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Preface

In this book I discuss some of the practical expericnce I have gained in analyzing
the box girder and the truss used in bridge engineering; the straight and curved box
girder bridge, the truss bridge, and the arch-stiffened truss bridge are considered.
These bridges may be cither simple span or continuous over several supports, and
their cross scctions muy be deformable. Bending and torsional stresscs, lateral
buckling, and vibrations arc investigated, and both the analytical and the finite
beam element methods of solution are devcloped.

1t is known that the box girder and truss bridges as spatial structures can be
analyzed into finite shell and plate elements or [inite strips and bar members by
discretization. But the computation is time consuming, and it does not yield any
desirable analytical solution, Moreover, it is not possible using these methods to
show the role the following play: the,bcnd:.ng, torsienal, and other rigiditics of the
structure or the different structural constituent parts, for instance, the chord
members, the web members, the bracing systems, and the portal in a truss bridge.
Determining such information is of great importance to engineers.

Applying the beam theory shown here, we can overcome all the shortcomings
mentioned previously. For this reason, I have cstablished a more accurate thin-
walled beam theory of the curved box girder and developed a theory of bending
and torsion of the truss bridge as an extension of the thinwalled beam theory. All
these theories will be derived in detail, and the conlirmation of their efficiency and
accuracy by model tests or [ield tests will be given.

To better understand and develop the theory, the well-known analysis of the
straight box girder with deformable cross section will be introducced first, then the
analysis of the curved box girder with deformable trapezoidal cross section will
follow.

By transforming its web members and bracing systems into continuous
shearing webs, we are able to apply the theory of the box girder to the truss bridge.
Thus it is only necessary to take into account the particularities of the latter type of
bridge — the dcformations of shearing webs and bridge portal duc to shear.
Finally, the arch-stiffencd truss bridge will be discussed.

Many practical examples have been analyzed, and from these results,
conclusions valuable to design practice have been deduced.

I hope that this book would be a contribution to the analysis and design of the
bridge structures concerned.

1 would like to thank deeply my research fellows for their efforts in performing
the investigations based on the theories developed here and for using then in this
book: Professor Shi Dong has done much for Chaps. 5 and 10, and in addition,
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guided the work of Shi Jiajun for Chaps. 2 and 4, Huang Jian for Chap. 7, and
Huang Dongzhou for parts of Chap. 8 and 10; Huang Dongzhou helped me to
check the manuscript and the drawings. Without their bepl I would bave hardly
accomplished the task of the book.

I wish also to thank Ms. Hui Rengiu and Mr. Wu Zhenxin for improving the
English of the manuscripts, and Dr. Heinz Gétze for his efforts in the publication of
this book.

Shanghai, People’s Republic of China, July, 1986

Dr. Ing. habil Dr. Ing h.c. Li Guohao

Honorary President, Professor of Tongji University,
Member of Academia Sinica

President of China Civil Engineering Society
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1. Bending and Torsion Theories of the Straight
Box Girder

The box girder is often used for bridges and other structures. Usually its cross
section consists of a rectangular or trapezoidal box and open parts. Diaphragms
arc gencrally used, and for girders of short span, only end-diaphragms arc provided.
Box girders without diaphragms or with insuflicient intermediate diaphragms are
subjected to cross-sectional distortion under torsional loading. This will be con-
sidered in detail.

Rox girders can be either straight or curved in plan, The theory and method for
the analysis of bending and torsion of straight box girders have been quite well
developed by Viasov (1940), Dshanelidze and Panovko (1948), Bornscheuer (1952),
Sedlacek {1971), Roik et al. (1972), and others, while for the analysis of curved box
girders, improvements in their analysis can still bc made.

For practical uscs and as a theoretical basis for the curved box girder and truss,
wc will introduce the theory of bending and torsion of the straight box girder in
this chapter. The discussion will be restricted to a single box cell. For multiple box
cells see, for instance, Roik et al. (1972), Huang (1983). In the analysis we will assume
that the displacements are small and that Hooke’s law is valid.

1.1 Pure Torsion of Thin-walled Members

Pure torsion occurs if a straight member is subjected only to torques at its ends and
the warping — out-of-plane distortion — of cross sections thereby produced is not
restrained, so that only shear stresses 7, but no normal stresses o arise.

1.1.1 Closed Thin-walled Section

A closed thin-walled cross section is subjected to a torque T, as shown in Fig. 1.1.
Assuming that the shear stress 1. is uniformly distributed across the small wall
thickness ¢, there is a constant shear flow g, = tt_ along the contour. With the lever
arm p,, [rom the shear eenter or center of twist, the shear flow over the whole cross
section produces a moment that, duc to equilibrium conditions, equals the torque
T.:

§omg.ds =T, .
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Fig. 1.1. Closed thin-walled cross section

Hence
T
=1, = S, 1.1
o= ttc = 57 (L.1}
where
A=31épyds. (1.1a)

Here A denotes the area enclosed by the shear flow.

To establish the relation between the torque T, and the angle of twist 8, we
equate the strain energy of torsion to the work done by the torque for a member
clement dz:

do
Ydzger y.ds = %T;—zdz.

With Hooke’s Law, y, = 1./G, and 1, from Eq. (1.1), we obtain

Tczcﬂfi’z co , (1.2)
dz
where C denotes the torsional rigidity:
C=¢Gl,, (1.3)
and here
442
I = . (1.3a)
47 fds/
From Egs. (1.1} to (1.3a), it follows that the shear strain 13
w=Ye, (1.4)
where
24
o= (1.5)
$lds/e)

W/t is often called the torsional function and will be used later. It gives the magnitude
of y, for ¢ = 1 and has the dimension of “length.”
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Fig. 1.2. Open thin-walled cross section

1.1.2 Open Thin-walled Section

The thin-walled open cross section behaves quite differently in pure torsion. No
shear stress will be produced along the center line of the wall, and there is an
antisymmetrical lincar distribution across the wall thickness for the shear stress
with 7., at both edges, as shown in Fig. 1.2.

For a narrow rectangular section with thickness ¢ and width b, this shear stress
gives a torsional moment

T = 56t T - (1.6)

From energy considerations analogous to the preceding section, we also obtain Egs.
(1.2) and (1.3), where 1, for an open section is

I, =1be3 (1.3b)

For box girders of cross section, I, is the sum of that duc to the closed section
and the open sections; however, the open section’s contribution is small and can be

neglected.
Using Eqgs. (1.6} and (1.3b) we can write
T.
= . 1.6
T = (1.62)

1.2 Warping Torsion of Open Thin-walled Section

If, owing to the action of torques, the warping of cross section is restrained, warping
normal stresses and, consequently, warping shear stresses will be induced. These
shear stresses form a warping torsional moment, as an addition to the pure torsional
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moment. We now consider the warping torsion of a thin-walled section with the
assumption that the section is not deformable.

1.2.1 Torsional Warping

In Fig. 1.2 a part of the open thin-walled section is shown. O denotes its centroid,;
x, y are the principal axes; and M(xy, yy) is the center of twist. py (po) is the
perpendicular from M (0) to the tangent at P(x, y) on the centeriine of the section:

pp = (x — xy)sinf — (y — yu)cos f, (1.7a)
or
Pm = Po — XySinf + yycosf. (1.7b)

The tangential displacement 5 = p,8 and the out-of-planc displacement w produced
by the torques would induce a shear strain

dn  ow

= — —_ 1_
O (1.8)

where s denotes the coordinate along the centerline of section, clockwise positive.

According to the assumption that the thin-walled open section remains plane
under the action of torsion, this shear strain must be zero: y,, = 0. It follows that
with n = p, 8 the warping is

5

w(s,z) = — & | pmds + wol2),

4]
or
w(s, z) = —w(s}0{z), (1.9)
where
w(s) = w(s) + »,(0), (1.10)
w, () = Epuds. (L11)

w(s) is called the principal unit warping.

The constant of integration «, (0) and the coordinates (xy, yu) of the center of
twist M can be determined from the equilibrium conditions for the warping normal
stress induced by the torque T,. Appying Hooke's law, we have

a(s,z) = Ew' = —Ea(s)0"(z), (1.12)
and, from equilibrium, we have
N=[gdF =0, {1.13a)
F
M,=[yodF =0, (1.13b}
F

M,={xsdF =0. (1.13c)
F
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Substituting Eqs. (1.1t} and (1.12} into Eq. (1.13a}, we have
1
fwdF =0: w0y = —— [w,(5)dF . (1.14)
F Fr

Equation (1.7b), when multiplied by ds, will be
puds = pods — xydy + yydx .
Using this expression, Eq. (1.11) gives
© = Wy = Wy — Xy + IuX (1.15)

where p, and m, refer to the centroid 0. With Egs. (1.12) and (1.15), we obtain {rom
Egs. (1.13b) and (1.13c):

F
{ywdF =0 Xy = =22 ;
F Fyy
(1.16)
[ xodF = 0 Fray
X =0: = 2
] m E.

where the following notation is used for cross-sectional intcgrals:

F=[dF, F,={rdF, F.={rsdF. (1.17)
F F r

For principal axes x and y, as is known in the bending analysis, there are similar

expressions as Eqs. (1.14) and (1.16) for @. All these can be interpreted as the

orthogonal relationship

Foy = | x;x dF Fowo Ai=k (1.18)
= { x;x =< .
Rl R 0, ifi #k
between the four principal coordinates
[x]=[xy w 1] (1.19)

It 1s this orthogonality that makes it possible to analyze the torsion, the bending
about the x and y axes, and tbe axial tension of a straight member independently.

1.2.2 Warping Stresses and Stress Resultants

1.2.2.1 Warping Normal Stress and Bimoment

The warping normal stress is given in Eq. {1.12). Multiplying both sides of the
equation by w and integrating over the entire cross section, we obtain an expression
for the so called bimoment,

M, =[wodF = - Dy,8", (1.20)
F
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where the warping torsional rigidity is given by
D,, = EFy,=E [ wwdF . (1.21)
F
The warping normal stress is often determined from the bimoment:

o=—uw. (1.22)

1.2.2.2 Warping Shear Stress and Warping Torsional Moment

Since we have assumed that the shear strain y,, = 0, the warping shear stress 7 can
only be determined from warping normal stress o by considering the equilibrium
in the longitudinal dircction of an element of the member, as shown in Fig. 1.3:

86 | o) _
s oz

(1.23)

Hence

]

2 dito
tr=q=qn—£ f,jz)ds. (1.24)

Taking the free edge of scction as the start of s where gy = 0if there is no external
longitudinal force acting along the cdge, and substituting Eq.(1.12) into the integral,
we get

q(s,z) = EF,(5)8"(z) , {1.25)
where
F(s) = [ wls)tds . (1.252)
1]
&
frdz
[tF
ST eme— | | ds —_—
tords [ta +-?;—Zo)ds
[rf+§£§u5)dz

Fig. 1.3. A plate element
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The warping torsional moment provided by g is

To = [ gpyds = [ gdw

— g w]-—j‘;':mds. (1.26)

L

The [irst term on the right-hand side represcnts the boundary values that vanish
because at the ends of the section g = 0. Substituting Eq. (1.25) into the integral we
get

T, = — D07 . (1.27)

Comparing this with Eq. (1.20), yields
Ty = M, . (1.28)
Thus, the warping shear stress given in Eq. (1.25) can be determined from the

warping torsional moment

mn
- _ ] ~F (5. 1,29
: tFUJLU UJ(S) ( }

1.3 Bending and Torsion of Box Girder with Rigid Cross Section

We consider the bending, torsion, and axial tensions of a straight box girder with
cross section subjected to distributed loading g,, g,, g, in three directions x, y, z as
shown in Fig. 1.4. The ellects of the deformation of the cross section and that of the
shear on the torsion will be discussed later, while the local stresses induced by
loadings arc neglected.

yv

Fig. 1.4. A composed cross section
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1.3.1 Displacements

In Fig. 1.4 O denotes the centroid, M is the shear center, x, y are the principal axes,
and z is the girder axis. Suppose under the action of loads 4., 4y, ¢, the cross section
has undergone three uniform displacements uy(z), vo(z), wolz) in directions x, y, z,
and an angle of twist 8(z) about the shear center M, the out-of-plane displacement
wi{x, y, ) of the section has to be determined, in order to evaluate the stresses.

Let us at first consider the torsional warping of the thin-walled closed section,
which can also be given in a form similar to Eqgs. (1.9) and (1.10) for open sections.
Only the evaluation of unit warping o is different, because in a closed section the
shear strain y, is not zero as in the case of open section, but is of the magnitude
given by Eq. (1.4). Substituting this into Eq. (1.8) we have

W= ——ﬂ'i(pM—%}-)dsjtwu.

4]
Therefore,

w= —wd,

s 1.3
w=j(p,,,-—£)ds+ml(0}‘ (130
o t
The constant of integration w,(0) and the coordinates (xy, yu) of the center of twist
M can also be determined from Egs. (1.14) and (1.16).

For box girders usually used in practice, the unit warping consists of two parts,
which are given in Egs. (1.30) and (1.11) for closed and open sections, respectively,
as shown in Fig. 1.5. It is antisymmetrically distributed about the vertical axis for
the symmetrical cross section.

As to the bending, according to the assumption that after deformation the cross
section remains plane and perpendicular to the girder axis, it is easy to see that the
longitudinal displacement w equals the slopes u, and vg of the deflections u, and
v, multiplied by x and y, respectivcly.

+ IPRE
i} ]
a b

Fig. 1.5a,h, & diagrams of closed and open scction parts
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Thus, the displacement w(x, y, z) over the cross section can be given as follows:
wix, y,2} = —xty — yvo — ol + wy . (1.31)
Finally, we list the displacements in directions x and y for future use:
u(x, y,2) = uy(z) — (y — yu)0(2)
v{x, ¥, 2} = vglz} + (x — x)8(z2) .

(1.32)

1.3.2 Stresses and Stress Resultants

1.3.2.1 Normal Stresses and Stress Resuliants
Using Hooke's law, the normal stresses of bending, warping torsion, and axial
tension can be evaluated from the strain ¢ obtained by differentiating Eq. (1.31):
a(x, y,z) = Ee = Ew'(x, ), 2)
= —E(xug + yvg + ol — wp) . (1.33a)

Considering the orthogonal relationship of the four principal coordinates given
in Egs. (1.18) and (1.19), we obtain the bending moments M,, M,, the bimoment of
warping (orsion M, and the axial tension N as follows

M, = {x0dF = —Douj, (1.34a)
M, = yodF = ~Dy,0} . (1.34b)
M, = ! wedF = — Dy, 0", (1.34¢)

N =[odF = EFwy = Dw; , (1.34d)

i
where the third expression (1.34c) has been given in Eq. (1.20), and the flexural
rigidities D,, and D,, are defincd analogously as D, in Eq. (1.21).
By using Eq. (1.34), the normal stress 1s often evaluated according to the
following equation:
X M(J)

N

aoa= — -
Fx § Fow F

1.3.2.2 Shear Stresses and Stress Resultants

The shear stress due to pure torsion 7. in a closed section is given in Eq. (1.1). The
shear stress 7 in equilibrium with the normal stress ¢ has to be caleulated according
to Fq. (1.24) deduced from Eq. (1.23). In order to determine g, in a closed section
we imagine a cut in the box; g, is applied in the cut so that the continuity is
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maintained:

1
§})ds:6§1:ds=0. (1.35)

On substituting Eq. (1.33a) or (1.33b) into Eq. (1.24) and this in turn into Eq.
(1.35), we obtain

E d ds d ds
%= ~fias {usw,(s)f F O RET 4 07§ F0T - w(’;§F(S)T} .

Denoting

509 = Fuls) — R (136

i
(ds/1)
and similarly for §,, S,, and S, where F,(s), analogously F(s), F,(s}, F(s), is defined
by Eq. (1.25a), we finally obtain the shear stress due to bending, warping torsion,
and axial tension in a closcd section:

g .
T [y S,(s) + 05 S,(8) + 07S,(s) — wgS(s)} (1.37a}
or
[0 Q T, N’
= —- = 8. =8 2.8,k -— S(s)p, 1.37b
t=— { £SO + 2 Suls) + sm} (1.37b)
where the shear forces Q,, Q, and the warping torsional moment T., are
Q= M, ,
Q, = M,, (1.38)
T.=M, .

For open sections, ¢, vanishes at the free cdge if no external longitudinal force
is acting there, and this point can be taken as the origin of local coordinate s.

In the closed section, the shear stress is the sum of 1, and t given by Egs. (1.1)
and {1.37a) or (1.37b}.

1.3.3 Strain Encrgy

The elastic strain energy, or the potential of internal forces of bending, torsion, and
axial tension, consists of two parts provided by the normal strain & and the shear
strain y, of a closed section induced by pure torsion:

E G
U => | [e2dFdz +~ [ [y}dFdz. (1.39)
23F 2

1 F

Using ¢ and y, from Eqs. (1.33a) and (1.4), respectively, we get, after integration over
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the cross sectional area,

U, = 3§ {Dalug)® + D, (05 + Dyol8) + C(t)* + D(wg)tdz, (1.40a}

1

where the rigidities D; (P = D,,) and C are given in Egs. (1.21) and (1.3).
Substituting expressions (1.34) and (1.2) into the preceding equation, we can
express the strain energy in another {form:

U, = —% [ {Mug + Mg + My, 0" — T.00 — Nwyldz. (1.40b)

[
!

1.3.4 Potential ol External Forces
The potential of external forces - the loadings 4y, 4y, 4, — equals the negative value
of the work done by the loadings

Uy = —J§§ (g + g+ gwdxdydz. (1.41)

Substituting u, v, w, given by Eqgs. (1.32) and (1.31), into the integral and using
the following notation '

pe=f [g.dxdy, p,=[{qgdxdy, p,=|[g.dxdy,
m, = yq,dxdy, m,= xq, dxdy,
II_ =1 (1.42)
m, = _[ _[ {(x - x}d[)qy - (} . yM)qx} d)l: dy *
my = I _[ wy, dx d}" ’
we obtain

L%=—j@mo-mwa+m%—nm%+mﬁ—m%0+pyddn (1.43)
!

1.3.5 Equilibrium Equations

An clastic system is in equilibrium when total potential energy is an extremum; that
means that the variation of the potential equals zcro:

U =68U, + 6U,=0. (1.44)
Using Eq. (1.40b) we obtain, after partial integration, the variation of U,
U, = —_! (M Sug + MJdvy + T'00 + N'dwq)dz — [M,duo] + [Q,du,]
— [M,8v5] + [Q,600] — [M,80'] + [Té6] + [Ndwg], (1.45)
where the brackets [ ] denote boundary values, and the torque T is
T=T,+T.. (1.46)
0., 0,.and T, are delined in Eq. {1.38).
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The variation of U, can be calculated analogously from Eq. (1.43). It is

5U, = —{ {(pe + m))dug + (p, + m)dvo + (m, + my,)50 + 0w, } dz
i

+ [mybug] + [mydoo] + [m,00] . (1.47)

The substitation of 8U, and 8U, into Eq. (1.44) under the condition that the
integrands belonging to the four independent displacement variations Sug, Ovg, 60,
5w, must be zero, yiclds the following equilibrium equations:

O, +p +m=0, (1.48a)
Q,+p,+m=0, (1.48b}
T +m, + my=0, {1.48c)

N +p,=0. (1.48d)

1.3.6 Differential Equations and Boundary Conditions

Using Egs. (1.46), (1.38}, (1.34), and (1.2), Egs. (1.48) can be transformed into the
required differential equations, containing four displacement variables, of bending,
torsion, and axial tension of a straight box girder. However, owing to the orthogonal
relationship of the principal coordinates given in Egs. (1.18) and (1.19), these
equations are independent as mentioned above:

(D, usY = py +mj, (1.49a)

(Dy,v0) = py + My, (1.49b)
(Do) — (COY =m, + my, (1.49¢)
—Dwo =p, . {1.49d)

To fulfil Eq. (1.44), the boundary values in it that contain du,, dve, 50, dw, must
also be zero. This gives the boundary conditions. When there are no external forces
and moments acting at the boundaries, we have:

[M5ug] =0,  [Q:0u1=0, {1.50a)
[M 0] =0, [Q,0v0] =0, (1.50b)
[M,801=0, [T80]=0, (1.50c)

[Nowo]=0. (1.50d)

According to these cquations, at the end either the displacemcnt (or slope) is given,
so that its variation vanishes, or the corresponding force (or moment) cquals zero.
For example, cither dug =0 {supported end) or @, = — D, uy = 0 (free end), or

either duj, = 0 (fixed end) or M, = — Dy ug =0 (simple support).
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1.4 Torsion of Box Girder with Deformable Cross Section

1.4.1 Distortion and Warping

We consider a single box section. Its distortion can be represented in two parts as
shown in Fig. 1.6, where O denotes the centroid; x and y are the principal axes; N
is the center of distortion; ¥, § are the axcs parallel to x, y; &; (i = 1, 2, 3, 4) is the
side length of the closed section; §, is its slope referred to x axis (clockwise positive);
and «; is the angle at the box corner.

Assuming that the j and % axis rotate about N an angle ¢ = f (clockwisc
positive) and ¢ = - v0, respectively, and that the sides, as hinged at their joints,
follow these rotations, the distortion of the cross section can be expressed by

w=¢ —¥=0+v0, (1.51)

where the factor v is used in order to ensure the continuity of warping caused by ¢
and .

Analogously to torsion, the distortional warping can be derived from Eq. (1.8)
with y,, = 0 for open and closed sections. The result is similar to Egs. (1.9), (1.10),
(1.11)

W(z,s) = —a($)0(z), {1.52)

where the unit distorsional warping

a(s) = g Puds, (1.53a)
with
M) =pn,  OnY) = vaons (1.53b)
v, =1 forr=1,3,
and _ ’ (1.54)
v,= —v forn=2,4.

n =1, 2, 3, 4 denotes the side number, and py is the perpendicular from N to the
sides as shown in Fig. 1.6.
The continuity of distortional warping means

B(—0) = &(+0) — § fuds = B(+0),

that is
§pnds =0.
It follows that
d d
L Sl L N (1.55)
p2dy + pad,

For a rectangular box, v = L.
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LY

Fig. 1.6. Distortion of box section with respect to {a) angle 0 and {b} to
angle - vf/

Like the unit torsional warping (s), the unit distortional warping &(s) has to
be and can be orthogonalized to the principal coordinates [x y 1] in order to make
the stress state induced by it independent from that of bending and axial tension.
The equations concerned are similar to Eqs. (1.14) to (1.16):

!

[OdF =05 B,(0)= — [ DdF. (1.56)
!
B(s) = On(s) = Do) — Xnvay + YNV X5 (1.57)
5. F0,
ndF =0: = ==
£ ya XN Z v FJ;} (158
H 1.58)
5 9,
X@dF =0 R
! xd dF ¥n SR

where the index N denotes the center of distortion and O denotes the centroid.

