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Preface
T h e  purpose of this volume is to describe the revolution in 
physics which took place in the first quarter of the twentieth 
century, and which included the discoveries of Special Relativity, 
the older Quantum Theory, General Relativity, Matrix 
Mechanics and Wave Mechanics.

My original intention was to give an account of the history 
from 1900 to 1950 in a single volume ; but the wealth of material 
made this undesirable ; and the period from 1926 to 1950 must 
be reserved for a third book.

I am greatly indebted to Dr E. T. Copson, Regius Professor 
of Mathematics in the University of St Andrews, and Dr 
J. M. Whittaker, Vice-Chancellor of the University of Sheffield, 
for reading the proofs.

E. T. W h i t t a k e r

48 George Square 
E dinburgh, A pril 1953
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Memorandum on Notation

V ectors are denoted by letters in black type, as E.

The three components of a vector E are denoted by Ex, E,, E , ; 
and the magnitude of the vector is denoted by E, so that

Е * -Е Х* + Е /+ Е Л

The vector product of two vectors E and H, which is denoted 
by [ E . H], is the vector whose components are

(E ,H *-E *H „ E *H *-E XH „ Е Л ,- Е ,Н , ) .

Its direction is at right angles to the direction of E and H, and 
its magnitude is represented by twice the area of the triangle formed 
by them.

The scalar product of E  and H  is ЕЖН Х H-E^H  ̂+E*H*. It is 
denoted by (E . H).

. __ , CHix UEdv CEjz  • , t m ,,
The quantity ^  + - ^  IS ^enote<  ̂ E.

The vector whose components are
/BE , aEv BE* _5E5 BEy ^ЕЛ
\  By B z9 Bz Bx * Bx By )

is denoted by curl E.

If V denote a scalar quantity, the vector whose components are

~ ip  ~ p )  “ denoted by Srad v-
The symbol A is used to denote the vector operator whose

, B B B components are ^  0- .

XI
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Chapter I
THE AGE OF RUTHERFORD

W h e n  Rôntgen announced his discovery of the X-rays1 it was 
natural to suspect some connection between these rays and the 
fluorescence for, as it was generally called at that time, phosphor­
escence) of tne part of the vacuum tube from which they were 
emitted. Accordingly, a number of workers tried to find whether 
phosphorescent bodies in general emitted radiations which could 
pass through opaque bodies and then either affect photographic 
plates or excite phosphorescence in other bodies.

In particular, Henri Becquerel of Paris (1852-1908) resolved to 
examine the radiations which are emitted, after exposure to the 
sun, by the double sulphate of uranium and potassium, a substance 
which had been shown by his father, Edmond Becquerel (1820-91), 
to have the property of phosphorescence. The result was com­
municated to the French Academy on 24 February 1896.2 ‘ Let 
a photographic plate,’ he said, c be wrapped in two sheets of very 
thick black paper, such that the plate is not affected by exposure 
to the sun for a day. Outside the paper place a quantity of the 
phosphorescent substance, and expose the whole to the sun for 
several hours. When the plate is developed, it displays a silhouette 
of the phosphorescent substance. So the latter must emit radiations 
which are capable of passing through paper opaque to ordinary 
light, and of affecting salts of silver.’

At this time Becquerel supposed the radiation to have been 
excited by the exposure of the phosphorescent substance to the sun ; 
but a week later he announced3 that in one experiment the sun 
had become obscured almost as soon as the exposure was begun, 
and yet that when the photographic plate was developed, the intensity 
of the silhouette was as strong as in the other cases : and moreover, 
he had found that the radiation persisted for an indefinite time after 
the substance had been removed from the sunlight, and after the 
luminosity which properly constitutes phosphorescence had died 
away ; and he was thus led to conclude that the activity was spon­
taneous and permanent. It was soon found that those salts of 
uranium which do not phosphoresce—that is, the uranous series 
of salts—and the metal itseli, all emit the rays; and it became 
evident that what Becquerel had discovered was a radically new 
property, possessed by the element uranium in all its chemical 
compounds.

1 cf. Vol. I, p. 357 * Comptes Rendus, cxxii (1896), p. 420
e Comptes Rendus, cxxii (2 March 1896), p. 501



AETHER AND ELECTRICITY

Very soon he found1 that the new rays, like the Rôntgen and 
cathode rays, impart conductivity to gases. The conductivity due 
to X-rays was at that time being investigated at the Cavendish 
Laboratory, Cambridge, b y j. J. Thomson, who had been joined in 
the summer of 1895 by a young research student from New Zealand 
named Ernest Rutherford (1871-1937). They found that the 
conductivity is due to ionsb or particles carrying electric charges, 
which are produced in the gas by the radiation, and which are set 
in motion when an electric field is applied. Rutherford went on to 
examine the conductivity produced by the rays from uranium (which, 
as he showed, is likewise due to ionisation), and the absorption of 
these rays by matter : he found 2 that the rays are not all of the 
same kind, but that at least two distinct types are present : one of 
these, to which he gave the name a-rays, is readily absorbed ; while 
another, which he named Д-radiation, has a penetrating power a 
hundred times as great as the a-rays.

Early in 1898 two new workers entered the field. Marya 
Sklodowska, bom in Warsaw in 1867 (d. 1934), had studied physics 
in Paris, and in 1895 had married a young French physicist, Pierre 
Curie (1859-1906). She now resolved to search for other substances 
having the properties that Becquerel had found in uranium, and 
showed in April 1898 that these properties were possessed by com­
pounds of thorium,3 the element which, of the elements known at 
that time, stood next to uranium in the order of atomic weights ; 
the same discovery was made simultaneously by G. C. Schmidt4 * 
in Germany. Madame Curie went on to show that, since the 
emission of rays by uranium and thorium is unaffected by chemical 
changes, it must be essentially an atomic property.6 Now the mineral 
pitchblende, from which the uranium was derived, was found to 
have an activity much greater than could be accounted for by the 
uranium contained in it : and from this fact she inferred that the 
pitchblende must contain yet another ‘ radio-active ’ element. 
Making a systematic chemical analysis, she and her husband in 
July 1898 discovered a new element which, in honour of her native 
country, she named polonium,6 and then in December another, 
having an activity many million times as great as uranium : to 
this the name radium was given.7 Its spectrum was examined by
F. A. Demarçay,8 and a spectral line was found which was not other­
wise identifiable. The next three and a half years were spent chiefly 
in determining its atomic weight, by a laborious series of successive

1 Comptes Rendus, cxxii (1896), p. 559
* This paper was published in Phil. Mag.<$) xlvii (1899), p. 109, after Rutherford 

had left Cambridge for a chair in McGill University.
1 Comptes Rendus, cxxvi (12 April 1898), p. 1101
4 Am. d. Phys. lxv (19 April 1898), p. 141
* Some years later, the Curies described the ideas that had inspired their researches

in Comptes Rendus cxxxiv (1902), p. 85.
* Comptes Rendus, cxxvii (1898), p. 175 1 Ibid, cxxvii (1898), p. 1215
1 Comptes Rendus, cxxvii (1898), p. 1218
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THE AGE OF RUTHERFORD

fractionations : the value found was 225.1 Meanwhile another 
French physicist, André Debieme (b. 1874), discovered in the 
uranium residues yet a further radio-active element,2 to which he 
gave the name actinium.

Attention was now directed to the a- and /5-rays of Rutherford. 
A few months after their discovery it was shown by Giesel, Becquerel 
and others, that part of the radiation (the /5-rays) was deflected by 
a magnetic field,3 while part (the a-rays) was not appreciably 
deflected.4 * After this Monsieur and Madame Curie 6 found that the 
deviable rays carry negative electric charges, and Becquerel6 
succeeded in deviating them by an electrostatic field. The deviable 
or /9-rays were thus clearly of the same nature as cathode rays ; 
and when measurements of the electric and magnetic deviations gave 
for the ratio m/e a value7 of the order 10-7, the identity of the 
/9-particles with the cathode-ray corpuscles was fully established. 
They differ only in velocity, the /9-rays being very much the 
swifter.

The a-rays were at this time supposed to be not deviated by a 
magnetic field : the deviation is in fact small, even when the field 
is powerful : but in February 1903 Rutherford 8 announced that 
he had succeeded in deviating them by both magnetic and electro­
static fields. The deviation was in the opposite sense to that of the 
cathode rays, so the a-radiations must consist of positively charged 
particles projected with great velocity,9 and the smallness of the devia­
tion suggested that the expelled particles were massive compared to 
the electron. A method of observing them was discovered in 1903 by 
Sir W. Crookes10 and independently by J. Elster and W. Geitel,11 
who found that when a radio-active substance was brought near 
a screen of Si dot’s hexagonal blende (zinc sulphide), bright scintilla­
tions were observed, due to the cleavage of the blende under the 
bombardment. Rutherford suggested that this property might be 
used for counting the number of a-particles in the rays.

Meanwhile it had been discovered by P. Villard12 that in addition 
to the alpha and beta rays, radium emits a third type of radiation, 
much more penetrating than either of them, in fact 160 times as 
penetrating as the beta rays. The thickness of aluminium traversed 
before the intensity is reduced to one-half is approximately 0*0005 cm. 
for the a-rays, 0-05 cm. for the /9-rays and 8 cm. for the y-rays, as

1 Later raised to 226 a Comptes Rendus, cxxx (2 April 1900), p. 906
* F. O. Giesel, Ann d. Phys. lxix (1899), p. 834 (working with polonium) ; Becquerel,

Comptes Rendus, cxxix (1899), p. 996 (working with radium) ; S. Meyer and E. v. Schweidler, 
Phys. %S. (1899), p . 113 (working with polonium and radium)

4 Becquerel, Comptes Rendus, cxxix (1899), p. 1205 ; cxxx (1900), pp. 206, 372 ;
Curie, ibid., cxxx (1900), p. 73

* Comptes Rendus, cxxx (1900), p. 647 4 Comptes Rendus, cxxx (1900), p. 809
1 cf. W. Kaufmann, Verh. Deutsch Phys. Ges. ix (1907), p. 667
* Phil. Mag A 6) v (Feb. 1903), p. 177
* This had been conjectured by R. J . Strutt in Phil. Trans, cxcvi (1901), p. 507.
M Proc. R.S. bod (30 April 1903), p. 405 11 Phys. £S. iv (1 May 1903), p. 439

Comptes Rendus, cxxx (30 April 1900), p. 1178
3
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Villard’s radiation was called. Villard found that the y-radiation is, 
like the X-rays, not deviable by magnetic forces.

In 1898 Rutherford was appointed to a chair in McGill Uni­
versity, Montreal, and there with R. B. Owens, the professor of 
electrical engineering, began an investigation into the radio-activity 
of the thorium compounds. The conductivity produced by the 
oxide thoria in the air was found 1 to vary in an unexpected and 
perplexing manner : it could be altered considerably by slight draughts 
caused by opening or shutting a door. Eventually Rutherford con­
cluded that thoria emitted 2 very small amounts of some material 
substance which was itself radio-active, and which could be carried 
away in an air current : this, to which he gave the name thorium 
emanation, was shown to be a gas belonging to the same chemical 
family as helium and argon, but of high molecular weight.3

Meanwhile in Cambridge C. T. R. Wilson had been developing 4 
his cloud-chamber, which was to provide the most powerful of all 
methods of investigation in atomic physics. In moist air, if a certain 
degree of supersaturation is exceeded (this can be secured by a sudden 
expansion of the air) condensation takes place on dust-nuclei, when 
any are present : if by preliminary operations condensation is made 
to take place on the dust-nuclei, and the resulting droplets are 
allowed to settle, the air in the chamber is thereby freed from dust. 
If now X-rays or radiations from a radio-active substance are passed 
into the chamber, and if the degree of supersaturation is sufficient, 
condensation again takes place : this is due to the production of 
ions by the radiation. Thus the tracks of ionising radiations can be 
made visible by the sudden expansion of a moist gas, each ion 
becoming the centre of a visible globule of water. Wilson showed 
that the ions produced by uranium radiation were identical with 
those produced by X-rays. J. J. Thomson in July 1899 wrote 
pointing out the advantages of the Wilson chamber to Rutherford, 
who henceforth profited immensely by its use. In this way the 
track of a single atomic projectile or electron could be rendered 
visible.

An important property, discovered for the first time in connection 
with thorium emanation, was that the radio-activity connected with 
it rapidly decreased. This behaviour was found later to be character­
istic of all radio-active substances : but in the earliest known cases, 
uranium and thorium, the half-period (i.e. the time required for the 
activity to be reduced by one-half) is of the order of millions of years, 
so the property had not hitherto been noticed. Rutherford found 5 
that the intensity of the ‘ induced radiation 5 of thorium falls off

1 Owens, Phil. Mag.W  xlviii (Oct. 1899), p. 360
* Phil. Mag.(5) xlix (Jan. 1900), p. 1
* Soon after this, Friedrich Ernst Dorn of Halle found that radium, like thorium, 

produced an emanation : Halle Nat. Ges. Abh. xxiii (1900).
4 Phil. Trans. clxxxix(A) (1897), p. 265 ; Proc. Camb. P.S. ix (1898), p. 333 
6 Phil. Mag. xlix (Feb. 1900), p. 161

(996) 4



exponentially with the time : so that if I  ̂is the intensity at any timê 
and 12 the intensity after the lapse of a time t then

i . - i i * - *
when Л is a constant.

In May 1900 Sir W. Crookes 1 showed that it was possible by 
chemical means to separate from uranium a small fraction, which 
he called uranium X, which possessed the whole of the photographic 
activity of the original substance. He found, moreover, that the 
activity of the uranium X gradually decayed, while the full activity 
of the residual uranium was gradually renewed, so that after a 
sufficient lapse of time it was possible to separate from it a fresh 
supply of uranium X. These facts had an important share in the 
formation of the theory.

It was at first supposed that the pure uranium, immediately after 
the separation, is not radio-active : but F. Soddy (é. 1877) observed 
that though photographically inactive, it is active when tested by 
the electrical method. Now the a-rays are active electrically but 
not photographically, whereas the /9-rays are active photographi­
cally : and the conclusion was drawn 2 that pure uranium emits 
only a-rays and uranium X only /9-rays. Soddy had joined the 
staff of McGill University in 1900 as Demonstrator in Chemistry, 
and at once began to assist Rutherford in his work on radio-activity. 
Further experiments on the thorium emanation involved condensing 
it by extreme cold, and it was discovered 3 that the emanation was 
produced not directly by the thorium but by an intermediate sub­
stance which, as it had many of the characters of Crookes’ uranium 
X, was named thorium X. This was the first indication that radio­
activity involves a chain of transformations of chemical elements.

The work of Rutherford and Soddy on thorium and its radio­
active derivatives led them to a general theory of radio-activity, 
which was published in September 1902-May 1903.4 The greatest 
obstacle to a clear understanding of the subject had been, curiously 
enough, the intense belief of everybody in the principle of conserva­
tion of energy : here was an enormous amount of energy being 
outpoured, and no-one could see where it came from. So long as 
it was attributed to the absorption of some unknown kind of external 
radiation, the essence of the matter could not be discovered. Ruther­
ford and Soddy now swept this notion away, and asserted that :

(i) In the radio-active elements radium, thorium and uranium, 
there is a continuous production of new kinds of matter, which are 
themselves radio-active.

(ii) When several changes occur together these are not simul- 
1 Proc. R.SXa), lxvi (1900), p. 409
* Soddy, Joum. Chem. Soc. lxxxi and lxxxii (July 1902), p. 860 ; Rutherford and 

A. G. Grier, Phil. Mag.W iv (Sept. 1902), p. 315 
8 Phil. Mag.(6) iv (Sept. 1902), p. 370
4 Phil. Mag.ifi) iv (Sept. 1902), p. 370; ibid. (Nov. 1902), p. 569; ibid.(6) v (April 

1903), pp. 441, 445 ; ibid. (May 1903), pp. 561, 576
(996) pj 2
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AETHER AND ELECTRICITY

taneous, but successive ; thus thorium produces thorium X, the 
thorium X produces the thorium emanation and the latter produces 
an excited activity.

(iii) The phenomenon of radio-activity consists in this, that a 
certain proportion of the atoms undergo spontaneous transformation 
into atoms of a different nature : these changes are different in 
character from any changes that have been dealt with before in 
chemistry, for the energy comes from intra-atomic sources which 
are not concerned in chemical reactions.

(iv) The number of atoms that disintegrate in unit time is a 
definite proportion of the atoms that are present and have not yet 
disintegrated. The proportion is characteristic of the radio-active 
body, and is constant for that body. This leads at once to an expon­
ential law of decay with the time : thus if я0 is the initial number 
of atoms, and n is the number at time t afterwards, then

n = ntf~u
where Л is the fraction of the total number which disintegrates in 
unit time, so the average life of an atom is 1/À.

(v) The a-rays consist of positively charged particles, whose ratio 
of mass to charge is over 1,000 times as great as for the electrons in 
cathode rays. If it is assumed that the value of the charge is the 
same as for the electron, then the a-ray particles must have a mass 
of the same order as that of the hydrogen atom.

(vi) The rays emitted are an accompaniment of the change of 
the atom into the one next produced, and there is every reason to 
suppose, not merely that the expulsion of a charged particle accom­
panies the change, but that this expulsion actually is the change.

The authors remarked (in the paper of November 1902) that in 
naturally occurring minerals containing radio-elements, the radio­
active changes must have been taking place over a very long period, 
and it was therefore possible that the ultimate products might have 
accumulated in sufficient quantity to be detected. As helium is 
usually found in such minerals, it was suggested that helium might 
be such a product. Several years passed before this was finally 
established, but its probability was continually increasing. Soddy 
left Montreal in 1903 to work with Sir William Ramsay at University 
College, London, and Rutherford, who was in England in the 
summer of that year, called on Ramsay and Soddy, and with them 
detected (by its spectrum) the presence of helium in the emanation 
of radium. It seemed certain, therefore, that helium occupied some 
place in the sequence of linear descent which begins with radium, 
and at first the general expectation was that it would prove to be 
an end-product. Rutherford, however, entertained the idea that 
it might be formed from the a-particles,1 which, as we have seen, 
were known to be of the same order of mass as hydrogen or helium 
atoms ; that the a-particles, in fact, might be positively charged

1 Nature, lxviii (20 Aug. 1903), p. 366
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atoms of helium : and for some years this supposition was debated 
without a definite conclusion being reached. In 1906 Rutherford 
determined 1 with greater accuracy the ratio e/m of the a-particles 
from radium C, and found it to be between 5-0 x 10* and 5*2 x 10s, 
which is only half the value of e/m for the hydrogen atom : this, 
however, left it undecided whether the a-particle is a hydrogen 
molecule (molecular weight 2) carrying the ionic charge, or a helium 
atom (atomic weight 4), carrying twice the ionic charge.

In 1904 William Henry Bragg (1862-1942), at that time professor 
in the University of Adelaide, South Australia, showed 2 that the 
a-particle, on account of its mass, has only a small probability of 
being deviated when passing through matter, and that in general 
it continues in a fixed direction, gradually losing its energy, until 
it comes to a stop : the distance traversed may be called the range 
of the a-particle. He found in the case of radium definite ranges 
for four kinds of a-particles, corresponding to emissions from radium, 
radium emanation, radium A and radium G : the a-particles from 
any particular kind of atom are all shot out with the same velocity, 
but this velocity varies from one kind of atom to another, as might 
be expected from Rutherford’s theory, ^-particles, on the other 
hand, are easily deflected from their paths by collisions with gas 
molecules, and their tracks in a Wilson cloud-chamber are zig-zag : 
they are scattered by passing through matter, so that a narrow pencil 
of jS-rays, after passing through a metal plate, emerges as an ill- 
defined beam.

In 1907 Rutherford was translated to the chair of physics in the 
University of Manchester. Here he found a young graduate of 
Erlangen, Hans Geiger, with whom he devised 3 an electrical method 
of counting the a-particles directly, the Geiger counter as it has since 
been generally called. The a-rays were sent through a gas, exposed 
to an electric field so strong as to be near the breakdown value at 
which a discharge must pass. When a single a-particle passed and

Eroduced a small ionisation, the ions were accelerated by the electric 
eld and the ionisation was magnified by collisions several thousand 

times. This made possible the passage of a momentary discharge, 
which could be registered. This counting of atoms one by one was 
a great achievement : it was found that the number of a-particles 
emitted by 1 gram of radium in one second is 3*4 xlO10 : when 
this was combined with the value of the total charge (found in the 
second paper), it became clear that an a-particle carries double the 
electron charge, reversed in sign.

The question as to the possible connection of a-rays with helium 
was finally settled later in the same year. Rutherford placed a

1 Phys. Rev. xxii (Feb. 1906), p. 122 ; Phil Mag. xii (Oct. 1906), p. 348 
* Phil. Mag. viii (Dec. 1904), p. 719 ; W. H. Bragg and R. Kleeman, Phil. Mag. x 
pt. 1905), p. 318 ; Paper read before the Royal Society of South Australia, 6 June

* Proe. R £.(a ), bcxxi (27 Aug. 1908), pp. 141, 162
7
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quantity of radium emanation in a glass tube, which was so thin 
that the a-rays generated by the emanation would pass through its 
walls : they were received on the walls of a surrounding glass tube, 
and, after diffusing out, were found to give the spectrum of helium. 
This proved definitely that the a-particles are helium atoms, carrying 
two unit positive charges,1 a conclusion which he had also reached 2 
a short time before by a different line of reasoning.

An interesting corroboration of Rutherford’s account of the 
emission of a-rays was obtained somewhat later, when he and 
Geiger investigated the fluctuations3 in the recorded numbers of 
particles emitted by a radio-active substance in successive equal 
intervals of time. H. Bateman had shown that if the emission is 
a random one, then the probability that n particles will be observed 
in unit time is

&e-*
n\

where x is the average number per unit time, and n is a whole number 
(я = 0, 1, 2, . . . oo). Rutherford and Geiger in 1910 verified this 
formula experimentally.4 Yet a further completion of the work on 
a-particles was a measurement, made with Boltwood,6 of the volume 
of helium produced by a large quantity of radium. By combining 
the result now obtained with that of the counting experiment it was 
possible to evaluate the number of molecules in a quantity of the 
substance whose weight in grams is equal to the molecular weight 
of the substance (the Avogadro number).

The determination of this constant had been the object of many 
researches in the years immediately preceding, beginning with a 
notable paper by Einstein.6 Albert Einstein was born at Ulm in 
Württemberg on 14 March 1879. The circumstances of his father’s 
business compelled the family to leave Germany ; and after receiving 
a somewhat irregular education in Switzerland, he became an 
official in the Patent Office in Berne. It was in this situation that 
he wrote, in six months, four papers, each of which attracted much 
attention.7

The paper now to be considered was really a sequel to two earlier 
papers 8 on the statistical-kinetic theory of heat, in which, however, 
Einstein had only obtained independently certain results which had 
been published a year or two earlier by Willard Gibbs. He now

1 Rutherford and T. Royds, Mem. Manchester Lit. and Phil. Soc. liii (31 Dec. 1908), 
p. 1 ; Phil. Mag. xvii (Feb. 1909), p. 281

* Nature, bcxix (5 Nov. 1908), p. 12
* That the emission of a-particles is a random process, and so subject to the laws of 

probability, seems to have been first clearly stated by E. von Schweidler, Premier Cong. 
Internat, bow VÉtude de la Radiologie, Liège, 1905.

4 Phil. Mag. xx (Oct. 1910), p. 698
* Rutherford ana Boltwood, Phil. Mag. xxii (Oct. 1911), p. 586
* Ann. d. PhysM) xvii (1905), p. 549 ; continued in Ann. d. Phys. xix (1906), p. 371
7 Two of these will be referred to in Chapter II and one in Chapter III.
* Ann. d. Phys. ix (1902), p. 417 ; xi (1903), p. 170

8



THE AGE OP RUTHERFORD

applied these results to the motion of very small particles suspended 
in a liquid. The particles were supposed to be much larger than 
a molecule, but it was assumed that as a result of collisions with the 
molecules of the water, they require a random motion, like that 
of the molecules of a gas. The average velocity of such a suspended 
particle, even in the case of particles large enough to be seen with 
a microscope, might be of observable magnitude : but the direction 
of its motion would change so rapidly, under the bombardment to 
which it would be exposed, that it would not be directly measurable. 
However, as a statistical effect of these transient motions, there would 
be a resultant motion which might be within the range of visibility. 
Einstein showed that in a finite interval of time t the mean square 
of the displacement for a spherical particle of radius a is

RT;
Зтта/Æ

where R is the gas-constant, T the temperature, N is Avogadro’s 
number, and ц is the coefficient of viscosity. Thus by this pheno­
menon the thermal random motion, hitherto a matter of hypothesis, 
might actually be made a matter of visible demonstration.

The motion of small particles suspended in liquids had been 
observed as early as 1828 by Robert Brown 1 (1773-1858), a botanist, 
after whom it was called the Brownian motion. Einstein identified the 
motion studied by him with the Brownian motion, somewhat tenta­
tively in his first paper, but without hesitation in the second.

The theory of the Brownian motion was investigated almost at 
the same time by M. von Smoluchowski 2 (1872-1917), and it was 
confirmed experimentally by Th. Svedberg,3 M. oeddig,4 and 
P. Langevin.5 Particular mention might be made of the experi­
mental studies made in 1908-9 by Jean-Baptiste Perrin (1870-1942) 
of Paris.6 These experiments yielded a value of the mean energy 
of a particle at a definite temperature, and thus enabled him to 
deduce the value of Avogadro’s number, Which is 6*06 x 1023.7 The 
direct confirmation of the kinetic theory provided by these researches 
on the Brownian movement was the means of converting to it some 
notable former opponents, such as Wilhelm Ostwald and Ernst Mach.

The statistical-kinetic theory of heat was confirmed experi­
mentally in a different way in 1911 by L. Dunoyer,8 who obtained 
a parallel beam of sodium molecules by allowing the vapour of

1 Phil. Mag. iv (1828), p. 161
1 Bull. Acad. Sci. Cracovie, vii (1906), p. 577 ; Ann. d. Phys. xxi (1906), p. 756
• Elektrochem, xii (1906), pp. 853, 909 ; chem. lxv (1909), p. 624 ; lxvi

(1909), p. 752 ; Ixvii (1909), p. 249 ; lxx (1910), p. 571
4 Ptys. Z.S. ix (1908), p. 465 5 Comptes Rendus, cxlvi (1908), p. 503
4 Comptes Rendus, cxlvi (1908), p. 967 ; cxlvii (1908), pp. 4/5, 530 ; cxlix (1909), 

pp. 477, 549 ; Ann. Chim. Phys. xvii (1909), p. 5 ; cf. also R. Fürth, Ann d. Pays, liii
(1917), p. 117

'  Another method of determining Avogadro’s number is to study the diffusion of 
ions in a gas under the influence of an electric force.

• Comptes Rendus, clii (1911), p. 592 ; Le Radium, viii (1911), p. 142
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heated sodium to pass through two diaphragms pierced with small 
holes in an exhausted tube : the behaviour of the molecular beams 
was entirely in agreement with the predictions of the kinetic theory 
of gases.

In his statistical studies, Einstein also recognised that the thermal 
motion of the carriers of electric charge in a conductor should give 
rise to random fluctuations of potential difference between the ends 
of the conductor. The effect was too small to be detected by the 
means then available, but many years later, after the development 
of valve amplification, it was observed by J. B. Johnson,1 and the 
theory was studied by H. Nyquist.2 This phenomenon is one of the 
causes of the disturbance that is called ‘ noise 5 in valve amplifiers.

We must now return to the consideration of the radio-active 
elements themselves. In 1903-5 Rutherford 3 identified a number 
of members of the radium sequence later than the emanation : 
radium A, B and G were known by the summer of 1903, and radium 
D, E, F were discovered in the next two years. It was suspected 
that one of these later products was identical with the polonium 
which had been the first new element found by the Curies, and in 
fact polonium was shown to be radium F. One of the most remark­
able discoveries was that of radium B : for at the time no radiations 
of any kind could be found accompanying its transformation into 
radium C, and there was therefore no direct evidence of its existence : 
the only reason for postulating it was, that to suppose an immediate 
derivation of radium C from radium A would have violated the 
laws of radio-active change laid down in 1902-3 ; and it was there­
fore necessary to assume the reality of an intermediate body.

As soon as the principle that radio-active elements are derived 
from each other in series had been established in 1902-3, the suspicion 
was formed that radium, which is found in nature in uranium ores, 
might be a descendant of uranium ; this conjecture was supported 
by the facts that uranium is one of the few elements having a higher 
atomic weight than radium, and that the proportion of radium in 
pitchblende corresponds roughly with the ratio of activity of radium 
and uranium. Soddy4 in 1904 described an experiment which 
showed that radium is not produced directly from uranium : if it 
is produced at all, it can only be by the agency of intermediate 
substances. Bertram B. Boltwood (1870-1927), of Yale University,5 
worked on this investigation for several years, and at last in 1907 
succeeded in showing that radium is the immediate descendant of

1 Nature, cxix (1927), p. 50 ; Phys. Rev. xxix (1927), p. 367 ; xxxii (1928), p. 97
The possibility that under certain conditions the thermal motion of electrons in 

conductors could create a measurable disturbance in amplifiers had been recognised on 
theoretic grounds by W. Schottky, Ann. d. Phys. lvii (1918), p. 541.

* Phys. Rev. xxxii (1928), p. 110
* Proc. R.S.(A), lxxiii (22 June 1904), p. 493 ; Phil. Trans, cciv (Nov. 1904), p. 169 

(Bakerian lecture) ; Phil. Mag. viii (Nov. 1904), p. 636 ; Nature, lxxi (Feb. 1905), 
p. 341

* Nature, lxx (12 May 1904), p. 30 6 Nature, Ixx (26 May 1904), p. 80
IO



a new radio-active element which he named ionium, and which is 
itself descended from uranium.1

The great number of different radio-active atoms that had now 
been discovered raised questions concerning their atomic weights, 
particularly with regard to their position in what was known as 
the periodic table of the chemical elements. In a paper published in 
1864, John A. R. Newlands 2 had pointed out that when the chemical 
elements are arranged according to the numerical values of their 
atomic weights, the eighth element starting from any given one is, 
in regard to its properties, closely akin to the first, * like the eighth 
note of an octave in music.5 This idea he developed in later papers,3 4 
calling the relationship the ‘ Law of Octaves.5 4 He read a paper 
on the subject before the Chemical Society on 1 March 1866 ; but 
it was rejected, on the ground that the Society had ‘ made it a rule 
not to publish papers of a purely theoretical nature, since it was 
likely to lead to correspondence of a controversial character.55 6

Newland’s ideas were adopted and developed a few years later 
by Dmitri Ivanovich Mendeléev (1834—1907),6 who arranged the 
elements in a periodic table. From gaps in this he inferred the existence 
and approximate atomic weights of three hitherto unknown elements, 
to which he gave the names eka-boron, eka-aluminium and eka- 
silicon ; when these were subsequendy discovered (they are now 
known as scandium, gallium ana germanium), the importance of 
the periodic table became universally recognised ; and the inert 
gases helium etc., when they were discovered still later, were found 
to fit into it perfectly.

As new members of the radio-active sequences were discovered, 
it was found in some cases that two or more of the atoms in the 
series had exactly the same chemical properties, so that they belonged 
to the same place in Newland’s and Mcndeléev’s periodic table. 
For instance, in Л 905, O. Hahn, working with Sir William Ramsay 
at University College, London, discovered 7 the parent of thorium X, 
which he called radio-thorium. This was found to be not separable 
chemically from thorium ; and Boltwood found that his ionium 
also was not separable chemically from thorium. It was shown 
by A. S. Russell and R. Rossi,8 working in Rutherford’s laboratory, 
that the optical spectrum of ionium is indistinguishable from the

1 Nature, lxxvi (26 Sept. 1907), p. 544 ; Amer. Joum. Sci. xxiv (Oct. 1907), p. 370 : 
xxv (May 1908), p. 365

* Chem. News, x (20 Aug. 1864), p. 94
* Chem. News, xii (18 Aug. 1865), p. 83 ; xii (25 Aug. 1865), p. 94
4 The group of elements Helium, Neon, Argon, Krypton, Xenon and Niton was not 

known at the time ; when they are introduced into the table, it is the ninth element 
starting from any given one which is akin to the first. We leave aside the complications 
associated with the rare earths, etc.

8 J . A. R. Newlands, The Periodic Law ; London, E. and F. W. Spon, 1884, p. 23
* /•  Chem. v (1869), p. 405; Deutsch. Chem. Gesell. Ber. iv (1871), p. 348; Ann. 

d. Chem., Supplementband, viii (1873), p. 133
7 Proc. R.S.(a ), lxxvi (24 May 1905), p. 115 ; Chem. News, xcii (1 Dec. 1905), p. 251
4 Proc. R.S.(a ), lxxxvii (Dec. 1912), p. 478
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spectrum of thorium. The radio-active properties of the three 
substances are, however, totally different, since the half-value period 
of thorium is of the order of 1010 years, that of ionium is of the order 
of 105 years, and that of radio-thorium is 1*9 years : and the atomic 
weights are different : but chemically they are different forms of 
the same element.

Curiously enough, the possibility of such a situation had been 
suggested so far back as 1886 by Sir William Crookes.1 ‘ I conceive, 
therefore/ he said, £ that when we say the atomic weight of, for 
instance, calcium is 40, we really express the fact that, while the 
majority of calcium atoms have an actual atomic weight of 40, 
there are not a few which are represented by 39 or 41, a less number 
by 38 or 42, and so on.’

As the investigation of the radio-active atoms progressed still 
further, many other examples became known of atoms which are 
inseparable by chemical methods but have different radio-active 
properties and different atomic weights. Attention was drawn to 
the matter in 1909 by the Swedish chemists D. Stromholm and 
Th. Svedberg,2 and in 1910 bySoddy,3and much experimental work 
relating to it was done by Alexander Fleck.4

New light on the problem now came from an unexpected quarter. 
Sir Joseph Thomson (he had been knighted in 1908) took up work 
on the canal rays,5 or positive rays as he now called them, and devised 
a method of ‘ positive-ray analysis ’ for finding the values of mje 
for the positively charged particles which constitute the rays ; the 
method was to shoot the rays through a narrow tube, so as to obtain 
a small spot on a phosphorescent screen or a photographic plate, 
and to subject them between the tube and the screen to an electric 
field and also a magnetic field, so as to deflect the beam of particles, 
the electrostatic deflection and the magnetic deflection being perpen­
dicular to each other. He showed that all particles having the same 
value for mje would be spread out by the two fields so as to strike the 
screen in points lying on a parabola ; thus, particles of different mass 
would give different parabolas. Parabolas were found corresponding 
to the atoms and molecules of various gases in the discharge-tube ; 
and the atomic weights of the particles could be at once inferred 
from measures of the parabolas. On applying this method of positive- 
ray analysis to the gas neon, he found 6 in addition to a parabola 
belonging to atomic weight 20, another corresponding to atomic 
weight 22. These proved to be, both of them, atoms of neon, but 
of different masses. Thomson had in fact discovered two ordinary 
non-radio-active atoms having the same chemical behaviour but 
different physical characteristics. This result, which was immediately

1 Brit. Ass. Rep.y Birmingham, 1886, p. 569
1 %S. f .  Anorg. Chem. lxi (1909), p. 338 and lxiii (1909), p. 197
» Chem. Soc. Ann. Rep. (19Ю), p. 285
4 cf. Fleck, Brit. Ass. Rep.t Birmingham, 1913, p. 447
* cf. Vol. I, p. 363 • Broc. R.SXa), lxxxix (1 Aug. 1913), p. 1
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confirmed by Francis William Aston 1 (1877-1945) showed that the 
phenomenon of a place in the Newlands-Mendeléev table being 
occupied by more than one element was not confined to the highest

Elaces in the table. Elements which are chemically inseparable, 
ut have different atomic weights, were named by Soddy isotopes.

A striking example was furnished when the question as to the 
end-product of radio-active changes was solved. Having become 
convinced so early as 1905 that the end-product of the radium 
series was not helium, Rutherford sought for some other element to 
fill this position ; and both he and Boltwood suggested that it might 
be lead,2 since lead appears persistently as a constituent of uranium- 
radium minerals : it was possible indeed that lead might be radium G. 
This proved to be correct, and lead was found to be also the final 
product of the thorium series. The atomic weights of these two kinds 
of lead are not, however, equal, that of radium lead being 206 and 
that of thorium lead being 208. (The atomic weight of ordinary 
lead is 207-20).3

Atoms obtained by radio-active disintegrations occupy places in 
the periodic table which are determined by what are called the 
displacement laws, first enunciated in 1913 by A. S. Russell,4 K. Fajans 5 * 
(another pupil of Rutherford’s) and F. Soddy,® which may be stated 
as follows : a disintegration with emission of an a-particle causes 
the atom to descend two places in the Newlands-Mendeléev table 
(i.e. the atomic weight is diminished) ; a disintegration with emission 
of a ^-particle causes the atom to ascend one place in the table, but 
does not change the atomic weight.

In 1919-20 it was stated by F. W. Aston 7 that within the limits 
of experimental accuracy the masses of all the isotopes examined 
by him were expressed by whole numbers when oxygen was taken 
as 16 : the only exception was hydrogen, whose mass was 1-008.

Possible methods for separating isotopes were indicated in 1919 
by F. A. Lindemann and F. W. Aston,8 but for long no notable 
success was attained in practice ; in 1932-3, however, two isotopes 
of hydrogen were successfully separated by electrolytic methods.9 
The isotopes of neon have been separated by repeated diffusion by 
Gustave Hertz.10

1 Brit. Ass. Rep.y Birmingham, 1913, p. 403
* Rutherford, Radioactivity (second edn., May 1905), p. 484; Boltwood, Phil. Mag. (6) 

ix (April 1905), p. 599
9 Soddy, Ann. Rep. Chem. Soc., 1913, p. 269 ; Chem. News, cvii (28 Feb. 1913), p. 97 ; 

Nature, xci (20 March 1913), p. 57 ; Nature, xcviii (15 Feb. 1917), p. 469
4 Chem. News, cvii (31 Jan. 1913), p. 49
4 Phys. ZS. xiv (15 Feb. 1913), pp. 131 and 136
• Chem. News, cvii (28 Feb. 1913), p. 97
1 Nature, civ (18 Dec. 1919), p. 393 ; cv (4 March 1920), p . 8 ; Phil. Mag. xxxix

(April 1920), p. 449 ; ibid. (May 1920), p. 611 ; Nature, cv (1 July 1920), p. 547
• Phil. Mag. xxxvii (May 1919), p. 523
* E. W. Washburn and H. C. Urey, Proc. Nat. Acad. Sci. xviii (July 1932), p. 496 ; 

E. W. Washburn, E. R. Smith and M. Frandsen, Bureau of Standards J . of Research, xi 
(Oct. 1933), p. 453 ; G. N. Lewis and R. T. Macdonald, J . Chem. Phys. i (June 1933), 
P. 341 10 Z$-f- Ptys. lxxix (1932), p. 108

!3



A new phenomenon in radio-activity was described in 1908 by 
Rutherford,1 and confirmed later by Fajans2 and other workers, 
namely that in some cases (e.g. radium G, thorium C and actinium G) 
some of the atoms emitted an a-particle, and in the next transforma­
tion a /2-particle, while the rest of the atoms reversed the order of 
the transformations, emitting first a /2-particle and afterwards an 
a-particle. This is known as a branching of the series. Rutherford 
in his original paper expressed the belief that in this way uranium 
might give rise to the actinium family as well as the radium family ; 
a conjecture which was afterwards generally accepted as correct.

An account must now be given of some notable advances con­
cerned with X-rays. Charles Glover Barkla (1877-1944), when a 
research student under J. J. Thomson at Cambridge, had become 
interested in X-rays. In 1902 his work was transferred to Liverpool 
University, and there in 1904 he discovered that the rays may be 
partly polarised.3 In the final dispostion 4 of his experiments, a mass 
of carbon was subjected to a strong primary beam of X-rays, and 
so became a source of secondary radiation. A beam of this secondary 
radiation, propagated in a direction at right angles to that of the 
primary, was studied. In this second beam was placed a second mass 
of carbon, and the intensities of tertiary radiation proceeding in 
directions perpendicular to the direction of propagation of the 
secondary beam were observed. The X-ray tube was turned round 
the axis of the secondary beam, while the rest of the apparatus was 
fixed, and the intensities of the tertiary radiations were observed for 
different positions of the tube. It was found that the intensity of the 
tertiary radiation was a maximum when the primary and tertiary 
beams were parallel, and a minimum when they were at right angles 
to each other, which showed that the secondary radiation was polarised. 
This result told decidedly in favour of the hypothesis that X-rays 
were transverse waves.

Continuing his work on X-rays, Barkla resolved to test a sugges­
tion of J. J. Thomson’s, that the number of electrons in an atom 
might be found by observing the amount of the scattering when 
X-rays fall on the lighter chemical elements, and comparing it 
with the scattering produced when they fall on a single electron. 
In 1903 Thomson had already given, in the first edition of his 
Conduction of Electricity through Gases,5 a theoretical discussion, based 
on classical electrodynamics, of the scattering of a pulse of electro­
magnetic force by an electron on which it is incident. He found

1 Nature, lxxvii (5 March 1908), p. 422
* Phys. Z$- xn (1911), p. 369 ; xiii (1912), p. 699
» Nature, lxix П7 March 1904), p. 463; Proc. R.S.(a), lxxiv (1905), p. 474; Phil. 

Trans.(A), cciv (1905), p. 467
4 Proc. RJSXa ), lxxvii (1906), p. 247
* J . J . Thomson, Conduction o f Electricity through Gases, 1st edn. (1903), p. 268; 

2nd edn. (1906), p. 321 ; 3rd edn., Vol. II  (1933), p. 256. cf. also J . J . Thomson, Phil. 
Mag. xi (1906), p. 769, where he suggested three different methods of determining the 
number of electrons in an atom, based respectively on (1) the dispersion of light by 
gases, (2) the scattering of X-rays by gases, (3) the absorption of /2-rays.
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that the energy radiated by the electron is 8тг*4/3т* times the 
energy passing through unit area of the wave-front of the primary 
beam (when the charge e is measured in electromagnetic units). 
Thus if it is assumed that the electrons, in the chemical element 
exposed to the X-rays, all scatter independently, the value of the 
mass-scattering coefficient is

3 m2p
where n is the number of electrons per cm3, and p is the density* 
Now let

N = number of molecules in one gram-molecule 
Z = number of free electrons per atom 
A = atomic weight.

Then
—t— = number of electrons in one gram = -
A . pso the value of the mass-scattering coefficient is

877 £4NZ
T

Barkla 1 found experimentally for the mass-scattering coefficient of 
the lighter elements (except for hydrogen) a value about 0-2, which 
would therefore give

У 3 m2 A
44WN’

The values accepted at the time for the quantities on the right-hand 
side of this equation were inaccurate, and the result deduced, namely 
that there were between 100 and 200 electrons per molecule of air, 
was replaced by Barkla in 1911 2 by a much better determination 
based on Bucherer’s value for e/m, Rutherford and Geiger’s value 
for e, and Rutherford’s value for N. This gave approximately

Z = JA,
i.e. the number of scattering electrons per atom, for the lighter 
elements, is about half the atomic weight of the element, except 
in the case of hydrogen, for which Z =  l. These results anticipated 
later discoveries in a remarkable way.

The secondary X-rays were destined to furnish other contribu­
tions to atomic physics. In 1906 Barkla 3 found that in some cases 
the secondary rays consisted mainly of a radiation which differed 
'altogether in ‘ hardness,’ or penetrating power, from the primary 
radiation, so that it could not be regarded as the result of4 scattering.’

1 Phil. Mag. vii (May 1904), p. 543. cf. also J . A. Growther, Phil. Mag. xiv (Nov. 
1907), p. 653

* Phil. Mag. xxi (May 1911), p. 648 • Phil. Mag. xi (June 1906), p. 812
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He pursued this matter further, with the help of one of his 
students, C .A. Sadler, and in 1908 they1 found that the secondary 
X-rays emitted by a chemical element exposed to a primary beam 
of X-rays were of two distinct types :

(i) A scattered radiation, not of great amount, of the same 
quality as the primary beam.

(ii) A radiation characteristic of the exposed chemical element, 
and almost, if not quite, homogeneousy i.e. all of the same degree of 
hardness. It was, moreover, emitted uniformly in all directions, 
unlike the scattered radiation. This characteristic radiation was 
produced only when the primaiy X-rays contained a constituent 
harder than the characteristic radiation that was to be excited. (On 
this account the characteristic X-rays were often spoken of at the 
time as ‘ flourescent.’) Barkla found also that the hardness of the 
characteristic radiation increased as the atomic weight of the emitting 
chemical element increased.

R. Whiddington 2 found that the primary rays from an X-ray 
tube can excite the radiation characteristic of an element of atomic 
weight w only when the velocity of the parent cathode rays exceeds 
108 w cm/sec ; when the velocity of the primary rays is less than 
this, only a truly ‘scattered5 radiation is emitted, resembling the 
primary.

It was found 3 that the characteristic secondary radiations may 
be divided into several groups, the radiation belonging to each group 
becoming more penetrating as the atomic weight of the radiating 
element increases ; in other words, each chemical element emits 
a line spectrum of X-rays, each line moving to the more penetrating 
end of the spectrum as the atomic weight of the element increases. 
Two groups which were described in 1909 received the notation K 
and L in 1911, and an M-group was found a little later.4 The K- 
series, which is the most penetrating, was found together with the 
L-series for elements from zirconium (atomic wt. 90*6) to silver 
(atomic wt. 107*88). For elements heavier than silver, the K-series 
was difficult to excite, since very great velocities would be required in 
the exciting cathode rays : and for elements lighter than zirconium, 
the L-series was difficult to observe because it was so easily absorbed.5

It was shown by G. W. C. Kaye 6 * that the radiation characteristic 
of a chemical element can be excited not only by exposing it to a

1 Phil. Mag. xiv (Sept. 1907), p. 408 : xvi (Oct. 1908), p. 550
* Proc. R S.(a), lxxxv (April 1911), p. 323
1 Proc. Camb. Phil. Soc. xv (1909), p. 257 ; Barkla and J . Nicol, Nature, lxxxiv (Aug.

1910), p. 139 * Barkla and V. Collier, Phil. Mag. xxiii (June 1912), p. 987
* E. H. Kürth, Phys. Rev. xviii (1921), p. 461, found for the convergence wave-lengths 

in Angstroms : K-series of carbon, 42*6, oxygen 23-8 : L-series of carbon, 375, oxygen 
248, iron 16*3, copper 12*3 : M-series of iron, 54-3, copper 41-6 : N-series of iron 247, 
copper 116.

* Phil. Trans.ia), ccix (Nov. 1908), p. 123. Kaye found that the intensity of general 
X-radiation was nearly proportional to the atomic weight of the element forming the 
anticathode ; later, W. Duane and T. Schimizu, Phys. Rev. xiv (1919), p. 525, showed
that the intensity is proportional to the atomic number.
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beam of primary X-rays, but also by using it as the anticathode in 
an X-ray tube, so that it is bombarded by cathode rays. It was 
suggested that this might be an indirect effect, produced by the 
mediation of non-characteristic X-rays : but this suggestion was 
disproved by R. T. Beatty,1 who proved beyond doubt that the char­
acteristic X-rays are excited directly by the impact of cathode rays. 
In the following year Beatty2 verified experimentally a result which 
had been reached theoretically by J. J. Thomson3 in 1907, namely 
that the total intensity of general X-radiation is proportional to the 
fourth power of the velocity of the exciting electrons.

The question as to whether X-rays were corpuscles or waves 
was still unsettled in 1910. In that year W. H. Bragg published a 
paper 4 in which, interpreting his experiments by the light of the 
corpuscular hypothesis, he arrived at conclusions which were in fact 
true and of great significance. We have seen 5 that when X-rays 
are passed through a gas they render it a conductor of electricity, 
and that this property is due to the production of ions in the gas. 
Bragg now asserted that the X-rays do not ionise the gas directly ; 
they act by ejecting, from a small proportion of the atoms of the 
gas, electrons (photo-electrons) of high speed, each of which acts 
as a 0-particle and ionises the gas by detaching electrons in a succes­
sion of collisions with molecules along its path. The speed of the 
ejected electron depends only on the hardness or penetrating power 
of the X-rays (which was later shown to be, in effect, their frequency), 
and not at all on their intensity, or on the nature of the atom from 
which the electron is expelled. What Bragg emphasised as specially 
remarkable was that the energy of the electron was as great as that 
of an electron in the beam of cathode rays by which the X-rays had 
been excited originally : the X-ray pulse seemed to have the prop­
erty of keeping its energy together in a small bundle, without any 
of the spreading that might have been expected on the wave theory, 
and to be able to transfer the whole of this energy to a single electron. 
He enunciated e the general principle, that if one radiant entity 
(a-, 0-, y-, X- or cathode-ray) enters an atom, one and only one 
entity emerges, carrying with it the energy of the entering entity.’ 
‘ One X-ray provides the energy for one 0-ray, and similarly in tne 
X-ray bulb, one 0-ray excites one X-ray. No energy is lost in the 
interchange of forms, 0- to X-ray and back again ; and the speed 
of the secondary 0-ray is independent of the distance that the X-ray 
has travelled : so the X-ray cannot diffuse its energy as it goes, 
that is to say, it is a corpuscle.’ It was in fact now established that 
the X-ray behaves in some ways6 as a wave and in other ways as 
a corpuscle.

1 Proc. R.S.(a), lxxxvii (Dec, 1912), p. 511
» Proc. R.S.{a), lxxxix (1913), p. 314 • Phil. Mag. xiv (1907), p. 226

Ltj. Rep. 1911, p. 340 ; W. H. Bragg and

• cf. À. joffé and N. Dobronrawov, £ £ ./ .  P.y xxxiv (1925), p. 889
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e cf. Vol. I, p. 359



Bragg’s conclusions were fully confirmed in 1911-12 by G. T. R. 
Wilson,1 using his method of cloud-chamber photographs. The 
whole of the region traversed by the primary X-ray beam was seen 
to be filled with minute streaks and patches of cloud : examining 
the photographs more closely, the cloudlets were seen to be small 
thread-like objects, consisting of droplets deposited on ions produced 
along the paths of the ^-particles, which were the actually effective 
ionising agents.

In the early part of the twentieth century, many attempts were 
made to test the hypothesis that X-rays are waves, by trying to 
obtain diffraction-effects with them. In 1899 and 1902 H. Haga 
and C. H. Wind 2 of Groningen observed a broadening of the image 
of a wedge-shaped slit, and inferred that the wave-length of the 
vibrations concerned was of the order of one Angstrom.3 However, 
in 1908, when B. Walter and R. Pohl4 repeated the experiments, 
they found that different times of exposure gave different results 
as regards the image, and concluded that the effect was not con­
firmed. In 1912 the question was re-opened when P. P. Koch,5 * 
making a special study of the blackening of photographic plates in 
general, re-examined Walter and Pohl’s images, and decided that 
there was evidence of genuine diffraction. Thereupon Arnold 
J. W. Sommerfeld (1868-1951), Professor at Munich, compared the 
results of theory with Koch’s photometric measurements,8 and 
deduced a value of 0*3 Angstroms for the wave-length of the 
X-rays.

