

From the defining formulas: ( 1 ) if two rows (columns) are equa� the determinant 
is zero; (2) if two rows (columns) are transposed, the determinant changes sign; (3) 
if a multiple of one row (column) is added to another row (column� the 
determinant is unchanged; and (4) if all the terms in one row (column) are 
multiplied by a scalar, the determinant is multiplied by the same scalar. 

Also the defining formulas imply various expansions by minors of a row (column� 
for instance 

is the expansion by minors of the first row. Here, for instance, 

I:: �: I 
is the minor of b1• It is the 2 x 2 determinant remaining after the row and the 
column containing b1 are crossed off. 

A system of equations l aiX + biy + CiZ = di 

ai x + bi y + ci z = di 

al X + bl y + Cl Z = dl 

is both consistent (not inconsistent) and determined (not underdetermined) if and 
only if the system determinant D ':/: 0, where 

a1 bi C1 
D =  ai bi Ci 

a1 bl Cl 

When this is so, the system has a unique solution, given explicitly by Cramer's Rule: 

l 
di bi Ct 

1 
ai di C1 l 

a1 bi di 

x = - di bi Ci • y = - ai di Ci • Z = - ai bi di D D D 
d1 bl Cl a1 dl Cl a1 bl dl 
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Cramer's Rule is our second method for solving linear systems. It is derived in 
linear algebra courses. 

Intersect ion of Planes 

• EXAMPLE I Find the intersection of the three planes 

2x - y + z = 1, 2x - 3y - 2z = 4, 6x + 2y + 9z = -5. 

Sohltio11 We shall try Cramer's Rule. The system determinant, expanded by the 
first row, is 

2 - 1  1 
D = 2 - 3  -2 = 2 1 -� -� I + l � -� l + l � -

� l 6 2 9 

Hence 

= (2 )( -23) + 30 + 22 = 6 :#: 0. 

l - 1  1 1 2 x = 6 4 - 3  -2 = - 3 · 
- 5  2 9 

Similarly y = -2 and z = !. The planes intersect in one point: ( -f, -2, j). • 

Plane through Three Poi nts Suppose p1, p2 , and p3 are three non-collinear 
points in space. How can we find the unique plane that they determine? Suppose 
p1 = (x1, y1 , z1) for i = 1, 2, 3. We take the plane in the form 

ax + by + CZ = d. 
The constants a, b, c, d must be found to satisfy the system 

ax1 + by1 + cz1 = d, i = 1, 2, 3. 

This seems to be a system of three equations in/our unknowns! Actually not, because 
if A. :#: 0, then (a, b, c, d) is a solution if and only if (A.a, Ab, k, Ad) is a solution. 
Thus by our choice of the scale factor A. we can reduce to the case where one of the 
unknowns is 1 ;  then there are three equations in three unknowns. 

Simplest is to try first d = 1. If the resulting system has a unique solution (a, b, c), 
done. If, however, the original system forces d = 0, then this approach leads to an 
inconsistent system. When that happens, you set d = 0 and find a, b, c anyhow . 

• EXAMPLE • Find the plane through 

(1, - 1, -3). (2, 2, 4� and (2, 1, 1). 
Sohttio11 We assume the plane can be written in the form ax + by + cz = 1. Then 
(a, b, c) must satisfy the system 

l a - b - 3c = 1 
2a + 2b + 4c =  1 
2a + b +  C =  1. 
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Subtract the second from the third, then twice the first from the second: la - b - 3c = 1 
4b + lOc = - 1  
- b - 3c = 0. 

From the resulting second and third equations, b = -!. c = !. From the first 
equation, a = 1. The equation of the plane is 

x - iY + !z = 1, that is, 2x - 3y + z = 2. 
AhtrlUltiot solution Another possibility is to find a normal vector to the plane. 
Clearly the vectors 

u = (2, 2, 4) - ( I, - I, -3) = ( 1, 3, 7� v = (2, I, I ) - (1, - 1, -3) = (1, 2, 4) 
are parallel to the plane. Any normal vector • must satisfy u · • = 0 and v · • = 0. 
If• = (a, b, c1 we must have 

Subtract : 

{a + 3b + ?c = 0 a +  2b + 4c = 0. {a + 3b + ?c = 0 
-b - 3c = 0. 

It follows that b = -3c and a = 2c. Thus the system has a whole line of solutions 
• = (2c, -3c, c) = c(2, -3, 11 consisting of vectors perpendicular to the plane. 
Choose for instance c = 1, that is, • = (2, -3, 1 ). The plane has the form • • x = k, 

2x - 3y + z = k. 

Finally, to determine k, simply plug in one of the three points known to be on the 
plane, for instance (1, - 1, -3): 2 + 3 - 3 = k, k = 2. The result: 

2x - 3y + z = 2. • 

Remark 1 We shall pursue this second method further in Section 7. 

Remark 2 We have ignored the question of exactly when the three points are non-collinear. 
This also will be considered in Section 7. 

EXERCISES 

Solve by elimination 
Ix + 2y = . 

3y = 2 
2 

4 lx + y = a  x - y = b  s 

r +  , +  , _ .  
7 2y - 3z = - 1 8 

3y + Sz = 2 

I 2x = 3 
-x + y - 0  

j2x - 3y = - I 
\3x + Sy =  2 
l 2x - y - , _ ,  

2y - 3z = - I 

-3y + Sz = 2 

3 

6 

lx + 2y = 1 
x + 3y = 2 

l 2x - 3y = - 1  
-3x + Sy = 2  

I x + y - , - ·  9 x - y + z = O  
-x + y + z = O  
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I 2x + y + 3z = 1 10 -x + 4y + 2z = 0  
3x + y + z • - 1  

l 2x - y - 3z - 1 

11 -x - 4y- 2z = 1 
3x - y - z = 1 I 4x + 2y - z • O 

12 x + 3y + 2z = 0 

Show that the system is inconsistent and interpret geometrically 

13 J x - y • 1 14 Jx = 2 
\ -x + y = 1 \x = 3 

x + y + 3z ... 4. 

I x + y + 2z ""' 1 l x + y + 2z = 1 
15 3x + Sy +  7z = 2 16 -x + 2y + z = 3 

-x - y - 2z = 0 y + z = I. 
Find all solutions of each undcrdctcrmincd system 

17 J 2x - 3y = 1 18 Jx + y = 0 
\-4x + 6y =  -2 \x + y = O  1 2x - y +  z = l 

19 3x + y + z = 0 
1x - y + 3z - 2 

Solve by Cramer's Ruic l 2x + y + 2z =  1 
21 -x + 4y + 2z = O  

3x + y + z = - 1  l 3x - y - z = 6 
23 -x - 4y + 2z = 0  

2x - y - 3z = - 1 
x y 

l l lx  + 10y + 9z = 5 
20 x + 2y + 3z = 1 

3x + 2y + z = I. 

l 2x - y - 3z = 1 
22 -x + 4y - 2z = 1 

3x - y - z • 1 

l x + y + 3z = 1 
24 3x + y + z = - 1 

-x + 4 y + 2z = 0. 

25 Show that a1 b1 I = 0 is an equation for the line R2 through the two distinct 

a2 b2 1 
points (a1, b1) and (a2 • b2� 

Evaluate 

a2 ab ac 
26 ba b2 be 

ca cb c2 

1 
27 a b c 

a2 b2 c2 
28 (cont.) Suppose a #- b, b #- c, c #- a. Show that the system 

has a unique solution. 

l x + y + z = d, 
ax + by + cz = d2 
a2x + b2y + c2z - d3 

Find the intersection of the three planes 

l 2x - y + 3z - 6 
29 -x - 4y - z = 2  

3x + 2y + z = 2 

l 4x + y + z = 10 
JO 2x + 3y + z = 8 

-x + 2y + 3z • 3  
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I 

x + 2y + 3z = 2 
31 -x + 8y + 7z =  -2 

2x - y +  z = 4  

1 -x - y + 2z = 4 
32 2x + y + 6z = - 1 

3x + 2y + 4z = -3. 
Find the plane through the three points 
33 (1, 0, l� (2, 2, -2� (-3, 3, 2) 
35 ( I , 2, 2� ( - 1, l , 7� (3, 5, 1) 

34 (I, - 1, I� (4, - 1, -2� (-3, 2, 8) 
36 (2, 1, - 1� (1, 2, 3), (-4, 1, 8). 

6. C ROSS PRODUCT 

Geometric Definition Given a pair of vectors v and w, we define a new 
vector v x w. 

Cross Product (geometric definition) The croa product of v and w, 
written 

V >C W, 

is the vector perpendicular to v and w whose direction is determined by the 
right-hand rule from the pair v, w, and whose magnitude is the area of the 
parallelogram based on v and w. See Fig. 1 .  

Fig. I Cross product, geometric definition 

v X w  

We can note some immediate properties of the cross product. First, if the vectors 
v and w are paralle� then the parallelogram collapses so v x w = 0. In particular 
v x v = 0. Next, if v and w are interchanged, then the thumb reverses direction, 
hence w x v = -v x w. Finally, for pairs of the basic unit vectors 

i = (1, o, o� J = (o, l, o� k = (0, 0, 1), 

cross products are obvious, for instance I x j = k. Let us summarize: 

�0, W X V =  -V X W, J I i )( j = k, j )( k = I, k )( I = j. 
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Analytr De nrtion Motivated by the geometry above, we first define analyti
cally all possible cross products of pairs of basic unit vectors: 

l x l = J >< J =k x k =O, 
l x j = k, j x k = I, k x l = J, j x l = -k, k x j = -1, l x k = -j. 

We use this multiplication table and the distributive law to extend the definition to 
any pair of vectors v = vi I +  v2j + v3k and w = wil + w2j + w3k: 
v x w = (vi I +  v2j + v3k) x (wil + w2j + w3k) = ViW2i )( j + Vz WJ )( i + ViW3 I xk + V3 Wik )(  i + Vz W3j >C  k + V3 Wzk )( j = (v2 W3 - V3 Wz)I + (v3 Wi - Vi W3)j + (vi Wz - Vz wi )k. I Cross Product (analytic definition) Let 

v = (vi. v2 , v3) and W = (w., w2 , w3). 
Then v >CW= (v2 W3 - V3 W2 , V3 Wi - ViW3, ViWz - Vz wi) 

Examples 

(4, 3. _ 1 > )( ( _ 2. 2. 1) = ( I� - : I · 1 - : _; I · 1 _; � I ) 
= (3 + 2, 2 - 4, 8 + 6) = (5, -2, 14). 

(1 ,0, l ) x (O, l, l ) = ( I � ! I · I ! � I · I� � l ) = (- 1, - 1, 1). 
A device for remembering the cross product is a symbolic determinant-expanded 
by the first row: 

j k (vi, V2 ,  V3) )( (wi, Wz' W3) = Vi Vz V3 Wi Wz W3 
= I Vz Wz V3 I · - I Vi W3 Wi 

From this determinant form, we see again that the cross product is anti-commuta
tive: w x v =  -v x w. For interchanging v and w switches two rows of the 
determinant, hence reverses its sign. 

Sc<.ila Triple Product We have two definitions of the cross product. We shall 
connect them using the foJlowing formula; it expresses as a determinant the inner 
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product of a vector with the cross product of two other vectors : 
U1 U2 U3 

u . (v x w) = V1 V2 V3 • 

W1 W2 W3 

To prove the formula, we simply expand the determinant by its first row: 
U1 U2 U3 

V1 V2 V3 

W1 W2 W3 

Examples 

= U1 I V2 
W2 

V3 I I V 1  
- U2 W3 W1 

V3 I I V1 + U3 
W3 W1 

= (u l • U2 , u3) • ( I :: V3 I · W3 
I V

3 

W3 
V1 I · W1 

V2 I 
W2 

I V1 
W1 

( 1 )  U = (u1, U2 , U3), V = (0, V2 , V3), W = (0, 0, W3), 
U1 U2 U3 

u .  (v x w) = 0 V2 V3 = U1V2 W3 . 

0 0 W3 

(2) u = (2, 3. 4), v = ( l, l. -2), w = (5, 3, l ), 

:: I ) = u · (v x w). 

2 3 4 
u · (v xw) = 1 1 -2 = 2 1 � -� 1 - 3 1 � -� 1 + 4 1 � � I  

5 3 l 
= 2 . 7 - 3 . l 1 + 4( -2) = -27. 

The quantity u · (v x w) occurs frequently in applications; it is called the scalar 
triple product and written [u, v, w]. 

Scalar Triple Product U1 U2 U3 

[u, v, w] = u · (v x w) = v1 v2 v3 

Because the scalar triple product has an expression as a determinant. properties 
of determinants imply properties of the scalar triple product. We list some 
important ones: 

Properties of the Scalar Triple Product 

( 1 )  I f  any two of the vectors u, v, w are equal. then [u, v, w] = 0. 
(2) If two of its arguments are interchanged, then [u, v, w] changes sign, for 

instance [w, v, u] = - [u, v, w]. 
(3) [u. v, w] is a homogeneous linear function of each of its arguments, for 

example 
[u. v, w1 + w2] = [u, v. w1] -+- [u, v, w2], [u, v. cw) = c[u, v, w]. 
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Waming Remember, the cross product or two vectors is a llf!ctor. The inner product or 
two vectors is a scalar (number� The scalar triple product of three vectors is a scalar 
(because it is an inner product or two vectors� 

Equ valence of he Geometric and Analr1c Defin1t1ons Let us show 
that the analytic definition of the cross product satisfies the three conditions of the 
geometric definition: 

(a) v x w is orthogonal to v and tow. 
(b) v, w, v x w is a right-handed system (provided v and w are not parallel). 
(c) Iv x wl is the area of the parallelogram based on v and w (that is, the 

parallelogram with vertices 0. v, w, v +w� 
Geometric condition (a) is a consequence of a property of the scalar triple 

product: 

v · (v x w) - [v, v, w] = 0, w · (v x w) = (w, v, w] = 0, 

hence v and w are both orthogonal to v x w. 
Geometric condition (c) requires a formula for the length of v x w, where 

v x w is taken in its analytic sense: 

l Iv  x wl1 = lv�wl1 - (v • w)1.1 
By direct computation : 

and 

Iv >C wl1 = (v1 w3 - v3 w1)1 + (v3 w1 - v1w3)1 + (v1w1 - v1 w1)2 

= L V22w,2 - 2 L V2 V3 W2W3 , 
6 tenm 3 1-

lvli lwl:a - (v . w)1 - (v, 2  + vl + v,1)(w11 + w11 + w,2) 
- (v1 W1 + V2 W:a + V3 w,)1. 

= ( L V1 1W1 2 + L V11w,2) 
, ,.,.. 6 ..... 

- (  L v12w12 + 2 L v1 v3 w2 w3) · 
, ,.... , , .... 

AU terms like v11w12 cancel; the formula follows. 
Now let 6 be the angle between v and w. Then v · w = lv l · lwl cos 6, hence 

Iv x wl:a = I vl1 lwl1 - (v . w)2 = I vl2 lwl2(1 - cos1 6) = I vl1 lwl1 sin:a 6, 
Iv  x wl - lvl · lwl sin 6. 

This last expression is precisely the required area (Fig. 2). 
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It remains to verify geometric condition (b). To do so, we need some analytic 
way of deciding whether a given triple u. v, w is a right-handed system or not. 

Observe that u. Y, w and Y, u, w have opposite orientations, that is, one is a right
handed system and the other is left-handed. By analogy, the determinants [u. v, w] 
and (v, u, w] have opposite signs. This suggests that the sign of [u, v, w] cor
responds to the orientation of u. v, w. Since I, J, k is right-handed and (1, J, k] = I, 
we suspect that u. v, w is right-handed if [ u, v, w] > 0. This indeed is the case, but 
instead of proving it, we shall simply take the determinant criterion as the definition 
of right-handedness. 

In view of this definition, we must prove that (v, w, v x w] > 0. But 

(v, w, v x w) = -(v, v x w, w] = [v x w, v, w] 
= (v x w) · (v x w) = Iv x wl2 > 0. 

This completes our proof that the vector v x w, defined analytically, satisfies the 
three properties that define v x w geometrically. Hence the definitions arc 
equivalent. 

Alge bra i c Properties W c summarize the main algebraic properties of the cross 
product. They follow readily from our discussion. 

Y )( Y = 0, W )( Y = -Y )( W, 
(au + bv) x w = a(u x w) + b(v x w� 
u x (av + bw) = a(u x v) + b(u x w� 

u • (v x w) -= v • (w x u) = w • (u x v) = (u, v, wt 
v x w = 0 if and only if v and w are parallel. 

Remark The associative law and the commutative law are not true in general for the cross 
product. For instance 

I x J • k and J x I = -k, so I x J � J x I; 
I x  Q x J) = I  x 0 = 0 and (I x J) x J = k x J - -1, 

so l x O x J) 9' (1 x J) x J. 

Torque The original motivation for the cross product of vectors came from 
physics. Consider this situation. 

Suppose a rigid body is free to tum about the origin. A force F acts at a point x 
of the body. As a result the body wants to rotate about an axis through O 
perpendicular to the plane of • and F (unless • and F are collinear; then there is 
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no turning). See Fig. 3a. As usua� the force vector F is drawn at its point of 
application x. But analytically it starts at 0. See Fig. 3b. The positive axis of 
rotation is determined by the right-hand rule as applied to the pair x, F in that 
order: x first. F second. 

0 

(b) The torque is a �ctor 
perpendicular to the 
plane of x and F. 

Fi&- 3 The torque due to a force F applied at x 

In physics, one speaks of the torque (about the origin) resulting from the force F 
applied at x. Roughly speaking, torque is a measure of the tendency of a body to 
rotate under the action of forces. (Torque will be defined precisely in a moment.) 

By experiment. if F is tripled in magnitude, the torque is tripled; if x is moved out 
twice as far along the same line and the same F is applied there, the torque is 
doubled. Hence the torque is proportional to the length ofx and to the length of F. 
Therefore (Fig. 3b) the torque is proportional to the area of the paraJlelogram 
determined by x and F. 

Let us resolve F into a component G parallel to x and a component H 
perpendicular to x. See Fig. 4a. The component G, being on line with x, produces no 

H 
line of x �"-� F ' " '� • 

0 0 

(b) 

Fi1o .. I torque I = area or parallelogram 
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tendency to tum; only H produces torque. By the argument above the amount of 
torque is Ix I · I H I. the length of the lever arm times the length of H. But this 
product is the area of the paraJlelogram (Fig. 4b) determined by x and F. 

Therefore the torque about the origin is completely described by the vector 
x x F. The length of x x F is the magnitude of the torque. The direction of x x F 
is the positive axis of rotation; with your right thumb along x x F, your fingers 
curl in the direction of turning. In physics, torque about the origin is defined to be 
the vector x x  F. 

EXERCISES 

Compute the cross product 
l ( -2, 2, I )  x (4, 3, - I) 
3 (I, 2, 3) >< (3, 2, I )  
5 (-2, - 2,  -2) >< ( 1, I, 0) 
7 (I + j) x (I + j + k) 
9 (21 + j + 3k) )( (21 + 2j - k) 

2 (I, 0, I) x (I, I, 0) 
4 (3, I, - I) >< (3, - I, - I) 
6 ( - I, 2, 2) x (3, - I, 2). 
8 (cos 8 1  + sin 8 j) x (-sin 8 1  + cos  8 j) 

10 (I + 2j + 3k) x (4i + SJ + 6k). 

1 1  Find a unit vector perpendicular to both ( - 3, 0, I )  and (2, - I ,  - I� 
12 Find an equation for the line through (6, I, -2) and perpendicular to the plane through 

0, ( - 1, I, 2� and (2, 3, 4). 
13 Three vertices of a parallelogram are (0, 0, O� (I, I, I� and (2, 3, S). Compute its 

area. 
14 Given a, find all vectors x such that • x x = x. 

A force F is applied at point x. Find its torque about the origin 
15 F = ( - 1, I, I� x = (I0, 0, 0) 16 F = (3, 0, 0� x = (0, 0, 1) 
17 F = ( - 1, I, I� x = (2, 2, - 1) 18 F = (2, - 1, S� x = (- 7, I, 0). 
Compute the scalar triple product 
19 [1, I + J. i + j + k] 
21 (4, I, I ) ·  (3, 6, 0) x (2, S, 4) 

23 Find all vectors v for which [I. J, v] = 3. 

20 [Ji - j, 2j + k. I - 4j - Sk] 
22 (I, I, I ) ·  (I, 2, 3) x (1, 4, 9). 

24 Let u, v, w be mutually orthogonal unit vectors. Find [u, v, w]. 
Prove 
25 u · (v >< w) = v · (w x u) 
27 (av) x w = a(v x w) 

26 (u + v) >< w = u x w + v x w 
28 v x (bw) .. b(v x w). 

29 Show that 

from I, j, k. 
l• · u  • .  

,, , b · u b • v 
= (• x b) • (u >< v) 

30 (cont.) Now prove the formula in general 

provided • and b are chosen 

31 Suppose • and b are vectors such that • • v = b • v for all vectors v. Prove that 
• = b. 

32• (cont.) Use this and the result of Ex. 30 to prove the identity 

u >< (v >< w) = (u • w)v - (u • v)w. 

33 Use the result of Ex. 30 for a proof of Iv x w 12 = Iv l2 lwl2 - (v · w)2 different from 
the one given in the text. 

34 Prove that v = (• x b) >< (• x c) is parallel to •· 
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7. APPLICATIONS O F  TH E CROSS PRODUCT 

Volume Two non-collinear (non-parallel) vectors u and v determine a parallelo
gram, whose area is l u >< v i. Similarly, three non-coplanar vectors determine a 
parallelepiped, (Fig. la) whose volume is given by a formula involving a scalar triple 
product. 

The volume of the parallelepiped determined by three non-coplanar vectors I 
u. v. w is 

V = l [u, v, w] I = lu · (v >< w)I. 

Proof The volume is 

V = (area of base)(height). 

For the base, take the parallelogram determined by u and v. Its area is lu >< v i ; 
furthermore, the vector u >< v is perpendicular to the base. 

Suppose first that w lies on the same side of the base as u >< v lies. By 
definition, the height of the parallelpiped is the projection (Fig. lb) of w onto 
u )( v: 

Therefore 

(height) = lwl cos 6. 
V = lu >< v i lwl cos 6 = (u >< v) · w 

= [u, v, w] = l[u, v, wJ I . 
In case w and u >< v lis on opposite sides of the base, then 

0 

V = -[u, v, w] - l[u, v, w)I. 

(a) The parallelepiped cletennined by 
three non-coplanar vecton 

u X v  

(b) Its volwne equals its base 
area times its height. 

Fis. 1 Volume of a parallelepiped 
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As a corollary, we derive a test for three vectors to lie on a plane through O. 
This happens if and only if the paraJJeJepiped they determine collapses, that is, has 
volume 0. But its volume is l[u. v, w] I . so we have the following test. 

Three vectors, u, v, and w lie on a plane through 0 if and only if 

[u, v, w] = 0. 
• EXAMPLE 1 Show that w = (1, -3, 3) lies in the plane of u = (5, 6, 1 ) and 
v = (2, 3, 0). 
Sollltlo• Compute [u, v, w] by minors of the second row: 

s 6 1 
[u, v, w] =  2 3 0 = -2 1 -� � 1 + 3 1 � � l = (-2)(21) + (3)(14) = 0. 

1 -3 3 
Hence u, v, and w are coplanar. Obviously u and v are not parallel, so they 
determine a plane through 0, and w must lie in this plane. • 

In  ersection of Two Planes Given two planes x · m = p and x · n = q, how 
can we find their line of intersection? We must assume the planes are not parallel, 
that is, their normal vectors m and n are not parallel. Then • = m >< n is 
perpendicular to both m and n, so •  is parallel to the line of intersection (Fig. 2). 

b 
M 

m, 
normal to M 

Fis. 2 To find b on the line of intersection of M and N and on the plane of their normals 

If we can find a single point b on both planes, then the desired line is 

• =  t• + b. 
We shall look for such a vector b in the plane of m and n, that is, a vector of the 
form b = um + vn. 
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Since b lies on both planes, b must satisfy both b · m = p and b · n = q. These 
conditions lead to a pair of linear equations for u and v: 

The system determinant is 

{m · m u + m · n v = p 
m · n u + n · n v = q. 

l m · m m · n 1 = lm l2 l n l2 - (m .  n)2 = Im ><  nil > 0. m · n n · n 
Therefore the system has a unique solution. 

• EXAMPLE z Find the line of intersection of the planes x + y + z = - 1 and 
2x + y - z = 3. 
Sohltion J The equations of these planes are x · m = p and x · n = q, where 

Set 

m = ( l, 1, I), n = (2, I, - 1� p =  - I, 

• = m >< n = ( -2, 3, - 1 ). 

q =  3. 

This vector is perpendicular to m and n, so it is parallel to the line of intersection. 
To find a point on the line of intersection, set b = um + vn and choose u and v 

so that b · m = - 1 and b · n = 3. Now 

m · n = 2, 
so the equations b · m = - 1 and b · n = 3 become {3u + 2v = - 1 

2u + 6v = 3. 
The solution is u = _,, v =ti; therefore 

b = _,(l, I, 1 )  + fi(2, 1, - 1) = (t£, --h, -fi). 
The required line is 

x = t• + b = t(-2. 3, - 1) + H£, --h. -H) 
= -h(-28t + 10, 42t - 1, - 14t - 23). 

Sohltion 2 Treat the given planes as a linear system : { x + y + z =  - 1  
2x + y - z = 3. 

Keep the first equation; add -2 times the first to the second to eliminate x: {x + y + z = - 1  

-y - 3z = S. 

Set z = -s, then solve for y and x: 
y = -3z - S = 3s - S, 

x = - 1  - y - z = - 1  - (3s - 5) + s = -2s + 4. 
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x = ( - 2s + 4, 3s - 5, -s ). 
This is another parametric form of the line of intersection. Note that this line is 

parallel to ( -2, 3, - 1 ) = m >< n and passes through (4, -5, 0 � a point on both 
planes. You should check that the change of parameter s = t + H brings this 
second equation to the parametric form in the first solution. • 

Homogeneous Equations Suppose we are given three planes through the 
origin, 

x · u  = 0, x · v = O, x ·w = O. 
In general, the planes will have only the point 0 in common. However, it may 
happen that they have a line in common, or even coincide. This occurs precisely 
when their three normal vectors u, v, w lie in the same plane. The situation can 
be described algebraically : 

A system of three linear homogeneous equations 

x · u = O, x · v = 0, x ·w = O  
has a solution x -::;: 0 (a non-trivial solution) if and only if 

[u, v, w] = u · (v x w) = 0. 
If x is any solution, then tx is a solution for each t. 

It is useful to restate this result in terms of determinants and linear equations. 

A homogeneous system of linear equations 

I u1x1 + U2X2 + U3X3 = 0 V1X1 + V2 X2 + V3X3 = 0  
W1X1 + W2 X2 + W3X3 = 0 

has a solution (x1, x2 , x3) � (0, 0, 0) if and only if 

U1 U2 U3 
V1 V2 V3 = 0. 
W1 W2 W3 

If (xh x2 , x3) is any solution, then (tx1, tx2 , tx3) is also a solution for each t. 

Remark Recall that Cramer's Rule (Section 4) guarantees a unique solution if [ u, v, w] .; 0. 
Since (0, 0, 0) is obviously a solution to the homogeneous system, it is the only solution 
when (u, v, w] .; 0. This proves again that for a homogeneous system to have a non-trivial 
solution, its determinant must be uro. 

• EXAMPLE 3 Find a non-trivial solution of 

x · u = x · v = x ·w = O, 
where u = (1, -2, 2� v = (3, 1, -2� and w = (5, -3, 2). 
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Sohltiolt First 

1 -2 2 
[u, v, w] = u · (v x w) =  3 1 -2 = 0. 

5 - 3  2 
Therefore the vectors u, v, w are coplanar, so the corresponding planes have a line 
L in common. (Note that w = 2u + v, direct evidence of the coplanarity.) Certainly 
L contains the point 0, which is common to all three planes. Furthermore, it contains 
u >< v, since this vector starts at 0 and is parallel to L. Therefore L is the set of all 
multiples r(u >< v� provided u >< v :F 0. (A similar statement holds for v >< w and 
w >< u.) Now 

J k 

u )( v = -2 2 = (2, 8, 7) :F 0 
3 1 -2 

so each point x = 1(2, 8, 7) is a solution. 

Remark Note that 

• 

v x w = (-4, - 16, - 14) = - 2(u x v) and w x u = ( - 2. -8, - 7) = - (u x v). 
Hence the vectors v x w and w x u also lead to the same set of solutions. 

Skew Lines Let x = su + Ko and x = tv + y0 be two lines in R3 that do not 
intersect and are not parallel, i.e., two skew lines. We ask how far apart they are 
(Fig. 3a� 

The vector u >< v is perpendicular to both lines, so n =  (u >< v)/lu >< v i is a unit 
vector perpendicular to both lines. From Fig. 3b we see that the required distance is 
the length of the projection of Ko - Yo on n, that is, I (Ko - Yo) · n I· 

(a) Skew lines in R3 

''\ \ \ 
\ 

\ 

\ 
Yo 

u x y 

n 

•o 

(b) As seen from a direction that makes 
the skew lines appear to be parallel 

• EXAMPLE 4 Find the distance between the lines 

x = (s - 1, s, 2s + 2) and x = (- r +  1, - t + 1, -t + I). 
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Sobltiolt The two lines are x = su + Xo and x = tv + Yo , where 

u = (1, 1, 2� v = ( - 1, - 1, - 1 � Xo = (- 1, o. 2� 
Therefore u x v = (1, - 1, 0) and 

U >C V l r-; n = 
lu x v i = 2 v 2(1, - 1, 0). 

Finally, the distance between the lines is 

Yo = (1, l, 1). 

l (Xo - Yo) · nl = 1(-2, - 1, 1 )  • !..fi(t, - 1, O)I = 1 -!..fil = !..fi. • 

Parametric Form of a Plane Suppose the vectors • and b are not parallei 
that is, the three points 0, e, b are non-collinear. Then • and b lie on a unique 
plane P. See Fig. 4a. All scalar multiples s• and tb of a and of b also lie on P; by 
the parallelogram law, so do all sums s• + tb. 

p 

o -----a 

s• + tb 

a sa 

x 

(•) 1be plane determined by 
two non-parallel ftcton 

(b) Each point x of the plane has the form 
x =s•+tb. 

Fi&- 4 The plane spanned by • and b 

Conversely each vector x in the plane P can be expressed in the form s• + tb. 
For we can construct a parallelogram with x as a diagonal as shown in Fig. 4b. 
This displays x as a sum of two vectors, a multiple of • and a multiple of b. We 
say that a and b span the plane P. 

Two non-parallel vectors a and b span the plane consisting of all vectors 

x = s• + tb, 
where - oo < s < co  and - oo < t < co. 

Remark In the subject called Linear Algebra, vectors • and b that are non-parallel are 
called linearly independent It means in elfcct that neither is a scalar multiple of the other. 
Alternatively. if sa + tb = 0, then s = t = 0. 

Next, suppose two non-parallel vectors • and b span a plane Q, and suppose c is 
a point not on Q. We seek the plane P through c parallel to Q. Clearly P consists 
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of all x = z + c, where z belongs to Q. See Fig. 5. But we know all such z, namely, 
z = sa + rb. 

Given a point c and two non-parallel vectors a and b, the plane through c 
parallel to the plane spanned by a and b consists of all points 

x = sa + rb + c, 
where - oo < s < oo  and - OO < t < OO. 

The variables s and t are called parameters, and a plane presented in this fashion 
is said to be in parametric form. 

___ ..., ____ ....., _____ �-----..c 
I 
I 

I 
I 

I 
L.----------- -- ----4 

Fi&- 5 Parametric 
form of a plane 

Example • = (1, 0, l� b = (l, l, - 1), c = (- 1, 1, 2). 
Clearly neither a nor b is a multiple of the other, so they are non-parallel. The plane 
through c parallel to the plane spanned by a and b consists of all x such that 

X = sa + tb + c =  s(l, O, l ) + t(l, l, - 1) + (- l, l, 2). 
In coordinates: x = s + t - l, y = t + l, z = s - t + 2. 

Given a plane in parametric form, x = s• + tb + c, how do we find a non
parametric equation for the plane, that is, an equation of the form n • x = p or 
ax + by + cz = d? First we find a vectorn normal to the plane. That is easy: we take 
n = a x b, which is orthogonal to both a and b, hence to the plane. Because a and 
b are non-paralleL the vector n is guaranteed to be non-zero. Then we note that 

n · x = sn · a +  t n · b  + n · c = n · c. 
Thus n • x = n • c is a non-parametric equation of the plane, where n = a x b. 

Example In the previous example 

n = a x  b = (1, 0, 1) x (1, l, - 1) = ( - 1, 2, 1 )  
and n · c = (- 1, 2, 1 ) · ( - 1, l, 2) = 5, 
so an equation of the plane is n • x = 5, that is, 

-x + 2y + z = 5. 
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Plane through Three Points Let us take a second look at a problem discussed 
earlier (p. 654): to find the plane P through three non-collinear points a, b, c. 

The vectors b - • and c - • are parallel to P, and not parallel to each other; 
their cross product 

n = (b - •) x (c - •) 

is non-i.cro and orthogonal to P. Hence 

n · x = n · •  
is an equation of the plane P. 

Clearly • = s(b - •) + t(c - •) + • 

is a parametric equation of P. This equation is equivalent to 

• = ( 1 - s - t}ll + sb + tc, 

which we can write in the following symmetric form. 

The plane through three non-collinear points ., b, c consists of all points 

• = r• + sb + re, 

where r, s, t take on all real values subject to r + s + t = 1. 

Eq u i I i  bri um Suppose forces F h • • ·, F. are applied at points J11, • • · , •. of a rigid 
body. Now a rigid body is in equilibrium when both the sum of the forces vanishes 
and the sum of the turning moments (torques) of the forces about 0 vanishes. Thus 
the conditions for equilibrium are the two vector equations: 

F1 + F1 + . .  · + F. - O, 

•1 >< Fi + •1 >< F1 + · · · + x. >< F. = 0. 

EXERCISES 

Find the volume of the parallelepiped determined by 

1 (l, l, 0) (0. l, l) (l ,  l, 0) 2 (4, - 1, 0) (3, 0. 2) (1, l, l� 

Find the line of intersection (parametric form) of the planes 

3 X + 2y + 3z • 0 y - Z • l 4 X - y + Z a 0 X + y + z • 3 
5 x + 2y + z ... 3 2x - y + z = 4 6 x + y - l y + z - - l .  

Find all solutions 

7 
{-2x + 6y- 0 
3x - 9y • 0 l Sx + 4y + 3z • 0 

9 -x + 2y + z = O 
3x + y + z ""'0 

I 3x - 4y + 2z = 0 11 Sx + 6y • O 
x + Sy - z • 0 

• { - 12x + 4y • O 
3x - y • O 

l-2x + 2y + 4z = O 
10 3x + Sy +  Sz = 0 

-3x - y +  2z = 0 l 3x + 3y + 2z • 0 
12 7x + Sy + 12z = 0 

x + 2y - 3z = 0 
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13 -4x - 3 y - Sz = 0 

1 6x - 9y + 12z -0 
l.. 2x - 3y + 4z = 0 

12x + 9y + 15z = 0 - IOx + 15y - 20z ""' 0. 

Find a non-parametric equation for the parametric plane 

15 . ... (1, s, t) 16 
17 x ,.,  (s + 2, s + t + I, s - t) 18 
19 • = ( -s + t +  l, s - t + 2, -2s - t + 3) 
20 x '"' (s - 3t + 2, 2s + t + I, 2s - t + 3). 

Find the distance between the lines 

x = (s, s + t, t - I) 
x = (3s, 2s - t, 2t + I) 

21 x • s(I, I,  1) + (0, 0, - 1) and x = t(- 1, 2, 2) + (2, 3, 4) 
22 x = s( - 1, l, O) + (l, O, O) and x = t( - 1, - 1, 0) + (l,  I, I) 
23 9b and od, where 

• • (0, 0, l� b = (l, 2, 3� C = (I, 1, 0� d = (- 1, - 1, - 1) 

2.t ec and bd with the same e, b, c, d. 

Find the nearest points on the two lines 

25 the lines of Ex. 2 1  26 the lines of Ex. 22. 

27 Find a parametric form for the plane through (I, I, O� (1, 2, I� and ( - 1, - I, - 1). 
28 Find a non-parametric equation for the same plane. 
29 A seesaw with unequal arms of lengths a and b is in horizontal equilibrium. Find 

the relations between weights A and B at the ends and the upward force C at the 
fulcrum. 

30 Unit vertical forces act downward at the points p1, • • · ,  p,. of the horizontal .x, y-plane. 
Suppose a single force F acts at another point p of the plane so that the rigid system 
is in equilibrium. Find F and p. 

31 A force F is applied at a point x. Its t«.-e about • point p is (• - p) x F. Suppose 
F1, • • · ,  F,. are applied at points x1, • • · ,  x,, of a rigid body and the body is in 
equilibrium. Show that the sum of the torques about p equals uro. (Here p is any 
point of space, not just 0.) 

32 A ccq1Je consists of a pair of opposite forces F and -F appliCd at two different points 
p and q. Show that the total torque is unchanged if p and q are displaced the same 
amount, i.e., replaced by p + c and q + c. 

33 Prove [e, b, c)2 � l •l2 l bl2 lcl2• 
3.t Prove that the points e, b, c are collinear if and only if • x b + b x c + c x • = 0. 
35 Suppose e, b, c are non-collinear points. Describe the set of points • = r• + sb + tc 

where r � O. s � O. t � O. and r + s + t = I. 
36 (cont) Suppose in addition that 0 does not lie on the plane of e, b, and c, and replace 

the last condition by r + s + t � I. Now what is the set? 
37" Vectors e, b, c are called lillearly lndepende11t if the only solution of r• + sb + tc - 0 

is r = s = t = 0. Show that e, b, c are linearly independent if and only if [e, b, c] � 0. 
38" Suppose the points e, b, c are non-collinear. Prove that 

[• - e, • - b, • - c] = O 
is an equation of the plane through e, b, and c. 
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8. Mi•cellaneou• Exercises 873 

l Let • and b be points of R3 and c > 0. Show that (x - •) • (x - b) - c1 is the 
equation of a sphere. Find its ocntcr and radius. 

l The same for Li I• - e, 12 = k2 provided k is sufficiently large. 
3 Show that the line through the midpoints of two sides of a triangle is parallel to the 

third side. 
4 Let e, b, c, d be the vcrtiocs in order of a skew quadrilateral. Show that the midpoints 

of its sides arc the vcrtiocs of a parallelogram. 
5 (cont.) What is the area of this parallelogram? 
6 Suppose u. v, w are mutually orthogonal and x - au + bv + cw. Find l• I ·  
7 Prove that the diagonals of a rhombus arc perpendicular. 
I The 9 coordinates of the vertiocs of a ocrtain triangle are all integers. Show that the 

1 area of the triangle is at least !. l x +  y + 2z - 6  
9 Solve x + 3y i: 4z = 1 1 

2x - y + 2z = 4. 

10 Suppose • and b arc not parallel Interpret Jx - c, e, �] = 0 geometrically. 
1 1  Interpret geometrically the conditions 

12 Let u -= (cos «1t cos «2, cos «3) and v = (cos /J1, cos fl
2

, cos fl3) be two unit vectors. 
Show that the angle 9 between them satisfies 

Interpret the formula when «3 - /l3 = ix· 
13 Let •1, •2 , • • · ,  ._ be the vcrtiocs of a regular polygon in the plane. What is the vector 

(Li •,)In? 
14 Let L be the line of intersection of two non-parallel planes • • x = c and b • x - d. 

Show that the most general plane containing L is 

(se + tb) • X =SC +  td, 
where s2 + t2 = 1. 

15 Suppose a > 0, b > 0, c > 0. Find the area of the triangle with vcrtiocs (a, 0, O� 
(o, b, o� (o, o, 4 

16 Prove the JacolJi Weadty 

u x (v x w) + v x (w x u) + w  x (u x v) .. o. 
[Hint Use Ex. 32, p. 663.) 

17 Let •1, • • ·, e, be points of R
3
• Consider all planes n • x ,.  p in normal form such that 

(•1 • n - p) + . . · + (e, · n - p) = 0. 

Show that these planes pass through a common point. 
11 Let x • m = p and x • n - q be non-parallel planes in normal form. Show that 

x • m - p = ± (x • n - q) arc the two planes through their intersection that bisect their 
dihedral angles. 
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19• Let Vs, v2 , v3 be the vertices of a triangle and as, a2 , a3 the lengths of the opposite 
sides. Prove that the incater (intersection of angle bisectors = center of inscribed 
circle) is 

asV1 + a2v2 + a3v3 p - ------as + a2 + a3 

20* Prove that the three altitudes of a triangle ebc intersect in a common point {the 
ordioceDter). [Hint Take Oat the intersection of the altitudes from • and b. Then prove 
c is orthogonal to b - e, etc.] 

21 Show that • = (1, 0, O� b ... (-!, fJ3, O� c - (-!, -!J3. O� d = (0, 0, J2) are the 
vertices of a regular tetrahedron. 

22 (cont.) Find the dihedral angle 9 between any two faces of a regular tetrahedron. 



Vector Functions and 
Curves 

1 .  DIFFER ENTIATION 

14 
In this chapter we study functions whose values are vectors. For example, the 

position x of a moving particle at time t, or the gravitational force F on an orbiting 
satellite at time t are vector functions. To indicate that x is a function of time, we 
write 

x = x(r); 
in components, x(r) = (x(t� y(t� z(t)). 
Thus a vector function is a single expression for three ordinary (scalar) functions 

x = x(t� y = y(t), z = z(t). 
We often think of a vector function as describing a curve in space, the trajectory 

of a moving particle. For example, if• and b are fixed vectors, then the function 

x(t) = t• + b 

describes a line traversed by a moving point which is at b when t = 0, at • + b when 
t = l, at 2• + b when t = 2, etc. Note that y(r) = 2t• + b describes the same line 
but traversed at twice the speed, and z(r) = t3a + b is again the same line, but 
traversed by an accelerating particle. We shall deal with speed and acceleration 
shortly. 

Limits In order to do calculus in space, we need derivatives of vector functions. 
We want to define the derivative of a vector function as the limit of a difference 
quotient. Obviously, we better know first what we mean by the limit of a vector 
function. 

Limit Let x(r) be defined for t near a. Then 

lim x(r) = c 

means lx(r) -c l ---+O as t ---+ a. 

Thus, the point x(r) approaches the point c as t---+ a provided the distance 
between x(r) and c approaches 0 as t--+ a. But the distance I •(t) - cl is a real
valued function, so we are back on familiar ground. 

876 
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The definition of limit, as it stands, has nothing to do with coordinates. However. 
when we actually come to computing a limit, we generally use an alternative 
definition in terms of coordinates: 

Let x(t) = (x1(t� x1(t� x3(t)) and c = (ch c1 • c3i Then 

lim x(t) = c 

if and only if 

lim Xi(t) = CJ for j = I. 2. 3. 
, ... 

The proof follows from the relation 

3 
lx(t) - cl1 = L lxi(t) - c111• 

which implies I •(t) - cl � lxi(t) - c11 for each j. Therefore, if 

l •(t) - cl -o, then I xi(t) - c1 1 -o 
for each j as t - a. Conversely, if lxi(t) - c11 -o for each j, then 

3 
lx(t) - cl1 = L lx1(t) - c111-o, 

l 

hence l •(t) - cl-O as r - a. 

The Derivative Now we are ready for derivatives. Think of x = x(t) as tracing 
a path in space (Fig. 1). For h smali the difference vector 

x(t + h) - x(t) 
represents the chord from x(t) to x(t + h). Hence the difference quotient 

x(t + h) - x(t) 
h 

represents this (short) chord divided by the small number h. The limit as h - o 
is called the derivative of the vector function: 

Fis. I Definition of : 
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Jt(t) = 
dx 

= liJn x(r + h) - x(t) . dt ... o h 

Because Jt is a vector in the limiting position of the secant, we say that Jt is tangent 
to the curve. 

Examples ( 1 )  x(t) = t• + b 
dx 

= lim x(t + h) - x(t) 
dt ... o h 

= 
lim [(t + h)e + b] - [t• + b] = lim he = a 
... o h ... o h 

Hence x(r) is the constant vector a This is reasonable because x(r) represents a 
line parallel to a 

(2) x(r) = 2t• + b 
(3) x(r) = t3• + b 

i(t) = 2& 
t(r) = 3r2a 

In these three examples. all representing the same line, the derivatives are all 
parallel to a Their lengths, however, vary because the line is traced at different speeds. 

Usually, we compute Jl(t) in coordinates. Let x(t) = (x(t� y(t� z(t)). From the 
definition of i(t) as the limit of difference quotients it follows, for example, that 
the second coordinate of Jl(t) is 

lim y(t + h) - y(t) = 
dy . 

... o h dt 
The same holds for the other coordinates of Jl(t). 

The derivative of a vector function x(r) = (x(t1 y(t1 z(r)) 
dx (dx dy dz) is the vector function dt = dt , dt , dt . 

Velocity and Speed Even though these two words are used interchangeably 
in everyday life, there is an important distinction between them in mathematics. 
Velocity is a vector function; speed is a scalar (real-valued) function. 

If x = x(t) is the position of a particle at time t, its velocity is 

dx v = v(t) = Jl(t) = dt ; 

its speed is l v(t)I = l i(t) I. 
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Example x(t) = (t, t2, t3). Then v(t) = x(t) = ( l, 2t, 3t2� 
lv(t)l2 = 1 + (2t)2 + (3t2)2 = 1 + 4t2 + 9t4, speed = lv(t)I = Jf+-4i2 + 9t4 • 

Like any other vector, the velocity vector v(t) starts at the origin. However 
there is no law against imagining v(t) attached at each point of x(t). Then v(t) is 
tangential to the curve; its direction at each point is the direction of the motion 
and its length is the speed. Double the speed and you double the velocity vector. 
(It still points in the same direction, but is twice as long.) 

Zero Speed Clearly, x(t) has zero speed if and only if it has zero velocity. When 
this is so for all t on an intervaL then 

Jl(t) = (x1(t� x2(t� x3(t�) = (0, 0, 0). 
Hence x1(t) = 0, and so x1(t) = c1 (constant) for i = 1, 2, 3. Therefore 

x(t) = (ci. clt c3) = c. 

Physically, this simply says that an object with zero speed (or velocity) is standing still 

Differentiation Formulas The following formulas are essential for differenti
ating vector functions. 

d 
dt [x(t) + y(t)] = Jl(t) + y(t� 
d 
dt [x(t) · y(r)] = Jl(t) • y(t) + x(t) • y(t). 

d dx du 
dt x[u(t)] = du dt (Chain Rule). 

�t (g(c)x(t)] = g(t)x(t) + g(t)i(t� 

d 
dt (v x w) = v x w + v x w. 

Note the similarity to ordinary differentiation formulas. In particular, the second, 
third, and fourth formulas, each involving a kind of product, all resemble the 
Product Rule for derivatives. 

To prove the second formula, for example, note that the first coordinate o( gx 
is gx1, and 

(gxif = iJx1 + gx1. 
which is the first component of gx + gi, etc. The other formulas can be verified 
similarly. See the exercises. 

Examples 

( ) d ( 3 4 5) d [ 3( 2)] (d J)< 2) 3 d ( 2) 1 dt t ' t ' t = dr t l ,  t, t = dt t l ,  t, t + t dt l ,  t, t 

= 3r2(1, t, r2) + r3(0, l, 2t) = (3t2, 4t3, 5t4). 
(2) (1, t, - r2) x (1, t, t2) = (2t3, -2t2, o� �t (2t3, -2t2, 0) = (6t2, -4t, 0). 
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[�t (1, t, -tl)] )( ( 1, t, t2) + (1, t, - tl) )( �t ( 1, t, tl) 
= (0, l, -2t) )( (1, t, tl) + (1, t, -tl) )( (0, l, 2t) 
= (3tl, -2t. - 1 ) + (3tl, -2t, 1) = (6tl, -4t, 0). 

• EXAMPLE 1 Let x = x(t) be the path of a point moving on the sphere 

l • I = a. Show that the velocity v(t) at each instant is perpendicular to x(t� 
d d Sohltio11 x(t) · x(t) = lx(t) l2 = al, hence - [x(t) • x(t)] = -d al = 0. dt t 

d 
But dt [x(t) • x(t)] = i(t) · x(t) + x(t) • i(t) = 2x(t) • i(t� 

Therefore x(t) · Jt(t) = 0, that is, x(t) • v(t) = 0. • 
We shall use the result of Example 1 several times in the following sections. Let 

us restate it in slightly different terms: 

If x(r) has constant length, then x(r) is perpendicular to its derivative i(t� 

This statement makes good sense geometrically. For the curve x(t) lies on the surface 
of a sphere l • I = a.  The vector i(r� imagined attached at each point of the curve, 
is tangent to the curve, hence is tangent to the sphere. Therefore i(t) is perpendicular 
to the radius vector, which is x(t� See Fig. 2. 

EXERCISES 
Differentiate x(t) = 

l (e', e2', e3') 
4 (t2, 0, t3) 

2 (t4, t5, t6) 
5 (t, cos t, sin t) 

Fis. 2 The tangent to a curve on 
the sphere is tangent to the 
sphere, hence perpendicular 
to the radius vector. 

3 (t + l, 3t - l, 4t) 
6 (t2, arc tan t, e- '). 
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Find the speed at t of x(t) = 

7 (t2, t3 + t4, l ) 
10 (A cos wr, A sin wt, Bt) 

8 (2t - l,3t + l, -2t + 1) 
1 1  (1. t4, t6) 

9 (A cos wt, A sin wt, B) 
12 (t, cosh t, 3). 

Prove 
d 

13 dt [x(t) + y(t)] • Jt(t) + y(t) 
d 

14 dt [x(t) · y(t)] = it · y  + x  • y  

1 5  � (x x y) = i x y + x x t 
d dx l du 16 - x[u(t)] = - · -. 
dt du I) dt 

17 Suppose Jt(t) ... a. Find x(t). 18 Suppose i(t) = ta + b. Find x(t� 
19 Suppose i(t) = kx(r� Find x(t� 20 Suppose f(t) + x(t) = 0. Find x(t). 
21 Suppose that x = x(r) is a moving point such that Jt(t) is always perpendicular to x(r). 

Show that x(t) moves on a sphere with center at 0. [Hint Differentiate jxj2.) 
d l 

22 Suppose x(t) '# 0. Show dt jx(r)I = TX1 x · fl. 

23 A particle oscillates on the line segment ab. It starts at e, then moves halfway to b, 
then halfway back toward e, then half again as far toward b, etc. Find its position after 
n steps. 

24 (cont.) Find its limit. 
d 

25 Prove dt [u(ti v(ti w(r)] = [ll, v, w] + [u. v, w] + [u, v, w]. 

26 (cont.) Find � [u(ri ll(ri O{t)). 

2. ARC LENGTH 

Let x = x(t) be a space curve defined for a � t � b. We want to assign a length 
to the curve. Actually, we shall do a bit more: we shall define a function s = s(t) 
that gives the length of the arc from x(a) to x(t) in general. 

We shall give two definitions for s(t� The first is motivated by the physical idea 
of speed. The second, at the end of this section, is based on the length of polygons. 
Both definitions involve integration in a natural way. 

Arc Length via Velocity Let x = x(t) be a space curve defined for a �  t � b 
by a smooth (continuously differentiable) vector function. At each point of the curve, 
the velocity vector Jl( t) is tangential (Fig. 1 ). We feel intuitively that its length 
I i(t)I represents speed, the rate at which the length of the curve increases with 
respect to time. Therefore we define 

ds "di = lv(t) I = lx(t) I. s(a) = 0. 

Thus the arc length function s(t) is the solution of this initial value problem. Now 

Ix( ) 12 = I (dx dy dz) 12 = (dx) 
2 (dy) 2 (dz) 2 t dt ' dt ' dt dt + dt + dt ' 

ds 
J
(dx) 2 (dy) l (dz) l hence dt = dt + dt + dt = Jx(t)l + y(t)2 + z(t)2 . 
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To obtain s(t) itself we integrate starting at t - a so that s(a) - 0: 

Arc Length Let x = x(t) describe a space curve. Then the uc lmgdl from 
x(a) to x(t) is 

Also, 

xcn 

s(t) = f. Jx(u)1 + Y(u)1 + z(u)1 du. 
ds 

= lx(t)I = Jx2 + _y1 + z2 . 
dt 

Fla. t : = lx(r)I Fla. 2 Geometric interpretation of ds 

Remark The arc length formula bu a direct geometric interpretation (Fig. 2i The tiny 
bit of arc length ds corresponds to three "displacements .. dx, dy, and dz along the coordinate 
axis. By the Distance Formula. 

(ds)2 = (dx)2 + (dy)2 + (dz)2• 

Divide formally by (dr)2 and take square roots. The result is 

:-J(:r + (irf + (�;r. 
Let us write the arc length formula for the special case of a curve in the x. y-plane: 

Plane Curves Let x = (x(t� y(t)) be a plane curve for a s  t s  b. Then its 
length is 

L = f. .Jx(t)1 + Y(t)2 dt. 
If the curve is the graph of a function y = /(x) for a s  x s b, then its length is 

L == f: Jt + [f'(x)]2 dx. 
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The second formula is a special case of the first one. Just set x = t. y = f(t), 
where a $ t $ b. Then .i = l and y = }; so 

� = J.'(2 + y2 = .jl+f2 = Jt + (f')2. 

The formula for L follows. 

• EXAMPLE 1 Find the length 

(a) x(t) = (t, t2� 0 $ t $  l (b) y = sin x, 0 $ x :::; 7t. 

Sol"tio11 Use the formula for arc length and an integral table: 

I I I 
(a) L = f Jx2 + >;2 dt = f Jt + (2t)2 dt = 2 f Ji + 12 dt . 0 . 0 • 0 

I 
= 2 · 1[rjf+7 + i ln(r + Jf+7 )] I = !JS + i ln(2 + JS) �  1.479. 

0 

The curve is a parabola because y = t2 = x2• 

(b) L = I: J1 + (��r dx = f:Jt + cos2 x dx :::: 3.820. 

The exact integral (an elliptic integral) is impossible to evaluate ; the approxima
tion is by Simpson's Rule. • 

• EXAMPLE 2 Find the length of the curve 

x(r) = (r cos r. t sin r. 2t) 
Sohltion 

for 0 $ t $ 47t. 

.i(t)2 + .Hr)2 + :(r)2 = (cos t - r·sin r)2 + (sin t + t cos r)2 + 22 = 5 + t2• 

Hence. by the arc length formula. 

L = (.Jx2 + y2 + z2 dt = (.JS+li dr = UtJ5 + 12 + 5 ln(t + J5 + t2 )] r· 
• 0 • 0 � 

= ![47ta + 5 ln(47t + a) - ! In 5], 

where a =  (5 + 16n2)112• Approximately, L :::: 86.3. • 

The curve in Example 2 is a spiral (Fig. 3). As r increases, z increases at a steady 
rate, while the projection ofx(t) on the x. y-plane traces the spiral (r cos t. t sin r) = 
t(cos t, sin t). Actually. the curve lies on a right circular cone because 

x2 + y2 = (r cos r)2 + (r sin r)2 = r2 = iz2
• 

an equation describing a cone, as will be shown in Section 9 of the next chapter. 



x y 
(a) The curve lies on the cone 

x2 + yl = �z2 
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(b) Projection of the curve 
on the x, y-plane: 
(x. y) '" t(cos t, sin t) 

x 

Fig. 3 Graph of x(r) = (r cos t, t sin r. 2r) 

Length 1s Independent of the Parameter Suppose that a curve has two 
different parameterizations. For instance, it may be given by x = x(ri where 
a �  t � b, and also by x = x(r� where. <X � r � p. How do we know that the arc 
length formula yields the same length in each case? We suppose that either 
parameterization can be obtained from the other by a smooth change of variable. 
For example, let us take t = t(r) for the change of variable and assume that a =  t(<X� 
b = t(P� and dt/dr > 0. The t-length and the r-length of the curve are 

and 

By the Chain Rule, dx/dr = (dx dt)(dt/dr). The formula for change of variable in a 
definite integral implies 

� =  J: \�i \ :: dr = f '�� ' dt = L, . 

Thus the formula yields the same length in each case. This proves that the length 
of a curve is a geometric quantity. independent of the analytic representation of 
the curve. 

Arc Length as the Parameter The arc length of a space curve is a built-in 
property, independent of how the curve is parameterized. Therefore a natural 
parameter for a curve is its own arc length. 

Example x(t) = (a cos 2trt, a sin 2trt). 
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This describes a circle of radius a traced counterclockwise at constant speed. The 
complete circle (of length 2na) is traced for 0 � t � 1. Take s = 0 at t = 0 and 
s > 0 for t > 0. Then s = 2nat, so 2nt = s/a and the motion can be described by ( s . s) x = a cos a ,  a sm a . 
This is a formula for x as a function of s. In other words, it is a parameterization 
of the circle with the arc length itself as the parameter. 

In principle, a similar parameterization is possible for every reasonable space 
curve. Given x = x(t1 we fix a point Jlo = x(a) and measure s from Jlo ,  positive in 
the direction of increasing r, negative in the opposite direction (Fig. 4 ). 

! = 8 ' = I  
.! = 6 

I =  7 s = �  ! = 5 
! = .:i 

s = J  
Fia. 4 Arc length as the parameter 

We assume Jt(t) is never 0. Then 
t 

s(t) = J l x(u)ldu 
• 

is a strictly increasing function of t because 

ds 
de = l x(t) I  > -0. 

It follows that s = s(r) has an inverse function t = r(s). Therefore we may write 
x = x(r) in the form 

x = x[t(s)], 
showing x as a function of s. This is the desired parameterization of the curve in 
terms of its own arc length. 

Remark 1 (bad news) For most curves it is difficult or impossible to carry out these 
computations. Usually the integral defining s(t) is hard to evaluate because of the square 
root in the integrand, 

lx(r) I = Jx2 + Y2 + i2, 

and even if s =  s(r) can be computed explicitly, it is hard to find its inverse function. 
The above example of a circle is one of the few cases in which we can find s(r) explicitly. 

There the speed is constant, so s is just a constant multiple of t. 
Remark 2 (good news) We seldom actually need s =  s(t) itself or x expressed in terms of 
s explicitly. The idea of using arc length as the parameter is important for understanding 
curves, but for calculations we can usually manage with ds/dt (and d2s/dt21 which we know. 
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's = b 
Fi&- 5 Inscribed polygonal arc in a space arc 

Arc Length as a L1m1t Let x = x(t) be a space curve, where a :s; t :s; b. One 
way to approximate its arc length is to inscribe a polygonal arc in the given curve 
and take the length of the polygonal arc as an estimate of the arc Jength. 

To this end, we partition [a, b] by 

a = t0 < t 1 � • • • < r. = b. 
The corresponding points on the curve we denote by Xo ,  x1, · · · ,  ' . We connect 
these points to form a polygonal arc (Fig. 5) consisting of the n straight segments 

i = 1 , · · · ,  n. 
Thus x1 = (x1 , y1, z1� where x1 = x(t1� y1 = y(t1� and z1 = z(t1). The Jength of the 
i-th segment is 

l •1 - •1- 1 I =  J(x1 - X1- d2 + (yl - Y1- 1 )2 + (z1 - z1_ i )2 , 
and the length of the polygonal arc-it depends on the partition-is 

• 

L = L(part.) = L l •1 - •1-d· 
i •  l 

Now we seek the limit of L over finer and finer partitions, that is, partitions such 
that 

max {t1+ 1 - t1} ---+ 0. 
1• l. . . . .. 

We shall use the Mean Value Theorem to approximate 1•1 - •1- 1 I and use the 
result to find lim L. 

By one application of the MVT, 

x1 - x1_ 1 = x(t1) - x(t1_ 1 )  = x(�1)(t1 - t1_ 1 �  
where 

Similarly, 

Y1 - Y1- 1 = Y('71)(t; - t1- i ) and 
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where 

Hence 
" 

so L(part) = L (Jx(e,)2 + .Y('71)2 + z(C1)2)(t, - t,_ . �  
i •  1 

This sum smells very much like a definite integral. In order to produce one, let us 
assume that x(t) is continuously differentiable, that is, each of its coordinate 
functions x(ti y(ti z(t) is a continuously differentiable function of t on [a, b]. Then 
it can be shown by a technical argument involving uniform continuity that 

IJ x(e,)2 + .Y('7,)2 + i(C,)2 - J x(r,)2 + .Y(c,)2 + i(c,)2 I 
can be made as small as we please for all i provided we choose the partition 
sufficiently fine. It follows that 

" b b 
L :::::: L (Jx(t,)2 + .Y(t,)2 + i(t1)2 )(t, - 11_ i )  - J J.x2 + y2 + i2 dt = J IJt(t)I de. 

I• I " " 

Thus polygonal approximation leads, in the limit, to the same formula for arc 
length that we arrived at earlier by a physical argument. Note that the method works 
for piecewise smooth curves, that is, curves that are smooth (continuously 
differentiable) except for a finite number of exceptional points (comers). 
EXERCISES 

Find the length of x(t) = 

I (a11 + b1, a21 + b2 , a3 1 + b3� O s 1 s l  
2 (12, 13� 0 :s; 1 s 2 3 (14, r5� 0 :s; 1 S I 

Set up each arc length as an integraL but do not evaluate 

5 y = x3, 0 :s; x :s; b 6 y = tr, a :s; x :s; b 
7 x(1) = (i-, t8, t'� a :s; 1 :s; b 
8 x(r) = (cos t, sin t, cos t + sin t� 0 s t  s 27t. 

Find the arc length 

9 y = In x, I :s; x :s; 2 10 y = 2 sec x, -ht S x S Vt 
I I  x(r) = (r, r2, lt312� 0 s r :s; b 
12 x(r) = (r, J2 cos t, !r - i sin 2r� 0 :s; r s n. 

13 Show that the curve x = (sin2 r. sin r cos 1, cos r) lies on the unit sphere, and verify the 
relation x • Jt = 0. 

14 (cont.) Express its length for a s t  s b as an integral 
15 For the curve of Ex. 1 1, express r in terms of s; take s =  0 at t = 0. 
16 For which functions z(t) is the curve x(1) = (cos r, sin r, z(t)) a plane curve? 
17 Let x(t) be a curve in the x. y-plane joining (a. 0) to (b, O� where a <  b. Use the formula 

for arc length to prove the length L � b - a. 
18 (cont.) Suppose instead that x(r) joins (a, A) to (b, B). Show that 

L � j(b - a)2 + (B - A)2 • 

(Hence the shortest curve joining two points is a line segment!) [Hint Rotate 
coordinates.] 
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In this section, we shall examine some special features of plane curves and look 
at some well-known examples. 

Derivatives Sometimes a plane parametric curve x = (x(t� y(t)) may be con
sidered as the graph of a function y = f(x). Suppose, for instance, that x(t) > 0 for 
t0 < t < t1• Then x = x(t) is strictly increasing on this interva� hence has an inverse 
function t = t(x). The substitution y = y(t) = y(t(x)] expresses y as a function of x. 
The given curve is the graph of y = y(x) on the interval x{t0) � x � x(ti). 

How do you compute the derivatives 

dy 
dx and 

when the function y(x) is presented parametrically? The key is the Chain Rule. 
First 

. dy dy dx dy . y = -=- -= - x dt dx dt dx ' 
Next, the same reasoning applied to dy/dx yields 

� (dy) = (dy/dx)" (Y/X)" yx - xy 
dx dx x = --;-- = (x )3 · 

Let x = x(t) = (x(t� y(t)) for t0 < t < t, and assume x(t) is never 0. Then the curve 
is the graph of a function y = y(x) and 

dy y = dx x and 
d2y yx - xy 
dx2 = (x)3 · 

• EXAMPLE 1 Show that the equations x(t) = r2 + I, y(t) = t' + I define y as a 
function of x for t > 0 and compute 

dy d2y 
dx and dx2 · 

Sol11tion Since x(t) = 2t > 0 for t >  0, the equations determine y as a function of x. 
dy = � = 4t3 = 212 d2y = yx - xy = ( 12r2)(2t) - (2)(4t3) = 16t3 = 2 dx x 2r • dx2 (x)3 (2t)3 813 • 

Check Eliminate t : 
t2 = x - I, 

dy d2y 
Hence dx = 2(x - l )  = 2t2, dX2 = 2. • 

Area Let x = x(t) = (x(t� y(r)) be a parametric plane curve such that x(t) > O 
for t0 5 t 5 t 1 .  As we have seen, the curve may be considered as the graph of a 
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)' 

Fis- l Area under x = x(t); x > 0 

-a 

)' 

a x 

function y = f(x). We want the area under this graph (Fig. 1 )  expressed as an 
integral involving x(t1 y(t1 etc. 

We use the Change of Variable formula for definite integrals. The area is f 
"• 

f i ,  dx f i, A =  y[t(x)] dx = y(t) d dt = yx dt. 
"o 10 t 10 

If x(t) > 0 for t0 5 t 5 r1, then the area under x = x(t) = (x(t1 y(t)) is flt A =  yx dt. 
10 

• EXAMPLE 2 
x2 Y2 

Find the area under the ellipse al + b2 = 1, y � 0. 

Solution The ellipse can be parameterized by x = a cos 0, y = b sin 0. However 
dx/dO < 0 as 0 runs from 0 to n. To have dx/dO > 0, we could let 0 decrease from 
n to 0, or, we can use the equivalent parameterization, x = -a cos 0, y = b sin 0. 
See Fig. 2. By the second method we obtain 

f" dx j" j" 1 A = J/ dO dO = Jo (b sin O)(a sin 0) dO = ab  Jo sin2 0 dO = l nab. • 

For the area surrounded by a closed curve, there is a formula worth knowing at 
this point, although we postpone its proof until later (Chapter 18). A closed curve 
is given by a periodic vector function of period p: 

x(r + p) = x(r). 
Thus x(p) = x(01 so a loop is formed as t runs from 0 to p. We assume the curve is 
simple, that is, never crosses itself. Precisely, 

x(r. ) -:;:: x(t2) for 0 5 t 1 < t 1 < p. 

We also assume the curve is traversed in the counterclockwise direction, that is, if 
you stand on the curve facing in the direction of increasing r, then the region 
enclosed by the curve is on your immediate left side. (This isn't very precise, but 
we only intend application to simple examples.) See Fig. 3. 
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Closed Curves Let x = x(r) parameterize a simple closed curve with period p, 
traversed counterclockwise. Then the area enclosed by the curve is 

A = ! l'(:qi - y.i) dt. 
Jo . 

l' 

Fig. 3 Simple closed curve: 
x(r) periodic of period p 

y 

x = ( a cos 8 .  b sin 8 )  ---ir---

x 

Fig. 4 

• EXAMPLE 3 
x2 Y2 

Find the area enclosed by the ellipse a2 + 'j,2 = I . 

Solution (Fig. 4) The curve is parameterized by the vector function 

x(O) = (a cos 0, b sin O� 
periodic of period 21t. Clearly the ellipse does not cross itself, and is traversed 
counterclockwise, hence 

I f 211( dy dx) A 
= 2 J 0 x dO - y dO dO 

I f2" = 
2 Jo 

[(a cos O)(b cos 0) - (b sin 0)(-b sin 0)) dO 

I li.. = 2 J 0 
ab dO = Mb. • 

Parameterization of the C ircle The unit circle has the parameterization 
x = (cos 0, sin 0), where 0 is the central angle. Another parameterization in terms of 
rational rather than trigonometric functions is sometimes useful. 

Consider a variable line through ( - I, 0) with slope t. See Fig. 5. Its equation is 

y = r(l + x). 
The line meets the circle in two points; one is ( - I, 0). To find the other we eliminate 
y from the system 

xi + y2 = 1, y = t( l + x) 
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y = t( I  + "C) 

I x 
x = cos 0 

Rational parameterization of the unit circle 

and solve for x: x2 + t2(1 + x)2 = 1, x2 + t2(x2 + 2x +  1) = 1, 

-t2 + X =  -
(t2 + l)x2 + 212x + (12 - 1 )  = 0, 
t' - (r2 + 1 )(12 - 1 ) - t2 ± Ji -t2 ± 1  
12 + 1 = t2 + 1 = t2 + 1 . 

The minus sign leads to x = - l, the known solution, so we choose + : 

1 - t2 2t X = i-+ t2 ' y = t(l + x) = 1+r2 · 
This is the desired rational parameterization of the circle. Note incidentally that the 
parameter 1 can be expressed rationally in terms of x and y: 

y = t( l + x1 y t = · ---- . t + x 
For - oo < t < oo, we get every point of the circle with one exception, the point 
(- 1, 0). 
Remark In a certain sense of algebraic justice, the point ( - I. 0) corresponds to t = ± co. 
For if the slope is ±co, the variable line is vertica� tangent to the circle at ( - 1. O� so it 
meets the circle twice at ( - I, O� 

Rational Parameterization of the Circle The unit circle x2 + y2 = 1 is 
parameterized by 

Also, 

2t 1 - 12 x =  --2· 1 + I  y = 1 + t2 • 
y t =--. l + x  
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Have a second look at Fig. 5. The slope t equals tan a. But the inscribed angle 
a is half the corresponding central angle 0, so t = tan !O. Also x = cos 0 and y = sin 0. 
We may substitute 

t = tan !lJ, 
in the formulas above. Result : 

x = cos o. y = sin 0 

'Half-Angle Formulas 

1 - tan2 !8 
cos O =  · · · · · , 

1 + tan2 !O 
. 0 

2 tan !O 
sm · -- I +  tan2 !O' 

sin 8 
tan !O = - ---

1 + cos 8 

x2 y2 
The Hyperbola The hyperbola 

a
2 -

b
2 = 1 can be parameterized by hyper-

bolic functions: 
x = a  cosh t, y = b sinh t. 

For a geometric interpretation of the parameter t, we compute the shaded area A 
in Fig. 6. 

l' 

b �lllh I 

x = (a cosh r . b �in h I )  

Fig. 6 Hyperbola; to interpret 
t geometrically 

This area is the difference between the area bounded by the curve and the y-axis 
(for 0 $; y $; b sinh t) and the area of the triangle. Thus 

A =  f �yx dt - J (a cosh t)(b sinh t) = f�ab cosh2 t dt - �: sinh 2t 

= ab(! sinh 2t + �) L - a: sinh 2r = � abt. 

2A 
1 = ab · 

Hence 

This gives us an expression for t in terms of geometric quantities. 
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The Cyclo id The cycloid is the curve traced by an outermost point on a bicycle 
tire. 

• EXAMPLE 4 A circle of radius a rolls along the x-axis in the upper half-plane. 
The point on the circle initially at the origin traces a cycloid. 

(a) Parameterize the cycloid by the central angle 8 in Fig. 7a 

(b) Find the length L of one arch of the cycloid. 
(c) Find the area A under one arch of the cycloid. 

(a} Cycloid generated by rollin& circle 

Fig. 7 The cycloid 

(b} Details 

Sobttio11 (a) By carefully marking various lengths (Fig. 7b) we can read the 
relations 

x + a sin 8 = aO, y + a cos 8 = a. 
(Note that the corresponding circular arc has length a8, which equals the distance 
from 0 to the point of contact because the circle rolls.) Hence 

x = x(8) = a(8 - sin 8, l - cos 8� 
(b) �= = (x(8� y(8)) = a( l - cos 0, sin 8), 
.i(8)1 + y(0)1 = [a(l - cos 8))2 + (a sin 8)1 = a1(2 - 2 cos 8) = 4a2 sin1 !8. 

Therefore 

la la 
= a1 J ( l - cos 8)1 d8 = a1 J (1 - 2 cos 8 + cos1 8) d8 

0 0 
la 

= a2 J ( l  + cos2 8) d8 = a2(21t + 1t) = 3M1• 
0 

• 
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y 

area •  •a2 

1TQ 

area •  .,2 

27TU X 

Fi&o 8 Geometry of the cycloid. Note that 21t0 :::: 6.28a < 8a. 

Remark Figure 8 illustrates the results of Example 3. 

The Tractnx Suppose a point-weight attached to a string of length a is placed at 
(0, a) on the rough horizontal x, y-plane, and the end of the string is placed at (O, 0). 
See Fig. 9a. Then the end is moved slowly along the x-axis. The weight traces a 
curve called the tractrix. Because of friction, the string is always tangent to the 
curve. 

r 
" 

,. 

" 

--
( I ,  0 )  x 

(a) Weight at (0, a) (b) Set-up for parameterization 

Fi1- 9 The tractrix 

• EXAMPLE I Parameterize the tractrix by t, the x-intercept of the tangent from 
(x, y). 

Sohttion See Fig. 9b. The length of the segment joining (x. y) and (t, 0) is a. hence 

(t - x)2 + Yi =  a2. 

The slope of the segment is dy/dx = y/x, hence 

Thus we have the system (r - x)2 + y2 = a2, 

with the initial data t = 0, x = 0, y = a. 

y -y 
:X. t - x  
(t - x)y = - y:X., 

Our aim is to express x and y as functions of t. To simplify things a bit. we set 
u = t - x. Then u = I - x. so our system becomes 

u2 + y2 = a2, uy = -yx = y(u - 1), 
with the initial data u(O) = 0, y(O) = a. 
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There are too many quantities to juggle, so let us eliminate y and y. To do so we 
need one more relation, which comes by differentiating the first equation : 

uu + yy = 0. 
We multiply this relation by u, then use the equations of our system to simplify 
the result: 

u2u + y(uy) = 0, 

u21i + (a2 - u2)(1i - l) = 0, 

This last equation can be expressed as 

u2u + y2(1i - l) = o. 

a2u - a1 - u2 = 0. 

du l 
2 2 = 2 dt. 

a - u a 

We integrate, taking into account the initial data u(O) = 0: 

( I U J 
tanh- - = - t, 

a a a2 
t u = a  tanh - . 
a 

Also 
t t 

y2 = a2 - u1 = a2 - a1 tanh1 - = a1 sech2 - • 

Since u = t - x, the final result is 

t 
x = t - a tanh - ,  

a 

a a 

t 
y = a sech - . 

a 
• 

Remark The tractrix is an example of a ,...mt �e. Imagine a fox chasing a rabbit. When 
t = 0 the rabbit is at (0. 0) and the fox is at (0, a� The rabbit runs along the positive x-axis 
and the fox pursues it so that he is always pointed directly at the rabbit. If the 
gap between them remains constant, then the fox's path is a tractrix. A similar argument 
might apply to a submarine tracking a target ship. 

EXERCI E'"" 
I Show that x(r) = (t2 - I. rl - r) parameterizes y2 = xl t x2• 
2 (cont.) Sketch the curve and identify t geometrically. 
3 Show that the wilch of Apesi y = al /(a2 + x2) is parameterized by 

x(O) = a(cot 0. sin2 0). 
4 (cont.) Sketch the curve. Try to identify the geometric angle 0. 
5 Show that the serpentine (a2 + x1)y = abx is parameterized by x(O) = 

(a cot 0, b sin 0 cos O� 
6 (cont.) Sketch the curve. 
7 Show that the folium of Descartes xl + yl = 3axy is parameterized by x(r) = 

3a(t/( t + tl� t1/( I + rl)). 
8* (cont.) Sketch the curve. 
9 Show that the cisaoW of Dioclcs y2(a - x) = xl can be parameterized by x(t) a 

a(r2/(1 + 12� tl/( I + r2)). 
10 Sketch the curve. 
1 1  As a wheel of radius a rolls along the x-axis, a point inside the wheel at distance b 

from the center, b < a, traces a curtate cycloid (Fig. 10). Apply the method of 
Example 4 to parameterize the curve. 
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y )' 

rra 2rra x 

Fig. 10 Curtate cycloid Fla. 1 1  Prolate cycloid 

12 (cont.) Find the area under one arch of the curtate cycloid. 
13 (cont.) Suppose b > a, so the point lies on a flange outside the wheel. (Think of the 

outer rim of a railroad wheel.) Then the curve is a prolate cycloid (Fig. 1 1 ). 
Parameterize this curve. 

14• (cont.) Find the shaded area in Fig. 1 1 . 
15 A (spool of) thread is wound clockwise around the unit circle so its outer end is at 

( I ,  0). Now it is unwound. always kept taut. The end traces a curve called the 
involute of the circle. Parameterize the curve, using the central angle 0 in Fig. 12 as the 
parameter. 

Fig. 12 Involute of circle 

y 

Fig. 13 Hypocycloid Fig. 14 Epicycloid 

16 (cont.) Parameterize in terms of the arc length s. measured from ( I .  O� 
17 Find the arc length functions s = s(t). with s(O) = 0. for the tractrix of Example 5. 

\' 

18 (cont.) Show that .v = ae-•1•. This relation, so simple. must have a shortcut proof. 
Does it? 

The following exercises deal with hypocycloids. A circle of radius h rolls on the inside of a 
fixed circle of radius a > h. The locus of a point on its boundary is called a hypocycloid. 
We take I x  I = a  for the fixed circle and (a, 0) for the initial position or the moving point 
(Fig. 13). 

19 Parameterize the curve by the angle 0. 
20 Describe the curve if a = 2b. 
21 Suppose a =  3h. The curve is a hypocycloid of three cusps, or deltoid. Give the 

parametric equation. and find the area enclosed by the curve. 
ll (cont.) Sketch the curye and find its length. 
23 Suppose a =  4h. so the curve is a hypocycloid of 4 cusps (Fig. 13). Give the parametric 

equation in as simple a form as possible. 
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24 (cont.) Find the length of the curve. 
25 (cont.) Find the area enclosed by the �rve. 
26• Fix a and let b = a/n. Find the length L. of the hypocycloid of n cusps inscribed in a 

circle of radius a. 
21• (cont.) Show that {L.} is an increasing sequence and find Jim L • .  
28* (cont.) Find the area A. enclosed by the curve and find lim A • .  

Suppose a circle of radius b rolls on the outside of a fixed circle of radius a. A point on its 
rim traces an epicycloid. (These curves are important in the design of gear teeth.) Let the 
fixed circle be I xi = a and take the point initially at (a. O� See Fig. 14. 
29 Parameterize the curve by the angle 0. 
JO• Fix a and let b = a/n. Find the area A. of the resulting epicycloid of n cusps, and find 

Jim A • .  
31 Let a =  2b. Find the length of the corresponding nephroid (epicycloid of two cusps). 
32• Fix a and let b = a/n. Find the length L. of the resulting epicycloid of n cusps, and 

find lim L • .  

4. TANGENT. NOR MAL. AND CU RVATU RE 

Let x = x(r) be a space curve. In this section we shall usually operate under the 
assumption that *(t) is never 0. As we know (p. 683), this implies that we can 
parameterize the curve in terms of arc length if we wish. 

Let us assume v = Jl :;: 0. Then at each point, the curve has a non-zero tangent 
vector v, and 

v t = lYT 
is a unit vector in the direction of this tangent. The vector t is the unit tangent 
'ector of the curve x(r). 
• EXAMPLE 1 Find the unit tangent vector to the curve x(t) = (t, t2, t3) at the 
point x(l) = (1, l, 1 ). 

Sollltion v( l ) = Jl( l ) = (1, 2t, 3t2) l = (J, 2, 3), 
• 1  

Iv( 1 ) I = J 1 + 4 + 9 = J14. v( l ) 1 t(1 ) = lv(l) I  = J14(1. 2, 3). • 

Let us find an alternative formula for t in terms of arc length. Since v :;: 0, we 
can parameterize x(r) in terms of arc length. Then, by the Chain Rule, 

v = 
dx = dx ds = dx lvl dt ds dt ds · 

Therefore 
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Unit Tangent Vector If x = x(r) is a space curve with v(t) -::;:. 0, then its unit 
tangent vector is 

v dx t = - =-
l v l  ds ' 

where s is arc length. 

Cusps It is worth exploring what can happen at a point where v(t) = 0. For 
example, consider the plane curve x(t) = (r3, r2). Then 

v = Ji =  (3t2, 2t). 
sov(t) -::;:. 0 if t -::/: 0, but v(O) = 0. Plotting the curve (Fig. 1�  we see there is a sharp 
point at 0, called a cusp. At the cusp, the curve changes direction abruptly. If  
t < 0 and is very small, the tangent points nearly in the direction of the negative 
y-axis. But if t > 0 and is very small, the tangent points nearly in the direction of the 
positive y-axis. Thus the curve does an almost instantaneous about-face. A particle 
moving on the curve slows up as it comes toward 0, stops instantaneously at 0, 
then speeds up as it leaves 0 in the opposite direction. 

)I 

-2 - 1 2 x 

Fig. I Graph ofx = (t3, tz). Note 
that y = x213• 

For the remainder of this section we shall assume that v -::;:. 0, so that t is defined 
and unpleasant cusps are ruled out. 

Curvature The unit tangent vector indicates the direction of a space curve at 
each of its points. As we move along the curve, the direction generally changes, 
rapidly if the curve bends sharply, less rapidly if the curve is fairly straight. We 
define curvature to be the rate of change of direction. We measure this rate relative 
to arc length, so that curvature does not depend on how the curve was originally 
parameterized. 

Curvature Ifx = x(s) is a space curve, where s denotes arc length, 
its curvature is 

k = 1�:1. 
By definition, curvature is a non-negative real number. 



898 14. VECTOR F UNCTIONS A N D  CURVES 

• EXAMPLE 2 Find all curves with curvature identically zero. 

So"'tio" A natural guess is all straight lines. Let us prove this is so. We are given 
k = 0. Therefore 

1: 1 = 0; dt 
hence ds = 0. 

It follows that t = a, a constant vector. Consequently 

dx d 
ds = t = a =  ds (s•� so x(s) = s• + b, 

where b is constant. This is the parametric vector equation of a straight line 
through b parallel to a • 

Computation of Curvc.ture We shall derive several formulas for computing 
curvature. They all follow from one basic formula. 

If x = x(t) is a space curve, then 

Proof By Chain Rule, 

Jt = ds dx = ds t, 
dt ds dt 

We compute Jt x i, using t x t = 0: Jt x f = (�:) 3 t x �:. 
Now t, being a unit vector, is perpendicular to dt/ds, hence 

I t x �: I = 1 t 1 · I �: I = . .  k = k. 
Therefore, 

which is equivalent to the stated formula. 

Now follow three formulas for curvature. The first two apply to curves given in 
parametric form, the third to the graph of a function. 

Curvature Formulas If x = x(t) is a space curve, then 

[ I Jt l2 I tl2 - (* . i)21 112 k = 1 Jt l3 
lx.Y - .Yx l Ifx = (x(t� y(t)) is a plane curve, then k = (.i2 + y2)312 . 

lf"(x)I If a plane curve is the graph of a function y = f(x� then k = 
(l 

+ f'(x)2p12 · 
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The first assertion is a restatement of the basic formula because of the identity 

lu x vl2 = lul2 lv l2 - (u .  v)2, 
proved on p. 660. 

If x = (x(r � y(t)) is a plane curve. then 

Jl = (x. y) and i = (x. Y). 
hence 1Jt l2 l i l2 - (Jl • i)2 = (x2 + y2)(x2 + y2) - (xx + yji)2 = (xy - yx)2, 
so the second formula follows. 

Finally, if the plane curve is the graph of y = /(x� apply the second formula 
with t = x and x = (t.f(t)) = (x,/(x)). Then x = 1. x = 0, y = f'(x� and ji = f"(x), 
so the third formula follows by direct substitution. 

• EXAMPLE 3 Find the curvature of a circle of radius a. 
Solution Let the equation of the circle be x2 + y2 = a2• Thus 

y =  ±JQi -:... 7. 
(This equation describes either the upper or lower half of the circle depending on 
whether the positive or negative square root is chosen.) Differentiate: 

-x x y' = ----- = -
±�-xi y ' 

Differentiate again: 

Now 

Y" = _ Y -
2
xy' = _ Y - x(-x/y) = - xz + y2 a2 

y y2 y3 = - y3 ' ( x)2 y2 + x2 az 
I + y' i = 1 + - y = y2 = y2 . 

Hence by the formula for curvature, I 
-a2/Y3 I a2 1 k =  =

-
=

-(a2/y2)3/2 a3 a 
Alurnative solution Write x(r) = (a cos t, a sin t). 
(This describes the circle by its central angle r.) Then 

Hence 

x = (-a sin t, a cos r), l • I = �: = J(-a sin r)2 + (a cos r)2 = a. 

t = -I Jt I = ! ( -a sin t, a cos t) = ( -sin t, cos t ). Jt a . 
Differentiate with respect to t : On the one hand. 

dt ( . \ dt = -cos t, - sm t,. I �: I = 1 . 
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On the other hand, 

Therefore 

dt ds dt dt 
dt = dt ds = a ds ' 

ak = 1, 

I �� I = a I�; I = 
ak. 

1 
a = k . • 

Remark The curvature of a circle is the reciprocal of its radius. This is reasonable on two 
counts. First, the curvature is the same at all points of a circle. Second, it is small for large 
circles, since the larger the circle the more slowly its direction changes per unit of arc length. 

I e U rut Nonna I The vector dt/ds has length k, the curvature. Suppose k :f: O; 
then 

dt 
ds = kn, 

where n is a unit vector in the direction of dt/ds. Since t is a unit vector, t and dt/ds 
are perpendicular, that is, t and n are perpendicular (Fig. 2� The vector n is called 
the unit normal to the curve. LJ= x(s) be a space curve with curvature k(s) ::;: 0. Then 

• dt - = t, - = kn. lt l = lnl = l, t · n = O. s ds 

n 

Fia. 2 Unit tangent and normal 

The further study of space curves, not pursued here, begins with an analysis of 
dn/ds. That leads to another quantity, torsion, which measures how fast the plane of 
t and n is turning around the tangent line. 

• EXAMPLE 4 Compute t, n, and k for the helix (circular spiral) 

x(t) = (a cos t, a sin t, bt). 
where a > 0 and b > 0. 
So'11tio11 The projection of x(t) on the x, y-plane is (a cos t, a sin t, O� As a 
particle describes the curve x(t). its projection (Fig. 3a) describes a circle of radius 
a. The third component of x(t) is bt; the particle moves upward at a steady rate. 
Thus, the curve is a spira� circular and rising steadily (Fig. 3b). 
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(a) Projection on the x. y·plane 

(b) Helix x = (a cos I, a sin I, bl) 

To find t, differentiate • = (a cos t, a sin t, bt): 
x = ( -a sin t, a cos t, b � I Jl I = J a1 + b1 = c. 

Hence, t = l:I = � (-a sin t, a cos t, b) and �; = c. 

To find k and n, use the relation kn = �:: 
kn = dt = dtdt = 

dt/ds = � dt = � (- cos t -sin t o� ds dt ds dt/ dt c dt c1 ' ' 

_I 

The left-hand side is kn, where k :2: 0 and n is a unit vector. The right-hand side is 
also a positive constant times a unit vector. It follows that 

a k = 2· c n = (-cos t, -sin t, 0). 

Answer t = I (-a sin t, a cos t, b1 n = (-cos t, -sin t, O� Jal +  bl 
a k = l bl ' a + 

• 

Remark If b = 0, the spiral degenerates into a circle of radius a and the curvature k reduces 
to l/a, which agrees with Example 3. 

Ovals An o'fal is a simple closed plane curve with k > 0 at each point. If an oval 
has length L, then • =  x(s) is periodic of period L. 

Let C be an oval taken counterclockwise (Fig. 4). Let ex be the angle between the 
positive x-axis and the unit tangent t. Then ex increases from 0 to 2n as s increases 
from 0 to L. If we like, we can parameterize the curve in terms of ex instead of s. 
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Clearly 

It rollows that 

Fie. 4 Geometry of an oval 

t = (cos a, sin ix). 
dt da dt da . kn = ds = ds da 

= 
ds (-sin ix, cos ix). 

Since da/ds > 0 and (-sin ix, cos ix) is a unit vector, we have 

k = da , ds 
n = (-sin ix, cos ix). 

The normal n is directed inward because t is turning counterclockwise. 
The component of the position vector x in the normal direction is important in 

the study of ovals; it is called the support function of the oval and written p = p(ix): 
p = -x · n = x sin ix - y cos ix. 

Note that p is the distance from 0 to the supportin1 line x sin ix - y cos ix = p. This 
line is tangent to the oval at x and separates the plane into two half-planes, one 
containing the oval and the other completely apart from it. 

For a circle of radius a, we have p = a  and k = 1/a, hence p = 1/k. For more 
general ovals, p and k vary, but there is still a relation between them: 

d2p I p + dix2 = k '  
We postpone the proof to the exercises. For the moment, let us assume this 
formula and show how it implies some nice properties of ovals. 

• EXAMPLE I Suppose an oval has length L and area A. Prove that 

(a) L = f :·p da (b) A = � f > ds. 
Sobltion (a) From the relation quoted above, 

f 2,. i2" d2p i2" da p da + d� da = -k . 0 0 IX 0 

By inspection, the second integral is 0. That is because p(ix) is periodic with period 
2n., hence so is its derivative dp/da. Therefore (dp/dixX2n) - (dp/dix)(O) = 0. 
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For the integral on the right, we recall that 

da k = -ds ' 
1 ds 

hence 
k = da · 

Therefore f :·p da = f :· :: drx = s(2n) - s(O) = L. 

(b) We use the formula 

A = I fL(x '!1- - y dx) ds = _I_ fL(x, y) . (dy ' - dx) ds. 2 J 0 ds ds 2 J 0 ds ds 
But t = �= = (�: . ��)· hence n = (- is , :) . 

, L , L It follows that A = !  J x • (-n) ds = ! I p ds. 0 . 0 

EXERCISES 

Find the unit tangent to the curve 

I y = x2 2 
4 x = (t cos t, t sin r) 5 
7 x = tr1 a + rb + c 8 

Find the curvature 

xy = I  
x = ra + b, a #  0 
x = (r1• r3• r•) 

9 y = x2 10 xy = I 
12 x = (t. 12• t3) 
15 x = (cos r. sin t, sin 21) 

13 x = ,. + t3b 
16 X = (e- •, I, e'). 

Find the maximum curvature of 

17 y = sin x 18 y = In x. 

3 
6 

x = (r1, r3), t # O 
x = (t cos t, t sin t, 2t) 

I I  x = (r3, 12� t # 0 
14 x = (t cos t, t sin t)  

• 

19 A point moves along y = e" at the rate of r cm/sec. How fast is the tangent turning 
when the point is at (a. e") ? 

20 Compute the maximum and minimum curvature of an ellipse with scmi·major axis a 
and semi-minor axis b. Check the case a =  b. 

Plot carefully near t = 0: 

21 x = (12• 15) 

23 Let x = x(s) be a plane curve. Show that dn/ds = kt. (Hint Differentiate t • n = 0 
and n · n = 1.) 

24• Let x = x(s) be a plane curve such that x(O) = 0, t(O) = ( I .  0), n(O) = (0. I )- Let 
k = k(s) = a +  bs + - - - be the Taylor expansion of k(s) at s = 0, with a >  0. Show that 

x(s) = s - !a2s3 + · · · . y(s) = !as2 + !bs3 + · · " 

25 Let x(s) be a space curve on the unit sphere, that is, l • I  = I. Show that k(s) :::::: ' - (Hint 
Differentiate twice.] 

The next l I exercises concern plane ovals. See pp. 701-2 for the notation. 

dt dn 26 Prove - = n. - = - t 
da da 
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Express x · t in terms of p and a. 13• Express x in terms of p and «. 
. L  

Find I k ds. 
· o 

1 d2p Prove k = p + 
da2 . [Hint Use Ex. 27.] 

Prove A = !  
J:
" 
(
p2 - �:r J da. [Hint Compute 

�
« (P 

�:) 
and integrate by 

parts.1 
Find the support function for the ellipse x2/a2 + y2/b2 = 1. [Hint Parameterize.] 
Let x = x(cx) be an oval and u > 0. Define the 119rallel OTal x1 = x1(a) by 
x1 = x - an. Show that ta = t. 
(cont.) Find Pa· 
(cont.) Prove La = L + 21ta. 
(cont.) Prove Aa = A +  La + ira2• 

5. VELOCITY AND ACCELERATION 

Suppose x = x( t) is the path of a moving particle. The velocity of the particle is the 
vector 

v(t) = Jt(t). 
This velocity vector is tangential to the curve; its length is the speed of the 
particle. The acceleration of the particle is the vector 

a(r) = v(t) = i(t). 

Its length and direction are generally not as apparent as those of the velocity vector. 

Example x(t) = (b cos wt, b sin wt), 
where b > 0 and w > 0. Since I x  I = b, the particle moves on a circle of radius b. Its 

VI / )  

(a) Relative positions of x, v, • (b) Why • and x are oppositely directed 

Fig. I Uniform circular motion: x(t) = b(cos wt, sin wt) 
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velocity and acceleration are 

v(t) = x(t) = bw(- sin wt, cos wt� 
a(t) = v(t) = bw2(- cos wt, - sin wt) = -bw2x.. 

The speed is I v  I = bw, a constant. so the motion is uniform circular motion. 
The velocity vector v(t) is perpendicular to the position vector since x(t) • v(t) = 0. 
This is not surprising since each tangent to a circle is perpendicular to the 
corresponding radius. The acceleration is a(t) = -bw2x(t), so the acceleration vector 
a(t) is directed opposite to the position vector x(t). See Fig. la. Why should that be? 

The acceleration a(t) measures the rate of change of the velocity. Observe the 
velocity vectors at t and at an instant later, t + h. See Fig. lb. The difference 
v(t + h) - v(t) is nearly parallel to x(t), but oppositely directed. Therefore the 
instantaneous rate of change of the velocity is in a direction opposite to that of 
x(t). 

N ewton's Law of Motion This famous principle states that 

force = mass x acceleration. 

But force and acceleration are vectors, both having magnitude and direction. Thus 
Newton's Law is a vector equation: 

F = mi. 

It is equivalent to three scalar equations for the components: 

• EXAMPLE 1 A particle of mass m is subject to zero force. Find its trajectory. 

Solution By Newton's Law, mi = 0, i = 0 

Since i = v, dv = o 
dt . 

Integrate once; v is constant :  Y = Vo ,  dx 
dt =  Yo . 

Integrate again : X =  tYo + Xo · 

Therefore the trajectory is a straight line, traversed at constant speed. • 

• EXAMPLE 2 A shell is fired at an angle ex with the ground and initial speed v0 • 
What is its path ? Neglect air resistance. 

Solutio11 Draw a figure, taking the axes as indicated (Fig. 2). Let v0 be the initial 
velocity vector, so v0 = v0(cos ex, sin ex). Let m denote the mass of the shell. The 
force of gravity at each point is constant. 

F = (0, -mg). 
The equation of motion is ma = F, that is, 
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Integrate : 

' 

F = (0, mg ) 

dx 
dt = (0, -gt) + Yo . 

Integrate again, noting that Xo = 0 by the choice of axes : 

X = (0, -!gt2) + tYo . 
Hence (x(t� y(t)) = (0, -}gt2) + tv0(cos «. sin Gl) = (v0 t cos «.  v0 t sin Gl - }gt2� 

x 
To describe the path, eliminate t: x = v0 t cos «.  t =  • Vo COS OC 

y = v0 t sin oc -
2
! gt2 = x tan Gl -

2 2 
g 

2 
x2 = -ax2 + bx, Vo COS Gl 

where a = g/2v0 2 cos2 Gl and b = tan oc. The graph of this quadratic is a parabola. 

• EXAMPLE 3 In Example 2, what is the maximum range (ground distance) for 
fixed Vo? 
So1Mtio11 The shell hits ground when y = 0: 

(v0 sin Gl - !gt)t = 0. 
This equation has two roots. The root t = 0 indicates the initial point. We want 
the other root, t = 2v0(sin Gl)/g. The range is the value of x at this time: 

( )(2v0 sin Gl) v0 2 . ..,_ 
x = v0 cos oc = - sm � g g 

Clearly x is maximum when sin 2oc = 1, or oc = in. 
Therefore the maximum range is v02/g, and it is achieved by firing at 45°. 

Components of Acceleration If a particle moves on a curve, it is useful to 
express its velocity and acceleration in terms oft, n. and k since these are quantities 
built into the curve (independent of parameterimtion). We already know 

ds Y = -t, dt 

which says that the motion is directed along the tangent with speed ds/dt. 
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For further information, differentiate v with respect to time, using the Chain Rule 
carefully: 

But 

dv d2s ds dt 
8 = dt = dt2 t + dt dt · 

dt 
= 
ds dt 

= 
ds kn, where k is the curvature. Therefore dt dt ds dt 

Tangential and Normal Components of Acceleration 

a =  - - - t + k n. d2s (ds)2 
dt2 dt 

This is an important equation in mechanics. It resolves the acceleration into two 
components, one tangential to the direction of motion, the other normal (perpendi
cular) to the direction of motion. The normal component k.S2n is called the 
centripetal acceleration. 

Normal and tangential components of acceleration have a natural interpretation. 
Remember that acceleration is the rate of change of the velocity vector v. Now a 
vector can change for two reasons: (a) its length changes, (b) its direction changes. 
Since Iv I = s, a change in Iv I is indicated by the second derivative S. Hence the 
tangential component of a corresponds to the changing length of lv l, that is, the 
changing speed. A change in the direction of v is measured by the curvature k. 
Hence the normal component of a corresponds to the changing direction of v. 

EXAMPLE 4 A particle moves counterclockwise on a circle of radius b. Resolve 
its acceleration into tangential and normal components. 

Sol•tio11 Place the circle in the x, y-plane with center at 0. Let 8 = 8(t) denote the 
central angle at time t. Then the path is given by 

Differentiate: 

On the other hand, 

x(t) = b(cos 8, sin 8). 

v = x = bO' (-sin 8, cos 0). 

v = l v l t. 
Since b(J' > 0 and ( -sin 0, cos 0) is a unit vector, it follows that 

l v l  = b(J', t = (-sin 0, cos 8). 

The angular speed o· is usually denoted by w = w(r). Therefore 

v = bw( - sin 0, cos 0) = bwt. 

To find the acceleration, differentiate again: 

a =  v = bWt + bwt· = bWt + bw2(-cos 0, -sin 0). 

Since ( -cos 0, -sin 0) is perpendicular to t, it must equal ±n. The correct sign is 
plus because the normal component of a is a positive multiple of n and bw2 > 0. 
Therefore 

a =  bc.i>t + bw2n. • 
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Remark When the motion is uniform (w constant� then • =-=  bw2n, so the acceleration is all 
centripeta� perpendicular to the direction of motion. This agrees with the example on p. 704. 

• EXAMPLE I The position ofa moving particle isgiven byx(t) = (St + l,t2, 3t2). 
Resolve its acceleration into tangential and normal components. 

Sollltio11 Write the acceleration vector as 

where 8i and • .. are its tangential and normal components. It will be enough to 
find a, since a,. = • - a, = :i - a, . Now 

Jl ds 
where t =Iii and dt = IJt l . 

From Jl = (5, 2t, 6t� we have 

Hence 

�: = IJt l = c2s + 40t2)112, 
d2s 1 40t St 

8i = dt.2 fiT Jl = 25 + 40t2 (5, 2t, 6t) = 5 + 8t2 (5, 2t, 6l� 

10 
It follows that •. = :i - 8i  = (0, 2, 6) - •, = 5 + St2 (-4t, l, 3). • 

A Suppose that a rigid body rotates about an axis through 0. 
See Fig. 3a. The central angle is 6 = O(t� so w = o· is its angular speed, the rate 
of rotation in radians per second. Its angular velocity is defined to be the vector 
co having magnitude o · and pointing along the (positive) axis of rotation according 
to the right-hand rule (Fig. 3b ). 

Once the angular velocity vector co is known, it is easy to find the velocity v of any 
point x in the rigid body. See Fig. 3c. 

oF=::<f 
(a) Rotatina solid 

.. 

0 

(b) 

l 
0 

Fi&- 3 Angular velocity 

v 

(c) v • •  X x  
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Since the point x is rotating about the axis of w, its velocity vector v is 
perpendicular to the plane of w and x. By the right-hand rule, v points in the 
direction of w x x. The speed l v l is the product of the angular speed w = I w l and 
the distance r of x from the axis of rotation. But r = I x I sin </>, hence 

I v I = I (I) 1 1  x I sin </> = I (I) x x 1 . 
Therefore: 

Suppose a rigid body rotates with angular velocity w about an axis through 0. 
The velocity of a point x in the body is 

v = (I)  x x. 

EXERCISES 

I A hill makes angle fJ with the ground (Fig. 4). A shell is fired with initial speed v0 from 
the base of the hill at angle ex with the ground. Show that the x-component of the position 
where the shell strikes the hill is x = (2v0 2/g)(sin ex cos ix - tan fJ cos2 ix). 

2 (cont.) Find the maximum of x as a function of ex and for what ix it occurs. 

Fig. 4 

Find the tangential and normal components of the acceleration vector 
3 x = (1, 12) 4 x = (12, 13), 1 > 0 5 x = (1, sin t) 
6 x = (e', t) 7 x = (cos2 t, sin2 t) 8 x = (2 cos t, 3 sin t) 
9 x = (b cos wt, b sin wt, ct� w constant 

10 x = (1, 12, t3) 1 1  x = (sin t, cos 1, sin 1) 12 x = (1, t, 12). 

13 A particle moves with constant speed I on the surface of the unit sphere Ix I = I. Show 
that the normal component of the acceleration has magnitude at least I. 

14 A particle moves on the surface z = x2 + y2 with constant speed I .  At a certain instant 
10 it passes through 0. Show that the tangential component of e is 0 and the normal 
component is (.:i(10), y(10� 2). Show also with xx + yy = 0 at 10 . 

6. CURV ES IN  POLAR COORDINATES 

We shall study plane curves whose polar coordinates are given as functions of 
time: 

r = r(t), () = O(t ). 
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Area Certain problems require the area swept out by the segment joining O to a 
moving point on a curve (Fig. la). Suppose the curve is given in parametric polar 
coordinates 

r = r(t� a �  t � b. 
In a small interval of time the segment sweeps out a thin triangle of base r d8 and 
height r (ignoring negligible errors (Fig. lb). Hence 

0 
(a) 

dA = ! r2 d8 = ! r2 dB dt 2 2 dt ' 

(b) Element of area 

Fla. I Area swept out by the radius vector 

If the curve is given by r ... r(8) for a � 8 � {J, choose t = 8. Then the fonnula 
specializ.es to 

A = � f: [r(8)]2 d8. 
(The rough argument given here can be made rigorous using approximating sums 
for integrals, but we shall not go into the details.) 