There is, however, no possibility of orthogonalizing @(s} to w(s). Therefore, the
distortion, if any, and the warping torsion are coupled, although usually the link is
weak.
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1.4.2 Displacements in the Section Plane

The displacements in the section plane at the center line s of section in the tangential
direction 7j(s) {clockwise positive) and 1n the normal direction &(s) (outward positive)
can be given as follows (see Fig. 1.5):

pall, (1.59)

= (fj, 0Ot %, + 1 COSCC %) = (S + Yn)Sn (1.60)

1

Sty =3

where n = [, 2, 3, 4 cyclically and s, is the coordinate of side n {clockwise positive)
with the origin at the box corner. The rotation angles in Fig. 1.6a are:

¢, =%(cotan+colan+1] forn=1,3,
! (1.61)
|
P = p (fi,_, cosee &, + f,COSCC ooy 1) forn=2,4.
Switching the even and odd numbers in Eq. (1.61) gives the expressions for ¥, in
Fig. 1.6b.
Using expressions of ¢, and ¥, Eq. {1.60) will be
En = j:nﬁ s
wherc

":"n = [ﬁn—l coscc o, + ﬁn cot Ctn)(l - Sn) - (ﬁn cot A + ﬁn+1 COSCC&n+1)§n (162)

with 5, = s,/d,.
With the transformation matrix

(T.] = [ sinff, cos f)’n:l ‘ (163

—cosf, sinp,

we obtain from &, 1, the displacements i, 0, in x, y directions:

{“} — [T {é} , : (1.64)
Un Mo
{13 } T {iun}é , (1.65)
Un r\"n
r“n pn

For a symmetrical trapezoidal box section, as shown in Fig. 1.7,

dy; — 2j,cotf
Gz dwcoth g , 1.6
v dl | 211 Cotﬁ JJI ( 1 + yN) ( 6}

ar

where

i(x,y,2) = —(y — y)0(z) = =50,
(1.67)

B(x, y,z) = —F,0,
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T id 1 1l
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Fig. 1.7. Symmetrical trapezoidal box section

where
= (vhy — 2(y — yN)cotﬁ}%}-

and yy referring to Eq. (1.58).

For a symmetrical rectangular box section, v = 1 and
ix, y,2) = —(y — y)(),
e (1.68)
b(x,y,2) = —x0(z).

1.4.3 Shear Rigidity and Distortion Rigidity of a Box Section

Let us consider a box section of unit length rigidly connected at the corners.
Assuming that the section is supported at both lower corners and subjected to a
unit force H, = 1 causing a displacement 7, as shown in Fig. 1.8, the distortion

o
=}

—

Fig. 1.8. Mechanical model of a box section for determining its shear
rigidity and distortion rigidity
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defined in Eq. (1.51}is
. u 1
§=ot = - — v

hy by

Using the equations in the preceding section, we have

=1t (1.69)
h;
where
h
h = N ,
u
w=cosf; — [(1 = 5j.)cotay — §,acotas]sinff
h
— = {(t — 3;n)(cota,cos B, —sinfy)
by
+ 5,elcotay cos By + sin f,)} . (1.70)

For a symmetrical trapezoidal box section as shown in Fig. 1.7,
)
p=1 —-b:zcolal. (1.71)

For a rectangular box, g = 1.
The force H or the moment Hk, causing unit distortion 7 = 1 is defined as shear

rigidity R or distortion rigidity K. It can, therefore, be given in the following form:

1 h,
R=-=—, (1.72)
Y1
h
K =Rh = -, (1.73)
i

where #, induced by unit force H; = 1 can be determined according to methods
known in structural theory.

1.4.4 Stresses and Stress Resultants

1.4.4.1 Normal Stresses and Stress Resultants
The normal stress induced by torsion and distortion can be calculated from the
warping given in Eqs. (1.31) and (1.52). Thus,

¢ = Ec = Ew' = —Ew8"' — E®0" =0, + 0 - (1.74a}

Since both principal coordinates e (s) and &(s) are nonorthogonal, we define the
bimoments, different from Eq. (1.34), as follows:
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M, = £ wa,dF = —Dy,0", (1.75a)
M = !@aﬁ dF = —Dgzt" . (1.75b)

Using these equations, the normal stress can be written
o—;:i:w-l-ficﬁ. {1.74b}

1.4.4.2 Shear Stresses and Stress Resultants
In a closed section, the shear stress 7, caused by pure torsion is given in Egs. (1.1)
and (1.2), while that induced by the normal siress o can be determined as shown in

Egs. (1.37a) or (1.37b) and (1.36). We havc here

E o Fyeer
7= {07Suls) + 7S50}

or . (1.76)
L T“’S()+ T””‘S(s)
T= -5 2ald T Yol b
it Fm(u F(Iuh _
and the moments
T, =M, .
N - (17D
To = M; .

1.4.5 Strain Energy

The strain energy consists of three parts, induced by normal strain &, shear strain
¥, of pure torsion, and distortion ¥y
U,= L[ [(Ee® + Gy2)dFdz + § | Kiidz. {(1.78)
» i F 1
Using ¢, 7, 7. given in Eqgs. (1.74a), (1.51), (1.2), we obtain

U, = 1 [ {Dool8" Y + 2D,60°0" + Dag(0)2 + COY + A8} dz,  (L79)
i

[+

where

A=(1+ 2K (1.80)

1.4.6 Potential of External Forces

The gencral expression for the potcntial of external forces g,, 4,. 4, is given 1n Eq.
(1.41). Using Egs. (1.65), (1.52), (1.32), (1.9), we obtain
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U, = —f(m. 6+ m, 0 —m,8 — ma0) dz (1.81)
]

where m, and m,, are defined in Eq. {1.42), and

= — 3 | [ (Fugy + Fagi)dxdy,
z (1.82)

§ | dg, dxdy.

L e

1.4.7 Dilferentia} Equations and Boundary Conditions

The differential equations and boundary conditions for torsion and distortion can
be derived in the same way as in Sects. 1.3.5 and 1.3.6. The result is

(DY = (COY + (D 0") = m, + mg,

3 . (1.83)
(Do) + (Dga0")" + Al = i, + Mg,
with the boundary conditions
[(Dyot” + Duif 1601 =10,
[{{Doab) — CO + (Dy07Y1081 = 0,
(1.84)

[P0 + Dei07)66']1 =0,
[{(Dup @Y + (DaafY 1601 = 0.

See the discussions after Egs. (1.50) for the meaning of the boundary conditions.

As mentioncd previously, the angle of twist #(z) and the distortion of section
f(z) are coupled with cach other, in both differential equations and boundary
conditions. However, the mutual influence is usually insignificant, so that the
torsion and the distortion may also be analyzed separately, by neglecting the linking
terms containing D, in Eqgs. (1.83) and (1.84).

1.5 Torsion of a Box Girder Considering Shear Strain

The influecnce of shear strain on bending and torsion will usually be neglected, as
was done in Sect. 1.3. However, for a box girder this may yield incorrect values of
torsional warping stresses at sections and fixed ends where concentrated torques
are acting.

In the following we will introduce an extended torsion theory taking the influ-
ence of shear strain into account, which was mainly developed by Dshanelidze and
Panovko (1948). It is based on two displacement [unctions, similar to the extended
bending theory given by Timoshenko (1921). See also Hu (1981).
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1.5.1 Basic Equations

The shear strain y, in a box girder induced by the shear stress due to torsional
warping is coupled with that caused by pure torsion, and will produce an additional
warping of the cross section. Assuming that this has the same shape as o, the total
warping of torsion is

W(Z, S) = —'m{gl + }'w) » : (185)
and
e=w = —w(@ + ). (1.86)
Using Eqs. (1.85) and (1.30) and # = py,{, we have the shear strain
dw  dn
"o e
_ w 9; 4
= —{ow— ) )+ oud
or

}v=£ﬂ'—(pm—£)yw. (L.87)

1.5.2 Potentials of Internal and External Forces

The potential of internal forces or the strain energy according to Eq. (1.39) can be
evaluated with ¢ and y from Egs. (1.86) and (1.87). Considering

§(,0M%)tds=§(%)2£ds=1d, (1.88a)
| pedF =1, (1.88b)

the result is

e

Uem —2 ! {Mo(0" + %) — TO — Ty, tdz, (1.89)

where
My = —Dyo(0” + %)
T, =Cyyy > (1.90)
C,=C,—-C=0GI,—-Gl,

and D, is given in Eq. (1.21}.
The potential of external forces can be deduced from Eq. (1.43):

Uy,= — [ {m0 - m,(0 + Tw)} dz . (1.91)
1
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1.5.3 Differential Equations

With U, and U, given in Eqs. (1.89) and (1.91), the equilibrium equation (1.44) yields
two differential equations and boundary conditions for §(z) and 7,(z). The differential
equalions are:

(D0 + 9,)) — (CO) = m, + m, , (1.92a)
(me(( "+ ?:-.)}’ - C‘r‘}’w =My, . (1.92b)

Dilferentiating the sccond equation and then subtracting it from the first, we
obtain for constant cross section

]
Yo = = (CO" + m}, (1.93)
CT
Substituting this into Eq. (1.92b), we obtain
D Ll ' 1
Y = C—”;;“(cpo +m) — ¢, Mg - (1.94)
After substituting v, into Eq. (1.92a), we have
DX, 0¥ — C&" =m, + my, —my, (1.95)
where
C i
DX =-2p  =--P_D=vD (1.96)
(b CT (00)] lp o Id M v axn
D,
m¥ = %mz : (1.97)

Comparing Eq. (1.95) with Eq. (1.49¢), it can be seen that the influence of the
shear strain ¥, leads mainly to a modification of the warping torsional rigidity from
Dy to DX, This is also true for evaluating the bimoment, since substituting y,, from
Eq. (1.93) into Eq. (1.86) for ¢ yields, according to Eq. (1.34¢),

M, = —D*.0" + m¥. (1.98)

The boundary conditions for integrating differential equation {1.95} are the same
as given in Eq- (1.50c¢).



2. Stress Analysis of Straight Box Girders

The bending and torsion theories of box girders with deformable cross-section were
presented in Chap. I. The solution to the dilferential equations of bending of straight
box girders and the stresses due to bending can be obtained according to the general
beam theory. The stresses due to warping torsion and distortion of the cross-section
can be evaluated by first solving the displacement dilferential equations and then
using the formulas for the stresses.

Equation (1.83) can be solved by converting it into a diflerential equation with
one variable and its higher derivatives or a set of dilferential equations in terms-of
multiple variables and their first derivatives. However, by either one of the two ways
we will encounter difficulty in satisfying the accuracy requirement when one large
number is substracted from the other. For a general box girder in practice, it is thus
very dilficult to obtain the stresses due to warping torsion and distortion of cross-
section by solving Eq. (1.83) directly. _

At the beginning of this chapter a procedure is described through which the
disptacements and stresses caused by torsion of straight box girders are evaluated
by the finite beam element method. From the analyses of specific examples using
this method, it turns out that the coupling term of torsional and distortional
warping has little ellect on the displacements and stresses. Without consideration
of the coupling effect the problem of warping torsion and distortion of straight box
girders has already been solved, and the results are briefly prescnted here. Finally,
a discussion about the effects of warping torsion and distortion is given along with
a numerical example.

2.1 Finite Beam Element Method

2.1.1 Assumptions on the Nodal Displacement Parameters and the Displacement
Functions of Beam Elements

The shapc of a beam element is shown in Fig. 2.1; its length is 24, To satisly the
accuracy of normal stresses concerned, we take the angle of twist 8 and distortion
{t as well as their first and second derivatives 0", 67, &, 0" at ends i and j of the clement
as the nodal displacement parameters. Thus the nodal displacement parameter
vector of an element is defined as
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(5} =10, 6 07 9, 0 87,
{8} =16, 0; 07 & 6 071"
To ensure the continuities of #” and 0” at the ends, we select quintic parabolic

curves to interpolate various displacement components within the element, for
example, for the anglc of twist

BZ)=a+ bz + 22 +dZ° + ez + f2°, 2.1
in which cocflicients a, b, ¢, d, e, [ are determined by the following equations:
= —A: #z) =0, 0(z)=10, &' (z)= 10/,
=i 0(z) = 06; , ¢z =14, 6" (z) = 0] .
The above six equations give a set of simultaneous equations. On solving and
substituting into Eq. (2.1), we have

{0} = {z} = [N1{d}*, (2.2)

Ll

where

N, NN NN 00 0 0 N, Ny Nj 0O 0 0O
[N]: 1 2 3 4 5 6 , (23)
o 0 0 N, N, N, 0 0 0 N, Ny Ng

in which
N, = %&(8 — 15¢ + 108 — 3&%),
N, = A5 — 7€ + 62 + 1087 + &* — 3L%),
Ny =5A2(1 — & — 28 + 28 + & - 87,
= (8 + 15¢ — 108 + 3&%),
Ny = 35A(=5 — ¢ 4 6&% + 1083 — & — 3¢%),
Ne= (A2l + £ - 282 =283 + &4 + &%),

with & = z/4.
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2.1.2 Derivation of the Element Stiffness Matrix

Dillerential equations (1.83) can be rewritten in the form of

JacH 9(2) 1]
[D] {é(‘q} - [C] {9(2)} + [A] {g} = {P} , (2-4)
where

D o c 0 0 0 - 2+ Mg
o[ ] w5 Y e i)

Using the notation
[L] = [D]d* — [Cld* + [A] and {8} = {g} .

differential equations (2.4) can be rewritten as

[L.]{s} — {p} =0, (2.5)
where _
d=dfdz.

Now we evaluate element stiflness matrices using the principle of virtual work.
For the force system in equilibrium [L}{8} — {p} = 0, the total work done by the
virtual displacements {§*} within a box girder is the summation of that done within
all the becam elements and is equal to zero, i.e.

A* = [{*Y([L1{8} — {p})dz

!

= ; § 1o (L1{8) — (pDdz =0. (2.6)
Substituting {8*} = [N]{8*}" into Eq. (2.6) gives
ar = § TN (L0} - {p))dz = 0. an
ie,
A* = Z ({5*}3}TT([N]'T[L] [N1{8} — [N]"{p})dz =0, (2.8)

i=1

As Eqgs. (2.8) are true for arbitrary nodal virtual displacements {6*}°, thus we
have to hold

T([N]T[L][N]{CSV — [NT'{p})dz =0, (2.9)

in which each equation is in fact the statement of the equilibrium in each nodal
generalized displacement direction. The nodal elastic force vector of an element and
the equivalent load vector (i.e., the element load vector) are of the forms

{F}* = [K].{o}*, (2.10)

and
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{F}§=§[N]T{p}d‘z, 2.11)
respectively in which
(K], = JINT'[L[N]dz
_ FINT D[N dz — [[NTT[CIIN"]dz

+ E[N]T[A] [N1dZ .

Using integration by parts, we have
fINT'EDYIN®)dz = [NJ'[DIIN" ).

_IN'TIDIIN"T + [ [IN'TTIDIIN"1dz . (2.12)
and
fINTTLCI[N"1dz = [NY[CHIN'TI,

_fINTTICIN Y dz 213)

The first and second terms of the right-hand side of Eq. (2.12) and the first term of
Eq. (2.13) arc boundary values (forces). With refercnce to Eq. (2.6) it can be found
that these values cancel at the nodes between two adjacent elements and can be
treated at the boundaries by imposing boundary conditions. Thus, without con-
sideration of the terms just mentioned, we can write [k] in the form of

[K]. = [Kpl + [Kc] + [K4], (2.14)
in which
[Kpl=4 _I] [N [DIIN"]dC,
[Kel =2 | [NTTICIINT 4L
and
[Kal=2 [NT'[ATIN]AE,
wherc )
Dum[Al] Dmﬁ:[Al] Doxu[Az] Dmcﬁ[Azj
DaolA:] Dasld;) DaalAz]
KD == 3
(Kol DoolAs] DyslAs]
| symmetry DyslAs]
[Cc[B,] 0 C[B,] O
0 0 0
[Ke) = s ol
| symmetry 0
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and

0 0 0 0
A[C,1 0 ALG)
0 0 '
symmeiry  A[C;]

[KA] =

in which [4,], [4:], [45], [B,1, [B:], [Bs], [C;]). [C,]). [C5] are 3 x 3 square
matrices and are given as

[ 15 15 3 12
1 F I v !
1 — is5 96192 1173
[A1_] = I; 7 A 35;1- 351 :
3 22 1133 6 34
| 744”3547 354
r L5 Ls 3 92
1 -7 7 A 14;{
_ 15 5412 4 13
[A:z] —F - 7'1 35’1 "351 a
3712 4 33 BL
__14A 35)- 35A
[ 15 15 3 12
1 7 -3 A 14’1
_ LS 96192 1173
[Aa] _A__] - 7’1 35)— ‘"351 )
3 72 i11:3 6 34
TIA __s’t 36}'

A
1
[B)=;| &4 82 &2 |

iz 15 315
- 15 3 172
| — 121 14A ‘421
_ 3 1,12 _2 13
(B1=| -1 %2 dsd |,
1 42 _3 43 _2 14
| — 324 — 1834 3154
- 15 3 Lg2
1 21 ~ 15l 374
_ 33 1632 173
[B;] =711~ at sA -i547 |,
1 72 1 13 _4 14
32 _l‘iA 3152
181 311 7 281 72
231 1155 69307
Y VS 416 12 69 33
[Cy]=A| Tiss/ ise54 32654 |
281 12 _69_33 a_ 4
| §5364 3465/ TissA
[ 60 1351 4 181 32
31 —1r354 s9igt
ik 151 266 712 _S52 13
[(’2] - )' 1.1.55’1 _3465’1 3465’1 El
181 32 52 13 2 14
_5930'1 —3i554 F534
181 3113 281 12
—1231 —7iissh g5304
_ 311 g 416 72 69 13
[C.] = A =554 33854 34554

281 -2 _,ﬁ‘}_;"i #“ssid
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2.1.3 Derivation of the Element Load Vector

The element load vector is of the form

Fiy = T[N]T{P}dz (2.15)

from which we can evaluate element load vectors. Two types of clement load vectors
are presented here for (a) a concentrated load applied at the left end of element and
(b) loads uniformly distributed on a whole clemeng; they are:

e | @ (m, + mg)
F = [a]] {(rﬁz + tﬁ(},)} ' (2.16)
Casc (a)
o _
0 0
¢
[a]= BE [a;] = [0]; (2.17a)
0 0
L 0]
Case (b)
) -
220
i A3
[a] = | el = —la-m1. (2.17b)
0 242
i 154’ |

2.1.4 Formation oi' the Structure Stillness Matrix

Assume the clement stilfness matrix is in the form of

Ke K=&
[K]. = [ N L’} (2.18)
K5 K5
and the element load vector
F.
Fie o= O] .1
(Fl; {Fj} : @.19)

where [K;1° [K;;15 [K;l5 [Kj;]° are 6 x 6 square matrices ad {F}, {F;} are
column vectors of order 6.

Since only two elements are connected at each node, the equilibrium conditions
at any node r in the girder can be written as
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[Kji]Fr—n{‘Sr—l} + ([ij](er—n + [Kilin) {5.} + [Kij](erl{arn}
= {F}e-n + {Flw (2.20)

in which subscripts r — 1 and r of the submatrices in the element stiflness matrix
and element load vector refer to the element to the left of node r and the element
to the right, respectively; {8, }, {J,}, and {4, } denote the displacement vectors of
nodesr — 1, r,and r + 1 in turn.

By assembling all the above nodal equilibrium equations, we get a set of linear
algebraic equations in tcrms of nodal displacements,

[K1{o} = {F},, (2.21)

in which [K] is the structure stiffness matrix, {F}, is the structure load vector, and
{0} is the structure displacement vector.

2.1.5 Boundary Conditions

Before imposing boundary conditions to Eqs. (2.21) we are unable to splve the set
of equations in a normal way because the matrix [K] is singular. Boundary condi-
tions depend on the support conditions of the structure, and two types of boundary
conditions for two different supports are as follows.

At a fixed support, there is ncither the displacements of the cross-section in the
vertical, transverse, and longitudinal directions, nor the rotation and distortion of
the cross-section, thus the boundary conditions can be expressed as

[f1=0, [6]=0;
[(#1=0, [#]=0.

At a simple support, the cross-section is not permitted to move in the vertical
and transverse directions, to rotate, and or to be distorted, but it can be freely
warped, owing to the existing diaphragms with infinite rigidity in-plane while zero
out-plane. Hence, the boundary conditions can be formulated as

[6]1=0, [4]1=0;
[(0’1=0, [#]1=0.

The same is true at thc nodes where a rigid intermediate diaphragm is provided.
For elastic intermediate diaphragins at nodes we can easily consider their effect in
stilfness matrix by taking their virtual work into account.

{2.22)

(2.23)

2.1.6 Evaluation of Displacements and Stresses

By solving the set of lincar equations for the cquilibrium of the structure, we can
obtain angle of twist 0 and distortion f) of cross-sections as well as their first and
second derivatives #, 0", &, and §” Then the normal stresses duc to warping torsion
and distortion of cross-section at any specilied section can be evaluated according
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to Eqgs. (1.74b) and (1.75):

M, Mg .
g=d,+0;=——w+ — @,
Foxn Ft‘ D
where Mm = _DmmG"" ﬂ(ﬁ = —D{hﬁ)ﬁ”, that is
¢ = —E"o+ 80). {2.24)

2.2 Analytical Method

Results from specific numerical cxamples by the {inite beam element method reveal
that the coupling term D in the cquations

D, 0 + Dugf — COP =m, + m;,
Do)‘;,(}(‘n + D(T)ﬂlé(4} + AHG = Fﬁz + r‘ﬁ;)
has little elfect on the final results (for 0, 8, the effect is generally less than 5%} and
is negligible. Thus, the set of dillerential equations are converted into two indpendcnt

equations:

D 0" — CO® =m, + m,, ,
- o (2.25)
Do + A0 =, + mj .

That is to say, the problem of warping torsion of box girders with deformable
cross-section is simplified into two independent problems: warping torsion of box
girders with rigid cross-section and distortion of box girders with deformable
cross-section. In the case of constant cross-section, the two dilferential equations
can be solved easily, and analytical solutions to them are given in the next section.

2.2.1 Analytical Solution for a Single-span Girder

We rewrite the first equation of Egs. (2.25) as
C

g D B = (m, + my)/ Dy - (2.26)
Denoting 4 = \/C—/Du;, gives
g4 — 4207 = (m, + m,)/ Doy - 2.27)
The characteristic equation is
rAr— %) =0, (2.28)
withrootsr;, 1, =0, = 4,1y = — 4

Hence, the homogeneous solution to Eq. (2.26) is

8=0C,+ Cyz + Cye** + Cpe™¥
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Furthermore, the general solution of Eq. (2.26) can be written in the {orm of
§=C,+ Crz+ Cye™ + Cie™ +6,. (2.29)

» If the exponential terms in the above equation are written in the form of
hyperbolic functions, then Eq. (2.29) becomes

8=C, + Cyz+ Cy-coshdz + Cy-sinh iz + 6, (2.30)

in which coefficients C,, C,, C;, C, are constants and can be determined by
boundary conditions.