At that time a young student, Peter Paul Ewald (b. 1888), who 
had just taken his doctorate at Munich, was interested in the 
transmission of light through the atomic lattice of a crystal. Some 
notion of the dimensions of crystal-lattices could by this time 
be formed ; the Avogadro number (the number of molecules in 
a number of grams equal to the molecular weight) was known to 
be approximately 6 x 1023 ; this together with a knowledge of the 
density and molecular weight of a crystal made it possible to estimate 
that the distance apart of the atoms in a crystal was of the order of 
10”8 cm. or one Angstrom. A junior lecturer in Munich, Max Laue7 
(6. 1879), who was in contact with Sommerfeld and Ewald, saw that 
if the X-rays had a wave-length of the order suggested by Sommerfeld, 
then the crystal-lattice had the right dimensions for acting as a 
three-dimensional diffraction grating, so to speak, for the X-rays. 
He promptly arranged for an experimental test of this idea, which 
was carried out by W. Friedrich and P. Knipping ; and a paper

1 Proc. R.S.(a ), Ixxxv (April 1911), p. 285 ; (a ), lxxxvii (Sept. 1912), p. 277
* Proc. Amst. Ac. (25 March 1899) (English edn. i, p. 420) and 27 Sept. 1902 (English

edn. v, p. 247). This work was discussed by Sommerfeld, Phys. i (1899), p. 105 
and ii (1900), p. 55. * cf. Vol. I, p. 367, note 5

4 Ann. d. Phys. xxv (1908), p. 715 ; xxix (1909), p. 331
6 Ann. d. Phys. xxxviii (1912), p. 507 e Ann. d. Phys. xxxviii (1912), p. 473
* About this time Laue’s father, who was a general in the German Army, received

a title of nobility, so the son was known subsequently as Max von Laue.
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was published 1 in June-July 1912 in which it was completely 
vindicated. A thin pencil of X-rays was allowed to fall on a crystal 
of zinc sulphide. A photographic plate, placed behind the crystal 
at right angles to this primary pencil, showed a strong central spot, 
where it was met by the primary rays, surrounded by a number 
of other spots, in a regular arrangement : these were situated at the 
places where the plate was met by diffracted pencils, produced by 
reflection of the primary X-rays at sets of planes of atoms in the 
crystal. The positions of the spots in the simplest imaginable case 
are given by the following rule 2 : Suppose that the atoms are 
disposed so that the three rectangular co-ordinates of any atom are 
integral multiples of a length a> every such place being filled, and 
suppose that the incident rays are parallel to one of the axes. If the 
distance from an atom A to another atom B is an integral multiple 
of д, then in the direction AB there will be one of the diffracted 
pencils that cause the spots. Clearly such directions correspond to 
all ways of expressing a square as the sum of three squares.

In this case the spots furnish no information regarding the wave­
length of the radiation ; and indeed the radiation used by Friedrich 
and Knipping had no definite wave-length, being a heterogeneous 
mixture of rays whose wave-lengths formed a continuous series.3 
A mathematical theory of the spots in more general cases was given 
by Laue himself and by other writers.4

Laue’s discovery was of the first importance, for not only did 
the diffraction-patterns under suitable conditions serve to determine 
the wave-length of the X-rays, but the idea was soon developed 
into a regular method for determining the arrangement of the atoms 
in crystals ; and its merit was fitly recognised by the award to Laue 
in 1914 of the Nobel Prize for physics. The question as to whether 
X-rays were corpuscles or waves seemed to be settled in favour of 
the undulatory hypothesis ; it was in fact found that the wave-length 
of high-frequency X-rays was about one Angstrom : but W. H. 
Bragg wrote 5 ‘ The problem becomes, it seems to me, not to decide 
between two theories of X-rays, but to find one theory which possesses 
the capacity of both ’—a remarkable anticipation of the view that 
was made possible many years later by the discovery of quantum 
mechanics.

William Lawrence Bragg (b. 1890), son of W. H. Bragg, in a paper 
read before the Cambridge Philosophical Society in the autumn of 
the same year,6 introduced considerable simplifications in the theory.

1 W. Friedrich, P. Knipping and M. Laue, München Ber. 8 June, p. 303 and 6 July 
p. 363, 1912 ; reprinted Ann. d. Phys. xli (1913), p. 971

2 W. H. Bragg, Nature, xc (24 Oct. 1912), p. 219
5 H. G. J . Moseley and C. G. Darwin, Phil. Mag. xxvi (July 1913), p. 210 found a 

continuous spectrum, with maxima due to characteristic rays from the anticathode.
4 M. von Laue, loc. cit. : Ann. d. Phys. xlii (1913), p. 397 ; Phys. xiv (1913), p. 1075 ;

H. Moseley and C. G. Darwin, Nature, xc (14 Oct. 1912), p. 219 ; P. P. Ewald, Phys. %S. 
xiv (1913), p. 1038 ; xv (1914), p. 399 ; C. G. Darwin, Phil. Mag. xxvii (Feb. 1914), 
p. 315; ibid. (April 1914), p. 675 6 Nature, xc (28 Nov. 1912), p. 360

4 Proc. Camb. Phil. Soc. xvii (Feb. 1913), p. 43
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His leading idea (which replaced Laue’s assumption of scattering 
at the points of a crystal-grating) was that parallel planes in the 
crystal which are rich in atoms can be regarded, taken together, 
as a reflecting surface for X-rays ; and experiments with a slip of 
mica about a millimetre thick whose surface was a cleavage plane 
showed him that the laws of reflection were obeyed when the rays 
were incident at nearly glancing angles ; reflection takes place only 
when the wave-length Л of the rays, the distance d between the 
parallel planes in the crystal, and the angle of incidence ф, are 
connected by the relation

nh = 2d cos ф
where n is a small whole number. This is known as the Bragg law. 
His father, continuing the work with him,1 devised an X-ray spectro­
meter, the principle oi which is to allow monochromatic X-rays to fall 
in a fixed direction on a crystal, which is made to turn so that each 
plane can be examined in detail : and with this instrument the 
arrangement of the atoms in many different crystals was determined. 
From this point the study of crystal-structure was developed by the 
Braggs witn great success over an immense range : the Nobel Prize 
for physics was awarded to them in 1915.

The discoveries regarding X-rays led to a better understanding 
of the y-rays from radio-active substance. J. A. Gray 2 established 
the similarity in nature of y-rays and X-rays by showing that the 
y-rays from RaE excite the characteristic X-radiations (K-series) 
of several elements, just as very penetrating X-rays would : and 
that the y-rays behave similarly to X-rays (both qualitatively 
and quantitatively) in regard to scattering. In 1914 Rutherford and
E. N. da G. Andrade,3 by methods based on the same principle as 
those used by the Braggs and by Moseley and Darwin, measured 
the wave-lengths of the y-rays from radium B and C. The wave­
lengths of y-rays are usually less than those of X-rays, being generally 
between 0*01 and 0T Angstroms.

In the work of Rutherford and Geiger on counting a-particles by 
the electric method, carried out in 1908,4 some of the difficulties 
that had to be overcome were due to the scattering of a-rays in 
passing through matter. Geiger made a special study of the scatter­
ing for small angles of deflection, and in 1909 Rutherford suggested 
to one of his research students, E. Marsden, an examination of the 
possibility of scattering through large angles. As a result of this 
suggestion, experiments were carried out by Geiger and Marsden, 
which showed5 that a-particles fired at a thin plate of matter can 
be scattered inside the material to such an extent that some of them 
emerge again on the side of the plate at which they entered : and

1 Proc. R .S.(a), lxxxviii (July 1913), p. 428 ; lxxxix (Sept. 1913), pp. 246, 248 ;
ibid. (Feb. 1914), p. 468 * Proc. R.S.(a), lxxxvii (Dec. 1912), p. 489

* Phil. Mag. xxvii (May 1914), p. 854 4 cf. p. 7
4 Proc. R .S.(a ), lxxxii (July 1909), p. 495 ; PhiL Mag. xxv (1913), p. 604
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calculation showed that some of the a-particles must have been 
deflected at single encounters through angles greater than a right 
angle.

Now at that time the atom was generally pictured in the form 
suggested by J. J. Thomson in his Silliman lectures of 1903.1 He was 
then working out the consequences of supposing that the negative 
electrons occupy stationary positions in the atom. In order that 
the atom as a whole may be electrically neutral, there must be also 
a positive charge : and he saw that this could not be concentrated 
in positively charged corpuscles, since a mixed assemblage of negative 
ana positive corpuscular charges could not be in stable equilibrium. 
He therefore assumed that the positive electrification was uniformly 
distributed throughout a sphere of radius equal to the radius of the 
atom as inferred from the kinetic theory of gases (about 10~8 cm.) : 
the negative electrons he supposed to be situated inside this sphere, 
their total charge being equal and opposite to that of the positive 
electrification.

In attempting to picture the way in which the negative electrons 
would dispose themselves, Thomson was guided by some experiments 
with magnets which had been made many years earlier by Alfred 
Marshall Mayer of the Stevens Institute of Technology, Hoboken.2 
Mayer magnetised a number of sewing-needles with their points of 
the same polarity, say south. Each needle was run into a small 
cork, of such a size that it floated the needle in an upright position, 
the eye end of the needle just coming through the top of the cork. 
If three of these vertical magnetic needles are floated in a bowl of 
water, and the north pole of a large magnet is brought down over 
them, the mutually repellent needles at once approach each other, 
and finally arrange themselves at the vertices of an equilateral 
triangle. With four needles a square is obtained, with five either a 
regular pentagon or (a less stable configuration) a square with one 
needle at its centre, and so on. The under-water poles of the 
floating needles, and the upper pole of the large magnet, were 
regarded as too far away to exert any appreciable influence, so the 
problem was practically equivalent to that of a number of south 
poles in presence of a single large north pole.

Thomson examined theoretically the problem of the configura­
tions assumed by a small number of negative electrons inside a 
sphere of positive electrification, and found that when the number 
of electrons was small, they disposed themselves in a regular arrange­
ment, all being at the same distance from the centre ; but when 
the number of electrons was increased, they tended to arrange 
themselves in rings or spherical shells, and that the model imitated 
many of the known properties of atoms, particularly the periodic 
changes with increase of atomic weight which are set forth in the

1 Published as Electricity and Matter in 1904. cf. J - J -  Thomson, Phil. Mag. vii (1904), 
p. 237, and for an earlier model, Lord Kelvin, Phil. Mag. iii (1902), p. 257.

• Phil. MagX5) v(1878), p. 397 ; (5) vii (1879), p. 98
(996) 2 I

THE AGE OF RUTHERFORD

3



Newlands-Mendeléev table. If one of the electrons were displaced 
slightly from its position of equilibrium, it would be acted on by a 
restitutive force proportional to the displacement. This was a most 
desirable property, since it was just what was required for an 
electronic theory of optical dispersion and absorption ; and, more­
over, it would explain the monochromatic character of spectral lines : 
but in no way could Thomson’s model be made to give an account 
of spectral series.1

A model atom alternative to Thomson’s had been proposed in 
the same year (1903) by Philipp Lenard 2 (1862-1947) of Kiel, who 
observed that since cathode-ray particles can penetrate matter, 
most of the atomic volume must offer no obstacle to their penetration, 
and who designed his model to exhibit this property. In it there 
were no electrons and no positive charge separate from the electrons : 
the atom was constituted entirely of particles which Lenard called 
dynamidesy each of which was an electric doublet possessing mass. 
All the dynamides were supposed to be identical, and an atom 
contained as many of them as were required to make up its mass. 
They were distributed throughout the volume of the atom, but their 
radius was so small (<0*3 x 10-11 cm.) compared with the radius 
of the atom, that most of the atomic volume was actually empty. 
Lenard’s atom, however, never obtained much acceptance, as no 
evidence could be found for the existence of the dynamides.

The deflection of an a-particle through an angle greater than a 
right angle was clearly not explicable on the assumption of either 
Thomson’s or Lenard’s atom ; and Rutherford in December 1910 
came to the conclusion that the phenomenon could be explained 
only by supposing that an a-particle occasionally (but rarely) 
passed through a very strong electric field, due to a charged nucleus 3 
of very small dimensions in the centre of the atom. This was con­
firmed a year later by C. T. R. Wilson’s photographs 4 of cloud- 
chamber tracks of a-particles which showed violent sudden deflections 
at encounters with single atoms.

Thus Rutherford was led to what was perhaps the greatest of 
all his discoveries, that of the structure of the atom ; the first account 
of his theory was published in May 1911.6 He found that if a 
model atom were imagined with a central charge concentrated within 
a sphere of less than 3 x 10-12 cm. radius, surrounded by electricity 
of the opposite sign distributed throughout the rest of the volume 
of the atom (about 10~8 cm. radius), then this atom would satisfy 
all the known laws of scattering of a- or ^-particles, as found by 
Geiger and Marsden. The central charge necessary would be N*,

1 See, however, an attempt by K. F. Herzfeld, Wien Ber. exxi, 2a (1912), p. 593
* Ann. d. Phys. xii (1903), p. 714, at p. 736
* The term nucleus for the central charge seems to have been used first in Rutherford’s 

book Radioactive Substances and their Radiations, which was published in 1912.
4 Proc. R.S.(a ), lxxxvii (Sept. 1912), p. 279
* Phil. Mag. xxi (May 1911), p. 669 ; xxvii (1914), p. 488. For an anticipation that 

the atom might prove to be of this type, cf. H. Nagaoka, Phil. Mag. vii (1904), p. 445.
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where e is the electronic charge, and N is a number equal to about 
half the atomic weight. This fitted in perfectly with the discovery 
already made by Barkla,1 that the number of scattering electrons 
per atom is (for the lighter elements, except hydrogen) about half 
the atomic weight : for the positive central charge, and the negative 
charges on the electrons in the space around it, must exactly neutralise 
each other.

Thus the Rutherford atom is like the solar system, a small 
positively charged nucleus in the centre, which contains most of 
the mass of the atom, being surrounded by negative electrons 
moving around it like planets, at distances of the order of 10-8 cm. 
Occasionally an a-particle passes near enough to unbind and detach 
an electron and thus ionise the atom : still more infrequendy (only 
about one a-particle in ten thousand, even in the case of heavy 
elements) the a-particle may come so close to the nucleus as to 
experience a violent deflection, due to the electrical repulsion between 
them. The encounters were studied mathematically by C. G. Darwin2 
(b. 1887), who found a satisfactory agreement between theory and 
experiment, and showed that Geiger and Marsden’s results could 
not be reconciled with any law of force except the electrostatic law 
of the inverse square, which is obeyed to within 3 x 10“13 cm. of the 
centre of the atom.

Rutherford now laid down the principle3 that the positive 
charge on the nucleus (or the number of negative electrons) is the 
fundamental constant which determines the chemical properties 
of the atom : this fact explains the existence of isotopes, which 
have the same nuclear charge but different nuclear masses, and 
which have the same chemical properties. He pointed out also 
that gravitation and radio-activity, being unaffected by chemical 
changes, must depend on the nucleus. His old discovery, that the 
a-particle is a doubly ionised atom of helium, was now reformulated 
in the statement, that the a-particle, at the end of its track, captures 
two electrons (one at a time), and thus becomes a neutral helium 
atom ; he suggested, moreover, that the nucleus of the hydrogen 
atom might actually be the ‘ positive electron.’ It was seen that the 
hydrogen nucleus differed from the negative electron not only in the 
reversal of sign of its charge, but also in having a much greater 
mass—in fact, almost all the mass of the hydrogen atom 4 ; and at 
the Cardiff meeting of the British Association in 1920, Rutherford 
proposed for it the name proton, which has been universally accepted.

A proposal for removing the uncertainty which still remained as 
to the precise amount of the nuclear charge was made in 1913 by

1 cf. p. 15 2 Phil. Mag. xxvii (March 1914), p. 499
* Nature, xcii (Dec. 1913), p. 423 ; Phil. Mag. xxvi (Oct. 1913), p. 702 ; xxvii (March

1914), p. 488
4 Poincaré in his St. Louis lecture of 1904 had said (Bull, des Set. Math, xxviii (1904), 

p. 302) * The mass of a body would be the sum of the masses of its positive electrons, 
Ibe negative electrons not counting/
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A. van der Broek 1 of Utrecht. He remarked that when a-particles 
are scattered by a nucleus, the amount of scattering per atom, 
divided by the square of the charge in the nucleus, must be constant. 
As Geiger and Marsden had shown, this condition is roughly satisfied 
if the nuclear charge is assumed to be proportional to the atomic 
weight ; but van der Broek now pointed out that it would be satisfied 
with far greater accuracy if the nuclear charge were assumed to be 
proportional to the number representing the place of the element 
m the Newlands-Mendeléev periodic table. He suggested, therefore, 
that the nuclear charge should be taken to be Ze, where e is the 
electronic charge (taken positively) and Z is the ordinal number 
of the element in the periodic table.

This suggestion received a complete confirmation from experi­
ments performed in Rutherford’s laboratory at Manchester by Henry 
Gwyn-Jeffreys Moseley 2 (b. 1887, killed at the Suvla Bay landing 
in the Dardanelles, 10 August 1915) in continuation of the work 
which he and Darwin had been carrying on together. Moseley 
exposed the chemical elements, from calcium to nickel, as anti­
cathodes in an X-ray tube, so that under the bombardment of 
cathode-rays they emitted their characteristic X-ray spectra, con­
sisting essentially of two strong lines (the K- and L-lines) 3 ; and 
the wave-lengths of these lines were determined by the crystal 
method. Taking either of these lines and following it from element 
to element, he found that the square root of its frequency increased 
by a constant quantity as the transition was made from any element 
to the next higher element in the periodic table ; so that the fre­
quency was expressible in the form A(N—a)2, where k was an absolute 
constant, N was the ‘ atomic number * or place in the periodic 
table, and a was a constant which had different values for the K- and 
L-lines. So there must be in the atom a fundamental number, which 
increases by unity as we pass from one element to the next in the 
periodic table ; and, having regard to the results of Rutherford, 
Geiger, Marsden and van der Broek, this quantity can only be the 
amount of the nuclear charge, expressed m electron-units. Thus 
the number of negative electrons which circulate round the nucleus of an atom 
of a chemical element is equal to the ordinal number of the element in the 
periodic table.

Two incidental results of Moseley’s work on X-ray spectra must 
be mentioned. It now became clear that the atomic numbers of 
iron, cobalt and nickel must be respectively 26, 27, 28, thus con­
firming the opinion, already suggested by chemical considerations, 
that cobalt should have a lower place in the periodic table than

1 Phys. Z$- xiv (1913), p. 32 ; Nature, xcii (27 Nov. 1913), p. 372 ; xcii (25 Dec. 1913), 
p. 476 ; Phil. Mag. xxvii (March 1914), p. 455

* Phil. Mag. xxvi (Dec. 1913), p. 1024; xxvii (April 1914), p. 703. Moseley left 
Manchester for Oxford at the end of 1913, and completed his work there, cf. his obituary 
notice in Proc. R.S.(a ), xciii (1917), p. xxii.

* cf. p. 16. Actually each of these lines is a multiplet.
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nickel, although it has a higher atomic weight ; and the vexed 
questions of the number of elements in the group of the rare earths, 
and of missing elements in the periodic table, could also be settled, 
since it was now known what the X-ray spectra of these elements 
must be.1 Some predictions which had been made by the Danish 
chemist, Julius Thomsen (1826-1909) were now verified in a remark­
able way.

Thus Rutherford, with the help of the young men in his research 
school—Geiger, Marsden, Moseley and Darwin 2—created a definite 
quantitative theory of the atom, lending itself to mathematical 
treatment, and satisfying every comparison with experiment. It 
has been the foundation of all later work.

During the years 1914-18 Rutherford was occupied chiefly with 
matters connected with the war : but in 1919 he made a contribu­
tion 3 of the highest importance to atomic physics. It originated 
from an observation made by Marsden, who had shown 4 that when 
an a-particle collides with an atom of hydrogen, the hydrogen atom 
may be set in such swift motion that it travels (nearly in the direction 
of the impinging particle) four times as far as tne colliding a-particle, 
and that it may be detected by a scintillation produced on a zinc 
sulphide screen. Rutherford now showed, by measurements of 
deflections in magnetic and electric fields, that these scintillations 
were due to hydrogen atoms carrying unit positive charge, in other 
words, to hydrogen nuclei, or protons as they soon came to be 
called.

He next bombarded dry air, and nitrogen, with a-particles, and 
again found scintillations at long range. The similarity in behaviour 
of the particles obtained from nitrogen to those previously obtained 
from the hydrogen led him to suspect that they were identical, i.e. 
that the long-range particles obtained by bombarding nitrogen with 
a-particles were actually hydrogen nuclei. The general idea now 
presented itself, that some of the lighter atoms might be actually 
disintegrated by a collision with a swift a-particle : going beyond 
the earlier discovery that an a-particle might be deflected through 
a large angle by a close collision with a nucleus, he now came to 
the conclusion that on still more rare occasions (say one a-particle 
in half a million) it might break up the nucleus. The phenomenon 
was found to occur markedly with nitrogen, but not with dry oxygen.

In the summer of 1919 Rutherford succeeded J . J . Thomson as 
the Cavendish Professor of Physics at Cambridge. Continuing his 
experiments there, he succeeded in proving definitely that the

1 For individual elements the nuclear charges were found directly by J . Chadwick
{Phil. Mag. xl (1920), p. 734) by experiments on the scattering of pencils of a-rays. His 
results agreed with those deduced from Moseley’s law of X-ray spectra. Practically all 
of the elements which have been discovered since Moseley’s day, and which fill the 
gaps that then existed in the periodic table, have been identified by the study of their 
characteristic X-ray spectra.

* And Bohr, whose work will be described in a later chapter
* Phil. Mag. xxxvii (June 1919), p. 537 4 Phil. Mag. xxvii (May 1914), p. 824
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nitrogen atom can be disintegrated by bombarding it with a-particles.1 
As P. M. S. Blackett (b. 1897) showed, the tracks of the particles 
could be seen in the Wilson cloud-chamber. Since the nitrogen 
nucleus, of charge 7 electronic units, captures the a-particle, of 
charge 2, and expels the proton, of charge 1, the particle obtained 
by the transformation must have charge 8, that is, it must be the 
nucleus of an isotope of oxygen. Since the nitrogen nucleus has 
mass 14, the captured a-particle has mass 4, and the expelled 
proton has mass 1, it follows that the oxygen isotope must have 
mass 17.

In 1921 Rutherford and J. Chadwick (b. 1891) found2 * * that 
similar transformations could be produced in boron, fluorine, 
sodium, aluminium and phosphorus : and other elements were 
later added to the list. In each case the a-particle was captured 
and a swift proton was ejected, while a new nucleus of mass three 
units greater and charge one unit higher was formed. Thus the 
medieval alchemist’s dream of the transmutation of matter was 
realised at last.

Rutherford died at Cambridge on 19 October 1937, and was 
buried in Westminster Abbey near the graves of Newton and Kelvin. 
He was survived by his old teacher J. J. Thomson, who had in 1918 
been elected Master of the great foundation of which he had been 
a member uninterruptedly since 1875.

‘ How fortunate I have been throughout my life ! 5 Thomson 
wrote, near the end of it, ‘ I have had good parents, good teachers, 
good colleagues, good pupils, good friends, great opportunities, good 
luck and good health.5 He lived to be eighty-three, dying at Trinity 
Lodge on 30 August 1940, and was buried on 4 September in the 
Abbey.

1 Ртос. Д.£.(а), xcvii (July 1920), p. 374 ; Engineering, cx (17 Sept. 1920), p. 382
(a paper read to the British Association at its Cardiff meeting) ; Proc. Rhys. Soc. xxxiii
(Aug. 1921), p. 389

* Nature, cvii (10 March 1921), p. 41
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Chapter II
THE RELATIVITY THEORY OF POINCARÉ 

AND LORENTZ

At the end of the nineteenth century, one of the most perplexing 
unsolved problems of natural philosophy was that of determining 
the relative motion of the earth and the aether. Let us try to present 
the matter as it appeared to the physicists of that time.

According to Newton’s First Law of Motion, any particle which 
is free from the action of impressed forces moves, if it moves at all, 
with uniform velocity in a straight line. But in order that this state­
ment may have a meaning, it is necessary to define the terms straight 
line and uniform velocity ; for a particle which is said to be ‘ moving 
in a straight line 5 in a terrestrial laboratory would not appear to 
be moving in a straight line to an observer on the sun, since he would 
perceive its motion compounded with the earth’s diurnal rotation 
and her annual revolution in her orbit. We can, however, define 
a straight line with reference to a system of axes Oxyz as the geometrical 
figure defined by a pair of linear equations between *, y> z ; and 
we can assert as a fact of experience that certain systems of axes 
Oxyz exist such that free particles move in straight lines with reference 
to them. Moreover, we can assert that there exist certain ways 
of measuring time such that the velocity of free particles along their 
rectilinear paths is uniform. A set of axes in space and a system 
of time-measurement, which possess these properties, may be called 
an inertial system of reference.

In Newtonian mechanics, if S is an inertial system of reference, 
and if S'is another system such that the axes O'x'y'z' of S' have any 
uniform motion of pure translation with respect to the axes Oxyz 
of S, and if the system of time-measurement is the same in the two 
cases, then S' is also an inertial system of reference : the Newtonian 
laws of motion are valid with respect to S' just as with respect to S. 
No one inertial system of reference could be regarded as having 
a privileged status, in the sense that it could properly be said to 
be fixed while the others were moving. Newtonian mechanics 
does not involve the notion of the absolute fixity of a point in 
space.

The laws of Newtonian dynamics thus presuppose the knowledge 
of a certain set of systems of reference, which is necessary if the laws 
are to have any meaning. In the nineteenth century many physicists 
inquired how this set of systems of reference should be described and 
defined. When Carl Neumann (1832-1925) was appointed professor 
of mathematics at Leipzig in 1869, he devoted his inaugural
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lecture 1 * to the question, and introduced the name The Body Alpha 
for these systems of reference collectively. W. Thomson (Kelvin) and 
P. G. Tait in their Treatise on Natural Philosophy2 suggested as a basis 
for specifying the Body Alpha that the centre of gravity of all matter 
in the universe might be considered to be absolutely at rest, and that 
the plane in which the angular momentum of the universe round 
its centre of gravity is the greatest, might be regarded as fixed in 
direction in space. Other writers proposed that the Body Alpha should 
be based on the system of the fixed stars, or the aggregate of all the 
bodies in existence.3

In the latter part of the nineteenth century the doctrine of the 
aether, which was justified by the undulatory theory of light, was 
generally regarded as involving the concepts of rest and motion 
relative to the aether, and thus to afford a means of specifying absolute 
position and defining the Body Alpha. Suppose, for instance, that 
a disturbance is generated at any point in free aether : this disturb­
ance will spread outwards in the form of a sphere : and the centre 
of this sphere will for all subsequent time occupy an unchanged 
position relative to the aether. In this way, or in many other ways, 
we might hope to determine, by electrical or optical experiments, 
the velocity of the earth’s motion relative to the aether.

In the first years of the twentieth century this problem was 
provoking a fresh series of experimental investigations. The most 
interesting of these was due to FitzGerald4 who, shortly before his 
death in February 1901, commenced to examine the phenomena 
exhibited by a charged electrical condenser, as it is carried through 
space by the terrestrial motion. When the plane of the condenser 
includes the direction of the aether-drift (the ‘ longitudinal position ’), 
the moving positive and negative charges on its two plates will be 
equivalent to currents running tangentially in opposite directions in 
the plates, so that a magnetic field will be set up in the space between 
them, and magnetic energy must be stored in this space : but when 
the plane of the condenser is at right angles to the terrestrial motion 
(the ‘ transverse position ’), the equivalent currents are in the normal 
direction, and neutralise each other’s magnetic action almost com­
pletely. FitzGerald’s original idea was that, in order to supply the 
magnetic energy, there must be a mechanical drag on the condenser 
at the moment of charging, similar to that which would be produced 
if the mass of a body at the surface of the earth were suddenly to 
become greater. Moreover, the co-existence of the electric and 
magnetic fields in the space between the plates would entail5 the

1 Afterwards published as a booklet of 32 pages, Die Principien der Galilei-Newton'schert 
Theorie (Leipzig 1870). He returned to the matter in 1904, in the Festschrift Boltzmann 
(Leipzig, 1904), p. 252.

• New edition, Cambridge 1890, Vol. I, p. 241
• An account of these suggestions is given by G. Giorgi, Palermo Rend.t xxxiv (1912), 

p. 301 ♦
4 FitzGerald’s Scientific Writings, p. 557 ; cf. Larmor, ibid., p. 566
4 cf. Vol. I, p. 318
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existence of an electromagnetic momentum proportional to their 
vector-product. This momentum is easily seen to be (with sufficient 
approximation) parallel to the plates, and so would not in general 
have the same direction as the velocity of the condenser relative to 
the aether : thus the change in the situation in one second might be 
represented by the annihilation of the momentum existing at the 
beginning of the second and the creation of the momentum (equal 
and parallel to it) existing at the end of the second. But two equal 
and oppositely-parallel momenta at a distance apart constitute an 
angular momentum : and we may therefore expect that if the 
condenser is freely suspended, there will in general be a couple 
acting on it, proportional to the vector-product of the velocity of the 
condenser and the electromagnetic momentum. This couple would 
vanish in either the longitudinal or the transverse orientation, but 
in intermediate positions would tend to rotate the condenser into 
the longitudinal position ; the transverse position would be one 
of unstable equilibrium.

For both effects a search was made by FitzGerald’s pupil F. T. 
Trouton 1 ; in the experiments designed to observe die turning 
couple, a condenser was suspended in a vertical plane by a fine wire, 
and charged. The effect to be detected was small : for the magnetic 
force due to the motion of the charges would be of order (w/c), where 
w denotes the velocity of the earth : so the magnetic energy of the 
system, which depends on the square of the force, would be of order 
(w/c)2 : and the couple would likewise be of the second order in 
(w/c).

No effect of any kind could be detected,2 a result whose explana­
tion was rightly surmised by P. Langevin 3 to belong to the same 
order of ideas as FitzGerald’s hypothesis of contraction.

It may be remarked that the existence of the couple, had it been 
observed, would have demonstrated the possibility of drawing on 
the energy of the earth’s motion for purposes of terrestrial utility.

The FitzGerald contraction of matter as it moves through the 
aether might conceivably be supposed to affect in some way the 
optical properties of the moving matter : for instance, transparent 
substances might become doubly refracting. Experiments designed 
to test this supposition were performed by Lord Rayleigh 4 in 1902 
and by D. B. Brace in 1904,5 but no double refraction comparable 
with the proportion (w/c)2 of the single refraction could be detected. 
The FitzGerald contraction of a material body cannot therefore be 
of the same nature as the contraction which would be produced in 
the body by pressure, but must be accompanied by such concomitant

1 Trans. Roy. Dub. Soc.9 vii (1902), p. 379 ; F. T . Trouton and H. R. Noble, Phil.
Trans, ccii (1903), p. 165

* This negative result was confirmed in 1926 by R. Tomaschek, Ann. d. Phys. lxxviii 
(1926), p. 743 and lxxx (1926), p. 509 ; and by G. T. Chase, Phys. Rev. xxviii (1926), 
p. 378. 8 Comptes Rendus, cxl (1905), p. 1171

4 Phil. Mag. iv (1902), p. 678 6 Phil. Mag. vii (1904), p. 317

THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

29



changes in the relations of the molecules to the aether, that an 
isotropic substance does not lose its simply refracting character.

Even before the end of the nineteenth century, the failure of so 
many promising attempts to measure the velocity of the earth 
relative to the aether had suggested to the penetrating and original 
mind of Poincaré a new possibility. In his lectures at the Sorbonne 
in 1899,1 after describing the experiments so far made, which had 
yielded no effects involving either the first or the second powers of 
the coefficient of aberration (i.e. the ratio of the earth’s velocity to 
the velocity of light), he went on to say,2 ‘ I regard it as very probable 
that optical phenomena depend only on the relative motions of the 
material bodies, luminous sources, and optical apparatus concerned, 
and that this is true not merely as far as quantities of the order of 
the square of the aberration, but rigorously.’ In other words, Poincaré 
believed in 1899 that absolute motion is indetectible in principle, whether 
by dynamical, optical, or electrical means.

In the following year, at an International Congress of Physics 
held at Paris, he asserted the same doctrine.3 ‘ Our aether,’ he said,
‘ does it really exist ? I do not believe that more precise observations 
could ever reveal anything more than relative displacements.’ After 
referring to the circumstance that the explanations then current for 
the negative results regarding terms of the first order in (wjc) were 
different from the explanations regarding the second order terms, 
he went on, ‘ It is necessary to find the same explanation for the 
negative results obtained regarding terms of these two orders : 
and there is every reason to suppose that this explanation will then 
apply equally to terms of higher orders, and that the mutual destruc­
tion of the terms will be rigorous and absolute.’ A new principle 
would thus be introduced into physics, which would resemble the 
Second Law of Thermodynamics in as much as it asserted the 
impossibility of doing something : in this case, the impossibility of 
determining the velocity of the earth relative to the aether.4 *

In a lecture to a Congress of Arts and Science at St Louis, U.S.A., 
on 24 September 1904, Poincaré gave to a generalised form of this 
principle the name, The Principle of Relativity.6 ‘ According to the
Principle of Relativity,’ he said, ‘ the laws of physical phenomena 
must be the same for a “ fixed ” observer as for an observer who 
has a uniform motion of translation relative to him : so that we have 
not, and cannot possibly have, any means of discerning whether we 
are, or are not, carried along in such a motion.’ After examining 
the records of observation in the light of this principle, he declared,

1 Edited by E. Néculcéa, and printed in 1901 under the title Electricité et Optique, 
Paris, Carré et Naud. a loc. cit., p. 536

* Rapports présentés au Congrès International de Physique réuni à Paris en igoo (Paris,
Gauthier-Villars, 1900), Tome I, p. 1, at pp. 21, 22

4 In April 1904 Lorentz asserted the same general principle : cf. Verst. Kon. Akad.
D. W e t Amsterdam, Dl. xii (1904), p. 986 ; English edn. (Amst. Proc.)y vi (1904), p. 809.

1 This address appeared in Bull, des Sc. Math.P) xxviii (1904), p. 302 ; an English 
translation by G. B. Halsted was published in The Monist for January 1905.
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c From all these results there must arise an entirely new kind of 
dynamics, which will be characterised above all by the rule, that no velocity 
can exceed the velocity of light'

We have now to see how an analytical scheme was devised which 
enabled the whole science of physics to be reformulated in accordance 
with Poincare’s Principle of Relativity.

That Principle, as its author had pointed out, required that 
observers who have uniform motions of translation relative to each 
other should express the laws of nature in the same form. Let us 
consider in particular the laws of the electromagnetic field.

Lorentz, as we have seen,1 had obtained the equations of a moving 
electric system by applying a transformation to the fundamental 
equations of the aether. In the original form of this transformation,

Suantities of order higher than the first in (w/c) were neglected.
ut in 1900 Larmor 2 extended the analysis so as to include quantities 

of the second order. Lorentz in 1903 went further still,3 and obtained 
the transformation in a form which is exact to all orders of the 
small quantity (w/c). In this form we shall now consider it.

The fundamental equations of the aether in empty space are

THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

div d = 0, i a  d hc curl a  = — —• ot

div h = 0, c curl h = dd
ft •

It is desired to find a transformation from the variables x> y> zy 
d, h, to new variables tu xuy u Zi, d x, hu such that the equations in 
terms of these new variables may take the same form as the original 
equations, namely

divi dx = 0, 

divx hi = 0,

c curb d x = —
fti

c curli hi = ^ .Ct\

Evidently one particular class of such transformation is that which 
corresponds to rotations of the axes of co-ordinates about the origin. 
These may be described as the linear homogeneous transformations 
of determinant unity which transform the expression (x2 +y* + z2) 
into itself. It had, however, already become clear from Lorentz’s 
earlier work that some of the transformations must involve not only

1 cf. Vol. I, p. 406. cf. also Lorentz, Proc. Amst. Acad. (English edn.), i (1899),
p* 427

* Larmor, Aether and Matter (1900), p. 173
# Proc. Amst. Acad. (English edn.), vi (1903), p. 809
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x, Уy Zy but also the variable L1 So (guided by the approximate 
formulae already obtained) he now replaced the condition of 
transforming (x3 +y2 + z2) into itself, by the condition of transform­
ing the expression (x1 + j>3 + z2 — c2t2) into itself ; and, as we shall 
now show, he succeeded in proving that the transformations so 
obtained have the property of transforming the differential equations 
of the aether in the manner required.

We shall first consider a transformation of this class in which 
the variables y  and z are unchanged. The equations of this trans­
formation may easily be derived by considering that the equation 
of the rectangular hyperbola

(in the plane of the variable x, ct) is unaltered when any pair of 
conjugate diameters are taken as new axes, and a new unit of length 
is taken proportional to the length of either of these diameters. 
The equations of transformation thus obtained are

where a denotes a constant parameter. The simpler equations 
previously given by Lorentz 2 may evidently be derived from these 
by writing w=*c tanh a, and neglecting powers of (w/c) above the 
first. It will be observed that not only is the system of measuring 
the abscissa x changed, but also the system of measuring the time t : 
the necessity for this had been recognised in Lorentz’s original 
memoir by his introduction of ‘ local time.’

Let us find the physical interpretation of this transformation (1). 
If we consider the point in the (tu хъ y u £1) system for which 
xu Уи Zi are all zero, its co-ordinates in the other system are given 
by the equations

t=tx cosh a, x = ct1 sinh a, j>=0, £ = 0,

Thus if we regard the axes of (xuy u Zi) and the axes of (x, y, z) as 
two rectangular co-ordinate systems in space, then the origin of the 
(xi, y l9 Zi) system has the co-ordinates (ct tanh a, 0, 0), that is to

1 Larmor, Aether and Matter (1900), in commenting on the FitzGerald contraction, 
had recognised that clocks, as well as rods, are affected by motion : a clock moving 
with velocity o relative to the aether must run slower, in the ratio

X3 — (ct)2 = 1

ct = cti cosh a + xx sinh a 
x =* xx cosh a + ctx sinh a
У=Уг 
Z = Zi

( 1)

so
x = c ttanh a, y =  0, z — 0.

• cf. Vol. I, p. 407
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say, the origin of the ( x u y u  Zi) system moves with a uniform velocity 
c tanh a  along the x-axis of the (x, y y z) system. Thus if w is the 
relative velocity of the two systems, we have

cosh « = ( l  - ÿ ) 4 , «nh «= f

and Lorentz’s transformation between their co-ordinates may be 
written

x = Xi + wtt
У~Уи Z =  Z u

In this transformation the variable x plays a privileged part, as 
compared withjy or z. We can of course at once write down similar 
transformations in which y  or z plays the privileged part ; and we 
can combine any number of these transformations by performing 
them in succession. The aggregate of all the transformations so 
obtained, combined with the aggregate of all the rotations in ordinary 
space, constitutes a group, to which Poincaré 1 gave the name the 
group of Lorentz transformations.

By a natural extension of the equations formerly given by 
Lorentz for the electric and magnetic forces, it is seen that the 
equations for transforming these, when (f, x9 v, z) are transformed 
by equations (1), are

dx = dx\

dv = dyi cosh a  -H hz\ sinh a  

dz = dzx cosh a —hyi sinh a

h% =  h n

h y = hyi cosh a — dn  sinh a  (2) 

hz = hti cosh a + d y i  sinh a .

When the original variables are by direct substitution replaced 
by the new variables defined by (1) and (2) in the fundamental 
differential equations of the aether, the latter take the form

divi dx = 0, c curli dt =* —

div! hi = 0,

dtt

c curli h, =
Ot\

that is to say, the fundamental equations of the aether retain their form 
unaltered, when the variables (ty x, y, z) are subjected to the Lorentz

1 Comptes Rendus, a d  (5 June 1905), p. 1504. I t  should be added that these trans­
formations had been applied to the equation of vibratory motions many yean before by 
W. Voigt, GStt. Mach. (1887), p. 41.
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transformation (1), and at the same time the electric and magnetic intensities 
are subjected ot the transformation (2).

The fact that the electric and magnetic intensities undergo the 
transformation (2) when the co-ordinates undergo the transformation 
(1), raises the question as to whether the transformation (2) is familiar 
to us in other connections. That this is so may be seen as follows.

In 1868-9 J. Pliicker and A. Cayley introduced into geometry 
the notion of line co-ordinates ; if (x0, xu x2, x3) and (y0,УиУъ У*) are 
the tetrahedral co-ordinates of two points of a straight line p> and 
if we write

Xmyn — Xnym =  pmn>
then the six quantities

/> 0 1 j  /> 0 2 j  P  03} /> 2 3 )  P  31> p  12

are called the line-co-ordinates of p .

Now suppose that the transformation
X 0 = x'o cosh a  + x'i sinh a
X \  =  x ' i  cosh a  +  x 'o  sinh a  / о ч

x2 = x'2 ' '
X 2 — X  3

is performed on the co-ordinates (*<>, xu x2> x3), and the same trans­
formation is performed on the co-ordinates ( j 0î y 2 , Уз)» Then
we have

рог^ХоУг-хуо
= {x 0 cosh a  + x \  sinh a ) (y \  cosh a  + y o sinh a )

-  (x x cosh a  + x' 0 sinh a ) (y'o cosh a  + y \  sinh a )
= x \ y \ - x \ y \
- Р ’ 01

and in the same way we find
po 2 = P 'o 2 cosh a  + p f\ 2 sinh a 
/>03 = P  03 COsh a —p  31 sinh a  

/>23 = P  2 3

/>31 ~ P  3i cosh o. — p  03 sinh a. 

p i 2 ~ p  12 cosh <z "f- p  02 sinh ct.

But these equations of transformation of the />’s are precisely the 
same as the equations of transformation (2) of the electric and 
magnetic intensities, provided we write

/ > 0 1 =  dxy />02  ~  dyy / > 0 3 == dzy p t s ^ h x ,  p z i  — hy^ p i 2 =  hz.

The line-co-ordinates of a line have this property of transforming 
like the six components of the electric and magnetic intensities not 
only for the particular Lorentz transformation (1) but for the most 
general Lorentz transformation. A set of six quantities which trans-
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form like the line-co-ordinates of a line when the co-ordinates are 
subjected to any Lorentz transformation whatever, is called a six- 
vector. Thus we may say that the quantities (dx> dy, dZy hx, hy> kz) 
constitute a six-vector.1 In tne older physics, d was regarded as a vector, 
and h  as a distinct vector : but if an electrostatic system (in which 
d exists but h is zero) is referred to axes which are in motion with 
respect to it, then the magnetic force with respect to these axes will 
not be zero. The six-vector transformation takes account of this 
fact, and furnishes the value of the magnetic force which thus appears.

We see, therefore, that in electromagnetic theory, as in Newtonian 
dynamics, there are inertial systems of co-ordinate axes with associated 
systems of measurement of time, such that the path of a free material 
particle relative to an inertial system is a straight line described with 
uniform velocity, and also that the equations of the electromagnetic 
field relative to the inertial system are Maxwell’s equations, and 
any system of axes which moves with a uniform motion of translation, relative 
to any given inertial system of axes, is itself an inertial system of axesy the 
measurement of time and distance in the two systems being connected by a 
Lorentz transformation. All the laws of nature have the same form in the co­
ordinates belonging to one inertial system as in the co-ordinates belonging to any 
other inertial system. No inertial system of reference can be regarded 
as having a privileged status, in the sense that it should be regarded 
as fixed while the others are moving : the notion of absolute fixity 
in space, which in the latter part of the nineteenth century was 
thought to be required by the theory of aether and electrons was 
shown in 1900-4 by the Poincaré-Lorentz theory of relativity to be 
without foundation.

Suppose that an inertial system of reference (/, *, y , z ) is known 
on earth : and imagine a distant star which is moving with a 
uniform velocity relative to this framework (t, xy y y z). The theorem 
of relativity shows that there exists another framework (tu xuy u Zi) 
with respect to which the star is at rest, and in which, moreover, a 
luminous disturbance generated at time tx at any point (xl9 y u Zi) 
will spread outwards in the form of a sphere

(X1- x 1)2+ (Yx - у г)2 + (Z, -  zi)2 = (Ti -  txy\

the centre of this sphere occupying for all subsequent time an 
unchanged position in the co-ordinate system (xXyy l9 Zi)- This frame­
work is peculiarly fitted for the representation of phenomena which 
happen on the star, whose inhabitants would therefore naturally 
adopt it as their system of space and time. Beings, on the other 
hand, who dwell on a body which is at rest with respect to the axes 
(t, x9 y, z), would prefer to use the latter system ; and from the 
point of view of the universe at large, either of these systems is as 
good as the other. The electromagnetic equations are the same 
with respect to both sets of co-ordinates, and therefore neither can 

1 Raum-Zeit- Vektor I I  Art of H. Minkowski, Gott. Nach. 1908, p. 53
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claim to possess the only property which could confer a primacy— 
namely, a special relation to the aether.

Some of the consequences of the new theory seemed to contem­
porary physicists very strange. Suppose, for example, that two 
inertial sets of axes A and B are in motion relative to each other, 
and that at a certain instant their origins coincide : and suppose 
that at this instant a flash of light is generated at the common 
origin. Then, by what has been said in the subsequent propagation, 
the wave-fronts of the light, as observed in A ana in B, are spheres 
whose centres are the origins of A and B respectively, and therefore 
different spheres. How can this be ?

The paradox is explained when it is remembered that a wave- 
front is defined to be the locus of points which are simultaneously in 
the same phase of disturbance. Now events taking place at different 
points, which are simultaneous according to A’s system of measuring 
time, are not in general simultaneous according to B’s way of 
measuring : and therefore what A calls a wave-front is not the same 
thing as what B calls a wave-front. Moreover, since the system 
of measuring space is different in the two inertial systems, what A 
calls a sphere is not the same thing as what B calls a sphere. Thus 
there is no contradiction in the statement that the wave-fronts 
for A are spheres with A’s origin as centre, while the wave-fronts 
for B are spheres with B’s origin as centre.

In common language we speak of events which happen at different 
points of space as happening 4 at the same instant of time,’ and we 
also speak of events which happen at different instants of time as 
happening 4 at the same point of space.’ We now see that such 
expressions can have a meaning only by virtue of artificial conven­
tions ; they do not correspond to any essential physical realities.

It is usual to regard Poincaré as primarily a mathematician, and 
Lorentz as primarily a theoretical physicist : but as regards their 
contributions to relativity theory, the positions were reversed : it was 
Poincaré who proposed the general physical principle, and Lorentz 
who supplied much of the mathematical embodiment. Indeed, 
Lorentz was for many years doubtful about the physical theory : 
in a lecture which he gave in October 19101 he spoke o f4 die Vorstel- 
lung (die auch Redner nur ungern aufgeben würde), dass Raum 
una Zeit etwas vollig Verschiedenes seien und dass es eine 44 wahre 
Zeit ” gebe (die Gleichzeitigkeit würde denn unabhàngig vom 
Orte bestehen).’ 2

A distinguished physicist who visited Lorentz in Holland shortly 
before his death found that his opinions on this question were 
unchanged.

We are now in a position to show the connection between the
1 Printed in Phys. ZS. xi (1910), p. 1234
* I The concept (which the present author would dislike to abandon) that space 

and time are something completely distinct and that a “ true time ** exists (simultaneity 
would then have a meaning independent of position).’
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Lorentz transformation and FitzGerald’s hypothesis of contraction J 
this connection was first established by Larmor 1 for his approximate 
form of the Lorentz transformation, which is accurate only to the 
second order in (w/c)> but the extension to the full Lorentz trans­
formation is easy.

Suppose that a rod is moving along the axis of x with uniform 
velocity w ; let the co-ordinates of its ends at the instant t be хг 
and xa. Take a system of axes O'x’y'z! which move with the rod, 
the axis O'x' being in the same line as the axis Ox, and the axes Oy’ 
and O'z! being constantly parallel to the axes Oy and Oz respectively. 
In this system the length of the rod will be x \ —x\, where, of 
course, x \  and x \  do not vary with the time. The Lorentz trans­
formation gives

THE RELATIVITY THEORY OP POINCARÉ AND LORENTZ

This equation shows that the distance between the ends of the rod, 
in the system of measurement furnished by the original axes, with 
reference to which the rod is moving with velocity w, bears the 
ratio (1— w*/c2)% : 1 to their distance in the system of measurement 
furnished by the transformed axes, with reference to which the rod 
is at rest : and this is precisely FitzGerald’s hypothesis of contraction. 
The hypothesis of FitzGerald may evidently be expressed by the 
statement, that the equations of the figures of material bodies are covariant 
with respect to those transformations for which the fundamental equations of 
the aether are covariant : that is, for all Lorentz transformations.

Now let us look into Poincaré’s remark 2 that the Principle of 
Relativity requires the creation of a new mechanics in which no 
velocity can exceed the velocity of light.

Suppose that an inertial system B is being translated relative 
to an inertial system A with velocity w along the axis of x. Let 
a point P moving along the axis of x have the co-ordinates {t, x, 0, 0) 
in system A and (t', xf, 0, 0) in system B. Denote the components of 
velocity dxjdt and dx'/dt' by vx, v \, respectively, and let w = c tanh a. 
Then the Lorentz transformation gives at once

x  a =  x a cosh a  — ct sinh a  
x \ = Xi cosh a —ct sinh a

where tanh a= (w/c). Subtracting, we have

x \ — x \=  (x2 — Xx) cosh a = (*2— *i){l — {wjc)2}~b

or

1 Aether and M atter (1900), p. 173
37
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Now, Vx being the velocity of P relative to A, v'x the velocity 
of P relative to B, and w the velocity of B relative to A, in 
Newtonian kinematics we should have v% = v'x + w. The denominator 
( 1 + vxw/c1 2) in the relativist formula expresses the difference between 
Newtonian theory and relativity theory, so far as concerns the 
composition of velocities. We see that if v'x = c> then vx = c ; that 
is to say, any velocity compounded with c gives as the resultant c over 
again, and therefore that no velocity can exceed the velocity of 
Hght.

This result enables us to solve a problem which had perplexed 
many generations of physicists. It had been supposed that if the 
correct theory of light is the corpuscular theory, then the corpuscles 
emitted by a moving star should nave a velocity which is compounded 
of the velocity of the star and the velocity of light relative to a source 
at rest, just as an object thrown from a carriage window in a moving 
railway train has a velocity which is obtained by compounding its 
velocity relative to the carriage with the velocity of the train (the 
ballistic theory) ; whereas, if the correct theory of light is the wave- 
theory, the velocity of the light emitted by the star should be un­
affected by the velocity of the star, just as the waves created by 
throwing a stone into a pond move outwards from the point where 
the stone entered the water, without being affected by the velocity 
of the stone. The new relativist theory led to the surprising con­
clusion that the velocity of light would be unaffected by the velocity 
of its source even on the corpuscular theory.