• EXAMPLE 1 Compute the area of the four-petal rose r = a cos 28. 
Sohdio11 Figure 2 shows the graph, emphasizing the part where 0 � 8 � in. 
Because of symmetry it suffices to compute the area of half of one petal. Thus 

a/4 •i4 II/ .. 
A =  8 J !(a cos 28)2 d8 = 4a2 J cos2 28 d8 = 2a2 J (1 + cos 48) d8 = !no2• 

0 ' 0 0 
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y 

Fig. 2 Four-petal rose curve 

• 

The Natura l  Frame When dealing with curves given in parametric polar form, 
we use a pair of unit vectors that do for polar coordinates what i and j do for 
rectangular coordinates. Note that at each point (x. y� the vector i points in the 
direction of increasing x and j points in the direction of increasing y. Now we 
define at each point {r. O}. where r '# 0, a unit vector u in the direction of 
increasing r and a unit vector w in the direction of increasing 0. See Fig. 3. From 
the figure we find that 

u = (cos 0, sin 0), w = ( - sin 0, cos 0). 

Like i and j. clearly u and w are perpendicular. But unlike i and j, the vectors u 
and w associated with x = {r, O} vary with x. Actually, they depend on 0 alone. For 
future reference we note their derivatives: du/dO = w and dw/d() = - u. 

The unit vectors u = (cos 0, sin 0) and w = ( -sin 0, cos 0) 

indicate, respectively, the directions of increasing r and increasing 0 at each point 
{r. O} where r "I= 0. Their derivatives satisfy the relations 

du - = W 
dO 

and 
dw 
dO 

= - u. 

--........_ w = (- sin 8, cos 8) 

X = TU 
w 

r 

o -• _\..__8 ---+-� ----� 
(a) The frame drawn at x (b) The frame correctly drawn at 0 

Fig. 3 The natural frame (pair of orthogonal unit vectors) attached to x = {r, 8) 
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In applications, u and w provide at each P.Oint a natural coordinate system 
(frame) in which computations are often simpler than in rectangular coordinates. 
For example, a curse given by r = r(t) and 6 = 6(t) has a convenient vector form 
(Fig. 3b): 

x = (r cos 0, r sin 6) = ru. 

d o Suppose the path of a particle is described in 
polar form, r = r(t� 6 = 6(t). It is natural to express its velocity and acceleration in 
terms of the perpendicular unit vectors u and w. (You can think of this pair of 
vectors as a frame moving along the path, providing at each point a convenient 
coordinate system.) 

We shall need the time derivatives Ii and w. We already have the derivatives 
du/d6 = w and dw/d6 = - u. From this information we find the derivatives with 
respect to t by applying the Chain Rule: 

du d8 du . . dw d6 dw . 
u = - = - - = 0  w. w = - = - - = -6 u. 

dt dt d6 dt dt d6 

To find the velocity and acceleration vectors, we first write the given curve in 
vector form, x = ru. Then we differentiate twice using the Product Rule carefully: 

v = * = ru + rli = ru + r6° w 

and • = v = (ru + rli) + (ro· w + rlJw + r0·w) 

= (ru + ;o· w) + (r8· w - r0·2u) = (r - r6° 2)u + (rlJ + 2r6°)w. r Velocity and Acceleration in Polar Coordinates 
If  the motion of a particle is given by r = r(t� 6 = O(t� then 

v = ru + r0·w, a =  (r - r0·2)u + (rlJ + 2ro")w. 

Example The spiral r = t, 6 = t. Then r = l, r = 0, 6. 
= 1 , 1J = O; hence 

v(t) = u + tw, lv l = Ji+7, a =  - tu + 2w. 

Central Fe. _ Suppose a particle moves under the influence of a central force 

F =/(t)u. 

At each instant, the force is directed toward or away from the origin. Since ma = F, 
the component of a in the direction ofw is zero: 

rlJ + 2,:0· = O, that is, !r21J + ,;o· = 0. 

This is the same as �t {!r2 6°) = 0, that is, !r26° = constant. 

But 

the rate at which central area is swept out by the curve. It follows that the same 
area is swept out in equal time anywhere along the path. This is Kepler's Second 
Planetary Law. 
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Slope A curve is presented in parametric polar form r = r(t), (} = O(r). We seek its 
slope. 

From x = r cos (} and y = y sin (}, we have 

x = r cos (} - rO' sin O, y = r sin (} +  ,o· cos O. 

If x ::f. 0, then by the Chain Rule, dy/dx = y/x, hence 

dy r sin (} +  ro· cos (} 
dx = r cos (}  -r(} sin (} 

In the special case r = r(O), the formula becomes 

dy (dr/dO) sin (} + r cos (} 
dx = 

(dr/dO) cos (} - r sin (} 

Example The spiral r = (}: 
dy sin (} + (} cos (} tan (} + (} 
dx = cos (} - (} sin (} 

= l - (} tan (} 

The slope is tan ix, where ex is the angle between the tangent to the curve and the 
x-axis. Another useful angle is the angle I/I between the tangent to the curve and the 
radius vector (Fig. 4). From the geometry we easily see that tan I/I =  rdO/dr, hence 

0 

Fig. 4 Local geometry of a polar curve 

Arc Length We shall derive a formula for the arc length of a curve in parametric 
polar form r = r(t� (} = O(t), where a �  t � b. We use the formula ds/dt = lv l = l x l  
and the formula v = ru + r0· w found earlier. Since u and w are orthogonal unit 
vectors, 
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Arc length The length of a curve r = r(r). 0 = O(r) for a s  t s  b is 

L = f Jr + r20"2 

The length of a curve r = r(O) for :x � 0 � p is 

The second formula follows from the first by setting 0 = t, r = r(r). 
Figure 4 provides an aid to memory. The .. right triangle" has sides dr, r dO, and 

ds, so the Pythagorean Theorem suggests 

(ds)2 = (dr)2 + r2(d0)2• 

• EXAMPLE 2 Find the length of the spiral r = 02 for 0 s 0 � 2n. 
Sol11tion 

L = f :·Jr2 + (�;r dO = J:·
JO' + (20)2do 

= f :·
0Jo2 + 4 dO = � (02 + 4)3'2 1:· = � (n2 + 1)3 2 - � � 92.90. 

ER"lro S 

Find the area enclosed by 
1 r = a  sin 8 
3 r = a  cos(2n + 1)8 (rose) 
S r = a cos1 2n8 
7 r1 = a1 cos 28 (lemniscate) 

2 
4 
6 

r = a  cos 38 (rose) 
r = a  cos 2n8 (rose) 
r "" a( l - cos 8) (cardioid) 

8 the closed loop of the strophoid r =- a cos 28 sec 8. 
9 Find the area outside the circle r = l and inside the rose r = 2 cos 28. 

to• Find the area between the two loops of the lima�n r = b + a cos 8, 0 < b < a. 
1 1  Find the area common to r = a cos (} and r • a sin 8. 
12 Find the area swept out by the segment from 0 to the spiral r = 8 for 0 s 8 s 2ir. 
Compute v and • for 
13 r = t, 8 = 2t 
IS r = cos t 8 = t 
17 Compute v and • for r = e', (} = t. 
18 (cont.) Find the angle between v and a 

14 r = t, 8 = t1 
16 r = sin 2r, (} - t. 

• 

Find the slope at {r, 8} and tan Y,, where I/I is the angle between the tangent and the radius 
vector 
19 r = 8 20 r • 81 2.1 r = a cos 38 
Set up, but do not evaluate, an integral for the arc length 
23 r = a8 0 s 8 S 2n 24 r = a cos 28 
2S r = a cos 38 26 r • a( l -cos 8). 

22 r = ae4. 
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The remaining exercises sketch Kepler's First and Third Laws of Planetary Motion. Assume 
a particle of unit mass is moving in a central force field given by the inverse square law: 

27 

28 

29 

30 

31 

32 

33 

34 

3S 

36 

37 

38 

39 

40 

I 
f =  - 2 U· r 

Show that the equations of motion arc rl(J' = J. ;: -
J: = - � , where J is a constant. 
r r 

Show that ;l + 
J: = � + C, where C is a constant. This equation is essentially the Law 
r r 

of Conservation of Energy. [Hint Multiply the second equation in Ex. 27 by ; and 
integrate.] 

I pl 
Set p = - . Show that 4 + J2pl = 2p + C. r p 

Imagine 6 = 6(r) solved for r as a function of 6 and this substituted into p = p(r). Thus 
p may be considered as a function of 6. Show that (d ) l pl [(d )2 J Jl d: = 

p• ' and conclude that J1 d: + p1 = 2p + C. 

Show that �;� + p = 111 . [Hinr Differentiate the previous relation.) 

Show that p = A  cos 6 + B sin 6 + l/J2, where A and B arc constants, is a solution of 
the preceding differential equation. 
Show that by a suitable choice of the x-axis. the solution may be written 

l I 
- = - ( 1 - e cos (}� where e is a constant, the ecceatridty of the orbit, e � 0. r Jl 

Suppose e = 0. Show that the orbit is a circle with center at 0, and that the speed is 
constant. 
Suppose e = 1 . Show the orbit is a parabola with focus at the origin, directrix x = -J1, 
and opening in the positive x-dircction. 
Suppose e > 1. Show that the orbit is a branch of a hyperbola with one focus at the 
origin. 

(x - c)l .r2 Suppose 0 < e < 1. Show that the orbit is the ellipse -
0
-

1
- + 

b2 
= I, where 

Jl J2 
a =  -1--l , b = ,r;--:i , and c = ae. [By Ex. 34-36 each closed orbit is an ellipse 

- e v 1 - el 
(or circle� Kepler's Fint Law.] 
(cont.) Show that a1 = bl + c2• Conclude that the foci of the ellipse arc (0, 0) and 
(2c, o� 
(cont.) Let T denote the period of the orbit, the time necessary for a complete 

revolution. Show that � T = 1tab. [Hint Use Kepler's Second Law]. 

Conclude that Tl = 47tla3. This is Kepler's Third La�: the square of the period of a 
planetary orbit is proportional to the cube of its semimajor axis. 

7. M ISCE LLANEOUS EXERCISES 

I Find the length of the catcnary J = a  cosh(x/a) for - b � x � b. 
2 Let x(r) = (x(r� ,r(r� :(r)) for a s  t s b be a space curve with length L. Suppose 
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x1(t) = (x(t� y(t)� its projection on the x, y-plane, has length L1• Prove that 
• 

L1 s L and L s  L1 + f Ii i dt . 
• 

I' 

-+----�__. __ ..,_ __ �x-... Fig. 1 
x 

3 The point P in Fig. 1 moves steadily around the circle or radius a. Also P is the center 
or a circle of radius b < a that moves with it. Point x on the boundary of the small circle 
rotates steadily backward, completing one revolution in one revolution of P. Find the 
locus or x. assuming it starts at Xo .  (Ptolemy proposed this eccentric circle as the 
orbit or the planet x around the Earth 0. He called it an epicycle-clerereat) 

4 A point moves with constant unit speed along a curve C. Show that at each point or C, 
the curvature is the same as the length or the acceleration vector. 

5 Find the quadratic y = a + bx + cx2 that passes through (0, 1 )  and agrees with the curve 
y = r in slope and curvature at (0, 1 ). 

6 Find the maximum curvature of y - x2• 
7 The ellipse with foci p and q and length sum 2a is defined by I x  - p I + I x - q I = 2a. 

Prove the reftection property of the ellipse by differentiating this relation with respect to 
arc length. [Hint I• - Pl2 = (x - p) • (x - P�] 

8 (cont.) Do the same for the parabola. 
9 Describe the curve x = (a sec 1, b tan 1) 

10 Find the area or the portion or the lateral surrace or the cylinder x2 + y2 = 1 between 
the planes z = 0 and y + z = I. 

Let x - x(t) ror a s t $ b. Define 

. ( " 

. . ) f 
• 
x(t) dt = f 

• 
x(t) dt, f 

• 
y(t) dt, J 

• 
z(t) dt . 

Prove 

11 

13 

15 

• • J ex dt = c J x dt 
• • 

. " f c . x dt = c . f x dt 
• • I c . ( x dt I $ I c I (Ix I dt 

12 

14 

16 

" " " r (x + y) dt = r x dt + r y dt . . . . . . 
" " f c x x dt = c x f x dt 

• • 

l(x dr l s ( l•l dt. 
(Hint Use Ex. 15.) 
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17 Find all curves r = r(O) such that the angle I/I between the tangent and the radius vector 
is constant. 

18 Describe the locusx = (a tan(t + ex� b tan(t + /J)� where a, b, ex, /J are constants and ex - /J 
is not a multiple or n. 

19 Show that the curve x = (sin r cos t, sin2 r. cos r) lies on a sphere. 
20 (cont.) Find its curvature. 



Functions of Several 
Variables 

1 FUNCTIONS AND GRAPHS 

15 
Up to now we have been concerned with functions such as y = f(x� where y 

depends on one real variable x. In all sorts of situations, however, a quantity may 
depend on several real variables. Here are two examples: 

( l) The speed v of sound in an ideal gas is 

v =  Jy �, 
where d is the density of the gas, p is the pressure, and y is a constant characteristic 
of the gas. Then v depends on (is a function of) the two variables p and d. We may 
write 

v =f(p, d) or v = v(p, d). 

(2) The area of a triangle with sides x, y, z is 

A =  Js(s - x)(s - y)(s - z) 

where s is the semi perimeter !(x + y + z ). Then A depends on the three variables x, 
y, and z. We may write 

A =f(x, y, z) or A = A(x, y, z). 

Note that x, y, z are not three arbitrary numbers but must satisfy the inequalities 
x > Q y > Q z > O and z < x + � x < y + � y < z + �  

In ( 1 � the quantity v is a function of p and d, defined for a certain set of pairs 
(p, d� which we can think of as a subset of the p, d-plane. In (2� the area A is a 
function of x, y, z defined for a certain set of points (x, y, z) in space. 

In genera� a real-valued function f of two variables is an assignment of a real 
number to each point of a subset D of the plane R2• A real-valued function of 
three variables is an assignment of a real number to each point of a subset D of 
space R3. The set D is the domain off. 

Suppose f is a function of two variables and (x, y) is a point of its domain. We 
denote the real number assigned to (x, y) by f(x, y). We often use vector notation, 
writing x = (x, y) andf(x) = f(x, y). There is similar notation for functions of three 
variables. 

71 8  
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/: D --+ R, 

suggesting that/ carries, or maps, the set D into the set R of real numbers. 
We want to extend the concepts of one-variable calculus to functions of several 

variables, concepts such as continuity, derivative, and integral. Now in the one
variable situation, for these concepts to be meaningf uL the domain of a function 
has to be a reasonably nice set, generally an interval or the union of several intervals. 
The same is so in the plane and in three-space. Generally the functions we 
shall study in the plane have as their domains plane regions bounded by a few 
simple arcs of curves. In space, the domains are usually bounded by portions of 
familiar surfaces such as planes and spheres. Part of the boundary may be 
excluded from the domain. Let us look at some examples. 

Polynomials such as 

3x5 - 2xy2 + x3y3 - 4y7 and (x - y)10 - 10x5y5 

are defined on the whole plane. Rational functions like 

x2 + y2 
----

2xy and 
x + y  
x - y  

are defined wherever their denominators are non-zero. The first is defined on the 
whole x, y-plane except for the x-axis and the y-axis; its domain consists of the 
four quadrants without their boundaries (Fig. la). The second is defined everywhere 
except on the line x = y; its domain consists of two half-planes without their 
common boundary (Fig. lb). 

The function 

JX+Y 
is defined wherever x + y � O; its domain consists of a half-plane including its 
boundary (Fig. le). 

y 

x 

�2 + .,2 
(a) /{x, y) =  � : x-axis 

2xy 
and y-axis excluded 

(b) f{x,y) = x + Y: 
x - y 

line y -= x excluded 

(c) f{x,y) = ..;x+i: 
x + y < 0 excluded 

Fig. I The domain of a function of two variables 

(, v c e We need the notion of convergence of points in space. Henceforth, 
to avoid repetition, we shall use the word space to mean either two-space (plane) 
R2 or three-space R3. 



720 1 5. F UNCTIONS OF SEVERAL VARIABLES 

The definition or convergence in space looks just like the definition on the line 
with the "nearness" or points x and y measured by I• - y l, the distance between 
the points. We shall write 

· -· 
provided l• - • 1 - 0. 
We know from the last chapter that • - •  if and only if 

For a function or several variables to be useru� it must 
have some reasonable pro�rties. The most basic or such properties is continuity. 
Here is the formal definition, a direct generalization of the definition of continuity 
for a function or one variable. 

Continuity Let f be a real-valued function defined on D, a subset or R2 or] 
R3• Let • be a point of D. We say f is contiauoul at • if /(•)-/(•) 
as • - a. Precisely, for each t > 0 there exists cS > 0 such that If(•) -f(•)I < e 

whenever x e D and I• - • I < cS. 
We say f is cmm.o. on D if f is continuous at each point of D. 

As for functions or one variable, this definition requires that a continuous function 
be "predictable"; you should be able to predict the value or the function at • from 
its values near •· 

The elementary properties or continuous functions of one variable carry over 
easily. In particular, sums, products, and quotients (with non-zero denominator) <f 
continuous functions are continuous. 

Obviously the functions defined by f(x, y) = x and g(x, y) = y are continuous. 
By forming products and sums we conclude that each polynomial is a continuous 
function on R2 (on R3� From this we deduce that each rational function is continuous 
wherever its denominator is not zero. (Recall that a rational function is a quotient of 
polynomials.) 

Ir f (x) is a continuous function or one variable, then it is almost obvious that 
F(x. y) = f(x) is continuous as a function or two variables. Similarly, if g(y) is con
tinuous in y, then G(x, y) = g(y) is continuous in x and y. Therefore the product 

h(x, y) = f(x)g(y) 
is continuous. For example h(x, y) = x3 In y is continuous with domain all (x, y) 
such that y > 0. 

Suppose we want to prove that f(x, _r) = .\.i is 
continuous on the domain x > 0, y > 0. We could write 

f (x, y) = r •• 1 = �Jt.Jl. 
Thus f(x, y) is the composite of the continuous functions h(t) = e' and t = x In y. 
It seems reasonable thatf(x, y) is continuous also. 
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Here is a more complicated type of example. Suppose we somehow manage to 
prove that 

· "  
K(x. y, z)  = I (y3 + t4) sin(zt1) dt 

• 0 

is continuous in x, )', z-space. We want to conclude that K(u'", v•, uv) is continuous 
on the domain u > 0, v > 0. What we need is a theorem stating (roughly) that if 
K(x, y, :) is continuous, and if x, y. z are continuous functions of 11 and r, then K is 
continuous as a function of u and 1:. 

Composite Functions Let K(x, y, z) be continuous on a domain D in x, y, 
z-space. Let f. g, h be continuous on a domain E of the u, v-plane, and suppose 
that (f(u, r� g(u, v), h(u, v)) is a point of D whenever (u, v) is a point of E. 
Then the composite function 

k(u, L"} = K[f (11, I'), g(11, r ), /J(u, l' )] 

is continuous on E. 

Proof Let (u, v) - (110 , v0). Thenf(u, v) - f(u0 , l'0), g(u, v) - g(u0 , v0� 
and h(u, v) - h(u0 , v0). Hence 

(f(11, i:), g(u, l'), /J(u, r)) (/(110 . l'o). g(110 . l'o� /1(110 , ro)). 
But K is continuous, so 

k(u, v) = K[f(u, v), g(u, v), h(u, v)] - K[f(u0 ,  v0� g(u0 , v0� h(u0 , v0)] = k(u0 , v0), 

therefore k is continuous. 

Note The theorem above is stated for a function of three variables, where each variable is 
replaced by a function of two variables. Clearly, there is nothing special about three and two. 
and the result may be modified as needed. 

G raphs Given a function of one variable y = /(x), its graph is the set of points 
(x, /(x)) in the plane, where x is in the domain of/. Similarly, given a function of 
two variables z = f(x, y� its graph is the set of points (x, y, f (x, y)� where (x, y) 
is in the domain of/. See Fig. 2. For a function of one variable, the graph is a curve 
in R1; for a function of two variables, the graph is a surface in R3. In either case, 
we picture the graph as lying above (or below) the domain. 

Since a surface can be difficult to visualize, we use various techniques for 
picturing the graph of a function of two variables. One technique is to slice the 
surface by various planes and examine the cross sections. 

EXAMPLE 1 Graph the function z = x2 + y2• 
Sol"tio• Each cross section by a plane z = c parallel to the x, y-plane is a circle. 
Therefore the graph is a surface of revolution. It intersects the y, z-plane in the 
curve z = y2, a parabola (Fig. 3a). This is enough information for a sketch (Fig. 3b). 
The surface is called a paraboloid of revolution. • 
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Fis- 2 Graph of z = /(x, y) 

: 

(a) Cross-section by they, z-plane (b) The graph 

: 

(a) Cross-section by 
the z. x-plane 

Fie. 3 Graph of z ""' x2 + y2 

(b) The graph 

Fla. 4 Graph of z .. l - x2 
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• EXAMPLE 2 Graph the function z = f(x, y) = I - x2• 

Sol"tion The function f(x, y) is independent of y. Its graph is a cylinder with 
generators parallel to the y-axis. To see this, first graph the parabola z = I - x2 
in the z, x-plane (Fig. 4a). If (a, c) is any point on this parabola and b is any 
value of y whatsoever, then (a, b, c) is on the graph of z = f(x, y). Therefore the 
graph is a parabolic cylinder with generators parallel to the y-axis (Fig. 4b). • 

Level Curves A systematic way of visualizing a surface z = f(x, y) is drawing 
its contour map. We slice the surface by planes z = c at various levels (Fig. 5). 

x level curve at leve I c 1 

Fig. 5 Level curves 

Each plane z = c intersects the surface in a curve. The projection of this curve 
onto the x, y-plane is the level cone or contour line at level c. It is the locus of 
f(x, y) = c and indicates where the surface has "height" c. Taken together the 
level curves form the contour map of the surface. Where level curves are close 
together the surface is steep; where they are far apart it is relatively flat. Figure 6 
shows the contour map of the surface in Fig. 5. 

x 
Fig. 6 Contour map of a function 
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A contour map is the next best thing to a good drawing of a surface. Consider 
the surface z = xy for example. A drawing is difficult (though not impossible). Still, 
a reasonable idea of the graph is given by a contour map, which is easy to draw; 
each level curve xy = c is a hyperbola (c #: 0) or degenerate hyperbola (c = 0). 
See Fig. 7. 

}' 

Surface If f(x, y, z) is a function of three variables, the relation 
f (x, y, z) = k (k constant) 

generally determines a surface in R3. For example, if 
f (x, y, z) = x + 2y + 3z, 

)! 
I 3 
�---------- --� ,// y 

I I I 

/' x 
(a) x + 2y + 3: • 6 (b) x2 + y2 + z2 • 1 

Fis. 8 Surfaces of the form f (x, y. z) = k 
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thenf(x, y, z) = 6 determines a plane (Fig. Sa). If 

f (x, y, z) = x2 + y2 + z2, 

then f(x, y. z) = l determines the unit sphere (Fig. Sb). 

Level Surfaces We cannot graph a function of three variables 

w =f(x, y, z) 

(the graph would be four-dimensional). We can, however, learn a good deal about 
the function by plotting in three-space the level surfaces 

f (x, y, z) = k. 

For example, the level surfaces of w = x2 + y2 + z2 are the family of alJ spheres 
with center 0 (and the point 0 itself-a degenerate level surface). 

EXERCISES 

Express as a function of two variables 

I the volume V of a cone of radius r and height h 
2 the total area A of a tin can, including top and bottom, radius r, height h 
3 the distance D from (2, 4, 3) to a point on the plane x + y + z = I, variables x and y 
4 the maximum M of x'e-•" for x � 0, where p > 0 and q > 0. 

Express as a function of three variables 

S the gravitational attraction F between masses m1 and m1 at distance d apart 
6 the value V of a deposit P after n years, interest at per annum rate r% compounded 

quarterly 
7 the side c of a triangle, given the sides a and b and their included angle 8 
8 the distance d from 0 to the plane ax + by + cz = I, variables a, b, c. 

Give the domain of the function 

9 4x - l ly + 2 10 (x - 3y)1e"1 II 1 + xlyJ 
xl _ y1 

12 ln(y - 2x) 13 Jxl - y  14 J4x1 + 9y1 - 36 
IS x sec y 16 tan(x - y) 17 ln(x + 2y + 3z - 4) 

I 
19 arc sin(x2 + y1 + z1) 20 

x + 2y 
18 x4 - (y + 3z)'' xyz 
Make a contour map of the function 

21 /(x, y) = x - 3y 22 f (x, y) = xl - yl 23 /(x, y) = x1 + 4y2 
24 /(x, Y) = lx l  + IY I  25 /(x, y) = ln(y - x2) I 

26 /(x, y) =- . x + y  
Sketch the graph 

27 z = 1 - 2x 28 z = x2 29 z = JY 
30 Z = x + y1 31 z = x + fy 32 z = I - x1 - y2. 
33 The gravitational potential at (x, y, z) due to a point mass at the origin 

k/Jx1 + y2 + z2 • What are the equipotential surfaces? 
is 
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34 The atmospheric pressure p at sea level around the center or an anticyclone is given 
by p - a2 - (x - bt)2 - y2• Plot the isobars (level curves or pi Show that the weather 
system is moving with constant velocity. 

Suppose x. - • and y. - b. Prove 
35 •• + '· - • + b 36 x. · Y. - • ·  b. 

37 lf/(x, y) and g(x, y) are continuous, prove that their sum is continuous. 
38 If f (x, y) and g(x, y) are continuous, prove that h(x, )') = f (x, y) g(x. y) is continuous. 

sin(x2 + y2) 
39 Can /(x, y) = 2 2 be defined at (0, 0) so as to be continuous? 

x + y 
40 Answer the same question for /(x, y) = 2 

xy 2 • x + y 

2. PARTIAL DER IVATIVES 

Let z = /(x, y) be a function of two variables and let • = (a, b) be a point of its 
domain, not on the boundary. Suppose we set y = b and allow only x to vary. 
Then /(x, b) is a function of the single variable x, defined at least in some open 
interval including a. We define 

oz d I 0-(a, b) = d- f(x, b) . x x ••• 

This is called the partial derivadve (or simply .-rtial) of z with respect to x. 
(The o is a curly 

d . ) It measures the rate of change of z with respect to x 
while y is held constant. 

Similarly, we define the partial derivative of z with respect to y: 
oz d I oy (a, b) = dy f(a, y) ,.; 

In like manner, given a function w = /(x, y, z) of three variables, we define the 
three partial derivatives ow/ox, ow/oy, and ow/oz. For instance, 

ow d I -0 (a, b, c) = d- f(a, y, c) . y y , •• 
Each of the partials is the derivative of w with respect to the variable in question, 
taken while aU other variables arc held fixed. 

EXAMPLE 1 Let z = f (x, y) = xy2• Find 

;: ( I, 3� :; (-4, 2� :; and ;; in general. 

Sobttio• Set y = 3. Then z = 9x and 

oz d l OX ( 1, 3) = 
dx (9x) • I =- 9. 
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Likewise, set x = -4. Then z = -4 y2 and 

oz ( -4. 2) = � (-4y2) I = - 16. oy dy ,-2 
To compute oz/ox in general, just differentiate as usual, treating y as a constant: 

oz = iJ(xy2) = yl � (x) = yl. ox ox dx 
To compute oz/oy, differentiate, treating x as a constant: 

oz = iJ(xyl) = x � (yl) = 2xy. ay ay dy 
We consider two further examples of partial derivatives. 

• 

(1 )  The gas law for a fixed mass of n moles of an ideal gas is P = nRTN, where 
R is the universal gas constant. Thus P is a function of the two variables T and V: 

iJP T 
iJV = - nR y2 · 

(2) The area A of a parallelogram of base b, slant height s, and angle ex is 
A = sb sin ex, a function of b, s, and ex. The partial derivatives arc 

iJA b . -= SID IX, OS iJA . - = s SID ex, ob 

Notation There are several different notations for partial derivatives in common 
use. Become familiar with them; they come up again and again in applications. 
Suppose w = /(x, y, z). Common notations for ow/ox are 

Ix, fx(x, y, z� w.(x, y, z� 
For example, if 

w = /(x, y, z) = x3y2 sin z, 
then 

!. = 3x2y1 sin z, w = 2x3y sin z 1 • 

D. f. 

Geometric Interpretation The graph of z = /(x, y) is a surface in three di
mensions. A plane x = a cuts the graph in a plane curve x = a, z = f (a, y). 
Sec Fig. la. The projection of this curve straight back onto the y, z-plane is the 
graph of the function z =/(a, y). Sec Fig. lb. The partial derivative 

z (a, y) 
is the slope of this graph. 
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r 
I 
I )--- --7------- -- Ti 

I I 
I I I 1 I �a� x = a  I 

(a) CroSHection by plane x •a  

: 

(b) Projection ot" the curve of 
intersection into the y, z-plane 

Fig. I Geometric interpretation of of/oy 

For example, suppose the graph of the function z = x2 + y2 is sliced by the plane 
x = a. The resulting curve is the parabola x = a, z = y2 + a2• Its projection onto 
the y, z-plane is the parabola z = y2 + a2, with slope 

oz 2y = oy . 

T�e C , 1 r R u  e The Chain Rule for functions of one variable states that the 
composite of differentiable functions is itself differentiable and gives a formula for 
the derivative of a composite function : if y = /(x) where x = x(th then 

dy dy dx 
dt = dx dt · 

The Chain Rule for functions of several variables also has two parts, an assertion 
that a composite function built out of differentiable functions is itself differentiable, 
and a practical formula for computing partial derivatives of a composite function. 
For the time being, we shall just state the formula and try to get a feel for how it 
works. We shall postpone a precise statement of the Chain Rule and its proof until 
Section 1 1. 

Suppose z = /(x, Yh where x = x(t) and y = y(t). Then z is indirectly a function 
of t. The Chain Rule asserts that 

dz oz dx oz dy 
- = - - + - -dt ox dt oy dt · 

It helps to interpret this formula geometrically. We write z = f(x, y) as 
z = /(x) and the composite function z(t) = /[x(th y(t)] as z(t) = /[x(t)]. We 
think of t as time and x(t) as the path of a moving particle in the plane. Then the 
composite function /[x(t)] assigns a number z at each instant of the motion. The 
Chain Rule is a formula for dz/dt. For instance if/(x) is the temperature at position 
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x, then the Chain Rule tells how fast the temperature is changing as the particle 
moves along the curve x(t). 

Chain Rule Let z = f(x, yi where x = x(t) and y = y(t). Then 

dz oz dx oz dy - =-- + --, dt ox dt oy dt 
oz oz . where ox and oy are evaluated at (x(ri y(t)). Briefly, i = fxx + f,y. 

In terms of vectors, if z = f[x(r)], then �; = fx[x(r)]X(t) + f,[x(t)]y(t). 

Similar rules hold for functions of more than two variables. For instance, if 
w = f(x, y, z), where x = x(t), y = y(t), z = z(ti then 

dw ow dx ow dy ow dz - =--+--+--dt ox dt oy dt oz dt ' 

• EXAMPLE 2 Let w = f(x, y, z) = xy2z3, where x = cos t, y = e', 
dw 

and z = ln(t + 2i Compute dt at t = 0. 

Solution There is a direct but tedious way to do the problem. Write 

w = (cos t)e2'[1n(t + 2)]3. 
Differentiate, then set t = 0. That's quite a job! 

Use of the Chain Rule splits the computation into small easy pieces. First, 

w(O) = !: x(O) + �; y(O) + �; i(01 
where the partials are evaluated at a =  (x(oi y(01 z(O)) = ( 1 ,  I, In 2). From 
w = xy2z3 follows 

�= l. = y2z3 I. = (In 2)3, �; l. = 2xyz3 I. = 2(1n 2)3, 

ow l = 3xy2z2 j = 3(ln 2)2. oz • • 

Therefore w(O) = (In 2)3.i(O) + 2(ln 2)3y(O) + 3(ln 2)2i(O). 

But x(O) = -sin t t = 0, y(O) = e' lo = 1, i(O) = t � 2 j0 = � · 
so w(O) = 2(ln 2)3 + j(ln 2)2. • 

Another Vers on  of the Chain R ule Suppose z =f(x, Y1 where this time 
x and y are functions of two variables, x = x(s, t) and y = y(s, t). Then indirectly, 
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z is a function of the variables s and t. There is a chain rule for computing oz/os and oz/ot: 
Chain Rule If z = /(x, y) is a function of two variable$ x and y, where x = x(s, t) and y = y(s, t), then 

oz = oz ox + oz oy and os ox os oy os 
oz oz ox oz oy - = - - +-ot ox or oy ot • 

oz oz where ox and oy are evaluated at (x(s, t� y(s, t)� 

This Chain Rule is a consequence of the previous one. For instance, to compute oz/os, hold t fixed, making x(s, t) and y(s, t) effectively functions of the one variable s. Then apply the previous Chain Rule. 

J EXAMPLE 3 
ow Let w = x2y, where x = s2 + t2 and y = cos st. Compute os . 

So/11ti011 
ow = cw ox + cw oy = (2xy)(2s) + (x2)(- t sin st) os ox os oy os 

= 2(s2 + t2)(cos st)(2s) + (s2 + t2)2(-t  sin st) 
= (s2 + t2)(4s cos st - t(s2 + t2) sin st). 

The next example is important in physical applications. 

EXAMPLE 4 If w = /(x, y� where x = r cos 8 and y = r sin 8, show that 

(!:r + (�;r = (�;r + � (�;r. 
So/11tio11 Use the Chain Rule to compute ow/or and ow/08: 
ow - ow ox ow oy - ow 8 ow . 8· Or - OX or + oy Or - OX COS + oy SID ' 
ow ow ox ow oy ow . ow ( ow . ow ) -= -- +-- = - (-r sm 8) +- r cos 8 =  r - - SID 8 +- cos 8 . 08 ox 08 oy 08 ox oy ox oy 

From these formulas follow 

Add: 

(ow) 2 (ow) 2 ow ow (ow) 2 
or = ox COS2 8 + 2 ox oy sin 8 cos 8 + oy sin2 8, 

- - = - SID - 2-- slD cos + - cos . 
1 (ow) 2 (ow)2 . 2 8 ow ow . 8 8 (ow)2 2 8 r2 08 ox ox oy oy 

(�;r + ,12 (�;r = f(�:r + (!;f ] (cos2 8 + sin2 8) = (:;r + (:;r. 

• 
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Find iJz/iJx and oz/iJy for z = 

I x + 2y 
4 x2y 
7 x sin y 

10 x tan y + y tan x 

13 

16 

:< 
:<2 + ,.2 
Jx2 + 3y 

y 

2 3x + 4y 
s 2x2/(y + l )  
8 y 2  cos x 

II sin lxy 
l 

14 ---
x + 2y + s 

17 e2• sin(x - y) 
(x + y)(2x + y) 

19 20 
y (x - y)(2x - y) · 

[Hint Logarithmic differentiation.] 

Let z = x2y. Find oz/iJx for y = 2. and oz/oy fo� x = - I. 
Let z = y2/x. Find z,. for y = 3. 

3 3xy 
6 x3y2 - 2xy4 
9 tan 2x + cot 3y 

12 cos(2x + y) 

21 
22 
23 Let w = xy2z3. Find w .. for y = 2 and z = 2, find w, for x • l and z = O. and find w, 

for x = y. 
. iJw iJw iJw 

Let w .. xy - xz - yz. Fmd - + - + =- . 
ox iJy iJz 

Show that 

2S z = (3x - y)2 satisfies oz/ox + 3 oz/cy = 0 
26 z = /(x) + y2 satisfies oz/oy = 2y 
27 z = x2 - y2 satisfies (cz/iJx)2 - (iJz/iJy)2 = 4z 
28 z = x6 - x5y + 7x3y3 satisfies x(iJz/cx) + y (cz/cy) = 6z 

29 
xyz 

. fi w = 4 4 4 sat1s cs xw,. + yw, + zw, = - w 
x + y + z 

30 w • e"' cos n8 satisfies (w, 2 + w92) cos2 n8 = n2w2• 

Find dz/dt by the Chain Rule 

31 z = r'; x = 3r + 1. y = r2 
33 z = x2 cos y - x; x = r2• y = l/r 

Find dw/dt by the Chain Ruic 

35 w = xyz; x = r2, y = r3, z = r4 

32 z = x/y; x = t + I, y = t - l 
34 z = x/y; x = cos t, y = I + r2• 

36 w '"' r cos(y + z); x ... l/t. y = f2, z = -f 
37 w = e-•y2 sin z; x = t, y = 2t, z = 4t 
38 w = (e-.. sec z)ly2; x = r2• y = l + t, z = t>. 
Find cz/cs and iJz/iJt by the Chain Rule 
39 z = x3/y2; x = s2 - t, y = 2st 
40 z = (x + y2r; x = se', y = se-•  
41 

42 

z .. Ji + x2 + y2; x = sr2, y = I + st 
J s 

z = r '; x = --- • y = st. JI+7 
The radius r and height h or a conical tank increase at rates ; = 0.3 in.fhr and 
� = 0.S in./hr. Find the rate or increase V or the volume when r = 6 ft and h = 30 ft. 
(cont.) Also find the rate or increase S at the same instant or the total area (base plus 
lateral� 
A metal bar of length 120 cm lies on the x-axis from x • 0 to x = 120. At each point x 
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of the bar, the temperature at time r is u(x, r) = 100e-•1 sin(ruc/120� where k > 0. 
Show that the bar is cooling at all points except its ends, and that at each instant the rate 
of cooling at the midpoint is twice the rate at the points -l of the way across. 

46 (cont.) Show that u(x, r) satisfies ou/ot = -ku. Now find all solutions u(x, t) of this 
partial differential equation. 

47 Given f(x, y� show that 

o o o ;-- F(u + v, u - v) + ;- F(u + v, u - v) = 2 ;---- F(u + v, u - v) 
uU uV uX 

Verify the formula for F = y sin(xy) . 
.a Given/(x) show that 

o o 
b o/(au + bv) = a  o/(au + bv� 

Verify the formula for /(x) = x3• 
49 Let z = arc tan(y/x� If x = r cos 8 and y = r sin 8, compute oz/or and oz/08 by the 

Chain Rule. Check your answers by expressing z in terms of r and 8 first, then 
differentiating. 

d 1114•1 so• Prove that d- F(t) dt - F[h(x)]h'(x) - f[g(x)]g'(x). X tC•I 

3. GRADIENTS AND DIR ECTIONAL DER IVATIVES 

Given a function/ of several variables, we associate to each point of its domain a 
vector called the gradient off. 

Gradient Suppose f (x, y) is defined on a domain D in the x, y-plane. Let a 
be a point of D, not on the boundary. The gradient off at a is the vector 

grad/(•) = u .. ./,
) I • . 

Similarly, if /(x, y, z) is defined on a domain D in space, and a is a point inside 
D, then the gradient off at a is the vector 

grad/(•) = <1" .J,.1.> I. · 
The gradient field of/ is the assignment of the vector grad/(•) to each point a 
inside D. 

Examples (1) /(x, y) = x2 + y3, grad/= (2x, 3y2). 
(2) /(x, y, z) = lx l 2  = x2 + y2 + z2, grad/= (2x, 2y, 2z) = 2x. 
(3) /(x, y, z) = xyz, grad/= (yz, zx, xy). 
We can visualize the gradient field off by drawing the vector grad/(•) at each 

point a. For example, the field grad i(x2 + y2) is shown in Fig. 1 . 
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Fig. 1 Gradient field of 
f(x, y) = i(x2 + y2) 

Notation A common notation for grad .f is Vf The upside-down delta is called "nabla ". 

Relation to the Chain Ru le  The Chain Rule can be expressed in a concise 
vector notation using the gradient. Suppose w = f(x, y, z) = f(x) and x = x(t� 
According to the Chain Rule, 

w =f"x + J,y + f. z. 
Notice that the right-hand side is the inner product of two vectors, (!" , f, , J.) = 
grad/ and (x, y, z) = i. 

If w = f (x) and x = x(t), then 

w = (grad!) ·  i. 

Gradients and Level Curves Recall that the level curves of a functionf(x, y) 
are the curvesf(x, y) = c in the x, y-plane. There is an important relation between 
the level curves and the gradient field : at each point of a level curve, the gradient 
vector is perpendicular to the curve. 

The field grad f is orthogonal (perpendicular) to the level curves of ?J 
Before giving a proof, let us note that Fig. I illustrates this statement. There 
f(x,y) = i(x2 + y2� so the levelcurves are the circles x2 + y2 = a2, while the gradient 
field is grad/= (x, y) = !x. At each x, the vector gradf(x) points along the radius, 
hence is orthogonal to the circle. 

Proof Suppose a particle moves along a level curve f (x, y) = c. Let its position at 
time l be x = x(t). Then the composite function/[x(t)] = c is constant, so its time 
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derivative is 0. By the Chain Rule 

J = [grad/(x)] • i(t) = 0,  
hence grad/(x) is perpendicular to i, a vector tangent to the level curve. 

, Here is a practical application of the orthogonality of 
gradients and level curves. Suppose we want an equation for the tangent line 
to a level curve f (x, y) = c at a point a This tangent line passes through • and is 
perpendicular to grad/(•� hence an equation is 

[grad/(•)] · (x - •) = 0. 

Tangent Line Let • = (a, b) be a point of the curve /(x, y) = c. Then the 
tangent to the curve at • is 

In coordinates, 
[grad/(•)] · (x - •) = 0. 

of . (x - a) + 
of . (y - b) = 0, ox oy 

where the partials of/ox and of/oy are evaluated at (a, b). 

EXAMPLE 1 Find the tangent to the cubic x2 = y3 at (- 1, 1). 
Sol•tio11 Set f(x, y) = x2 - y3, so the cubic is the level curve f = 0. Then 
• = ( - 1, 1 )  and 

gradf(•) = (2x. -3y2) I = (-2. - 3). 
(- 1. 1)  

Hence the tangent is 
(-2, -3) · [(x, y) - ( - 1, 1 )) = 0, 

-2(x + l )  - 3(y - 1)  = 0, 
(-2, - 3) · (x + 1, y - 1) = 0, 
2x + 3y = l. • 

D The partial derivatives of a function give the rates of 
change of the function in directions parallel to the axes. Now we ask for the rate of 
change in an arbitrary direction indicated by a unit vector u. 

Let f (x, y, z) be a function and a a point of its domain. Imagine a particle moving 
along a straight line with constant velocity u and passing through a when t = 0. 

domain 

Fla. l Set-up for directional derivatives 
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See Fig. 2. To each point a + tu of its path is assigned the number 

w(t) =/(a + tu). 

We define the directional derivative off at a in the direction u to be w(O). 

The directional derivative of f(x, y, z) at a point a in the direction u is 

Du/(a) = d
d 
/(a + tu) I . 

t t•O 

For example, suppose f(x, y, z) is the steady temperature at each point (x, y, z) 
of a fluid. Suppose a particle moves with unit speed through a point a in the direction 
u. Then Du f (a) measures the time rate of change of the particle's temperature. 

To compute the directional derivative, let 

x(t) = a +  cu, 
and w(t) = /[x(t)]. By definition, Duf(a) = w(O). But by the Chain Rule, 

w(O) = [grad/ (a)] · i(O) = [grad/(a)] · u. 
Since u is a unit vector, (grad!) ·  u is the projection of the vector grad/ on u. 

The derivative off in the direction u is the projection of grad f on u :  
Duf(a) = [grad/(a)] · u. 

In particular if u = i = ( l, 0, O� then (of of of) · of I Di f(a) = (grad/) · (1, 0, 0) = 
ox

, 
oy

, 
oz 

• ( 1, 0, 0) =
ox 

• · 
A similar situation holds for j = (0, 1, 0) and k = (0, 0, 1 ). 

The directional derivatives of f(x, y, z) in the directions I, j, and k are the 
partial derivatives: 

of 
Di f= ax · 

A completely analogous discussion holds for functionsf(x, y) of two variables. 

• EXAMPLE 2 Compute the directional derivatives of f(x, y, z) = xy2z3 at 
(3, 2, l � in the direction of the vectors 

(a) ( - 2, - 1, 0), (b) (5, 4, l )  
Solution Du /(a) = (grad/(a)] · u, 
where u is a unit vector in the desired direction and a = (3, 2, l ). Now 

grad/(a) = (y2z3, 2xyz3, 3xy2z2) I = (4, 12, 36), 
(3. 2. I)  
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hence 

1 
(a) u = J5 (-2, - 1, o� 

1 

Duf(x) = (4, 12, 36) • u. 

1 -20 Duf(x) = (4, 12, 36) • J5 (-2, - 1, 0) = J5 .  
1 104 (b) u = IA-i (5, 4, 1), 

y42 Du f (x) = (4, 12, 36) • IA-i (5, 4, 1) = IA-i .  • 
y42 y 42 

Directions of Most Rapid Increase and Decrease In which direction is a 
function /(x) increasing fastest? decreasing fastest? In other words, given a point 
a in space, for which unit vector u is Du /(•) largest? smallest? The answers follow 
immediately from the formula 

Du /(•) = [grad/(•)] .  u = lgradf(•)I cos e. 
where e is the angle between grad/(•) and u. Therefore the largest value of 
Du /(a) is !grad f(a) I ,  taken where cos 8 = 1, that is, for 8 = 0. The smallest value 
is -lgrad/(a) I .  taken in exactly the opposite direction, that is, for e = n. 

The direction of most rapid increase of f(x, y, z) at a point a is the direction 
of the gradient. The derivative in that direction is !grad /(•)!. 
The direction of most rapid decrease is opposite to the direction of the gradient. 
The derivative in that direction is - lgrad/(a) I ·  

• EXAMPLE 3 Find the direction of most rapid increase of f(x, y, z) = x2 + yz 
at (1, 1. 1 )  and give the rate of increase in this direction. 

Sollltion grad/ I = (2x, z, y) I = (2, 1, 1). 
C l . 1 . 1 1  C l .  l. 1)  

The most rapid increase is 

Du/= !grad/I = J22 + 12 + 1 2 = J6, 
where u is the direction of most rapid increase, the direction of  grad f :  

grad/ 1 
u = !grad/I = J6 (2, l, 1). • 

Here is an application of the direction of most rapid decrease. Suppose on a 
contour map (Fig. 3) you want to plot the path of water flowing downhill from a 
spring at P. A physical principle says that gravity will cause the water to flow in 
such a way that its potential energy decreases as rapidly as possible. But the 
potential energy of a water particle equals its mass (constant) times its height. 
Therefore the particle " chooses" the direction of steepest descent (most rapid change 
of altitude). If the hill is represented by the surface z = f(x, y� then water will 
flow in the direction of -grad f, that is, perpendicular to the level curves. 
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Fig. 3 Contour map; path or 
quickest descent from 
spring at P 

The General 0 1  ect1onal Denva ve It is customary to define D.,f for any 
vector v, not just unit vectors. Formally, the definition is the same as before: 

General Directional Derivative D.,/(a) = d
d 

/(a + tv) I . 1 
t t•O 

We shall refer to this derivative as "D., /(a)", and reserve the name "directional 
derivative" for Du/(a), where u is a unit vector. 

As before, by the Chain Rule 

I D.,/(a) = [grad/(a)] • v. 1 
Suppose v = ku, where u is a unit vector and k = I v  I ·  Then 

D.,/(a) = D1u /(a) = [grad/(a)] • (ku) 

= k[grad/(a)] • u = k Duf(a� 
Therefore Dv/(x) = lvlDu/(x). 
Hence, for a fixed vector v the derivative D.,/(x) is nothing terribly new: it is simply 
proportional to the directional derivative Du /(x) in the direction u or v. 

Example /(x) = xyz, a =  (2, 1 ,  - 1� v = ( I, I, 2). 

D.,/(a) = fsrad/(x) I J · (1, I, 2) 
(2. 1 .  - 1)  

= f(yz, zx, xy) I ] · (I, l, 2) = (- 1, - 2, 2) • (l ,  l, 2) = l. 
(2. 1 .  - 11  

Let us look again at the definition D.,/(a) = d
d 
f(a + tv) I t r•O 
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It gives special importance to the line 
x = x(t) = • + tv, 

which passes through a with velocity v. 
Consider instead any curve x = x(t) that passes through x = • at time t = 0 with 

velocity v: 

x(O) = a and �7 l,_0 = v. 

Now differentiate the composite functionf[x(t)] at t = 0: 

d!!_ f[x(t)] I = [grad/ I ] · d
d
x I = [grad/(•)] · v = D., /(•). t 1•0 a(O) t 1 • 0  

The result is completely independent of what curve x(t) you take; i t  depends only 
on x(O) = a  and i(O) = v. 

Let x(t) be any differentiable curve such that x(O) = • and i(O) = v. Then 

d
d 
/[x(t)] I = D.,/(•). 

t t•O 

Example f(x, y) = x2y, a =  ( l, O� v = (0, l �  x(t) = (cos t, sin t}. 

On the one hand, 

D., /(a) = [grad/(•)] · v = [(2.xy, x2) I ] · (0, l )  = (0, l )  · (0, l )  = l .  
U , 0) 

On the other hand, the curve x(t) satisfies 

x(O) = ( l, 0) = a, i(O) = (0, l )  = v. 

Now check the derivative of /[x(t)] = cos2 t sin t :  

d
d 
f[x(t)] I = (-2 cos t sin2 t + cos3 t) I = cos3 0 = l. 

t 1•0 1•0 

EXERCISES 

Compute grad/ 

f = xly + 3xyl 
4 /= Jx2+3"Y1 
7 f= Jl + x2y2z6 

2 f = ylex' 
s I= (xi + yl)e• 
8 f = x2 cos(yz ). 

3 f= �x + by 
ex + dy 

6 f = log(3x - y - 4z) 

9 Let/(x, y, z) = x2 + y2 + z2 - 2xy + 3yz + 6zx. Find all points where grad/ is parallel 
to the x, y-plane. 

10 Let z = 1/(x2 + y2 + 10� Show that grad z points toward 0 at all points x # 0. 
I I  Suppose z = f (r, 0) is given in terms of polar coordinates. Show that 

grad z = j� u + , - i Jo w, where u = (cos 0, sin 0) and w = (-sin 0, cos 9). 



12 (cont.) Find grad(r- 2 cos 20). 
13 (cont.) Use Ex. 1 1  to do Ex. 10. 
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14 (cont.) Let f(x, y) = arc tan(y/x). Compute grad/ in both rectangular and polar co
ordinates. Show that your results agree. 

15 Suppose f(a, b) = g(a, bi and gradf(a, b) · grad g(a, b) = 0. Assuming the two 
gradients arc non-zero, translate into a statement about level curves. 

16 (cont.) What can you say if the condition on the gradients is replaced by 
gradf(a, b) = ;. grad g(a, b� where ). is a constant? 

Find the tangent line to 
17 x2 - 3xy + y2 = - I at ( I, 2) 
19 y + sin xy = l at (0, 1 )  

18 x + x 3  y4 - y = 0 a t  (0, 0) 
20 xJ3x + y = 6 at (2, 3). 

Compute the directional derivatives at • in the directions or v, and Y2 
21 f(x, y) = r cos y; • = o. v1 = (1. o� v2 = (O. I )  
22 f(x, y) = ln(x + 2y); • = (0, l �  v 1  = (1, l� v

2 
= (3, 4) 

23 f(x, y, z) = xvz: e = ( I, - 1, 2i v1 = (I ,  1, oi v2 = (1 , 0, I )  
24 f(x, y, z) = x + 3y + 5z; • = ( I, l ,  l ), Y1  = ( 1. 1, - 1 � v2 = (1 , 2, 3). 
Find the largest directional derivative off(x. y, z) at a: 
25 f(x, y, z) = x3 + y2 + z; • = 0 
26 f(x, y, z) = x2 - y2 + 4z2; • = (- 1, - 1, l ). 

Find all unit vectors u for which Du/(•) = 0: 
27 f(x, y) = (2 + xy2)5 ; • = (0, 1 ) 
28 f(x, y, z) = x2 + xy + yz; • = ( - 1, 1. I ).  
29 Given f(x, y) and a point a, show that the value of (Du/(•)]2 + (D.,/(•)]2 is 

constant for all pairs or perpendicular unit vectors u and v. What is the constant value? 
30 (cont.) Given k, show that there exist perpendicular unit vectors u and v such that 

D.,f(•) = kDuf(e). 
Compute the general directional derivative D., f (•) 
31 f(x, y) = 1/(2x + 5y); • = (2. I� v = (-3, 4) 
32 f(x, y, z) = xye1'; • = ( I ,  I, l � v = (2, 2,' 5� 
33 Through each point • # 0 of the plane pass a level curve of xy and a level curve of 

x2 - y2• Find their angle of intersection. 
34 Show that the curves of steepest ascent for the function f(x, y) = 1x2 + y2 are the 

parabolas y = kx2• Draw a contour map orf to sec if this looks reasonable. 

Prove 

35 DY+wf(•) = D.,f(•) + Dwf(e) 36 D.,(fg)(e) =f(a)D.,g(a) + g(e)D.,f(a). 

4. S U R FACES 

We shall study surfaces given as the locus of equations 

F(x, y, z) = k (k constant); 

briefly, F(x) = k. We shall always assume that the l\JCus is not the empty set, as in 
the case of the locus F( x) = Ix 12 + l = 0. We shall also make a technical assutnption 
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to rule out corners, edges, and other types of singularities, namely that 

grad F(a) #: 0 whenever F(a) = k. 

Examples ( 1 ) F(x, y, z) = ax + by + cz, where (a, b, c) � 0. 

The surface F(x, y, z) = k is the plane 

ax + by + CZ = k, 
and grad F(x, y, z) = (a, b, c) #: (0, 0, 0). 
In vector notation : 

F(x) = a · x, grad F(x) = a #: 0. 

and F(x) = k is equivalent to a · x = k. 
(2) F(x, y, z) = x1 + y1 + z2, k = a1, a > 0. 

The surface F(x, y, z) = a1 is the sphere 

xl + yl + zl = al 
with center 0 and radius a. In vector notation 

F(x) = 1• 11, grad F(x) = (2x, 2y, 2z) = 2x, 
and f(x) = a2 is equivalent to l • I = a. For each x on the sphere, grad f(x) = 
2x #: 0 since Ix I = a > 0. 
(3) F(x, y, z) = z - x1 - y1. 

The surface F(x, y, z) = 0 is 
and grad F(x) = (-2x, -2y, 1 )  � 0. 

In Example 1, p. 721, we showed that this surface is a paraboloid of revolution. 

Given a surface f(x, y, z) = k and one of its points a, we 
want to define the plane tangent to the surface at a and find an equation for this 
plane. On p. 734 we found the tangent line to the level curve f(x, y) = c. Now 
we want the tangent plane to the level surface F(x, y, z) = k. It is not surprising, 
therefore, that the discussion and resulting equation will be similar. 

F(xl = k 

X = X(/) 

Jo-.--- ------y 
a =  x(O) 

v = x(O) 

Fig. 1 x = x(r) is an arbitrary curve 
on the surface F(x) = k. 
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Let us begin by proving a fundamental geometric fact: for any curve lying on the 
surface F(x) = k, its velocity vector at • is perpendicular to grad F(•� See Fig. 1. 

This fact is remarkable because grad F(•) is a fixed vector, whereas the assertion 
holds for any curve whatsoever lying on the surface and passing through a. 

Let a be a point of the surface F(x) = k. Then the velocity vector v at a of each 
curve on the surface through a satisfies 

v · grad F(a) = 0. 

Proof Let x = x(r) be any differentiable curve lying on F(x) = k and passing 
through • at t = 0. Thus 

( 1 )  F[x(r)] = k, (2) x(O) = a  

The composite function in ( l) is constant, hence its derivative with respect to t is 
zero. Therefore, by the vector form of the Chain Rule, 

i(r) · grad F[x(r)] = 0. 
We set t =  0 in this relation. Since x(O) = a  and i(O) = v, we obtain 

v · grad F(a) = 0, 
the desired equation. 

We now define the tangent plane at • as the plane through • perpendicular to 
grad F(a). This definition is reasonable geometrically. The plane passes through • 
and is parallel to the velocity vector at • of any curve through • that lies on the 
surface. To obtain an equation of this plane, let x be any point on it. Then x - • 
is perpendicular to grad F(a� hence 

(x - •) · grad F(•) = 0. 

Tangent Plane Let • =  (a, b, c) be a point of the surface F(x) = k. The tangent 
plane to the surface at x = • is the plane 

[grad .F(a)] • (x - a) = 0. 
In coordinate notation, this equation is 

oF oF oF - · (x - a) + - · (y - b) + - · (z - c) = 0, ox oy oz 
where the partial derivatives are evaluated at (a, b, c). 

Note the similarity to the corresponding statement about the tangent line to a level 
curve (p. 734). 

• EXAMPLE 1 Find the tangent plane to 
(a) x + 2y + 3z = 6 at (1, l. 1 ) (b) x2 + y2 + z2 = 14 at (3, 2, 1). 

Sohltion (a) Set F(x, y, z) = x + 2y + 3z. Then the given surface (plane) is 
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F(x) = 6, and the point • =  ( I, I, I) is on the surface since F(•) = 6. We have 

grad F(•) = grad F(x) I
.

= (1, 2, 3) I
.

= ( I, 2, 3). 

Hence the tangent plane at • is 

(1, 2, 3) . (• - •) = 0, ( I, 2, 3) · (x - I, y - I, z - I ) =  0, 
x + 2y + 3z = I + 2 + 3 = 6. 

Not surprising! The tangent plane to a plane at any of its points is the plane itself. 

(b) Set F(x) = x2 + y2 + z2 = 1 • 12• Then the given surface (sphere) is F(x) = 14, 
and the point a =  (3, 2, 1 ) is on the surface since F(a) = 14. We have 

grad F(•) = grad F(x) I
.

= 2(x, y, z) I
.

= 2a 

Hence the tangent plane at • is 

2• . (• - •) = 0 • • • = • • •  = 14, 3x + 2y + z = 14 . • 

The vector grad F(•) is normal (perpendicular) to the tangent 
plane at x = a. Therefore a unit vector normal to the tangent plane is grad F(•) 
divided by its length. 

Unit Nonnal Let • be a point of the surface F(x) = k. The unit normal to the 
surface at x = • is the vector 

1 
n = !grad F(a)I grad F(a). 

EXAMPLE 2 Find the unit normal to 

xyz = 3 at ( - 1, -3, I). 

Sol•tion Set F(x) = xyz and a = ( - 1, -3, 1� Then F(•) = 3 and 

grad F(a) = grad F(x) I. =  (yz, zx, xy) I
.

= (-3, - 1, 3). 

Since !grad F(a)l2 = 19, we have 
I 1 

n = I grad F(•) I grad F(•) = y'19 (-3, - l, 3). • 

Remark "The" unit normal is not quite fair, because really n is only determined up to sign. 
Irwe define the surface by - F(x) = -k, then n is changed to - n. Nonetheless, the inaccurate 
terminology "the unit normal� is common, and either +n or - n  can be chosen. 

G raph of a F unction Let us consider the graph of 

z = f(x, y� 

Heref(x, y) is a function of two variables, defined over some plane domain D and 
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assumed to have continuous partial derivatives (Fig. 2). The graph is a surface; to 
fit it into our previous pattern, set 

F(x. y. z) = z -f(x. y). 
Then the graph z = f(x, y) is the locus of F(x, y, z) = 0. Now 

grad F(x) = (-f:c,  -f, ,  1 ). 

Since the third component is 1, this gradient is never 0, so our basic assumption is 
satisfied free of charge. 

(a, b) 

: = ffa, y )  

y 

Fia. 2 A surface defined as the graph of a 
function z = f(x, y) 

If (a. b) is a point of D. then (a, b, f(a, b)) is the corresponding point on the 
surface. The gradient there is 

grad F I = (-f,,(a, b), -f,(a, b� 1� 
(o. b. /(a.b)) 

and the tangent plane is 

(grad F) • (x - a, y - b, z -f(a, b)) = 0, 
which simplifies to z = f(a, b) + f:c(a. b)(x - a) + f1(a, b)(y - b). 

The unit normal is n = grad F/lgrad F l .  

(Note that this one of the two possible choices has a positive z-coordinate.) Clearly 
lgrad Fj2  = I +!/ + f,2. 

Tangent Plane and Unit Normal to a Graph Let (a, b) be a (non
boundary) point of the domain of f(x, y). Then the tangent plane and unit 
normal to the graph z = f(x, y) at (a, b,f(a, b)) are 

z = f(a, b) + h(a, b)(x - a) + fy(a, b)(y - b) 

and I n = Jl-+J}.(a�+ !/fa, b) (-f:c(a, b� -f,(a, b� 1 ). 
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• EXAMPLE 3 Find the tangent plane and unit normal to z = x2y for 
(x, y) = (3, 2). 
Sohltion Setf(x, y) = x2y. Then /(3, 2) = 18, and 

(-fx , -/,, 1 ) I = (- 2xy, -x2, 1) I = (- 12, -9, 1). 
(3.2) (3.2) 

The tangent plane is 

z = 18 + fx · (x - 3) + /7 (y - 2) = 18 + 12(x - 3) + 9(y - 2� 
that is, 12x + 9y - z = 36. 

The unit normal is 

1 1 
n = I (- l2, _9, l) I (- 12, -9, 1 ) = J226 (- 12, -9, 1). • 

v S r o e Earlier we showed that the gradient field of a function of two 
variables is orthogonal (perpendicular) to the level curves. Now we observe that the 
same holds for a function of three variables. Recall that the level surfaces of 
F(x, y, z) are the surfaces 

F(x, y, z) = k. 
The gradient field of F is the assignment of the vector grad F(x) to each point x 
of the domain of F. 

[The gradient field of F(x, y, z) is orthogonal to the level surfaces of F. 

This statement means that the tangent plane at each point of F(x, y, z) = k is 
orthogonal to grad F(x) at that point. But this is practically the definition of the 
tangent plane. 

As an application we can compute the angle at which a line intersects a surface 
F(x, y, z) = k. We define that angle as the complement of the angle between the 
line and the normal to the surface at the point of intersection. See Fig. 3. If 8 is the 
angle between the line and the normal then cos 8 = u • n, where u is a unit vector 
parallel to the line and n is the unit normal at the point of intersection. 

Fia. 3 The line and the surface intersect 
at angle !1t - 6. 
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EXAMPLE 4 Find the angle at which the line x(t) = (t, t, t) intersects the 
surface x2 + y2 + 2z2 = 1 in the first octant. 

Sol11tio11 A point of intersection corresponds to a value of t satisfying 

t2 + t2 + 2t2 = 1, 4t2 = 1, t = ±!. 
There are two points of intersection. The one in the first octant is a = (1, !. !). 

Write the surface as f(x, y, z) = x2 + y2 + 2z2 = 1. Then 

grad f(a) = (2x, 2y, 4z) I
.

= ( 1, 1, 2), 
and the unit normal at a is 

1 1 n =  l ( l, l, 2)1 ( 1, 1, 2) =  J6 ( 1, l, 2). 

Obviously a vector parallel to the given line is (1, l, 1). A unit vector in the same 
direction is 

1 1 
u = rn:rl)l ( 1, 1, 1) = .fl ( 1, 1, 1). 

Therefore, if (} is the angle between the line and the normal to the surface, then 

cos 0 = u · n = � (1 ,  1, 1 )  • -� ( 1, 1, 2) = f..o = 2 .Ji � 0.94281. y3 y6 v 18 3 
Hence 0 � 19.47°. The desired angle is the complement, 

90 - 0 = arc sin (1.Ji )  � 70.53°. 

Find the tangent plane and the unit normal to the given surracc at the given point 
I x3 + y3 + z3 = 3, (4, 4, - 5) 2 x2 + y3 + z4 = 18, (3, 2, 1)  
3 x2 + yz = 7. ( I. 2, 3) 4 x3 + y3 + z3 + 3xyz = 16, (1, 1, 2) 
5 xy2z3 + yz5 = 14, (3. 2, 1)  6 z5 - xz4 + yz3 - 1 = 0, (1 , 1, 1 )  
7 xy + yz + zx = 0, (2, 2, - 1) 8 z cos(xy) = y2, (0. 1, I )  
9 e-'1 + y = r + 1 .  ( 1 .  1 ,  I ) 10 x sin y + y sin z + xyz = 0, { I, 0, 0) 

I I  x3 + xeY= = 10. (2, 0, I) 12 (x + 2y)/cosh z - I, (5, -2. 0). 
Find the tangent plane and unit normal to the graph z = f(x. y) at the point with 
the given (x, y) 
13 z = x2 - y2• (0, 0) 
15 z = x2 + 4y2• (2, I )  

17 z = x2y + y3, ( - I, 2) 
19 z = x + x2y3 + y, (0, 0) 
2 1  z = ln(I + x 2  + 2y2), ( I ,  1 )  

1 4  z = x 2  - y2, ( I .  - I )  
16 z "" x2eY, ( - I, 2) 
18 
20 
22 

z = x cos y +  y cos x. (0. 0) 
z = x3 + y3, (t , - 1 ) 
z = Jt _: xi "_: y, (!. !). 

• 

23 Find the angle or intersection or the line through 0 and (I, I. I ) and the surracc 
z = x2 + y2 at each or their intersections. 

24 Compute the angle at which a line through the north pole k or the unit sphere 
Ix I = I intersects the sphere at a typical point • = (a, b, c). 
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2! Find all points on the surface xyz • 1 where the normal line intersects the z-axis. 
(The normaJ line is the line through the point with the direction of the unit normal) 

26 Suppose F(x) is an nee function, that is, F( -•) • F(x� Show that the tangent planes 
at • and - • to the surface F(x) = k are paraJlel. 

5. PARAMETRIC SUR FACES AND SUR FACE OF R EVO LUTION 

We have seen that a curve can be parameterized by a vector function x(t) of one 
real \tariable. Let us discuss parameterii.ation of a surface. 

Physically speaking, a curve is a one-dimensional set of points; you can move 
on a curve with one degree of freedom (forward or backward). In slightly different 
terms, the points of a curve can be specified by one real number (parameter� for 
instance, by the directed distance along the curve from a fixed point. A surface is 
a two-dimensional set of points; you can move on a surface with two degrees of 
freedom. Thus it requires two real numbers to specify a point, for instance, latitude 
and longitude on a sphere. 

This discussion leads us to define a surface by a vector function 

x = x(u, v) 
of two real variables. In coordinates, 

x = (x. y. z) = (x(u, v� y(u, v� z(u, v)). 
Here (u. v) varies over a domain D in the u, v-plane. Each point of D is identified 
by a pair of real numbers (u, v); to this pair the function assigns a point x(u, v) 
on the surface (Fig. t): In other words, x(u, v) maps the plane domain D onto the 
surface. We assume x(u, v) is continuously differentiable, that is, the six partials 

ox ox oy ay oz az 

exist and are continuous. 

l' 

, 
0 

{11. v) 

x(u. l'l 

ll 

(a) Domain D 
Fla. 1 Surface presented in parametric form 

(b) Surface S 
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Examples ( 1 ) x = (u + v, u - v, u� 
parameterizes the plane x + y = 2z. 

(2) x = (u cos v, u sin v, u) 

- 00 < u < 00, - 00 < v < 00, 

parameterizes the surface x2 + y2 = z2, a right circular cone, as we shall see shortly. 
Look at one more example, x = (u + v, u + v, u + v). 

There is something wrong here because this is just another version of the line 
x = (t, t, t). To assure that a surface is genuinely two-dimensional we shall assume 
that (ax ay az) (ax ay az) au· au' au )( av' av· av :;: o. 

I b · " · th. d. · · ax ax o h o n ne1er notation 1s con 1tton 1s ou x ov :;: . or s orter yet, x,, x x., :;: . 

This assumption plays a similar role to that of grad F(x) :;: 0 for surfaces F(x) = k. 
It guarantees the existence of a well-defined tangent plane, as we are about to 
show. 
Tangent Plane and U nit Normal Let us find the tangent plane to a parametric 
surface S:  x = x(u, v) at the point c = x(a, b). We shall show that the velocity 
vectors at c of all curves on S that pass through c fill out a plane. The parallel 
plane through c is the tangent plane. 

To start, let us look at two special curves on the surface: 
x(u) = [x(u, b� y(u, b� z(u, b)], x(v) = [x(a, v), y(a, v� z(a, v)]. 

Both pass through c, the first for u = a, the second for v = b. Their velocity vectors 
at c are (ax ay az) I -a . a- · -a = x.,(a, b), u u u (•.b) (ax ay az)I -a · -a · a- = •.,(a. b). v v v (•.b) 
Our basic assumption x,, x x., :;: 0 guarantees that x., and x., are non-parallel. 
Hence they span a plane P consisting of all vectors 

hx,, + kx.,. 
Let us show that the velocity vectors at c of all curves on S that pass through c 

fill out the plane P. Any such curve is of the form 
x(t) = (x(u, v), y(u, v� z(u, v)), 

where u = u(t� v = v(t� and u(O) = a, v(O) = b. 
Its velocity vector at c is Ji(O). By the Chain Rule, 

x(O) = (�: u(O) + �: li(O), :� u(O) + �� li(O� ;� u(O) + ;; li(O)) 
= u(o)(�:. :�. !�) + v(o)(�:. ��· ::) = u(O)x,, + li(O)x., . 

Hence x(O) is in the plane P. 
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y 

(h. k )  

D 

x 

(a) The "ancestor" curve 

Conversely, suppose 

(b) The correspondin& space curve 

Fla. 2 Curve on a parametric surrace 

hx,, + kx,, 

I' 

is an arbitrary vector in P. There is a curve (u(t� v(t)) in the u, v-plane such that 

u(O) = a,  v(O) = b and u(O) = h, v(O) = k. 
There corresponds (Fig. 2) a curve x(r) = x(u(t� v(t)] on S passing through c, 
whose velocity vector at c is 

i(O) = &i(O)x,, + v(O)x,, = hx,, + kx11 • 
Thus the velocity vectors fill out the plane P. See Fig. 3. 

u <�· b) ......... I x,(a, b ) 
x� 

c 

x = x(u) 

� x(u) • x(u, b) (a) 1 x(v) • x(a, 11) 

x = x(u) 

s 

x(O) = hxu + kx, 

(b) 

Fig. 3 The set of all velocity vectors i(O) of all curves on S through c = x(O) fill a plane P. 
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The vector x., x x11 is perpendicular to P, hence normal to the surface at c. 
Therefore the unit normal is 

... x ... n = I• .. x • .. I ' 

Let x = x(u, v) be a surface in parametric form and let c = x(a, b). The tangent 
plane at c, in parametric form, is 

x = c + hx.,(a, b) + kx.,(a, b� 

where h and k are arbitrary real numbers . 

The unit normal at c is 

... )( ... n = . I•. x x.. I 

• EXAMPLE 1 Find the unit normal and the tangent plane in both parametric 
and non-parametric form for the surface 

x = (u cos v, u sin v, v� u > 0, at c = (0, I, Pr)· 
Sol11tion The point c corresponds to (u, v) = (1, !x). We have 

x.(l, !x) = (cos v, sin v, 0) I = (0. 1, 0), 
(1.  •/l) 

x.,(I, !x) = (-u sin v, u cos v, 1) I = ( - 1, 0, 1). 
( I .  •/l) 

Now x11 x x11 = (0. 1 ,  0) x ( - 1, 0, 1 )  = ( 1, 0, I� so 

( 1, 0, I ) I ( ) n = 1 ( 1, 0, 1) 1 =Ji 1, 0, I .  

The tangent plane in parametric form is 

x = c + hx.(I, Pr) + kx.,(1, Pr) = (0, 1. Pr) + h(O, I, 0) + k(- 1, 0, I� 
x = (-k, 1 + h, !x + k� 

In non-parametric form the tangent plane is 

(x - c) • n = 0, (x - c) • (I. o. 1) = 0, 
(x, y - I , z - !x) · (I, 0, I )= 0, x + z = !x. 

The two forms agree, as is easily checked. The surface is a spiral ramp. For a 
figure, see p. 870. • 

Surfaces of Revo lution Let f(x, z) = 0 be the equation of a curve in the 
part x ;;:::: 0 of the x, z-plane (Fig. 4a). If the curve is rotated about the z-axis, a 
surface, called a surface of revolution, is swept out (Fig. 4b ). 

To find its equation, let x = (x, y, z) be any point of the surface. The distance 
from x to the z-axis is J x2 + y2 • See Fig. 4b. Hence x is swept out by the point 
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z 

(a) Curve in x, z·plane 
(x ;;. 0) 

x 

(b) The correspondina surface of 
revolution about the z·axis 

Fig. 4 Surface of revolution 

(J x2 + y2 , z) on the original curve. This point satisfies the equation of the curve so 
!(Jx2+ y2 , z) = 0. 

Thus x = (x, y, z) satisfies this equation, hence it is the equation of the surface. 

Examples (1) A paraboloid of revolution is swept out when the curve 
x2 - z = 0, x 2::: 0 is rotated about the z-axis. Its equation is 

(Jx2 + y2 )2 - z = 0, that is, z = x2 + y2• 
(2) A right circular cone is swept out when the line x - z = 0, x 2::: 0 is rotated 

about the z-axis. Its equation is 

Jx2 + y2 - z = 0, or equivalently, z2 = x2 + y2, z 2::: 0. 
Similar reasoning applies to surfaces of revolution about the other coordinate 

axes. For example if f (x, y) = 0, y � 0, is rotated about the x-axis, the equation of 
the resulting surf ace is 

EXERCISES 

Express the parametric surface in the form F(x, y, z) = k; describe the surface 

x = (u, v, u + v) 

3 x = ( v cos u, v sin u, v) 
5 x = (a sin u, v, a cos u) 

2 x = (2u - v + 3, - u + 4v + I, 
- u  - 2v - 6) 

4 x = (a cos u, a sin u, v) 
6 x = (u3, u3, v). 

Find all points (a. b) in the u. II-domain where the surface is degenerate, that is. where 
x,. and x. are parallel (x. >< x. "" 0) 

7 x = (u + v, u - v, uv) 
9 x = (u cos v, u sin v, v) 

8 
10 

x = (u, u2, v3) 
x = (u + v. uv. u1 + v2) 
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12 x = ( l - u1, u - u3, v). 

Give the tangent plane in parametric form and the unit normal for the surface at the given 
parametric values (u. v) 

13 x = (u - v. u + v, u + 3v� (1, 0) 14 x = (u sin v, v. u cos v� (2, i1t) 
IS x = (sin u cos v, sin u sin v. 2 + cos u� (�x. i1t) 
16 x = (u, v/u, l/v� ( I, -2) 17 x = (u1 - v1, 2uv, u3 + v3� (0, -2) 
18 x = (u1v1, u3 + v3• 112v + uv2� ( - 1, - 1� 

19 Let 0 < a < b. Revolve about the z-axis the circle in the x, z-planc with center (b, 0) 
and radius a. Give an equation ror the resulting terms. 

20• (cont.) Parameterize the surface in terms or two angles. 
21 What is a simple way or parameterizing the graph z = f(x, y) or a runction? 
n• Suppose a curve in the x, z-plane is revolved about the z-axis. Show that the normal 

line at each point or the resulting surface or revolution either intersects, or is parallel 
to, the z-axis. (See Ex. 25. p. 746.) 

23• Let x = x(s) be a curve on the unit sphere l • I  = 1, where s is arc length. Consider 
the cone x = x(u, v) = vx(u), v > 0. Show that this surface has a tangent plane at each 
or its points. 

24* (cont.) Show that the unit normal to the surrace is constant along each generator, and 
the tangent plane is also the same at each point or a generator. 

is Let x = x(s) be a space curve with arc length s and curvature k = k(s) > 0. The set 
or (positive) tangent lines to the curve sweep out the surface x = x(u, v) -
x(u) + vt(u� v > 0, where t(s) is the unit tangent at x(s). Find x,. and x. and show 
that these vectors arc never parallel. 

26 (cont.) Find an equation ror the tangent plane at x(u, v� and show that that it is 
independent or v. 

6. QUADRIC SUR FAC ES 

A quadric surface is the locus of an equation f(x, y, z) = 0, where f(x, y, z) is a 
quadratic polynomial. The most general quadratic polynomial is 

f(x, y, z) = Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx + px + qy + rz + k. 
We shall study quadratic surfaces only for the following special types of quadratic 
polynomials: 

( I )  Ax2 + By2 + Cz2 + k 
(2) Ax2 + By2 + rz 
(3) Ax2 + qy 

(2') Ax2 + By2 + k 
(3') Ax2 + k. 

Later we shall observe that every quadric surface is one of these types with respect 
to a suitably chosen rectangular coordinate system. We assume throughout that 
some second degree terms are present; otherwise the locus of f(x, y, z) = 0 is a 
plane, which doesn't interest us here. 

We begin with type ( l�  assuming ABC � 0 and k � 0. With a bit of juggling of 
constants, f = 0 can be written in the form 

x2 y2 12 ± 2 ± b2 ± 2 = 1. 
a c 
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The nature of this quadric surface depends on how many of the signs are plus 
and how many are minus. If all three signs are minus, the locus is empty. Otherwise 
it is symmetric in each coordinate plane, because if (x. y. z) is on the surface, 
then so are all eight points ( ± x, ± y, ± z � Therefore the whole surface is 
determined by symmetry from its part in the first octant. 

El l ipsoid Consider the quadric surface 

xl yl zl - - + - ·  + - = I al bl cl ' a, b. c > 0. 

Since squares are non-negative, each of its points satisfies 

xl yl zl � � I, bl � l, cl � I. 

This means the surf ace is confined to the box 

-a � x � a, -b � y � b, -c � z � c. 
Suppose -c � z0 � c. The horizontal plane z = z0 intersects the surface in the 

curve 

xl yl zol - + - = 1 - - -al bl cl ' Z = Zo . 

This curve is an ellipse. It is as large as possible when z0 = 0, and it becomes 
smaller and smaller as z0 ----+ c or z0 ----+ -c. Thus each such cross section by a 
horizontal plane is an ellipse, except at the extremes z0 = ± c, where it is a single 
point. 

The same argument applies to plane sections parallel to the other coordinate 
planes. This gives us enough information for a sketch. The surface is called an 
ellipsoid (Fig. 1 ). In the special case a = b = c, it is a sphere. 

y 

xl yl zl 
Fi&- I Ellipsoid: - + - + - = l 

al bl cl 

There is a nice formula for the tangent plane to an ellipsoid. 
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Let m = (I. m. n) be a point or the ellipsoid 

Then the tangent plane at m is 
Ix my nz - +- + -· - I al bl cl - . 

To derive the formula, we first compute the gradient: 

grad(:: + �: + ::)L = 2(:1 •  :2• ;1)L = 2(:i • �· �)· 
Therefore x is on the tangent plane at m ir and only if 

( I m " ) 2 a2, b2 , c2 • (x - m) = 0. 

This condition is equivalent to 

Ix my nz 12 m1 n2 
2 + L2 + 2 = 2 + b.l + 2 = ). a r1 c a c 

The right-hand side equals one because m is on the ellipsoid. 

H yperboloids of One Shee Consider the locus of 

x2 y2 
a2 + b2 

z2 
2 = I, c 

Each horizontal cross section is an ellipse, 

a. b, c > 0. 

x2 y2 zo2 
al + b2 = I + c2 ' Z = Zo , 

no matter what value z0 is. The smallest ellipse occurs for z0 = O; as z0 -- oo 
or z0 -- - oo, the ellipses get larger and larger. 

The surface meets the y. z-plane in the hyperbola 

and it meets the z. x-plane in the hyperbola 
xi 
ai 

z2 
l = 1. c 

z2 
2 = I, c 

This information is enough to sketch the surface. called a hyperboloid of one sheet 
(Fig. 2). 

is 

The equation for the tangent plane to x2 y1 
a2 + bi 

Ix my nz 
2 + b2 - 2 = 1. a c 

It can be derived exactly as for the ellipsoid. 

z2 
2 = 1 at m = (I, m, n) c 
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: 
I 
I 
I 
I 
I 

--·-...... b 

�/ --� x 

Fla. 2 Hyperboloid of one sheet: 

xl yl zz - + - - - = I 
al bl cl 

y 

Fig. 3 Hyperboloid of two sheets: 

xl yl zl 
- - - - - + - = I al bl cl 

Hyperoo1u1u u , Consider the equation 

xl yl zl - al - bl + cl = l ,  a, b, c > 0. 

If (x, y, z) is a point on the surface, then 

zl x2 yl 

2 = l + 2 + bl :2: l ,  c a 
hence z2 � c1• This means either z � c or z � -c, that is, there are no points of the 
surface between the horizontal planes z = c and z = -c. 

If z01 > c1, the horizontal plane z = z0 meets the surface in the curve 

xl y
l 

zol 
-l + -l = -2 - l > 0 z = Zo' a b c ' 

an ellipse. Also the surface meets the y, z-plane and the z, x-plane in the hyperbolas 

y1 zl 
- - + - = l  

bl cl and 
xi z2 

- - + - = 1 
al cl 

respectively. The surface breaks into two parts, and it is called a hyperboloid of two 
sheets (Fig. 3). 
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As before. the tangent plane at a point m of the surface is 

Ix my nz - al - bi + �2 = l. 

Quad at ic Cones To complete the study of type ( 1 )  on p. 751 for ABC =F 0, 
we now consider the case k = 0. Then f = 0 can be written 

xl yl zl 
± l ± bl ± i = 0, a c a, b, c > 0. 

If the signs are all the same, then (0. 0, 0) is the only point on the graph; not 
interesting. Otherwise two signs are equaL the other opposite. Changing signs if 
necessary. and renaming constants, we have 

x2 y1 zl = al + b2 • a, b > 0. 

This surface has the following property. For each point x0 on the surface, the entire 
line x = tXo lies on the surface. Such a surface is called a cone, and the lines 
x = tXo are called generators of the cone. 

To show that 

2 x2 y2 z = - + -al b2 
really has the cone property, we take any point Xo on the surface and check that 

(a) A aenerator (b) The cone 

x2 y2 
Fia. 4 Quadratic cone: z2 = a2 + b2 
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tXo is also on the surface. If Xo = (x0 , Yo ,  z0� then IXo = (tx0 • ty0 , tz0) and 

(tzo)l = tlzo l = 11( :012 + �021) = (t:�)l 
+ (t��)

l
. 

Thus tXo is on the surface. 
To sketch the cone, we note that it meets the horizontal plane z = I in the ellipse 

xl yl 
al + bl = I. 

For each point on this ellipse, we draw the line through the point and 0. See Fig. 4. 
The origin is a singular point on the cone (no tangent plane). If m :/: 0 is any 

other point on the cone, then we see in the usual way that the tangent plane at 
m is 

Par<>boloids Next we take up type (2) on p. 751 and study the locus off = 0, 
where 

f(x, y, z) = Ax2 + By1 + rz, 
We may write the equation/ = 0 in the form 

xl yl z = ± al ±  bl '  

AB :/: 0, 

a, b > O. 

Changing z to -z merely turns the surface upside-down, so there are essentially 
two distinct cases : + + and - + . 

The first case is the surface 

a, b > 0, 

called an elliptic paraboloid. It lies above the x, y-plane and is symmetric in the 
y, z- and z, x-planes. Each horizontal cross-section 

xl yl 
a2 + bl = zo > 0, Z = Zo 

is an ellipse. As z0 increases, the ellipse grows larger. The surface is called a 
paraboloid because it meets the y, z-plane and the Z, x-plane in the parabolas 
z = y2/b1 and z = x2/a1 respectively (Fig. 5). 

The tangent plane to the elliptic paraboloid at a point m = (t, m, n) is 

z = 2(�� + �:)-n. 
The derivation is left as an exercise. 

The second case is the hyperbolic paraboloid, the locus of 

a, b > 0. 



! 

/ �  x y 

Fi&- 5 Elliptic paraboloid: 

xl yl 
z = - + -

al bl 

I 
I 
I 
I l 
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z 

Fig. 6 H ypcrbolic paraboloid: 

xl y2 
Z =  - - + -

al bl 

This surface is symmetric m the y, z- and z, x-planes. The horizontal planes 
z = z0 > 0 meet it in hyperbolas whose branches open out in the y-direction. The 
horizontal planes z = z0 < 0 meet it in hyperbolas that open out in the x-direction. 
The y, z-plane meets the locus in the parabola z = y2 /b2, which opens upward; 
and the z, x-plane meets it in the parabola, z = -x2/a2, which opens downward. 
The best description is "saddle-shaped". See Fig. 6. 

The tangent plane at m is 

z = 2( - �� + �;) - n. 
Again, the derivation is left as an exercise. 

Oueidr· t1 Cy 1 au In types (2') and (3) on p. 751 the variable z is missing. 
Generally, when one variable is missing the locus is a cylinder. Take for example 
Ax2 + By2 + k = 0, where A > 0, B > 0, and k < 0. This can be written in the form 

xl yl 

02 
+ j,"2 = 1, a, b > 0. 

The surface meets each horizontal plane z = z0 in the same ellipse. If (x0 , y0 , z0) 
is any point of the surface, the whole vertical line (x0 , y0, z) for - oo < z < oo 
lies on the surface. The surface is an elliptic cylinder and these vertical lines that 
lie on the surface are called generators of the cylinder (Fig. 7a). Any curve 
f(x, y) = 0 in the x, y-plane generates a cylinder in space consisting of all points 
(x0 , y0, z) for which f(x0, y0) = 0. In particular, a circle generates a (right) 
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: 

2 2 

= 

(a) Elliptic cylinder: x2 + � = I a b (b) Parabolic cylinder: y = cx2 

Fis. 7 Quadratic cylinders 

circular cylinder, a hyperbola generates a hyperbolic cylinder, etc. Type (3) on 
p. 751 leads to a parabolic cylinder (Fig. 7b). 

In the remaining type (3') both y and z are missing. Depending on the signs of 
A and le, the locus of Ax2 + k = 0 is empty or consists of one plane or two 
planes parallel to the y, z-plane. In genera� the locus in R3 of /(x) = 0 is a set of 
planes parallel to the y, z-plane. For each zero x0 of /(x� the plane x = x0 is 
included in the locus. 

Reduction of Ouadrat· Polynomials Given a general quadratic polynomial 

/(x, y, z) = Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx + px + qy + rz + k, 

a fairly deep theorem in linear algebra says that the mixed terms, xy, yz, zx, can be 
eliminated by a suitable rotation of the coordinate system. Obviously, a rotation 
does not affect the nature of the quadric surfaoe /(x, y, z) = 0, so in studying 
quadrics we may assume 

/(x, y, z) = Ax2 + By2 + Cz2 + px + qy + rz + k. 

If A :;: 0, the translation x = x' - p/2A eliminates the term px, and similarly if 
B :F 0 or C :F 0. This reduoes the study of the following types off: 

(i) Ax2 + By2 + Cz2 + k 
(ii) Ax2 + By2 + rz + k 

(iii) Ax2 + qy + rz + k. 

These include all possibilities, provided we are willing to permute the variables. For 
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instance, the polynomial Cz2 + px + qy + k becomes type (iii) when x and z are 
interchanged. 

In type (ii� if r # 0, then a translation in the z-direction eliminates k. In type 
(iii� a rotation in the y, z-plane, taken so that qy + rz = 0 is the new z-axis, 
changes the function to the form ax2 + qy + k. Again, k can be eliminated by 
translation if q # 0. 

This discussion shows that we may study all quadric surfaces by concentrating 
on the five types of quadratic polynomials listed at the beginning of this section. 

EXERCISES 

Sketch the first octant portion 

1 !x2 + Yi + iz2 = I 2 
4 -x2 - y2 + z2 = I 5 
7 z = x2 + y2 8 

10 z = x2 - y2• 
Identify the quadric surface 

1 1  z = x2 + 2x + y2 
[Hint Complete the square.) 

13 x2 + y2 - a2(z - 1)2 = 0 

Sketch the paraboloids 

15 x = y2 + z2 
Sketch the surface in x, y, z-space 

17 x - z = I 18 
20 -x2 + y2 = I 21 
23 z = x2 - x 24 
26 x2 = yz. 

x2 + bi + !z2 = I x2 - y2 + z2 = I 3 
6 
9 

x2 + y2 - z2 = I -x2 + y2 - z2 = I z = -xi + yz z = !x2 + y2 

y =  xi x = z2 

12 x2 + 2y2 + 3z2 - 2x - Sy + 6z = 0 

14 z = xy [Hint Rotate 45° about the 
z-axis.] 

16 y = x2 - z2• 
xy = I 

x2 + 4z2 = I 
19 
22 
25 

y2 + 4z2 = I Y2 = z2 + 4x2 
27 Suppose f (x, y) = 0, z = I is a curve on the plane z = I. Find an equation for the 

cone obtained by taking all points on all lines through 0 and points of the curve. 
28 (cont.) Test your result on x2 + y2 = I, z = I. 
Find the tangent plane to the paraboloid at m = (t, m. n) 

29 

31 

32 

33 

34 

35 

36 

xl y2 . x2 y2 
elliptic: z = a2 + b2 30 hyperbohc: z = - a2 + b2 . 
Show that all cross sections of the ellipsoid x2/a2 + y2/b2 + z2/c2 = I by planes x = k. 
where -a <  x < a, are ellipses of the same eccentricity. 
Given an ellipsoid and a plane P, prove that there are exactly two points on the 
ellipsoid where the tangent plane is parallel to P. 
Let n be a fixed unit vector and IX a fixed acute angle. Find a vector equation for the 
cone with vertex 0 whose generators all make angle IX with n. 
(cont.) Find an equation for the cone with vertex 0 whose generators make angle 45° 
with the line through 0 and { I, I, 0). 
Show that the tangent planes at all points (u, v. k� where k > 0 is fixed, of the 
quadric z = x2/a2 + y2/b2 have a common point. What point? [Hint See Ex. 29.] 
Find the intersection of the tangent plane at 0 to the hyperbolic paraboloid x = y2/a2 - z2/b2 with the quadric itself. 
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The following exercises assume some knowledge of matrices. Let A be a 3 x 3 non-zero 
symmetric matrix and x = (x, y, z� Then x' is the transpose of x. a column vector. 

J7• Set/(x) = xAx'. Show that grad /(x) - 2xA. 
38 (cont.) Show that the tangent plane at a point m of the quadric f (x) = I is mAx' = I. 
39 (cont.) Let b be a fixed vector and set /(x) - xAx' + 2bx' + k, the most general 

quadratic polynomial. Find grad /(x) . 
..o• (cont.) Let m be a point of the quadric/(•) - 0. Find the tangent plane at m. 

41 Let n be a unit vector. Show that the set of points on the ellipsoid x2/a2 + y2/b2 
+ z2/c2 .. I ,  where the tangent plane is parallel to n is an ellipse. (You may assume that 
any plane section of an ellipsoid is an ellipse.) 

41 (cont.) What does this say about the shadow of an ellipsoid when the sun is directly 
overhead? 

7. OPTIM IZATION 

The word means choosing the most favorable value, for us, usually the max or 
min of a function of several variables. Before we plunge in, let us recall some facts 
about extrema of functions or one variable. Let /(x) be a differentiable function. 
Supposc/(x) has a local max or a local min at a point x = c that is not a boundary 
point or its domain. Then y = /(x) has a horizontal tangent at x = c. See Figs. la 
and lb. But as Fig. le shows, a horizontal tangent does not guarantee a local 
max or min. 

c 

(a) Local max (b) Local min (c) Neither 

Fis. I Horizontal tangent 

Now let /(x, y) be a continuously differentiable function on a domain D. 
Suppose /(x, y) has a local min at (x, y) = (a, b). an interior point of D, that is, 
not a boundary point. This means 

f(x, y) � f(a, b) 
for all points (x, y) of D sufficiently near (a, b). 

Let us show that the tangent plane to the surface z = f(x, y) at (a, b) is 
horizontal. We set g(x) = /(x, b). Then g(x). a function of one variable, has a local 
min at x = a. Therefore g'(a) = 0. But by definition, g'(a) = fx(a. b). Thus/x(a. b) = 0 
and similarly, /,(a. b) = 0. 

The equation of the tangent plane is z = f(a, b) + fx(a. b)(x - a) + J,(a, b)(y - b). 
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Since fx(a. b) = f.,(a, b) = 0, this reduces to z = f(a, b), a constant. Hence the 
tangent plane is horizontal. Conversely, if the plane is horizontal, then fx(a, b) = 
f,(a, b) = 0. 

Let/(x, y) be a continuously differentiable function and let (a, b) be an interior 
point of its domain. Suppose /(x, y) has either a local max or a local min at 
(a. b). Then the tangent plane to z = f(x, y) at (a, b, f(a. b)) is horizontal. 
Equivalently, 

and of 
oy 

(a, b) = o. 

Remark Intuitively it is almost obvious that the tangent plane is horizontal at a local 
max or local min. Suppose, for example, that f(x, y) � f (a, b) for (x. y) near (a, b). Then 
the surface z = f(x. y) is on or below the horizontal plane z = f (a, b) but touches it at 
(x, y) = (a, b). See Fig. 2a. 

)C 

z 

D 

(o, b)• 

(a) Local max (b) l..ocal min (c) Neither 

Fig. 2 Horizontal tangent plane, that is, of =Of_ = O iJx iJy 

The conditions fx(O. b) = 0, fy(a, b) = 0 

y 

are the analogue of the first derivative test for functions of one variable. As in 
the one variable case, this test has certain shortcomings that you should be aware 
of. First, the conditions fx = /1 = 0 are necessary for a local max or a local min, 
but they are not sufficient. The graph z = f(x. y) may have a saddle point 
(Fig. 2c) where both partials are 0, yet there is neither a max nor a min. Obviously 
a second derivative test is needed, but that is a matter for the next chapter. 

Second, the test does not apply at the boundary of the domain. For example, 
take/(x, y) = x2 + y2 on the circular domain x2 + y2 � 1. Obviously the maximum 
value is l, taken on the boundary. Butfx = /1 = 0 only at (0. 0). 

Applications In practice, we look for the max or min of a given function by 
solving the system 

of = O 
ox 

. 
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of two equations in two unknowns. This may give a number of possibilities. Then 
we try by hook or by crook to sort out the maxs, mins, and neithers. We should 
also give special attention to the boundary of the domain. However, we can often 
rule out the boundary, using additional information, physical properties, or if all 
else fails, common sense. 

EXAMPLE 1 Find the extrema of 
f(x, y) = x2 - xy + y2 + 3x. 

Sol•tio11 The function is defined for all values of x and y; there is no boundary. 
Begin by finding all points (x, y) at which both 

of = 0 and of = 0. ox oy 

Now ix = :x (x2 - xy + y2 + 3x) = 2x - y + 3, 
of = � (x2 - xy + y2 + 3x) = -x + 2y, oy oy 

so the conditions are J 2x - Y + 3 = O 
l -x + 2y = 0. 

Solve: x = -2, y =  - 1. 
The corresponding value off(x, y) is 

f(-2, - 1) = (-2)2 - (-2)( - 1) + ( - 1)2 + 3(-2) = 4 - 2 + 1 - 6 = -3. 
Is this a max, a min, or neither? We suspect a minimum because the values of 

f(x, y) seem to increase as lx l increases or IY I  increases. For a fixed y = b, 
f(x, b) = x2 + (3 - b)x + b2-oo as x- ±oo. 

Similarly, f (a. y) = y2 - ay + (a2 + 3a)-oo as y- ± oo. 
Let us prove our conjecture by a little algebra. First we move the origin to 

( -2, - I )  by setting 
x = u - 2  and y = v - 1. 

Then 
f(x, y) = (u - 2)2 - (u - 2)(v - 1) + (v - 1)2 + 3(11 - 2) = u2 - uv + v2 - 3. 

Next, we complete the square: 

f(x, y) = ( u - �r - : + v2 - 3 = ( u - �r + � v2 - 3 � -3. 
Conclusion: the min off (x, y) is 

f,. •• = f(-2, - 1) = -3. 
There is no other local max or min. • 
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• EXAMPLE 2 Find the rectangular solid of maximum volume whose total edge 
length is a given constant k. 

0 

(a) Total 1:dae lenath 4x + 4y + 4z 
Fig. 3 

I' 

( x > O  
' y > O  
l x + y < k  

(b) The domain 

Sohltio• As drawn in Fig. 3a, the total length of the 12 edges is 4x + 4y + 4z. 
Thus 4x + 4y + 4z = 4k, that is, 

The volume is 

so write 

x + y + z + k. 
V = xyz = xy(k - x - y) = kxy - x2y - xy2, 

V = V(x, y) = kxy - x2y - xy2. 
By the nature of the problem, x > 0 and y > O; also z > 0, hence x + y < k. These 
conditions describe the domain of V(x, y� the interior of a triangle (Fig. 3b). 
Clearly V > 0 on this domain and V = 0 on its boundary (since either x = 0, y = 0, 
or z = 0 at each point of the boundary). Hence it is plausible that V has a positive 
maximum on the domain. To locate it, solve 

that is, 

�� - 0 iJx - , a_v = o. 
iJy { ky - 2xy - y2 = 0 

kx - x2 - 2xy = 0. 

Since x > 0 and y > 0, cancel y from the first equation and x from the second: 

{2x + y = k 
x + 2y = k. 

This pair of simultaneous linear equations has the unique solution 

x = !k. y = !k. 
Hence z = k - x - y = !k; the solid is a cube. • 

Remark We have used an important principle: suppose /(x. y) > 0 on a domain D and 
f (x. y) = 0 on the boundary of D. If /,. = f, • 0 at only one point (a. b) of D. then 
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f(x, y) has its max at (a, b). For assuming the maximum exists, it certainly docs not occur 
on the boundary. But (a, b) is the only interior point that satisfies the necessary conditions 
for a max, sof(a, b) is the max. 

• EXAMPLE 3 What is the largest possible volume, and what are the dimensions 
of an open rectangular aquarium constructed from 12 ft2 of Plexiglas? Ignore the 
thickness of the plastic. 

x 
(a) (b) The domain 

Fig. 4 

So/utio11 See Fig. 4a. The volume is V = xyz. The total surface area of the bottom 
and four sides is 

xy + 2yz + 2zx = 12. 

Solve for z, then substitute into the formula for V: 
12 - xy Z =  ' 2(x + y) 

V = ( 12 - xy)xy
. 

2(x + y) 

By the nature of the problem, x > 0, y > 0, and z > 0, hence xy < 12. Therefore the 
domain is the region of the first quadrant bounded by the axes and the curve xy = 12. 
See Fig. 4b. Since V > 0 in the interior and V = 0 on the boundary, there is 
probably a max in the interior. 

The domain extends to oo in the x- and y-directions. What happens to V if, say, 
x is taken very large? WelL 0 < xy < 12, hence ( 12 - xy)xy < 12 x 12 = 144, so 

0 < V = ( 12 - xy)xy < 144 < .E:._ < 72
. 

2(x + y) 2(x + y) x + y x 

Therefore V is small if x is large, and similarly, V is small if y is large. 
It follows that the max of V occurs for values of x and y neither too near 0 

nor too large. To find the max, compute the partial derivatives of V (only one 
computation is needed because of the symmetry in x and y): 

av y2(-x2 - 2xy + 12) av x2(-y2 - 2xy + 12) 
h � + # �

= 
� + # 
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Now find all points (x. y) where both partials are zero. Such points must satisfy 

{y2(-x2 - 2xy + 12) = 0 
x2( -y2 - 2xy + 12) = 0. 

Since both x and y are positive, the factors y2 and x2 may safely be canceled: 

{ -x2 - 2xy + 12 = 0 
-y2 - 2xy + 12 = 0. 

Solve these equations for x and y. Subtract: x2 - y2 = 0, hence y = ±x. Since both 
x and y are positive, only y = x applies. Now substitute y = x into the first equation : 

-x2 - 2x2 + 12 = 0, 3x2 = 12, x2 = 4, x = 2. 
Therefore (x, y) = (2, 2) is the only point where V.x = V, = 0, so must yield Vmu . 
Now when x = 2 ft and y = 2 ft, then 

12 - xy 12 - 4 z = 2(x + y) = 2T = 1 ft. 

Hence v_" = xyz I = 4 ft3. 
(2. 2. l) 

EXERCISES 

Find the max and min of/(x. y) = 
I 4 - 2x2 - y2 2 x2 + y2 - I 3 (x - 2)2 + (y + 3)2 

• 

4 (x - 1 )2 + y2 + 3 5 x2 - 2xy + 2y2 + 4 6 xy - x2 - 2y2 + x + 2y 
7 xye_,.,_ 12 8 e- ,.• - 12 •1 
9 sin x + sin y + sin(x + y) 10 cos x + cos y +  cos(x + y). 

Find the min for x ;;?:: 0, y ;;?:: 0 or f (x. y) = 

I I  1 
- + x + y2 
xy 12 x3 + y3 - 3axy, a > O  

13 
a b a > O, b > O  14 x5 + yl _ J 5axly, a > O xy + - + - , 
x y 

15 xy3(2x + y - 10) 16 xy2(x + y - 1 )3• 

Find the max and min of/(x, y) in the given domain. Be sure to check the boundary ! 
1 

17 xy + -- , x > 0, y > 0, x + y S I 
xy 

18 3(x - 1)2 + (y - 2)1, 0 s x s 2, 0 s y :s; 3 
19 x2(x1 + y1� x2 + y1 :s; r1 20 x3 - y1 + 6xy, 0 S x s l, 0 S y S 1. 
21 Find the largest possible volume of a rectangular solid inscribed in the unit sphere. 
22 Compute the largest possible volume of a rectangular box, edges parallel to the axes, 

and inscribed in the solid bounded below by the x, y-plane and above by the paraboloid 
z = c - x1/a1 - y1/b2. 

23 Find the dimensions of an open-top rectangular box or minimal surface area whose 
volume Y is given. 

24 Find the dimensions or the cheapest (open-top) aquarium of given volume Y whose 
slate base costs 3 times as much per unit area as its glass sides. 
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25 The base of a prism is a right triangle, its lateral sides arc perpendicular to its base, 
and its volume is V, given. Find its smallest possible total surface area. 