For a single-span girder, solutions for various boundary conditions and various
forms of loads have already been devcloped and can be applied.

2.2.2 Treatment of a Continnous Girder

For the problem of warping torsion of continuous girders, we can use the known

solution to a single-span girder by analogy with the method of solving the planar

bending problem of a continuous beam. We take a series of simply supported

single-span girders as a fundamental structure system, as shown in Fig. 2.2, in which'

unknown redundant forces are the bimoments at the cross-sections on supports and

apply the deformation compatibility conditions on the supports that the warping
- the slope angle of twist { at adjacent cross-sections - - is the same.

Notations

M, .., M, M, ,, the unknown bimoments at the cross-sections on supports k — 1,
k, k + |, respectively.

8, m, — the slope of angle of twist @ at support k caused by a unit bimoment
apphed at the left end of span m of the fundamental structure;

Ok.m, — the slope of angle of twist & at support k caused by a unit bimoment
applied at the right end of span m of the fundamental structure;

8, ., — the slope of angle of twist 0 at support k caused by a unit bimoment
applied at the left end of span n;

Ok, -~ the slope of angle of twist 8 at support k caused by a unit bimoment
applied at the right cnd of span »;

i op» .o, — the slopes of angle of twist & caused by load p applied within span
m and span n, respectively.

Mk_] Mk.]

H.
s N DAL
x) ';/IK |/'

i k_._% b+
e ]

Fig. 2.2. Continnous girder

™

e
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Using the deformation compatibility conditions, the relative warping caused by
external load and redundent forces vanishes at any intermediate support &, i.e.

Jka—l Glr;.m, + Mk(ﬁlj(,m, + Ol;.m) + Mk+181;.:1, == (Hlipm + Giﬁ,pn) {231)

in which & is the number of supports of the continuous girder and

1 x
0; _ I Ll m ,
S Co ( sinh xm)

1
;(,m, = (:m!,m (xm -cosh i — ]) >
(2.32)
1
' — " (3% -coshx, —
Gk.n. CnIn (/n coshox, ]) »
1 x
= 1 - . \
Gl ( sinh xn)
with
¥ = /Cof Do % b 80 3y = /Cp/Dogpn X L - (2.33)

Equations (2.32) can be calculated from Eg. (2.30) in which g, is the special
solution for the case of a unit bimoment applied at the end of the girder.

For every intermediate support we can write an equation similar to Eq. (2.31),
and thus a set of equations is cstablished. After solving the equations, thc unknown
redundant forees, i.e., the bimoments at intermediate supports, are obtained. Thus
the continuous girder can be analyzed according to the existing formulas for
singie-span girders.

2.2.3 Numcrical Example
Data: dimensions of a cross-section of a steel box girder are indicated in Fig. 2.3;

the span length { = 2400 cm; uniform torque m, = 1000 N 'm/m; the modulus of
elasticity E = 2.06 x 105 MPa and modulus of shearing G = 7.848 x t0* MPa.

Ay =121.90 . Ay=171.80
’_.._.. .T_. JS— 8] 2R —— . T
f1=3)f~ f'n:l.‘rw o I‘
&
b=, =
;=10 I
H=11 J

L.—_. B, = 3B - —A-J Uit : cm

Fig. 2.3. Dimensions of a bridge cross section
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The area of cross-section is
F =Y F =225078 cm®.
The distance from the centroid to the top plate is
hy =3 Fy/F=218%cm.

The torsional rigidity is

C =G x [(B, + B,) x HI}/(B/t, + B,jt, + 2 x H/t3)

= 6.638 x 10'* N-cm?,
¥ = 24/§(ds/t) = 125.71 cm? .

The sectorial coordinate is

shown in Fig. 2.4.

F
Y= — - — 0.85 cm,

XX

Dy = EFpq = E | @*dF = 4595 x 10'° N-cm*.
F

For a box girder simply supported at two ends subject to uniform torsional
moments, Eq. (2.30) is modified:

m, [z(t‘ -z) 1 ( sinh Az + sinh A(/ — z))]
P - .

C 2 A sinh Al
in which 2 = \/C/Dqg. The values of 8, T,, M,,, and T,, are plotted in Figs. 2.5 to 2.8,

2204

1151

151 -151

-1151

LA
-2204

Unit: cm

1678

-1678

Fig. 2.4. w diagram of the cross section
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L H L |
0 .25 0.5 0.5 1.00 7/

Fig. 2.5, Angle of twist {! as a lunction of z/1

i
Hm
|

G , L
025 050 n.?a\l 0o 2/t

Yig. 2.6. Torque 7, as a function of z/!

MCU

108

Nm?
. 0

k -
0.25 050 0.75 tan o 24

s}

Fig. 2.7. Bimoment M, as a function of z/!

L1041

Nm
2:102\\
I | 1 1

0
0.25 0.50 L.7s \UD /!

Fig. 2.8. Torque T, as a fnnction of z/!

0 — m,|z(} -2y 1 l sinh 2z + sinh A(I — 2)
B L sinh Af ’

. 1 coshdz - coshi(l — 2)
=0 ’"Z(z 2t sinh A/ ) :
m, sinh Az + sinh A{l — z)
M{n =3 I - v ]
A sinh Al

T m, coshdz — cosh Al - 2)
@2 ~ sinh M ’
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Op= = —" W, Fow = 2230 x 10° cm®,

in which @ diagram is shown in Fig. 2.4. As an example, on the cross-section at
the mid-span, the warping torsion stresses at the edges of top plate are ¢, =
+0.683 N/cm?, being quite small.

The shearing stresses due to pure torsion are of the form
T. 1
T.,= ——,
924t
in which 7, is given in Fig. 2.6. As an example, shearing stresses on the cross-section

at quarter point are calculated and given in Fig. 2.9.
The shcaring stresses due to warping torsion can be calculated according to the

form

]
F(!]l’l)

(tfw) = - T:n ( ® §Fm(dglt}) Tzﬂ S

Faol © 7 $sin) ]~

in which T, can be seen in Fig. 2.8,

F,= [wtds, asshowninFig 2.10.

[ ]

— = 1BZ

Tc Co LT T LTIyl

[ S 1en?

- fi ff ‘ Lnit; N/cm?

Fig. 2.9. Shear stresses 7, on the cross section al quarter poini

-N8713
-218713 -319497 _7I84Y97 THi%EIED\Q

£, s) eI

-£56710

-691927

651922

-851372 ‘L__l

" 132965

Fig. 2.10. F, diagram of the cross section
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53184

- ;,’2‘82'3

73104

/ -— \

- 102108

-10210%

Unit : cm*

Fig. 211, 5, diagram of the cross scction

Mu? — —284520312 cm

§d—:: 535.2,

5. _Fo— § Folds/t) ,
§(ds/1)

max({tz,,) is very smail in comparison with max(tr,).

as shown in Fig. 2,11,

2.2.4 Effect of Warping Torsion of Box Girders

The torston of a thin walled structure is generally a combination of pure torsion
and warping torsion.

The question, in which torsion is dominant in the case when a girder is subjected
to torsional moments, can be answered by distinguishing the torsion characteristic
parameter ¥ = ./ C/D,,, -1 = Al, which is the product of 4 = ./ (C/D,,,, the ratio of
the torsional rigidity C to the warping torsion rigidity, and the length [ of the girder.
If the value of paramecter x is very small, then the cffect of warping torsion is
dominant and conversely, the pure torsion is dominant. In other cases we have to
consider the two effects of warping and pure torsions together.

Figure 2.12 indicates the curve of bimoment M, (y} due to warping torsion at
the mid-span of a simply supported girder under uniform torque m,. In the figure
the abscissa y is a logarithmic coordinate, while the value of the M {(x)/M,(x = 0)
is from zero (pure torsion) to one (warping torsion).

2.2.5 Effect of Shear Strain y, Due to Warping Torsion

We apply the theory given in Sect. 1.5 to analyzing the effect of shear strain v, also
using the numerical example in Sect. 2.2.3.
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1.00 , r_
[ H
= 075} - . At _h_. : 1
—é .
050 \\
20 AN
3T ‘-.,'\ —
x )
D ] H [ |
01 2 T ? . 6 8 10 : o5 o8 102

Fig. 2.12. Ratio M, {x)/M,{0} as a function of

From the caleulation in the previous section we have

C,=GI,=G [ ptds =7.239 x 1013 N-ecm?,

C,=C,— C=06014x 102 N cm?,
v, = C,/C, = 12.04,
DE, = v, Dyo = 553 x 107 N em*,
i = /C/DX, = 1095 x 1072em™".

In the case of a concentrated torsional moment T aeting at the mid-spen we have

T inh 172
g=-_ (5 sinh Al/2 b lz),

c\2 vAsinh Al
T/1 sinhil2 .
oo 2 ALY cosh A
o c(z yosmhAl Z)’
inh 41/2
M, =7 SPUAR i, @<l
v, 4 -sinh il
t  sinh Al/2
T —Co =T|-— /2 cosh A
¢ (2 ssinh Al z)’
inh 4
T, = —EF,, 0" = T 2 coshiz,
stmhA.I

Assume T = 5 x 10 N-cm. The values of 0, T, 1, and M,, with consideration
of y,, are shown in Figs. 2.13 to 2.16.

Computation results show that the shear strain y,, remarkably reduces the stress
6,, due to torsional warping on cross-sections where a concentrated torque is applied
or the warping is perfectly restrained — a fixed support. The reduction depends on
the factor v, = C,/C,. The ratio of bimoments M,(1) and M,(v,) obtained by
neglecting 3, (ic. v, = 1} and considering v, can be given roughly as

~ -

M)
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2
La0-3
M0

| R ] 1 .
i 0.25 0.50 074 100 z4
Fig. 2.13. Angle of twist & as a function of z/i

'I[‘

410" L

Nm

240" N
0 i

Fig. 2.14. Torque 7, as a [unction of z/{

04| j
0 | | ]
| (.25 D.SV 07 100 z/f

Fig. 2.15. Torque T, as a function of z/!
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10*
Nm?

I 1 L J
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Fig. 2.16. Bimoment M, as a function of z/,

2.3 Cross-section Distortion Analysis of Box Girders

2.3.1 Solution to the Distortion Equation of Box Girders

We rewritc the second equation of Eqs. (2.25) as

I L
0.2% 050 0.73 1.00 z/

37

(2.34)
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Denoting
1=/Aj4Dss

the characteristic equation of Eq. (2.34) is

v 4+ 414 =0,
with roots 3 _
=(l 4+ i}4, v, = (1 — )4,
1 o 2 > (2.35)
ys = (-1 + i}, va=(—1-D4.
Thus, the homogeneous solution to Eq. (2.34) can be constructed as
d = e‘TZ(C1 cos Az + C, sin i)+ ¢ "T‘"’(C3 cos iz + C,siniz). (2.36)

In the case when a simple supported girder is subjected to uniformly distributed
loads rt,, the general solution to Eq. (2.34) is

. H - - - > - -
§ = ATZ + e*(C, cos iz + C,sin iz) + e **(Cycos Az + Cysindz)  (2.37)

in which coeflicients C,;, C,, C3, and C, can be determined by imposing the
boundary conditions,

forz=0: B#0=0, §0)=0;

forz=1: 8h=0, g =0,
and will be
C = "_z.%(eﬂ‘ — cos24l) — sinh il cos il — cosh 221 + cos 241
| cosh 211 — cos 241 ’

C,=C, = n"g si_nif(cosmil — coshﬁi!) (2.38a)

A cosh2il — cos 24l
fi, Y™ - cos22) — sinh dlcos il
Cy= —=2 .

A cosl; 21 — cos 24!

In the case when a girder is subjected to a concentrated moment T, the homo-
geneous solution Eq. (2.36) is the general solution. Using boundary conditions and
deformation compatibility conditions at the mid-span, coellicicnts Cy, C;, etc., can
be determined:

A il
- sinh -~ sin— + cosh —cos —
2 2 2 2
Cl = — (:‘_3 = -—_-‘3 b - - k]
8Dz cosh Al + cos il
(2.38b}
it i i i
- sinh — sin— -- coshdcos ;U
| 2 2 2 2
C, =0 = =

8D A’ cosh Al + cos il
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2.3.2 Numerical Example

Data: The example shown in Sect. 2.2.3 18 reused. For the data sce Sect. 2.2.3.
Feo
= —-—== —1419cm

@-diagram is shown in Fig. 2.17.
Foo = § OB dF = 49476 x 10'° ¢m®
F

A=863x10°N
C, = 3.0630 x 107
C,=C,=21815x 1973
C, = 0.01105
The values of @ and M, are plotted in Figs. 2.18 and 2.19.

e

M, — —Daal”,  Ma(/2) = —524 x 10* Nm?

M; . .
As an example, a5 = F—“’a‘) on the cross-section at mid-span and at the lower box
[

corner is 160.59 N/cm?.

1E70 3340
- 1670

¥ /1670

3340

- 15151

15151 / -15151

15151 Unit = cm?

Fig. 2.17. & diagram of the cross section

Dy

310
Sl
404}

] i ]
i 0.25 0.4 0.75 180 2/

Fig. 1.18. Distortion 0 as a function of z/l
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L 1 l | -
0 0.25 0.50 0.7 100 2/

Fig. 2.19. Bimoment M, as a function of z/1

0 A
1— - §.32%10°
r\.la
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Fig. 2.20. £ diagram of the cross section

1C,38=0°

| L
it A = (-a,qzxmf'

-16.27x10°

T omé

Fig. 2.21. 5; diagram
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s
Nm
108 //,'1
f ! I 1
1.0
e 77 .50 0.75 i 2/

Fig. 2.22. Torque T, as a function of 2/1

PRI L
N

: R |
H ¢ 6 &1 H ¢ 5 810

Fig. 2.23. Variation of the ratio M (#)/ M(0.1) with respect to &

. ds [ ds
F; is shown in Fig. 2.20, s = Fs — (5: F@TS / SETi) is shown in Fig. 2.21, and

Ty = — EFgq#” is shown in Fig. 2.22.
The shear on the cross-section at the support is ({15} = 1.8258;.

2.3.3 Effect of Distortional Warping of Box Girders

As was previously mentioned, the general torsional rigidity of a thin walled box
girder is composed of two parts, one of which is the pure torsional rigidity C and
the other is the warping torsional rigidity D, The characteristics of torsion of thin
walled box girders arc related to the dimensionless parameters x = Al = \/C/Dm L
Similarly, the distortional rigidity of cross-section of thin walled box girder is the
combination of the shearing rigidity A4 and the warping distortional rigidity Dgg-
The distortional warping box girder is related to dimensionless parameter % =
3/ A/4D4; - 1. With the increase of the value of %, the eflect of distortional warping
decreases. The variation of warping distortional moment at mid-span with respect
to % under uniform loads M, is shown in Fig. 2.23, where the ordinate represents
My {(%)/Mg(0.1), while the abscissa % is a logarithmic value.

2.4 Comparison of Theoretical Results with Model Test

To verify the correctness of the theoretical analyses, we performed a loading test
with a girder model made of Perspex.
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- 10
Fig. 2.24. Dimensions of the model cross section
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Fig. 2.25. Normal stresses ¢ on the cross sections at (a) 31, (b) £1, (c) !, {d} mid-span

Dimensions of the constant cross-section are indicated in Fig. 2.24. The span
length of the girder model is 200 cm. Two diaphragms were located at the two ends,
each of which was supported at two points. One end was supported on two linking
rods and the other on two bearings.

The modulus of elasticity of Perspex is E = 2943 MPa and its Poisson’s ratio is
u =04

A concentrated force of 981 N was symmetrically or eccentrically applicd at the
mid-span.

Figures 2.25a—d show the normal stresses on the cross-sections at 31, 3/, g/ and
the mid-span, which are theoreticaily and experimentally obtained under an eccen-
tric concentrated force applied at the mid-span of the model. It can be seen that the
agreement between the results from the theory and the test is good.



3. Bending and Torsion Theories of Curved
Box Girder

The bending and torsion of the curved box girder can, in principle, be analyzed
analogously to thosc of the straight box girder. However, because of the presence
of initial curvature, the analysis becomes more complicated. Many authors have
contributed to the development of this theory, for instance Vlasov (1961), Dabrow-
ski (1964). In this chapter a practical theory of bending and torsion of the box girder
for wide initial curvaturc range will be developed. That means it inciudes the cases
where the initial curvature radius of the girder axis is rather smail and, therefore,
the nonlinear distribution of normal strains and strcsses over the cross section must
be takcn into account.

The curved box girder of symmetrical trapezoidal section, as shown in Fig. 3.1,
is widely applicd in bridge engineering, and will be considercd here. For simplicity,
we assume that the cross section and the radius R, of girder axis are constant along
the girder length. The cross section may be distorted due to torsion, and its
distortional rigidity is assumed to be continuously distributed.

The cylindrical coordinates r, n, z will be used, and the centroidal principal axes
x, y coincide with r, n, as shown in Fig. 3.2.

The distributed loading g, 4., ¢, acting in the directions r, », z, respectively, will
be considered. As in the case of a straight box girder, the local stresses induced by
the loading are not included in the investigation, and the influence of shear strain
caused by the warping torsion will be analyzed last.

3.1 Displacements and Deformations

Asin Chap. 1, there arc five basic displacements, namely, the uniform displacements
Ug(2), vo(2), Wo(z) in the directions r, n, z, respectively, the angle of twist 8(2), and the
distortion 0{z):

(A} = [4]7=[ug vy 6 0 wolT. (3.1)

The displacements u(x, y, z) and v(x, y, z) in the directions r and n, respectively,
at point (x, y) of the scction (z) can be expressed in the following form:

u(x,y,z) =g —(y — ym)d —(y - J’N)é ) (3.2)

b(x, y,2) = vy — (x — x)0 — F.0
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Fig. 3.1. Symmetrical trapezeidal section and its coordinate system

ayv

Fig. 3.2. Cylindrical coordinate system

where the indices M and N denote the center of twist and center of distortion of
the cross section of the curved girder, respectively, and 7, is defined in Eq. (1.67).

In order to determine the normal displacement w(x, y, z), let us consider the
rotations and twist of the scction. The rotation vector in direction r 1s

qbr—_- _—= —Ub, (33)

while the rotation vector in direction # consists of two parts, namely, uj due to the
horizontal deflection g, and wg/R, duc to the uniform axial displacement 1wy, as
shown in Fig. 3.3. The sum is therefore,

$o = Up + xWo , (3.4}
where
2= 1/Rq. (3.5)

As to the twist, aside from & due to the torsion, there ts a contribution due to
the vertical deflection p,. 1t may be scen from Fig. 3.4 that the displacement vy
induces a relative rotation —dv,/R, about the z-axis between two adjacent cross
sections of an element dz of the curved girder. Hence a twist dvo /R, will occur if
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Fig. 3.3, Rotation due to uniform axial Fig. 3.4. Twist dne to vertical displacement vy
displaccment wy,

the angle # remains unchanged. The total twist per unit length is therefore
k, =0 + xvyy . (3.6)
By using the expressions of 4,, ¢, k., the normal displacement can be determined
according to the following equation:
WX, 3, 2) = —(x — €)¢a + Yy — Oy — DE + Wo, (3.7)

where wg and @y are principal coordinates for torsional warping and distortional
warping of a curved girder, respectively, and ¢ denotes the eccentricity of neutral
axis of bending in the horizontal plane caused by the nitial curvature of the girder.
The calculation of wg, @, € will be given later.

3.2 Normal Strain

In the analysis of the normal strain of the curved girder, the variation of the initial
radius across the width of the cross section

R(x)=Ry; — x (3.8)

will be taken into account.
In order to establish a practical method, the following approximation will be

adopted:

|

where y is given in Eq. (3.5). It is the term yxx wherein the variation of the initial
curvature across the section width is considered.
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The normal strain of a curved girder is given by the equation

L AL
*-;(I,J’az _-R(x)a(ﬁ_R(x)

Using Eq. (3.9) and R(x)d¢ = (1 — ¥x)dz, we can put the above equation in the
following form:

g, = (1 4+ xx)(w' — yu). {3.10)
Substituting Egs. (3.7}, (3.6), (3.4), (3.3), 3.2) into the preceding equation, we obtain
e, = (1 + ) [%]1[41{4} . (3.11a)
or
g, = -(1 + xx)[RI{k}, (3.11b)
where the matrix of the principal coordinates is
[X]1=[(x —¢) y wg Dg 1] (3.12)
The matrix of differentiation operator d = d/dz is
[ —d? 0 0 0 —xd |
0 —d* X X 0
[dl=| 0 —xd* —d° 0 0 {3.13)
0 0 0 —d? 0
| —x 0 —xym —yn 4]
and the matrix of curvatures is [k} = —[d]{4}, i,
ky ug + xwo
k, vfy — 71(0 + 8)
{k} = k=<8 + yvg ) (3.14)
Bl
~£g — (w5 — xluo + ymf + yn0))

From Eq. (3.11) it can be secn that, owing to the term yx, the normal strain &,
is no longer linearly distributed over the section, and the nonlinearity is considered
only up to the squarc of x.

3.3 Principal Coordinates

3,3.3 Unit Torsional Warping

The torsional warping of a curved box girder can be determincd from the equation
for shear strain:
dn  dw w

el T 3.15
})Z.‘i az + as + RO Cosﬂ(s)i ( )
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where s, f3, 7 are shown in Fig. 1.2. In comparison with Eq. (1.8) for a straight girder,
the above equation has one extra term on the right-hand side, namely, the third
term containing 1/R,. This R, has bcen taken for R(x), since it is only a term
modifying w.

For this reason, Eq. (3.15) can be integrated by successive approximation. Using
the unit torsional warping @ of the straight box girder given by Eq. {1.30) as the
first approximate solution, we obtain the first modificd warping

wix, s} = —wpk,, (3.16)
where
wp = w(s) — y82(s), (3.17)

2(s) = iwcos fds 4 ©2,(0)
0

— Q,(s) + Q,0). (3.18)

A further step of approximation yielding modification with ¥*? can be omitted.
To orthogonalize wg to the principal coordinates {x y 1), the integration con-
stant £2,{0) must be

2.0 = ¢ [ 2O (3.19)

and the position of the center of twist M(x%, yi) of w(s) in Eq. (3.17) has to be
adjusted. From thc relation :

wp(xq + A%, ¥a + Ay) = @050 Yx) — Axuy + Apux, (3.20)
Le., wr(Xpp, ) = 00k, ¥r1) — 282(s) — dxyy + Ayux follows the adjustment simi-
lar to Eq. (1.16):

Fyo

Axy=—yx—",
B (3.21)
F, '
Ay =% Fn.