An attempt to explain the Michelson-Morley experiment, and 
the other evidence which had given rise to relativity theory, without 
assuming that the velocity of light is independent of the velocity of 
its source, was made in 1908 by W. Ritz,1 who postulated that the 
velocity of light and the velocity of the source are additive, as in 
the old physics. It is, however, now known certainly that the velocity 
of light is independent of the motion of the source. The astronomical 
evidence for this statement has been marshalled by several writers,2 
and further confirmation has been furnished by Majorana by direct 
experiment.3 It should be remarked that since in purely terrestrial 
experiments the light rays always describe closed paths, the results 
to be expected from 4 ballistic ’ and non-ballistic theories can differ 
only by quantities of the second order,4 but the performance of the

1 Ann. de chim. et phys. xiii (1908), p. 145 ; Arch. de Génèue, xxvi (1 908), p. 232 ; cf. a 
careful discussion of it by R. C. Tolman, Phys. Rev. xxxv (1912), p. 136

a Particularly by R. C. Tolman, Phys. Rev. xxxi (1910), p. 26 ; W. de Sitter, 
Amsterdam Proc. xv (1913), p. 1297 ; xvi (1913), p. 395 ; Phys. ££. xiv (1913), pp. 429, 
1267 ; Bull, of the Astron. Inst, o f the Netherlands, ii (1924), pp. 121, 163 ; R. S. Capon, 
Month. Not. R.A.S. Ixxiv (1914), pp. 507, 658 ; H. C. Plummer, ibid., p. 660 ; H. Thirring, 
Z S . f  P. xxxi (1925), p. 133 ; G. Wataghin, £ S ./. P. xl (1926), p. 378

* Comptes Rendus, clxv (1917), p. 424; clxvii (1918), p. 71 ; clxix (1919), p. 719 ; 
Phys. Rev. xi (1918), p. 411 ; Phil. Mag. xxxvii (1919), p. 145 ; xxxix (1920), p. 488 ; 
cf. also Jeans, Nature, cvii (1921), pp. 42, 169

4 cf. P. Ehrenfest, Phys. (1912), p. 317 ; F. Michaud, Comptes Rendus, clxviii
(1919), p. 507
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Michelson-Morley experiment with light from astronomical sources 
by R. Tomaschek 1 in 1924 definitely disproved the ballistic hypo­
thesis.

A further result in harmony with the new theory was obtained 
when Michelson 2 showed experimentally that the velocity of a 
moving mirror is without influence on the velocity of light reflected 
at its surface.

It was now recognised that these observational findings, which 
in the nineteenth century might have been supposed to tell in favour 
of the wave-theory, were actually without significance one way or 
the other in the dispute between the wave and corpuscular theories 
of light. For, according to relativity theory, even on the corpuscular 
hypothesis, a corpuscle which had a velocity c relative to its source 
would have the same velocity relative to any observer, whether he 
shared in the motion of the source or not.

In 1905 Poincaré 3 completed the theorem of Lorentz 4 on the 
covariance of Maxwell’s equations with respect to the Lorentz 
transformation, by obtaining the formulae of transformation of the 
electric density p and current pv. The fundamental equations are

div d = 477-p ; c curl d = — ̂
gd

div h = 0 ; c curl h = — + 4n-pvot

and it is desired to find a transformation from the variable /, x, y , 
Z, p, d, h, v to new variables tu xu jVi, Zi, Pi, dx, hl9 v ly such that 
the equations in terms of these new variables may have the same 
form as the original equations. The transformations of /, x, y 9 z , d, h have already been found. Poincaré now showed that

p  =  pi c o s h  a +  ( p i V x J c )  s in h  a  
p V x  =  pi V x x COsh a  +  C p i s i n h  a  
p V y  —  p i  V y x 

p V z  —  p i  V zx»

When the original variables are by direct substitution replaced by 
the new variables in the differential equations, the latter take the 
form

divi dx = 4тгр!, c curb di = -

o J
divi hx = 0, c curb hx = + 4?rpiVi

1 Ann. d. Phys. lxxiii (1924), p. 105 • Astrophys. J .  xxxvii (1913), p. 190
• Comptes Rendus, cxl (June 1905), p. 1504 4 cf. p. 33
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that is to say, the fundamental equations of aether and electrons 
retain their form unaltered, when the variables are subjected to the 
transformation which has been specified.

In the autumn of the same year, in the same volume of the 
Annalen der Physik as his paper on the Brownian motion,1 Einstein 
published a paper which set forth the relativity theory of Poincaré 
and Lorentz with some amplifications, and which attracted much 
attention. He asserted as a fundamental principle the constancy 
of the velocity of light, i.e. that the velocity of light in vacuo is the same 
in all systems of reference which are moving relatively to each other : 
an assertion which at the time was widely accepted, but has been 
severely criticised by later writers.2 In this paper Einstein gave the 
modifications which must now be introduced into the formulae for 
aberration and the Doppler effect.3

Consider a star, which is observed from the earth on two occasions. 
The distance of the star is assumed to be so great that its apparent 
proper motion in the interval between the observations is negligible. 
Denote an inertial system of axes at the earth at the time of the 
first observation by K, and an inertial system of axes at the earth at 
the time of the second observation by K' : and choose these axes 
so that the x-axis has the direction of the velocity w ( = c tanh a) 
of К ' relative to K. Let ф be the angle which the ray of light 
arriving at the earth from the star makes with the x-axis as measured 
in K, and ф' the corresponding angle in the system K'. Then the 
Lorentz transformation gives for the co-ordinates of the star in the 
two systems

ct’ = ct cosh a — x sinh 
x = x cosh a — ct sinh
У —y

a
a

(taking the plane of xy to contain the star) : and since light is 
propagated with velocity c in both systems, we have ct« V(*2+ J#)> 
cf -  V(*'a +У*) • Thus

cos ф' = x'
V(*'2+ / 2)

or

х ' _  X cosh a  -  ct sinh a __ cos ф cosh a  -  sinh a  
ct '  Ct cosh a  — x sinh a  cosh a  — cos ф sinh a

,, £COS0 — wcos ф = ------- r ---- r .c — w COS Ф

This is the relativist formula for aberration : it may be written 

sin Ü Jzi = tanh I  sin £ + £

1 Ann. d. Phys, xvii (Sept. 1905), p. 891
* e.g. H. E. Ives, Proc. Amer. Phil. Soc. xcv (1951), p. 125 ; Sc. Proc. R.D.S. xxvi (1952), 

p. 9, at pp. 21-2 • ф  Vol. I, pp. 368 and 389
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When powers of (w/c) above the first are neglected, this gives

ф' — ф = — sin фу 
c

which is the aberration-formula of classical physics.
To find the relativist formula for the Doppler effect, we suppose 

that K' is an inertial system with respect to which the star is at 
rest, and K is an inertial system in which the earth is at rest : and 
choose the axes so that the system К ' is moving with velocity 
w ( = c tanh a) parallel to the axis of x in the system K. Let ф be 
the angle which the line joining the star to the observer makes with 
the x-axis in the system K, and let ф' be the corresponding angle 
in the system K'. Then the phase in the system K is determined by

v x cos ф +jy sin 
c * )

where v is the frequency of the light as observed by the terrestrial 
observer ; and as the phase is a physical invariant, we must have

„ ^  ! X cos Ф+У sin r, + x' cos ф'+У sin ^

when v' is the frequency of the light as measured by an observer on 
the star. Thus

v jf'cosh a + ̂  sinh a+  j  £(*' cosh a + ct' sinh a) COSф+У sin^rj |

cos ф’+ у  sin ф'у

Equating coefficients of we have
v (cosh a + sinh a COS ф) = v*

or

This is the relativist formula for the Doppler effect. When only first- 
order terms in (w/c) are retained, it gives

4 1
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where wr is the radial component of w : which is the older formula 
for the Doppler effect.

It will be noticed that the relativist formula differs from the 
older formula by the presence of the factor y/{ \ -  w*/c2). Now if an 
observer moving with velocity w relative to an inertial system passes 
a place P where a clock belonging to the inertial system reads tu 
and if he afterwards passes a place Q  where the clock in the inertial 
system reads t2y and if t' is the interval of time registered by the 
observer’s clock between the positions P and Q, then it follows at 
once from the equations of the Lorentz transformation that

so that we can (somewhat loosely) speak of the factor л/{ \ - w 2/c*) as 
representing the slower rate at which the observer’s clock is running 
as compared with clocks that are at rest on the star. It is obvious 
that this factor must occur in the relativist formula.

It will be observed that in the relativist formula, the Doppler 
effect is not zero even when the relative motion of the source and 
observer is at right angles to the direction of propagation of the 
light ; in this case {ф = we have

This is called the transverse Doppler effect. In 1907 Einstein suggested 1 
that it might be observed by examining the light emitted by canal 
rays 2 in hydrogen, on which J. Stark 3 had published a paper in 
1906. Stark’s experimental results, however, did not seem to con­
firm the theoretical formula : and it was not until more than thirty 
years later that H. E. Ives and G. R. Stillwell 4 succeeded in 
carrying out this experiment with any degree of success.

It is clear, from the history set forth in the present chapter, that 
the theory of relativity had its origin in the theory of aether and 
electrons. When relativity had become recognisea as a doctrine 
covering the whole operation of physical nature, efforts were made 
to present it in a form free from any special association with electro-

or in the first approximation

w

1 Ann. d. Phys. xxiii (1907), p. 197 
• Ann. d. Pays, xxi (1906), p. 401 
4 Opt. Soc. Amer. xxviii (1938), i

), p. 197 1 cf. Vol. I, p 363
p. 401
(1938), p. 215 ; xxxi (1941), p. 369
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magnetic theory, and deducible logically from a definite set of axioms 
of greater or less plausibility.1

It should be mentioned also that when relativity theory had 
become generally accepted, the Michelson-Morley experiment was 
rediscussed with a much more complete understanding and 
exactitude.2

An account may be given here of some experiments performed 
long after the time with which we are at present mainly concerned, 
which confirmed in a striking way the predictions of relativity theory. 
In one of them, due to A. B. Wood, G. A. Tomlinson and L. Essen,3 * * * * * * * 
a rod in longitudinal vibration was rotated in a horizontal plane, 
so that its length varied periodically by reason of the FitzGerald 
contraction. Accurate measurements were made of the vibration 
frequency, which would have varied with the length, if the length 
only had been affected. According to relativity theory, however, 
there should be a complete compensation of the contraction in 
length, by a modification of the elasticity of the rod according to 
its orientation with respect to the direction of its motion, so that 
no change of frequency should be observed. The experiment was 
carried out with two similar longitudinal piezo-electric quartz 
oscillators, one rotating and the other stationary, the relative fre­
quency being measured. The experiment yielded a null result within 
narrow limits of uncertainty of about ± 4  parts in 1011, thus fully 
confirming the prediction of the Poincaré-Lorentz theory of relativity.

Still later, a prediction of the theory was verified in a striking

THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

1 Papers on axiomatics are many. Attention may be directed specially to the following :
P. Frank and H. Rothe, Ann. d. Phys. xxxiv (1911), p. 825 ; E. V. Huntington, Phil. 

Mag. xxiii (1912), p. 494 ; L. A. Pars, Phil. Mag. xlii (1921), p. 249 ; C. Carathéodory, 
Berlin Sitz. v (1924), p. 12 ; V. V. Narliker, Proc. Comb. Phil. Soc. xxviii (1932), p. 460 ; 
G. J . Whitrow, Quart. J . Math, iv (1933), p. 161 ; L. R. Gomes, Lincei Rend, xxi (1935), 
p. 433 ; N. R. Sen, Indian J . of Phys. x (1936), p. 341 ; F. Severi, Proc. Phys.-Math. Soc. 
Japant xviii (1936), p. 257 ; E. Esclangon, Comptes Rendus, ccii (1936), p. 708; Bull.
Astron. x (1937), p. 1 ; J . Meurers, £ £ ./. P. cii (1936), p. 611 ; V. Lalan, Comptes Rendus,
ciii (1936), p. 1491 ; Bull. Soc. Math. France, Ixv (1937), p. 83 ; G. Temple, Quart. J .  
Math, ix ( 1938), p. 283 ; H. E. Ives, Proc. Amer. Phil. Soc. xcv (1951), p. 125. A valuable
paper by H. P. Robertson, Rev. Mod. Phys. xxi (1949), p. 378, is in a somewhat different
category. Robertson discusses the justification of the axioms on the ground of experi­
mental results, and shows that most of the axioms can be based securely on (i) the
Michelson-Morley experiment, (ii) the experiment of Ives and Stilwell on the transverse
Doppler effect (cf. p. 42), and (iii) an experiment performed in 1932 by R. J. Kennedy
and E. M, Thorndike [Phys. Rev. xlii (1932), p. 400] ; in this, a pencil of homogeneous 
light was split at a half-reflecting surface into two beams, which, after traversing paths of 
different lengths, were brought together again and made to interfere ; the positions of 
the fringes in the interference pattern were observed when the velocity of the system was
varied owing to the motions of rotation and revolution of the earth. The predictions of 
relativity theory were verified. An interesting experiment with a rotating interferometer 
was performed by G. Sagnac in 1913; Comptes Rendus clvii f 1913), pp. 708, 1410; 
J .  Phys. Rad. iv (1914), p. 177 ; cf. A. Metz, J . Phys. Rad. xiii (1952), p. 224.

* cf. E. Kohl, Ann. d. Phys. xxviii (1909), pp. 259, 662 ; E. Budde, Phys. %S. xii (1911), 
p. 979 ; M. von Laue, Ann. d. Phys. xxxiii (1910), p. 186; Phys. £S. xiii (1912), p. 501 ; 
A. Right, Le Radium, xi (1919), p. 321 ; N. Cimenta, xviii (1919), p. 91 ; J . Villey, Comptes 
Rendus, clxx (1920), p. 1175 ; clxxi (1920), p. 298 ; E. H. Kennard and D. E. Richmond, 
Phys. Rev. xix (1922), p. 572 ; J . L. Synge, Sci. Proc. Roy. Dub. Soc. xxvi (1952), p. 45 ; 
Nature clxx (1952), p. 244 * Proc. R.S.(a), clviii (1937), p. 606
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way. If two events (1) and (2) are considered, and if in an inertial 
system A these events happen at different points of space, whereas 
in an inertial system B (moving with velocity w relative to A), the 
two events happen at the same point of space, then the Lorentz 
transformation gives

/iA =
,  b w * i Bh ---- IT”

*2a =

w xB
c2

Since *iB=*aB, these equations give

(*2- / i)a =

so the time between the events, measured in system A, is (1 —w2/c2)~* 
times greater than the time between the events, measured in system B.

Now certain particles called cosmic-ray mesons, discovered obser- 
vationally in 1937, disintegrate spontaneously ; and it may be 
assumed that the rate of disintegration depends on time as measured 
by an observer travelling with the meson. Thus to an observer who 
is stationary with respect to the earth, the rate of disintegration 
should appear to be slower, the faster the meson is moving. This 
was found in 1941 to be actually the case.1

The study of relativist dynamics was begun in 1906, when Max 
Planck 2 found the equations which, according to the new theory, 
should replace the Newtonian equations of motion of a material 
particle. Considering first the one-dimensional case, let a particle 
of mass m and charge e be moving along the axis of x with velocity 
w( =c tanh a ) in the system Oxyz, in a field of electric force parallel 
to Ox, Let O'x'y'z' be axes parallel to these, whose origin O' moves 
with the particle. The relations between (/, x,y, z) and (t \  x',y', z') 
are

ct' = ct cosh a —x sinh a  
x' =x cosh a —ct sinh a

The Newtonian equation of motion is assumed to be valid with 
respect to the axes O 'x'y'zso the equation of motion of the particle 
is

d2x' » , .~ e(* x —Mx

1 B. Rossi and D. B. Hall, Phys. Rev. lix (1941), p. 223 
* Verh. d. Deutschy Phys. Gts. viii (1906), p. 136
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where d'x and dx denote the electric force in the two systems.1 Now

so

dx'_ dxjdt cosh a — c sinh a 
c dt' c cosh a — dxjdt sinh a

d
d2x' dt 

c4t'2

({dxjdt) cosh a — c sinh a| 
ic cosh a — {dxjdt) sinh a)

c cosh a  — ^  sinh a

d2x
w cosh -

j r  cosh a - ^  sinh aj

dxremembering that cosh a — sinh a = 0. But

» dx • i , c sinhaa cC cosh a — -y- sinh a — c cosh a -------=—— = — -, -dt cosh a cosh

and therefore

dV
dt'2

d*x l \  w2\~%dw d \  w )

Thus the equation of motion is (writing X for the moving force on 
the particle, namely ed*)9

d{
dt

mw
V(1 - w 2/c2)

- X ;

and extending the investigation to three dimensions, we can show 
that if the components of velocity are dxjdt, dyjdt, dzjdty and if their 
resultant is wy then the general equations of motion of a particle acted on 
by a force (X, Y, Z) are

d f m dxjdt 1 _ v  
d t \ v ( l - w 2/c2) f - * >

d f m dyjdt 1 m
dt\ ^ { \ - w 2jc2)]  ’ K )

d f 772 dzjdt 1 _^
Л 1 V (1-*»■/*•)/-

When c oo, these evidently reduce to the Newtonian equations

m d2y  d*z_7
m ж*~х * ~ é ~ Y* d e ~ z '

* cf. p. 33
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To obtain the law of conservation of energy, multiply the equations ( 1 ) 
by dxjdt9 dyjdt, dzjdt respectively, and add. Thus

AETHER AND ELECTRICITY

X 2 + Y a + Z £

__ dx d f m

= w2

dt dt \ V(1

d_ 
dt

dxjdt } 
—w*jc2) J

^  d \ m dyjdt I + d f m dzjdt+ frdt dt\ V(1 — и;2/^2) /  dt dt\ V(1 — и;а/га)>}

L-f da; 
dt ’

So that

х г + ¥ 1 + 2 | - г И ' - ? И -

The left-hand side of this equation is evidently the rate at which 
work is being done on the particle, so the right-hand side must 
represent the rate of increase of the kinetic energy of the particle ; 
that is, the kinetic energy of the particle is

+ C

where C denotes a constant ; or, expanding the radical by the 
binomial theorem,

me2 (l + w2

In order that this may agree with the Newtonian value of the kinetic 
energy, namely, \mw2y when the higher powers of w2jc2 are neglected, 
we must have C « -  me2. Thus the kinetic energy of the particle is

4 6

- mea. (2)



THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

It is easily seen that the equations (1) may be written

= X, d_
dt)d<

8L = Y,

where

m

L - - » * \ / (  i - f ) .

so L is the Lagrangean function or kinetic potential, 
we introduce

dh m dxPx =  - ,dt

and similar expressions for p y and ргу and if we write

H- ^ y ( i  +t - '+J 4 +p- ) ’

then the equations of motion may be written

Moreover, if

(3)

^ Î  = X, dpy y dpe_ry
dt * dt ’ dt ’

dx 0H dy _ 8 H dz_8H

Ы fl *
* ~dt~8fy dt dpz>

ч -

which is the Hamiltonian form.
Remembering that the moving force is the time-rate of the 

momentum, it is evident from equations (1) that the components 
of momentum of the particle are

m dx m m

< l - £ r  4 l - £ )

dz
dt (4)

which reduce to the Newtonian expressions m dxjdt, m dy/dt, m dzjdt, 
when c —> oo. The same result is obtained from equations (3) when 
we remember that the components of momentum are the dérivâtes of 
the Lagrangean function with respect to the components of velocity : 
and it fits in with a remark which Laplace had made more than 
a century earlier,1 namely, that if the momentum of a particle, instead 
of being mw were m<f>(w), then the kinetic energy must be fm<f>'(w)wdw.

1 Mécanique céleste, première partie, Livre I (An vii)
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For from (4) we have in this case

Ф№)-

and the kinetic energy mwdw _ me2 + Constant

in agreement with (2).
Equations (2) and (4) fulfil the prediction made by Poincaré in 

his St Louis lecture of 24 September 1904, that there would be ‘ a 
new mechanics, where, the inertia increasing with the velocity, the 
velocity of light would become a limit that could not be exceeded/

The arguments by which Planck derived his expressions for the 
kinetic energy and momentum of a material particle in relativity 
theory were felt to be perhaps not completely cogent. However, 
three years afterwards, Gilbert N. Lewis (1875-1946) and Richard C. 
Tolman (1881-1948)1 gave a proof of a very different character.

Consider two systems of reference (A) and (B), in relative motion 
with velocity w parallel to the axes of x and x'. Let a ball P have 
components of velocity (0, —u, 0) in (A), and let an exactly similar 
ball Q have components of velocity (0, m, 0) in (B). Let the balk 
be smooth and perfectly elastic. The experiment is so planned that 
the balk collide and rebound. From the relativist formulae

v’y (1  - W 2/c2)* ^  _  v'z (1  -  w*/c2)*
 ̂ j v 'x iv  9 * 2 +  — ^  ’

c2 c2

we see that the velocity of Q as estimated by (A) before the collision is

The collision is perfectly symmetrical. But as estimated by (A), 
the j-component of Qk velocity changes from u\^(l~w 2/c2) to 

- w 2/c2), and the j-component of P’s velocity changes from 
—u to u.

We assume that there exists a vector quantity called the momentum 
depending on the mass and velocity, which is such that the momen­
tum gained by one of the spheres in a collision is equal to the 
momentum lost by the sphere which collides with it. We assume 
further that this momentum approximates to the ordinary Newtonian

1 Phil. M ag . xviii (1909), p. 517
48

Vx--
V x +  W  

\  + V̂ W



THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

momentum when the velocity is very small compared with that of 
light. So the components of momentum may be written

f{v)Vx, f(v)vv, f(v)Vz,

Where v= (и2х + и*у + Л)*, and the function f(v) reduces to the mass 
m when p-*0. From the law of conservation of momentum, (A) 
assumes that the ball P experiences the same change of momentum 
as the ball Q. Therefore

/K > ( i -7 8’)W (0p)k

where vQ and vP are the total velocities of Q,and P in (A)’s system. 
Divide by u.

Now make u tend to zero. Thus

so the momentum of a particle whose mass is m, and which is moving with 
velocity (vx> vy, Vt) is

f mvx mvv mvz \

Л ' - Я  Ч ‘-?>
where v* =  +  Vy +  vi\

Next consider a collision between two elastic spheres, whose 
masses are mx and m2 respectively, and which are moving along the 
axis of x with velocities (uly u2) before the collision, and with velocities 
(u'l9 u'2)y after the collision. The condition of conservation of 
momentum gives the equation :

mxux m2u2 =___ г?7.и/ m.?/.'
(i)

Now consider another set of axes, which are moving relatively to 
the first set with velocity c tanh a parallel to the axis of *. Let the
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velocities relative to this second set of axes be denoted by grave 
accents placed over the letters, so that for any one of the a’s we have

Ô- u cosh a  — c sinh a
cosh a  — (u/c) sinh a 

У (} C2) cosh a  — (u/c) sinh a s / Г2) ’ ( 2)

Substituting from (2) in the equation

ГПлйг тгй2 rriiù\ m2u 2

v<l- ÿ )  v(l-^l) Ч 1- ? ) ’
we obtain

mijui cosh a  — c sinh a ) ^m2{u2 cosh a  — c sinh a )

4 >-£) A ' - $

__ mi(u\ cosh a — c sinh a ) m2(u'2 cosh a — c sinh a )

= A ^ A )  A ' - V )  •
Subtracting this equation from equation (1) multiplied by cosh a , 
and dividing the resulting equation by c sinh a , we have

mi m2 mi m2

A'-f) A '-Ui) A'-9) A '-UA) (3)

This equation shows that if the quantity m (1 —u2/c2)~* be calculated 
for each of the colliding spheres, then the sum of these quantities 
for the two spheres is unaltered by the impact. We have therefore 
obtained a new invariant property. Let us see what corresponds 
to this in Newtonian dynamics. Supposing that (ujc) and (uz/c) 
are small, and expanding by the binomial theorem, we have

mi • *) + m> + • ■ •) 

. . ) + » ,  ( i + i - ÿ + i “/ ‘+ . . . )
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ОГ

When £—*oo, this equation becomes the ordinary equation of con­
servation of kinetic energy in the collision. We therefore describe 
(3) as the equation of conservation of energy in the relativist theory of the 
impact, and we call

(save for an additive constant) the kinetic energy of a particle, whose 
mass at rest is тя, which is moving with velocity v. The c2 is inserted 
in the numerator in order to make the expansion in ascending 
powers of (u/c) begin with the terms [Constant + £ mu2] and thus be 
assimilated to the Newtonian kinetic energy.

Thus Planck’s expressions for the momentum and kinetic energy 
of a material particle were verified. The quantity m is called the 
proper mass.

We have now to trace the gradual emergence of one of the 
greatest discoveries of the twentieth century, namely, the connection 
of mass with energy.

As we have seen,1 J. J . Thomson in 1881 arrived at the result 
that a charged spherical conductor moving in a straight line behaves 
as if it had an additional mass of amount (4/3£2) times the energy 
of its electrostatic field.2 In 1900 Poincaré,3 referring to the fact 
that in free aether the electromagnetic momentum is (l/£l) times 
the Poynting flux of energy, suggested that electromagnetic energy 
might possess mass density equal to ( 1 jc2) times the energy density : 
that is to say, E = ;7Z£2 where E is energy and m is mass : and he 
remarked that if this were so, then a Hertz oscillator, which sends 
out electromagnetic energy preponderantly in one direction, should 
recoil as a gun does when it is fired. In 1904 F. Hasenôhrl 4 (1874- 
1915) considered a hollow box with perfectly reflecting walls filled 
with radiation, and found that when it is in motion there is an

1 Vol. I, pp. 306-310
3 It was shown long afterwards by E. Fermi, Lincei Rend. xxxix (1922), pp. 184, 306, 

that the transport of the stress system set up in the material of the sphere should be 
taken into account, and that when this is done, Thomson’s result becomes

The same result was obtained in a different way by W. Wilson, Proc. Phys. Soc. xlviii 
•36), p. 736. 3 Archives Néerland. v (1900), p. 252
4 Ann. d. Phys. xv (1904), p. 344 ; Wien Sitz. cxiii, 2a (1904), p. 1039

me2

Additional mass x Energy of field.
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apparent addition to its mass, of amount (8/3c1 2) times the energy 
possessed by the radiation when the box is at rest : in the following 
year 1 he corrected this to (4/3c2) times the energy possessed by the 
radiation when the box is at rest2 ; that is, he agreed with 
J. J. Thomson’s E = fme2 rather than with Poincaré’s E = m£2. 
In 1905 A. Einstein3 asserted that when a body is losing energy in 
the form of radiation its mass is diminished approximately (i.e. 
neglecting quantities of the fourth order) by ( 1 /c2) times the amount 
of energy lost. He remarked that it is not essential that the energy 
lost by the body should consist of radiation, and suggested the 
general conclusion, in agreement with Poincaré, that the mass of 
a body is a measure of its energy content : if the energy changes 
by E ergs, the mass changes in the same sense by (Ejc2) grams. 
In the following year he claimed 4 * that this law is the necessary and 
sufficient condition that the law of conservation of motion of the 
centre of gravity should be valid for systems in which electromagnetic 
as well as mechanical processes are taking place.

In 1908 G. N. Lewis 6 proved, by means of the theory of radiation- 
pressure, that a body which absorbs radiant energy increases in mass 
according to the equation

and affirmed that the mass of a body is a direct measure of its total 
energy, according to the equation 6

As we have seen, Poincaré had suggested this equation but had 
given practically no proof, while Einstein, who had also suggested 
it, had given a proof (which, however, was put forward only as 
approximate) for a particular case : Lewis regarded it as an exact 
equation, but his proof also was not of a general character. Lewis, 
however, pointed out that if this principle is accepted, then in 
Planck’s equation of 1906

(Kinetic energy of a particle whose\ _  wc2 _ ш2 
mass when at rest is m J

1 Ann. d. Phys. xvi (1905), p. 589
* The moving hollow box filled with radiation was discussed further by K. von 

Mosengeil (a pupil of Planck), Ann. d. Phys. xxii (1907), p. 867, and M. Planck, Berlin 
Sitz. (1907), p. 542, whose formulae essentially involve the general law E = mc*.

9 Ann. d. Pkys. xviii (1905), p. 639 ; his reasoning has, however, been criticised ; ct. 
H. E. Ives, J . Opt. Soi. Amer, xlii (1952), p. 540

4 Ann. d. Phys. xx (1906), p. 627 ; cf. a further paper in Ann. d. Phys. xxiii (1907), 
p. 371

* Phil. Mag. xvi (1908), p. 705; cf. however the above note on Planck’s paper of 1907
* A little earlier D. F. Comstock, Phil. Mag. xv (1908), p. 1, had obtained E = f тсг 

in accordance with the formulae of J . J . Thomson and Hasenôhrl, and had remarked 
that * assuming the loss of mass accompanying the dissipation of energy, the sun’s mass 
must have decreased steadily through millions of years.’

dE — âdm



the last term, me2, must be interpreted to mean the energy of the 
particle when at rest, whereas the difference

THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

me2

v

me2

represents the additional energy which it possesses when in motion ; 
and therefore the toted energy of the particle when in motion must 
be simply1

me2

v

For confirmation of this, Lewis referred to experiments by 
W. Kaufmann 2 and A, H. Bucherer,3 who studied the magnetic and 
electric deviations of the /9-rays for radio-active substances. The 
original experiments of Kaufmann4 showed only that for great 
velocities the £ mass ’ of the electron increases with its velocity in 
general qualitative agreement with the formula ml V(1 - w 2/c2) : but 
Bucherer showed that the formula is accurate to a high degree of 
precision for values of (w/c) ranging from 0*38 to 0*69.

The mass of a system can therefore be calculated from its total 
energy by the equation

and the researches that have been described show that in calculating 
E, we must include energy resident in the aether. In 1911 Lorentz5 
showed that every kind of energy must be included—masses, stretched

Lorentz in 1904 {Amst. Proc. vi (1904), p. 809] had given the formula

Vd -{wfcY)
for the mass of an electron whose mass when at rest is m0, and which is moving with 
velocity w, on the assumption that electrons in their motion experience the FitzGerald 
contraction.

« Gott.Nach. (1901), p. 143 ; (1902), p. 291 ; (1903),p. 9 0 ; Phys. ZS. iv (1902), p. 54 ; 
Berlin Sitz. xlv (1905), p. 949 ; Ann. d. Phys. xix (1906), p. 487 ; cf. also Planck, Verh. 
d. Deuisch, Phys. Ges. ix (1907), p. 301 ; Kaufmann, ibid. p. 607 ; Stark, ibid, x (1908), 
p. 14

# BerL Phys. Ges. vi (1908), p. 688 ; Arm. d. Phys. xxviii (1909), p. 513 ; Phys. 7S. ix 
(1908), p. 755 ; cf. also C. Schaefer and G. Neumann, Phys. xiv (1913), p. 1117 ; 
G. Neumann, Ann. d. Phys. xlv (1914), p. 529 ; G. Guye and Ch. Lavanchy, Arch, des Sc. 
(Geneva) xlii (1916), p. 286

4 I t may be mentioned that in pre-relativity days the interpretation placed on 
Kaufmann’s experiments was that by means of them it would be possible to find for the 
electron the proportion of proper mass (which was independent of velocity) to electro­
magnetic mass (which increased with velocity).

5 Amst. Verst, xx (1911), p. 87
(»»5) 5 3 fi
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strings, light rays, etc. For example, if a system consisting of two 
electrically charged spheres, of charges ex and e2> at distance a apart, 
is considered, then when we calculate the value of E for the system, 
we do not obtain simply the sum of the values of E for the two 
spheres separately (as calculated when they are infinitely remote 
from each other), but we must include also a term representing 
the electrostatic mutual potential energy of the two charges, namely, 
(e^z/a) : and therefore the mass of the system must include a term 1

Similarly, the mass of a system of gravitating bodies is not the 
sum of their masses taken separately, but includes a term representing 
(1 jc2) times their mutual potential energy.2 Thus, if two Newtonian 
gravitating particles ml and m2 are at rest at a distance a apart, 
their mass is

утгт2

where y is the Newtonian constant of gravitation.
The equivalence of mass and energy was expressed by Planck in 

1908 3 in the form of a unified definition of momentum. The flux of 
energy, he said, is a vector, which when divided by c2 is the density 
of momentum. This had long been known in the case of electro­
magnetic energy, by the relation between the Poynting vector and 
the momentum density resident in the aether. But Planck now 
asserted that it was universally true, e.g. in the cases of radiation, 
or of conduction or convection of heat. In the case of a single 
particle of proper-mass m and velocity v9 the energy is me2/ д/(1 — v2/c2)y 
the streaming of energy is mc2vf д/(1 - v 2/c2), and this divided by c2 is 
wv/V (l -u 2/c2), which is precisely the momentum of the particle. 
The unified definition of momentum is a more general expression of 
the equivalence of mass and energy than the equation E = me2, for the 
concept of mass becomes more difficult to define when, e.g. momen­
tum and velocity are no longer parallel to each other.

Planck’s new conception of momentum was soon found to be 
capable of explaining some paradoxical consequences which could

1 A value not agreeing with this was found by L. Silberstein in 1911 [Phys. £S. xii 
(1911), p. 87], but an error in his method was pointed out by E. Fermi [Rend. Lincei, 
xxxit (1922), pp. 184, 306], whose work led to the correct value.

* On this problem cf. A. S. Eddington and G. L. Clark, Proc. R.S.(a ), clxvi (1938), 
p. 465 ; Eddington [Proc. R.S.(a ), clxxiv (1940), p. 16] proposed to define the mass 
of a system to be that of a point-particle which would produce the same gravitational 
field as the system at very great distances. This and other definitions were discussed 
by G. L. Clark, Proc. R.S. E. lxii (1949), p. 412. It was shown by Josephine M. Gilloch 
and W. H. McCrea, Proc. Camb. Ph. Soc. xlvii (1951), p. 190, that in the case of a cylinder 
rotating freely on its axis, the gravitational mass is (to a first approximation) the sum 
of the proper-mass and ( i jc2) times the kinetic energy ; as was to be expected according 
to the general principle of the equivalence of mass and energy.

* Verh. d. Deutsch. Phys. Ges. x (1908), p. 728; Phys. %S. ix (1908), p. 828. This 
statement had been to some extent anticipated (in connection w ith the moving box 
containing radiation) by Planck, Berlin Sitz. (1907), p. 542, and by F. Hasenohrl, Wien 
Sitz. cxvi 2a (1907), p. 1391.
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apparently be deduced from the theory of relativity. One of these, 
due to Lewis and Tolman,1 may be described as follows. Consider 
a rigid bent lever abc at rest, pivoted at b, whose arms ba and be are 
equal and perpendicular, and suppose that forces F* and Fy, each 
equal to F0, are applied at a and c in directions parallel to be and 
ba respectively. The system is thus in equilibrium.

Now let the whole system be referred to axes with respect to 
which it is moving with velocity w in the direction be. Obviously 
it will still be in equilibrium. But according to the theory of relativity, 
with reference to the new axes the arm be should experience the 
FitzGerald contraction, and so should be shortened in the ratio 
V ( l -  w2/c2) to 1, while ab has the same length as at rest. Moreover, 
if force is defined as the rate of communication of momentum with 
respect to the time used in the inertial system concerned, we can 
show that the values of the forces referred to the new axes are

F, = F0, F, = Fov/ ( l - - ; ) .

Thus the forces produce a moment

or
\  F0w2. ba c2

tending to turn the system round b ; so apparently it would not be 
in equilibrium.

The paradox is resolved by the following explanation, which is 
due to Sommerfeld and Laue.2 At the point a the force F* furnishes 
the work at the rate wF0. An energy current of this strength enters 
the lever at a, travels to b and then passes into the axis of the lever, 
since the axis does work at the rate — wF0 on the lever. Correspond­
ing to this flux of energy there is, by Planck’s principle, a momentum 
parallel to aby of amount (1 je2) times the volume integral of the 
energy flux, or (1 /c2) . ab . wF0. Due to the existence of this momen­
tum there is an angular momentum about a fixed origin 0 , lying 
in the prolongation of aby of amount (1 je2) . ab . Ob . wF0, and its 
rate of increase with respect to the time is

l . a b .  . wFo or (1/c2) . F„a>2. ab.

Thus we see that the couple (1 /сг) .F 0и>8. ba, produced by the two 
forces F* and F,,, is needed in order to account for the rate of increase

‘ Phil. Mag. xviii (1909), p. 510. Relativity statics is treated fully by P. S. Epstein. 
Ann. d. Phys. xxxvi (1911), p. 779.

* Laue, Verh. Deutsch, Phys. Gesells. (1911), p. 513
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(1 /c2) . F0a>2. ab of the angular momentum of the lever, and the 
difficulty is satisfactorily explained.

It may be remarked that if the lever is contained in a case, which 
supports the axis b of the lever, and also (e.g. by elastic strings attached 
to points of the case) provides the forces F* and Fy which act at 
a and r, then the energy current after leaving the lever at b enters 
the case there, and after travelling in the case re-enters the lever by 
the elastic string which is attached to a. The energy current is there­
fore closed, so the system consisting of case and lever together has 
not a variable angular momentum. The case and lever in fact exert 
equal and opposite couples on each other.

This may be regarded as a model of the Trouton-Noble experi­
ment,1 the electric field being compared to the lever and the material 
condenser to the case. Neither the elctromagnetic momentum of 
the field nor the mechanical momentum of the condenser is parallel 
to the velocity, and both therefore need couples in order to preserve 
their orientation in translatory motion, but these couples are equal 
and opposite, and the system condenser plus field requires no couple.

Not long after the publication of Planck’s paper of 1906 writers 
on the theory of relativity began to take advantage of some develop­
ments in pure mathematics, of which an account must now be given.

It was Felix Klein (1849-1925) in his famous Erlanger Programm 
of 1872 2 who first clearly indicated the essential nature of a vector. 
Let (p, <7, r) be the components of a vector with respect to the rect­
angular axes 0 xy z. Then px + qy + rz is the product of the lengths 
of the vectors (p, <7, r) and (x,y, z) into the cosine of the angle between 
them, and is therefore invariant if the axes of reference are changed 
by a rotation about the origin to any other set of rectangular axes. 
Klein regarded all geometry as the invariant theory of some definite 
group, and following him, we can take the property just mentioned 
as the definition of a vector : that is, a set 01 three numbers (p, y, r) 
will be called a vector if px + qy + rz is invariant under the group of 
rotations of orthogonal axes. This definition suffices to furnish the 
laws according to which (p, r) are transformed when the axes of 
reference are changed. Since {(x .x) + (y .y) + [z . z)) or (x2 + J2 + z2) 
is invariant under a rotation of the axes, we see that (x>y> z) is a 
particular vector. And since all vectors are transformed in the 
same way, we may say that (p, <7, r) is a vector if its components 
(p, <7, r) are transformed like (x,jy, z).

Vectors are not the only physical quantities that are related to 
direction : another class is represented by elastic stresses. If we 
denote by (X*, Yx, Zx) the components of traction across thej^-plane 
at a given point P, by (Xy, Yy, Zy) the components of traction across 
the £*-plane at P, and by (Xz, Y*, Zz) the components of traction

1 cf. P. 29
* Programm zum Eintritt in die philosophische Fakultat d. Univ. zu Erlangen, Erlangen, 

A. Deichert, 1872. Reprinted in 1893 in Math. Ann. xliii, and in Klein’s Ges. Math. 
Abhandl. i, p. 460.
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across the ry-plane at P, then, as is known, we have Zy = Y*, X* = Z*, 
Yx = Xy, so we can write
Xjr = û, Yy = b, Zjz — C) Zy = Yy = f  Xz = Zx — g) Y* = Xy = A,

and the stress can be represented by the six numbers (a, />, c ,f  g9 h). 
Now let the axes of reference be changed by any rotation about the 
origin. Then, as is known, if the components of stress at P with 
respect to the new axes Ox'y'z' are denoted by (a’, b\ c \ f \  gf, Л'), 
the expression

ax2 + by2 + cz2 + 2\fyz + 2 gzx + 2 hxy

is transformed into the expression
a V 2 + b y 2 + û V 2 + 2f'y'z' + 2^'г'*' + 2h'x'/.

Any set of six quantities (д, i, £, / ,  g> h) which, when the axes are 
changed by a rotation about the origin, changes in this way, that 
is, in the same way as the coefficients of a quadric surface, is said 
to constitute a symmetrical tensor1 of rank 2. The analogy with the 
definition of a vector is obvious, and a vector may be called a tensor 
of rank 1. A quantity which is invariant under all rotations of the 
axes of co-ordinates is called a scalar or tensor of rank zero.

Since
x2 . x2+y2 .y 2-\-z2. z2 + 2yz .yz+2zx  . zx+2xy . xv= (*2+jv2 + s*)2

is an invariant for rotations of the system of co-ordinate axes, it 
follows that

(*2, y \  z2, yzy zx, xy)

is a particular symmetric tensor of rank 2, and since all symmetric 
tensors of rank 2 are transformed in the same way, we see that 
a set of 6 quantities (a, b, c , f  g, h) constitutes a symmetric tensor of rank 2, 
if (a, by cyf  g y h) are transformed in the same way as (*2,jy2, Z2,yz, zx, xy). 
It is easily shown, for example, that if A, B, G, F, G, H denote the 
moments and products of inertia of a system of masses with respect 
to the co-ordinate axes, then (A, B, C, — F, — G, — H) is a symmetric 
tensor of rank 2.

The definition just given can be generalised, so as to furnish 
a definition of a tensor of rank 2 which is not necessarily symmetrical. 
Let (pu qu Гх) and (p2, q2, r2) be two different vectors. Then a set 
of nine numbers

til) 2̂2j 3̂S> 2̂3> 3̂2) 3̂1> 1̂3> 1̂2> 2̂1>
1 Attention was drawn to the properties of sets of quantities obeying these laws of 

transformation by G. Niven, Trans. R. S. E. xxvii (1874), p. 473 ; cf. also W. Thomson 
(Kelvin), Phil, Trans, cxlvi (1856), p. 481 and W. J. M. Rankine, ibid. p. 261. The 
name tensor (with this meaning) is due to J . Wiliam Gibbs, Vector Analysis, New Haven 
(1881-4), p. 57.
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will be called a tensor of rank 2, if they transform in the same way as
p l p 2y ГгГ2, ? i r2> r ip 2> p i r 2y p lÇ 2y Ç lp 2 •

So far we have considered only tensors which have invariant 
properties with respect to the rotations of a system of orthogonal 
co-ordinate axes in three-dimensional space. This theory was 
generalised into a tensor-calculus applicable to transformations in 
curved space of any number of dimensions by Gregorio Ricci- 
Gurbastro (1853-1925) of Padua, from 1887 onwards : it first 
became widely known when a celebrated memoir describing it was 
published in 1900 by Ricci and Levi-Civita.1

Let xu x2, . . . xn be any ‘ generalised co-ordinates ’ specifying 
the position of a point in space of n dimensions. Let n new variables 
*i, x2, . . . Xn be introduced by arbitrary equations

=fr{X\y X2) • • • Xn) (r=l, 2j«*«w). (1)

Then the differentials of the co-ordinates are transformed according 
to the equations

( r - 1, 2, . . .

At a point P of the я-dimensional space we can consider various types 
of quantities analogous to the scalars, vectors and tensors that we 
have already considered.

Firstly, there may be a function of position whose value is un­
changed when we perform the transformation (1). Such a function 
is called a scalar, or tensor of rank zero.

Secondly, we consider a set of n numbers (V1, V2, . . . Vn), 
which are defined with respect to all co-ordinate systems and which, 
when we perform the transformation (1), are transformed in the 
same way as the dxr, so that

v ' - i £ v ‘ < ' - ■ • * • • • •  »)
whence

v ' - , t £ 7‘ (r - ‘- 2- • • • * ) •

Such a set of n numbers is called a contravariant tensor of rank 1, or 
contravariant vector, and the numbers are called its components.

Next, consider sets of n numbers (X1? X2, . . . Хя), which 
are such that if (V1, V2, . . . Vn) is any contravariant tensor of 
rank 1, the sum ХД^ + ХгУ2* . . . + X nVn is a scalar. Such

1 Math. Ann. liv (1900), p. 125 ; cf. J . A. Schouten, Jahresb. d. Deutsch. Malh.-Verein. 
xxxii (1923), p. 91
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a set of n numbers is called a covariant tensor of rank 1 or covariant 
vector.

Since

Z X , v * - X x , v ' - 2 x , l | v ,

we have
У — x whence X* = X-,

The covariant or contravariant character is indicated by placing the 
index in the lower or upper position respectively. In Euclidean 
space, for rotations of rectangular axes, there is no distinction 
between contravariant and covariant tensors.

If, at the point P of the я-dimensional space, we have n2 numbers 
(V11, V12, . . . Vnn) which, when we perform the transformation 
of co-ordinates, are transformed like (P1̂ 1, P1̂ 2, * . . PnQn), 
where (P1, . . . Pn) and (ÇP, . . . ÇP1) are two different contra­
variant tensors of rank 1, then (V11, V12, . . . Vnn) are said to 
be the components of a contravariant tensor of rank 2. Similarly n2 
numbers (Xn, X12, . . . ХЯл) which transform like (XjYu XxYj, 
. . . XnYn) where (Xx . . . Хя) and (Y1? . . . Yn) are two different 
covariant tensors of rank 1, are said to be the components of a 
covariant tensor of rank 2 ; while n2 numbers (Wh, WS, Wai, . . . Wn) 
which transform like (P1X1, РхХ2, P2Xl5 . . . PnXn) where (P1, P2, 
. . . Pn) is a contravariant tensor of rank 1 and (Xx, X2, . . . Хя) 
is a covariant tensor of rank 1, is called a mixed tensor of rank 2. 
Tensors of rank greater than 2 are defined in a similar way. A
tensor whose typical component is, say, X£, is often denoted by
K ) .

Consider a tensor such that any two of its components, which 
may be obtained from each other by a simple interchange of two 
indices, are equal to each other ; thus, \ pq « V?p. If this property 
holds for any one system of co-ordinates, it will still hold after any 
change of the co-ordinate system, as is evident from the equations 
of transformation. Such a tensor is said to be symmetric. If a tensor 
is such that two components which may be derived from each other 
by a simple interchange of two indices are equal in magnitude but 
opposite in sign, thus Vw — — Vqp, the tensor is said to be skew. 
This property also holds in all systems of co-ordinates, provided it 
holds in any one system.

Two tensors of the same kind (contravariant, covariant or mixed) 
and of the same rank, are said to be equal if their corresponding 
components are equal in all co-ordinate systems. This is the case 
if the corresponding components are equal in any one co-ordinate 
system.

Consider the transformation of tensors when the co-ordinates
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are subjected to the particular Lorentz transformation (writing 
ct = x09 x = xu y  = X2, Z = Xs)

dxb = dx0 cosh a + dXi sinh a, dxx = dx0 sinh a + dxx cosh a, 
dx2 = dx2, dxz = dxz.

It is found at once that : 
for any contravariant vector :
J° =J° cosh a + J 1 sinh a, J 1 = J“ sinh a + J l cosh a, J® =J®, J® =J®.
for any covariant vector :
Jo=Jo cosh a - J i  sinh a, J x= -Jo  sinh a + J x cosh a, J 2= J 2, J s= j 2.
for any covariant symmetric tensor of rank 2 :
Xqo = X 00 cosh2 a + 2X0i cosh a sinh a + Xu sinh2 a
X u  = X 00 sinh2 a+ 2 X 01 sinh a_cosh a+ X u cosh2 a
X 22 — X 22j X33 =  X 33 , X 32 =  x23 =  X 23
X 10 = X 01 = X 00 cosh a sinh a + X01 (cosh2 a + sinh2 a) 4- X n
_  __ sinh a cosh a
X20= X02= ^̂ 02 cosh cl -f ^̂ 12 sinh (x

X 30 = X 03 = Xq3 cosh a Ң- X13 sinh a
X12 = X,x = X02 sinh a + X 18 cosh a
X13 = X31 = X 03 sinh a + X13 cosh a
for any covariant skew tensor of rank 2 :
Xqi =* Xgij .Xqjж ^̂ 02 cosh a H- ̂ 1̂2 sinh a, X08 — X 0 3  cosh o,
_ __ e _ + X13 sinh a

— X^23) X31 — X31 cosh cl X30 smh a, ^^12 = ^^12 cosh <x ^
+ X02 sinh a

It is evident from these last equations that a six-vector,1 such as is 
constituted by the electric and magnetic intensities in vacuo, is a 
skew tensor of rank 2. We can write

X10 =  dxy X m =  dyy X*o =  dzy X«s =  hxy X „  =  hy , X i*  =  hz

From the definition of a tensor, it is evident that if two tensors 
of the same type are taken, say (x*), and (y *), then the quantities 
formed by adding corresponding components of these tensors

Z ^ X '  + Y*

are the components of a tensor of the same type, which is called the 
sum of the tensors (X*) and (Y*).
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Moreover it is evident from the definitions that if two tensors, 
say of rank Л and rank /i, are given in я-dimensional space, and if 
we multiply each of the nx components of one by each of the n** 
components of the other, then the nx+fi products so formed are the 
components of a new tensor of rank (Л+ /x), thus :

y  Y p — TT p 1 r* ^  ijn*

The tensor is called the outer product of the tensors (Xi/)
and (Yr̂ ). It may properly be called a product, since the distri­
butive law

X(Y + Z) = XY + XZ

holds. We can form in this way the outer product of any number 
of tensors.

An arbitrary tensor cannot in general be expressed as an outer 
product of tensors of rank 1, since there would not be enough 
quantities at our disposal to satisfy all the conditions. Thus, if
a tensor (Xf̂ ) is given, we cannot in general find tensors of rank 
1 (Yr), (Z,), and (V*), such that

X*=YrZ,V* (p ,r ,s=  1,2 . . . n):

but the sum of any number of outer products of this type will be a 
tensor of the type (X*) ; and by taking the number of such products 
sufficiently great, we shall have enough quantities at our disposal 
to represent any tensor (x*) in the form

X* = Yr Zs Vp + Hr Ks Lp + E, F* Gp + . . .

Next consider a tensor which has both contravariant and covariant 
indices, e.g. (x^.). Make one of the upper or contravariant indices 
identical with one of the lower or covariant indices, and sum with 
respect to this index, thus :

I  x,
p= 1

pk
'W*

Then we can show that the numbers thus obtained, when k, q, r = 1, 2 . . .  я, 
are the components of a new tensor (Y^), which is two units lower in
rank than (X^.). To prove this, we remark that (X^.) can be 
expressed as a sum of outer products of tensors of rank 1, and the 
theorem will therefore evidently be true in general if it is true for
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the case when (X^r) is a single outer product of tensors of rank 
1, say

X ^ = Y „  Zg TV U* V*.

Then we have

= ^ i(YpUp)  ZgTrV* :

n

and since TPUP is a scalar, these quantities are the components 
p=i

of a tensor of type (Ygr) ; which establishes the theorem. This 
process is called contraction.

By forming the outer product of any number of tensors, and then 
contracting (once or oftener) the tensor thereby obtained, we obtain 
results such as

This process is called transvection.
The spaces we consider will generally be supposed each to possess 

a metric, that is to say, there will be an equation expressing an element 
ds of arc-length at any point of the space in terms of the infinitesimal 
differences of the co-ordinates between the ends of the arc-element : 
thus in ordinary Euclidean three-dimensional space with rectangular 
co-ordinates z), we have

(ds)2 = (dx)2 + (dy)2 + (dz)2,

and with spherical-polar co-ordinates (r, 0, <j>), we have 
(Л)а = (dr)2 + r2(dO)2 + r2 sin2d(d<f>)2.

We assume generally that the square of the line-element ds is 
a homogeneous quadratic form in the differentials of the co-ordinates. 
These differentials will be written (dx1, dx2, . . . dxn), the index 
being placed above since (dx1, . . . dxn) is a contravariant vector : 
thus

(ds)2 = ^  gpqdxpdxq. 
v. ?