26 Work Example 3, p. 764, using the face areas as variables. 
27 Find the closest plane to 0 among all planes tangent to t.hc surface xyz2 = I at a 

point of the first octant. 
28* A rectangle of dimension a x b is cut into 4 subrectangles by two lines. If p > 0, find 

the max and the min of A1" + A2" + A3" + A,", where A1 is the area of the i-th piece. 

8. FURTH ER O PTIM IZATION PROBLEMS 

Tiree V r .Jle Supposef(a, b, c) is a local max or local min of f(x, y, z) and 
(a, b, c) is an interior point of its domain. We claim that 

of 
ox (a, b, c) = 0, of 

oy (a, b, c) = 0, of 
oz (a, b, c) = 0. 

The proof is practically the same as for two variables. Set g(x) = f(x, b, 4 Then 
g(x) has a local max or min at x = a, hence g'(a) = 0. But g'(a) =/.,(a, b, 4 etc. 

The practical procedure for locating extrema for functions of three (or more) 
variables is quite similar to that for two, except that we start by solving the system 

f., = 0, J, = 0, fr = 0 
of three equations in three unknowns. 

• EXAMPLE 1 Find the max of x + 2y + 3z f (x, y, z) = l + x2 + y2 + z2 . 

Sobttio11 The function is defined on the whole of space. However, there is no sense 
in looking for a max far from the origin because If I is very small if I (x, y, z) I is 
large. To see why, suppose x2 + y2 + z2 = p2. Then lx l � p, IY I  � p, and l z l � p, 
hence 

I x + 2y + 3z I p + 2p + 3p 6p 6 
- < - -- < -If I - 1 + xz + yz + z2 - 1 + p2 - l + p2 P · 

Clearly/--+ O as p --+ oo. For example I/ I < 0.l  if l • I  � 60. But/(O, 0, ± 1) =  
±i· Therefore,/ certainly has a positive max (and a negative min) inside the sphere 
Ix I = 60 (actually inside the sphere Ix I = 4, as the same reasoning shows). 

To find the max, solve the equations/., = O,J, = O, .f. = 0. This computation gets 
messy, so it is best to organi7.e it. For simplicity, write 

Then 

u != - . v where u = x + 2y + 3z and v = 1 + x2 + y2 + z2• 
f, - vu., - uv., 
" - v2 • /, = VU1 - U'!z , v2 • 

/, _ VUr - UVr r - v2 . 

The system of equations to be solved becomes 
vu, = uv,, 

that is, v = 2xu, 2v = 2yu, 3v = 2zu. 
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Now v > 0 for (x, y, z), so u -:!- 0. Divide each equation by u: 

2 v 2x = y = j z = u 
Therefore y = 2x, z = 3x, and from here on it's smooth sailing. Substitute these 
expressions for y and z: 

u = x + 2y + 3z = x + 4x + 9x = 14x, 
v = I + x2 + y2 + z2 = I + x2 + 4x2 + 9x2 = I + 14x2• 

Now substitute these values of u and v into the equation v = 2xu and solve for x :  
I + 14x2 = 2x(14x) = 28x2, 14x2 = 1, x = ±-hJi4 . 

Also y = 2x, and z = 3x, so the conditionsfx =!., =fz = 0 hold only at 

(x, y, z) = ±nJt4 (t, 2, 3). 
At these points, v = I +  14x2 = 2 and u = 14x = ±Ji4, hence /= u/v = ±!fa. 
Therefore !mu = f(nfa. �fa. nJ14 ) = !fa • 

Remark The solution shows also that /,..1n = -!Ji4 . Note that l-hJ14( 1 ,  2, 3) 1 = 1, 
confirming the prediction that the max occurs inside the sphere I x  I = 4. 
Quadratic Functions In the next chapter we shall develop a second derivative 
test for extrema. The test hinges on the behavior near (0. 0) of a homogeneous 
quadratic polynomial (also called quadratic form� that is, a quadratic polynomial 
with only second degree terms: 

Q(x. y) = ax2 + 2bxy + cy2• 
or particular importance are those homogeneous quadratic polynomials that have 

an overall maximum or minimum at (0, 0). Now the extrema of Q(x, y) are found 
from solutions of the system Qx = 0, Q., = 0, that is. 

J ax + by = 0 
lbx + cy = 0. 

Certainly (0, 0) is a solution ; hence (0, 0) is a candidate for a max or a min. Since 
Q(O. 0) = 0, obviously Q has an overall min at (0. 0) if 

Q(x, y) > 0 for (x, y) -:/- (0, 0). 

When this condition is satisfied, we say that Q(x, y) is positive definite. It is 
helpful to have a criterion for positive definiteness : 

Test for Positive Definiteness Let Q(x, y) = ax2 + 2bxy + cy2• Then 
Q(x, y) is positive definite if and only if 

a > O and 
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Proof Suppose Q(x, y) is positive definite, that is 

Q(x, y) = ax1 + 2bxy + cy1 > 0 
whenever (x, y) � (0, 0). In particular a =  Q(I, 0) > 0. Now complete the square: ( b )2 (QC b2) Q(x, y) = a x + a y + : yl. 

Then Q(-b/a, 1) > 0, hence 

ac - b2 -- > 0, a 
(ac b1) ac - b1 = a : > 0. 

Therefore a > 0 and ac - b2 > 0. 
Conversely, suppose a > 0 and ac - b2 > 0. Then certainly 

Q(x. y) = a(x + � Yf + (ac:b1)Y1 � o 

for any (x, y). Furthermore, Q(x, y) = 0 only if each of the squared quantities is zero: 

b x + - y = 0, y = 0, a 
hence only for (x, y) = (0, 0). This completes the proof. 

Examples Positive definite 

(1) 3x2 - 2xy + y1 
(2) 5x1 + 6xy + 2y1 

Not positive definite 

a = 3 > 0, ac - b1 = 2 > 0 
a = 5 > 0, ac - b2 = 1 > 0 

(3) x1 + 4xy + y1 a = l > O, ac - b1 = -3 S: 0  
(4) -2x1 + Sxy + y1 a = -2 :s; 0, ac - b1 = -.Y :s; 0 
(5) -2x1 + 2xy - y2 a = -2 s: O, ac - b1 = 1 > 0 
(6) x1 + 6xy + 9y1 a =  I > 0, ac - b2 = 0 S: 0 
We define Q(x, y) to be negative definite if Q(x, y) < 0 whenever (x, y) � (0, 0 ). This 

is the same as -Q(x, y) positive definite, so the conditions are 

-a > O, ' -a -b l = I a b l > 0. -b -c b c 

Test for Negative Definiteness Let Q(x, y) = ax2 + 2bxy + cy1• Then 
Q(x, y) is negative definite if and only if 

a < 0 and I : : I > 0. 



8. Further Optimization Problems 789 

Application to Least Squares (Regressions) Certain experiments produce 
a sequence of readings 

(x1. Y1 ). (x2 . Y2), · · · • (x" , y"). 
When plotted (Fig. la) the points may cluster in roughly the form of a straight line, 
suggesting that y is a linear function of x (which may be just what the 
experimenter would like to establish). Assuming that there is a linear relationship 
and that the points deviate from a straight line because of experimental error, 
round-off error, etc., a practical question arises: for which constants A and 8 does 
the straight line y = Ax +  8 most closely fit the data? 

)' )' 

x x 
(a) Find the line that best "fits" the data. (b) Least squares fit: The sum of the squares 

of the vertical deviations is minimal. 

Fig. I 

The answer depends on what is meant by .. fit". Probably the most popular 
measure of fit is by least squares: the line is chosen to minimize the sum of the 
squares of the vertical deviations from the line (Fig. lb). 

• EXAMPLE 2 Find the line y = Ax + 8 that is the least squares fit to the 
points (0. 2). ( l, 3� (2, 3). 
Solution Write y(x) = Ax +  8, and choose A and 8 to minimize 

f (A. 8) = (y(O) - 2)2 + (y( I )  - 3)2 + (y(2) - 3)2 
= (8 - 2)2 + (A + 8 - 3)2 + (2A + 8 - 3)2• 

Necessary conditions for a minimum are 

Differentiate: 

of = O  
oA 

and of 
aa = 0· 

:� = 2(A + 8 - 3) + 4(2A + 8 - 3) = 2(5A + 38 - 9), 

is = 2(8 - 2) + 2(A + 8 - 3) + 2(2A + 8 - 3) = 2(3A + 38 - 8). 
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Set these partial derivatives equal to zero: {SA + 3B - 9 = 0 
3A + 3B - 8 = 0. 

The system has a unique solution : A = ! and B = lj. 
Now f(A, B) must have a minimum at (!, Jf ); here is why. If either A or B is 

large, then f(A, B) is large (by inspection). On the circle Al + Bl = ( lOOO)l, for 
example,f(A, B) is very large. The minimum of /(A, B) in the region bounded by 
this circle occurs either on the boundary or at a point where of/iJA = of/iJB = 0. 
But the boundary is ruled out, hence the minimum occurs at (!, J./� the only point 
where of/iJA = of/iJB = 0. 

Therefore the answer (Fig. 2) is y = !x + lj. • 

.I' 

10 

8 

6 • 

) I + ) I I • 1 =  Ts \'  18 4 
• 

·'-._ 
� 3 4 5 6 7 8 \' 

Fi1o l Fia- 3 

To solve the general problem of least squares fit, we imitate the method used in 
this example. Given readings 

(x1. Yi� (xl •  Yl� · · · , (x,., y,.) 
for n distinct values of x, we seek a linear function y = Ax + B that minimi7.eS 

• 

f(A, B) = L [(Ax, + B) - y,]2. 1• 1 
Now ;� = 2 L x,(Ax, + B - Y1) = 2 [A(L x,l) + B(L x,) - (2 x,y,) J. 

is= 2 2 (Ax, + B - y,) = 2 [A(L x,) + nB - (L Y1) J. 
We set these partial derivatives equal to :zero and obtain two equations for the two 
unknowns A and B: l {L x,2)A + (L x,)B =-L X1Y1 

(L:x1)A + nB =  LY1 · 
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All coefficients in this system of equations are computable from the data. We now 
show that there is a unique solution (A, B� assuming the x1 are not all equal. It can 
be checked (Ex. 38) that this solution indeed minimil.es f (A, B). 

To express the solution in a concise form, we introduce some standard statistical 
terminology: 

1 "" s,,, = n L (x, - x)(y1 - y). 

Then x is called the mean (average) of x1, · · " x,. and u,,2 their Yariance; y is 
the mean of the y1• Also s,,1 is called the covariance of the x's and y's. 

It is an easy exercise to verify the relations 

1 2 u 2 = - x,2 - x2 " n and 

Let us return to the linear system for A and B. We divide both equations by n. 
Then in terms of this new notation, the system becomes 

{ (u,, 2 + x2)A + xB = s,,, + .fji 
xA + B =  y. 

We multiply the second by x, subtract, and divide by u,, 2, which is non-rero 
since the x1 are not all the same: 

Since B = y - xA, the desired linear fit y = Ax + B can be written 

y = Ax + y - xA, y - y = A(x - x� 

that is, 

This is the required least squares fit to the data. In statistics it is called the 
regression tine and A = s,,.Ju,,2 is called the regnsion coefficient. 

Regression Line The best linear fit to the data 

(x 1. Y1� (x2 . Y2). · · · . (x,. , y,.) 
in the sense of least squares is the line 

s y - y = "� (x - x). 
(1 Jt 
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Remark We should mention that "" is the 1tudanl deriatioll of the x's, and p., = s,,..,f'1,.'11 
is the correlatioll coellicient. Note that the regression line passes through (.f, y). Docs that seem 
reasonable? 

• EXAMPLE 3 Find the regression line for the data 

,'( I 2 3 4 s 

y 10 9 7 7 6 

Sohltio11 Here n = 8 and 

l " l 9 .f = 8 L x, = 8 (1 + 2 + . . .  + 8) = 2 '  
l " l 49 y = 8 L y1 = g (10 + 9 + 7 + · · · + 2) = S ' 

6 

s 

7 8 

3 2 

(1 l = ! " x 2 - .fl = ! ( 1 l + 22 + . . .  + 8l) - (�) 2 = ! (204) - 81 = 21 " 8 L 1 8 2 8 4 4 '  

s,., = � L x1y1 - xy = � ( l  · 10 + 2 · 9 + · · · + 8 · 2) - (�)(�) 
l 441 93 = s <t74) -16 = - 16 · 

The regression coefficient is A =  s,.1 = _ 31 
a,.2 28 ' 

and the least square fit is y - 49 = - 31 (x - �) 8 28 2 ' 
3 1 3 1 1 that is, y = - 28 x + 2S � - l. 107x + 11 . 12. 

See Fig. 3, p. 770. • 

The least squares idea can be used in more complicated situations. For example, 
one might seek the quadratic polynomial y = Ax2 + Bx + C that most closely fits 
the data 

(x,, Yi � (x2 , Y2� · · · , (x,., y,.). 
Then A, B, and C must be found so that 

" 

F(A, B, C) = L [(Ax,2 + Bx1 + C) - y1]2 
I• 1 

is minimized. 
Still more complicated is the problem of approximating a function, rather than 

discrete data For example, suppose y = x2 is to be approximated on the interval 
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0 ::5; x ::5; 1 by a linear function y = Ax + B in the sense of least squares. Then 
l 

F(A, B) = f [(Ax + B) - x2)2 dx 
0 

must be minimized. 

EXERCISES 

2 
3 
.1 

' 

7 

8 
9 

10 

Find the min or 

Find the min or 
Find the max of 
Find the max of 

9 4 1 
- + - + - + xyz for x > 0, y > 0, z > 0. 
x y z 
x5 + y5 + z5 - 5xyz for x > 0, y > 0, z > 0. 
xyz( IO - x2 - 2y2 - 3z2) ror x > 0, y > 0, z > 0. 
e-"•-,•-•2(x + 2y + 4z). 

ax + by + cz 
Find the max of I + x2 + y2 + z2 . 

Find the max and min or 
xyz 

( 1 + x2 + yl + z2)2 · 
Find the max and min of 

xyz 
( 1  + x2 + 2y2 + 3z2)2 ' 

Find the max and min or cos x + cos y + cos z - cos(x + y + z). 
A segment of length L is cut into four pieces. What is the largest possible product 
of their four lengths? 
Find the min of Q(x, y, z) = x2 + 3y2 + 14z2 - 2xy + 2yz - 6zx. Complete squares to 
prove you really have the min. 

Find if the quadratic form is positive definite, negative definite, or neither 

l1  x2 + 4xy + 2y2 12 9x2 - l2xy + y2 13 2x2 - xy + 3y2 
14 7x2 + 5xy + 4y2 15 -x2 + 3xy - 3y2 16 - 5x2 + 2xy + y2 
17 4xy 18 x2 + 2xy. 

19 Suppose a >  0 and ac - b2 = 0. Show that Q = ax2 + 2bxy + cy2 is positi•e semi
defiaite, that is, Q(x, y) � 0 for all (x, y) and Q(x, y) = 0 for some (x, y) + (0, 0). 
[Hint Complete square.] 

20• Suppose ac - b2 < 0. Show that Q ... ax2 + 2bxy + cy2 is ialefinite, that is, takes on 
both positive and negative values. [Hint Complete squares.] 

Find the least squares straight line fit to the data 

21 (0, 0� (1, 1), (2, 3) 22 
23 (O, O� (!, H ( I, I� (!. !� (2, 4) 24 
25 (1, 5.0� (2, 5.3� (3, 5.4� (4, 5.6) 26 
27 (0, 0� (I ,  - I� (2, -2� (3, - I� (4, 0) 

( 1, o� (2. - 1� (3, -4) 
( I, l�  (2, n (3, i� (4, i) 
(-2,3.0� ( - 1, 1.8� (0, 1 . 1�  (1,0.6) 

28 (-3, 0� (-2, 0� ( - 1 , 0� (0, 1� ( 1, 2� (2, 2� (3, 2) 
29 ( - I, 6.2� (0, 5.4� (1, 5.5� (2, 5.0) 
30 (1, - I� (2, I �  (3, - I� (4, I� · · · , (9, - 1 ). 

Approximate y = f(x) on the interval (0, I] by a linear runction y = Ax + 8 in the sense of 
least squares, that is, minimize 

31 /(x) = x2 

I 
F(A, B) = J [(Ax + 8) -/(x)]2 dx 0 

32 f (x) = x3 33 f(x) = e". 
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34 (cont.) Prove in general that A = 6f..2/J - «) and B = 2(2« - 3/J� where 
I I 

« = f f(x) dx and fJ = f xf(x) dx. 
0 0 

35 Find the best least squares fit to the data (1. 7� (2, 4� (3, 3) by y = ax +  b/x. 
36 The population of a city (in thousands) was 

year 1970 1972 1974 1976 1978 

population 100 104 108 113 120 

A demographer assumes an exponential curve y • OJ!', with t == 0 at year 1970, which 
be obtains by fitting a straight line by least squares to In y. What growth curve does 
be find? 

37 Verify the relations a,,.2 ,.. n- • L x,1 - X2 and s .. , =  n- • L x1y1 - Xy given on p. 771. 
38• Show that f (A, B) on p. 770 really bas its unique minimum at the solution (A, B) 

of the system of /oA = 0, of/oB = 0. [You may assume that a function of (x, y) of the 
form (pos. def. quad. form) + (linear) -+ co as·x2 + y2 -+ co. See Ex. 28, p. 792.] 

39• (cont.) Express the actually minimum in terms of the statistical functions t1/, etc. 
404' (cont.) Prove that /.,1n � 0. Describe the position of the given points that yields 

minimum 0. 

9. I M P LICIT FUNCTIONS 

Sometimes a function y = /(x) of one variable is specified as a root of an 
equation 

F(x, y) = 0, 

where F(x, y) is a function of two variables. In such a case, the equation is said 
to define an implicit function y = /(x). For example, Fig. 1 shows part of the 
graph of 

y6 + y + xy - x = 0. 

Near the origin. this equation defines y as an implicit function of x. (It is pretty 
hopeless to express y as an explicit function of x.) 

I' 

y6 + }' + XJ' - X = 0 

x 
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Suppose we have a function y = /(x) satisfying F(x, y) = 0. We want a formula 
fordy/dx = f'(x)in terms of F(x, y� To find it, we substitute y = /(x) into F(x, y) = 0: 

F(x, f(x)] = 0. 

We differentiate with respect to x by the Chain Rule: 

Therefore 

FJC[x, /(x)] + F ,[x, /(x)]f'(x) = 0. 

f'(x) = _ FJC(x, /(x)) . F,(x, /(x)) 

Implicit Differentiation Let y = f(x) be a function defined implicitly by a 
relation 

Then 

F(x, y) = 0. 

dy =f'(x) = _ 
FJC(x, y) I dx F1(x, y) -,•/(JC) 

at each point (x, y) = (x, /(x)) where F,(x, y) :F 0. 

Remark The minus sign in the formula seems to contradict common sense. In the 
ordinary Chain Rule, differentials "cancel": 

dy dy du 
dx = 

du dx 
. 1. dyjdy du 
imp lCS - - = - . 

dx du dx ' 

the dy appears to have "canceled". But here we are writing 

iJF/iJF "" _ dy 
OX oy dx ' 

and iJF "cancels" with a mysterious sign change. 
The reason for the sign change is that when we write F(x, y) = 0, we have "taken y to 

the other side". The equation y af(x) is equivalent to 

Now 

F(x, y) = y -f(x) = 0. 
F,. = -f'(x) = -f'(x). 
F, 1 

There is the minus sign! 

• EXAMPLE 1 Find d
dy I where y = f (x) satisfies y6 + y + xy - x = 0. x (0.0) 

Hence 

F(x, y) = y6 + y + xy - x, 
dy FJC y - 1 
dx = - F, = - 6y5 + 1 + x ' 

FJC = y - 1, F1 = 6y5 + 1 + x. 
so 

dy I = - .=..!. = 1. dx (0. 0) 1 
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Alter11111i11e Sol•tio11 Differentiate the equation 

y6 + y + xy - x = 0, 

treating y as a function of x: 
5 dy dy dy 6Y dx + dx + x dx + y - 1 = O, 

dy y - 1 
dx = - 6y5 + 1 + x · 

Remark The technique in the alternative solution is equivalent to use of the rule 

dy F,. 
dx - - F1 

because the rule was derived by that very technique. 

• 

EXAMPLE 2 Let y = y(x) = � · Express y' and y" in terms of x and y 
by differentiating x2 + y2 - 1 = 0 implicitly. 

Sollltio11 Differentiate x2 + y2 - 1 = 0 with respect to x : 
2x + 2yy' = 0, , x y = - -. y 

Once again : y" = - y -
2
xy' = -

y - x(- �} = - y2 + x2 = - _.!_ 
y y2 y3 y3 · • 

An advanced theorem, called the Implicit 
Function Theorem, states that a relation F(x, y) = 0 determines a function y = f(x) 
in the neighborhood of any point where F, ¢ 0. More precisely, suppose F(x, y) 
is continuously differentiable, F(a, b) = 0 and F,(a. b) ¢ 0. Then there exists a 
unique function y = f(xi defined and differentiable in a neighborhood of x = a, 
such that /(a) = b and F(x, /(x)) = 0. The function /(x) is differentiable and 
f'(x) = -F .Jx,f(x)]IF ,[x,/(x)]. 

For example take F(x, y) = x2 + y2 - 25 and (a, b) = (4, 3). Since F,(4, 3) = 6 ¢ 0, 
there is a function /(x) defined near x = 4 for which /(4) = 3 and 
x2 + (/(x)]2 - 25 = 0. Obviously, /(x) = J25 - x2• Note that F(4, -3) = 0 and 
F1(4, - 3) = -6 ¢ 0, so there also exists a function g(x) defined near x = 4 for 
which g(4) = -3 and x2 + (g(x)]2 - 25 = 0. Obviously, g(x) = -J25 - x2• Thus 
F(x, y) = 0 defines two implicit functions near x = 4. To distinguish between them, 
you need their values at x = 4. 

As another example, see Fig. 1. The relation F(x, y) = y6 + y + xy - x = 0 
determines two implicit functions near x = 0. One takes the value 0, the other the 
value - 1 at x = 0. 

Implicit differentiation is useful when a function must be maximiz.ed 
or minimiz.ed subject to certain restrictions. 

EXAMPLE S A cylindrical container (right circular) is required to have a 
given volume Y. The material on the top and bottom is k times as expensive as 
the material on the sides. What are the proportions of the most economical 
container? 
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Solution The cost of the container is proportional to 

C = (area of side) + k(area of top + area of bottom). 

Let r and h denote the radius and height of the container. Then 

C = 21trh + k(27tr2). 
The problem is to minimize C subject to the restriction 

7tr2h = V, a constant. 

One approach is obvious: solve the last equation for h and substitute into the 
equation for C. Then C is an explicit function of r which can be minimiz.ed. 

It is simpler, however, not to make the substitution, but to consider C as a 
function of r anyway (as if the substitution had been made). Differentiate: 

dC ( dh ) dr = 27t r dr + h + 2kr . 

Before setting this derivative equal to zero, eliminate dh/dr. Differentiate the 
equation for V with respect to r: 

dh dh 2h 27trh + 7tr2 dr = 0, dr = - -;: 
Substitute this value of dh/dr into the preceding equation: 

�� = 27t [r(-�h) + h + 2kr] = 21t(2kr - h). 
From this simpler expression for the derivative it follows that 

dC 
= O dr when h = 2kr. 

To verify that C is minimal for h = 2kr, examine the sign of dC/dr. Since 1tr2h 
is constant, h is large if r is small and decreases as r increases. Therefore 
(2kr - h) increases from negative to positive as r increases. Thus dC/dr satisfies a 
condition for C to have a minimum at h = 2kr. • 

Remark The special case k = 1 is interesting: all parts or the cylinder are equally expensive. 
Then the cheapest cylinder is the one with least surface area. Conclusion : of all cylinders 
with fixed volume, the one with least surface area is the one whose height is twice its radius. 

• EXAMPLE 4 Find the greatest distance between the origin and a point of the 
curve C: x4 + 4y4 = l .  

Solution By symmetry, it is enough to consider only that part of the curve in the 
first quadrant. See Fig. 2. 

The curve C lies outside of the ellipse x2 + 4y2 = l. For if (x, y) is on the ellipse 
and x > 0 and y > 0, then x2 < I and y2 < 1 .  Hence 

x• + 4y• = x2x2 + 4y2y2 < xi + 4yz = 1 .  

Thus x4 + 4y4 < I,  so (x, y) is inside the curve C. Therefore the ellipse lies inside C. 
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C ,� + 4 ,.� = I � .J21-----

Let L(x, y) be the distance from (0, 0) to a point (x, y) on C. Figure 2 suggests 
that the minimum distance is L(O, I) = 11../i and that the maximum distance is a 
bit more than I. 

It suffices to maximize 

L2 = x2 + y2 subject to x4 + 4y4 = 1. 
Differentiate the second equation implicitly: 

Therefore 

xl 4x3 + 16y3y' = 0, y' = - 4y3 • 

d . ( 
x3 ) 2x(4y2 - x2) 

dx 
(L 2) = 2x + 2yy' = 2x + 2y - 4y3 = 4y2 . 

This derivative equals 0 in the interior of the first quadrant only for x = 2y. Hence 
the maximum distance from the origin occurs at the point (x, y) of the first 
quadrant for which 

x4 + 4y4 = l ,  x = 2y. 
2 

It follows that (2y)4 + 4y4 = 1, 20y4 = 1, X =--. 
� 

Therefore 

,.. r #0,,.rs 

5 1 (L.....)2 = x2 + yl = ..Ji.O= 2JS,  

1 1 
L... = 2..fi� = 2� � 1.0574. 

Find explicitly the function y = /(x) defined implicitly by F(x, y) = 0 
I F(x, y) = 2x - y - 6 2 F(x, y) = x1y - 2x + 3y 
3 F(x, y) = 2 - ln(Sx2 - y) 4 F(x, y) = l + 2 arc sin(x - 3y + 7) 

• 

5 F(x, y) = 4 + 2xy - y1 at (0, -2) 6 F(x, y) • Jx + JY - 3, x � 0, y � 0. 
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7 If F(x, y) = 4x' - Sx2y2 + y', show that F(x, y) = 0 defines implicitly four functions 
of x near x = 1 .  Compute dy/dx at (1, 2) implicitly and check by direct differentiation. 

8 If x2 + y2 = r2, then dy/dx = -x/y. Interpret this statement geometrically. 

Compute dy/dx 
9 x + y = x sin y 10 xl + yl = xy I I  r' = 3xy2 

12 x' - y' = 3x2y3 13 r sin y = e7 cos x 14 y + sinh y = x3 
15 x' + 3y6 = 1 16 y = arc tan(y/4 

Compute d2y/dx2 
17 xl + y2 = 1 18 e' - y = x  19 x'y5 = 1 20 xy = x + y. 

Work these maxima and minima problems using implicit differentiation 
21 Find the maximum value of y on the ellipse 6x2 + 3xy + 2y2 = 1. 

' ' 
22 Find the greatest distance rrom the origin to a point of the curve :. + �' = 1 . 

23 Find the ratio (hcight)/(base radius) of the right circular cone of largest volume 
inscribed in a given sphere. 

24 Can a sphere contain a cylinder whose volume is more than 60% the volume of the 
sphere? 

25 A line tangent to the ellipse x2/a2 + y2/b2 = 1 at a point in the first quadrant forms 
a triangle with the coordinate axes. Find the least possible area of the triangle. 

26 Find the maximal volume of a right circular cone of slant height a. 

27 A metal container is capsule-shaped, a right circular cylinder with hemispherical caps 
at both ends. The material for the caps is k times as expensive as the material for 
the cylindrical part. Find the dimensions of the cheapest container for a given volume V. 
Assume k <!:: 1. 

28 (cont.) Express the cheapest total cost in terms of k, V, and C, where C is the per 
unit area cost of the cylindrical part. 

29 The output of a certain power plant is proportional to JlOxy + 2x2 + 3y2, where x 
is the quantity of bituminous coal burned and y is the quantity of anthracite coal 
burned. If bituminous costs $50/ton and anthracite $75/ton, how should the plant 
spend a $5,000,000 fuel allotment for maximal output? 

30 Suppose z(x, y) is defined implicitly by F(x, y, z) = 0. Assuming F,(x, y, z) .,,, 0, prove 

oz F1 
iJy 

= -
F, ' 

where F,., F1, F, arc evaluated at (x, y. z(x, y)). 

Use Ex. 30 to compute iJz/iJx and iJz/iJy 
31 x2z + y2z2 - 4xy - z3 = 0 32 e' - r' - xz2 = 0. 

33 Find the largest value of z on the surface (ellipsoid) 3x2 + 2y2 + z2 + xz - yz = 1. 
Use Ex. 30. 

34* The equations x + 2y + 3z + 4w = 0 and x2 + y2 + z2 + w2 = 1 define z and w 
implicitly as functions of 'x and y. Compute iJz/iJx and iJw/iJy. 

Jn each case, state whether or not there exists a differentiable function y = y(x) defined 
near x = 0 such that y(O) = 0 and F(x, y(x)] = 0 
35 F(x, y) = y2 36 F(x, y) = (y - x)3 
37 F(x, y) = 2y - x' - x3y5 38 F(x. y) = (x + l )y - (y + 1)3x2 
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39 F(x, y) = y2 - 6x5 + 3x3y - 2x2y 
..o• F(x, y) = y3 - x2y + x4• (Hint Try a power series, or parameterization.] 

1 0. DIF FER ENTIALS AND APPROXI MATION 

F rst Orde Appro 1mat1on Jf/(x) is a differentiable function of one variable, 
then its first order approximation at x = a is 

/(a + t) �/(a) + f'(a)t, 

highly accurate if t is sufficiently small. 
There is a similar result for functions of several variables. 

First Order Approximation Let /(•) have continuous partials near • = a. 
Then 

/(• + v) �/(•) + Dw/(•) =/(•) + [grad/(•)] ·  V 

for Iv I small 

To see why, write v = tu, where u is a unit vector and t is smal� and set 

g(t) = /(• + v) =/(• + tu). 

Then since t is smali 

g(t) � g(O) + g'(O)t = f (a) + g'(O)t. 

But g'(O) = Du /(•� (definition of directional derivative) 

hence g(t) � f (•) + tDu /(•) = f (•) + Dw /(•� 

and the assertion follows. 

• EXAMPLE 1 Given /(S, 7) = 10 and grad f(S, 7) = (2, 3� 
estimate f (S.01, 6.9si 

Sohltio11 Set • = (5, 7) and v = (0.01, -0.02). 

Then /(5.01, 6.98) = /(• + v) 
�/(•) + [grad /(•)] • v = 10 + (2. 3) • (0.01, -0.02) 
= 10 + 0.02 - 0.06 = 9.96. • 

Later we shall make the meaning of the symbol � in first order approximation 
more precise. 

Differentials In the first order approximation 

/(• + v) �/(•) + [grad /(•)] · v, 
suppose we allow ooth • and v to vary. It is customary to replace • by x and v 
by a new quantity 

dx = (dx, dy, dz� 
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In this notation, f(• + dx) �f(x) + [grad f(x)] · dx. 
The second term on the right is especialJy important. We call it the dilrerential off, 
and denote it by df: 

Differential df = [grad f(x)) · dx = °fx dx + � dy +: dz. 

Examples ( 1 )  f(x, y, z) = xy2z3 
(2) f(x, y) = � y 

df = y2z3 dx + 2xyz3 dy + 3xy2z2 dz 
l x df = - dx - -dy. y y2 

For a function f(x, y, z) of three variables, the differential df is a function of six 
variables x, y, z, dx, dy, dz. Technically we should use a noution such as 
df = df (x, dx� but that is cumbersome. 

For each fixed x in the domain off, the differential is a linear function of the 
variables dx, dy, dz, whose domains are unrestricted. For instance, if f(x, y, z) = 
xy2z3 as in Example ( l� then 

df = dx + 2 dy + 3 dz 
df = -21 dx - l08 dy + 54 dz 

at (l, l ,  l �  
at (2, l ,  -3). 

The differential has elementary algebraic properties, which correspond to 
analogous results for derivatives: 

For example, 

d(f + g) = df + dg 

d(fg) = (df )g + f dg 

d(af) = a df 

d(f /g) = (df)g � f dg' g =I: 0. g 

o o o d(f + g) = ox (f + g) dx + oy (f + g) dy + oz (f + g) dz 

= (of + og) dx + (of + og) dy + (of + og) dz ox ox oy oy oz oz 
= (0f dx + of dy + of dz) + (0(/ dx + og dy + og dz) h � � h � � 
= df + dg. 

N umerical Approximations The variables dx, dy, dz that appear in the 
differential are free to take all real values. However, in practice, we usually think 
of them as small changes in x, y, and z respectively. A typical application is in the 
approximation 

f (x + dx) � f (•) + df. 
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xy2 
• EXAMPLE Z Given f(x, y, z) = -1 -4 , estimate + z  

(a) /(1.96, 3.02, o.�) (b) /(2.06. 3, i.01i 
Sol•tio11 Both parts ask for values of/ (x) near x = (2, 3, 1 ). Use the approximation 
f (x + dx) � f (x) + df for x = (2, 3, 1 ). Now f (2, 3, 1) = 9, and at (2, 3, 1 ) 

y2 2xy 4xy2zl d/ = -1 -4 dx + -1 4 dy - (l 4)2 dz = ! dx + 6dy- 18 dz. + z  + z  + z  
(a) Set dx = (-0.04, 0.02, -0.01): 

/( 1.96, 3.02, 0.99) � /(2, 3, 1) + df 
= 9 + !(-0.04) + 6(0.02) - 18(-0.01) = 9. 12. 

(b) Set dx = (0.06, 0, 0.01): 
/(2.06, 3, 1.01) � 9 + J(0.06) + 6(0) - 18(0.01 )  = 9.09. • 

Subst1tut1on The differential has a useful formal property of remaining un
changed when the variables are replaced by functions of other variables. (This 
property is another form of the Chain Rule.) 

For instance, suppose f = f (x, y, z) so 

df =f"dx + f., dy + fz dz. 
Now suppose x = x(u, v� y = y(u, v� z = z(u, v). We can look at the composite 
function /[x(u, v)] and compute its differentia� another "df" : 

df =/,, du + f., dv. 
Is this different? No, because by the Chain Rule 

f,,du + f., dv = (f"x" + f.,y,, + fzz,,) du + (/"x" + f,y., + fzz.,) dv 
=f"(x,,du + x.,dv) + f.,(y11du + y,,dv) + fz(z,,du + z.,dv) 
=f"dx + f.,dy + fzdz. 

This may appear as simply a consequence of sloppy notation for composite functions. 
Still there is something more to it. 

Suppose we have a function f of independent variables u, v, but there are some 
intermediate variables in the way. After some computation we arrive at an expression 

{ l ) df = M du + N dv. 
Then we know automatically that M = f,, and N = f., no matter how we obtained ( 1 ). 
• EXAMPLE 3 Let z = z{x, y) be defined implicitly by x2 + y2 + .z2 = 1. 
Compute oz/ox and oz/oy. 
Sohltio• Since the differential of a constant function is 0, 

x dx + y dy + z dz = 0. 
Hence 

x y dz = - - dx - - dy. z z 
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This is a relation of the form dz = M dx + N dy, from which it follows that 
oz/ox = M and oz/oy = N. Hence 

oz x x ax = - z = - .J;.=1=-=x2=_=y=i2• 
oz y y 
oy = - z = - J1 - x2 - y2 

We can check these answers directly from z = ± J1-=-:X2 - y2 • • 

The technique of Example 3 applies in general. Suppose z = z(x, y) is defined 
implicitly by F(x, y. z) = 0. Then 

which implies 
Fx d 

F., d dz =  - - x - - y 
F. F. 

whenever F= '# 0 at (x, y, z(x, y)). Therefore 

oz/ox = - F  JF. and oz/oy = - F  ,IF, . 

Implicit Differentiation Let z = z(x, y) be defined im
plicitly by F(x, y, z) = 0. Then 

oz fx - = - -- t 
ox F, 

at each point (x. y, z(x, y)) where f: '# O. 

E ror n F rs 0 d r Appro m uon We shall now establish a basic property 
of functions of several variables. For simplicity, we shall confine our proof to two 
variables, but the same method goes over to three or more. 

Suppose f (x) is continuously differentiable near x = a Then 

/(• + v) =/(a) + [grad /(a)] · v + e(v� 

where the error e(v) satisfies 
e(v� -----+ 

0 as v-----+ 0. l v l 

The main point is that e(v) is not only small when v is smal� but it is small 
relative to the size of v. When v is smal� e(v) is very smal� and when v is very 
small, then e(v) is very very small; the ratio e(v)/ lv l can be made as small as 
we please by taking v sufficiently small. 

Let us restate the result in coordinate notation. 

Suppose f(x, y) is continuously differentiable near (a, b� Then 

f(a + u, b + v) = f(a, b) + f,,(a, b)u + J.,(a, b)v + e(u. v), 

where as (u, v) -- (0, 0). 
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Proof Recall that .. continuously differentiable .. means that fx(x, y) and f,(x, y) 
exist and are continuous for all (x, y) sufficiently near (a, b). 

The proof depends on the old trick of subtracting and adding a term. Write 

f(a + u, b + v) -f(a, b) = [f(a + u, b + v) -f(a, b + v)] + [/(a, b + v) -f(a, b)]. 
Apply the Mean Value Theorem twice: {f(a + u, b + v) - f(a, b + v) = ufx(a + Ou, b + v) 

/(a, b + v) - f(a, b) = vf.,(a, b + AV� 
where 0 < 0 < 1 and 0 < A < l .  Therefore 

f(a + u, b + v) = f(a, b) + ufx(a + Ou, b + v) + vf,(a, b + AV� 
Now define e(u, v) by 

f(a + u, b + v) = f(a, b) + ufx(a, b) + vf,(a, b) + e(u, v) 
Then e(u, v) = ug(u, v) + vh(u, v), 
where J g(u, v) = fx(a + Ou, b + v) -fx(a, b) 

\ h(u, v) = J.,(a, b + Av) -/.,(a, b). 
By the triangle inequality, 

I ;<:· v) 2 I = l J l
u 

2 g(u, v) + J l
v 

2 h(u, v) I u + v u + v u + v 

� J 
�u l 

2 lg(u, v)I + J lv l 2 lh(u, v) I � lg(u, v) I + lh(u, v)I u + v  u + v  
since I u I � J u2 + v2 and I v I � J u2 + v2• 

Now suppose (u, v)--(0, O� Then 

(a + Ou, b + v)--(a, b) and (a, b + .(v)--(a, b). 
Therefore g(u, v)--0 and h(u, v)--0 
becauseh,(x, y) and/,(x, y) are continuous at (a, b). I t  follows that 

e(u, v) 
--o as (u, v)--(0, 0). Jui+ vi 

This completes the proof. 
We shall have more to say about this result in the next section. 

EXERCISES 
Compute df at (x, y) = (2, 1 )  and at (1, -3) 

1 f(x, y) = x3y 2 f(x, y) = Jx2 + y2 •  
Compute df in general 
3 /(x. y) = 3x2y - xy2 
6 f (x, y) = sin(x + 2y) 

4 f (x, y) = xe"' 
x 

7 /(x, y, z) -= -2 y z  

5 /(x, y) = ln(x2 + 3y2) 
xyz 

8 /(x. y, z) = -1 -2 + y 
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9 f (x, y, z) = e' cos y + e' cos z 
10 f (x, y, z) = x2 

- y2 - 5z2 + xy + yz + 3x. 

Prove 

11  d(fg) = (df)g + f dg 
12 d(flg) = (df )g � f dg. g "" 0. 

g 

13 If x = r cos (J and y = r sin 6, prove that x dx + y dy = r dr and x dy - y dx = r2 dO. 
14 Do Ex. 13 by computing d(r2) and d(J from r2 = x2 + y2 and 0 = arc tan(y/x). 

Estimate using differentials 
15 5.1 x 7. 1 x 9.9 16 J(5.99)2 + (8.03)2 
17 (2.0l )o.98 18 e-0· • tan(.24x) 
19 the distance from the origin to (3.05, 4.02, 1 1.96) 
20 the percentage increase in the volume V of a rectangular box caused by a l % increase 

in each of its dimensions. [Hint Look at dV/V.J 

21 The intensity I of illumination at a point of space due to a point source of light is 
proportional to the power of the source and inversely proportional to the square of the 
distance from the source. Estimate the percentage change in I caused by l % increases 
in both the power of the source and in the distance from the source. [Hint Look at 
di/I.] 

22 The sides of a triangle are 20, 30, and 40 cm. Estimate the change in the largest angle 
if each side is shortened by 1 cm. 

23 The range of a shell fixed at angle a with the ground is x = (v2 sin 2a)/g, where v is 
the muzzle velocity and g is the gravitational constant. If v = 300 m/sec and 
g = 10 m/sec2, the shell will hit a target at distance 4500J3 ::::: 7794 m if fixed at a 30° 
angle. Suppose, in an actual test, v = 297.0, g = 10.1, and a = 30.2°. Estimate how 
far the shell will miss the target. 

24 (cont.) Show that dx 
= 2 '!!!_ + (2a cot 2a) 

da - dg . Discuss the relative importance x v a g 
of a 1 % error in a as compared to a 1 % error in v for a = 30° and 45°. 

Compute dz implicitly and check explicitly 
25 x2yz = I  

Compute dz implicitly 
27 z' + 6xz2 + 8y2z = 3 

Find j (x, y) if 
29 df = 3(x2 + y) dx + (3x - 2) dy. /(0, 0) = 4 

30 

32 

y x 
df = - -- dx + -2- 2 dy, f(l, I ) =  0. 

xl + y2 x + y 
An investment fund keeps equal amounts of capital in three types of account, A, 8, C, 
returning respectively 6%, 7% and 10% annually compounded continuously. Due to 
a recession, these interest rates are cut by !%, !'Y.,. and i% If the fund has $107 in 
each account before the recession, estimate how much more capital it must invest to 
maintain the same total earnings. 
Suppose f(x, y, z) = F[g(x, y, z)]. Give a formula for df. 
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1 1 . D I F FE R ENTIA B LE FUNCTIONS 

It may be said that differential calculus is the study of functions that have a 
linear approximation at each point of their domain. We shall extend this point of 
view to functions of several variables, but first let us review the one variable 
situation. 

Supposef(x) has derivativef'(c) at x = a. Then for x near a. the approximation 
f(x) ::::: /(a) + f'(a)(x - a) is quite accurate. The term "accurate .. is not well defined; 
let us express what we mean geometrically. We know that y = f (a) + f'(a)(x - a) 
is the equation of the tangent line to the graph of y = f(x) at (a. /(a)). Geo
metrically, the tangent "hugs" the curve near the point of tangency. Therefore if 
e(x) is the vertical distance between the curve and the tangent line, e(x) ought to 
be small compared to Ix - a I· In fact, the closer x is to a. the smaller the ratio 
e(x)/ lx - a l  should be. 

Let us now state these ideas more precisely. It is convenient to set v = x - a. 

I Suppose f(x) is differentiable at x = a. Set f(a + v) =/(a) + f'(a)v + e(v). 

Then 
e(v)_0 v as v-0. 

Example f(x) = x2, a =  3 

and 

(3 + v)2 = 9 + 6v + v2, that is, /(3 + v) = /(3) + f'(3)v + v2, 
e(v) v2 - = - = v-o as v-o. v v 

The relation e(v)/v -o actually characterizes differentiability. For suppose 
j (x) satisfies 

f(a + v) = f(a) + kv + e(v� 
where k is a constant and e( v )Iv -0 as v -0. Then 

f(a + v) -f (v) 
= k + 

e(v) _ k v v 
This proves the following: 

I Suppose f(x) is defined near x = a  and satisfies 

as v-o. 

f(a + v) = f (a) + kv + e(v� 
where k is a constant and e(v)/v-0 as v-0. Then/(x) is differentiable at 
x = a  and f'(a) = k. 

The relation e(v)/v -0 means that the linear function/ (a) + kv closely approxi
matesf(a + v� and as v-0: the error e(v) = f(a + v) - [/(a) + kv] approaches 
0 Jaster than v approaches 0. 
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For a function of one variable, the relation between derivative and linear 
approximation is clear: if the derivative exists, the linear approximation exists; if 
the linear approximation exists, the derivative exists. 

For a function of several variables, the situation is not at all like this. It can 
happen that of /ox and of /oy both exist at a point (a, b), but no linear approximation 
c + hx + ky exists! 

• EXAMPLE 1 Letf(O, 0) = 0 and 

f (x, ) = xy(x + y) Y xl + yl if {x, y) � (0, 0). 
Show (a) f is continuous at (0, O� (b) fx(O, 0) andf,(O, 0) exist, 

(c) f does not have a linear approximation at (0, 0). 
Sohltio• (a) From (x ± y)2 = x2 + y2 ± 2xy � 0 we have 2 lxyl � x2 + y2• 
Therefore if {x, y) � (0, o� 

lxy l I lf(x, y) I =  1 1 lx + y l � 2-lx + y l. x + y 
so f {x, y) _.. 0 = /(0, 0) as (x, y) _.. (0, 0). This says that f is continuous at 
(0, 0). 

(b) 
f(x, 0) - f(O, O) = 0 _..0 x as x_..O. 

Hencefx(O, 0) exists, andfx(O, 0) = 0. Similarly, f,,(O, 0) = 0. 
(c) Since f(x, y) = 0 on the x-axis and on the y-axis, the only possible linear 

approximation is 0. If 0 is truly a linear approximation to f(x, yi then as (x, y) 
approaches (0, 0) the quantity f(x, y) - 0 must approach 0 faster than (x, y) 
approaches (O, 0). But along the line x = y, 

x2(x + x) f(x, x) - 0 = f(x, x) = 2 2 = x, x + x  
which obviously approaches 0 at the same rate as (x, x) approaches (0, 0). Hence, 
f(x, y) does not have a linear approximation at (0, 0). • 

Differentiable Functions of Two Variables Example 1 shows that the 
existence of both partials of f(x, y) at a point does not guarantee that f(x, y) is 
a reasonably behaved function. Now we shall examine the most useful functions 
of two variables, those that have good linear approximations. 

A function f is dill'erentiable at (a, b) if there exists a linear function hx + ky 
such that 

where 

f(a + x, b + y) = f(a, b) + hx + ky + e(x, y), 
e(x, y) _..0 Jxl + y2 as (x, y) _.. (0, 0). 
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First we shall show that differentiability implies both continuity and the existence 
of partials. 

Theorem If/ is differentiable at (a, b1 then/ is continuous at (a, b). 

Proof Let f(a + x, b + y) = f(a, b) + hx + ky + e(x, y) as in the definition. If 
(x, y) (0, 01 then x 0, y 0, and e(x, y) 0. Consequently 
f(a + x, b + y)---+ f(a, b� This is continuity. 

Theorem Let/ be differentiable at an interior point (a, b) of its domain, and 
let 

f(a + x, b + y) = f(a, b) + hx + ky + e(x, yi 
where e(x, y )I I (x, y) I --+ 0 as (x, y) ---+ (0, 0 ). Then the first partials off exist 
at (a, b) and 

of 
ox (a, b) = h, 

of 
oy (a. b) = k. 

Proof Here (a, b) is an interior point of the domain of f means that 
(a + x, b + y) is in the domain off whenever x and y are both small. Now we 
have 

of (a, b) = limf(a + X, b) -f(a, b) 
ox %-0 x 

Similarly, J,(a, b) = k. 

= lim 
hx + e(x, 0) = h + Jim 

e(x, 0) = h. 
%-0 x %-0 x 

A Tes to r Drfte entrab lrty The existence of partials of/ox and of /oy does 
not necessarily mean that f is differentiable. However, if the partials are 
continuous, then f is indeed differentiable. This assertion is equivalent to the 
statement proved on p. 784. It provides a practical test for differentiability. 

Theorem Suppose/ has partials of/ox and of /oy at each point of its domain, 
and (a, b) is an interior point of the domain. Assume of/ox and of /iJy are 
continuous at (a, b� Thenf(x, y) is differentiable at (a, b). 

Remark We actually assumed more on p. 783 : that the partials are continuous on the 
whole domain. But the proof only uses their continuity at (a, b ). 

The Cham Rule Now we are in a position to give a precise statement and 
proof of the Chain Rule. This is important because the Chain Rule is the backbone 
of several-variable differential calculus. For simplicity we shall limit the discussion 
to two variables. 
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Chain Rule Let/ (x, y) be differentiable at (x, y) = (a, b). Suppose x = x(t) and 
y = y(t) are differentiable at t = c and (x(c� y(c)) = (a, b� Then the function 

z(t) = /[x(t), y(t)) 
is differentiable at t = c and 

i(c) = /Jl(a, b)X(c) +/,(a, b)y(c). 

Proof Sincef(x, y) is differentiable at (a, b), 
f(a + u, b + v) =/(a, b) + hu + kv + e(u, v), 

where 

as (u, v)--+ (0, 0). Substitute 

e(u, v) --+O Ju2 + v2 

u = x(c + t) - a, v = y(c + t) - b 
into this relation: 
f[x(c + t), y(c + t)) =/(a, b) + h · [x(c + t) - a) + k · [y(c + t) - b) + e(u, v). 

We form the difference quotient 
f[x(c + t� y(c + t)] -f(a, b) = h x(c + t) - a + k y(c + t) - b + e(u, v) t t t t ' 

and see what happens as t --+ 0. Certainly u --+ 0, v --+ 0, 

x(c + t) - a 
'( \ --'---..;__- --+ x c,, t 

since a =  x(c) and b = y(c). Therefore 

and y(c + t) - b--+ Y(c), t 

fun _z(_c _+_t)_-_z_(c_) = limf[x(c + t), y(c + t)] -/(a, b) = h.X(c) + ky(c) + lim _e(u,_v� 
.... o t , ... o t .... o t 
The proof will be complete when we show that e(u, v)/t--+O as t--+O. 

We may write 
e(u, v) = Ju2 + v2 E(u, v), 

where E(u, v)--+ 0 as (u, v)--+ (0, 0). l Ju2
t
+ v2 ' = J(x(c +tr) - ar + (y(c + :) - br--+ Jx(c)2 + y(c)2 . 

Therefore J u2 + v2 ft is bounded. But E(u, v)--+ 0, so 
e(u, v) = Ju2 + vl E(u, v)--+O t t 

as t --+ 0. This completes the proof. 
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Mu m 1 rn Minm c. One of the main concerns of calculus i s  maximum and 
minimum values of functions. Recall one of the basic facts about continuous 
functions of one variable : 

If f is continuous on a closed interval [a, b], then there exist points x0 and x1 
in the interval such that 

/(x0) $/(x) $/(xi ) 

for all x e [a. b]. 

The result says that 

/(x0) = min{f(x) la  $ x $ b}. /(x 1 )  = max{f(x)la $ x $ b}. 

If the interval is not closed. then f need not have a maximum or a minimum. 
For example.f(x) = x has neither a maximum nor a minimum on the open interval 
a <  x < b. The same holds for any continuous increasing or decreasing function. 

Furthermore. the result is not true on a domain which is unbounded. that is. 
contains points arbitrarily far from the origin. For example, on the domain 
0 $ x < oo the function/(x) = e- " has a maximum but no minimum; on 0 < x < oo 
it has neither. 

The correct generalization of the preceding theorem requires a domain that is 
both closed and bounded. 

Definition A domain D in space is bounded if there is a number B such that 
I x  I $ B for all x in D. In other words D is obtained in some sphere centered at 
the origin. _J 

It is not obvious what is the proper definition of " closed" in space. to generalize a 
closed interval on the line in some sense. The following turns out to be satisfactory. 

Definition A domain D in space is dosed if whenever the points x" are in D 
and x" _____.. x. then x is in D. 

Intuitively, closed means .. includes its boundary points". 
Now we can state the basic existence property of maxima and minima. 

Existence of Maxima and Minima Let /(x) be a continuous function on 
a bounded, closed domain D. Then there exist points x0 and x1 in D such that 

for all x in D. 

This result justifies all of our work on max and min. We leave its proof to more 
advanced courses. 
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EXERCISES 

Show that f (x, .r) is differentiable by finding a linear function hx + ky and a function 
e(x. y) that satisfy the definition of differentiability. (Use the estimates l x l  � I •I .  IY I  � I •I as 
needed to prove e(x)/ l• I  --- o.] 

I 3x - 7y + 4  at (a. b) 2 x2 + y2 at ( - 2, 1 )  3 xy2 at (0, 0) 
4 xy2 at (3. 2) 5 y/x at (1. 1) 6 1/xy at (- I. 2). 

7 Prove that the sum of two differentiable functions is differentiable. 
8 Prove that the product of two differentiable functions is differentiable. 

Givenf(x. y) = O. determine (a) whether f(x. y) is continuous at (0, O� (b) whether /,,(0. 0) 
and f,(O. 0) exist and their valt1es if they do. (c) whether f (x. y) is differentiable at (0, 0) 
9 f(x.y) = xy/(x2 + y2} if (x. _r) # (0, 0) 

10 f(x, y) = x3 /(x2 + y2) if (x . .r) # (0. 0) 
1 1  f (x. _r) = (x6 + _r6)/(x4 + _r4) if (x, .r) # (0. 0) 
12 f (x, y) = (xs + y6)/{x4 + y4) if (x. y) # (0. 0). 

13 Prove that f (x. y) = x2 - 6xy + I0.1•2 has a positive minimum value p on the circle 
x1 + y1 = l .  

14 I f  f(x, y) = ax2 + bxy + cy2 has a positive minimum p on x 2  + y2 = 1 .  prove that 
f(x, y) > 0 for all (x. y) except (0. 0). [Hinr Find the minimum of f(x. y) on 
xi + y2 = ,2.] 

1 2  M ISCELLANEOUS EXERCISES 

A function w = f(x. y. :)  is homogeneous of degree 11 iff(tx. ty, t:) = t"f(x. y. :) for all t > 0. 
The condition of homogeneity can be written vectorially: 

f(tx) = t"f (x). 
Show that the function is homogeneous: What degree? 

I x2 + y: 2 x - .I' + 2: 3 xl + .l'J + :l - 3xy: 

4 

7 

8 
9 

I I  

12 

13 

I 5 
x_r: 

6 
x4 + y4 + :4 x + y 

Suppose f and g are homogeneous of degree m and n respectively. Show that fq is 
homogeneous of degree mn. 
Let f(x. y. :) be homogeneous of degree n. Show that .f,, is homogeneous of degree 
n - I. (Exception : n = 0 and / constant.) 
Let/(x. y. :) be homogeneous of degree n. Prove Euler's Relacion: xf. + .1f,. + zf: = nf. 
(Hint Differentiatef(tx. ty. t:) = t"f(x. y. :) with respect to t. using the Chain Rule; 
then set 1 = I.] 
(cont.) (Converse of Euler's Relation) Let f(x) be differentiable for x # 0, and suppose 
x · grad.f = nf Provefis homogeneous of degree n. (Hint Show thatc1[t- "/(tx)Vc1t = O.] 
Let e = (a. b. c) be a point not on the paraboloid z = x2 + y2• that is. such that 
c # a1 + b1. Show that the set of all points x on the paraboloid such that the tangent 
plane at x passes through a lies on a plane. 
(cont.) Assume c < a2 + h2 so a is 011t.dde of the paraboloid. Show that the intersection 
of the plane found in Ex. 1 1  and the paraboloid is also the intersection of the paraboloid 
with a right circular cylinder. 
Let • be a point of the hyperbolic paraboloid z = x2 - y2• Show that the tangent 
plane at e intersects the surface in two straight lines. (Hint Eliminate z from the 
equations of the quadric and the tangent plane. J 
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14 (cont.) Show the same thing for the hyperboloid of one sheet z2 = x2 + y2 - I .  
15 Find the ratio (height)/(radius) of a right circular cone of maximal volume with given 

lateral surface area. 
16 Show that the plane tangent to the surface xyz = k at any point forms with the 

coordinate planes a tetrahedron of fixed volume. 
17 Find the polynomial p(x) = x2 + ax +  b that minimizes f� 1 p(x)2 dx. 
18 (cont.) The same for p(x) = x3 + ax2 + bx + c. 

19 Let z = z(x. y) be the larger solution of z2 + 2xz + y = 0, where x2 - y > 0. Find dz 
in terms of x, y, dx, dy only. 

20• Show that the function z = z(x, y) defined implicitly by 

21 

23 

24• 

26 
27 

28• 

I zcf>'(r) = [y - cf>(t}]2 
\(x + t)cf>'(1) = y - ct>(r) 

(eliminate 1) satisfies z = �z � . [Hint Use differentials and eliminate dt.] ux uy 
. I I . f 

oz oz [ Find the genera so ut1on o '2� = oy' Hint Set u = x + y and v = x - y.J 

Given/(x, y, z) and • = (a, b, c) such that/(•) = O.f..(•) :;. O.f,(•) :;. O,f.(•) :;.  0. Then 
f (x, y, z) = 0 can be solved for either x, y, or z as a function of the other two. 
Thus x = P(y, z� where a =  P(b, c) and f[P(y, z� y, z] = 0. Let y = Q(z, x) and 
z = R(x, y) be the other two implicit functions. Find the product P1Q, R". 
Let y = y(x) be a curve in the x, y-plane with yH # 0. Then (u, v) = (dy/dx, x dy/dx - y) 
is a curve in the u, v-plane. Express its slope simply in terms of x and y. 
Find the most general differentiable function /(x) with domain R3 such that 
/(u + v) =f(u) + f(v) for all u and v. [Hinr Prove gradf(x) = c.] 
The line x = - 1 is parameterized by x = ( - 1. In u� Similarly x = 0 and x = l are 
parameterized by x = (0, ! In w) and x = ( l ,  In v). Now a ruler is placed connecting any 
point ( - 1, In u) of x = - 1  with any point ( l, In v) of x = l. The ruler crosses the 
y-axis at (0, ! In w). Express w as a function of u and v. (Write in the u, v, and 
w scales; the result is an example of an alignment chart, a useful graphical device for 
quick estimates of functions of two or more variables. 
(cont.) Construct an alignment chart for w = u2 + 2v2 • 
Let Q(x. y) = ax2 + 2bxy + cy2 be an indefinite quadratic form, that is, ac - b2 < 0. 
(See Ex. 20, p. 773.) Show that Q can be expressed as the product of two linear forms. 
[Hint Solve at2 + 2bt + c = O.] 
Let f (x, y) = ax2 + 2bxy + cy2 + px + qy + r, where ax2 + 2bxy + cy2 is positive 
definite. Provethat/(x, y) --+ oo as l x l ---+ oo. (Hint First prove that ax2 + 2bxy + 
cy2 � m lx l2, where m > 0.) 

The analogue of Newton's method for solving a system/(x, y) = 0, g(x, y) = 0 is an iterative 
scheme that replaces an approximation x to a solution by ct>(x� a closer approximation. 
The formula is 

1 
(/ 

' !, 1 11" / I ) cf>(x) = x - -, !" J�, 9 
g, , 

g" g 
, 

g" g, 

all functions evaluated at x. (The denominator must be non-zero near the solution.) Given 
an initial "guess" Jlo ,  we construct x1 = 4>(Xo� x2 = cf>(x1� x3 = cf>(x2), · · · . Under reasonable 
conditions the sequence { x.} converges to a solution of the system f (x) = 0, g(x) = 0. 
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29 f (x. y) = x + y2• g(x. y) = y + x2• x0 = (!. 0) 
30 f(x, y) = x + y2• g(x. y) = x + y, Xo = (l , i) 
31 f(x. y) = x2 + y1 - I, g(x, y) = x + 4y - 2, x0 = ( 1, I ). 

32• Use the definition of differentiability, with the error ignored, to derive Newton's method. 
33 Consider the cone x1 + y1 = z1 tan1 ex and the cylinder (z - a csc cx)1 + y2 = a2• where 

a > 0 and 0 < cc < }1t. Find the two points of tangency of the two surfaces. 
34• (cont.) Show that the intersection of the two surfaces consists of a pair of ellipses. 



H igher Partials and 
Applications 

1 . MIXED PARTIALS 

I& 

A function of two variables f (x, y) has two fint partial derivatives, 

/11(x, y) and /,(x, y), 

each itself a function of two variables. Each in tum has two first partial derivatives; 
these four new runctions are the second derivatives of/(x, y). Figure 1 shows their 
evolution: 

I 

. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .  •· . 

Fis- I Family tree of partial derivatives 

The pure second partials f"" and /,, 

represent nothing really new. Each is found by holding one variable constant and 
differentiating twice with respect to the other variable. 

Alternative notation: 

For example, if /(x, y) = x3y4 + cos  Sy, then 

794 

!11 = 3x2y4, 

f 1111 = 6xy4, 

f, = 4x3y3 - S sin Sy, 

/,, - 12x3y2 - 2S cos Sy. 



The mixed second partials 

o (o') 02/ !., = oy ox 
""

oyox 
and 
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are new. The mixed partial /., measures the rate or change in the y-direction or the 
rate or ct:iange or/in the x-direction. The other mixed partial/,. measures the rate 
or change in the x-direction or the rate or change or I in the y-direction. It is not 
easy to see bow, if at all, the two mixed partials are related. to each other. 

Let us compute the mixed partials or the function /(x, y) = x3y4 + cos  Sy: 

!. = 3x2y4, /., = 3 · 4x2y3, 

/, = 4x3y3 - S sin Sy, !,. = 4 · 3x2y3 + 0. 

The mixed partials are equal ! This is not an accident but a special case of a general 
phenomenon, true ror functions normally encountered in applications. 

Equality of Mixed Partials Let /(x, y) be defined on a domain D. Ir/., 
and/,. exist at each point of D and are continuous at (a, b� then 

o2f o2f 
ox oy 

= 
oy ox 

at (a, b). 

We postpone the proor until Section 6. 

H igher Partials The next discussion assumes continuity of all the partials 
involved. 

A runction z = /(x, y) has two distinct first partials, 

oz 
and 

oz 
ox oy' 

and three distinct second partials, 

o2z o1z o2z 
ox2 ' ax ay' a,,2 · 

Because the mixed second partials are equal, so are certain mixed third partials. For 
example, 

since 

::2 (:;) = !x [:Ji (!;) ] = !x (:, (!�) ] = :, l!x (!�) ] = :, (;:�)· 

Thus there are precisely four distinct third partials: 

a2z iJlz 
ox3 ' ox1oy' 
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In  general there are n + 1 distinct partials of order n: 
O"z k = 0, 1, 2, · · · , n. 

Examples In the following examples we shall find all functions whose partials 
satisfy given relations. We assume all necessary partials exist and, for simplicity, that 
the functions are defined on the whole plane. All the solutions are based on one 
fact: if 

oz = 0  ox and 
oz = 0  oy • 

then z is a constant. For oz/ox = 0 means z(x, y) is constant in x, that is, z = z(y� a 
function of y alone. But oz/oy = 0 implies this function of y alone is a constant 
function. 

• EXAMPLE 1 Find all functions z = f(x, y) that satisfy the system of partial 

o2z o2z o2z differential equations 
ox2 = 0, ox oy = 0, oy2 = 0. 

Solutio11 First, look at the partials of oz/ox: 

� (oz) - o2z - 0 and 
0 (oz) o2z o2z 

ox ox - ox2 - oy ox = oy ox = ox oy = o. 
It follows that oz/ox = A, a cortstant. Consequently 

a oz 
ox [z(x, y) - Ax] = ox - A = 0, 

so z - Ax is a function of y alone, 

z = Ax +  g(y). 
But o2z/oy2 = 0, hence g"(y) = 0 so g(y) = By +  C. Therefore 

z(x, y) = Ax + By + C, 
a linear polynomial. • 

Remark We spelled out in detail the passage from oz/ox = A to z = Ax + g(y). After this 
we shall just refer to such a step as " integrating (with respect to x)". 

• EXAMPLE 2 Find all functions z = f(x, y) whose third partials are all 0. 

So/11tio11 

Integrate: 

But 

The second partials of oz/ox are all 0. By the last example, 

oz 
ox = Ax + By + C. 

1 z = 2 Ax2 + Bxy + Cx + g(y). 

<Pz d3g 0 = - = oyl dyl 
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so g(y) is a quadratic polynomial in y. Therefore z is a quadratic in x and y: 
z(x, y) = ax2 + bxy + cy2 + dx + ey + f • 

• EXAMPLE 3 
o2z 

Find all functions z = f(x, y) that satisfy ox2 = 0. 

Sol•tio11 Write the condition in the form 

-
o (&) -- o. 

& 
then integrate : !Ix = g(y). ox ox u 

Integrate again : z = g(y)x + h(y), 
where g(y) and h(y) are arbitrary functions of y alone. 

Check ;:� = :x [:x (g(y)x + h(y))] = :x g(y) = 0. • 

o2z 
• EXAMPLE 4 Find all functions z = f(x, y) that satisfy ox oy = 0. 

Sol•tio11 Write the condition in the form 

-o (
oz) --o. 

oy ox then integrate: 

Integrate again : z = g(x) + h(y), 

oz 
ox = p(x). 

where g(x) is an antiderivative of p(x). Note that g(x) is an arbitrary function of x 
since p(x) is. 

Check 0::y [g(x) + h(y)] = :x [:y (g(x) + h(y)) ]  = :x (h'(y)] = 0. • 

• EXAMPLE I Find all functions z = f (x, y) that satisfy the system of partial 

d
.
fti . I . oz oz 

l I erentla equations OX = y, Oy = . 
Sol•tio11 Integrate the first equation : 

z = xy + g(y). 
Substitute this into the second equation : 

o 
oy [xy + g(y)] = 1. x + g'(y) = 1. g'(y) = 1 - x. 

This is impossible since the left-hand side is a function of y alone. Therefore the 
problem has no solution. • 

Remark The example illustrates an important point. A system of partial differential equations 
may have no solution at all! Could we have foreseen this catastrophe for the system above? 
Yes; for suppose there were a functionf(x, y) satisfying 

of 
- = y and 
ox 

of 
oy = 1. 
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Then 
iJlf 

iJ 

- = - (y) = 1 .  
oy ox oy 

so the mixed partials would be unequal. a contradiction. 

r-
If the system of equations oz 

ox = p(x, y), 

has a solution, then 

Indeed. 
op o (oz) o (oz) oq 
oy 

= 
oy ox = ox oy = ox · 

oz 
oy 

= q(x. y) 

_J 
o r All that has been said applies to functions of three or more 

variables. For example. suppose w = f(x, y, z). Then w has three first partials: 
ow ow ow 
ox · oy • oz · 

The nine possible second partials may be written in matrix form: 
o2w o2w o2w 
ox2 ox oy ex oz 
o2w o2w o2w 
oy ox oy2 oy oz 
o2w o2w o2w 
oz ox oz oy oz2 

This matrix is symmetric since the mixed second partials are equal in pairs : 
o2w o2w o2w o2w c2w o2w 
ay ox = ax oy · ox oz = oz ox · oz oy = oy az · 

EXERC/t:/: 

iJlf olf iJlf Compute ox2 , ilx cy . and cy2 

I sin(x - 3y) 
3 x2 arc sin y 
5 ax2 + 2bxy + cy2 + dx + ey 

iJlf iJZJ 
Verify that ox oy = oy OX 

7 
9 

I I  

x/y2 
:c"'Y' 
x + y  
x - y  

2 xy6 
4 e2" cosh y 
6 ln(l + x - 2y). 

8 
IO 
12 

x + x3y + y4 
g(x)h(y) 

(x - y)(x - 2y)(x - 3y). 
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Compute 
fJ3f and o3f 

fJxl oy ex oy2 

13 xly• 14 x•ys - xyl 15 cos(xy) 
16 sin(xly) 17 el' sin(x + y) 18 x'. 

Find all runctions f(x, y) satisfying 
olf 

19 -- = 0  c3f 03f 20 -- = 0  and -- = 0  

21 

23 

oxl oy 
[Hint Use Examples 3 and 4.] 

all fourth partial derivatives equal 0 

i'f = a. cf = b 
ex oy 
of 2 of 2 ex = y . i'y 

= x 

cxl cy ex cy2 

Write the matrix or 9 second partials 

27 xy + yz + zx 28 x"'y"z' 29 sin(x + 2y + 3z) 30 xler-. 
31 How many distinct third partials doesf(x. y. z) have? 
32 (cont.) Find a runction for which they really are distinct. 
33 How many distinct second partials does f(x. y. z. w) have? How many distinct third 

partials? 
34 Show that each runction or the form f(x. y) = g(x + y) + h(x - y) satisfies the partial 

elf elf differential equation - - - = 0 ,,x2 i'yl · 

35• Show that each solution or the partial differential equation ix + 2 % = 0 is of the form 

f(x. y) = g(y - 2x). [Hint Set x = u and y = 2u + v. then solve a partial differential 
equation for h(u. v) = f (u. 2u + v).] 

36* (cont.) Apply the same technique to solve 

[Hint Use Example 3.] 

37 A uniform metal bar (surrounded by insulation) lies on the x-axis from x = 0 to x = L. 
. flu 1 i'u Its temperature 11(x. t) at (x. 0) at time t satisfies the heat equation i'x2 = k i't .  

Here k is a physical constant. Suppose the ends or the bar are kept at temperature 0. 

r 
. ( ) " , ' " '  . mt.'< I . Show that the unctions u. x. t = c. e- •·• ' · sm L are so ullons. 

38 A taut guitar or piano string is fixed at (0, 0) and (L. 0) and plucked or struck when 
t = 0 so as to vibrate in the x, y-plane. Its displacement y(x. t) from the x-axis (ir small) 

(lly I c2y 
satisfies the wan equation -l = 2 -2 • where c2 depends on physical properties or rx c Ct 
the string. Veriry that the fonctions 

are solutions. 

I . (mrx) 1 r (mr:ct) (mr:ct) 1 y.(x. t) = sm L a. cos L + b0 sin L 
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39 

40 
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o1u OU i'u 
If the bar in Ex. 37 is moving with constant speed v. then k i'x1 

= v i'x + i't 
. 

Show that for each integer n there is an a such that u(x. t) = e-•+u/:U sin(mrx/L) is a 
solution. 
The current /(x. t) along a transmission line satisfies 

j'l f i'J i'l f LC ;;z + RC -;- = :;z . d d < X  R. L. C constant. 

Find the system of ordinary differential equations that Y(x) and Z(x) must satisfy so that 
I = Y(x) cos nt + Z(x) sin nt is a solution. 

41 Show that V(x. y) = e-•x cos a(y - y0) satisfies Laplace's equation 

i'lV/i'xl + i'1V/i'y1 = 0. 

42 Find all quadratic forms in x. y. z that satisfy Laplace's equation 

i'1V/i'x1 + ('lV/i'yl + i'1 V/h1 = 0. 

43 Find conditions under which 

( ) ( . m1tx) ( . mty) ( . ) : x. y. r = sm ---;- sm b A cos pt + B sm pt 
satisfies the wave eqll8tion in two dimensions: 

i'1z i'1: I i'1: 
- + - = - i'xl i'y2 cl i'tl · 

44 The temperature at distance r from an instantaneous line source of heat is 

Show that 
i'111 I i'u I i'u 
- + - - = - -i'r1 r i'r k i't · 

2. TAYLOR APPROXI MATION 

Let us recall some facts about Taylor approximation of functions of one variable. 
If y = f(x), then 

and 

f(x) = f(a) + f'(a)(x - a) + r1(x), 
1 f(x) = f(a) + f'(a)(x - a) + 2f"(a)(x - a)2 + r2(x), 

where 

and where M2 and M3 are bounds for lf"(x) I and lf"'(x) I respectively. 
The Taylor polynomial 

p1(x) =f(a) + f'(a)(x - a) 
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is constructed so that p1(a) = f(a) and p1'(a) = f'(a). The Taylor polynomial 

1 p2(x) = f(a) + f'(a)(x - a) + lf"(a)(x - a)2 

is constructed so that p2(a) = f (a� p2'(a) = f'(a� p2"(a) = f"(a). 
Jn a similar way, one can construct linear and quadratic polynomials in two 

variables approximating a given function of two variables. 

Taylor Polynomials Let/(x, y) have continuous first and second partials on 
a domain D. The first degree and second degree Taylor polynomials of/ at (a, b) are 

p1(x, y) = f(a, b) + fx · (x - a) + f, · (y - b), 
p;z(X, y) = p,(x, y) + Ufn · (x - a)2 + 2fx1 · (x - a)(y - b) + J,, · (y - b)2], 

where all the partials are evaluated at (a, b ). 

It is easy to check that p1(a, b) =f(a, b) and that the first partials of p1 agree 
with those of/ at (a, b). Similarly, p2(a, b) = f(a, b) and all first and second partials 
of p2 agree with the corresponding partials off at (a, b ). 

Now we ask how closely these Taylor polynomials approximate f (x, y) for (x, y) 
near (a, b). Jn other words, we want estimates for the errors in the approximations 
f(x, y) � p1(x, y) and f(x, y) � p2(x, y). The first of these approximations is 
familiar. For 

z = f(a, b) + fx · (x - a) +/, · (y - b) 
is the equation of the tangent plane to the graph of z = f(x, y) at the point 
(a, b,f(a, b)). So we are approximating a surface by its tangent plane. 

Let us state some error estimates subject to the mild restriction that/is defined on 
a convex domain. A domain D in the plane or space is called cc.vex if it contains the 
whole segment joining any two of its points. For example, a domain bounded by a 
triangle, square, or ellipse is convex. 

Error in Taylor Approximation Let /(x, y) have a convex domain D and 
let a be a point of D. 

( 1 )  Suppose/has continuous first and second derivatives on D and the second 
derivatives satisfy 

for all x in D. 

Let p1 be the first degree Taylor polynomial off at a. Then 

/(x) = p1(x) + r1(x� 
where l r1(x) I s; M2 lx - •12• 
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I l Error in Taylor Approximation (cont.) 

(2) Suppose/has continuous firs� second, and third derivatives on D and the 
third derivatives satisfy 

Let p2 be the second degree Taylor polynomial off at a. Then 
f (x) = P2(x) + r2(x� 

where h(x) I :=:;; f M3 lx - • 13 • 

We shall postpone the proof until Section 6. 

Remark There are Taylor polynomials or higher degree and corresponding error estimates. 
The notation for these polynomials is complicated, and since we shall not need them. we 
leave their study to an advanced calculus course. 

EXAMPLE 1 Compute the Taylor polynomials p1 (x. y) and p2(x, y) of the 
function/(x, y) = Jx2 + y2 at (3, 4). 

Solution 

iJ2f y2 

<If x of y 
rx = 

Jx2 + y2 ' ily = Jx2 + y2' 
iJ2f -xy ()2/ x2 

ilx2 = (x2 + y2)312· iJx oy = (x2 + y2)312 · iJy2 = (x2 .; -y2)l/2 · 
At (3, 4), 

fl/ 3 
ox = 5· 

Therefore 

,,21 16 
,1x2 = 

125 ' 

p1(x, y) = 5 + !(x - 3) + �(y - 4� 

P2(X, y) = P1 (X, y) + !(t/s(x - 3)2 - -(A(x - 3)(y - 4) + m(Y - 4)2]. • 

EXAMPLE 2 Estimate J(3.10)2 + (4.02)2 
(a) by p1(x, y� (b) by p2(x, y� 

the Taylor approximations of Example 1. 
Solution Setf(x, y) = Jx2 + y2 .  Near (3, 4� 

f(x, y) ::: !(25 + 3(x - 3) + 4(y - 4)], 

f (3. 1 ,  4.02) ::: !(25 + 3(0. 1 )  + 4(0.02)] = 5.076. 

f(x, y) ::: P1(x, y) + rtu[16(x - 3)2 - 24(x - 3)(y - 4) + 9(y - 4)2], 
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/(3. 1, 4.02) ::::: P1 (3.l, 4.02) + M16(0.1)2 - 24(0. 1 )(0.02) + 9(0.02)2] 
0.1 156 = 5.076 + 250 = 5.076 + 0.0004624 = 5.07646 24. 

(Actual value to 7 places: 5.07645 55.) 

• EXAMPLE 3 If lx l < 0.1 and IY I < 0.1, prove that 

Ir sin(x + y) - (x + y)I < 0.05. 
Sol11tion Set f (x, y) = r sin(x + y). Then f (0, 0) = 0 and 

f,.(O. 0) = r sin(x + y) + r cos(x + y) I = 1 (0, 0) 

and f,(O, 0) = r cos(x + y) I = 1, (0. 0) 
hence at (0, o� P1(X, y) = X + Y· 

• 

Therefore the problem is to show that l r1 (•) 1 < 0.05 for points x = (x, y) with 
lx l < 0.1 and IY I < 0.1. Such points satisfy 1• 12 = (0.1)2 + (0. 1 )2, so restrict the 
domain off to the disk 1• 12 < 0.02. 

According to the error estimate, 
l ri (•)I 5 M2 1• 1 2 = (0.02)M2. 

where M 2 is a bound for I/,.,. I. I/,., I, I/,, I· To find a suitable value for M 2 • 

compute the second partials: 

f,.,. = 2r cos(x + y), f,.1 = r[cos(x + y) - sin(x + y)], f,, = -e" sin(x + y). 
Since lsin(x + y)I 5 1 and lcos(x + y)I 5 1, 

IJ,.,.l 5 2r, l!x, l 5 2r, l !,,I  :s; r. 
Furthermore. Ix I <  0.1, so 

r < e0• 1 � 1 . 1052 < 1 . 1 1 . 
Therefore M 2 = 2 ( 1 . 1 1 ) = 2.22 is a suitable bound. I t  follows that 

i ri (•)I < (0.02)(2.22) = 0.0444 < 0.05. 
RC S .. 

Compute the Taylor polynomials p1 (x, y) and p2(x, y) 
I x2y2 at ( I ,  1 )  2 x'y3 at (2, - 1) 
4 e"' at (0, 0) 5 x' at ( 1, 0) 
7 cos(x + y) at (0, n/2) 8 1 + xy at ( I ,  I )  

10 x2e' at ( 1. 0). 

3 sin(xy) at (0, 0) 
6 x' at ( I ,  I )  
9 ln(x + 2y) at {!, i) 

• 

Estimate using the second degree Tayior polynomial; carry your work to 5 significant 
figures 
1 1  ( I . I  )1 .2 12 [( 1.2)2 + 7.2]1'3 
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13 f(l.01, 2.01�  where f(x, y)  = x3y2 - 2xy4 + y5 
l 

14 f(2.0l, 0.98), where f(x, y) = 21 x7y1°. 

15 If pi(x� p2(x) and q1(x), q2(x) are the first and second degree Taylor polynomials of 
f(x) and g(x) at a and b respectively, find the first and second degree Taylor 
polynomials or h(x. y) = f(x)g(y) at (a. b). 

16 Let p1(x, y) be the first degree Taylor polynomial or f(x. y) at (a, b) = a. Show that 
P1(•) = f(a) + D. _  . J(a} 

Prove the inequality, given lx l  < 0.1 and IY I  < 0.1 
17 IJl + x + 2y - ( 1  + !x + y) I < 0.04 18 le'" sin(x + y) - (1 + x)(x + y)I < 0.ol 

(even <0.005 with more carefol 
estimates). 

19 Given a runction f(x, y, z) or three variables, define its first and second order Taylor 
polynomials p1(x, y, z) and p2(x. y, z) at (a, b, c). Check that all or their first order 
and second order partial derivatives agree respectively with those orf (x. y. z) at (a. b, c). 

20 (cont.) Assuming grad f(a, b, c) # 0, identiry the graph or p1(x, y, z) = f (a, b, c). 

21 Compute p2(x, y) at (0, 0) for /(x, y) = -1 -- -1 - - . Veriry that you get the same - x - 2y + 3xy 

result by expanding -1 - in power series, where z = x + 2y - 3xy, then collecting all I - z 
terms or degree 2 or less. 

22 (cont.) Use a similar technique for /(x) = J l + 3x - 4y + x2•  

3. STABI LITY 

In this section we shall develop second derivative tests for maxima and minima. 
Stability is a modem term for the behavior of a function near a critical point. See 
the remark on p. 808. 

We shall assume here and in the rest of this chapter that all functions have 
continuous first, second, and third partial derivatives. With this assumption, the 
Taylor approximations of the previous section apply. 

Let us begin with a brief review of the one-variable case. We consider a function 
g(t) and a point c where g'(c) = 0. Suppose g"(c) > 0. We want to conclude that 
g(c) is a local minimum of g. For this purpose, an excellent tool is the second 
degree Taylor approximation of g at c: 

J g(t) = g(c) + j-g"(c)(r - c) + r2(t� 
l l r2(t) l � k l t - c l3, k > O. 

It follows that 

g(t) - g(c) = !u"(c)(t - c)2 + r2(t) � !u"(c)(t - c)2 - kit - cl3 
= (t - c)2[!g"(c) - k i t - cJ]. 

Since g"(c) > 0, the quantity on the right is positive if 0 < I t - cl < j-g"(c)/k. Thus 
there is a positive number c5 = !u"(c)/k such that g(t) - g(c) > 0 when 0 < It - c I < c5. 
In other words, g(c) is smaller than any other value of g in an interval of radius c5 
and center c. Hence g(c) is a local minimum of g. 
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Second Derivative Test Let us try to generalize these ideas to the two variable 
case. Given f(x, y), suppose (a, b) is an interior point of the domain off where fx(a. b) = f1(a, b) = 0. We would like a condition on the second derivatives off, 
analogous to g"(c) > 0, guaranteeing that /(a, b) is a relative minimum off. Now 
the condition g"(c) > 0 can be interpreted as meaning that 

g"(c)(t - c)2 

is a positive definite quadratic form in the one variable t - c. It is natural, therefore, 
to examine the quadratic part of the second degree Taylor polynomial of f(x, y) 
at (a, b). If it is positive definite, we suspect that/(a, b) is a minimum of/. 

Second Derivative Test for a M inimum Let (a, b) be an interior point 
of the domain of/(x, y), that is, not a boundary point. Supposeh,(a, b) = 0 and J,(a, b) = 0, and in addition 

hx(a, b) > 0, hx/,1 - J;, , > 0. 
(•. I>) 

Then f(a, b) is a strong local minimum of f(x, y). Precisely, there exists b > 0 
such that 

f(x, y) > f(a, b) whenever 0 < l (x, y) - (a, b)I < b. 

This test is a consequence of the second order Taylor approximation 

f(a + x, b + y) = f(a, b) + !(Ax2 + 2Bxy + Cy2] + r2(x, y� 
where A =  fn(a, b), B = fx1(a, b� C = f11(a, b). 
The idea is that the second order term is positive and dominates the remainder 
for (x, y) smal� hence 

f(a + X, b + y) > f(a, b) 
for (x, y) small. There are some technical difficulties in completing this argument, 
so we postpone the proof until Section 6. 

Remark Recall the test for positive definiteness (p. 767): Ax2 + 2Bxy + Cy2 is positive 
definite if and only if A > 0 and AC - 82 > 0. 

• EXAMPLE 1 
x2 y2 Find the point on the paraboloid z = --�_- + 9 

closest to i = (1, 0, o� 
Sol•tio11 Let x = (x, y, z) be a point on the surface. Then 

I •  - i 12 = (x - l )2 + y2 + z2 (x2 y2) 2 = (x - l)2 + y2 + 4 + 9 =f(x, y). 
The function f (x, y) must be minimized., so solve fx = /1 = 0. Now (x2 y2) 4y (x2 y2) [ 2 (x2 y2) ] fx = 2(x - l )  + X 4 + 9 ' J, = 2y + 9 4 + 9 = 2y 1 + 9 4 + 9 . 
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The condition J, = 0 is satisfied if either 

y = O  or 
2 (x2 y2) 

I + 9 4 + 9 = O. 

The latter is impossible. Therefore/, = 0 implies y = 0. But if y = 0, the condition 
f,, = 0 means 

2(x - I )  + ixl = 0, that is, xl + 8x - 8 = 0. 

A rough sketch shows this cubic has only one real root, and the root is near 
x = 1 . By Newton's method iterated twice, x � 0.9068. 

Thus f (x, y) has a possible minimum only at the unique point (a, 0), where 
al + 8a - 8 = 0. Test the second derivatives at (a, 0): 

/,,,, = 2 + ia2 > 0, f,,1 = 0, f,, = 2 + !a2 > 0, f,,,, !,., -f,,1 2 > 0. 

Therefore the minimum does occur at (a, 0), so the closest point is (a, 0, ia2� 
where al + Sa - 8 = 0. 

The second derivative test for a minimum, applied to -/(x, y), implies a test 
ror a maximum. 

Second Derivative Test for a Maximum Let (a, b) be an interior pointl 
or the domain or/(x, y). Supposef,,(a, b) = O andf.,(a, b) = 0, and the quadratic 
form 

Ax2 + 2Bxy + Cy2 

is negative definite (A < 0, AC - 82 > O� where 

A =f,,,,(a, b), B =J,,,(a, b� C = f.,,(a, b). 
Then f(a, b) is a strong local maximum or f(x, y). Precisely, there exists l> > 0 
such that 

f(x, y) > f(a, b) whenever l (x, y) - (a, b)I < l>. 

Remark Recall the conditions (p. 768) for the quadratic form to be negative definite: 
A < 0, AC - 82 > 0. 

• EXAMPLE 2 Of all triangles with fixed perimeter 2S, which has the largest 
area? 

Sohdion Let the sides be x, y, z. By Heron's formula, the area A satisfies 

A2 = S(S - x)(S - y)(S - z). 
Since 2S = x + y + z, you can eliminate z: 

S - z = x + y - S, A2 = S(S - x)(S - y)(x + y - S). 

To maximize A, it suffices to maximize 

f(x, y) = (S - x)(S - y)(x + y - S) 



for x < S, y < S, x + y > S. Now 
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f,. = (S - y)[-(x + y - S) + (S - x)) = (S - y)(2S - 2x - y). 
f, = (S - x)(-(x + y - S) + (S - y)] = (S - x)(2S - x - 2y). 

Hence f,. = 0 and f, = 0 imply 
2S - 2x - y = 0  and 2S - x - 2y = 0. 

The only solution is x = jS, y = jS. For these values of x and y, 
fxx = -2(S - y) = -jS < 0, f,, = -2(S - x) = -jS, 

f,.., = -(2S - 2x - y) - (S - y) = -3S + 2x + 2y =  -is. 
fxx f,, -f,.,2 = ts2 - !S2 = iS2 > o. 

Therefore f(x, y) has its only local maximum at (jS, jS). Since f(x, y) = 0 
on the boundary, this point yields an absolute maximum. Now z = 2S - x - y = 
2S - jS - i = jS. The triangle of largest area is equilateral. • 

Saddle Points Let us review our method. We find an interior point (a. b) of 
the domain of f(x, y) where f,. = 0 and f, = 0. Then we compute the (Hessian) 
matrix 

H = [!"" f,.., ] f,,. f,, (•. b)
. 

There are three possibilities for det H:  

Case 1 det H > 0. Then 

fxx f.,, > f,., 2 � 0 
so fxx(a, b) � 0. Either fxx > 0 and f(a, b) is a strong local min, or fxx < 0 and 
f(a, b) is a strong local max. 

Case 2 det H = 0. No conclusion can be drawn. Look at these examples; in 
both cases (a, b) = (0, 0) and all first and second partials equal 0 at (0, 0): 

(i) f (x, y) = x4y4, local min; 
(ii) f(x, y) = x3y3, neither local max nor min. 
Case .J det H < 0. In this case we are sure there is neither a local max nor a 

local min. Here is the exact statement :  

Saddle Point Test Letf,.(a, b) = 0 andf,(a, b)  = 0 at an interior point (a, b) 
of the domain off(x, y). Suppose 

fxx f.,, - fx, 2 1 < 0. 
(•. bl 

Then f(a, b) is neither a relative max nor a relative min of f(x, y). Precisely, 
there exists points (x, y) arbitrarily close to (a, b) where f(x, y) <f(a, b) and 
there exist points (x, y) arbitrarily close to (a, b) wheref(x. y) > f(a, b). 
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(a) Saddle point at (0, 0, 0) (b) Level curves 

Fig. I Example of saddle point: ; = - x2 + y2 

3 

0 

3 

� 

0 

In this situation f(x. y) is said to have a saddle point at (a. b); the surface 
z = f(x, y) is shaped like a saddle or a mountain pass near (a, b, f(a, b)). The 
tangent plane is horizontal; the surface rises in some directions, falls in others, 
so that it crosses its tangent plane. See Fig. 1 for an example. We shall postpone a 
proof of the saddle point test until Section 6. Let us summarize our results: 

Summary Let (a. b) be an interior point of the domain of f(x. y) and suppose 
fx(a, b) =/,(a. b) = 0. 

( 1 )  Iffu > 0 and /n l,, -fx,2 > 0, thenl(a, b) is a strong local min. 
(2) If In < 0 and fn I,, -Ix, 2 > 0, then I (a, b) is a strong local max. 
(3) If In J,, - fx,2 < 0, then l(a, b) is a saddle point, neither a local max nor 

min. l (4) If In I,, -Ix./ = 0, no conclusion can be drawn from this information 
alone. 

Remark Imagine a particle constrained to move on the surface z = f(x. y) and subject to 
the downward force of gravity. Suppose the particle is at rest (in equilibrium) at a point 
(a. b.f(a. b)), that is. its height z is stationary: J .. (a, b) = 0 and f,(a, b) = 0. 

Now suppose the particle is displaced slightly-given a little shove. What happens? If 
f(a, b) is a strong local max of z. then the particle tumbles downward-its equilibrium was 
... table. If /(a. b) is a strong local min of z, then the particle returns to its equilibrium 
point-its equilibrium was stable. The saddle point case is smack in between. For some 
displacement directions the particle tumbles downward, and for others it returns to equilibrium. 

As a concrete example of such a surface, imagine an inflated inner tube (or a doughnut) 
hanging from a string. Then at the top is a max of z, at the bottom a min of z. There are 
two saddle points of z, one at the top and one at the bottom of the "hole". 
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EXAMPLE 3 FinCl the points on the ellipsoid ix2 + y2 + iz2 = l nearest to 
and farthest from the origin. 
So/"tio" The square of the distance from (x, y, z) to (0, 0, 0) is 

Dz = f(x, y) = x2 + y2 + z2 = xl + y2 + 4(1 - ix2 - y2) = 4 + ixl - 3y2. 
Since 
the domain of f(x, y) is the elliptical region 

µ2 + y2 � l.  

The first partials of f(x, y) are 
f:c = lix and J, = -6y, 

which are simultaneously 0 only for (x, y) = (0, 0). However, at (0, 0) 
fn J,., - fr/ = (liX-6) - 0 < 0. 

Therefore f (x, y) has neither a maximum nor a minimum at (0, 0). There seems to 
be no possible maximum or minimum. 

We have forgotten the boundary ! The continuous function f(x, y) has both a 
maximum and a minimum in its bounded closed domain, and since they do not 
occur inside the domain, they must occur on the boundary curve (Fig. 2), an 
empse. On this empse, z = 0 so f (x, y) = x 2 + y2• By inspection, f min = f (0, ± 1 )  = l 
andf .... = /(±3, 0) = 9. 

Therefore the points of the original ellipsoid nearest to the origin are (0, ± l ,  0) 
and the points farthest from the origin are ( ± 3, 0, 0 ). [The points (0, 0, ± 2) are 
saddle points for the distance function.] 

y 

(a) Find the max and min of D. (b) Domain of ft.x. y) = Dl 
• 

Does the function f(x, y) have a local max, local min, or saddle point at the origin? (Use 
the first and second derivative tests; if all else fails, sketch a few level curves near the origin.) 
I x2 + 3y2 2 xy 3 x2 - 4y2 
4 x2 + 2xy + y2 5 -x2 + 2xy - y2 6 x4 + y2 
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7 x4 8 - x2y2 
10 x2 + y5 1 1  x2y2 - 3x4y4 
Find all local maxs. local mins. and saddle points 

9 x3 + y3 
12 x6 + y6 - 6x2y2• 

13 x4 + y4 - 2(x - y)2 14 2x2y - y2 + 4x 
15 (x2 + y2)1 - 4(x1 + 2y2) + l 16 x3 + y3 - 3axy. a > 0 
17 x3 - 4x2 - xy - y2 18 e41(x2 + x + y) 
19 (y - x)(x2 + y2 - l) 20• [(x + 1 )1 + y2 - l][(x - 1)1 + y2 - I] 
21 (y - x2)(2 - x - y) 22 (y - x2)(x2 + y2 - l). 
23 Suppose /(x) has a local max at x = a  and a local min at x = b, and g(y) has a 

local max at y = c and a local min at y = d. What can you say about 
h(x, y) = f(x) + g(y) at (a, c� (a, d� (b, c� and (b, d) ? 

24 Explain geometrically the remark about saddle points at the end of the solution of 
Example 3. 

25 A manufacturer produces two lines of a product, at a cost of $2 per unit for the 
regular model and $3 per unit for the special model. If  he fixes the price at x dollars 
and y dollars respectively. the demand for the regular model is y - x and the demand 
for the special model is 14 + x - 2y in thousand units per week. What prices maximize 
his profits? 

26 Suppose • does not lie on a closed surface F(x) = 0 and b is a point of the surface 
that maximizes or minimizes the distance IF(x) - •I· Show that • - b is normal to 
the surface at b. [Hint Parameterize.] 

4. CONSTRAINED OPTIM IZATION 

Here are several problems that have a common feature. 
(a) Of all rectangles with perimeter one, which has the shortest diagonal? That 

is, minimize (x2 + y2)112 subject to 2x + 2y = l. 
(b) Of all right triangles with perimeter one, which has largest area? That is, 

maximize !xy subject to x + y + (x2 + y2)112 = 1. 
(c) Find the largest value of x + 2y + 3z for points (x, y, z) on the unit sphere. 

That is, maximize x + 2y + 3z subject to x2 + y2 + z2 = l . 
(d) Of all rectangular boxes with fixed surface area, which has greatest volume? 

That is, maximize xyz subject to xy + yz + zx = c. 
Each of these problems asks for the maximum (or minimum) of a function of 

several variables, where the variables must satisfy a certain relation (constraint). 
Such problems may be analyzed geometrically. Suppose you are asked to 

maximize a function/(x, y), subject to a constraint g(x, y) = c. On the same graph 
plot g(x, y) = c and several level curves of f(x, y� noting the direction of increase 
of the level (Fig. la). To find the largest value off (x, y) on the curve g(x, y) = c, 
find the highest level curve that intersects g = c. If there is a highest one and the 
intersection does not take place at an end point, this level curve and the graph 
g = c are tangent. 
Suppose f(x, y) = M is a level curve tangent to g(x, y) = c at a point (x, y). 

See Fig. lb. Since the two graphs are tangent at (x, y), their normals at (x, y) 
are parallel. But the vectors 

grad /(x, y) and grad g(x, y) 



(•) Fmd the highest level of ft.x,y) 
tut meets 1<x, y) = c. 
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y 

(b) Equ.lity of the norm•ls 
•t the mu 

Fig. I Maximize f (x, y) subject to g(x, y) = c. 

point in the respective normal directions, hence one is a multiple of the other: 
grad /(x, y) = A. grad g(x, y) 

for some number ..1.. (The argument presupposes that grad g :F 0 at the point in 
question.) 

This geometric argument yields a practical rule for locating points on g(x, y) = c 
where /(x, y) may have a maximum or minimum. [However, note that where 
the condition of tangency is satisfied, there may be a maximum, a minimum, or 
neither (Fig. 2).] 

I' 

f increases 

x 

Fig. 2 Points of tangency 

Lagrange Multiplier Rule To maximize or minimize a function /(x. y) 
subject to a constraint g(x, y) = c, solve the system of equations 

g(x, y) = c 

in the three unknowns x, y, A.. Each resulting point (x, y) is a candidate. 
The number A. is called a Lagrange muhiplier, or simply multiplier. 
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This rule requires three simultaneous equations 

I /"(x. y) = ).g"(x, y) ,1 f,(x, y) = ).g1(x, y) 
g(x, y) = C, 

to be solved for three unknowns x, y, A.. 
• EXAMPLE 1 Find the largest and smallest values of f(x, y) = x + 2y on the 
circle x2 + y2 = 1. 

Sohltio11 Draw a figure (Fig. 3 ). As seen from the figure, f takes its maximum 
at a point in the first quadrant, and its minimum at a point in the third 
quadrant. Apply the method of Lagrange multipliers with 

f(x, y) = x + 2y. g(x, y) = x2 + y2, 
grad/ = (1 ,  2). grad g = (2x, 2y). 

The conditions (/". /,) = A.(g". g,� g(x, y) = I 
become 
Thus 

(I ,  2) = A.(2x, 2y), 

I 
X = li' 

1 y = 1 '  

xi + yi = 1. 

(2�r + ur = I . 
By the third equation, A.2 = i. 
The value A. = !JS yields 

A. =  ±!JS. 

I x =  JS' 
2 y = --- , JS 

5 f(x, y) = Js =JS; 

the value A. = -!JS yields 
I 

X = - -, JS 
2 y = - -. JS 

5 f(x, y) = - JS= -JS. 
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The largest value is .JS, the smallest, -JS. • 

• EXAMPLE 2 Find the largest and smallest values of xy on the segment 
x + 2y = 2, x � 0, y � 0. 
Sol•tioll Draw a graph (Fig. 4). Evidently the smallest value of xy is 0, taken at 
either end point. To find the largest value, use the multiplier technique with 

f(x, y) = xy, 
The relevant system of equations is 

(y, x) = A( 1, 2� 
Consequently x = 2)., y = )., and 

g(x, y) = x + 2y. 

x + 2y = 2. 

U + 2A = 2, A = l  
Therefore (x, y) = ( 1, !� /,... = /(1, !) = l 
As already noted, /min = f (2, 0) = /(0, 1 )  = 0. 

y 

2 x 

• 

• EXAMPLE 3 Find the largest and smallest values of x2 + y2, subject to 
x• + y• = 1. 
Sol•tion Graph the curve x4 + y4 = 1 and the level curves of /(x, y) = x2 + y2• 
See Fig. S. By drawing x4 + y4 = 1 accurately, you see that the graph is quite flat 
where it crosses the axes and most sharply curved where it crosses the 45° lines 
y = ± x. It is closest to the origin (x2 + y2 is least) at ( ± 1, 0) and (0, ± 1 � and 
farthest where y = ± x. 

The analysis confirms this. Use the multiplier technique with 

f(x, y) = x2 + y2, g(x, y) = x• + y•. 
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The relevant equations are 
(2x. 2y) = A.(4x3, 4y3), 

Obvious solutions are 
x• + y• = I. 

x = 0, y = ± l, ..t = !;  y = 0, x = ± l ,  ). = !. 
Thus the points (0, ± l )  and ( ± l ,  0) are candidates for the maximum or minimum. 
At each of these pointsf(x. y) = I. 

Suppose both x t= 0 and y t= 0. From 

2x = 4A.x3, 2y = 4A.y3 l follows x2 = y2 = 2A. .  

Hence ). =  l/(2x2) > 0. From x4 + y4 = 1 follow 

).2 = 
1 , 1 
2 '  ... = .Ji

' x2 = y2 = 1 = J2 = 1 
2). 2 J2 . 

Consequently, the four points 

are candidates for the maximum or minimum. At each of these points f(x, y) = 
x2 + y2 = 2/J2 = J2. Therefore the largest value is J2 . the smallest, I . 

EXAMPLE 4 Find the proportions of a right circular cone with fixed lateral 
area and maximal volume. 

So/11tion Denote the radius. height, fixed lateral area. and volume by r, h. A, and V. 
Then 

V = jxr2h and A =  !(2xr)jr2 + h2 
because r2 + h2 is the slant height. Since A is fixed, so is A2/x2• Therefore the 
problem is equivalent to maximizing 

f(r. h) = r2h subject to g(r, h) = r2(r2 + h2) = c. 
The Lagrange multiplier equations are 

2rh = ).( 4r3 + 2rh2 � r2 = 2A.r2 h, 
that is, h = (2r2 + h2 ))., Uh = I. 

To eliminate )., multiply the first equation by 2h: 
2h2 = (2r2 + h2)(2A.h) = 2r2 + h2, h2 = 2r2, h = rJ2 . 

Let us show that these proportions yield maximal volume. By the nature of the 
problem r > 0. Also h > 0 and the relation 

nrJr2 + h2 = A =  constant 
implies that r - JAix as h -o and conversely. 

As a function of r, the volume V is defined for 0 < r < JA/n. Furthermore, 
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h < Jr2 + h2, so as r-0 + ,  

V = !nr2h < !xr2Ji'r:f.-h2 = !rA-0. 
As r -J A/x from below, h -0 + and 

V = !7tr2h -!7t(A/7t) · 0 = 0. 
Thus V is a positive function of r on the interval 0 < r < � and V approaches 

0 toward the end points of the interval. Therefore V certain)Y has a maximum in 
the interva� but not necessarily a minimum. Since h = r.j2 represents the only 
candidate for either a max or a min, this condition must yield the maximal volume. 

Second De ivat ve Test As you might expect, there is a second derivative test 
for constrained extrema problems. The following test follows from the one discussed 
in Section 3; we leave its proof as an exercise. 

Second Derivative Test Givenf(x, y) and g(x, y� let (a, b, ..1.) be a solution 
of 

gradf(a, b) = A. grad g(a, b), g(a, b) = c. 
Set c = !,, - A.g,,. 
all evaluated at (a, b � and let 

Q(x. y) = Ax2 + 2Bxy + Cy2 
be the corresponding quadratic form. 