Figurc 3.5 shows an example of wy. For a symmetrical box section,  is
anti-symmetric, 2 symmetric, dyy = 0, but 4xy # 0. Therefore, the center of twist
M of a curved girder is not on the axis of symmetry and wg is asymmetric involving
the nonlinear term 2, which in addition to xx in Eq. (3.10) makes the distribution
of torsional warping stress g, over the cross section of a curved girder is no longer
lincar.

3.3.2 Unit Distortional Warping

Referring to the calculation of wy in the preceding section and @ in Sect. 1.4, the
unit distortionat warping of a curved box girder @y can be given as follows:
J’R(wa yN) = (D(xga yg) - Xﬁ - AXN'IJ'“_}-‘ + Avanx * (322)

where
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Fig. 3.5a—d. w, £2, and wy diagrams of the model scction given in Fig. 2.24

3(s) = 3,() + 2,00, {3.23)
G (s) = ji @cos fds,
° (3.24)
- .
3,(0) = Fi (dF,
E F(g)
SR N
Z“F{"’ (3.25)

B Yl
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@By

Fig. 3.6. & diagram of the model section

Fig. 3.7. Distribution of the normal stress & in horizontal bending

and .
1 for n = 1, 3 (top and bottom platc),
V., =
! —v forn =2, 4 {wch platcs) .

An example of &g is shown in Fig. 3.6. The foregoing statement about wy is also
valid for g

3.3.3 Neutra! Axis of Horizontal Bending

Owing to the initial curvature of the girder, the neutral axis of the bending in the
horizontal plane shifts from y-axis (x = 0) to x = e, as denoted in Egs. (3.7), (3.12),
and shown in Fig. 3.7.

The eccentricily e can be determined from the equilibrium condition that the
sum of the bending stress ¢ over the whole cross section must equal zero. This
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requires using &, given in Eq. (3.11),
U+ x)x —e)dF =0. (3.26)
F

Hence it follows
FXK
e = x? = xrf \ {3.27)

where r, is the radius of gyration with respect to y-axis.

3.4 Stresses and Stress Resultants

3.4.1 Normal Stresses and Moments

The normal stresses in the curved box girder can readily be given with the normat
strain £ from Eq. (3.11}%
o, = —E(1 + yx}[£] {k} {3.28)
It can also be expressed in another form by using the stress resultants:
M? Mo MS M2 . N°
o, =1+ xx){p-"- x—e+ 7Y + ﬁwn + }‘@—twg + _F}’ (3.29)

x ¥y
wherc
[MO] = [M) M MIMIN®]
= [— Dk, — Dyyky — Dok ~ Daak, Dzl (3.30)

(D] = E[F], (3.31)
[F]= IFI(l + xx)[X*]dF

= [ﬁxxFnymFMF)s (332)
Foo= Fal = ). (3.33)

The small terms xF,,,, ¥Fouwo> 1Fe are neglected. The indices @ and @ denote wg
and @y, respectively.

It must be noted that the stress resuitants (M°) are built up by g, induced by
the curvaturc k multiplying its corresponding coordinate %. If the total normal stress
g, 1s taken for building the moment, then

(M} = ~E[{(1+ [ [ dF (K}
ic., (3.34)
(M} = [M,M,M,¥;NT = ~E[F,]{k} ,

'l wnd o W o |
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where
(Fo 2Py 7 Foxo 1F i 0]
(Fyy + xFyyy) 2N 1Fe 0
[Fx] = (me + XFxmto) (Fm«?l + ;’:Fxm&)) 0] (335)
(Foo + 2Faa) 0
B symmctric F|

It can be secn that [F] contains only the diagonal clements without y of [F, ],
and, therefore, {M°} 5 {M}, but N =N.

34,2 Shear Stress and Torque

The shear stress in the curved box girder caused by pure torsion as well as by
warping torsion and bending can be determined just as that in the straight box
girder (see Sect. 1.3), because the influence of the initial curvature of the girder upon
the shear stress 7, even in the top and bottom plates, is very small, and in the web
where T dominates it is smaller stitl.

The expression for the torque of pure torsion herc is different from that of the
straight box girder, namcly, it is

T. = Ck, = C(0 + yvo) . (3.36)

3.5 The Strain Energy

The strain energy U, in the girder consists of three parts induced by the normal
strain ¢,, the shear strain of pure torsion y,, and the distortion of the section i

U = Uele,) + Uclye) + Ufin) . (3.37)
The first part is )

Ule,) = g I” e2dxdy R(x}dg .
Using R(x)d¢ = (I — yx)dz and Egs. (3.11} to (3.14) and (3.34), (3.35), we have
E .
Ude) = 5 § (K}TLE (R} dz

or (3.38)
= kT M) dz

The second part can readily be given as

ISTRY!

Ufy) == | kldz,
I

o, BT
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or
= 3 Tk, dz. (3.39)
i

The third part is the same as for the straight box girder, see Egs. (1.79}and {(1.80),

N K .
Uelin) = 5 ! Tadz

or
= 1{mldz. (3.40)
!

3.6 Potential of External Forces

The potential of the loadings q,, 4., 4, on the curved girder can be determined by
using the same equations (1.41) and (1.81) for the straight box girder where only w
and @ have to be substituted by wy and dy, respectively. [t is
U, = —fIl{gu+ g.v + q,w)dxdyd:z
= _I {plun - my”i) + (py + xmz)UO
~ (m, + ymy)ve + m0 — my,0

+ 0 — mgl + (p, — ymy)wo ) dz . (3.41)

3.7 Differential Equations

Tbe dilferential equations of bending and torsion of the curved box girder can be
derived, analogous to the straight box girder in Chap. 1, by means of tbe calculus
of variations. Using U, and U, given in Egs. (3.37) to (3.41), we obtain from

U =6U, +d0U,=0 (3.42)
after partial integrations the following equations of equilibrium:
— M, — ¥N Py + i,
— M — (M + T) py + ml + y(m, + m},)
_M;; - 'I:; + X(Mx - l\(_VM} = m, + m(:.'l . (3‘43)
—M&" + y(M,_—Nyy) + 1 w, + g
N - (M, —p, + xm,

The substitution of Egs. (3.34) and (3.36) for { M} and T, into the above cquations
gives the dillerential equations

[D]{4} = {p}. (3.44)
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where {p} denotes the loading matrix in Eq. (3.43), {4} is the displacement matrix
given by Eq. (3.1), and [D] is the stillness and differential operator matrix. The
elements D, containing x and the indices (xxy), (xxw), (XX®), (xww), (xwd), (XOAD),
as shown in Eq. (3.35), are small and can therefore be neglected. Then we have

D,, = b d* + y*D, d =djdz,

D,; =0,

D=7 D,

Dy =y*yD .,

D, = yD,d* ~ yDd,

Dys = (D, + 27Dy + 22Dyp)d* — 72Cd*,

Dy3 = (Do + Puo)d® — 1{C + Dy + 1*Dyyo)d?

Dys = 7Dy + Dua)d* — 1(Dyy + 1*Dyya)d? (3.45)
Dys =10,

Dy; = Dyod® — (C + 2x2Dyy0)d* + 22Dy, + yaDy,

Dy = Doad”® — (1 Do + 1 Dxya)d” + 17 (Dey + ywynD),
Dys = —yyuDd,

D,y = Dagd® — 272Dyy5d® + ¥2(D,, + vaD) + 4,

Dys = —xywDd,

D.s = (D + 72D )d>.

3.8 Boundary Conditions

Setting each of the boundary values from the partial integrations of Eq. (3.42) equal
to sero yields the boundary conditions for integrating the dillerential equations
(3.44). When there are no external forces acting at the ends, we have

(M, duy]=0, [M, du,] =0, (3.46a)

[(M, + yMy)dvp] =0,  [(My + xMg + xT)dve] = 0, (3.46b)
[M, 66]1=0, [(M, + T,)86]1 =0, (3.46¢)

[M, 6601 =0, [My 807 =0, (3.46d)

[(N — xM,)dw,] = 0. (3.46¢)

The equations illustrate that at the ends either the displacement (or the rotation
angle) or the corresponding force (or moment) is equal to zero. The substitution of
Egs. (3.34) to (3.36) into the preceding equations gives thc boundary conditions in
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terms of displacements. Owing to the initial curvature x and the eccentricities yy
and yy of the shear center and distortional center from the centroid 0, the displace-
ments are coupled in the boundary conditions as in the differential equations (3.44),

(3.45).

3.9 Simplification in Special Cases

3.9.1 Special Case 1: R(x) =~ Ry

When the ratio of initial curvature radius R, to the section width B is greater than
10, Ry/B > 10, the difference between the normal stresses o, computed by taking
R(x) = R, — x and R{x) = R, along the section width, does not exeeed 4%;. In this
ease we can substitute the following without significant error:

R(x) =~ R(0) = Ry . . (347
Thus,
(t+xx)=010—-xx)=1,
X=x-e=x, (3.48)
F.=F D.=D..

XX}

In Egs. (3.35) and (3.45) the terms having three indices, for example, F,,, and Dy,
vanish.

3.9.2 Special Case 2: R(x) = Ry, § =0

If, in addition to Ro/B > 10, the box girder has sufficient intermediate diaphragms
so that the section is practically indeformable, we have this special case 2. The basic
displacements are

{4} = [ug vy 0 wol" (3.49)
The matrix { D] in differential equation (3.44) will be simplificd from Eq. (3.45) to
[(Dd* + x*D) 0 £ yuD (Derd® — 1D |
[Py + 1’ Do)d® [iDoud®

(D] — y2Ccd*] — #(C + D,}d?]

[Dyod* — Cd?

2 2 _Xy}lDd
+ 12 (Dyy + yuD)]
(D + ¥*D,)d?

(3.50)
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The initial curvature y tends toward zero with increasing Ry, and it can be seen
from the preceding matrix that the dilfercntial equations will be independent, as
shown in Eq. (1.49) for the straight girder.

3.10 Analysis Under Consideration of Shear Strain
of Warping Torsion

We will, as in the analysis for the straight box girder described in Sec. (1.5), consider
the influence of shear strain induced by torsional warping on the torsion of the
curved box girder for the case just discussed, namely, R(x) ~ - R(0) = R, and f=0.

3.10.1 Displacements and Strains

Let y,, denote the shear strain caused by the shear stress 1, of warping torsion, and
assume that y, produces approximately a warping of the section w = — @y, as
given in Eq. (1.85).
Denoting the displacement and deformation matrix by
{4y = {A}T =[ug vy O 3, wo), 3.51)
the normal displacement w(x, y,z) can be given, analogous to Eq. (3.7), in the
following form:

wix,y,2) = [—xd —(y+ywp)d —wpd — g (1 — zx)] {A} . (3.52)

As to ulx, y,z) and v(x, y, z), Eqs. (3.2} remain valid, if we substitute § =
Analogous to Egs. (3.11) to (3.14), the normal strain &, in this case can bc given

as
e, = [x][d] {4} = ~[x]{k}, (3.53)
where
[x] =[x y wg 1], (3.54)
—d? 0 0 0 —xd
0 —d? X 0 0
d] = .
4] 0 —yd* —d* —d 0 | (3.35)
—X 0 A2 Y d
k, ug + ¥wo
k vg — x0
kK= —[d N = o 3.56
R 0+ 15+ e 50
- &g —[wg — xltio + yuf)]

For the shear strain it follows readily from Eq. (1.87), by substituting k, =
& + yvg for &, that

= %(9’ + yvg) — (PM - [i{)?w . (3.57)



36 3. Bending and Torsion Theories of Curved Box Girder

3.10.2 Differential Equations

Referring to the calculations in Sects. 1.5 and 3.5, 3.6, and 3.7, we obtain by using
the calculus of variations the following equations of equilibrium, similar to Egs.
(3.43),

—My — N Px +my
— M — (Mg + T) py + my + x(m, + mg)
—M — T + (M, - Nyy)pr= m, + my , (3.58)
~M,—-T, Mg
N' — (M, —p, + xm,
where, as in Eq. (3.30),
[M, M, My, N]=[—-Duk, — D, k, —Dyoko Degl. (3.59)

T., T, are as given in Egs. {3.36) and (1.90), respectively.
Comparing Egs. (3.58) with (3.43), it can be seen that they are diflerent in the

fourth pair only. .
Substituting the preceding expressions into Eq. (3.58), we have the differential

equations
[D1{4} = {p} (3.60)

where { p} denotes the loading matrix in Eq. (3.58), and the stilfness and differential
operator matrix is as follows:

_(Dll} 0 (D13) 0 (DJ.A)—‘
(D) (D23) XDmmd3 0
(D] = (Ds3) Dd? (D34) | (3.61)
(Dpad®> —C,) O
| symmetric (Dag) |

where (D) denotes the element of the matrix given in Eq. (3.50).

Tt can be scen from this matrix and more clearly from Eq. (3.58) that, owing to
the initial curvature y, there is a term (M, — Nyy)in the third equation. This makes
it impossible to obtain a simple expression for y,, in terms of § from the third and
fourth equations, as done in the case of the straight box girder in Sect. 1.5.

As boundary conditions for integrating dillerential equation (3.60) we have Eqs.
(3.46a—c¢) and

(M, 7] =0. (3.62)

This condition means that at the girder ends it is either M, =0 (no torsional
warping strain) or y, = O (torsional warping constrained).




4. Stress Analysis of Curved Box Girder

In Chap. 3 we derived the bending and torsion theories of a curved box girder with
deformable cross-section. As with straight box girders, curved box girders can also
be analyzed by solving the equilibrium differential equations (3.44) to obtain the
displaccments as well as their derivatives, normal stresses, and shear stresses.
In solving the equations, however, the difliculty of satisfying the numerical ac-
curacy requirement is also cncountered and thus the analytical solution method is
impractical.

In this chapter the procedure for cvaluating the displacements and stresses by
the finite beam element method is presented, and using a specilic example a com-
parison is given between the threc results, which are obtained by the finite beam
clement method, the finite element method of plate and shell, and a model test.
Finally, the influence of various factors on the normal stresses is discussed, such as
the initial curvature of a curved box girder, the number of the diaphragms, and the
thicknesses of plates of a box girder.

4.1 Finite Beam Element Method

4.1.1 Assumptions on the Nodal Displacements and Displacement Functions

A typical beam element is shown in Fig. 4.1; its length is 24. We take lateral
displacement ug, vertical displacement v,, angle of twist 0, distorsion 8, and lon-
gitudinal displacement w, as well as their first and second derivatives as element
displacement parameters. It should be mentioned that it is unnecessary to let the
sccond derivative wj be a parameter, and it was taken for the sake of convenience
in calculation. Thus, the displacement parameter column vector {8}° can be defined

i {8} = {2} , (a.1)

b}
where

v . : A ¥ oo ’ 1T

{6} = [w wy uf v o v 6 08 0, 6 6 wow w'l,
_ T - e g o o de ' #T
{8,} = Lu; uj uj vy vj vf 0 0, 8 8, 6 0] wy w w'l.

As in the analysis of a straight box girder in Sect. 2.1, we select quintic parabolic
curves to interpolate all displacement components within the element and obtain
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Fig. 4.1a,b. Beam element

U
Lo
{8} =<8 »=[NI{o}", (4.2}
7
: Wo
where !
[N]=[N N,
‘lezwaoooot}oo-ooooo“
O 0 0 N NN, O 0 0 0 0 0 0 0 0
[N]=|{0 0 0 0 0 0 N, N, N; 0 0 0 0 0 0
0 0 0 0 0 0 0 O O N N, Ny O 0 0
0 0 0 0 0 0 0 0 0 0 0 0 N N Ny
(4.3)

and [N;] can be produced by replacing subscript n (with 1,2, 3) of element N, in the
above matrix hy n + 3, in which Ny, ..., N, can be scen in Eq. {2.3).

4.1.2 Derivation of Element Stiffness Matrix and Element Load Vector

For convenience of calculation the dillerential equations (3.44) of a curved box
girder can be written as follows:

((D“d* + [DP]d? — [DP]d? — [D'V]d + [DO]) {6} = {p},

or abbreviated

[L1{s} = {p}, (4.4)
in which
d = djdz
(D, 0 0 0 0
(Dyy + xszm Z(me Z(DL-J(T:
@) + zxszym) + nym) + ny(ﬁ)
D == )

[ ] Dmm Du)ii} 0

Dss O
| symmetry 0]
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0 0 0 0 D]
0 0 0 0
[D®] = 00 0|,
0 0
i symmetric 0|
0 0 0 0 0 i
72C x(Dyy, + 12 Dyo + C) 1Dy + 1 Dyye) 0
[D*] = (C + 21" Dyywn) 12 (Do + Duya) 0
273D 0
i symmetry —(D + ¥*D,,) |
[0 0 0 0O yD |
0 00 O
[DP] = 0 0 xymP |,
0 xynD
i symmetric 0
(D 0 PPyD 2y 0]
0 0 0 0
[D'] = 2Dy + VaD) 12Dy, + yuynd} 0,
A+ ¢y} D, + y&D) 0
L symmetry 0]
(ps + my)
(p, + my + z(m, + my)]
{p} =<(m. + mg) :
(i, + mg)
{(—p, + xm,)
and .
{8y =[ug vo 0 0 wo1". (4.5)

By analogy with the treatment of straight box girders given in Chap. 2, we can
obtain the clement stiffness matrix and the element load column vector:

(K], = [ [NTT[LI[N]4zE, (4.6)

(FY = [ [NT"{p} dz . @7

4.1.3 Boundary Conditions

From different support conditions we can obtain different boundary conditions.
For the cross-section at a fixed support, the vertical displacemcnt, the horizontal
radial displacement, the rotation, the distortion, and the longitudinal displacement
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are not allowed. For this casc the boundary conditions can be expressed as
[461=0 [5,]=0 [01=0 [0]1=0 [w]}=0
(u]=0 [r]=0 [0]=0 [§]=0.

For the cross-section at a simple support, the vertical and horizontally radial
displacements are suppressed, and for an end diaphragm with infinite stiiTness in its
own plane while the out-planc stifTness is zero, the section cannot be rotated and
distorted but can freely warp. Hence, the boundary conditions are

[ug]=0 [vo]1=0 [6]=0 [61=0 [w]=0
[:]=0 [v)]=0 [6"]1=0 []1=0 [w;1=0.

(4.8)

(4.9)

4,1.4 Evaluation of Displacements and Stresses

In an identical manner as for straight box girders, we can obtain thc equilibrium
equations for all nodes in the form of :

[K]{5} = {F},. (4.10)

After solving the above equations on which boundary conditions have been
imposed, we obtain at each node latcral displacement i, vertical displacement v,
angle of twist 8, distortion 8, and longitudinal displacement w, as well as their first
and second derivatives.

Then we can further evaluate normal stresses over each specified cross-section
according to Eqs. (3.28):

o, = —E(1 + xJ[£}{kY,

where x, [X], {k} are given in Eqgs. (3.5), (3.12), (3.14).

To verify the accuracy of the finite beam element method, the differential
equations of curved box girders have been converted into a set of differential
equations of first order and then solved analytically. The results from a numerical
example by the analytical method and the finite beam element method reveal that
they have a very good agreement.

| +

04

’_,5_....._ 15— .....1__5___‘
~f 1
=) i
)|
14

it ——

Unit + cin

3
4

Fig. 4.2. Dimensions of the model cross section
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4.2 Model Test ;

To verify the reliability of theorctical analyses, a test was performed with a girder
model made of Perspex.

Dimensions of the constant cross-section of the model are indicated in Fig. 4.2.

The axial line of tbe box girder is a circulur curve with radius R, = 160 cm. The
angle is 60° between the two radial lines that coincide with the two end cross-
scetions. End diaphragms were placed at the two ends of the girder. The girder was
supporied on both ends, one of which was on two linking rods and the other on
two bearings.

200N 200N 16CN B0 N

o A e S

a b (4]

Fig. 4.3a—c. Three loading cases

—a—— fegm elements L—

i /emd
o Plate and sheil elements 0ON/cm

—=—— Model test

Li/8

Fig. 4.4. Comparison of the normal stresses on the cross sections
4 in Fig. 4.3a
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/8 /8 14/8

—e— Begm elements
@ Plate ang shell eiements
—~—— Model test

4 Fig. 4.5. Comparison of the normal siresses on the cross sections
4 in Fig. 4.3b

The modulus of elasticity of the Perspex used in the model is E = 2943 MPa
and its Poisson’s ratio is u = 0.4.

Loads were applied at the mid-span. For the three cases of loading, shown in
Fig. 4.3, we took the strain measurements.

To verify the accuracy of the results obtained by the finite beam element
method, the comparison of the results obtained by the FEM of beam elements,
the FEM of plate and shell, and the model test is given in Figs. 4.4 to 4.6 for
three loading cases. The stresses at the control points on the radical cross-
sections at 1L, 2L, 2L and %L are shown in the figures. From the figures it can
be observed that the distributions of the stresses obtained by the two methods
agree well with those from the model test. The relative error between the theo-
retical and the experimental values is within the range of +207; with a few
exceptions.

The analysis of the model by the [inite clement method of plate and shell
is accomplished with the aid of the Structure Analysis Programme SAPS. The
finite beamn element method presented herein is superior to the [inite element
method of plate and shell in the reduction of the necessary ROM storage
and computer time, in the simplicity of input data, and in the clarity of output
data.
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Fig. 4.6. Comparison of the normal stresses on the cross sections
in Fig. 4.3c

4.3 Influcnce of Curvaturc on Normal Stresses

The inflluence of the curvaturc of a curved box girder on normal stresses is illustrated
with a specific numerical example.

Figure 4.7 shows a cross-seetion of a stcel box girder with the length of the curved
axis being 24.0 m. The girder is simply supported at two ends and has diaphragms
at the ends and mid-span. Undcr vertical loads uniformly distributed on the whole

g 28 R R
a b h=34 dT
ty=10 &
f=13 B N

Upit:em e f

Fig. 4.7. Cross section of a steel box girder
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oy 1T
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Fig. 4.8. Relationship between the ratios g /o at
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0.9
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Fig. 4.9. Relationship between the rativs ay /e at

05 L quarter span and R/I

girder, the normal stresses ag at the specified points on cross-sections at mid-span
and quarter point with variation of the curvaturc are evaluated. Figures 4.8 and 4.9
show that relationship between oy /o, the ratio of the whole normal stress gg in
curved girders due to curvatures to the stress o (bending only!} in corresponding
straight girder (R — oc), and R/I, the ratio of the radius R to the length ! of the
girder.

From Figs. 4.8 and 4.9 it can be observed that the normal stresses caused by
warping torsion and cross-sectional distortion decrease with the curvature of the
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box girder, and when R/l > 5, |(oz — o)/o| < 2005 when R/l > 10, |(6g — a)/o| <
10%; when R/l > 10, {(gg — 0)/0} < 5%,

4.4 Influcnce of the Number of Diaphragms

We assume that the girder of Fig. 4.7 has two more diaphragms placed at §
and 2/ and analyze the ratios of the normal stresscs g /o as a function of R/l
The results are given in Figs. 4.10 and 4.11. Tt can be seen that when R/l = 2,
l(oq — o)/o]| < 10% and when R/l > 5, (gg — ¢}/ ~ 1. The comparison of Figs. 4.10
and 4.11 with Figs. 4.8 and 4.9 reveals that for a steel box girder it is clficient to
reduce the normal stresses duc to distortion and warping torsion by suitably
increasing the number of intermediate diaphragms.