Since (ds)2 is a scalar, it is obvious from this equation that the 
numbers gpq (/?, q= 1, 2, . . . n) must be the components of a co­
variant symmetric tensor of rank 2, (gpq) ; this is called the covariant 
fundamental tensor.
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Let g denote the determinant ||gP?|| of the coefficients gpq> and 
let gvq denote (1 jg) times the co-factor of gpq in g, so that gprgn  = 8r9>

p = i
where 8rq is equal to 1 or 0 according as q is equal to, or different 
from, r. Then

THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

’Z g g,gprgP9= ' Z ^ r g=gr..
P> Q Q

Now if Xp and Yp are two arbitrary covariant vectors, and if

x P= 'Z .gprx r
T

so that Xf is a contravariant vector, we have

2  gViXp4 i = £  gprgqsgv4X rY'pq pqri

rs

which is a scalar : and therefore the gvq are the components of a 
contravariant tensor of rank 2. It is called the contravariant funda­
mental tensor.

Moreover, if Up is a contravariant vector, and Xq is any covariant 
vector, we have

1  8/ U %  = 1  UPX„ = a scalarpq v

and therefore (Sp?) is a tensor of rank 2, covariant with respect to 
the index p and contravariant with respect to the index q. It is 
called the mixed fundamental tensor.

By aid of the fundamental tensor (gvq) we can derive from any 
covariant tensor (XPi f%. . .  Pm) a contravariant tensor of the same 
rank by writing

X*
P Q

■= I  g 11
Pi> Pm

P Я ,
g " ‘X:РЛРЛ

It is easily shown that this equation is equivalent to

X,p,pt gp£̂  gpjt • • '&p„?l. Î2* • • • 4m
Х гЛ *

Thus to every contravariant tensor we can correlate a definite 
covariant tensor ; and we may say that the distinction between 
covariant and contravariant tensors loses most of its importance
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when the fundamental tensor is given, i.e. in a metrical space, since 
it is not the tensors that are essentially different, but only their 
mode of expression, i.e. their components. For example, we regard 
(gM), (£*>?)> and (8/ ) ,  as essentially the same tensor.

If two vectors (X) and (Y) are such that when (X) is expressed 
in covariant form (X*>) and the other in contravariant form (Ytf), 
we have

Z X PYp = 0,
V

then the two vectors are said to be orthogonal.
After this rather long excursus on Ricci’s tensor calculus, we can 

return to physics. A contribution of great importance to relativity 
theory was made in 1908 by Hermann Minkowski (1864—1909).1 
Its ostensible purpose, as indicated in its title, was to show that the 
differential equations of the electromagnetic field in moving ponder­
able bodies under the most general conditions (e.g. of magnetisation) 
can be derived from the differential equations for the same system 
of bodies at rest, by the principle of relativity : and to criticise some 
of the formulae that had been given by Lorentz. But these were 
not actually the most important elements in the paper ; the great 
advances made by Minkowski2 were connected with his formulation 
of physics in terms of a four-dimensional manifold, the use of tensors 
in this manifold, and the discovery of some of the more important 
of these tensors.3

The phenomena studied in natural philosophy take place each 
at a definite location at a definite moment, the whole constituting 
a four-dimensional world of space and time. The theory of relativity 
had now made it clear that the separation of this four-dimensional 
world into a three-dimensional world of space and an independent 
one-dimensional world of time may be effected in an infinite number 
of ways, each of which is distinguished from the others only by 
characteristics that are merely arbitrary and accidental. In 
order to represent natural phenomena without introducing this 
contingent element, it is necessary to abandon the customary 
three-dimensional system of co-ordinates, and to operate in four 
dimensions.

If (tly xly jVx, Zi) and (t2, x2, jy2, z2) are the time-and-space co-
1 Gott. N a c h .  (1908), p. 53 ; cf. also M a t h . A n n .  lxviii (1910), p. 472
* Minkowski had been to some extent anticipated by Poincaré, who had substantially 

introduced the metric

d s 1 = c* d t2 — d x 2 — d y % — d z * = — S  d x r * 
r=*l

(where х г ~ х ,  х, = г, x4 = ct V  ~  1) m  f e n d .  c irc . P a le r m o , xxi (1906), p. 129.
* T he principle o f treating the time co-ordinate on the same level as the other 

co-ordinates was introduced and developed simultaneously with Minkowski’s paper by 
R . Hargreaves, [C a m b . P h i l .  T r a n s ,  xxi (1908), p. 107] : his work suggests the use of 
space-time vectors just as Minkowski’s does. For comments on this point, cf. H . Bateman, 
P k y s .  R e v . xii (1918), p. 459.
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brdinates of two point-events referred to an inertial system, then, 
as we have seen, the expression

(* 2  —  ^1 ) 8 —  ( ^ 2  —  * i ) 2 +  (.У a “ J i ) 2 +  { Z i  —  Z i ) 2 I

is invariant under all Lorentz transformations, and therefore has 
the same value whatever be the inertial framework of reference. This 
quantity is therefore an invariant of the two point-events, which 
is the same for all observers : and we can make our four-dimensional 
space-time suited to describe nature when we impose a metric on it, 
which we do by taking the interval (the four-dimensional analogue of 
length) between the two events {tly xuy u Zi) and (/2> хг>у2, Z2) to be 1

[(<2 -  tiY -  i  ) (*, -  *i)2 + O , -Уг)* + (z* -  «i)*[ J .

Taking any point in the four-dimensional manifold as origin, the cone

x2 + j 2 + z2 — c2t2 = 0

which is called the null cone, partitions space-time into two regions, 
of which one is defined by the inequality

cH2 < x2 +JV2 + Z2

and includes the hyperplane J = 0 : the directions at the origin 
satisfying this inequality are said to be spatial : directions at the 
origin in the other region are said to be temporal. Lorentz trans­
formations are simply the rotations and translations in this manifold. 

Now consider tensors in the manifold.
Minkowski had not properly assimilated the Ricci tensor- 

calculus as applied to non-Euclidean manifolds, and in order to 
be able to work with a space of Euclidean type, he used the device 
of writing Xi for cty/— 1 (the space-co-ordinates being denoted by 

*2> *з)> so that the expression

{dx)2+ (dy)2+ (dz)2-c*(dt)2

which is invariant under all Lorentz transformations, became

((Ьсг)* + (dxt)* + {dx9)% + (dxA)* :
1 T he metric of space-time thus introduced is that of a four-dimensional Cayley- 

Klein manifold which has for absolute (in homogeneous co-ordinates)

*«+у  + **_л* -  o \ш8 « 0 )
a double hyperplane at infinity containing a quadric hypersurface, which is real but with 
imaginary generators, like an ordinary sphere.

65

THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ



AETHER AND ELECTRICITY

this enabled him to take as his metric
0ds)2 = (dxY)2 + (dx2)2 + (dxz)2 + (dxt)2

which defines a four-dimensional Euclidean manifold.1
It is, however, simpler to work with the real value of the time, 

and to express Minkowski’s results in terms of tensors which exist 
in the non-Euclidean four-dimensional manifold we have introduced, 
whose metric is specified by

{ds)2 - *2(dt)2 -  (dx)2 -  (dy)'2 -  (dz)2 
which we may write

(ds)2 = (dx0)2 -  (dx1)2 -  (dx2)2 -  (dx3)2 
so

£00= 1, £11 —£22 =£33 = “  1,
£00 = 1* £u =£22=£33= - 1.

His greatest discovery 2 was that at any point in the electromagnetic 
field in vacuo there exists a tensor of rank 2 of outstanding physical 
importance, which in its mixed form (E /) may be defined by the 
equation

EP« = T1  8/ T  X йХа* - А
a? ^  477

X X 'pt
&

where Xvq is the electromagnetic six-vector, that is to say, if 
(dx, dy, dt) and (hx, hy, hz) are the electric and magnetic intensities 
respectively, then3

dx = X01 = -  X01, dy = X 02= - X Jt, dz = X03 = — Xoa 
hx = X 23 -  X 23, ky = X 31 = X31, hz = X12 -  X 18.

Substituting in the equation which defines Epq, we find the values of 
the components of this tensor, namely,

E0° == Q-- (dx2 + dy2 + d 2 + hx2 + hy2 + h2z) •
0 7 7

this represents the density of electromagnetic energy, discovered by 
W. Thomson (Kelvin) in 1853 4 ;

Eq1 — —  (dyhz —  dzhy), Eq2 = â—(dzhx — dxhz), E03 — (dxhy — dyhx) 1
4 7 7  4 7 7  4 7 7

1 Minkowski’s use of — c t \ / — 1 led some philosophers to an outpouring of meta­
physical nonsense about time being an imaginary fourth dimension of space.

* loc. cit., equation (74)
* is immediately derived from by the formula

Xpj = E gps gqt X".
* cf. Vol. I, pp. 222, 224
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(Eo1, E02, E03) represents (1 fc) times the flux of electromagnetic 
energy, discovered by Poynting and Heaviside in 18841 ;

Ei° *  — [dyh% — dzhy), E,° = — — dxhz), E8°= — — (dxhy — dyhx) \

( — Ed, “ E20, - E 8°) represents c times the density of electro­
magnetic momentum, discovered by J . J. Thomson in 1893 2 ;

Ei*= L^dz'~ dv% ~ d '+h* ~ hv' ~ >
and similarly for Eaa and E9e ;

E23 — E32 = -—(dydz + kyhz) yg 4-77
and similarly for E 3 1, Ed, Ed, Etl.

The nine quantities
Ed Ed Ed 
Ed Ed Ed 
Ed Ed Ed

represent the components of stress in the aether, discovered by 
Maxwell in 1873d Thus, each component of the tensor Ed has a physical 
interpretation, which in every case had been discovered many years 
before Minkowski showed that these 16 components constitute a 
tensor of rank 2. The tensor Ed is called the energy tensor of the 
electromagnetic field.

Since Eqp = ^  gprEqr = gvvEqv for this metric, we have

THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

Eop = E(d, Ejp — — Ed, E2p = — Eĝ , Ejp = — E3P,
and hence we find E0i = Ei0 and generally E^? = E?P, that is, EPq is
a symmetric tensor.

Moreover we can show that if p is the density of electricity and 
v its velocity, then

aE0° aEo1 dE02 dE03 
dx° 8x1 dx2 dx3

8Ed dEd dEy 8Ed
8x° dx1 dx2 dx3

8Ed 8Ed , 8E22 8Ed
dx° dx1 dx2 dx3

8E3° 8E31 8Ed , 8E33 
dx° dx1 dx8 dx3 

1 cf. Vol. I, pp. 313-4 * cf. Vol. I, p
67

P-(vxd% + Vydy + V;%dz)c

— (dx + Vyh% — Vzhy)

(A)
[dy + Vzhx — vxhz)

— (dz + vxhy — Vyhx) •c
317 * cf. Vol. I, pp. 271-2
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The first of these equations is

g-̂  (dx 4- dy 4- d» 4- hx +  hy +  hz) 4- ^  (dyhz —  dzhy)

4- — (d th z  — dxhz) +  j -  ( dxhy — d yhx)cy 4*7t cz 4-77

=  -  -  (vxdx 4- Vydy +  Vzdz)c
or

8/8t (density of electromagnetic energy) + 8/8x (^-component of flux 
of electromagnetic energy + 8/8y (j-component of flux of electro­
magnetic energy) + d/8z (^-component of flux of electromagnetic 
energy)

=  — p{t)xdx 4- vydy +  Vzdz)

or

rate of increase of electromagnetic energy in unit volume 4- rate at 
which energy is leaving unit volume
= -  (work done by the electromagnetic forces on electric charges 
within the unit volume)
and this is clearly nothing but the equation of conservation of energy. 
Similarly the other three of the equations (A) are the equations 
of conservation of ^-momentum, jy-momentum and ^-momentum 
respectively.1

In an appendix to his paper,2 Minkowski threw a new light on 
the equations of the relativistic dynamics of a material particle, 
which had been discovered by Planck two years earlier.3 Denoting 
by (x, jy, z) the co-ordinates of the particle at the instant t, he intro­
duced the notion of the proper-time т of the particle, whose differential 
is defined by the equation

{dTy = {d ty -^ {{d x y + {d yy + {dZy \ .

It is evident from this equation that dr is invariant under all Lorentz 
transformations of (/, x, jy, z), i.e. it is, in the language of the tensor- 
calculus, a scalar. Now writing x° = ct, x1 = x, x2=y, x3 = z, we 
know that

(dx°, dx1, dx2, dx2)
1 On the energy tensor cf. also A. Sommerfeld, Ann. d. Pkys. xxxii (1910), p. 749 ; 

xxxiii (1910), p. 649 ; and M. Abraham, Palermo Rend. xxx (1910), p. 33 
1 loc. cit. * cf. p. 44
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is a contravariant vector, and therefore

/ dx° dx1 dx2 
y/r 9 dr 9 dr 9
'dx° dx1 dx2 dx3' 
Лт 9 d r 9 d r 9 dr t)

is a contravariant vector. But

dr _  1 
dxQ~ c

where v denotes the velocity of the particle. Therefore

are the components of a contravariant vector.
Now Planck had shown that if m is the mass of the particle, its 

energy E is mc2( 1 — v2/c2)-*, and its components of momentum are

is a contravariant vector. This is called the energy-momentum 
vector.

The Newtonian and relativist definitions offorce may be compared 
as follows. In Newtonian physics the momentum (px, py, pt) is a vector 
and the time t is a scalar, so dpxjdt, dpyjdt, dpx/dt is a vector, namely, 
the Newtonian force. In relativist physics, as we have seen, instead 
of a momentum vector (pXy py, рг), we have the contravariant 
energy-momentum vector (E/r, px, рУу рг), or in its covariant form 
(Ejcy - pXy - py, —рг), and the scalar which takes the place of the 
time is the interval ot proper-time,

Thus it is natural to represent a force in relativity by the covariant 
vector

Thus
(E/r, px, py, pz)
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Now the equations of motion of a particle, as found by Planck, were

4 ( Н Г £ Ь Х- 4 К '-Э ‘* 1 И

or
dp.1>X \ r
Л ~ х ’

dpy -\t dpz <7
~di~ ' ~dt~

Comparing these results, we see that we must take the last three 
components of the relativist force to be

F , - ( 1- ? ) ‘ X’ F> - ( 1- ^ ) ‘ i z '

and then the last three relativist equations of motion will be

3 fM
* II 4 d2y

mdr*~ F2, j P z
mch>

( c*L d2 x d2y d>z\
\  dr*’ dr*’ dr* dr4

Since

is a covariant vector, the first relativist equation of motion must 
evidently be

dH 
dr2— me = F 0.

This completes Minkowski’s set of equations of motion. The last equation 
may be written

2 d2t dE 
Ш d ? ~ d ty

where E is the energy ; which is evidently true, since E = me2 dtjdr. 

Since

we have

or

dE = yidx -f Y dy+ Zdzy 

( 1 -  dE = FXdx + Fф  + F3dz

-  cdr(l -  F0 = F ^  + EJy + F>dZ
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Focdt + F^x + Fidy + Fzdz^ 0
an equation which may be expressed geometrically by the statement 
that the vector (F0> Fl3 F2, F3) is orthogonal to the vector which represents 
the velocity of the particle, namely,

/  dt dx dy dz\
\ dr dr dr dr/

We can now obtain a simple expression for the ponderomotive 
force on a particle of charge e and velocity v in electromagnetic theory. 
In Newtonian physics the three components are

hx dz 
+ c dt

h, dx\ 
c J tr e (

d! + h_ydx_h*dy\
c dt c dt)

The corresponding force in relativity theory will have for its last 
three components these quantities multiplied by dtjdr. So if the 
relativist force is (F*), we have

F, = -c (  dx ~  -  hv *  )  = ec (X10 V» + X12 + X13 V»)

where (V<) = (<dt_
dr’

dx 
dr’

dy
dr’

dA
dr)

is the contravariant vector representing the relativist velocity of 
the particle. This may be written

= X„V* 
C «

and similarly we have

F, = ̂ 2 X*V<, F , = J l X , V » .
q ч

These are the last three components of the covariant vector which 
is obtained by transvecting the electromagnetic six-vector Хи with 
the particle’s velocity V?. Clearly the first component of the force 
must be the first component of this transvectant : and therefore the 
relativist force on a particle of charge e and velocity Vg is

F* = ̂ I  Xtp V*.
q

The fact that energy-density occurs as the component E0° 
of Minkowski’s energy-tensor, while energy occurs as the first
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component of his energy-momentum vector, leads naturally to an 
inquiry into the connection between these two tensors. This can 
be investigated as follows.

Consider a system occupying a finite volume and involving energy 
of any kind (e.g. electromagnetic energy, or stress-energy, or gravita­
tional energy) for which we can define an energy tensor Tvq such 
that T0° is the energy-density, (To1, T 02, T 03) is (1 jc) times the flux 
of the energy, (ТД T 2°, T 3°) is ( -  c) times the density of momentum, 
and (Td, T22, T33, T 23, T 32, T13, T31, T*1, Tj2) are the components 
of flux of momentum, just as in the case of Minkowski’s energy- 
tensor of the electromagnetic field in vacuo : and suppose that the 
following conditions are satisfied :

(i) the system is rigidly-connected, and is considered in the first 
place as being at rest :

(ii) its state does no vary with the time :
(iii) there is conservation of momentum, so

эту + + dTy
dx dy dz > - 1, 2, 3) ( i )

(iv) there is no flux of energy in the state of rest, so

Tf" = 0, T /  = 0 (r= 1,2,3). (2 )

From (1) we have

ШТ i ,  «te - ДО{£(«ТУ ) + |( .т л  + * № >}* i ,  <k

where the integration is taken over the whole volume occupied by 
the system and therefore

JJjiyrf* dy ^  = ||д:(/Т11 + 77гТ12 + wTt3)ûfS

where the last integral is taken over a surface S enclosing the whole 
system, and (/, m> n) are the direction-cosines of the outward-drawn 
normal to S.

If we suppose the surface S so large that it includes the whole 
of the space in which there are any sensible effects due to the system, 
then TPq is zero on S, and therefore the last integral vanishes : so 
we have

JJJT iVx dy dz = 0. (3)

Now suppose that (/, x, y , z) is the frame of reference relative to 
which the system is at rest, and let (/, x,y, z) be a frame of reference 
such that relative to it, the system is in motion parallel to the axis
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of x with velocity w = c tanh a. The axes of x, y 9 z, are taken to be 
parallel to the axes of x, y, z respectively. Then the two sets of 
co-ordinates are connected by the equations

t = t cosh a — (x/c) sinh a 
X = X cosh a — cl sinh a

y=y> Z =

and the equations of transformation of the mixed tensor Tpq give 
T 0° = cosh2 a T 0°-C sinh a cosh a Tx0 + " cosh a sinh a To1-  sinh2 a T il 

— cosh2a To0-sinh2a Txl

THE RELATIVITY THEORY OP POINCARÉ AND LORENTZ

by (2). Thus

JJJt 0° dx dy ^  = (cosh2a T 0°-sinh2a T Xx)dx dy dz

= | | | ( c°sh2a T 0° —sinh2 a Tj1) sech a dx dy dz,

since d(x,y, z)ld(x,y, z) =cosh a, it being understood that x,yy z are 
measured over the field at a constant value of t. So by (3),

IlfTo° dxdydz^ cosh dx dy dz.

Now let TJ = 11Jt 00 dx dy dz, so U represents the total energy of the
system when at rest. Then since cosh а = (1 - w%!c2)-*y the result now 
becomes :

Total energy associated with the moving system =*U (1 —w*/c*

This may be regarded as an extension, to systems of finite size, of 
the formula that in relativity theory the energy of a particle of 
proper-mass m, moving with velocity w, is

Now consider the momentum. The equation of transformation 
of a mixed tensor of rank 2 gives

Ti°= — 7 sinha cosh a T 0° + 7 cosha sinh a Ti1,c c
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since T 0l and TV are zero. Therefore

l l j l V  dx dy dz = —  ̂sinh a  cosh aJJJ (T0° —Ti1) dx dy dz

= sinh aJJJ(To° — Ti1) dx dy dz

= — - sinh a J | | t q° dx dy dz, by (3) 

w\5
-

Now — Ti0 represents the density of ^-momentum. Therefore the 
total momentum of the moving system parallel to the *-axis is

w U

This may be regarded as an extension, to systems of finite size, of 
the formula for the ^-component of momentum of a particle.

The above analysis shows how the components of the energy- 
momentum vector (now no longer restricted by the condition that 
it is to apply only to a single particle) can be derived from those 
of the energy-tensor. It is evident that whereas the energy-tensor 
is localised (i.e. each of its components is a function of position in 
space), the energy-momentum vector is not localised.1

Before the discovery of relativity theory, physicists were accus­
tomed to think of energy not as a component of a tensor, but as a 
scalar : and indeed even in relativity theory, energy as observed by 
a particular observer is a scalar. For let an observer be moving along 
the axis of x with velocity vy so that the covariant vector representing 
his velocity, namely,

-  « * « * « * «
is given by

* • " * 0 -£)"*’ f i“ - p ( 1 - £)"*’ ii=0> 6 = 0 -
1 On the relation of the energy-momentum vector of a particle to the energy-tensor 

of a continuous field, see further H. P. Robertson, Proc. Edin. Math. SocA2) v (1937), 
p. 63, and M. Mathisson, Proc. Camb. Phil. Soc. xxxvi (1940), p. 331.
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Let a particle of proper-mass m be moving in the same straight line 
with velocity w, so that its contravariant energy-momentum vector is

Tj^O, 7?3 = 0.

The transvectant of these vectors, namely, fo»?0 + &171 + f*1?2 + f 3173, 
is a scalar : its value is

(A)

Now the relative velocity of the particle and the observer is, by the 
relativist formula,

v — w 
] _  ̂

and the energy of a particle moving with this velocity relative to 
the axes of reference is

me2 l (p-«0* 
r2(l -  vwjc2)a

i

which reduces at once to the expression (A). Thus we see that the 
energy of an observed particle may properly be regarded as a scalar, being the 
transvectant of the particle's energy-momentum vector and the observer's 
velocity.

A vector which is of importance in electromagnetic theory may 
be introduced in the following way. We have seen that the electric 
intensity (dr, dy, dz) and the magnetic intensity (hXy Ay, hz), at a point 
in free aether, are parts of a six-vector

d* = X31, dy = X°2, d* = X°3, Л* = Х 23, ЛУ = Х31, Аж-Х».

Now if ф is the electric potential, and (.ax, ay, д*) the vector-potential, 
we have

дф dax 
dx cdt*

1 3az $a

and four similar equations. The question therefore suggests itself, 
what is the character of the potential ф, ax, ay, az> from the point 
of view of the tensor-calculus ? The answer, which is easily verified 
by examining the effects of Lorentz transformations, is that if

фъ ~ av> фг — — aZi
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AETHER AND ELECTRICITY

then (ф0, фи фъу фъ) is a covariant vector : its connection with the six- 
vector is given by the equations

It was discovered in 1915 by D. Hilbert1 that the energy-tensor 
of a system can be expressed in terms of the Lagrangean function of 
the system. This theorem was developed further by E. Schrôdinger 2 
and H. Bateman3 in 1927 : the rule was given by Schrôdinger as 
follows :

Let (a0, au a2, a3) be one of the four-vectors on which the Lagrangean 
L depends (as e.g. the Lagrangean in electromagnetic theory depends 
on the electromagnetic potential-vector), and let avq denote the derivative 
of aP with respect to the co-ordinate xq : then the components of the energy- 
tensor are given by

where 8^  = 0 or 1 according as q is, or is not, different from p, and the 
summation is taken over all the four-vectors a.

For example, consider the electromagnetic field in free aether, 
for which the Lagrangean function is

or, if (я0, ciu аъ аъ) denotes the covariant electromagnetic potential 
vector,

1 Gôtt. Nach. (1915), p. 395 ; cf. also F. Klein, Gôtt. Nach. (1917), p. 469 and Hilbert, 
M ath. Ann. xcii (1924), p. 1

1 Ann. d. Phys. lxxxii (1927), p. 265 
9 Proc. Nat. Acad. Sci. xiii (1927), p. 326

from this we have
8L _jjni
дакп 477
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THE RELATIVITY THEORY OF POINCARÉ AND LORENTZ

Thus Schrôdinger’s formula gives

4ir ,=o 8x‘

.  -  J- У  (e- p  -  p )  x*‘ -  Sp9 L 4 77“  \êxi ëxp)

= -  A Z  X P, x * 4  J - S / Z  Xae X«*4-77 , r  lbTT a, 0

which is the usual formula for Minkowski’s energy tensor.
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Chapter III
THE BEGINNINGS OF QUANTUM THEORY

At the end of the nineteenth century the theory of radiation was 
in a most unsatisfactory state. For the energy per cm.3 of pure- 
temperature or black-body radiation, in the range of wave-lengths 
from A to A + d \  two different formulae had been proposed. Firstly, 
that of Wien,1

Е = С лЛ “‘/АТ<Д

where A is wave-length, T is absolute temperature, and b and C are 
constants. This formula is asymptotically correct in the region of 
short waves (more precisely, when AT is small) ; but, as O. Lummer 
and E. Pringsheim showed,2 is irreconcilable with the observational 
results for long waves. Secondly, that of Rayleigh and Jeans 3

E = 87t£TA

where k is Boltzmann’s constant ; which, as shown by the experiments 
of Rubens and Kurlbaum,4 is asymptotically correct for the long 
waves, but is inapplicable at the other end of the spectrum. What 
was wanted was a formula which for the extreme limits A-*0 and 
A -► oo would tend asymptotically to Wien’s and Rayleigh’s formulae 
respectively, and which would agree with the experimental values 
over the whole range of wave-lengths.

In the spring and summer of 1900 attempts were made to con­
struct such a formula empirically by M. Thiesen,5 by O. Lummer 
and E. Jahnke,8 and by O. Lummer and E. Pringsheim.7 These 
formulae were of the type

E = CT5_/iA "^"6/(AT)

which for ^ = 5, v = 1, gives Wien’s law, and for ^ = 4, v= l ,  b = 0, 
gives Rayleigh’s.

The correct law was first given by Max Karl Ernst Ludwig Planck 
(1858-1947) in a communication which was read on 19 October 
1900 before the German Physical Society.8 Planck was the son of

1 VoL I, p. 381 « Verh. d. deutsch phys. Ges. i (1899), p. 215 ; ii (1900), p. 163
3 Vol. I, p. 384 4 loc. cit.
4 Verh. d. deutsch. phys. Ges. ii (1900), p. 65 • Ann. d. Phys. iii (1900), p. 283
7 Verh. d. deutsch. phys. Ges. ii (1900), p. 163
8 Verh. d. deutsch. phys. Ges. ii (1900), p. 202
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a professor of law at Kiel, later translated to Munich ; he was 
educated at the University of Munich, but for one year attended 
the lectures of Helmholtz and Kirchhoff at Berlin. After four years 
as professor extraordinarius at Kiel, he was called in 1889 to succeed 
Kirchhoff at Berlin, where the rest of his academic life was spent.

In the study of pure-temperature radiation, his starting-point 
was the known fact that in a hollow chamber at a given temperature, 
the distribution of radiant energy among wave-lengths is altogether 
independent of the material of which the chamber is composed ; 
and he was therefore free to suppose the walls of the chamber to 
have any constitution which was convenient for the calculations, 
so long as they were capable of absorbing and emitting radiation, 
and thereby making possible the exchange of energy between matter 
and aether. He chose them to be of the simplest type imaginable, 
namely an aggregate of Hertzian vibrators,1 each with one proper 
frequency. Each vibrator absorbs energy from any surrounding 
radiation which is nearly of its own proper frequency, and acts as 
a resonator, emitting radiant energy.

He first calculated (by classical electrodynamics) the average 
absorption and emission of a vibrator of frequency2 v which is 
immersed in, and statistically in equilibrium with, a field of radia­
tion, and found that if the average energy-density of the radiation, 
in the interval of frequency v to v + dv> is E, then 3

THE BEGINNINGS OF QUANTUM THEORY

E = a)
where U is the average energy of the vibrator.

While most of the other workers on radiation were attempting 
to find the relations between energy, wave-length and temperature, 
by direct methods, Planck, who was a master of thermodynamics, 
felt that the concept of entropy must play a fundamental part : and 
he examined the relation between the energy of a vibrator and its 
entropy S, showing that if S is known as a function of U, then the 
law of distribution of energy in the spectrum of pure-temperature 
radiation can be determined.

We have, from thermodynamics, for a system of constant volume,

or dSe _l 
dU V (2)

while Wien’s law of radiation, namely
E = avze~PvlTdv

1 This, of course, does not mean (as it has sometimes been wrongly interpreted to 
mean) that actual matter necessarily has this character.

* It will be remembered that v is the number of oscillations in one second, that is, 
c multiplied by the wave-number 1 /Л.

8 Ann. d .  Phys. i (1900), p. 69, equation (34) : Phys. ii (1901), p. 530
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requires by (1) that we should have

U = y v e -^

where y is a constant : so by (2)

whence

dS _  1 . U
dU fiv § yv

d2 S Constant 
<Ша“  U (3)

Planck had earlier attempted 1 to give a proof of Wien’s law of 
radiation based on this equation (3), which he obtained indepen­
dently by thermodynamical reasoning : but when confronted by 
Lummer and Pringsheim’s experimental results he realised that 
Wien’s could not be the true law of radiation ; and he now proposed 
to modify (3), which he did by writing

d2 S д (л\
dU2 UQS+U) w

where a  and jS are constants. This is the simplest of all the expres­
sions which give dS/d\J as a logarithmic function of U (as suggested by 
the probability theory of entropy), and which for small values of 
U agrees with equation (3Ï. Moreover, if Rayleigh’s law of radiation 
had been taken instead of Wien’s, we should have obtained

tf2S _ Constant 
Ua ’

which again is a case of (4). From (4) we have, by (2), 

1 dS i_/Const. + Щ
T = rfD = C st* log l — D----- /

or
U - Const.

^Const./T_ J  * (5)

This equation does not give the way in which the frequency v enters 
into the formula for U. But as Wien had shown in 1893,2 E must be 
of the form T6<£(T7Cjd\ or vs*f*{v/T)dv7 so by (1), U must be of 
the form

и=*Чт)* (6)
1 Berlin Sitz, xxv (1899), p. 440 • cf. Vol. I, p. 380
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THE BEGINNINGS OF QUANTUM THEORY

Thus equation (5) must have the form

U = C onst^^-J-

and therefore by (1) the average energy-density of the radiation 
in the frequency-range v to v + dv is

p _ gv3dv 
«'"T -  1 (7)

where g and l are constants. This is Planck's formula which agreed 
with the experimental determinations of Lummer and Pringsheim, 
and also of H. Rubens and F. Kurlbaum,1 and F. Paschen,2 so well 
that it soon displaced all other suggested laws of radiation.

It was, however, as yet hardly more than an empirical formula, 
since equation (4) had no complete theoretical justification. This 
defect was remedied on 14 December of the same year (1900), when 
Planck read to the German Physical Society a paper 3 which placed 
his new law on a sound foundation, and in so doing created a new 
branch of physics, the quantum theory.

He considered a system consisting of a large number of simple 
Hertzian vibrators, in a hollow chamber enclosed by reflecting walls : 
let N of the vibrators have the frequency v, N' the frequency v 
and so on. Suppose that an amount A of energy is in the vibrators 
of frequency v. Planck assumed that this energy is constituted of 
equal discrete elements, each of amount e, and that there are 
altogether P such elements in the N vibrators, so that

A=P€.

Thus he assumed that the emission and absorption of radiation by 
these vibrators takes place not continuously, but by jumps of 
amount e.

Any distribution of these P elements among the N vibrators may 
be called a complexion. The number of possible complexions is the 
number of possible ways of distributing P objects among N containers, 
when we do not take account of which particular objects lie in 
particular containers, but only of the number contained in each. 
This number is, by the ordinary theory of permutations and com­
binations,

(N + P - l ) !
(N — 1)! РГ

1 Berlin Sitz., 25 Oct. 1900, p. 929 3 Ann. d. Phys. iv (1901), p. 277
3 Verh. deutsch. phys. Ges> ii (1900), p. 237. This and the paper of 19 October were 

re-edited and printed in the new form in Ann. d. Phys. iv (1901), p. 553.
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As N and P are very large numbers, we can use Stirling’s approximate 
value for the factorials, namely,

log { ( г - 1) !}=(<£-£) log z - Z  + % log (2tt)

so the number of complexions is approximately

j  N Ц  (N + P)* + p 
l 2ttP(N + P) f NN Pp ‘

We assume that all complexions have equal probability, so the 
probability W of any state of the system of N vibrators is pro­
portional to the number of complexions corresponding to it ; that 
is, with sufficient approximation for our present purpose, we have

log W = (N + P) log ( N + P ) - N l o g N - P  log P.

Now the entropy in any state of a system depends on the inequality 
of the distribution of the total energy among the individual members 
of the system : and Boltzmann had shown by his work on the kinetic 
theory of gases1 that the entropy SN in any state of a system 
such as these vibrators is closely connected with the probability 
W of the state. Planck developed this discovery into the equation

SN = Æ log W (8)

where the thermodynamic probability W is always an integer, and k 
denotes the gas-constant for one molecule, or Boltzmann constant.2 
Thus

Sn = *{(N + P) log (N H- P) -  N log N -  P log P}.

Now P = NU/e, where U is the average, taken over the N oscillators, 
of the energy of one of them. Thus, retaining only the most 
important terms, and ignoring terms which do not involve U, we 
have

1 cf. L. Boltzmann, Vorlesungen iiber Gastheorie, i (1896), § 6. This is essentially Boltz­
mann’s 1 H-theorem.*

1 cf. Vol. I, p. 382. With Boltzmann the factor k did not occur, since his calculations 
referred not to individual molecules but to gramme-molecules, and with him the entropy 
was undetermined as regards an additive constant (i.e. there was an undetermined factor 
of proportionality in the probability W), whereas with Planck the entropy had a definite 
absolute value. This was a step of fundamental importance, and, as we shall see, led 
directly to the hypothesis of ‘ quanta.* The occurrence of the logarithm in the formula 
is explained by the circumstance that in compound systems a multiplication of proba­
bilities corresponds to an addition of entropies.
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Thus from equation (2) above,

1 log
T~dJJ e g U

THE BEGINNINGS OF QUANTUM THEORY

so the entropy of a single oscillator of the set is

or
U « ^ Т - Г (9)

But by equation (5) U must be of the form vp(v/T). This condition 
can be satisfied only if

e = hv (10)

where h is a constant independent of v. Thus the average energy of any 
simple-harmonic Hertzian vibrator of frequency v must be an integral multiple 
of hv, and the smallest amount of energy that can be emitted or absorbed 
by it is hv.

From (9) and (10) we have

U = hv

and therefore by (1) the average energy-density of black-body radiation 
in the interval of frequency between v and v + dv is

У ün/i v zdv ^  87rchX bd'K
^  ~~ 0 Г  ^  “  echjkXY _  J > (H)

which is Planck's formula. This agrees with his earlier result (7), 
but the constants which were unknown in (7) are now replaced by 
h and ky which are important constants of nature and appear in many 
other connections.

When v -► 0, the formula gives

E = ~ k T d v ,  or E = 8tt Kk-Td\<?

which is Rayleigh’s law ; and when v -> oo it gives

E = ^ v 'e - ^ d v ,  or E = 8^dûr* r^ ^ dX  c*

which is Wien’s law, now expressed in terms of the constants h and k.
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To obtain Wien’s displacement law,1 we proceed as follows : Let 
Am denote the wave-length corresponding to the maximum ordinate 
of a graph in which energy-density of radiation is plotted against 
wave-length. Then by Planck’s formula (11), Am is the value of A 
given by

0 - 1ex ^ /« T-  r
or

0= - 5  + ch/kXT
I _  ̂ ЛДЛТ*

Let q be the root of the equation
x ■-5

so

Then

l-e~ x 

q = 4*965114. . . . 

he
khmT

or
AmT = VeIAI = j  cm. degree = 0.28971 cm. degree,q 4-965114 ° &

which is Wien’s displacement law.
Planck determined the values of the constants h and k by com­

paring his formula (11) with the measurements of F. Kurlbaum 2 
and O. Lummer and E. Pringsheim,3 the results obtained being

Л = 6-55 x 10-*7 erg. sec., £ = 1-346 x 10-18 ergs per degree.

He used this determination of k in order to calculate the number 
of molecules in a gramme-molecule (Avogadro’s number) 4 : from 
the equation

S = k log W

we can calculate the entropy of one gramme-molecule of an ideal 
gas, and from this can derive thermodynamically the relation

where p denotes the pressure of the gas, V its volume, and N denotes 
Avogadro’s number : this shows that if R is the absolute gas-constant, 
then

R = *N.
1 cf. Vol. I, p. 380
• Verh, d. deutschphys. Ges. ii (1900), p. 176
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From the known values of R and k, Planck found

N = 6-175 x 1023 ;

this agreed satisfactorily with the value 6-40 x 1023 which had been 
given by O. E. Meyer.1

Moreover, the knowledge of N so obtained leads to a new method 
of finding the charge of an electron. For the charge which is carried 
in electrolysis by one gramme-ion, that is by N ions, was known, being 
at that time believed to be 9,658 electromagnetic units. Thus if e 
is the charge of an electron in electrostatic units, we have

which gives
Ne = 9,658 x 3 x 1010

e = 4-69 x 10~10 e.s.u.

J. J. Thomson had found e = 6 x l 0 -10 e.s.u. two years earlier2 ; 
Planck’s value was actually much nearer to the later determinations, 
which gave approximately 4-77 x 10-10 e.s.u.

Planck’s law made it possible to give a more accurate formulation 
of the Stefan-Boltzmann law3 for the total radiation per second from 
unit surface of a black body at temperature T. For 4 the element 
of this radiation in the range of wave-lengths A to A + rfA is, by 
Planck’s law

2tt̂ 2A-VA
ghcjkXT __ I

so the total radiation for all wave-lengths is

00 A-VA 
0 t

or
2 77A p° vzdv
c% J o ̂ lv!kT — 1

Now if B« is the nth Bernoullian number, we have

Bn = 4 ni00 l 2n~ ld t
o

1 DU Kùutische TheorU der Gare, 2 Aufl. (1899), p. 337 ; Planck’s actual result, Ann. d.
Phys. IV (1901), p. 564, is that the number of oxygen molecules in 1 cm* at 760 mm.
pressure and 15°C„ is 2-76. 101*.

* cf. Vol. I, pp. 364-5 * cf. Vol. I, p. 374 ‘ Vol. I, p. 373
( » » »  8 5  7
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whence, remembering that B2 = 1/30, we have

Г  s4s 1 
Jo * 2 ^ -1  240/>4*

Putting P = hl2тткТ, we see that the total radiation per second from unit 
surface of a black body at temperature T is

2tt6*4 T4 .
15 c2h* ’

this is the precise expression of the Stefan-Boltzmann formula in 
terms of the universal constants c, h and k.

A deeper insight into the physical conceptions underlying Planck’s 
law of radiation was furnished by a later proof of it.1 As is well 
known, in the kinetic theory of gases, it is shown that the probability 
that for a particular molecule the ^-component of velocity will lie 
between u and u + du, its ^-component of velocity between v and 
v-\-dv and its ^-component between w and w + dw, is

Ш ‘‘- и"т л л ^

where m is the mass of the molecule, U its kinetic energy, k is Boltz­
mann’s constant, and T the absolute temperature. This result was 
generalised by Josiah Willard Gibbs 2 (1839-1903) into the following 
theorem : if we consider a large number of similar dynamical 
systems (which for simplicity we shall suppose to be linear oscillators), 
which are in statistical equilibrium with a large reservoir of heat at 
temperature T, and if q is the co-ordinate in an oscillator (e.g. the 
elongation of a vibrating electron) and p the momentum (defined 
as ëL/d(dq/dt) where L is the kinetic potential), then the probability 
that for any particular oscillator the co-ordinate lies between q and 
q + dq and the momentum lies between p and p + dp is 3

e-vi^dq dp
J e-v'kTdq dp

where U is the energy of the oscillator, and the integration is to be 
taken over all possible values of q and p.

The theorem corresponding to this in the quantum theory is that
1 cf. Lorentz, Phys. £S. xi (1910), p. 1234 ; F. Reiche, Die Quantentheorie (Berlin 1921), 

Note 48
* Elementary Principles in Statistical Mechanics (New York, 1902)
• This is Gibbs’s canonical distribution
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if the energy of an oscillator can take only the discrete set of values 
U0, Ui, U 2, U3, . . ., then the probability that the energy of a 
particular oscillator is U* is 1

*=■ 0

Thus if tL =shv for j = 0, 1, 2, . . the probability is 

The mean energy of an oscillator is therefore
GO

hv{\ — e~hv/kT) IE se~,hvIkTfe=0
which has the value

hv
? ^ т г

This leads at once, as before, to Planck’s formula that the energy- 
density of black-body radiation in the frequency-interval from 
v to v + dv is

Р_87гЛ vzdv
ehvlkT-  l'

Other derivations of the law, based on many different assumptions, 
were given by various writers.2 Some of them will be discussed 
later.

The next important advance in quantum theory was made by 
Einstein,3 in the same volume of the Annalen der Physik as his papers

1 If to an energy-level U* there belongs a number gi of permissible states, then the 
level Uj is said to be degenerate, and gs is called the weight of the state. Taking the 
possibility of degenerate states into account, the above formula should be written

S*-*s= 0
• Special reference may be made to the following :
J. Larmor, Proc. R.S.(a), lxxxiii (1909), p. 82 ; P. Debye, Ann. d. Phys. xxxiii (1910), 

p. 1427, completed by A. Rubinowicz, Phys. xviii (1917), p. 96 ; P. Franck, Phys. 
%S. xiii (1912), p. 506 ; A. Einstein and O. Stem, Ann. d. Phys. xl (1913), p. 551 : 
M. Wolfke, Verb. d. deutsch. phys. Ges. xv (1913), pp. 1123, 1215 : Phys. £S. xv (1914), 
pp. 308, 463 ; A. Einstein, Phys. ZS. xviii (1917), p. 121 ; C. G. Darwin and R. H. Fowler, 
Phil. Mag. xliv (1922), pp. 450, 823 : Proc. Comb. Phil. Soc xxi (1922), p. 262 ; S. N. Bose, 
£ £ ./.  P. xxvi (1924), p. 178, xxvii (1924), p. 384 ; A. S. Eddington, Phil. Mag. 1 (1925), 
p. 803

• Ann. d. Phys. xvii (1905), p. 132 : cf. also Ann. d. Phys. xx (1906), p. 199
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ôn the Brownian motion1 and Relativity.2 Einstein supposed 
monochromatic radiation of frequency v and of small density (within 
the range of values of vjT for which Wien’s formula of radiation is 
applicable) to be contained in a hollow chamber of volume v0 with 
perfectly-reflecting walls, its total energy being E : and, investigating 
by use of Wien’s formula the dependence of the entropy on the 
volume, he found for the difference of the entropies when the radia­
tion occupies the volume v0 and when it occupies a smaller volume 
vf the equation

S - S 0 = Ek
hv

Now by inverting the Boltzmann-Planck relation

entropy = k x logarithm of probability

he calculated the relative probability from the difference of entropies, 
and found that the probability that at an arbitrarily-chosen instant 
of time, the whole of the energy of the radiation should be contained 
within a part v of the volume v0, is

This formula he studied in the light of a known result in the kinetic 
theory of gases, namely that if a gas contained in a volume v0 consists 
of n molecules, the probability that at an arbitrarily-chosen instant 
of time, all the n molecules should be collected together within a 
a part v of the volume, is

Comparing these formulae, he inferred that the radiation behaves 
as if it consisted of E/hv quanta of energy or photons,3 each of amount 
hv. The probability that all the photons are found at an arbitrary 
instant in the part v of the volume v0 is the product of the prob­
abilities (v/v0) that a single one of them is in the part v : which shows 
that they are completely independent of each other.

Now it will be remembered that according to Planck’s theory, 
a vibrator of frequency v can emit or absorb energy only in multiples 
of hv. Planck regarded the quantum property as belonging essen­
tially to the interaction between radiation and matter : free radiation 
he supposed to consist of electromagnetic waves, in accordance with

1 cf. p. 9 * cf. p. 40
* The word photon was actually introduced much later, namely, by G. N. Lewis, 

Nature, 18 Dec., 1926 ; but it is so convenient that we shall adopt it now.
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Maxwell's theory. Einstein in this paper put forward the hypothesis 
that parcels of radiant energy of frequency v and amount hv occur 
not only in emission and absorption, but that they have an inde­
pendent existence in the aether.

It was shown by P. Ehrenfest1 of Leiden, by A. JofFé2 of St Peters­
burg, by L. Natanson3 of Cracow and by G. Krutkow4 * of Leiden 
that Einstein's hypothesis leads not to Planck’s law of radiation but 
to Wien's, at any rate if we assume that each of the light-quanta 
or photons of frequency v has energy hv and that they are completely 
independent of each other. In order to obtain Planck’s formula it 
is necessary to assume that the elementary photons of energy hv 
form aggregates, or photo-molecules as we may call them, of energies 
2hvy ЗЛу, . . ., respectively, and that the total energy of radiation 
is distributed, on the average, in a regular manner between the 
photons and the different kinds of photo-molecules. This will be 
discussed more fully later.

Einstein applied his ideas in order to construct a theory of 
photo-electricity.6 As we have seen,® in 1899 J. J. Thomson and 
P. Lenard showed independently that the emission from a metal 
irradiated by ultra-violet light consists of negative electrons : and 
in 1902 Lenard,7 continuing his researches, showed that the number 
of electrons liberated is proportional to the intensity of the incident 
light, so long as its frequency remains the same : and that the 
initial velocity of the electrons is altogether independent of the 
intensity of the light, but depends on its frequency.

Knowledge regarding photo-electricity had reached this stage 
when in 1905 Einstein's paper appeared. Considering a metal 
surface illumined by radiation of frequency v , he asserted that the 
radiation consists of parcels of energy ; when one such parcel or 
photon falls on the metal, it may be absorbed and liberate a photo­
electron : and that the maximum kinetic energy of the photo-electron 
at emission is (hv — еф), where еф is the energy lost by the electron 
in escaping from its original location to outside the surface. This 
of course implies that no photo-electrons will be generated unless 
the frequency of the light exceeds a certain ‘ threshold ' value еф/h.

Einstein's equation was verified in 1912 by O. W. Richardson 
and K. T. Compton 8 and by A. L. Hughes,9 and with great care 
in 1916 by R. A. Millikan.10 For many metals, the threshold fre­
quency is in the ultra-violet : but for the electro-positive metals, such 
as the alkali metals, it is in the visible spectrum : for sodium, it is 
in the green.

1 Ann. d. Phys. xxxvi (1911), p. 91 * ibid, p. 534
» Phys. Z& xii (1911), p. 659 4 Phys. £S. xv (1914), p. 133
6 cf. Vol. I, pp. 356-7 e cf. Vol. I, p. 365
7 Ann. d. Phys. viii (1902), p. 149; also E. R. Ladenburg (1878-1908), Ann. d. Phys.

xii (1903), p. 558
8 Phil. Mag. xxiv (1912), p. 575 • Phil. Trans, ccxii (1912), p. 205

10 Phys. Rev. vii (1916), p. 355. cf. also M. de Broglie, J . de Phys. ii (1921), p. 265,
and J .  Tbibaud, Comptes Rendus, clxxix (1924), pp. 165, 1053, 1322
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The function <f> is closely connected with the thermionic work- 
function measured at the same temperature : 1 in fact, the thermionic 
work-function is equal to h times the least frequency which will 
eject an electron from the metal : 2 and ф is therefore connected 
with the contact potential-differences between two metallic sur­
faces : 3 the difference of the functions <f> for the two metals is equal 
to the contact difference of potential (reversing the order of the 
metals) together with the (small) coefficient of the Peltier effect at 
the junction between them.

Gases and vapours also exhibit the photo-electric effect, if the 
frequency of the incident radiation is sufficiently great : and the 
phenomenon can be observed for individual atoms by use of X-rays 
with the Wilson chamber. This effect is simply ionisation : and 
the law regarding the threshold frequency becomes the assertion 
that for ionisation to take place, the energy of the incident photon 
must be not less than the ionisation energy of the atom or molecule 
concerned. The electrons chiefly affected photo-electrically are the 
strongly-bound ones in the K-shell : the electrons in the outer 
shells, being more feebly-bound, do not absorb radiation to the same 
degree. The function ф in the equation

maximum kinetic energy of electron at emission = ки — еф

is now no longer connected with thermo-electric phenomena 
or contact differences of potential, but has different values de­
pending on the shell in the atom from which the electron has 
come.

If a photo-electron is liberated from the K-shell, it may happen 
that the vacant place is filled by an electron from an outer shell, 
creating a photon whose energy is equal to the difference of the 
energies of the electron in the two shells : and this photon may 
in its turn be absorbed in another shell, giving rise to a second 
photo-electron, so that two electrons are ejected together. This 
effect, which was discovered by P. Auger,4 is called the compound 
photo-electric effect.

The photo-electric effect cannot be explained classically, because 
the time-lag required by the classical theory, due to the necessity 
for accumulating sufficient energy from the radiation, is found 
not to occur.5

A hypothesis closely allied to Einstein’s light-quantum explana­
tion of the photo-electric effect was put forward in 1908 by J. Stark 6 : 
namely, that the frequency of the violet edge of the band-spectrum

1 cf. Vol. I, pp. 426-8
1 O. W. Richardson and K. T. Compton, Phil. Mag. xxiv (1912), p. 595
■ O. W. Richardson, Phil. Mag. xxiii (1912), pp. 263, 594
4 Comptes Rendus, clxxxii (1926), p. 1215
4 On the time-lag, cf. E. Meyer and W. Gerlach, Archives des sc, phys. et not. xxxvi 

(1914), p. 253. 4 Phys. ZS. ix (1908), p. 85
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of a gas is connected with the ionisation-potential of the gas (measured 
by the potential-fall necessary to give sufficient kinetic energy to the 
ionising electron) by the formula

I = hv.

Experiments in agreement with this relation were published in the 
following year by W. Steubing.1

Another hypothesis of the same type, also proposed by Stark 2 
in 1908, and elaborated by Einstein3 in 1912, related to photo­
chemical decomposition : it asserted that when a molecule is dis­
sociated as a result of absorbing radiation of frequency v, the 
amount of energy absorbed by the molecule is hv. There must, 
therefore, be a lower limit to the frequency of light capable of 
producing a given chemical reaction, and a relation between the 
amount of reaction and the amount of light absorbed. The law is 
applicable only within the range of validity of Wien’s law and 
when the decomposition is purely a thermal effect. Experiments 
designed to test this hypothesis were made by E. Warburg,4 with 
results on the whole favourable.

From Einstein’s doctrine that the energy of a photon of 
frequency v is hvy combined with Planck’s principle5 that flux 
of energy is momentum, it follows at once that in free aether, 
where the velocity of the photon is c, its momentum6 must be hvjc, 
in the direction of propagation of the light. Long afterwards 
it was shown experimentally by R. Frisch 7 that when an atom 
absorbs or emits a photon, the atom experiences a change of momen­
tum of the magnitude and direction attributed to the photon by 
Einstein : but there had never been any doubt about the matter, 
since Einstein’s value was assumed in the theory of many pheno­
mena, and predictions based on the theory were experimentally 
verified.

It may be remarked that the above relation between the energy 
and the momentum of a photon is in agreement with the classical 
electromagnetic theory of light : for if a beam of light is propagated 
in free aether in a certain direction, the electric vector E and the 
magnetic vector H are equal, and at right angles to each other 
and to the direction of propagation ; and therefore Kelvin’s energy- 
density8 1/877- (E2 + H2) is E2/4tt, while J. J. Thomson’s momentum- 
density 9 \ jAirc [E.H] is Е2/4тгс : and the latter is equal to the former 
divided by c.