(a) If Q(x, y) is positive definite. then there exists � > 0 such that 

f(x, y) > f(a, b) 

whenever g(x, y) = c and 0 < l(x. y) - (a. b)I < �-
(b) If Q(x, y) is negative definite. then there exists � >  0 such that 

f(x. y) <f(a. b) 
whenever g(x, y) = c and 0 < l (x, y) - (a. b)I < �-

The test is inconclusive in all other cases. 
Let us try it on Example 3. There 

f (x, y) = xz + yz. g(x. y) = x4 + y4, I 

A.
= ./i' 

At one of the four possible points (a, b ), 
A = 2 - 12..1.a2 = -4, B = 0, 

Therefore A <  0, AC - B2 > 0, so Q(x, y) is negative definite. Under these 
conditions, the test guarantees as local maximum, which checks with Example 3. 
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EXERCISES 

Find the max and min of the function subject to the constraint, and state where they occur 
I xy on x2 + y2 = I 2 xy on ix2 + 4y2 = I 
3 x + y on lx2 + 4y2 = I 4 xy on x2 + xy + 4y2 = I 
5 xy2 on x2 + y2 = I 6 x + y2 on x2 + y2 = I 
7 x - y on the branch x > 0 of �x2 - !y2 = I 
8 x - y on 4x2 - !y2 = I 
9 x - y on the branch x > 0 of ix2 - b2 = I 

lO x - y on the branch x > 0 of x2 - y2 = I 
J t •  8y - (x - 3)2 on y2 = x  12* 
13 x3y on Jx + J.11 = I 14 
15 x + y on y2 = x2 + x3• x � 0 16 
17 y - 2x on x3 = y2• y � 0 18 

y - (x - I )2 on 4y2 - 3x = 0 
y/x on (x - 3)2 + (.v - 3)2 = 6 
x2 y3 on !x + b = I. - i  � x � 2 
x2y3 on x2 + y2 = 15. 

19 Find the dimensions of the right circular cylinder of fixed total surface area A. including 
top and bottom. with maximum volume. 

20 Find the dimensions of the right circular cylinder of fixed lateral area A with maximum 
volume. 

21 Find the maximal area of a right triangle of perimeter I .  
22 Find the dimensions of the right circular cone of fixed total surface area A. including 

the base. with maximum volume. 
23 Maximize x + .I' - J?+Y2. where x and y are the legs of a right triangle of area I .  
24 Maximize x + y - J x2 + y2 • where x and .v are the legs of a right triangle of 

perimeter 3 + 2J2 . 
25 Maximize (x2 + y2)(2x + y) on x2 + y2 � 9. 
26 Letf(x. y) = x312 + 2y312• Maximize I grad/ I on x2 + (y - 1 )2 � I. 
27 Given e1• · · · •  a,, in the plane. find the x on the circle l• I  = I for which 

Li Ix - •;12 is least. 
28 Derive the second derivative test for constrained maxima and minima from the second 

derivative test for unconstrained maxima and minima. 
29 Let 0 < p < q and h > 0. Find the max and min of xP + yP on � + y4 = h' for x � 0 

and y ;:::: 0. 
30* (cont.) Let 0 < p < q and x ;:::: O. y � 0. Prove 

_1_ {x' + y'} •I• 
< 
(xP + yl l/p 

< 
( x' + y') •I•. 2 1/p- l/4 2 - 2 - 2 

5. FURTHER CONSTRAINT PROBLEMS 

The constraint problem in three variables is to maximize (or minimize) a function 
f(x, y. z) subject to a constraint g(x, y, z) = c. Geometrically, this problem is 
completely analogous to the two variable problem treated in the preceding section. 
We try to find the level surface of f(x, y, z) of highest level that intersects the 
surface g(x, y, z) = c. See Fig. la. Each point of tangency is a candidate for a 
maximum or a minimum. At such a point, the normals to the two surfaces are 
parallel (Fig. lb). But the vectors 

grad/(x) and grad g(x) 
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point in the respective normal directions, hence one is a multiple of the other: 
grad /(•) = ). grad g(x) 

for some number )., provided grad g(x) =I= 0. This observation leads to a practical 
method for locating possible maxima and minima (proof omitted). 

(a) To find the highest level surface 
of f that meets g = c. 

common direction 
of nonnals 

,,J,, r ·  r ... 
I ' 

(b) The highest level f= fmax and g = c are 
are tangent at their common contact point. 

Fig. 1 Lagrange multiplier rule 

Lagrange Multiplier Rule To maximize (minimize) a function f(x. y. z) 
subject to a constraint g(x. y. z) = 0, solve the system of equations 

g(x, y. z) = 0 
in the four unknowns x. y. :. ).. Each resulting point (x. y, z) is a candidate. 

In applications. the usual precautions concerning the boundary must be observed. 

• EXAMPLE 1 Find the points on the ellipsoid h2 + y2 
+ i-z2 = I nearest to 

and farthest from the origin. 
Solution The problem calls for the extrema of 

f(x. y. :) = x2 + y2 + z2 subject to g(x, y. z) = �2 + y2 + iz2 = I .  

Now gradf = (2x. 2y. 2:) and grad g = (jx. 2y. !z), 
so according to the Lagrange Multiplier Rule, we must solve the equations 

(2x, 2y, 2z) = ).(jx. 2y. !z), �x2 + y2 + !z2 = J ,  

that is, 2x = j).x, 2y = Uy. 2z = !..tz. �2 + y2 + iz2 = I .  

A t  least one o f  x. y. z is non-zero. I f  x =I= 0, then the first equation implies ). = 9;  
hence the second and third equations imply y = z = 0. Now by the last equation. 
x2 = 9, x = ± 3. Thus the points ( ± 3, O. 0) are candidates for extrema. 
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If y '# O. then the second equation implies ,t = 1, which leads in the same way to 
candidates (0. ± l .  0). If z '# O. then A. = 4 and the candidates are (0, 0, ±2). Since 

/( ± 3, o. 0) = 9, /(0, ± 1, 0) = 1, /(0. 0, ±2) = 4, 

the max distance is J9 = 3, the min is 1. • 

Remark Compare this procedure with the previous solution of the same problem, Example 3, 
p. 809, and you will see the advantage of the multiplier method. 

• EXAMPLE 2 Find the volume of the largest rectangular solid with sides 
parallel to the coordinate axes that can be inscribed in the ellipsoid 
x2 + ll'2 + iz2 = 1 .  

; 

Fig. 2 

Solution As Fig. 2 shows, one-eighth of the volume is xyz, where x > 0, y > 0, z > 0. 
Hence it suffices to maximize 

f(x, y, z) = xyz subject to g(x, y, z) = x2 + !J2 + !z2 = I .  

Apply the Lagrange Multiplier Rule by setting grad/ =  A. grad g and g = 1 :  

(yz, zx, xy) = A.(2x, jy, !z), x2 + b2 + iz2 = l ,  
that is, yz = Ux, zx = j..ty, xy = !A.z. x2 + !y2 + !z2 = I. 
To solve these equations. multiply the first two and cancel xy: 

z2 = t,.l2• Likewise x2 = !A.2• y2 = A.2• 
(This is valid because if x or y is zero, then the volume is 0; not for us.) 
Substitute into the fourth equation: 

!...t.2 + !...t.2 + !A.2 = l, ...t.2 = 3, hence x2 = -!. y2 = 3, z2 = �. 
Therefore /(x, y, z}2 = x2y2z2 = i. /...,. .. = iJ3.  
The maximal volume is 8 times this: v...,. .. = 11-./3 . • 



5. Further Constraint Problems 81 9  

Remark Another way of solving for x, y. z, A. is to solve the first three equations for A. and 
equate the results: 

A. = yz = 9zx 
= 

2xy
. 2x 2y 2 

It follows easily that y2 = 9x2 and z2 = 4x2• Substituting these values into the fourth 
equation, we find 3x2 = 1. x2 = !. etc. 

Two Constraints Suppose the problem is to maximize (minimize)/(x, y, z� where 
(x, y, z) is subject to two constraints, g(x, y, z) = a  and h(x, y, z) = b. Each constraint 
defines a surface, and these two surfaces in general have a curve or intersection 
(Fig. 3a). A candidate for a maximum or minimum of/(•) is a point x where a level 
surface or f is tangent to this curve or intersection (Fig. 3b). The vector grad /(•) 
is normal to the level surface at x. hence normal to the curve. But the vectors 
grad g(x) and grad h(x) determine the normal plane to the curve at x. Hence for some 
constants A. and µ, 

grad/(•) = ,{ grad g(x) + µ grad h(x). 

I increasina 

\ ,.:,7 -

(a) Two constraints detennine a curve. 
(b) The highest level of f that meets 

the cune is tanaent to it. 

Fig. 3 Lagrange multiplier rule ror two constraints 

Remark The existence of such multipliers A. and µ presupposes that grad g ,,;. O. grad h ,,;. 0, 
and that neither is a multiple of the other. 

Lagrange Multiplier Rule To maximize (minimize) a function f(x, y, z) 
subject to two constraints g(x, y, z) = a  and h(x, y, z) = b, solve the system or 
five equations jU.,.J,,.fz) = .t(gx . g,. g=) + µ(hx , h, , h:) 

1 g(x, y, z) = a, h(x, y, z) = b 
in five unknowns x, y, z, A., µ. Each resulting point (x, y, z) is a candidate. 
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EXAMPLE 3 Find the maximum and minimum of/(x, y, z) = x + 2y + z on 
the ellipse x2 + y2 = l ,  y + z = l .  

z 

plane 
y + z  = I  

cwve of intenection: 
ellipse 

I 

cylinder ) 
x2 + y2 = I  

Soh:tion The ellipse is the intersection or the cylinder x2 + y2 = l and the plane 
y + z = l .  See Fig. 4. Maximizing f(x, y, z) on the ellipse is equivalent to 
maximizing /(x, y. z) subject to the constraints g(x, y, z) = l and h(x, y, z) = l, 
where 

g(x, y, z) = x2 + y2 and h(x. y, z) = y + z. 

According to the Lagrange Multiplier Rule, the equations to be solved are 

From the first equation. 

l ( l , 2, l) = ).(2x. 2y, O) + µ(O. l .  l )  
x2 + y2 = l, y + z = l. 

l = 2).x, 2 = 2).y + µ, l 
1 = µ; hence x = il' 

Therefore ).2 - � ). = + J2 . - 2 '  - 2 
The solution ..l. = !J2 yields x1 = HJ2 , !J2 . 1 - !J2 ). 
The solution ..l. =  -!J2 yields x2 = ( - !Ji ,  -!J2 , 1 + !J2 ). 
These are the only candidates for maxima or minima. But /(x1)  = 1 + J2 and 
f (•2) = l - J2. Therefore 

/....,. =/(X1 ) = l + J2 and /min =/(X2) = 1 - .ji. . • 
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EXERCISES 

Find the max and the min, and the points where they are taken 

l 

3 

4 
5 
6 

7 

8 

9 

10 

2x + y - Sz on xl + yl + zl = 1 2 xl yl zl x + y + z  on - + - + - = 1 al b1 cl 
l 4 9 x + y + z on - + - + - = l, x > 0, y > 0, z > 0 x y z 

xy1z3 on x + y + z = 3, x � 0, y � 0, z � 0 
xyz on x1 + yl + 3z2 = 5 
�yz on 4x + 2y + z = 12, x � 0, y � 0, z �O 

x y z xyz on - + -b + - = l. x � 0, y � 0, z � 0, where a. b, c > 0 a c 
x• + y4 + z4 on x1 + y1 + z1 = l .  

Show that the maximum or ax + by + cz subject to x1 + y1 + z1 = r1 is rp+b1 + c1. 
Use Lagrange multipliers. Assume (a, b, c) # O. 
(cont.) Obtain the same conclusion by means or vectors and the Cauchy-Schwarz 
inequality. 

Use the result of Ex. 9 to maximize 
2x - 2y + z II 12 

ax + by + cz 
1 + xl + yl + zl e.a:i+,l+:i 

13 Find the rectangular solid of fixed volume with minimum surface area. 
14 Find the rectangular solid of fixed total edge length with maximum surface area. 
15 A silo is built in the form or a right circular cylinder topped by a right circular cone. 

What dimensions will give a given volume with the least possible surface area? 
16 Given e1, • • • •  e,, in space, find the point x of the plane x • c = p such that 

Ii Ix - •i 11 is least. Assume I c I = I. and express your answer in terms of 
• = n_ ,  :E•; · 

17 Maximize x1y2z2 on x1 + y1 + z1 = ,2. 
. . JC:::. x + y + : 

18 (cont.) Prove the mequahty v xyz S 3 for x > 0, y > 0, z > 0. 

19 Prove the inequalities -!(x1 + y1 + z1) s xy + yz + zx s x1 + y2 + z2• 

20 Let e1• • • • • e,, be points of space. Set • = n- • Ii •J and assume • # O. Find the 
points x of the unit sphere I JI I = l that yield the max and min of LI  JI - •d 2• 

21 Use Heron's formula and Lagrange multipliers to maximize the area of a triangle with 
fixed semi-perimeter s. 

22 Find the maximal area in Fig. 5 if the perimeter is 4 + 2j3 . 
23 Prove that cot x - l/x is strictly decreasing for 0 < x < n. 

24• (cont.) Let x, y. z be the angles of a triangle. Find the maximum of 

sin x sin y sin : 
xy: 

and where this maximum is taken. 

Find the point of the first octant nearest the origin and on the surface 

25 xyz = 1 
28 x3 + 3yz = 3  

26 xyz2 = l 
29 x(y1 + z1) = I 

27 x2 + yz = l 
30 xy1z3 = 6J3 . 
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31 Let 0 < p < q. Find the maximum and minimum of xP + yP + zP on the surface 
x• + y• + z• = b' where x � 0, y � 0, and :: � 0. 

32 (cont.) Let 0 < p < q and x � 0, y ;:::: 0. = ;:::: 0. Show that 

(xP + �P + ;:P) 11p � (x' + �· + z') 11, 
33 Find the max and min of F+y1 + z1 on x3 + y1z = 62, x ;:::: 0, y � 0, z � 0, 

and where they occur. 
34 Find the max of xyz on x2 + y3 + ::4 = lj, x ;:::: 0, y � 0, z ;:::: 0, and where it 

occurs. 

: 

parallel to hasc 

" I  

r 

Fig. 5 Fig. 6 

35• Find the maximal area in Fig. 6, provided x + y + z = 6k. [Hint Introduce the 
altitude and treat this as a problem in four variables with one constraint.] 

I I 
36• Suppose p > I, q > I, + - = I, a >  0, b > 0, c > 0, and a' + b• + c' = d•. 

p q 
Find the max of ax + by + cz on xP + yP + zP = rP, x � 0, y � 0, z � 0. 

Find the closest point to the origin 

37 on the line x + y + z = I, x + 2y + 3z = I 
38 on the ellipse x + y + z = 0, x1 + h2 + iz2 = 2. 

39 Find the maximum and minimum volumes of a rectangular solid whose total edge 
length is 24 ft and whose surface area is 22 ft2. 

40 Find the max of x on the circle x2 + y1 + z1 = I, x + 2y + 3z = 0. 
41 Find the min of 2x2 + y1 + z2 on the line 2x - y + z = I, x - 2y - z = 2. 
42• Find the max and min of x + y + z on the curve xyz = I, x1 + y2 + z2 = S, 

x > 0, y > o. z > 0. 
43 A rectangular solid has volume 30. The sum of the area of its base and the square of its 

height is 19. Find the max and min of the perimeter of its base. 
44 Find the maximal area of a right triangle of perimeter I by treating its three edge 

lengths as variables subject to 2 constraints. 

6. ADDITIONAL TOPICS 

In this section we complete some unfinished business of the previous sections. 

Equa ity of M ixed Par1a s We must prove thatfx1(a, b) = f,x(a, b) under the 
hypotheses that fx>• and f,,. exist at all points near (a, b) and are continuous at 
(a, b). 
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We consider the mixed second difference 

( 1 ) A =  [!(a + h, b + k} -/(a + h, b)] - [/(a, b + k} -/(a, b)] 
and its alternative form 
(2) A =  (!(a + h, b + k} -f(a, b + k}] - [f(a + h, b} -f(a, b}). 

We shall apply the Mean Value Theorem (twice) to ( 1 ). To do this, we set 
g(x) = f(x, b + k} -f(x, b). 

Then A = g(a + h) - g(a) = hg'(x1� 
where x 1 is between a and a + h. Next, 

g'(x , ) =h(Xl> b + k) -fx(xl> b) = kfx1(x" Y1� 
where y1 is between b and b + k. Hence 
(3) 
We apply similar reasoning to the second expression for A to obtain 
(4) 
where x1 is between a and a + h and y1 is between b and b + k. 

Now we take h = k � 0. By (3) and (4), 
(5) 

Let h --+  0. Then (x1, y1 )--+ (a, b) and (x1 , y1)--+ (a, b). Since'"' and /," are 
continuous at (a, b� we deduce from (5) that 

fx1(a, b) = /,x(a, b}. 

Error in  Taylor Approx1mat1on We shall now prove the boxed statements on 
pp. 801-2. The idea is to interpret the problem in such a way that we can use the 
error estimates on p. 800 for a function of one variable. 

Assume at first that • = 0; this will simplify the notation considerably. Now 
fix a point x in D. By convexity, D contains the entire line segment connecting 
0 and x, that is, D contains all points tx for 0 � t � 1. 

Set g(t) = /(tx}. Then g(t} is a function of one variable defined for 0 � t � 1 and 
g(O) =/(O� g(l} =/(x). 

Let us compute the first and second degree Taylor polynomials of g at t = 0. By 
the Chain Rule, 

g'(t) = fx(tx)x + /,(tx)y, g'(O) = fx(O)x + /,(O)y, 
g"(t) = fu(tx}x1 + 2fx1(tx�y + /11(tx)y2, 

g"(O) = fxx(O)x1 + 2fx1(0}xy + J,,(O)y1, 
g'"(r) = fxu(rx)x3 + 3/u1(tx}x1y + 3fx11(tx)xy1 + /,.,.,.(tx)y3• 
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From these calculations we see that 

Pt (x) = g(O) + g'(O). P2(x) = g(O) + g'(O) + !g"(O). 
Thus p1 (x) and p2(x) are the first and second degree Taylor polynomials of g(t) 
evaluated at t = 1. Therefore 

max i "(r) I l rt (x) l = l /(x) - p1 (x) j $  2� • 

max jg'"(r) I h(x) I = l /(x) - P2(x) I $ J !  · 

It remains to estimate jg"(r) I and l g"'(r) I . We have 

jg"(t) I $ M2 lx l2 + 2M2 lx l IY I + M2 1Y l2 = M2( 1x l + ly l )2, 

jg"'(r) I $ M3 lx l3 + 3M3 lx l2 IY I + 3M3 lx l IY l2 + M3 1Y l3 = M3( 1x l + l y l )3. 
Now we modify these estimates slightly as follows. From ( !x i - jy l )2 � 0 we have 

2 lx l  IY I $ lx l 2 + IY l 2• hence 

( jx l + jy l )2 = lx l2 + 2 lx l IY I + IY l2 $ 2( lx l2 + IY l2) = 2 l x l2-
Take the i power: ( lx l + IY l )3 $ 2312 l x j3. 
Therefore, l g"(r) I $ 2M2 l x l2• jg"'(r) I $ 2j2 M3 j x j3. 

Combining results we obtain 

This completes the proof assuming a = 0. In the general case, we define g(t) = 
/(a + t(x - a)). The proof proceeds as before, except that (x, y) is replaced by 
(x - a, y - b) and the partials off are all evaluated at a. 

The Second Derivative Test The second derivative test (for a minimum) was 
stated on p. 805, and its proof postponed until now. We require a preliminary 
lemma about positive definite quadratic forms. 

----, 
Lemma Let Ax2 + 2Bxy + Cy2 be a positive definite quadratic form. Then 
there exists a constant k > 0 such that 

Ax2 + 2Bxy + Cy2 > k(x2 + y2) for all (x. y) # (0, 0). 

Proof We are given A >  0 and AC - 82 > 0. We choose k > 0 so small that 

A - k > 0 and (A - k )( C - k) - B2 > 0. 

(Reason that g(A, C) = AC is continuous so 

g(A - k, C - k) - g(A, C) = AC > B2 as k - O+.] 



6. Additional Topics 826 

These inequalities imply that 
(A - k)x2 + 28xy + (C - k)y2 

is positive definite, that is, takes positive values for all (x, y) # (0, 0). This means 
Ax2 + 28xy + Cy2 > k(x2 + y2) 

whenever (x. y) ::;: (0. 0). 
Now we can prove the boxed statement on p. 805. To make the notation simple, 

let us take (a, b) = (0, 0). Then the second degree Taylor approximation of f at 
(0, 0) is 

f(x. y) = f(O, 0) + ![Ax2 + 28xy + Cy2) + r(x, y), l r(x. Y) I < h l x l3, 
where A = f:u(O, 0), etc. and h > 0 is a constant. Since Ax2 + 28xy + Cy2 is positive 
definite, the lemma provides a constant k > 0 such that 

Ax2 + 28xy + Cy2 � k lx l2• 
Consequently f(x. y) -f(O. 0) � !k l • l2 - h l• l3 = l• l2(!k - h l • I ). 

This irnpliesf(x. y) -f(O. O) > o, that is/(x. y) > f(O. o� provided O < l• I < 1k/h. 
Finally, for {J we may choose any number such that 0 < {J � !k/h and so small that 
the disk I• I < {J is contained in the domain of f(x. y). 
Remark The essential point in the proof is that for I x  I small. the positive definite 
quadratic form Ax2 + 2Bxy + Cy2 is much larger than the remainder r(x, y) because r is of 
third order: lr(x. y)I S h l • l3• 

The Saddle Point Test Before we prove the saddle point test (p. 807� we 
need another lemma about quadratic forms. 

Lemma Let Q(x. y) = Ax2 + 28xy + Cy2, and suppose AC - 82 < 0. Then 
there are points (x1• yi) and (x2 , y2) such that 

and 

Proof We assume A ::;:  0 and complete the square: 
Q(x. y) = Ax2 + 28xy + Cy2 

= A (x + � yr + AC� B2 y2 = A(x + � yr + C1y2. 

where (AC - 82) AC I = A - A-- = AC - 82 < 0. 

Clearly Q(l, 0) = A  and Q( - B/A, 1 )  = C1 
have opposite signs. 

The same argument applies if A = 0 but C #: 0. If both A = 0 and C = 0, then 
8 ::;:  0 since - 82 = AC - 82 < 0. In that case Q(x, y) = 28xy and Q( 1, 1 )  and 
Q(l, - 1) have opposite signs. 
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Now we can prove the boxed statement on p. 807. We take (a. b) = (0. 0) for 
simplicity and consider the Taylor approximation 

f(x. y) = f (0. 0) + !Q(x. y) + r(x. y). 
where Q(x. y) = Ax2 + 2Bxy + Cy2. Since 

AC - 82 < O. 
the lemma gives us points (x1• yi) and (x2 , y2) such that Q(x1, y i )  < 0 and 
Q(x2 . Y2) > 0. 

Consider (x. y) = (tx 1• tyi). where t > 0 and small. Then 

hence 

!Q(tx1, tyi } = !Q(x1 .  y1 )t2 = kt2• k < 0, 
lr(tx1 .  r.vdl < h(x, 2 + y, 2 )312,3 = h, t3, 

f(tx1• tyi )  -f(O, 0) � kt2 + h1 t3 = t2(k + h1t). 
Now ror t sufficiently small. t2(k + h1t) < 0. hence 

f(tx 1• tyi} <f(O. 0) 
for points (tx1, tyi )  as close to (0, 0) as we please. 

Similarly f(tx2 , ty2) > f(O. 0) for points (tx2 • ty2) as close to (0, 0) as we please. 
Therefore f (0. O) is neither a max nor a min or f 

u CtlOl"I hrG .. b A straightforward extension or the second 
derivative test applies to runctions of three (or more) variables. We shall state it 
only for a local minimum. The corresponding result for a maximum is obtained 
by replacing f by -f 

Second Derivative Test Let a be an interior point or the 
f(x. y. ::) such that fx(•) = f,.(a) = .f:(a) = 0. Suppose at a that 

fxx fxy fx: 
fu > O. fyx J,,,. fy: > 0. 

domain of 

Then f (a) is a strong local minimum of f(x). Precisely. there exists !J > 0 such 
that 

f(x) > f(a) whenever 0 < I x - a l < !J. 
For a strong local maximum the corresponding conditions are 

fu fxy fx: 
fu < O. f,.x !,,, /,,: < 0. 

f:x f:y f--

The proof is similar to the proof for two variables except that some more 
advanced linear algebra is involved. so we shall omit it. Note that the conditions 
for a max off are simply the conditions ror a min or -! 
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• EXAMPLE 1 Find all local minima of 

f(x, y, z) = x4 + y4 + z4 - l08x + 4y - 4z. 
Sohltio11 grad/ = (4x3 - 108, 4y3 + 4, 4z3 - 4), so grad/ = 0 only for (x, y. z) = 
(3, - 1, 1 ). All the mixed second partials equal zero. The pure ones are 
/"" = 12x2. f11 = 12y2,f:: = 12z2, so 

fxx{3, - 1, l ) =  108, /,1(3, - 1, l ) = 12, /::(3, - 1, l ) = 12. 

Therefore the second derivative test is satisfied: at (3. - 1, 1 ), 

fxx fxy 108 0 I !"" = 108 > 0, = = 108 . 12 > o. 
fyx /11 0 12 

fxx fxy Ix= 108 0 0 

/,x !,, !.,: 0 12 0 = 108 . 12 . 12 > 0. 

f:x !:, !:: 0 0 12 

Therefore the only local minimum of /(x. y. :) is 

/(3. - 1. 1 ) = 81 + 1 + 1 - 324 - 4 - 4 =  - 249. 
[It is relatively easy to show that f (x) - oo as I • I - oo, hence we have an 
absolute minimum.) 

There is a corresponding second derivative test for constrained minima which 
we shall just mention. Suppose/(x. y. z) and g(x. y, z) are given, and 

grad/(a) = A. grad g(a� 
Suppose these inequalities hold at a: 

g(a) = c. 

!"" - A.g"" > 0, 

!"" - A.g"" 

fyx - A.g.,x 

f:x - A9:x 

fxx - A.g"" 

fyx - Agyx 

fxy - A.gxy 
> 0, 

!,, - A.g,, 

fx., - A9x1 

fn - A.g,, 
!:., - A9:, 

fx: - A9x: 
!.,: - A.g,= 
f:. - A.g •• -· .. 

> 0. 

Then there exists cS > Osuch that/(•) > /(a) whenever g(x) = cand 0 < I• - a l  < cS. 

EXERCISES 

The second derivative test is inconclusive at (0. O. 0) for the following functions. Determine 
nonetheless if the function has a local max. local min. or neither at the origin 

I xl + yl + z• 2 xl + y2z2 3 x2 + y2 
4 x• + y2 - z6 5 x2 + y• + z6 6 xlylzJ 
7 x4 + y3z3 8 x4y4 - z5• 9 x4 + y2z2 

10 x3 + y3 + z3 I I  x4y6z3 12 x2y2z2• 
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Use the first and second derivative tests to find all local maxs and mins. 

13 - 2.x2 - y2 - 3z2 + 2xy - 2xz 
15 2.x2 + y1 + 2z1 + 2.xy + 2yz + 2zx 

+ x - 3z 

14 x2 + 2y1 + z1 + 2xy - 4yz 
16 x2 + 3xy + y1 - z1 - x - 2y + z + 3. 

Does the function have a local max, local min, or neither at (0, 0, O)? 

17 x1 + y1 + z1 + xy + yz + zx 18 x1 -+:- 4y1 + 9z1 - xy - 2yz 
19 -x2 - 2y1 - z1 + yz 20 x2 + y2 + 2z2 - lOyz 
21 x1 - y2 + 3z1 + 12xy ll 3x2 + y2 + 4z2 - xy - yz - zx. 

The next four exercises show that /,,, and /,,, are not necessarily equal if they fail to be 
continuous 

23 Sct/(O, 0) = 0 and 

f ( ) -
(x - y)(x, + y,) X, y -

xl + 11 

Show that/(x, y) is continuous everywhere. 
24 (cont.) Compute /,,. and!, at (x. y) '1' (0, 0). 

for (x, y) '1' (0, 0). 

25 (cont.) Compute /,,(0, 0) and /,(O, 0). Conclude that /,, and /, are continuous 
everywhere. 

26 (cont.) Compute /,,,(0, 0) and/,,,(O, O� 

Suppose /(x, y) has continuous second partials 

27 Assume /(x, y) = f(y, x� Prove f :u(c. c) = f,,(c, c) 
28 Assume /(x, y) = -f(y, x� Prove /,,.(c, c) • 0. 

29 The form x2 + 2.xy + 2y2 is positive definite so there is a k > 0 such that 
x2 + 2xy + 2y2 � k(x2 + y2) for all (x, y). Find the largest such k. 

30• (cont.) Solve this problem in general for a positive definite/(•) = ax2 + 2bxy + cy2• 
31 Suppose/(x, y) is a function of two variables and x = x(t) and y = y(t) are functions 

of time. Form the composite function g(t) = /(x(t� y(t)J. By the Chain Rule, 
fi(t) = f .Jx(t� y(t)).i(t) + f,,lx(t1 y(t)]Y(t). Show that 

ii = f:ux2 + 2/,,.,xy + /,,y2 + f,,.x + f,Y. 

32 (cont.) Suppose also that/,,(O, 0) = /,(O, 0) = 0, and that only curves x(t) = (x(t1 y(t)) 
are allowed which pass through (0, 0) with speed l at t = 0. Suppose for each 
such curve g(O) > 0. Show that fi(O) • 0 and /,,,,(0, 0) > 0 and /,,(0, 0) > 0. 

33• (cont.) Show also that/,,.(O, 0)/,,(0, 0) -/"1(0, 0)2 > 0. 
34 Suppose g(x, y) = Ax2 + 2Bxy + Cy2 and AC - 82 = 0. Conclude that g(x. y) = 

±(ax + by)2• 

7. M ISCELLAN EOUS EXERCISES 

Find the second degree Taylor polynomial 

x - y  x 
l arc tan -1-- at (0, 0) 2 1 at (3, 1 ). + xy - x  + y 
3 Given a function/(x, Y1 let u • x + y and v = x - y. Show that 

alf alf alf 
- - - - 4 -ox1 oy2 - OU av . 
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4 (cont.) Find all functions that satisfy the partial differential equation :7z -:;i - 0. 

5 1be period or a pendulum is approximately T • 2JC..JL/g sec, where L is its length in 
meters and g is the acceleration of gravity in m/ll:C2• Suppose relative errors of It and 
le are made in measuring L and g. S�ow that the relative error in T, up to second order, 
is 

!(It - le) - i{lt2 + 2Jlk - 31e2). 

6 Find all functions/(x, y, z) that satisfy 
iJx

iJ:� 
iJz 

= 0. 

A function is called harmomic if it satisfies Lapl8cea' e119tioB 
iJ2/ iJ2/ iJ2/ 
iJx2 + 

iJy2 + iJz2 = 0. 

Verify that the function is harmonic 
7 arc tan(y/x) 8 x sin x cosh y - y cos x sinb y 
9 x5 - 10x3y2 + Sxy4 10 e1J.s sin Sy cos 12z. 

I I  ln(x2 + y2) 12 l/Jx2 + y2 + z2 . 
13 Show that Laplace's equation in two variables, iJ2f /ox2 + iJ2/ /iJy2 ... 0, expressed in polar 

coordinates, becomes 

14 (cont) Show that the functions flt(x, y) • rA cos lc8 and ltt(x, y) - rA sin le8 
are harmonic for all integers le. 

15 There is a function z = /(x, y) such that z5 - xz4 + yz3 - 1 = O and /�l. 1) = 1. Find 
iJ2/ /ox oy at (l, l). 

16 Compute the maximum of xy2z3 on the sphere x2 + y2 + z2 - 1. 
17 Find the greatest distance from the ellipse 4x2 - 2xy + y2 - 1 to the x-axis. 
18 Use the first and second derivative tests to locate the point where /(x, y, z) = 

x3 + x2 + 4y2 + 9z2 + 4xy - 12zx has a local min. 
19 Find the maximum or x3y2(12 - x - y) in the first quadrant. 
20 Solve Ex. 19 by maximizing x3y2z subject to a suitable condition on x, y, and z. 
21 Find the largest possible area of a triangle of perimeter l, if one of its angles is «. 
22 Assume a, b, c > 0. Find the volume of the largest rectangular solid (with sides parallel 

to the coordinate planes) inscribed in the ellipsoid 

x2 Y2 z2 
2 + b2 + 2 = 1. a c 

23 Find the min of � + � + � + xyz for x > 0, y > 0, z > 0. Assume a > 0, b > 0, c > 0. 
x y z 

24• Find the largest A and the smallest B so that 

A(x4 + y4 + z4}3 .s (x' + y' + z')2 S B(x4 + y4 + z4)3 for all (x, y, 4 
25• Consider an ammonia synthesis reaction 

NJ + 3 H2 ;::::= 2 NH3 
at fixed pressure P and fixed temperature. Then P = ;c + y + z, where x, y, z are the 
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partial pressures or N2 , H2 , and NH3 respectively. In this situation it is known that 
z2/xy3 = 3k2, where k is a constant. Also, the concentration or each or the three 
ingredients is proportional to its partial pressure. The problem is to maximize z, so as 
much ammonia as possible is produced. 

26 A production prooess uses input materials X 1 ,  • • • •  x • .  and the output is a product Y. 
Let p1 be the (fixed) price per unit amount or X1 and x1 the amount or X1 used. Then 
the cost or producing Y is C = L p1 x1 • The amount of Y produced is y = f ( x 1, • • • • x.). 
We assume the prcMlllCtion r-ctiom f is homogeneous of degree 1 .  (In economics. this 
property off is called "constant returns to scale".) Suppose (x 1o • • • , x.) minimizes C 
subject to the constraint /(x1, • • · ,  x.) • k. and all x1 > 0. Prove the law of marp.al 
prGlluctnity: for each i, 

at (x 1t • · • , x.). 

(In a competitive market, C/k will be the unit price of Y.) (Hint Use Euler's relation, 
Ex. 9, p. 791.) 
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1 .  INTRODUCTION 

The Volume Problem In single variable calculus we discussed the problem of 
finding the area under a curve y = /(x) and above an interval [a. b]. Its solution 
led to the definite integral (also called the simple integral). Now we take up the 
problem of finding the volume under a surface z = f(x, y) and above a domain D 
of the x, y-plane (Fig. 1). This leads to a new kind of integral. called the double 
integral 

Fig. I Problem: To define and 
evaluate the volume 
of the space region 
0 � z �f(x, y� (x, y) in D. 

We attack the volume problem in basically the same way as we did the area 
problem. Assuming the volume of the region in Fig. 1 exists, we make reasonable 
approximations to it, then try to sneak up on the exact value by taking a limit. 

First, we partition the domain D into many small domains D., D2 , · · · , D • .  See Fig. 2a. In each D1, we choose a point (x1 , y1). Then we approximate that 
part of the region above D1 by a thin solid of height /(x., y1). Its volume is 

(height)(area of base) = f(x1 • y1) 1 D. j. 

831 
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y ! 

hc1ghl ..
f(x, , .I',) 

---- ---+-

(a) Partition of the domain into 
many small subdomains 

Fig. 2 Approximating the volume 

x 

(b) Long thin cylinder approximates part 
of the volume under the surface 

See Fig. 2b. The sum of these volumes. 
n 

2:J(x;. Y;) I Dd. 
i= I 

,. 

ought to be close to the desired volume provided the D;'s are small enough. 
Therefore. we look for a limit as the D;'s shrink smaller and smaller. If the limit 
exists. we define it to be the volume and denote it by 

ff f(x. y) dx dy. 

D 

So far everything looks practically the same as in a discussion of simple integrals. 
However, in two dimensions certain technical difficulties arise that do not exist at 
all in one dimension. For one thing, plane domains D can be much more 
complicated than intervals [a, b]. Consequently partitions of D into smaller domains 
can be nasty. Also there is the question of which functions are integrable. 

These matters certainly require attention, but we shall not attempt a full treatment 
of double integrals. That is a hard subject. best left to courses in advanced 
calculus or the theory of real functions. We hope to give enough of the discussion 
to convey the flavor of the subject. We shall try to justify intuitively the various 
properties of double integrals. and concentrate our energy on learning how to 
evaluate and apply double integrals. 

Domains The simple integral integrates a function /(x) over a closed interval 
[a, b]. But all closed intervals on the line look alike; if you've seen one. you've 
seen them all. In contrast. plane domains can be exceedingly complicated. We 
avoid difficulties by limiting attention to a restricted type of domain. which we 
shall call a domain of integration. Such domains are general enough for all 
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practical purposes. They are bounded (stay in a finite part of the plane-don't go 
off to infinity in any direction) and have reasonable boundaries. 

A domain of integration in the plane is a bounded domain D that includes all 
points of its boundary. Its boundary must consist of a finite number of graphs 
of convex or concave functions. 

Here .. graph of a convex function " means either 
y =/(xi a ::;  x ::; b, r(x) � 0 or x = g(yi c ::; y ::; d, g"(y) � 0, 

with a similar interpretation for "concave". Figure 3 shows some examples of 
domains of integration. 

I' )' 

x x x 
Fig. 3 Typical domains of integration 

'We shall be partitioning a domain of integration into smaller domains. 
Exactly what does it mean to say a domain is small? Certainly its area should be 
small, but that is not enough. For instance a rectangle with dimensions 106 and 
10- 1 2 has smaller area, yet is very long. We want small to mean that any two 
points of the domain are close together. 

As a measure of smallness, we define the radius of a domain D, written rad(D), 
as the radius of the smallest circle that includes D. See Fig. 4. Clearly 

I D I  S n[rad(D)]2. 
so I D  I is small if rad(D) is small. 

Fig. 4 Radius of a domain: 
rad(D) = r 
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Now given a domain of integration D, let n be a partition of D into subdomains 
D" D1, • · · ,  D • .  We define the .... of 0: 

mesb(D) == max{rad(D1� rad(D1� · • • , rad(D.)}. 
Just u for partitions of an interval, the smaller the mesh, the finer the partition. 

We are ready to define the double integral of a bounded 
function /(x, y) on a domain of integration D. Let n be a partition of D into 
subdomains D., D2 , · · · ,  D., and let i denote a choice of one point (x,. y1) in 
each subdomain D,. 1be corresponding approxlmadna un is 

• 
S(/, n. i) = 2:f(x, , Y1) ID1 I· 

1-1 
The function /(x, y) will be called integrable on D if  these approximating sums 
approach a limit u mesb(D)-o. 

Definition A bounded function /(x, y) on a domain of integration D is 
111t.,.we on D if there is a number L such that 

S(/, n. i) -L u mesb(D) -o. 

Precisely, if s >  0, there must exist 6 > 0 such that 

IS(/, n. i) - LI < B whenever mesb(D) < 6. 
Then L is called the •oable i11tearaJ of/(x, y) on D, and we write 

L =f.f 1 (x, y) dx dy - lim S(/, 0, i). 
mali(R)-+O 

D 

This theoretical definition is fine, but immediately two practical questions arise: 
(1) For what functions, if any, does the integral exist? (2) If the integral does exist, 
how do we evaluate it? 

1be answer to the second question is the business of Sections 2 and 3. A complete 
answer to the first question is too technical, but the following buic assertion coven 
most situations that arise in practice. 

Integrability of Contlnuoua Functions If /(x, y) is continuous on a 
domain of integration D, then /(x, y) is integrable on D, that is, the double 
integral 

exists. 

ff /(x, y) dx dy 
D 

We omit the proof. It is similar to but harder than the proof of the corresponding 
theorem for functions of one variable. It depends on a property of continuous 
functions called uniform continuity. 
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Remsk The theorem solves (at least theoretically) the volume problem for continuous 
functions f (x. y) > 0. However, the theorem dpes not require that f be positive. If f takes 
both positive and negative valub, the double integral represents an �bralc volume rather 
than a geometric volume. The volume between the surface z • /(x. y) and the x. y-plane 
counts positively where f > 0 and neptively where f < 0. 

Properties of the Double Integral Several basic properties of double integrals 
follow from the corresponding properties of approximating sums. just as they do 
for simple integrals. For instance, the formulas 

• • 

L kf(x, ,  Y1) I D1 I  = k L f(x,. Y1) ID1� 
1•1 1•1 

• • • 

L l/(x, .  y,) + g(x, . Y1)] I D, I = L f(x, .  y,) I  D, I + L g(x,, y,)I D, I 
1•1 f• 1 

imply the relations 

(1 )  u kf(x, y) dx dy = k u /(x, y) dx dy 

(2) fl [/(x, y) + g(x, y)] dx dy = fl f(x, y) dx dy + U g(x, y) dx dy. 

Next, suppose/(x, y) s g(x, y) on D. The inequality carries over to approximating 
sums: 

• • 

L f(x, ,  Y1) ID1 I  S L  g(x, , Y1) ID1I· 
1 I 

The relation carries over to the limit. 

If /(x, y) s g(x, y) on D, then 

(3) f j f(x, y) dx dy SU  g(x, y) dx dy. 

This inequality has all of the usual consequences. We next mention two inequalities 
that are most useful in making estimates: 

(4) I a /(x, y) dx dy Is u l/(x, Y)I dx dy 

(5) If l /(x, y)I  s M, then 

I fj f(x, y)g(x, y) dx dy I S M  fj lg(x, y)I dx dy. 



838 1 7. DOU BLE INTEGRALS 

In the next two sections, we shall evaluate double integrals. Meanwhile, we 
observe that one double integral is obvious, that of a constant function. 

ff k dx dy = k l DI. 
D 

This is clear because all the approximating sums have the same value : 

• • • 
L f(x" Y1) ID1I = L k lD1 I = k L I Dd = k l DI. 

I I I 
2. R ECTANGULAR DOMAINS 

_] 
How do we actually evaluate double integrals? In most cases, direct application 

of the definition is practically hopeless. (It is tough enough for simple integrals 
on intervals.) Fortunately, there is a way of reducing the problem to the evaluation 
of simple integrals. This method makes the double integral a practicaL as well as 
theoreticaL tool 

Let us avoid difficulties with domains by dealing throughout this section only 
with rectangular domains (Fig. I )  of the form 

D = { (x, y� where a :s;; x :s;; b and c :s;; y :s;; d }. 
y 

: = j(Y, I )  
d 

D 

c 
a b JC 
(a) Rectangular domain D 

(b) The correspondin1 volume problem 

The simplest way to partition a rectangular domain is into subrectangles. Take 
arbitrary partitions 

a =  Xo < X1 < X2 < . . .  < x,. = b and c = Yo < Yi < Y2 < · · · < y. = d 
of the intervals [a, b] and [c, d] and put together the corresponding parallel 
rulings of the plane (Fig. 2). The rectangle D is partitioned into mn subrectangles 
011,  • • · ,  D,.., where 

D11 = { (x, y� where x1_ 1 :s;; x :s;; x1 and YJ- l :s;; y :s;; y1 }, 



YJ- 1 

and 

y 

I I 

Di/ 
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I • 
x,,, = b x 

' 
x1- x1_ 1 

\ Y1-Y1- 1 

Fia. 2 Partition of D into subintervals D,J Fi&- 3 Typical term in the 
approximating sum: volume = 
/(�, . YJ)(x, - X1- 1XYJ - YJ- . ) 

Clearly rad(D11) equals half the diagonal of DIJ . It follows that rad(DIJ) is small if 
x1 - x1_ 1 and y1 - y1_ 1 are both small. 

Now choose any points x1 and y1 satisfying 

and 

Then (x1 , y1) is a point of DIJ . Form the corresponding approximating sum: 
"' " 

s_ = 2 2 f(x, ,  Y1)(x, - x,_ , )(Y1 - Y1- 1)· 
I• I j• I 

Each term in this sum is the (algebraic) volume of a thin rectangular solid (Fig. 3). 
The terms in the approximating sum can be added together in any order. Think 

of the mn terms as arranged in a rectangle with n rows and m columns. First 
add the i-th column (i fixed, and j running), then sum the column totals: 

S,,,,. = i ( i /(x, , Y1)(Y1 - Y1- 1 ) ) (x, - X1- 1 )· 
1• 1 J• I 

Now here is the crucial step. Look closely at the inner sum 
II 

2 f (x, • Y1)(Y1 - Y1- i ). j• 1 
It looks familiar. In fact, since x1 is constant in each term, this inner sum is an 
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" 
approximating sum for the integral f f(X1 , y) dy. 

t 

Note that one variable is held fixed and the other is integrated out. Thus 
" " _L f(x, , YJ)(YJ - YJ- i) � f f(x, , y) dy. 

J• 1 t 

Substitute in the approximating sum: s_ ::::: i (( f(X1, y) dy) (x1 - x,_ 1 ). 

I• 1 t 

Theory (omitted) says this is a good approximation if all x1 - x1_ 1 and y1 - y1_ 1 
are small. 

Again the expression looks like an approximating sum for a simple integral. To 
see this clearly, set 

Then 

" 
g(x) = f f(x, y) dy. 

t 
• • 

s_ ::::: 2 g(X1}(X1 - X1- 1 ) ::::: f g(x) dx. 
I •  1 • 

Putting everything together, WC have S ... � ( ( ( f(x, y) dy )dx. 
But s_ is an approximating sum for f J f(x, y) dx dy, 

so there is strong reason to believe that � f(x, y) dx dy = ( ( ( f(x, y) dy) dx. 
The right-hand expression is called an iterated integral or repeated integral. The 
value or the inner integral depends on x. In other words the inner integral is a 
function or x, so it makes sense to integrate it with respect to x. 

The above formula was derived in a non-rigorous way. However, the theory or 
double integration confirms that it is correct. 

!Iteration Fonnula Lctf(x, y) be continuous on the domain 

I D = { (x, y� where a �  x � b and c � y � d }. 
Then g(x) = r f (x, y) dy 

is continuous on [a, b] and ff f(x, y) �x dy = f ( r f(x,y) dy) dx. 
D 

Similarly ff f(x,y) dx dy = f ( f f(x,y) dx} dy. 
D 
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This result is a real breakthrough, for it reduces the calculation of double 
integrals to the calculation of simple integrals, something we are pretty good at by 
now. True, a rectangular domain is rather special, but we shall overcome that 
restriction in the next section. 

Volume by SI  c ing Before working some examples, let us take another intuitive 
look at the iteration formulas. Again we compute the volume 

V = f J /(x, y) dx dy, 

for /(x, y) > 0 and D a rectangular domain a s  x s b, c s  y s d. But this time we 
use a slicing technique. 

We fix a value of y and slice the solid by the corresponding plane parallel to 
the x, z-plane (Fig. 4a). 

d area 1-1 (  1 I 

-I 1- 11 
(b) The corresponding slab 

(a) Slice by a plane y = const. of volume "' A(y)h 

Fig. ' Volume by slicing 

Let A(y) be the area of the cross section, and let V(y) be the volume to left of 
the slice. Then V(c) = 0 and V(d) = V. To compute V(y) for general values of y, 
we need the basic relation 

dV 
dy = A(y). 

We justify this relation intuitively. The derivative dV/dy is the limit as h -O of 

V(y + h) - V(y) 
h 

For h very small, the numerator is the volume of a slab of width h and cross
sectional area approximately A(y). Hence the quotient is approximately A(y� so as 
h --+O, the limit of the quotient, dV /dy, is A(y). 

Now we find V by integrating dV/dy: 

V = f' �V dy = f' A(y) dy. 
c y c 
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But A(y� the area or the cross section (Fig. 5), can be expressed as a simple integral. 
Indeed, A(y) is the area under the curve z = /(x, y) from x = a to x = b. Thus 

b 
A(y) = J f (x, y) dx, 

• 

where y is treated as a constant in computing the integral. Hence once again the 
iteration formula appears: 

a 

V = JJ /(x, y) dx dy = ( ( ( f (x, y) dx) dy. 

area A(y) 

b 

z • f(x, y), y fixed 

Fia. 5 Area of the cross-section 

Examples The first three examples will have integrands of the special form 

/(x, y) = g(x)h(y). 
It is worth seeing what the iteration formula boils down to in this case: 

U f(x, y) dx dy = U g(x)h(y) dx dy = ( ( ( g(x)h(y) dy) dx. 
But g(x) is constant in the inner integration, so 

( g(x)h(y) dy = g(x) ( h(y) dy, Ji f(x, y) dx dy = ( (g(x) ( h(y) dy) dx. 
' 

But J h(y) dy is a constant, so 
� Jj f(x, y) dx dy = u: h(y) dy) (( g(x)dx) . 

ff g(x)h(y) dx dy = ( J: g(x) dx) ( r h(y) dy ). 

D 
where D = { (x,y� where a s  x s b and c =:;; y =:;; d} . 

• EXAMPLE 1 Find Jf x2y3 dx dy over 0 S x S l, 1 S y �  3. 
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So/,,tion 

ff x2y3 dx dy = u: xl dx) ( ( y3 dy) 
D 

= G x3 I:} u y' I:} = � (s; - �) = �. 
• EXAMPLE 2 Find ff r cos y dx dy over 0 � x � 1, !n $ y $ n. 

So/,,tion 

u excos y dx dy =  (( r dx) ( (2 cos y dy) 

• 

= ( r I] (sin y [,J = (e - 1 )( - 1) = 1 - e. • 

• EXAMPLE 3 Find JJ r- 1 dx dy over 0 $ x $ 1, -2 $ y $ - 1. 

So/,,tio11 

• EXAMPLE 4 Find V = Jf (x2y - 3xy2) dx dy 
over 1 $ x $ 2, - 1 � y � 1. 

So/,,tion Use the linear property of the double integral: 

Jf (x2y - 3xy2) dx dy = fJ x2y dx dy - 3 Jf xy2 dx dy. 
D D D 

Evaluate these two integrals separately: 

JJ x2y dx dy = (( x2 dx) (( / dy) = O; 

JJ xy2 dx dy = (( x dx) (f�/2 dy) = i · ! =  1. 
D 

Therefore v = 0 - 3 . 1 = -3. • 

Now we look at some examples where the integrand is not of the form g(x)h(y) 
or a sum of such functions. These examples require the iteration formulas in their 
general form. 
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• EXAMPLE I 

Sohdion 

For fixed x, 

Find ff dx dy over 0 s; x s; 1, 0 s; y s; 2. x + y  

ff dx dy =f 1 (f2 �) dx. x + y  o 1 x + y 
� 

_Y_ = ln(x + y) = ln(2 + x) - ln(l + 4 f 2 d r.= l 1 x + y , • • 

hence ff dx dy = f1 [ln(2 + x) - ln(l + x)] dx. x + Y Jo 
D 

But J 1n u du = u In u - u + C, 

hence ff dx dy = f 1 [ln(2 + x) - ln(l + x)] dx x + y Jo 
D 

= [(2 + x) ln(2 + x) - (2 + x) - ( I  + x) ln(l + x) + (I + x)] [ 
= 3 ln 3 - 2 ln 2 - 2 ln 2 = 3 ln 3 - 4 ln 2 = ln(27/l6). • 

Remark Note carefully the expression 

ln(x + y) l'-1
. 

, . .  

We wrote y = l and y = 2 because there were two variables. If we had written only l and 2. 
it would not have been clear how to evaluate ln(x + y). 

An important feature of the iteration formulas is that the iteration may be done 
in either order. Sometimes the computation is difficult in one order but relatively 
easy in the opposite order. 

• EXAMPLE I Find ff y cos(xy) dx dy over 0 s; x s; 1, 0 s; y s; 1t. 

Sollltion Here is one setup: 

The inner integra� 

f j = ( (( y cos(xy) dy) dx . 
• J y cos(xy) dy, 
0 

while not impossible to integrate (by parts� is tricky. Another procedure is iteration 
in the opposite order: 

f j = ( (f: y cos(xy) dx) dy. 
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Since y is constant in the inner integration, this can be rewritten as 

Now 

JJ = ( y(( cos(xy) dx
) 

dy. 
D f I } 1.x• I  Sin y 

cos(xy) dx = - sin(xy) = - · . 

0 Y .x•O Y 

Hence 
If 

[" sin y J" = Jo
y -y·- dy = 0 sin y dy = 2. 

D 
Another way of writing the solution: 

ff Y cos(xy) dx dy = f: y dy f: cos(xy) dx 

D [" (sin(xy) 1 1 ) J" = Jo
y Y 0 dy = 0 sin y dy = 2. • 

I ) 
Compute f /(x. y) dx and f f (x. y) dy 

• 0 • I 
I /(x. y) =- xy3 
3 /(x, y) = (2x - y - 1)' 

1 + yl 
5 f (x. y) = ,-+ xl 

Evaluate 

7 JJ (3x - l ) dx dy 

8 JJ t' dx dy 

9 JJ x2y2 dx dy 

10 JJ x3y3 dx dy 

11 JJ (x5 - y5) dx dy 

12 JJ (r2 - t''2) dx dy 

13 JJ (1 + x - 2y)3 dx dy 

14 JJ Jx + y + 2 dx dy 

15 
ff dx dy 

( 1  + x + y)2 

16 JJ sin(x + y) dx dy 

2 /(x. y) = r' 
4 /(x. y) = Jx + y + 2 

6 /(x. y) = x3y2 + Sx - 7y. 

- l s x s 2  O s y s s  

- t s x s l  0 s y s  In 2 

- l s x s t  - l s y s t 

- t s x s l - I S y S l 

O s x s l  O s y s  I 

O s x s t  O s y s t 

O s x s t  t s y s 2  

O s x s l  I S y S 3  

O s x s t  O s y s l 

O s x s !n O s y s !1t 
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17 ff ( 1  - 2x) sin(y1) dx dy O s x s l  O s y s l 

18 JJ:: dx dy l s: x s 2  l S: y S 4  

19 ff I: y1 dx dy O s x s 2  O s; y s; I  

20 ff xy In x dx dy t s x s 4  - t s y s 2  

21 fJ x ln(xy) dx dy 2 s x s 3 J s; y s; 2  

n ff r•1 cos 2x dx dy O s; x s •  I S y  S 2. 

Find the volume under the surface and above the portion of the x, y-plane indicated 

23 z = 2 - (x1 + y2) - 1  s; x S I - I s; y S I 
24 z = I - xy 0 S x S I 0 S y S l 
25 z = x2 + 4y2 0 S x S 2 0 S y S I 
26 z = sin x sin y 0 s x s x 0 s y s " 
27 z = x2y + y2x I s x s; 2 2 S y S 3 
28 z .. ( l + x3 )y1 - l s x s l - l s y s; l. 

29 Suppose f (x, -y) """ -f(x, y� Prove that H f  (x, y) dx dy = 0 on each rectangle of the 
form a S x s b, -c s y s c. Verify for /(x, y) = x2y3• 

30 Suppose /( -x, -y) = -/(x. y). Prove that IJ /(x, y) dx dy = 0 on each rectangle of 
the form -a S x s a. -b s y s  b. Verify for f(x. y) = (3x - 2y)5• 

31 Find the constant A that best approximates/(x, y) on the domain 0 s x s l, 0 s y s  l 
in the least squares sense. In other words, minimize 

ff [f(x, y) - AP dx dy. 

32 (cont.) Show that the coefficients of the least squares linear approximation A +  Bx + Cy 
to f (x, y) on the domain 0 S x s l, 0 s y s l satisfy 

A + !B + !C = JJ f dx dy, !A + !B + iC -= JJ x f dx dy, !A + iB + jC = JJ y f dx dy. 

3 DOMAll\i o c  1 lN E  N GRAPH� 

Let us venture away from the security of rectangles and consider double integrals 
over some harder domains. We shaJI discuss an important class of domains, 
harder than rectangles but not too hard. They are "4-sided .. domains, bounded on 
two sides by smooth curves and on the other sides by paraJlel lines. To be precise, 
they are described either by 

g(x) S y S h(4 a � x � b, or by g(y) S x S h(y� c � y � d, 

where g(x) and h(x) are smooth functions. See Fig. 1 . 
Sometimes we describe the domains in Fig. la by saying that for each fixed x 

from a to b, the variable y runs from g(x) to h(x). 
Let us examine the volume problem for such a domain. Suppose /(x, y) � 0 

is a continuous function on the domain 

D = { (x, y� where g(y) S x � h(y) and c � y � d}. 
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---�y = h(x) 

d 

y 

c 

" x b x 

(a) l(x) < y < h(x), a < x < b (b) l(y) < x < h(y), c < y < d  

Fis- 1 Domain between graphs 

The solid under the graph consists of all points (x, y, z) in space such that 
(x, y) is in D and 

0 :s; z :s;/(x, y). 
See Fig. 2. Its volume is 

z 

V = Ji f (x, y) dx dy. 

--,--1---- ---- -+---' c d ,. Lx = g (y) ------
I / I 0 

Fi&- 2 Volume problem for the solid 
0 � z �f(x, y), (x, y) e D 

We compute V by slicing as in the preceding section. We slice the solid by a 
plane y = constant and let V(y) denote the volume to the left of the plane (Fig. 3a). 
The area of the cross-section (Fig. 3b) is 

•Cl'> 
A(y) = J f (x, y) dx. 

f(l') 
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volume 
: 

: = f( v. y ), )' fixed 

area A(y) 

(a) Cross-section by a plane 
y = const. 

g(y) 

(b) Area of the 
cross-section 

Fis. 3 Solution by sectioning 

Again we argue intuitively that dV dy = A(y). 
For the derivative is the limit as h -o of 

V(y + h) - V(y) h 

ll(y) \' 

-! 1-11 
(c) Thin slab of 

volume -. A(y)h 

For h very small, the numerator is the volume of a thin slab (Fig. 3c) of width h 
and cross-sectional area approximately A(y). Hence the quotient is approximately A(y). 

It follows that V = f � dy = f A(y) dy = f (f :> f (x, y) dx) dy. 
We are led to the following iteration rules: 

I Iteration Formulas Lct/(x, y) be continuous on D. 
( 1 )  If D = { (x, y� where g(y) � x � h(y) and c S y  S d }, then 

ff f(x, y) dx dy = f(f:f(x, y) dx) dy. 
D 

(2) If D = { (x, y� where g(x) � y � h(x) and a �  x S b}, then 

ff f(x, y) dx dy = J:U:>f(x, y) dy) dx. 
D 



3. Domain between G raphs 847 

Remark In the theory of double integrals, these formulas are proved via approximating 
sums. 

• EXAMPLE 1 Find the volume under the surface z = x + y and over the 
domain of the x, y-plane bounded by the y-axis, the parabola x = y2, and the lines 
y = l and y = 2. 

J 

(a) The domain 

4 x 

Fix. 4 A volume problem over the domain x 

D = { (x, y) I 0 � x � y2, I � y � 2 }  

2 

z 

(b) The solid 

z = x + y 

2 J' 

Sollltiot1 First draw the domain (Fig. 4a). It doesn't hurt to draw the solid also 
(Fig. 4b ). The domain is the region between the graphs x = 0 and x = y2 for 
I � y � 2. Therefore 

V = ff  (x + y) dx dy = ( (J :J
(x + y) dx) dy. 

D 

(This is the crucial step. Study the set-up carefully and be sure you understand it.) 

Now J 'l (x i+ y) dx = !x2 + xy lx•yl = !i' + y3• 0 x•O 

so v = ( (!J4 + y3) dy = nrys + iy• 12 1 1 
= nr(32 - 1 )  + !(16 - 1 )  = tA + .y = w. • 

• EXAMPLE 2 Find the volume under the surface z = e-<x+11, and over the 
domain of the x, y-plane bounded by the x-axis, the line y = x, and the Jines 
x = ! and x =  1. 

So"'tion First draw the domain and the solid (Fig. 5). By iteration, 

V = ff  e- lx+,i dx dy = J 1 (Jxe-<x+7l dy) dx. 
D 1/2 O 
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I' ( 1 .  I l 

(a) 0: O<y <x, 1 <x <  I 
(b) The solid 

Now f t'-(x+,, dx dy = J e-xe-1 dy = e-x J e-1 dy = -e-x(e-') = e-x - e-2x, 
x x x ,,-x 
0 0 0 ,-o 

SO V = J 
1 (e- x - e-h) dx = {!e- 2x - e-x) I ' 

•n •n 
= !e-2 - Je- • + e- 112 = !e-2( 1 - 3e + 2e3'2). 

• EXAMPLE S Find the volume under the surface z = 1 - x2 - y2, lying over 
the square with vertices ( ±  l ,  0) and (0, ± 1). 

(a) D: 0 < y < I - x, 0 < x < I 

(b) The first octant part 
of the solid 

I l 

SohdiOll First draw the square (Fig. 6a). Observe that by symmetry, it suffices to 
find the volume over the triangular portion in the first quadrant, and then quadruple 
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it. The corresponding quarter of the solid is shown in Fig. 6b. By the iteration formula, 

V = 4 Jf ( 1 - x2 - y2) dx dy 
D 

= 4 ( (J 1 -" ( 1 - x2 - y2) d y) dx = 4 f 1 [(y - x2 y - !f 3) I'= 1 -" ] dx 
• 0 0 0 ,-o 

I 
= 4 f  [(1 - x) - x2(1 - x) - !(1 - x)3] dx 

• 0 
I 

= 4 f [ 1 - x - x2 + x3 - !( 1 - x )3] dx 
• 0 

= 4[ 1 - ! - ! + * -ii] = 4 . ! = �· 

Ahm1ati1Je So/11tion (using symmetry) The surface z = 1 - x2 - y2 is unchanged 
under rotation around the z-axis, so the x and y axes can be rotated. Rotate them 
45°. The resulting domain is shown in Fig. 7. 

I 

- · � V!) c 1 I - · ! �) 
D 

y 

� "2 ) ( ! fi. 

Fig. 7 The domain after a 45° rotation 

Accordingly, 

v = JJ ( 1  - x2 - y2) dx dy = f j dx dy - f j x2 dx dy - .u y2 dx dy. 
D 

By symmetry, ff y2 dx dy = ff x2 dx dy, 
IS IS 

hence ( Ji12 ) ( /2/2 ) V = 2 - 2 ff x2 dx dy = 2 - 2 f x2 dx f dy 
·.; • - ./i/2 • -.fill 

= 2 - 2 !x3 (2.j2) = 2 - 2(i.j2)(J2) = l ( IJ'i/2 ) - ./2/2 
• 

• EXAMPLE 4 Find the volume under the plane z = 1 + x + y, and over the 
domain bounded by the curves x = !. x = l, y = x2, y = 2x2• 
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I 
2 

x 

(a) D: xl <; y <; 2x2, � <; x <; I 

: 
: = l + � + I  

(b) The solid 

Sohlti01t The domain and the solid are sketched in Fig. 8. Since the domain is 
between the graphs of two functions, the iteration formula applies. First integrate 
on y: 

I ( 2.x• ) V = Jf ( I + x + y) dx dy = J J ( 1  + x + y) dy dx. 
D 1/2 .x1 

The inside integral equals 

so 

(y + xy + !J2) 1::::1 = (2x2 + 2x3 + 2.x") - (x2 + x3 + !x") = x2 + x3 + ix" 

V = J (x2 + x3 + ix4) dx = {!x3 + ix" + /ox5) 
I ll 1/2 1/2 

= H + ! + /o) - iH + i + �) = ff. 
EXAMPLE I Find JJ xy dx dy 

over the domain D bounded by y = x and y = x2• 

• 

Sol•ti011 The first problem is to describe D in a way that shows the limits of 
integration. The line y = x and the parabola y = x2 intersect at (0, 0) and at (1, 1). 
This information and a drawing (Fig. 9a) suggest that D is the domain between 
y = x2 and y = x for 0 s x s l. Therefore 

Jf xy dx dy = ( (( xy dy) dx = ( (!xr 1'•.x ) dx 
D o .x1 0 7=.x1 



( I .  I )  

(a) 0: x2 < .v < x, O < x  <; I  
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I' 

( I .  I )  

(b) 0: y <; x c; ..;y, O <; y <; I 

Fie. 9 

Ahnnati11e Sol11tion The domain D may be thought of as bounded by the curves 
x = y (below) and x = .JY (above), where 0 :::;; y :::;; 1. See Fig. 9b. For each y, the 
range of x is y :::;; x :::;; Jy. Therefore the set-up for the iteration is 

f! xy dx dy = ( ((\y dx) dy = ( (!x2y [:) dy 
1 

= r !(Y2 - l> Jy = !H - !) = -A · • · o  
EXERCISES 

Compute the volume under the surface z = f(x, y) and over the indicated domain of the 
x. y-plane I z = I 
2 z = y 
3 z = x 
4 : = y2 sin nx 

Fig. 10 

( I , t'l 

Fig. 10 (Exs. 1-4) 

1! � :  ;1�2 
2y ! 

1 1  z = l/x3y3 
12 z = x2e"' 

Fig. 12 

5 z = x2 
6 z = xy 
7 z = Jxy 
8 : =  1/( 1  + x2) 

y 

Fig. II (Exs. 5-8) 
13 z = ye" l 
14 z = x2y IS z = y3 Fig. 13 
16 z = xJ x2 + y•. 

t The table of dl!jinite integrals inside the front cover will prove useful for this and subsequent eltercisc 
sets. 
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I' 

I I' = \' 
I = \ 

Fis. 12 (Exs. 9-12) Fig. 13 (Exs. 13- 16) 
Express JI f(x, y) dx dy as one iterated integral (not a sum) over the domain indicated, 
showing suitable limits of integration. Do it in two ways if possible 
17. triangle, vertices (0, O� (0, 2� (3, 3) 
18 triangle, vertices (-2, 5� (- 1, l ), (5, 5) 
19 parallelogram, vertices (-4, l� (0, I� ( - 3, 3� (I, 3) 
20 trapezoid, vertices (0, 2� (1, 4� (4, 4� (8, 2) 
21 the domain bounded by the x-axis and the uper half of the circle with center (5, 0) and 

radius 5. 
ll the domain bounded by the lines x E 3 and y = 1 and the hyperbola xy = 1 
23 the domain in the first quandrant bounded by the ellipse x2 + iy2 = 1 and the line 

y = 3 - 3x 
24 the domain bounded by the parabola y = x2 and the line 5x + y = 14. 

Compute the double integral over the domain bounded by the given curves 

25 fJ xr' dx dy x = I  x = 3 xy = 1 xy = 2 

26 fJ x2y dx dy .r = 0  x = O  x = (y - 1 )2 

27 JJ (x3 + y3) dx dy x2 + y2 ... I 
28 fJ (x + y)2 dx dy x + y = O  y = x2 + x 

29 fJ (1 + xy) dx dy y = O  y = x  y = l - x 

30 ff rJ dx dy X = l x = 2 y = x  y =  xl 

31 JI x2y dx dy y =  x' y =  x2 

32 fJ x4y2 dx dy Ix +  YI =  1 I x - YI =  1 

33 fJ ( l  + x) dx dy x + y = O  x2 + y = 1 
3" fJ x dx dy y = x  X E 3  y = x2 - x. 

Justify the formulas 

3� ( ((f(x, y) dy) dx -( ((f(x, y) dx) dy 
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36 r.u:� f(x, y) dy) dx = ((J :�:�:/(x, y)dx) dy. 
Interchange the order of integration 

37 ( ((;(x, y) dy) dx 

4. A R B ITRARY DOMAINS 

The domains studied in Section 3 are fundamental in double integration. They 
are simple enough that the iteration formulas hold; you can compute double 
integrals on them. But at the same time these domains are complicated enough 
that each domain of integration (p. 833) can be partitioned into a finite number 
of them. 

Each domain of integration D can be partitioned into a finite number of 
domains of integration 

D1• D2 • · · · • D,.. 
each a domain between the graphs of two functions. 

Some examples are shown in Fig. l .  

.r 

a (' 
(a) 

b :c 

y 

d 

(' 

h 

a 

Fig. I Arbitrary domains 

x 

(b) 

This is the key to integration over arbitrary domains. Split the domain, prefer
ably using horizontal or vertical line segments, into subdomains, each between the 
graphs of two functions. Then apply iteration on each subdomain and add the 
results. In Fig. la the domain splits into two nice domains D1 and D2 . The 
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integration set-up is 

ff f (x, y) dx dy = ff f (x, y) dx dy + JI f (x, y) dx dy 
D D, D2 

= ((J:J(x, y) dy) dx + ( u::f(x, y) dy) dx. 
The set-up for Fig. lb is 

u1(x. y) dx dy = (U + U + U)f(x. y) dx dy 

= r (((1f(x, y) dx) dy + f' ((11J(x. y) dx) dy + r ((111/(x, y) dx) dy. 
• flJr) c 1C1I a l(J) 

• EXAMPLE 1 Set up ff f(x, y) dx dy as an iterated integral over the domain 
in Fig. 2a. 

i.---------.. c ::!. ::!l  
( 1 , 2)  

0 

'( x 

(a) The domain (b) The partition 

Sol•tio• Partition D by a vertical segment through (1, O). See Fig. 2b. Domain 
01 is the domain between y = Ji - x2 and y = 2 for 0 � x � l, and 02 is the 
(rectangular) domain between y = 0 and y = 2 for 1 � x � 2. Therefore 

J j f (x, y) dx dy = (U + U) f(x, y) dx dy 

= ( (J 2 f(x, y) dy) dx + ( (J 2 f(x, y) dy) dx. 
0 .lr=;I l 0 

AhDlllllifle Sobttioll Partftion with a horizontal segment: 

ff f (x, y) dx dy = ( (J 2 /(x, y) dx) dy + J 2(J 2 f (x, y) dx) dy. • 

D O :,tr="'7Y l O 
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Domains and nequalities A domain in the plane (or space) is frequently 
specified by a system of inequalities. A single inequality /(x. y) � 0 determines a 
domain whose boundary is /(x, y) = 0. To find the domain described by several 
such inequalities, draw the domain each describes. then form their intersection. 

• EXAMPLE 2 Sketch D = { (x. y), where x + y � 0 and y � x2 + 2x} and set 
up a double integral on D. 

So/11tion The first inequality determines the domain below (and on) the line 
x + y = 0. See Fig. 3a. The second inequality determines the domain above (and on) 
the parabola y = x2 + 2x. See Fig. 3b. The line and parabola intersect at (0, 0) and 
( - 3, 3). The domain D, satisfying both inequalities, is shown in Fig. 3c. Clearly 
D is a domain between two functions of x. hence 

(a) x + y ...;; 0 (b) y ;;;. x2 + 2x 

Fia. 3 

x 

• 

(c) Both 

• EXAMPLE 3 . Sketch the domain D specified by 0 :=::;; x :=::;; y :=::;; b. Equate the 
two corresponding iterated integrals. 

So/11tion The region is described by the three inequalities 

x � o. y � x. y 5 b. 

Draw the corresponding domains and take their intersection, a triangle (Fig. 4 ). 

y I' I' 

x ;t. 0  
)' ...;; b 

x 

Fig. ' 
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The domain can be considered in two ways as the domain between two graphs: 

D = { (x, y� where x :s;; y 5 b and 0 :s;; x :s;; b }, 
D = { (x, y� where 0 5 x 5 y and 0 :s;; y :s;; b }. 

Correspondingly, f J f (x, y) dx dy = f: (( f(x, y) dy) dx 
and 

Therefore 

ff f (x, y) dx dy = (' (J' f(x, y) dx) dy. 
D O O 

( (( /(x, y) dx) dy = ( (( f(x, y) dy) dx. • 

Remark A special case is interesting. Suppose f(x, y) = g(x� a function of x alone. Then 
the right-hand side is 

Therefore 

. ( . ) . ( . ) . J J g(x) dy dx = J g(x) J dy dx = J (b - x)g(x) dx. 
0 z 0 Jr 0 

. ( , ) . J J g(x) dx dy = J (b - x)g(x) dx. 
0 0 0 

This formula expresses the repeated integral of a function of one variable as a simple 
integral. 

Domains are sometimes described by inequalities involving absolute values. To 
draw such a domain, find its boundary, and be sure to take into account all 
possible signs. 

EXAMPLE 4 Sketch the domain: 
(a) lx l + IY I  S 1 (b) IY I  S x2 and lx l S 1. 

Sohltiotl (a) The boundary satisfies Ix I + I y I = 1. In each quadrant this has a 
different expression, for instance, in the fourth quadrant it becomes x - y = 1. 
Thus four lines bound the region: 

x + y = 1, -x + y = 1, -x - y = 1, x - y = 1. 

These lines cut the plane into 9 pieces (Fig. Sa). Which is the right one? Obviously 
the central square because (0, 0) satisfies Ix I + I y I S 1 ;  alternatively because 
lx l + IYI 5 1 certainly describes a bounded region, and the square is the only one 
that is bounded. 

(b) The boundary consists of I Y I = x2 (that is, two parabolas y = x2 and 
-y = x2) and Ix I = 1 (that is, two vertical lines x = - 1, x = 1 � This is enough 
for a sketch (Fig. Sb). 

Remark There are several accepted ways of writing iterated integrals. The following 
string of equalities will give the idea: 

( ((2 f(x, y) dy) dx = ( dx (2 f(x, y) dy = ( (2 f (x, y) dy dx. 
l 1l l 1l l 1l 
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y 

x 

/ 

/ 
(a) l x l + ly l<:  I (b) l y l<; x2 and l x l<  I 

Fig. 5 

Element of Are If D is a domain of integration, then fj 1 dx dy = area(D). 

x 

For this reason the symbol dx dy is sometimes called the element of area in 
rectangular coordinates. We may think of dx and dy as tiny displacements parallel 
to the coordinate axes. Thus in a fine partition of D by lines parallel to the 
axes, the typical subdomain is a rectangle of area dx dy. See Fig. 6. The double 
integral adds up these little bits of area to give the total area of D. Since we 
picture dx and dy as lengths, dx dy then has the dimension of area, that is, length 
squared. 

)' � �--,,. '"""-"'-_I 
-, I 
dy 

, " 

' "' 
- --J 1-dx 

Sketch the domain 
1 x1 + y1 :S 1 y + x2 :2:: 0 
3 x2 + y2 � l (x - 2)2 + y2 :S 9 
5 I :S x :S y :S 4  

1 
I 

x 

Fis. 6 Element of area dx dy 

l x1 + y2 :S l -x2 :S y :S x2 
" x :2:: 3 y :S -s y - x � - 10 
6 ! s y s JJ=?  
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7 (x + y)2 S 1 (x - y)2 S 1 8 x + y S 0 xy S I (x - y)2 S 1 .  

Express the double integral of/(x, y) over the specified domain as a sum of one or more 
iterated integrals in which y is the first variable integrated 

9 x2 + y2 s I x2 + (y - 1)2 s 1 IO y � (x + 1)2 y + 2x s 3 
11 x � 0 0 S y S 11 x s sin y 12 x � 0 x2 - y2 � 1 x2 + y2 s 9 
13 the triangle with vertices (0. O� ( - 1, 4� (2, 3) 
14 the parallelogram with vertices (0. 0). (1. 5� (6, 7� (5. 2). 

I' 

Compute Jf f(x. y) dx dy over the d{\main D 

1 
15 /(x, y) = -

x + y  
16 /(x. y) = xy 
17 /(.x, y) - xy 
is t (x. y) = FY3 
19 f (.x. y) = x2 
20 /(x, y) = xy 
21 /(x, y) = 2x + y 
n /(.x. y) a x2y2 
23 /(x. y) = e' 

D in Fig. 7 

D in Fig. 7 
D in Fig. 8 
D in Fig. 8 
D in Fig. 9 
D in Fig. 9 
D in Fig. 10 
D in Fig. 10 
D bounded by y = ± x, y = !x + 3 

\' 

x 

Fig. 10 

24 /(x, y) = 1 + xy2 
25 /(x, y) = .x 

D bounded by x - -y2 and the segments from (2, 0) to ( - 1, ± 1 )  
D determined by x2 + y2 s 1, y s 2.x + 1 

26 /(x, y) z y/x2 
27 /(x, y) = x 
28 /(x, y) = x 

D the quadrilateral with vertices (1, 1 �  (2, 0), (4, O� (7, 3) 
D is determined by x2 + y2 s 1, x + y � 0 
D bounded by y = 0, y - 2x, and Sy - 3.x = 21 .  

Express as an iterated integral in which x is the first variable integrated 

29 ( (f z /(X, y) dy) d.x + r (f I /(X, y) dy) dx 
0 0 I � z  

30 ( ((i /(.x, y )  dy) dx + ( (J 16-" /(x. y) dy) dx. 

5 POLAR COORDINATES 

Sometimes it is convenient to set up a double integral in the polar coordinates 
r, 0 rather than the rectangular coordinates x, y. Certainly polar coordinates are 
more suitable for domains of the type shown in Fig. 1 . 
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0 'o 

(a) D consists of all points Ir, 81 
such that r0 <; r <; r1 and 
80 <: 8 <: 8,. 

0 

(b) D consists of all points fr, 8\ 
swch that g(8) <; r <; lr(8) 
and, 80 <; 8  <; 81• 

Fig. I Domains for which polar coordinates are prefered 

Given such a domain D, the problem is to express Jf f(x, y) dx dy 
D 

in terms of r and 6. Since x = r cos 6 and y = r sin 6, 
f(x, y) = f(r cos 6, r sin 6), 

x 

so there is no trouble with the integrand. But what do we do with dx dy, just 
replace it with dr d6? No, this won't do because dx dy represents an area (with 
dimension length squared) whereas dr d6 has dimension length since the angle 6 is 
dimensionless. 

If that argument doesn't convince you, here is another. If we could use dr d6 in 
place of dx dy, we would have 

f j I · dr d6 = I D  I· 

Try it. Suppose D is  the circle 0 :s;; r :s;; a, 0 :s;; 6 :s;; 2n. Its area is na2, but 

U dr d6 = .r:· (( dr) d6 = 2na. 

The answer is wrong; dr d6 will not do. Notice that 2na is the length of the circle. 
We told you so! 

El n or r The "element of area" dA = dx dy in rectangular coordinates 
is the area of the rectangle swept out by an increase dx in x and an increase dy 
in y. See Fig. 2a. Now suppose in polar coordinates r increases from r to r + dr 
and 6 from 6 to 6 + d6. Then a small region (Fig. 2b) is swept out. It is almost 
a rectangle of sides dr and r d6 (the arc of a circle of radius r with central angle 
d6). A natural guess, therefore, is that the corresponding polar "element of area .. is 
dA = r dr d6. 
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y 

_, 

x x 
(a) .r.t • tl.'tdy (b) dA • rdrlll 

Fis- 2 Element of area 

If our guess is right, we should have 

ff r dr d(J = ID  I· 
D 

Let us confirm this formula in the case that D is the circle 0 � r � a, 0 � (J � 2n. 
The formula yields 

u r dr d(J = u:· do) (( r dr) = 21t . !a2 = 1ta2, 

which is the correct area. 
We shall assume, without formal proof, that r dr d(J is the correct element of 

area in polar coordinates. 

�ent of Area dA = dx dy = r dr dO. 

Integral Now we can write general double integrals in polar coordinates. [ f J f(x, y) dx dy - ff f(r cos 8, r sllt 8) r dr d8. 

EXAMPLE 1 Find 

(a) ff x2 dx dy 
rs 1 

(b) ff y dx dy. 
rS• 

o.sfs a/2 

Sobdioll (a) The domain is a full circle, so 0 � (J � 2n: 

fJ x2 dx dy = ff (r cos 0)2(r dr dO) = ff r3 cos2 9 dr d(J 
rS1  r s l  rS 1 
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(b) The domain is a quarter circle of radius a: ff y dx dy - ff r sin 8 r dr d9= (f :2 sin 8 do) (( r2 dr) = ia3• • 

• IXAMPLE 2 Find the volume under the cone z - 3Jx2 + Y2 and over the 
circle x2 + y2 s; a2• 
Sobdiotl Use polar coordinates. The integrand is z - 3r and the domain is r s; a. 
Hence 

V = ff z dx dy = fJ 3r r dr d9 = 3 Jf r2 dr d9 
= 3(f :·do} ((r2 dr) = 3(2x)(ia3) = 2Ka3• 

Fis. 3 Domain between polar arapbs 
0 

• 

2 

Now we look at some examples where the domain is like that of Fig. 3. Assume 
the integrand is already expressed as a function of r and 9. 1bcn the set-up is 

ff F(r, 8) r dr d6 = J::(J:'r F(r, 6)dr) d6. 
D 

• EXAMPLE 3 Find f j cos2 8 dx dy over the domain D of Fig. 4. 

So"'1Jo11 The domain is bounded by 6 = 0, 9 = i-. r = l, and x - 2. Since 
x = r cos 6, the line x == 2 bas the polar equation r cos 6 - 2, that is, r - 2 sec 6. 
Hence 

D = { {r, 6}, where 1 s; r s;  2 sec 6 and 0 s; 6 s; hr}, 
a cos29 dx dy = f i cos16 r dr d6 

•I• 
( 

l Hcf ) a/• 
= J 0 cos26 d6 J 1 r dr =- J 0 cos26 (2 sec2 6 - !) d6 

.,. = f (2 - ! cos2 6) d6 == !x - (-fin + i) - nn - •. 0 • 

file:////ydxdy
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EXAMPLE 4 Compute r r xy dx dy, 
"I) 

where D is the domain bounded by r = sin 20 for 0 :::;; 8 :::;; !n. 

0 x 

Fig. 5 Domain D = { 0 � r � sin 29, 0 � 0 � �"} 
Sohltio11 The domain is bounded by one petal of a 4-petal rose curve (Fig. 5). We 
have 

D = { {r, 9}, where 0 :::;; r :::;; sin 28 and 0 s; 0 :::;; -Pt}, ff 
xy dx dy = ff (r cos O)(r sin O)(r dr dO) 

D D r •/2 (f sin 211 ) 
= . J r3 • ! sin 29 dr d9 = ! J 0 (sin 29) 0 r3 dr d(J 

D 
•/2 rc/2 • 

= ! J (sin 28)(! sin4 29) d(J = i r sins 2(J d9 = -k r sins IX dlX 0 • 0 • 0 r •12 2 . 4 
= i

. 0 sin5 IX dlX = i · 1 . -3 .  5 = -h (by tables). • 

• EXAMPLE I Two solid right circular cylinders of radius 1 intersect at a right 
angle on center. Find their common volume. 

Sohltio11 Choose coordinates (Fig. 6a) so the solid cylinders are 

xl + yl :::;; 1 and xl + zl :::;; I .  
Their intersection is the solid S consisting of all points (x, y, z) that satisfy both 
inequalities. From the first inequality, S lies above the circle r � 1 in the x, y-plane. 
From the second, z2 � 1 - x2 so that S lies between the graphs 

z =  +� and z =  -� . 

Set up a double integral in polar coordinates for the volume V. By symmetry V 
equals 8 times the volume of the part in the first octant. Hence use the domain 
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I' 

I • 

x 

� (b) The domain of integration 

..... ---

D: O � r � l, 0 � 8 � 1't: 

(a) The full intersection 

V = S  ff Jt- x2 dx dy = 8  ff F- r2 cas2 0 r dr d0 
D D 

= 8 f :12 rt rJt - r2 .cos20 dr ] dO 

Fig. 6 

J.12 [( _ l ) [. • ] 8 f •12 l - sin3 O = 8 - - - 2 - ( l  - r2 cos2 0)312 dO = - - -2-- dO. 
o 3 COS 0 r•O 3 O COS 0 

Now 
1 - sin3 (} = � _:!in� = !_+ sin 0 + sin2 8 = sin 8 + ·- _ . cos2 8 l - sin2 8 l + sin 8 l + sin 8 

From tables, I -.-!!!!.--- = -tan(1t - �) + C, I + sm 8 4 2 

hence V = � [-cos 8 - tan(; - �) ] ['2 = � ( l  + l )  = �6 . • 

• EXAMPLE I A cylindrical hole of radius a is bored through a sphere of 
radius 2a. The surface of the hole passes through the center of the sphere. How 
much material is removed. 
Sollltio11 Choose coordinates (Fig. 7a) so 0 is the center of the sphere, the axis of the 
cylinder is parallel to the z-axis, and the cylinder intersects the x, y-plane in a circle 
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(a) The choice of coordinates 

( 
(b) The domain; on its boundary 

r = 2a cos 8 

Fla. 7 Cylindrical bole through sphere 

D centered on the positive x-axis. By Fig. 7b, the base D of the cylinder is 
described by 

0 � r � 2a cos 8. 
The upper surface of the hole is 

z - J(2a)2 - x2 - y2 =- J4a2 - r2 

and similarly the lower surface is z = -J 4a2 - r2 • Therefore the volume of the 
hole is 

V = ff 2J4a2 - r2 r dr d8 = 2 f':/8 fo
20•' rJ4a2 - r2 dr 

D 

= 41'2 d8 tc•'rJ4a2 - r2 dr = 3f:2 - (4a2 - r2)3f2 rc••d8 

= _ [(4al):Sfl _ (4a2 sin2 8):s121 d8 = _ (1 _ sin:s 8) d8 4 f 
•
/2 32a3 f •12 3 0 3 0 

= 
32a3 (� - �) 3 2 3 . 

(See definite integral S inside the front cover.) 
Remark An instructive mistake is possible in this example. By symmetry we equated the 
integral from -!x to !x to twice the integral from 0 to !it. Suppose we had not done this. 

file:///
file:///2jAa2
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Then we would have reached 
2 J•/2 v = [(4a2)312 _ (4a2 sin2 9)312] d9 3 -•/2 

= - ( l - sin3 9 )d9 =- d9 = -- . 16a3 f •12 16a3 f •12 16M3 
3 -•/2 3 -•/2 3 

since sin3 9 is an odd function. This is certainly a different answer! Where is the goof? 
Well, it is a subtle application of the phony argument 

3 = J3i = j(-3)2 = (( -3)2]'/2 = -3. 
The point is that sin 6 is negative in the fourth quadrant, so for --in < 6 < 0, 

(sin2 8)312 = -sin3 8, 
Therefore. the correct argument is 

not sin3 6. 

l6a3 f .12 J6a3 [Jo 1·12 J v = - (1 - (sin2 8)3'2] d8 = - ---- ( J + sin3 6) d8 + (I - sin3 8) d8 . 
J -•12 3 - •/2 0 

Avoid this blunder! 

Change of Variables The polar coordinate transformation 

x = r cos 0, y = r sin 0 

can be interpreted as a correspondence between domains. To a domain D in the 
x, y-plane corresponds a domain E in the r, 0-plane. For instance, the domain 
(Fig. 8a) 

D = { {r, O}. where g(O) � r � h(O) and 00 � 0 � 01 } 
in the x, y-plane corresponds to the domain (Fig. 8b) 

E = { (r, (}� where g(O) � r � h(O) and 00 � 0 � 01 } 
in the r, 0-plane. 

x 

(a) D = { Ir. 81. where 
g(8) " ' "  h(8), 80<;8 <; 8 1  l

o is in the x. y-plane. 

0 

E r = /1( 8 )  

00,._ _____ ___. ___ _ 

r 

(b) E = { Ir. 8 1 ,  where 
g(8) " , "  h(8), 80" 8 " 8 1  l· 

E is in the r, 8-plane. 

Fi1o 8 Correspondence between domains 
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The formula for integrating in polar coordinates can be expressed as 

fl f(x, y) dx dy = J J f(r cos 9, r sin 9) r dr d9. 

Thus you may substitute x = r cos 9 and y = r sin 9 in the integral on the left. but 
then you must replace dx dy by r dr d9 and D by the corresponding domain E in 
the r, 9-plane. (The latter corresponds to changing the limits in a simple integral.) 

The formula is a special case of a very general formula for changing variables in 
double integrals. Its proof is beyond the scope of this course, but we shall 
state the result. First we need a definition. j•cobian Suppose {x = x(u, v) 

y = y(u, v) 
is a pair of differentiable functions of two variables. Their Jacobian is the 
determinant 

Example 

o(x, y) I x., Xp I �( ) = = X.,yp - X11y., . 
u ll, V  Y• y11 

x = r cos 9, y = r sin 9: 

o(x. y) = I x, x,I = I cos 9 _, sin 9 1 = , cosl 9 + , sinl 9 = '· o(r, 9) y, y1 sin 9 r cos 9 

Now we can state the rule for changing variables. Change of Variables Suppose 

Jx = x(u, v) 
lY = y(u, v) 

maps a domain E of the u, v-plane in a one-to-one manner onto a domain D of 
the x, y-plane, and suppose 

on E. Then 

o(x, y) > 0 
o(u, v) 

ff f(x, y) dx dy -ff f[x(u, v� y(u, v)] :�� �J du dv. 
D I 

The formula is usually valid even if the Jacobian equals zero at some points of the 
boundary of E. 
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• EXAMPLE 7 Find the area enclosed by the ellipse 

a >  0, b > O. 

Sobttion Consider the transformation 

x =  au, y -= bv. 
It takes the circle E :  u2 + v2 � 1 onto the domain D enclosed by the ellipse. The 
Jacobian is 

a(x. y) I a o I -a( ) = • ab > O. u, v 0 b 
Therefore ID I = � dx dy = JJ ab du dv = ab JJ du dv = ab l E l = nab. • 

EXERCISES 

Evaluate J.f f(x, y) dx dy over the disk x2 + y2 � a2 
I != xyz 2 f- e"z+,z 

!= 
1 

5 f- x' 4 a +  Jxl + yl 
7 

1 f= al + xl + yl 8 f = sin(xy). 

Use polar coordinates to compute the volume 
9 0 s z s r1 1 S r S 2 0 s 8 S !11: 

10 0 S z S x 0 S r S I -!- S 8 S !11: 
I I  0 S z S xy I S r S 2 ix S 8 S i" 
12 0 S z S r6 0 S r S 1 0 S 8 S 1" 
13 hemisphere of radius a 

3 f = ln(a2 + xl + yl) 
6 f = x2y2 

14 region bounded by the two paraboloids z = x1 + y1 and z = 4 - 3(x2 + y2) 
15 lens-shaped region common to the sphere of radius I centered at (0, 0, 0) and the 

sphere of radius 1 centered at (0, 0, I )  
16 the material removed when a drill of radius b bores on center through a sphere of 

radius a, where b < a 
17 region under the cone z =- Sr and over one petal of the rose r ,. sin 39 
18 The region under the paraboloid z = x1 + y1 and over the circle x1 + y2 = 2x 
19 0 S z S x4y4 x2 + y2 s 1 
20 0 S z S r3 0 S r S 8, 0 S 8 S 1t 
21 O s z s x2y4 x2 + y2 s l  
22• the region common to three right circular cylinders of radius I intersecting at 

mutual right angles on center. 

Compute the Jacobian ��:: ;: 
23 x - Au + Bv y = Cu + Dv 
24 x = u + v  y = uv 
25 x = u2 + v2 y = u - v 
26 x • ue" y = uz - ,,z. 
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27 Show that x • u - v, y = v takes the domain 

E = { (u, v) I a S u S b, 0 S v S u } 
onto D = { (x, y) I x :<! 0, y :<! 0, a S x + y S b } 
and compute the Jacobian. (See Fig. 7, p. 858.) 

28 (cont.) Assume 0 < a < b and compute Jf xy dx dy over D by changing variables. 
29 (cont.) Express JJ/(x + y) dx dy over D as a simple integral. 
30 (cont.) Evaluate Jf ef"'• 111 dx dy over D. 
31 Compute the Jacobian of x • u/v, y = v. 
32 (cont.) Suppose 0 < a < b and let 

D = { (x, y) I ax s by, ay s bx, xy S ab} . 
To what domain in the u, v-plane does 0 correspond? (See Fig. 8, p. 858.) 

33 (cont.) Use the change of variables in Ex. 31 to compute Jf JXi3 dx dy over D. 
34 Use the transformation of Example 7 and polar coordinates to evaluate Jf x2y dx dy 

over the domain x2/a2 + y2/b2 s I, y � 0. 
3S Let 0 < a < b and consider the domain 

D = { (x, y) I 0 S y  - x � b - a, xy S ab }. 
To what domain in the u, v-plane does D correspand under the transformation 
x = !(u - v� y = !(u + v) ? (See the part of Fig. 9, p. 858, where y :<! x.) 

36 (cont.) Use the transformation to compute Jf (y - x) dx dy over D. 

6. APPLICATlf' I C  
I r r In this section we take up several important applications of double 

integrals. The first concerns differentiation under the integral sign. Consider a 
function defined by a definite integral. 

F(t) = f /(x, t) dx. 

When the variable x is " integrated out", there remains a function of t. Problem: 
find the derivative F'(t). The answer is called the Leibniz Rule, or the rule for 
differentiating under the integral sign. 

jLeibniz Rule Suppose/(x, t) and the partial derivative f,(x, t) are continuous 
on a rectangle 

a ::s; x ::s; b, c ::s; t ::s; d. 

Then :, J:f(x, t) dx = f.r.(x, t) dx for c ::s; t ::s; d. 

Proof Fix t and let D be the rectangle 

D = { (x, s� where a ::s; x ::s; b and c ::s; s ::s; t } 
in the x, s-plane. Let G(t) = J J J.(x, s) dx ds. 

The idea is to iterate the double integral both ways, then to compute G'(t). On 
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the one hand, G(t) = f: (f;r.(x, s) ds) dx = f :Cf(x, t) -f(x, c)] dx, 

hence :, G(t) = :, f!(x, t) dx - :, S:f(x, c) dx =:,  ff(x, t) dx. 

On the other hand, G(t) = f (f.r.(x. s) dx) ds. 
By the Fundamental Theorem of Calculus, 

:t G(t) = :, f (f.r.(x, s) dx) ds = ff,(x, t) dx. 

The Leibniz Rule follows upon equating these expressions for G'(t). 

EXAMPLE 1 Find 
� f" sin tx dx dt Jo x at t = !. 

So/11tiolf - -- X - - -- X - COS tX X - -- . 
d f" sin tx d -

f" a (sin tx) d - f" d - sin 1tt 
dt 0 x 0 ot x o t 

When t = !. the value is (sin !n)/! = 2. 

• 

Remark It is known that F(t) = J [(sin tx)/x] dx cannot be expressed in terms of (a finite 
number of) the usual functions of calculus; you won't find it in a table of integrals, except 
as an infinite series. Nevertheless, F(t) is a perfectly good differentiable function. But to 
compute its derivative, you need the Leibniz Ruic. 

S r ·e Ar 1a We are given a piece of surface in R3• What is its area, i.e., how 
much paint is needed to cover one side? Suppose the surface is given in parametric 
form: x = x(u, v), 
where (u, v) varies over a domain D of the u, v-plane and, as usuai 

... x x., �  0. 

Recall that the unit normal to the surface is 
•• x x., n = I•. x x.,1 · 

A small rectangle in D with sides du and dv maps to a small region on the 
surface. According to the formula dx = x,, du + x., dv, this region is closely ap
proximated by the parallelogram (Fig. 1 )  in the tangent plane with sides x,, du 
and x,, dv, whose area is 

Recall that 

dA = l (x,,du) x (x.,dv)I = Ix.. x x.,ldu dv. 
I j 

k 

x,, x x,, = x. y., z. = I + ' y .. z .. 1 I z .. x,, y., ·z., 
y,, z,, z,, 

= 
o(y, z) I +  o(z, x) j + o(x, y) k. 
o(u, v) o(u, v) o(u, v) 

x 
.. I J + I x. y .. \ k 

x., x., y., 
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II 

b 

a u v 

(a) Domain of the surface (b) The parallelogram has sides x,.du and •vd11 

Consequently 

Fig. 1 Approximation to area by a small "parallelogram" 

I 11 - (
o(y, z)

)
2 

(
o(z, x)

)
1 

(
o(x, y)

)
2 Jl,, >C X  - -- + -- + --" o(u, v) o(u, v) o(u, v) . 

Substitute this into dA = I•,, ><  x., I du dv; the result leads to the following definition: 

Surface Area Let x = x(u, v) define a parametric surface with domain D. I I ts surface area is 

J�f JJ J(o(y, z))
1 

(
o(z, x)) 

1 
(
o(x, y)

) 
1 A =  � I•. )(  •., I du dv = 

D 
o(u, v) + iJ(u, v) + o(u, v) du dv. 

• EXAMPLE 2 Find the area of the spiral ramp x = (u cos v, u sin v, bv) corre
sponding to the rectangle D: 0 � u � a. 0 � v � c. 

0 

Cl I.I 

Sohltio11 Although not necessary, it is nice to sketch the surface (Fig. 2). Since 

x,, = (cos v, sin v, 0) and x., = (-u sin v, u cos v, b), 
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the element of area is 

dA = 
sin v 0 1 + 10 cos v I + I cos v sin v 1 2 du dv u cos v b b -u sin v -u sin v u cos v 

= Jb2 sin2 v + b2 cos2 v + u1 du dv = Jb2 + u2 du dv. 
As (u, v) ranges over the rectangle, the point x(u, v) runs over the spiral ramp. 
Hence 

A =  ff Jb2 + ui du dv = (f�Jb2 + u2 du) (tdv) 
- f  [•J•' + b' + b' 1n(• + J:' + b') l • 

Are of a Graph Suppose a surface is given as the graph of a function 
z = f(x, y� where (x, y) varies over a domain D in the x, y-plane. This is a special 
case of a parametric surface. where the parameters are x and y and the surface 
is defined by 

so 

x = (x. y. f (x. y )). 
Now dA = lxx >< x, I dx dy. But 

ex ex 
ex = (I, 0.fx) and ey = (0. 1,/1). 

ex ax 
fix >< ey = ( l .  O.fx) >< (0, l.f,) = ( -fx· -f,. 1 ). 

Hence the resulting formula for the element of area is dA = J 1 + fx 1 + J, 2 dx dy. 

The area of the graph of a function z = f(x. y) with domain D is 

A =  ff Jl +J/ + f/ dx cly. 

D 

The formula for dA has a geometric interpretation (Fig. 3). The unit normal 
to the surface is 

1 
n = 

J 2 1 ( -fx• -f,. 1 ). l +fx +!, 
Its third component (direction cosine) is 

1 cos )' =  . 
Jl +fx2 +J/ 

where y is the angle between the normal and the z-axis. Thus 
(cos y) dA = dx dy. 

which means that the small piece or surface of area dA projects onto a small 
portion of the x, y-plane of area dx dy. 
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Fis. 3 (cos l') dA - dx dy 

I' 

Fis. 4 z • 2 - x2 + y2 

• EXAMPLE 3 Find the area of the graph of z = 2 - x2 + y2 over the circle 
x2 + y2 S a2. 

So"'"611 The saddle-shaped surface is part of a hyperbolic paraboloid (Fig. 4). 
We have 

A =  ff Jl + z/· + z,1 dx dy = Jf Jt + (-2x)1 + (2y)1 dx dy 
D D 

= ff Jt + 4x1+ 4y1 dx dy. 
D 

It pays to use polar coordinates. Then x2 + y2 = r2 and dx dy = r dr d9, so 

2. • 
A = f f J 1 + 4r2 r dr d(J = f d9 f r J 1 + 4r2 dr � 0 0 

= (2n) . -h[(l + 4a2)3/2 - 1] = in[(l + 4a2)3/2 - 1). • 

A Probability Integral The improper integral 

I =  f"" e-.xz dx 
- "" 

is important in probability. Its exact value can be found by using polar co
ordinates and a clever trick. Write 

I =  f
"" e-12 dy. 
- ao 

Now switch from rectangular to polar coordinates. Then x2 + y2 = r1 and 
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dx dy = r dr dO. Hence 

12 = J :· (f 0«> e-'2 r dr) d(} = 2n(-!e-'2) I� = 2n(!) = n. 

J «> e-xz dx = Jn. 
- oo  

Since I is positive, 

The function ""( ) _ 1 - xl/2 .,, x - -- e 
.Jiic 

is known as the density function of the normal distribution. Its graph is the familiar 
bell-shaped curve (Fig. 5) and encloses area 1 (by a simple modification of the 
definite integral above). 

0.4 

O.� 

I x2 2 I = ¢( f) = �ir t• 

3 

Fia. S Normal distribution 

x 

Remark 1 Expressing an antiderivative of e-'"2 in terms of elementary functions is known 
to be impossible. Thus it is quite remarkable that the integral of this function over the 
whole x-axis can be evaluated. 

Remark 2 The derivation above is not quite complete because we have not discussed 
improper double integrals, a subject we leave for a later course. A basic result of this 
subject is that for non-negative integrands, any device leading to an answer yields the 
correct answer. You may take this for granted in the exercises. 

EXERCISES 

Evaluate F(t) for t > 0 and then compute F(t). Now compute F'(t) by the Leibniz Rule 
and compare your answers 

I 

I F(t) = J e-•x dx 
0 
I 

3 F(t) = f (t + xr dx 
0 

2 F(t) = f: (arc tan i) dx, 
I 

4 F(t) = J x' dx, t > - 1. 0 

2 
t > -

I( 

Parameterize the surface and set up an integral for its surface area; evaluate the area if 
you can 

S triangle with vertices e, b, c 
6 (cont.) triangle with vertices (a, 0, o� (0, b, o� (0, 0, c) 
7 lateral surface of a right circular cylinder of radius a and height h 
8 lateral surface of a right circular cone of radius a and lateral height L 
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9 right circular torus obtained by revolving a circle of radius a about an axis in its plane 
at distance A from its center (where a <  A) 

10 sphere l • I  • a  (Hint • = a(sin u cos v, sin u sin v, cos u�) 
xl yl zl ellipsoid - + - + - ,. l (Hint x = (a sin u cos v, b sin u sin v, c cos u�) al b1 cl 

(cont.) Reduce the double integral to a simple integral in the special case a = b. 
Set up an integral for the area of the given graph, and evaluate it if you can 
13 z = ax + by (x, y) in a domain D 
14 z = x1 + y1 x1 + y1 S l 
13 z = J 1 - x1 - y2 x2 + y2 s l .  
16 bz = xy x1 + y2 s a2 where a > 0 and b > 0. 

17 Find the area of the top piece of the spherical surface that is inside the hole in 
Example 6, p. 863. 

II. (cont.) Find the lateral surface area of the hole. 
19• A curve in the part x > 0 of the z, x-plane is given parametrically: z = z(s� x = x(s� 

where s is arc length and a s s s b. The curve is rotated about the z-axis, generating 
a surface. Express the area of this surface as a simple integral. 

20• Suppose a graph in R3 is given in the form z - g(r, 8� where (r, 8) varies over a 
domain E in the r, 8-plane. Express the area of the graph as an integral over E. 

Evaluate 

21 

23 

27 

Jim fJ In r dx dy 
••O+ •Srsl 

I. ff dx dy im l l •-oo 1 + X + y 
•Se 

I . ff dx dy 
I 1m -

1- p < 
•-O+ r '  

•S•S I GO 
J e-""1 dx a >  0 
0 

29 Set/.(r) = r· x2•+ •e-1"1 dx for t > 0 
0 

22 lim fJ ( l  - i)"dx dy p >  - 1  
•-O+ eSrS I 

24 lim ff dxz dy z P > 1 
•-oo (I + x + y )' 

rSe 

26 lim ff d\dy p > I 
•-oo r , 

IS•S• 

28• J00x2e-"1 dx. 
0 

and n � 0. Assume the Leibniz Rule applies, and use it to derive a relation between 
J.(t) andf.+i(t). 