To find out how many diaphragms should be sct in a box girder, we have
analyzed the girder, shown in Fig, 4.7, with seven intermediate diaphragms placed
at equal intervals along the span in addition to the two end diaphragms.

ay /a

‘|D | — |
8 W 0 R/
09 ¢
U8 I
c Fig. 4.10. Relationship betwcen the ratios oy /o at
o7 L mid - span and R/
6, /0

10 70 R/

ue r

Fig. 4.11. Relationship betwceen the ratios oy /o at
07 L quarter span and R/l
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The results obtained are practically the same as those for the girder with three
intermediate diaphragms. This fact shows that installing too many diaphragms is

UNNEeCcessary.

4.5 Influence of Thickness of Plates of Box Girders

Figure 4.12 shows a cross-section of a concrete box girder, which is identical with
that of Fig. 4.7 except for the thicknesses of plates. For the same conditions as those
in Sect. 4.3 the ratios of normal stresses a /o as a function of R/I are calculated
and plotted in Figs. 4.13 and 4.14 for the cross-section at the mid-span and at quarter
point, respectively.

From Figs. 4.13 and 4.14 it can be observed that for the concrete box girder in
Fig. 4.12, with two end and one mid-span diaphragms and under uniform loads,
l(og — o)o| < 10%, when R/l > 5, and |(oy — o)/o] < 5%, when R/l > 10; they are

’—7 1219 a—‘—-f —--*21.3.8 ———l—— 1.9 —-—|
el i

“ f3=15

-L-— ——-]

th=t ]|

Unit: cm

0 f f

Fig. 4.12. Cross scction of a concrete box girder

R

d Fig. 413. Relationship between oy /o at mid-span
06 L and R/l
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Oy /0
.51

n

R/

Fip. 4.14. Relationship between oy /o at quarter span

g7 L 1o and R/!

about half of those for the corresponding steel box girder (see Figs. 4.8 and 4.9).
The rcason for this is that owing 10 the increase in the thicknesses of plates of the
box girder, the torsion and distortion rigiditics of cross-section are increased and,
consequently, the deformations and the normal stresses due to torston and distor-
tion of cross-section decrease.

4.6 Effect of the Variation of R Along the Width of Cross-section

The effects of the variation of R along the width on normal stresses is analyzed for
the same box girder shown in Fig. 4.7 by considering R = R, = const and R(x)
variable; the stresses obtained are ggc and ogy. The relationship between ogc/ogy
and R,/B, ratio of curvature R, to the width of the bridge B, is shown in Fig. 4.15,

Gy /Oy

1.4

——at e

———— ut {74

20 Ry /8

T

Fig. 4.15. Relationship between the ratios exc/dpy and

L R,/B
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in which solid lines e and f refer to points e and f in the bottom flange of the
cross-section at mid-span, and dotted lines e and f refer to the corresponding points
at quarter span. From the figure it can be seen that when R,/B > 10, the relative
error caused by disregarding the variation of R along the width is less than 5 percent.

4.7 Influence of Coupling on Distortion

For straight box girders, the error in distortional normal stress o caused by
disregarding the coupling effect of distortion 8 of cross-section with angle of twist
0 is usually not greater than 5%, while for horizontally curved box girders the error
is greater because the coupling is extended to other displacements owing to the
initial curvature of girder, see Eq. (4.4). The same girder discussed in Sect. 4.3 under
uniformly distributed load on a half bridge width along the span was investigated.
Let a; and ¢f denote the distortional normal stresses obtained by considering and
neglecting the effect of coupling of § with other displacements; the relationship
between 62/a; and Rg/l is shown in Fig. 4.16. It can be seen that the errors in
distortional normal stress oy caused by neglecting the eflect of coupling of & with
other displacement components are < 20% when Ry/t > 10, and < 107, when
R/l > 20, i.e, they arc greater than those for straight box girders.

4.8 Effect of Shear Strain y, on Warping Torsion

To assess the eflect of shear strain 7,, on the warping torsion in a curved box girder,
the stresses ¢, and o3 for the two cases, with and without consideration of 7, in

a3 /0
1.5

T

Ry /i
99

04

Fig. 4.16, Relationship between the ratios ol /o, and
06 L Ro/l
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Fig. 4.17. Variation of o, /ol with R,/

the numerical exampie in Sect. 4.3 with the assumption of rigid cross-section are
cvaluated under a concentrated torque applicd at mid-span. The results shown in
Fig. 4.17 reveal that, considering the cffect of 7, the stresses 6, duc to warping
torsion at mid-span are reduced close to that for a straight box girder, and the
reduction is fundamentally independent of the curvature of girder.



5. Earthquake Response of Curved Box Girder
Bridge

Earthquakes have caused bridge engineering professionals to reassess the design
techniques that have been used for seismic design.

Culver (1967), Cheung and Cheung (1969), Heins (1979), and Rabizadeh and
Shore (1975), have investigated the behavior of horizontally curved beams.

In this chapter, the formulation of the [inite element and the method for the
response of eurved box girders, modeled as a one dimensional beam, will be
presented. Consider first the original curved box girder bridge system, beam and
columns, as in Fig. 5.1a, this system will be modeled as a combination of beam
element connected with the pier element to form the entire structure, as shown 1n
Fig. 5.1b. With this basic modeling, the dynamic response of the entire structure
will be examined.

5.1 Finite Element Method

{n developing the response of the curved bridge it is convenient to use curvilinear
coordinates, shown in Fig. 5.2, where n, y is the vertical direction, r, x is the radial
direction, Z is the longitudinal direction, and u, v, w arc displacements functions
corresponding to r, n, £ directions, and g is the transverse rotation function.

Assuming the box girder structure has a rigid internal diaphragm, and thus
maintains its shape, the following displacement parameters {8(z)} can be used to
describe the displacement model of the element;

7
v
- . 5.

(61 =1 5.1
0

8,1.1 Stress-strain

The stresses induced on the curved element are represented by five actions or
internal forces and can bc described as follows:

M

¥
M,
N

{o} = (5.2)

T

T,

c

M,
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L

Fig. 5.1. a Original curved box girder system. b System idealization

A

Fig. 5.2. Curvilinear coordinates

where M, and M, are the primary bending moments, N is the axial force, T, is the
pure torsional moment, and M, is thc bimoment. Neglecting the effect of nonlinear
distribution of stresses due to curvature of girder, the strains related to deformation

can be expressed as

oW d
" . d‘z 0 i 0
u + R R
" 0 d* 0 !
—u + R - E 1
1 v
(Bl ={——=+wp={—> 0 d 0 =[d]{e},  (53)
R R w
7y d
— g — 0 d
R +0 0 R
UH dl
S | L ——— —d?
R GJ I 0 7 0

where R is the radius of curvature and d = 8/0z, d* = ¢*/0z*. According to Hook’s
law, the stress-strain relationship for one-dimensional problems, is given by
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{o} [D]{e} (5.4)

where {0} and {e} represent the induced internal forces and the corresponding
strains, respectively; and [D] is rigidity matrix, given as

[EF,, O 0 0 0
EF,, O 0 0
[D] = EF 0 0 (5.5)
Gl 0
symmetry EF gy, |

5.1.2 Displacement Functions

Normally, a beam element in space can be represented by six degrees of freedom —-
three translation displacements and three rotational displacements. However, ad-
ditional degrees of freedom, for instance, due to warping, are required for curved
bridge elements, which may be important and must be considered.

The expression for warping torsion of the nodal point displacements will include
the parameter of variation of twist angle along the longitudinal direction of the
beam, thus increasing the nodal point displacements to seven. However, in the
following development displacements 8, 8,, ..., g will be used to express the joint
i nodal displacement parameters, and 8y, &y, ..., 6, Will be used to express joint
j nodal point displacement parameters.

The nodal point displacements of the element can be given by

{6} = {g} (5.6)

J

where
& Jg
) )]
{5i}: ;2 s {5,-} = ?0 :
‘58 616

where 8,, 8,5, 85, 89, 8,0, and Jy, are translational displacements; 5,, Os, Ogy Op2, 0135
and 8, , are rotational displacements; 3 and 8,4 are the [irst derivatives of torsion
angle along the longitudinal direction of the beam, which accounts for warping
torsional influenee; 8, and &, 5 are the curvature of the element. These nodal
displacements are shown in Fig. 5.3.

Polynomials are assumed for the one-dimensional displacement model; a third
and a fifth order polynomial arc assumed for the displacement functions for ¢ and
u: and a lincar displacement function is assumed for w. Thus the following displace-
ment matrix is obtained:

{6} = [N1{d}", (5.7)

where
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%

Fig. 5.3. Nodal displacements of the element

N, O 0 O Ng O Ny 0 Ny O O 0Ny 0N 0
— ON ON, OO0 OO O NON 0 0 0 0
_oowsooooooowbooooo’
00 00 0NON 0 000 0N 0 N,
and ~
N, =13z 422,
N, =(z — 222 + 2,
N, = (322 — 22%),
Ny =(—22 + 29I,
Ns=1-1z,
N. ==z,
¢ | . (5.8)
N, =1—10z% + 15z* — 62°,
Ny =(z — 62° + 82* — 3291,
Ny = 3(z* — 32* + 32* — 252,
Nyo = 1023 — 15z* + 627,
Ny, = (—42° + 724 — 3291,
Npp = 32° - 22* + 2)F,
where z = #/l, | = 24 = length of the element. J
5.1.3 Nodal Forces and Element Stiffness Matrix
Assuming a uniform load p acts on the elements,
Px
P
{p} = p" , (5.9)
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where p,, p,, and p, are the uniform loads in the x, y, and z directions and m_ is the
uniform torque. Assuming a virtual displacement {#*} and a corresponding virtual
strain {*}, the total work done by the stress (internal work) and uniform load
(external work) is computed as

W= [ {e*} {0} dz — | {(*}"{p}dz. (5.10)

Using the nodal point displacements to express the preceding equation gives {§*} =
[N]1{é*}", and substituting in Egs. (5.3) and (5.7) gives

{e} = [41{é} = [d1[N]1{5}", (5.11)
or
{e*} = [B]{é*}*.
where
[B] =[d][N]. (5.12)
Substituting (5.11) into (5.4) gives
{6} = [D1[BI{o})* (5.13)
Substituting (5.13), (5.7), and (5.11) into (5.10) gives
W= {o*)" ]; (BY"[D1[Bldz{8}° — {5*}" ]; [N1T{p}dz (5.14)

The clement stilfness matrix and equivalent nodal point load matrix are therefore
{F}*=[K]{o} — {p}",
where
[KT = ! [BI'[D1[Bl4Z. {5.15)

and
{p}c= ! [N1"{p}dZ, (5.16)

the element stilfness matrix is obtained by substituting [ B] and [ D] into Eq. (5.15}
and integrating.

5.1.4 Element Mass Matrix

The influence of earthquake loading, using Newton’s second law and considering
the eccentricity of centroidal axes and shear centcr, will now be calculated. These
inertia loads include element vibration acceleration (g,) and earthquake accelera-
tion (¢,) loads and can be expressed as

{p} =1{q.} + {ag} - (5.17)

Consider first the element vibrations (g,). Examination of Fig. 5.4 shows the
eccentricity e = yy between the centroidal 0 and shear center M, where the radial
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Fig. 5.4. Motions of a cross section

L 5%u, 0%*u  6%0 ) i i .
acccleration is given by 32 82 + W& The radial horizontal inertia force

is therelore
| 4 = —PAnil; - (5.18)

Similarly g,, produces a torsion of —g,, - &; thercfore, the torsional inertia force
is
Q= —(pIn0 + au ). (5.19)

The total accelcration of clement vibration g, is therefore

QVX
{a) =487 L= —p[41{8} = ~pLAUNI{BY". (5.20)
3
where
A, 0 0 —Ae
A, 0 0
—A,e 0 0 I 4+ Aue

where p = unit volume mass, A, = cross scction in calculating mass, [, = mass
moment of inertia. Substituting g, into (5.17) and (5.16), the equivalent inertia force
as a nodal point load is described as

{p}, = —[m]{d} ) (5.21)
wheqe

[m] = j; [N]"p[A}[N]dz, (5.22)

and [m] is clement mass matrix.
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Fig. 5.5. Relationships between cartesian coordinates and curvilinear
coordinates

5.1.5 Seismic Mass Matrix

In developing the scismic mass matrix in curvilinear coordinates, the earthquake
accelerations g, and g, oriented in the cartesian coordinate system, x and z, must
be transformed into radial and tangential directions. As shown in Fig. 5.5, the
geometrical relationships can be written as:

iy = g,cosax + g,s1na,

by = diy »

A (5.23)
W, = —d,sina + g, cosa,

6=0.

As given by Eq. (5.20), the ground acccleration load matrix g, can similarly be
written as

. cos & 0 sina p
gy 0 ! 0
= = —pA
95} Ggz PEml _gine O cosa g:,
440 —ecosae O —esing G
— —pA T4} . (5.24)

Now, substituting Eq. (5.24) into Eq. (5.16) gives the cquivalent earthquake inertia
load:

(Pl = —pAn J; [NT'[T1dz{g} = — (g1}, (5.25)
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where

[gn) = PAn [ [N](T]dz.

5.1.6 Pier Element and Coordinate Transformation

The basic picr element is a straight element. Therefore, the basic curved beam
clement matrix can be used to develop the local stifiness matrix [K,] and mass
matrix [m,] for the pier element by letting R — 0. However, the pier has to be
transformed from the local coordinate into the global coordinate, by using the
following formula:

(6.} = [L]{d}", (5.26)
where [L] is the coordinate transformation matrix:
L, 0
=] , 527
(L] [0 LJ (5.27)
[t 0 o )
00 -1 0 0
0ot 0
: 1o 0
[Li]= [Lj] = 0 00 -1 O
0 1 0
O O o -1

The stiffness and mass matrix for the global coordinate system, for the pier element,
are, therefore, :

[kp1, = (L' [k 10L] , (5.28)
(m, 1, = [L1"(m,J[L]. (5.29)

The inertia force components of the pier due to carthquake acceleration can be
calculated by using the following local coordinate system formula:

cosa, 0 sina,

sing, 0 —cosa,| . .
(@)= -pda] o | o |8=pAulTME G0
0 0 0

where a, is a constant, as shown in Fig, 5.6.

Substituting Eq. (5.30} into Eq. (5.16) and integrating, gives the seismic mass
matrix [gn,] for the pier element. The local coordinate transformation into the
global coordinate system is obtained from

[gmp]g = [L]T[gmp] . (531)
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Fig. 5.6. Angle a, between the tangent direction and the z-direction

5.1.7 Dynamic Global Equations and Earthquake Response

By using the general dynamic equilibrium equation, assembling the stilfness, mass,
and seismic matrices, and introducing the damping [ C], the following global equa-
tion is obtained:

[M1{8} + [C1{8} + [K]{d} = —[G.1{d(t)}, (5.32)

when [M], [C], and [ K] are, respectively, the mass, damping, and stilfness matrices
in global coordinate; [G,,] is the seismic mass matrix represented in the global
coordinate system; and {g(f)} represents the three directional ground accelerations.

In solving the bridge problem, the following set of boundary conditions will be
assumed;

1) beam: hinge: 8, = 0,6, =0, §; =0, 0 =0,and &, =0,
roller; 6, = 0,0, = 0,6, =0,and &, =0,

2} beam and pier:
fixedend: 8, =0, =98, =0, =08; =6, =0.

Now using the eigenvector matrix, as obtained from the free vibration equations,
the earthquake responses of the structure in the elastic range can be determined by
means of modal analysis. If the response to a specific earthquake record is required,
Eq. (5.32) will be solved step by step for successive time intervals 4t.

5.2 Example

The bridge shown in Fig. 5.7 consists of a three-span continuous curved-beam
bridge, with the end hinged and with all the other supports on rollers. The span
lengths are 30.48 m, 30.48 m, 30.48 m; the radius is 182.88 m; and the pier height is
9.14 m.

The bridge was modeled with 16 nodes and 13 elements, as shown in Fig. 5.8,
and investigated with thc method prescnted here. It was also calculated as a space
frame system with six degreces of freedom at each node by using the SAP I'V program.

The results obtained by both methods agree well. For example, Figs. 5.9a--h
illustrate the naturai frequencies w; {cps) and the mode shapes that occur in the
radial direction (1, 4, 7), in the vertical direction (2, 3, 3, 8), and in the axial direction

(6).
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Fig. 5.7a, b. A three-span continnous curved-beam bridge. a Plan view,
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Fig. 5.8. Numbering of nodes and elcments
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ey = 2022 ¢ps wy = 25.00Cps

w, =44 40cps

g = 9133 cps wg=10140cps

Fig. 5.9a-h. Nature [requencies a; (eps) and the corresponding mode shapes



6. Bending and Torsion Theories of Truss Bridges

6.1 Introduction

The truss bridge, as shown in Fig. 6.1, is a spatial structure. When analyzing its
bending and torsion according to classical structural theory, it is treated as a system
consisting mainly of axially stressed members. This metod, however, has its short-
comings. It involves a large amount of computation work and needs a large capacity
computer, especially when performing the dynamic analysis; in addition, the method
cannot show the influence of the constituent parts of a truss bridge, such as chord
members, web members, lateral bracings, sway bracings, and portals, on the static
and dynamic behavior of the structure as a whole. Furthermore, the method is not
applicable to the truss bridges developed since the 1950s, which have steel deck
plates as chords, see Fig. 6.2.

To overcome these shortcomings, Li (1975, 1978) extended the differential
equation method developed for analyzing plane trusses (Lie (Li) 1944, 1949) to the
analysis of the spatial truss bridge structures. This approach is, in fact, an extension
of the theory of the thin-walled box girder, the structural particularity of truss
bridges being taken into account as will be shown in the following.

The basic idea is to convert the discrete structure of a truss bridge into a
continuous model by transforming the web members into equivalent continuously
distributed shear webs and the sway bracings into continuously distributed dia-
phragms. The portals arc considered as elastic end supports. For inclined portals,
the end parts of the truss may be considered as substructures.

Top wind bracing Sway brocing Cross section
_\D F;_____ E‘_
Fortal .. 7 ] Y/, ] I ] I
rl |. _ " | |
/ | |
CAN T |
) LT I ]

v . .
a Bottam wind bracing \Weh member “Lower chord b L_ ...... B _.J

Fig. 6.1a,b. Constituent parts of a truss bridge
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T
A

—

Fig. 6.2. A truss cross-seclion with steel deck plates

Because of their considcrable magnitude and influence, the shear strains caused
by the shear stresses due to bending and warping torsion in the webs of the truss
must be taken into account. As mentioned and shown in Chap. 1, there are theories
of bending and torsion established by introducing the shear deformations, in
addition to other displacements or deformations, as new paramelers. The influence
of the shear strains is considered in another way given here (Li 1975) by using
modification factors p for rigidities of bending and warping torsion, and thus
without using additional displaccment pararneters.

Referring to Eqgs. (1.49) and (1.83) for straight box girders, the dillerential
equations of bending and torsion of the truss bridge, as shown in Figs. 6.1 and 6.2,
can be given as follows:

(Dyug) = py + My, (6.1a)

(D,,v5) = p, + m}, (6.1b)

(DoolY —(COY + (Dops@'Y = m, + mi; (6.1¢c)
(Do) + Do’y + A8 = 1, + g, (6.1d)

where ug, v, are the horizontal and vertical dellections, respectively, 6, 0 are the
angles of twist and distortion, respectively, and Cis the rigidity of pure torston. D,
D,,, Dy, Dya» D denote the rigidities of bending, warping torsion, and distortion,
respectively, which have been modified by their corresponding u, as will be shown

in the following section.

6.2 Influence of Webs of Truss

6.2.1 Shear Rigidity of Webs

The webs of a truss consisting of web members and the upper and lower bracings
of the truss shown in Fig. 6.1 are meant to resist the shear forces and none of them
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=0
[ ——— i — - — r
g=1kN

Fig. 6.3. Shear delormation of a truss panel

is capable of taking the normal stresses in the truss, whereas the upper and lower
deck plates acting as chords and bracings of the truss bridge shown in Fig. 6.2 can
resist both shear stresses and normal stresses. In comparison with the web plates,
the webs consisting of members, especially the upper and lower bracings, have rather
small shear rigidity.

Figure 6.3 shows a pancl of a plane truss subject to a unit shear force Q.

The shear strain induced is

L, 1 43

=—b = - —
B =g a EF¥ h?

Imagine an equivalent shear web of thickness t* having the shear rigidity

K = Ght* (6.2)
and yielding the same vy, = I/K; we have
E ah
* = G d—af*d : (6.3)

In Tahle 6.1 the thickness t* of equivalent shear web of several web member
systems are listed (Roik et al. 1972).

6.2.2 Influence of Shear Strain in Bending

Let us consider the bending of a plane truss, as shown in Fig, 6.4. The bending
moment M, will be held in equilibrium by the couple formed by the axial forces in
both chords while the shear force Q, is resisted by the web.

The deflection v consists of two parts: vy produced by the bending moment M,
and vq caused by the shear force Q,, which are obtained from
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Table 6.1. The thickness t* of equivalent shear web of several web member
systems
System The equivaleni web plute thickness £*
!_ ; “, % ,La f* _ EhGFd
VAN, oo
[ god
AN
:_ > g i+ =Lap— L.
P < A R
g
— AN |
Y | [ | . £ hafg
h 51 e
i < | 1 | 5 d?
t |
be g
}
I £
h 4 ¥ t* =—ah ¢
' ¥ 6 a7, b7
B PR Y
4 AN
* = & "%
DA LA Ne | /L
<
! . o
I R
JAS
Fig. 6.4. A plane truss
diou M, (6.42)
dz? EF,,’ )
dv 1 dM,
__Q:&:_m__ (6.4b)
dz K, K, dz
The total deflection is
V=Dy + Uy, (6.5)
ar
1
V= —"y,

Hy
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where
1

T 1+ (vo/om)

The factor p, < 1 represents the influence of the shear strain on the deflection.
In general. it is not a constant, but a variable along the length of the truss. However,
for a simply supported truss of constant cross scction subject to a loading of
sin{nnz/l) (n = 1,2,3,...) distribution g, is a constant. In most cases of practical
analysis of truss bridges such an assumption is possible. Thus, the dillerential
equation of the total deflection can be written

Hy (6.6)

d%v M

— =t 0.7

dz? D,, (6.7)
where

Dyy = p),EF”, .