1 Phys. ZS. X (1909), p. 787
* Phys. %S. ix (1908), p. 889 : Am. d. Phys. xxxviii (1912), p. 467; cf. E. Warburg,

Verh. d. deulsch. phys. Ges. ix (1907) p. 753
a Ann. d. Phys. xxxvii (1912), p. 832 : xxxviii (1912), p. 881
* Berlin Site., 1911, p. 746 : 1912, p. 216 : 1913, p. 644 : 1914, p, 872 : 1915, p. 230 :

1916, p. 314 : 1918, pp. 300, 1228 » cf. p. 54
* cf. A. Einstein, Phys. £S. x (1909), pp. 185, 817 : J .  Stark, ibid. pp. 579, 902
'  ZS-f- P- lxxxvi (1933), p. 42 8 cf. Vol. I, p. 222 • cf. Vol. I, p. 317
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The formula for the momentum of a photon is also in agreement 
with the equation

momentum = mass x velocity :

for since the energy is hvy the mass is hv/c2 ; and the velocity is c ; 
so the momentum is hvjc.

The corpuscular theory of light thus formulated by Einstein 
leads at once to the relativist formulation of the Doppler effect.1 
For suppose that a star is moving with velocity w relative to an 
observer P, and that a quantum of light emitted towards the observer 
P has a frequency v as measured by an observer Р' on the star, and 
a frequency v as measured by the observer P.

Let the direction-cosines of the line PP', referred to rectangular 
axes in P’s system of measurement, of which the *-axis is in the 
direction of the velocity wy be (/, my n). Then the energy and 
momentum of the light-quant as observed by P, that is, in a systçm 
of reference in which P is at rest, are (,hv, -  hvl!cy —hvmlcy —hvnjc) : 
and the energy of the light-quant as observed by P', that is, in a 
system of reference in which P' is at rest, is hv'. But the (energy) jc 
and the three components of momentum form a contravanant four- 
vector which transforms according to the Lorentz transformation, in 
which

and therefore
hv whvl

hv __ â cz 

=
or

V

which is the relativist formula for the Doppler effect. Thus the 
Doppler effect is simply the Lorentz transformation of the energy-momentum 
four-vector of the light-quant.

In the earlier years of the development of quantum-theory, much 
attention was given to the relation of light-propagation to space,

1 cf. p. 41
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the aim being to find a conception of the mode of propagation which 
would account both for those experiments which were most naturally 
explained by the wave-theory, and also for those which seemed to 
require a corpuscular theoiy. J. Stark 1 and A. Einstein 2 discussed 
a fact which seemed very difficult to reconcile with the wave-theory, 
namely, that when cathode rays fall on a metal plate, and the X-rays 
there generated fall on a second metal plate, they generate cathode 
rays whose velocity is of the same order of magnitude as that of the 
primary cathode rays.

More precisely, let the X-rays be excited by a stream of electrons 
striking an anticathode (this is, of course, the process inverse to the 
photo-electric effect). Suppose that the energy of the electrons is 
what would be obtained by a fall through a potential-difference V, 
so that the kinetic energy of the electrons is eV. When the electrons 
are stopped, they give rise to the X-rays, whose frequencies form 
a continuous 3 spectrum with a limit vmax on the side of high fre­
quencies given by the equation 4

THE BEGINNINGS OF QUANTUM THEORY

That is, X-rays of frequency v  are not produced unless energy hv is 
available. It is reasonable to suppose that the maximum value of the 
frequency is obtained when the whole of the energy eV of the electron 
is converted into energy of radiation (X-radiation of lower frequency 
is also obtained, because the incident electron may spend part of its 
energy in causing changes in the atoms of the anticathode). Since 
the energy of an electron ejected by the X-ray in the photo-electric 
effect is (save for differences due to other circumstances which need 
not be considered at the moment) equal to hvmax, we see that it is 
equal to the energy of the electrons in the cathode rays which had 
originally excited the X-ray : so that no energy is lost in the changes 
from electron to X-ray and back to electron again. The X-ray must 
therefore carry its energy over its whole track in a compact bundle, 
without any diminution due to spreading : as had been asserted in 
1910 by W. H. Bragg (cf. p. 17).

On the other hand, X-rays are certainly of the nature of ordinary 
light, and can be diffracted : so one would expect them to show 
the spreading characteristic of waves. The apparent contradiction 
between the wave-properties of radiation and some of its other 
properties had been considered by J. J. Thomson in his Silliman 
lectures of 1903 5 ; ‘ Rontgen rays,’ he said, ‘ are able to pass very

1 Phys. ZS- X (1909), pp. 579, 902 : xi (1910), pp. 24, 179 
• Phys. ZS- x (1909), p. 817 ; cf. H. A. Lorentz, Phys. Z 'S. xi (1910), p. 1234 
8 Regarding the discontinuous spectrum of characteristic X-rays, cf. D. L. Webster, 

Phys. Rev. vii (1916), p. 599
4 cf. W. Duane and F. L. Hunt, Phys. Rev. vi (1915), p. 166. The value of h was 

calculated on the basis of this property by F. C. Blake and W. Duane, Phys. Rev. ix (1917), 
p. 568 : x(1917),pp. 93, 624.

8 J . J .  Thomson, Electricity and Matter (1904), pp. 63-5, cf. his Conduction of Electricity 
through Oases (1903), p. 258
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long distances through gases, and as they pass through the gas they 
ionise it : the number of molecules so split up is, however, an 
exceedingly small fraction, less than one-billionth, even for strong 
rays, of the number of molecules in the gas. Now, if the conditions 
in the front of the wave are uniform, all the molecules of the gas 
are exposed to the same conditions : how is it, then, that so small 
a proportion of them are split up ? 5 His answer was : ‘ The difficulty 
in explaining the small ionisation is removed if, instead of supposing 
the front of the Rôntgen ray to be uniform, we suppose that it con­
sists of specks of great intensity separated by considerable intervals 
where the intensity is very small.5

In this passage Thomson originated the conception of needle 
radiation,1 i.e. that in the elementary process of light-emission, the radiations 
from a source are not distributed equally in all azimuths, but are concentrated 
in certain directions. This hypothesis was now adopted by Einstein,2 
who, as we shall see, developed it further in 1916.

When, however, the phenomena of interference were taken into 
account, the conception of needle radiation, and indeed the whole 
quantum principle of radiation, met with difficulties which were not 
resolved for many years. It was shown experimentally 3 that when 
a classical interference-experiment was performed with light so faint 
that only a single photon was travelling through the apparatus at 
any one time, the interference-effects were still produced. This 
was interpreted at first to mean that a single photon obeys the laws 
of partial transmission and reflexion at a half-silvered mirror and 
of subsequent re-combination with the phase-difference required by 
the wave-theory of light. It is evident, however, that such an 
explanation would be irreconcilable with the fundamental principle 
of the quantum theory, according to which interaction between 
the light and matter at a particular point on the screen can 
take place only by the absorption or emission of whole quanta of 
light-

A further objection to the view that coherent beams of light, 
which are capable of yielding interference-phenomena, could be 
identical with single photons, appeared when it was found that the 
volume of a beam oi light over which coherence can extend, was 
much greater than the nineteenth-century physicists had supposed. 
In 1902 O. Lummer and E. Gehrcke,4 using green rays from a 
mercury lamp, obtained interference-phenomena with a phase- 
difference of 2,600,000 wave-lengths—a distance of the order of one

1 cf. Thomson’s further papers in Proc. Camb. Phil. Soc. xiv (1907), p. 417 ; Phil. 
Mag.iP) xix (1910), p. 301 ; and N. R . Campbell, Proc. Camb. Phil. Soc. xv  (1910), 
p. 310. For an interesting application of the relativity equations to needle radiation, 
cf. H. Bateman, Proc. bond. M ath. SocS2) viii (1910), p. 469.

t loc. cit.
* G . I. Taylor, Proc. Camb. Phil. Soc. x v  (1909), p. 114 ; most completely by A . J. 

Dempster and H. F. Batho, Phys. Rev. xxx (1927), p. 644 ; cf. E. H. Kennard, J .  Franklin 
Inst.y ccvii (1929), p. 47

â Verh. deutsch. phys. Ges. iv (1902), p. 337 ; cf. M . von Laue, Ann. d. PhysA*) xiii 
(1904), p. 163, §6
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metre. Regarding the lateral extension of a coherent beam, since 
all the light from a star that enters a telescope-objective takes part 
in the formation of the image, it is evident that this light must be 
coherent : and a still greater estimate was obtained in 1920, when 
interference methods were used at Mount Wilson Observatory to 
determine the angular diameter of Betelgeuse, and interference was 
obtained between beams which arrived from the star twenty feet 
apart. It seemed impossible that these very large coherent beams 
could be single photons.

The alternative hypothesis seemed to be, that the photons in 
a coherent beam form a regular aggregate, possessing a quality 
equivalent to the coherence.1 One supposition was that the motion 
of the photons is subject to a system of probability corresponding 
to the wave-theory explanation of interference, so that a large 
number of them is directed to the bright places of the interference- 
pattern, and few or none are directed to the dark places. This 
explanation was, however, unsatisfactory : for it is not until the 
two interfering beams of light have actually met that the interference- 
pattern is determined, and therefore the guiding of the motion of 
the photons cannot take place during the propagation of the inter­
fering beams, but must happen later, perhaps at the screen itself— 
a process difficult to imagine. It was therefore suggested that while 
the photons are being propagated in the beams which are later 
destined to interfere, they are characterised by a quality correspond­
ing to what in the wave-theory is called phase. In order to construct 
a definite theory based on this idea, however, it would be necessary 
first to consider whether the photons are to be regarded as points 
(in which case any particular photon would always retain the same 
phase, since it travels with the velocity of light, but different photons 
would have different phases) or whether the photons are to be re­
garded as extending over finite regions (in which case the phase 
would presumably vary from one point of a photon to another). 
In order to account for interference, it would be necessary to suppose 
that photons, or parts of photons, in opposite phases, neutralise each 
other. But if the photons are regarded as points, the mutual annul­
ment of two complete photons would be incompatible with the 
principle of conservation of energy, while if the photons are regarded 
as extending over finite regions, the annulment of part of one by 
part of another would seem to be incompatible with the integral 
character of photons. There is, moreover, a difficulty created by 
the observation that interference can take place when only a single 
photon is travelling through the apparatus at any one instant, for 
this seems to require that the effect of a quantum on an atom persists 
for some time.

These various attempts—none of them entirely satisfactory—to 
combine the new and the old conceptions of light, created a doubt

THE BEGINNINGS OF QUANTUM THEORY

1 This was first put forward by J . Stark, loc. cit.
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as to whether it was possible to construct, within the framework 
of space and time, a picture or model which would be capable of 
representing every known phenomenon in optics.1

In December 1906 Einstein 2 * initiated a new development of 
quantum theory, by carrying its principles outside the domain of 
radiation, to which they had hitherto been confined, and applying 
them to the study of the specific heats of solids. We have seen8 
that according to the classical law of equipartition of energy, in a 
state of statistical equilibrium at absolute temperature T, with every 
degree of freedom of a dynamical system there is associated on the 
average a kinetic energy where k  is Boltzmann’s constant.
Now the thermal motions of a crystal are constituted by the 
elastic vibrations of its atoms about their positions of equilibrium : 
one of these atoms, since it has three kinetic degrees of freedom 
and also three potential-energy degrees of freedom, will have a 
mean kinetic energy |AT and a mean potential energy fÆT, or a 
total mean energy 3ÆT. Thus a gramme-atom of the crystal will 
have a mean energy 3A:NT, where N is Avogadro’s number4 ; 
or 3RT, where R is the gas-constant per gramme-atom. The atomic 
heat of the crystal (i.e. the amount of heat required to raise the 
temperature of a gramme-atom by one degree) is therefore 3R. 
Now

R = 8-3136 x 107 ergs= 1*986 cal.

so the atomic heat (at constant volume) is 5*958 cal. This law had 
been discovered empirically by P. L. Dulong and A. T. Petit5 * 
in 1819.

While Dulong and Petit’s law is approximately true for a great 
many elements at ordinary temperatures, exceptions to it had 
long been known, particularly in the case of elements of low 
atomic weight, such as C, Bo, Si, for which at ordinary temperatures 
the atomic heats are much smaller than 5*958 cal. : and shortly 
before this time it had been shown, particularly by W. Nernst 
and his pupils, that at very low temperatures all bodies have 
small atomic heats, while at sufficiently high temperatures even 
the elements of low atomic weight obey the normal Dulong-Petit 
rule, as was shown e.g. by experiments with graphite at high 
temperatures.

1 T he state of the coherence problem twenty years after Einstein’s paper o f 1905
may be gathered from G . P. Thomson, P ro c . R .S . { a), civ (1923), p. 115 ; A . Landé,
% S . f .  P. xxxiii (1925), p. 571 ; E. C. Stoner, P ro c . C a m b . P h i l . S o c . xxii (1925), p. 577 ;
W. Gerlach and A. Landé, Z $ f -  P- xxxvi (1926), p. 169 ; E. O . Lawrence and J . W. Beams,
P ro c . N . A S .  xiii (1927), p. 207.

* A r m . d .  P h y s , xxii V1907), pp. 180, 800
• V ol. I, p. 382. The argument given here is substantially due to Boltzmann, W ie n

Sitz. lxiii (Abth. 2) (1871), p. 712.



Einstein now pointed out that if we write Planck’s formula in 
the form :

Energy-density of radiation in the frequency-range v to v + dv

THE BEGINNINGS OF QUANTUM THEORY

= 87rX_4rfA hv
ghvfkT_ J’

then on comparing this with Rayleigh’s derivation of his law of 
radiation,1 we see that in order to obtain Planck’s formula, a mode 
of vibration of frequency v must be counted as possessing the average 
energy

x
- Г

where x = hvlkT, instead of (as Rayleigh assumed) \kT. If then in 
the above proof of Dulong and Petit’s law we replace JÆT by 
\kT x\{ex — 1), we find that a gramme-atom of the crystal will have 
a mean energy

3R T ^ 1

(if for simplicity we assume that all the atomic vibrators have the 
same frequency v) and therefore the atomic heat is

d_
(ГС' or 3R

2pxхле
(**-!)« or 5-958 Ax*e

(**-l)2*

This is Einstein's formula. As the temperature falls, x increases and 
x2ex/(ex— l)2 decreases, so the decrease of atomic heat with tem­
perature is accounted for. As the absolute zero of temperature is 
approached, the atomic heats of all solid bodies tend to zero.2

The determination of the quantity x, i.e. the determination of 
vy was studied by E. Madelung,3 W. Sutherland,4 * F. A. Lindemann,6 
A. Einstein,6 W. Nernst,7 E. Grüneisen,8 C. E. Blom9 and H. S. 
Allen.10 : relations were found connecting v approximately with the 
cubical compressibility of the crystal, with its melting-point and 
with the ‘ residual rays ’ which are strongly reflected from it.

1 Vol. I, pp. 383-4
- This is a special case of a more general theorem discovered and developed by 

W. Nernst in 1910 and the following years, namely, that all the properties of solids which 
depend on the average behaviour of the atoms (including the thermodynamic functions) 
become independent of the temperature at very low temperatures. Thus, at the absolute 
zero of temperature, the entropy of every chemically homogeneous body is zero ; cf. 
Nernst, Die theoretischen tmd expérimente lien Grundlagen des neuen Wàrmesatzes (Halle, 1918).

3 Gôtt. Nach. (1909), p. 100 ; Phys. £S . xi (1910), p. 898
4 Phil. Mag.(& xx (1910), p. 657 * Phys. Z S .  xi (1910), p. 609
e Ann. d. Phys. xxxiv (1911), p. 170 ; xxxv (1911), p. o79
7 Ann. d. Phys. xxxvi (1911), p. 395 8 Ann. d. Phys. xxxix (1912), p. 257
8 Ann. d. Phys. xlii (1913), p. 1397
l® Proc. R . S . ( A), x d v  (1917), p. 100 ; Phil. M ag. xxxiv (1917), pp. 478, 488
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There was, however, one obvious imperfection in all this work, 
which was pointed out by Einstein in the second of the papers just 
referred to ; namely, that the vibrations of the atoms in a crystal 
do not all have the same frequency v. The mean energy of a 
gramme-atom of a crystal will therefore not be

AETHER AND ELECTRICITY

where x has a single definite value, but

when the summation is taken over all the frequencies (three for 
each atom), and k is Boltzmann’s constant. The atomic heat, 
obtained from this by differentiating with respect to T (remember­
ing that x = hv/kT)> is therefore

kxr2 e r

In order to determine the frequencies of the natural vibrations of 
the atoms of a body, and so to be able to evaluate these expressions, 
P. Debye 1 (b. 1884) took, as an approximation to the actual body, 
an elastic solid, and considered the elastic waves in it. He showed 
that for a fixed isotropic body of volume V, the number of natural 
periods or modes of vibration in the frequency-range v to v +  dv is

where ct is the velocity of transverse waves in the solid and cl the 
velocity of longitudinal waves ; and he assumed that the energies 
of these different sound waves vary in the same way as the energies 
of the light waves in Planck’s formula, so that each of these modes 
has the energy

hv
ehvlkT _  J >

thus the energy per unit volume of waves within the frequency- 
range v  to v +  dv is

47rhvz / 2  1 \  dv
w + W « to/1T-i*

1 Ann. d. Phys. xxxix (1912), p. 789
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The total energy is to be obtained by integrating this with respect 
to v. But here a difficulty presents itself : for the number of natural 
frequencies of a continuous body is infinitely great : v extends from 
zero to infinity. Debye (somewhat arbitrarily) dealt with this 
situation by taking, in the integration with respect to v, an upper 
limit I'm, such that the total number of frequencies less than v m is 
equal to 3N, where N is the number of atoms in the body. Thus 
vm is to be determined from the equation

THE BEGINNINGS OF QUANTUM THEORY

згЧ>’ЧК 7 >,а' 4ttV /2  1
3 vV  ci

and the atomic heat of the body is

4JV(<H) whcre - a

Г ______
Xm3Jo
9КГ*т M x  where xm = ̂ .

k i
If we write

JlVm_
" Г  ’

we have xm = 0/T, and the atomic heat is a universal function of the ratio 
T/0, that is y the temperature T divided by a temperature 0  which is characteristic 
of the body.

Debye’s theory is in good general accord with the experimental 
results for many elements.1

When the temperature T is very great, xm is very small, and the 
above formula for the atomic heat becomes

or 3R,
X m z  Jo

which is Dulong and Petifs law, as would be expected.
When on the other hand T is very small, we escape the difficulties 

which arise from the fact that the body, as contrasted with the 
continuous elastic solid, has only a finite number of degrees of 
freedom. The above formula shows that the energy of the body 
is proportional at low temperatures to the integral

Г  v'dv_  or Г  V*r*^dv 
Jo * * / « - 1  Jo  e

that is, it is proportional to T4 ; so the atomic heat of a body at low
1 cf. the exhaustive report by E. Schrôdinger, Phys. £S. xx (1919), pp. 420, 450, 474, 

497, 523
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temperatures is proportional to the cube of the absolute temperature. This 
law has been carefully verified.1

In the same year in which Debye’s theory of atomic heats was 
published, Max Born (b. 1882) and Theodor v. Karman (b. 1881)2 
attacked the problem from another angle ; instead of replacing the 
body by a continuous elastic medium, as Debye had done, they 
made a dynamical study of crystals, regarded as Bravais space- 
lattices of atoms, in order to determine their natural periods. The 
formulae obtained were of considerable complexity : Debye’s method 
is simpler, though Born and Karman’s is more general and stringent. 
In the case of low temperatures, Born and Karman confirmed 
Deybe’s result that the atomic heat is proportional to T3 when 
T is small.3

The behaviour, as found by experiment, of the molecular heat 
of gases (i.e. the amount of heat required to raise by one degree the 
temperature of one gramme-molecule of the gas, at constant volume) 
can be explained by quantum theory in much the same way as 
that of solid bodies. According to classical theory,4 a monatomic 
gas (such as helium, argon or mercury vapour) has three degrees 
of freedom (namely, the three required for translatory motion), and 
to each of them should correspond a mean kinetic energy \kTy so 
a gramme-molecule should have an energy |Ш Т  when N is 
Avogadro’s number, or f RT where R is the gas-constant per gramme- 
molecule : thus the molecular heat should be f R or approximately 
three calories, a result verified empirically.5

For the chief diatomic gases—H, N, O etc.—the molecular heat 
is 5 calories, which is explained classically by supposing that they 
have 3 translatory and 2 rotational degrees of freedom. The mole­
cule may be pictured as a rigid dumbbell, having no oscillations 
along the line joining the atoms, and no rotations about this line as 
axis. It was, however, found experimentally by A. Eucken 6 that the 
molecular heat of hydrogen at temperatures below 60° abs. falls to 
3 calories, the same value as for monatomic gases. This evidently 
implies that the part of the molecular heat which is due to the two 
rotational degrees of freedom of the molecule falls to zero at low 
temperatures. The quantum theory supplies an obvious explanation

1 A. Eucken and F. Schwers, Verh. deutsch phys. Ges. xv (1913), p. 578 ; W. Nernst 
and F. Schwers, Berlin Ber. (1914), p. 355 ; W. H. Keesom and H. Kamerlingh Onnes, 
Amsterdam, Proc. xvii (1915), p. 894 ; xviii (1915), p. 484

2 Phys. ZS. xiii (1912), p. 297 ; xiv (1913), pp. 15, 65
8 The diamond was studied specially by Born, Ann. d. Phys. xliv (1914), p. 605. 

cf. Born, Dynamik der Kristallgitter (Leipzig, 1915), and many later papers. The detailed 
study of crystal-theory is beyond the scope of the present work.

4 cf. Vol. I, p. 383
6 The quantity which is usually determined directly by experiment (from the velocity 

of sound in the gas) is the ratio of the molecular heat at constant pressure to the molecular 
heat at constant volume, or (2 + x) /*, where x is the molecular neat at constant volume.

• Berlin Sitz. (1912), p. 141. cf. also K. Scheel and W. Heuse, Ann. d. Phys. xl M913), 
p. 473, who examined me specific heats of helium, and of nitrogen, oxygen ana other 
diatomic gases, between +20° and —180°; and F. Reiche, Ann. d. Phys. lviii (1919), 
p. 657.
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of this behaviour : it is, that no vibration can be excited except by 
the absorption of quanta of energy that are whole multiples of hv, 
where v is the proper frequency of the vibration : and at low 
temperatures, the energy communicated by molecular impacts is 
insufficient to do this, so far as the rotational degrees of freedom 
are concerned. For the translational degrees of freedom, on the 
other hand, v is effectively zero, so no limitation is imposed.

At very high temperatures the molecular heats of the permanent 
gases rise above 5 calories—to 6 or nearly 7—which evidently signifies 
that some additional degrees of freedom have come into action, e.g. 
vibrations along the line joining the two atoms in the molecule. 
For chlorine and bromine, this phenomenon is observed even at 
ordinary temperatures, a fact which may be explained by reference to 
the looser connection of the atoms in the molecules of these elements.

A new prospect opened in 1909, when Einstein 1 discussed the 
fluctuations in the energy of radiation in an enclosure which is at 
a given temperature T. From general thermodynamics it can be 
shown that at any place in the enclosure the mean square of the 
fluctuations of energy per unit volume in the frequency-range from 
v to v + dvy which we may denote by ea, is AT* rfE/rfT, where A is Boltz­
mann’s constant and E is the mean energy per unit volume. Now 
by Planck’s law we have

p_87rhvz dv
c 3 **/*T - l

THE BEGINNINGS OF QUANTUM THËOEV

whence for e2 we obtain the value
87rAWv 1 1

or
ghvjXT —  1 ^

h v  c3EaAi/E + q— - j-. 
8 77V*dv

If instead of Planck’s law of radiation we had taken Wien’s law,2 
we should have obtained

ea = AfE

while if we had taken Rayleigh’s law,3 we should have obtained
--2_ £3E.2

8ttv*dv

Thus the mean-square of the fluctuations according to Planck's law is 
the sum of the mean-squares of the fluctuations according to Wien's law and 
Rayleigh's law, a result which, seen in the light of the principle that 
fluctuations due to independent causes are additive, suggests that 4
4 Phys. ZS. x (1909), p. 185 ■ cf. Vol. I, p. 381 * cf. Vol. I, p. 384(M6) IOI 8
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the causes operative in the case of high frequencies (for which Wien’s 
law holds) are independent of those operative in the case of low 
frequencies (for which the law is Rayleigh’s). Now Rayleigh’s law 
is based on the wave-theory of light, and in fact the value c3E2/(8 7 rv2dv) 
for the mean-square fluctuation was shown by Lorentz 1 to be a con­
sequence of the interferences of the wave-trams which, according to 
the classical picture, are crossing the enclosure in every direction : 
whereas the value hvE for the mean-square fluctuation is what would 
be obtained if we were to take the formula for the fluctuation of the 
number of molecules in unit volume of an ideal gas, and suppose 
that each molecule has energy hv : that is, the expression is what 
would be obtained by a corpuscular-quantum theory. Moreover, 
the ratio of the particle-term to the wave-term in the complete 
expression for the fluctuation is ehv/kT -  1 : so when hvjkT is small, i.e. 
at low frequencies and high temperatures, the wave-term is pre­
dominant, and when hv/kT is large, i.e. when the energy-density is 
small, the particle-term is predominant. The formula therefore 
suggests that light cannot be represented completely either by waves 
or by particles, although for certain classes of phenomena the wave- 
representation is practically sufficient, and for other classes of 
phenomena the particle-representation. The undulatory and 
corpuscular theories are in some sense both true.

Some illuminating remarks on Einstein’s formula were made by 
Prince Louis Victor de Broglie 2 (b. 1892). Planck’s formula

p _ üv-hv2 dv
c3 é>/fcT- l

may be written

c3

where
=  E i  +  Е г 4- E 3 + .  . .

Ej = 877bf g-to/KCfa

Now Einstein’s formula is
— 8 irh2v*dv f 1 1 ]
6 “  cz \ ^ kT -  1 + ( ^ T-  l)2}

8 irh2v*dv t:{r ^/« + 2^ / «  + 3 ^ № + . . . . }

=  ^  shvEta.
s=  1

1 cf. Lorentz, Les théories statistiques en thermodynamique (Leipzig, 1916), p. 114 
* Comptes Rendus, clxxv (1922), p. 811 ; J . de phys. iii (1922), p. 422. cf. W. Bothe, 

Z S .f. P. xx (1923), p. 145 ; Naturwiss. xi (1923), p. 965
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This resembles the first term hvE in Einstein’s formula, but it is 
now summed for all values ofs. So it is precisely the result we 
should expect if the energy E, were made up of light-quanta each of 
energy shv. Thus de Broglie suggested that the term Ex should be 
regarded as corresponding to energy existing in the form of quanta 
of amount hvy that the second term E2 should be regarded as corre­
sponding to energy existing in the form of quanta of amount 2hv9 
and so on. So Einstein's formula for the fluctuations may be obtained on 
the basis of a purely corpuscular theory of light, provided the total energy 
of the radiation is suitably allocated among corpuscles of different energies 
hvy 2hv, 3hv> . . . .*

The theory of the fluctuations of the energy of radiation was 
developed further in many subsequent papers.2

In spite of the many triumphs of the quantum theory, its dis­
coverer Planck was in 1911 still dissatisfied with it, chiefly because 
it could not be reconciled with Maxwell’s electromagnetic theory 
of light. In that year he proposed 3 a new hypothesis, namely, that 
although emission of radiation always takes place discontinuously 
in quanta, absorption on the other hand is a continuous process, 
which takes place according to the laws of the classical theory. 
Radiation while in transit might therefore be represented by Max­
well’s theory, and the energy of an oscillator at any instant might 
have any value whatever. When an oscillator has absorbed an 
amount hv of energy, it has a chance of emitting this exact amount : 
but it does not necessarily take the opportunity, so that emission 
is a matter of probability. In the new theory, therefore, there were 
no discontinuities in space, although the act of emission involved a 
discontinuity in time.

The system based on these principles is generally called Planck's 
Second Theory. He showed that it can lead to the same formula 
for black-body radiation as the original theory of 1900; but there 
is a notable difference, in that the mean-energy of a linear oscillator 
of frequency v is now

THÈ ÈÈGINÜINfcS ÔF ÇtoANTÜfo THÈORŸ

\hv **/«+ 1 
ehv/kT _

which is greater by \hv than the value given by the earlier theory : 
so that at the absolute zero of temperature, the mean energy of the oscillator 
is \hv. This was the first appearance in theoretical physics of the

1 This corpuscular theory had been proposed in the previous year by M. Wolfke, 
Phys. £S. xxii (1921), p. 375.

* M. von Laue, Verh. d. deutsch phys. Ges. xvii (1915), p. 198 ; W. Bothe, Z & /•  
xx (1923), p. 145 ; M. Planck, Berlin Sitz. xxxiii (1923), p. 355 ; Ann. d. Phys. lxxiii 
(1924), p. 272 ; P. Ehrenfest, £ £ ./ .  P. xxxiv (1925), p. 362 ; M. Bom, W. Heisenberg, u. 
r .  Jordan, £ £ ./ .  P. xxxv (1926), p. 557 ; S. Jacobsohn, Phys, Rev. xxx (1927), pp. 936, 
944 ; J . Solomon, Ann. de phys. xvi (1931), p. 411 ; W. Heisenberg, Leipzig Ber. lxxxiii 
(1931), Math.-Phys. Klasse, p. 3 ; M. Born and K. Fuchs, Proc. R.S. clxxii (1939), 
p. 465

* Verh. d. deutsch. phys. Ges. xiii (1911), p. 138
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àbctrihe ôf zero-point energy, which later assumed gréât importance. 
In 1913 A. Einstein ana O. Stern1 made it the basis of a new 
proof of Planck’s radiation-formula, and in 1916 W. Nernst2 
suggested that the aether everywhere might be occupied by zero- 
point energy.

Planck’s Second Theory was criticised in 1912 by Poincaré,3 
and in 1914 Planck 4 came to the conclusion that emission by quanta 
could scarcely be reconciled with classical doctrines, so he now 
made a new proposal (known as his Third Theory), namely, that the 
emission as well as the absorption of radiation by oscillators is 
continuous, and is ruled by classical electrodynamics, and that 
quantum discontinuities take place only in exchanges of energy by 
collisions between the oscillators and free particles (molecules, ions 
and electrons). A year later, however, he 5 abandoned the Third 
Theory, having become convinced by a paper of A. D. Fokker 6 
that the calculation of the stationary state of a system of rotating 
rigid electric dipoles in a given field of radiation, when the calcula­
tion was performed according to the rules of classical electrodynamics, 
led to results that were in direct contradiction with experiment. 
The Second Theory fell from favour with most physicists about the 
same time, when the experiments of Franck and Hertz 7 showed 
the strong analogy between optical absorption and the undoubtedly 
quantistic phenomena which take place when slow electrons collide 
with molecules.

Meanwhile, in a Report presented to the Physical Section of the 
83rd Congress of German men of science at Karlsruhe on 25 Sep­
tember 1911, Sommerfeld 8 made a suggestion which was the first 
groping towards a new method. Referring to the name Quantum 
of Action which had been given to the quantity h by Planck, on account 
of the fact that its dimensions were those of (Energy x Time) or 
Action, he remarked that there should be some connection between 
h and the integral which appears in Hamilton’s Principle, namely,

where T denotes the kinetic and V the potential energy of the 
mechanical system considered. He proposed to achieve this by 
making the following hypothesis : In every purely molecular process, 
a certain definite amount of Action is absorbed or emitted, namely, the amount

T

o
1 Am. d.Phys. x l(1913),p . 551 
■ J . de phys.i5) ii (1912), p. 5, at p. 30

* Verh. d. deutsch. phys. Ges. xviii (1916), p. 83
• Berlin Sitz. 30 July 1914, p. 918 
e Am. d. Phys. xliii (1914), p. 810
8 Verh. deutsch. phys. Ges. xiii (1911), p. 1074
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where L = T -  is the kinetic potential or Lagrangean function, and where
t  is the duration of the process,. A discussion of the photo-electric 
effect in the light of this principle was given in 1913 by Sommerfeld 
and Debye.1 The principle itself, however, was superseded in the 
later development of the subject.

1 Ann. d. Pkys. xli (1913), p. 873

THE BEGINNINGS OF QUANTUM THEORY

1 0 5



Chapter IV
SPECTROSCOPY IN THE OLDER QUANTUM THEORY

In the nineteenth century, it was generally supposed that the luminous 
vibrations represented by line spectra were produced in the same 
way as sounds are produced by the free vibrations of a material body. 
That is to say, the atom was regarded as an electrical system of some 
kind, which had a large number of natural periods of oscillation, 
corresponding to the aggregate of its spectral lines. The first physicist 
to break with this conception was Arthur William Conway (1875- 
1950), professor of mathematical physics in University College, 
Dublin, who in 1907, in a paper of only two and a half pages,1 
enunciated the principles on which the true explanation was to be 
based : namely, that the spectrum of an atom does not represent 
the free vibrations of the atom as a whole, but that an atom produces 
spectral lines one at a time, so that the production of the complete 
spectrum depends on the presence of a vast number of atoms. In 
Conway’s view, an atom, in order to be able to generate a spectral 
line, must be in an abnormal or disturbed state : and in this abnormal 
state, a single electron, situated within the atom, is stimulated to

Eroduce vibrations of the frequency corresponding to the spectral 
ne in question. The abnormal state of the atom does not endure 

permanently, but lasts for a time sufficient to enable the active 
electron to emit a fairly long train of vibrations.

Conway had not at his disposal in 1907 certain facts about 
spectra and atoms which were indispensable for the construction 
of a satisfactory theory of atomic spectra : for until after the publica­
tion of Ritz’s paper of 1908 2 physicists did not realise that the 
frequencies of the lines in the spectrum of an element are the differ­
ences, taken in pairs, of certain numbers called ‘ terms ’ ; and it 
was not until 1911 that Rutherford3 introduced his model atom, 
constituted of a central positively-charged nucleus with negative 
electrons circulating round it. But the revolutionary general prin­
ciples that Conway introduced were perfectly sound, and showed 
a remarkable physical insight.

These principles were reaffirmed in 1910 by Penry Vaughan 
Bevan (1875-1913), in a paper4 recording experiments on the 
anomalous dispersion, by potassium vapour, of light in the region 
of the red lines of the potassium spectrum. He first attempted 
to explain his results theoretically in accordance with Lorentz’s 
modernised version 5 of the Maxwell-Sellmeier theory, and found

1 S a  Proc. R . D M . Soc. xi (March 1907), p. 181 - cf. Vol. I, p. 378
» cf. p. 22 * Proc. R £ \ a), lxxxiv (1910), p. 209 6 cf. Vol. I, p. 401
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that it required him to postulate an impossibly great number of 
electrons per molecule : deriving from this contradiction the correct 
conclusion, that spectroscopic phenomena are to be explained by 
the presence of a very great number of atoms, which at any one 
instant are in different states, and each of which at that instant is 
concerned not with the whole spectrum, but at most with only one 
line of it.

The next advances were made by John William Nicholson 1 
at that time of Trinity College, Cambridge. He introduced 
into spectroscopic theory the model atom which had been 
proposed a few months before by Rutherford, namely a very 
small nucleus carrying practically all the mass of the atom, sur­
rounded by negative electrons circling round it like planets round 
the sun. This was so much more precisely defined than earlier model 
atoms that it might now be possible to calculate exact numerical 
values for the wave-lengths of lines in atomic spectra. Nicholson’s 
second advance was to recognise the fundamental fact, that the 
production of atomic spectra is essentially a quantum phenomenon.
4 The fundamental physical laws,5 he said, 4 must lie in the quantum 
or unit theory of radiation, recently developed by Planck and others, 
according to which, interchanges of energy between systems of a 
periodic kind can only take place in certain definite amounts deter­
mined by the frequencies of the systems5 2 ; and he discovered the 
form which the quantum principle should take in its application to 
the Rutherford atom : 4 the angular momentum of an atom can only rise 
or fall by discrete amounts' 3 Moreover, following Conway and Bevan, 
he asserted that the different lines of a spectrum are produced by 
different atoms : 4 the lines of a series may not emanate from the 
same atom, but from atoms whose internal angular momenta have, 
by radiation or otherwise, run down by various discrete amounts 
from a standard value. For example, in this view there are various 
kinds of hydrogen atom, identical in chemical properties and even 
in weight, but different in their internal motions.5 4 In other words, 
an atom of a given chemical element may exist in many different 
states, resembling in many ways the energy-levels of Planck’s oscil­
lators. And 4 the incapacity ’ of an atom4 for radiating in a continuous 
way will secure sharpness of the lines.’ 6 Nicholson did not, however, 
fully appropriate Conway’s idea that a single electron (among the 
many present in the atom) is alone concerned in the production of 
a spectral line : on the contrary, he studied the vibrations of a 
number of electrons circulating round a nucleus by methods recall­
ing the work of Maxwell on Saturn’s rings, retaining classical ideas 
for the actual computation of the motion, and identifying the fre­
quency of spectral lines with the frequency of vibration of a dynamical 
system.

(June 1912), 729 (August 1 9 l5 f
* loc. cit. p. 729 * loc. cit. p. 679
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4 loc. cit. p. 730 ibid.
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The first successful application of quantum principles to spectro­
scopy was in the domain not of atomic but of molecular spectra. 
In 1912 Niels Bjerrum 1 applied quantum ideas in order to explain 
certain characteristics of the absorption spectra that had been 
observed with hydrochloric and hydrobromic acids in their gaseous 
forms. For these and similar compounds, two widely-separated 
regions of absorption had been found in the infra-red, of which one, 
that of longest wave-length, was assigned by Bjerrum, following 
Drude,2 to rotations of the molecules. For the absorption in the 
short-wave infra-red he gave a new explanation. He assumed that 
the two atoms constituting a molecule are positively and negatively 
charged respectively, and that they oscillate relatively to each other 
along the line joining them, say with frequency v0 ; incident radia­
tion of this frequency is absorbed. Moreover (following a suggestion 
of Lorentz), he assumed that the line joining the atoms rotates in 
a plane, and that the rotational energy must be a multiple of hv> 
where v is the number of revolutions per second.3 Denoting by J  
the moment of inertia of the rotating system, the rotational energy 
is . (27tt)2, and we have

U  . (2tt-vy = nhv (я =  0, 1, 2, 3, . . :

or, denoting this value of v  by vn, we have

Vn
nh

2< T

By comparing the linear and rotational motions,4 oscillations are 
obtained of frequencies vn, p0 +  vn> and v 0 — vn : so the absorption- 
spectrum should contain in the short-wave infra-red the equidistant 
frequencies

, h , 2 h , 3k
Vo, > ' o ± 2 7 r !J ’ V*± 2iiky  V*± 2vtT  1

Bjerrum’s theory stimulated more careful experimental measure­
ments by W. Burmeister,5 Eva von Bahr,6 J . B. Brinsmade and 
E. C. Kemble,7 and E. S. Imes.8 Burmeister, and afterwards Imes, 
found that the central frequency v0 was not observed, which would 
seem to indicate that rotation is always present.9

1 Nemst Festschrift, 1912, p. 90 2 Ann. d. PhysA*) xiv (1904), p. 677
• The quantification of molecular rotations had been suggested by Nemst, f.

Elektrochem. xvii (1911), p. 265.
4 The principle of this composition is due to Rayleigh, Phil. Mag.($) xxiv (1892), 

p. 410.
• Verh. d. deutsch. phys. Ges. xv (1913), p. 389
b Verh. d deutsch. phys. Ges. xv (1913), pp. 710, 731, 1150
7 Proc. Nat. Acad. Sci. iii (1917), p. 420 8 Astrophys. 7. 1 (1919), p. 251
• I t was later found necessary to modify Bjerrum’s theory by associating the iim»* 

not with the actual rotations, but with transitions from one state of rotation to another.
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In the year following Bjerrum’s paper, P. Ehrenfest1 improved 
the quantum theory of rotation by assuming that if v is the number of 
revolutions per second, then the rotational energy must be a multiple 
of \hv (not hv, as Bjerrum had supposed ) ; the factor \  being 
inserted because the rotational energy is purely kinetic, and not, as 
in the case of an oscillator, half potential.2 If J  is the moment of 
inertia, so that the rotational energy is . (277r)2, we have

i J  . (2ttv)2 = n . \hv (я = 0, 1, 2, 3, . . .)
or

nh
*” 47r*J-

SPECTROSCOPY IN THE OLDER QUANTUM THEORY

The angular momentum 2tttJ  therefore has the value пк/2тт. The 
quantity hfeir is now generally denoted3 by Й. Thus the law of 
quantification of angular momentum is that it must be a whole multiple 
ofh.

The culmination of the efforts to explain atomic spectra came 
in July 1913, when Niels Bohr (b. 1885), a Danish research student 
of Rutherford’s at Manchester, found 4 the true solution of the 
problem. With unerring instinct Bohr seized upon whatever was 
right in the ideas of his predecessors, and rejected what was wrong, 
adjoining to them precisely what was needed in order to make them 
fruitful, and eventually producing a theory which has been the 
starting-point of all subsequent work in spectroscopy.

Bohr accepted Conway’s principles that (1) atoms produce 
spectral lines one at a time, and (2) that a single electron is the 
agent in the process, together with Nicholson’s principles that 
(3) the Rutherford atom provides a satisfactory basis for exact 
calculations of wave-lengths of spectral lines, (4) the production of 
atomic spectra is a quantum phenomenon, (5) an atom of a given 
chemical element may exist in different states, characterised by 
certain discrete values of its angular momentum and also discrete 
values of its energy. He discovered independently 6 Ehrenfest’s 
principle (6) that in quantum-theory, angular momenta must be 
whole multiples of h. He further adopted a principle which was 
suggested by Ritz’s law of spectral ‘ terms,’ and had been in some 
degree adumbrated but perhaps not clearly grasped by Nicholson, 
namely (7) that two distinct states of the atom are concerned in the 
production of a spectral line : and he recognised an exact corres­
pondence between the ‘ terms ’ into which the spectra were analysed

1 Verh. d. deutsch. phys. Ges. xv (1913), p. 451
8 Ehrenfest’s assumption was confirmed by E. C. Kemble, Phys. Rev.i2) viii (1916), 

p. 689.
3 Read ‘ crossed h ’
4 Phil. Mag. xxvi (1913), pp. 1, 476, 875; xxvii (1914), p. 506 ; xxix (1915), p. 332 ; 

xxx (1915), p. 394
6 Ehrenfest’s paper was published on 15 June 1913, and Bohr’s in the July number 

of the Phil. Mag.
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by Ritz and the states or energy-levels of the atom described by 
Nicholson. He also assumed (8) that the Planck-Einstein equation 
E = Av connecting energy and radiation-frequency holds for emission 
as well as absorption : and finally he introduced (9) the principle 
that we must renounce all attempts to visualise or to explain classically the 
behaviour of the active electron during a transition of the atom from one 
stationary state to another. This last principle, which had not been 
dreamt of by any of his predecessors, was the decisive new element 
that was required for the creation of a science of theoretical spectro­
scopy.

Let us now see how the Balmer series of hydrogen is explained 
by Bohr’s theory. The atom of hydrogen consists of one proton with 
one negative electron circulating round it, the charges being e and 
— e respectively. We suppose that by some event such as a collision, 
the atom has been thrown into an ‘ excited ’ state in which the 
electron describes an orbit more remote from the proton than its 
normal orbit, and that a spectral line is emitted when the electron 
falls back into an orbit closer to the proton. Considering any par­
ticular orbit, supposed circular for simplicity, let m denote the mass 
and v the velocity of the electron, and r the radius of the orbit. 
Then the electrostatic force e2jr2 between the proton and electron 
must be equal to the centripetal force mv2jr required to hold the 
electron in its orbit, so

mv2r = e2.

The quantum condition is that the angular momentum of the 
motion must be a whole multiple of Й, say

mvr = nh.

These equations give

v e2
w r=n2 h2_

me2*

The kinetic energy of the electron, \mv2, is meA/2n2h*. If the electron 
makes a transition to an orbit nearer the nucleus for which the 
angular momentum is ph, there is a gain of kinetic energy

me* /1  _ 1 \
W  \J 2 n2)

but a loss of potential energy

n o



so altogether (remembering that h = 2ттН) the loss of energy of the 
atom is

2тг2me4 / 1  1 \
h2 V?3 n2)'

The equation E = hv shows that the frequency of the homogeneous 
radiation emitted is

_2 тг2е̂тп /  JL _ JA
hz \p2 n2)'

This can be identified with the formula for Balmer’s series 1

SPECTROSCOPY IN THE OLDER QUANTUM THEORY

provided we take p  = 2 and
r> 27T2e*m
R= “ A—

so we have obtained an expression for Rydberg’s constant R in 
terms of e, m and h.

The value
 ̂= 4*78 x 10-10

had been obtained by R. A. Millikan,2 the value

e-  =5-31 x 1017 m

by P. Gmelin3 and A, H. Bucherer.4 On the basis of Planck’s theory, 
Bohr obtained 5

[=  7-27 x 10“h
1 cf. Vol. I, pp. 376-8. In theoretical researches frequencies are often employed 

instead of wave-numbers, so e.g. Balmer’s formula would be written

where R stands for c times the R of the wave-number formula.
It may be mentioned that three years previously A. E. Haas, Wien. Sitz. cxix (1910), 

Abth. Ha, p. 119, had conceived the idea that Rydberg’s constant should be expressible 
in terms of the constants e> m, A, which were already known. By an argument which 
was highly speculative, he obtained the result that this constant has the value 16пге*т(кгу 
which differs from the correct value only by a simple numerical factor. However, this 
is not surprising in view of the fact that e*mn-a is the only product of powers e, m and A, 
which has the same dimensions as the Rydberg constant.

* B.A. Rep. 1912, p. 410 » Ann. d. Phys. xxviii (1909), p. 1086
4 Ann. d. Phys. xxxvii (1912), p. 597
5 Calculated from the experiments of E. Warburg, G. Leithaüser, E. Hapka and 

C. Müller, Ann. d. Phys. xl (1913), p. 611
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Using these values, he got
R = 3-26 x 1016 (sec)-1

in close agreement with observation.1 This successful prediction had 
an effect which may be compared with the effect of Maxwell’s 
calculation of the velocity of light from his electromagnetic theory.

Bohr pointed out that while by taking p = 2 we obtain Balmer’s 
series, by taking p = 3, я = 4, 5, 6, . . we obtain a series in the 
infra-red whose first two members had been discovered by F. Paschen2 
in 1908. At the time of Bohr’s paper, the series obtained by 
taking p = 1 was not known observationally, but it was discovered 
in 1914 by Th. Lyman,3 and the series obtained by taking p — 4, 
n = 5, 6, 7, . . ., was observed in 1922 by F. Brackett.4

Bohr remarked that the frequency of revolution of the electron 
in the nth state of the hydrogen atom is v̂ ttr, or

4:7T2me*
n*h*~'

But the frequency of the radiation emitted in the transition from 
the [n + 1)<A state to the nth is

2ттгте1 / 1_____1__ \
hz 1 n2 (rc-fl)1/

which when n is great has approximately the value
4тга;я14

я3Л3

Thus/br great values of n, the frequency of the radiation emitted in the transi­
tion from the nth orbit to the next orbit is equal to the frequency of revolution 
in the rth orbit. So we have an asymptotic connection between the 
classical and quantum theories.

Evidence in favour of Bohr’s theory was obtained from certain 
facts regarding absorption-spectra. It was known that the lines 
of the Balmer series do not appear in the absorption-spectrum 
of hydrogen under ordinary terrestial conditions, and this was at 
once explained by the circumstance that the hydrogen atoms have 
normally no electrons in the orbits for which p = 2, and therefore no 
electrons can be raised from these orbits to higher orbits, as would 
be necessary for the production of a Balmer absorption line. In the

1 For a comparison with the observational values of 1950, cf. R. T. Birge, Phys. Rev. 
barix (1950), p. 193.

* Ann. d. Phys. xxvii (1908), p. 565. This is the Bergrrumn series for hydrogen ; cf. 
Vol. I, p. 379.

* Phys. Rev. iii (1914), p. 504 ; Phil. Mag. xxix (1915), p. 284
* Mature cix (1922), p. 209
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Atmospheres of the stars, on the other hand, there are excited hydrogen 
atoms having electrons in the orbits for which p = 2, and these are 
capable of giving the Balmer lines in absorption. Considerations 
of the same kind can be applied to explain why under ordinary 
terrestial conditions the principal series of the alkali metals can be 
obtained in absorption-spectra, but the two subordinate series can 
not.

In the early days of quantum theory no-one troubled about the 
fact that most of the equations used were not invariant with respect 
to the transformations of relativity theory. This defect was evident 
in the case of Bohr’s frequency-equation 8E = kv> which connects 
the loss of energy in the transition with the frequency of the emitted 
radiation. It was, however, shown in 1924 by P. A. M. Dirac 1 
that, provided the radiation is emitted in a definite direction, the frequency 
equation can be expressed in a form which is independent of the 
frame of reference ; it can in fact be written as a vector equation 
in four-dimensional space-time

8Е* = Ь*

SPECTROSCOPY IN THE OLDER q u a n t u m  t h e o r y

where the direction of this vector in space-time is the same as that 
of the radiation.2 *

Some other problems which had been raised by the observational 
spectroscopists were solved in Bohr’s first papers. In 1896 the 
American astronomer Edward Charles Pickering (1846-1919) dis­
covered 8 in the spectrum of the star £ Puppis, together with the 
Balmer series, a series of lines which had the same convergence- 
number as the Balmer series. Now it is a property 4 * of the ‘ diffuse * 
and ‘ sharp ’ subordinate series of the alkali metals, that the more 
refrangible members of the doublets converge to the same limit in 
the two series ; and this fact suggested to Rydberg 6 that the Picker­
ing and Balmer series were actually the ‘ sharp ’ and ‘ diffuse ’ sub­
ordinate series respectively of hydrogen. If this were true, then the 
wave-lengths of the lines of the principal series would be immedi­
ately calculable, the first of them being at Л4687-88 : and in fact 
a line was observed in the spectrum of £ Puppis at Л4686, very near 
this position : the higher members of the series could not be expected 
to be seen, since they were beyond the limit for which our atmosphere 
is transparent.

The line Л4686 was observed by the English spectroscopist Alfred 
Fowler 6 (1868-1940) at the Indian eclipse of 22 January 1898, in 
the spectrum of the sun’s chromosphere. In 1912, in an ordinary

1 Proc. Camb, Phil. Sac. xxii (1924), p. 432
1 On the relation of Bohr’s theory to relativity theory, cf. K. Fôrsterling, £S. f .  P. 

Ш (1920), p. 404, and E. Schrôdinger, Phys. xxiii (1922), p. 301.
* Astrobh. J .  iv (1896), p. 369 ; v (1897), p. 92
4 cf. Vol. I, p. 377
1 Astroph. J . vi (1897), p. 233 ; cf. also H. Kayser, ibid, v (1897), pp. 95, 243
• Phil. Trans. cxcvii (1901), p. 202
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discharge tube containing a mixture of hydrogen and helium, he 
found 1 other lines very near the positions calculated by Rydberg 
for the supposed ‘ principal series of hydrogen,’ and, moreover, found 
a new series in the ultra-violet which had the same convergence- 
limit as this supposed principal series, and which he provisionally 
named the ‘ second principal series of hydrogen.’ The small dis­
crepancies in wave-length with Rydberg’s calculations were, how­
ever, unexplained, and also the fact that the presence of helium 
appeared to be necessary.