30 (cont.) Evaluate /0(t) and then J.(t) in general. 

7. PHYSICAL APP LICATION S  

M n d D c r s 1 ' Suppose a sheet of non-homogeneous material covers a 
plane domain D. See Fig. la. At each point (x, y1 let p(x, y) denote the demity 
of the materiai i.e., the mass per unit area. (Dimensionally, planar density is mass 
divided by length squared. Common units are gm/cm2 and lb/ft2.) The mass of a 
small rectangular portion of the sheet (Fig. lb) is 

dM ::::: p(x, y) dx dy. 
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y 

(a) Non-boftlOFMOUS material (b) "Element of mass"' dM = p(x. y) dxdy 

Fig. 1 Mass and density 

The ref ore the total mass of the sheet is 

M = f � p(x, y) dx dy. 
• EXAMPLE 1 The density (lb/ft2) at each point of a one-foot square of plastic 
is the product of the four distances of the point from the sides of the square. 
Find the total mass. 

Sobttio11 Take the square in the position 0 � x � 1, 0 � y � 1. Then 

p(x, y) = x(l - x)y(l - y� 

M = ff p(x, y) dx dy = ((x(l - x) dx) ((y(t - y) dy) = i · i = -/g lb. • 

Moment and Ce ter of C' av1t / Suppose gravity (perpendicular to the plane 
of the figure) acts on the sheet of Fig. la. The sheet is to be suspended by a single 
point so that it balances parallel to the ftoor. This point of balance is the 
center of gravity of the sheet and is denoted i = (�. J'). 

To motivate the formulas that follow, let us recall what happens when, instead of 
a sheet, we have a finite system of point masses glued to the weightless plane, mass 
M 1 at •i. mass M 2 at x2 , · · · ,  mass M. at x. .  Then the center of gravity x of the 
system is the weighted average of the x1, weighted with the M1: 

We can write 

_ M1x1 + M2x2 + · · · + M.x. 1 L M • =  = � , x, .  M1 + M2 + · · · + M. � M1 

i = (x, y) = � m= � (m,., m,,), 
where M = L M1, the total mass, and the moments of the system of masses are 

m,. = LM1x1 , 
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Note that x = m,J M is the weighted average of the x-coordinates of the individual 
masses, and similarly for y. 

Now suppose mass is distributed continuously with density p(x, y) over a plane 
sheet D. How do we define the center of gravity? We argue very roughly as 
follows. We partition D into a large number of tiny pieces and pretend each 
piece is a point mass. The mass of the i-th piece D, is approximately M, = p(x, , y1) ID1 1. where (x1 , y1) is a point in D,. For this finite system, the 
moments are 

Lx,M1 = Lx,p(x, , y,)ID1 I . LY1M1 = LY1P(x, , y,)ID1 I · 
The center of gravity L �' ( L x1 M, , LY• M,) 
approximates that of the sheet. The approximation should improve as the partitions 
become finer and finer. But when that happens, LX1M1 , L Y1M1, and LM1 
approach double integrals. This suggests definitions, first for the moment of the 
sheet : 

m = (m,tt m,) = (ff x p(x, y) dx dy, ff y p(x, y) dx dy} = JJ p x dx dy. 
D D D 

Then for the center of gravity of the sheet: 

where 

i = (x, y) = � m = � (m," m,� 

M = ff p(x, y) dx dy 
D 

is the total mass of the sheet. 
We can still think of x as the weighted average of x over the sheet: 

x = Jj x p(x, y) dx dy j Jj p(x, y) dx dy, 
and similarly for y. 

After two examples, we shall prove that the sheet really balances if suspended 
from i. 

• EXAMPLE 2 Find the center of gravity of a homogeneous rectangular sheet. 
Sohltio11 .. Homogcnec;>us" means the density p is constant. Take the sheet in the 
position 0 s x s a and 0 s y s b. The mass is M = pab, and the moment is 

m =ff  p x dx dy = p ff x dx dy = p(Jf x dx dy, ff y dx dy) 
= p((x dx (dy, (dx (y dy) = p(!a2b, !ab2). 



Therefore the center of gravity is 
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i = � m = P� p(!a2b, !ab2) = !(a, b). 

This is the midpoint (intersection of the diagonals) of the rectangle. (Of course 
the rectangle balances on its midpoint; no one needs calculus for this, but it is 
reassuring that the analytic method gives the right answer.). • 

Remark We sometimes speak of the "center of gravity of a domain D", without reference 
to a density. Then it is understood that p = l, so the center of gravity is a purely 
geometric quantity associated with D. It is also known as the centroid of D. 

• EXAMPLE 3 The triangular sheet x :2: 0, y � 0, x + y � 1 has density p = xy. 
Find its center of gravity. 

1 l - 1  I 
Sol#tion M = fJ xy dx dy = J y dy J x dx = ! J y(l - y)2 dy 

D O O o 

1 

= ! f (y - 2y2 + y3) dy = !H - i + i) = -h· 0 
By symmetry, mx = m1 , and 

1 l - 1 1 
mx = Jf x · xy dx dy = J y dy f x2 dx = ! f y(l - y)3 dy 

D o o o 
I I 

= ! J ( 1  - u) u3 du = !  f (u3 - u4) du = !(i - !) = ta· 0 0 
Therefore X = Ji= -IJl-k = j and i = (j, j). • 

Proof That the Sheet Bala nces Suppose a knife-edge passes through x and 
the sheet balances (Fig. 2). Divide the sheet into many small rectangles. The 
turning moments of these pieces about the knife-edge must add up to zero. 

Fla. 2 Proof of the center of gravity formula 
for a non-homogeneous sheet 

Let n be a unit vector in the plane of the rectangle perpendicular to the 
knife edge. A small rectangle with sides dx and dy located at x has (signed) 
distance (x - i) · n from the knife edge and has mass p dx dy. Hence its turning 
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moment is 

(x - i) · n p dx dy. 

The sum of all such turning moments must be zero: 

J J (x - i) · n p dx dy = 0. 

Since i and n are constant, this relation may be written 

or 

n · fl x p dx dy = (n • i) fl p dx dy, 

n ·  m =  Mn · i. 

This equation of balance is true for each choice of the knife�ge (each choice 
of the unit vector n). Hence 

n ·  (m - Mi) = O  

for each unit vector n. This means the component of m - Mi in each direction 
is zero. Therefore 

m - Mi = O, m = Mi. 

Mas:s and Ccnte 1 r v y i n  Polar oo mates Suppose a non
homogeneous sheet covers a domain D described by polar coordinates. The element 
of area is dA = r dr dO, so the element of mass is 

dM = p r dr dO, 

where the density p = p(r, 0) is expressed as a function of r and 0. Therefore the 
mass of the sheet is 

To find its moment, express x in polar coordinates: 

Then 
x = (x, y) = (r cos 0, r sin 0). 

m = II x dM = II x p r  dr dO = II p r2(cos 0, sin 0) dr dO 

D D 

= (ff p r2 cos 0 dr dO, f Ip r2 sin 0 dr dO) . 

D D 

Once M and m are computed, we know i = m/ M. 
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• EXAMPLE 4 Find the center of gravity of a uniform semi-circular sheet of 
radius a. 

Sohltion Take the center at 0 and the diameter along the x-axis. Then the 
domain D covered by the sheet is 0 � r � a, 0 � (} � n. Since p is constant, 
M = Jna2p and 

Therefore 

See Fig. 3. 

- a 

m = p(Jf r2 cos (} dr dO, fJ r2 sin (} dr do) 
D D 

= p((cos O dO f"
r2 dr, r sin O dO fr2 dr) = p(O, ja3). 

0 0 0 0 

i = � m = �
2P 

p(O, ja3) = ( 0, �). 

y 

a x 

• 

• EXAMPLE I Find the center of gravity of a sheet in the shape of a quarter 
circle, whose density is proportional to the distance from the center of the circle. 

Sol11tio11 Place the sheet as in Fig. 4. Then p = kr, where k is a constant. Obviously 
k will cancel in the end, so we may take k = 1, that is, p = r. The mass of the 
sheet is 

M =  IIp r dr dO =  ff r2 dr d9 = I:r2 dr I:12
d9 = �3

, 

and its moment is m = II x p r  dr d(J = II (r cos 0, r sin 9) r2 dr d(J 

Therefore 

= I: r3 dr I:'2 (cos 9, sin 9) d(J = 
a; ( 1, 1 ). 

1 6 a4 (3a 3a) (i) = 
M

m = 
na3 . 4 (I . I ) = 2n' 2n . 

Could you have predicted that i lies on the line y = x and I ii > 1a? • 
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The 1 st Pap s T 1 There is a useful connection between the centers 
of gravity and volumes of revolution. 

First Pappus Theorem Suppose a region D in the x, y-plane. to the right 
of the y-axis. is revolved about the y-axis. Then the volume of the resulting 
solid is 

V = 2n.fA, 

where A is the area of the plane region D and x is the x-coordinate of its center 
of gravity (Fig. 5). 

y 

x 

y 

-------- --------
,,,,,,.,,,.� .......... 

/ ",, I � ' 
I \ 
I J I I \ I /:-, ________ �>-/ ..,./ � 

path of i 

Fig. 5 Fint Pappus Theorem 

x 

In words, the volume is the area times the length of the circle traced by the 
center of gravity. Proof: a small portion dx dy at x revolves into a thin ring of 
volume 

dV = 2nx dx dy. 

Hence v = a 2nx dx dy = 2nmx. 

But mx = xA, hence V = 2n.fA. 

W1r s A non-homogeneous wire is described by its position, a space curve 
x = x(s� where a �  s � b, and its density {J = fJ(s). (Here s denotes arc length.) 

• • 
Its mass is M = J. fJ(s) ds and its moment is m = f • x(s) fJ(s) ds, 

so its center of gravity is 
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If  the wire is uniform, then c5(s) is a constant. In this case, the center of gravity is 
independent of c5, hence it is a property of the curve x = x(s) alone; you can 
take c5 = I and replace M by L, the length. 

EXAMPLE I Find the center of gravity of the uniform 
semi�ircle r = a, y � 0. 
SohttiOll The length is L = na. The moment is 

m = J x ds =((a cos 0, a sin 0) a dO = a2 ((cos 0, sin 0) dO = a2(0, 2). 

Hence i = � m = � a2(0, 2) = ;  (0, 2) = (o. � a) . • 

Suppose a plane curve is revolved about an axis in its plane, generating a surface 
of revolution. There is a useful relation between the center of gravity of the curve 
and the area of the surface. 

Second Pappus Theorem Suppose a curve in the x, y-plane to the ri� 
of the y-axis is revolved about the y-axis. Then the area of the resulting surface is 

A =  21tXL, 

where L is the length of the curve and X is the x-coordinate of the center of 
gravity (Fig. 6). 

I' 

x 

(a) Curve in x. y-plane 

p.11h ot x ) '' 

\ -
,,,,- ,, /' ... , I ' I \ I I 'f / 

� / � 
\' 

(b) Corresponding surface of 
revolution (cul-away view) 

I' 

Fis. 6 Second Pappus Theorem Fla. 7 Element of rotated area 

In words, the area is the length of the curie times the length of the circle traced 
by the center of gravity. Proof: a short segment of length ds of the curve at the point 
x(s) revolves into the frustum of a cone with lateral area dA = 2nx ds. See Fig. 7. 
Hence 

,, ,, 
A = J 2nx ds = 2n J x ds = 2nm.r = 2nXL. 

• • 
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Suppose a plane sheet over domain D rotates about 0 
with angular speed w rad/sec (Fig. 8). An element of mass dM at distance r from 
0 has speed rw, so its element of kinetic energy is 

dE = i(dM)(speed)2 = i(P dx dy)(rw)2 
= iw2r2p dx dy = iw2(x2 + y2)p dx dy. 

Therefore the total kinetic energy of the rotating sheet is 

F. = �· f J (x' + y') p dx dy = � lw'. 

where I is called the moment of inertia of the sheet (with respect to the origin). 

Moment of Inertia 

w�--@J 0 ' 

I) 

I =  ff (x2 + y2)p(x, y) dx dy. 
D 

Fig. 8 Rotating sheet. angular 
speed w rad/sec 

EXAMPLE 7 Find the moment of inertia of a uniform square of side a about 
its center. 

Sol•tio11 Place the square in the position -ia :S x :S ia. -ia :S y  :S ia. The density 
p is constant, and 

I = Jf (x2 + y2) p dx dy = p JJ x2 dx dy + p JJ y2 dx dy 
D D D ( •/2 •/2 •/2 a/2 ) 

= p J _91/
2 dx J 

_91
/y + J _.12 dx J _91/2 dy 

Since the mass of the square is M = pa2, the answer can be written I =  iMa2• • 

Find the mass and the center of gravity for the density p on the indicated region 
I p = ( l  + x)(l + y) 0 s x s l 0 s y s  I 
l p - xy l S x S 2 I S y S 3 
3 p - 2 - x  O s x s l  - I S y S I  



4 p = l + x O s x s 3  
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O s y s 2  
5 p = ( l  - x)(l - y) + l O s x s l  O s y s l 
6 p = sin x 0 S X S 1t  O s y s l  
7 p = l + x2 + y1 - 1 s x s l 1 s y s 4  
8 p = 2 + x2y2 - l s x s l 0 S y  S 1 
9 p = l 0 s y S 1 - x1 

10 p = y  0 S y  S l - x1 
1 1  p =  l O s x s l  0 s y S x2 
12 p = x  O s x s l  0 S y  S x2 

13 p = l 
xl y2 

y � O  - + -·· S l 
a2 b1 

14 p = 2 +  
x x2 y2 

-- + - s l 
a al b1 

15 p = l  r s a  0 S 0 S !n 
,2 

16 p = I - l a 
r s a  0 s 0 s !n 

17 p = I r s a  0 s 0 s :x. 

18 (cont.) Let oc - 0 in Ex. 17. Find the limiting position or •· 
Find the mass and the center or gravity for the density p on the indicated wire 

19 p = l r = a 0 S 6 S !Jt 20 p = sin 6 r = a 0 S 6 S 1t 

21 p = kO r = a 0 s 0 s n 22 p = l + kO r = a 0 S 8 S n 
23 p = l triangle: vertices (0. 0). (4. 0). (0. 3) 
24 p =  I triangle: vertices (0, 0), (1. 0), (0, 1). 

25 Verify the First Pappus Theorem for a semi-circle revolved about its diameter. 
26 Use the First Pappus Theorem to find the volume or a right circular torus. 
27 Verify the First Pappus Theorem for a right triangle revolved about a leg. 
28 Use the Second Pappus Theorem to find the surface area or a right circular torus. 
29 Use the Second Pappus Theorem to obtain another solution or Example 6. 
30 Use the Second Pappus Theorem to obtain another solution or Ex. 23. 

Find the moment or inertia with respect to the origin; give the answer in the form 
I =  M - (?) 

31 p = l 
32 p = r" 
33 p = l 
34 p = l  
35 p = l + x 
36 p = xy 

circle r s  a 
circle r s  a 
circle (x - a)1 + y1 s a1 
rectangle lx l  S a  IY I  S b  
triangle vertices (0, O� (l ,  0). (0, l )  
square 0 s x s b 0 S y S b. 

8. APPROXI MATE I NTEGRATION 

In this section we discuss an extension of Simpson's Rule to apprc�imation o: 
double integrals. For simplicity, we shall allow only rectangular domains. 

Let us recall Simpson's Rule. To approximate the integral 
b f f(x) dx, 

' o  
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we divide the interval a � x � b into 2m equal parts of length h: 

a =  x0 < x1 < x2 < · · · < x2., = b, 

2 .. 
and use the formula J:f(x) dx � � L B,f(x1� 

i•O 

b - a  h = --

2m ' 

where the coefficients 81 are l, 4, 2, 4, 2, 4, 2, · · · ,  2, 4, 1. 
We extend Simpson's Rule to double integrals in the following way. To approximate 

flf(x, y) dx dy, 

where D denotes the rectangle a � x � b and c � y � d, we divide the x-interval into 
2m parts as before and also divide the y-interval into 2n equal parts of length k: 

d - c  
C = Yo < Yi < Yz < · · . < Y211 = d, k = �· 

We obtain (2m + 1 )(2n + 1) points of the rectangle (Fig. 1 ). The rule is 

where the coefficients Ali are certain products of the coefficients in the ordinary 
Simpson's Rule. Precisely, 

Ali = B1C1• 
where 80 , B., · · · ,  82., are the coefficients in the ordinary Simpson's Rule 
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and C0 • C 1 ,  • • · ,  C2,. are the coefficients in the ordinary Simpson's Rule 

4 I J ---- --------, 8 
I 4 

1 2 ---- ------1---- --T------- � 
I I 

4 
I I 

1·1 ---- ----. 1 6 I I 
I I : 

' 0  

XO 

ordinary Simpson's 
Ruic coefficients 

I I I 

,. 1 \' 2  -" 3  \'. 4 

4 '.! 4 2 
\' s \'.Ii 

4 2) 
\'. 

Fig. 2 Coefficients for 
double Simpson's 
Ruic 

In Fig. 2, several of these products are formed. Since 81 and C; take values l, 2, 
and 4, the coefficients A1i take values 1, 2, 4, 8, and 16. The A11 can be written 
in a matrix corresponding to the points (x1 , y1) as in Fig. I .  For example, if 
m = 3 and n = 2, the matrix is 

4 2 4 2 4 
4 16 8 16 8 16 4 
2 8 4 8 4 8 2 
4 16 8 16 8 16 4 

4 2 4 2 4 

• EXAMPLE 1 Estimate I = JJ (x + y)3dx dy 
D 

by Simpson's Rule with m = n = 1, where D is the rectangle 0 S x S 1, 0 � Y S I. 
Compare the result with the exact answer. 

So"'tion Here h = k = !. The coefficient matrix is 

Write the value (x1 + y1)3 in a matrix : 

[A,,] - [� 4 1] 16 4 . 
4 1 

[ ( 1 + 0)3 ( 1 + !)3 
[(x, + Y;)3] = H + 0)3 (i + !)3 

(0 + 0)3 (0 + !)3 �: : :�:1 = [� 1t �l l· (0 + 1)3 0 i 
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2 2 
Now estimate the integral by I � � L L A1,,(x1 + y1)3• 

1•0 J•O 
To evaluate the sum. multiply com:sponding terms or the two matrices and add 
the nine products: 

I � -6(i)(iX• . 1 + 4 . ¥ + 1 . 8 + 4 . i + 16 . •. + 4 . ¥ + 1 . 0 + 4 . i + 1 . 1) 

-M• + ¥ + s + i + 16 + ¥ + i + 11 = ff = J. 
The exact value is 

I =  Jf (x + y)3 dx dy = ( (f:(x + y)3 dx) dy 

= i f)(y + 1)' - y4J dy ==io((y + 1)' - y'J L -B- 1. 
so the estimate is exact in this case. 
Remark 1 Because Simpson's Rule is exact for cubics, the double integral rule is exact 
for cubics. in two variables. (See Eu. 19-20.) 

Remark 2 The matrix of values [f(x1, y1)] is arranged to conform to the layout of 
points (x,. y1) in the plane (Fig. l). 

The next example is an integral that cannot be evaluated exactly, only 
approximated. 

• EXAMPLE Z Estimate I - fl sin(xy) dx dy, 
using m == n == 1, where D is the square 0 :s; x :s; Pt. 0 :s; y :s; ix. 

SabditM Here h = k = Vr, and the coefficient matrix is [A.,] - [; 16 4 

4 lj 
4 1 

The matrix or values or sin xy is (sin X1Y1) = r:: � :: : :: �] 
sin 0 sin 0 sin 0 

Thererore I = JJ sin xy dx dy "' � ( 16 sin� + 8 sin� + sin:) "' 1.1!15. 

Error Estimate The error estimate for Simpson's Rule in two variables is 
analogous to that in one variable: 

(b - a)(d - c) 
lcrrorl � 180 (h4M + k4N], 



8. Approximate Integration 817 

where and 

We omit the proof. 

• EXAMPLE 3 Estimate the error in Example 2. 

Sollltiml ::. (sin xy) = y4 sin xy, :,. (sin xy) = x4 sin xy. 
But lsin xyl ::s; 1. Hence in the square 0 ::s; x ::s;1'r, 0 ::s; y ::s; -j1r, the inequalities 

I !7. I = IY4 sin xyl ::s; (�) ". I:; I = Ix" sin xyl ::s; (if 
hold. Apply the error estimate with m = n = 1, h = k =in. and � =  N = (�)4: 

lerror l � 1� (if [2(if (�f] = 4� · �:; < o.064. 

EXERCISES 

Estimate to 4 significant figures; take m • n = 1 

I ff cos(xy) dx dy 2 ff dx dy 
l + x + y  

0$.ir:S:t• OS.irS I 
os,st• OS7S I 

' ff r111 dx dy s ff e-... 1-,1 dx dy 
os .ir s l  OS.irSl 
IS7Sl OS7Sl 

7 ff x4y3 dx dy 8 ff tan(xy) dx dy. 
os.irs 1 OS.irSt• 
OS7S I OS7S I 

Estimate to S significant figures; take m • n • 2 

9 

12 

ff sin(xy) dx dy 
OS•St• 
OS7St11 

ff e-"1-11 dx dy 
os.irsl 
OS7Sl 

10 ff cos(xy) dx dy 
0$.ir:S:t• 
Os1St11 

13 fJ sin(xy) dx dy 
OS.irS I 
OS7S11 

Give an upper bound for the error in 
IS Ex. 1 16 Ex. 2 17 Ex. 9 18 Ex. 13. 

3 

6 

II 

14 

ff dx dy 
1 + xl + yl 

OS.irS I 
OS7S I 

ff ·  e-"1r dx dy 
OS.irSl 
OS7S l 

ff Y t1x ,  
x + y  

y 

ff dx dy 
1 + x3 + y4 • 

OS.irS l 
OS7Sl 

• 

19 Supposc/(x, y) • p(x)q(y� Show that the double integral Simpson's Rule estimate is 
just the product of the Simpson's Ruic estimate for J p(x) dx by that for J q(y) dy. 

20 (cont.) Conclude that the rule is exact for polynomials involvin1 only x3y3, x3y1, 
x2yS, x3y, x2y1, xy3, and lower degree terms. 
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21 The analogue of the Trapezoidal Rule is ff f(x. y) dx dy � � [f(O, 0) + f (0, I ) +/( I. I ) +  f (I. 0)). 

O S x S I  
o s r s  I 

Show that this rule is exact for polynomials .f (.'< • .r) = A + Bx + Cy + Dxy. 
22 (cont.) Find the corresponding rule for a rectangle a s x s b, c s x s d, divided into 

rectangles of size h by k with h = (b - a)/m and k = (d - c)/n. 

23 (cont.) Test the resulting rule on fJ x4y4 dx dy with m = n = 4. 
o s  .. s I 
O S 7 S  I 

24• Let I denote the unit square 0 :S x, y :S I .  Suppose f (x. y) = 0 at its four vertices. 
Prove that 

I Jf J(x, y) dx dy =  -!J.f y(l - y)f,,(x. y) dx dy -i J0 x(l - x�f .... (x. I )  +f .... (x, O)] dx. 
I I 

25 (cont.) Suppose also that 1/ .... 1 :S M  and l f,,I :S N  on I. Prove that 

I fJ f(x, y) dx dy I :S -hM + -bN. 
I 

26 (cont.) Conclude that for any function on the square 0 :S x :S l, 0 :S y  :S l, the error in 
the trapezoidal estimate (Ex. 2 1 )  is at most n(M + N). (Hint Use the result of Ex. 2 1  
and interpolation.] 

27 (cont.) Suppose f(x, y) has domain a S x S b, c s  y S d and satisfies l! .... I :S M, 
1/,,1 $ N. Show that the error in the trapezoidal approximation (Ex. 22) with 

m = n = l is at most hk (h2 M + k2 N) where h = b - a and k = d - c. 
12 

• 

28 (cont.) Deduce the corresponding error estimate for arbitrary m and n in Ex. 22. 
29 (cont.) What does this result give for Ex. 23? 
30 (cont.) Suppose the trapezoidal approximation is used to estimate the integral of 

Ex. 9, but with any m and n. Give an upper bound for the error. 

9. NllSCE LLA EOUS E>tE C S ES 

Let C denote the volume of the cone with base x2/a2 + y2/b2 = l and apex (0, 0, c). 
Let P denote the volume of the inverted paraboloid 0 :S z s c(l - x2/a2 - y2/b2). 
Assume a, b, c all positive. Find the (Archimedes') relation between P and C. 

2 Find the volume of the solid 0 :S z :S cy/b, x2/a2 + y2/b2 :S l, where a >  0, b > 0, 
c >  0. 

3 Integrate xy over the domain 0 s x s a, O s  y s a, x2 + y2 ;:':!: a2• 
4 Evaluate JJ dx dy over a :S x :S y :S b. 
5 An exponential horn loudspeaker is bounded by the 6 surfaces x = e-•. x = -e-i, 

y = e-•, y = - e-i. z = 0, z = b. Find its volume. 

6 Evaluate fJ d::y 
over l :S r s 2. r2 ;:':!: 2x. 

7 A certain solid lies between the planes z = a  and z = b, where a <  b. Let A(z) be 
the cross-sectional area of the solid at height z. Give a formula for the volume of 
the solid (C.•alieri's prillciple). 

8 (cont.) Let a >  0, b > O. c > 0. Join each point (x, y, 0) in the elliptic domain 
x2/a2 + y2/b2 s l. z = 0 by a segment to (0, y, c). These segments then sweep out a 
tentlike solid. Find its volume. 
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9 Let x = x(s) be a curve of length L on the unit sphere Ix I = I. The segment Ox(s) 
sweep out a (conical) surface. Find its area. 

10• To find the volume of the portion of a cone cut off by a plane. Let 0 < a < b and 
c > 0. Find the volume of the solid cy/b $ z $ c( l - r/a� where r2 = x1 + y2 as usual. 

u• Find the area and the moment m,, for D in Fig. l ;  p = I .  [Hint You may use 
Ex. 17, p. 883.] 

ll (cont.) A sphere of radius a is inscribed in one mappe of a right circular cone of 
apex angle 2a. Find the volume of the portion of the cone between the sphere and 
the apex. 

: 

D 

;I x 

Fig. I Fig. l 

13 Find the moment m,, for D in Fig. 2;  p = I. [Hint Use Example 4, p. 879.J 
14 (cont.) Find the volume of the hole in a donut, D rotated about the z-axis. 
15 Find the mass and center of gravity of the spiral wire r = 8, 0 $ 8 $ 2x, where the 

density is p = J i + ·02 • 

16• Suppose/(a) = 0. Express 2 (((!(x)/(y)[l - f'(x)] dx) dy 

17 

18 

b b 
in terms of J /(x) dx and J /(x)3 dx. 

• • 
(cont.) Suppose 0 =/(a) $/(x) andf'(x) $ I for a $  x $ b. Prove 

(UMP dx s ((1(x) dx) 2• 

E I f • dx 
b d"fli . . f' dx I I 

va uate - ·· · y 1 erent1atmg 2- -2 = arc tan . 
0 ( I  + x2)2 0 x + t t t 

Suppose /(x) and g(x) are continuous for x � 0. Their coaYolutioa is the function 

h = f • g defined by h(x) = J f(t) g(x - t) dt. 
0 

19 Prove g • f = f • g. 
lO (cont.) Prove f • (g • h) = (f • g) • h. 
11• (cont.) Recall that the Laplace tra•form off(x) is the function 

... 
L(f)(s) = J e-u /(x) dx 

0 
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where convergent. Assuming everything in sight converges and changing the order of 
integration is valid. prove L(f • g)(s) = L(f )(s) · L(g)(s). 

22 Criticize : 

I
= ff 

x2 - y2 
f 

I 
(f 

I x2 - y2 ) f, I 
( 

-x ) , ...  I 
( 2 2)2 dx dy = ( 1 2)1 dx dy = ::r:-::z dy 
X + y 0 0 X + y 0 X + y .r • O  

f, 1 - 1 I = 
o I + y2 dy = - 4 n. 

In a snow pile, let p = p(x) denote the pressure and p = p(x) the density. Assume that p 
and p depend only on the depth z of the snow above x. Thus in a vertical column of 
unit cross-sectional area, we have 

p(z) = (p(u) du 
• 0 

at depth z . 

Assume also that the density at any point depends only on the pressure there, so 
p = f (p ). If the snow is not too deep (so it doesn't pack into ioe � a reasonable 
assumption is p = Po + kp. where Po > 0 and k > 0. 

23 Prove p(z) = (p0/k)(e"= - I ) and p(z) = p0t!-=. 
24 (cont.) Suppose the snow pile has the shape of a right circular cone of radius a and 

height h. Find the weight of the snow pile. 
25 (cont.) Suppose the snow pile has the shape of a hemisphere of radius a. Find the 

weight of the snow pile. 
26 (cont.) Suppose the snow pile has the shape of an inverted paraboloid of revolution 

of height h and base radius a. Find its weight. 

27 Supposef(x) is increasing on a S x S b. Prove 

b b 
(b + a) J f(x) dx S 2 J xf (x) clx. 

• • 

[Hint Consider (x - YXf (x) -f(y)].) 
28* Supposef(x) is increasing on a s  x s b and f(x) > 0. Prove 

J! x[f(x)]2 dx J! xf(x) dx 
J! [f (x)]2 dx 2: J!f (x) dx · 

29 Let a line segment in R1 have length L, and let L1 and L2 be the lengths of its 
projections on the axes. Prove L1 = Lf + Li .  

30 (cont.) Find the analogous relation for a plane region in R3 of area A. 
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1 . TRIPLE INTEGRALS 

Triple integrals arise from problems of the following type. Suppose we have a 
bounded domain D in space filled by a non-homogeneous solid. At each point x the 
density of the solid is cS(x) gm/crn3• What is the total mass? 

Ou_r previous experience suggests an approach to the problem. We decompose 
D into many small subdomains D1 and choose a point x1 in D1 • Then the mass in 
D1 is approximately cS(x1)1 D,j, where IDd is the volume. The total mass is 
approximately 

L cS(x,) I D1I · 
Finally, we take the limit of these approxanating sums as- the subdivisions of D 
become finer and finer. The limit, if it exists, is the triple integral 

ff f cS(x) dx dy dz. 
D 

All of this reminds us of double integrals. In fact the theory of triple integrals is 
similar to the theory of double integrals and presents no really new difficulties, so we 
shall omit most of it. The main theoretical fact is that the triple integral exists if cS(x) is continuous and the boundary of D is not too complicated. The main 
practical fact is that the integral can be evaluated by iteration. 

Iteration A convenient domain for triple integration is the part of a cylinder 
bounded between two surfaces, each the graph of a function. Precisely, suppose two 
surfaces z = g(x, y) and z = h(x, y) are defined over a domain S in the x, y-plane, 
and that g(x, y) < h(x, y). See Fig. 1. These surfaces can be considered as the top 
and bottom of a domain D in the cylinder over S. Thus D consists of all points (x, y, z) where (x, y) is in S and 

g(x, y) :s; z :s; h(x, y). 
In this situation the iteration formula is 

ff f cS(x) dx dy dz = ff (f ::·::cS(x, y, z) dz) dx dy. 
D I 

891 
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: 

1----1-- - r-11�---�- - -- � 
1 I' 

Fig. I Domain in R3 between two 
graphs or fonctions 

Fig. l Intuitive reason ror the iteration 
formula 

Some prefer the notation 

.f f dx dy r"'·"-'1<5(x, y. z) dz. 
"i • l(x. )') 

The reason for the iteration formula is illustrated in Fig. 2. First, the elements 
of mass dM = <5 dx dy dz in one column are added up by an integral in the vertical 
direction (x and y fixed. z variable). The result is 

( , ll(J:. )') ) I <5(x. y. z) dz dx dy . 
• 1(.1', ,, 

Then the masses of these individual columns are totaled by a double integral 
over S. 

EXAMPLE 1 Find JJJ (x2 + y) z dx dy dz. taken over the block 
I 5 x 5 2, 0 5 y 5 I, 3 5 z 5 5. 

So/11tion The upper and lower boundaries are the planes z = 5 and z = 3. Therefore 

JJJ (x2 + y)z dx dy dz = Jj u:(x2 + y) z dz) dx dy. 
where S is the rectangle I 5 x 5 2 and 0 5 y 5 l .  Now x and y are constant in 
the inner integral, so 

s s r (x2 + y) z dz = (x2 + y) r z dz = 8(x2 + y) . 
• 3 • 3 
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Hence. 

f f f (x2 + y) z dx dy dz = r r 8(x2 + y) dx d}' . . .  .• 
2 ( I ) 2 = ( J 0 8(x2 + y) dy dx = 8 J

1 
(x2 + !) dx = 8(j + !) = tf. 

Remark The solution can be set up in the form 

fJJ (x2 + y)z dx dy dz = J.2 r.r: u:(x2 + y) = cl:) d.r] clx. 
• 

EXAMPLE 2 Compute JJJ x3y2z dx dy dz over the domain D bounded by 
x =  I. x = 2 ; y = O. y = x2 ;  and : = 0. : =  l/x. 

)' 
Y = x2 

(a}  I 

: 

(b) Domain D of integration 

Fig. 3 

Sol11tio11 The domain D is the portion between the surfaces z = 0 and z = l/x of 
a solid cylinder parallel to the z-axis. The cylinder has base S in the x, y-plane. 
where S is shown in Fig. 3a. The solid D itself is sketched in Fig. 3b. (A rough 
sketch showing the general shape is satisfactory.) The iteration is 

f • •  " ' ( f l/x ) f ' ( 1 1/x) 
. JJ x3y2z dx dy dz = J J  . 0 x3y2z dz dx d}' =

. 
J x3y2 !z2 0 dx dy 

D I I 
2 ( xZ ) 

= ! .�f xy2 clx d}• = ! J 1 x J0 y2 dy
. 

dx 

2 
= ! f x7 dx = J,(28 - I ) = W = fl 

• I 
Alter11atirJe Sohltio11 The domain may be considered as the portion between the sur
faces y = 0 and y = x2 of a solid cylinder parallel to the y-axis. The cylinder has 
base T in the z. x-plane (Fig. 4). From this view point, the first integration is 
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with respect to y; the iteration is 

JJJ x3y2= clx dy cl: = J.f x3=( .(\·2 cly) clx tlz = JJ !x9z dx d: 
D T T 

. 2  ( , l /x ) r 2  
= i i  x9 I : clz clx = i  x7 clx = <ik(28 - 1 ) = fi. 

· I  ' 0  ' I  

Remark It is bad technique to consider the region as a solid cylinder parallel to the x-axis 
because the projection or the solid into the y. :-plane breaks into four parts. Therefore. 
the solid D itself must be decomposed into four parts. and the triple integral correspondingly 
expressed as a sum or four triple integrals (Fig. 5). The resulting computation is much 
longer than that in either or the previous solutions. 

: 

l--i·-J--+���������1--1� ' 

Projection of D onto the y. z-plane 
forces you to decompose the 
integral into rour pieces. 

In general. try to pick an order of iteration that decomposes the required triple 
integral into as few summands as possible, at best only one. The typical summand 
has the form 

• b r r ll(x) ( • fix.,., ) J I I c'>(x. y. :) dz dy dx. 
' a  • i(x) • f(x. )') 

(Possibly the variables are in some other order.) Once the integral 
, f(X.)') I c5(x. y. =) dz 

' fCx. )') 
is evaluated. the result is a function of x and y alone; z does not appear. Likewise, 
once the integral 

,ll(x) ( .  /(x. y) ) I j c5(x. y. =) dz dy 
• i(x) 

• f(J<, y) 
is evaluated. the result is a function of x alone; y does not appear. 

Remember there are six possible orders of iteration for triple integrals. If  you 
encounter an integrand you cannot find in tables. try a different order of iteration. 
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Domains and Inequalities If a domain D is specified by inequalities, it may 
be possible to arrange the inequalities so that limits of integration can be set up 
automatically. For example. suppose the inequalities can be arranged in this form: 

Then 

a s; x s; b, h(x) s; y s; k(x� g(x, y) s; z s;f(x. y). 

· · r r b f r A:(.r) (J /(.r. 71 ) ] J !. c5(x. y, z) dx dy dz = . • . 11(.rl fl.r. 7
1 
c5(x. y. z) dz dy dx. 

Tetrahedral domains can be expressed by such inequalities, and they occur 
frequently enough that it is useful to practice setting up integrals over them. 
• EXAMPLE 3 A tetrahedron T has vertices at (0, 0, 0), (a. 0, 0). (0. b, O� 
(0. o. c). where a. b, c > 0. Set up rrr c5(x. y. z) dx dy dz as an iterated integral. . . .  T 

c 

plane � + 1.'. + .=_ = I / (J b c 

,, Fig. 6 Tetrahedral domain 

So/11tio11 The slanted surface (Fig. 6) has equation 

� + -!' + z = l . a b c 

The domain is defined by the inequalities 

O � x. O � y. 0 =::;; Z, 
x y z - + 1: + =:; I. Q (I C 

Any order of iteration is satisfactory; for instance. choose the order of integration 

J [J (J c5(x. y, z) dz) dy j dx. 
To find the limits of integration, we must replace the system of inequalities defining 
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D by an equivalent system of the form 
a $  x $ b, h(x) $ y $ k(x), g(x. y) $ z :Sf(x, y). 

Obviously the original inequalities imply 0 $ x $ a. Once we choose such an x, 
then 

0 $ y $ b( I - � - n $ b( 1 - �). 
since z � 0. Once we choose x and y then 

O < z < c( t - � - �) . - - a b 
Thus we obtain the equivalent system of inequalities : 

0 $ x $ a, O s y s b( 1 - �). 0 S z $ c( t - � - �) · 

The corresponding iteration is 

fff O(x.y, z)dx dy dz � t [f:(· - ;)u:( · 
-HJ•(x, y, z) dzH dx 

T 

• EXAMPLE 4 Set up an evaluation of the triple integral 

I = f ff f(x, y, z) dx dy dz, 
" b" 

where the domain of integration D is specified by the inequalities 
0 $ x $ 2, 0 $ y $ 2, 0 $ z $ 2, x + y $ 3, y + z $ 3. 

• 

Sol11tion The first order of business in solving such a problem is drawing D. We 
start with the cube 0 $ x $ 2, 0 $ y $ 2, 0 $ z $ 2. The plane y + z = 3, shown in 
Fig. 7a, cuts the cube into two pieces. Clearly y + z $ 3 is the lower one, so we 
chop off the prism y + z ;;;::: 3. The result is the solid in Fig. 7b. The plane x + y = 3, 

; 

(a) (b) (c) 

Fig. 7 
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shown in Fig. 7b, cuts the solid into two pieces, and we want the rear one, the 
one that includes the origin. We chop off the front piece and are left with D 
itself, shown in Fig. 7c. 

Clearly we shall have to split the integral into pieces. If for instance we project 
D into the z, x-plane, then the resulting plane domain splits naturally into three 
subdomains (shown faintly in Fig. 7c). Better is to project D into the x, y-plane or 
into the y, z-plane; in either case the resulting plane domain splits only into two 
pieces. Again refer to Fig. 7c. 

We shall choose the projection into the y, z-plane. The shadow of D is a plane 
domain S = S1 + S2 , where 

S1 = { 0 :::;;; y :::;;; l, 0 :::;;; z :::;;; 2 }  and S2 = { 1 :::;;; y :::;;; 2, 0 :::;;; z :::;;; 3 - y }. 
The part D1 of D that projects onto S1 is specified by 0 s x s 2. The part D2 
that projects onto S2 is specified by 0 :::;;; x s 3 - y. Accordingly, 

I =  fff Jdx dy dz + fff Jdx dy dz = ff ((fdx) dy dz + ff ((-fdx) dy dz 
D, D1 I, 0 11 0 

= ( f( ((fdx) dz ] dy + ( f ( - ' ((-/ dx) dz ] dy. • 

EXERCISES 

Evaluate the triple integral over the indicated domain 

fJJ xy2z dx dy dz 

O s x s l  O s y s l  O s z s 2  

3 fff y :  
z 

dx dydz 

- l s x s 2  O s y s l l s z s 3  
3 Jf f (x - y)(y - z)(z - x) dx dy dz 

O s x s l s y s 2 s z s 3  
7 Jf J 120(x + y + z)3 dx dy dz 

O s x s a  O s y ::;; b O s z s c  
9 Jf f z dx dy dz 

O s x  O s y  x + y s l 
0 S z S 1 - x2 

1 1  ff f ( 1  :z 
y)2 

dx dy dz 

0 :::; x 0 $ z :::; 1 - y2 y � x2 

13 Jf J z3 dx dy dz 

pyramid with apex (0, o. n base the 
square with vertices ( ± 1. ± l, 0) 

2 fff 
x: dx dy dz 

O s x :::; I l :::; y :::; 2 l :::; z :::; 3 

4 Jf f xy2 sin(xyz) dx dy dz 

O s x s l  O ::;; y ::;; x O s z s l  
6 Jf J (x + y)(y + z)(z + x) dx dy dz 

O :::; x s l  O :::; y :::; J O s z s l 
8 ff f:: � dx dy dz 

l s x :::; 3 J :::; y s 2  O :::; z :::; I 

10 JfJ y dx dy dz 

O s x  O ::;; y x + y s l 
0 $ z $ x2 + 2y2 

12 Jf J (3x2 - z2) dx dy dz 

y $ 1  -y $ x $ y -y2 $ z $ y2 

14 the same as Ex. 13, except the square 
base has vertices ( ± 1, 0, o� 
(0, ± I, 0) 
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15 JJJ xy: dx dy d: 16 fJJ y dx dy dz 

tetrahedron with vertices tetrahedron with vertices (o, o. o� 
(O. o. o� ( 1 . 0. 0). (0. I. 0). (0. 0, I )  (0. o. I �  ( 1 . 1 . 0� ( - I .  I .  0) 

17 JJJ x dx dy d: 18 JJJ (y + z) dx dy dz 

tetrahedron with vertices tetrahedron with vertices 
(o. o. o� (0. 0. I), (O. 1. o� ( I .  I. I )  ( I .  0. 0), (0, o. 2� (1 ,  0, 1), (I ,  I, I )  

19• m x dx dy d: 20• JJJ x2 dx dy dz 

tetrahedron with vertices ( 1 .  o. o� tetrahedron with vertices (O. o. o� 
( - 1, 1, O� ( I .  1. 1 �  (2. 2. 0) ( 1 .  1, O� (2. - 2. o� (3. 0, 2) 

21 JJJ (x + y + :)2 dx dy d: 22 JJJ xy dx dy dz 

O :s; x s l  O :s; y s l  O s z s l  O s x s 2  O s y s 2  O s z  
x + y + : :s; 2  x + y + 3z :s; 3 

23 JJJ (x + 2y + 3:) dx dy d: 24 JJJ z2 dx dy dz 

0 $ x s 2y s 3: :s; 6 (x - 1 )2 + y2 $ 4 (x + 1)2 + y2 :s; 4 
0 s z i y. 

25 A solid cube has side u. Its density at each point is k times the product of the 6 
distances of the point to the faces of the cube, where k is constant. find the mass. 

26 Charge is distributed over the tetrahedron with vertices 0, i, j, k. The charge density 
at each point is a constant k times the product of the 4 distances from the point to 
the faces of the tetrahedron. find the total charge. 

27 Express ( [( {(g(x) tlx) d.r ] dz as a simple integral. 

2s• find a formula for JJJ x"y4z'(l - x - y - zr dx dy dz taken over 0 $ x. 0 $ y. 

0 :s; :. x + y + z $ I. where p, q, r, s are non-negative integers. You may take as 

i' m!n !  
known x"'( I - xr dx = 

( I ) ' · o m + n +  . 

29 Take four vertices of a unit cube. no two adjacent. find the volume of the tetrahedron 
with these points as vertices. 

30 (cont.) Now take the tetrahedron whose vertices are the remaining four vertices of the 
cube. The two tetrahedra intersect in a certain polyhedron. Describe it and find its 
volume. 

And a few more integrals for those who like this sort of thing 

31 f ff (x : y)2 
dx dy d: 

x � O  y � O  I :s; x + y s 2  
y2 :s; z :s; x2 

33 JJJ x2y2z2 dx dy d: 

regular octahedron with vertices 
( ± I. 0, 0), (0, ± 1. 0), (0, 0, ± 1 )  

32 JJJ z dx dy dz 

0 $ x $ 2 0 s y s 2 0 s z S xy 
y $ (x - 2)2 x S (y - 2)2 

34 fJJ (x2 + 2xy) dx dy dz 

l2xyl S z S 1 - x2 - y2• 
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2. CYLINDRICAL COORDINATES 

Cylindrical coordinates are designed to fit situations with rotational (axial) 
symmetry about an axis, usually taken to be the z-axis. 

The cylindrical coordinates of a point • = (x, y, z) are {r, 0, z}, where {r, O} are 
the polar coordinates of (x, y) and z is the third rectangular coordinate (Fig. la). 
Each surface r = constant is a right circular cylinder, hence the name, cylindrical 
coordinates (Fig. I b ). 

z 

z 

Jl "' (X, )' , Z) 
= fr, 8, z l  

(a) The cylindrical coordinates (b) r = const. is a right 
of • are fr, 8, z l .  circular cylinder 

Fla. I Cylindrical coordinates 

Through each point x (not on the z-axis) pass three surfaces. r = constant, 
0 = constant, z = constant (Fig. 2). Each is orthogonal (perpendicular) to the other 
two at their common intersection x. 

The relations between the rectangular coordinates (x, y, z) and the cylindrical 
coordinates {r, 0, z} of a point are [ jx = r cos O 

• Y  = r sin 0 j z = z 

j rz = x2 + Yi 
cos 0 = x/r, sin 0 = y/r I z =  z. 

The origin in the plane is given in polar coordinates by r = O; the angle 0 is 
undefined. Similarly, a point on the z-axis is given in cylindrical coordinates by 
r = 0, z = constant; (} is undefined. 

EXAMPLE 1 Graph the surfaces (a) z = 2r, (b) z = r2• 

Sol11tion Both are surfaces of revolution about the z-axis, as is any surface 
z = f(r). Since z depends only on r, not on 0, the height of the surface is constant 
above each circle r = c in the x. y-plane. Thus the level curves are circles in the 
x. y-plane centered at the origin. 
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; 

Fi&- 2 The (mutually orthogonal) 
level surfaces of each 
cylindrical coordinate 

la I : - �r 

= 

!hi  : = r2 
Fig. 3 

In (a� the surface meets the first quadrant of the y, :-plane in the line 
z = 2_r. (Note that in the first quadrant of the .I'· z-plane. x = 0 and .r ;:::: 0. Since 
r2 = x2 + y2 = 3•2• it follows that r = y.) Rotated about the :-axis. this line spans 
a cone with apex at 0. See Fig. 3a. 

In (b). the surface meets the y. :-plane in the parabola z = y2• Rotated about the 
z-axis, this parabola generates a paraboloid of revolution (Fig. 3b). 

If a solid has axial symmetry. it is often convenient to place the :-axis 
on the axis of symmetry. and use cylindrical coordinates {r. O. :} for the computa
tion of integrals. 

In polar coordinates {r. O}. the element of area is r dr dO. Correspondingly. the 
element of volume in cylindrical coordinates lr. 0. :} is 

le 1ement of Volume tlV = r dr dO d:. 

Let us justify this formula intuitively. We start at a point x = {r. 0. :} and give 
small displacements dr.dO. d: to its cylindrical coordinates. According to Fig. 4 the 
displacement of x in the r-direction has length dr. that in the (}-direction has length 
r dO, and that in the :-direction has length d:. These three displacements are 
mutually orthogonal. so they span a " rectangular" box of volume (dr)(r dO)(d:), 
hence the formula dV = 1· dr dO d:. 

EXAMPLE 2 Evaluate JJJ :Jx2 + .r2 dx tly d: taken over the first octant 

portion of the solid cone with apex (0. 0. 2) and base x2 + y2 $; I .  

Solution The axial symmetry of the cone (Fig. 5) plus the expression J x2 + y2 = r 
in the integrand make this problem a natural for cylindrical coordinates. The 
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integral becomes 

Fig. 4 Intuitive proof of 1· dV = (dr)(r dO)(d:) 

I =  J.f J (rz) r dr dO d=. 
The surface of the cone must be of the form z = f(r). Since f(r) is obviously 

linear, and f (0) = 2 and f ( I )  = 0, the surface is z = 2 - 2r. Therefore the solid 
domain of integration is described by 

0 � 0 � !n. 0 � r � I ,  0 � z � 2 - 2r. 

Hence I =  (J:'2 c/O ) (f: r2 dr f:-ir z d=) = ; f: � r2(2 - 2r)2 dr 

= n r2( I - r)2 dr = 7t (r2 - 2r3 + r4) dr = --- . J I J I 7t 
0 0 30 

Fig. 5 Fig. 6 

• 
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• EXAMPLE 3 A region D in space is generated by revolving the plane region 
bounded by z = 2x2, the x-axis, and x = 1 about the z-axis. Mass is distributed in 
D so that the density at each point is proportional to the distance of the point 
from the plane z = - l, and to the square of the distance of the point from the 
z-axis. Compute the total mass. 

Sollltion The density is 

l> = k(x2 + y2)(z + 1) = kr2(z + l� 
where k is a constant. A cut-away view of the solid is shown in Fig. 6. In 
cylindrical coordinates, the solid is described by the inequalities 

0 � 0 � 2n, O � r �  l ,  O � z =:; 2r2• 
For as Fig. 6 shows, 0 � r � 1. And fixing a value of r in this range determines 
the surface of a vertical cylinder on which z runs from the level z = 0 to the level z = 2r2• 

The total mass of the solid is 

JJJ cS(x, y, z) dx dy dz = Jf J kr2(z + 1) r dr dO dz 
= ku:· do)( r3 f ('2 (z + l ) dz J dr 

1 = 2nk J r3[!(2r2)2 + (2r2)] dr 
0 

1 = 4nk f (r7 + r5) dr = tnlc. · o  • 

The Natura I Fr am e It is convenient to fit a frame of three mutually perpendicular 
vectors to cylindrical coordinates just as the frame i, j, k fits rectangular coordinates. 
At each point {r, 0, z} of space attach three mutually perpendicular unit vectors 
u, w, k chosen so :1 points in the direction ol incrcasing I :· 
Thus (Fig. 7) 

u = ! (x, y, 0) = (cos 0, sin 0, 0), r 
w = ! ( -y, x, 0) = (-sin 0, cos 0, 0), r 
k = (0, 0, 1). 

Note also the relation x = ru + zk. 
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x = jr. O, zl  

k = (0, 0, I )  

)' 

sin 0, cos 0. 0) 

u = (cos 0 ,  sin 0 .  0) 

Fig. 7 Thenaturalframeforcylind
rical coordinates 

The vectors u, w. k rorm a right-hand system : 

\ u x w = k. w x k =  u, k x  U = W. 1 
Note that u and w depend on 0 alone, while k is a constant vector, our old 
friend from the trio I. J. k. Note also that 

OU 
ao = w, 

Ow 
oO 

= - u. 

In situations with axial symmetry. it is frequently better to express vectors in terms 
of u, w, k rather than i. j. k. 

Let us express dx in terms of dr. dO. and dz. Intuitively (Fig. 8). if r. 0, z are given 
small increments dr, dO. dz, then the displacement of x in the u-direction is dru, in 
the w-direction is r dO w, and in the k-direction is dzk. Accordingly 

z 
k 

r--- ,.,,.�-� d: , d0- 1 � 
' 1-----"'----1 

Fis. 8 "Proor that dx = dr u + r d9 w  + dz k 

u 
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I dx = dr u + r d8 w + dz k. 

This formula has a direct analytic derivation. We have 

I x - r cos 8 ldx = dr cos 8 - r d8 sin 8 
y : r sin 8 dy = dr sin 8 + r d8 cos 8 
z = z dz = dz. 

Therefore 

dx = (dx, dy, dz) = (dr cos 8 - r d8 sin 8, dr sin 8 + r d8 cos 8, dz) 
= dr (cos 8, sin 8, 0) + r d8\(-sin 8, cos 8, 0) + dz (0, 0, 1 )  

= dr u + r d8 w + dz k. 

EXERCISES 

Give an equation for the surface in cylindrical coordinates 

� + � + : = 1 a b c 
sphere, center 0, radius a 

1 

2 
3 cylinder parallel to z-axis, base the circle in the x, y-plane with center (0, a) and 

radius a 
hyperboloid z = 2xy. 

Use cylindrical coordinates to evaluate the integral over the indicated domain 

5 HJ xyz dx dy dz 
x � O  y � O  O s; z s; b  
xl + yl S al 

7 JfJ yz dx dydz 
0 s; z s; y xl + yl s; al 

9 JJf e' dx dydz 
xl + yl s; z s; 2(xl + yl) s; 2 

1 1  JJf zdx dydz 
1 s; x2 + yl + zl 
l s; x2 + y2 + (z - 2)2 x2 + y2 s; 1 
O s; z s; 2  

13 HJ z dx dydz 
(x - a)2 + y2 s; a2 2x s; z s; 3x 

15 HJ (y - Sz) dx dy dz 
x2 + z2 s; 4 0 s; y s; l 

6 HJ (x1 + y2 + z2) dx dy dz 
x2 + y2 s; al lz l S b  

8 HJ z2 dx dy dz 
xl + yl + zl S a2 xl + yl S bl 
(0 < b < a) 

10 JfJ z' dx dy dz 
- (x2 + y2) s; z s; 0 x � 0 
y s; 0 x2 + y2 s a2 

12 HJ e' dx dy dz ----
b s z s; 2b + J a2 - x2 - y2 
x2 + y2 s; al (b > O) 

14 HJ z dx dy dz 
0 S r  S cos 26 -in S 9 S in 0 s z s 1 - r1 

16 JJJ (x3 + y3)dx dydz 
0 S y S 2z z2 + x1 s a1 
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· 17 Jf f xy dx dy dz II Jff (y - x)dxdy dz 

yl + zl s al y :2:; 0  O s ax s y1 + z1 s a1 y s O  
z s x s z + b  

19 Jf f z1 dx dy dz • JJf z dx dy dz 

xl 11 
- + - s l  
4 9 

O s z s 2  
xl 11 
- + - s t  
4 9 

x :2: 0  y :2: 0  

x + y + z s fa 

A space curve is given in the parametric form 

r =- r{t� 9 = 9(t� z = z(t� a S t  S b  
21 Express its velocity in terms of the natural frame u. w, k. 
22 Express its acceleration in terms of the natural frame 

z � o. 

23 Use Ex. 21 to express its arc length in terms of r, 9, z and their time derivatives 
24 Find the length of the spiral r = A, 9 = Bt, z = Ct, a S t S b. 

A surface is given in the parametric form 

r - r(u, v� 9 • 9(u, v� z • z(u, 11� 

where (u, 11) varies over a domain D 

25 Express iJx/iJu and iJx/iJv in terms of the natural frame u. w, k 
26 Express iJ1x/iJu iJv in terms of the natural frame 
27 Use Ex. 25 to express the surface area in terms of r, 9, z and their derivatives. 

Use Ex. 27 to find the area 

28 lateral surface of a right circular cone of radius a and height It 
29 hemisphere of radius a 
30 paraboloid bz • x2 + y1, x2 + y1 s a2• 

31 Given a function/ on a domain in R3, express df in terms of dr, d9, and dz. 
32 (cont.) Express grad f in terms of the natural frame u, w, k. 

(Hint df • (grad/) · dx.] 

3. S P H E R ICAL COOR DINATES 

906 

Spherical coordinates are designed to fit situations with central symmetry. The 
spherical coonliats [p, tf>, 8] of a point x are its distance p = I •  I from the origin, 
its elevation ang]e tf>, and its azimuth ang]e 8. (Often 8 is called the longitude and 
tf> the co-latitude.). Note that 8 is not determined on the z-axis, so points of this 
axis are usually avoided. In general 8 is determined up to a multiple of 2n, and 
0 < tf> < n. See Fig. la 

Relations between the rectangular coordinates (x, y, z) of a point and its 
spherical coordinates may be read from Fig. lb. They are 

I x = p sin tf> cos 8 

y = p sin tf> sin 6 

z - p cos tf>  I pl = x2 + Yi + zl 

cos tf> = z/p 

tan 6 = y/x. 
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z z 

z 

x = (x, _v . z) 
= [p, 41, 8 1 

p cos ; 
x = (p, ;, 8 )  

-P sin 4> sin 8 

(a) The spherical coordinates 
of x are [ p, ;, 8 I . 

y p sin ; 

(b) The relation between 
(x, y, z) and [p,;, 8 )  

Fig. I Spherical coordinates 

The level surfaces 

P = constant 

I I 

concentric spheres about O 
</> = constant are right circular cones. apex 0 

0 = constant planes through the z-axis. 

At each point x the three level surfaces intersect orthogonally (Fig. 2). 

p = con't. 

; 

p sin <ti JO 

Fig. 3 Intuitive proof of 

y 

Fig. 2 The (mutually orthogonal) 
level surfaces of each 
spherical coordinate 

dV = (dp )(p d<f)'J(.p sin <P dO) 
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Integrals If a solid has central symmetry, it is often convenient to place the 
origin at the center of symmetry and use spherical coordinates (p. </>. O] for the 
computation of integrals. 

Let us find a formula for the element of volume dV in terms of p, <J>, and 0. 
We start at a point x and give small increments dp, d<J>, dO to its spherical 
coordinates. According to Fig. 3 the displacement of x in the p-direction has 
length dp, that in the </>-direction has length p d</>. and that in the 0-direction has 
length p sin </> dO. The three displacements are mutually orthogonal, so they span 
a "rectangular·· box of volume (dp )(p d<J> )(p sin </> dO� hence the formula 

I Element of Volume dV = pl sin </> dp d<J> d0. 1 
• EXAMPLE 1 Use spherical coordinates to find the volume of a sphere of 
radius a. 
So/11tion 

V = JJJ dV = JJJ pl sin </> dp d</> dO 

= ((p2 t/p} (( sin </> d<t>) (("
do) = (!a3)(2)(27t) = 17ta3• • 

• EXAMPLE 2 Find the volume of the portion of the unit sphere that lies in the 
right circular cone having its apex at the origin and making angle a with the 
positive z-axis. 
So/11tion The cone is specified by 0 � </> � a, so the portion of the sphere is 
determined by 0 � 0 � 2n. 0 � </> � ex, and 0 � p � I. See Fig. 4. Hence the volume is 

Remark As a check, let ir - n. Then the volume should approach the volume of a 
sphere of radius I. Does it? 

• EXAMPLE 3 A solid fills the region between concentric spheres of radii a 
and b. where 0 < a < b. The density at each point is inversely proportional to 
its distance from the center. Find the total mass. 

So/11tion The solid is specified by a � p � b; the density is b = k/p. Hence 

M = fff b(x) dV = fff� p2 sin </> dp d<J> d0 = k(f:" do) (J: sin </> d<t>) (f p dp) 
= (2nk)(2)(b2; a2) = 2nk(b2 - a2). • 

Remark As a --0, the solid tends to the whole sphere. with infinite density at the 
ceriter. But M -- 2nkb2, which is finite. 
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cone • = a  

I 
0 I I --- I 

/� . j/ -7-, /> JC 

The following example can be solved either by cylindrical or spherical coordinates. 
Indeed, it is hard to decide at first which to use. Therefore we shall work the 
problem both ways. 

EXAMPLE 4 Find I =  Jf JD z dx dy dz, where D is described by 

0 5 z, 

and 0 5 b < a. 

Sobttioll The domain is like a cylindrical can with a spherical cap at one end 
(Fig. 5). Let us first set up the integral in cylindrical coordinates. Since x2 + y2 = r2, 
the sphere is given by r2 + z2 = a1• Therefore the domain D is described by 

Consequently 

0 5 0 5 2n, 0 5 r 5 b, 0 5 z 5 J a1 - r1 • 

I - J !J z dx dy dz = J lf z r dr dO dz 

2• • JJ=rf 
= J dO J r dr J z dz 0 0 0 

• • 
= (2n) J !r(J a1 - r2 )2 dr = n J (a2r - r3) dr 0 0 
- n(!a2bl - ib•) = !Jtb2(2al - bl). 

Now let us set up the solution in spherical coordinates. The domain D naturally 
splits into two subdomains (Fig. 6a). The first, D., an ice cream cone, is described by 

0 5 0 5 21r. 0 5 ti> 5 arc sin b/a, 0 5 p 5 a. 

The limit arc sin bf a on the apex angle q, is seen from Fig. 6b. The second 
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z z 

- p sin 4> = b  

...... \ 

f-r-1 horizontal 

)' 
(b) Note that r = sin f, so 

(a) r < b implies p < b/sin f. 

subdomain D2 , a cylindrical can with a cone removed, is described by 

0 � 8 � 2n, arc sin b/a ::5 ti> ::5 Pr, 0 � p � b/sin t/>. 

Consequently 

I =  f ff z dx dy dz = ff f (p cos ti>) p2 sin ti> dp dt/> d8 
D D 

= fl! pl sin ti> cos ti> dp dt/> d8 + f ![pl sin ti> cos ti> dp d4> d8. 

l• arc 1lnb/• • 
Now ff f = f d8 f sin ti> cos 4' dt/> J pl dp 

D, 0 0 0 1 arc1ln b/• 
= (2n)(ia4)(! sin2 4') b = ina4(b/a)2 = ina2b2. 

l• -tl •/1ln. 
Next. ff f = f d8 f sin #f> cos ti> d#f> f pl dp 

Dz 
0 · arc 1ln bl• 0 

Therefore 

= (2x)(ib4) f �,,. d#f> = (pw4)[-!(sin 4')-2] 
�l ti> r� � · � � � � � �  

= (inb•)[(a/b)2 - 1 ]  = inb2(a2 - bl). 
/ = ina2b2 + inh2(a2 _ bl) =  inbl(2al _ bl). • 

Spherical Area Suppose a domain S lies on the surface of the sphere p = a. 
We should be able to use spherical coordinates to find its area ISi. What we 
need is a formula for the element of spherical area dA. Now p is constant. Small 

file:///nb/a2
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displacements d<P and dO result in a small rectangular region (Fig. 7a) whose sides 
are a d<P and a sin <P dO. Therefore 

[Bement of Spherical Area dA = a2 sin <P d<P dO. 

(a) Element of spherical area 
dA = (a d4i )(a sin 4') dB Cb) Solid angle 

Fig. 7 Spherical area and solid angle 

EXAMPLE 5 Find the area of the polar cap. all points of co-latitude ex or less 
on the unit sphere. 

Solution Refer back to Fig. 4. p. 908. The region is.defined on the sphere I' =  1 by 
0 ::;; <P ::;; ex. hence 

A = (• ( f %
sin <P d<P) dO = 2n( I - cos ex). 

• 0 • 0 

• 

Remark Suppose S is a region on the unit sphere. The totality of infinite rays starting 
at 0 and passing through points of S is a cone which is called a solid angle (Fig. 7b). A 
solid angle is measured by the area of the base region S. The unit for solid angles is the 
steradian (sr). The solid angle determined by the whole sphere equals 41t sr. The solid angle 
determined by the first octant equals !1t sr. The solid angle determined by the polar cap in 
Example 5 equals 21t( I - cos a) sr. 

Tl rJ ,  r I r r n e As for cylindrical coordinates. there is a natural frame of 
unit vectors suited to spherical coordinates. At each point (p. cp. O]. we select 
unit vectors A. p.. v: : ! points in the direction of increasing I :· 
Points on the :-axis must be excluded because 0 is not defined there. See Fig. 8. 
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x 

(a) The frame A, p, v 

(b) Geometric "proof" that 
dx = dp A +  p d• p + p sin • dB v 

Fig. 8 The natural frame for spherical coordinates 

To express A. p. v in terms of p. </J. H. we use a short cut: 

x = p(sin <P cos O. sin <P sin O. cos <P ). 

dx = (sin <P cos O. sin <P sin O. cos <P) dp + p(cos <P cos O. cos <P sin 0. -sin <P) d<f> 

+ p( -sin <f> sin O. sin <P cos 8. 0) dO 

= A dp + p p  d<P + v p sin <P dO. 

Conclusion: 

I A =  (sin <f> cos O. sin <P sin O. cos <P) 
p = (cos <f> cos O. cos <f> sin 0. -sin <P) 
v = ( -sin 0. cos 0. 0). 

dx = dp A + p d<P p + p sin <f> dO v. 

As is easily verified. the vectors A. p. v, computed in this way. are mutually 
orthogonal unit vectors. Furthermore, they point in the directions of increasing 
p, </J, 0 respectively: if only p increases. then d<f> = dO = 0, hence dx = A dp. 
Similarly. if only <P increases, then dx = p p  d<f>. and if only 0 increases, then 
dx = v p sin <P dO. 

We are now in a position to prove analytically the formula for dV. which was 
derived intuitively at the beginning of this section. We have proved that dx is the 
sum of three mutually orthogonal displacements dp A. p d<f> p. and p sin <P dO v. 
These vectors span a box whose volume dV is a scalar triple product: 

dV = (dp A. p d</J p.. p sin <P cl(} v] 

= (dp )(p d</J )(p sin <f> dO)[ A. p. v] = p2 sin <P dp d</J dO. 
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The scalar triple product (A, p., vl equals 1 because A, p., v are mutually perpendicular 
unit vectors and form a right-handed system. (You should check that p >< v = A.) 
Change f Var We now mention very briefly the general rule for changing 
variables in triple integrals. It includes the cylindrical and spherical coordinate 
changes as special cases. This discussion is a continuation of that in the previous 
chapter, p. 865. 

First we define the Jacobian of a change of variables. 

Ix - x(u, v, w) Ix Xp x. 
( \ h 

o(x, y, z) 
-

• 
If y = y u, v, w,, t en o( ) - y. YP Yw u, v, w 

z = z(u, v, w) z. z., z. Change of Variables Suppose 

I X = x(u, v, w) 
y = y(u, v, w) 
z = z(u, v, w) 

is a one-one transformation of a domain E in u-space onto a domain D in I 
x-space. Suppose the functions x(u, v, w� · · · are continuously differentiable 
and that 

o(x, y, z) > 0 
o(u. v, w) 

at all points of E. Then 

ff f f(x, y, z) dx dy dz = ff f /[x(u, v, wi y(u, v, w� z(u, v, w)] :��::�du dv dw. 

D E 

The main thing to remember is that 

dx dy dz is replaced by 
o(x, y, z) 

d d d :!( ) 
u v w. u u, v, w 

For spherical coordinates u = p, v = </J, w = (} and 

o(x, y, z) 
o(p, "'· o) 

I x = p sin 4' cos 6 

y = p sin 4' sin 6 

z = p cos "'· 

sin </J cos 6 p cos </J cos (} 

= sin 4' sin 6 p cos </J sin (} 

cos </J -p sin </J 

- p sin q, sin 6 

p sin q, cos 6 

0 

sin </J cos 6 cos 4' cos 6 

= p
1 sin q, sin q, sin 6 cos q, sin 6 

cos q, -sin q, 

-sin 6 

cos 6 = p1 sin q,. 

0 
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(The determinant can be expanded easily by minors of the third row.) Therefore 
dx dy dz is replaced by p1 sin t; dp dt; d8. 

• EXAMPLE • Find the volume enclosed by the ellipsoid 

SollditHI We want 

ID I  = fJf dx dy dz, 
D 

xl yl zl 
1 + b1 + 2 = 1, 
a c a, b, c > 0. 

{ x2 yl zl } 
where D = (x, y, z� where 

al + 
b1 + c2 � 1 . 

Let E = { (u, v, w� where u2 + v2 + w2 � 1 } be the unit sphere in u-space and 
define the transformation 

x = au, y = bv, z = cw, 

whiCh takes E onto D in a one-one manner. Also 

Therefore 

EXERCISES 

a 0 0 
o(x, y, z) = 0 b 0 = abc > 0. 
cJ(u, v, w) 

0 0 c 

ID I  = fif dx dy dz = f if abc du dv dw = abc f if du dv dw 

= abc I E I = f1rabc. 

Give an equation ror the surlacc in spherical coordinates 

I sphere, center (0, 0, a� radius a 
2 the cylinder or all points at distance a rrom the z-axis 
3 paraboloid z - x2 + y2 
4 hyperbolic paraboloid z = x2 - y2 
5 right circular cylinder, axis through (a, 0, 0) and parallel to the z-axis, radius a. 

• 

6 (cont.) Find the intersection or this cylinder with the sphere or radius 2a and center O. 
Give your answer in the rorm or two relations bctwcco the spherical coordinates. 

Use spherical coordinates to evaluate the integral over the indicated domain 

7 

9 

11 

fff z dx dy dz 
p s a  x � O  y � O  z � O 
f Jf p" dx dy dz 
p s a  
fff z dx dy dz 
1 s z p s iJ3 

n � O  

8 

10 

12 

ff f x2 dx dy dz 
p s a  x � O  y � O  
fff (a - pY° dx dydz 
p s a  
ff f p -2 dx dy dz 

n � O  

a s p s b  (0 < a <  b) 
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13 JJJ x4 dx dy dz 

p $ a  

14 JJJ x2y2 dx dy dz 

p $ a  

15 JJJ (x2 + y2)2 dx dy d: 

p $ a  

16 JJJ (x2 + :2)2 dx dy d: 

p $ a  

17 JJJ z2 dx dy dz 18 JJJ x2 dx dy d: 

P $ a in $ ¢ $ in p $ a nn $ (I $ nn 

19 lim ,-o · HJ 
21 JJJ z dx dy dz 

(In p) tlx 1/y d: 20 lim JJJ 
C $ p $ 1 

22 JJJ p2 dx dy dz 

J.\'. d_r 11: 

p � 1 x2 + y2 $ I 0 s : $ I p '?:.  I 0 $ x $  I 0 :S: y $  I 
0 $ : $ 1. 

23 Given a function f on a domain in R3• express grad f in terms or the natural 
frame A. p. v. (Hint df = (grad f) · dx.] 

24 Derive the three formulas 

dA = d</> p + sin ¢ JO v, dp = -J¢ A +  cos ¢ JO v. dv = - sin ¢ dO A - cos ¢ JO p. 

A space curve is given in the parametric form 

p = p(r). ¢ = ¢(r). 0 = O(r). a $  r $ b. 

25 Express its velocity v in terms or the natural frame A. p. v. 
26 Do the same for its acceleration a. (Hint Use Ex. 24.) 
27 Use Ex. 25 to express its arc length in terms or p. ¢. 0 and their time derivatives. 
28 (cont.) A rhumb line on a sphere or radius a is a curve that intersects each meridian 

at the same angle a. (Follow a constant compass setting.) Find the length or a rhu111b 
line from the equator to the north pole. 

29 (cont.) Set up a definite integral for the length or the conical spiral ¢ = :x. p = 0. 
a $ 0 $ b. Here :x is a constant. 

30 (cont.) Set up a definite integral ror the length or the upper part of the curve or 
intersection in Ex. 6. 

A surface is given in the parametric form 

p = p(11. v). ¢ = ¢(11. v). II = 0(11, u). 

where (11. v) varies over a domain D 
31 Express ,,x/c,11 and i'x/i'v in terms of the natural frame A. p. v 
32 Express 112x/1,11 h in terms of the natural frame (Hinr Use the result of Ex. 24.) 
33 Use Ex. 3 1  to express the surface area in terms of p. ¢. 0 and their derivatives 
34 Give a simple expression for the element of area on the cone ¢ = :x. a constant 
35 (cont.) Find the area of the region 

0 :5 p :5 a + h sin 110 

on the cone. a > h > 0. 
36 Use the result of Ex. :n to set up the area of the cylindrical surface 

x2 + .1'2 = a2. 0 $ : :5 Ii. 
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Use one or more changes of variables to evaluate 

37 J.f J xyz dx dy dz 
x2 yz z2 
-2 + b2 + z S I  a c 
x � O  y � O  z � O  

38 ff Lx
d: �y ::)2 

a S x + y + z S b (0 < a < b) 
X <!:: O y <!:: O Z <!:: O 

39 JJJ :J cl.'< c/.1• dz 40• JJJ (ax + by + cz)2" dx dy dz. 
xl r2 
a2 + i,2 S I 

z x2 Y2 
O S-· S I - - -

c a1 b1 
41 The tetrahedron T has vertices a. b. c. d. Set up I = HJ f (•) dx d}' dz over T, using 

the change of variables 

x = ( 1  - u - v - w)• + ub + vc + wd. 

42 (cont.) Evaluate Hf x1 dx dy dz over the tetrahedron with vertices (0. O. O� ( I .  I, O� 
(2. -2. o� (3. o. 2). 

4 CENTER O F  GRAVITY 

We have studied the center of gravity for non-homogeneous plane sheets and for 
wires in the plane. Now we extend this concept to solids. 

Suppose a solid D has density c5(x) at each point x. Its element of mass is 
dM = c5(x) dV. and its (total) mass is 

M =ff f dM =ff f c5(x) dV =ff f c5(x) dx dy dz. 

The moment of D is 
D D D 

m = (m,.. . m1 , m.) =ff f x dM =ff f c5(x) x dx dy dz. 

The center of gravity of D is 

Thus for instance, 

D D 
- 1 x = (x. y. r) = 

M m. 

x = n.r x dM 1 n.r dM. 

so x is the weighted average of x over D. Similar statements apply to ji and z. The 
center of gravity may be considered as a weighted average of the points of the 
solid. Recall in this connection that the center of gravity of a system of point-masses 
M1• • • · • M,. located at x1, · • · ,  x,. is 

i = � (M1X1 + M1x.1 + · · · + M,. x,.). 

where M = M 1 + · · · + M,. . 
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Symmetry Ha solid is symmetric in a coordinate plane, then the center of gravity 
lies on that coordinate plane. For example, suppose D is symmetric in the 
x, y-plane. This means that whenever a point (x, y, z) is in the solid, then 
(x, y. - z) is in the solid, and c5(x, y, z) = c5(x. y, - z). The contribution to m: at 
(x, y. z) is 

c5(x, y, z) z dx dy dz; 

it is cancelled by the contribution 
c5(x, y, - z)(- z) dx dy dz = -c5(x, y, z) z dx dy dz 

at (x. y. - z). Hence m: = 0 and z = 0. 
Similarly, if D is symmetric in a coordinate axis, then the center of gravity lies 

on that axis. Finally, if D is symmetric in the origin, then i = 0. 
Similar conclusions apply to symmetries in abitrary planes, lines, or points. 

Another physically intuitive fact is that the center of gravity of a solid D depends 
only on the solid, not on how the rectangular coordinate system is chosen. 
Remark Suppose D is a domain in space. When we refer to the center of sra•ity (or 
ceetroid) of D without mentioning a density function, then it is understood that D is a uniform 
solid with {J = I .  For such a solid, M = V and i depends only on the shape of the solid. 

Examples To compute the center of gravity ofa solid, exploit any symmetry it has 
by choosing an appropriate coordinate system and expressing the element of volume 
dV in that system. 
• EXAMPLE 1 Find the center of gravity of a hemisphere of radius a. 
Sobltion Here c5 = 1 so 

M = V = !(11ta3) = J1ta3. 

To exploit symmetry, choose spherical coordinates. The hemisphere is symmetric 
in the z-axis, hence i lies on the z-axis, that is, X = y = 0. Therefore we need only 
compute z: 

Therefore 

m, = HJ z dV = HJ p cos </> p2 sin <f> dp d<f> dO 
D D 
2. •/2 • 

= J dO f cos </> sin </> d<f> J p3 dp = (21t){!)(ia4) = ina". 
0 • 0 0 

_ m: ina" 3 
z = M 

= j1ta3 = 
8 

a. 

It follows that the center of gravity lies on the axis of the hemisphere, i of the 
distance from the center to the pole (Fig. 1 ). • 

• EXAMPLE 2 Find the center of gravity of a right circular cone of radius a 
and height h. 
So/11tion c5 = I, so 
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: 

x .I' 

Fis. I Uniform hemisphere: 
If =  (0, 0, ia) 

x ,. 
(a) 0 c;; 8 c;; 2ir, 0 c;; r c;; a, 

.!l, c;; z <. h  
a 

x ,. 

(b) i = (0, 0, f h> 

Fig. 2 Center of gravity of uniform right circular cone 

Use cylindrical coordinates with the axes placed as in Fig. 2a. By symmetry, x = y = 0, 
so we need only compute z: 

= (2n)(h;) tr( 1 - �;) dr = nh2(;2 - :1) = hta2h2• 
Therefore 

m: ina2h2 3 
z = M. = !na2 h = 4 h. 

It follows that the center of gravity is on the cone's axis, i of the distance from its 
base to its apex (Fig. 2b ). • 

• EXAMPLE 3 The solid 0 � x � 1, 0 � y � 2, 0 � z � 3 meters has 
density xyz kg/m3• Find its center of gravity. 

Sol11tio11 

fff f 1 f 2 f 3 1 4 9 9 M = xyz dx dy dz = Jo x dx J/ dy Jo z dz = 2 · 2 · 2 = 2 
kg. 

m = ff f (x, y, z) xyz dx dy dz 
= (J ff x2yz dx dy dz, ff f xy2z dx dy dz, ff f xyz2 dx dy dz) 
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Hence i = � = im = i(3)(1, 2, 3) = (i. t. 2) m. • 

Addition Law Sometimes it is convenient to decompose a solid D into two or 
more pieces. Then the center of gravity of D can be expressed in terms of the 
c.g.'s of the pieces. 

Addition Law Suppose a solid D of mass M and center of gravity i is made 
up of two pieces D0 and D 1, of masses M 0 and M 1, and centers of gravity i0 
and i1• Then 

M = M0 + M1, 

The first formula is obvious. The second is just a decomposition of the moment 
integral: 

Mi = f ff c5( x) x d v = r r f + r r f = M 0 io + MI i I 
· o ·.;; ·o; 

Remark A similar principle applies to plane sheets and wires. 

• EXAMPLE 4 A solid consists of a cylindrical can of radius a and height h 
capped by a hemisphere at one end (Fig. 3a). Locate its center of gravity. 

' \ \ ' 
- :__.....l---------1 I I I I 

Ir 

(a) 

l- � 11-l- � 11-I 1-� u  
(b) CroSHection 

Fis. 3 Center or gravity of uniform cylinder with hemispherical cap 

So/11tion Since no density is given, we may assume that c5 = 1 and work with 
volumes instead of masses. We choose the x-axis along the axis of symmetry of the 
solid, with 0 at its base. The cylinder has volume 

and centroid x0 = !h. 
By Example I, the hemisphere has volume 

V1 = jna3 and centroid x1 = h + ia. 

See Fig. 3b. Therefore, the volume of the whole solid is 
V = V0 + V1 = M2h + jna3 = !na2(3h + 2a� 
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and its center of gravity is at x on the axis, where 

1 l 
X = V (Vo Xo + V1X1) = V 

[(na2h)(!h) + (jna3)(h + ja)] 

1 = V (na2)[!h2 + (ia)(h + ia)] 

= _! (_L. 2)(6h2 8ah 3 2) = 6h2 + 8ah + 3a2
. V 

n1�a + + a 4(3h + 2a) 

As a check, note that x - ia as h-0, and x - ih as a-o. • 

EXERCISES 

Find the center of gravity of 
I the first octant portion of the uniform sphere p s a 
2 the hemisphere p s a, z � 0, density l> = a - p 
3 the uniform spherical cone p s a, 0 s 4> s a 
4 the uniform hemispherical shell a S p S b, z � 0 
5 the uniform solid 0 < a S r s; b, 0 s; z s; r 
6 the uniform solid x2 + y2 S z S 1 
7 the uniform spherical cap (surface) p = a, 0 s 4> s a 
8 the uniform solid spherical cap p s; a, a - h s; z 
9 the uniform sheet x2 + y2 s 4a2, (x - a)2 + y2 ;;::: a2 
10 the uniform solid x2 + y2 + z2 s; 4a2, (x - a)2 + r + z2 ;;::: a2 
11 the lateral surface of the cone 4> = a, 0 S p S a 
12 the uniform solid r s; a, 0 s; az s; r2 
13 the uniform spherical triangle p = a, x � 0, y � 0, z ;;::: 0 
14 the uniform wedge p s; a, -a s 6 s a 
15 the uniform lune p = a, -a S 6 S a 
16 the sphere p S a with density l> = a + z 
17 the uniform frustum· of a right circular cone of height h and base radii a < b 
t8• the uniform cone with apex (0, 0, c) and base a domain D in the x, y-plane 
19 the octant of a uniform ellipsoid x � 0, y � 0, z � 0, x2/a2 + y2/b2 + z2/c2 s; l 
20• the uniform tetrahedron with vertices a. b, c, d. [Hint Use Ex. 41, p. 915.] 

5. M O M ENTS OF  IN ERTIA 

Let D be a solid with density c5(x) and let IX be any straight line (axis) in space. 
The moment or inertia of D about IX is 

1
. =ff f p(x)2 c5(x) dV =ff f p(x)2 dM, 

D D 
where p(x) is the distance from x to the axis IX. See Fig. la. 

The quantity 1. is used in computing kinetic energies of rotating bodies. Suppose 
D rotates about IX with angular speed co. A point x in D moves with speed p(x)w. 
Since kinetic energy equals one-half the mass times the speed squared, an element of 
mass dM at x has kinetic energy dK = ![p(x)w]2 dM. Hence the total kinetic energy 
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D 

l I I 
I� 1\./\ p I ' r ' 

I \ I \ , x 
I 

' 

�-;: 
I 

I /.. / \  / \/l 
I \ / dMG--•\-..... � v 

1 l v l = pw cbw---
1 

la. = HJ6(x)(p(x)J2 dV 
D 

(b) dK = l (dM) l v l2  = !w2p26 dV 2 2 
Fig. I Moment of inertia and kinetic energy 

of D is  

K = !w2 ff f p(x)2 dM = !I.w2. 
D 

We denote the moments of inertia of D with respect to the x-axis, y-axis, and 
z-axis, respectively, by Ix , 11, and I: . For these quantities, p(x)2 is partir.ularly simple. 
For instance, if x = (x, y, z) and p(x) is the distance to the x-axis, then 
p(x)2 = y2 + z2• Similar formulas hold relative to the y-axis and the z-axis. 

I,, =  ff f (y2 + z2) <5(x, y, z) dV, 
D 

I., = ff f (z2 + x2) «5(x, y, z) dV, 
D 

I: = ff f (x2 + y2) <5(x, y, z) dV. 
D 

• EXAMPLE 1 Compute the moments of inertia Ix , I.,, I: of a uniform sphere of 
center 0, radius a, and mass M. 

Solution If <5 is the constant density, then M = �a3 <5. By symmetry I,, = I., = I, . 
It seems most natural to use spherical coordinates to compute /,: 

· 

I, = <5 Jf J (x2 + y2)  dV = <5 fJ J (p2 sin2 </> cos2 (J + p2 sin2 </> sin2 0) dV 

= <5 JJJ (p2 sin2 </>) p2 sin </> dp d</> d(J 

2.. " • 
= <5 r dO f sin3 </> d<J> f p4 dp = <5(2n)(f)(!a5) = j(fna3<5)a2 = jMa2• • 

• 0 • 0 • 0 

Units If M is measured in kilograms and a in meters, then /, is measured in kg-m1. In the 
formula for kinetic energy K = !I. w1, if I. is in kg-m1 and w in rad/sec, then K is in 
joules = newton-meters. A newton, the metric unit of force, equals one kg-m/sec1. 
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Para le A e" Tl"eorE.m Suppose a is an axis through the center of gravity of a 
solid D, and f3 is an axis parallel to a. There is a formula that expresses the moment 
of inertia I, in terms of I« . 

Parallel Axes Theorem If a is an axis through the center of gravity or a solid 
D, and f3 is an axis parallel to a, then 

I, = IG + Md2, 

where M is the mass or D and d is the distance between the axes. 

Proof Choose the coordinate system with i = 0. and with a the z-axis and f3 the 
line x = d, y = 0. See Fig. 2. For any point x = (x, y, z) or D, let p(x) be the 
distance from x to the axis a and q(x) the distance from x to the axis fJ. Then 

p(x)l = xl + yl, 

q(x)2 = (x - d)2 + y2 = x2 + y2 - 2dx + d2 = p(x)2 - 2dx + d2• 

Therefore 

1, = f !f q(x)2 dM = .rr.r [p(x)2 - 2dx + d2) dM = /G - 2d J!f x dM + d2 f !J dM. 

The second integral is the moment m,., and the third integral is M. But m,. = 0 because 
the center of gravity is at 0. Hence 

1, = /G + Md2• 

• EXAMPLE 2 Find the moment of inertia of a uniform sphere of radius a and 
mass M about an axis tangent to the sphere. 

Sohltio11 From Example I, the moment or inertia about any axis through the 
center (e.g.) is jMa2• The distance from a tangent axis f3 to the center is a, so the 
Parallel Axis Theorem implies 

x 

1, = jMa1 + Ma1 = jMa1• • 

0. 

Fig. 2 Parallel Axes Theorem 

y 

Fla. 3 To find 1. for an arbitrary axis ac 
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o In r Suppose ex is an axis through the origin. It seems that there 
should be a formula for 1. in terms of 1,.. 1,. and 1, . Let us try to discover one. 

We represent the axis « by a unit vector u = (u, v, w). See Fig. 3. Then 
x • u is the projection of x on «. henoe 

1 • 12 = (x . u):z + p(x)2, 
p(x)2 = 1• 12 - (x . u)2 = (x2 + y2 + zl) - (ux + vy + wz)2 

= ( 1  - u2)x2 + ( 1  - v2)y2 + ( 1  - w2)z2 - 2(vwyz + wuzx + uvxy). 
Sinoe lu l2 = l, 

1 - u2 = v2 + w2, 1 - v2 = u2 + w2, 1 - w2 = u2 + v2. 
After some rearrangement we obtain 

p(x)l = (yl + z2)u2 + (zl + x:z)v2 + (x2 + y:z)w2 - 2vwyz - 2wuzx - 2uvxy. 
We multiply by dM and integrate: 

1. = f !f p(x)2 dM 

= u2 f !f (y2 + z2) dM + v2 J!f (z2 + x2) dM + w2 f !f (x2 + y2) dM 

- 2vw J!f yz dM - 2wu f !f zx dM - 2uv f lf xy dM 

= u21,. + v211 + w21, + (three mixed terms). 

This is not quite the type of formula we expected because of the mixed terms. We are 
forced to introduce three new quantities: 

I Products of Inertia 

111 = -fff yz dM, lu = -fff zx dM, 1,.1 = 
-fff xydM. 

D D D 

In terms of these new quantities and the moments of inertia, we obtain a formula 
for 1.: 

1 ��= be an axis through the origin determined by the unit vector u =_J(u, v, w). 

L 1. = I,.u2 + 1,v2 + 1, w2 + 21,, vw + 21,,.wu + 21,.,uv. 

Remsk It is customary to define 11,, = I,,, , etc. 

• EXAMPLE 3 A uniform solid of mass M fills the first octant of the sphere 
Ix I � a. Find its products of inertia. 
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Sot.timl If the density is 6, the mass is 

M = i(f,ral)cS = jul6. 

By symmetry I JS = I u = I"' . It is easiegt to compute /"'-by spherical coordinates 
since the z-axis plays a special role in spherical coordinates: 

I"' = - 6  ff f xy dx dy dz = -6 ff f (p1 sin1 4' cos 6 sin 6) p1 sin <P dp d<P d6 

= - 6  J:'1cos 6 sin 6 d6 J:'\in3 <P d<P f:p• dp = -6(�} (�} (a;) 
= - � (! a36)a1 = - � (M)a1 = - � Ma1• 

S 6 S n Sx 
• 

• EXAMPLE 4 The solid in Example 3 rotates with angular speed w about the 
axis IX through 0 and (1, 1, 1 ). Find its kinetic energy. 

Sobttio11 K = ii. w1, so we must find 1 • .  The axis IX is determined by the unit vector 

u = iJ3 (1, 1, 1 )  = (!J3 , iJ3. iJ3). 
From the formula for I,. on the previous page, with u = v = w = iJ3, 

I. = ii" + ii, + ii,, + J1,z + Jiu + ilw 
By symmetry, /" = I, = I,, and 1,z = lu = I",. Therefore, the formula boils down to 

I. = I" + 21,z . 

But 1,z is known from Example 3, and I" equals i of the corres�ing moment 
of inertia of a sphere of mass 8M. Hence I" = jM a1 by Example 1. Therefore 

Finally, 

EXERCI ES 

I = - Ma --Ma = - 1 - - Ma . 2 l 4 l 2 ( 2) l 
• 

S Sn S n 

Find the moments of inertia; give your answer in the form I,. = M · ( � etc. 

1 uniform solid lx l S a, I.YI S b, lzl S c  
l uniform hemisphere p s a, z ;;::; 0 
3 uniform cylinder r s  a, lzl S h  
4 uniform cone hr S az S ah 
5 uniform cylinder (x - a)1 + y1 S a1, lz l S h  
6• uniform solid torus (r - A)1 + z2 s a1, 0 < a <  A 
7 uniform double cone alz l S h(a - r) 
8 sphere p s a, density 6 • l/p 

9 uniform solid paraboloid 0 s z s 1t( 1 - :: ) 
10 uniform solid P :2:: a, lxl S a, IY I S a, lzl S a  
1 1  uniform spherical shell p = a 

• 
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12 uniform lateral surracc or cone r s a, hr - az 
13 uniform toroidal shell (r - A)1 + z2 • a2, 0 < a < A [Hint Use the parameteriza

tion .x - (A + a cos If') cos 6, y = (A +  a cos If') sin 6, z = a  sin If', 0 s � s 27t. 
0 s 6 s 2n.) 

I• uniform ellipsoid .x2/a2 + y2/b2 + z2/c2 s; I. 

IS In Example l, use symmetry to prove, without integrating, that I, = icS IJI p1 dV. 
Then evaluate the integral 

16• A domain D in the .x, y-plane has density cS = l, area A, and moment or inertia 
I •  Ad1 (with respect to the z-axis). Find I, ror the cone with base D, apex (0, 0, c) 
and density I. 

Find the products or inertia for the 

17 uniform box 0 s; .x s; a, 0 s y s;  b, 0 s; z s c 
18 unirorm tetrahedron, vertices (0. 0, o� (a, 0, o� (0, b, 0) (0, 0, c) 
19 unirorm quarter cylinder r s a, 0 s 6 s tn. 0 s z s h 
20 unirorm hemisphere (.x - a)1 + y1 + z1 s a1, z � 0 
21 cube I.x i S a, IYI S a. lzl S a. density cS = (.x + a)(y + a)(z + a) 
22 prism 0 s; .x, 0 s y, lz l S h,  .x + y S a,  density cS = .xy(z + h). 

6. LIN E INTEGRALS 

The remainder of this chapter deals with certain new kinds of integrals and their 
relations to double and triple integrals. The discussion starts here with integrals over 
curves in space and in the plane. The next section studies an important relation 
between integrals over closed plane curves and certain double integrals. The final 
section deals with integrals over surfaces in space and their relation to certain 
triple integrals. 

Lene Integrals A nctor field is the assignment of a vector F(x) to each point x 
of a region D in space. A familiar example of a vector field is the gradient of a 
function. 

Let F(x) be a vector field on D and suppose � is a directed curve in D. See 
Fig. 1. Written in components, 

F(x) = (P(x� Q(x� R(x)). 

We define a new kind of integral denoted by 

J F · dx or J P dx + Q dy + R dz. 
" " 

Line Integral Let F = F(x) be a continuous vector field on D and let � be a 
directed curve in D. Suppose � is described parametrically by x = x(t� where 
a � t � b. Define the line intepal L F · dx = J: F(x(t)] · x(t) dt. 
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Fla. I A vector field F and directed curve 
rt in domain D 

It follows from the change of variable rule for simple integrals that the line 
integral depends on �. not on bow � is parameterized. Precisely, if -r is another 
parameter for the curve, running from Cl to fJ as t runs from a to b, then 

F · - dt = F · - - d-r = F · - d-r. 
f II dX f.' dX dt f.' dX 

• dt • dt d-r • d't 

The definition is similar for a plane vector field F(x) = (P(x� Q(•)) and a plane 
curve �. In this case, the line integral can be written 

f P dx + Q dy. 
" 

• EXAMPLE 1 Let F(x) = (x, y, x + y + z). Compute the line integral 

f F · dx 
" 

over the path rt given by 
(a) x(t) = (t, t, t� 0 s t �  1 (b) •(t) = (t, t2, t3� 0 s t  s 1. 

Sohltioll (a) x(t) = (t, t, t) and *(t) = (1, 1, 1). Along the curve, F(x) = F[x(t)) = 

(t, t, 3t). Therefore 
1 1 J F · dx = J (t, t, 3t) • (1, l, 1) dt = J St dt = l 

" 0 0 
(b) x(t) = (t, t2, t3) and *(t) = (1, 2t, 3t2). Also F[x(t)] = (t, t2, t + t2 + t3). 

Therefore 
1 1 J F · dx = f (t, t2, t + t2 + t3) • (1, 2t, 3t2) dt = f [t + 2t3 + 3(t3 + t4 + t5)] dt 

" 0 0 
1 

= f (t + St3 + 3t4 + 3t5) = ! + i + J + ! = �. • 0 
For an interpretation of line integrals, suppose x = x(s) is a parameterization of 

� with arc length as
· the parameter, and a s s  s b. Then dxfds = t, the unit 

tangent. Therefore the definition of the line integral in this case is 
II 

f F · dx = f F[x(s)] • t(s) ds. 
" . 
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F 

Fis- 2 Interpretation of F · da - (F · t) ds 
as the element of work 

The quantity F · t is the tangential component of F. See Fig. 2. Hence 
b J F · dx = J [tangential component of F(s)] ds. 

" . 

This formula gives an immediate physical interpretation of the line integral as 
work. Recall that work equals force times distance. When a particle moves on a 
curve in a force field F(xi it is the tangential component of the force that does 
work. Thus the element of work is 

dW = (F · t) ds. 

The line integral adds up these small bits of work and yields the total work done 
by the field in moving the particle along its path. 

Independence of Path In Example 1 , the same vector field is integrated over 
two different curves. Both curves have the same end points, x(O) = (0, 0, 0) and 
x( l )  = (1, 1, 1i yet the line integrals are unequal. Therefore, in general, a line 
integral depends on the curve, not just on its end points. 

In an important special case, however, the line integral does not depend on the 
curve 'l, but only on its initial and terminal points : 

Suppose the vector field F(x) is the gradient of some function /(•): 
F = grad /. 

Then for each curve � going from •o to x1• 

J F · dx = /(xi) -f (Ko)· '# 
Therefore the line integral depends only on the end points. not on what path is 
taken between them. 
In particular, if � is a closed path, then 

J F · dx = 0. 
" 
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Proof By the Chain RuJe (read backwards). 

d 
F · fl = (grad /(x)] · i = 

dt 
/[x(t)]. 

Therefore 

J
,

F · dx = f F · i dt = f �
t 

/[x(t)] dt =/[x(t)] L =/(x1) -/(Xo). 

If 'l is closed, then x1 = x0 so /(xi) -/(Xo) = 0. 

Conservation of Energy Suppose F = F(x) is a force fiekt and a particJe of 
mass m moves under the influence of this force along a path 'l from Xo to x1• 
Say the path is parameteriz.ed by time: x = x(t). where t0 � t � t1• 

The work done by F in moving the particle is 

t1 
W = J F • dx = J F(x(t)] • i dt . 

., to 

Now the motion of the particle is determined by Newton's law 

f = mi. 
It follows that 

F 
. . M 1 d 

( . '
) 

1 d 
I 1 2  · x = mx · x = - m - x · x = - m - v 2 dt 2 dt ' 

where v = Ji, the velocity. Therefore 

C,. t d I 12 t I 1 2  t I 12 W = J to 2 m 
dt 

v = 2 m ¥1 - 2 m Vo • 

The quantity K = !m I v  I 2 is the kinetic energy of the particle. The result of this 
exampJe is the Law of Conservation of Energy: work done equals change in kinetic 
energy. 

Inverse Square Law If F = grad/ is a force, the net work done by this force 
in moving a particle from x0 to x1 is /(x1) -/(Xo). independent of the path. The 
function/, which is unique up to an additive constant, is called the potmtial of the 
force. 

An important example is that of a central force subject to the inverse square 
law, for instance, the electric force E on a unit charge at x due to a unit charge 
of the same sign at the origin. The magnitude of the vector E is inversely proportional 
to Ix 12

• 
Its direction is the same as that of x. See Fig. 3. 

The unit vector in the direction of x is 

x x 

1il = p '  
Therefore, expressed in suitabJe units, 

p = l • I· 

1 x x 
E = - - = 

P2 p pl '  
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E(x) Fie- 3 Inverse square law: 

1bc force field E is defined at all points of space except the origin. We shall 
prove that E is the gradient of a function, in fact that 

1 - 1  
E = grad/, where /(x, y, z) = - - = --;::::::===== 

P Jx2 + y2 + z2 
Let us compute the gradient of/ =  - 1/p: 

Similarly, 

Therefore 

It follows that 

of x x 
ox = (x2 + y'l + z2)l/2 = 

pl . 

of y 
and 

iJ/ z 
iJy - pl iJz = p1 · 

grad/ = ( xl' yl • zl) = � (x, y, z) = � = E. 
p p p p p 

f•1 1 1 E · dx =/(•1) -/(Xo) = - - - . 
•· l•o l l•i l 

The right-hand side is the potftdial •erence or •ohaae· It represents the work 
done by the electric force when a unit charge moves from x0 to x1 along any path. 

If x1 is far out, then 1/1•1 I is small, so 

J:1 E • dx � 1�1 · 
As x1 moves farther out, the approximation improves: 

that is, 

E · dx---t-f•1 1 

.. l •o l 

coo 1 1 
J .. E . dx = 

I Xo I := Po · 

The final result, 1/ I •o I. is called the pot.W at •o . It is the work done by the force 
in moving a unit charge from Jlo to infinity, along any path. 

Conservation of Momentum Recall that the integral (simple or multiple) of 
a vector-valued function is defined componentwise. For instance, if 

u(t) = (u(t1 v(t1 w(t)1 
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( u(t) dt = (( u(t) dt, ( v(t) dt, ( w(t) dt) . 

The following useful formula can be easily proved componentwise: 

f"dw 
• Tt dt - w(b) - w(a). 

For example, f:z f2 d  12 
(2t 3t2 4t3) dt = -(t2 t3 t4) dt - (t2 t3 t4) - (4 8 16) 

o 
' ' o dt ' ' - ' ' 

o
- ' ' . 

Now suppose a particle of mass m moves on a path <t under the influence of the 
force field F = F(x). According to Sir Isaac, 

F = mi = m � x = m � v. 
dt dt 

Say the path is described by x = x(t� where t0 � t � t1• Then 

i'• f'• 
d 

F(x(t)] dt = m d v dt = mv1 - mv0 . 
•o lo t 

The quantity mv is the momentum of the particle. The quantity f.'• F dt 
•o 

is the bnpuile of the force during the time interval [ t0, t 1). The equation f.,. r· F dt = mv 
•o ro 

is the Law of Conservation of Momentum: impulse equals change in momentum. 
The anplar momentum of the particle with respect to the origin 0 is defined as 

Now 

mx x v = mx x *· 

d d 
dt 

(mx >< v) = 
dt 

(mx >< Jl) = mJl x Jl + mx x f = mx x f 

since x x x = 0. But mi = F, hence 

mx x i = x x mi = x x F, 

which is the torque of F at x. Therefore 

Integrate: 

d 
dt 

(m• x v) = x x F. 

f,,. r· x x F dt = mx x v . 
� 0 

This result, called the Law of Conservation of Angular Momentum, asserts that 
the time integral of the torque equals the change in angular momentum. 
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EXERCISES 

Evaluate the line integral over the indicated path 

I f y dx - x dy 
x • (cos t, sin t) 0 s t s i7t 

3 J z dx + x dy + y dz 
straight path from 
(0, 0, 0) to (a. b, c) 

5 J xydx + (l + 2y) dy 
straight path from 
(0, 1 )  to (0, - 1) 

7 J -dy + x dz 
x = (t2, r3, r4) I s t  s 2 

2 J x dx + y dy 
x • (t3, t2� 0 s t s I .. J z dx + x dy + y dz 
straight path from 
(1, 1, 2) to ( - 1, 0, 4) 

6 J xy dx + (1 + 2y) dy 
semi-circle r = 1 
!Jr s 6 S ix 

8 J z dx + x dz 
x = (sin t, cos t, t2) 
0 s t  s !ir 

9 J yz dx + 2x dy + xy dz 
x - (t2, t3, ,-•) 

10 J sin y cos z dx + x cos y  cos z dy 

a S t  S b  (0 < a) x - (cos t, sin t, cos t) 
0 S t  S 2x. 

-x sin y sin z dz 

JCl .1.1) I I  Let F - (3x2y2z, 2x3yz, x3y2). Show that F • dx is independent of the path, 
10.0.01 

and evaluate it. 

f 1 ••••• , 
12 Let F = (x2 + yz, y2 + zx, z2 + xy ). Show that F • dx is independent of the 

10.0.01 
path, and evaluate it. 

13 Let 6 denote the polar angle in the plane. Show that grad 6 = ( 2 -Y 2 ,  �). x + y  x + y  
I.. (cont.) Find 

f -Y �x + � dy over the circle I x  I = a. x + y 
15 Find the work done by the central force field F • - 1�13 x in moving a particle from 

(1, 8, 4) to (2, 1, 2) along a straight path. 
16 Find the work done by the uniform gravitational fickl F • (0, 0, -g) in moving a 

particle from (0, 0, 1) to (1. 1, 0) along a straight path. 

17 Let F = x/ Ix I' and suppose • + 0. Show that J"' F • dx, taken along any path from • 
• 

not passing through 0 and going out indefinitely, depends only on a •  l•I· Evaluate the 
integral. 