The foregoing derivation shows that the eflect of the shear strain on bending is
approximately reflected in the magnification of the deflection induced by the bend-
ing moment or in the reduction of the bending rigidity by a factor u. The error
caused by such an approximate treatment is in most cases insignificant, not only in
analyzing stability (lateral buckling) and vibration, but also in determining the
internal forces in truss bridges. The reason is that first for the stability and vibration
we are working with eigenvalues, which are not sensitive to small variations of the
rigidity or the shape of the deformation, and for thc computation ol internal forces,
the rigidity acts first as a divider in finding the deformations from the loadings and
then as a multiplier in determining the internal forces due to the deformations.

According to Eq. (6.6), g, can be written in the following form:

! 6.8
.u)-' - 1 EF),Y L ( . )
M S
where the factor o depends on the loading and support condition of the truss and
1s given as follows.

(1) Simply supported truss of constant cross section subjected to bending mo-
ment M(z) = M,sin{nnz/l) (n = 1,2,3,...), which occurs in free bending vibration,
and represents approximately the case of full load over the span, il n = 1. It can
easily be verified that

a=n*nt (n=12..). (6.9)

(2) Truss as in case (1), subjected to a bending moment M, acting at one end
({ = z/l = 1), M({{) = M(. Integrating Eq. (6.4), we get
M,
= A A
UM GEFYYC + IC + L]

MC
UQ—:E"C'}‘Bo.

¥
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Table 6.2. «in Eq. (6.8) of cantilever truss

Loading Factor o
1 Uniform load p, 4
2 Variable load p_{ 120/33
3 Variable load p, {2 360/104
4 Single foad p({ = 1) 3

From the boundary condition [» = vy + 9] = 0,1t follows that

M. 12
6EF

¥¥

v= -0,
This equation means that the shear strain does not affect the deflection at all.
Therefore, u, for the continuous truss is the same as for the simple truss.

(3) Cantilever truss ol constant cross section and length [ From the ratio vg/vy
at the free and ({ = z/! = 1) we obtain « for different loadings as given inTable 6.2.
For combined loading a reasonable value of a can be taken from those values
proportional to the corresponding loadings.

The foregoing investigation of the plane truss is also valid for the truss bridge
shown in Fig. 6.1. In this case, F,, and K, in Eqs. (6.7) and (6.8) refer to the whole
cross section of the truss.

For the bending in the horizontal plane we have analogously

Dxx:JuxEFxxs
- 1
RS B (6.10)
1+a:E =
K 12

X

6.2.3 Influence of Shear Strain in Warping Torsion and Distortion

During the warping torsion and the distortion of box section, the left and right
trusses as well as the upper and lower trusses of the bridge, shown in Fig. 6.1, are
bent in reverse dircction, respectively, with cach of the chord members belonging
half to the vertical and half to the horizontal truss. Therefore, the effect of the shear

strains may be given as

! S

Hy = — T
EF EF
| + o — 2 1] + o—
ST RE T o

The average of i, and i, can approximately be considered as the factor g,
representing the influence of shear strain in warping torsion and distorion. Using
Eqs. (6.8) and {6.10), we obtain -
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oy #y
S o SR S 6.11a
Ho 1 +pu, 14y, ( )

and the rigidities in Eq. (6.1) will be

Do = Yol Fye
Dsa = toEFse » (6.1ib)
Dyg = HeEFgs -

6.3 Boundary Conditions at Portal

Let us consider a simple supported truss bridge, as shown in Fig. 6.1. The portal
acts herc as an elastic support in the horizontal bending and torsion.
For the vertical bending, the conditions of a simple support are known:

[b,1=0. [vg1=0. (6.12)

In torsion, the vertical displaccments at both left and right supports are equal
to zero, which gives

b ~
[vol ii[[ﬂ] —[0]11=0.

Hence
[01=1[0]. (6.13)

Furthermore, the horizontal displacement caused by the torsion and the hori-
zontal bending at the supported end of the lower chords must be zero. Hence it
follows according to Fig. 6.2 that

[4,] = [1o] — [k201 — [j26]1 =0,
or
[ug] = [k, + j2)0]. (6.14)

At the end where the left or the right bearing can move freely in the longitudinal
direction, no normal stresses ar¢ induccd by the horizontal bending, warping
torsion, and distortion; that is,

[u] =0, (6.15a)
[0"]1=0, (6.15b)
[ 1=0. {6.15¢c)

If both the left and the right bearings at one end are [ixed in the longitudinal
direction, there can be no rotation for the lower truss, which gives

[u,] = [uy — ko0 — j,8#1=0, (6.16)



88 6. Bending and Torsion Theories of Truss Bridges

|

i,

R

£y

v‘ V="Hhib

Fig. 6.5. A portal

ie.,
[up] = [k 01 + [ 28]

Finally, the distortion or the shear angle of the portal [¥,] = 2[6] must be
proportional to the transverse horizontal shear force acting on it. The latter consists
of three parts: @, (uy), H(8), and 1) produced by the horizontal bending i, the
torsion 8, and the distortion , respectively. Denoting the shear rigidity of the portal
by R, we have at z = 0,

2R,[0] = Q,(uo) + HO) + A(F).
Hence it follows that after both sides are multiplied by 2k
A [0] = [CH — 2k3Dufl — (Do + Do) — (D + Daz)¥"1,  (6.17)

where A, = 4hR, .
For z = I we have to put a negative sign before the bracket on the right side of

the above equation.
For reference, the shear rigidity R, of the portal shown in Fig. 6.5 can approxi-
mately be given as

R, = AGy = 1) = (10 ~ 14)EL " (6.18)

v 33
hy

6.4 Determination of Internal Forces

The theory given in the preceding sections can be applied directly to the analysis
of the lateral buckling and bending and torsional vibrations of truss bridges. But,
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in determining the internal forces, we must transform these from the continuous
model truss into the real discrete truss, by means of integration.

In the real truss, the force of a chord member is determined by the bending
moment or bimoment of the cross section at the opposite joint z,, and the force of
a diagonal, by the shear force at the center z, of the panel. Investigations show that
the mean over the panel in the modei truss well represents the corresponding value
just mentioned in the real truss and can be given as follows:

M= -] M.
1‘ _“ (6.19)
0= | 0@z,

where 24, = a, and 24, = a, denote the pancl lengths referring to the chord
member and the diagonal, respectively, which can be equal.
The horizontal shear force of a sway bracing in spacing a; = 24, is analogously

Azy) = iﬂ 1 Bz, (6.20)

3 z3—da

where R is the shear rigidity of a sway bracing.



7. Spatial Stress Analysis of Truss Bridges

Based on the theorics of bending and torsion of trusses presented in the preceding
chapter, in this chapter two methods —- the finite beam element method and the
analytical method — for calculating the spatial internal forces in truss bridges are
derived and then, as an cxample, simply supported steel truss bridges used in railway
applications are analyzed with emphasis on the shearing forces in portals and sway
bracings as well as in lateral bracings and main trusses owing to wind force and
eccentric live load. Therefore, we consider mainly the lateral bending and torsion
of the truss bridge. In order to verify the reliability of the finite beam element
method, the results obtained are compared with those obtained by the classical
method for space bar systems and those from a model test. The comparison reveals
that this method can be applied in engineering with suflicient accuracy.

7.1 Finite Beam Element Method for Stress Analysis

The finite beam element method derived for torsion of straight box girders with
deformabile cross-sections in Chap. 2 is thoroughly applicable to truss bridges. It is
only necessary to supplement the method with the lateral bending, for which the
element deflection function u,(z) can be expressed in polynomial of third order.
Hence, the nodal displacement parameters of a typical clement are defined by

o=}

{0} = (ug; ugy O 07 OF 0, 0 8",
and S 1)
{51} = (u(!j u:.:'j ﬂ 0;’ H;F 9j Ojr H;r)l’ .

]

where

For further derivation of the method see Sect. 2.1.

7.2 End Beam Element for Inclined Portal

The boundary conditions for truss bridges with vertical portals are discussed in
Sect. 6.3.
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4 k|
a
9
| — - .
End deom giements Fnd- !
glement element
Fig. 7.1. Trapezoidal main truss 6 5
Fig. 7.2. Inclined portal substructure ! 1

In many cases the forms of the main trusses of bridges are trapczoidal. To apply
the gencral finite beam clement method to such truss bridges, we have to deal with
the inclined portal as a special truss end beam clement.

We regard the triangular element of an inclined portal (shown in Fig. 7.1) as an
end beamn element, i.e., a substructure element, which is composed of beam members.
The procedure in detail is described as below.

Figure 7.2 shows the general shape of the substructure element. The substructure
is made up of m members and n nodes. In each node there are six displacement
paramclers — three translations and three rotations. The nodal displacement vector
of the substructure is

oy ={0} (12

in which subscript b indicates the boundary nodes, subscript c the interior nodes.
Hence, the relationship between the internal forces and the displacements can be

defincd by
Kip Koo 5b Fy
= . 7.
[ch chi| {‘i: Fc ( 3)

From the sccond equation we have
{0} = [Ke 'R} — [Ke1{p}) - (7.4)
Substituting the above relation into the first cquation and denoting
[K] = [Ku] — [KoJ[Ke] ' [Kep ]

B (7.5)
{F} = {Fh} - [Kbc] [ch:l—l {Fc} ’

wc obtain

[K1{6,} = {F}. (7.6)

According to the formula in (7.5), we can evaluate the condensed stilfness matrix
and load vector of the inclined portal substructure element.

From the geometric relationship we can derive the transformation of the bound-
ary node displacements of the substructure into those of the truss beam element,
and correspondingly for the element stiffness matrix.
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7.3 Analysis of Shear Forces in Portals and Sway Bracings

In this section attention is focused on the analysis of the shearing forces carried by
portals and sway bracings.

The numerical analysis reveals that the forces of portals and sway bracings are
primarily related to the deformation of cross-sections of trusses and can be deter-
mined by a parameter — the shearing force H in a sway bracing — shown in Fig.
7.3. The calculation procedure is convenient and consistent with that we used before.

The results of numerical calculation show further that the shear force f; in a
portal and the shear lorce H_ in the sway bracing at the mid-span or A, in the sway
bracings adjacent to a portal govern the practical design of portals and sway
bracings.

In order to obtain the practical calculation formulas for the shear forces A, and
H_, or A,, we assessed the influences of the cross-sectional areas of chord members,
the areas of the diagonal members in lateral bracings, the span length, and the ratio
of the shearing rigidity of portal to that of sway bracing, on the shear forces. To
make the analysis practical, thc dimensions of double tracks steel truss bridges
(shown in Fig. 7.4, / = 80 m) and a single track one (shown in Fig. 7.5, I = 112 m)
used in railway applications are taken as the basic data of the bridges to be analyzed.
The winds considered are shown in the figures.

The results of analysis show that when the areas of chord members and the
diagonal members in lateral bracings vary within the practical range, they have very
little influences on the shear forces in portals and sway bracings, and, in general,
do not exceed 10%, The primary factors affecting the shear forces are the span length
! and the ratio of the shear rigidity of portal to that of sway bracing, i.e. R,/R.From
the numerical result, and applying the least squares method, we obtain the following
formulas:

1. For double-track railway truss bridges, when 60 m < /< 100 m and 0.5 <
R,/R € 2.0. The shear force in a portal is

ﬁO(KN) = W[0.2997 + 0.9585r — 0.1982r2 + 0.0095( — 80)], (1.7
- - | - : _
Traffic LT :
i logd A f
= = |
# {0 l S
by W2 l i
m Myt 2 |
—— - i 1
9.69m L. 5,758 M-t
Fig. 7.3, Mechanical model Fig. 7.4, Cross-section of a double- Fig. 7.5. Cross-section of

of portals and sway bracings truck bridge a single-track bridge
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where r — R,/R and W(KN) = 7.0934W, + 29071 W, + 40.2462W,. W, W, and
W, denote the wind forces on the main truss, the deck system, and the train,
respectively; R, is the shearing rigidity of portal, R is the shearing rigidity of sway
bracing; if the number of panels n is not equal to 10, R shouid be multiplied by n/10;
[ is the span length (m). The shear force in the sway bracing (at the min-span) is

H. = W[1.5662 — 0.842%9 + 0.2360r? + 0.0049(1 — 80)], (7.8)

where W = —(1.4786W, + 2.9920W, + 39.8040W;). _
2. For single-track railway truss bridges, when 80m < ! < 140 mand 08 < R,/R <
4.0. The shear force in a portal 1s

A, = W[0.5249 + 0.3093r — 0.0427r% + 0.0098(/ — 112}] , (7.9)

where W = 15.7130W, + 7.28421¥;.
The shearing force in the sway bracing (adjacent to a portal) is

i, = W[22249 — 0.7953r + 0.1092r% + 0.0099(/ — 112)] , (7.10)
where W = 5.0329W, + 1.3343W,.

7.4 Comparison of Theoretical and Experimental Results

In order to verify the accuracy of the resuits by the finite beam elcment method, we
performed an experiment on a truss bridge model made of Perspex with ! =
119.5 cm and panel length 1, = 1/10, as shown in Figs. 7.6 and 7.7.

The shear forces in trusses obtained from the experiment and by the finite beam
element mcthod as well as by the classical method for a space bar system are shown
in Fig. 7.8. From the ligures it can be seen that the results by the finite beam element
method agree well with model test results, but are a little larger than those obtained
by the fnite element method of the space bar system. This is becausc in the latter
method the joints of the model are considered to be absolutely rigidly jointed.
However, the maximum difference is not greater than 157

10N

15.6¢cm

g
!
m

118cm —

Fig. 7.6. Cross-section and loads at mid-span
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Fig. 7.8. Shear forces in (a) the top lateral bracing, (b) the bottom lateral bracing, and {¢) the main truss
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7.5 Analytical Selution of the Internal Forces

In the previous sections we presented the finite beam element method for analyzing
the interal forces of truss bridges and verified the reliability of the method. In
practical design somc simpler formulas easily calculated by hand are required.
Hence, based on the simplifications of the differential equations of bending and
torsion of trusses, an analytical solution is derived. Formulas for calculating the
internal forces and the shear forces in sway bracings are given in {his section.

7.5.1 Simplification of the Dilferential Equations

The following simplifications of the dilfercntial cquations are carried out.

7.5.1.1 Neglect the Effect of the Warping Torsion

Pure torsion is dominant in torsion for a beam with closed cross-section. Results
from calculation reveal that consideration of the eflect will increase the torsional
rigidity of cross-section by about 434 only (L1 1975).

7.5.1.2 Neglect the Coupling of Warping Torsion and Distortion of Cross-section
as Discussed in Chaps. 1 and 2

Thus, from Eq. (6.1) wc obtain simplificd differential equations of lateral bending,
torsion, and distortion as follows:

DKXHE'4J = pl ¥
—- ' =m,, (7.11)
D0 + A0 =1, .

The symbols are given in Chap. 1.
The boundary conditions discussed in Sect. 6.3 can be simplified accordingly.

7.5.2 Solution of the Differential Equations

The solution of the differential equation (7.11) will be composed of the homogeneous
solution and particular solution. For simply supported truss bridges the loads and
the particular solution of displacements can be represcnted in the general form of
Fouricr series so that we obtain general formulas for the integration constants in
the homogeneous solution. Consequently, the complete solution has the general
form.

The homogeneous solution of Eq. (7.11) is
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uo == Alzs + Azzz + ASZ + A4 ]
8=B,z+B,, (7.12)

8 = cos az(C, sinhaz + C,coshaz) + sinaz(Cysinhaz + C,coshaz),

where « = % A/4Dyy, and A, (i=1,....4), B, (i=1,2) and C; (i=1,...,4) are
integration constants.
The particular solution can be given as follows:

1 o= /by .
uf = — Z — | P,sinf,z,
Dxx =1 Cn H
Ly= 10 (7.13)
I (1)Z !
G* = — -} m,sind, z,
C.?;l -
oo LS (LY e
Dia =1 \La 1+ A 4smC z
\ Diaa \la "
They correspond to the loading
Px(2) = ) Prsin{,z,
n=1
my(z) = > mysin{,z, (7.14)

0
M(2) = ) Migysin{,z,
n=1

where p,,, m,,, and #i,, arc load factors. For instance, for a concentrated load, P
appliedatz = ais

2P .
Pn = Tsmt_,"na.

Adding Eqs. (7.12) and (7.13), we can cvaluate the integration constants to satisfy
the boundary conditions of a simply supported truss bridge.
Denoting

c =cosal, s =sinal;
¢ = cosh «l , 5 = sinhal,
we have
A, =A4,=0,
{
A = T(kz + L) UC5 + Cyo)e + Cots — G,

Ay = [kz + 121G,
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1 _ _
Bl == E[(C]S + CzE)C + C4CS — C:] 5

B, =G,

s
C, = —{Cyc — (39),
8

Pl(’22 PZ(IIZ_
27 G116y — GGy

and
C _P?GL__.P‘G“
¢ Gy,Gyy — G2 Gay ’
in which
A 1t C -
11 70 __[E(C — ) SDMEI?'],
1
Gy, = — [2% (52 + s%) - Daga*(cs — sc)}
—1fA
21T T [2_f + {c ~ ) + Dyt "‘j|
1 A, C
GZZ=EE[_(‘§9 _ﬁ){ +52}+ D fxs(CS—'CS)j|
= 1 1 -
Pl Z"ZIZ k2p1n+2mzn+21_—l: /"1"' (])4 »
DII:GJ Cn
and
P 5 L 17| k + Man
27 n;, C:(_ ) 2Pxn + Zmzn 2 ,I ( )
m)
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7.6 Examples

Consider the simply supported truss bridge model in Sect. 7.4.

For horizontal uniform loading | N/cm acting on the upper chord, the shear
forces obtained from the finite beam element method and the analytical soluion are
shown in Fig. 7.9. It can be seen that the analytical solution is fairly accurate.

For the loading of the model test as shown in Fig. 7.7, the results of calculations

are given in Fig. 7.10.
The efficiency of the analytical method presented here can readily be seen from

the [igures.
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Fig. 7.9. Shear forces in (a) the top lateral bracing, (b} the bottom lateral bracing, and (¢} the main truss



7.6 Tixamples

Shear torce

ry = e =

!
{
a -B

Shear {ofce

o . =N

Shear force
62

N
28
14

0

-4

-8

c =42

99

L ) _F=S3
1 L | 1 L 1 L 1
14 6 7 8 9 Wz
L L 1 L 1 L L L
2 1 & 5 6 7 8 5 w z/
| =
1 i | |
8 9 0 oz
i analytical solution -
i ——— Beam elements :
= -—-— Space bar system

Fig. 7.10. Shear forces in (a) the 10p lateral bracing, {b} the bottom lateral bracing, and {¢) the main truss



8. Lateral Stability of Truss Bridges

Since the study of lateral buckling of beams was made in 1899 by L. Prandtl and
A.G.M. Michell, there have been many developments. A thorough investigation of
the lateral stability of truss bridges with deformable cross-sections was made by Li
(1975) and useful practical results were obtained. This chapter deals with the lateral
buckling of truss bridge based on the theories presented in Chaps. 1 and 6. It begins
with the derivation of the differential equations of lateral buckling. Then an analyt-
ical method and a finite element method to solve these equations are considered.
At the end of this chapter, a numerical example, a simple approximate method for
analyzing lateral stability of truss bridges, and the model test results are given.

8.1 Derivation of Differential Equations of Lateral Buckling

8.1.1 Basic Principle

The cross-section of the truss bridge investigated is shown in Fig. 8.1, in which the
solid lines represent the chord members and steel deck plate, and the dotted lines
represent the web members. The bridge has a constant cross-section and a vertical
axis of symmetry. The x axis and y axis are the principal axes. M and N denote the
center of twist and the center of shearing deformation of the cross-section, respec-
tively. Let r, and r; denote the height measured from the acting point of the resuitant
force ¢, which is the sum of dead load g and live load p acting on the top deck and
the lower one, to M and N, respectively. We refer to r, and r, as the over-centers
of load q.

A truss loadcd with uniform vertical load ¢ undergoes vertical displacements.
Lateral buckling will appear when ¢ reaches a certain critical load, and the lateral
displacement u,, the angle of twist 6, and the angle of distortion & will occur.
According to the principle of elastic potential, the elastic equilibrium of the trussin
the lateral buckling state can be expressed as follows:

U = 90U, + U, + oU, =0, (8.1)
where

8U, = variation of elastic strain energy due to the fateral buckling deformations uy,
6,0
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Fig. 8.1. Typical cross section of a truss bridge

dU, = variation of the potential energy of internal force S(M, Q) caused by bending
in the vertical plane duc to u,, 8, 0;
83U, = variation of the potential energy of load g due to ug, 8, 2.

The first term U, can be found in Chaps. 1 and 6. It is only necessary to calculate
SU, and 6U,.

8.1.2 Potential of Existing Internal Forces Due to Lateral Buckling

The variation of the potcntial energy of the forces S{M, Q) in the vertical plane
induced by u,, 9§, § can be expressed in the following form:

3U, = ~{ [ (0,06, + 1,,8y,,) dF dz . (8.2)
{F

When lateral buckling occurs, the lateral and vertical displacements of an
arbitrary point on the cross-section can be written as follows:

ulx,y,z) = ug(z) — .0 — ya2ft,

. (8.3)
v(x, y,z) = xft — xtf,
with y, =y — Y Y2 = ¥ — In-
The strains caused by those displacements can be expressed as follows:
. _ 1/au\: 1 fov 2
2 2\0z 2\oz)
(8.4)

_ Qudu Ovdv
W= Tay b dyoz

The substitution of Eq. (8.3) into Eq. (8.4) leads to
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Se, = —(up — y,0' — y20')(up — y, 08" — y,08")
— X0 — 000 — 80"),
8y,, = (uh — 118’ — y,6')(36 + 50)
+ (8 + D)(ou}, — y,00" — y,80")
“ —didz =d.

(8.5)

The formulas for calculating the vertical bending stresses ¢,  and their integra-

tions are
M
o, =Y, [o,dF =0,
Fy:v F
(8.6)

[yo,dF =M, [1,dF =[tdF=0=M,

F F .

where F* = area of the cross-section of the equivalent web plate of the web member
that resists the shear deformation.