Bohr accounted in the most natural way for Pickering’s £ Puppis 
series, and the two series found by Fowler, by suggesting that they 
were not due to hydrogen at all, but to ionised helium. The helium 
nucleus has a charge 2e, and in ionised helium this is accompanied 
by one negative electron circulating round it. A calculation similar 
to that carried out for the hydrogen atom shows that in this case 
the frequency of the radiation emitted is

4r ( \  — ^1, where as before R = -  ? e—•Ip2 n*j A3

If in this we take/> = 3 and я = 4, 5, 6, . . ., we obtain a series which 
includes the two series found by Fowler : while if we take p  = 4 
and ?г = 5, 6, 7, . . ., we obtain the series observed by Pickering in 
the spectrum of £ Puppis. Every alternate line in the series thus 
calculated would be identical with a line in the Balmer series of 
hydrogen.

There still, however, remained the difficulty arising from the 
slight discrepancies in wave-length. This was accounted for by 
Bohr, who remarked that the geometrical centre of the circular 
orbits of the electron is, strictly speaking, not the nucleus but the 
centre of gravity of the nucleus and the electron. This makes it 
necessary to multiply the value of the Rydberg constant by the 
ratio of the mass of the nucleus to the combined mass of the nucleus 
and electron. Remembering that the nucleus of the helium atom 
has a mass four times as great as the mass of the hydrogen nucleus, 
the slight difference of the Rydberg constants for hydrogen and for 
helium can be calculated. As Bohr 2 pointed out, ionised helium 
must be expected to emit a series of lines closely but not exactly 
coinciding with lines of the ordinary hydrogen spectrum : the 
alternate members of the £ Puppis series cannot be superposed on 
the Balmer hydrogen lines, but should be slightly displaced with 
respect to them. Thus near the hydrogen lines На(Л6563), Н^(Л4861), 
НУ(Л4340*5), Ш(Л4102), there are helium lines at Л6560-37, Л4859-53, 
Л4338-86, Л4100-22 respectively, and the observed discrepancies are 
completely explained.

1 Mon. Not. R.A.S. lxxiii (1912), p. 62 ; Phil. Trans, ccxiv (1914), p. 225
• Nature xcii (1913), p. 231. ТЪе attribution of the line Л4686 to helium was con­

firmed experimentally by Б. J . Evans, ibid. p. 5.
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A. Fowler 1 noticed that some lines which he had observed in 
the spectrum of magnesium could be arranged in a series with a 
Rydberg constant which, like the Rydberg constant for ionised 
helium, was approximately four times the normal Rydberg constant. 
The explanation obviously was that they were produced by ionised 
atoms. The nucleus of magnesium has a positive charge 12e ; and 
when the metal is ionised, the outermost electron, which describes 
the orbits concerned, is under the influence of the nucleus together 
with 10 negative electrons in the inner orbits, that is, the effective 
central charge is 2e ; and so, as in the case of ionised helium, the 
Rydberg constant must be multiplied approximately by 4.

In 1923 this principle was carried further by F. Paschen and 
A. Fowler. Paschen2 found a series in the spark spectrum of 
aluminium capable of being represented by a series of the Rydberg 
type in which the Rydberg constant had nine times its normal 
value. Since the nucleus of aluminium has a positive charge I3ey 
this series obviously belonged to doubly-ionised atoms, for which 
there would be 10 inner negative electrons, and the effective central 
charge on the outermost or active electron would be 3e.

Fowler 3 went further still and discovered in the case of silicon 
not only series with a Rydberg constant 9 R, due to double ionisation, 
but also series with a Kydberg constant 16R, due to trebly-ionised 
atoms of silicon.

Another type of experimental investigation which led to results 
confirming Bohr’s theory must now be mentioned. In the course 
of an investigation on the ionisation of gases by collisions of electrons 
with the atoms, James Franck (b. 1882) and Gustav Hertz {b. 1887) 
(a nephew of Heinrich Hertz) found4 that the collision of slow 
electrons with the atoms of mercury vapour led in some cases to 
emission of the mercury line A2536. So long as the kinetic energy 
of the electrons is smaller than hv, where v is the frequency of the 
line, they are reflected elastically by the mercury atoms ; but when 
the kinetic energy is greater than this, light of frequency v is emitted. 
Evidently the collision brings about an excited state of the atom, 
and the radiation is emitted when the atom falls back into its normal 
state. The subject was pursued in many papers by these and other 
authors,5 with the following general results : Every transition of an 
electron from one orbit to another, corresponding to a line of the atom's spectrum, 
can be brought about by the collision of a free electron with the atom, the 
electron losing an amount hv of kinetic energy, where v is the frequency of the 
line. Which transitions occur, depends on the state of excitement of the atom. 
With a normal or unexcited atom, the transitions are those that correspond to 
the lines of the absorption-spectrum of the unexcited atom.

Sp e c t r o s c o p y  in  t h e  o l d e r  q u a n t u m  t h e o r y

1 Nature, xcii (1913), p. 232 ; Phil. Trans. ccxiv (1914), p. 225
* Ann. d. Phys. lxxi (May 1923), p. 142 * Proc. R.S. ciii (June 1923), p. 413
4 Verh. deutsch. phys. Ges. xvi (May and June 1914), pp. 457, 517
5 An extensive bibliography of the experimental work is given at the end of a paper

by Franck and Hertz, Phys. gS. xx (1919), p. 132.
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Moreover, there is a direct connection between the ionisation 
of an atom and its spectrum. If eV denotes the energy that must be given 
to an electron in order that it may ionise the atom, so that V is the* ionisation- 
potential,’ then

eV = hv

where v denotes the frequency of the ultra-violet limit of a series in the spectrum : 
for the unexcited atom, the ionisation-potential is given by this equation, 
where v is the limiting frequency of the absorption series of the unexcited atom. 
Thus in the case of mercury vapour, the ionisation-potential1 is 10-27 
volts, corresponding to the ultra-violet limit at ЛП88 of the series 
of which Л2536 is the first term.2

In one notable case, namely that of helium, the value derived 
spectroscopically proved more reliable than that obtained in the 
first place by direct observation of ionisation brought about by 
electronic bombardment. The latter value was believed until 1922 
to be 25*3 volts, whereas Lyman found in that year 3 that the limit 
of the spectral series concerned was at Л504, which would correspond 
to an ionisation-potential of 24*5 volts. The discrepancy led Franck 4 
to re-examine his experimental data, with the result that he found 
a source of error which led to reduction of the value 25*3 volts by 
0-8 volts, bringing it into coincidence with the spectroscopic value.

Bohr’s theory proved adequate also to account for some typical

Ehenomena of fluorescence observed by R. J. Strutt.6 It was well- 
nown that if sodium vapour is illumined by the D-light emitted by 

a sodium flame, it emits D-light as a resonance radiation. Now 
the D-lines constitute the first doublet in the principal series of 
sodium, the second doublet being in the ultra-violet, at Л3303. 
Strutt asked the question, whether stimulation of sodium vapour 
by this second doublet would give rise to D-light ? He found that 
it would. Moreover, he noticed that there is a line in the spectrum 
of zinc which practically coincides with the less refrangible member 
of the sodium doublet at Л3303, but that there is no zinc line coin­
ciding with the more refrangible member. So by making use of a 
zinc spark he was able to stimulate the sodium vapour with light 
of the wave-length of the less refrangible member only of the sodium 
doublet. It was found that both the D-lines were emitted. The 
explanation depends on the fact that both lines of both doublets 
correspond to transitions down to a certain orbit which is the same 
in all four cases, and which may be called orbit I. By the absorption 
of the ultra-violet light of the second doublet, an electron is raised 
from orbit I to a higher orbit, and collisions with other atoms may 
shake it into somewhat lower orbits, from which it falls into orbit I

1 F. N. Bishop, Phys. Rev. x (1917), p. 244
1 In making the calculation it is useful to note that according to the equation eV —hv, 

one electron volt corresponds to Л12336. This would make Л1188 correspond to 10-4 volts.
• Nature, cx (1922), p. 278 ; Astroph. J .  lx (1924), p. 1 
4 Z S f.  i>. xi (1922), p. 155 ‘ Proc. R M  a), xci (1915), p. 511

n 6

AETHER AND ELECTRICITY



with emission of the D-lines. Bohr’s theory is thus seen to be of 
fundamental importance in regard to fluorescence.

In the first year of the century W. Voigt1 had predicted the 
existence of an electric analogue to the Zeeman effect—a splitting 
of spectral lines by an intense electric field. However, discussing 
the matter by classical physics, he concluded that with a potential- 
fall of 300 volts per cm. in the field, the effect would be only about 
the 20,000th part of the separation between the D-lines of sodium, 
and hence would be unobservable. Notwithstanding this unfavour­
able opinion, in 1913 Johannes Stark2 (b. 1874), when investigating 
the light emitted by the particles which constitute the canal rays, 
examined the influence of an electric field on this light, and observed 
a measurable effect. By spectroscopic observation in a direction 
perpendicular to the field, it was found that the hydrogen lines H^, 
Hy were each split into five components, the oscillations of the three 
inner components (which were of feeble intensity) being parallel to 
the electric field and the oscillations of the two outer components 
(which were stronger) being at right angles to the field. The distance 
between the components was proportional to the electric force. For 
helium, it was found that the effect of the electric field on the lines 
of the principal series and the sharp series was very small and hardly 
distinguishable, but the effect on the lines of the diffuse series 8 was 
of the same order of magnitude as for the hydrogen lines, though 
of a different type.

The Stark-effecty as it has since been called, was extensively 
studied from the experimental side in the years immediately following 
its discovery, chiefly by Stark and his disciples.4 Some curious 
properties were noticed, such as that in some cases, where no splitting 
could be observed with the fields employed, terms were displaced 
towards the ultra-violet ; that terms belonging to the same series 
were not as a rule affected in the same way, but that there was often 
a similarity in behaviour between terms which belonged to different 
but homologous series, and which had the same term-number : 
and that when the spectroscopic observation was in a direction

Earallel to the field, only those components of an electrically-split 
ne appeared which, when the observation was at right angles to 

the field, oscillated linearly perpendicularly to the field ; but that 
these components were now unpolarised.

1 Ann. d. Phys. iv (1901), p. 197
2 Berlin Sitz. 20 November 1913, p. 932 ; reprinted Ann. d. Phys. xliii (1914), p. 965. 

The effect was discovered independently at the same time by A. Lo Surdo, Rend. Lined 
xxii (1913), p. 664 ; xxiii (1914), p. 82.

2 I t may be noted that lines of the diffuse series are broadened when the gas-pressure 
is increased, while those of the other series are not much affected.

4 J . Stark, Verh. deutsch. phys. Ges. xvi (1914), p. 327 ; J . Stark and G. Wendt, Ann. 
d. Phys. xliii (1914), p. 983 ; J. Stark and H. Kirschbaum, ibid. pp. 991, 1017 ; J . Stark, 
Ann. d. Phys. xlviii (1915), pp. 193, 210 ; H. Nyquist, Phys. Rev. ii (1917), p. 226 ; J . Stark, 
O. Hardtke and G. Liebert, Ann. d. Phys. lvi (1918), p. 569 ; J . Stark, ibid. p. 577 ; 
G. Liebert, ibid. pp. 589,610 ; J .  Stark and O. Hardtke, Asm. d. Phys. Iviii (1919), p. 712 : 
J . Stark, ibid. p. 723(9»6) j j y
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A study of the Stark effect, from the standpoint of Bohr’s theory, 
was undertaken by E. Warburg 1 and by Bohr himself.2 It was 
assumed that the field influences the stationary states of the emitting 
system, and thereby the energy possessed by the system in these 
states, splitting a term into two or more components. Warburg 
showed that the effect to be expected, according to quantum theory, 
of an electric field on the spectral lines of hydrogen, would be of the 
same order of magnitude as that observed experimentally by Stark ; 
but the investigations were imperfect as compared with those pub­
lished two years afterwards by Schwarzschild and Epstein, which 
will be described later.

The next great advance in theoretical spectroscopy was the 
removal of a limitation characteristic of the original Bohr theory, 
namely that it took into consideration only a single set of circular 
orbits round each atom : it was obviously desirable to extend Bohr’s 
principles by taking into account more than one degree of freedom. 
This was achieved independently and almost simultaneously in 1915 
by William Wilson3 (i. 1875) and Sommerfeld.4 Their idea recalls 
that which had inspired Sommerfeld’s paper of 1911.5

In the circular orbits of the steady states in Bohr’s theory of the 
hydrogen atom, let q denote the angle which the line joining the 
electron to the proton makes with a fixed line ; then the momentum 
p corresponding to the co-ordinate q is the angular momentum of the 
electron round the proton, and for steady states this must be a multiple 
of A. Thus, since A = 2я-А, we have

p^dq— a multiple of A

where the integration is taken once round the circle ; or, remember­
ing that fpdq is the definition of the Action, we have
Increase of Action in going once round the orbit = a multiple of A.

Wilson and Sommerfeld generalised this into the statement that 
under certain circumstances, in a system with several degrees of 
freedom, if ql9 q%y . . . are the co-ordinates, and pu p2y . . . are the 
corresponding momenta, then the steady states of the system are such 
that lp\dqXy fp2dq2, . . ., are multiples of A, when the integrations are 
extended over periods corresponding to the co-ordinates.6

1 V erh . d .  d eu tsch . p h y s .  G e s . xv (December 1913), p. 1259
• P h i l .  M a g .  xxvii (March 1914), p. 506 ; xxx (1915), p. 404
• P h i l .  M a g .  xxix (1915), p. 795 ; xxxi (1916), p. 156
4 M ü n c h e n  S i t z .  1915, pp. 425, 459 ; A n n .  d . P h y s . li (1916), p. 1. At almost the same 

time Jun Ishiwara, T o k y o  S û g a k i - B u t .  K i z № )  viii, No. 4, p. 106, P ro c . M a t h .  P h y s .  S o c . T ô k y ô , 
viii (1915), p. 318 published proposals which in some respects resembled those of Wilson 
and Sommerfeld ; cf. also the work of Planck on systems with several degrees of freedom, 
V e rh . d . d eu tsc h . p h y s .  G es . xvii (1915), pp. 407, 438 ; A r m . d . P h y s . 1 (1916), p. 385.

4 cf. p. 104
• The rule as thus broadly stated is evidently not independent of the choice of co­

ordinates, a point on which see Einstein, V erh . d . d eu tsc h . p h y s .  G es . xix (1917), p. 82, 
and other papers discussed later in the present chapter.
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Sommerfeld now considered electrons moving round the nucleus 
in non-circular orbits, in fact Keplerian ellipses. Denoting by 
{r,9) the radius vector and vectorial angle of the electron, by m 
its mass, and by Ъе the positive charge on the nucleus, the Lagrangean 
function of the motion is

SPECTROSCOPY IN THE OLDER QUANTUM THEORY

L — \mv2 -  V
where

Ze* 
r ’

so the momenta corresponding to 9 and r are mr2d6/dt and m drfdt
respectively. The (quantum conditions specifying a steady state were
therefore taken by Sommerfeld to be

\ mr2
(1)

and
J m ~  dr = n'h (2)

where n and n' are whole numbers, and the integrations are to be 
taken once round the orbit.

From (1) and (2) we have

(n + n')k = Jmv*dt.

But from the known properties of Keplerian elliptic motion, we 
have

J mv2dt — 2 rre (Zma)2,

denoting by a the major semi-axis of the orbit. Therefore

(п + п') h = 27re(Zma)2. (3)
Also from (1)

nk = mr2~  \d0 = 2тттпг2̂  at J at
so

n 1 %d0___ = ______ jjij _
» +  «' e(Z ma)1 dt

J}_
a

n 9

(4)



from the known properties of elliptic motion, whèfê b denotes the 
minor semi-axis. Equations (3) and (4) connect the quantum 
numbers n and n' with the semi-axes of the orbit.

Also, total energy of electron

AETHER AND ELECTRICITY

where R is Rydberg’s number.
The total number of possible steady orbits has been greatly 

increased by Sommerfeld’s introduction of ellipses in addition to 
Bohr’s circular orbits : but from equation (5) it seems as if the 
total number of possible values of the energy has not been increased, 
since the energy depends only on the single number (n + ri). Thus 
apparently in the case of the hydrogen atom (for which ^= 1 ) we 
should get exactly the same spectra as before. However, as Sommer- 
feld pointed out, the theory has so far supposed the orbit to be a 
Keplerian ellipse, the electron being regarded as a particle of 
constant mass ; whereas, since the velocity in the orbit is great, 
the relativistic increase of mass with velocity ought to be taken into 
account.1 Sommerfeld showed that the orbit is an ellipse with a 
moving perihelion, the motion of the perihelion being great or small 
according as (for the quantified ellipses) the quantity e2jch is great 
or small. Actually e2jch, which is generally denoted by a and 
called the fine-structure constant, has a value2 which at that time was 
believed to be about 7T0*3, and has since been found to be 1/137. 
It represents the ratio of the velocity of the electron in the first Bohr 
orbit to the velocity of light.

The formula for an energy-level or ‘ term ’ of the hydrogen atom 
now becomes, in the first approximation,

T -T o  + Tx

Ze2

Ze2 
‘ 2 a
2ttV Z2m 
h2(n + n')2

RZ2k 
(я + я')3 (5)

where T 0 is the uncorrected value, so T0 = R /n2, n being thec principal 
quantum number,’ and Tx is a correction term given by

т>-¥(И)
1 The necessity for a relativity correction had been pointed out already by Bohr, 

Phil, Mag. xxix (1915), p. 332.
* The fact that e*jcH is a pure number had been pointed out by Jeans, Brit, Ass. Rep, 

1913, p. 376, who suspected that it might have the value 1/(4тг)а.
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where A: is a second quantum number. The frequency of a radiation 
corresponding to the fall of an electron from one energy-level to 
another will depend on the values of n and k for both levels. It is 
therefore evident that to each spectral line of the original theory 
(which depended only on the principal quantum numbers) there 
will now correspond a group of lines very close together ; these 
predicted lines were found to agree remarkably well with lines 
observed 1 in what was called the fine-structure of the spectrum.

As we shall see later, Sommerfeld’s theory is not the complete 
explanation of the fine-structure, which depends also on a property 
discovered later, that of the spin of the electron ; but it was rightly 
acclaimed at the time as a great achievement. The quantum 
number k now introduced in connection with hydrogen was found 
later to account for the distinction between the principal and 
subordinate series of e.g. the alkali metals.

Sommerfeld’s extension of Bohr’s theory led Karl Schwarzschild 2 
(1873-1916), director of the Astrophysical Observatory at Potsdam, 
and Paul Sophus Epstein3 (b. 1883), a former student of Sommerfeld’s 
at Munich, to investigate theoretically the Stark effect. In a station­
ary state of an atom the active electron has three degrees of freedom, 
and we may therefore expect that the state will be specified by three 
quantum numbers. Success in the mathematical treatment of the 
problem depends on the possibility of finding three pairs of variables 
qiy pi (where qi is a co-ordinate and pi the corresponding momentum), 
such that the Hamilton’s partial differential equation belonging to 
the classical problem4 can be solved by separation of variables. 
The integrals Jpidqt corresponding to these separate pairs of variables 
are then equated to multiples of A. By carrying out this programme, 
Epstein found in the case of the Balmer series of hydrogen the follow­
ing simple formula for the displacements of the Stark components 
from the original position of the spectral line :
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where

Av = 3 h
87T2cefi EZ

Z= (ш! + Ш2 + та) (Г П г-Г П г) -  (Пг +  П2 +  Пъ) (Пх - П а).

Here Е is the applied electric force (in the electrostatic system of 
units), (mi, m2, m3) are the quantum numbers of the outer orbit 
from which the electron falls into an inner orbit of quantum numbers 
(nXi n2> n3), p is the mass of the electron, and v is the reciprocal

1 Especially by the measurements, by F. Paschen, Ann. d. Phys. 1 (1916), p. 901, of 
the fine structure of Fowler’s spectra of ionised helium ; cf. E. J . Evans and G. Croxson, 
Nature y xcvii (1916), p. 56

* Berlin Sitz. April 1916, p. 548
» Phys. ZS- xvii (1916), p. 148 ; Ann. d. Phys. 1 (1916), p. 489
4 cf. Whittaker, Analytical Dynamics, § 142
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of the wave-length. The sums {m1 + m2 + m3) and (пг + пг + пъ) 
correspond to the ordinal number of the term in the Balmer series, 
so 72i + ?22 + fls = 2, while 7rci + m2 + /H3 = 3 for the line Ha, 4 for H^, 
5 for Hy, etc. In the case of the Ha-line, Z could take the values 
0, 1, 2, 3, 4, 5 ; and the wave-numbers calculated by the formula 
agreed well with Stark’s observations, not only as regards the 
magnitude of the displacements but also as regards polarisation, 
which depends on whether (ms—nz) is odd or even, similar satis­
factory results were found for the other Balmer lines.

The theory of the Stark effect given by Schwarzschild and 
Epstein is valid so long as the electric field is strong enough to make 
the Stark separation of the components much greater than the 
separation due to the fine-structure. The case when the field is 
so weak that this condition is not satisfied was treated by H. A. 
Kramers,1 who found that the fine-structure lines were split into 
several components, whose displacements were proportional to the 
square of the electric field-strength. Kramers also investigated the 
Stark effect on series lines in the spectra of elements of higher atomic 
number.

The methods of quantification employed by Sommerfeld, 
Schwarzschild and Epstein may be justified by a theory known as 
the theory of adiabatic invariants, which was originally created by 
the founders of thermodynamics,2 who studied quantities that are 
invariant during adiabatic changes. It was now developed by 
Paul Ehrenfest3 (1880-1933) of Leiden, whose starting-point was 
a theorem proved by Wien in the establishment of his displacement 
law,4 namely that if radiation is contained in a perfectly-reflecting 
hollow sphere which is slowly contracting, then the frequency vP 
and the energy eP of each of the (infinitely-many) principal modes 
of vibration of the cavity increase together during the compression 
in such a way that their ratio remains constant. Ehrenfest showed 
that this property is really the basis of the law that the ratio of 
energy to frequency e/v can take only the values 0, A, 2A, . . . : 
for a different assumption, such as that c/v2 is proportional to 
0, A, 2A, . . ., could be shown to lead to a conflict with the second 
law of thermodynamics. What impressed Ehrenfest was the circum­
stance that although Wien’s theorem was deduced by purely classical 
methods, it was valid in quantum theory, and actually indicated a 
fundamental quantum law. He was thus led to suspect that if in

1 Z S .f. Phys. iii (1920), p. 199
* df. R. Clausius, A r m . a . P h y s .  cxlii (1871), p. 433 ; cxlvi (1872), p. 585 ; cl (1873), 

p. 106; English translations, P h i l .  M a g .  xlii (1871), p. 161 ; xliv (1872), p. 365; xlvi 
(1873), pp. 236, 266 ; C. Szily, A n n .  d . P t y s .  cxlv (1872), p. 295 -  P h i l .  M a g .  xliii (1872), 
p. 339 ; L. Boltzmann, V o rle su n g e n  iiber d u  P r in c ip e  d er  M e c h a n ik , ii Teil (Leipzig, 1904), 
ch. iv

* A r m . d .  P h y s . xxxvi (1911), p. 91 ; li (1916), p. 327 ; V e rb . d . d e u tsc h . p h y s . G es . xv
(1913) , p. 451 ; P ro c . A m s t .  A c a d , xvi (1914), p. 591 ; xix (1917), p. 576; P h y s .  xv
(1914) , p. 657 ; P h i l .  M a g .  xxxiii (1917), p. 500

4 cf. Vol. I, p. 379
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a dynamical system some parameter is slowly changed (as was the 
radius of the sphere in Wien’s theorem), and if some quantity J  is 
found to be invariant according to classical physics during this 
change (as was e/v in Wien’s case), then the system may be quantified 
by putting J  equal to a multiple of h. An example of * adiabatic 
change ’ is furnished by the motion of a simple pendulum when the 
length of the suspending cord is very slowly altered.

The general problem he formulated as follows. Let there be a 
system of differential equations (for simplicity taking two inde­
pendent variables)
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~  = X^xi, xt, t, тп), = X2(*i, хг, t, m)

where the letter m stands for one or more constant parameters. 
These equations will possess integrals

Fi(*i, x2, t, m) = cu F2(*i, *2, t, m)

Then it is possible that some functions of the constants of integration 
C\9 c2, and of the parameters m, exist, which maintain their values unaltered 
when the parameters m are varied in an arbitrary manner, provided the variation 
is very slow. Such functions are called adiabatic invariants ; and 
Ehrenfest now showed that the quantities which had been put equal to 
whole-number multiples of h in earlier papers on quantum theory were always 
adiabatic invariants ; and, moreover, that the rule thus indicated was 
valid generally. In other words, stationary orbits are adiabatically 
invariant.

Now it had been shown by J. Willard Gibbs 1 and Paul Hertz,2 
that in the case of a dynamical system with one degree of freedom 
whose solutions are periodic and whose equations of motion are

dq^dH dp=
dt dp9 dt dq9

so that the trajectory is represented in the (q, p) plane by a curve of 
constant energy

then the area \\dq dp enclosed by this curve is an adiabatic invariant ; 
or, \pdq taken round the curve is an adiabatic invariant : that is, 
the increment of the Action, in a complete period, is an adiabatic invariant.

This theorem is true even when the system has more than one 
degree of freedom, provided the solution is periodic. As an example,3

1 Principles of statistical mechanics, 1902, p. 157 1 Ann. d. Phys. xxxiii (1910), p. 537
8 Other examples of adiabatic invariants are given by W. B. Morton, Phil, Mag.

viii (1929), p. 186 and by P. L. Bhatnagar and D. S. Kothari, Indian J ,  Phys. xvi (1942),
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consider the case of a planet describing an elliptic orbit under the
Newtonian law of force to the focus ; and suppose that the mass m 
of the planet is slowly increased by moving through a dusty atmos­
phere, while gradual changes also take place in the strength ft of 
the centre of force. It is well known that the velocity v, the radius 
vector r and the mean distance a, are connected by the equation

When the planet picks up a small particle 8m previously at rest, 
by the theorem of conservation of linear momentum we have

Suppose the changes in m and ft to be brought about so gradually 
that the increments 8m and 8 ft are spread over a large number of 
orbital revolutions ; we may then, before integrating the last 
equation, replace v2 by its time-average. Now since the average 
value of 1/r is l /д, we see from the equation

that the average value of v2 is ft/a. When this is inserted, the varia­
tional equation becomes

and since the increment of the Action in a complete period is known 
to be 277THfi* д*, this equation verifies for Keplerian motion the theorem

Varying this, we have

v ft ûV
or

so the previous equation becomes

8a j 28m Sft_Q
a m ft

Integrating, we have
mafuz = Constant :
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that the increment of the Action in a complete period is an adiabatic 
invariant.

In Keplerian motion, the Action

is the sum of two integrals, namely fm (drjdt) dr and fmr* (ddfdt) dO : and 
since the alterations of /z and m do not affect the angular momentum 
round the centre of force, we see that the second of these integrals, 
taken singly, must be an adiabatic invariant. Whence it follows that 
the first must be also. Thus a justification is provided for Sommerfeld’s 
choice of integrals to be equated to integral multiples of h.

We shall now establish a connection (not restricted to Keplerian 
motion) between the adiabatic invariant representing the increment 
of Action in a complete period (which we shall denote by J), the total 
energy of the motion (which we shall denote by W) and the frequency 
v of the motion (i.e. the reciprocal of the periodic time).

The solution of the differential equations of motion will consist 
in representing the original Hamiltonian variables in terms of 
Q=v/ + e (where € is an arbitrary constant) and a variable P which 
is conjugate to Q, and is actually constant : the transformation 
from (q9 p) to (Q,, P) being a contact-transformation, so that

where dCl is the differential of a function which resumes its value 
after describing the periodic orbit.

Integrating this equation once round the orbit, we have

Therefore P = \pdq integrated round the orbit : that is, P is the adi­
abatic invariant which we have called J. The Hamiltonian equa­
tions in terms of the variables P and Q, are

pdq — PdQj= dQ.

But

dQ^dH
dt дР' dt eQj

The former equation is

so we have
dW
dj

where W denotes the total energy.
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The methods employed by Schwarzschild and Epstein in the 
mathematical treatment of the Stark effect led other workers in 
quantum theory 1 to study dynamical systems which can be solved 
by separation of variables, a subject which had been studied exten­
sively in 1891 and the following years by Paul Stàckel of Kiel.2 In 
such systems the integral of Action,

|2T  dt

where T denotes the kinetic energy, can be separated into a sum 
of integrals each of which depends on one only of the co-ordinates,

i j V { F*fo)K*
In general, the motion of each co-ordinate is a libration,, i.e. it oscillates 
between two fixed limits, the values of which are determined by the 
integrated equations of motion.3 For such systems it was proved 
by J . M. Burgers 4 that the single integrals

J* = j \ / ]</<?*,

where the integration is taken over a rar.gi in which qk oscillates once up 
and down between its limits, are adiabatic invariants 5 : and therefore 
the rule that must be followed in order to quantify is to write

J*= щh
where nt is a whole number, and is called a quantum number.

Denoting by T the average value of the kinetic energy, we have

2 T - - J U BfB 2TA 
A + B J - a

where A and B are large numbers. Hence

2т - а-Ы !.?  Л ' - Ф '
Now

J* = jy{F*(<7*)}^
1 P. Debye, Gott. Nach. 1916, p. 142 ; Phys. Z$. xvii (1916), pp. 507, 512 ; A. Sommer- 

feld, Phys. ZS. xvii (1916), p. 491
* nabilitationssckrift, Halle, 1891 ; Comptes Rendus, cxvi (1893), p. 485 ; cxxi (1895), 

p. 489 ; M ath. Ann. xlii (1893), p. 545
* There is, however, often among the co-ordinates an azimuthal angle which can 

increase indefinitely but with respect to which the configuration of the system is periodic ; 
an increase of 2ir in it takes the place of the libration of the other co-ordinates.

4 Phil. Mag. xxxiii (1917), p. 514 ; Ann. d. Phys. lii (1917), p. 195
* Leaving aside some special cases of degeneration
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taken over a range of integration described in the periodic time of the 
oscillation of qk. So

2T « A + B
or

2 f  = I v * J t
lc

where vk is the frequency associated with the co-ordinate qk.
Now it was shown in 1887 by Otto Staude 1 of Dorpat (for the 

case of two degrees of freedom) and by Stâckel2 in 1901 (for any 
number of degrees of freedom) that a dynamical system, for which 
Hamilton’s partial differential equation can be integrated by 
separation of variables, is multiply periodic,3 that is to say, the co­
ordinates (qly q2, . . qn) can be expressed by generalised Fourier 
series of the type

qr= ^H  Qr COS {2тг(т1̂ 1 + T2̂ 2 + • • • + TnVnjt + yr)

where Qr and y r are functions of tu t2, . . . т», where the vk have 
the same meanings as before, and where summation is over integral 
values of the parameters tu t2, . . . r n.

It can be shown, as in the case of a system with one degree of 
freedom, that

v t— [k— 1, 2, « • . n)

where W denotes the total energy, so that the frequency of the 
radiation emitted in the transition from a state Wr to a state W$ 
is given by the equation

bv, = W r-W ,.

Now suppose that the quantum numbers belonging to the states Wf 
and Ws are large, and that the quantum numbers of the state Wr differ 
from those of the state W* by ть r 2, . . . r n, respectively, so that

A j i == /VJ2=sî TjA, • * •, A J n 55 Tnh.

Since consecutive orbits with large quantum numbers do not differ 
greatly from each other, we can represent the increment Wr — W* of 
the energy approximately by

™ = W . ^ ' + w S h + ■ ■ ■ + W .* h
1 Math. Arm. xxix (1887), p. 468 ; Sitz. d. DorpaUr Naturfor., April 1887
• Math. Ann. liv (1901), p. 86
* The German term, introduced by Staude, loc. cit,, is bedingt-periodisch.
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so we have

hvr aw . a w  hA_ ^aw ,
- x f -  r i h  +  - % = -  r 2 n  +  . .  . +  T j  T i J i

4J1 2 4J n
or

Vf* ^  V1T1 +  V2T2 +  • • • +  VnTft :

that is to say, /Л* frequency of the spectroscopic line emitted in the transition 
r^s is approximately vxtx + v2t2 + . . . + vnTn, which is the frequency 
of one term in the multiple Fourier series representing the classical solution 
of the problem y namely that for which

_ r _ Г S r $
T i  =  П х —  П\у  T g  =  П 2 —  П2у • • • T n  ~  П п —  Пп

where ( rnlyrn2y . . . ) are the quantum numbers in the state r, and 
(апиап2у . . . ) are the quantum numbers in the state s. This was called 
by Ehrenfest the correspondence theorem for frequencies.

In the same year (1916) in which Schwarzschild and Epstein 
published their explanations of the Stark effect, Sommerfeld 1 and 
Debye 2 showed that the Zeeman effect also could be brought within 
the compass of the quantum theory. If we consider the motion of 
an electron under the influence of a fixed electric charge at the 
origin, and a magnetic field H parallel to the axis of z, the classical 
equations of motion may be written in the Hamiltonian form

dqr= dK
dt dpr, dt dqr (r= 1,2, 3)

where qx is the radius vector from the origin to the electron, q2 is 
the angle between qx and the intersection of the plane of xy with 
the plane of instantaneous motion of the electron (which we may 
call the plane of the orbit), qz is the angle between the fixed axis O* 
and the intersection of the plane of xy with the plane of the orbit, 
pt is the component of linear momentum along the radius vector, 
P2 is the angular momentum of the electron round the origin, and p2 
is the angular momentum of the electron about the axis of z . These 
variables are separable. During the motion, the plane of the orbit 
precesses3 uniformly round the axis of z with angular velocity 
eVLfimCy so the dynamical equations involving q$ and p% must be

dqz _ eH = 0
dt 2mc dt

1 Phys. Z$- xvü (1916), p. 491
• Phys. Z& xvii (1916), p. 507 ; cf. also A. W. Conway, Mature, cxvi (1925), p. 97 

and T. van Lohuizen, Amst. Proc. xxii (1919), p. 190
• This is the Larmor precession, described in Vol. I, pp. 415-6
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and therefore the term involving qz and ps in the Hamiltonian 
function K must be

eHp3 
2 me'

Proceeding now to the quantification, there will be three quantum 
conditions of the kind usual in problems for which the variables 
can be separated, and the third 01 them will be r

pz = TTljh

where mj is a whole number which will be called the magnetic 
quantum number : so the existence of the magnetic quantum number 
is an assertion that the component of angular momentum in the 
direction of the magnetic field can take only values which are whole- 
number multiples of Æ. Since this component attains its greatest 
value when it is equal or opposite to the total angular momentum, 
we see that mj can take only the values — j, —j+  1, . . ., j — 1, j, 
where j  is the quantum number which specifies the total angular 
momentum.

Thus the Hamiltonian function K, which represents the energy 
of the motion, is increased (as compared with the case when the 
magnetic field is absent) by

mjehYL
2 me *

Supposing that we are dealing with the hydrogen atom, the part of 
the energy corresponding to the unperturbed motion is (as in 
Bohr’s original theory, neglecting the fine structure)

2ттгте*
n2h*

SPECTROSCOPY IN THE OLDER QUANTUM THEORY

and adding to this the part we have just found, due to the magnetic 
field, we have for the total energy in the stationary state specified 
by the quantum numbers w, mj,

2тг2те*‘ mjehU 
n2h* 47ттс 9

and therefore the frequency of the spectral line emitted in the 
transition from the state (n, m j )  to the state (n\ m/) is

v 27r2me*
k*

Thus when the magnetic field is appliedy in place of the single spectral 
line specified by ( tz,  n)y we have a number of lines depending on mj and тщ'.
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These are the Zeeman components. Their number, intensity and state 
of polarisation are furnished by a principle which was not discovered 
until 1918, and which will be described presently. It will appear 
that so far as the number, position and state of polarisation oi the 
components are concerned, the quantum theory gives (for lines such 
as those we are now considering, namely single lines which are not 
members of doublets or triplets) exactly the same results as Lorentz’s 
original theory. It will be noted that this became possible because 
Planck’s constant h cancelled out in the magnetic part of the above 
expression for the frequency.

We may note that since in the classical problem the angle a  
which the plane of the orbit makes with Oz is given by

/>3COS a  =  —*
Рг

therefore in the quantified problem, when both the total angular 
momentum and its component in the direction of Oz are whole- 
number multiples of Л, this angle a can take only certain discrete values. 
This is an example of what is called space quantification or direction 
quantification ; the plane of the orbit is permitted to be inclined at 
only certain definite angles to the direction of the field.

The principle of space quantification was strikingly confirmed 
by an experiment performed in 1921 by O. Stern 1 and W. Gerlach,2 
working in the department of Max Born at Frankfort-on-Main. Let 
a ray of atoms of silver produced by boiling silver in a furnace and 
passing the vapour through two fine slits, be travelling in the x-direc- 
tion, and suppose that the ray encounters a non-uniform magnetic 
field parallel to the axis of z. In the non-uniform magnetic field 
H*, a particle, whose magnetic moment in the ^-direction is M, 
experiences a mechanical force ЫдНг/dz in the ^-direction. Space- 
quantification ensures, however, that atoms orient themselves in the 
magnetic field in certain ways, in fact that M can take only values 
which correspond to the directions parallel and antiparallel to EL, 
and so are equal and opposite. Hence the original ray of silver atoms 
is split into two rays in the plane of xz, corresponding to these two 
opposite values of the ^-component of the magnetic moment : in 
the experiment, these rays strike a plane to which the atoms adhere 
and so produce an image which is observed.

It may be noted that the Stern-Gerlach effect concerns only a 
single state of the atom, not (like the Zeeman effect) a transition 
from one state to another.

The effect of crossed electric and magnetic fields on the radiation 
from a hydrogen atom was discussed by O. Klein,3 W. Lenz4 and 
N. Bohr.6

Z&f- P* vii (1921), p. 249 
ÇS./. P. xxii (1924), p. 109 
Proc. Phys. Soc. xxxv (1923), p. 275

197
1 Z S .f.  P .viu (1921), p. 110 ; ix (1922),pp. 349,352

/ .  p. xxiv (1924), p. ™
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Before 1918 the Bohr theory had been applied to determine only 
the frequencies of lines in spectra, and had not yielded any results 
regarding their intensity. Some definite questions concerning intensity 
were, however, suggested by spectroscopic observations ; in partic­
ular, certain lines, whose existence might be expected according 
to the Bohr theory, were found to be absent in the spectrum as 
observed : which suggested that transitions of the active electron 
from certain orbits to certain other orbits never took place, so that 
the corresponding lines could not appear.

The explanation of this phenomenon was given by Adalbert 
Rubinowicz1 (b. 1889), a Pole then working at Munich, who, con­
sidering atoms of the hydrogen type, and defining a stationary orbit 
by the numbers n, n\ introduced by Sommerfeld’s quantum conditions

J mr% ~dO = nh, j /и ̂  dr = n'h9

remarked that the angular momentum of the atom was nh, and that 
in a transition between an orbit of quantum numbers (m, m!) and 
an orbit of quantum numbers (w, я'), this angular momentum would 
change by \ m-n\h.  But by the principle of conservation of angular 
momentum, any change in the angular momentum of the atom 
must be balanced by the angular momentum carried off by the 
radiation associated with the transition. By an argument based 
partly on classical electrodynamics and partly on quantum theory 
(and therefore perhaps not very secure), Rubinowicz found that 
the angular momentum radiated, when the radiation is circularly 
polarised, is h ; and when the radiation is linearly polarised, the 
angular momentum radiated is zero. Thus we have

I m—n I Æ = 0 or 1,

and we obtain a selection-principle, namely that the azimuthal quantum 
number n can only change by 1, 0 or — 1.

In a footnote appended to his paper, Rubinowicz explained that 
when his paper was ready for press there had appeared the first 
Part of a memoir by Bohr,2 in which the same problem was approached 
from quite a different standpoint, depending on the close relations 
which exist between the quantum theory and the classical theory 
for very great quantum numbers. We have seen an example of 
these relations in the correspondence theorem for frequencies ; Bohr 
now extended this theorem by assuming that there is a relation 
between the intensity of the spectral line radiated and the amplitude 
of the corresponding term in the classical multiple-Fourier expansion : 
in fact, that the transition-probability associated with the genesis of

1 Phys. ZS. xix, p. 441 (15 Oct. 1918), and p. 465 (1 November 1918)
* D. Kgl. Danske Vid. Selsk. Skr., Nat. og Math. Afd.y 8 Raekke, iv, 1 (1918) ; cf. N. Bohr, 

Arm. d. Phys. Ixxi (1923), p. 228
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the spectral line contains a factor proportional to the square of the 
corresponding coefficient in the Fourier series. Moreover, he 
extended this correspondence principle for intensities by assuming 
its validity not only in the region of high-quantum numbers but 
over the whole range of quantum numbers : so that if any term in 
the classical multiple-Fourier expansion is absent, the spectral line, which 
corresponds to it according to the correspondence-theorem for frequencies, will 
also be absent. This is a selection-principle of wide application.

He postulated also that the polarisation of the emitted spectral 
line may be inferred from the nature of the conjugated classical 
vibration. Thus1 considering in particular the Zeeman splitting 
of a spectral line of hydrogen, when the transition is such that the 
magnetic quantum number is unchanged, the Zeeman component 
will occupy the same position as the original line, and the radiation 
will correspond to that emitted in classical electrodynamics by an 
electron performing linear oscillations parallel to the magnetic field ; 
while in the case when the magnetic quantum number changes by 
±1, (which is the only other possibility permitted by the correspond­
ence-principle), we shall obtain Zeeman components symmetrically 
situated with respect to the original line, and the radiation will 
correspond to that emitted by a classical electron describing a circular 
orbit in a plane at right angles to the magnetic field, in one or the 
other direction of circulation. The polarisation of the emitted line 
will therefore in all three cases be the same as that predicted by 
Lorentz 2 on the classical theory.

An extensive memoir by H. A. Kramers 3 supplied convincing 
evidence of the validity of Bohr’s correspondence-principle for the 
calculation of the intensities of spectral lines : while W. Kossel and 
A. Sommerfeld 4 showed that the deductions from the selection 
principle were confirmed by experiment in the case of many different 
lands of atoms.

The correspondence principle was extended to absorption by 
J. H. van VlecK.6

We must now consider developments in the theory of quantum 
numbers. We have seen that Sommerfeld specified an energy-level 
or ‘ term ’ of an atom by two quantum numbers (leaving aside for 
the moment the magnetic quantum number). The first of these 
is the principal quantum number n, which had been introduced by Bohr 
in 1913, and which increases by unity when we pass from a term 
of a spectral series to the next higher term : ana the other is the 
azimuthal quantum number k, which had been introduced by Sommerfeld 
himself in 1915, and which distinguishes the different series from 
each other : thus in the sodium spectrum 6 the terms of the ‘ sharp ’ 
series have the frequencies R/(w + j)2, where R is Rydberg’s constant

1 N. Bohr, Proc. Phys. Soc. xxxv (1923), p. 275 * cf. Vol. I, p. 412
1 D. Kgl. Dansk. Vid. Selsk. Skr., Nat. og Math. Afd.y 8 Raekke, iii, 3 (1919)
4 Verh. d. deutsch phys. Ges. xxi (1919), p. 240 5 Phys. Rev. xxiv (1924), p. 330
• cf. Vol. I, p. 378
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and n is a positive whole number : those of the ‘ principal5 series 
have the frequencies Rl(n+pi)2 and RЦп+рг)2 l those of the 
‘ diffuse’ series have the frequencies R /(n + d)2, and those of the 
‘ fundamental’ series have the frequencies R/(w+/)2 : and these 
series correspond respectively to k=  1, 2, 3, 4. It has become 
customary to use in place of k the letter /, where / = k — 1 : the reason 
being that when there is one active electron, its orbital angular 
momentum is lh. The series of energy-levels of the atom for which 
/ = 0, 1, 2, 3, . . were denoted by s> p, d9f\ . ., these being the
initial letters of the words sharp, principal, diffuse, fundamental etc. 
I has the selection rule that in a transition it can change only to 
l + 1 or l — 1.

Evidently, however, the two quantum numbers n and l did not 
suffice for the description of the terms of the alkali spectra, for the

Principal series was a series of doublets. To meet this situation, 
ommerfeld 1 in 1920 introduced a third number j 9 which he called 

the inner quantum number and which is different for the two terms 
of a doublet. This number must arise from the quantification of a 
motion in some third degree of freedom, and it was natural to suppose 
that besides the orbital angular momentum of the atom, which was 
accounted for by /, there was yet another independent angular 
momentum. This was at first conjectured to be the angular momen­
tum of the atom’s core, was denoted by sh and was supposed to have 
(for the alkalis) the value \h ; so that when it was compounded with 
the angular momentum /Æ, with which space-quantification compels 
it to be either parallel or anti-parallel, the resultant total angular 
momentum of the atom, jh, could have either of the two values2 

— and U + \)h. There is a selection-rule that j  may pass 
only to (J+ 1), j 9 or (J—1), and moreover transitions in which j  
remains zero are forbidden.

In the spectra of the alkaline earths there are series of triplets 
which were accounted for in the same way by supposing that the 
angular momentum sh can take the values 0 and Й, giving for the 
total angular momentum the three possibilities (l—l)h} lh> (l+l)h9 
and so for j  the three possibilities j  = l — 1, j  = /, j = /+  1. In other 
atoms, every value 3 of l was supposed to yield a set of energy-levels 
or terms corresponding to the values

j  — l -Ь S9 / -j- s — 1, • • • J / — jj+ 1 , 11 — «sj.

We have said that at first the independent angular momentum 
sh9 which is compounded with the orbital angular momentum lh 
in order to produce the resultant total angular momentum jh9 was 
supposed to be the angular momentum of the ‘ core ’ of the atom, 
i.e. possibly the nucleus together with the innermost closed shells

1 Ann. d. Phys. lxiii (1920), p. 221 ; lxx (1923), p. 32 
* Except when / = 0, in which case there is only one value of j ,  namely J.
• /=0 yields only a single term 

(955)
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of electrons. This hypothesis was overthrown by Wolfgang Pauli 
(b. 1900), a Viennese who, after studying with Sommerfeld at Munich 
and with Bohr at Copenhagen, had become a privat-dozent in the 
University of Hamburg. Pauli showed 1 that if the angular momen­
tum sh belonged to the atomic core, there would follow a certain 
dependence of the Zeeman effect on the atomic number, and this 
effect was not observed : he inferred that the angular momentum 
sh must be due to a new quantum-theoretic property of the electron, 
which he called c a two-valuedness not describable classically.* 
This remark suggested later in the same year to two pupils of 
Ehrenfest, G. E. Uhlenbeck and S. Goudsmit of Leiden 2 the adop­
tion of a proposal which had been made in 1921 by Arthur H. 
Compton,3 an American who was at that time working with Ruther­
ford at Cambridge, namely that the electron itself possesses an angular 
momentum or spin, and a magnetic moment. Uhlenbeck and Goudsmit 
proposed as the amount of angular momentum \h ; and they 
suggested that the values (/ + £)/? and (/ — \)h which are possible 
for the total angular momentum jh in e.g. the alkali spectra, are 
obtained by compounding the angular momentum lh with the 
electron-spin, which (since it exists in the magnetic field created 
by the orbital revolution of the electron) is compelled by space- 
quantification to take orientations either parallel or anti-parallel 
to lh. Associated with the spin there is a magnetic moment whose 
value they asserted (for reasons to be discussed presently) to be 
ehj2mc.

The discovery of electron-spin raised a question as to the validity 
of SommerfekTs explanation of the fine-structure of the hydrogen 
lines. For if the electron has a spin with a magnetic moment, then 
two different orientations of the spin must be allowed, and to these 
must correspond two different energy-levels for the atom, causing a 
further resolution of each fine-structure component into a doublet. 
The measurements of Paschen had shown, however, that Sommer- 
feld’s formula expressed the experimental data for the hydrogen 
spectrum satisfactorily : and it was found that the two corrections 
which in a more complete theory should be made to SommerfekTs 
analysis, namely (1) replacing the particle-dynamics of Sommerfeld 
by quantum-mechanics, and (2) taking account of the spin magnetic 
moment, more or less neutralised each other, producing only a 
replacement of the quantum number k  by ( j  +  ^ ) .

The theory of spectra was much advanced by investigations 
arising out of the new experimental work on the Zeeman effect.

In the first decade of the twentieth century no great progress 
was made in the observational field, though in 1907 C. Kunge 4

1 Z S .f. P . xxxi (1925), p. 373
* Naturwiss, xiii (1925), p. 953 ; Nature, cxvii (1926), p. 264. I t  is said that R. de L. 

Kronig had the same idea somewhat earlier, but finding it received unsympathetically 
by a colleague, did not publish it.

* Phil. Mag. xli (1921), p. 279 ; J . Frankl. Inst, cxcii (1921), p. 144
* Pkys. ZS. viii (1907), p. 232
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studied a number of spectral lines which show complex types of 
resolution, and found that the distances (measured as differences 
of frequency) of the components from the centre of the undisturbed 
line were connected by simple numerical relations with the frequency- 
difference which was given by Lorentz’s theory of the Zeeman 
triplet, namely е¥1/4жту where H is the external magnetic force 
in electromagnetic units. In 1912, however, F. Paschen and E. Back 1 
studied the Zeeman effect in lines which are members of doublets 
or triplets in series spectra (e.g. of the alkali atoms), and found that 
so long as the magnetic field is not strong the Zeeman splitting is 
very complicated. The different lines of a doublet or triplet behave 
differently, though the separations between the components always 
increase proportionally to the field-strength. When, however, the 
field has increased to such a strength that the separations between 
the Zeeman components are of the same order of magnitude as 
the separations between the components of the original doublet or 
triplet, the individual Zeeman components become diffuse and tend 
to amalgamate : and ultimately, at very great field-strengths, the 
whole system reduces to three components constituting a normal 
Zeeman triplet,2 and having its centre at the centre of the original 
doublet or triplet. The difference in character between the Zeeman 
effect in weak and strong external magnetic fields was seen at once 
to be connected with the fact that the space-quantification of the 
electron spin is governed by the magnetic field of the orbital motions 
when the external magnetic field is weak, but is governed by the 
external field when that is sufficiently strong.

The experimental knowledge regarding the splitting that is found 
with comparatively weak fields in doublets and triplets, or the 
anomalous Zeeman effect as it was called, was reduced to a mathematical 
formula by Alfred Landé 3 of Tübingen in 1923. He showed that 
the frequency of any one of the Zeeman components can, like the 
frequencies of the lines of the original spectrum, be represented by 
the difference of two ‘ terms 5 or energy-levels. In a magnetic field, 
each term W of the original spectrum is split into several terms 
W +Z. If (supposing for simplicity that there is only one active 
or valence electron) the term W has the quantum numbers ny lyj y sy 
then for its Zeeman components we have

2 _ mfigh H
2 me ergs,

where ey Й, m, c have their usual meanings ; gy which is called the 
Landé splitting factor, is given by the equation

O— 1 + ./C/+ l) + s(s+ ! ) —/(/+ 1)
* + 2/0  + 1)

1 Ann. d. Phys. xxxix (1912), p. 897 ; xl (1913), p. 960
* For a discussion of the phenomena taking place during the passage from weak to 

strong fields, cf. W. Pauli, & . / .  P. xx (1923), p. 371. * %S.f. P. xv (1923), p. 189
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and щ is the magnetic quantum number,1 which, as we have already 
seen, can take the values

ms=j>j-h  • • •> - j
so one spectral term splits into (2 j+ l) equidistant terms. As we 
have seen, in transitions mj can change only by 0 or ±1, and the 
lines so arising are polarised in the same way as the lines of a Lorentz 
Zeeman triplet.