18 (cont.) l)o the same for F = x/ lx l•, for any 11 > 2, 
19 (cont.) Show that F = x/lx l 2 is a gradient. 

20 (cont.) What value should be assigned to J "' F • dx, where F - x/lx l2, taken along a 
• 

path from • not passing through 0 and going out indefinitely? 
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l 
ll f ( I  + t, I + 2t, I + 3t) dt 

0 

z. 
22 f (cos t, sin t, I) dt 

0 
l 

l3 f (tl, t4, t5) dt 
- 1  

24 f 4 (!. � . �) dt. 
l t t t 

l5 The force F(t) - (1 - t, 1 - t2, I - t3) acts from t = 0 to t =  2. Find its impulle. 
26 The force F(t) - (e', e2', e3') acts from t - - 1  to t • 0. Find its impulse. 
l7 An electron of mass m in a uniform magnetic field follows the spiral path 

x(t) - (a cos t, a sin t, bt ). 
Find its angular momentum with respect to O. 

l8 A particle of unit mass moves on the unit sphere I• I = 1 with unit speed. Show that 
its angular momentum with respect to 0 is a unit vector. 

7. GREEN 'S THEOREM 

In this section we discuss some properties of line integrals in the plane, that is, 
integrals of the form 

f P dx + Q dy 

" 

where P = P(x, y� Q = Q(x, y� and � is a directed plane curve. 
BefQre coming to the main business of this section, let us make some practical 

remarks about the evaluation of such integrals. By definition, we parameterize � by 
x = x(t� y = y(t) and then evaluate 

f dx dy P(x(t� y(t)] 
dt 

dt + Q[x(t� y(t)) dt 
dt. 

Now suppose � happens to be part of the graph of a function y = f(x� say for x 
running from a to b. Then it is most :iatural to parameteri7.e � by x itself. Accordingly 
we write x = x, y = /(x). For example, suppose � is a horizontal segment. Then 
we write x = x and y = c, so dy/dx = 0 and J P dx + Q dy = J P(x, c) dx. 

" " 

The Q dy part of the integral drops out. We describe this situation by saying that 
on a horizontal segment dy = 0. Similarly, on a vertical segment dx = 0 and the 
P dx part of the integral drops out. 

Green's Theorem There is a useful connection between certain line integrals 
and double integrals. Suppose D is a domain in the x, y-plane bounded by one or 
more closed curves, each composed of arcs with continuously turning tangent 
vectors. We assign the counterclockwise direction to each of the boundary curyes 
(Fig. 1 ). If we wallc around any boundary curve in �is direction, the region D is 
always on our left. 
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Ca) � comists of one 
c:IDIDd cune 

y 

(b) 8ounduy c:amilll of tine doled 
cunes: iD • C1 +C2 + CJ 

Fis- I Orientation of the boundary oD of a plane domain D 

x 

The symbol oD will denote the whole directed boundary of D. We are interested in 
the line integral 

f P dx + Q dy. 
c)D 

If oD consists of the directed closed paths, <t., <t l , · · · , <I,. , we write 

oD = <11 + <tl + · · ·  + <t,. 
and define 

r P dx + Q dy = J (P dx + Q dy) + · · · + J (P dx + Q dy). 
ai "'• "'· 

Notation There is a time-honored tradition of writing f Pdx + Q dy 
� 

for a line integral over a closed path. 

An important theorem says that the line integral over the boundary oD is equal 
to a certain double integral over the region D. 

Green's Theorem Suppose P(x, y)and Q(x, y) are continuously differentiable 
functions on a plane domain D. Then 

f P dx + Q dy =ff(�� -��) dx dy. 
aD D 

The theorem may be viewed as two independent formulas, 

f P dx =  -ff ::dx dy 
aD 0 

and f Q dy =  ff :�dx dy. 
aD D 
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It is fairly easy to see that the second follows from the first by interchanging x 
and y. (This changes the sense of turning in the plane, which accounts for the sign 
change.) We shall prove the first formula, not in the most general case, but when 
D can be decomposed by segments into subdomains, each of which is the domain 
between the graphs of two functions or x. 

If D is so decomposed, 

then 

D= D1 + . . .  + D. ; 

at p 
dx =af, p 

dx + . . .  +
at. p 

dx 

because the contributions over the common division segments canoel in pairs 
(Fig. 2a). 

y 

• 

(a) C•ecdhlion ol llile mwn 
bowldary coatributioa 

We shall prove 

Fla- 2 Proof of Green's Theorem 

f Pdx =  -ff�:dx dy 
aD D 

D 

Y = l(x) 

b JC 

for the domain D of Fig. 2b. Its boundary i!D consists of four pieoes; accordingly 
the line integral decomposes into four summands. On the two vertical sides x is 
constant, henoe dx = 0, no contribution. Therefore 

f P dx = f: P(x, h(x)] dx + f: P(x, g(x)] dx = 1• {-P(x, h(x)] + P(x, g(x)J} dx. 
aD i• (f."'x> i!P ) 

li i!P = - -dy dx = - -dx dy. • f(.ir) i!y i!y 
D 

This completes the proof. 
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Remark Green's Theorem is a two-dimensional generalization of the Fundamental Theorem 
of Calculus, 

• J f'(x) dx = /(b) -/(a� 
• 

which equates the integral of an exact derivative f'(x) over an interval [a, b) to something 
computed at the boundary (the two points a and b) of the interval. 

r 
W. 1 1  

Fig. 3 

I ' f l  . ()) ,. 

• EXAMPLE 1 Compute the line integral f (x2 + y2) dx + (x + 2) dy, 
" 

where 'G is the boundary of the triangJe T with vertices at (0, 1�  (0, O� and (1, 0). 
Use (a) direct computation (b) Green's Theorem. 

Sohttio11 (a) The integral breaks into integrals over line segments L" L2 , L3 as 

shown in Fig. 3. Compute each separately. 
On L1, we have x = 0 and dx = 0 since x is  constant. Hence 0 

f (x2 + y2) dx + (x + 2) dy = f 2 dy = -2. I L i  
On L2 , we have y = 0 and dy = 0. Hence J f (x2 + y2) dx + (x + 2) dy = f x2 dx = j. 0 

LJ 
On L3 we use x as the parameter running from 1 to 0. Then y = 1 - x and 

dy = -dx. Hence 
0 f (x2 + y2) dx + (x + 2) dy =  f [x2 + (1 - x)2 - (x + 2)] dx 

L1 J 
0 J 

= f ( - 1  - 3x + 2x2)  dx = f ( 1 + 3x - 2x2) dx = \l. 
J 0 

Adding the results, we have 

f (x2 + y2) dx + (x + 2) dy = -2 + ! + \l = i. 
" 
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(b) Let P(x, y) = x2 + y2 and Q(x, y) = x + 2. By Green's Theorem 

f P dx + Q dy =  ff (��-��) dx dy = ff ( l - 2y) dx dy 
� T T 

= f:( l  - 2y)(f: -'dx) dy = J:( l  - 2y)(l - y) dy 
= f: ( 1  - 3y + 2y2) dy = *· • 

Area For mu I a A useful application of Green's Theorem is a formula for the area 
of a plane domain in terms of an integral over its boundary. 

Area Formula If D is a plane domain with a smooth boundary, then 

I D I  = � f -ydx + x dy. 
ilD 

Proof Apply Green's Theorem with P = -y and Q = x. Then Q" - P, = 2, so 

f -ydx + x dy =  Jr 2 dx dy = 2 ID I. 
i!D 6 

Remark By similar applications or Green's Theorem, we also have 

ID I = f x dy = -f y dx. 
c3D r1D 

The boxed formula is often more convenient than either or these because it has a certain 
amount or symmetry. 

x2 y2 
• EXAMPLE 2 Find the area enclosed by the ellipse a2 + b2 = 1. 

Solution Let D denote the domain bounded by the ellipse. Parameterize the ellipse 
as usual by 

x = a  cos 6, 
Then ID I = !  f -ydx + x dy 

c3D 

y = b sin 6, 0 :S 6 :S 2n. 

2 .. 
= ! J - (b sin 6)( -a sin 6 d6) + (a cos 6)(b cos 6 d6) 

0 
2.. 2• = ! J (ab sin2 6 + ab cos2 6) d6 = ! J ab d6 = nab. 

0 0 
• 
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EXERCISES 

Evaluate the line integral over the indicated closed curve 

f 2y dx + 4x dy Fig. 4 2 f x2 dx + xy dy 
3 f y2e" dx + 2ye" dy Fig. 5 4 f -y2 dx + x2 dy 

Fig. 5 

Fig. 6 

5 f (y - x2) dx + (2x + y2) dy Fig. 6 6 f cos x sin y dx + sin x cos y dy Fig. 6 

}' }' }' 

3 D 3 

~ 
4 x - 1 I x 3 

Fic- 4 Fil- 5 Fig. 6 

7 f xydx + xy dy Fig. 5 8 f xydx + xy dy Fig. 7 

9 f -y3 dx + x3 dy Fig. 7 10 f -y3 dx + x3 dy Fig. 8 

II  f x2y2 dx - x3y dy Fig. 8 12 + f x dx y dy (xl + y2)3 (x2 + y2)3 Fig. 9. 

y 
b 

-a a x -a 

}' 

a x -a 

Fi&- 7 Ellipse Fla. 8 Semicircle 

13 F. d f-y dx + x dy 
h . I . F' 9 m 2 2 over t e ctrc e m 1g. . x + y 

,, 

a x 

Fi&- 9 Circle 

(Hint Express the integral in terms of polar coordinates. The answer is not O.] 

x 

14 (cont.) Evaluate the integral over the closed curves in (a) Fig. 4, (b) Fig. 6, (c) Fig. 10. 

f-ydx + (x - l ) dy y dx - (x + l )dy . . 
15 (cont.) Evaluate )2 1 + ( )2 2 over the contour m Fig. 1 1. (x - I + y x + 1 + y 
16 (cont.) Evaluate the same integral over the contour in Fig. 12. 

f (-3x2y + y3) dx + (x3 - 3xy2) dy 
17 Evaluate 2 2)3 over the rectangle in Fig. 4. (x + y 
18 (cont.) EvaJuate the same integral over the contour in Fig. 10. 
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)' y 

x 

Fig. 10 Fig. I I  

19 Prove Green's formula under suitable hypotheses: 

y 

x 

Fig. 12 

f (-uv1 dx + uv"dy) - f {-vu,dx + vu .. dy) = fJ (u(v.._. + v,,) - v{u""' + u,,)] dx dy. 
•'D 1'D D 

20 (cont.) Test this formula when D is the unit disk, u = l, and v = In r. Explain the result. 
21 Suppose P and Q are continuously differentiable on a rectangle a S x S b, c S y S d. 

For each point (x. y) of the rectangle define 

F(x, y) = r P(u, c) du + r Q{x. v) dv and G{x. y) = J .. P{u, y) dy + r Q{a. v) dv. 
• t • 

Find iJF/ily and iJG/iJx. 
22 (cont.) Assume also that iJP/i!y = iJQ/ox. Prove that F = G and deduce that (P. Q) = 

grad F. (Hint Use Green's Theorem.] 

23 Express the area formula A = ! f- y dx + x dy in terms of polar coordinates. 

24 (cont.) Apply your answer to find the total area enclosed by the 5-petal rose curve r = a  cos 50. 

8. S U R FACE INTEGRALS 

In this section we shall study integrals of the form 

f f A dy dz + B dz dx + C dx dy, 
•• 

where S is an oriented surface in R3• By oriented surface we mean a two-sided 
surfacet with one side designated as the top. We choose the unit normal vector n 
to point out of the top of the surface. 

Such surface integrals arise in problems of the following type. Suppose ftuid is 
flowing in a region of space with velocity field A =  A(x). Given an oriented 
surface S fixed somewhere in space, the problem is to find how fast the ftuid flows 
through S, through the bottom and out the top. In other. words, to compute how 
much fluid crosses S per unit time. (The rate of flow across S is called the flux 
of A through S.) 

t There do exist one-sided surfaces such as the MObius band. but why go looking ror trouble? 
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-

.. ---� A(•) 

Fia, I Find the flux through surface S 
of velocity 6eld A = A(x). 

To find the ftux Cl>, we decompose S into small "elements" of surface, compute 
the ftux through each, and sum the results (integrate). We consider an element of 
surface (Fig. 2a) and two associated quantities, its area du and its unit normal n, 
pointing out of the top of the surface. The fluid velocity A at the surface element 
decomposes into a tangential component and a normal component. The tangential 
component doesn't cross the surface; its contribution to the ftux is 0. The normal 
component (Fig. 2b� which flows straight through the surface, equals A · n; its 
contribution to the ftux is 

dcJ> = (A · n) du = A · (n du). 
Therefore cJ> =ff (A · n) du, 

I 
A 

(a) An element of surface with (b) The flux across the element 
area do and unit normal n of surface is d+ • (A •  n)do. 

Ff&. 2 Element of flux 

n 

To evaluate the integra� we suppose S is parameterized by x = x(u, v� where (u, v) runs over a domain D in the u, v-plane (Fig. 3). We recall the formulas 
(pp. 749 and 870) for the unit normal and the element of area: 

x. x x.. I I n = Ix. x x.. I '  du = x,, x x.,  du dv. 
It follows that n da = x,, x x,, du dv. 
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This quantity is important in the study of surface integrals and is given a special 
name: 

v 

Element of Vectorial Area do = n du = x,, >< x., du dv. 

dv 
11, v) du 

II 

Fi&- 3 Parameterization of S by x = x(u. v� where (u, v) is in D 

In terms of da, the element of flux is 

d'1> = A ·  da = A ·  (x,, >< •.,) du dv = (A, • • •  x.,] du dv 

A B C f o(y, z) o(z, x) o(x, y)] = x., y. z., du dv = A 
o(�-:V-) +

 B o(u, v) + C 
o(u, v) 

du dv. 
x., y., z., 

This completes our set-up for the formal definition of surface integrals. 

Surface Integral Let A =  A(x) be a continuous vector field in a region of 
R3 and let S be an oriented surface in that region, given parametrically by 
x = x(u, v� where (u, v) varies over a domain D. Assume x(u, v) is continuously 
differentiable. Then 

ff A dy dz + B dz dx + C dx dy = ff A ·  da 
• • 

= ff f A 
o(y, :) + B 

o(z. x) 
+ C 

o(x, y)J du dv. 
o(u, v) o(u, v) o(u, v) 

D 
It is understood that A =  A[x(u, v)], etc. in the last integral. 

The two forms of the integrand suggest writing (o(y, z) o(z. x) o(x. y)) do = 
o(u. �)' o(u, v)' o(u:;} 

du dv = (dy dz, dz dx, dx dy). 
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This last expression, do = (dy dz, dz dx, dx dy� 
is important because it gives the vectorial area element in a form independent of the 
parameterization. 

Remark 1 The physical interpretation of the surface integral as flux makes it clear that the 
integral depends only on the vector field A and the oriented surface S, not on how the surface 
is parameterized. An analytic proof of this fact is possible using the change of variables rule. 
See the exercises. 

Remark 2 If an oriented surface cannot be parameterized (because it is closed or has handles, 
etc.1 cut it into pieces and parameterize each piece; then sum the corresponding integrals to 
obtain the surface integral over the complete surface. 

Remark 3 Choosing a parameterization • = x(u, v) for a surface S fixes a unit normal 
vector 

n = .. )( .. = (o(y�_
z) o(z, x] �(x, y)) 

o(u, v) . o(u, v) . o(u, v) . 

This normal either agrees with the normal determined by the orientation of S or is the 
negative of it. Jn the latter case, the surface integral will give - ell, not ell. 
• EXAMPLE 1 Let T be the triangle with vertices (1, 0, O� (0, l, 0), (0, 0, 1) and 
normal pointing away from 0. Let A(x) = (y, z, 0). Find 

H 

D 

Jf A · do = fJ y dy dz + z dz dx. 
T T 

x(11, 11) = (11, 11, I - 11  - 11) 

II 

: 

Ix' 
I' 

Sohltio11 The triangle is given by x � 0, y � 0, z � 0 and x + y + z = 1 .  Para
meterize it by 

x = u, y = � z = l - u - � 
where u � 0, v � 0, u + v � 1. See Fig. 4. Then 

o(y, z) = I y. y., I = I 0 1 1 = 1. o(u, v) z. z., - 1  - 1  



Similarly, o(z. x) = 1 - 1  - 1 1 = 1, o(u, v) 1 0 
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Hence do = {l, 1, 1 )  du dv, 
A ·  do = (y, z, 0) • (1 , l ,  1 ) du dv = (y + z) du dv = (1 - u) du dv. 

Therefore 
1 1 -11 ff A · do = ff ( 1  - u) du dv = J dv J ( 1 - u) du 

T D 0 o 

1 1 

= f [(1 - v) - !(1 - v)l] dv = J (! - !v2) dv = ! - i = !. • 0 0 
Note that the parameterization chosen does indeed yield the normal directed away 
from 0, because all three Jacobians are positive. • 

• EXAMPLE 2 Find cJ> = ff J dx dy + 2 dy dz + 3 dz dx, 
H 

where H is the hemisphere p = a, z ;;::: 0, taken with its normal inward. 
Sol•tion It is easiest to treat the three terms separately. For the dx dy term, 
parameterize by projection onto the circle D: xl + yl � al. That is, Jet x and y be 
the parameters, with (x, y) running over D and parameterize H by 

x(x, y) = (x, y, Jal - xl - yi ). 
This parameterization determines the outward (upward) normal n, because the 
z-component of n is 

oJ�· r. � = 1 • 0 I = • > 0. 
o(x. y) 0 l 

Since this is opposite to the given orientation, 

� dx dy = - u  dx dy =  - ID I = -1tQl. 

For the dy dz term, break the hemisphere into two quarter spheres, x ;;::: 0 and 
x � 0. Parameterize each by projection onto the semi-circle E in the y, z-plane: 
yl + zl � al, z � 0. For the quarter sphere x � 0, this parameterization defines the 
outward normal; for the quarter sphere x � 0, it defines the inward normal. (The 
key fact is that the x-component of n is l ,  proved by the same reasoning as 

above.) Therefore 

Likewise 

J J dy dz = - ff dy dz + ff dy dz = 0. 
H E E Jf dz dx = 0, so 

H 
cJ> =ff f dx dy = -Ml. 

H 
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AhnMllH 'SobditM Parameterize H by spherical coordinates tf>, 8: 

x = a sin ti> cos 8, y • a sin ti> sin 0, z - a cos t/>, 
where 0 ::s; 8 :S 2ir. 0 :S ti> :S Vt· Then 

Therefore 

ac�� z � 
- I 

a cos "' sin 8 a sin "' cos o I - J . J "' 8 o(tf>, 0) - -a sin "' 0 
- a sm .,, cos • 

acz. x) I -a sin "' o I J 
. 

J
"' 

. 8 act/>. 0) = a cos "' cos 0 -a sin "' sin 0 
= a sm sm • 

o(x, y) 
= I a cos ti> cos 0 -a sin t/> sin 8 1 

= 02 sin ti> cos t/>. 
o(t/>. 0) a cos "' sin 0 a sin "' cos 0 

do = (dy dz, dz dx, dx dy). = (a2 sin2 t/> cos 8, a2 sin2 ti> sin 8, a2 sin ti> cos </>) dt/> dO. 

In the first octant (0 < 0 < !ir. 0 < t/> < in� all components are positive, so the 
parameterization yields the outward nonna� the wrong one, and we must change 
sign. We have 

ell = fJ 2 dy dz + 3 dz dx + dx dy 
" 

= - ff (2a2 sin2 ti> cos 0 + 3a2 sin2 ti> sin 0 + a2 sin ti> cos </>) dt/> dO, 
D 

where D is the rectangle 0 :S 8 :S 2n, 0 :S ti> ::s; in in the </>, 0-plane. Clearly 

and similarly, Jf sin2 t/> sin 8 dt/> dO = O, 
D 

hence 
a/J 

ell = - ff a2 sin ti> cos ti> dt/> dO = -2na2 f sin ti> cos ti> dt/> 
D 0 

= -2na2(!) = -iw2• • 

v gence We now pave the way towards an important theorem that relates 
surface integrals over closed surfaces to certain triple integrals. It is a generalization 
of Green's Theorem for line integrals. First we need a definition. 

Divergence Let A =  A(•) = (A, B, C) be a differentiable vector field on a 
domain in R3• The •nerpnce of A is the real-valued function 

. oA as ac 
dtv A(•) = - + - + - . 

ox oy oz 
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Examples div x = div(x, y, z) = 1 + 1 + 1 = 3, 

div(x3, xyz, xz2) = �x (x3) + �Y (xyz) + :z (x
z2) = 3x2 + xz + 2xz = 3(x2 + xz� 

There is an important relation satisfied by the divergence operator: 

div(/ A) = (grad /) A + f div A. 
Its proof is left for Ex. 13. 

The Divergence Theorem Now we are ready for the principal result of this 
section, a formula which has numerous applications in mathematics and in the 
physical sciences. 

Diver.gene& Theorem Let A =  A(x) be a continuously differentiable vector 
field on a domain D in R3• Orient the boundary oD by the outward normal. 
Then 

In coordinate notation, 

ff A dy dz + B dz dx + C dx dy = ff f (�; + �; + ��) dx dy dz. 
aD D 

As with Green's Theorem, we shall give only a partial proof. We shall prove 

ff C dx dy =  ff f�� dx dy dz 
i!D D 

when D is the domain between two graphs of functions of (x, y): 
D = { (x, y, z� where (x, y) is in E and g(x, y) � z � h(x, y) }. 

Here E is a domain in the x, y-plane (Fig. Sa). 
The boundary of D splits naturally into top, bottom, and lateral side (Fig. Sb): 

oD = T +  B +  S. 

We observe first that v C dx dy = 0. 

For, by definition, ff C dx dy = ff (0, 0, C) • n do. 
. .. 

But on the vertical side S, the normal vector n is parallel to the x. y-plane, so its 
z-component is 0. Therefore, (0, 0, C) • n = 0. 

Next we parameterize both the top T and the bottom B by projection onto E. 
This parameterization gives the outward normal on T and the inward normal on B. 
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(a) Domain between two graphs 

n 

(b) ao = T + s + e 

Fig. 5 Proof of the Divergence Theorem 

Therefore 

Jf C dx dy = ([f + JJ + Jf) C dx dy = JJ C dx dy + fJ C dx dy •'D I • • T • 
= ff C[x. y. h(x. y)) dx dy - rr C[x. y. g(x, y)) dx dy. 

"IE 'IE 
On the other hand, we iterate the triple integral: 

ff f'�� dx dy dz = ff (f :·�>�I� dz) dx dy D E = ff ( C(x. y. z) [::::'.) dx dy =ff {qx, y, h(x, y)) - C(x, y, g(x, y)J} dx dy. E E 
The results are equal so the proof is complete. 

Remark The Divergence Theorem is also known as Gauss's Theorem. 

Volume Fo m Jlc Just as Green's Theorem implies the Area Formula, so does 
the Divergence Theorem imply a formula for the volume of a domain in terms of an 
integral over its boundary. 

Volume Formula Let D be a domain in R3• Then 

ID I  = �ff x dy dz + y dz dx + z dx dy = � ff x · do. 
rD ao 
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Proof By the Divergence Theorem, 

JJ x dy dz + y dz dx + z dx dy = JfJ div(x, y. z) dV = JJJ 3 dV = 3 I D I. 
t'D D D 

• EXAMPLE 3 Find the volume V of the ellipsoid 

xl yl zl 
2 + bl + 2 � I . a c 

So/11tion Parameterize the boundary of the ellipsoid by 

x = a sin </> cos 0, y = b sin </> sin 0, z = c cos </>. 

where 0 � 0 � 2n. 0 � </> � n. Then 

x dy dz + y dz dx + z dx dy 

x y z sin </> cos 0 sin </> sin 0 cos </>  

= x. Y• z. d</> dO = abc cos </> cos (J cos </> sin 0 -sin </> 
x, y, z,, -sin </> sin 0 sin </> cos 8 0 

= abc sin </> d<J> dO. 

Therefore by the Volume Theorem. 

V = � II x dy dz + y dz dx + z dx dy = � abc II sin </> d<J> dO 

d</> d(J 

= � abc I:" d8 J: sin </> d<J> = � abc(2n)(2) = ; nabc. • 

nverse Square Law Suppose a closed surface S bounds a domain that includes 
the origin (Fig. 6a). We want to compute the flux 

Cl> = ff F · da 
'i 

where the force field F obeys the inverse square law: 

1 
F = 3 x. p = I x  1. p 

First suppose S is the sphere p = a. Then 

ff F · da = :3 ff x • da = �3 (3V) 
I I 

according to the Volume Theorem, where V is the volume of the ball p � a, 
that is. V = tna3• Hence 

JJ F · da = 4n. 
pzo 
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Fis. 6 Flux of inverse square law field throuab a closed surface I 

Note that Cf> = 4n no matter what the radius a is. 
Let us pass to the general case. We shall prove a remarkable fact: Cf> =  4n for 

every closed surface S that includes the origin in its interior. We let D be the 
domain inside of S and outside of a small sphere So with center 0. See Fig. 6b. 
We take the outward normal on 80• Then the oriented boundary of D is 

oD - 1 - So , 

hence by the Divergence Theorem u F · do -u F · do == Ir F · do ==  f !f (div F) dV. 

We must compute div F. Now p2 = x2 + yl + z2, hence PP1i = x, pp, = y, PPz = z, 
and 

div F = � { x ) + � { _! ) + � { ! ) - pl - 3px2 + pl - 3py2 
ax \Pl oy \Pl oz \Pl P6 P6 

3pl - 3p(x2 + y2 + z2) 3pl - 3pl - 6 = 6 - o. 

It follows that 

p p 

ff F · do = ff F · do - 41'. 
I lo 

The ftux is constant, independent of the surface 8. 

pl - 3pz2 + l p 

Let I be a closed surface in Rl that surrounds 0, and take its normal outward. 
Then 

ff x dy dz + y dz dx + z dx dy 
4 (x2 + _r + Zl)lf2 

- "· 

I 

We close with a brief mention of another �portant result 
relating integrals. It may also be considered as a generali7.ation of Green's Theorem. 
We first require the definition of the curl (or rotation) of a vector field. 
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Curl Let F = (P, Q, R) be a differentiable vector field on a domain in R3• The 
curl of F is the vector field 

curl F(x) = (R, - Q. ,  P. - R,.,  Q,. - P,). 

Example curl(y1 + z2, z2 + x2, x2 + y2) = (2y - 2z, 2z - 2x, 2x - 2y). 

Stokes's Theorem Let F = F(x) be a continuously differentiable vector 
field in a region of spaoe and let S be an oriented surfaoe in that region. 
Orient the boundary oS of S to be consistent with the orientation of S. Then 

f F · dx =ff (curl F) · do. 

"' . 

Orientation or the boundary oS 
of a directed surraoc S: 
right-hand rule 

A proof of this is best left to a later course. ·See Fig. 7 for the orientation of 
the boundary. 

EXERCISES 

Evaluate the surface integral over the indicated portion of the surfaoc; always take the 
normal to have a non-negative z-component 

1 ff x dy dz + y dz dx + z dx dy 
plane 2x - 2y + z = 3 
O s x s l O s y s l  

3 ff xzdydz 
sphere p -= a z � 0 

5 ff z dy dz + z dz dx + dx dy 
cone z = J x2 + y2 x2 + y2 s 4 x � O  

l ff x2 dy dz + xy dz dx 
plane x + 2y + 3z = 1 
x � O. y � O, x + y s;  I 

4 ff 3x dy dz + 2z2 dx dy 
paraboloid z ... x2 + 2y2 
x2 + y2 S I  

6 ff z dy dz + z dz dx + dx dy 
cone z = 2 - Jx2 + y2 
x2 + y2 S 4 
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7 ff 4 dy dz - 3 dz dx 8 ff x2 dy dz 
cylinder z •  Jl=7 O s x s t cylinder Z =  - Jt=7 
O s y s 2  - t s x s O  - I S y S I 

9 ff x6 dy dz + z5 dx dy 10 ff x dydz + y dz dx + z dx dy 
cylinder xz + yz • l 0 :S; z :S; 1 cylinder xl + yl = al 
(outward normal) (inward normal) 

11 ff x" dy dz sphere p = a  12 ff y" dy dz sphere 

13 Prove the formula div(fA) = (grad f) · A + f div A. 

0 :S; z  S h  

p = a. 

14 Prove the rollowing vector relation, a consequence or the Divergence Theorem: 

ff f do = ff J (grad /) dV. 
1'D D 

Note that both sides are vectors. [Hint Dot an arbitrary constant vector into both 
sides.] 

IS (Archimedes' Principle) A body D is completely submerged in a ftuid or constant 
density /J. Show that the buoyant rorce on D due to the surrounding ftuid pressure 
equals the weight or the ftuid that D displaces. Recall that the pressure at depth z 
equals the weight or a vertical column or fluid of unit cross-sectional area over z, 
and use Ex. 14. 

16 (cont.) Complete the proor or Archimedes' Principle by deriving the same result for a 
partly submerged body. 

Evaluate over a closed surface 

17 ff do 
• 
[Hint Use Ex. 14.] 

18* ff x x do . 
• [Hint Use the hint in Ex. 14.) 

The gravitational force or a mass m1 at x1 on a mass m2 at x2 is 

X1 - Xz f .. Gm1m2 I 13 . X1 - Xz 
The gravitational attraction or one rigid body on another is obtained rrom this basic 
inverse square law or Newton by integration. 

19 Find the gravitational attraction F on a unit mass at (0, 0, c) or the unirorm disk 
x2 + y2 s a2• z = 0, of density fJ. 

20 (cont.) Find lim.�.., F. 
21 (cont.) Express F in terms or the mass M of the disk instead of /J. Find 

lim.�0 F, assuming M constant. 

22 Hold a closed "ideally" transparent surface near a point source or light. Light rays 
pass in at some places and out at others; none remains inside. Explain that by 
mathematics. 

23 The solid sphere p S: a has density /J - /J(p) with radial symmetry. Using symmetry 
only, what can you say about the gravitational rorce field F - F(x) or the sphere on a 
unit mass at a typical point x of space. Your answer should involve x and p = I x  I · 

24• (cont.) Let I be any closed surface that includes the sphere in its interior. What is the 
flux of F over I? 

JS• (cont.) Now choose I carefully to prove the ramous result of Newton, F - - GMx/ lx l3 

file:///JAdydz-3dzdx
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for JI outside of the sphere. It says that the gravitational attraction of the sphere on an 
external point JI is the same as that of its whole mass concentrated at its center. 

16 (cont.) Find the gravitational attraction of the sphere on a point JI inside the sphere. 
Take the case of constant density 6. 

17 (cont.) Suppose that a spherical planet of radius a consists of a homogeneous ftuid of 
density 6. Find the pressure p = p(,p) in the planet at distance p from its center. Then 
find the pressure at the center. 

Prove 
28 div[f(p)JI] = [p3f(p)]'/p2, P = IJll 
30 curl(grad f) = 0 
32 div(curl A) = 0 
34 div[gradf(p)] = [pf(p)]"/p. 

The Laplaci9n !if of a function f is defined by 

29 curl(! A) = (grad f) x A + f curl A 
31 curl[f(p)J1] = 0 
33 curl(• x JI) • 2a, a constant 

02f o2f o2f !if= ox2 + oy2 
+ 

oz2 •  
JS Express Ii in terms of grad and div. 
36 Express div(! grad g - g grad f) in terms of Laplacians. 
37 Compute /i(p•). 
38 Suppose div A =  0 and curl A =  0. Prove liA = liB = liC = 0, where A =  (A, B, C). 
39 Suppose D is rotating about an axis with angular velocity w. (Possibly w varies 

with time.) Let v = v(J1) denote the velocity of JI in D. Prove w = ! curl v. (Hint 
Express v in terms of w and JI and use Ex. 33.] 

40* From Ex. 30 we know that a necessary condition for a vector field A to be a gradient 
is curl A = 0. Find a necessary condition (involving A alone) that A = g grad f. where 
f and g are functions and g t< 0. 

Set F = (y1z, z1x, x1y). Compute both sides of Stokes's Theorem and verify their equality 
41 S = {P = l, x � 0, y � 0, z � o}. spherical octant 
42 S = { z = r, 0 s; r s; 1 }. cone 
43 S = {r = I ,  0 s: z s: I }. cylinder 
44 S = {( l - z)2 = x2 + y2, z � O. x2 + y2 s l}. cone. 

9. MISCE LLANEOUS EXERCISES 

I Two parallel planes at distance h intersect a sphere of radius a. Find the surface 
area of the spherical zone between the planes. 

l Find the center of gravity of the uniform spiral J1(t) = (a cos t, a sin t, bt� 0 s: t s: T. 
3 Suppose f[p. </>. 6] is homogeneous of degree n with respect to rectangular coordinates, 

that is. /(tJI) = t�(J1) for all t > 0. Prove f[p. </>. 6] = p•g(</>. 6� where g(</>. 6) = 
/(l. q,, 6]. f 3x2y2 2xly xlyz 

4 Evaluate -- dx + -- dy - -2 dz O\«er the curve 
z z z 

JI = (e'1" ' cos t, e"" " sin t. 2 + sin 7t). 0 s; t � 2n. 
S Evaluate Hf (x• + y9 + Z-) dx dy dz over p S a. 
6 Satellite observations determine that the moment of inertia of Earth about its axis of 
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rotation is 1 - !Ma2, where M is the mass and a the radius or Earth. Assume 
Earth is a sphere whose density 6 at any point x depends only on p = l•I and is 
linear: 6 - ab - cp, where b and c are constants. Prove that the density at the center 
is five times the surface density. 

7 Toroillal cocn•ta p, �. 0 or x in R3 are defined by the change of variables 
x • (A +  p sin �) cos 0, y - (A + p sin �) sin 0, z """ p cos �-

Here 0 s p s a, where a s A, 0 s � s 2ir. 0 s 0 s 2x. What are the level surraces 
p = const� � ,. const .• 0 - const.? Find their mutal angles of intersection. 

8 (cont.) Evaluate the Jacobian :�· ;: ;�. 
9 Dccribe the domain 0 s x S y s l, 0 s z s y and find its volume. 

10 The infinite wire x • y • 0, -ex> < z < ex> has uniform density 6. Find its gravitational 
attraction on a unit mass at (b, 0, 0). 

I I  (cont.) The infinite cylinder x 2  + y2 - a2, - ex> < z < ex> has uniform density 6. Find 
its gravitational attraction on a unit mass at (b. 0, O� where b > a. (Hint f 

2• dO 
• 

2x ·1 
Jo A + BcosO JA2 - B2 

12 (cont.) What is the gravitational force if 0 < b < a? 
13 By a long series or steps involving reduction formulas one arrives at the rormulas 

r•/2 . 2• (2n)! Jr 
Jo 

sm 0 dO = 
22•(n !)2 2 and 

A consequence is the simple looking formula 

. 2a+1 0 dO • n . J, •/2 22•( 1)2 
0 

sm 
(2n + l)! ' 

( f"'2 
sin2a 0 do) ( r·'2 sin2•• l 0 do) = Jr • 

Jo Jo 2(2n + 1) 

Use multiple integrals to give a simple proof of the latter formula. 
I' Ir v "" (111, v2 • 113) is a vector field, its divergence is div v = "[. ovJox1 • Suppose we 

take another rectangular coordinate system (with the same origin). Then its coordinates 
are x, = "[. a11x1, where .the a11 are constants. Express v in the new coordinate 
system, and show that div v = div v. that is. that div v is a geometric quantity, 
independent of the coordinate system. 

ts• Find in any way the volume or the solid x2 + y2 s a2, IY + zl s b, IY - z l s b, where 
0 < b s a. Note that the solid may be interpreted as a square hole on center through a 
cylinder, the sides of the hole at 4S0 to the axis or the cylinder. 

16 A cylindrical hole or radius a is bored through a solid cylinder of radius 2a; the hole 
is perpendicular to the solid cylinder and just touches a generator. Find in any way the 
volume removed. 

17 From each point of the space curve x • x(s) draw a segment of length I in the 
direction or the unit tangent These segments sweep out a surface. Show that its area is 
! J lc(s) ds, where k(s) is the curvature and the integral is taken over the length of the 
curve. 

18 Find the volume of the four-dimensional sphere of radius a, x2 + y2 + z2 + w2 s a2. 
19 A regular icosahedron has its center at the origin. Find the solid angle subtended by 

each of its faces. 
20* A rigid body D is rotating about an axis through 0 with angular velocity w. If 

v = v(x) is the velocity at x. the anplar momeetum of the rotating body is 



J = JH x  x v dM. Prove 
D 
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J = w 11,. 11 I,, , I.,. I,, I, 

the product of the row vector w with the inertia matrix. 
21 A vector field A and a function f are defined on a region in space. Suppose for each 

x inside the region and for each c > 0 there is a domain D containing x such that 
rad(D) < c. D lies in the region. and 

.ff A ·  do = .fJ.f JdV. 
uD D 

Prove f = div A. Assume f continuous and A continuously differentiable. 

In the next 7 exercises we shall obtain the Laplacian Ii/= div(grad f) in spherical coordinates. 
(See Ex. 35. p. 949.) We need the result of Ex. 21 and the following formula: 

I 1 
grad f = f,, A +  - f. p + -.-"" .fa v (Ex. 23. p. 914). 

p p sm .,, 

Let D denote the domain Po S p  S p1• l/>0 S 4> S l/>1• 00 S 0 S 01• with the outward normal 
on oD. 
22 Compute do on all six faces of iJD. 

23 Prove ff (AA) · do = ff f ;2 :P 
(p2A) dV. 

clD D 
24 Obtain a similar formula for J.f (Bp) • do. 

� Obtain a similar formula for JJJ (Cv) · do. 
cJD 

26 Assemble the last three steps into one; let A =  AA + Bp + Cv and express JJ A • do as an integral over D. 
iJO 

27 Use Ex. 21 and the result of the last exercise to express div A in terms of spherical 
coordinates. 

28 Apply the result to A = grad f to obtain /if in terms of spherical coordinates. 
29 (cont.) The Yukawa potential is the function /(p) = e-•Pjp with k constant. Show that 

/if= k2f 
JO• Use the result of Ex. 28 to show that if /[p. I/>. O] satisfies /if= o. then its Ket.in 

Tramfonn 
g(p. t/J. 0] = � f r� , q,, 01 

satisfies lig = 0. 
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A2 TABLE 1 Three- Place Mantissas for Common logarithms 

• 0 1 2 3 ... " 9 7 9 9 

1 . 0  000 00'4 009 013 017 021 028 029 033 037 
1 . 1  0'41 oe 0'49 0'53 0'57 091 084 088 072 079 
1 . 2  079 083 089 090 093 097 100 10'4 107 1 1 1  
1 . 3  11'4 117 121 12'4 127 130 13'4 137 1'40 1'43 
1 . ... 1'49 1"9 1"2 use 1'58 181 UM 197 170 173 

1 . "  178 179 182 18" 188 190 193 198 199 201 
1 . 9  20'4 207 210 212 21'5 217 220 223 229 228 

1 . 7  230 233 238 23e 2'41 2'43 2'49 2'48 280 283 
1 . 8  2"8 2"8 280 2"2 28'5 287 270 272 27'4 279 
1 . 9  279 281 283 289 288 290 292 29'4 297 299 

2 . 0  301 303 30'5 307 310 312 31'4 318 318 320 
2. 1 322 32'4 328 328 330 332 33'4 338 338 3'40 
2 . 2  342 3'4'4 3'48 3'48 3"0 3"2 3"'4 3"8 3"8 380 
2 . 3  382 38'4 38" 397 3e9 371 373 37'5 377 378 
2 . ... 380 382 38'4 389 387 389 391 393 39'4 399 

2 . 9  388 '400 '401 '403 '409 407 408 '410 '412 '413 
2 . 8  '41'5 '417 '418 '420 422 423 428 '427 '428 '430 
2 . 7  '431 '433 '43" '438 '438 '439 4'41 '4'42 ......... '4'48 
2 . 8  ...... 7 '4'49 '4'50 '4'52 '493 ... "" 4"8 '488 '4'59 '491 
2 . 9  '492 .... '48" '487 '488 '470 '471 '473 47'4 '478 

3 . 0  '477 '479 '480 '481 '483 .... 488 '487 "89 '490 
3 . 1 "91 '493 '49'4 '498 '497 .... eoo '501 '502 '50'4 
3 . 2  '509 '507 eo8 '509 '511 '512 '513 919 '519 '517 
3 . 3  '519 "20 '521 922 "2'4 928 "28 928 '529 930 
3 . ... '531 '533 93'4 93" 937 938 '539 9'40 9'42 9'43 

3 . "  9'4'4 """' '5'47 '5'48 '5'49 990 '5'51 '5'53 ee... 9'59 
3 . 8  9ee eee '5'59 eeo ee1 882 "83 ee9 eee "87 
3 . 7  eee "89 971 972 973 97'4 97" '578 '577 '579 
3 . 8  eeo 881 "82 883 eM 98" 887 "88 889 890 
3 . 9  '591 992 993 99'4 998 '597 998 "" 900 801 

... . o 902 803 80'4 9oe 908 907 909 910 811 812 
.... 1 913 91'4 819 918 817 918 919 "20 921 822 

.... 2 923 92'4 829 928 827 928 929 930 931 832 

... . 3 933 93'4 83" 939 937 938 939 840 9'41 8'42 

... . ... 9'43 8'4'4 849 8'49 9'47 8'48 9'49 890 891 8"2 

... . 9 993 9'5'4 899 9ee 897 898 989 eeo 981 992 

'4 . 9  883 89'4 889 88" 887 887 88" 889 870 871 
... . 7 872 973 87'4 97" 979 877 878 879 879 880 
... . 8 881 "82 983 884 98" 888 887 888 888 989 

.... 9 990 881 992 893 99'4 998 898 998 887 898 

8 .  0 999 700 701 702 702 703 70'4 709 708 707 
8 . 1  708 708 709 710 711 712 713 713 71'4 718 
9 . 2  719 717 718 719 719 720 721 722 723 723 
9 .  3 72'4 728 728 727 728 728 729 730 731 732 
9 . ... 732 733 73'4 73" 738 738 737 738 739 7'40 

• 0 1 2 3 4 8 9 7 8 9 



TABLE 1 Three- Place Mantissas for Common Logarithms (Continued) A3 

• 0 1 2 3 4 15 9 7 8 9 

15 . 15  740 741 742 743 744 744 7415 748 747 747 
15 . 8  748 749 780 7151 781 7152 7153 784 784 7815 
15 . 7  786 7157 7157 788 789 790 790 791 792 793 
15 . 8  783 784 768 788 788 787 788 769 789 770 
15. 9 771 772 772 773 774 778 778 778 777 777 

9 . o  778 779 780 780 781 782 782 783 784 788 
8 . 1 788 788 787 787 788 789 790 790 791 792 
8 . 2  792 793 794 794 7915 798 797 797 798 799 
8 . 3  799 800 801 801 802 803 803 804 8015 808 
8 . 4  808 807 808 808 809 810 810 811 812 812 

8 . 15 813 814 814 8115 818 818 817 818 818 819 
8 . 8  820 820 821 822 822 823 823 824 8215 82" 
8 . 7  829 827 827 828 829 829 830 831 831 832 
8 . 8  833 833 834 834 838 838 838 837 838 838 
8 . 9  839 839 840 841 841 842 843 843 844 844 

7 . 0  848 8'48 848 847 848 848 849 849 880 881 
7 . 1  861 862 862 863 88"4 815"4 8158 888 8158 867 
7 . 2  867 888 889 869 880 880 881 882 882 883 
7 . 3  883 88"4 888 8815 888 888 887 887 888 889 
7 . -4  889 870 870 871 872 872 873 873 87"4 87"4 

7 . 15  878 878 878 877 877 878 879 879 880 880 
7 . 8  881 881 882 883 883 884 88"4 888 8815 888 
7 . 7  888 887 888 888 889 889 890 890 891 892 
7 . 8  892 893 893 89"4 894 8915 8915 898 891 897 
7 . 9  898 898 899 899 900 900 901 901 902 903 

8 . 0  903 904 90"4 9015 908 908 908 907 907- 908 
8 . 1 908 909 910 910 911 911 912 912 913 913 
8 . 2  914 914 9115 9115 918 918 917 918 918 919 
8 . 3  919 920 920 921 921 922 922 923 923 92"4 
8 . 4  924 928 9215 929 928 927 927 928 928 929 

8 . 8  929 930 930 931 931 932 932 933 933 934 
8 . 8  934 9315 938 938 937 937 938 938 939 939 
8 . 7  940 940 941 941 942 942 9-43 943 9"43 944 
8 . 8  944 9-415 9415 948 948 947 9-47 948 948 949 
8 . 9  949 9150 9150 981 981 9152 982 983 983 9154 

9 . 0  9154 988 988 988 988 9157 987 988 988 9159 
9. 1 9159 980 980 980 981 981 982 982 983 983 
9 . 2  9154 984 968 988 988 988 987 987 988 988 
9 . 3  988 989 989 970 970 971 971 972 972 973 
9 . 4  973 97"4 974 978 978 978 978 978 977 977 

9 . 15  978 978 979 979 980 980 980 981 981 982 
9 . 8  982 983 983 984 98"4 986 986 986 988 988 
9 . 7  987 987 988 988 989 989 989 990 990 991 
9.8 991 992 992 993 993 993 994 994 9915 998 
9 . 9  998 998 997 997 997 998 998 999 999 1000 

• 0 1 2 3 "4 15 8 7 8 9 



A4 TABLE 2 Exponential Functions 

• Hp(s)  ••p(-•) • ••P(•) Hp(-•) 

o . o  1 . 00 +o 1 . 00 +O 9. 0 1 . .W +2 8 .  '74' -3 
. 1  1 . U  +0 9 . 08  - 1  9 .  1 1 . 8" +2 8 . 10 -3 
. 2  1 . 22  +o 8 . 18 -1 9. 2 1 . 81 +2 9 .  82 -3 
. 3  1 . 38  +0 '7 . 4'1 -1 9 . 3  2 . 00 +2 4' . 98  -3 
. ..  1 . G  +0 8 . '70 -1 9 . ..  2 . 21 +2 ... 82 -3 

. 9  1 . 89 +O 8 . 0'7  -1 9 . 9  2 . 4'9 +2 ... 08 -3 

. 8  1 . 82 +o 9 . 4'9 -1 9 . 8  2.70 +2 3 . 70 -3 
• '7 2 . 01 +0 4' . 87 -1 9. '7 2 . 98 +2 3 . 38  -3 
. 8  2 . 23 +o .. . ..  9 -1 9 . 8  3 . 30 +2 3 . 03 -3 
. 9  2 . .- +0 4' . 0'7 -1 9 . 9  3 . 8"  +2 2 .  '74' -3 

1 . 0  2 . '72 +0 3 . 88  -1 8 . o  4 . 03 +2 2 • .- -3 
1 . 1  3 . 00 +0 3 . 33 -1 8 . 1  4 . 48 +2 2 . 2  .. -3 
1 . 2  3 . 32  +0 3 . 0 1  -1 8 . 2  4 . 93 +2 2 . 03 -3 
1 . 3  3 . 87 +0 2 . '73 -1 8 . 3  9 . 4'9 +2 1 . 84 -3 
1 . 4'  4 . 08 +o 2 . 4''7 -1 8 . 4  8 . 02 +2 1 . 88  -3 

1 . 9  .. . .. +0 2 . 23 -1 8 . 9  8 . 89  +2 1 . 90 -3 
1 . 8  .. . . +o 2 . 02 -1 8 . 8  '7 . 38  +2 1 . 38 -3 
1 . 7  9 . 4'7 +0 1 . 83 -1 8 . 7  8 . 12 +2 1 . 23 -3 
1 . 8  8 . 08 +0 1 . 8" -1 8 . 8  8 . 98 +2 1 . U  -3 
1 . 9  8 . 88 +o 1 . 90 -1 8 . 9  9 . 92 +2 1 . 01 -3 

2 . 0  '7 . 39 +0 1 . 38 -1 7 . 0  1 . 10 +3 9 . 12 -4' 
2 . 1  8 . 17 +0 1 . 22  -1 '7. 1 1 . 21 +3 8 . 29 -4' 
2 . 2  9 . 03 +o 1 . 1 1 -1 '7 . 2  1 . 34 +3 7 . 4'7 -4' 
2 . 3  9 . 87 +o 1 . 00 -1 7 . 3  1 . .W +3 8 . '78 -4' 
2 . ..  1 . 10 +1 9 . 07 -2 7 . ..  1 .  8" +3 8 . U  -4' 
2 . 15  1 . 22 +1 8 . 21 -2 7 .  9 1 . 81 +3 9. 93 -4' 
2 . 8  1 .  39 +1 7 . 4'3 -2 7 . 8  2 . 00 +3 9 . oo _,. 
2 . 7  1 . 4'9 +1 8 . 72 -2 7 . 7  2 . 21 +3 4 . 153 -4' 
2 . 8  1 . 8" +1 8 . 08 -2 7 . 8  2 . "4 +3 '4 . 10 -'4 
2 . 9  1 . 82 +1 15. 150 -2 7 . 9  2 . 70 +3 3 . 7 1  -'4 

3 . 0  2 . 01 +1 '4 . 98  -2 8 . 0  2 . 98 +3 3 . 38  _,. 
3. 1 2 . 22  +1 '4 . 150 -2 8. 1 3 . 29 +3 3 . 0'4 -'4 
3 . 2  2 . '49 +1 '4 . 08 -2 8 . 2  3 . 84 +3 2 . 79 _,. 
3 . 3  2 . 71 +1 3 . 89 -2 8 . 3  4 . 02 +3 2 . 49 -4 
3 . 4  3 . 00 +1 3 . 34 -2 8 . 4  4 . 49 +3 2 . 29 -4 

3. 15 3 . 31 +1 3 . 02 -2 8 .  9 4 . 91 +3 2 . 03 -4 
3 . 8  3 . 88  +1 2 . 73 -2 8 . 8  15 . 43 +3 1 . 8" -4 
3. '7 4 . 04 +1 2 . 47 -2 8 . 7  8 . oo +3 1 . 87 -4 
3 . 8  4 . 47 +1 2 . 24 -2 8 . 8  8 . 83 +3 1 .  91 -4 
3 . 9  4 . 94 +1 2 . 02 -2 8 . 9  7 . 33 +3 1 . 38 -4 

4 . 0  9 . 48 +1 1 . 83 -2 9 . 0  8 . 10 +3 1 . 23 -4 
'4. 1 8 . 03 +1 1 . 88 -2 9 . 1  8 . 98  +3 1 . 12 -4 
4 . 2  8 . 87 +1 1 . 80 -2 9 . 2  9 . 90 +3 1 . 01 -4 
4 . 3  7 . 37 +1 1 . 38 -2 9 . 3  1 . 09 +4 9 . 1 4  -9 
'4 . 4  8 . 19 +1 1 . 23 -2 9 . 4  1 . 21 +4 8 . 27 -9 

4 .  15 9 . 00 +1 1 . U  -2 9 .  9 1 . 34 +4 7 . 49  -9 
4' . 8  9 . 98  +1 1 . 01 -2 9 . 8  1 . .W +4 8 . 77 -9 
4 . 7  1 . 10 +2 9. 10 -3 9 . 7  1 . 83 +4 8 . 13 -9 
4 . 8  1 . 22  +2 8 . 23  -3 9 . 8  1 . 80 +4 9 . �  -9 
4 . 9  1 . 34 +2 7 . 48 -3 9 . 9  1 . 99 +4 9 ; 02 -9 

• Hp( s) Hp(-•) • HP(•)  exp(-•) 



TABLE 2 Exponential Functions (Continued) A& 

• Hp(a) Hp(-a) • Hp(a) Hp(-a) 

10 . 0  2 . 20 ... 4 . &t  -8 80 . 0  8 . 18 +21 1 . 83  -22 
1 1 . 0  8 . 98  +4 1 . 87 -8 81 . 0  1 . 41 +22 7 . 10 -23 
1 2 . 0  1 . 83 +8 8 . 14 -e 82.0 3.83 +22 2 . 8 1  -23 
1 3 . 0  4 . 42  +8 2 . 28 -e 83. 0  1 . 04 +23 9.80 -24 
1 4 . 0  1 . 20 +8 8 . 32 -7 &t . O  2 . 83  +23 3 . 83 -24 

1 8 . 0  3 . 27 +8 3 . 08 -7 89. 0  7 . 88 +23 1 . 30 -24 
1 8 . 0  8 . 89 +8 1 . 13 -7 88. 0  2 . 08 +24 4 . 78 -28 
1 7 . 0  2 . 42 +7 4. 14 -8 87.0 8 . 88 +24 1 .  '79 -28 
1 8 . 0  8 . 87 +7 1 . 82 -8 88. 0  1 . se  +28 8 . 47 -28 
1 9 . 0  1 .  78 +8 8 . 80 -9 89. 0  4 . 20 +28 2 . 38  -28 

20 . 0  4 . 88 +8 2 . 08 -9 80. 0  1 . 14 +28 8 . '79 -27 
21 . 0  1 . 32 +9 7 . 88  -10 8 1 . 0  3. 10 +28 3 . 22  -27 
22 . 0  3 . 88 +9 2 . 79 -10 82.0 8 . 44 +28 1 . 19 -27 
23. 0  9 . 74 +9 1 . 03 -10 83. 0  2 . 29 +27 4 . 38 -28 
24 . 0  2 . 88 +10 3 . 78 -11 84. 0  8 . 24 +27 1 . 80 -28 
28. 0  7 . 20 +10 1 . 39 -11 88.0 1 . 88 +28 8 . 90  -29 
28. 0  1 . 98  + 1 1  8 . 1 1  -12 88 . 0  4 . 81 +28 2. 17 -29 
27. 0  8 . 32 + 1 1  1 . 88  -12 87 . 0  1 . 28  +29 7 . 98  -30 
28 . 0  1 . 48 +12 8 . 91 -13 88. 0  3 . 40 +29 2 . 94 -30 
29. 0  3 . 83  +12 2 . &t  -13 88. 0 9 . 28  +29 1 . 08 -30 

30 . 0  1 . 07 +13 9.38 -14 70 . 0  2 . 82 +30 3 . 98  -31 
31 . 0  2 . 90 +13 3 . 44 -14 71 . 0  8 . 84 +30 1 . 48  -31 
32.0 7 . 90 +13 1 . 27 -14 72. 0  1 . 88  +31 8 . 38  -32 
33. 0  2. 18 +14 4 . 88  -18 73. 0  8 . 08 +31 1 . 98  -32 
34. 0  8 . 83 +14 1 .  71 -18 74. 0  1 . . 37 +32 7 . 28 -33 

38 . 0  1 . 89 +18 8 . 31 -18 '79. 0  3 . 73 +32 2 . 88 -33 
38 . 0  4 . 31 +18 2 . 32 -18 78. 0  1 . 01 +33 9 . 88  -34 
37.0 1 . 17 +18 8 . 83 -17 .,., • 0 2 . '79 +33 3.83 -34 
38. 0  3 . 19 +18 3 . 14 -17 78. 0  7 . 80 +33 1 . 33 -34 
39.0 8.88 +18 1 ;  18 -17 79. 0  2 . 04 +34 4 . 91 -38 

40 . 0  2 . 38 +17 4 . 28 -18 80 . 0  S.&t +34 1 . 80 --
41 . 0  8 . 40 +17 1 . 88  -18 81 . 0  1 . 81 +38 8 . 84 ... 39 
42.0 1. 74 +18 8 . 78 -19 82. 0  4 . 09 +38 2 . 44 -38 
43.0 4.73 +18 2 . 12 -19 83. 0  1 . 1 1  +38 . . .. -37 
44.0 1 . 29 +18 7 .  78 -20 84. 0  3 . 03 +38 3 . 31 -37 
48. 0 3 . 49 +19 2 . ee  -20 88 . 0  8 . 22  +38 1 . 22  -n 
48.0 9 . 80 +19 1 . 08 -20 88 . 0  2 . 24 +37 4 . 47 -38 
47.0 2 . 88 +20 3 . 87 -21 87.0 8 . 08 +37 1 . 88  -38 
48. 0  7 . 02 +20 1 . 43 -21 88 . 0  1 . 88 +38 8 . 08 -39 
49.0 1 . 91 +21 8 . 24 -22 89. 0  4 . 49 +38 2 . 23  --

• Hp(a) Hp(-a) • Hp(a) Hp(-•) 



TABLE 3 Natural Logarithms 

• In • • In • • In • • In • 

o . o  8 .  0 1 : 909 10 2 . 303 eo 4 . 08 
. 1  -2. 303 8 .  1 1 . 929 11 2 . 388 81 4 . 1 1  
. 2  -1 . 808 8 . 2  1 . 848 12 2 . 488 82 4 . 13 
. 3  - 1 . 20.. 8. 3 1 . 888 13 2. 888 83 4 . 14 
. 4  -. 818 8 . 4  1 . 888 14 2 . 838 84 4 . 18 

• 8 - . 883  8. 8 1 . 708 18 2 . 708 88 4 . 1 '7 
. 8  - . 8 1 1  8 .  8 1 . 723 18 2 . 773 ee 4 . 18 
. '7 - . 3"7  8 .  7 1 . 740 17 2. 833 87 4 . 20 
. 8  - . 223  8 . 8  1 .  788 18 2 . 890 88 4 . 22 
. 8  - . 108 8. 8 1 .  778 19 2 . 944 88 4 . 23 

1 . 0  0 . 000 8 . o  1 . 792 20 2 . 888 70 4 . 2" 
1 .  1 . 09" 8. 1 1 . 808 21 3 . 048 71 4 . 2" 
1 . 2  . 182 8 .  2 1 . 82" 22 3. 091 72 4 . 28 
1 . 3  . 282  8 .  3 1 . 841 23 3. 138 73 4 . 28  
1 . 4  . 338 8. 4 1 . 8"8 24 3. 1'78 74 4 . 30 

1 .  8 . 408 8 . "  1 . 872 2" 3. 219 7" 4 . 32 
1 . 8  . 470 8 . 8  1 . 887 28 3. 2"8 78 4 . 33 
1 . 7  • 831 8 . 7  1 . 802 27 3 . 298 77 4 . 34 
1 . 8  . 888 8 . 8  1 . 917 28 3 . 332 78 4 . 38  
1 . 9  . 842  8 . 9  1 . 932 29 3. 387 79 4 . 37 

2 . 0  . 083  7 . 0  1 . 948 30 3 . 401 80 4 . 38  
2 . 1  . 742 7 . 1 1 . 880 31 3 . 434 81 4 . 39 
2 . 2  . 788 7 . 2  1 . 974 32 3 . 488 82 4 . 41 
2 . 3  . 833 7 . 3  1 . 988 33 3 . 487 83 4 . 42  
2 . 4  . 87"  7 . 4  2 . 001 34 3 . 828 84 4 . 43 

2 . 8  . tU8 7 . B  2. 018 38 3. 888 98 4 . 44 
2 . 8  . 988 7 . 8  2 . 028 38 3. 884 88 4 . 48 
2 . 7  . 993 7 . 7  2. 041 37 3 . 81 1  87 4 . 47 
2 . 8  1 . 030 7 . 8  2 . 084 38 3. 838 88 4 . 48 
2 . 8  1 . 088 7 . 9  2 . 087 39 3 . 884 89 4 . 49 

3 . 0  1 . 098 8 . 0  2 . 079 40 3 . 889 90 4 . 80 
3. 1 1 . 131 8 . 1 2 . 092 41 3. 714 91 4 . 81 
3 . 2  1 . 183 8 . 2  2 . 104 42 3. 738 82 4.82 
3 . 3  1 . 194 8 . 3  2 . 118 43 3 . 781 93 4.83 
3 . 4  1 . 224 8 . 4  2 . 128 44 3. 784 94 4.84 

3 . 8  1 . 283 8 . 8  2 . 140 48 3. 807 9B 4 . 8" 
3 . 8  1 . 281 8 . 8  2 . 182 48 3 . 829 98 4 . 88  
3 . 7  1 . 308 8 . 7  2 . 183 47 3. 880 97 4 . 87 
3 . 8  1 . 338 8 . 8  2 . 17" 48 3 . 871 98 4 . 88 
3 . 9  1 . 381 8 . 9  2 . 188 48 3. 882 99 4 . 80 

4 . 0  1 . 388 9 . 0  2 . 197 80 3 . 912 100 4 . 81 
4. 1 1 . 41 1  9. 1 2 . 208 81 3 . 932 101 4 . 82 
4 . 2  1 . 438 9 . 2  2 . 219 82 3 . 981 102 4 . 82 
4 . 3  1 . 489 9 . 3  2 . 230 83 3. 970 103 4 . 83 
4 . 4  1 . 482 9 . 4  2 . 241 B4 3. 989 104 4.84 

4. 8 1 .  804 9 . 8  2 . 2"1 88 4. 007 108 4 . 88 
4 . 8  1 . "28 8. 8 2 . 282 88 4 . 02" 108 4 . 88 
4 . 7  1 . 848 9 . 7  2 . 272 87 4. 043 107 4 . 87 
4 . 8  1 . '589 9 . 8  2 . 282 88 4. 080 108 4 . 88 
4 . 9  1 . 1589 9 . 9  2 . 293 89 4. 078 109 4 .·89 

• In • • In • • In • • In • 



TABLE 4 Trigonometric Functions of Degrees A7 

dee sin csc tan cot sec cos 

0 . 000 . ooo 1 . 000 1 . 000 90 
1 . 0 17 157.30 . 0 1 7  157 . 29 1 . 000 1 . 000 89 

2 • 03'5 28 . 815 . 039 28 . 84 1 . 00 1  . 999 88 

3 . 0152 1 9 . 1 1  . 0152 1 9 . 08 1 . 00 1  . 999 87 

4 . 070 1 4 . 34 . 070 1 4 . 30 1 . 002 . 988 ee 

15 . 087 1 1 . 47 . 087 1 1 . 43 1 . 004 . 898 88 

8 . 1 015 9 . 1587 . 1015 9 . 814 1 . ooe . 999 84 

7 . 122 8 . 208 . 123 8 . 144 1 . 008 . 993 83 

8 . 139 7. 1815 . 14 1  7 . 1 18 1 . 0 1 0  . 990 82 

9 . 188 8 . 382 . 1158 8 . 3 1 4  1 . 0 1 2  . 998 8 1  

1 0  . 174 8 . 789 . 178 15 . 87 1  1 .  0 1 8  . 98'5  80 

1 1  . 19 1  15 .  241 . 194 8. 148 1 . 0 19 . 982 79 

1 2  . 208 4 . 81 0  . 21 3  4 . 708 1 . 022 . 978 78 

1 3  . 22" 4 . 4415 . 231 4 . 33 1  1 . 028 . 974 77 

14 . 242 4 . 134 . 249 4 . 0 1 1  1 . 031 . 970 78 

1 15  . 2159 3 . 88" . 288 3 . 732 1 . 038 . 989 715 

1 8  . 278 3 . 828 . 287 3 . 487 1 . 040 . 98 1  74 

1 7  . 292 3 . 420 . 308 3 . 27 1  1 . 048 . 988 73 

1 8  . 309 3 . 238 . 3215 3 . 078 1 .  0151 . 9151 72 

1 8  . 328 3 . 072 . 344 2 . 904 1 . 0"8 . 948 7 1  

20 . 342 2 . 924 . 384 2 . 747 1 . 084 . 940 70 

2 1  . 3"8 2 . 790 . 384 2 . 8015 1 . 07 1  . 93" 89 

22 . 3715 2 . 889 . 404 2 . 478 1 . 079 . 827 88 

23 . 39 1  2 . 889 . 424 2 . 388 l . Oee . 921 87 

24 . 407 2 . 4159 . 4415 2 . 248 l .  0915 . 91 4  88 

2" . 423 2 . 388 . 488 2 .  1415 1 . 103 . 808 88 

28 . 438 2 . 28 1  . 488 2 . 080 1 . 1 1 3 . 899 84 

27 . 484 2 . 203 . 8 1 0  1 . 983 1 . 122 . 89 1  83 

28 . 489 2 . 130 . 832 1 . 88 1  1 . 133 . 883 82 

29 . 488 2 . 083- . 1584 1 . 804 1 . 143 . 878  8 1  

30 . eoo 2 . 000 . 877 1 . 732 1 . 188 . 888 80 

31 . 81 8  1 . 942 . 80 1  1 . 884 1 . 187 . 887 es 
32 . 830 1 . 887 . 8215 1 . 800 1 . 179 . 848 88 

33 . 848 1 . 838 . 848 1 . 840 1 . 192 . 839 87 

34 . 889 1 . 788 . 878 1 . 483 1 . 208 . 829 88 

38 . 874 1 . 743 . 700 1 . 428 1 . 22 1  . 81 9  "" 
38 . 888 1 .  701 . 727 1 . 378 1 . 238 . 808 84 

37 . 802 1 . 882 . 7154 1 . 327 1 . 2"2 . 799 83 

38 . 8 18 1 . 824 . 78 1  1 . 280 1 . 289 . 788 82 
39 . 829 1 . 889 . 8 1 0  1 . 238 1 . 287 . 777 8 1  

40 . 843 1 . 8ee . 839 1 . 192 1 . 3015 . 788 80 
41 . 888 1 . 824 . 889 1 . 180 1 .  32" . 7158 49 
42 . 889 1 . 494 . 900 1 . 1 1 1  1 .  3"8 . 743 48 

43 . 882 1 . 488 . 933 1 . 072 1 . 387 . 731 47 

44 . 8915 1 . 440 . 988 1 . 038 1 . 390 . 71 9  48 

48 . 707 1 . 414 1 . 000 1 . 000 1 . 4 1 4  . 707 415 

cos sec cot tan csc ein d•• 



TABLE 5 Trigonometric Functions of Radians 

rad •ln oo• tan rad •ln ooa tan 

o . oo 0 . 000 1 . 000 0 . 000 1 . 00 . 841 . 840 1 . 987 

. 02  . 020 1 . 000 . 020 1 . 02 . 892 . 823 1 . 928 

. CM . CMO . 998  . 040 1 . 04 . 882 . eoe 1 . 704 

. oe . oeo . 988 . 080 1 . 08 . 872 . 489 1 . 784 

. 08 . 080 . 987 . 080 1 . 08 , 882 . 471 1 . 87 1  

. 10 . 1 00 . 99'5 . 100 1 . 10 . 881 . 484 1 . 988 

. 12 . 120 . 993 . 1 21 1 . 12 . 800 . 438 2 . oee 

. 1 4 . 140 . 990 . 1 41 1 . 14 . 908 . 4 18 2. 178 

. 1 8 . 1'58 . 987 . 1 81 1 . 18 . 817 . 399 2 . 298 

. 1 8 . 178 . 984 . 1 82 1 . UI . 928 . 381 2 . 427 

. 20 . 199 . 980 . 203 1 . 20 . 832 . 382 2 . '572 

. 22  .218 . 878 . 224 1 . 22 . 838 . 344 2 . 733 

. 24 . 238  . 871 . 248 1 . 24 . 848 . 328 2 . 912 

. 28  .287 . 988 . 288 1 . 28 . eez . 308 3 . 1 13 

.28 .278 . 981 .288 1 . 28 . see . 287 3 . 341 

. 30 .288 . see . 309 1 . 30 . 984 . 287 3 . 802 

. 32  • 31'5 .848 . 331 1 . 32 . 989 . 248 3 . 903 

. 34  . 333 .943 . 384 1 . 34 . 973 . 228  4 . 288 

. 38  . 392 . 938 . 378 1 . 38  . 878 . 209 4 . 873 

.38 . 37 1  .928 . 388 1 . 38  . 982 . 190 8 . 177 

. 40 . 388 .821 . 423 1 . 40 . 98'5 . 170 e . 798 

. 42  . 408 . 9 1 3  . 447 1 . 42 . 888 . 1eo 8 . 881 

. 44  . 429  .ebe . 47 1  1 . 44 . 991 . 130 7 . 802 

. 48  . 444 . 898 . 49" 1 . 48 . 994 . 1 1 1  8. 989 

. 48  . 482  . 887 . 821 1 . 48 . 988 . 091 1 0 . 983 

. 80 . 478 . 878 .e48 1 .  80 . 987 . 07 1  1 4 . 101 

.82 . 487 . 888 . '573 1 . '52 . 889 . 081 18. 870 

.84 . 814 . see . 899 1 . '54 1 . 000 .031 32 . 481 

. 88  . 831 . 847 . 827 1 . 88 1 . 000 . 0 1 1  92. 820 

.88 . 848 . 838 . eee 1 . 88 1 . 000 - . 009-108. 849 

. 80 . 888 . 828 . 884 1 . 80 1 . 000 - . 029 -34 . 233 

. 82 . 881 . 81 4  . 714 1 . 82 . 999 - . 049 -20 . 307 

. 84 . 887 . 802 . 74'5 1 . 84 . 888 - . oe9 -14. 427 

. 88  . 81 3  . 790 . 778 1 . 88 . 898 -. 089 - 1 1 . 181 

. 88 . 829 . 778 . 808 1 . 88 . 994 - . 109 -e.121 

. 70 . 844 . 78" . 842 1 . 70 . 982 - . 129 -7. 887 

. 72 . eee . 782 . 877 1 . 72 . 989 - . 149 -8. 882 

. 74 . 874 . 738 . 913 1 . 74 . 988 - . 188 -8 . 884  

. 78 . 888 . 728 . eeo 1 . 78 . 982 - . 188 -8. 222 

. 78 . 703 . 71 1  . 989 1 . 78 . 978 - . 208 -<t.710 

. 80 . 717 . 887 1 . 030 1 . 80 . 974 - . 227 -4. 288 

. 82 . 731 . 882 1 . 072 1 . 82 . 989 - . 247 -3 . 928 

. 84 . 74'5 . 887 1 . 1 1 8  1 . 84 . 984 - . 288 -3. 824 

. 88 . 788 . 892 1 . 182 1 . 88  . 988 - . 28" -3.381 

. 88 . 771 . 837 1 . 210 1 . 88 . 9"3 -. 304 -3. 130 

. 90  . 783 . 822 1 . 280 1 . 90 . 948 - . 323 -2. 927 

. 82  . 798 . 808 1 . 313 1 . 92 . 940 - . 342 -2. 748 

. 84 . 808 . eeo 1 . 389 1 . 94 . 933 - . 381 -2. 884 

. 98  . 819 . 874 1 . 428 1 . 98  . 928 -. 379 -2. 438 

. 98  . 830 .887 1 . 491 1 . 98 . 917 - . 398 -2 . 308 

rad •ln oo• tan rad aln oo• tan 



TABLE 6 Inverse Trigonometric Functions to Radians A9 
• arcs:ln arc cos arc tan • arcs in arc cos arc tan 

. 00 . 000 1 . 871 . 000 . 80 . 824 1 . 047 . 484 

. 01 . 01 0  1 . 881 . 01 0  . 81 . 838 1 . 038 . 472 

. 02 . 020 1 . 881 . 020 . 82 . 847 1 . 024 . 480 

. 03 . 030 1 . 84 1  . 030 . 83 . 889 1 .  012 . 487  

. 04 . 040 1 . 83 1  . 040 . 84 . 870 1 . 000 . 498 

. 08 . 080 1 . 821 . 080 . 88 . 882 . 988 . 803 

. 08 . 080 1 . 8 1 1  . 080 . 88 . 894 . 978 . 81 0  

. 07 . 070 1 . 150 1  . 070 . 157 . 807 . 984 . 8 1 8  

. 08 . 080 1 . 491 . 080 . se . 819 . 982 . 828 
, os . 090 1 . 481 . 090 . 69 . 831 . 940 . 833 

. 10 . 1 00 1 . 471 . 100 . 80 . 844 . 927 . 840 

. 1 1 . 1 1 0  1 . 481 . 1 1 0  . 8 1  . 888 . 918 . 848 

. 12 . 1 20 1 . 481 . 1 1 9  . 82 . 889 . 902 . 888 

. 13 . 130 1 . 440 . 1 29 . 83 . 882 . 889 . 882 

. 14 . 1 40 1 . 430 . 1 39 . 84 . 894 . 878 . 889 

. 18 . 181 1 . 420 . 1 49 . 88 . 708 . 883 . 878 

. 18 . 181 1 . 41 0  . 1 89 . ee . 721 . 880 . 883 

. 17 . 171 1 . 400 . 188 . 87 . 734 . 837 . 890 

. 18 . 181 1 . 390 . 178 . 88 . 748 . . 823 . 897 

. 1 9 . 191 1 . 380 . 1 88 . es . 781 . 809 . 804 

. 20 . 201 1 . 389 . 197 . 70 . 778 . 796 . 8 1 1  

. 21 . 212 1 . 389 . 207 . 7 1  . 789 . 781 . 8 17 

. 22 . 222 1 . 349 . 217 . 72 . 804 . 787 . 824 

. 23 . 232 1 . 338 . 228 . 73 . 81 8  . 782 . 831 

. 24 . 242 1 . 328 . 238  . 74 . 833 . 738 . 837 

. 28 . 283 1 . 318 . 248 . 78  . 848  . 723 . 844 

. 28 . 283 1 . 308 . 284  . 78 . 883 .707 . 880 

. 27 . 273 1 . 297 . 284 . 77  . 879 . 882 . 888 

.28 . 284 1 . 287 . 273 . 78 . 898 . 878 . 882 

. 29 . 294 1 . 277 . 282  . 79 . 91 1  . 88Q . 889 

. 30 . 308 1 . 288 . 291 . 80 . 927  .844 . 878 

. 31 . 318 1 . 288 . 30 1  . 8 1 . 944 . 827 . 881 

. 32 . 328  1 . 248 . 31 0  . 82 . 981 . 809 . 887 

. 33 . 338 1 . 234 . 319 . 83 . 979 . 892 .893 

. 34 . 347 1 . 224 . 328 . 8"4 . 997 . 87"4 . 899 

. 38 . 388 1 . 2 13 . 337 . 88 1 . 018 . 888 . 70"4 

. 38 . 388 1 . 203 . 348 . 88 1 . 038 . 838 . 7 10 

. 37 . 379 1 . 192 . 384 . 87 1 . 066 . 818 . 7 18 

. 38 . 390 1 . 181 . 383 . 88 1 . 078 . 498 . 722 

. 39 . 40 1  1 . 170 . 372 . 89 1 . 097 . "473 . 727 

. 40 . 412 1 . 189 . 381 . 90 1 . 120 . 481 . 733 

. 41 . 422 1 . 148 . 389 . 9 1  1 . 143 . 428 . 738 

. "42 . 433 1 . 137 . 398 . 92 1 . 188 . 403 . 74"4 

. 43 . 44"4 1 . 128 . "408 . 93 1 . 194 . 378 . 749 

. 44 . 488 1 . 1 115 . "4115 . 9"4 1 . 223 . 348 . 7154 

. 48 . 487 1 . 104 . 423 . 96 1 . 263 . 318 . 780 

. 48 . 478 1 . 093 . 43 1  . 98 1 . 287 • 28"4 . 788 

. 47 . 489 1 . 082 . 439 . 97 1 . 328 . 248 . 770 

. 48 . 801 1 . 070 . 448 . 98 1 . 370 . zoo . 7715 

. 49 . 812 1 . 089 . 488 . 99 1 . 429 . 142 . 780 

1 . 00 1 . 871 o . ooo . 788 

• arcs in arc cos arc tan x arcs in arc cos arc tan 



A1 0 TABLE 7 Trigonometric Functions of a TT x Radians 

• sin a 008 a tan a oot a 1-• 

. 00 . 000 1 . 000 . 000 1 . 00 

. 01 . 031 1 . 000 . 031 31 . 821 •• • 02 . 083 . .. . 083 U S . 888 . 88  • 03 . 084 . .. . 098 1 0 . 878 . 87 

. 04 . 128 • 882 . 128 . 7 . 818 • •  

. °" . use . .. . use 8 . 314 . 98  

. oe  . 187 . 882 . 181 8.242 . 84  

. 07  . 218 . 878 .224 4 . 474 . 83  

. 08  . 248 . aea  . 287 3 . 899 . 82  

. 08 . 278 .aeo . 281 3 . 442 . 81 

. 10 . 308 . 881 . 328 3 . 078 . 80  

. 1 1 . 338 . 841 . 380 2 . 778 . 88  

. 12 . 388 . 830 . 3M 2 . 829 . .. 

. 13 . 387  .sue • 433 2 . 3 1 1  . 87 

. 14 . 428 . 808 , 471· 2 . 128 .88 

. 18 . 484 . 881 . 810 1 . 883 . ee  

. 18 . 482 . 878 . 880 1 . 818 . ... 
• 17 . 809 . 88 1  . 891 1 . 891 . 83  
. 18 . 838 . 844 . 839 1 . 878 . 82  
. 18 .882 . 827 . 880 1 . 471 . 81 

.20 . 888 . 809 . 727 1 . 378 . eo 

.21 .813 . 780 . 778 1 . 288 . 78 

. 22  . 837 .771 . 827 1 . 209 . 78 

. 23  .881 . 780 . 882 1 . 134 . 77 

.24 .888 . 728 . 838 1 . 088 . 78 

. 28  . 707 . 707 1 . 000 1 . 000 . 78  

. 28  . 728 . 888 1 . 0etS . 838 .74 

. 27 . 780 . 881 1 . 134 . 882 .73 

. 28  . 771 . 837 1 . 208 . 827 .72 

. 28  . 780 . 813 1 . 288 . 778 . 7 1  

. 30 . 809 . 888 1 . 378 .727 .70 

. 31 . 827 . 882 1 . 471 . 880 .88 

. 32  . 844 . 838 1 . 878 . 838 .88 

. 33  . 881 . 809 1 . 891 .881 .87 

. 34 . 878 . 482 1 . 819 . 880 .88 

. 38  .881 . 484 1 . 883  . 810 .etS 

. 38  . 808 . 428 2. 128 . 471 .84 

. 37 . 818 . 387 2 . 3 1 1  . 433 .83 

. 38 . 830 . 388 2 . 829 . 388 . 82 

. 39  . 841 . 338 2 . 778 . 380 . 81 

. 40 .Ml . 309 3 . 078 . 328 .80 

. 41 . aeo . 278 3 . 442 . 281 .88 

.42 .aea . 249 3 . 888 . 287 . 88  

. 43  . 878 . 218 4 . 474 . 224 .87 

. .... . 882 . 187 8 . 242 . 191 . ea  

. 48  . 988 . 188 8 . 314 . 188 . "" 

. 48  . 992  . 128 7 . 918 . 128 . 84  

. 47 . .. . 084 1 0 . 879 . oee . 93  

. ... . .. . 083 1 8 . 888 . 083 .82 

. 49 1 . 000 . 031 31 . 821 . 031 . 81 

.80 1 . 000 . 000 . ooo . 80 

1-• sin a -008 a -tan a -oot a • 



Answers to 
Odd - Numbered Exercises 

CH APTER 1 

Section 2. page 6 

1. Suppose for instance that b • 0. We must prove a · 0 - 0. Set c = a · 0. Then 
c = a ·  0 = a(O + 0) = a ·  0 + a · 0 = c + c. Hence 
0 = c + (-c) = (c + c) + (-c) = c + [c + (-c)] = c + 0 = c. 

3. (ab)(a- 1b- 1) = (ab)(b - 1a- 1 )  • a[b(b- •a- • )] • a[(bb- 1)a- 1] = a(l · a- 1 )  = aa- 1 = 1. 
Hence a- •b- 1 = (abt 1• 

5. (a/b)/(c/d) - {ab- 1 )/(cd-1 )  - (ab- I )(cd- Ir I :a {ab- 1 )(c- 1d) - ab- 1c- 1d. Next, 
(ad}/(bc) = (ad)(bct 1 = (ad)(b- 1c- 1) = ab- 1c- 1d, the same. We have used 
(d- Ir I = d, true because 1 = d- 1(d- 1 r I and 1 = d- 1d. 

7. (a/b)(b/a) = (ab- 1  )(ba-1 )  =- a(b- 1b)a- 1 • aa- 1 • 1, hence (a/bt 1 = b/a. 
9. First, a2 2!: 0 because either a 2!: 0 or a =  -a1 where a1 2!: 0 and a1 = a� 2!: 0. Similarly 

b2 2!: 0, c2 2!: 0, d2 2!: 0, so a1 + b1 + c2 + d2 2!: 0. But, ror instance, c :;. 0, so c2 > 0. 
Hence the sum is greater than 0. 

11. Either la l  = +a or la l  = - a,  hence la l  = ±a ::!> b. 
13. Say a >  0 and b < 0. Then a + b < a  < a  + ( -b) = a  - b and 

-(a + b) = - a - b < -b < a  - b, hence la + bl = ± (a + b) < a  - b. But 
la l + lbl = a - b, so la + b l < la l  + lb l . 

15. lx l = 2  17. lx - a l s lx - b l 19. lx - 17 1 < l 21. -4 s x s 4  
23. -0.01 ::!> x s 0.01 25. 2 s x s 4 27. - 2  < x < 2 29. - 1 < x < 9  
31. x > 0 or x < -! 33. - 3  < x < 3 35. -2.1 < x < -2 or -2 < x < - 1.9 
37. 0 s x s 4  39. x < f .. 1. x < -j .U - S < x < 5  .. 5. -5 < x < 3  
.-?. x < -i or x > 0 .-9. 0 < x < 3 51. - 1, 2 
53. The distance from 1 to 12 is 1 1  units, so the sum or the distances from x to 1 and 

from x to 12  must be 1 1  or more. But 2 + 3 < 1 1. 
55. l 7x - 7al = 7lx - a l < 7 x 10- 6 < io-5• 
57. First note that Jx - SJ < -fa implies x < 5.l < 6. Then 

lxy - 351 = lx(y - 7) + 7(x - 5) 1 s lx l  IY - 7 1 + 7jx - S I <  -i\ + ,1o = 1.3. 
59. First, Ix + 3 1 = x + 3  < 7 since x < 3 + 10-6 < 4. Next, 

1. 

lx2 - 91 = l(x + 3)(x - 3)1 = Ix + 3 1 Ix - 3 1 < 7  x 10- 6  < 10-5• 

(-4, l )  2 
• 

3. e(l,  4) 
• (3, 2) 

2 
(S, -3) • 

Section 3, page 10 

.s 
(-0.3, 0) 

• 
(-1 .  -0.1 )  .s 

• (0.2, -0.S) 

A1 1 



A1 2 ANSWERS TO ODD-NUMBERED EXERCISES 

5. 7. 

•{SO, 0.6) 

{ I SO, 0.3) • 
0.2 

9. I I. 

(- 3,0) 

17. 19 . 
• • 

• 

• 

•(-.3, .007) 

0.002 

13. 

:! 

J 
I - 1 I 
I :! 

23. ( ±  1, ± 1 )  15. (9, O� (0. 12) o r  ( 12. O� (0. 9) 

0.1 

•{.I, -.003) 

3 

21. 

' 

i I 

I 

Section 4. page 15 

� + S -
2 + Sx . 2x - 1 I. 5. 9. 6, x x 

7. 

-17 

3. 

9. 

15. 

3 

2 

:? 2 

-2 

3 



Chapter 1 A1 3 

II. 13. IS. 

17. all x, all y 19. all x, all y 21. x # f. y # 0 23. x � i. y # ! 
25.. x ;;:: 6, y ;;:: O 27. jx l s i. O s y s 2  29. x ;;:: f, y ;;:: O 31. lx l s 1. o s _.1 s !  
33. .'.{ S l or x ;;:: 4, 0 s y 35.. 3x - l, -6x - 2 37. x2 - 2x + l .  -2x3 + x2 
39. No; their domains have no point in common. 
41. [! g)(x) = 3x - 5, [g o f](x) = 3x - l 43. 2x2 + 4x + 2, -2x2 - 1 
45.. -4x, -4x 47. 9, 3 49. g(x) 51. x 53. x + 1, 3, etc. 
55.. No;/(x) is defined only for x � j, but g(x) s l .  
57. Yes;/[1(x0 + xi)) = 1a(x0 + x1) + b and 

1[f(xo) + f(x1>J = 1 [(axo + b) + (ax1 + b)) = 1a(x0 + xi) + b. 
59. f[1<xo + xi)] = 2/(xo + x1)  = 2/(x0 + xi). 

I. 3. 

4 13 
12 1 1  
l 

Sttetion 5. P•llfl 20 

(2, 13) 
/,1) 

2 
(S, -14) 

7. 

9. II. 13. IS. 

JC JC 10 

200 

ISO 100 
l 

JC 

(50, 190) 
f. ... , 

I so 

2S 50 I ::l / 
t;.;�--·-�· 2 I 

-

�·\-IS) 

-
40 - 1  

s 
s 

(50, -40) 

17. t 19. 0 21. I ll f 25.. l 27. y = x + I 29. y = 3 
31. y = tx - 3 33. y = 2x 35.. y = !x + t 37. y = x + 1 39. y = -5x + 3.5 
41. 3, - 7 43. - I. 7 45. x- 2, y- 3 47. x- t. y- t 
49. By the two-point form. the line through (c, 0) and (0. d) is 

Y - 0  d - 0 y x - c  
that is, - = --x - c = 0 - c . d -c 

This simplifies to x/c + y/d = l .  
51. 45° 53. 90° 
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I. 3. 

- I  

7. 9. 

-2 2 

13. 15. 

(2, -3) 

19. 21. 

(- 2, I) 2 

2 

- 2 

-4 

Section 6. page 26 

2 

<- ! .  t> 
-1 

4 

q. -1) 

1 1. 

s 

17. 

23. 

-I  

(0, 3) 

so 100 

(-1,  I )  

( - 2. -20) 



27. 

2 .. I 
(2. -2) i 

<t· �) 
-· 

- 8 
-I 

31. 33. 

:? .. 
-2 <t .  -i> 

37. When x = O. then y = a · 02 + b · 0 = 0. 39. b = 0 
41. x(I - x) = i - (x - !)2 $ i 

Chapter 1 

29. 

- I  

(! - .!) 4 •  I 

35. 

(�. � )  
2 

43. A1 = (!ab)1 where a2 + b1 = 16. hence 4A1 = a1(16 - a1) = 64 - (a1 - 8)1 s 64. 
Thererore A 2 s 16. A s 4. 

Section 7. page 34 

1. x2• x'. l/(x1 + I )  
5. I .  3/(x1 - 9). x2 /(I - x2) 

3. y z  -J{.r + 4) .v • x  

7. g(-x) = ![/(-x) -/(x)] = -g(x) 

9. 11.  13. 

-2 2 

A1 6 
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15. 

- I  

21. 

2 

27. 

33. 

37. 

2 

2 !\_ 

17. 

23. 

-2 

29. 

- 1  

39. 

I I -------+---1 I 
I 

19. 

-2 

31. 

-1 

2 

2 

2 

- 2 



I. 

7. 

> O  <O  < O  

13. 

<O  >O 

17. 3 < :c < 5 or x > 8 
21. 

17. 

I I 

31. r(x) -+ 0-

> O  

Section 8. p11g11 42 

3. 

< O  >O < O  >O 

Chapter 1 A1 7 

-1 

<O <O > O  

9. 1 1. 

<O 

>O < O  >O <O > O  

15. 

> O  <O  >O 

19. x < -2. or - 1  < x < I .  or x > 2 
13. 15. 

19. 

>O <O <O >O 

. _IL_ 
- 1  
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33. 

39./ I I 
------t----- 3 ---

'5. 

1 2. 
l-2 I 

-3 

'\.:) 2 !\_ ---- +------
2 

37. 

2 
2 

49. By long division,/(x) = g(x)(ax + b) + h(x� where a +  0 and deg h(x) < deg g(x� so 
that h(x)/g(x)-O as x - co. Therefore r(x) ::t: ax + b as x - co. 

Section 9, page 48 

1. (x - 1)2 + (y - 3)2 - 36 3. (x + 4)2 + (y - 3)2 - 2S 
7. (x + 5)2 + (y - 2)1 - 25 9. (x - i)1 + (y - 2)2 = .y 

13. x2 + y2 - ax - by ""' 0 

5. (x - 1 )2 + (y - 5)1 ""' 26 
II. (x - a)1 + (y ± 3)1 - 9 

15. No; their centers arc farther apart than the sum of their radii: (22 + 31)1'2 > 1 + 2. 
17. To prove: Jx2 + y2 = 2J(x - 3)2 + y2• Square and expand: 

19. 

x2 + y2 = 4((x - 3)2 + y2). 3x2 + 3y2 - 24x + 36 = 0, x1 + y2 - 8x + 12 = 0, 
(x - 4)1 + y2 • 4. Now read backwards. 

2 



21. y = ix1 + I ;  parabola with focus (0, 2) and directrix the x-axis 

Chapter 1 A1 9 

23. Their midpoint, (!(Sx + 3x + 4yi !(Sy + 4x - 3y)) = (4x + 2y, 2x + yi lies on the line 
2y = x. and the slope of the segment joining them, 

(4x - 3y) - Sy 4x - Sy m =  = -·--- = -2, (3x + 4y) - Sx -2x + 4y 
is the negative reciprocal of the slope of the line 2y = x. Hence segment and line arc 
perpendicular. 

Section 10, page 53 

I. y = ix1; parabola 3. /(x) = (x - 2)2(x3 - x + 3) 5. y = -6x - 3 
7. y = x - I 9. y = 3x - 6 

Section 1 1. page 53 

I. (a) I , - 5, 9x + 4 
(b)f(a + b) = 3(a + b) +  l = 3a + 3b +  1 = (3a + 1 ) + (3b + 1 ) - 1 =/(a) +/(b) - 1. 

5. f(x) = -x + 6 
3. 7. y 

4 

2 

-2 

- 4  (3, -4) 

x 

9. x # - I 

13. 

I I. Jx2 + _!_,  3 + -· 
1 

- etc. x(x - 4) x(x - 4)' 
15. 
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17. 19.)I I 
I '\ I 2 I '-. 

-----t---- -----+---
' 

21. ll I 

JI 
-----t---

!"-_ 
, ___ p __ 

_ 

25. circle, center (J, -i� radius iJ2 

CHAPTER 2 

Section 1 page 58 

I. - 1 1.7 
13. S.41 
ll 4a + 3  

3. - 1 1.999997 5. -0.9 
15. s - (4 x 10- 10) + 10- 20 

7. - 1.0001 
17. 47.1201 

Section 2. page 62 

I. 3 3. 8 5. l 7. -4 9. 4 11. - 1  

9. 10.8 11. 10.99998 
19. 47.00120001 21. 6a 

13. 0.04996, 0.02499, 0.00500, O.OOOSO; lim = 0 15. 3 17. -! 19. -i 
21. * ll � 25. 0 27. iJ2 

Section 3. page 67 

I. 2x 3. -4 5. l 7. 3 9. 8 11. 3y2 13. 0 15. 0, 27, 27 
17. 108 19. 48, 3a2 21. - 12, 24, 2 ll - 1, - 1, - l/a2, - l/a2 
25. - l/a2, -a2 27. - 1/b2 29. 6, 14, 22 31. 13 33. 6 35. -32 
37. (3, 9) only 39. ( -2, -8� (2, 8) 41. No 43. Yes, at (0, 0) 
"5. y - x2 at x - !; y - x3 at x = l and x "" 2  47. x > i 

Section 4. page 72 
I. 2x + 3 3. - 4x3 + 4x 5. l - (l/x2) 7. 3x2 - 3 1 = 0 

z• - 1  



Chapter 2 A21 

9. 3x2 + 1 + (2/x2) j2 = ¥ 11. (x + 1)(2x) + (x2 + 1) = 3x2 + 2x + 1 
13. (3x + 4)(2x - 2) + 3(x2 - 2x - 3) = 9x2 - 4x - 17 
15. (x5 - 2)(3x2 + 1) + (5x4)(x3 + x - 3) = 8x 7 + 6x5 - 15x4 - 6x2 - 2 
17. 10x(x2 - 1 )4 19. 3(2x - 2)(x2 - 2x + 1)2 = 6(x - 1)5 
21. (x2 + 1)3 • 2(x - l) + 6x(x2 + l)2(x - 1)2 = 2(x - l)(x2 + 1)2(4x2 - 3x + l) 
23. (xl; 6r = ( x2 + �r = 2x - :2 
2!. (:lr = (x12 �r = (x12) ( :21) + ( ::)(�) = :: 27. mn(mx + br- · 
29. (fgh)' = [f(gh)]' = f'(gh) + f(gh)' = f'gh + f(g'h + gh') = f'gh + fg'h + fgh' 
31. (x + 2)(x + 3) + (x + l)(x + 3) + (x + l)(x + 2) = 3x2 + 12x + 1 1  
33. 2(x - 3)(3x + 4) + (2x + l)(3x + 4) + 3(2x + l)(x - 3) = l8x2 - l4x - 29 
3!. 8(2x + 1)3(x - 3)(3x + 4) + (2x + 1)4(3x + 4) + 3(2x + l)4(x - 3) 

= (2x + 1)3(36x2 - 44x - 101) 
37. 2x[(x2 - 2)(x2 - 4)(x2 - 8) + (x2 - l)(x2 - 4)(x2 - 8) + (x2 - l)(x2 - 2)(x2 - 8) + (x2 - 1)(x2 - 2)(x2 - 4)] = 2x(4x6 - 45x4 + 140x2 - 120) 
39. 0 since dy/dx has a factor x2 

Section 5. page 76 (u) ' 1l (") ' 1 u' 1 
l. � = 0 � ;. = 1 3. � = - x2 � ;. -= 2x 5. 1 14 (x + 1 )2 7• (x + 5)2 
9_ x2 + 8x + 1 11 -9 IJ. -4(2x + 1) 

(x + 4)2 ' x10 (x2 + x)5 l
5. 4(x + l) - 12x 

(x + 3)3 17. (x2 + l)' 
-6x(x3 + x + l )  21 1 23. l 19• (2x3 - l)2 • 2.JX+J 2J x(x + l )3 3x3 - 2a2x - 16 3x2(Jx + 2) 27. 
J 

29. 31. r: x2 - a2 .j(8x - x2)3 2(yx + 1)4 

35. ('g) ' = 
[fghl' 

= 
h2(fgh)' - (fgh)(2hh') = (fgh)' - 2/gh' 

h � � � 

Section 6. page 81 

l. 6x2(x3 + 1 )(2x6 + 4x3 - l) 

2!. l J(l _ x2)l -(1 + 3x) 33. ----( l + 2x + 3x2)ll2 

3. [5(x + �r _ 3(x + �rH 1 _ x12) = (x2 _ l )(x2 + .!2!5x4 + 7x2 + 5) 

5. -30(2x - �)9(2 + _!_) 7 - 1  9 x + 1 
x x2 ' (2x + 1)312 · 3(x2 + 2x)213[(x2 + 2x)1'3 - 1) 1'2 -2 - l  11• (x2 _ l )1'2[(x + l)''2 _ (x _ l)''2]2 l3. Jx2fl(2 + x1'3)2 15. l 

1 17. 2u · 2v · 2x = 8x(x2 + l)[(x2 + 1)2 + 1) 19. (ix- 1'3) = ---:--::---=== 2JU+t 3x '' J Jx2/l + 2 
Section 7. page 84 

l. y = 4x - 4 3. y = -x - 2 5. y = 2x + 2 7. y = +,x + ! 
9. y = lOx - 25 11. y = ±8x - 16 13. y = 7x - 5, (0, -5� (;, 0) 
15. y =  -81x - 18, (0, - 18� (-i, O); y =  -8lx + 18, (0, 18� (i, O) 17. 2 
19. (0, -9) 21. y = 1, -x2 23. y = 27(x - 2� (x - 3)2(x + 6) 
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25. y = -3x - 2, 9(x + 1)2/(3x + 4) 

27. t(x) = !(l + x� e(x) = .Jx - i(l + x) 
x 0.90 0.98 1.02 1.10 

Jx 0.948683 0.989949 1.009950 1.048809 

t(x) 0.950000 0.990000 1.010000 l.OSOOOO 
e(x) -0.001317 -0.0000Sl -0.0000SO -0.001191 

29. t(x) = 8 + 12(x - 2); x3 - t(x) = x3 - 8 - 12(x - 2) = (x - 2)[x2 + 2x + 4 - 12] 
= (x - 2)(x2 + 2x - 8) = (x - 2)2(x + 4) 

If Ix - 21 < l, then S < x + 4 < 7, hence lx3 - t(x)I < 7 lx - 2 12. 

Section 8. page 88 

1. 2x2 + e 3. -!x1 + e 5. -x2 + x + e 1. !x3 - x2 + e 

9. ix' + !x2 - x + e 11. !x2 - ! + e 13. !x3 - ix2 + 6x + c x 
l I 15. - - + - + c x x3 

-2 
17. (x _ 3)2 + e 19. -h(2x + 1)7 + c 21. i(!x + !)' + e 

23. ix3 + 4.fi + e 

31. y = !x2 - Sx + Y 
25. Jx3'2 + e rt. 3x2 - 4x114 + e 29. ax3 + bx2 + ex +  d 

33. y = x3 - 2x2 - � + Y. 35. i[f(x)]2 37. i[F(x)]3 x 

Section 9, page 93 

-2 + 6x2 4 
l. 6 3. 2 - 6x 5. 30x4 + 40x3 + 12x2 7. 

(l + x2)
3 9. (x _ 2)3 

11 4a(3x2 + a) 27 9 - 2  10 
• (x2 - a)l 13. 4( l - 3x)s12 15. (x2 + 9)3'2 17. 9xS/3 + 9( 1 + x)Sll 

(- 1)"- 1 
19. th 21. S/864 23. 18 25. 3• 2 · S • 8 · · · (3n - 4)x-13•-013 

27. !. 3 29. Jx3 - !x2 + ex +  d 31. 12x2(2x + 1)'(30x2 + 12x + 1) 
3 · S · 7  . .  · IS(3x - 17) 33. (8 · 7 · 6 · S)(9x - lS)(x - 3)3 JS. 210x1911 37. 0 39. jf"/(/')2 

Section 10, page 101 

l. ! 3. i 5. I 7. 0 9. I 11. i 
13. � (!) l = lim ! (-

1 
- !) = lim(- _!_ + h ) = =-! 

dx x •• •-o h a + h a •-o a2 a2(a + h) a2 
15. Use the definition of limit with e =  i · 10-6• 
17. lim,.-o+ /(x) • I because I l - f(x)I • 0 < e for x > 0 and e > 0. Similarly 

lim,._0_ /(x) = 0. Now suppose lim,. .. 0/(x) • L Take e • !. If lxl < !J, then 
IL -f(x)I - IL - l I <  i for x > 0, and IL -/(x)l • ILi < ! for x < 0, impossible 
because these inequalities imply I = l(L - l )  - LI S: IL- 1 I + ILi < ! + ! ,.. 1. 

19. If c = 0, there is nothing to prove. Otherwise l/(x)I < t/ lel for Ix - a l < !J. Then 
le/(x)I < lc l (e/le l )  = e for Ix - a l < !J, hence lim,._. [c/(x)] = 0. 

21. Apply Theorem 1(2) to [f(x) + g(x)] + h(x). 
23. Use Theorem 2. Since/(x) = x is continuous, repeated application of (3) shows 

x · x · x · · ·  x = x" is continuous. Theo a.x" is continuous by ( l�  Finally a sum of terms 
a,,X-, a.+ 1x-+ 1, etc. is continuous by repeated application of (2� 



25. By Theorem 3 

Chapter 3 A23 

27. By Theorem 3 with g(x) = x2 + 3 :;:  0 for alJ x. 
29. By Theorem 4, and Theorem 5 with/(x) = Jx and g(x) = 1 + x2 > 0. 
31. If e > 0, then IJXI < e if I x ! < 6 - e3• Hence lirn JX = 0 =JO. 
33. Given e > 0, there is a 6 > 0 such that l/(x)I < e/M for 0 < Ix - al < 6. Then l/(x)g(x) I = lf(x) l lg(x)I < (e/M)M = e. Hence/(x) -0 as x - a. 
3!. Apply Ex. 20 with/(x) = g(x) = h(x). 
37. 6 = il0-4 will do. For if lh l < 6, then 

1 1 - h 
- ! I = I� I = 3 lh l � < ! . 110-• = 10-•. 2 + h 2 2(2 + h) 2 12 + h I < 2 

39. By Heron's formula.f (e) = [(s - is)(s - a - t){s - b - e)(s - c - e)]112, a continuous 
function of e. Hence lim,�0 /(t) = /(0) = A. 

Section 1 1, page 105 

I. 6h + 4h2 + h3 3. 
h 4(-2 + h) 

5. f (x) = 4 + Ix - 3 I. Since Ix - 3 I is continuous but not differentiable at x = 3, the 
same holds for /(x). 

7. At all points. For x ..,.  0, this is clear. For x = 0, 
/(O + h) -/(O) = lhl-O h 

as h-0. Hence/(x) is differentiable andf'(O) = 0. 
9• f(a + h� -f(a) = [b + (a +  h -:)g(a + h)J - b = g(a + h)-g(a) as h-O. 

Hence f'(a) = g(a). 
11. By definition of derivative, g(x) -f'(c) = g(c) as x -c. Thus g(x) is continuous 

at x = c. If x :;:  c, then g(x) is continuous, the quotient of continuous functions with 
non-zero denominator. 

Section 12, page 105 

I. ±J3 3. 5� (2 + fo )4 5. 2(2x + 1)(3x + 1)2(18x2 + 24x + 7) 2yx 
2 " , 1 ( 6 ) (-2) 4 6 2 4 

7. x y + xy - 4y = x - + x -:::y - - = - - - - - = 0 x• x xl xl xl xl 9. The tangents are y = 2ax - a2 and y = 2(a + I )x - (a + 1 )1; they intersect at x = a + !. 
y = a1 + a. But a1 + a = (a + !)1 - 1. so y = x2 - t· I I. -! 13. -! 15. 2/(x + 2)3 

17. Continuous for all x; differentiable for all x except x = - 1. -2, -3. 
19. r(t) = -!t + !Ji2+12, a continuous function for all t since t1 + 12 is continuous and 

positive. 
21. h'(x) = f'[g(x)]g'(x) - g'[f(x)]f'(x� 

hence h'(c) = f'[g(c)]g'(c) - g'[f(c)]f'(c) = f'(c)g'(c) - g'(c)f'(c) = 0. 
CHAPTER 3 

Section 1, page 1 13 

I. convex for all x 
3. convex x > 2, concave x < 2, inflection x = 2 
5. convex x < 0, concave x > 0, inflection x = 0 
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7. convex !x i > !JiO. concave !x i < !JiO. inflections x = ±lfa 
9. 1 1. 13. 