Introducing Egs. (8.5) and (8.6) into Eq. (8.2) and transforming dug, 60, 58 into

Sug, 80, 58 by means of integration by parts, and setting

I Ty]_dF_—'elM,
F‘

I T¥2 dF = ezM N
F*

e = %(hz —h) —Ius

32=%(h2 —hy) - YN

8.7
€3 =€ — € =Vn— Pui
F}"3 Flzy
=+ — — 2 R
mTE,TE, M
F,. Fg,
ny=—-—+——2¥n>
*TF. T F, O
F:;  Fo
fy = 2 — =L — (ym + In)s
3 F,.  F, (yu + ¥n)
we find
SU, = [ {M(0 + 0Y'dvy + (Mug — mtyy — m,,)08
]
+ M(ug — myy — m,,)00} dz + [boundary values], (8.8)
where
m, n M0’y + e, M9
myy || m(MOY + e MO + e, M”80 89)
ny | ] ns(MOY — e MO + e, MYO '

My, n,(MO'Y + e, M”00
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8.1.3 Potential of Vertical Loads Duc to Lateral Buckling

The variation of the potential of the vertical load ¢ duc to the displacements of
lateral buckling 8U, can be written as follows:

sU, = | gdvdz, (8.10)
!

where év is the variation of the displacement at points of load application. It is
p=3r0— r, (0 + 8),
b0 = 1,0 80 + r,00 58 + ry(0 50 + 6 86), (8.11)

where ry = 3(r; + r3).
Substituting Eq. {8.11} into Eq. (8.10) we obtain:

SU, = —{qlr0 60 +r,0 50 + r4(0 86 + & 80)1dz . (8.12)
i

8.1.4 Differcntial Equations of Latcral Buckling

Substituting dU, (referring to Chaps. | and 6) Egs. (8.8) and (8.12) into Eq. (8.1), we
obtain the differential equations of lateral buckling as follows:

Uo
([DL] + [G])< €& » =0, (8.13)
0
where
p_d* 0 0
[DL]1=]| 0 (Dewd*—Cd?) D.sd* , (8.14)
0 Doad? (Dpad* + A)
[ 0 d*M d*M ]
Md® —(n,dMd + e M" +gry)  —(nydMd + esM'd
[G] = + e, M" + gr3)
Md? —(nydMd — e;M'd —(ndMd + e;M” + gr)
| + e, M" + gry) ]
(8.15)

All the boundary values from integration by parts must vanish, which yields the
boundary conditions.

The matrix [PL] in Eq. (8.14) is deduced from SU., which represents small
internal forces of bending and twisting of cross-section due to lateral buckling, and
is symmetrical. The matrix [G] in Eq. (8.15) is deduced from éU, and 8U,, which
represents the small lateral load and twisting load due to lateral buckling deforma-
tions. The matrix [G] is asymmetrical, but it can be transformed into a symmetrical
matrix when using Galerkin’s method and finite element method.



104 ' 8. Lateral Stability of Truss Bridges

As the cross-section of truss is asymmetrical about the horizontal axis and has
a wide upper deck plate and/or a lower one, generally, the centroid of the cross-
section does not coincide with the centers M, N ol 8, # and the leading terms
containing n, (i = 1,2,3) will appear in matrix [G]. If both the upper and lower
chord members have steel deck plates acting with them, or have both lateral
bracings instead of steel plates, n; and e; are generally very small and the terms
related to them also have little influence on lateral buckling, If only the upper chord
is provided with the steel deck plate and the lateral bracing is used at the lower
chord, or, conversely, the point M is very close to the steel deck plate (for its shear
rigidity is significantly larger than that of the lateral bracing) but the centroid of the
cross-section is still close to the midheight of the cross-section. In this case the terms
n;, e; and the load terms related with them will have considerable influence on the
lateral buckling.

If the cross-section of the truss has two axcs of symmetry, then ¢; = m; = 0, and
all the load terms containing ¢; and #», are equal to zero as well.

8.2 Approximate Analytical Solution of the Lateral Buckling

We consider simply supported truss bridges having vertical portals. When the portal
is deformable, even for single-span truss bridges, it is very difficult to obtain the
lateral critical load by integrating Eq. (8.13) exactly. For this reason, we present in
this section Galerkin’s method for calculating the critical load. For a continuous
truss and the truss with varying cross-sectional rigidity, the finite beam element
method can be used and will be shown in the next section.

The truss bridge is assumed to be subjected to a uniform load ¢ (dead load plus
equivalent live loads). The bending moment curve can be expressed approximately
as follows:

M(z) = M_sin(z, {=njl, (8.16)

where M, = the moment at mid-span.
Tt is assumed that the lateral buckling displacements can be approximated by
the relations

h .
uo(z) = (kz +j2)a0 + Ea s51n E:Z N

At} = xg + &, sinlz, (8.11
MNz) = oo + 2,80z .
Those expressions can satisfy the following boundary conditions (refer to

Chap. 6}

= 0} 0=l =a, [n]l=(u—(a+i)ad=0 g

z=1 [u;]=0, [671=0, [6"]=0.
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However, Eq. (8.17) cannot satisfy the differential equation (8.13). As an approxi-
mate solution, it is required that the total virtual work done by the summation F(z)
of internal force and loads on the left-hand side of Eq. (8.13) be equal to zero for
any arbitrary virtual displacement 8¢ (Galerkin’s method), i.c.

[ F(z)é&dz = 0. (8.19)
1

Substituting Eqs. (8.16) and (8.17) into Eq. (8.13), taking virtual displacement
functions 8¢ = Sasin{z, da, sin {z, da, sin {z, respectively, and integrating Eq. (8.19},
we obtain three equations for coellicicnts o, &g, o, %,. The {ourth one is the
compatibility condition of portal deformation, referring to Eq. (6.17).

The four equations can be written in the following form:

[ —a, 2, c+d,+d, dis+dy |
n g
— T w 1 — 2w —2w
2 o
=0, (820
—Fn W —2w c+d, +Tw dis + FaW oy
da _ _ _ oy
i
where
Foi |= | —3n€ + 3K ~ 30 |, (8.21)
¥ A, + 2e — 2 nr
_ 2
[k, & n; T :E[ki e nnl,
Du:m Du ) Dﬁx’ﬁ
d, dy; d; 4
=——\| 5 T , 8.22
[ao a ¢ h*D,, 51_: g _C% (8.22)
4 2M S
w=—5, 5= ‘5:_5. (8.23)
3n hD, Py
n=- 9
M.(?

In order to solve Eq. (8.20) conveniently, we can eliminate a, and o by means
of the first and second equations and obtain two equations for coefficients «; and «,.

The obvious solution to Eq. (8.20) is that o, @, «;, and «, are equal to zero,
which means that the truss is in a vertical bending state without lateral deformation.
As the lateral buckling occurs, aq, o, ;, and a; ar¢ not equal to zero, and it is
required that the denominator determinant be equal to zero,

IN|=0, (8.24)

from which, we can obtain the lateral buckling equation.
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After solving the lateral buckling equation and obtaining the valuc of w, the
critical moment M, at mid-span and the critical load g, are obtained as follows,
see Eq. (8.23):

s h Dy (? 3nh

Mck = — 3 = Wﬁi'— D“ , (825(1)

5
go— Max _ by, (8.25b)
{ 8!

Substituting w into Eq. (8.20), the corresponding lateral buckling deformation
coefficients &, can be obtained. Then the u,, 6, 6 can be calculated from Egs. (8.17).
Since Eq. (8.20) is homogeneous, only the deformation shapes, i.e. the proportion
between the coefficients a;, can be determined.

The factor s in Eq. (8.23) can be considered as the ratio of the critical compression
force S, of the upper chord members {two chord members and the steel deck plate
acting with them), when lateral buckling occurs, to the Euler’s buckling lead Pg of
an axially loaded compression member, consisting of the upper chord members and
having the bending rigidity $D,, and both ends hinged. ;

In Egs. (8.23) and (B.25b) n is equal to 8/n? for a simply supported beam, and
we can approximately take n = 1 when the latcral stability of the sidespan of a
continuous beam is analyzed.

8.3 Determination of Lateral Buckling Safety Factor

In the investigation prcsented previously the stresses in the truss are assumed to be
below the elastic limit oy, i.e.
1

max &, = IITMCR % Og, (826)

4

where F, represents the cross-section of upper or lower chord member, whichever
is the smaller, including the steel deck plate acting with them.

In truss bridges, generally max g, > og, le. the lateral buckling of truss occurs
in the range of elasto-plastic deformation of the material. In this case the clastic
theory for analyzing the lateral stability is not valid. As an approximation, we treat
it using the method for calculating the critical stress of an axially loaded compres-
sion member at elasto-plastic buckling.

8.3.1 Approximate Modification of Safety Factor for Plastic Deformation

Consider an axially loaded compression member made of the same material as that
of the truss. Assume that it has the same critical compressive stresses max oy, which
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are calculated according to the clastic theory as that of Eq. (8.26), then its slenderness
ratio is

E
A=m [— —. (8.27)
max g,

The real clasto-plastic buckling critical stress oy corresponding to the slender-
ness ratio 4 can be obtained approximately according to the related references. If
we take a quartic parabola to express the gy — 4 curve approximately, the g can
be written as follows:

o = a,[l — (1 — m)A*], (8.28)

where m = op/ag, 0y = yield point, 2 = /2, 4 = n\/iE/oF, For steel, we can take
m = 0.8
The modilication factor for the elastic critical stresses is
Lrd

o=t (8.29)
max o,

The lateral buckling critical load and bending moment are also to be modilied
aceording to the coeflicient u,. Therefore, the Jateral buckling safety factor will be

Foag

e

M
y = p,,‘iq'é = g (8.30)

where g and M, represent the dcsign load and the peak value of moment,
respeetively.

8.3.2 Example (Li 1983)

Figure 8.2 shows a continuous three-span truss bridge. We take its sidespan as a
simply supported truss bridge for an approximate analysis. The bridge has an upper
steel deck plate and a lower onc, acting together with the upper and lower chord
members, respectively.

- ]
! | °
188 188
£ l i
TL |
*345% 72 3‘5Ls*
LM
o — &SI m b

Fig. 8.2a,b. Elcvation and cross section of a truss bridge



108 . Lateral Stability of Truss Bridges

Basic data: ¢ = 172.5 KN/m

h, 6.54
ke b= 4744} (m),
i 7.46
Duo 4831
Dus b = 4 5615 b x 101 (KN — m*),
Das 6.537
D 1.823
m{ 10° (KN — m?),
(e} {oom} < 0 o=
R, {2117
- 10% (KN) .
{R} {4.586} x 10°(KN)

According to Eg. (8.24), the lateral buckling equation is
6.6469w> + 859.519w? + 280.97tw — 643.639 =0 .
' The smallest root is w = 0.716. It follows that: -

3 2
”hg“g- =9.867 x 10° (KN — m),

Mck = W
g, = 3807 (KN/m),

M
max o = .- % — 2193 x 10° (MPa),

<

o = o.[1 — (1 — m)A*] = 3.707 x 10 (MPa),

&
T —0.169.

max oy

Hp

Finally, the lateral buckling safety factor
Qi
V= ppa-- =3731.

8.4 Finite Beam Element Method for Analyzing Lateral Buckling

In cases of more complicated bridge structure such as a continuous truss or the
truss with varying cross-sectional rigidity, it is difficult to obtain the selution that
satisfies the required accuracy by Galerkin's method. For this reason, this section
presents the finite beamn element method for evaluating the lateral buckling critical
load.
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8.4.1 Basic Principle

Stability analysis is a problem of solving for the cigenvalue. In Chaps. 2, 4, 7, the
quintic parabolas wcre taken to cxpress the displacement functions 0, g of the
clement for analyzing stresscs of truss. Here, we can reduce the requirements for
element displacement functions, and they all can be taken in the form of cubic
parabolas to ensure the continuity of the displaccments u, 0, § and their first
derivatives. The nodal displacement parameters of an elcment are as follows:

(6)° = {ﬁ}

{6} = [u; uwi 0; 6; 0, 6:17, (8.31a)
{8,} = [u; uj 0; 0 8, 077
The element displacements are
7]
{8} = 4 81 = NI}, (8.31b)
0

where [N] is a matrix of polynomials of third order. Here, we substitute u for v,

for convenience in writing.
The small lateral bending and torsional displacements {6} of lateral buckling
induce the elastic nodal forces of the element:

(F}* = [k]{s}". (8.32)

where [k] denotes element stiflness matrix.
The additional nodal forces of the element induced by in-plane internal forces
S and the displacements are

(n}e = [k{3}°, (8.33)
where [k,] is the element geometric matrix.
Equating the elastic nodal forces {F}* to the additional nodal loads at all nodes,

ie. the indifferent equilibrium, the global Jateral buckling equations are obtained
as lollows:

([K]—[GD{é} =0, (8.34)

where [K] = global stiffness matrix, [G] = global geometric matrix, {8} = global
column vector of nodal displacements.

After imposing the boundary conditions, we solve Eq. (8.34) by setting its
denominator determinant equal to zero:

(K]~ [G]I =0, (8.35)
from which we obtain the critical load of elastic lateral buckling.

In the following it will suffice to calculate the element geomctric matrix, because
the calculation of the element stiffness matrix has been shown in preceding chapters.
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8.4.2 Element Geometric Matrix

For convenience of calculation, Eq. (8.15) is rewritten as follows:

0 1 1 0 2 2
1 —ny —n, 0 —ny+e, —n,
0 1 { 0 0 0
+ M0 —e; —e {+4gl0 —rp —ny
0 —ey —e 0 —-ry —n;
= [Suld® + [Sold + [S¢, 1 + [S,,] - (8.36)

The element geometric matrix is
k] = [ [N]'[G](N]dz
= J[N]"[Su](N"1dz + J INT'[SQ][N']dz

+ | INTT(S;, 1[N]dz + FINTT(S,, (N dz .

After integrating by parts and grouping, the expression for the symmetrical
geometric matrix is obtained as follows:

[k = — [ [N'T"M[g,]1[N'1dz — | IN]"M'[g,][N"] dz

—[[N'T"M'[g, ] [N1dz + | [N]"M"[g;][N]dz, (8.37)
where

[ 1 1

[g;J=|1 —n —m3{,
_1 —n, —H,
[0 0 0

[g.]=|1 0 —e; |, (8.38)
[ ! —¢ O
[0 0 0

[g:1=1]0 (r, +e) Fa
| O a ¥y + e,

8.4.3 Example

We take the same example in Sect. 8.3.2 and calculate the lateral buckling safety
factor by the finite beam element method previously described.
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Writing the program according to the equations described in Sect. 8.4.2, we
obtain from the computation of the following results. As single span truss:

g, = 3976 (KN/m)

modified safety factor v = 3.74 .
As continuous three-span (russ;

g, = 4072 (KN/m)

modified safety factor v = 4.97 .

The results indicate that therce is not much dilference between the solutions
obtained by Galerkin’s method and by thc finite bcam element method for a
single-span truss. Taking the sidespan of the continuous truss as a single span
and in Eq. (8.25b) setting n = 1 instcad of 8/n2, we obtained v = 4.67, which is only
6% smaller than v = 4.97 of the eontinuous three-span lruss, ie it is a good
approximation.

8.5 Practical Method for Determining Critical Load

Li (1975} investigated the influences of the cross-sectional rigidities and load over-
centers on the lateral buckling critical load and proposed a practical, simple method
as follows:

in Eq. (8.23) the cocflicient s = 5, /Py, which marks the lateral buckling critical
toad, can be approximately calculated by the following formula:

s=55(1 — 8y — d-€), (8.39)

where s, is the value of s when the portal is assumed to be rigid. It cap be
approximately given by following formula:

2 (1 + a)c
so= V3T ra ot (8.40)
where p = pt,/u, (refer to Chap. 6) and a, ¢ according to Eq. (8.22). d, represents the
influence of the portal deformation. 8 - ¢ represents the influence of load over-centers,
where 8 is approximately constant and ¢ = 2r/h, r is the over-center of load g.

The curves representing the relation between s(,/\/;: and a, ¢ according to Eq.
{8.40) are shown in Figs. 8.3 and 8.4, respectively.

The figures show that s, increases with increasing a and ¢. Hence, it is reasonable
to increase a and ¢ simultaneously if a large lateral buckling critical load is needed.

The elfect of the deformation of portals on the lateral stability is mainly related
to the ratio of the shearing rigidity of portal a, and not to the ratios a and ¢. The
curve representing the relation between 1 — &, and 1/a, is shown in the upper part
of Fig. 8.5, from which it can be seen that the deformation of the portal has a large
elfect on the lateral stability.
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Fig. 8.5, Variation of | — &, with 1/a,, and & with «

The weak interrelationship between the load over-center ratios and a is shown
in the lower part of Fig. 8.5. The relationship between & and ¢ is weaker than that
between & and a. Practically, 6 =~ 0.20 ~ 0.25.

The preceding results indicate that in order to calculate the lateral buckling
safety factor of truss approximately, we can [irst calculate the vaiue of s using Egs.
(8.39) and (8.40) and curves in Fig. 8.5, and then the critical load g,.

Example, The example shown in Sect. 8.3.2 is examined once again. From Eq.
(8.40), we obtain

With the values of a, and @ in Sect. 8.3.2 we can obtain from Fig. 8.5
1— 8, =078,
0=02,
with e = 0.05 we obtain
s =162.

According to Eq. (8.25b),
g, = 3658 KN/m .

The result differs from that obtained by Galcrkin’s method by only 47,

8.6 Influence of the Slope of Inclined Portals

In all preceding calculations we have considered truss bridges having vertical
portals. The influence of the slope f of an inclined portal frame of the trapezoidal
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Fig. 8.6. The influence of the slope § of inclined portal

truss bridge on the lateral buckling has been investigated (Cao 1982) and the result
is shown in Fig. 8.6, where ¢ denotes the ratio of the lateral buckling load of the
trapezoidal truss bridge to that of the corresponding truss bridge with vertical
portals. It can be seen that the slope of portal has a great effect on the critical load
S# of lateral buckling. With increasing f, S increases signilicantly. The value of SF
at f = 60° almost doublcs that at § = 45° and is close to the value of S,. Tt can also
be seen that the influence of § on ¢ decreases greatly with increasing of span length L

8.7 Model Tests

To examine the reliability of the theory presented, two Plexiglass models of truss
bridges were made and tested.

4
be
| 1
TR
| _J B
. — . —_ P47 —edem . _-; Zcm
510 = &0cm - | Trarsverse section

Flevatian at model

|
. : 1
| H
N N N N A I N

Pign of model L |

Plun of madel IT

Fig. 87. The dimensions of the models
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The dimensions of the models are shown in Fig. 8.7. Model I has an upper deck
plate and a lower one acting together with the chord members. Model IT has a top
and a bottom lateral bracing.

The relations between the load and the lateral displacement u, at the midspan
of upper chord are shown in Fig. 8.8, in which it can be seen that owing to the
unavoidable elcct of initial eccentricity of the load, ctc., u; occurs as soon as the
load is applied.

The lateral buckling critical loads obtained by the model test and by the finite
beam element method with ten elements in a span are given in Table 8.1.

It can be seen that the theoretical and experimental results agree well, but the
test results are a littie smaller than the theoretical ones owing to the initial eccentricity
of loading and the imperfection of the construction of the models.

Table 8.1. Lateral buckling critical load ¢,

Name Model

1 1
Tesl results (N/cm) 1.758 1.411
Theoretical results {N/cm) 1.839 1.631

Relative errors 4.6%, 13.7%




9. Bending and Torsional Vibrations
of Truss Bridges

In this chapter we will consider the bending and torsional vibrations of truss beam
bridges and introduce two methods of analysis (Li 1975, 1978) based on the theory
presented in Chap. 6.

An analytical method for simple truss bridges by applying the energy principle
is given first. It follows the finite beam element method for single- and multiple-span
continuous truss bridges.

9.1 Energy Method

9.1.1 Basic Principle

For simply supported truss bridges having rigid vertical portals, an exact solution
to the bending and torsional vibration can be obtained easily from differential Eq.
(6.1) by using Fourier series to describe the vibrational displacements, uo{z, t), Kz, t),
0(z, ), and ve(z, 1) (Li 1975). But the portals of through truss bridges are deformable
and have great influence on the bridge’s behavior. It is difficult to get an exact
solution from the differential equation, and approximate solution methods are
desirable, such as cnergy method given in this chapter.

The bridge studied is simply supported with eonstant cross-section and vertical
portals. In order that the study can be concentrated on the lateral bending and
torsional vibrations, we assume that the mass of the bridge is symmetrically dis-
tributed with respect to the center line of the cross-section. Thus, the vertical
bending vibration can be treated separately as a plane truss.

As is well known, Lagrange’s equation without considering damping is

d o1 eU
R + _— = 0 N 9.1
dt 8¢, 04y &b
in which
T(4,.t) — kinetic energy of the system in vibration,
U{g..t) -- potential cnergy of the system,
iy - - general coordinate,
. 0gy . .
gy =—=, corresponding velocity.

ot
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If T = 0, the preceding equation represents the static equilibrium of the system.
In the following section, calculations of T and U will be given for the lateral bending
and torsional vibrations of truss bridge.

9.1.2 Encrgy in Lateral Bending and Torsional Vibrations

The kinetic cnergy in the lateral bending and torsional vibrations of a truss bridge
is
T=4(dz | (@ + &*)pdF,
! F

or
T=1 ; dz ‘jr Lo — y20 — y26)°
+ x2(6 — 02)pdF, 9.2)
where p represents the mass density, and
Yo=Y —¥Yu: Ya=DVY—In-

The strain energy in the lateral bending and torsional vibrations can be expressed
as

=1 [ [D(5)* + CO'Y + Du(8")
!
+ 2D,50"0" + D67 + A6*]dz
+ 422468, 9.3)
in which the term outside the integral denotes the strain energy of deformation (20,)
of the portals at the two ends.

The potential energy of the dynamic loads p,, m,, m,. corresponding to tig, 0, ,
respectively, is

U, = — [ {pytio + m,0 + m,B)dz. (9.4)
i

The sum of U, and U, is the potential energy U in equation (9.1)
U=U+U,. (9.5)

9.1.3 Equation of Bending and Torsional Vibrations

In the following we consider in detail the case of a half-wave symmetrical vibration
that has great practical significance. With reference to Fig. 6.2, the following
approximate functions that satisly the boundary conditions of a simply supported
truss (see Chap. 6) are adopted:
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ug(z,t) = (ky + j2)q0(t) + A.g (t)siniz,

8(z, 1} = qo(t) + g,(8)sin{z, (9.6)

0(z,t) = qolt} + g3t} sinlz,
{=mn/l,

in which 4, is a constant, length being its unit, i.e. A, = h/2; g, represents the
displacement of the portal; and 4,4, 42, 43 represent the amounts of increment at
mid-span. They are the general coordinates in Eq. (9.1). The preceding expressions
can be written as:

{8} = [L1{4} .
(ky +j;) Acsinlz O 0
[L] = 1 0 sinlz 0 |, 9.7)
1 0 8] sin{z

{q} = [q]" = [40 9: 42 q;1"
Substituting Eq. (9.7) into Eq. (9.2) and (9.3), we obtain

1

T = Z{Q}T[M] {4}, (9.8)
I "

U, = Z{_Q}K[K] {a}, 9.9)

where [ M1 is the mass matrix, [K] is the stilfness matrix. Substituting Eq. (9.7) into
Eq. (9.4), we have

U, = (g} (P},
where
2
(P} = L[ LLT"{r} ez

{p} = [p1" = [px m, W' (9.10)

Substituting T, U,, U, from Eq. (9.8), 9.9), (9.10) into Eq. (9.1}, we obtain the
following equation of vibration:

2
([K] + [M]gp){q{t)} = {p(0)}. (9.11)

[K] and [M] in the above equation are matrices of fourth order. To make the
calculation easier, they may be transformed to third order. The procedure is as
follows: Using the deformation compatibility Eq. (6.17) for the bridge portal. g, can
be expressed as a funetion of ¢, 43, 45 9o = f(4,92,4q3). Hence Lagrange's
equation will have this function as an additional requirement:
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aar U  (doT U ¥ _,
dt 8¢ 0qy dt 34 0do/ 04k -
k=1273. {9-1a)

The vibration equation (9.11) derived by using the preceding expression contains
three general coordinates 4y, 43, 43, and the corresponding stiflness matrix K and
mass matrix M are of third order. The result is as follows: Let

ap, a ¢ | 1 AL A cr? ©9.12)
dy, dy dys) DAl [ Dusl® Daal® Doal*] '
The function g, can be written
do = [mJia). k=123, (9.13)

1
[m] = G—[Zkz (c +d; +da3) oy + ds)].