If the original term is a singlet level, we have s = 0 and l — j,  so 
g=  1 ; and lines resulting from combinations of levels in singlet 
series have the appearance of Lorentz Zeeman triplets.

Observation of the Zeeman effect is of great assistance in deter­
mining the character of any particular spectral line, since the 
observation furnishes the value of the Landé splitting factor, and 
this knowledge generally leads to the determination of the quantum 
number L

One naturally inquires why the quantum theory of the Zeeman 
effect given earlier (which in fact is valid only for lines which belong 
to series of singlets) does not apply in general. The reason must 
obviously be, that the Larmor procession, whose value was assumed 
to be eH/2me in the earlier proof, has not always this value : and 
this again can only mean that the ratio of magnetic moment to 
mechanical angular momentum is somehow different in the case 
of the anomalous Zeeman effect from what is asserted in Larmor’s 
theory, where the ratio is that corresponding to the revolution of an 
electron in an orbit large compared with its own size. We conclude 
therefore that the existence of a ^-factor different from unity indicates 
that the ratio of magnetic moment to angular momentum is not the 
same for the intrinsic spin of the electron as it is for the orbital 
motion. Now a state of the atom in which the angular momentum 
is due solely to electron-spin is specified by /=0, s = \> j  = \ :  and 
the ^-factor then has the value 2 : so we are led to suspect that 
for the electron-spin, the ratio of magnetic moment to angular 
momentum is twice as great as it is in the case of an electron circulat­
ing in an orbit : that is, it is ejmc instead of e/2m. The magnetic 
moment of the spinning electron is therefore conjectured to be ehj2mc ; and 
it is found that with this assumption the Landé ^-factor can be 
satisfactorily explained in all cases. The cause of the anomalous 
Zeeman effect was therefore now revealed.

Some striking confirmations of the validity of the correspondence- 
principle were obtained in a series of papers which followed a dis­
covery made in 1922 by Miguel A. Catalan,2 a Spanish research 
student of Alfred Fowler’s at the Imperial College in London. 
When investigating the spectrum of manganese, Catalan noticed 
that there was a marked tendency for lines of similar character to

1 cf. A. Sommerfeld and W. Heisenberg, <£&/. P. xxxi (1922), p.131 
1 Phil. Trans. ccxxiii (1922), p. 127 (at p. 146)
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appear in groups, and that these groups included some of the most 
intense lines in the spectrum : for instance, a group of nine lines 
between Л4455 and Л4462. For this kind of regularity he suggested 
the name multiplet. The lines arise from the combination of multiplet 
energy-levels. Spectral lines, particularly in multiplets, their relative 
intensities and their Zeeman components, were studied by many 
writers 1 in 1924-5, with results satisfactorily in accord with the 
predictions of the correspondence principle.

The rapid development of spectroscopy from 1913 onwards led 
to a much fuller understanding of the system of electrons which 
surrounds the nucleus of an atom. Investigators of this subject 
naturally based their work on the Newlands-Mendeléev periodic 
table,2 and were stimulated by the attempts of A. M. Mayer and 
J. J . Thomson 3 to explain it in terms of stable configurations of 
electrons. It was obvious from chemical evidence that the two 
electrons possessed by the helium atom form a very stable con­
figuration, which may be regarded as constituting a complete 
‘ shell * of electrons surrounding the nucleus. The next atom in 
order of atomic number, lithium, must have this shell together with 
one loosely-attached electron outside it, and for the succeeding 
elements further electrons are added to this second shell until it 
contains eight electrons, when the tenth element neon is formed, 
thereby completing the shell and arriving again at a very stable 
configuration. The eleventh element sodium has these two complete 
shells together with one loosely-attached electron outside them, 
and so on.

The chemical evidence on atomic structure was marshalled in 
1916-19 by two Americans, G. N. Lewis4 * and Irving Langmuir 6 
(b. 1881). Lewis began by considering the different kinds of bonds 
that unite atoms into molecules, interpreting one kind of chemical 
bond as a couple of electrons held in common by two atoms ; many 
facts, such as the tetrahedral carbon atom which is necessary for

1 F. M. Walters, J . Opt. Soc. Amer, viii (1924), p. 245 ; O. Laporte, £ & / .  P . xxiii 
(1924), p. 135 ; xxvi (1924), p. 1. These two writers analysed the iron spectrum. 
H. C. Burger and H. B. Dorgels, /•  (1924), p. 258 ; L. S. Omstein and
H. C. Burger, ZS-f- p • xxiv (1924), p. 41 ; xxviii (1924), p. 135 ; xxix (1924), p. 241 ; 
xxxi (1925), p. 355 ; W. Heisenberg, £ 6*./. P. xxxi (1925), p. 617 ; xxxii (1925), p. 841 ; 
S. Goudsmit and R. de L. Kronig, Proc. Amst. Ac. xxviii (1925), p. 418 ; H. Honl, %$•/• p * 
xxxi (1925), p. 340; R. de L. Kronig, /•  xxxi (1925), p. 885 ; xxxiii (1925), 
p. 261 ; A. Sommerfeld and H. Honl, Berlin Sitz. (1925), p. 141 ; H. N. Russell, Nature, 
cxv (1925), p. 835 ; Proc. N.A.S. xi (1925), pp. 314, 322 ; H. N. Russell and F. A. 
Saunders, Astroph. J .  lxi (1925), p. 38. This paper, arising out of an investigation of 
groups of lines in the arc spectrum of calcium, was of great importance for the study 
of complex spectra. It took into account the simultaneous action of two displaced electrons ; 
F. Hund, Z&f* p * xxxiii (1925), p. 345 ; xxxiv (1925), p. 296.

* cf. p. 11
* c f .p . 21
* Joum. Amer. Chem. Soc. xxxviii (1916), p. 762 ; Lewis, Valence and the Structure of 

Atoms and Molecules, New York, 1923
6 Joum. Amer. Chem. Soc. xli (1919), p. 868. Somewhat similar ideas were published 

by W. Kossel, Ann. d. Phys. (1916), p. 229, who studied the transfer of electrons from 
electropositive to electronegative atoms, resulting in the formation of ions.
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the understanding of chemical processes in organic substances, 
indicate that the atom must have a structure in three-dimensional 
space (in contradistinction to a flat ring system) 1 ; and Lewis 
favoured a cubical form. Langmuir, continuing Lewis’s work, 
concluded that the electrons in any atom are arranged in a series 
of nearly spherical shells. The outermost occupied shell consists 
of those electrons that do not belong to a closed configuration. 
These play the principal part in spectroscopic phenomena, and are 
known as the active electrons : they also play the principal part in 
chemical phenomena, in which connection they are known as 
valence electrons. The properties of the atoms depend much on the 
ease with which they are able to revert to more stable forms by 
giving or taking up electrons. The shells that are completed in 
helium and neon respectively have already been mentioned : argon 
(atomic number 18) in addition to the innermost shell of 2 and 
the next shell of 8, has a third shell of 8 : while krypton has four 
shells of 2, 8, 8 and 18 electrons : and so on. In the light of this 
model atom, Langmuir explained the chemical properties of the 
elements, and also their physical properties such as boiling-points, 
electric conductivity and magnetic behaviour.

It was early realised, however, that the formation of the shells 
cannot be quite regular : it was suggested in 1920 by R. Ladenburg 2 
that in the case of the elements of atomic numbers 21 to 28 inclusive 
(scandium to nickel) the electrons newly added are not placed in 
the outermost shell but are used in building up a shell interior to 
this. This implies that a shell begins to be formed with potassium 
(atomic number 19) and calcium (atomic number 20) before the 
third shell is really complete.

It was, however, from the study of X-ray spectra (i.e. the 
characteristic X-rays which are emitted by solid chemical elements, 
or compounds of them, when bombarded by a beam of high-energy 
electrons) 3 that the greatest help was obtained in relating the shell- 
structure to the chemical elements. It was known that the character­
istic X-rays constituted an additive atomic property and therefore 
the X-ray spectra must belong to the atoms of the anti-cathode. 
Moreover, it was known that they consisted of lines which could be 
arranged in series, like those of optical spectra : and Moseley’s 
law connecting the progression of X-ray spectra from element to 
element with the amount of nuclear charge suggested that their 
origin should be sought in the innermost layers of the atom.

Almost immediately after the publication of Bohr’s theory, 
W. Kossel4 explained them as being due, like the radiations of 
optical spectra, to transition-processes : they arise when the atom

1 On this see also Bom, Verb. d. deutsch. phys. Ges. xx (1918), p. 230 ; Landé, Verb, 
d. deutsch. phys. Ges. xxi (1919), p. 2 ; E. Madelung, Phys. xix (1918), p. 524

1 Naturwiss, viii (1920), p. 5 ; Elektrochem, xxvi (1920), p. 262
* cf. p. 16
4 Verb. d. deutsch. phys. Ges. xvi (November 1914), p. 953 ; xviii (1916), p. 339
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is restored to its original state after a disturbance which consists 
primarily in dislodging an electron from one of the innermost shells : 
the place thus vacated is filled by an electron which falls from a 
shell at a greater distance from the nucleus, and the place of this is 
again filled by an electron from a shell still more remote, and so on. 
The lowest level may be called, in harmony with Barkla’s nomen­
clature of three years earlier,1 the K-shell, and the fall of an electron 
into a vacant place in this shell yields an X-ray of the K-series. 
The next lowest levels are three known as L„ Ln and L,n, and so 
for the others.2

Now if Z denotes the atomic number of the atom considered, by 
taking account of Z in the calculation on page 111, we see that 
according to Bohr’s original theory, the frequency of the radiation 
emitted when an electron passes from a circular orbit of angular 
momentum nh to one of angular momentum ph is

But if we put p=  1, this formula represents precisely the frequencies 
of the K-lines. If/> = 2, it represents the L-lines ; and so on : from 
which fact we infer that the electrons in the K, L, M, . . . shells 
move in orbits which have respectively the principal quantum 
numbers 1, 2, 3, . . .3 The principal quantum number increases by 
unity from each shell to the next. That the characteristic X-rays are of 
high frequency as compared with the radiations in optical spectra 
is explained by the presence of the factor Z2 in the formula : a 
factor whose presence accounts at once for Moseley’s law that the 
square root of the frequency of any particular line, such as the 
Ka-line, is proportional to the atomic number.

In the early days of X-ray spectroscopy, lines of the K-series 
could not be observed for the lighter elements (atomic numbers 
below 11), because their wave-lengths were longer than those of 
X-rays and yet shorter than that of ultra-violet light. The gap 
between X-rays and the ultra-violet was filled about 1928 by Jean 
Thibaud 4 of Paris, Erik Bâcklin 6 of Upsala, and A. P. R. Wadlund 6 
of Chicago, and it was then found possible to trace the K-lines 
continuously down to the lightest elements. As might be expected, 
since the K-lines represent transitions down to the level of principal 
number 1, they pass into the Lyman series of hydrogen, while the 
L-lines, which represent transitions down to the principal number 2, *

* The y-rays emitted by radio-active bodies come from the nucleus of the atom, 
and depend on nuclear levels, so they constitute a phenomenon altogether different 
from the characteristic X-rays of the K. L, M, . . . series.

8 Sommerfeld, Ann. d. Phys.W li (1916), pp. 1 and 125 
4 Phys. ZS. xxix (1928), p. 241 ; Joum. Opt. Soc. Amer, xvii (1928), p. 145 
8 Inaug. Diss. Uppsala Universitets Arsskrift, 1928
• Proc. Nat. Ac. Sc. xiv (1928), p. 588

2тт2те*Ъ%
¥ (,

* cf. p. 16
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pass into the Balmer series, and the M-lines, which represent transi­
tions down to the principal number 3, pass into the Paschen series 
of hydrogen.

The Bohr theory, as applied by Kossel, yields at once the laws 
of absorption of X-rays. Remembering that the first line of the 
K-series is emitted when an electron falls from the L-shell to the 
K-shell, it is obvious that this line could not be expected to appear 
in the absorption-spectrum : for if in absorption an electron were 
dislodged from the K-shell, there would normally be no vacant place 
in the L-shell to receive it : indeed the K-absorption only sets 
in suddenly, when the incident energy is sufficient to separate a 
K-electron completely from the atom : that is, the absorption-edge 
coincides with the series-limit. This explains why in X-ray spectra 
there are no absorption-lines,1 but only absorption-edges : and the 
frequency of every line in the X-ray emission-spectrum is the difference of the 
frequencies of two absorption-edges.

What was known in 1921 regarding the structure of the atom 
in relation to the physical and chemical properties of the elements 
was set forth in an extensive survey by Bohr,2 whose principles were 
vindicated in the following year in a somewhat dramatic way. One 
of the missing elements in the Newlands-Mendeléev table was that 
of atomic number 72. Now the elements immediately preceding (of 
atomic numbers 57 to 71 inclusive) belong to the group of the ‘rare 
earths/ and it was expected by many chemists that number 72 
would also belong to this group. Indeed in 1911 G. Urbain,3 by 
fractionation of the earths of gadolinite, believed that he had dis­
covered a new rare earth to which he gave the name of Celtium ; 
and this was later identified by Urbain and Dauvillier with the 
missing element 72. Bohr, however, gave a rational interpretation 
of the occurrence of the rare earths in the periodic system, asserting 
that they represent a gradual completion of the shell of electrons 
for which the principal quantum number is 4, while the number of 
electrons in the shells of principal quantum numbers 5 and 6 remains 
unchanged. With the rare-earth lutecium (71) the shell я = 4 attains 
its full complement of 32 electrons, and it follows that the element 72 
cannot be a rare earth, but must have an additional electron in the 
shells n = 5 or n = 6 : it must in fact be a homologue of zirconium. 
In 1922 D. Coster and G. Hevesy of Copenhagen verified this 
prediction4 : examining the X-ray spectrum of a Norwegian zir­
conium mineral, they found lines which, by Moseley’s rule, must 
certainly belong to an element of atomic number 72 : and for this 
they proposed the name of Hafnium (Hafniae = Copenhagen). Its 
chemical properties showed that it was undoubtedly analogous to 
titanium (22) and zirconium (40).

1 For a refinement of this general statement cf. Kossel, £ £ . / .  P. i (1920), p. 119.
* Fysisk Tideskrift, jrix (1921), p. 153« Theory of Spectra and Atomic Constitution, Cam­

bridge, 1922 B Comptes Rendus, clii (1911), p. 141 ; Chem. News, ciii (1911), p. 73
4 Nature, cxi (1923), p. 79
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In 1922 and the following years great additions were made to 
the accurate knowledge of X-ray spectra and their relation to 
atomic number.1 Guided by this work, in 1923 N. Bohr and 
D. Coster 2 introduced new symbols for the layers of electrons in 
the atoms, based on their spectroscopic behaviour with respect to 
X-rays. The innermost group was now denoted by 1(1,1)K, the 
next groups by 2(1, 1) Li, 2(2, l)Ln, 2(2, 2) Lm, and soon outward. 
Here the letters with the Roman subscript numbers indicate the 
previously-recognised shells with their subsidiary levels, while the 
symbols of the form n(kyj) define the subsidiary levels more closely, 
n being Bohr’s principal quantum number, while k and j  are whole 
numbers which were later to be identified with Sommerfeld’s azi­
muthal quantum number and a function of Sommerfeld’s inner 
quantum number respectively. Then in January 1924 A. Dauvillier 3 
showed experimentally (by examining the absorption relative to the 
level) that the 8 electrons in the L-level must be partitioned into 
sub-groups of 2, 2 and 4. These results quickly led to the under­
standing of the orbits and energies of the various groups of electrons 
which was finally accepted, and which was proposed in 1924-5 by 
Edmund C. Stoner of Cambridge 4 (whose arguments were based 
on physical reasoning) and J. D. Main Smith of Birmingham 5 (who 
approached the matter from the chemical side). According to this 
system, to each complete shell corresponds a definite value of the 
principal quantum number n. Within this shell the subsidiary 
quantum number / can take the values 0, 1, . . .  (n— 1) : and the 
inner quantum number J  of an electron can then take the values (/ + 
or (/ — £), (unless / = 0, in which case J  can take only the value J). The 
number of electrons in the sub-group {n> /, j) is simply (2\j+ 1), and 
therefore the total number of electrons with the quantum numbers 
n and / is 2(2/+ 1), and the total number of electrons in the я-shell is

2U + 3 + 5 + 7 + . . .+  (2л-1)} 
or

2n\

Helium has altogether 2 electrons, forming a complete K-shell. For 
neon there are 10 electrons, namely 2 forming a complete K-shell 
and 8 forming a complete L-shell. For argon there are 18 electrons, 
of which 2 form a complete K-shell, 8 form a complete L-shell 
and 8 form an incomplete M-shell : the M-shell is, however, complete

1 Dirk Coster, Phil. Mag. xliii (1922), p. 1070: xliv (1922), p. 546 ; A. Landé, %$./. P. 
xvi (1923), p. 391 ; Manne Siegbahn and A. Zâéek, Ann. d. Phys. lxxi (1923), p. 187 ;
M. Siegbahn and B. B. Ray, Ark.f. Mat, Ast. och Fys. xviii (1924), No. 19 ; M. Siegbahn 
and R. Thoraeus, Phil Mag. xlix (1925), p. 513; cf. L. de Broglie and A. Dauvillier, 
Phil. Mag. xlix (1925), p. 752

* ZS'f»  ^  xü (1923), p. 342 * Comptes Rendus, clxxviii (1924), p. 476
4 Phil. Mag. xlviii (1924), p. 719
* J . Chem. Ind. xliii (1924), p. 323 ; xliv (1925), p. 944 ; Chemistry and Atomic Structure, 

London, 1924; cf. A. Sommerfeld, Ann. d. Phys. lxxvi (1925), p. 284; Phys. ££. xxvi 
(1925), p. 70
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in the next noble gas, krypton, which has 2 K-, 8 L-, 18 M-, and 
8 N-electrons. For any complete shell the orbital, spin and total 
angular momentum are all zero.

We have seen that the number of electrons in the sub-group 
(n, l,j) is (2]+  1) : but for a given value of/, the magnetic quantum 
number mj can take precisely the (2j+l) values j, j —1, . . —j.
Thus there is one and only one electron corresponding to each 
distinct state or energy-level, i.e. each distinct set of the four quan­
tum numbers (n, /, j, mj). In 1924 Pauli1 based on this fact a 
general principle, that two electrons in a central field can never be in states 
of binding which have the same four quantum numbers. This assertion can 
be extended to systems in which there is not a single central field : 
e.g. it applies to electrons which are in the field of two nuclei at the 
same time : the states of these electrons can be described by quantum 
numbers, and it is still true that no two electrons can have the same 
state, i.e. be described by the same set of quantum numbers. The 
statement in this general form is called Pauli's exclusion principle. 
It is valid for protons as well as for electrons, and indeed for all 
elementary particles whose spin is

Another discovery of Pauli’s, made in the same year,2 related 
to a structure much finer than the ordinary multiplet structure, 
which is observed in some spectra, and which is called the hyperfine 
structure of spectral lines. Pauli showed that this is to be ascribed 
not to the electron-shells, but to the influence of the atomic nucleus, 
which may itself have an angular momentum and a magnetic 
moment : and in the case when the spectrum is that of a mixture 
of isotopes, the differences in nuclear mass of the isotopes will also 
cause small differences of position of lines in their spectra, and so 
contribute to the hyperfine structure.

In 1923 the domain of quantum theory was enlarged, when the 
diffraction of a parallel beam of radiation by a grating was explained 
on quantum principles by William Duane.3 Consider an infinite 
grating with the spacing d between its rulings. If the grating moves 
with constant velocity in a direction in its own plane perpendicular 
to the rulings, it will return to its original aspect when it has moved 
through a distance d : so we can regard it as a periodic system to 
which the Wilson-Sommerfeld quantum rule

can be applied, where p denotes momentum in the direction of the 
surface of the grating perpendicular to its rulings, the spacing d 
being the domain over which the integration must be extended : 
and therefore

pd—nhy
1 P* xxxi (1925), p. 765 * Naturwiss, xii (1924), p. 741
* Proc. AT. A. S. ix (1923), p. 158. Duane’s treatment was considerably improved 

as regards its justification by A. H. Compton, ibid, p. 359.
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so the grating can pick up momentum p only in multiples of hjd : the 
momentum of radiation is transferred to and from matter in quanta. 
If a photon of energy hv, and therefore of momentum hvjc, falls on 
the grating in a direction making an angle i with the normal, and is 
diffracted in a direction making an angle r with the normal, then 
taking the components of momentum in a direction of the surface 
of the grating at right angles to its rulings, we have the equation of 
conservation of momentum

{hvjc) (sin г-s in  r) =nh/d

which in the language of the wave-theory would be
rih = d (sin i — sin r).

This is the ordinary equation giving the directions of the diffracted radiation, 
now obtained from the corpuscular (photon) theory of light.

It may be noted that Duane’s equation pd=nh can be applied 
to a photon, if d be interpreted as wave-length, so we obtain p’K^h: 
since Л = cjvy this shows that the momentum of the photon is hvjc.

Duane’s principle is closely related to a principle introduced 
later in the same year (1923) by L. de Broglie, which will be con­
sidered in Chapter VI.

The Duane method was extended to finite gratings, including 
even the case of only two reflecting points, by P. S. Epstein and 
P. Ehrenfest in 1924.1 *

* Proc. N  A . S. X (1924), p. 133 ; xni (1927), p. 400
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Chapter V
GRAVITATION

We have seen 1 that for many years after its first publication, the 
Newtonian doctrine of gravitation was not well received. Even in 
Newton’s own University of Cambridge, the textbook of physics 
in general use during the first quarter of the eighteenth century was 
still Cartesian : while all the great mathematicians of the Continent— 
Huygens in Holland, Leibnitz in Germany, Johann Bernoulli in 
Switzerland, Cassini in France—rejected the Newtonian theory 
altogether.

This must not be set down entirely to prejudice : many well- 
informed astronomers believed, apparently with good reason, that the 
Newtonian law was not reconcilable with the observed motions of 
the heavenly bodies. They admitted that it explained satisfactorily 
the first approximation to the planetary orbits, namely that they are 
ellipses with the sun in one focus : but by the end of the seventeenth 
century much was known observationally about the departures from 
elliptic motion, or inequalities as they were called, which were pre­
sumably due to mutual gravitational interaction : and some of these 
seemed to resist every attempt to explain them as consequences of 
the Newtonian law.

The inequalities were of two kinds : first, there were disturbances 
which righted themselves after a time, so as to have no cumulative 
effect : these were called periodic inequalities. Much more serious 
were those derangements which proceeded continually in the same 
sense, always increasing the departure from the original type of 
motion : these were called secular inequalities. The best known 
of them was what was called the great inequality of Jupiter and Saturn, 
of which an account must now be given.

A comparison of the ancient observations cited by Ptolemy in 
the Almagest with those of the earlier astronomers of Western Europe 
and their more recent successors, showed that for centuries past the 
mean motion, or average angular velocity round the sun, of Jupiter, 
had been continually increasing, while the mean motion of Saturn 
had been continually decreasing. This indicated some striking 
consequences in the remote future. Since by Kepler’s third law the 
square of the mean motion is proportional to the inverse cube of the 
mean distance, the decrease in the mean motion of Saturn implied 
that the radius of his orbit must be increasing, so that this planet, 
the most distant of those then known, would be always becoming 
more remote, and would ultimately, with his attendant ring and

1 cf. Vol. I, pp. 29-31 
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satellites, be altogether lost to the solar system. The orbit of Jupiter, 
on the other hand, must be constantly shrinking, so that he must 
at some time or other either collide with one of the interior planets, 
or must be precipitated on the incandescent surface of the sun.

No explanation of the secular inequality of Jupiter and Saturn 
could be obtained by any simple and straightforward application of 
Newton’s gravitational law, and the French Academy of Sciences 
offered a prize in 1748, and again in 1752, for a memoir relating 
to these two planets. On each occasion Euler made considerable 
advances1 in the general treatment of planetary perturbations, and 
received the award : but the result of his investigations was to make 
the observed secular accelerations of Jupiter and Saturn more 
mysterious than ever, for they appeared to be quite inconsistent 
with the tolerably complete theory which he created. Lagrange, 
who wrote on the problem2 in 1763, and gave a still more complete 
discussion, likewise failed to obtain a satisfactory agreement with 
the observations.

In 1773 the matter was taken up by Laplace.3 He began by 
carrying the approximation to a higher order than his predecessors, 
and was surprised to find that in the final expression for the effect 
of Jupiter’s disturbing action upon the mean motion of Saturn, the 
terms cancelled each other out. The same result, as he showed, 
held for the effect of any planet upon the mean motion of any 
other : thus the mean motions of the planets cannot have any secular 
accelerations whatever as a result of their mutual attractions. Laplace 
accordingly concluded that the accelerations observed in the case 
of Jupiter and Saturn could not be genuinely secular : they must 
really be periodic, though the period might be immensely long.

With this key to the mystery, he completely solved it, in a great 
memoir of 1784.4 He realised that an inequality of long period 
could be produced only by a term of long period in the perturbing 
function : denoting this term by p sin qty then in order that it may 
be of long period, q must be extremely small. By a double integration 
with respect to the time, such as happens in the course of solving 
the differential equations, this term would become (p/qa) sin qt9 and 
(p/q2) might be quite large even though p were very small. Thus 
a great inequality of long period might be produced by a term 
in the perturbing function which was so small that it had been 
neglected altogether by preceding investigators. This explained 
why Euler and Lagrange had failed to solve the problem, and 
nothing remained to be done except to inquire more closely into the 
identity of the term in the perturbing function. Now five times the 
mean motion of Saturn is very nearly equal to twice the mean 
motion of Jupiter : so if я, n' are the mean motions, then 5n -  2ri

1 Recueil des pieces qui ont remporté les prix de ГAcad., tome vii (1769)
1 Mélanges de phil. et de math, de la Soc. Roy. de Turin pour Vannée 1763, p. 179 (1766)
• Mém. des Savons étrang. vii (1776). Read 10 Feb. 1773
4 Mém, de V A c a d 1784, p. 1
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is very small : and the term in the perturbing function whose argu­
ment is (5n — 2n')t, which would have an extremely small coefficient, 
would satisfy all the conditions required. Thus Laplace was able 
to assert that the great inequality of Jupiter and Saturn is not a secular 
inequality, but is an inequality of long period, in fact 929 years : and it is 
due to thefact that the mean motions of the two planets are nearly commensurable. 
When the results of his calculations were compared with the observa­
tions, the agreement was found to be perfect.1

The story of the great inequality of Jupiter and Saturn illustrates 
a distinctive feature of the situation, namely that the truth of the 
Newtonian or any other law of gravitation cannot be tested by means 
of controlled experiments in a laboratory, and its verification must 
depend on the comparison of astronomical observations, extended 
over centuries, with mathematical theories of extreme complexity.

After the triumphant conclusion of Laplace’s researches on the 
great inequality of Jupiter and Saturn, there was still outstanding 
one unsolved problem which formed a serious challenge to the 
Newtonian theory, namely the secular acceleration of the mean 
motion of the moon. From a study of ancient eclipses recorded by 
Ptolemy and the Arab astronomers, Halley 2 had concluded in 1693 
that the mean motion of the moon has been becoming continually 
more rapid ever since the epoch of the earliest recorded observations. 
The mean distance of our satellite must therefore have been con­
tinually decreasing, and it seemed that at some time in the remote 
future the moon must be precipitated on the earth. The Academy 
of Sciences of Paris proposed the subject for the prize in 1770, and 
again in 1772 and 1774, and prizes were awarded to Euler3 and 
Lagrange,4 who made valuable contributions to general dynamical 
astronomy : on the question proposed, however, they found only 
the negative results that no secular inequality could be produced 
by the action of Newtonian gravitation when the heavenly bodies 
were regarded as spherical, and, moreover, that the observed 
phenomena could not be explained by taking into account the 
departures of the figures of the earth and moon from sphericity. 
Laplace now took up the matter, and showed, first, that the effect 
was not due to any retardation of the earth’s diurnal rotation due 
to the resistance of the aether : he then investigated the consequences 
of another supposition, namely that gravitational effects are prop­
agated with a velocity which is finite 5 : but this also led to no 
satisfactory issue, and at last he found the true solution,6 which

1 As Laplace’s discovery showed, the existence of * small divisors * makes it a matter 
of great difficulty to investigate the convergence of the series that occur in Celestial 
Mechanics ; cf E. T. Whittaker, Proc, R.S, Ed, xxxvii (1917), p. 95.

* Phil. Trans, xvii (1693), p. 913
■ Recueil des pièces qui ont remporté les prix de VAcad. ix (1777)
4 Recueil des pièces qui ont remporté les prix de VAcad, ix (1777), for the competition of 

1772 ; Mém. des Savons Étrang, vii, for that of 1774
4 cf. Vol. I, p. 207
• It was presented to the Academy on 19 March 1787 ; Mém, de VAcad, 1786, p. 235 

(published 1788).
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GRAVITATION

may be described as follows. The mean motion of the moon round 
the earth depends mainly on the moon’s gravity to the earth, but 
is slightly diminished by the action of the sun upon the moon. 
This solar action, however, depends to a certain extent on the 
eccentricity of the terrestial orbit, which is slowly diminishing, as 
a result of the action of the planets on the earth. Consequently 
the sun’s mean action on the moon’s mean motion must also be 
diminishing, and hence the moon’s mean motion must be con­
tinually increasing, which is precisely the phenomenon that is 
observed. The acceleration of the moon’s mean motion will con­
tinue as long as the earth’s orbit is approaching a circular form : 
but as soon as this process ceases, and the orbit again becomes more 
elliptic, the sun’s mean action will increase and the acceleration 
of the moon’s motion will be converted into a retardation. The 
inequality is therefore not truly secular, but periodic, though the 
period is immensely long, in fact millions of years. This striking 
vindication of the Newtonian theory came exactly a century after 
the publication of the Principia,

‘ The moon, in the present day,’ wrote Robert Grant,1 ‘ is about 
two hours later in coming to the meridian than she would have 
been if she had retained the same mean motion as in the time of the 
earliest Chaldean observations. It is a wonderful fact in the history 
of science that those rude notes of the priests of Babylon should 
escape the ruin of successive empires, and, finally, after the lapse 
of nearly 3,000 years, should become subservient in establishing 
a phenomenon of so refined and complicated a character as the 
inequality we have just been considering.’

In the nineteenth and twentieth centuries, however, many 
astronomers formed the opinion that Laplace’s great memoir had 
not completely cleared up the situation. The fact to be explained 
is that the moon has relative to the sun an apparent acceleration of 
its mean motion of about 22" per century per century.2 Laplace’s 
theoretical value was of about this amount, but J. C. Adams 3 
found, by including terms of higher order in the calculation, that 
Laplace’s value was much too great, the amount explicable by 
purely gravitational causes being only 12-2" per century per cen­
tury : and his conclusion was substantiated by later workers in lunar 
theory. In 1905 P. H. Cowell 4 redetermined (from ancient eclipses) 
the observed secular acceleration, and found that it was almost 
twice the theoretical value, and that there was also deducible from 
observation a secular acceleration of the sun (i.e. of the earth’s 
orbital motion). His own tentative explanation6 depended on the

1 History of Physical Astronomy (London, 1852), p. 63
* There is some confusion of language on this subject. The coefficient of t* in the 

expression for the longitude is about 11' ,  and the true secular acceleration is therefore 
about 22'  ; but many writers speak of the acceleration as ‘ 11'  in a century.’

* Phil. Trans, cxliii (1853), p. 397 ; Mon. Mot. R.A.S. xl (1880), p. 472
* Mon. Mot. R.A.S. bcv (1905), p. 861
» Mon. Mot. R.A.S. lxvi (1906), p. 352
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notion of tidal friction, while J. H. Jeans 1 suggested a modification 
of the Newtonian law, and E. A. Milne 2 proposed a dependence 
of the Newtonian constant of gravitation on the age of the universe. 
These matters were discussed by J. K. Fotheringham 3 in 1920 
and in 1939 by H. Spencer Jones,4 who showed that the secular 
accelerations of the sun, Mercury, and Venus are proportional to 
their mean motions, and can be accounted for by the retardation 
of the earth’s axial rotation by tidal friction.6 This retardation 
must also produce, in addition to its direct apparent effect, a real 
secular acceleration of the moon’s mean motion, in order that the 
total angular momentum of the earth-moon system may be con­
served : but the amount of this acceleration cannot be predicted 
theoretically.

We may now refer to other phenomena in the solar system which 
were not explained with complete satisfaction by Newton’s formula. 
The anomalous motion of the perihelion of the planet Mercury has 
already been referred to 6 : it might possibly be accounted for if the 
inverse square law is modified by adding a term involving the 
velocities of the bodies7 : or it might, as H. Seeliger 8 showed, be 
explained bv the attraction of the masses forming the zodiacal light. 
The node oi the orbit of Venus was also found by Newcomb9 to have 
a secular acceleration which was five times the probable error, and 
for which no explanation could be offered : and a secular increase 
in the mean motion of the inner satellite of Mars, discovered in 1945 
by B. P. Sharpless,10 is so far not accounted for.

Certain comets also present problems. Among them the best 
known is an object which was discovered by Jean-Louis Pons in 
1818, but is generally called Encke's comet from a long series of 
memoirs 11 devoted to it by J. F. Encke, who showed in 1819 that it 
was periodic, with a period of 1,207 days, and later that its motion 
showed an acceleration which was not explicable by the Newtonian 
theory. Encke himself proposed to explain this by postulating a 
resisting medium whose density was inversely proportional to the

1 Mon. Not. R.A.S. lxxxiv (1923), p. 60 (at p. 75)
I Proc. R.S.(a ), clvi (1936), p. 62 (at p. 81)
» Mon. Not. R.A.S. lxxx (1920), p. 578 4 Mon. Not. R.A.S. xcix (1939), p. 541
• The retardation of the earth’s rotation due to tidal friction increases the length 

of the day by about 1/1000 of a second per century, so each century is 36£ seconds longer 
than the one preceding. There is, moreover, a variability in the rate of rotation, which 
is slower in February than in August. This fluctuation, which was discovered by means 
of clocks formed of vibrating quartz crystals, is probably of meteorological origin.

• cf. Vol. I, p. 208
7 For work more recent than that referred to in Vol. I, cf. Paul Gerber, Math,

u. Phys. xliii (1898), p. 93 ; Ann. d. Phys. lii (1917), p. 415, and the comments on the 
latter paper by H. Seeliger, Ann. d. Phys. liii (1917), p. 31 ; liv (1917), p. 38, and 
S. Oppenheim, ibid, liii (1917), p. 163

• München Ber. 1906, p. 595
• S. Newcomb, The elements o f the four inner planets ; Supplement to the American 

Ephemeris and Nautical Almanac for 1897 ; Washington, 1895
M Ast. J .  li (1945), p. 185
II Mostly in the Berlin Abhandlungen and the Astronomische Nachrichten ; cf. specially 

Comptes Rendus, xlviii (1858), p. 763
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square of the distance from the sun : but O. Backlund, who devoted 
many years to the study of the comet, showed that Encke’s assumption 
is impossible.1 An alternative hypothesis is that the comet has 
encounters with a swarm of meteors.

In 1910 P. H. Cowell and A. C. D. Crommelin 2 computed with 
great care the motion of another periodic comet, that of Halley, 
between 1759 and 1910, and predicted the time of perihelion for its 
return in 1910 : the time deduced later from actual observations 
was about 2*7 days later than this. The discrepancy could not be 
accounted for by any defect in the calculations, and it would seem 
therefore that there is some small disturbing cause or causes at work, 
other than the gravitational attraction expressed by Newton’s law.3

At the meeting of the Amsterdam Academy of Sciences on 
31 March 1900, Lorentz communicated a paper entitled Considera­
tions on Gravitation,4 in which he reviewed the problem as it appeared 
at that time—a problem which, as the above recital shows, was 
still far from a completely satisfactory solution. So many phenomena 
had been successfully accounted for by applications of electro­
magnetic theory that it seemed natural to seek in the first place an 
explanation in terms of electric and magnetic actions. As we have 
seen,5 the assumptions of Laplace’s investigation, which led him to 
conclude that the velocity of propagation of gravitation must be 
vastly greater than that of light, do not to twentieth-century minds 
seem very plausible 6 : and Lorentz felt free to put forward a theory 
depending on electromagnetic actions propagated with the speed of 
light. The first possibility he considered was suggested by Le Sage’s 
concept of ultra-mundane corpuscles.7 Since it had been found that 
a pressure against a body could be produced as well by trains of 
electric waves as by moving projectiles, and that the X-rays with 
their remarkable penetrating power were essentially electric waves, 
it was natural to replace Le Sage’s corpuscles by vibratory motions. 
Why should there not exist radiations far more penetrating than even 
the X-rays, which might account for a force which, so far as is known, 
is independent of all intervening matter ?

Lorentz therefore calculated the interaction between two ions 
on the assumption that space is traversed in all directions by trains 
of electric waves of very high frequency. If an ion P is alone in a

1 Backlund’s conclusions are summarised in Bull, astronomique, xi (1894), p. 473; 
cf. also A. Wilkens, Astr. Nach. cxcvi (1914), p. 57. On the perturbations of Encke’s comet 
cf. D. Brouwer, Ast. J .  Hi (1947), p. 190.

* Investigation of ike motion of Halley*s Comet from 1759 to 1910 ; Appendix to the 1909 
volume of Greenwich Observations (1910). Essay on the return of Halley*s comety Publ. Astr. 
Ges., Lpz.y No. 23 (1910)

* On the effect of loss of mass by evaporation when a comet is near the sun ; cf. 
F. Whipple, Astroph. J . cxi (1950), p. 375

4 Proc. Amst. Acad.. ii (1900), p. 559; French translation in Arch. Néerl. vii (1902), 
p. 325

6 Vol. I, pp. 207-8
* The same remark applies to the ideas of R. Lehmann-Filhes, München. Ber. xxv 

(1895), p. 71.
7 cf. Vol. I, p. 31
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field in which the propagation of waves takes place equally in all 
directions, the mean force on it will vanish. But the situation will 
be different as soon as a second ion Q, has been placed in the neigh­
bourhood of P : for then, in consequence of the vibrations emitted 
by Q  after it has been exposed to the rays, there might be a force 
on P, of course in the direction of the line QP. It was found, how­
ever, that this force could exist only if in some way or other electro­
magnetic energy were continually disappearing : and after full 
consideration, Lorentz concluded that the assumptions he had made 
could not provide a satisfactory explanation of gravitation.

He then considered a second hypothesis, which may be regarded 
as having been foreshadowed in the one-fluid electrical theory of 
Watson, Franklin and Aepinus.1 According to this theory, as 
developed in 1836 by O. F. Mossotti2 (1791-1863), electricity is 
conceived as a continuous fluid, whose atoms repel each other. 
Material molecules are also supposed to repel each other, but to 
have with the aether-atoms a mutual attraction, which is somewhat 
greater than the mutual repulsion of the particles which repel. 
The composition of these forces accounts for gravitation, except 
at very small distances, where the same mechanism accounts for 
cohesion.

Wilhelm Weber (1804—91) of Gottingen and Friedrich Zollner3 
(1834-82) of Leipzig developed this conception into the idea that all 
ponderable molecules are associations of positively and negatively 
charged electrical corpuscles, with the condition that the force of 
attraction between corpuscles of unlike sign is somewhat greater 
than the force of repulsion between corpuscles of like sign. If the 
force between two electric units of like charge at a certain distance 
is a dynes, and the force between a positive and a negative unit 
charge at the same distance is y dynes, then, taking account of the 
fact that a neutral atom contains as much positive as negative 
electric charge, it was found that (y — a)/a need only be a quantity 
of the order 10~35 in order to account for gravitation as due to the 
difference between a and y.

At the time of Lorentz’s paper, no strong physical reason for an 
assumption of this kind could be given. Many years afterwards 
Eddington 4 suggested one. He had taken to heart a warning uttered 
by Mach.5 ‘ Even in the simplest case, in which apparently we deal 
with the mutual action between only two particles, it is impossible 
to disregard the rest of the universe. Nature does not begin with 
elements, as we are forced to do. Certainly it is fortunate for us

1 cf. Vol. I, p. 50
* S u r  le s  fo r c e s  q u i  rég issen t la  c o n s ti tu tio n  in té r ieu re  d es  co rp s, ap p erçu  p o u r  s e r v ir  à la  d é te rm in a ­

tio n  d e  la  cau se  e t d es lo is  d e  V a c tio n  m o léc u la ire  (Turin, 1836).
8 E r k la r u n g  d er  u n iv erse llen  G r a v ita t io n , Leipzig, 1882 ; pp. 67-82 deal with Weber’s 

contributions ; cf. also J . J . Thomson, P ro c . C a m b . P h i l . S o c . xv (1910), p. 65
4 F u n d a m e n ta l  T h e o r y  (Cambridge, 1946), p. 102
* E. Mach, Die M e c h a n ik  in  Surer E n iw ic k e lu n g  (5th edn., 1904), p. 249 ; English 

translation (London, 1893), p. 235
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that we can sometimes turn away from the overwhelming All, and 
allow ourselves to study isolated facts. But we must not forget 
ultimately to amend and complete our views by taking into account 
what had been omitted.5 Eddington applied Mach’s general 
principle to the interaction between two electric charges. If they 
are of opposite sign, all their lines of force run from one to the other, 
and the two together may be regarded as a self-contained system 
which is independent of the rest of the universe : but if the two 
charges are of the same sign, then the lines of force from each of them 
must terminate on other bodies in the universe, and it is natural 
to expect that these other bodies will have some influence on the 
nature of the interaction between the charges. Following up this 
idea by a calculation, Eddington arrived at the conclusion that 
when two protons are at a distance r apart, which is of the same 
order of magnitude as the radius of an atomic nucleus, their mutual 
energy contains, in addition to the ordinary electrostatic energy 
corresponding to the inverse-square law, a term of the form

r*
Ae~v

where A and k are constants : if it could be supposed that this is 
correct, and is an asymptotic approximation, valid for values of 
r of nuclear dimensions, to a function whose asymptotic approxima­
tion, valid for values of r large compared with nuclear dimensions, 
is inversely proportional to r, then there would obviously be a 
possibility of accounting on these lines for gravitation.

From 1904 onwards the Newtonian law of gravitation was 
examined in the light of the relativity theory of Poincaré and 
Lorentz. This was done first by Poincaré,1 who pointed out that 
if relativity theory were true, gravity must be propagated with 
the speed of light, and who showed that this supposition was not 
contradicted by the results of observation, as Laplace had sup-

!)Osed it to be. He suggested modifications of the Newtonian 
ormula, which were afterwards discussed and further developed by 

H. Minkowski2 and by W. de Sitter.3 It was found that relativity 
theory would require secular motions of the perihelia of the planets, 
which however would be of appreciable amount only in the case of 
Mercury, and even in that case not great enough to account for the 
observed anomalous motion.

In 1907 Planck4 broke new ground. It had been established 
by the careful experiments of R. v. Eotvos5 that inertial mass (which 
determines the acceleration of a body under the action of a given

1 C o m p te s  R e n d u s , cxl (1905), p. 1504 ; P a le r m o  R e n d ,  xxi (1906), p. 129 
1 G ô tt.  N a c h .  1908, p. 53
8 M o n .  N o t .  R . A . S .  bad (1911), p. 388; cf. also F. Wacker, I n a u g .  D i s s ., Tübingen, 

1909
4 B e r l .  S i t z .  13 June 1907, p. 542, specially at p. 544 
6 M a t h .  u . n a t. B e r .  a u s  U n g a m t viii (1891), p. 65
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force) and gravitational mass (which determines the gravitational 
forces between the body and other bodies) are always exactly equal : 
which indicates that the gravitational properties of a body are essentially 
of the same nature as its inertial properties. Now, said Planck, all energy 
has inertial properties, and therefore all energy must gravitate. Six 
months later Einstein1 published a memoir in which he introduced 2 
what he later called the Principle of Equivalence, which may be thus 
described :

Consider an observer who is enclosed in a chamber without 
windows, so that he is unable to find out by direct observation 
whether the chamber is in motion relative to an outside world or 
not. Suppose the observer finds that any object in the chamber, 
whatever be its chemical or physical nature, when left unsupported, 
falls towards one particular side of the chamber with an acceleration 
f  which is constant relative to the chamber. The observer would 
be justified in putting forward either of two alternative explanations 
to account for this phenomenon :

(i) he might suppose that the chamber is ‘ at rest,’ and that there 
is a field of force, like the earth’s gravitational field, acting on all 
bodies in the chamber, and causing them if free to fall with accelera­
tio n /:  or

(ii) he might explain the observed effects by supposing that the 
chamber is in motion : if he postulates that in the outside world there 
are co-ordinate axes (C) relative to which there is no field of force, 
and if he moreover supposes the chamber to be in motion relative 
to these axes (C) with an acceleration equal in magnitude but 
opposite in direction to /  then it is obvious that free bodies inside 
the chamber would have an acceleration/relative to the chamber.

The observer has no criterion enabling him to tell which of these 
two explanations is the true one. If we could say definitely that the 
chamber is at rest, then explanation (i) would be true, while if we 
could say definitely that the axes (C) are at rest, then explana­
tion (ii) would be true. But by the Principle of Relativity, we cannot 
give a preference to one of these sets of axes over the other : we 
cannot say that one of them is moving and the other at rest : and 
we must therefore regard the two explanations as equally valid, or, 
in other words, must assert that a homogeneous field of force is 
equivalent to an apparent field which is due to the accelerated 
motion of one set of axes relative to another : a uniform gravitational 
field is physically equivalent to a field which is due to a change in the 
co-ordinate system.

In this paper Einstein also showed 3 by combining Doppler’s 
principle with the principle of equivalence, that a spectral line 
generated by an atom situated at a place of very high gravitational 
potential, e.g. at the sun’s surface, has, when observed at a place

1 Jahrb. d . R a d io a k t .  iv (4 Dec. 1907), p. 411 ; cf. Einstein, Ann. d .  P h y s .  xxxv (1911), 
p. 898

e At p. 454 • At pp. 458-9
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of lower potential, e.g. on the earth, a greater wave-length than 
the corresponding line generated by an identical atom on the earth. 
This may also be shown very simply as follows. Denoting by ft 
the gravitational potential at the sun’s surface, the energy lost by 
a photon of frequency v in escaping from the sun’s gravitational 
field is ft x the mass of the photon, or Clhvjc1 2. Remembering that 
the energy hv is hc(\ we see that the wave-length of the solar radia­
tion as measured by the terrestial observer is 1 + (ft/*;2) times the 
wave-length of the same radiation when produced on earth.1

In 1911 Einstein followed up this work by an important memoir,2 
in which he argued that since light is a form of (electromagnetic) 
energy, therefore light must gravitate, that is, a ray of light passing 
near a powerfully gravitating body such as the sun, must be curved : and 
the velocity of light must depend on the gravitational field.

Einstein’s paper was the starting-point of a theory published 
shortly afterwards by Max Abraham.3 Accepting the principles 
that the velocity of light c depends on the gravitational potential, 
and that the law of gravitation might be expressed by a differential 
equation satisfied by c, he postulated that tne negative gradient of 
c indicates the direction of the gravitational force, and that the 
energy-density in a statical gravitational field is proportional to 
*rx(grad c)2. Einstein himself at almost the same time published 4 
a somewhat different theory, in which the equations o f motion of 
a particle in a statical gravitational field, when gravity only is 
acting, are

ф  d x \^ _ \d c  
dt\c2 dt) c 8x9

and similar equations in y  and z.
To the same period belong the theories of G. Nordstrom5 * * * and 

Gustav Mie.e Though Mie’s theory has not survived as the per­
manent basis of mathematical physics, it had a marked influence 
on thought, and some of its ideas appeared later in the researches 
of other workers. It aimed at being a complete theory of physics,

1 cf. also J. M. Whittaker, P ro c . C a m b . P h i l .  S o c . xxiv (1928), p. 414. The red- 
displacement due to a gravitational field with arbitrary motion of the source and of the 
observer was calculated by H. Weyl in the fifth edition (1923) of his R a u m  Z e i t  M a te r i e , 
Anhang III.

* A n n . d .  P h y s A * )  xxxv (21 June 1911), p. 898
8 L in c e i  A t t i , xx (Dec. 1911), p. 678 ; P h y s . Z$- xiii (1912), pp. 1, 4, 176, 310, 311, 

793 ; W. C im e n to W )  iv (Dec. 1912), p. 459
4 A n n .  d .  P h y s .  xxxviii (Feb. 1912), pp. 355, 443. A controversy followed, for which

see Abraham, A n n . d. P h y s .  xxxviii (1912), p. 1056; xxxix (1912), p. 444 ; and Einstein,
A n n .  d . P h y s .  xxxviii (1912), p. 1059 ; xxxix (1912), p. 704.

* P h y s .  Z$' xüi (Nov. 1912), p. 1126; A n n .  d . P h y s A 4) xl (April 1913), p. 856 ;
ibid, xlii (Oct. 1913), p. 533 ; P h y s .  ZS- xv ( 1914), p. 375 ; cf. A. Einstein and A. D. Fokker, 
A n n .  d. P h y s  A 4) xliv (1914), p. 321 ; M. v. Laue, J a h r b .  d .  R a d .  u . E l .  xiv (1917), p. 263

* A n n .  d .  P h y s .  xxxvii (1912), p. 511 ; xxxix (1913), p. 1 ; xl (1913), p. 1 ; P h y s . Z&  
xv (1914), pp. 115, 169, 263 ; Festschrift filr J . Elster u. H. Geitel (Braunschweig, 1915), 
pp. 251-68 ; cf. A. Einstein, P h y s . xv (1914), p. 176. There is a good short account of 
Mie’s theory in H. Weyl, R a u m  Z*it M a te r i e , 4th Aufl., (Berlin, 1921), § 26.
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based on the principle that electric and magnetic fields and 
electric charges and currents suffice completely to describe all that 
happens in the material world, so that matter can be constructed 
from these elements. Moreover, he originated the notion of a 
single world-function from which, by the aid of the Calculus of Vari­
ations, all the laws of physical processes could be derived : as we 
shall see presently, this conception was developed afterwards by 
Hilbert.

In Mie’s theory all happenings, both in the field and in matter, 
are described by twenty functions, constituting two six-vectors 
which describe the field and two four-vectors which describe matter : 
namely

(i) a six-vector formed of the components of the electric displace­
ment D and the magnetic force H

(ii) a six-vector formed of the components of the magnetic induc­
tion B and the electric force E

(iii) a four-vector formed of the electric charge and current
(iv) a four-vector formed of the electric scalar and vector 

potentials.

In the Maxwell-Lorentz theory this last four-vector plays merely 
a mathematical part : but in Mie’s theory its components are physical 
realities. In Chapter IV of his series of memoirs, Mie discussed 
quantum theory, and in Chapter V, gravitation.

The next advance owed much to a paper that had been written 
in 1909 by Harry Bateman1 (1882-1946). At any place in the 
earth’s gravitational field, take moving rectangular axes (at1, a:2, a:3) 
and a measure of time (*°), such that these axes constitute an inertial 
system (A), so that the path of a free particle relative to them is 
(at any rate near the origin) a straight line, and the vanishing of the 
differential form

c2(dx0)* - {dx1)2-  (</*2)2-  {dx3)2

is the condition that a luminous disturbance originating at the 
point (a:1, a:2, x3) at the instant a:0, should arrive at the point {x' + dx1, 
x2 + dx2, x3-\-dx3), at the instant (x° + dx°).