15. 

21. 

27. 

-2 y,.... 
/ l -2 

,.... I �-· 
2 

17. 1 I I 2 

23. 

29. 

19. 

31. 

2 
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33. 

35. 

2 

37. 

4 
39. 

- 1 

Section 2, page 1 1 7  

I .  900, 914.4, 916 ft/sec 3. 2000 m. - 50 m/sec. - 200 m/sec 
5. j sec. 16 ft/sec up or down (speed. not velocity) 
7. (a) increasing for r < 2 or r > 4. decreasing for 2 < t < 4; 

(b) increasing for t >  3. decreasing for t <  3; 

41. 

2 3 4 

(c) 20 ft forward from 0 to 2 sec. 4 ft backward from 2 to 4 sec. and 20 ft forward 
from 4 to 6 sec; total 44 ft 

9. 40 ft II. 6 ft/sec1 13. 480 m. 16  sec 15. 100 + 1200 + � = 1366j m 
21. y = !t3 - !t1 + 3t + 5 17. y = - 8x1 + 12 19. y = - 16t1 + 64t 

I. -� 3. - I 

13. 0.024 cm/sec 

Section 3. page 122 

5. i 7. 24n ft/sec 9. l/ ft/sec 1 1. lf j 5 
15. 620n ftl/scc 17. 4jJ ft/scc 19. - P2V/k 

Section 4. page 127 
I. minf(2) = 2. no max 3. max /(3) = 13. no min 
5. minf(i) = 4. no max 7. maxf(O) = I. min/(2) = - 19 
9. minf(i) = 4, no max I I. max f( I )  =f(3) = !. minf(j3) = iJJ 

13. maxf( - 3) = -H. minf( - 1 ) =  - I  15. max/( 1 ) = 5. min/(1} = 3  
17. maxf(2) = 9. minf( ± 1 ) = 0  19. maxf( - 3) = 15. minf( - I ) =  - 17 
21. no max or min;f(x) - - oo  as x - 2- andf(x) - oo  as x - -2+ 

Section 5. page 135 

I. 28 ft 3. 12 5. 75 m x 25 m 7. la x jb 
9. At noon the ships are as close as they will ever be. 
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11. (1/�, ±"'2) 13. I 15. 80 ft 17. radius aJi/3, height afJ3 
19. 16/(4 + x) � 2.24 ft 21. $2725 ll 1000/JJ � 577.35 mph 
25. radius = height = JOJ"v/,t cm 27. tl.2 ft1 
29. radius 125/x � 39.8 m, straight side 125 m 
31. Rows to a point J3 mi upshorc, then walks. 
33. depth/width = J2 35. � at l = 2x./i1P9 37. x = i. y = � 39. i 
41. The non-negative runction 

•+�a · · · a x 
f(x) - I 

I • 

-- (a1 + . . · + a + x) n + I  • 

satisfics/(O) = 0 and lim,._.., /(x) = 0. Alsof'(x) = 0 only for one positive x, namely 
x ""  A • . Hence A. yields a maximum, so/(x) s/(A.� with .. = "  only if x = A • .  In 
particular./(a.+ .)  S/(A.� equality holding only ir a.+ 1 = A • .  This implies 
G.+ 1/A.+ 1  S (GJA.r11•+ 11. 

Section 6. page 143 

l. max y(O) = 0; mins y(- 1 ) = y(l) = - 1  
3. max y(O) • 2; mins y(- 1) = -3, y(2) = - 30 
5. max y(2) = iJ2 ; min y(-2) = -i.Ji 7. max y(- 3) - -9; no mins 
9. max y(i) = /,; no mins 11. maxs y(± 1) = !; min y(O) = 0 

13. y[2/(n - l )]  = (n - 1r- 1f2r •n-
15. y' = 2Q(x)IJb1 + (a - x)1, where Q(x) = x1 - ax + !b1. Case I :  a1 < 2b1. Then 

Q(x) > 0 ror all x; no max or min. Case 2: a1 = 2b1. Then Q(x) - (x - !a)1; horizontal 
inflection at x = !a, but no max or min. Case 3: a1 > 2b1• Then Q(x) .. (x - x1)(x - x1� 
where x1 • !(a - Ja1 - 2b2 ) and x1 = !(a + Ja1 - 2b1 ); max at x1, min at x1 • 

17. Ir the graph has an inflection point for x = c, then f"(c) = 0 and f"(x) changes sign 
at x • c. Hcnccf'(x) has a max or min at x - c by the first derivative test. 

19. (y')' = 0, hence y' • const = a. Then (y - ax)' = 0, hence y - ax = const = b, 
so y =  ax + b. But 0 = y(O) = b, and 0 = y(l) = a. Hence y = 0. 

Section 8. paae ., 

l. On the closed interval 0 s x s I, the continuous runction /(x) has a min which is 
negative since f (0) = - 1. This is also the min for x � 0, since f (x) > 0 ror x � 1. 

3. Let/(x) = x for a s  x < b, and/(b) • a. 
5. Takc/(x) - x on O < x < I  and/(x) = l/(x1 + 1 )  on - «>  < x < oo. 
7. No;/(x) = (x - l )/x1 - - oo  as x - o. 
9. Set g(x) = 2x -/(x� Then g(O) = 0 and g'(O) = 2 -f'(O) = 2 - I > 0. By the theorem 

on p. 147, there exists {> >  0 such that g(x) > 0, that is,/(x) < 2x ror 0 < x < l>. 
I I. /(0) - l, f'(O) = /(0) ... l .  By the theorem on p. 147, there exists l> > 0 such that 

/(x) > /(O� that is,/(x) > 1 for 0 < x < {>. 
13. (f + g)"(x) = f"(x) + g"(x) � 0 irf"(x) � 0 and g"(x) � 0. 
15. No; ir/(x) - x3'4, then [f(x)]1 = x311 is convex, but/(x) is concave. 
17. Let h(x) -=/[g(x)]. Apply the Chain Ruic twice: h'(x) =f'[g(x)]g'(x). Next, h#(x) • 

f"[g(x)][g'(x)]2 + f'[g(x)]g .. (x). Thus h"(x) � 0 sinccf"(x) � 0 and g"(x) � 0 by convexity 
andf'(x) � 0 bccausc/(x) is increasing. 
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19. f'(x) is increasing because its derivative is f"(x) > 0. Hence f'(x) > 0 if x > c; also by 
the Mean Value Theorem, /(x) -/(c) • f'(zXx - c� where c < z < x. Hence f'(z) > 0 
so /(x) -/(c) > O.f(x) > /(c). Similarly /(x) > /(c) for x < c. 

21. Suppose /(x) � 0 for some a < x < b. Then max/ = /(c) � 0, where a < c < b. But 
f"(c) < 0, contradicting the Second Derivative Test. 

23. This is the statement of the Chord Theorem apr!ied to the interval from x to y at the 
interior point tx + {l - t)y. 

25. Exercise 18 applied to /(x) = x' yields [!(x + y)]' � !(x' + y'� Multiply by 2'. 
Section 9. page 153 

3. 15 sec. 675 ft 5. 500 7. 6 x 6 x 18 in.3 

13. 500 
( l.S6, 0.64) 

(- 2.S6, - 0.39) 

15. The circumference of the circle should be 30n/(4 + n) in. 17. y = -1xJ3 + 1/  
19. Let the x-axis be the border of the two regions and Jet the given points be (0, a) and 

(b, -c). 

y 
(0,a) 

(cost d1) 

x 

(b, -c) 
The most economical path must be some broken line as shown. The cost of the cable 
from (0, a) to (x. 0) is 

. 
·- - ./xl + al 

(cost per mile)(distance) = d1.jxl + al = , 1/d, 
Jf!=-tj2+:;2 l/d2 

and the cost from {x, 0) to {b, -c) is 

Therefore you must minimize the total cost, 
.jxT + a1 J(b - x)2 + c-2 
--- + ----1/d, l/d1 

. 
But this is precisely the same as Example 7, p. 134. Hence the optimal path is described 

by 
sin� = 

sin ix2 • 
l/d, l/d2 {x4 + 1 )3 12x1(x4 + I )2(x - 1 )  

21. Set/(x) = 
(x

3 + I)
" :  thenf'(x) = (x3 + l )' -- . Hence/ decreases fo1 0 s; x s; 1 

and increases for x � 1, so f rain = f { 1 )  = l This proves /( x) � ! for all x � 0, and the 
required inequality follows. 

23. V = (b/a)114 25. (x + y)..un = 4f 
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CHAPTER 4 
Section 7. paga 759 

1. log102 :::::: 0.30103, log10 3 :::::: 0.47712, log10 10 - 1, and log10e :::::: log102.7183 � 0.43430. 
Divide. 

3. k = (Jos10 a)/(los10 e) 
5. lim•�o (� - 1 )/h :::::: 0.6931, so (� - 1 )/h :::::: 0.6931 and 2• - 1 :::::: (0.6931 )h for h small. 
7. By the same reasoning, 3• :::::: 1 + (1.0986)h, so 3°·1 :::::: 1 + (l .0986)(0.1) :::::: 1.1099. (By 

calculator, 3o.i � 1.1 161.) 
9. 6xebJ 11. 4x3r' 13. (x - l)e"/x2 15. e-"/(1 + e-")2 = r/(1 + r)2 

17. 3x2(1 + e2" - 2xe2")/(e2" + 1)4 19. -4/(r - e-")2 21. 1, 4 23. -2, 3 
25. If y = r, then y-• - 2y' + y = r - 2r + r = o. If y = xr, then y" - 2y' + y -

(le-' + xr) - 2(r + xr) + xr - 0. 

Saction 2. paga 164 

l. 3. y' + y = i(r - e-") + i(r + e-") = r 

-- - -

7. 

I 
--- --
.................... .......... .................... 
\ \ \ \ \  
' ' '\. '\. '\. 

5. 

9. y' = k�" - kbe-All, 
y" .. kl�" + k2be-b = k2y 

11. If y = cE(x2� then 
y' - 2xcE(x2) • 2xy. 

\ \ 
\ \ 
\ \ 
\ \ 
\ "' 
, ......... 

I I 
I I 
I I 
I I 

I /  I 
/" / 

13. E(2x) = E(x + x) = E(x)E(x) = (E(x)]2, 
E(3x) • E(2x + x) • E(2x)E(x) • E(x)2E(x) ... E(x)3, • • · ,  
E((n + l)x) • E(nx + x) • E(nx)E(x) • E(x)"E(x) • (E(x)t+ 1. 
This proves [E(x)]' = E(xy) when y is a positive integer. The result is obvious (1 - 1) 
for y = O. Finally, E(x(-y)] = E(-xy) = l/E(xy) • l/(E(x)]' • (E(x))-1, so the result 
holds for all negative integers also. 

15. 3k · 103" where e' = 10, k :::::: 2.3026, 3k :::::: 6.9078 



Chapter 4 A29 

17. le · S"- 1 where e' ... 5, le :::: 1.6094 19. 4k · 104"-1  where e' = 10, 4k :=:: 9.2103 
21. 21c(l02" - 10-1") where e' = 10, 2lc :::: 4.(J()52 
ll a =  e', b ,.. e'; a"b" = e'"e'" = e"'+lx = �+11x - (ab)"' since ab • e'e' = el•1• 
25. a •  el, a"a' • e"'el' • e""H' • t/"-"•11 - a"+'. 
27. !eb + c 29. (10-/le) + c where e' = 10 31. xr - r + c 33. y • r - e-• + I 

1. 0 3. e- • 5. e5 7. 0 

St1ct1on 3 pagtt 1 70 

9. ( I  + �r :::: e, so log10( I + �r :::: log10 e :::: 0.4343. But logao( 1 + �r = n log10 ( I + �) 
so the result follows. 

11. y(O) = 0, y(x) > 0 for x > 0, and lim,._00 y = 0. Hence y has a max. Now y' = 0 only for 
x - I, hence y., .. - y(l) = e-•.  

13. y(O) = 2 and lim,._00 y = - oo .  Also y'(O) = I > 0, so y(x) > y(O) for x near 0. Finally 
y'(x) = 0 only for r = i. so y ... = 3(}) - (!)2 - 1. 

15. x 10 100 1000 106 

r/r 2.2 x 10-6 2.7 x 10-157 2.0 x 10-2566 3.0 x 10-5565706 

Sttction 4 pagtt 1 74 

I. m(t) "" mo e-.11. A =  log 2/log e3·64 :::: 0.1904. Alternatively: m(t) = mor'13•64; 
about S. 77 days 

3. log 2/log e :::: 69.315 % 5. m(t) = (3 x 106)3'12; log 4/log 3 :::: 1.26 hr 
7. 30(i)5 :::: 12.1 in. 9. about 2.19 days. II. JOib 

13. Set y - a(b - x)/b(a - x). Then by the Chain Rule, 
dy dy dx a(b - a) 
dt = dx dt = b(a - x)2 le(a - x)(b - x) - le(b - a)y, 

hence y = y0e't•-•ll. Set t =  0. Then x0 .. 0, so Yo - ab/ba = I, y = el�-•tr. 
15. u - a +  (u0 - a)e-a. As t - oo, e_., - o. hence u - a. 
17. ( - U)... = le =  - U(c) 19. v = (v0 - g/A)e-.11 + g/A, v - g/A as 1 - 00  
21. m = -(m/u)ci. But m • (dm/dv')V by the Chain Rule, hence dmfdv • -m/u, so m = ce-•1•. 

Set t "" 0. Then v = 0 and m = "'o ,  so c = "'o ,  m - "'o e-•1•. The dot is d/dt as usual. 
ll (mv)' = mv + mv = (v - u)m - mg. Cancel mv: 

dv dm 
'" di  :E -u di -mg, 

(dv ) dm '" - + g - -u-.  dt dt 
Set w - v + gt. Then w = ;, + g, so 

dw dm dm dw dm m m • u .. u m = m0e-•I• • m0e-<•+flll•. di - dt - dw dt ' dw • - ; ' 

25. Let m( t) • m0 e -"' be the mass or 14C per gram or wood le illed at the time or 
Hammurabi. Here t is measured in years from that time, "'o is the mass or 14c per 
gram or living wood, and e1 = 2115561. Now m = -Am =  -Antoe-.11 is the rate or decay, 
proportional to the dpm. Hence 

'"° -Amo .It 6.68 .ti 
m = -Antoe-.11 .. e ' 4.09.., e ' t log(eA) =- log 6·68

, 4.09 

= log(6.68/4.09) _ log(6.68/4.09) _ ( ) log(6.68/4.09) 
.,., t 

log(e) - log(2•JSSH) 
5568 

log 2 - 3940 yr. 
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This is the time from the date we want to 1950 A.O., so Hammurabi's reign was about 
3940-1950 = 1990 e.c. (Some give bis dates as 1955-1913 e.c. Of course this particular 
tree could have been cut earlier.) 

27. Set n{t) = no e"-""2'2• Then dn - � {1ct - ! act2)n - {k - act)n = kn - anx 
dt dt 2 

and n(O) = flo · If 1 - 00, then kt - iacr2 - - oo  so n -o. 
29. If h - aJb2 and p = a1/b1, then 

a1h - b1ph = 0 • h and -a2 p + b2ph • 0 • p. 

31. By the Chain Ruic :, (a! bp) ... (a .:bp)2 (ap - bp2) = 
a(0 ! bp)• 

hence p/(a - bp) = ke-'. From this, p • (a - bp)ke-', ( 1  + bke-')p • ake-', etc. 
33. 2000: S.74 x 109, 2050: 8.44 x I09, 2IOO: 9.49 x I09, ultimately: 9.86 x 109 
35. R = R.., cxp(-kHp0e-tt"] 

Section 5, page 183 

1. ix ht -tx 1/1t -Jx 5x 
3. Vt -x Vt ix -ix .l/1C 5. 900 - 1200 3000 5400 -48()0 30000 
7. 45° 24° 75° 5° - 165° - 12° 
9. HJ2. 1J2>  (-!�. -iv?>  (-!J2. 1J2> 
11. ( - I, o) (-!. -1J3> HJ3. 1> 
13. ix. ix 15. ht. ix 17. ix 19. ilf, in 
21. No: for functions. even x odd = odd, odd x odd = even. 
23. odd 25. even 27. even 29. 1 31. x 33. x 
35. Replace 8 by -8 in cos(8 + x) = -cos 8 and sin(8 + 7t) = -sin 8, and use parity. 
37. sin{cx ± 1t) • -sin ex, cos{cx ± x) • -cos ex 
39. 1 cos 8 + 1J3 sin 8 41. 3 sin 8 cos2 8 - sin3 8 - 3 sin 8 - 4 sin3 8 
43. 4 sin 8 cos 8(cos2 8 - sin2 8) 
45. cos(cx + fl) + cos(cx - fl) ,. (cos ex cos fl - sin ex sin fl) + (cos ex cos fl + sin ex sin fl) = 

2 cos Cl cos fl 
47. Use Ex. 45 six times: 

(cos x + cos 3x) + (cos 5x + cos 7x) + · · · + (cos 13x + cos  15x) 
,,. 2 cos x cos 2x + 2 cos x cos 6x + 2 cos x cos IOx + 2 cos x cos 14x 
- 2 cos x [(cos 2x + cos 6x) + (cos lOx + cos 14x)] 
• 2 cos x [2 cos 2x cos 4x + 2 cos 2x cos 12x) 
= 4 cos x cos 2x (cos 4x + cos l2x) 
= 4 cos x cos 2x (2 cos 4x cos 84 

49. cos 2x - 1 - 2 sin2 x, so cos 8 = 1 - 2 sin2 !8. sin2 i6 - !{1 - cos 8� 
sin i6 = ±Ji(t - cos 8) with + if O  S 8 S 2x and - if -2x S 8 < 0. 

51. 53. 

y 
2 

-2 

y 



y 
2 

-2  

Section 6, page 188 
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± 1 cos2 x t. sin x = -r.- · , + in quadrants 1 and 4 3. cot1 x = 1 _ 
cos2 x v I +  cot1 x 

I I - tan ex tan( -p) I + tan 11 tan p cot 11 cot P + 1 
5. cot(ex - p) = 

tan(ex - p) = tan ex + tan( - P) 
• tan ex - tan P cot fJ - cot 11 

(Last step: divide numerator and denominator by tan 11 tan /J.) 

1• sin 26 =- 2 sin 8 cos 8 
= 

sin 8 
= tan 8. 9• !x 

1 + cos 28 I + (2 cos2 8 - 1) cos 8 
11. 13. 15. I 

Section 7, page 194 

II I I 

I. -2x sin x1 3. 2r sin x 5. tan x + x sec1 x 7. 2(x cos 2x - sin 2x)/x3 
9. (sec xXtan x - 1)/(1 + tan x)1 I I. - 2/(sin x - cos x)1 13. -cos x 

15. (cot x)' = (cos x/sin x)' = (-sin1 x - cos1 x)/sin2 x = - l/sin1 x = -csc2 x, 
(csc x)' = ( I/sin xY = - (cos x)/sin2 x = -cot x csc x 

17. sec4 x - tan4 x - (sec1 x + tan2 xXsec1 x - tan1 x) = sec1 x + tan2 x = I + 2 tan1 x, 
so (sec4 x - tan4 xY = (I  + 2 tan1 xY = 4 tan x sec2 x. 

19. 
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21. 

23. 

- ·  

I I 
I 
I 
I 
I 

IV I I 
I 

- � ·  
I 
I 
I 
I I 
I 

- I  
1 .  
t 

I(\, I I 

n. <*1r + 2mt. iJ3 � <-in + 2nx. -iJ3 )  
29. lsin x i  S l, so sin x < x if x > l .  For 0 S x s l ,  set/(x) = x - sin x. Tben/(O) = 0 and 

f'(x) - l - cos x > 0 for 0 < x < l. Hence f increases, /(x) > /(0) for 0 < x s 1, so 
sin x < x for all x > 0. 

Section 8. page 198 

1. x = aw cos i8 3. i(3 - J6 )Jr 
5. 6 - J3 m;the angle at the moveable pulley is 120°. 7. 4• in./min to the left 
9. [(a2/J + b21J)J + c2]112 

11.  At 3 : 00 the distance is decreasing at the rate l l•ab/6jQ2+b2 cm/hr. At 8 : 00 the 
distance is increasing at the rate ( l huibJ3)1t2(a2 + ab +  b2)1'2 cm/hr. 

13. 02332 deg/sec 15. ja2 .j3 

Section 9. page 201 

1. (2x + 3)e-3'" 3. (1 - x)le" 
5. Set f (x) =- e" - x - l .  Then f'(x) = e" - l, so f'(x) < 0 for x < 0, f'(x) > 0 for x > 0, 

andf'(O) = 0. Hence /(x) decreases to /(O� then increases, so for all x, /(x) :2::/(0) ... 0, 
that is, e" ;;::: 1 + x. 

7. - 1  9. 1 
11. Use lop. For example, log(exp(l03)] - 103 log e �  434.294S, so exp(103) � l.97 x 10'34• 

Similarly log(exp(1<>6)] � 434294.4819, so cxp(106) � 3.033 x 10'34294. 
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d - 1/x 
15. d- (e- 11") = _e

_2 - , so the assertion is true for n = l. If it is true for n, then x x 

(P;e- 11" + P. e- 11"/x2)x2• - 2nx2•- 1 p. e- 11" 
x"• 

[x2P.' + (I - 2nx)P.)e- 11" P.+ 1(x)e- 11" 
x2•+2 x2C•+ 1 1  

where P.+ 1 has degree at most n.  The formula follows by induction. 
17. As x - o+. (r - l )/x - dr/dx lo = I and r - 1. so/(x) - 1. For x - oo, 

e2" x2r ( r )1 (xl) ( 1 )1 /(x) =/(x) - = - -- = - ---- - 0 · 11 = 0. e1" e1" r - I r I - e " 

19. For x < 0, q,c•>(x) = 0 and for x > 0, q,1•1(x) is given by Ex. 15. It remains only to check 
differentiability at x = 0. Let us show by induction that q,c•>(o) = 0, starting with 
q,<0>(0) = ,P(O) ... 0. Now q,<•+ O(O) = lim[,p<•>(x) - q,<•1(0)]/x = lirnx-o q,<•>(x)/x. If x < 0, 
then q,1•1(x)/x = 0. If x > 0, then 

t = l/x. 

If x - o. then c - oo  and c1•+ •e-• - o. Hence lim"_0 q,1•>(x)/x = O, so 
q,1•+ O(O) = 0, which completes the induction. 

21. f(t)e" is continuous for t � 0. Also f(t)e" = r-e-<•-•lf - o  as t - oo. Hence 
f(t)e" � K for some K > 0. This impliesf(t) � Ke-a. 

ll (l .5)312 x JO' :::::: 184,000. 25. (e11'"·rr = (E/L)e11'''-, I =  (E/R)(l - e- lt•I'-) 
I - tan2 x cos2 x - sin2 x cos 2x 

27
• I + tan2 x - cos2 x + sin2 x = -1-

. I - tan1 x 1 - tan1 x Alternative: 2 = --1-- = (cos1 x)(l - tan2 x) = cos2 x - sin2 x = cos 2x. I +  tan x sec x 
29. Set x = !(« + /J) and y = f(a - /J) so x + y = a and x - y = {J. Then subtract the 

relations 

31. 0 

Jsin a =  sin(x + y) = sin x cos y +  sin y cos x 
\sin fJ = sin(x - y) = sin x cos y - sin y cos x. 

33. Choose Cl in the first quadrant so tan a =  .j2 (a :::::: 0.9553). Then y(a + 2mt) = 
y( -a + 2nx) = tJ3 and y(x + 2mt) = 0 are local maxs; y(n - a + 2nn) = y(x + a + 2nn) 
... -jJ3 and y(O) = 0 are local mins. 

35. x ... = � ( 1 - sin «) ; the maximizing angle is 9 = !(« + fx� halfway between the slope g COS IX 
of the hill and the vertical. 

37. It starts at y = 7 and oscillates with period 2x/w = 4x/Jg sec between y = 3 and 7; also 
v(t) = - 2w sin wt and a(t) = -2w2 cos wt = -fg cos wt. This is an example of simple 
annoaic motion. 

39. y = 2x = 2c sin x, ji = 2cx cos x = 2c1 sin x cos x .. c2 sin 2x = c1 sin y 
41. y_ = y(Jfir) = .1/ir + !JJ � 6.6256. Note that y(4ir) = 2x � 6.2832 is less. 
43. Set/(t) = LHS. Then /(O) =f'(O) =-r(o) = 0 andf"'(t) = (2 + t)e' > 0 for t >  0, etc. 
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CHAPTER 5 

Section 2 pag• 212 

• • 

f• t \' \' r - 1 r - 1 fl (b/a)11• - 1 1 
7. • x dx = lim � (ar' - a,-1- i)(ar'r i= lim � -,-- lim -,- n • lim ; l/n . 

l l 

(b/a)lf• - 1 (b/aY - 1 d 
(
b
)
' I But lim..i (l/r) ... 1 and Jim l/ = lim • 

-d 
- • .... n ••O t t a ••O 

9. 1 - cos b 11. i(b4 - a4) 

Snction 1. p gf> 222 

1. i 
17. 0 

3. 0 
19. 1 

s. i 7. 2 
21. sec x 

9. 1f !1.J - e-i 13. i(b - a)3 
23. (cos x)Jsin x 25. 3 cm2/sec 

Section 4 page 228 

1. 9 3. 72 S. 2 7. 5 9. ff 11. 12 13. 2 IS. l/-
17. The rectangle with vertices (0, O� (b, O� (b, b2� (0, b2) has area b3 and splits into the 

region between the x-axis and y - x2 and the region between the y-axis and x c Jy. 
x2 dx + Jy dy = - x3 + - y312 = - b3 + - b3 • b3. f• 1•J 1 ( 2 (J I 2 

0 0 3 3 3 3 
19. �a1 21. 0 23. 1/ 25. f(e - e- i )  27. $39 29. 1.1 cm 
31. tn4; � l.97% 

Section 5. page 235 

n = 4  n = 10 n = 50 
I. 0.697 0.6938 0.693172 
3. 0.606 0.6125 0.613656 
s. 0.458 0.4580 0.458141 
7. 9.37 9.307 9.29408 
9. 0.608 0.9201 0.996173 

11. 0.504 0.5046 0.504785 
13. 0.167 0.1676 0.167758 IS. 0.350 0.3471 0.346594 
17. 1.18 1.148 1.14185 
19. 0.785 0.7854 0.785398 

exact 

In 2 
2 - 2 1n 2  

i In ! i[4Jl7 + ln(4 + JT7)] 
1 - 1 1e- 10 
unknown 

(2 In 2 - IJ/ln 10 In .j2 
Jr - 2 

!Jr 
21. 592.8 ft 23. exact � 2.667, trap = 3, mid = 2.5 
25. exact � 1.0986, trap ::=:: 1.1667, mid � 1.0667 

6 sig. figs. 
0.693147 
0.613706 
0.458145 
9.29357 
0.999501 
0.504792 
0.167766 
0.346574 
1.14159 
0.785398 

27. 11"1 - l-3e-• sin 2x - 4e- .. cos 2x l < 1e-• < n for 4 � x � 7, hence 

lerror l < 
(n)(lOO)(ih)3 

< (n)(fi)(lo-•) < 4 x 10- s 12 



Section 6. page 240 

1. -2 3. -l(e2 + 3e- 2) 5. x tan x - F  7. 102.3 

Chapter 5 A35 

9. 721/(8 x 93) = 721/5832 11. ! exp(x2) 13. -exp(cos x) 15. i(x" + x)312 
17. Use Translation with/(x) = J2x + 7 and c = - 1. 
19. Use Reflection with/(x) = 1/(e-' + 1). Note that/(-x) = l/(e-x + 1) = e-'/(e-' + I). 
21. Use Translation with/(x) = e-' sin x, c = 2n, a =  0 and b = 2n. 

Section 7 page 246 

1. x = 0 J. (- 1, 0) 5. x = in +  mr, (-in +  nn, 0) 7. x = - 1  
2 f 112 + 5/l i(x - 1) ,.12 • 

9. f (x3 - 5x) dx 11. ( - 1)2 i dx = 0 13. 2 f sin x dx 
I 1/2 - 5/2 X + 0 •/2 "" 

15. 4 f sin" x dx 17. -2(sin 4) f cos(nx) dx 19. /(x) = O 0 0 
•+• 

21. Set x = 0: ![f(a) +/(a)] = b =/(a); f f (x) dx = 2hf(a). 
·-· 

Section 8. page 250 

I I I 
I. 1 < exp(x2) < e-' for 0 < x < I, hence I = f dx < f exp(x2) dx < J r dx = e - I 0 0 0 
3. 3 < J3 + 2x < J 13 < 4 for 3 < x < 5, etc. 100 100 
5. J e-.. sin2 x dx � J e-" dx = I - e- 100 < 1 0 0 �-

7. 25 < 5 + 4x < 49 for 5 < x < 1 1, so 5 < Js + 4x < 7 and 
48 I f 1 1  Il l  x 1 f 1 1  48 6 < 7 = 7 x dx < fC7A: dx < -5 x dx = -5 < 10. 5 5 .....; 5 + 4x s 

9. I - k2 < I - k2 sin2 9 < I for 0 < 9 < !n, etc. 
2 

1 1. lx3 < x32- .. < !x3 for I < x < 2 and f x3 dx = 1.J-, etc. 
I 

13. sin x + cos x = J2 cos(x - l1t) < J2 for 0 < x < I except for x = flt, so 
( 1 sin x + cosx dx < J2 f

1 dx = ! J2 . 
Jo ( I + x)2 0 (1 + x)2 2 

15. Use i < 1/x < I for I < x < i and 1 < l/x < i for i < x < 2. 
17. 2 -J2= f2 dJ�l < f 

2 dx < f2 d1�2 = 2(j2=1). 
I X  I X I X  100 10 100 100 

19. f - f = J < e- io J dx = 90e- 10 < 0.0041. 0 0 10 10 b b 
21. By Example 2, ±2t J /(x)g(x) dx � t2 J g(x)2 dx for all t > 0. It follows that 

• • b j J Jg j � !e f g2 for all e > 0. This is possible only if J /(x)g(x) dx = O . 
• 

23. f (/ + g)2 = f f(f + g) + f g(f + g) � J(f /2)(f (/ + g)2) + J<f g1)(f (/ + g)2) 
= (Jl/2 +JI/> Jf (/ + g)l . 

If  J (/ + g)2 = 0, there is nothing to prove. Otherwise f f + g)2 > 0 and its square root 
can be cancelled. 
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Section 9. page 259 

l. Let a = x0 < Xa < · · · < x. =- b be all of the partition points for sa(x) and for s2(x). Then • 
sa(x) ... A1 and s2(x) = B1 for Xi- a < x < x1, and f (sa + s2)(x) dx = 

• 

L ;. a (Ai + B/J<.x1 - x1- a )  .. L Ai(x1 - x1_ a) + L Bi(x1 - x1_ 1 )  • • 
= f s1 (x) dx + f s2(x) dx. 

• • • • 

3. s(x) = B1 ;:::: 0 on x1_ 1 < x < x1, so f s(x) dx - '>" Bi(x1 - x1_a) :2: 0. 
• -a 

5. Choose the partition to include c so that it is a - x0 < x a < · · · < x. = c = Yo < 
Ya < · · · < y. - b. Let s(x) - A1 on (x,_ lt x1) and s(x) = B1 on (y1- a. Yi)· Then • c • f s(x) dx = L�- a A,(x1 - x1- a) + L�-a BJ(y1 - Yi- a ) =  f s(x) dx + f s(x) dx. 
• • c 

7. For instance, take s(x) - JO. O s x < j S(x) - J!. O S  x S !J3 
lt j s x s 1 l t . iJ3 < x s l. 

Then s(x) s x2 s S(x) for 0 s x s 1 and a a f s - f s - (t - iJ3> - * = n<23 - 6j3) < o.47. o · o  
(This is the best you can do with two steps only.) 

9. If e > 0, choose Sa so l/(x) - sa(x)I < !e/(b - 4 Set s(x) = sa(x) - !e/(b - a) and 
S(x) = sa(x) + !e/(b - a1 both step functions. We have s(x) < /(x) < S(x) and 

f• f. f. £ S(x) dx - s(x) dx = j b� dx = je < e. 
• • • a 

11. Let e > 0. Choose step functions such that sa sf s Sa. s2 s g s  S2 , • • J Sa - J sa < !e, and 
• • 

Then sa + s2 Sf + g S Sa + S2 and 

((sa + S2) - ((sa + s2) = ((sa - (sa ] + ((s2 - (s2 ] < !t + !e = �  

Hence/ + g is integrable. The inequality sa + s2 sf + g s  Sa + S2 now implies 

J Sa + J s2 = J (sa + s2) S J  f + J g  S J  (Sa + S2) = J Sa + J S2 . 
On the other hand, the inequalities s1 s f  s Sa and s2 s g s  S2 imply 

J sa S J  f S J  Sa and J s2 S J  g S J  S2 . 
hence J sa + J s2 S J  (f + g) s J Sa + J S2 . Thus the two numbers J (/ + g) and 
(J /) + (Jg) are squeezed into an interval of length less than e. Since e > 0 is arbitrary, 
they are equal: J (f + g) = J f + J g. 

13. s(x) - 0 is a step function and/(x) :2: s(x� hence • • 
J /(x) dx :2: J s(x) dx = 0. 

• • 
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15. Let a >  0. Choose step functions s1 and S1 on [a. c] and step functions s2 and S2 
on [c, b] such that 

s1(x) 5./(x) 5. S1(x) on [a, c), (s1 - (s1 < ta. 
• • • • 

s2(x) 5./(x) 5. S2(x) on [c, b], J S2 - J Sz < !a. 
c c 

Define s(x) on [a, b] by s(x) .. s1(x) for a 5. x < c, s(x) • s2(x) for c < x 5. b, and 
s(c) = /(c). Define S(x) similarly. Then s(x) 5./(x) 5. S(x) on [a, b] and 

( s - ( s - (( s1 + ( s2) - (( s1 + ( s2) = ((s. - (s•) + ((s2 - (s2) 
< ft +  !t ... t. Therefore f is integrable on [a, b]. 

17. S1S2 - s1s2 = Si(S2 - s2) + s2(S1 - s1) 5. M(S2 - s2) + M(S1 - s1� hence 
• • • • J S1S2 - J s1s2 • J (S1S2 - s1s2) 5. J M(S2 - s2) + M(S1 - s1) 

• • • • • • = M J (S2 - s2) + M J (S1 - s1) 5. Mt + Mt = 2Mt. 
• • 

19. First choose M so /(x) 5. M and g(x) 5. M. Suppose s > 0. By Ex. 18 there are step 
functions s., · · · ,  S2 such that 0 5. s1 5.f 5. S1 5. M, 0 5. s2 5. g 5. S2 5. M, and 

1. 1· 6 1· 1· t S1 - Si < - , S2 - s2 < -. 
• • 2M • • 2M 

• • 
Then s1s2 5.fg 5. S1S2 and by Ex. 17, J S1S2 - J s1s2 < 2M(t/2M) = t. Since s1s2 and 

• • 
S1S2 are step functions, this implies that/g is integrable. 

21. Given s > 0, choose integrable g and G so g(x) 5. /(x) 5. G(x) and J (G - g) dx < !a. 
Choose step functions s and S so s(x) S g(x� G(x) 5. S(x� J (g - s) dx < !t, and f (S - G) dx < !t. Then s(x) S /(x) S S(x) and 

f (S - s) dx = J [(S - G) + (G - g) + (g - s)] dx < it + !e + !1: < t . 
•• , .+, 

n J f'(x) dx = f(a + p) - /(a) = o. J f"(x) dx = f'(a + p) - f'(a) = 0 
• • 

because f' is also periodic of period p. (Just differentiate /(x + p) = /(x).) 
Section 10. page 260 

I. W 3. l 5. 0 7. ! 9. -exp(-x2) 11. l/ 13. M(f) = 1 
15. /(x - c) = -f(c - x) = +f(c + x� hence/(x) = /(x + 2c� so/(x) has period 2c. There

fore all integraJs over a full period are equal. 
17. /(x) = !x2 for x � O;/(x) = -!x2 for x 5. 0. 19. sum � 2(J2 - 1).Jri. 

CHAPTER 6 

1. 36 
15. ! 

3. 4 5. ff 
17. ik lb - al3 

Section 2. page 268 

7. 2J2 9. 2(e2 + 1) II. J 

Section 3. page 275 

l. 1 17z 3. fx 5. 72z 7. 102x 9. *1r(e4 + l)(e4 + 3) 

13. .qi 

II. !Jrh(a2 + ab + b2) 13. !Jr(a - h)2(2a + h) 15. izh3 17. 8 
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Section 4. page 280 

1. 84 J 3. 2SOO ft-lb 5. l, 4, 16 ft-lb 7. 4SOO ft-lb 
9. 2.28 x 109 J, 4.25 x 109 J 11. 1'tcSga3(a + b) 13. { ll3/1024)wh 

15. mg(a - a cos If>) 

Section 5. page 284 

1. lbh1cS 3. ih1(a + 2b)cS 5. 1/a3cS 7. i(3n - 4)a3cS 9. ia'cS 11. k3 F 
13. �hA 15. 4.79 x 107 kg 
17. We have cS = cS0e-1118 and p = HcS. Set h = 0 in the first relation to find cS0 • 1.29, and 

set h = 0 in the second to find H = p0/cS0, so l/H = cSofp0 = 1.29/(1.03 x 104) � 
t.25 x lo-'. 

Section 6. page 294 

1. (c/r)(l - e-•T) 3. (b/r2Xl - ( 1  + rT)e-'1] 
5. � 1 - e-• (1 - e- lN•) 7. � ( 1  - e-lN•) 9. ce" r l + e-• xl + ,1 
11. A'(t) = A0�11q,· = A(r)cf>· = A(r)r(r� and A(O) = A0e0 = A0, precisely the conditions for 

the growth of Ao at interest rate r(r). 
13. T(x) - JTo1 + cS1x1 15. x = ...!_ J" xcS(x) dx, where M - lcS(x) dx M • J . 
17. �4.22 x 104 m/sec � 94,400 mile/hr 19. K. = iA1k 21. /GMa1w1 
23. x + (GM/R3)x = 0, x(O) = R, x(O) = O; x(t) = R cos wt, where w1 = GM/R3• 
25. v.,_ • F/lc, K = tmF1/k1 

Section 7. page 296 

1. t 3. x = -ff 5. t 7. x = i(Ji3 - 1)  9. GmocS(b - a)lab 1 1. 'Ix ft3 
13. V = abh + !(a tan fJ + b tan cx)h1 + !(tan cx)(tan /J)h3 15. FL • icSgh1(3b + h tan /J) 
17. v - r 2Ja1 - y1 (h - y tan cx) dy 19. W = cSgr Ja1 - y1 (h - y tan cx)1 dy 

-· -· 
21. p(h,) - p(hz) • Po(e-•• - e-•2) - Po e-••(l - e-i••-•21) � Po ae-••(h1 - h1). 

Thus the pressure is approximately proportional to the depth from a fixed reference 
level, the same as in a ftuid, so the buoyancy must be nearly the same as for a fluid. 

23. p(x) • Po xo/x 25. V � 6.372 x 106 ft3, ftoor space � 4.83 x 105 ft2• 

CHAPTER 7 

Section 7, page 306 

1. x = !(y + 7) 3. x = - 1/y, y "' 0 5. x - 4Y + 7
2 . y "' 2 -y + 

3 --3y - 2  J3y - 2  
7. x = -- , y ./< l 9. x = --, y ./< I 11. x = !(y2 + 8� y � 0 -y + I  -y + I  

13. x = !(y + J y2 - 4 � y � 2 15. no 17. yes 
19. If /(x) • y, then /(-x) • y, hence each y corresponds to at least two values of x 

except when x • 0. 
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21. dy/dx = 3x2 + 1 > 0 for all x, so the invcne function x = g(y) exists. 

I 
I 

n -n 25. t1 21. --n 29. - x413 = lim - = lim x1'3 - 0 
d 

' 
x413 

dx o ,.-o x ,.-o 

31. [(g o f) o <r 1 o g- 1 )](z) = [g o (! o 1-1)  o g- 1](z) .. (g o g- 1](z) = g(g-1(z)] = z and 
ur 1 0 g-1) 0 (g 0 J)](x) • er 1 0 (g- 1 0 g) 0 f](x)- <r 1 0 /)(x) ""r 1[/(x)] - x 
for all x and z in the corresponding domains. Hena: g o  f and 1-1 o g- 1  are inverses 
of each other, that is, (g 0 n-1 -r 1  0 g- 1. 

33. x =- g[f (x)i so by the Chain Rule 

hence f'(a) � 0. 

1 • - = - · - • g'(b)/ (a� dx l dg l df l , 
dx dy dx 

Section 2. page 313 

1. x = -In y, y > 0 3. x - e11'. y > 0 !. x = e' - S 7. a + 2 9. l/x 
11. i 13. l/x 1!. 4/x 17. - 1/x 19. cot x 21. 2/(1 - x2) 
l3. l/(2x�) 25. - l/(x(ln x)2] 27. l/p+i 29. ll[xJx2 + 4] 
3L (ln x)"- 1/x 
33. Set e9 = x so a =  In x. Then e-• =- l/e9 = l/x, so ln(l/x) = -a - -In x. 
3!. et •u = (e' . .  t • .xt, hena: In xt • b In x. 37. n < In 1000 � 6.91 < n + 1 so n =  6. 39. y.1• = y{l/e) = - l/e 41. y" = - l/x2 < 0 
43. LHS .. In 100 = In 102 = 2 In 10 - RHS 

f"
dt 

f" 
45. In x - - < dt = x - 1 for x > 1. 

1 t I 
47. y/x > l, hence [(y/x) - 11/(y/x) < ln(y/x) < (y/x) - 1 ;  use ln(y/x) = In y - In x and 

divide by y - x. 
49. ln x - - < - .. 2.ji - 2(jX - 1) f. ,, f" ,, I" 1 t 1 .fi 1 

x 
( 

x
)
• 

51. e" > 1, so by Ex. SO, x - In e" < n(rl• - l� hence 1 + n < rl•, I +  n < e". 

x 
( 

x
)
• 

53. e" > l, so by Ex. S2, n( l - e-"'•) < In e" • x. hence 1 - n < e-"I•, 1 - n < e-", 

e" < ( . - �r· 
55. The curve y • l/x is strictly convex for x > 0 and y .. i - i{x - 2) is its tangent line 

at (2, i). A strictly convex curve always lies above any of its tangents. (See p. ISl.) Also 
y = ! - i(x - 3) is the tangent at (3, !). 
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57. Multiply by 2x312;  the inequality is equivalent to 2./X < 1 + x, which follows from 
(./X - 1)2 > 0. 

59. x In x x - 1 2(
Jx
- 1) 

Jx
- l/
Jx 

1.2 0.18232 0.20000 0.19089 0.18251 

1.5 0.40547 0.50000 0.44949 0.40825 

2.0 0.69315 1.00000 0.82843 0.7071 1  

� 1.00000 1.71828 1.29744 1.04219 

3.0 1.09861 2.00000 1.46410 1.15470 

Section 3, page 319 

l. y' - 3x2/2y l. y' = 6y . (x2� 4 - x � 1) 
7. y' 

• 
y · ( I + }� I - 2x � 1) 9. S/6x 

1 3 
13. -- + -- 15. CX) 17. 0 19. CX) 

x + 2  x + 7  
25. (In x)/x4'' - 0  because q/p > 0, hence 

17. 
o.s 

y 

(In x)' ... (ln x)' - o  
x4 x4'' 

x 

5. y' = 2y · (3(2x
1
+ 3) - x) 

1 1 II. -- + -x - 3  x - S  

ll. 0 l3. 0 

as x - oo. 

Section 4. page 325 

1. 1 l. 0 5. x'"-2(x - 1 + x ln x) 7. y' - x-2y · (1 - In x) 
9. y' = y(ln 3)/x II. y' = 2xy In 10 13. y' - y · (In In x + l/ln x) 

15. y' - -y/x ln'x 17. y' - 2y · (In x)/x 
19. y ll. 

I x 
25. Y- = y(e',.) = l/ae '1:1. y_ = y(x) = l/e 

y l3. y 

x x 

19. ln/(x) is the composite of difl'erentiable functions, hence difl'erentiable. so h(x) = 
g(x) ln/(x� the product of differentiable functions is difl'erentiable, and finally 
/(x'f'"1 - eAC"1 is the composite of difl'erentiable functions, hence difl'erentiable. 
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31. Take logs: the inequality is equivalent to b In a >  a In b, that is, (In a)/a > (In b)/b. But 
y = (In x)/x is strictly decreasing for x > e since y' • (I - In x)/x2 < 0, so indeed 
(In a)/a > (In b)/b. 

33. If xj, then e-"!. (1 - e-")j, ln(l - e-")j. (The shorthand j for strictly increases, etc., is 
useful.) 

35. By the Chain Ruic, dx/dv • (dx/dt)/(dv/dt) = v/(dv/dt) = -v/(kv + g). The rest is algebra. 
37. m(Si) - m(S2) = 2.S log1o[cf>(S2)/cf>(S1)] 
39. y = kcr, k > 0, a > 0 
41. 

E(uv) = � d(uv) = � (v du + u dv) = � du + � dv . Eu + Ev Ex uv dx uv dx dx u dx v dx Ex Ex 
43. Ey = � dy = � dy du = (� dy) (� du) = Ey Eu Ex y dx y du dx y du u dx Eu Ex 
45. a 47. kx 49. 2�[b - a - a ln(b/a)] 

Section 5. page 332 

I. in 3. !n S. !n 7. !1t 9. ;1r 1 1. f 13. !it 
IS. x = arc sin �. y S 0 
17. Set y = arc tan x. Then -!it < y < !it and tan y = x, so 0 < (!Jt - y) < Jt and 

cot{!it - y) = tan y = x. But z =  arc cot x is the unique number such that 0 < z < 1t and 
cot z = x. Hence !it - y = z. 

19. Set y = arc sec x and z = arc csc x. Then 0 S y S n, y � !it and x = sec y. These imply 
-!it S !it - y S !Jt, !it - y � 0, and csc(!x - y) = sec y =  x. But z - arc csc x is the 
unique number with these propcrt.ics, hence z • !it - y. 

21. Set y • arc tan(l/x). Then 0 < y < !n and cot y .. I/tan y = 1/(1/x) = x, hence y = 
arc cot x. 

23. Set y = arc cos x. Then 0 s y s  n so sin y � 0. Hence sin y = +JI - cosl y = 
+� . 25. Set y = 2 arc cos x. Then 0 s y s 1t and cos y = cos(2 arc cos x) .. 2 cos2(arc cos x) - I 
= 2x2 - I. Since - 1  s 2x2 - I s I, it follows that y - arc cos(2x2 - 1). 

27. Set u = arc tan x and v = arc tan y. Then -!x < u + v < !n and 
tan(u + v) = 1 

t� u + ;�n v 
) .. I

x +  Y • so the formula follows. - tan u tan v - xy 
29. Set g(x) = arc tan x. Then g(!) + g(!) = g(. !_+1�1) = g(l) • !Jr. 

31. g(!) + g(i) = g(1 � � � i ) = g(!), hence by Ex. 30, 

2g(!) + gH) + 2g(i) = gH) + 2gH) = in. 

Section 6. page 337 I. h 3. � S. 6 arcsin 3x 
7. -I 

I 
2 9. 1/(1 + x2) 9 - x2 I + x .j I - 9x2 + x 

II. 2 arc tan 2x 13. arc sin ix 
d d d - 1 

IS. - (arc cot x) = - Hn - arc tan x) • - - (arc tan x) = --dx dx dx I +  x2 
17. Use Ex. 16 and arc csc x .. !n - arc sec x. 
19. ix 21. I. � 0.0862 rad/sec 
23. (} = ± !X/Ja2 - x2 with + for 0 < (J < in and - for ix < (J < !Jt. 
25. (} = (t/Ja2 - x2 - t/Jb2 - x2)X 
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27. By the solution to Ex. 25 you must show that l/Ja2 - x2 > l/Jb2 - x2 • Square and 
clear of rractions: b2 - x2 > a2 - x2, that is, b2 > a2• This is true by the figure. 

29. Pt 31. 2 arc tan(2a/e) 

Section 7, page 345 

I. RHS • i(e" - e-")(e" + e-•) + i(e" + e-")(e" - e-•) = i(e"e• - e-•e-•) = LHS 
3. Set u = v = x in the text formula for cosh(u + v). 
5. sinh 3x = sinh(2x + x) = sinh 2x cosh x + cosh 2x sinh x = 2 sinh x cosh2 x 

+ (cosh2 x + sinh2 x) sinh x = 3 sinh x cosh2 x + sinh3 x = 3 sinh x (sinh2 x + l) 
+ sinh 3 x. etc. 

7. 5 cosh 5x 9. x(x2 + 1)- 112 sech2(x2 + l )112 
11. e1" cosh x 13. tanh x 15. x2 cosh x 17. i 19. 2 21. 0 
ll LHS _ � (sinh x) 

= 
cosh1 x - sinh1 x = _l_ = sechl x dx cosh x cosh2 x cosh1 x 

25. y = cosh·�,x implies x = cosh y =- i(e' + e-') so e1' - 2xe' + l = 0. Solve for e': 
e' - x ± x2 - 1 . Since y > 0 for x > l, we have e' > l, so we must take +. Now 
y = ln(x + p-=l ). 

27. x = cosh y implies I = (sinh y)(dy/dx� hence 
dy/dx = l/sinh y = t/Jcosh2 y - 1 = 1/p-=i. 

29. LHS = ln(tan 8 + � 8 + 1 ) = ln(tan 8 + sec 8� and 
RHS • ln(scc 8 + Jscc2 8 - 1 )  = ln(scc 8 + tan 8). 

31. ln(l + J2> 33. i In i 35. y' = ae cosh ex + be sinh ex, y" - ac1 sinh ex + bc2 cosh ex - c2 y 
37. Let y = sinh x. Then y" = sinh x > 0 for x > 0, so the graph is strictly convex. Since 

y(O) = 0 and y'(O) - 1, the tangent at (0, 0) is y = x. By the Tangent Theorem (p. 151� 
sinh x > x for x > 0. 

39. nb(cosh- 1 b)2 + 2n(b - 1) - 2x(cosh- 1 b)Ji>2=1 (Use concentric cylindrical shells.) 
Section 8, page 353 

I. f (x) > 0 and f ( -x) < 0 for x large, hence at least one zero. f'(x) = 3x1 + p > 0, hence 
at most one zero. 

3. Sct/(x) = x4 - 3 - e-" cos 7x. Thcn/(O) = -4 < 0 and/(ix) ... (jn)4 - 3 > 34 - 3 > 0, 
hence there is a zero. 

5. [0.5, 0.6]; also [ - 1.5, - 1.4], [ -4.8, -4.7]. [ -7.9, -7.8]. etc. 
7. Imitate the solution of Example 2 with g(x) = f[x + (b - a)/n] -/(x) on the interval 
[O, (n - l)(b - a)/n]. 

9. g"(y) = -f"(x)/[f'(x)]3 evaluated at x = g(y). 
11. [In x']' = (px'- 1 )/x' = p/x - [p In x]' and In x' = p In x for x • 1 ;  hence they arc equal 

for all x. 
13. f'(x) • 1/(1 + x4) > 0, so/(x) has an inverse 
15. /(x) is increasing and for x � 1, f 1 dt f" dt f I f" dt 1 ( 1 ) 4 /(x) = --+ -- < dt + - = 1 + - l - - < - . 0 l + t4 1 l + t4 0 1 t4 3 x3 3 

Section 9, page 354 

I. !(x In x)1'3(1 + In x) l. !(In 10)10.li/JX 5. (l + x arc tan x)/JT+7 
7. 1/(1 - x3) 9. x 11. i 13. 5.28 x 101 

15. (csch 1, - 1  + coth 1) = (2e/(e1 - l� 2/(e1 - 1)) 

file:///cosh
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17. t = 2026.87 - (l .79 x to1 1/N)"0·99 
19. iir < arc tan x < 1't for I < x < 100, hence 

n f too dx f ioo arc tan x nf aoo dx 
4 2 < 2 dx < 2- 2 , etc. 

I X I X I X 

21. z' = f'lf and z" = [.ffN - ([')2]// 2 < O. 
23. LHS is the trapezoidal approximation to the RHS. It is less because y = In x is strictly 

concave. 
25. Set/(x) = 1't + arc tan x - 2 arc tan 2x. Thenf'(x) = -3/(l + x2)(l + 4x2) < 0 so/(x) 

is strictly decreasing. But lim,,-.. ,f(x) = !ir + !ir - 2(1't) = 0. Therefore /(x) > 0 for all x. 
27. arc cos x = arc tan[(Jt - x2 )Ix] for 0 < x s l. 
29. arc cos x = 2 arc tan[(JT=7 )/( l + x)] for - l < x s l . 
31. LHS = (cosh2 x - sinh2 x)(cosh2 x + sinh2 x) = cosh2 x + sinh2 x = cosh 2x. 

sinh 2x + cosh 2x - I eh - l e" - e- " 
33. RHS = - ·- = -- = -- = tanh x sinh 2x + cosh 2x + l e2" + l e" + e-" 
35. n(r) = � tanh(ji;r) 37. 
39. [a1 1 a12 1 = l "�h r  £'1 sinh r l · a2 1 a22 smh r '1 cosh r 

where £ =  ± l and '1 = ± l independently. 
41. Set /(x) = x• + y• - (x + yr. Then f'(x) > o 

for x > 0, hence /(x) > /(0) = 0 for x > 0. 

CHAPTER a• 

Section page 363 

I. i sin2 x 3. e"' 5. - l/2( 1 + x2)2 7. - I/cos x 

<' 

(' 

9. ln(e" + x2 + l ) I I. 1 tan4 x 13.L" 15. i\(3x + 1)5 
17. i sin 3x 19. 1 sec4 x 21. iJI +  5x 23. 1[1n(2x + 7)]2 25. 1/3(5 - 3x) 
27. ix3 + 2x - ( l/x) 29. (ax + br+ 1/a(n + 1) 31. i ln(l + x4) 
33. ln l ln xi 35. -1/ 37. I 39. 2 41. 2 - J2 

Section 3 page 366 

I. i(x + 3)312(x - 2) 3. i(x - 5)(2x + 5)112 _ 

5. !n ix - 1 1 - 2(x - If 1 - f(x - lf 2 7. 2Jx - 2 ln(I + Jx) 
9. i ln(l + x314) 11. ! arc tan e2" 13. ! arc tan(5x + 2) 

15. -!(2 + x2)Jl=7 17. -! ln(3 + cos 2x) 19. 3(8x - 3)(2x + 1)413/1 12 
21. fx2 - In p+t 23. ! ln(3x + J9x2 + I )  25. � 27. tl 29. h 
31. 2 - In ! 33. 1/ - 3j3 35. 0 

Section 4. page 371 

I. ix3 - 9x + .Y ar� t�n_x_ 3. 2x + 9 1n lx - 4l 5. !x2 + 3x - 1/x + 3 1n lx l 
7. (arc sin(ax) - Ji - a2x2 ]/a 9. - ln lcsc2x + cot 2xl I I. ! sin5 x - ; sin7 x 

13. ! cos5 x - i cos3 x 15. i sin 3x - i sin3 3x + n sin' 3x 
• Constants of integration arc omitted. 
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17. fi(sin 4.x + 8 sin 2.x + 12.x) 19. ! tan3 x - tan x + x 2L -! lojcos x1 1 
23. ( 1 + sin x)/cos x 25. -In J2 27. I 29. 0 31. ! arc tan !{x + I) 
33. arc sin !(x - 3) 
35. 2 arc sin !{x - 2) -

J
4x - .x1 

1 37. 2J3 lo lu + 
J
u1 - ii .  where u - x1 - i 39. b- 1 lnlax/(b - ax)

I 

Section 5. pag 376 

1 ( 1 1 ) 1 ( 4 I ) 
l
. 2 x - 1 - x + l 3. l + 3 x - 2 - x + I  

5. ! (2 + _4_ -_
3

_
) 7 1 -_2_ + --=---= 

2 x + 1 x + 2 x + 3 • x1 + 1 (.x1 + 1 )l 
1 ( 2 -2.x + 3) 9. S x - 1 + xl + 4 11. lol(x - 2)/(x - 1)1 

13. 1nlx3/(x + 1)11 15. 3 1nlx/(x2 + 1)111 1 + 2  arc tan x 
17. th{lo[(x1 + 9)1/(.x - 2)') - 13/(x - 2) - i arc tan(x/3)

} 

19. !x1 + ! In l(x - l)/(x2 + x + 1)111 
I 
+ (1/

.jj
) arc tan[(2x + 1)/

./
3) 

21. !x2 - 3.x + 8 lnlx + 21 - lolx + 1 
I 

23. f,[13 lolx - 31 + 2  lo(x1 + 2.x + 2) -arc tan(x + 1)) 

25. lo t 27. �J3 29. i lo i 31. ln( 1 + tan:�) 
3 + tan l" 

St1ct1on 6, page 380 

l. ln(x +
�

) 3. -i(S + x1
}j4=X2 

5. -n.x- 1
J
16 - x1 

7. -x- 1 
J
x2 + a1 + ln(x + 

J
x1 + a1) 9. ! arc tan x - !x(l + x

2
t 1 

11. sinh- 1(.x/a) or ln(x + 
J 
x2 + a1) 13. !x

J 
a1 + x1 - !a1 sinh- 1(x/a) 

1 (x) I (a +  x) dx x dx y dy dy dy 15. - tanh- 1 - =- In -- 17. -=-2- --
1
- = -z = -

1
--

2
; and 

a a 2a a - x xy x y x y x y + a  

f � = _!_ 1n(Y - a). f . .2 dy 
1 

- � arc tan !. Replace y by Jx2 ± a1 • 
y1 - a  2a y + a  y + a a a 

19. f 
Y

x�x • f d(-:) + f ?- -i  + ln lx + Y
I 

21 dx . x dx = -y dy _ -d
y =

�

. hence J'x -f�=
_!_
ln 1 y - a l · • 

xy x1y x1y x1 y2 - a1 xy y2 - a1 2a y + a  
Now replace y by 

J 
a1 - x2 • 

23. d(�) = x dy - y dx _ xy dy - y2 dx . -x1 dx - y1 dx = -a1 dJC , 
x ,xl JCly xly xly f dx - l y  hence -=--. xly al JC 

St1ct1on 7 page 384 

l. sin x - x cos x 3. ie1"(2x - 1) 5. fx311(3 In x - 2) 
7. x arc tan x - ! ln(l + x1) 9. !(l + x1) arc tan x -!x 

II. !Je2"(2 sin 3JC - 3 cos 3x) 13. x sinh JC -cosh x 
15. (a1x1 sin ax + 2ax cos ax - 2 sin ax)/a3 17. 2 19. 1(24 In 2 - 7) 
21. l� - S 23. ,J,(3

Kj) 
- S) 



I 11 1 1 
25. f = ! f

_ 1 x d(e"2) = !xe"2 _ 1 - ! f
_ 1 e"2 dx • e - ! f_ t' dx 

2. ,2. 2• 
27. f = f f(x) d(sin x) = /(x) sin x - f f'(x) sin x dx, etc. 

0 0 0 

Chapter 8 A46 

2• 2• 2. 
29. I =  f cos x cos 2x dx = ! f sin x sin 2x dx = i f  cos x cos 2x dx = ii. so I =  0. 

0 0 0 

31. f" sin t dt = f" ! d( l  - cos t) = l - cos t r + f" 1 -� t dt Jo t J o t t � Jo t 
1 - cos x f" l - cos r = + 2 dt > 0 x 0 t 

because 1 - cos t �  0 and >0 if t ,;.  (2n + l )n. [To make the identity absolutely sound, 
replace the lower limit 0 by £ >  0 and let £ --o.] 

Section 8, page 387 

l. J. = x(ln x)" - nJ0_ 1 3. J0 = !x3(ln x)" = !nJ._ 1 - inJ._ , 
5. J. = 2a2(� � [(x2 --a�r- • - (2n - 3)./.- 1 J 

tan•- • x scc"-2 x tan x n - 2 
7. J. = --- -J.-2 9. J. = ---- - + --J.-2 n - 1  n - 1  n - 1 

ll. J. = [-sin.- 1 x cos x + (n - l)./0_2]/n 13. <ixnm = tt ls. • - � + t - t + 1 - ix 
e"" tan•- 1 x a 

17. 2a4 - 8a3 + 24a2 -48a + 24, a =  In 2 19 J = ------- --J - J ' • n - I n - I •- 1 •- 2 
Section 9, page 390 

1. -t,e-2"(-2 sin Sx - S cos Sx) 3. -h[ -4x(I - 4x2)312 + 2x( l - 4x2)1 '2 + arc sin 2x] 
5. is[Sx - JW arc tan(!xJIO)] 7. 12(x2 - 8) sin !x - 2x(x2 - 24) cos !x 

1 J-- 6 r.n rm- 2 1./7+  J1ox2 + 7 1  
9. - 10x2 + 7 - r.n lnlxv 10 + v 10x2 + 7 1  + r; In 10 v 10 v 7 x 

l l. -!x 13. �(e3" - 1) 15. i + S In i 
Section 10, page 390 

l 
1 I 1 x - a 1 -- n  --• a - b x - b  3. - Js + cos 2x 5. n scc6 3x - -b. scc4 3x 

7. � sin 7 x - ! sin9 x 
9. ( 1Sx4 - 12x2 + 8)(x2 + 1)312/lOS = ( 1Sx6 + 3x4 - 4x2 + 8Xx2 + 1 )''2/105 

ll. 2(sin Jx -Jx cos Jx ) 13. arc sin(x - l) -J2x - x2 
15. 1(2x3 arc tan x - x2 + In( I + x2)] 

- 1 r • b bx] (e" + I) 
17. 4" - + 2 arc tan 2 19. t In - , a x a a e" + 4  

21. In In lo x 23. -x2 cos x + 2x sin x + 2 cos x 25. ! In I Jt +_x2 - 1 1 2 ..,ft + x2 + I 
27. The integral is the area under the semi-circle x2 + y2 = a2

, y � 0, equal to !na2• 
J u - a 1 u 

29. -kt + C = - In - - - - arc tan -, 4a3 u + a  2a3 a 

where C is a constant that depends on u0 = u(O). 
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• • b"+l 
31. f x(b - xr dx ... f x"(b - x) dx = ( )( ) 0 0 11 + 1  11 + 2  

CHAPTER 9 

Section 1 page 399 

l. (8. 3) 3. (7, -3) 5. (2. -9) 7. (-6, 6) 9. ( - 13, -4) 11. (- 14, 6) 
13. � = x - h. y = y - le. where 3h - 2k = 1 15. % - x + l, p - y 
17. � - x - P. P- y + 1 19. (3, -3) 
21. It means p = (.x, y) is on the ray from p1 through Pl • beyond Pl • so that d(ptt p) • 

rd(pi, pl� where d( ·, · ) is distance. Alternatively, Pl is l/r from Pi top. 
23. circle. center (2. 2� radius J8 25. circle, center ( - 1, -3� radius 6 
27. circle. center (!. - I� radius !.JS 29. circle, center (i, i� radius iJ26 
31. !( - 1  ± Jl7. t ± Jl7) 33. (1. 2� point or tangency 35. empty 
37. !(6 ± 4Jll. 7 � 2Jll ) 39. i(-21, ±3ffi ) 41. none 
43. x = - 1  45. y = x - J2 47. y - -J3x + 2 
49. x = 0, y = ix 51. y - 1 - m(x + 5� m - ;, -t 
53. distance between centers • sum or radii: 2,,/S • iv's+ !vfs. 
SS. The second circle has radius 1 and center (/s, /s� at distance t from the center of the first 

circle, etc. 
57. y ± 4 • i(x � 3) 59. (x - 5)l + (y - 5)l • 25, (x - 13)l + (y - 13)l = 169 
61. Their only intersection is (¥. -¥� so they are tangent. 

Section 2. page 403 

I. line parallel to L, halfway from p to L 3. concentric circle, radius 4 
5. circle. center (,Y, ¥), radius ff 7. parabola y - !b + 2(x - !a)l, where • = (a, b) 
9. x • (.x, y); x = (ac + blu - abv)l(al + bl� y • (be + alv - abu)/(al + bl) 

II. the line ax + by - !. where C bu center (a, b) 
13. a line if a = l, a circle if a 9' 1 15. the parabola y = ixl and the y-axis 

Section 3. page 4 1 1  

I .  (Jh, o� x - 3 - h. x-axis, (3. 0) 3. (i. - ·� x - -i. y - - 1. (0, - 1) 
5. (-2. i� y - -1/. x - -2. (-2, -j) 
7. y = 3xl 9. x - 1 • -(y - 2)l 11. 16(y + 3) = (x - 2)2 

13. the parabola 4x = y2 and the x-axis 
15. two parabolaa. 6(x + !) = y2 and 2(x - i) - -y2 
17. a half line parallel to the axis or p 
19. Ir there is a common point. by symmetry it must lie on the y-axis. The chord •i•2 has 

y-intercept (Y2 - Yi) YiX2 - Y2Xi l (xfx2 - xlxi) -xix2 Yi - -- xi =  • - = -- . X2 - Xi X2 - Xi 4p X2 - Xi 4p 
The condition for perpendicularity is XiX2 + YiY2 = 0. Hence XiX2 • -YiY2 • 
-(xix2)2/(4p)2, so xix2 = -(4p)2, and -xixzf4p = 4p. Thus all the chords •i•2 pus 
through (0, 4p). 

21. As in the solution of Ex. 19, the chord •i•2 meets the y-axis in (O. -xixzf4p� so 
p = -xixzf4p, hence xix2 ""' -4p2. Let • • (x, y) be the midpoint, so x • !<xi + x2) 
and y = !CY1 + Yz). Then 

x2 • i(xf + xl + 2xix2) • i(4pyi + 4py2 - 8p2) = 2py - 2pl; parabola. 
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23. The center of the circle is c = (!xlt !(y1 + p)). The radius is ! d(x1, p� which equals 
!(y1 + p), half the distance from x1 to the directrix. Hence the circle is tangent to the 
x-axis. 

25. o, (±4, o� 5, 3, (±5, o� and (O, ±3) 
27. ( - 1, i), (- 1, 1), and (- 1, 3), Ji, 1, ( - 1, 2 ± y'i) and (0, 2) and (-2, 2) 
29. (3, 2� (3, 2 ± !Ji�  l, tJi, (3, I )  and (3, 3) and (3 ± tJ2, 2) 
31. (x - 1)1/81 + (y - 4)2/4 = 1 33. (x - 5)2/25 + y2/16 = I 
35. (x - 1)2/16 + y2/12 = 1 

R dy bx 37. y = ±b - . d- = + 
2 

C:' so dy/dx = 0 at x = 0. This accounts for the x a ..;· · · 
horizontal tangents. Exchange x and y for the vertical ones. 

39. Let the ellipse be x2/a2 + y2/b2 = l , where a >  b > 0. Suppose (x, y) is on the ellipse 
and y 'I- 0. Then I � x2/a2 + y2/b2 > x2/a2 + y2/a2 = (x2 + y2)/a2, hence x2 + y2 < a2

, 
fe + y2 < a. 

41. An ellipse with axes the x- and y-axes. 
43. The ellipse with foci (a, 0) and (b, 0) and semi-major axis !(a + b). 
45. The ellipse with major diameter D and minor diameter of length r. 

Section 4, page 418 

I. x-axis, 0, ( ±Jo. 0), y = ±ix 3. y-axis, 0, (0, ±JO � y = ±ix 
5. y = I, ( - l, I� ( - I ± Ji, I� y = -x, and y = x + 2 
1. x = -2. c-2. -2� c-2, -2±JY� y = -2 ± Jlcx + 2) 
9. y = - I, (3, - 1), (3 ± JS , - 1� y = -2x + 5, and y = 2x - 7 

II. -ix2 + f.,,y2 = 1 13. ix2 - f.,,y2 = 1 
15. !(x - 1)2 - b2 = 1 17. The asymptotes are y - !b = ± (x + ta); perpendicular. 
19. Think of x as a function of y. Then on each branch 

x dx y dx a2 y 2 -- - - 2 - - 0 -- - - -
a2 dy b2 - ' dy - b2 x · 

At the vertex (a, 0) on the right branch, dx/dy = 0, so the tangent is vertical with 
respect to the x-axis. 

21. the right branch of the hyperbola with foci ( ±a. 0) and absolute length difference r - s 
23. It is the locus of the centers of all circles that are simultaneously tangent to one of the 

given circles externally and the other internally. 
25. At the point (JI, -4) relative to the coordinate system in which A =  (-5, 0) and 

B = (5, 0) 

Section 5. page 424 

I. (0, I) 3. (!j3. -t) 5. (-Ji, -Ji) 7. {Ji, in} 9. {Ji, i1t} 
II. {2, -in} 13. 8 = in 15. r(cos 8 + sin 8) = 1 17. r = -2a cos 8 
19. r = 2 cos(O + in) 21. r(cos 8 + 2 sin 8) = 5 23. r2 - IOr cos(O - Vt) + 9 = 0 
25. Jx - fy = I  27. -nx - ib = 1 29. !xJ2 + !yJ2 = iJi 
31. x cos ex + y sin ex = p - (h cos ex +  k sin ex) 
33. r = p cos(O - ex) ± Ja2 - p2 sin2(8 - ex). If a >  p, then 0 lies inside the circle. For each 

8 there are two distinct solutions, r1 > 0 and r2 < 0. 
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Section 6. page 431 

1. 3. 

9. 11. 

-2 

13. 15. 
3 y 

17. e :==:: 0.206 19. ellipse r(l - e cos 9) • ep 21. J2 
Section 7 p!fge 43 

3 

x 

L % • x cos IX + y sin ex, y • -x sin IX + y cos IX; (x. y) -{%, Y) by a rotation through -IX. 
3. x1x2 + y1y2 • %1J1 + %2J2; this means x1x2 + y1y2 is unchanged by a rotation. 
5. The polar angle of the point with respect to the rotated axes is 6 - «. 
7. IX =  p; -i(.j2 - l )x2 + i(1 + .j2)y2 = I  
9. IX ... p; t<J2 + l)x2 - i(J2 - l)Y1 = I 11. IX =  1't; ellipse 
13. tan 2a = !; hyperbola 15. IX =  ix; ellipse 17. IX • 1't; parabola 
19. tan 2a ""' 6; hyperbola 21. Add the formulas for ll and � given in the text. 

Section 8, page 445 

1. y • -x - 1  3. y • 4x - 8  5. y + l =- i(±JS- t)(x + l) 
7. y = -2x + 1, y = -6x - 3 
9. 11 > au1 and y + 11 • 2aux, hence y - 2aux - 11 < 2aux - au2 = -a(x - u)1 + ax2 < ax1 
11. x = I 13. ix + ny = 1 15. x • I, 12y • 17x + 19 
17. x ... - 1, 4y = x + s 
19. The slope at (u, 11) is dy/dx = b2u/a211, so the tangent is y - 11 • {b2u/a2o)(x - u� etc. 

(Use b2u2 - a2o2 - a2b1.) 
21. arc tan(fy'j ) 



Section 9. page 445 

Chapter 1 0  A49 

I. The equation is 2(a2 - a1 )x + 2(b2 - b1 )y = k, which has slope -(a2 - a1)/(b2 - b1 � the 
negative reciprocal of the slope of the line of centers. 

3. The tangent and the radical axis both pass through the common point and both are 
perpendicular to the line of centers, so they coincide. 

S. Eliminate y: ( 1 + m2)x2 + 2(a + mb)x + c = 0. This has a double root if and only if its 
discriminant vanishes. 

7. Eliminate y1: (a1 - b1)x1 = a1(r2 - b1). This has two solutions if r > b, no solutions if 
0 < r < b. Similarly, eliminate x2 : (a1 - b2)y2 ... b2(a2 - r2). This has two solutions if 
0 < r < a. no solutions if r > a. Thus if b < r < a, both have solutions, and we get four 
possibilities for (x, y). 

9. 4p(y + p) = x1, p � 0. 
11. Let the ellipse be x2/a2 + y1/b2 - 1. Then 

uv (a + x)(a - x) a2 - x1 a2(y2/b2) a2 
wl = yl =- ---yz = yl = bl · 

13. xy = !c1• Do it by rotating x1 - y1 = c1 through 45°. 15. for -b/a < m < b/a 
17. r1 = 2a1 cos 28 
19. If the firms arc at (-c, 0) and (c, O� the curve is the circle 

(k1 - l)(x1 + y2) + 2c(k2 + l)x + c1(k1 - l )  = 0. 
21. parabola 

CHAPTER 1 0  

Section 2. page 453 

I. l, x1(- l) 3. - 1 + 3(x + 1� (x + 1)2(x - 2) S. 2 - 4(x - 1),  (x - !)2(4/x) 
7. 1 + 4(x - l� (x - 1)1(x2 + 2x + 3) 9. 1 + 2(x + 1 �  (x + 1)2[(-2x + l)/x2) 

11. 1 13. x IS. 1 + x, 0 17. -t - i(x + 2) - t(x + 2)1, (x + 2)3(1/8x) 
19. x1, x3[ - 1/(x + 1)] 21. 1 + 2x + 2x1 23. x 

x xr Pa(x) P2(x) 

0.1 0.l lOS 0.1000 0.1100 
0.2 0.2443 0.2000 0.2400 
0.3 0.4050 0.3000 03900 
0.4 0.5967 0.4000 O.S600 
o.s 0.8244 o.sooo 0.7500 

27. In x and 2(x - 1)/{x + 1) have the same p2{x) at x -=  1 :  p2{x) = (x - 1) - t(x - 1)2 
x o.s 0.8 1.2 l.S 2.0 

In x -0.6931 -0.2231 0.1823 0.4055 0.6931 

2(x - 1)/(x + 1 ) -0.6667 -0.2222 0.1818 0.4000 0.6667 

p2(x) -0.6250 -0.2200 0.1800 0.3750 O.SOOO 

Section 3. page 459 

I. 8 + 7(x - 1 )  + {x - 1 )1 3. 9{x + 1) - (x + 1 )1 + 2(x + 1 )3 
S. 18(x + 2)1 - 1 l(x + 2)3 + 2(x + 2)4 
7. S(x + 1) - 19{x + 1)2 + 31(x + 1)3 - 21(x + 1)4 + 5(x + 1)' 9. 0.99600 
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11. 3.00052 13. x - x2 + ix3 - ix' + -hx' 15. x - !x3 - x' + mx' 
17. iJ2 ( 1 + u - iu2 - iu3 + -hu' +mu'� u = x - in 
19. - 1  - 3u - 6u2 - 10u3 - 15u4 - 21u5, u .. x + 1 

Section 4. page 465 

8 2' 22.- I 22•+ I 
I. 2x - 3 ! xl + S! x' - . . .  + ( - 1r- •  (2n - l )! x2.

- 1. lr2.- 1(x)I s (2n + l)! lx l2
.+ 1  

z xl x' X- I ( >I (x + n + l� + • 'f 0 3. x + x  + 2, + 3 1 + . . · + (n- l )! ' 
r. x S (n + I)! X- 1 x :2:: , 

lr.(x)I S lx1•• 1/n! if x < 0 
5. (x - 1) + 3(x - 1)1/2 ! + 2(x - 1)3/3! - 2(x - 1)4/4! + 

4(x - 1)5/5 ! + . . · + (- 1)"2(x - 1r;n(n - l)(n - 2); 
if n :2:: 4: lr.(x)I S 2(n - 2)! (x - 1r+ 1/(n + 1)! for x � l, 

lr.(x)I S 2(n - 2)! ( 1 - xr+ 'f(n + l) ! X-- 1 for 0 < x s 1 
7. x2 - x3 + ix' - ix' + . . .  + (- 1rx-;(n - 2)!; 

lr.(x)I S x-• 1/(n - I)! for x :2:: 0, 
jr.(x)I s (x2 - 2(n + l)x + n(n + l>Jlx j•+ 1/r(n + 1)! for x S 0 

9. x2 - x4/3 ! + x6/5 ! + . .  · + ( - 1r- 1x2•/(2n - I)! ; 
lr2.(x)I S (Ix! + 2n + 2Jlx12•• 2;(2n + 2)! 

11. I +  x - ix2 -p3 + x'/4! + x5/S ! + · · · + a.X-fn!, where 
a41 = a41+ 1 = I, a41+ 2 = a4l+ l = - I ;  lr.(x)I s lxr+ 1/(n + 1)! 

xl x' x2• - •  lx l2.+ 1 
13. x + 3 1 + 5! + · · · + (2n _ I)! ' lr2.- 1(x)I S (cosh x) (2n + l )! 

1 t r2 ,. 
15. 2 - 4 + 8 - + . . .  + ( - 1 r 2• + I ' where r = x - I, 

Ix - 1 1•• 1  I x  - 1 1•• 1 lr.(x) l s 2 •• 1(l + xr+2 for - l < x s l. lr.(x)l s 2.u for x � I  

17. 1/( 1 1  x 21 1) < 5 x 10- s 19. p4(x) = x2 - ix'. lerror l S i(2x)6/6! < 5 x 10-1 
21. (0.22)5/5! :=::: 4.3 x 10-6 23. ( 1 .06)9/91 � 4.7 x 10-6 
25. k = 0.033 works because (.0331t)4/4 ! � 4.8 x 10-6• 
27. 7 according to our estimate applied to the interval I s x s 1.25 
29. lr3(x)I S Ix - ix l'/4! = (0.1 )4/4! < 4.2 x 10-6 
31. 1 - ix - tx2 - f,,x3, lr,(x)I s mlxl' for x s o  and lr,(x)I s rhlx l'/(1 - x)112 for 

O � x < I  
33. i 35. By "dividing out zeros." /(x) = xF(x) and g(x) = xG(x) where F and G are continuous, 

F(O) -f'(O) and G(O) = g'(O). Hence 
/(x) xF(x) F(x) F(O) f'(O) - = -- = - - - = - . g(x) xG(x) G{x) G(O) g'(O) 

37. Set n - 2m - I and apply "dividing out zeros" to/(x) -/(a): 
/(x) = /(a) + (x - a)2•g(x) 

where g(x) is continuous near a. Suppose for instance p•• 11(a) > O. Then g(a) = 
p•• l)(a)/(n + I) ! > 0 so g(x) > 0 for x sufficiently near a. Hence (x - a)2•g(x) > 0, so 
f(x) >/(a): local min, etc. 

I J" 39. p.(x) = 0 so /(x) = r.(x) = I (x - irp•• l)(t) dt. Suppose x i"  a. Change variables in n . • 



the integral by t = a + (x - a)u. The result is 
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/(x) = (x - ar+ 1g(x), g(x) = - ( 1  - urp•+ •1a + (x - a)u] du. t f• n! o 

If x = a. the first formula is obviously correct. 

Section 5. page 470 

I. tan x takes on all real values for -!n < x < !1t 
3. Set F(x) = x•0 - 2x8 + 2x3 - x. Then F(O) = F(l) and F' =f Apply Rolle's Theorem. 
!. Apply Rolle's Theorem to g(x) = xf(x). 
7. The function 3x1 - I + sin nx + nx cos nx has a zero on the interval - I < x < I .  
9. tan x = x has a solution on each interval nn < x < (n + l)n. 

I I. Suppose g(x) has no zeros in a < x < b. Since (f'g -fg'Xa) = f'(a)g(a) i: 0, we have 
g(a) # O; similarly g(b) # 0. Thus g has no zeros on [a. b]. Set h(x) = f(x)/g(x). Then 
h(a) = h(b) = 0, and h'(x) = (f'g -fg']/g1 has no zeros, contradicting Rolle's Theorem. 

13. Apply Rolle's Theorem to g(x) = (x - a)[/(b) -f(x)]. 
I!. Set h(x) = r1�(x� Then h(r1) = /(r1) = 0, where r1 < r2 < · · · < '• are the zeros of f 

Therefore h' has at least one zero in each interval x1_ 1 < x < x1 • But kh'(x) = 
r't[f(x) + kf'(x)]. etc. 

17. Let r1 < r2 < · · · < r, be the distinct zeros and m1, • • · ,  m, their multiplicities. Then f' 
has a zero of multiplicity m1 - I at r1 and a zero on each interval r1_ 1 < x < r1, for a 
total of L (m1 - 1) + (s - I ) =  L m1 - s + s - I = L m1 - I = n - I zeros on (a, b). 
Apply the same result to f'; you conclude that r has n - 2 zeros or more on 
(a, b), etc. 

19. By Rolle, f' has a zero in a <  x < c and a zero in c < x < b. Thus f'(c1) = 
f'(c) = f'(c2) = 0, where a < c1 < c < c2 < b. By the Generalized Rolle's Theorem, 
(f'r =!"' has a zero in c1 < x < c1 • 

21. f(x) = bo(X - ar+ I + ' . .  + ba(X - ar+l+ I + '  ' - , 

(n + k + I)!  p•• 1>(x) = (n +  l) !b0 + · " +  k ! 
- ba(x - af + · · · . 

ll Suppose a < x0 < b and /(x0) � 0. Choose k = f(x0)/(x0 - a)(b - x0) � 0. Then g(a) = 
g(x0) = g(b) = 0, so there exists c such that a < c < b and g"(c) = 0. But g"(c) = 
r(c) + 2k < O; contradiction. 

Section 6, page 480 

I. In 51 - In 50 = l/c, 50 < c < 51, and 1/c < 1/50 = 0.02 
3. LHS = 1/(1 + c1) where 5 < c < 6; I + c1 > c2 > 25 so LHS < i;. 
!. arc sin f - arc sin ! =  (j - !)!jl=C2 where f < c < f· Now Jt=C2 > Jt - (j)1 = t. 

so arc sin i < arc sin ! + ns/! = arc sin ! + t· But t = t( 180/n )0 < t( 180/3 )0 = 7.5°, hence 
arc sin i < 37.5°. Note that arc sin i ::::: 36.87°. 

7. I 9. i II. ! 13. - I I!. I 17. I 19. 0 21. I ll 0 
2!. 0 27. co 
29. By the MVT, [/(a + h) -f(a - h)]/2h = 2h/'(x)/2h = f'(x� where x is between a - h 

and a + h. As h--+ 0, x -a, so f'(x)-f'(a). 
31. Let £ > 0. Choose 6 = t/M. If a < x < z < b and z - x < 6, then /(z) -/(x) = 

(z - x)f'(w� where x < w < z, hence lf(z) - f(x)I � (z - x)M < t. 
33. l 
3!. For each x there is a z = z(x) such that x < z < x + I and /(x + I) -/(x) = f'(z). As 

x--+ co, /(x + I )  -/(x)--+ L - L = 0, so f'[z(x)]--+ 0. But z(x)--+ co so 
f'(z(x)]--+ M, hence M = 0. 
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37. Say lf'(x)lrl s B for x > a. By the GMVT, 

I /(�= �a) I s B. hence I /(x)�e: "/;;)/r I S B. I /�) I s I 1;) I + B 1 1 - � I · 
All terms on the RHS are bounded. 

39. Apply Ex. 38 to rg(x). 
41. Let c = !(a + b). If a < x S c, then /(x) = /(x) -/(a) = (x - a)f'(z� a < z < x, hence 

IJ(x)I s M(x - a). Similarly l/(x)I S M(b - x) if c s  x < b. Therefore 

I (/(x) dx I S  (1/(x)I dx + (1/(x)I dx S M  (<x - a) dx + M (<b - x) dx, etc. 

StJct1on 7. p.tgtJ 488 
1. x2 - x 3. x2 + x + l 5. 2x - l 7. x3 - x + 1 
9. ix4 - ix2 + l 1 1. I - 2(x - l) + i(x - l)(x - 2) 

13. 4 - (x - I) -i(x - l)(x - 2) 15. x + (x - l)(x - 2)(x - 3) 
17. I + (x - 1) + (x - l)(x - 2) + (x - l)(x - 2)(x - 3) + (x - l)(x - 2)(x - 3)(x - 4) 
19. l + i(x - l)(x - 3) 21. 1 - (x + 2) + (x + 2)(x + 1 )- j(x + 2)(x + l)x 
23. (answer to Ex. 21)  + !(x + 2)(x + l )x(x - 1) 25. (4/x2)x(n - x) 
27. (8/3x3)x(n2 - x2) 29. They both give jn � 2.0944. 

StJct1on 8 pag 493 

1. -!(x + 2)x(x - 1) + !(x + 3)(x + 2)(x - l)  + n(x + 3)(x + 2)x = 
n(x3 + 17x2 + 18x - 24) 

3. -i(x - 2)(x - 4)(x - 6) + ix(x - 4)(x - 6) - ix(x - 2)(x - 6) 
+ itx(x - 2)(x - 4) = it(-x3 + 18x2 - 128x + 384) 

5. -mx(x - 2)(x - 4)(x - 6) - it(x + 2)(x - 2)(x - 4)(x - 6) 
+tr  (x + 2)x(x - 2)(x - 6) + tl.(x + 2)x(x - 2)(x - 4) 
= Th(-x4 + 40x3 - 212x1 + 80x + 384) 

7. !(x3 - 6x2 + 8x) 9. !(8x1 - l8x + 9) 
11. RHS interpolates the cubic x3 at ( l, I), (2, 8� (3, 27), and (4, 64). By uniqueness it 

equals x3• 
13. q(x) = p(x) - p( -x) is a polynomial of degree at most n - I and q(x1) = p(x1) - p( -x1) = 

/(x1) -/(-x1) = 0. Since q(x) has n distinct zeros, q(x) = 0 so p(-x) = p(x). 
15. l/(x) - p(x)I S i lx(x - !x)(x - n)I < i 
17. By the error estimate applied to p(x) - O, lf(x)I S !Ml(x - a)(x - b)I. Therefore 

I f/(x) dx I S  f 1/(x)I dx S � f (x - a)(b - x) dx = � (b - a)3. 

SBction g• pagB 504 

l. 1.0023, 0.0023 3. 1.4174, 0.0032 5. 4.6723, 0.0015 7. 0.5046, 0.0046 
9. 1.71832, 1.71828 1 1. 0. 10869, 0.10065 13. 2.98209, 2.98200 

15. 0.61036, 0.61989; exploiting symmetry: 0.61989, 0.62050 
17. 4.87757, 4.85802 19. 6.03354, 6.03343 21. 1.7182819 23. 8 25. l/'41 1 = lrl s e, so lerrorl s { lO)(ia)e(0.05)5 < 10- 7  27. 2.34�7 
29. 0.0741 31. The variable change x • c + hu does the trick. 
33. 1.718280 35. 6.287173 37. 4.853838 
39. G.Q. approximates x6 by HJ3)6 � 0.03704, whereas the function grows to l as 

x - l or x - - I. Exploiting symmetry yields 0.2407, a lot closer to �. 

• There may be slight round-oft' errors in this and the next three sections. 
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41. A(x) = 1tx, V = !M1 43. A(x) = Jtb2(a2 - x1)/a1, V = !Jtab1 
a H  h 

45.. By slices, V = f A(x) dx = 6 [A(O) + 4A(a + !h) + A(a + h)] = ih(A0 + 4M + A1) 
• 

since Simpson's Rule is exact for cubics . 
• 

47. By symmetry, f f(x) dx = !b. Also,f(x1) + f(x1r1) = l so fo + 4/1 + 2/2 + · · · reduces 0 
to !(6n) = 3n, hence ih(f0 + · · ·) = nh = n(b/2n) = !b. 

49. Integrate by parts twice on the right. 
51. Choose any x0 :f. a, b, c. Choose k so g(x) = f(x) - k(x - a)(x - c)1(x - b) satisfies 

g(x0) = 0. Then g(x) has 5 zeros on [a, b], namely a, b, c, c, x0 , where c is a double 
zero. Therefore g4''1(x) must have a zero; g<41(z) = 0. Thus /'41(z) = 24k, f(x0) = 
nf''1(z)(xo - a)(xo - c)2(xo - b� etc. 

53. By the method used in Ex. 51 above we prove lf(x)j � nM(x - a)1(x - b)1. Now 
integrate. 

I 
55.. Set p(x) = (3x2 - l)(ax + b). Since G.Q. is exact for cubics, f p = 0, so 

- I 
, I  I I f = J g. Choose a and b so (3c2 - l)(±ac + b) =f(± c). 

• - I - I 

Section 10, page 510 

I. 1.71 3. 2.51 5.. ± 1 .63 7. - 1.84 9. - 1 .84, 1.15 II. 3.0723 166 
13. 1 .8073435 15.. -0.9032101, 1.1939365, 3.7092729 17. l.7632202 
19. 0.479727, 2.2467941 21. 1.8862034 23. 0.9045568 

The answers to Exs. 25-33 are given to more places than required. 
25.. /(1.7632231 ) :::: 0.09726 01312 28 27. f(0.54391 ) :::: 1.418697 
29. /(0.44094) � 0.039804 31. f(0.47197) � /(2.66962) � -0.056010 
33. f(0.84222) � 0.082605 35.. x � 2.1294, 23 steps 

Section 1 1. page 521 

I. Xs = X9 = 0.7035 J. X6 = X7 = 2.3028 5.. Xs = X9 = 2.33 1 1  
7. x, = X9 = 1.0000 9. X 16 = X17 = 0.4999 II. X3 = X4 = 1.02986 653 

13. ±3. 16227 76602 15.. ±0.66874 03050 17. - 1.32471 79572 
19. l.31459 62123 21. -0.56714 32904 23. - 1.27177 97887, 0.47 1 77 97887 
25.. - 1.14789 90357 27. - 1.45367 36665, 0.53978 51608 
29. ± 1 .89549 42670, 0 31. - 1.54165 16841. 0.20006 41026, 1 .44050 03973 
33. ±0.72704 72898, ± 3.90335 68641 35.. 0, :::: 1.52861 47266 
37. 0.33651 (point of tangency � ( -2.79839, -0.94168)] 
39. 1.031 59, for x � -0.53984 
41. lxo - J21 < I 1.42 - 1 I = 0.42, so the estimate becomes 

lx6 - Jil < 2!3 (0.42)64 � 8.4 x 10-••. In general Ix. - J21 < 22�_ 1 lxo - 1 12". 

43. lt/>'(x)I = � J
I
-=-=- < 1

� < 1, hence x. approaches the fixed point 4>(1) = 1 .  
2v 2 I + x 2v 2 

45.. For a =  f because t/>'(b) = a - 3b2 = 3 - 2a, so t/>'(b) = 0 only for a =  f. 
3x4 + 12x2 - 4 

47. r/f(x) = 8x3 
, x1 = Y = l.375, x2 :::: 1.41419 75019, x3 :::: 1.41421 35624 
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49. u' = 1 - (
�;

2 = ] - UV, �· = l - u' = UV, hence 

I/I' = �· - uu'v - !u2v' = uv - u(l - uv)ci - !u2v' = u2(v2 - !v'). 

But • - (!�)' - !'/"' - (!•)2 _ r - 2 v - r - (/')2 - r v , 
hence I/I' = u2[iv2 - !(/"'ff')]. By Lhospital's Rule limz-• u(x)/(x - c) = limz-• u' = 
limz-• (1 - uv) = J, and 

lim t1(x) -: = lim •V(x)
1 = ! lim ( u(x) ) 2(� 112 - ! 1:) = K = (! v2 - ! ':) . z-• (x - c) .. -. 3(x - c) 3 .. -. x - c 2 2 f 2 6 f .... 

Ser.t1on 12 p11ge 522 
I. ! - !J3 t - ir2 + -hJ3 t3 + ..J.r' - JiuJ3 t5, where t = x - Yr 
3. For x � 0, cos x � 1 - !x2 + -hx' and Jt=X2 � 1 - !x2 - !x' < cos x if x + 0, so the 

cosine curve is outside of the circle. 
5. p(l) < p(0.5)2 < p(0. 1)10 � 2.71827 97 < e. 

7. Approximating ( l + -kx2t 1 by its 7-th degree Taylor polynomial, we have 
ix[lO(l + -JGx2r 1 - 7) � ix[- 7 + 10(1 - -/Gx2 + �x' - .m,x6)) 

= x - lxl + -dux5 - �' 
= p7(x) + (�7 - �x7� 

where p7(x) is the Taylor polynomial for sin x. Hence the error is about 2. 19 x 10-•x' 
for x small. 

9. By Lhospital's Rule, 

lim /(c + 2x) - /(c + x) = lim [2/'(c + 2x) - f'(c + x)) = /'(4 ��o x ��o 
11. By the Lemma on p. 464, 

/(x) = - (x - t)" p•+ ll(t) dt � 0. l f .. n! o 
Ir /(c) = 0 for some c > 0, then clearly p•+ 11(r) = 0 for 0 S t  S c  or else the integral 
would be positive. Then by the same fonnula,/(x) = 0 for 0 S x S c. 

13. 8.03871 475 15. 0.40910 400 17. 3.40757 203 19. - 1. 18840 99170 
21. 0.1541 1 28720 23. c = j; then �·(�) = 0. 
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l 3. (- l )" (2n + J)(2n + 3) 
5. 

(- 1)"(2n)! 
I. 4n - 1 2 · 3• 22• · nt 
7. 687 9. 1 t/Jn - OI < t when n > l/r.2 

11. ! 13. 0 15. J 17. ! 19. I 21. 0 23. 3 25. 0 27. j 
29. Suppose a. - L < O. Choose n so la. - LI <  -L. Then a. - L <  - L,  a. < O, a 

contradiction. 
31. Not necessarily; try a. = (- 1 )". 33. Not necessarily; try a. = b. - (- J )". 
35. Given t, always choose N larger than the index of the last inserted or deleted term. 
37. Only if the sequence is eventually constant, x. = L for all n � N. 39. Given t > 0, choose N so la.I < s/B for all n � N. Then la.b.I < (t/B)B • t. 
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41. Let {b1} be a subsequence of {a.}. Let £ > 0. Choose N so la. - L J < £ for all n � N. 
Then Jb1 - LJ < e for allj � N because b1 = x., and n1 �j � N. 

S•ction 2. P•fl• 538 

3n + 1 
1. 1 3. iJt 5. a. > 0 and a.+ 1 = - a. < a. 3n + 2 
7. Clearly {a.} is increasing. Also l/(n!)1 :s; l/n! and we know that 1 + 1/2! + · · · :s; 2, hence 

a. s 2. 
9. a. > 0 and a.+ 1 = ca. < a • • hence {a.} is decreasing. 

11. Assume a. < 2. Then a.+ 1 = 1 + !a. < I + !(2) = 2. Since a1 < 2 it follows by induction 
that a. < 2 for all n. This implies a.+ 1 = 1 + !a. > !a. + !a. = a • . Thus a1  < a2 < 
a3 < · · · < 2. 

13. 5 
15. Jx.+ 1 - x.+2 1 = Jx.+ 1 - i(x. + x.+ 1) J = !Jx. - x.+ 1 J, so the Second Comparison Test 

applies. 
17. a1 < 2. Suppose a. < 2. Then a.+ 1 < J2+2 = 2. Hence a. < 2 for all n. Therefore 

a.+ 1 = � > Ja. + a. =  J2i. > � = a  • . Thus a1 < a2 < a3 < · · · < 2; the 
sequence converges to a limit L :s; 2. 

19. Case 1 :  0 < x S 2. Then a1 = Jx < 2. If a. < 2, then a.+ i = Jx + a. <  J2+2 = 2 
Therefore a. < 2 for all n. Case 2: 2 < x. Then a1 = Jx < x. If a. < x, then 
a.+ 1 = Jx + a. <  F+X = J2X < � = x. Therefore a. < x for all n. 

21. 0 
23. Suppose a. < b • .  Then b0 + 1 is the average of a. and b. so a. < b. + 1 < b.. Likewise 

l/a.+ 1 is the average of l/a. and l/b • •  so l/b. < l/a.+ 1 < l/a., that is, a. < a.+ 1 < b • .  
Next., 4a.b. < (a. + b0)2• so 2a.bJ(a. + b0) < (a. + b.)/2, that is. a.+ 1 < b.+ 1 • 

25. By induction, b. = bg·. Since Jb0 J = J 1 - x J < 1, the sequence {bO} converges to 0. So does 
the subsequence {b.}. 

27. Clearly Jb0 J < I. Suppose Jb.J < Jb0J2". Then Jb.J < 1 and 
Jb.+ 1 I < i Jbo 12 .. 1(3 + b.) < ! Jbo J1 . . .  = Jbo J2•• '. 

Hence J b0 J < J b0 J2" for all n. It follows as in Ex. 27 that b0 ----+ 0. 
29. (y"+ 1 - x•+ 1 )/(y - x) = y" + y"- 1 x + y"- 1x2 + · · · + x" and x" < y"-JxJ < y", etc. 
31. Take x = 1 + l/(n + 1) and y = 1 + l/n in the LH inequality: ( 1 + _ 1 )"((".�- 1 )2 _ n(n :!_- 2)) < b . n + l n n + l • ( I )1 (n + 1)2 n(n + 2) . It suffices to prove 1 + < - - - - · . When fract1ons are cleared, this n + l  n n + l 

boils down to 
n3 + 4n2 + 4n < n3 + 4n2 + 4n + I .  

33. J a. - a.+ 1 1  = l/(n + l)! :s; (fr for n � I. 
35. x + l/x = (Jx - l/.fi)2 + 2 � 2, hence b0 � 1 . If b. � 1, then b:+ i = !(l + b.) � 

f(l + 1 )  = 1 so b • • 1 � I. By induction, b. � I for all n. Next, 1 :s; b. s b!. so 
1 + b. S 2b!, b!+ 1 = !( I  + b.) S b!, b •• 1 S b  • .  Thus {b.} is decreasing and bounded 
below, so L = lim b. exists. But 2b!+ 1 = 1 + b. implies 2L2 = I + L, so L = I .  

S•ction 3, pag• 543 

1. i(I  - r 10) 3. fli 5. 3(x•+ I - 3•• 1 )/X-(x - 3) if x "' 3, 3(n + 1) if x = 3 
7. r1'2(r4 - l )/(r1'1 - 1) if 0 < r and r ,;,  I, 8 if r = I 9. � II. r9 
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13. i 15. l/(J + x2) 17. 9 ft 
19. The fty travels one hour at 60 mph. 21. i 23. ff 
25. 1 + i + i + . .  · = 1(J + 1 + i + · · ·) .. ex> 27. 1600 works: 

J�l 
+ . . .  + 

l� = ( l�J 
+ . . .  + 

2�) + (�) + . . . + �) 
+ (�1 

+ · · · + s�) + (�1 
+ · · · + 

1�) > � + · · · + � = 2· 
(Actually, 1/101 + · · · + J/743 :=:: 2.00121.) 

29. '\""' l , . .., (! -_l ) = ( l - !) + (! - !) + (! - !) + . . .  = J. 
"-1 n(n + 1)  "-1 n n + 1 2 2 3 3 4 

31. If La. converges, then a. -0. If also a. is an integer, then a. = 0 for all n � N. 
Conversely, a1 + a2 + · · · + aN- l + 0 + 0 + · · · obviously converges to a1 + · · · + aN- l = SN- 1• 

Section 4. page 549 

I. C 3. D 5. C 7. C 9. C 
11. D- 1 (a1 + b1) - (Lj. 1 a1) + <D-1 b1)-A + B. 
13. L a.  converges, so a. - 0. Therefore 0 S a. < 1 for n � N, so 0 s a! < a • . Then L a! converges by comparison with L a • . 
15. C 17. D 19. C 21. C 23. C 25. C 
27. All real x. Given x, set a. = x2•/n!. Then a.+ 1/a. ... x2/(n + 1 ) - 0, so the series 

converges by the ratio test. 
29. -i < x < i  
31. a. < r' and r < l ;  convergence by comparison with the geometric series 

Section 5 page 553 

I. C, AD 3. D 5. AC 7. C, AD 9. AC II. C, AD 13. D 
15. C, AD 17. D 19. C, AD 
21. l - (0.5)/1 ! + (0.5)2/2! - (0.5)3/3 ! + (0.5)"/4! - (0.5)5/5! :=:: 0.60651, e-0·5 :=:: 0.60653 
23. The series L (a! + b!) of non-negative terms converges and la.b. I S 1(a! + b�� so 

L a. b. converges absolutely by the Comparison Test. 
25. First s2• = a1 - (a2 - a3) - • • • - (a2.-2 - az.- 1) - az. < a, and s2• = s2.-2 + (a2 ... 1 

- a2.) > s2.- 2 •  Next s2.- 1  = (a1 - a2) + (a3 - a.) + · · · +  (az.-3 - az.-2) + az.- 1 > 0 
and s2.+ 1 = Sz.- 1  - (a2• - a2.+ 1) < s2.- 1· 

Section 6. page 559 

I. • 3. l 
17. n!/s"+ 1 
27. infinite 

5. ix 7. 2 9. ! In 2 II. Vt 13. 11: 15. l/s2 
25. infinite 

35. L/a 
19. J/( 1 + s2) 21. l/(s - a)2 23. infinite 
29. In 2 31. In 10 33. O; odd function 

L D  3. C 5. D 7. c 
15. f "'dx/x(ln x)' = r du/u', etc. 2 In 2 

Section 7 page 564 

9. c II. D 13. c 

ln x ln x l 1 
17. Suppose p > J. Choose r so p >  r > J. Then X' - x'-' _x; < _x; 

for x sufficiently large, etc. Suppose p S 1. Then (In x)/x' � l/x' for x � e, etc. 
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19. s > 4 21. s > ! 23. s > 1 25. all s 
17. Suppose lf(x)I :S ex" for x '2! b. Then 

OD • OD f e-"'f(x) dx = f e-"'f(x) dx + f e-"'f(x) dx 
0 0 b 

OD 

so we must prove the convergence of f . But le-"f(x)I S c:x"e-" for b S x, and b f OD :x"e -" dx converges, so the comparison test applies . 
• 

29. -/(0) + sL(f)(s) =- -0 + s/( 1 + s1) = L(cos)(s), 
-g(O) + sL(g)(s) = - I + s1/(1 + s2) = - 1/( 1 + s2) = L(-sinXs). 