The stiflness matrix is
[K] = D, ALk, (9.14)

1 0 0 n, 0 ) 1y + )
fo 2 .
[K=| (c+dy) daa |+]|m O x[‘ o M2% %o “],

n
symmetry (@ 4 ds3) n, o m = 3
(9.15)
where
4 4
[ @] =|]—-G t2a) —a].
n T
For the case of uniform distribution of mass, the mass matrix is
[M] = MA2[v]. (9.16)
where
1 — ¥ —~ V3 ng (g + ”14”0)—| uy M
{v] = (vaz +vi() (V23— v ) [+ ]2 G2t N2 fa) [ v 3:1,
n, n, Ny

symmetry (v33 + ¥11) ny (4 + A3ito) |

g8 8 g |
(o #y #2 H#3] :[8"00 ——¥o —Vao ~V30
T f

w= g o
i
Vik = )-_f.ﬁ ! &ilpdF,
M={pdF,
F

[&, & &5 Eol =[x ¥2 ¥ (y — h2)].
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The second matrices on the right-hand sides of Egs. (9.15) and (9.17) represent the
infMluence of the deformation of the bridge portals on the stiffness and mass matrices.

9.1.4 Lateral Bending and Torsional Free Vibrations

For free vibration, the dynamic load term on the right-hand side of Eq. 9.11) is
zero and ¢(t) has the following form:

g{t) = Acoswt + Bsinwt,

in which  is the circular frequency of free vibration, 4 and B are constants of
integration. Damping, which can usually be neglected in the calculation of ), is not

considercd here.
The equation of free vibration can be found by substituting the preceding

expression into Eq. (9.11):

(K] — o*[M]){q} =0. (9.17)
In the case of uniform mass M over the whole bridge, this equation can be written
as
([k] ~ w?[vI}{q} =0, (9.18)
where
3 _
2 _ @ 2 M
we o=, = ——
w; T Dl

Only when the denominator determinant is equal to zero, does {¢} have a nonzero
solution, where the frequency equation for finding w can be obtained:

I[K] — 0*[M]| =0, (9.19)

or
(k] —w?[v]l =0. (9.20}

By substituting w; or w, (i = 1,2,3) obtained into Eqs. (9.17) or (9.18), the mode of
vibration, i.e., the relative proportion of g, (k = 0, 1,2, 3) can be found.

After the determination of the free vibration, the forced vibration of a truss
bridge can be analyzed by the resolution of vibration modes and is omitted hcre.

9.2 Finite Beam Element Method

For multiple-span continuous truss bridges, or for variable sectional rigidity and
mass distribution along the span of the bridge, it will be difTicult to solve the hending
and torsional vibration problems analytically. In the following, the application of
the finite beam element method will be brielly introduced. Emphasis is put on the
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calculation of free vibration, since the solution for forced vibration can be found by
the method of modal analysis.

9.2.1 Mass Matrix of Truss Beam Element

The required stiflness and mass matriees of a truss beam element can be calculated
from the differential Eq. (6.1). The derivation of clement stifincss matrix has been
shown in the preceding chapters. The mass matrix will be derived below.

The nodal} displacement parameters and the element displacement function for
(he truss beam clement are given by Eqgs. (8.31a) and (8.31b).

The displacements at any point on the truss becam section can be expressed in
terms of matrix as follows:

(-l 6
v 0 & — &

{:} = [A}{5} = [A1[N1{3}° -

I e =

ic.,

In the case of free vibration the force of inertia is
i
faud = —p {3} = pP LAV L8}

This produces the nodal force of inertia
{Fu}® = o?[m]*{s}°,

where the element mass matrix has following form:

[m] = [ PINTTLATTAI[N] dz

= {[NT[S)[N]dz, (9.21)
in which
811 812 Sy13
[S]) = 522 S23
symmetry 833

Slizgde__-Ma

-

$)2= -5+ yuM,
Sya= =5+ WM,
SZZ = JJL + "ly - ZYMS: + y%[ﬂ v
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Spz =Jdo—Jdy — (hu + 1S+ YuynM
Syy = Jo + J, — 298, + YEM

M  — overall mass of the section,
S,  — static moment of mass about x-axis,
J.» J, —~ moment of inertia of section mass about x and y-axis, respectively.

Assembling the element stiffness and mass matrices, we have the global stiffness
matrix {K] and global mass matrix {M]. Then the frequency of free vibration can
be calculated from Egs. (9.17) to (9.20).

9.3 Example (Li 1975, 1978)

Taking the Wuhan Bridge over the Yangzi River as an example, the characteristics
of lateral bending and torsional vibrations of truss bridges are investigated.

The Wuhan Bridge as shown in Fig, 9.1 is a three-span continuous truss bridge.
The upper deck is for highway and pedestrian traffic, while the lower one is for a
two-track railway.

In order to investigate the forced vibration possibly induced by pedestrian
loading, the upper deck with full pedestrian loading is taken as the object of analysis.
The distribution of the loads upon the cross section is shown in Fig, 9.2. The free
vibration of a corresponding single-span bridge is calculated by using the analytical
method as well as the finite element, while the three-span continuous bridge is
calculated only by the [inite element method.

In the calculation by the finite element method, two cases, four and eight
elements for a span, are considered. The shear stiffness R of the sway bracing is also
taken for two cases: R, and 6R,. The natural circular frequencies (Hz/2x s) and
corresponding vibration modes can be seen from Figs. 9.3 and 9.4.

The calculation result shows that the values of w from the finite beam element
method and the analytical method are quite close, especially for the first and second

Portal  Sway brocing £ 4 Eoa
| I—---——b;:LE_Sm — =
/ NN e g =
NINA -
A wlh=lfle  F o 45° B ) f
b o <1280 s 1=118/2— —| ’ P 5
i ¥ -
a Elevation 2 >’I i
_fnl 1 l_i | l - _¥
= " =) -
b Pian ! F Transver se seotion

Fig. 9.13—c. The dimensiou of the Wuhan Bridge
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e b = 22.50m — -
D = 35kN/m?

A O 0 O O
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Fig. 9.2. The distribution ol loads
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Fig. 9.3a—c, Lateral bending-torsional free vibrations of a single span truss bridge (R = R,)
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Symmetric Anti - Symmetric
i @, =1.718
w; = 3,657
g m
|
FAY FAN ol
al lag
oy 4084 @, =6.667
Z Up
| -8 4
N i o \ ol
bl b2 ]
wy=L431 C o wmy=9.003
L
&
gAY
c1 4o

Fig. 9.4a—c, Lateral bending-torsional frec vibrations of a continuous three-span truss bridge (R = 6R,)

frequencies. The difference between the frequencies, when a span is divided into four
and eight elements, is smaller than 1%, Therefore, in engineering practice, it is
sufficiently accurate to use four elements for onc span in the calculation.

By increasing the shear stillness of the sway bracing R by six times, the increase
in the first and second frequencics is only about 10%, its influence being small.
However, the influence of the deformation of the bridge portal is significant. For
instance, the fundamental frequency e, increases by 30% when the bridge portal is
assumed to be rigid.

In a single-span truss bridge the free vibration e, as shown in Fig. 9.3 is mainly
in lateral bending (u,), while the rest arc all dominated by torsion and warping (6, ).
However, for the three-equal-span continuous truss bridge the free vibrations shown
in Fig, 9.4 are mainly dominated by bending.

It can be seen further that w,, @,, @, for the single-span truss are comparable
with to w,, @,, w, for the threc-equal-span truss, and the corresponding vibration
modes are similar in the side or middle span.

Therefore, for approximate vibration calculation, the three-equal-span truss
beam can be replaced by a single-span one.

Based on this idea, the forced vibration possibly induced by pedestrian loading
on the bridge was analyzed (Li 1975). Assume the overall width of the bridge deck



9.3 Example 125

b = 22.5 1, and full pedestrian loading p, = 3.5 KN/m?. The moment on the left
and right side with respect to the center of the cross section 1s

2
_ PP 29 s KN/m.

m,= —m,=m
If it is in a state of rest without any disturbance, the moment on both sides is
balanced. [t would occur a disturbancc moment em, if there is a small disturbance
¢. Assume &mi 1o be approximatcly distributed along the whole span, tbe calculation
reveals that the symmetrical second mode for the single span is dominant, and that
= 5% would sufficc to induce the compleic amplitude of the lateral displacements

u of remarkable magnitude: 8 mm at the top of the end portal, 11 mm at the bottom
chord at midspan, and 3 mm at the upper cbord at midspan. They are close to the
result of observation when the bridge swayed under the load of crowded people
during its opening, and the period of this vibration mode is also very close to that

(0.9 s} observed.



10. Spatial Analysis of Arch-Truss Bridges

An Arch and truss combined system, as shown in Fig. 10.1, is often used for
long-span bridges. For this kind of structure the analysis of stresses due to wind
loads and the calculation of lateral stability are related to lateral bending and
torsion. A finite arch-beam element method based on the theory given in Chap. 6
has been developed (Li and Shi 1978; Li et al. 1983) and is presented in this
chapter.

10.1 Finite Elements of the Arch-Truss

A part of an arch-truss is shown in Fig. 10.2. Tt is assumed that the hanger, the
horizontal strut of arch, and that of the top lateral bracing of truss form a cross-
frame. If the arch is subjeeted to lateral loads (such as wind loads), a part of the load
is transmitted by the wind bracing of the arch to the supports. The rest of it is
transmitted by the cross-frames to the truss, and then to the supports. Therefore,
the behavior of the arch-truss bridge, when subjected to laterai loads, is related to
the lateral bending, torsional rigidities of truss and arch, as well as the shear rigidity
of the cross-frame.

First, the truss and arch are transformed into a continuous structural modei,
and the rigidity of the cross-frame is distributed over its spacing. Then the bridge

/ N e
wl/ / / N

Fig. 10.1a,b. Typical arch-truss bridges
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_-Latera! frame

Fig. 10.2. Constituent parts of an arch-truss bridge

The subsiructure elements

NN 2
a \/ Arch -beam element

O

K
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Beom Beom ]
Arch i
b %Ch Arch

Fip. 10.3a,b. Types of arch-beam clement

is divided into arch-beam clements along the longitudinal axis of the bridge, as
shown in Fig. 10.3a.

There are threc types of arch-bcam element and a substructure clement at arch
portal as shown in Fig. 10.3. For the stress analysis, one panel can be taken as an
arch-beam element, and for the lateral buckling and vibration analysis, the length
of elements may not be divided according to the panels.

The ¢lements at the arch portals, being dillerent from the other part of arch, are
considered as the substructural element, similar to the end truss beam element for
inclined portals in Chap. 7.
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As the cross-section of the bridge is generally symmectrical about the center line
of the cross-section, the vertical bending can be treated separately, thus we consider
in the following only the lateral bending and torsion.

10.2 Nodal Displacements of the Arch-Beam Element in
Lateral Bending and Torsion

For the analysis of the stresses caused by lateral bending and torsion, the number
of the nodal displacements of the truss is eight, ie. the lateral displacement u and
its derivative u’, the angle of twist & and the distortion { of the cross-section, and
their first and second derivatives (see Chap. 8).

The displacements of arch are the lateral translation & and its derivative i’ =
dii/dz, and the torsion angle 8. Since the axial deformation and displacement of the
hangers are very small, we can consider that the rotation of the arch  is equal to
that of the truss |y = § — v, where [or rectangular cross-section of truss, v = 1; see
Fig. 10.8. Thus, the nodal displacement parameters of the arch-beam element are as

follows (Fig. 10.4}.
5
o =t

(8} = [ & w, w0, 6 67 6, 6 671", (10.1)
(8, = {a, @ u, uj 0, 6 67 8, 8 671"

10.3 Stiffness Matrix of Arch-Beam Element

The stiffness matrix of the arch-beam element can be written as follows:
[k] = [k]v + [k]a + [A]g . (10.2)

where [k]y, [k]a, [k]¢ are the element stiflness matrix of the truss, of the arch, and
of the cross-frame, respectively, and will be deduccd separately as follows.

/ Ullbf"l-l.

[Fa) Ly
8, 0: o 0,6
B b6, g_iolél

Fig. 10.4. The nodal displacement parameters of an arch-beam element
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10.3.1 Element Stiffness Matrix of Truss [A]r

The clement stiffness matrix of truss can be written as follows:
[k}y = [LIF0K)[L3r » (10.3)

where [k]; is that referred to local coordinates and [L]y is the transformation

L; 0O
(L] = [ o LT],

0 0 | 0 }

matrix

[LTi] = [LTj] = 1

10.3.2 Element Stiffness Matrix of Arch [K],

It is assumed that the built-up arch has an open cross-section or a closed cross-
seetion, as shown in Fig. 10.5. In elevation, the arch has a shape of a broken line or
a continuous curve. Considering that one arch-beam element may include several
panels, we treat the arch as a curve in deducing the element stiffness matrix.

The coordinate axes of arch are shown in Fig. 10.6. The nodal displacement
parameters of arch element (Fig. 10.7) are defined by

. ﬁ(}i lioj

] 5. 3 i, ) 7;
Sle =< 31 = Pl &1 = e TR 10.4
(6} {5j}, Gr=1mt. d-1; (104)

0, g

For the displacement functions & and § of the element we take the polynomials
of third order. They can be given as follows:

R —— — -

—— . _T_ -
o

1
a | ——— B _.—_—]

Fig. 10.5a,b. Sections of built-up arches
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Fig. 10.6. Coordinate system of arch  Fig. 10.7. The nadal displacement parameters of arch element

{ﬁ}— Mo Ny 000 Ny N 0 0]5=
g o o N N, 0O 0 N, N4{}
Nu e _. Sie
- fbigre = vty (103)

where N, is polynomial of third order. We can calculate the element stiflness matrix
of the arch from its physical equations. According to Fig. 10.6, the lateral deflection
curvature y,, torsional curvature y,, and its derivative y; are as follows:

Xe
a=1< ¢ =[Bl.{8). (10.6)

’

—Xs

-~ 1 -
_N.r! _N
()

where

- N -
[B1a =< (F + Né) . (10.7)
NI;' NH
where R = the radius of curvature.
The bending moment, torsional moment, and the bimoment are

M, B), 0O 0 A
(Sta=<M :=]0 C 0 % ¢ = [Dlalt)as (10.8)

Mm 0 0 ﬁm —X;
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or

(S} = [(D1.[B1a 15}, (10.9)

F . . .
5 b?, u, is the modification factor of

the lateral bending rigidity of the arch, considering the influence of the shearing
deformation sce Chap. 6.

wherc according to Fig. 10.5 B, = Ef,-p,, I, =

-~ G C .
C = TZhéf* - - The rigidity of free torsion of arch.
D, — The rigidity of warping torsion of the cross-section of arch.

Assume that the cross-section of arch is rigid, we have D, = +B,b*, where
B = Ef..

The element stiffncss matrix of arch in local coordinates can be obtained by
using Egs. (10.6) and (10.9). That is

[kla = { [BIA(DI[Bads - (10.10)

The relations between the nodal displaccment parameter of arch element in the

local coordinates {4} and those of arch-beam element {3}° are
@}, = dcosa; + (6 — 8)sina;,
0, = —ajsine; + (6, — 8,)cosa; .

Taking 6 = (8, — &)/cos 6, and

1 0 00 0 0 0 0 0 0
(L= 0 cosay; O O sing 0 0 -—sing 0 0
! 0 —sing; 0 0 cosq 0 0 —cosg; 0 0]
0 0 00 0 1/cosa; 0 0 —1/cosa; O
we gct
ll""‘Gi
2 ip;
{ i}: “_l :[Ei]{ai}'
B
Similarly,
{Sj} = [Lj] {31
Combining the two equations above, we obtain
{6y = [Eoi 2]{&’ = [L1{8), (10.11)
j

where [L] = the transformation matrix. Then the arch element stiflness matrix of
the arch-beam element can be written as follows:-

[kl = [LYT(RLTIL]. (10.12)
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10.3.3 Element Stilfness Matrix of the Cross-frame [&]g

The cross-frames may be arranged at nodes of element. Its shearing rigidities can
be cqually divided by two adjacent elements at the node.

The undeformed and deformed states of cross-frame are shown in Fig. 10.8. The
shear deformation can be written as follows:

?i=$i_uwi:“i?_‘f‘_i___8i+9“ (10.13)

Where ul = ui + kliOi +jli§i (See Flg. 6.2). Setting qli — kli + ﬁi! ﬁli - jli - hAi, we
get

1
}’ith[] 0 —10 —n,; 00 —#y; v 0 0]{d}

= {B.}{d} . (10.14a})
Similarly,
% = [B1{5} . (10.14b)

(vl = {z} - [3 g} {ﬁ} — [B1e{6}* (10.15)

The physical equations can be written as follows:

§; Ri/z 0 T
{StF = {Sj} = |: 0 §3/2:| {?j} = [Dle{7}e-

From the preccding equation, the element stiffness matrix of the cross frame can
be calculated:

Then, we obtain

[kl¢ = { [BIFIDIx(Bls dh . (10.16)

There is no cross-frame at the nodes where the arch is connccted with truss
beam, and here [k] vanishes.

j
i"'—-' 5o I'/
o1k A

e ———— - 4] — £

[

g — 4 —

[+

b

a b

Fig. 10.8a,b. The undeformed and deformed states of the cross-section
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Fig. 1(9. A typical substructure element

10.4 Substructure Element at the Arch Portal

A substructure element at arch portal is shown in Fig, 10.9. It has ten boundary
nodes. In the way described in Sect. 7.2, we can get the condensed stiffness matrix and
load vector matrix of the substructure element as well as its transformation matrix.

10.5 Boundary Conditions

For the bridge having arch ribs directly connected to the lixed supports (shown in
Figs. 10.1 and 10.2), the boundary conditions are

[@=0, [@1=0, [0)=[6]. (10.17)

When the arch is connected with truss, its displacements are the same as

those of the chords. For instance, when the connection js at the lower chord, the
continucus conditions are

i d 5 (10.18)
% = %cosa +(f —B)sina.
That is - .

& = uy— ko — 2B + @ — B)tana,

where « is given in Fig. 10.7.
If the truss, instead of the arch, is connected to the support, the boundary

conditions can be found in Chap. 6.
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10.6 Calculation of Internal Forces

After obtaining the nodal displacement parameters of arch-beam elements, the
internal forces of truss can be calculated as shown in Chap. 6. The forces of arch
can be calculated according to Eq. (10.8), and taking the average along the arch
panel.

10.7 Comparison Between the Model Test and the Theory
(Li and Shi 1978)

A steel bridge model, made to scale 1:20 according to a single truck railway steel
bridge with a span of 112 m, is shown in Fig. 10.10. The stress and deformation tests
have been made for wind loads, which are simulated by static horizontal lateral
loads at nodes. The model bridge was computed by the proposed method and by
the method of spatial bar system.

In the calculation by the finite arch-beam element method described in this
chapter one panel was taken as an element except the substructure element at arch
portal.

The lateral deflections u and the axial forces S in the members are shown in Figs.
10.11 and 10.12. The efliciency of the method presented here can be seen from the
figures.

Y OSSO EC:@EN
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Fig. 10.10a—c. The dimensions of a stee] bridge mode!
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10.8 Finite Element Method for the Lateral Buckling Analysis
of Arch-Truss

The lateral stability of the arch-truss bridge has been analyzed according to
the principle presented in Sects. 8.4 and 10.1 (Li et al. 1983). Here we can take
all the displacement functions of element u, 6, 8 in the form of cubic para-
bolas.
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If the bridge is subjected to vertical design load g, only the forces in plane {8},
i.e. the bending moment M of truss, the arch thrust H, and the tension V¥ of hanger
will be induced.

When the lateral elastic buckling occurs, small lateral bending-torsional dis-
placcments {3} will be induced in the bridge, which induces the clastic nodal forces:

{Fie = [K3{6}° = ([K]r + [K]x + [K]p) S} (10.19)

The indices T, A, F, denote the truss, arch, and cross-frame, respectively.
Assuming the critical load is v times as large as the design load, where v is the
safety factor of elastic lateral buckling, then the additional nedal forces induced by



10.8 Finite Element Method for the Lateral Buckling Analysis of Arch-Truss 137

'#

10 =

a |l — — I I | T —— _._l __I ? I_._

Flevation
=N P N N g ™
b Plan ot orch
T T LTS LTS LT
c Pion of upper and lower wind brogings

Fig. 10.132-c. The dimenstons of model

B ——— Test result

' — —— Theoretical g,
03

02

0

L | ] 1

0 05 w0 15 20:em

)

Fig. 10.14. Results of buckling test



138 10. Spatial Analysis of Arch-Truss Bridges

the inplane internal forces v{S} and {d}, are as follows:
{F}& = v[g1{5}* = v([g)r + [91a + [9)e}{3}", (10.20)

where [¢] is the geometric matrix, and can be obtained according to the principle
described in Chap. 8. For details see Li et al. 1983,

Equating the elastic nodal forces {F}i with the additional nodal loads at all
nodes, i.e. expressing the indifferent equilibrium of the bridge, we obtain the general
lateral buckling equations:

[(K) — ¥(G)]{8} = 0. (10.21)

For further calculation see Chap. 8.

10.9 Model Test of the Lateral Buckling of Arch-Truss Bridge

A Plexiglass model (Fig. 10.13) of an arch-truss bridge with a very small ratio of
width to span was made for the elastic lateral buckling test, and the critical load g,
has been computed according to the method previously described; for details see
Li et al. (1983).

The results are shown in Fig. 10.14, where 4 is the [ateral displacement at the
arch crown. It can be seen that g, obtained from the test agrees well with the
theoretical value.

The calculation made for arch-truss bridges in engineering shows that the lateral
buckling occurs, as in case of the actual truss bridges analyzed in Chap. 8, within
the plastic deformation range.
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