I. D 3. c S. D 7. c 

Section 8. page 569 

9. c '-· oo  1 f 00 dx 
II. > 1 < 1 + 2 = 2 

_ 1  n · 1  x 
13. From the inequalities ln(n + I )  < s. < I + In n we conclude ( 1) if n > 1.971 x 10434, then 

s. > 1000 and (2) if n < 7.247 x J04ll, then s. :S 1000. 
For 7.247 x 104ll :S n  s 1.971 x 10"34 we draw no conclusion by this method. 

IS. Since In x increases, 

ln(n!) = ,. In k >  ,. ( In x dx = (1n x dx = x In x - x r = n In n - n + I .  
.-;; .-:-; l- I I 11 

Hence n !  > cxp(n In n - n + I ) =  e(n/eY'. 
17. By parts with u = I - cos x, 11 = - 1/x: ib I - cos x d I - cos x [ ib sin x d l - cos b ib sin x ---=-2- x = - + -- :< • - + --dx 

o x  x o o :<  b 0 x 
Let b-oo. 

19. By parts with u = l/Jx and 11 = - cos x: 

f • sin x cos b I f 
• cos x I f OD cos x 

t Jx 
dx = cos I - Jb - 2 t xl/l dx - cos I - 2 t xl12· dx. 

Since ! (cos x)/x312 I :S l/x311, the RHS exists by a comparison test. 

I. C 
19. c 

Section 9 page 574 

3. D S. D 7. C 
21. D 23. D 25. C 

9. c II. D 13. c IS. C 17. D 

27. At 0, 
cos ax - cos �� :::: .!.!..-=-!a2x2) - (I - !blxl) =!(bl - a2)x, so the function is x x 

continuous at O; no problem. Also f"" cos ax dx 
I X 

exists; same proof as for the integrand (sin x)/x. 
29. i 31. 0 33. !n 35. ( - I Y'n ! 37. Substitute x = l/u. 

Section 10. page 575 

I. a. > 0 and {a.} is decreasing since a. - a._ 1 ( 1  + n2)/(2 + n2) < a.- 1• 
3. D S. D 7. C 9. C 11. x > 0 and x < - I 

13. I1 a2• < IlN a. < Ii a •• so the partial sums arc bounded and increasing. 
15. Call the new sequence {b.}. Suppose la. - LI < e for n '2! N. Then lb., - L I <  e for 

m '2! !N(N - 1 )  = I + 2 + 3 + · · · + (N - 1). 
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17. In either case lhe quantity c. + (log2 a.)12" doesn't change when n increases to n + 1.  
But for n = 0 it  equals log2 x. 

19. f"" /(ax) dx = f.., /(t) dt; substitute t = ax. 
0 x 0 t 

21. Integrate by parts with u = e-• and v = In t; then a second time with u = e-• and 
v = r'ln t - t. 

23. Integrate K.+z by parts with u = x-• 1, v = -!e-.. 2• This gives K.+z = !(n + l )K • .  Now 
use induction (or just multiply and telescope). 

25. i112 
27. If a. = L + c. -L, then c. -0. Hence 

(L + c ) + · · · + (L + c ) c · + · . . + c b = 1 • = L +  1 "-L + O = L  • n n 
by Ex. 26. 

29. By induction, p1 = I + a1 � l + a1• If p. � l + a1 + · · · + a  • • then 
p. + 1 = p.( l + a.+ i) � ( l + a 1 + · · · + a.)( I + a.+ 1) 

= l + (a1 + · · · + a •• i ) + (non-negatives) � l + a1 + · · · + a.+ 1• 
31. We use ln(l + x) s; x (draw a graph !). Then In p. = L� ln(I + a1) s; Li a1 = s • . 
33. p > - I, or else the integral diverges because p + 2 > 0 is necessary for convergence, 

and l/(p + 2) = i(I + fl). 
35. °' _!_ = °' -1- + ) 1 = ! °' .!. + °' 1 

hence L n2 L (2n )2 - (2n + l )2 4 L n2 L (2n + I )2 ' 

°' l 3 °' I 3 x2 x2 
L (2n + l )2 = 4 L �2 = 4 

. 
6 = 8 .  

CHAPTER 1 2  
S•ction 1. P•O• 583 

I. I 3. I 5. 3 7. I 9. l/e 11. oo 13. I 
19. I 21. all x 23. x < 0 25. 1/(4 - x); Ix - 3 I < I 
29. 2 In x; x > 0 31. L (xfxY' for instance 

15. I 17. l/d2 
21. 1;(1 + r); x < o 

33. The series diverges at x = I since its terms do not -0. 
35. Let lx l < R. Choose r such that lx l  < r < R. For n sufficiently large, I/� > r, 

hence la.I < 1/r", la.x" I < ( lx l/rY'. so La.x" converges. If lx l > R, then lx l > s > R. 

For n large, l/yfla.I < s, hence la.I > l/s", la.x"I > (lx l/s)", so LO..x" diverges since 
lx l/s > l .  

37. I/a. = 10-:1: 1, so I/� = 10 · 10:1: 11• - 10. Hence R = 10. The successive ratios 
ns, 10, ns, 10, · · · do not converge, so the Ratio Test fails. 

S.ction 2, IU119 590 
1. Lo 3"x"/n! 3. !J2 + Li' (- I Y'!Ji [12•- 1;(2n - l)! + tz./(2n)!). t = x - Vt 
5. LO (JY'+ 1(x - !)" 7. In a +  Li' (- 1r- 1x"/na" 2 ... ( I  I ) 9. l + - + -( --) x" = LO (n + l)x"/n ! 1 n ! n - I ! 

11. 2 + Li' (- l)"- 14n(2n - 2)! (x - 4,./[(n!)22"'] 
13. -7 + 12x + Sx3 15. e·<.r- 02 17. LO a.x-• 1 /(n + I) 
19. Lo x:i./(2n)!. Since p•• 0(x) = sinh x or cosh x. we have If'•• '1(x)I < r. Apply Ex. 18 

with a = �  and k = I or use the argument given in the text for the Taylor series of r. 

21. f'(O) = lim (/(x) -/(O)]/x = lim YI(.!.) = lim ye-12 - 0 . .a-o 1-ao Y 1-m 
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23. f'(O) = 0 by Ex. 21. Assume f'•1(0) = 0. Then p-+ 1 1(0) = lim,,_0 [[<-1(x) -/'"1(0)]/x. By 
the induction hypothesis and Ex. 22,/4.+ 1 1(0) is the sum of limits of the form 

lim ae- 1 1"2/Jt!o• 1 • a  lim y.• •e- 12 = 0 . .x-o 1-00 
Hence f'" • l l(O) exists and equals 0. 

Section 3. page 597 

I. L� 5"x1" 3. I +  2 Li° (- 1rx- 5. D' (- tr- 1( 1 + 32r 1)x2"/(2n - I ) !  
7. � (- t rx2"/(2n + 2)! 9. 2 + 3 Ii x• 

11. Li° ( - 1)"- 122•- 1 x2"/(2n) ! 
13. I + 5x2 + 19x4 + 65x6 
IS. I + x2 + x3 + ix' + J/x5 + ljx6 
17. x3 - !x5 19. l - !x2 + x3 + -hx' - !x5 + illx6 21. 10080 23. 272 
25. The coefficient of x" in ( I  + x + x2 + · · ·)(ao + a1x + · · ·) is a0 + a1 + · · · + a  • . 
27. (x + x2 - x3)/( l - x3) 29. !(cosh x + cos x) 
31. Suppose/(x) is odd, /(-x) = -/(x). Differentiate using the Chain Rule: -/'(-x) = 

-/'(4 which says f'(x) is even. Similarly the derivative of an even function is odd. If 

/(x) is even, thenf'(x�r(x�f'51(x� · · · are odd. Hence f'(O) = r(o) = · · · = 0, because 
an odd function is 0 at x = 0. Therefore the odd Taylor coefficients are 0. Similarly for 
an even function. 

33. From/(x) = /(-x) we have L a.x• = L (- tra.x". By uniqueness. a. = (- tra. for all 
n, hence a2r 1 = -a2.- 1, a2.- 1 = 0. 

35. ( I  - x)/(x) = D' nx" - Li° nx•• 1 = Li° nx" - Li (n - l )x• = Li° x• = x/( I - x� 
hence/(x) = x/(1 - x)2. 

37. sec x = l + !x2 + /ix' + Nax6 + · · · ,  R = !ir 
39. /(x) = ao + a1x + · · · + a,.- 1x"- 1 + x"f(x� hence/(x) = (ao + · · · + a,,_ 1x"- 1 )/( 1 - x") 
41. I + x + !x2 - ix' - t'sx5 

Section 4. page 604 

d ( x3 x5 ) x2 x' 
I. dx x - 3 ! + 5 ! - · · · = I - 2! + 4! - · · · = cos x 

3 
�2- ( 1 + k2�� + �'� 

+ . .  ·
) 

= 
�� 

+ 
� .:_ �•xl 

+ . . . • dx2 2 ! 4! 2 ! 4! 

= k2 I + + - + · · · = k1 cosh kx ( x1 x4 ) 
2 !  4! 

5. 2(r + r3 + t5 + · · ·) dt = 2 + - + ·- + · · · = x2 + -- + --·- + · · · 
f" (xz x• x6 ) (x1)2 (x2)3 

0 2 4 6 2 3 
= - ln( I - x1) 

7. Both sides equal x - jx3 + ix5 - 4x 7 + · · · 
9. (4 - 3x)/( 1 - x)1• lx l  < I  11. -! ln( I - x4� lxl  < I 

13. 
f" arc tan t dt IS. I -

d (xe-,.211) I = I 
O t dx I 

17. The probability of a single birth is I - Ii" (J,r = fi. The expected number of children 
born is [85 '\'"' 1 )"- 1 ] [ 85 '\'� ( I )"- a J 105 8·6 + L 1

"(s·1 = IOs 
86 + L 1 " 87 -

I 

= 10s [!! + (!�r - 1 J = 105(811 - 86)/861 � 101 . 116. 
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19. r. a.P. =I� [n -
n(n
; 

l)
JGr = � r.(3n - nl)Gr 

= � 'ao 
n(!)

•- 1 - ! 'ao n2(!)• • � _I - - ! . !(1 + !) = 3 - 3 = 0. 4 L,.1 2 2 L,.1 2 4 (I - !)2 2 (1 - !)3 
Ifs a fair game. 

l 'ao ( 1 1 
) 21. D' (1 - 2/3•+ 1)x-, lx l < 1 23. 2 L,.o ?i- 1 - 3.+ 1  X-, lx l  < 1 

25. ( 1  - x - x2)/(x) = ( 1 - x - x2) D' c.X-
•Co + (c1 - co)x + Li (c. - c.- 1 - c.- 2)x- = 1 

21. tJSIW - JS)r• 1 s tJSlt(1 - JS)I = f6<5 -JS) <  t. hence 
c. = !JS{ [i(l + JSn•• 1 - [!( 1 - JS)r+ 1} is the closest integer 10 
!JSc!(1 + JS)]•+ l. 

29. Either use the solution formula above directly, or use induction: First it is true for 
n - 1. Next, 

ci •• 2 - 1 = (c2.+ 1 + c2.)2 - 1 - ci.+ 1 + 2cz.+ 1c2. + (c2.- 1c2.+ 1 + 1) - 1 
• Cz.+ 1(c2.+ 1 + 2c2. + c2.- 1) = Cz•+ 1(Cz.+ 2 + Cz•+ 1) = c2.+ 1c2.+ 3 · 

31. /(x) = x/(1 - 2x)(l - 3x) 
Section 5, page 609 

1. D' i(- 1 )-(n + l)(n + 2)x-, lx l < l 
3. D' (n + lWx2•, lx l < i 
5. l + ix3 + L;' (- 1 )-- 1 [3 · 7 · 1 1  · · · (4n - 5))x3•f2• · n!, !x i < r 113 
7. D' (- l)-(2n)! x-•212•(n!)2• lx l < i 

" 
9. sinh- 1 x • J dt/Jf+ti = D' (- 1}-(2n)! x2•• 1122•(n!)2(2n + l), lx l < 1 

0 
11. J2[t + rr· (- 1r- 12(2n - 2)! (x - 1}-/23.n! (n - I)!), Ix - 1 1  < l 
13. 1 + ix2 + ix3 + ix4 
15. J3 (2x + ix2 - ffx3 -/i\x4) 
17. 1 - Jfx2 + -fx4 
19. 4(1 + 0.00625)1'2 :::=: 4 + 0.01250 - 0.00002 :::=: 4.0125 
21. l.00000 - 0.15000 + 0.01350 - 0.00094 + 0.00006 :::=: 0.8626 
23. LHS :::=: x - ix2 + ix3 and RHS :::=: - 1 + 1 + x - ix2 + ix3 
25. Expand [l - z(2x - z)r 112. Then Z- occurs in the term involving [z(2x - z)]9 =

z-c2•x- + · · ·) and in various lower order terms. Hence the coefficient of Z- is a 
polynomial in x of degree n. P1(x) = .x, P2(x) = i(3x2 - l� P3(x) = !(Sx3 - 3x). II (II 1t3 7(5 II 7 

) 'l7. p • 2n sin - = 2n - - - + -- - - + · · · , hence • n n 6n3 120n5 7 !n7 
l 113 11' x7 

11 = 2 P. + 6n2 - 120n4 + 7! n6 - • • • • 
29. By Ex. 28, 311 • 2p2• - !P. + bzfn4 + b3/n6 + · · · ,  hence 

Therefore 

l b2 b3 311 = 2p._ - 2 Pi. + 16n• + 64n' + . . . .  ( I b2 b3 ) ( 
l b2 b, 

) 45n ... 16 2p49 - 2 pz. + 16n4 + 64n' + · · · - 2pz. - 2 P. + � + n' + · · · 

1 � l = 32p49 - lOpz. + l p. + n' + · · · :::=: 32p._ - 10p2• + 2 p • . 
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For n = 3, this yields 1t :::. -(J l32(12J 2 - J3 )  - 60 + i J3 I � 3.14158. 
31 IJ = 100 (1.Cl092)1/2 � 

100 [1 + 0.0092 - (0.0092)2 ] 
• y.:J 58 58 2 8 

� 1.732050724 compared to J3 = 1.732050807 · · · 

Section 6. page 618 

1. (!}5/5! < 4 x 10-•. hence e- l/5 ::::: 1 - i + !(})2 - i(i)3 + n<i>4 � 0.81874 
3. 4, including the constant 
S. 0.10003 7. 0.25049 9. k = /r. length = (2n)(41Xl - S), 

s ::::: (!)2(/r)2 + (! . i)2(!)(/r)4 � 0.01216; length ::::: 254.5 
11. !x2 - p6 = 0.1, x ::::: 0.4495 
13. T � 2n� ( 1 + l� «2 + 3��2 <14) 
lS. y = ( 1 + a)e1 - 1 - x 17. y • (2 + a)e" - x2 - 2x - 2 ( '\'ao ( - 1)"- I 

2") 19. y =a 1 + � •• , (2n - 1Xn!)2" x + bx 
21. If a = 0, then y - 2b(e-• - 1 + x)/x; otherwise no solution. 
ll y = 2 - 3x + 6x2 - ¥x3 + §./x4 + · · · 

25. y = - 1 + 2x - x2 + !x3 + ix4 + · · · 
27. e(l -/tx3 + �4) 29. e(l - mx3) 
31. x In x-o- as x -o+ and 

x• = r 1  ... = 1 + x In x + !(x In x)2 + · · · ::::: 1 + x In x, 
so 1 - x• � -x In x. 

Section 7. page 625 

1. /,.(0) = 0-0. If x > O, then f,.(x) = O  for n > 2/x, hence f,.(x)-0. Therefore 
/,.(x)-o for all x � 0. But f,.(1/n) = l, so lf..(x) - OI < 1 for all x is impossible for 
any n, hence the convergence is not uniform. 

3. By elementary calculus, 0 s xe-... S l/ne for 0 S x < oo. Therefore xe-... -o uni
formly on [O, oo ). 

S. l (sin nx)/n2 1 � l/n2 ; use the M-test, and note that (sin nx)/n2 is continuous. 
7. Let 0 < a. Then le-... sin nxl s e-• for a s  x < oo. By the M-test, the series converges 

uniformly on [a, oo). By "Continuity of the Limit", p. 621, the sum is continuous there. 
This is true for each a > 0, hence the sum is continuous for 0 < x < oo. 

9. Both series converge uniformly by the M-test. Apply "Series of Functions (b)". p. 622. 
11. la. sin nx l S la.I. Apply the M-test with M,. = la.I. 13. L: x"/n!(2n + 1) 
IS. E(x) converges for all x, by the Ratio Test for instance. Hence R = oo so E(x) is 

continuously differentiable for all x and 
.. .. .. 

E'(x) = -- =  -- =  - = E(4 Lnx--• I 
x
-- I Ix" n ! (n - 1) ! n ! 

Also E(O) = 1/0! = 1. 
I I 0 

17. [E(c + x)E(-x)]' = E(c + x)'E(-x) + E(c + x)[E(-x))' 
= E(c + x)E(-x) - E(c + x)E(-x) = 0, so E(c + x)E(-x) 
= constant = E(c + O)E(-0) = E(c). 

19. Follow the solution of Ex. 15. 
21. (S2 + C2)' = 2SS' + 2CC' = 2SC - 2CS '"" 0, hence S2 + C2 = constant = S2(0) + C2(0) 

= I .  Therefore 1s 12 s S2 + C2 = l, IS i s l. etc. 
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23. Diff'erentiate the equation in Ex. 22 w.r.t. x. 

25. I = S2{!it) + C2{!it) = S2{!it) + 0 = S2{!it� hence S{!it) = ± 1. But S'(x) = C(x) > 0 for 
0 < x < !it. so S(x) strictly increases for 0 s; x s; !n. that is. S{!it) > S(O) = O. so 
S{!n) = I. 

27. S(x + n) = S(x)C(n) + C(x}S(it) = -S(x� etc. 

Section 8. page 626 

I. Ll' ( - 1)"- 1(2n - 2)x2.- 1/(2n - I) !  3. Li" ( - 1r- 1x2•- 1/(2n - 1) ! (2n - l )  
5. D' ( - l )"x••+ 2/(4n + 2) 7. a 9. !(sin x + sinh x) 11. 1 

13. To have 4/(2n - I ) <  S x 10- 5 requires n ;;::::: 40,001. 

\""' xl• 
15. J' = 3a �o (2n _ 1 )(2n _ 3) + b(x - x3) 17. -214(20!)/( 14!) 

19. Yes; 
� � j E = .L.i° a.p. = �J' [Sn - ( l  + 2 + 3 + · 

. .  + (n - l ))][i(�)"- 1 ) 
= n Li° ( 1 1n - nlxu-- '  = o. 

21. Clearly p1 = I and p2 = I - ! = i. A run of n + 2 tosses without · · ·HH· · · can be 
obtained only by T followed by a run of n + I without HH, or HT followed by a run of n 
without HH, hence P.+2 = !P.+ 1 + ip • . 
sin x J--

23. - - I - !x2 = (l - ix2 + rlox4 + · · ·) - ( 1  - ix2 - ../,x� + . . ·) � -JJx•. 
x 

CHAPTER 1 3  

1. x-axis up 
7, 9 

z 

( I ,  -2, I )  

Section 1 page 630 

3. x-axis forward 5. z-axis up 

( 1 , 3 , 4) 

(I.  2, 3) 

y 

11, 13 

(3, -2, 2) 

Section 2 page 635 

15. 17 
z 

(3, -2, 3) 

1. (5. 2. 4) 3. (3. -2. 10) 5. (1 .  - 16. 9) 7. ( - 1. 10. 4) 9. (4. l. - 1 ) 
1 1. 111 + v1 = v1 + 111. etc. 13. (a + 6)u1 = au1 + bu1 , etc. 15. (ab)u1 = a(b111� etc. 
17. u. *· i) 
19. Let the vertices be u. v. w. z. The centroid of uww is j(u + v + w). The point 

c = i[!(u + v + w)] + tz is on the segment joining this centroid to z; it is i of the way 
from z to the centroid. But c = i(u + v + w + z) is symmetric in the four vertices. so the 
same construction starting with any face and its opposite vertex leads to the same c. 

Section 3. page 64' 

I. 29 3. - I  7. 1 9. arc cos(-!i) It. !it 
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13. arc cos(--hJIS ) 15. fa 17. sji 19. !Ji. 0, !Ji 
21. ;fa. -hfa. --hfa ll (1, 1. 0) and (0. 2. 1 )  for instance 
15. V • W = V1W1 + · · · = W1V1 + . · . "' W " Y 
27. (u + v) • w = (u1 + v1• • • ·) • (w1, • • ·) 

= (u1 + V1)W1 + · ' · :s (U1W1 + · · ·) + (V1W1 + . ' ·) = U " W  + Y " W  

29. Iv · wl = lvl · lwl !cos O I  s l vl · lwl. Equality if v = O. w = O. or 8 = O. 11. 

Section 4. page 648 

I. not on 3. on 5. arc cos( 1/ J 330 ) 
7. (i. ;. j) 9. (0. -7, 14� (-!. o. J� (- 1/-. i 0) 

11. (0. 0, - I�  (0. O. - I�  parallel to x, y·plane 
13. � IS. At time t - S and point (23. 22, 0) 17. x - t(b - c) + • 
19. ix1 - ix2 + jx3 = i 21. -Jx1 + ix2 - ixl = 3 
ll iJ3x1 + iJ3x2 + iJ3x3 = J3 
15. iJ3 27. 0 29. (J - arc sin(• · n/ l• I )  
31. The line is parallel to the plane if and only i f  i t  is perpendicular to the normal n to the 

plane ir and only if • • n = 0. 
33. We want z = ta + b and z • n = p. hence (ta + b) • n - p, t = (p - b • n)/(• • n� so 

z is as stated. 
35. b - [(b - c) · u]u 

Section 5, page 655 

I. ( -j, j) 3. ( - 1, 1 ) 5. (1\. �) 7. ( - '9, 1\. J\) 9. (0, 0,0) 
II. (/i. -!. -/,) 13. two parallel lines IS. The first and third planes are parallel. 
17 . •  = (t. it - i) 19 • • = (t. -!t - !. -it + !) 21. (--.\. -ti. m 
ll 1J(90. 1 1. 67) 
15. Expanded by the first row. it is a linear equation, hence a line. Ir (a,. b,) is 

substituted for (x, y� a determinant with two equal rows results. value 0. Hence the line 
passes through the given points. Note that the coefficients of x and y are not both 0. 

27. (b - a)(c - a)(c - b) 29. ( 1. - 1. l) 31. line x - t(- 1. - 1. 1) + (2. 0, 0) 
33. x + y + z = 2 35. 7x - 4y + 2z = 3 

Section 6. page 663 

I. ( -S. 2. - 14) 3. (-4. 8. -4) 5. (2. -2. 0) 7. 1 - j  9. -7i + 8J + 2k 
II. trfa ( 1 .  - 1. 3) 13. fa 15. (0. - 10. 10) 17. (3. - 1. 4) 19. 1 
21. 87 lJ. Y = V1i + V2 J + 3k 
15. A determinant changes sign when two rows are interchanged. hence 

u · (v x w) = -v • (u x w) = +v • (w x u). 
27. (av2)w3 - (av3)w2 = a(v2 w3 - v3 w2� etc. 
29. Clearly the formula is true if a = b because both sides equal 0. Now for example if 

• = I and b = j. then 
LHS = (i · u)(j · v) - (i • v)(j • u) = 111v2 - 112 v1 

= k · (u x v) =  (• x b) • (u x v) = RHS. etc. 

31. Write (• - b) • v = 0 and choose 
v = • - b: I• - bl2 = (• - b) • (• - b) = o. 

hence • - b = 0, • ... b. 
33. Take • = u = w and b = v. 
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Section 7. page 671 

I. 2 3. x = t(-5, l, l) + (-2, 1, 0) S. • = t(3, l, - S) + (f, !, l )  
7. Jl = t(3, 1) 9. Jl - t( l, 4, -7 )  11. Jl = t(6, -5, - 19) 

13. Jl = s(5, 0, -4) + t(O, 5, - 3) IS. .x = 1 17. 2.x - y - z = 3 19 • .x + y = 3 

21. J2 23. 3/fa 25. (J, J, i) and (f, i. f) 
27. • = (l - s - t)(l , 1, 0) + s(l, 2, l) + t( - 1, - 1, - l ) = (-2t + l, s - 2t +  l, s - t) 
29. A + B = C, aA = bB 
31. L (•1 - p) )( F1 ... L •1 )( F1 - p )( L F1 = 0 - 0 = o. 
33. LHS is the square of the volume of the parallelepiped determined by a, b, c, clearly at 

most the square of the product of the edges. 
35. It is the solid triangle with vertices a, b, c. 
37. We show that the following three conditions arc equivalent: (i) [a, b, e] � 0, (ii) no 

one of the vectors a, b, e lies in the plane spanned by the other two, and (iii) 
a, b, e arc linearly independent. Suppose (i� Then the parallelepiped determined by 
a, b, and e has positive volume, hence (ii). Conversely, if (ii), then the paralJclcpipcd has 
positive volume, hence (i). Now assume (ii) and r• + sb + re = 0. If say t � 0, then 
e • (-r/t)• + (-s/t)b, impossible. Hence t = 0 and similarly r = s = 0, so (iii) follows. 
Conversely, if (iii) and say e = rlll + sb, then re +  sb + (- l)c = 0, impossible, hence 
(ii� This proves (i) if and only if (ii) if and only if (iii). 

Section 8, page 673 

I. cquivaJcnt to I• - 1(• + b)l2 = c2 + ii • +  bl2; center 1(• + b� radius r, r2 = 
c2 + i l• + bl2 

3. Let a, b, e be the vertices. The midpoints of eb and ee arc m = 1(• + b) and 
n = 1(• + e� The vector n - m • 1(e - b) is clearly parallel to be. 

s. i l (o - •> x (d - b)I = i i• x b + b x  e + e x  d + d x • I  
7. Let the rhombus be generated by the vectors • and b. Thus its vertices in order arc 

0, a, • + b, b, and l• I  = lbl . Then (• + b) · (b - •) • lb l2 - 1•12 • 0, which proves 
O(e + b) is perpendicular to iii. 

9. Jl = (4, 3, -t> 
11. 0, a, b arc the vertices of an equilateral triangle. 13. the center of the polygon 
IS. 1(a2b2 + b1c1 + c2a2)112 
17. The point is r- 1(•1 + . . . + e.). 
19. Let u and w be unit vectors in the directions from v1 to v2 and from v1 to v3 • Then 

u - (v2 - v1)/a3 and w = (v3 - v1)/a2 . Thus p - ¥1 = [(a1 ¥1 + a2 ¥2 + a3 v,) -
(a1 + a2 + a3)v1]/(a1 + a2 + a,> '"" c(u + w� where c • a2a3/(a1 + a2 + a3). Hence 
p - v1 bisects the angle at vertex v., etc. 

21. By direct calculation, all six edges have the same length, Ji 
CHAPTER 1 4  

Section 7 page 679 

1. (e', 2e2', 3e3') S. (1, -sin t, cos t) 7. j(2t)2 + (3t2 + 4t3)2 
9. I Ami  I 11. 2 l tP 4 + 9t4 13. (.xa + Yar = xa + Yi· etc. 

IS. (.x2y3 - .x3y2)" ... (i2Y> - X:tY2) + (.x2Y> - .x3j>2� etc. 17. x(t) - te + b 
19. x(t) = "6e 21. dl•l2/dt = d(• • x)ldt = 2• • * = 0, hence 1• 12 • const 
23. •• - [j + t(-1)"]• + Ct - t(-!)"]b 
25. [u, v, wr - [u . (v )( w)]" = " .  (v )( w) + u .  (v )( w)" 

= [6, v, w] + u • (t x w + v x w) - [6, v, w] + [u, t, w] + [u, v, w] 



Section 2. page 686 

I. (a� + a! + aJ}112 3. ( l 763J4l + 2048)/9375 � l .423 
• • 

5. J Jt + 9x• dx 7. J Jm2t2 • .-2 + n2t1.-2 + r2tu-2 dt 
0 • 

9. JS - J2 + ! 1n( 3 -1i) � l.222 I I. b1 + b 2 6 - 4  2 
13. l x l 1  = sin4 t + sin1 t cos2 t + cos2 t = l, 

Chapter 14 A66 

x · * = (sin1 t)(2 sin t cos t) + (sin t cos t){cos2 t - sin2 t ) + (cos t)(-sin t) • 0. 
15. t = 1(J4s+I - l) 
17. L = (Jx1 + y1 dt � (lxl dt � I J "x dt I =  lx(t 1 ) - x(to)I • b - a 

ro ro to 
Section 3 page 694 

I. y = tx, hence y2 = t2x2 = (x + l)x2 = x3 + x2 
3. a1 + x2 = a1 + a2 cot2 8 = a1 csc2 8, hence a3 /(a2 + x2) = a/csc2 8 = a  sin2 8 = y 
5. (a1 + x1)y = (a1 + a1 cot2 8)(b sin 8 cos 8) = a2b csc1 8 sin 8 cos 8 = a1b csc 8 cos 8 = a1b cot 0 = abx t3 + t6 t3 7. x3 + y3 = 21a3 ( l + 13)3 = 27a3 ( l  + 13)2 = 3axy 
9. yl(a - x) = f ( l  :',62)2 J f l: ,2 J = (1 :':2)3 = xl 
11. x = (aO - b sin 8, a - b cos 8). The center of the rolling circle is (a8, a). The vector from 

the center to x has length b and positive angle in: - 8 from the positive x-axis, so it is 
b(cos(i11 - 8� sin(in: - 8)) = b(-sin 8, -cos 8). Therefore 

x = (a8, a) + b(-sin 8, -cos 8� etc. 
13. Exactly the same as Ex. 1 1 . 
15. x = (cos 8 + 8 sin 8, sin 8 - 8 cos 8) 17. s = a In cosh(t/a) 
19. x = ((a - b)cos 8  + bcos(a � b)8. (a - b) sin 8 - b sin(a; b)8) 
21. x = (2b cos 8 + b cos 28, 2b sin 8 - b sin 28� A = 2n:b2 = jrui2 
23. x = (a cos3 8. a sin3 8) 
25. jna2 27. L. = Sa n: l = Sa( 1 - �) increases to limit Sa. 
29. x = ((a + b) cos 8 - b cos( a: b)8. (a + b) sin 8 - b sin( a; b)8) 
31. L - 24b = 12a 

Section 4, page 703 

1. ( 1 + 4x2t 112( 1, 2x) 3. ± (4 + 9r1r 112(2, 3r� + if t > o. - if t < o 
s. l• l- 1• 1. I t• + bl- '(t• + b) 9. 21(1 + 4x2)312 

11. 6/l r l (9r2 + 4)3'2 13. 6lr l I• x bl/I• + 3r2b l3 
15. (12 sin2 2t + 5)1'2/(l + 4 cos2 2t)3'2 
17. l 19. re9/( l + e2•)li2 21. 
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23. (kn) • n + t • dn/ds = 0 and 2n • dn/ds - 0, hence 

dn 
ds . t = -k and 

dn 
ds . n = 0. 

Since t and n arc orthogonal unit vectors, this implies dn/ds = -kt. 
25. x· x = I, hence x· t = 0. Differentiate again w.r.t. s: t· t + x· (kn) = 0, 

k(x • n) = - 1. But I • · nl  � l • l ln l "" I, hence k � I .  
27. Differentiate x • n = -p with respect to rx: 

t · n + x • ( -t) = - - , ( ds) dp 
drx drx 

L 2• 29. k ds - drx, so J k ds = f drx = 21r. 0 0 
2. d ( dp) 2. (dp)2 

h d2p 31. Jo dli p h drx = Jo � drx + Jo p drx2 drx. 
The first integral is 0 because p dp/drx is periodic of period 21t. By Ex. 30, 

J:•p �:� drx - J:• � drx - f :· p2 drx. 
But drx/k = ds, so the result follows from Example Sb. 

33. dsa ta = dxa = 
d� _ a d� = ds t + at =  (ds + a)t. drx drx drx drx drx drx 

Therefore ta = t since ta and t arc unit vectors. 
35. From the solution of Ex. 33, dsafdrx = ds/drx + a, hence f 2. ds f ls ds rz. 

La = 
0 d: drx = 0 th drx + 

J 0 a drx = L + 2na. 

that is, 

1. The shell strikes the hill when y • x tan /J. Substitute this into the solution 
y = -ax2 + bx of Example 2, cancel x, solve for x, etc. 

3. (4t/( 1 + 4t2)]( 1, 2t). (2/( 1 + 4t2)](-2t, 1) 
s. -sin t cost o ( l  +cos2 tt a(l, cos t� jsin t l ( l +cos2 tt a (-cos t, l) 
7. 2(cos 2t)(- l, l� 0 9. 0. -bw2(cos wt, sin wt, 0) 

11. sin t cos t ( I  + cos2 t)- a(-cos t, sin t, -cos t). ( 1 + cos2 t)- a (-sin t, -2 cos t, -sin t) 
13. x • x - I, hence x • v = 0, x • a + v • v = 0, x • a .. - 1. Since x is a unit vector 

perpendicular to t = v, and since the projection a · x of a on x is - 1, it follows that 
the normal component, the component of a perpendicular to t, has length at least I .  

Soct1or "" '1 
l. Vta2 3. i11a2 S. ina1 7. a2 9. Jn + J3 11. (p - i)a2 

13. v = u + 2tw = (cos 2t - 2t sin 2t, sin 2t + 2t + 2t cos 2t� 
a =  -4tu + 4w = (-4t cos 2t - 4 sin 2t, -4t sin 2t + 4 cos 2t) 

IS. (-sin t)u + (cos t)w = (-sin 2t, cos 2t� 
-2(cos t)u - 2(sin t)w = (-2 cos 2t, -2 sin 2t) 

17. jle'(cos(t + ix). sin(t + ix)). 2e'(cos(t + !11), sin(t + !x)) 
19. (sin 8 + 8 cos 0)/(cos 0 - 0 sin 0). 0 
21. ( -3 sin 30 sin 0 + cos 38 cos 8)1( -3 sin 30 cos 0 - cos 38 sin 8). -i cot 30 

2. 
23. a f Jl+82 dO 0 



•/6 r</2 
25. 6a f Jcos2 39 + 9 sin2 30 d9 = 2a J Jcos2 9 + 9 sin2 O d9 

0 0 

Chapter 1 5  A67 

1.7. Set F = • and equate coefficients of u and w: f -1rlJ2 = - l/r2, rl1 + 2� = 0. Then 
(r2B)° = r20 + 2rrlJ = O so r28 = J, constant. Now eliminate 8 in the first equation. 

29. r = l/p so r = -Pfp2• Substitute. 31. Differentiate and cancel 2 dp/d9. 
33. The solution may be written p = K cos(O - 00) + 1/J2• Rotate the x-axis 00 radians if 

K � 0 or 00 + 11: radians if K > 0. 
35. In genera� J2 = r - er cos 9 = r - ex, (J2 + ex)2 = r2 = x2 + y2, so the rectangular 

equation is x2( 1  - e1) - 2eJ2x + y2 = J4• If e = I, then 2J2x + J4 = y1• Each point on 
the parabola is equidistant from (0, 0) and the line x = -J2, because x1 + y1 = 
x2 + 2J1x + J4 = (x + J2)2• Hence (0, 0) is the focus and x = -J2 is the directrix. 

37. Suppose e '# I. Complete the square and divide by the constant term: 

f x - I �:1 r y1 
J• + r- = I. 

( I  - e1)1 1-=e1 
Set a2 = J4/(1 - e2)2 and b2 = J4/( 1 - e1) if e < I, b1 = -J4/(I - e2) if e > I. Also set 
c = eJ2/( I - e1). If e < I, then c > 0, so the equation is 

(x - c)l yl 
a1- + j;2 = I, 

and c1 = a1 - b1, so this ellipse has center (c, 0) and one focus at (0. 0). 
39. dA/dt = !r10 = !J. Integrate with respect to t from 0 to T. The area of the ellipse is 

nab, hence 

Section 7 pag 715 
I. 2a sinh(b/a) 3. ellipse x = ((a + b) cos 0, (a - b) sin 0) 5. y = I + x + !x2 
7. The reflection property, cos IX = cos p, where IX is the angle between the tangent and 

px and P is the angle between the tangent and qx. 
9. hyperbola x2/a1 - y1/b1 = I II. f cx1 dt = c f x1 dt, etc. 

13. f (c1x1 + c1 x1 + c3 x3) dt = c1 f x1 dt + c1 f x2 dt + c3 f x3 dt, etc. 
15. Use Ex. 1 1 :  I e · J x dt I = I J e · x dt I � J le · x I dt. 

But le · x(r)I � lei lx(r)I. hence l e ·  J x dt I �  J lei lxl  dt = lei J lx l  dt. 
17. r = ke<f 19. 1 • 12 = I .  

CHAPTER 1 5  
Section 1 pa9t1 725 

I. V = !nr1h 3. D = [(x - 2)1 + (y - 4)1 + (2 + x + y)1]1'1 
5. F = Gm1m1/d1, G constant 7. c = [a1 + b1 - 2ab cos 0)2 
9. the entire x, y-plane 11. the x, y-plane excluding the two lines y = ± x 

13. the region on and below the parabola y = x1 
15. the x, y-plane excluding the horizontal lines y = !(2n - l )n, 11 all integers 
17. the region above the plane x + 2y + 3z = 4 
19. the unit sphere I x  I = I and its interior 
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21. 

27 29. 31. 

y 

33. all the spheres with center 0 
35. J(x,. + Y.) - (• + b)J S Jx. - •I +  Jy. - bJ. etc. 
37. J[f(x) + g(x)1 - [/(•) + g(•)] I  s J/(x) -/(•)J + Jg(x) - g(•)J, etc. 
39. Yes. Setf(O, 0) = l and use (sin t)/t - 1  as r - 0. 

Section 2. page 731 

I. l, 2 3. 3y. 3x 5. 4x/(y + l �  -2x2/(y + 1)2 
7. sin y, x cos y 9. 2 sec1 2x. -3 csc1 3y 11. 2y cos 2xy, 2x cos 2xy 

ll. (yl _ x2)/(xl + y1)2, -ixy/(x2 + yl)2 
15. 2x/(x2 + 3y� 3/(x1 + 3y) 17. 2e1" sin(x - y) + e1" cos(x - y� -e1" cos(x - y) 
19. iz[(x - yr 1 - (x + Yr 11. -iz[(x - yr 1 - (x + yr 11 
21. 4x, l ll 32, O. 3x3z1 = 3y3z2 25. z,, • 6(3x - y� z, • -2(3x - y� etc. 
27. (z,,)1 - (z,)1 = (2x)2 - (-2y)2 = 4(x1 - y2) = 4z 
29. Set D = x" + y4 + z4• Then xw,, = xyz/D - 4x4(xyz)/D2 = w - 4x4w/D. By symmetry, 

xw,, + yw, + zw, • 3w - 4(x4 + y4 + z4)w/D = 3w - 4w = -w. 
31. (9r2 + 2t)z 33. 413 cos( l/1) + t2 sin(l/t) - 2t 35. 918 
37. 4u-'[(2 - r) sin 4t + 4t cos 4t1 
39• (sl _ r)2(2s2 + r)/2s3rl, - (s2 _ r)2(2s2 + r);4521J 
41. t(st3 + st + I )/z. s(2st3 + st + l )/z "3. }x ft3 /hr 
'5. u, - - lOOlcu � 0, " =0" if and only if x - 0 or 120. Also, 

u,(60. t)/u,(20. r) = sin(i1t)/sin(ix) = 2. 

47. (<1/0u)F(u + v. u - v) - (iJF/iJx)(iJ(u + v)/ou) + (oF/oy)(iJ(u - v)/ou) 
= F,,(u + v. u - v) + F,(u + v. u - v� Similarly (o/ov)F(u + v. u - v) • F,,(u + v, u - v) 
- F,(u + v, u - v). Now add. 

"9. o. l 
Section 3 page 738 

I. (2xy + 3y3, x2 + 9xy2) 3. (ad - bc)(cx + dyr2(y, -x) 
5. r(2x. 2y. x2 + y2) 7. (xyz3//)(yz. xz. 2xy) 
9. the plane 6x + 3 y + 2z = 0 
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II. RHS = (z,. cos 0 + ;:1 sin O)(cos 0, sin 0) + ,- 1 ( -z,. r sin 0 + z, r cos 0)( -sin 0. cos 0) 
= (cosl 0 + sinl O)(z,. . z,) = grad z. 

13. z = J/(rl + 10) so grad : = f. u = - (2r/(rl + IO)l]u points toward 0. 
15. The level curves of/ and g at (a. h) are orthogonal. 17. -4x + y = -2 
19. x + y = I 21. I . 0 23. 0. -3/.j2 25. I 27. ±(0. I )  
29. grad/(•) = bu + cv so lgrad/ l l  = bl +  cl. But h = (grad!) · u = D./(•) and c = 

(grad/) · Y = D./(•). hence (Du/(•>Jl + (D.,/(•>Jl = I  grad/ ll· 
31. -ff 33. !n 
35. LHS = [grad/(•)] · (v + w) = [grad/(•)] · v + [grad/(•)] · w = RHS 

Section 4. page 745 

I. 16x + 16y + 25: .. 3. ( l/jli37)(16. 16. 25) 

3. 2x + 3y + 2: = 14. (J/ji7)(2. 3, 2) 

5. 4x + 13y + 46z = 84. (t/.j230i)(4. 13, 46) 7. x + y + 4: = 0, i\j2(1 ,  I. 4) 
9. ex + (e +  J )y - e: • e +  I. (3el + 2e +  W ' l(e. e +  I .  -e) 

I I. 13.� + 2y • 26. (l/�)(13, 2, 0) 
13. ;: = 0, (0. 0, I )  15. z = 4x + 8 y - 8, i( -4, - 8, l )  
17. ;: = -4x + 13y - 20, ( t/y'li6)(4, - 13, I )  19. : = x + y. !J3(- I. - 1. I ) 
21. : = !x + y + In 4 - !. !(- 1. - 2. 2) ll arc sin !J3 at 0, arc sin ! at (!. !. !) 
25. (a. a. a- l). (a. -a. -a- l� a #  0 

Section 5. p•ge 750 

I. x + y - z = O. plane 3. xl + yl - zl = 0, right circular cone. axis the z-axis 
5. xl + zl • al, right circular cylinder. axis the y-axis. radius a 
7. none 9. none 1 1. all (0, b) 

13. x ""  ( I + h - k. I +  h + k, I +  h + 3k� ij6(1. -2. I )  
15. • = HJ2 - fkj2. !.J2 + !k.J2. 2 - h). !Ji ( I .  I .  0) 
17 • •  =- (-4  + 4k. -4h. -8  + 12k). t.,JIO ( - 3. 0. I )  
19. (Jxl + yl - h)l + z2 = a2 21. x = (u, v.f(u. v)) 
23. Since jx(s)I = I. x(s) and the unit tangent t(s) = dx/ds arc perpendicular unit vectors. 

Now •. x x. a vt x x � 0. so there is a tangent plane. 
25. x.(u. v) = t(u) + k(u)vn(u� where n(s) is the unit normal to the curve at x(s� and 

•.(u. v) = t(u). Also x., >< •. = k(u)vt(u) >< n(u) # 0 since k > O. v > 0, and t and n are 
orthogonal unit vectors. 

I. z 3. 

2 

y 

Section 6. p11ge 759 

hyperboloid of one shccl 

y 

5. 
z hyperboloid of one shccl 

y 
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7. z 9. z 

1 1. circular paraboloid, vertex ( - I, 0, - 1 � axis parallel to z-axis 
13. right circular cone generated by revolving the line y • a(z - I� x = 0 about the z-axis 
·� ·� ·� z z 

·" 

y 
y 

21. z 23. z 

y 
y 

27. f(x/z, y/z) = 0 29. z - 2(�� + :n - n 

y2 z2 kl y2 z2 
31. Each cross section is 1 + 2 = I - 1 •  which can be written in the form 2 + 2 ... I, b c a B C 

where B • Ab, C ,. le. The cc::centricity of this ellipse depends only on B/C ... b/c, 
independent of .l. hence of k. 

33. '1 · x)2 = (cos2 cx)(x • x) 
3� The tangent planes z = 2(ux/a2 + vy/b2) - k all pass through (0, 0, -k). 
37. The terms in /(X) that involve X arc 01 1X2 + 2a2 1XY + 2a31XZ, hence of/ox ,. 

2(a11x + a2 1y + a31z� the first clement of 2xA, etc. 39. gradf(x) = 2(xA + b) 
41. The tangent plane at (u, v. w) is ux/a2 + vy/b2 + wz/c2 = I. It is parallel to n = 

(/, m, n) provided its normal is orthogonal to n. 
The condition is (u/a2, v/b2, w/c2) • (/, m, n) = 0. Thus (u, v, w) lies on a plane (through O� 
so the required set of points is a plane section of the ellipsoid, hence an ellipse. 

Section 7. page 765 

I. max 4 at (0. O� no min 3. no max. min 0 at (2. -3) � no max, min 4 at (0. O) 
7. max !e- 1 at ±HJ2. !J h min -!e- 1  at±(!Ji . -!J2 ) 
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9. max JJ3 at x = !n: + 2n:m. y = !n: + 2n:n, min -fJ3 at x = -!n + 2nm, 
y = -!.n + 2nn 11. i,j'2 at (J-'2, !J'S) 13. 3J'Qb at (Jfil/b, J'Wa) 

15. -432 at (1, 6) 17. no max, min Jj- at (!, !) 
19. max r4 at ( ±r, O� min 0 at (0, 0) 21. fj3; the solid is a cube. 
13. base J'2V x �, height tJl2 V 
25. Set ex = (2 + J2 )1'3• Then Amin = 3cx2 yl/3, taken where the legs of the base are 

x = y = cxV113 and the height is 2V113/cxl 
27. x.y2 + y.y2 + zft = 4 at distance ft from 0 

Section 8. p11ge 773 

I. 4J6 at (fj6. iJ6. 1J6) 3. JJ3 at (j2, I, Jf) 
S. !Jal + bl + cl at (al + bl + c1 )- 112(a. b, c) 
7. max -b,j6. min -nJ6 at ( ± I, ±1J2. ±!J3 � max for an odd number of pluses, min 

otherwise 
9. (iL)4 I I. neither 13. positive definite 15. negative definite 17. neither 

19. Q = a(x + by/a)l ;;::; 0, Q( -b/a, 1 )  = 0. 
21. y = fx - 1 13. y = 2x - !  25. y = 0. 19x + 4.85 27. y =  -! 
29. y = -0.35x + 5.7 31. y = x - i 33. y = 6(3 - e)x + 2(2e - 5)  :::=:: l .69x + 0.87 
35. y = (f/r)(2x + 5 1/x) :::=:: 0.265x + 6.762/x 
37. a� = n- 1 L (x1 - x)l = n- 1 L (xf - 2Xx1 + X2) 

= n- 1 L xf - in- 1X L x1 + _xl = ,.- i L xf - 2xl + x2, etc. 
The other proof is similar. 

39. /..,1,, = n(a�a: - s�1)/a� . 

Section 9. p11gt1 778 

I. y = 2x - 6 3. y = 5xl - el S. y = x - J xl + 4 
7. (y2 - x2)(y2 - 4xl) = 0, hence y = ±x or y = ±2x. 

At (1, 2), - F JF, = -(-24)/12 = 2 = (d/dx)(2x). 
9. ( I  - sin y)/(x cos y - I) II. y(e"' - 3y)/x(6y - e"') 

13. (e' sin x + e" sin y)/(e' cos x - e" cos y) 
15. -2x3/9y5 17. - i;{4y2 + 3x3)?/ = - ix(3 + y2)/y3 
19. 36y/25x2 21. 4/.j26 23 . .J2 25. ah 
27. h = 4(k - I )r, where h is the height of the cylindrical part and r the radius. 
29. 60,000 tons bituminous, 26,667 tons anthracite 
31. (4x..- 2xz)/(x2 + 2ylz - 3z2), (4x - 2yz2)/(x2 + 2ylz - 3zl) 
33. .Jff 35. yes: y = 0 37. yes, because (,1f/ily)(O. 0) = 2 ¢ 0 
39. F(x. y) = (y - 2x2)(y + 3x3) so y =  2x2 and y = - 3x3 are differentiable solutions. 

Section 10. p11ge 784 

I .  12 dx + 8 dy. -9 dx + dy 3. (6xy - yl) dx + (3x2 - 2xy) dy 
S. (2x dx + 6y dy)/(x2 + 3y2) 7. dx/y2z - 2x dy/y3: - x dz/y2z2 
9. e"(cos y) dx + ( - er  sin y + e' cos z) dy - e'(sin z) dz 

11. d(fg) = (Jg). dx + (/g), dy + (fg): dz =  (f.g +Jg.) dx + · · · 
= (/. dx + f, dy + !: dz)g + f (g. dx + g1 dy + g, dz) = (df)g + f(dg) 

13. x dx + y dy = (r cos O)(dr cos 0 - r sin 0 dO) + (r sin O)(dr sin 0 + r cos 0 dO) 
= r dr(cos2 0 + sin2 0) = r dr, 

x dy - y 1lx = (r cos O)(dr sin 0 + r cos 0 dO) - (r sin O)(dr cos 0 - r sin 0 JO) 
= r2(cos2 0 + sin2 0) dO = r2 dO 
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IS. 358.5; exact: 358.479 17. 1.98227; exact to 5 places: 1.98213 
19. 12.98077; exact to 5 places: 12.98093 
21. 1 % decrease; exact to 6 places: 0.9900990% decrease 23. 109 m 
25. -2(z/x) dx - (z/y) dy "" -(2/x3y) dx - (1/x2y2) dy 
27. -(6z2 dx + 16yz dy)/(5z4 + 12xz + 8y2) 29. x3 + 3xy - 2y + 4 
31. $1,724,138; exact to the nearest dollar: $1,778,493 

Section 1 1. page 791 

I. hx + ky = 3x - 7y, e(x, y) = 0 
3. hx + ky "" 0, e(x. y) • xy2, le(x, y)l/l• I s; 1• 13/l • I = 1• 12 - o  
S. hx + ky = -x + y, e(x. y) = (x2 - xy)/(1 + x� 

ie(x, y)/ 1 • 1 1 s; 2 1•12/l• l l l  + xi = 21• 1 Il l +  x l-O as (x, y)-(0, 0). 
7. Letjj(a + x, b + y) = Jj(a, b) + h, x + k,y + e,(x, y) ror i - 1, 2. Then 

(/1 + f2Xa + x, b + y) = (/1 + /2)(a, b) + (h1 + h2)x + (k1 + k2)Y + e1(x, y) + e2(x, y). But [e1(x, y) + e2(x, y)J/l• I • e1(x, y)/ l• I  + e2(x, y)/ l• l-O + 0 - 0 as x - O. 
9. discontinuous.f.1:(0, 0) = /,(0, 0) • 0, not differentiable 

1 1. continuous, /,.(0, 0) = /,(o. 0) = 0, differentiable 
13. Since f is continuous on a bounded closed set, the circle, f has a minimum there. 

But/(x, y) = (x - 3y)1 + y1 > 0 on the circle, hence the minimum is positive. 
Section 12, page 791 

1. (tx)1 + (ry)(tz) - t2(x2 + yz); degree 2 3. 3 5. - 1  
7. (fg](tx) ""/(rx)g(rx) = r-'/(x)t"g(x) - r-•1/g](x) 
9. x/""(rx) + yf,(rx) + z/,(rx) = n1•-1t (x). Set t - I. 

11.  The tangent plane at (t, m, n) is 2tx + 2my = n + z, and a is on this plane if 
2at + 2bm = c + n. Now replace (t, m, n) by (x, y, z); then a is on the tangent plane at 
x provided x2 + y2 - z and 2ax + 2by - z + c. The latter is the equation of a plane. 

13. Take a = (a, b, a1 - b1). Then the tangent plane is 2a(x - a) - 2b(y - b) = z - (a2 - b1). 
Eliminate z from this and the equation z = x1 - y2 of the surface: 2a(x - a) - 2b(y - b) "" 
(xl - al) - (yz - bz� (x - a)z - (y - b)z, Y - b .. ±(x - a� 
The lines are { y - b = ± (x - a� 2a(x - a) -2b(y - b) = z - (a1 - b1) }. 

15. Ji. 17. x1 - 1  19. dz = -dx + (x dx - f dy)/Jx1 - y 
21. z(x, y) = f(x + y� where /(r) is any differentiable function 
23. du = y" dx and dv - y' dx + xy" dx - y' dx = xy" dx = x du, hence dv/du = x. 
25. W = UIJ 
27. If a = 0, then Q - (2bx + y)y. If a '# 0, then at1 + 2bt + c - 0 has two real roots A and µ, 

hence at1 + 2bt + c - a(t - A')l.t - µ� Replace t by x/y and multiply by y1: 
Q(x, y) = a(x - Ay)(x - µy) = (ax - aAy)(x - µy). 

29. x1 = (0, i� x1 ... (-.\, O); X. - (0, 0) 
31. x1 = (!, n x1 = (ff, /.h) :=:: ( 1 .02, 0.24� Here x. -(1',(2 + 4JlJ � 1',(8 - JlJ)) � 

(0.9660, 0.2585). Actually, x3 � (0.9677, 0.2581 ). 
33. ( 0, ±a cos ex, a(cos1a)/(sin a) ) 

CHAPTER 1 6  

Section I. page 798 

1. -f, 3/, -9/ 3. 2 arc sin y, 2x/�, x2y/(1 - y2)3'2 S. 2a, 2b, 2c 
7. both equal -2/y3 9. both equal mnx-- 1 y"- 1  

II. both equal -2(x + y)/(x - y)3 13. 24xy3, 36x2y2 



15. xy2 sin(xy) - 2y cos(xy� x2y sin(xy) - 2x cos(xy) 
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17. -e2'[2 sin(x + y) + cos(x + y)], e2'[ -4 sin(x + y) + 3 cos(x + y)] 
19. g(x) + xh(y) + k(y) 21. any cubic polynomial in x and y : ·[� + r :]< : �;:(x + 2y + 3,1[� ! !] I I 0 3 6 9 
31. 10 33. 10, 20 
35. By the Chain Rule, h� = f,, · I + f, · 2 = 0, hence h(u, v) = g(v), that is, /(u, 2u + v) = 

g(v). But v = (2u + v) - 2u = y - 2x, hence /(x, y) = f(u, 2u + v) = g(v) = g(y - 2x). 
37. k iJ2uJiJx2 = -k(nn/L)2u. = iJuJiJt, and u.(O, t) = u.(L. t) = 0 
39. Direct substitution yields a = (n2n2k/I!) + (v2/4k). 

P2 (m2 "2) 
41. V,.,, = a2 V = - V,, 43. - = - + - n2 

c2 a2 b1 

Section 2, page 803 

l. p2(x. y) = 1 + 2(x - 1 ) + 2(y - l ) + (x - 1)2 + 4(x - l)(y - l) + (y - 1 )1, p1(x, y) = 
I + 2(x - l) + 2(y - I� the linear part of p2(x, y) 

3. P1(X, y) = 0, P2(x, y) = xy 5. p1(x, y) = I, p1(x, y) = l + (x - l)y 
7. P1(x. y) = p2(x, y) = -x - (y - !n) 
9. pi(x, y) = (x - !) + 2(y - i), 

P2(x, y) = p1(x, y) - !((x - !)2 + 4(x - !)(y - ·1) + 4(y - !)2] 
I I. l .12000 ; actually ( 1 . 1 )1 .2 � 1 . 12 1 1 7  
13. 3.99930; actually/(1.0l, 2.01 )  ::=:: 3.99929 
15. h1(x, y) = g(b)p1(x) + /(a)q1(y) -f(a)g(b� 

h1(x, y) = g(b)P2(x) + /(a)qz(y) + p1(x)q1(y) -/(a)g(b) - h1(x, y) 
17. p1(x, y) = I + !x + y at (0, 0). Also fu = - l/4(1 + x + 2y)3'2, /,,, = - l/2(· · ')3'2, 

/,, = - 1/(· · ')312. Hence l!ul. l/,,,l. l/,, I are bounded by 
I I I I I I CT+ x +-iYi3'2 s (i - 0.1 : 0.2)3'2 = co.1)3'2 < co.64)3'2 = co.s)3 = o.s 12 < 2· 

Take M2 = 2: lr1(x, y)I < M2 l(x, y) l2 :s; 2(0.02) = 0.04. 
19. p1(x. y, z) = f(a, b, c) + f,, · (x - a) +!, · (y - b) + !. · (z - 4 

P2(x, y, z) = Pa(x, y, z) + t[/"" · (x - a)2 + f,, · (y - b)2 
+ J., · (z - c)2 + 2/,,, · (x - a)(y - b) + 2/,, · (y - b)(z - c) + 2/.,, · (z - c)(x - a)], 

all partials evaluated at (a, b, c) 
21. p2(x, y) = I + x + 2y + x2 + xy + 4y2 

Section 3, page 809 

I. min 3. saddle 5. max 7. min 9. saddle 11. local min 
13. saddle at (0, O� local mins at ( ± J2, +Ji ) _ 

15. local max at (0, O� local mins at (0, ± 2), saddle points at (±Ji.  0) 
17. local max at (0. 0), saddle point at (}, -i) 
19. local max at (Ji. - Jh local min at ( - Ji ,  Jh saddle points at ± CJt . J! )  
21. local max at ( -!. Jj� saddle points at (-2. 4) and (1, I )  
23. local max at (a. c� local min at (b, d� saddle points at (a, d) and (b, c) 
25. $3.50 and $4.50 respectively for the regular and special 
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Section 4. page 816 

I. i at (±Jl, ±Ji� -! at (±Jl, +JI) 
3. fa at a= hfa (4, 9� -fa at - a  
5. iJJ at • •  iJ3(t, ±J2� -iJJ at - a  7. no max, min JS at tJS(9, 4) 
9. no max or min II. I S  at (4, 2� - 12 at (I, - 1) 

13. 93/164 at (1\, -h� 0 at (1, 0) and (0, 1) 15. 0 at (O, O� -fl at (-J, -/,) 
17. no max, -ti at (,\, fl) 19. It =  2r = 2JAj6ic 
21. !(3 - 2J2 ); the (equal}_ legs are x = y = !(2 -J2 � 
ll 2(j2 - 1) 25. 27JS at (tJS . iJS )  
27. Set • = (•1 + · · · + e.)/n, the center of gravity of e1, • • · , •· · If • = 0, the sum is 

constant. Otherwise it is least for x = •/ I• I . 
29. 21 -"'b', b" 

Section 5 page 821 

L ±J30 at ±*J30<2. I, -S) 3. no max, min 36 at (6, 12, 18) 
5. ±iJS at the 8 various points {±iJiS, ±ifa. ±iJS ) 
7 • ..j,abc at i(a, b, c� 0 on the boundary 
9. From a = 2x)., b = 2y)., c = 2zA. follow x ... a/2)., y = b/2)., z = c/2)., 

hence r2 =- {a2 + b2 + c2)/4A.2, l/2A = r/J, x =- ar/J , etc. 
11. i at (i, -i. i) 13. cube 
15. The cylinder has height tJS r and the cone has height jJS r, where r is the radius. 
17. max = f,r6, taken at x2 = y2 = z2 = ir2 
19. Maximize f = xy + yz + zx on x2 + y2 + z2 • r2• The multiplier equations are y + z -

2A.x, z + x = 2Ay, x + y = 2Az. Subtract the first two: y - x = 2A.(x - y� etc. We conclude 
either x = y = z or 2A ... - 1. If x - y - z, then 3x2 ... r2, f = x2 + x2 + x2 = r2• If 
2A - - 1, then x + y + z = 0. Square: r2 + 2/ = O.f = -fr2• Therefore -fr2 s.f s. r2• 

21. i.s2 J3 23. Differentiate ; the result is negative because sin x < x for O < x < n. 

25. (1, 1, 1 )  27. (1, 0, 0) 29. all points {l/.j'2, y, z� where y2 + z2 = Jf2 
31. max 31 - "''b', min b' 33. fa at (2, 3J2, 3� J"62 at (J"62, 0, 0) 
35. 3k2j3 at x = y = z = 2k 37. {i, i. -i) 
39. i(27 ± j3 )/t3, taken at sides x, x, 6 - 2x, where x - !(6 + j3) ft. 
41. i at (i, -i. -i) 43. 4fa, 4fo 

Se• tion 6 page 827 

I. min 3. min 5. min 7. neither 9. min 11. neither 
13. max 0 at (0, 0, 0) 15. min -i at (-!. - 1, i) 17. min 19. max 21. neither 
23. From lxl s. l x l and IYI s. lx l  follows Ill s. 4 1• 12, henccf-Oas x - o. This proves 

continuity at 0; elsewhere it is obvious. 
25. [f (x, 0) -f (0, O)]/x = x -0, hence /,,(0, 0) = 0. Similarly, f,(0, 0) = 0. As in Ex. 23, 

lf,, I S. 141•1 -0, etc. 
27. /(x, y) = f(y, x) implies /z(x, y) = f,{_y, x). Now apply o/ox again : 

/zz(x, y) = f,,{_y, x). Set X = y = c. 
29. !(3 - JS ) 31. Keep applying the Chain Rule. 
33. Pick the curve x = [B/(A2 + B2)112]t, y - [-A/(A2 + B2)112]t, where A =  f1t1t(O, O� 

B = /,,,(0, 0). Then g(O) = A(AC - B2)/(A2 + 82� where C = f,1(0, O� etc. 

Section 7 page 828 

1. x - y; note that the function equals arc tan x - arc tan y 
3. /,, =J.u,, + f.v,, =!. + f.. Similarly, f1t1t =!. + 2f. + f ... !, •f. -f., 

!,, _ ,_ - 1.f  ... + f...  '"" -!,, = 4f • .  
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5. The answer is the second degree Taylor polynomial or j(l + h)/(1 + k) at (0, 0). 
7. fzi = 2xy/(x2 + y2)2 = -!,, 9. /,,,,. = 20x3 - 60xy2 = -!,, 

11. /,,,,. = 2(y2 _ x2)/(x2 + y2)2 = -!,, 
13. x = r cos 9, y = r sin 9, f. • f,, cos 9 + f, sin 9, 

f,, = /,,,,. cos2 9 + 2/,,, cos 8 sin 9 + /,, sin2 8, f, = r[ -/,, sin 9 + f, cos 9), 
f,. = r[ -f,, cos 9 -f, sin 9) + r2[/,,,,. sin2 9 - 2/,,, sin 9 cos 9 + /,, cos2 9). 
Now combine:/,, + f./r + f ..tr2 = fu + !,, . 

15. -n 17. tJ3. taken at ± (iJ3. tJ3) 19. 6912 at (6, 4) 
21. }(sin et)/(I + sin !«)2 23. 4(abc)114, taken at (abc}- 114(a. b, c) 
25. z..,. = (9kP + 8 - 4j4 + 9kP )/9k; the corresponding x is (-2 + j4 + 9kP )/9k, and 

y = 3x. 

CHAPTER 1 7  
SBction 2 pagB 843 

1. ty3, 20x 3. ! + 2y2 + y4, .lj[(x - 1)5 - (x - 2)5) 
5. in(l + y2� 1.//(1 + x2) 7. ¥ 9. i 11. 0 13. -¥ 

15. In t 17. 0 19. f1t 21. t In 3 + 3 In 2 - l/ ll ¥ 25. ¥ 27. §./-

29. JJ = ( u:/(x, y) dy) dx - 0 because the inner integral is 0 since f(x, y) is an odd 

runction of y 
31. Jf Jdx dy 

SBction 3. pagB 851 

1. e - I 3. 1 5. --k 7. -f, 9. 1/ 1 1. ! In i + }(t\ - -h) 
13. !(e + e- • ) - 1 = 2 sinh2(!) 15. i 3 (f 2+1</3 ) 3 ( (J- I W l  ) 17. J f(x, y) dy dx 19. J J f(x, y) dx dy 0 " I (J-9112 
21. J 10 ((0"-,,if(x, y) dy) dx = ( ((+ ;ls�(x, y) dx) dy 

0 0 0 5 -_J25-,l 
ll ( (J 3Jt -x•/(x, y) dy) dx ... ( (JJl -,•i9f(x, y) dx) dy 0 l - 31< 0 I -1/l 

25. 2(e2 - e) 27. 0 29. H 31. +, 33. iJS 

3S. Integrate over the triangle with vertices (0, O� (1, O� (I ,  1). 
37. ( (f:f(x, y)dx) dy 

SBction 4, pagB 857 

1. 3. 

- I 5 
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9. J /Sil ( f / �  /(x. y) dy) dx I I. ( ({-orulu/(x, y) dy) dx 
- ./312 • I - Ji"="il 0 

arc sin " 

JJ. (I 
((:"

-:tCl/J/(X. y) dy) dx + ( cc;l-1fl/l/(X, y) dy) dx 
JS. 1 17. 8 In 2 19. J 21. 42 23. e6 - 3e1 + 2 25. * 27. !J2 

29. ( ((/ (x. y) dx) dy 
Section 5, page 867 

I. 0 3. M1[2 ln(2a) - 1) 5. -A•a6 7. x In 2 9. 1/x II. ti 13. i•a3 
15. /,.tc 17. � 19. diJx 21. Q1t 23. AD - BC 25. -2(u + v) 
27. In terms of u and v, the relations defining D are u - v � O. v � 0, a S: (u - o) + v S: b. 

that is. 0 s: v s: u and a s: u s: b. the relations defining E. Also o(x. y)/o(u, v) = I .  
• 

29. f u.f(u) du 31. l/v 33. !(ab)3'2(b - a) 

35. .i = { (u. r) I - p+� $ u $ Jv2 + 4ab, 0 S 11 s b - a } 
r.t1on 6 ag 8. 3 

I. F = (1 - e-1)/1. F' = e- 1/1 - 1/12 + e-1/11 
3. F = [ ( I + Ir I - 1• + I]/( n + 1 � F' = ( I + Ir - ,. 
5. x = u(b - •) + v(c - •) where u � 0, v � 0, and u + v s:  I ;  ! lb x c + c x • + • x bl  

l o  ( -
7. J0 J0 a dz) dO = 21t0h 

9. x = ((A + a  cos ix) cos O. (A + a cos ix) sin 0, a sin ix). 0 s 0 s: 2x, 0 s: ix s: 2x; JJ a(A + a  cos ix) dO dix • 4x1 Aa 

f i. ( . .  ) 1 1. . 0 J 0 [c2 sin1 u (b1 cos1 r + a2 sin1 v) + a1b1 cos1 u) 1'1 sin u Ju dv 

13. ff ( 1 + a1 + b2)1'1 dx dy = ( 1  + a1 + b1)1'1 • ID I  
D 

1s. rz. ( r ·  F,-) do ... 2n 
Jo Jo 1 - r1 

• 
17. 4a2(n - 2) 19. 2n f x(s) ds . . 

21. - !x 23. + «> 25. n/( I - p) 

10 

27. !Na 29. !.+ 1(1) = -/�(1) 

' 

1. 1. (i. i) 3. 3. (t o) s. i. (n. n> 1. so. (o. ff> 9. t. (o. i> 
II. !. (i. /ii) 13. !Mh, (0. 4h/3tc) 15. iM1, (4a/3tc, 4a/31t) 
17. !a1a. ia((sin ix)/ix. ( 1 - cos ix)/ix) 19. !M. (2a/tc, 2a/n) 
21. !katc1• (-4a/tc1• 2a/1C) 23. 12. (i. I )  
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25. By Example 4. x = 4a/37t, so V = 2uA = 27t(4a/37t)(!Jta1) = fxa3. 
27. The right triangle or base a revolves about its leg or length h into a right circular 

cone. x = !a. A =  !ah. and V = !na1h = 2nxA. 
29. A = area or sphere = 4na2• L = length or semi-circle = na. x = A/27tL = 2a/7t. 
31. !Ma1 33. fMa1 35. ioM = � 

Section B, page BB7 

I. I . 776 3. 0.63 77 5. 0.6888 
7. 0.05208, exact 0.05 9. l . 1847 (m = n = 4: l. 1842) 

1 1. 0.52772; exact V + 4 ln 2 - J./ In 3 =:: 0.52779 
13. 1.6502 15. 0.064 17. 4 x 10- 3 
19. {!h L B1P1X!k L C;q;) = .hk L B1C)pl q) = .hk L A1JfiJ 
21. Both sides equal A +  !B + tc + iD 23. 0.0487; exact 0.04 
25. IH I  s tN ff y(I - y) d:< dy + tM J� :<(I - :<) d:< = -h(M + N). 
27. Apply Ex. 26 to g(11. v) = f(a + hu. c + kv� 0 s 11 s I. 0 s v s 1 , etc. 
29. lerrorl s i = 0.125 

Section 9, page BBB 
• 

I. P = fC 3. ia" 5. 2(e:w - 1 )/a 7. V = J A(z) dz 9. !L 
• 

I I. A = ia1(2 cot a - 7t + 2a). m� = ia3( 1 - sin a)1/sin a 
13. aA1 - !xa2 A + ia3 15. M = in(3 + 4n1� K = 3(3 + 4n2t 1(6x, 5 - 4n2) 
17. By Ex. 16, (J f) 2 - J f 3 = 2 JJ (non-negative) � 0. 
19. The change or variable s = x - t does it. 

21. L(f • g)(s) = 
.(" e-u((f(t)g(x - t) dt) dx = J 0..,f(r{f,'"' e-ug(x - t) dx) dt 

= (!(t)e-"( f ... e-•(rllg(x - t) dx) dt = f ... /(t)e-"( r ... e-•1g(y) dy) dt • 0 • , • 0 • 0 
= ((f(t)e-" dc) {.("e-•1g(y) dy) = L(f)(s) · L(g)(s). 

23. First. p - Po = kp = k rp(11) d11. Differentiate with respect to z: dp/dz = kp(z). Thererore • 0 
p(z) is an exponential runction, p(z) = p0�'. so p =  1c- 1(p - p0) = k- 1p0(�= - 1). 

25. (2np0/k3){e-"(ak - 1) + 1 - 1(ak)2] 
27. The result follows from JJ (x - y){/(x) -/(y)] dx dy � O. where the integral is taken over 

a S x s b, a s y s b. 
29. Pythogorean theorem 

CHAPTER 1 8  

Section 1. pag11 897 

1. ! 3. J In t 5. 2 
7. (a + b + c)6 - (a + b)6 - (b + c)6 - (c + a)6 + a6 + b6 + c6 9. !A I I. -Ji 

13. n 1s. 1/6! 11. -h 19. i 21. H n 54 2s. k(ia3)3 
• 

27. t r (a - x)2g(x) dx 29. ! 31. Ir. 33. 26/9! • 0 
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I. r - + - + - - 1  (cos 8 sin 8) z 
a b c 

9. !x(e - l )2 11. iJr 
21. * = ru + riJw + zk 

Section 2. page 904 

3. r = 2a sin 8 5. -h,a4b2 
13. 1ftw.4 15. 2x 17. ia3b2 

• 
23. L • f J ;2 + ,292 + z2 dt 

• 
25. x,, = r. u  + dJ,w + z,k, x,, = r,u + rO.w + z. k 
27. A =  ff Jr2(0(8, z)) 2 + (o(z. r)) 2 + ,2(o(r, 8)) 2 du dv o(u, v) o(u, v) o(u, v) D 

7. -.\a5 
19. 16x 

29. Take the parameterization r = r, 8 = 8, z = Ja2 - r2, where 0 s r � a, O s  8 s 2x. 
The set-up is 

A =  -- dr d8 = 2M = 2Jra2. ff 
ar 

J 
• r dr 

z 0 Ja2 _ ,2 
31. df =/, dr + f, d8 + !. dz 

Section 3 page 913 

I. p = 2a cos ti> 3. p sin2 ti> = cos ti> 5. p sin ti> = 2a cos 8 1. -h,xa4 
9. 41W"+3/(n + 3) II. -b;t 13. /sJra' 15. Mu' 17. fr-./i.a5 

19. -� 21. Vt 
l l . . 

23. grad/=/, A +  -f. ,. + --.- /, v 25. v = pA + pt/>11 + p sin ti> 8v p p sm ti> 
• • 

27. L ,.. J J(p)1 + p2(�)2 + p1 sin2 ti> (6)2 dt 29. L = J JI+ (sin2 oc)82 d8 
• • 

31. x,, = P. A + pt/>111 + p sin t/> 81 v, X. = P. A + pt/>. 11 + p sin t/> 8. v 

33. A =  ff PJP; sin� t/> ra((OJJ1 + sin1 t/> [0(8, p)] 1 :ra(p, t/>)J 2 du dv a(u. 11) a(u, 11) a(u. 11) 
D 

35. !Jr(sin oc)(2a2 + b2) 37. ita2b2c2 39. -Jrpcabc4 
41. I = A Jf J /[ x( u)] du d11 dw, where S is the tetrahedron with vertices 0, ( l, 0, O� 

• 
(0, l, o� (0, 0, l), and A =  I det(b - .. c - .. d - •)I. Thus • is described by u 2: 0, 
11 2: 0, w � O, u + 11 + w s  l. 

Sec '' n 4. pag 97-

I. (ja, ja, ja) 3. (0, 0, ja( J + cos  oc)) 5. (0, 0, j(b4 - a4)/(b3 - a3)) 
7. (0, 0, !a(l + cos  ex)) 9. (-ia. O); use the Addition Law. 
II. (0, 0, ja cos ex) 13. {!a, !a. !a) 15. (iJra(sin oc)/a.. 0, 0) 
17. The centroid is on the axis of the frustum, at distance ih(b2 + 2ab + 3a2)/(b1 + ab + a2) 

' from the larger base. 
19. (ja, jb, ic) 

Section 5 pag 9r 

I. I,. - iM(b1 + c1� etc. 3. I,. - 1, - nM(3a2 + 4111� 1. = !Ma1 
5. I,. = nM(3a1 + 4111� 11 = f,M(1Sa2 + 4112� I. • iMa1 
7. /,. = 11 - -JaM(3a1 + 2h1� I. = 1'\Ma1 9. /,, - 1, = iM(a2 + h2� 1. = iMa1 
11. I,. = 11 = I. =  ja2M 13. /,. = 11 = !M(2A1 + 5a1� I. - !M(2A1 + 3a1) 



15. I.- = I, = /1 = 1(1 .. + I, + /,) = f fJf (x2 + y2 + z2) dM, etc. 

Chapter 18 A79 

17. I .. , =  -!Mab, etc. 19. I,, = I,.. = -f1t- 1Mah, I .. , =  -!Jt- 1Ma2 
21. I .. , =  I,. = 1..- = -•Ma2 

Section 6, page 930 

I. -!1t 3. !(ab + be + ca) 5. -2  7. 35 9. b - a 1 1. F = grad(x3y2z� I 
13. -y dx + x dy = -(r sin 8')(.dr cos 8 - r d8 sin 8) + (r cos 8)(dr sin 8 + r d8 cos 8) = r2(sin1 8 + cos1 8) d8 = (x1 + y2) d8 
15. i 17. F = grad(-11• 1- 3), l oo l- 3 = 0; 1 1• 1-J  19. F = grad ln lx l  
21. (�. 2, i) 23. (0, !. 0) 25. (0, -!. -2) 
27. mab(sin t - t cos t, -cos t - t sin t, a/b) 

Section 7, page 936 

I. 12 3. 0 5. 2 7. 1 9. i1tab(a1 + b1) 11. -Ja5 13. 21t 15. 0 
17. 0 
19. f (-uv, + vu,) dx + (uv .. - vu .. ) dy = ff ((uv .. - vu .. ) .. - (-uv, + vu,),] dx dy 

� D 
= ff [u(v .... + v,,) - v(u .... + u,,)] dx dy. 

D 
The other terms cancel each other. The proof requires u and v to have continuous 
second partials on D. 

21. F,(x, y) = Q(x, y) and G .. (x, y) = P(x, y) 23. A = ! f r1 d8 
Section B. page 947 

I. 3 3. !na4 5. 2n - .Y 7. 8 9. 0 
11. 0 if n is even, 4na".2/(n + 2) if n is odd 

0 0 0 
13. � (/A) + oy (JB) + a� (JC) = (!,. A + f A,.) + · · · 

= (!,. A + f, B + f.C) + f(A,. + B, + C,) = etc. 
15. Choose the z-axis upward, with 0 at the ftuid surface (to avoid any funny stuff with 

orientation). Then p = -l>gz, and the buoyant force is 

F = - ff p do = - f ff (grad p) dV = l>g f ff k dV = l>gl DI k. 
•'D D D 

Thus the force is directed upward, and its magnitude is the mass of fluid displaced 
by D times the constant of gravity, i.e., the weight of the displaced ftuid. (The 
first sign is negative because n is outward, but pressure acts inward.) 

17. 0 19. F = (0, 0, - F3) where F3 = 27t l>Gc(! - -E!..,,�). c ...;al + cl 
2GMc ( I I ) . ( O l) 21. F 3 = -2- - - r.:r;-5 , and lim._0 F = 0, , -GM/c . a c v al + c2 

23. F(x) = -f(p)x, where p = l • I · 
25. Let S be the sphere through x with center O. Then 

-4nGM = ff F · do = -ff J(p) x · do = -f(p) ff x · do. 
• • • 
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But JI ·  da = (pn) • (n da) = p da, so Jf JI ·  da = p ff da = 47tp3• 
I I 

Therefore -4xGM = -4xp3/(p� /(p) - GM/p3• 
27. p = ixG 61(a1 - p1� p(O) = ixG 61a1 
29. curl(/A) = curl(/ A,fB, JC) = ((/C), - (/B), , · · ·) = (/, C - f. B + /(C, - B,� · · ·) = (f,C - f.B, · · ·) + /(C, - B, ,  · · ·) 

= (f,,,J,,J.) >e (A, B, C) + f curl A =  grad/ >e A +  f curl A. 
31. By Ex. 29, curl(/(p)J1] = [grad/(p)] >< JI +  /(p) curl JI =  [(f'(p)/p)J1] >e JI + 0 = 0. 
33. curl(• >e JI) -= curl(bz - ey, ex - az, ay - bx) = ((ay - bx), - (ex - az), ,  

(bz - ey), - (ay - bx) .. .  (ex - az) .. - (bz - ey),) = (2a, 2b, 2e) .. 2e 
35. A/= div(gradf) 37. n(n + l)p.- 1 
39. u = w x JI so curl v = 2w. See p. 709. 

41. f • 0, ff = ff [(x3 + y3 + z3) - 2(x1z + y2x + z1y)] da 
= ff 3(z3 - 2xy1) da = 3 ff (cos3 ti> sin ti> - 2 sin4 ti> cos 9 sin1 9) dt/> d9 
= 3[(i)(!n) - 2(-hx)(-i)] • 0 

z. 
43. f = f (sin3 9 - cos1 9) d9 = -it, 0 la I 

ff = ff [cos3 9 - 2z cos1 8 + sin3 8 - 2 cos 9 sin 9] d9 = -2 f cos1 9 d8 f z dz � - n 0 0 

Sttctlon 9, page 949 

l. A =  2JUJh 
3. /(JI) = /(pJ1/p) = p"f(J1/p� that is,f[p, t/>. 9] = p".f[l, t/>. 9). 
5. 0 if n is odd, 12rut'+ 3 /(n + I )(n + 3) if n is even 
7. The level surfaces are toruses, lateral surfaces of right circular cones, and planes on the 

z-axis. They are mutually orthogonal. 
9. It is a pyramid with base a unit square, apex one unit above one vertex of the 

base; volume !. 
11. F = ( -4xG 6a/b, 0, 0) 

13. By symmetry ff f y1• dY - ff f z211 dY, taken over the unit sphere p :S 1. Now evaluate 

in spherical coordinates. The required formula falls out. 
15. 4a1b arc sin(b/a) - Ja3 + f(2a1 + b1� 
17. Parameteri7.c the surface by Jl(s, 11) = Jl(s) + 11t{s). Then Ix. x JI. I = l(t + 11kn) x ti  • vie. 

hence A = ff 11 k(s) ds dv over 0 :S s :S L, 0 :S 11 :S I .  The result follows. 

19. in sr 

21. By the Divergence Theorem, ff J (f- div A) dY - 0 for such D. If f - div A >  0 at 
D 

some point Xo .  then by continuity f - div A > 0 at all JI sufficiently near Jlo, hence if 

D contains Xo and is sufficiently smal� Jf f (f - div A) > 0, a contradiction, etc. D 



ll By Ex. 22. 

Chapter 1 8  A81 

ff (AA) · do = ff [A(Pi. t;. O)p� - A(p0 , ,P, O)pt] sin q, d,P dO 
••s•s•• •os•s•1 

ff (f �' 0: (p1 A) dp) sin tP d,P dO = ff f � (p2 A) sin q, dp dt; dO 
•os•s•1 D 
•os•s•1 

= ff f }2 ;p 
(p2A) p1 sin tP dp dt; dO =ff f ;2 :P (p2A) dV. 

D D 

lS. 
ff (Cv) 

• do = fff-
.1 �C: dV. p SID tP oO 

rD D 

27. UA = Ak + Bp + Cv, then 

div A =  12 (p2A)p + .1 "'- (B sin ,P). + .1 - C, p p SID 'I' p SID tP 
29. llf = p- ' (pf)P" = p- '(e-tP)PP = k1p- 'e- lP = kl f 



Abscissa 9 
Absolue convergence 

integrals 564 
series 552 

Absolute value 4 

A 

Absorption of radjation 177, Ex. 3 5 290 
Acceleration 1 15 704 

in polar coordinates 7 1 1  
Addition Jaws 

center of gravity 918 
sine and cosine 180 

Addition of vectors 632 
Adiabatic 325 
Algebraic area 224 
Alignment chart 792, Exs. 25-26 
Alternating series 550 610 
Angle between lines 1 9  439 
Angular 

frequency (pendulum) 618, Ex. 12  
momentum 929 950, Ex. 20 
velocity 708 

Antiderivative 86 
Antidifferentiation 86 
Approach infinity 33 
Approximate integration 229 494 883 
Approximating sum 214 
Arc 

cosecant 332 
cosine 329 
cotangent 332 
length 680 

as parameter 683 
in cylindrical coordinates 905, Ex. 23 
in polar coordinates 714 
i n  spherical coordinates 9.14, Ex. 27 
intuitive de.ftnition 680 
limit definition 685 

secant 332 
sine 326 

I ndex 

tangent 330 
definition by integral 352 

Archjmedes 204 2 1 8  
principle 279 

Area 204 223 264 
inside closed curve 689 935 
in cylindrical coordinates 905, Ex. 27 
in polar coordinates 7 1 0  
i n  spherical coordinates 914, Ex. 33 
of sphere 275 
of surface 870 

Arithmetic-geometric mean inequality 138 
821, Ex. 1 8  

Arms race 173 
Asymptote 42 

of hyperbola 414 
Asymptotic expansion 576, Exs. 21-22 
Atmosphere (unit of pressure) 282 
Average velocity 1 1 3  
Axis of parabola 405 

B 

Bacteria growth 1 7 1  176, Ex. 28 
Bar (unit of pressure) 282 
Bifolium 431 ,  Ex. 1 2  
Billiards in space 635, Ex. 20 
Binominal series 606 
Boundary value problem 355, Ex. 35 
Boundedness of continuous function 146 
Branch of hyperbola 415 

c 
Capital value 286 
Cardioid 43 1 ,  Ex. 9 
Cartesian coordinate system 9 
Catenary 345 
Cauchy 

criterion 536 554 
sequence 536 
test 543 

A83 
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Cauchy-SChwarz inequality 251, Ex. 22 
642, Ex. 29 

Cavalieri's principle 888, Ex. 7 
Center 

of ellipse 409 
of hyperbola 415 

Center of gravity 
plane domain 875 
polar coordinate 878 
solid domain 915 

Centripetal acceleration 707 
Centroid 877 916 
Chain rule 77 104 

several variables 729 730 789 
Change of scale 78 
Change of variable(s) 238 362 

double integral 866 
triple integral 912 

Chapman (theory of ionosphere) 
178, Ex. 36 

Chord theorem (convex function) 151 
Circle 44 394 

polar equation 422 
Cissoid 431, Ex. 7 694, Ex. 9 
Closed interval 205 
Comparison test 

integral 561 562 572 
sequence 537 
series 545 

Completing the square 22 
Components of a vector 631 
Composite function 1 2  721 
Compound interest 172 
Concave function 108 151 
Concboid 431, Ex. 13 
Cone, quadratic 155 
Confocal conics 446, Ex. 16 
Conic 404 

rotation of 432 
Conjugate axis of hyperbola 415 
Conservation laws 

angular momentum 929 
energy 927 
momentum 928 

Consistent system 653 
Constant factor rule 68 
Constrained optimization 810 816 
Continuous function 

several variables 720 
single variable 98 

basic properties 98-100 146-147 
254-256 346-349 

Convergence 
absolute SS2 564 
in Ra 719 
of improper integrals SSS 561 

of power series S78 
of sequences 527 
of series S45 S46 
of ( 1 + l/n)• 616 

Convex function 108 151 
Convexity of the ellipse 444 
Convolution 889, Ex. 1 8  
Coordinate planes 629 
Coordinates 8 

of a vector 631 
Cosecant 184 
Cosine 179 
Cotangent 184 
Couple (of forces) 672, Ex. 32 
Covariance 771 
Cross product 

analytic definition 6S8 
geometric definition 6S7 

Curl 947 
CUrtate cycloid 694, Exs. 1 1-12 
curvature 697 
Cusp 697 
Cycloid 692 
Cylinder, quadratic 7S7 
Cylindrical coordinates 899 

D 
Definite integral 215 254 
Degenerate conic 404 
Deltoid 69S, Exs. 21-22 
Demand 324 
Density 

of Earth 949, Ex. 6 
plane domain 874 
solid domain 91 S 

Dependent variable 1 1  
Derivative 63 102 

of the limit of a sequence 621 
of a vector function 677 
partial 726 

Determinant 6S3 
Determined system 6S3 
Difference 

operator 48S 
quotient SS 

Differentiable function 64 102 787 
twice 89 

Differential 360 781 
equation 1 1 7  

series solution 614 
Differentiation 64 
Direction 

cosines 640 
field 159 

Directional derivative 73S 737 



Directrix of parabola 404 
Dissociation energy 137, Ex. 34 

175, Ex. 17  
Distance formula 43 636 

in polar coordinates 424 
Distance, point to plane 648 
Divergence 

of vector field 942 
theorem 943 

Divergent 
power series 578 
sequence 527 
series 541 

Dividing out zeros 49 464 
Division of a segment 394 644 
Domain 1 1  718  

between graphs 844 
of convergence 580 
of integration 833 853 

Domains and inequalities SSS 895 
Dot product 636 
Double integral 834 
Dummy variable 222 

E 
Eccentricity 

ellipse 428 
hyperbola 430 
orbit 71S, Ex. 33 

Einstein function 20 l, Ex. 17 
326, Exs. 33-34 

Element of 
area 857 

in polar coordinates 860 
vectorial area 939 
volume 

in cylindrical coordinates 900 
in spherical coordinates 907 

Elimination 650 
Ellipse 407 

polar equation 428 
Elliptic 

cylinder 7S7 
integral 612 614 
paraboloid 756 

Epicycle-deferent 716, Ex. 3 
Epicycloid 696, Exs. 29-32 
Equality of mixed partials 473 
Equation of plane 64S 
Equilibrium (rigid body) 671 
Error in Taylor approximation 823 
Escape velocity 292 294 
Estimates of sums 227 
Euler relation (homogeneous functions) 

791, Exs. 9-10 

INDEX Al& 

Even function 27 1 1 1  
integral of 241 
Taylor series of 595 

Existence of extrema 146 
Expected value 601 
Exponential function ( s) 1 S7 162 

power series definition 625, Exs. 15-18 
Exponential integral [Ei(x)] 

S76, Exs. 21-22 
Extrema, existence of 146 

Factor theorem SO 
Factored 

F 

polynomials 36 468 
rational functions 40 

False position SOS 
Fibonacci numbers 60S 
First degree approximation 450 
First derivative test 147 

several variables 761 766 
First moment 601 
First order approximation 82 

several variables 780 783 
Fixed point Sl4  
Fluid pressure 281 
Aux 326, Ex. 3 7 
Focus (pl.: foci) 

ellipse 407 
hyperbola 413 
parabola 404 

Foerster, von, "doomsday" equation 3S4 
Fotium 694, Ex. 7 
Free surface 287 
Freezing of fluids 288 
Function 1 1  
Fundamental theorem 220 257 2S8 

G 

Gauss's theorem 943 
Gaussian quadrature S03 

error S06, Exs. SS-S6 
General directional derivative 737 
Generalized 

mean value theorem 474 
Rolle's theorem 470 

Generating function 60S 
Generator of 

cone 7SS 
cylinder 757 

Good (econ.) 324 
Gradient 732 

field 744 
Graph 1 3  

several variables 721 
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Gravitation, law of 277 
Gravitational 

constant G 277 
potential SS3 

Green's 
formula 937, Ex. 19 
theorem 932 

Growth of 
exponential function 163 169 
logarithm function 3 1 6  

H 
Half-angle formulas 37S, 691 
Halley's method S20 
Hanging cable 343 
Harmonic 

function 829, Ex. 6 
motion 29S, Ex. 18 
series S40 

Heat equation 799, Ex. 37 
Herron's formula 102, Ex. 39 
Higher partials 79S 
Hill climbing S09 
Homogeneous 

equations 667 
function 791 

Hooke's law 277 
Horizontal shift rule 78 
Hyperbola 413 

polar equation 430 
Hyperbolic 

function 338 
paraboloid 7S6 

Hyperboloid 7S3 7S4 
Hypocycloid 69S, Exs. 19-28 

Ice cube model 288 
Implicit 

differentiation 77S 783 
function 774 

Improper integral SS4 S10 
Impulse (of force) 929 
lncenter 674, Ex. 19 
Inclination angle 19 
Income stream 286 
Inconsistent system 649 
Increasing function 1 SO 
Indefinite 

integral 3S7 
quadratic form 773, Ex. 20 

Independence of path 926 
Independent variable 1 1  
Inequalities 

domains and SSS 89S 

for integrals 247 
Infinite 

product S77, Exs. 29-32 
series S39 

Inflection point 108 
Inner product 636 
Integrable function 2S3 
Integral 

definite 2 1  S 2S4 
improper SS4 S10 
indefinite 3S7 
of inverse functions 3Sl 
of step functions 2S2 
of the limit of a sequence 621 
sign 206 
tables 388 
test S66 

Integration by parts 237 380 
Intercept 1 8  
Intermediate value theorem 346 
Interpolation 481 

error in 492 
Lagrange 490 
Newton 483 
polynomial 482 

Intersection of 
line and circle 39S 
three planes 6S4 
two circles 397 
two planes 66S 

Interval of convergence S79 619 
Inverse function 300 

derivative of 304 
graph of 303 

Inverse hyperbolic functions 341 
Inverse square law 94S 
Involute of circle 69S, Ex. lS 
Iterated integral 838 846 891 
Iteration (of function) S 13 

J 
Jacobi identity 673, Ex. 16 
Jacobian 866 912 

K 
Kelvin transformation 9Sl, Ex. 30 
Kepler's planetary laws 712 

71S, Exs. 37, 40 
Kinetic energy 29S, Exs. 18-26 

L 

Lagrange 
interpolation 480 
multiplier rule 8 1 1  817 819 



Laplace 
equation 829 
transform SS1 S6S, Exs. 27-30 

889, Ex. 21 
Laplacian 949 
Law(s) of 

exponents 161 
mass action 17S, Ex. 1 3  
mean 149 

Least squares 769 
Legendre polynomials 610, Ex. 2S 
Leibniz 

formula 92 
rule 868 

Lemniscate 431, Ex. 6 
Length (vector) 63S 
Level 

curve 733 
surface 72S 744 

Lhospitat 
habit 478 
rule 47S 476 477 

Lima�n 431, Eits. 10-1 1 
Limit S9 94 9S 

of a sequence S26 
of a vector function 67S 
of ( 1  + l/n)• 166 616 
of (sin x)/x 193 
rules 97 

Limits of integration 206 
Line 1 8  

polar equation 421 
Line integral 924 
Line of regression 771 
Linear 

function 1 6  
independence 669 672, Ex. 37 
interpolation 481 
system 649 

Local maxima and minima 138 
Locally increasing functions 147 
Locus (pl.: loci) 400 
Logarithm function 307 

integral definition 3S3 
to base a 320 

Logarithmic differentiation 31 S 
Lorentz transformation 3S6, Ex. 39 
Lotka-Volterra equation 177, Ex. 29 

.. 
M-test 623 
Maclaurin series SSS 
Magnitude of a star 326, Ex. 37 
Marginal 

productivity 836, Ex. 26 

revenue 324 
Mass 874 9 1 S  

I N DEX A87 

Matrix of second partials 798 
Maxima and minima 2S 123 

several variables 760 
Mean of probability distribution 601 
Mean value of a function 226 
Mean value theorem 149 471 

generalized 474 
for integrals 479 

Mesh of partition 834 
Method of 

false position SOS 
undetermined coefficients 482 

Midpoint 
approximation 23S, Exs. 23-26 
formula 46 634 

Minima 2S 123 760 
Minor 653 
Mixed partials 79S 

equality of 822 
Moment 876 9 1 S  

of inertia 882 9 1 9  
Momentum 928 
Monotone 

function l SO 348 
sequence S34 

Multiplication, vector by scalar 633 
Multiplicity of a zero 36 468 
MVT (mean value theorem) 149 471 

479 

N 
Natural frame 

cylindrical coordinates 902 
polar coordinates 7 1 1  
spherical coordinates 9 1 1  

Natural logarithm function 307 
Needle gauge 200, Ex. 1 2  466, Ex. 32 
Negative definiteness 768 
Newton 

interpolation 483 486 
law of cooling 17S, Ex. t s  
law of gravitation 277 
law of motion 70S 
-Raphson method S 1 S 

systems 792 
Newton, the (unit of force: N )  277 
Normal 

component of acceleration 707 
distribution 873 
form 

line 421 
plane 647 

Numerical quadrature 234 
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Octant 629 

0 

Odd function 27 1 1 1  
integral 242 
Taylor series 595 

One-sided limit 98 
Optimization 509 760 766 
Order in real number system 2 
Order of magnitude estimates 228 
Ordinate 9 
Orthocenter 674, Ex. 20 
Orthogonal vectors 638 
Oval 701 

p 
Pappus theorems 880 
Parabola 2 1  44 404 
Paraboloid 756 
Parallel 

axes theorem 921 
ovals 704, Ex. 33 

Parametric 
equation of line 643 
equation of plane 669 
surface 746 

Parameterization of 
circle 689 
ellipse 410 
hyperbola 691 

Parameters, plane 670 
Partial 

derivative 726 
fractions 372 
products 577, Exs. 29-32 
sums 541 

Partition 213 830 
Pendulum 613 
Period of 

orbit 715, Ex. 39 
pendulum 613 
periodic function 179 244 

Periodic function 179 
integral of 244 

Periodic Taylor series 598, Ex. 39 
Perpendicular 

bisector 46 
vectors 638 

Pi, definition of 558 
Piecewise continuous 2 1 5  
Plane through three points 654 671 
Poisson's gas equation 325 
Polar coordinates 419 

double integral in 858 

Polar equation of 
ellipse 428 
hyperbola 430 

Polar of point with respect to 
ellipse 442 
parabola 439 

Polygonal approximation to eZ 165 
Polynomial 35 

approximation to r 167 
interpolation 482 

Population growth 177, Ex. 3 1  
Positive 

definiteness 767 
semi-definiteness 773, Ex. 1 9  

Potential 927 928 
Power 

function 321 
rule for derivatives 74 79 

Predator-prey problem 177, Ex. 29 
Present value 285 
Pressure 281 
Primitive (antiderivative) 88 
Principal axis of hyperbola 415 
Prismoidal formula 500 
Probability 

distribution 601 
integral 873 

Problem solving 144 
Product rule for derivatives 70 I 03 
Production function 830, Ex. 26 
Products of inertia 922 
Prolate cycloid 695, Exs. 13-14 
Psi method, 520 
Ptolemy 716, Ex. 3 
Pure second partials 794 
Pursuit curve 694 

Quadrant 9 
Quadratic 

Q 

cone 755 
cylinder 757 
function 21 123 

Quadrature 234 
Quadric surface 75 l 
Quotient rule for derivatives 73 104 

Radian 178 
Radiation 290 

R 

Radical axis 445, Ex. 1 
Radioactive decay 172 
Radiocarbon dating 176, Ex. 25 



Radius of 
convergence 580 
domain 830 

Range 1 1  
Rate of change 66 
Ratio test 547 581 
Rational 

function 38 
parameterization of circle 690 
power 322 

Reactor cooling 327, Ex. 50 
Real number 2 
Reciprocal rule for derivatives 74 
Recombination ( ionosphere) 355, Ex. 35 
Rectangular 

coordinate system 9 628 
hyperbola 415 
rules (approximate integration) 233 

Rectilinear motion 1 1 3  
Reduction formulas 385 
Reflection 28 

property of conics 440 443 
rule (integrals) 240 

Regression 769 
coefficient and line 771 

Related rates 1 18 
Relative maxima and minima 138 
Remainder (Taylor's formula) 459 
Revenue (econ.) 324 
Reversible (thermodynamic) process 325 
Rhomb line 914, Ex. 28 
Riemann integral 254 
Right-hand rule 628 
Rock of a needle gauge 200, Ex. 1 2  

466, Ex .  32 
Rolle's theorem 148 466 

generalized 470 
Root 514 

approximation 506 
test 549, Ex. 3 1  584, Ex. 35 

Rose curve 426 431, Ex. 2 
Rotation (curl) 947 
Rotation of axes 431 

s 
Saddle point test 807 825 
Scalar triple product 6S9 
Schwarz inequality 2S 1 ,  Ex. 22 

642, Ex. 29 
Secant 184 

method 508 
Second 

degree approximation 450 
derivative 89 

test 141 150 

INDEX A89 

several variables 80S 826 
with constraints 8 1 S  824 

diJlerence 473 
moment 601 
partials 794 

Semi-major, (-minor) axes 409 
Series S39 

alternating 5SO 
harmonic S40 
sum of S41 

Sequence S25 
Cauchy 536 
monotone 534 

Serpentine 694, Ex. S 
Shift 27 55 

of axes 392 
Simple harmonic motion 29S, Ex. 1 8  

A33, Ex. 37 
Simple zero 468 
Simpson's rule 495 498 

double integral 884 886 
error 501 SOS, Exs. 5 1-52 

Sine 179 
Skew lines 668 
Slope 1 8  

in polar coordinates 7 1 3  
-intercept form 1 9  

Snell's law 135 
Snow pile 890, Exs. 23-26 
Solid angle 910 
Spanning vectors 669 
Speed 1 14 677 
Spherical 

area 909 
coordinates 905 

Spiral of Archimedes 42S 
Square root rule 7S 104 
Stable equilibrium 808 
Stability 804 
Standard deviation 772 
Step function 25 l 
Steradian 910 
Sterling's formula 173 
Stokes's theorem 947 
Stretching 28 
Strictly concave 152 
Strictly convex 1S1 
String construction (ellipse) 409 
Strophoid 431, Ex. 8 
Subsequence S26 
Subinterval of a partition 2 1 3  
Substitution rule (integrals) 238 360 
Sum of a series 541 
Sum rule for derivatives 68 



A90 I N DEX 

Summation notation 455 
Support function and line 702 
Surface 

area 870 
integral 939 
of revolution 749 

Suspension bridge 286 
Symmetry 27 1 1 1  

in integrals 241 
System determinant 653 

Tangent 
function 184 
line 49 82 

to circle 49 
to ellipse 442 

T 

to hyperbola 445, Ex. 19 
to parabola 438 
to f(x, y) = c 734 

plane 
to parametric surface 749 
to F(x, y, z) = c 741 
to z = f(x, y) 743 

theorem (convex functions) 151 
Tangential component of acceleration 707 
Taylor 

approximation 454 
formula 459 

derivation of 464 
polynomial 456 801 
series 585 

Term-by-term operations on power series 
624 

Terminal velocity 175, Ex. 19 
Third derivative 90 
Third order methods 520 
Toroidal coordinates 950, Exs. 7-8 
Torque 661 672, Ex. 3 1  
Torr (unit of pressure) 282 
Total pressure 281 
Tractrix 693 
Translation 

of axes 393 
rule ( integrals) 239 

Transmission line equation 800 E 40 ' x. 
Trapezoidal rule 232 

error 234 494, Exs. 17-18 
Triangle inequality 4 642, Ex. 30 

integrals 251, Ex. 23 
Tricks with differentials 379 
Trigonometric functions (power series def.) 

625, Exs. 19-28 
Triple integral 89

.
1 

Two-point form of line 643 

u 
Undetermined coefficients 

interpolation 482 
Taylor series 597 

Uniform 
approximation 259, Ex. 9 
continuity 255 
convergence 620 

Uniqueness of power series 591 
Unit normal 700 

to parametric surface 749 
to F(x, y, z) = k 742 
to z = f(x, y) 743 

Unit tangent 696 
Unstable equilibrium 808 

v 
Variable 1 1  
Variance 600 771 
Vector algebra 631 
Vectorial area 939 
Velocity 1 14 677 704 

in polar coordinates 7 1 2  
Verhulst logistic equation 177, Ex .  3 l 
Vertex of 

ellipse 409 
hyperbola 415 
parabola 405 

Vertical asymptote 42 
Vivani problem 863, Example 6 

(see also 913, Ex. 6 914, Ex. 30) 
Voltage 928 
Volume 

formula (surface integral) 944 
of parallelepiped 664 
of revolution 270 

w 
Wave equation 799, Ex. 38 800, Ex. 43 
Weientrass M-test 623 
Weighted average of vectors 644 
Witch.of Agnesi 694, Ex. 3 
Work 276 
Wyatt Earp principle 146 

y 
Yultawa potential 951 ,  Ex. 29 

z 
Zeno's paradoxes 544, Ex. 28 
Zero 36 

vector 631 
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