In free aether, where there is no field of force, two different 
inertial systems either can be derived from each other by simple 
translation and rotation in ordinary three-dimensional space, or 
else they have a uniform motion of translation relative to each other 
(or, of course, a combination of these methods of derivation). But 
when we move to a distant place in a field of force, e.g. if we move 
to the antipodes in the earth’s gravitational field, although we can 
here again find axes (say (B)) which are inertial (that is, free particles 
in their vicinity move relatively to them with uniform velocity in 
straight lines), a framework (B) does not move with uniform velocity

1 Proe,. L.M.SA2) viii (1910), p. 223 ; cf. also Amer. J . Math. xxxiv (1912), p. 325
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relative to a framework (A) (in fact the two frameworks are in 
accelerated motion relative to each other), so the relation between 
two inertial frameworks which holds in the relativity theory of 
Poinacré and Lorentz does not hold when a gravitational field 
is present. We cannot therefore find co-ordinates (*°, a;1, x2, *3) 
describing position and time over the whole field such that the interval 
ds at any place in the field is given by the equation

(ds)2 = (dx0)2 -  ̂ (d x 1)2 + (dx2)2+ (rf*3)2| .

Instead of this, we can now find at every place in the field a local 
framework of inertial axes (X°, X1, X2, X3), such that the interval 
will be given approximately for points in the neighbourhood of the 
origin by

(&)■ = (dX>)* -  i  ( (dX*y + (rfX*)* + ((/X3)*|.

Let (x°, x1) д:2, x*) now be any co-ordinates specifying position and 
time over the whole field. Then at each place, the differentials dXp 
will be expressible in terms of the xp and the dxp by equations of the 
form

3

dXp = 2  avr dxr.
r=»0

Substituting this in the expression for («ds)2y we have

(* )a= £  gpqdxpdx* (1)
P. 7=0

where
Ô̂ ^OO2----5~(̂ 102 2̂0* + #302) etc*c2

The vanishing of this form (1) is now the condition that a luminous 
disturbance originating at the space-time point (a:0, x1, x2, x3) should 
arrive at the space-time point (x° + dx°, x1 + dx1, x2 + dx2y x* + dx3). 
The form (1) must be invariant for all transformations of the 
co-ordinates (a;0, x1, x2, xz) ; and its coefficients^, which are functions 
of (x°, x1, x2, a:3) , are characteristic of the field.

Bateman realised the connection of his work with the tensor- 
calculus of Ricci and Levi-Civita1 : in fact, since (dx°, dx1, dx2, dx8) 
is a contravariant vector, it follows from the invariance of the 
quadratic differential form that the set of the gn  is a symmetric 
covariant tensor of rank 2.2

1 cf. p. 58
* These ideas were applied by Bateman in order to investigate a scheme of funda­

mental electromagnetic equations which are not altered by very general transformations.
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Bateman’s ideas were carried over into a more profound treatment 
of the problem of gravitation in the second half of the year 1913 by 
Einstein,1 who in the years 1912-14 worked in partnership (as 
regarded the mathematics) with a Zürich geometer, Marcel Gross- 
mann. In these papers the theory was put forward, that just as the 
rectilinear motion of a particle in free aether when there is no 
field is determined by the equation

*(M -°
where S is the symbol of the Calculus of Variations, and 

(ds)2 = c2(dt)2 — (dx)a -  (dy)2 -  (dz)2,

so now (making a step analogous to that in Bateman’s paper), the 
motion of a free material particle in a gravitational field is determined 
by the equation

s ( J * ) = o

where

(<&)*= ^  gpq dxp dx%
p,q=*0

the coefficients gpq being characteristic of the state at the 
point (x°y x \ xa, x3) in space-time, and ds being invariant with 
respect to arbitrary transformations of (*°, xx9 x2y xz). As with 
Bateman, ds = 0 is the condition that a luminous disturbance 
originally at the world-point (*°, x1, x2, xz) should arrive at the 
world-point (x° + dx°, x1 + dx1y x2 + dx2, xz + dxz). In geometrical 
language, the path of a free material particle in a gravitational field is a 
geodesic in the four-dimensional curved space whose metric is specified by the 
equation 2

3

(ds)2= 2  gpqdxp dxq. 
p, <r=o

This was a tremendous innovation, because it implied the abandon­
ment of the time-honoured belief that a gravitational field can be 
specified by a single scalar potential-function : instead, it proposed

1 A. Einstein and M. Grossmann, % S.f. M. u. P. lxii П913), p. 225; lxiii (1914), 
p. 215; A. Einstein, Vierteljahr. d. Nat. Ges. Zurich, lviii (1913), p. 284; Archives des sc. 
phys. et nat.i*) xxxvii (1914), p. 5 ; Phys. Z$- » v (15 Dec. 1913), p. 1249 ; Berlin Sitz.
1914, p. 1030

• A theory that matter consists in * crinkles * of space had been published by W. K. 
Clifford in 1870; cf. Proc. Camb. Phil. Soc. ii (1876), p. 157 = Clifford’s Math. Papers,
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to specify the gravitational field by the ten functions gpq which could 
now be spoken of as the gravitational potentials.

Einstein justified1 this new departure by showing that the theory 
of a single scalar gravitational potential led to inacceptable inferences. 
He compared, for instance, two systems, in the first of which a 
moveable hollow box with perfectly-reflecting walls is filled with 
pure-temperature radiation, while in the second the same radiation 
is contained inside a fixed vertical pit which is closed at the top 
and bottom by moveable pistons connected by a rod so as to be 
always at a fixed distance apart, the pit walls and pistons all being 
perfectly-reflecting : and he showed that on the single-scalar-potential 
theory the work necessary to raise the radiation upwards against 
the force of gravity would in the second system be only one-third 
of the work required in the first system: a conclusion which was 
obviously wrong. He admitted, however, that in his own mind 
the strongest reason for rejecting the single-scalar-potential theory 
was his conviction that relativity in physics exists not only witn 
respect to the Lorentz group of linear orthogonal transformations 
but with respect to a much wider group.

The ten coefficients gpq not only specify the force of gravitation, 
but they determine also the scale of distance in every direction, 
and the rate of clocks. The metric defined by

3

( Л ) а =  ^  gpqdxpdxq
p, ?=°

is not, in general, Euclidean : and since its non-Euclidean qualities 
determine the gravitational field, we may say that gravitational theory 
is reduced to geometry, in accordance with an idea expressed by Fitz­
Gerald 2 in 1894 in the words £ Gravity is probably due to a change 
of structure of the aether, produced by the presence of matter/ 
The ‘ aether 5 of FitzGerald was called by Einstein simply ‘ space ’ 
or ‘ space-time 5 : and FitzGerald’s somewhat vague term ‘ structure’ 
became with Einstein the more precise ‘ curvature.’ Thus we 
obtain the central proposition of the Einsteinian theory : ‘ Gravity 
is due to a change in the curvature of space-time, produced by 
the presence of matter.’

In comparing FitzGerald’s statement with Einstein’s, it may be 
remarked tnat if we consider a gravitational field which is statical, 
i.e. such as would be produced by gravitating masses that are per­
manently at rest relative to each other, then feeble 3 electromagnetic 
phenomena taking place in it can be shown to happen exactly in 
accordance with the ordinary Maxwellian theory of electromagnetic 
phenomena taking place in a medium whose specific inductive 
capacity and magnetic permeability are aelotropic and vary from

1 § 7 of the paper in the Z S .f. M. u. P. * FitzGerald's Works, p. 313
• i.e. so feeble that they do not appreciably change the curvature of the field.
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point to point. In particular,1 if we consider an electric point-charge 
at rest in the field of a single gravitating point-mass, the electric field 
is the same as would be obtained, in ordinary electrostatics, by 
supposing that the specific inductive capacity and magnetic per­
meability of the medium vary with the distance from the gravitating 
mass according to the law (r+ 1 )3/r2(r — 1).

It is possible that when FitzGerald said ‘ Gravity is probably due 
to a change of structure of the aether,’ he was actually thinking of 
a change which would show itself in alterations of the dielectric 
constant and magnetic permeability, and that he had in mind an 
electrical constitution of matter, on account of which matter would 
be subject to forces depending on the values of the dielectric constant 
and magnetic permeability : by analogy with the fact that in a 
liquid whose dielectric constant varies from point to point, an 
electrified body moves from places of lower to places of higher 
dielectric constant.2

What differentiates the Einsteinian theory from all previous 
conceptions is that the older physicists had regarded gravity as 
merely one among many types of natural force—electric, magnetic, 
etc.—each of which influenced in its own way the motion of material 
particles. Space, whose properties were set forth in Euclidean 
geometry, was, so to speak, the stage on which the forces played 
their parts. But in the new theory gravity was no longer one of the 
players, but part of the structure of the stage. A gravitational field 
consisted essentially in a replacement of the Euclidean properties by 
a much more complicated kind of geometry : space was no longer 
homogeneous or isotropic. An analogy may be drawn from the 
game of bowls. Bowling-greens, in the north of England, are not 
flat, but rise to a slight elevation in the centre. An observer who 
failed to notice the central elevation would find that a bowl 
(supposed without bias) always described a path convex toward the 
centre of the green, and he might account for this by postulat­
ing a centre of repellent force there. A better-informed observer 
would attribute the phenomenon to a geometrical feature—the 
slope. The two explanations correspond respectively to the New­
tonian and the Einsteinian conceptions of gravity : for Newton 
it is a force, for Einstein it is a modification of the geometry of 
space.

When the metric of space-time is specified by an equation 

(dfr)2= 2  gndxpdxq>
V  9 = 0

an observer moving in any manner will have a world-line consisting 
of the points of space-time which he successively occupies : and at

1 E. T. Copson, Proc. R.S.(a), cxviii (1928), p. 184
* This idea was later developed by E. Wiechert, Ann. d. Phys. lxiii (1920), p. 301.
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any point of his world-line he will have in his immediate neighbour­
hood an instantaneous three-dimensional space, formed by the aggregate 
of all the elements of length which are orthogonal to his world-line 
at the point : orthogonality being defined, as already explained,1 
by the statement that two vectors (X) and (Y) are said to be 
orthogonal if

2  XPYP = 0,
P=sO

where (Xp) is the covariant form of one vector and (Yp) is the con- 
travariant form of the other.

Einstein laid down the principle that the equations which describe 
any physical process must satisfy the condition that their covariance 
with respect to arbitrary substitutions can be deduced from the 
invariance of ds. In other words, the laws of nature must be repre­
sented by equations which are covariantive for the form gvqdxvdxq

p , ?
with respect to all point-transformations of co-ordinates. Laws of 
nature are assertions of coincidences in space-time, and therefore must 
be expressible by covariant equations.

It might be thought that by following up the consequences of 
this principle we should obtain important positive results. However, 
Ricci and Levi-Civita2 had shown long before that from practically 
any assumed law we can derive another law which does not differ 
from it in any way that can be tested by observation, but which is 
covariant. The fact that a formula has the covariant property does 
not, therefore, tell us anything as to whether it is correct or not. 
We are, however, perhaps justified in believing that a conjectural 
law which can be expressed readily and simply in covariant form is 
more worthy of attention (as being more likely to be true) than one 
whose covariant form is awkward and complicated.

Not only must the general laws of physics be covariant, it 
is also necessary that every single assertion which has a physical 
meaning must be covariant with respect to arbitrary transforma­
tions of the co-ordinate system. Thus the assertion that an electron 
is at rest for an interval of time of duration unity cannot have a 
physical meaning, since this assertion is not covariant.3

In Einstein’s general theory, the velocity of light at any place 
has always the value c with respect to any inertial frame of reference for 
this neighbourhood, and the velocity of any material body is less 
than c. Thus there is no difficulty in the fact that the fixed stars 
have velocities greater than c with respect to axes fixed in the rotating 
earth : for such axes are not inertial.

1 See p. 64
* Math. Ann. liv (1901), p. 125 ; cf. E. Kretschmann, Ann. d. Phys. liii (1917), p. 575, 

and A. Einstein, Ann. d. Phys. Iv (1918), p. 241
8 D. Hilbert, Math. Ann. xcii (1924), p. 1
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Some physicists called attention to the fact that when light is 
propagated in a medium where there is anomalous dispersion, the 
index of refraction may be less than unity, whence it seemed as if 
the velocity of light in the dispersive medium might be greater than 
the velocity of light in vacuo. The difficulty was removed when it 
was pointed out by L. Brillouin 1 and A. Sommerfeld 2 that the 
velocity of light with which the index of refraction is concerned is 
the phase velocity, whereas the velocity of a signal is the group velocity, 
which is never greater than c.

It has sometimes been supposed, by a misunderstanding, that 
the general Einsteinian theory requires us to regard the Copernican 
conception of the universe as no more true than the Ptolemaic, and 
that it is indifferent whether we regard the earth as rotating on 
her axis or regard the stellar universe as performing a complete 
revolution about the earth every twenty-four hours. The root of 
the matter, by which everything is explained, is that the Copernican 
axes are inertial, while the Ptolemaic are not. The earth rotates 
with respect to the local inertial axes.3

In his first paper in the Zeitschrift fur Math. u. Phys.,4 * Einstein 
gave the form which Maxwell’s equations of the electromagnetic 
field must take when the metric of space-time is given by a quadratic 
differential form

3

(ds)2= ^  gpq dxp dxq.
P. 3=0

To obtain these, it will be necessary to introduce some other concepts 
of Ricci’s absolute differential calculus, or tensor-calculus 6 as Einstein 
henceforth called it. Suppose that we are given a quadratic dif­
ferential form in any number of variables

(ds)2 = ^  gpq dxp dxq
V, 3=1

then, following Elwin Bruno Christoffel6 (1829-1900), we introduce 
what are called Christoffel symbols of the first kind, defined as

(Ый +  (h n 1= 1 2 n)
L l J t \dxq + dxp dxl)

1 Comptes Rendus, clvii (1913), p. 914
* Arm. d. Phys. xliv (1914), p. 177
• cf. G. Giorgi and A. Cabras, Rend. Linceit ix (1929), p. 513
4 At page 241
* The word tensor had been used by W. Voigt in 1898, in connection with the elasticity 

of crystals.
• J .fi ir  Math, lxx (1869), pp. 46, 241
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and Christoffel symbols of the second kind, defined as

{ 7 }  = i / f'P ’/ ]  (A ь l -  h 2, . . . n).

As Christoffel showed, the Christoffel symbols enable us to form 
new tensors from known tensors by a process of generalised differen­
tiation. If (Xb X2, . . . Xn) is any covariant vector, then the 
quantities (XP)g defined by

constitute a covariant tensor of rank 2. This process was called covariant 
differentiation by Ricci. Similarly if (XP9) is any covariant tensor of 
rank 2, then the quantities (Х^)л defined by the equations

{?;} x Pr

constitute a covariant tensor of rank 3 which is called the covariant derivative 
of Xpq. The covariant differentiation of sums and products is 
effected by rules similar to those that apply to ordinary differentia­
tion. Moreover if (X*) is any contravariant vector, then the 
quantities (Xz)« defined by

define a mixed tensor of rank 2 which is called the covariant derivative
of(X ').

We know that Maxwell’s equations in Euclidean space consist 
of the Ampère-Maxwell tetrad

ddx ddy ddz
dx d y ^ d z

=  47тр

d h z  d h y  1  d d x  . a

dhz
ez

dju
dx

1 ddy , . „V

dhy
~8x

d h x

dy = 1 ^  + 4 -npv.c dt
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and the Faraday tetrad
dhx dhy dhz _q
dx ~dy dz ~

dd2 _ ddy _  _  1̂ dhz
dy dz c dt

ddx _  ddz___ 1 dhy
dz dx c dt

ddy _ ddx _  _ 1 dhz
dx dy c dt*

Now write x° = ct9 д:1 = a:, x2=y, x3 = z. We have seen in Chapter IT 
that the electric and magnetic vectors together constitute a six-vector

A - X e1, dy = X 02, dz = X 03, hi = X 23, hy = X * \ hz = X 12.

Thus the Ampère-Maxwell tetrad becomes

dXQX , dX02 t dX03 a 
dx1 dx2 dx3 ^

dX10 dX12 
dx° dx2

dX13
dx3 = 4 7TpVx

dX20 dX21 
dx° dx1 + dX23 

dx3 — 4 7TpUy

dX3° 
dx0 +

SX31 , dX32 A

- w + ~ M =47TpV!'

Now if (Tp) is a contra variant vector, the quantity ^  (TP)P (where
the suffix outside the bracket denotes covariant differentiation) is 
a scalar which is called the divergence of (Tp), and denoted by div (Tp) : 
we can easily show that

div(T')- ^ ? s » ( ^ T')-
If (Tw) is a contravariant tensor of rank 2, then the quantity

I  (Ти ),
* 1б2
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which is a vector, is called the vectorial divergence of (Tp?), and is 
denoted by Aiv (Tp?). We can show that if (TPÎ) is skew, i.e. is 
a six-vector, then

Remembering that when the space is Euclidean, д/g  is a constant, 
we see that for a six-vector (Tpy) in Euclidean space we have

Aiv (Tpq) = ^  
q

dTpq 
dxq •

Comparing this with the above form of the Ampère-Maxwell tetrad, 
we see that the tensorial (i.e. covariant) form of this tetrad must be

Aiv (Xpq) = 47tJ p (A)

where Jv denotes the four-vector which represents the electric charge 
and current, namely p0 dxp!ds, where pQ is the proper density of the 
charge, i.e. the charge divided by the volume it occupies, as measured 
by an observer moving with it.

Next consider the Faraday tetrad of equations, which may clearly 
be written

^X23 , 0X8i ffXig _ q 
dx1 dx2 dx3

г х 23 сХзо dx02 __ g
8x° dx2 dx3~

gX31 , aXio gXoa __ Q  

dx» 8x3_i" dx1

Ж 12 X̂gQ ^Xpi __ Q
d*° d*1 dx2

Now it can be shown that if X™ is a six-vector, and if (/>, <7, r, 5) is 
an even permutation of the numbers (0, 1, 2, 3), then a six-vector 
Ypq can be defined by the equations

Y *= V (-* ) X”

and that we then have

xw= - V ( - g )  Y”.
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The two six-vectors Xw and Yw are said to be dual to each other. 
If  Ypg is the six-vector dual to the electromagnetic six-vector Xw, 
so that in Euclidean space

Y1» = hz, Y M = hy, Y30 = hz, Y23 = dz, Y 31 = dv, Y12 = dz,

then the Faraday tetrad may evidently be written

dY01 
Sx1 +

8Y31 8Y03
8x2 8x3 =  0

8Y10,
дхй

8Y13 8Y13 q
8x3 8x3

8Yi0 8Y31 8Y33 _  q
êx° Sx1 8x3

8Y30 8Y31 8Y33
~дх° + W  + ~8>? =  0

or
Aiv ( Yp?) = 0 (B).

Since the equations (A) and (B) are tensor equations, and are 
therefore covariant with respect to all transformations of the co­
ordinates (*°, a:1, x2, *3), we may assume with Einstein that they 
represent the equations of the electromagnetic field in space-time of any metric 
whatever.

The six-vector of the electromagnetic field may be expressed in 
terms of potentials, in the same way as in Euclidean space it is 
expressed by the equations

дф _ dax 
Bx cBt etc., j _daz Bay

By dz etc.

For if we write (ф0, ф1у ф2у ф3) for (ф, — аХу - а Уу - a z)9 these equa­
tions become, as we have seen on page 76,

X Вфр Вфд
pg~ № ~ W > (p ,q = o, 1, 2, 3).

Writing this
Xp?= (фр)д— {фд)р

where the suffixes outside the brackets represent covariant differen­
tiation, we see that the potential (ф 0, фг> фз) is a covariant vector. 

Electromagnetic theory leads naturally to physical optics, and
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this again to geometrical optics. Now in the relativity theory of 
Poincare and Lorentz, for which the line-element dr in the world 
of space-time is given by

{dr)*~ (,dty - 1 {(&)■ + (ф-)а +

the geodesics of the world are straight lines, and the null geodesics 
(i.e. the geodesics for which dr vanishes) are the straight lines for 
which

(dxy+(dyy + (dzy _ ,
{dty

so the null geodesics are the tracks of rays of light. When Einstein 
created his new general theory of relativity, in which gravitation 
was taken into account, he carried over this principle by analogy, 
and asserted its truth for gravitational fields. The principle was, 
however, not proved at that time : and indeed there was the obvious 
difficulty in proving it, that strictly speaking there are no ‘ rays ’ 
of light—that is to say, electromagnetic disturbances which are 
filiform, or drawn out like a thread—except in the limit when the 
frequency of the light is infinitely great : in all other cases diffraction 
causes the ‘ ray 5 to spread out.

The matter was investigated in 1920 by M. von Laue,1 who, 
starting from the partial differential equations of electromagnetic 
phenomena in a gravitational field, obtained a particular solution 
which corresponded to light of infinitely high frequency, and showed 
that the path of this disturbance satisfied the differential equations 
of the null geodesics : thus for the first time proving the truth of 
Einstein’s assertion. It was afterwards shown by E. T. Whittaker 2 
that the law is really an immediate deduction from the theory of 
the characteristics of partial differential equations, and that it is 
not necessary to introduce the notion of frequency at all : in fact, 
that in a gravitational field, any electromagnetic disturbance which is filiform 
must necessarily have the form of a null geodesic of space-time.

At any point of space-time, the directions which issue from it 
may be classified into those that have a spatial character and those 
that have a temporal character : the two classes are separated from 
each other by a cone whose generators are the paths of rays of light : 
this is called the null-cone.

It can be shown mathematically that if we know the geodesics 
of space-time (i.e. the paths of free material particles) and also 
know which of them are null geodesics (i.e. paths of rays of light), 
then the coefficients g p q  of the equation defining the metric

{dsf = i  gpqd x W
p , q = 0

1 Phys. Z s - ™  (1920), p. 659 * Proc. Camb. Phil. Soc. xxiv (1928), p. 32
(995) j S g  12



AETHER AND ELECTRICITY

are completely determinate. In fact, when the null geodesics are 
given, we can infer the metric save for a factor, say

(<&)*« Л(*°, x1, x2, xz) X  (a determinate quadratic form in the dxp)

where Л is unknown : and when we are also given the non-null 
geodesics, the factor Л(*°, xx> *2, x3) can be determined.

In the papers we have referred to, which are of date earlier than 
November 1915, Einstein gave, as we have seen, a satisfactory 
account of the behaviour of mechanical and electrical systems in 
a field of gravitation which is supposed given : his formulae were 
derived fundamentally from the principle of equivalence, i.e. the 
principle that the systems behave just as if there were no gravitational 
field, but they were referred to a co-ordinate-system with an accelera­
tion equal and opposite to the acceleration of gravity. But he had 
not as yet succeeded in obtaining an entirely satisfactory set of 
fundamental equations for the gravitational field itself, i.e. equa­
tions which would play the same part in his theory that Poisson’s 
equation 1

gay gay g2y
dx2 dy2 dz2=  — 4rrp

played in the Newtonian theory. This defect was repaired, and the 
theory (now known as General Relativity) substantially completed, in 
a series of short papers published in November-December 1915, in 
the Berlin Sitzungsberichte?

Let us first inquire what covariants of the form ^  gndxpdxq can
p, я

be formed from the gpq*s and their derivatives alone. It can 
be shown that these can all be derived from a certain tensor 
of rank 4, known as the Riemann tensory which must now be 
introduced.

Let Ds denote the operation which when applied to the Christoffel 
symbol of the first kind is

4 V > è M - ? { 7 }[r/];
then we define the Riemann tensor 3 by the equation

Kw. - D , p / ] - D , p ; ] .

1 cf. Vol. I, p. 61
1 Berlin Sitz. 1915, pp. 778, 799, 831, 844. An eight-line abstract, dated 25 March 

1915. is given at p. 315.
* It was discovered by Riemann, in a memoir Commentate mathematica qua respondere 

tentatur . . ., which was sent to the Paris Academy in 1861 and published posthumously, 
Werke (1892), p. 401 ; it was afterwards used by Christoffel, loc. cit.
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From the Riemann tensor we can obtain a tensor of rank 2 
which is defined by the equation

KP? = 2  S™ î
r, S

it is called the Ricci-tensor or contracted curvature-tensor : and from the 
Ricci tensor we obtain what is called the scalar curvature of the space, 
defined by the equation

K='Zg™ к рд.
p* я

For a two-dimensional space, e.g. a surface in Euclidean three- 
dimensional space, -  |K  is the ordinary Gaussian measure of 
curvature, l/pip2.

In applications to the theory of gravitation, we are dealing with 
the four-dimensional world of space-time. For such a world, K may 
be defined geometrically in the following way. At any world-point, 
take any four directions that are mutually orthogonal with respect 
to the metric of the world. These four directions, taken in pairs, 
determine six surface-elements or orientations, in each of which 
there is an aggregate of geodesics issuing from the point, forming 
a c geodesic surface 5 : then K is minus twice the sum of the 
Gaussian measures of curvature of these six surfaces at the given 
world-point. It is independent of the choice of the four orthogonal 
directions.

Now Mach had introduced long before a principle, that inertia 
must be reducible to the interaction of bodies : and Einstein 
generalised this into what he called Mach's principle, namely that 
the field represented by the ten potentials g p q  is determined solely 
by the masses of bodies. The word ‘ mass ’ is here to be understood 
in the sense given to it by the theory of relativity, that is, as equi­
valent to energy : and as energy is expressed covariantively by 
Minkowski’s energy-tensor Tp?, it follows that in the fundamental 
equations of gravitation, corresponding to the equation VaV= —Аттр 
of the Newtonian theory, we may expect the tensor T ^ or some 
linear function of it to take the place of Poisson’s p. We expect 
to find on the other side of the equation, corresponding to VaV, a 
tensor of the same rank as Tw, that is, the second rank, containing 
second derivatives of the potentials but no higher derivatives. 
The only covariant tensors of this character are the Ricci-tensor 
KPq> with Kg**? and g p q .  Einstein first supposed that Kpq  might be 
a simple constant multiple of Tpq : but this is not satisfactory for 
reasons that will be more evident later1 : and he finally proposed 
the equations

Kpq= —K^Tpq—^gpqT) (p9 q = 0, 1, 2, 3)
1 The divergence of Tpq is zero, and of K/v is not in general zero.
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where T = ]*T gpqTpq, and к is a constant depending on the Newtonian
p»?

constant of gravitation. These are the general field-equations of 
gravitation.

Multiplying them by gvq> summing with respect to p and q, and 
remembering that ^  gvqgm = 4, we have K = /cT, so the equations may
be written

— K = — /cT?? (/>, q — 0, 1, 2, 3).

These are ten equations for the ten unknowns gpq : there are four 
identities between them, as might be expected : for four of the 
gpq9s can be assigned arbitrarily as functions of the *p, corresponding 
to the fact that the equations are invariant under the most general 
transformation of co-ordinates.

According to Mach’s principle as adopted by Einstein, the 
curvature of space is governed by physical phenomena, and we have 
to ask whether the metric of space-time may not be determined 
wholly by the masses and energy present in the universe, so that 
space-time cannot exist at all except in so far as it is due to the 
existence of matter. The point at issue may be illustrated by the 
following concrete problem : if all matter were annihilated except 
one particle which is to be used as a test-body, would this particle 
have inertia or not ? The view of Mach and Einstein is that it 
would not : and in support of this view it may be urged that, 
according to the deductions of general relativity, the inertia of a 
body is increased when it is in the neighbourhood of other large 
masses : it seems needless, therefore, to postulate other sources of 
inertia, and simplest to suppose that all inertia is due to the presence 
of other masses. When we confront this hypothesis with the facts 
of observation, however, it seems that the masses of whose existence 
we know—the solar system, stars and nebulae—are insufficient to 
confer on terrestial bodies the inertia that they actually possess : 
and therefore if Mach’s principle were adopted, it would be necessary 
to postulate the existence of enormous quantities of matter in the 
universe which have not been detected by astronomical observation, 
and which are called into being simply in order to account for 
inertia in other bodies. This is, after all, no better than regarding 
some part of inertia as intrinsic.

The relation of Einstein’s to Newton’s laws of motion in the 
general case was discussed by L. Silberstein,1 who showed that 
the differential equations of a geodesic in General Relativity are 
rigorously identical with the Newtonian equations of motion of 
a particle,

d2èr_  aft
dt2 d£P

1 Nature, cxii (1923), p. 788 
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so long as the frame of reference for the differential equations of 
the geodesic is a system which is momentarily at rest relative to the 
particle. For simplicity consider a ‘ statical5 world, specified by a 
metric

1 3{ds)* = V*(dt)*-\ 2  apqdxpdxq
C P, 2=1

where V and the ап are functions of (я1, x2, *3) only ; and consider 
an observer who is stationary, i.e. whose co-ordinates (x1, x2, *3) do 
not vary. Then the components of the gravitational force on the 
particle can be shown to oe

£0 = 0, ( p - 1 ,2 ,3) ,

and it can be shown from Einstein’s fundamental equation 

Kpj — — кТРЯ
that

where A2V denotes the Second Differential Parameter of V in the 
three-dimensional space.

Now suppose that the field is of the kind considered in Poisson’s 
equation, namely that the space is approximately Euclidean and 
that there is a volume-density p of matter at rest, and no radiation ; 
then the only sensible element of the energy-tensor is the energy- 
density due to the equivalence of mass and energy, which has the 
value rap. Moreover we can take V =  1 +y, where y is small ; so 
the above equation becomes

Д2у = £кг2р.

But writing x9y , z for the co-ordinates, since

(Л )* -^ (& )*  + (^)*+ (*)■}

approximately, we have

g*y I d*Y I g * y \
8x2 8y dz'J

82y  d*y , 
8xi + 8 f + ~d.£* 
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Now in the light of the above equations for the gravitational force, 
we have

_ = the gravitational potential Q,
so

0*0 fi»Q ,

Comparing this with Poisson’s equation
g2Q d2Q
dx2 dy2 ^ 2+ V " + ^  ~ 4тг£р

where £ is the Newtonian constant of gravitation, we have
8 nfiK —

дя equation connecting the Einsteinian and Newtonian constants of gravitation. 
Since

this gives
£ = 6*67 x 10~8 gr-1 cm3 sec~a

*= 1*87 x 10~27 cm.gr-1.

Almost simultaneously with Einstein’s discovery of General 
Relativity, David Hilbert1 (1862-1943) gave a derivation of the 
whole theory from a unified principle. Defining a point in space- 
time by generalised co-ordinates (*°, л;1, x2, *3), he adopted Einstein’s 
ten gravitational potentials gpq and a four-vector (<f>0, фи <£2, фз) 
representing the electrodynamic potential : and assumed the follow­
ing axioms :
Axiom I  (Mie’s axiom of the world-function). All physical happenings 
(gravitational, electrical, etc.) in the universe are determined by a scalar 

function H (called the world-function) which involves the arguments gpq 
and their first and second derivatives with respect to the x's, and involves also 
the (f> s and their first derivatives with respect to the x's : and the laws of 
physical processes are obtained by annulling the variation of the integral

JJJJh vgdx °dx1dx2dx3

(where g denotes the determinant of the gpq) for each of the fourteen 
potentials gpq, </>,. The reason for the occurrence of the factor y/g

1 Gott. Nach.y 1915, p. 395 ; read 20 Nov. 1915. The investigation was carried further 
by : H. A. Lorentz, Proc. Amst. Ac. xix (1916), p. 751 ; J . Tresling, Proc. Amst. Ac. xix 
(1916}, p. 892 ; A. Einstein, Berlin Sitz, 1916, p. 1111; F. Klein, Gott. Nach. 1917, p. 469 ; 
H. Weyl, Ann. d. Phys. liv (1917), p. 117 ; A. D. Fokker, Proc. Amst. Ac. xix (1917), p. 968 ; 
A. Palatini, Palermo Rend, xliii (1919), p. 203 ; D. Hilbert, Math. Ann. xcii (1924), p. 1 ; 
E. T. Whittaker, Proc. R.S.ia), cxiii (1927), p. 496.
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is that д/g dx°dx1dx2dx2, which is called the invariant hypervolume, is 
invariant under all transformations of co-ordinates.
Axiom II (axiom of general invariance). The world-function H is 
invariant with respect to arbitrary transformations of the xT.

These axioms represented a distinct advance on Einstein’s 
methods, in which Hamilton’s Principle had played only a very 
subordinate part.

We suppose that the world-function H is a sum of two terms, 
of which the first represents gravitation, i.e. whatever is inherent 
in the intrinsic structure of space-time, while the second term 
represents all other physical effects. The first term we take to be 
proportional to K, the scalar curvature of space-time at the point 
(*°, x1, x2, x3) ; this amounts to supposing that the mutual energy 
of all the gravitating masses in the world can be expressed analytically 
as an integral taken over the whole of space, namely a numerical 
multiple of JJJJK л/g  dx°dxldx2dxz. With regard to the second term, 
we shall suppose for simplicity that the only other physical effect 
to be considered is an electromagnetic field in free aether. Now in 
Euclidean space there is, in the field, electric energy (dxz + dy2 + dz2)/877 
per unit volume, and magnetic energy (hx2 + hy2 + A/)/8tt per unit 
volume ; and since these are of opposite type, in the sense in which 
kinetic and potential energy are of opposite type, we should expect 
their difference to occur in the world-function. In general co­
ordinates this difference is represented by

L =  - T - U z  Х ”*ХИ
107Г ь v

where XP? is the electromagnetic six-vector. We shall take the 
second part of the world-function to be a numerical multiple of L. 
We must therefore have

sjjJj(K + 2*L) y/g dx4x4x4x* = 0 

where к is a constant : or

. y/g + K . S y/g + 2/cS(L fg )  I  dx°dx4x2dx2 = 0.

A calculation shows that

f J s K . V * dxQdx4x2dx3 = y/g 8gvq dx°dx4x2dx8

where ¥Lpq is the Ricci tensor : and

b V g = - W g  I  gp*4pq-
Р ,Я
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Let us now find the value of

' Ш К *  dx°dx1dx2dxz.

The part that depends on the variations of the gvq is

ЯЯ?,{ Si”
where £ is 1 or \  according as p is equal or unequal to q : or

8gPt. *s/g dx°dx1dxidxi

where
T = t  VS) = or , _2_ r Ң Vs)t

M V g ^  Zg™ ^ k ^  V g  Bg”

Now it may easily be shown that

■A 
' 4

Y
э ~rTZpq S SpQ

so

Moreover, when we regard L as a function of the gpq and the фёу 
remembering that X pq is a function of the ф* only, not involving 
the gvqy we must write

so we have

and therefore

or

L =  -т 4 -  I  gpkgi l XMXu1V1T kt it Pt q

v SL 1 ^  v  y  *

T» -  - г -Z  X,, x / + ^ P - 2  X " x,.*1T m l 0 7 T r .

which is the expression previously found for Minkowski's electromagnetic 
energy-tensor.
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Thus the variational integral, in so far as the variations of the 
gvq are concerned, is

ш  — Ь&м ^  + ̂ Трд  ̂8gvq, \ / g dx°dx1dx2dx3 = 0

and therefore the variational equations derived from the terms in gpq are
Kp? — £ = — кТрд (p, q = 0, 1, 2, 3)

which are identical with Einstein's gravitational equations, previously given.
Hilbert showed moreover that the Ricci tensor satisfies the four 

identical relations expressed by the equation

Aiv (k ; - * * ; k ) - o.

We must now find the part of the variational integral that 
involves the variations of the electromagnetic potentials. It is 
(disregarding a constant multiplier)

( f ( f z  XMVg SX„ dx*dx4x'dx'.

But

so the part of the variational integral with which we are concerned is

which after integration by parts yields

-1 1 1

Interchanging p and q in the summation of the second term, this 
becomes

- 2 j j j j l  diXs / g) S&> dx'dx'dx'dx',

and therefore the variational equations obtained from the variations 
of the potentials are

i
a (xpv g ) _ 0

dx*
*73
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or
Aiv (Xpq) - 0

and these are precisely the Ampère-Maxwell tetrad of electromagnetic 
equations in free aether. The Faraday tetrad of course follows from 
the expression of the Xw in terms of the potentials. Thus both 
Einstein's gravitational equations and the electromagnetic equations can be 
obtained by the variation of the integral of Hilbert's world-function.

It was proposed by Cornel Lanczos 1 that the world-function H 
occurring in the integral JJJJHVg dx°dx1dx2dxz should be formed 
in a way different from that adopted by Hilbert, namely that it 
should be a quadratic function of the Ricci tensor Kp?, and in fact 
should be of the form

h=Z кикм+скз
P* Я

where C is a numerical constant. The advantage of this form is 
that in the course of the analysis, a four-vector is found to occur 
naturally, and this vector can be identified with the electromagnetic 
potential-vector : thus electromagnetic theory can be unified with 
the theory of General Relativity.

In 1920 a criticism of General Relativity was published in the 
Times Educational Supplement2 by the mathematician and philosopher 
Alfred North Whitehead (1861-1947). ‘ I doubt,’ he said, *the 
possibility of measurement in space which is heterogeneous as to 
its properties in different parts. I do not understand how the fixed 
conditions for measurement are to be obtained.’ He followed up 
this idea by devising an alternative theory which he set forth in 
a book, The Principle of Relativity,3 in 1922. ‘ I maintain,5 he said, 
‘ the old-fashioned belief in the fundamental character of simul­
taneity. But I adapt it to the novel outlook by the qualification 
that the meaning of simultaneity may be different in different in­
dividual experiences.’ This statement of course admits the relativity 
theory of Poincare and Lorentz, but it is not compatible with the 
General Theory of Relativity, in which an observer’s domain of 
simultaneity is usually confined to a small region of his immediate 
neighbourhood. Whitehead therefore postulated two fields of 
natural relations, one of them (namely space and time relations) 
being isotropic, universally uniform and not conditioned by physical 
circumstances : the other comprising the physical relations ex­
pressed by laws of nature, which are contingent.

A profound study of Whitehead’s theory was published in 1952 
by J. L. Synge.4 As he remarked, the theory of Whitehead offers 
something between the two extremes of Newtonian theory on the

1 Z S . f .  P. lxxiii (1931), p. 147 ; lxxv (1932), p. 63 ; Phys. Rev. xxxix (1932), p. 716
* Times Educ. Supply 12 Feb. 1920, p. 83
* The Principle o f Relativity, with applications to physical science, Camb. Univ. Press, 1922
* Proc. R.S.(A), ccxi (1952), p. 303
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one hand and the General Theory of Relativity on the other. It 
conforms to the requirement of Lorentz invariance (thus overcoming 
the major criticism against the Newtonian theory), but it does not 
reinstate the concept offeree, with the equality of action and reaction, 
so that its range of applicability remains much lower than that of 
Newtonian mechanics. However, it does free the theorist from the 
nearly impossible task of solving a set of non-linear partial differential 
equations whenever he seeks a gravitational field. It is not a field 
theory, in the sense commonly understood, but a theory involving 
action at a distance, propagated with the fundamental velocity c.

Whitehead’s doctrine, though completely different from Einsteins’ 
in its formulation, may be described very loosely as fitting the 
Einsteinian laws into a flat space-time ; and no practicable observa­
tional test has hitherto been suggested for discriminating between 
the two theories.1

The idea of mapping the curved space of General Relativity on 
a flat space, and making the latter fundamental, was revived many 
years after Whitehead by N. Rosen.2 He and others 8 who developed 
it claimed that in this way it was possible to explain more directly 
the conservation of energy, momentum, and angular momentum, 
and also possibly to account for certain unexplained residuals in 
repetitions of the Michelson-Morley experiment.4

In 1916 K. Schwarzschild made an important advance in the 
Einsteinian theory of gravitation, by discovering the analytical 
solution of Einstein’s equations for space-time when it is occupied 
by a single massive particle.6

The field being a statical one, we can take the quadratic form 
which specifies the metric of space-time to be

{.ds)' = V '{d ty -U d iy  c

where dl is the line-element in the three-dimensional space, S, so
3

(<//)a = 2  &pqdxvdxq 
p, î= i

and the functions V, apq, (p> q=* 1, 2, 3), do not involve t. There 
will be a one-to-one correspondence between the points of the 
space S, which contains the massive particle, and the points of a

1 cf. G. Temple, Proc. Phys. Soc. xxxvi (1924), p. 176 ; W. Band, Phys. Rev. lxi (1942), 
p. 698

1 Phys. Rev. lvii (1940), pp. 147, 150, 154
8 M. Schoenberg, Phys. Rev. lix (1941), p. 616 ; G. D. Birkhoff, Proc. N a t. Ac. Sci. 

xxix (1943), p. 231 ; A. Papapetrou, Proc. R .I .A ., Ш (a ) (1948), p . 11
4 D. C. Miller, Proc. N a t. Ac. Sci. xi (1925), p. 306
* K. Schwarzschild, Berl. S itz . 1916, p. 189 ; cf. also : A. Einstein, Berl. S itz . 1915, 

p. 831 ; D. Hilbert, Gôtt. Nach. 1917, p. 53 ; J .  Droste, Proc. Am st. Ac. xix (1917), p. 197 ; 
A. Palatini, N . Cimento, xiv (1917), p. 12 ; G. W. Oseen, A r k . f .  M a t. A st. och. Fys. xv 
(1921), No. 9 ; J. L. Synge, Proc. R .I .A . liii (1950), p. 83.
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space S' which is completely empty. Now the latter space can be 
specified by co-ordinates (r, 0, <f>) in such a way that its line-element 
is given by

(dl')*= {dry + r*{{dOy + sin20(<fy)2},

the origin of S' corresponding to the location of the massive particle 
in S. The effect of the presence of the particle will be to distort 
S as compared with S', but the distortion will be symmetrical with 
respect to the particle, so the line-element in S will be expressible 
in the form

(dl)2 =/(r) {dr)2 + g {r)r%de)2 + sin2 B{d<j>)2}

and if we take a new variable R such that \/g(r) . r = R, this may 
be written

(<//)2 = A2(dR)2 + Ra{(</0)2 + sin20 (^ )2}

where A is some function of R. By symmetry, V is also a function 
of R, and the problem is to determine A and V.

Thus, now writing r for R, the quadratic form which defines the 
metric in the space around the particle is

where

(Л)2= ^  gpqdxpdxq
P ,Q

e II x' = r, *2 = 0, x* = <f>

g 00 = V2, A2 r2 r2 sin2#
g g**= ,2

and gPq is zero when p is different from q.
Since the energy-tensor is zero everywhere except at the origin, 

and since K = 0 when KP? = 0, Einstein’s gravitational equations 
reduce to

K pq = 0.

Calculating the Ricci tensor, and denoting differentiations by dashes, 
we find

Â W "  , A 'W■00 — ̂  l A2 + A2

V"' A'V' 2A'■n— y AV Ar

*( 1 , rV' rA'
-12 —  C 1A2 + ASV A2 “

2VV'\ 
A2r )

)•
1 7 6
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Forming the combination (A,/c,V*)K00+ Kn> and equating it to zero, 
we have

V' А' 
V + A =  0

so AV = a constant ; and since when r-*-oo the space tends to that 
defined by the quadratic form

(*)• = (d t y  - 1  { {d ry  + r* (dey  + r* sin

that is, A-*-1 and V-*-1, we must have
AV= 1.

The equation K2, = 0 now becomes

A*
2rA'
A* - 1  =  0.

so denoting (1/A*) — 1 by u, we have

u+r ~  = 0, or ru = Constant, dr

Thus the metric in the space around the particle is specified by

{dsy= ( l  -  J . + + s in » ^ )* j.

This is Schwarzschild’s solution.
If at any instant, in the plane 0 = \ ir, we consider a circle on which 

r is constant, we see that the length of an element of its arc is given 
by the equation

so dl = rd<f>, and the circumference of the whole circle is 2nr. This 
determines the physical meaning of the co-ordinate r. But if we 
consider a radius vector from the origin, the element of length along 
this radius is given by

r
1 7 7
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so when r, in decreasing, tends to a, then dl->ao : that is to say, 
the region inside the sphere r= a is impenetrable.

The differential equations of motion of a particle (supposed to 
be so small that it does not disturb the field), under the influence 
of a single gravitating centre, are the differential equations of the 
geodesics in space-time with Schwarzschild’s matric. These equa­
tions can be written down and integrated in terms of elliptic 
functions.1

A particular case is that of rectilinear orbits along a radius vector 
from the central mass. We then have d<f> = 0, and can readily derive 
the integral

( 1 — ^  = Constant = ̂  say,
and we have

Eliminating ds between these equations, we have

Let dl denote the element of length along the radius, and let dr 
denote the element of time, so

r

then the preceding equation becomes
1_ 
c*

OLfJL*
Г

which obviously corresponds to the Newtonian equation of the 
conservation of energy. Differentiating it, we have

d%l _ ац*с2 [ л
d ? ~  2r* V  r) *

1 cf. W. de Sitter, Proc. Amst. Ac. xix (1916), p. 367 ; T. Levi-Civita, Rend. Lined, 
xxvi (i) (1917), pp. 381, 458; xxvi (ii) (1917), p. 307; xxvii (i) (1918), p. 3; xxvii 
(ii) (1918), pp. 183, 220, 240, 283, 344 ; xxviii (i) (1919), pp. 3, 101 ; A. R. Forsyth, 
Proc. R .S.(a ), xcvii (1920), p. 145 (Integration by Jacobian elliptic functions) ; F. 
Morley, Am. J .  Math, xliii (1921), p. 29 (by Weierstrassian elliptic functions) ; C. de 
Jans, Mém. de l*Ac. de Belgique, vii (1923) (by Weierstrassian functions) ; K. Ogura, 
Jap. J .  o f  Phys. iii (1924), pp. 75, 85 ; a very complete study of the trajectories of a small 
particle in the Schwarzschild field was made by Y. Hagihara, Jap. J .  o f  Ast. and Geoph. 
viii (1931), p. 67.
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When r is large compared with a , this becomes approximately

dl r= _ ^ a
dt2 2ra

which is the Newtonian law of attraction.
Comparing it with the Newtonian law of attraction to the 

sun,
dfr___yM
dt2 “  r2

where y is the Newtonian constant of attraction and M is the sun’s 
mass, we have

a
2yM

which gives
a  = 2*95 km.

This is the value of the constant a for the sun.
By approximating from the elliptic-function solution for the 

general case of motion round a gravitating centre, we can study the 
orbits when the distance of the small particle from the centre of force 
is large compared with a , in which case we can have orbits differing 
little from the ellipses described by the planets under the Newtonian 
attraction of the sun. It is found that the line of apsides of such an 
orbit is not fixed, but slowly rotates : if l is the semi-latus-rectum, 
then the advance of the perihelion in one complete revolution 
is Зтга//, which for the case of the planet Mercury revolving 
round the sun amounts to about 0"T : since Mercury makes 
about 420 revolutions in a century, the secular advance of 
the perihelion is 42", which agrees well with the observed value 
of 43V

The paths of rays of light in the field of a single gravitating 
centre are, of course, the null geodesics of the Schwarzschild field. 
Many of them have remarkable forms. It is found that a ray of 
light can be propagated perpetually in a circle of radius fa  about 
the gravitating centre : and there are trajectories spirally asymptotic 
to this circle both externally and internally, the other terminus of 
the trajectory being on the circle r=  a  in the former case and at 
infinity in tne latter. There are also trajectories of which one 1

1 Einstein first showed that the new gravitational theory would explain the anomalous 
motion of the perihelion of Mercury in the third of his papers in the Berlin Sitz. of 1915, 
p. 831. On the whole subject cf. G. M. Clemence, Proc. Amer. Phil. Soc. xciii (1949), 
p. 532. The secular motion of the earth’s perihelion, as revealed by observation, was 
found by H. R. Morgan, Ast. J .  li (1945), p. 127, to agree with that calculated by Einstein’s 
theory, which is 3'-84.
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terminus is at infinity and the other on the circle r=  a, trajectories 
which at both termini meet the circle r=  a, and quasi-hyperbolic 
trajectories both of whose extremities are at infinity. For these 
last-named trajectories it is found that if a is the apsidal distance, 
the angle between the asymptotes is approximately equal to 2 a/я. 
A ray coming from a star and passing close to the sun’s gravitational 
field, when observed by a terrestrial observer, will therefore have 
been deflected through an angle 2 aja.1 If we take the radius of 
the solar corona to be 7 x l 0 6 km., so that a = 7 x l 0 5 km. and 
a = 3 km., then Einstein found that the displacement of the star is 2.3/7.10s 
in circular measure, or 1 "-75.

The notion that light possesses gravitating mass, and that there­
fore a ray of light from a star will be deflected when it passes near 
the sun, was far from being a new one, for it had been put forward 
in 1801 by J. Soldner,2 who calculated that a star viewed near the 
sun would be displaced by 0"*85. Einstein’s prediction was tested by 
two British expeditions to the solar eclipse of May 1919, who found for 
the deflection the values l w*98±0'r,12 and Г'-61 ±0"*30 respectively, 
so the prediction was regarded as confirmed observationally : and 
this opinion was strengthened by the first reports regarding the 
Australian eclipse of 1922 September 21. Three different expedi­
tions found for the shift at the sun’s limb the values 1"*72 ±0M1, 
l"*90±Cr-2 and Y -П ±0"*3, all three results differing from Einstein’s 
predicted value by less than their estimated probable errors. How­
ever, a re-examination of the 1922 measures gave about 2 "-2 : at 
the Sumatra eclipse of 1929 the deflection was found3 to be 2"*0 
to 2"*24 : and at the Brazilian eclipse of May 1947 a value of 
2//*01 ±0"’27 was obtained4 : while it must not be regarded as 
impossible that the consequences of Einstein’s theory may ultimately 
be reconciled with the results of observation, it must be said that at 
the present time (1952) there is a discordance.

À second observational test proposed was the anomalous motion 
of the perihelion of Mercury. This is quantitatively in agreement 
with Einstein’s theory,6 but as we have seen,6 there are alternative 
explanations of it.

A third proposed test was the displacement to the red of spectral 
lines emitted in a strong gravitational field. This, however, was, as 
we have seen,7 explained before General Relativity was discovered, 
and does not, properly speaking, constitute a test of it in contra­

1 cf. F. D. Mumaghan, Phil. Mag. xliii (1922), p. 580 ; T. Shimizu, Jap. J . Phys. 
iii (1924), p. 187 ; R. J . Trumpler, J.R.A.S. Canada, xxiii (1929), p. 208

* Berliner Astr. Jahrb. 1804, p. 161 ; reprinted Ann. d. Phys. lxv (1921), p. 593
* E. Freundlich, H. v. Klüber and A. v. Brunn, %S- /•  Astroph. iii (1931), p. 171 ; 

vi (1933), p. 218 ; xiv (1937), p. 242 ; cf. J . Jackson, Observatory, liv (1931), p. 292
4 G. van Biesbroek, Ast. J .  Iv (1950), p. 49 ; cf. E. Finlay-Freundlich and W. Leder­

mann, Mon. Not. R.A.S. civ (1944), p. 40
* cf. G. M. Clemence, Ast. J .  1 (1944)
* cf. p. 148
» p. 152-3 ; cf. G. Y. Rainich, Phys. Rev. xxxi (1928), p. 448
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distinction to other theories.1 In any case, the observed effect so 
far as solar lines2 are concerned is complicated by other factors.3 
With regard to stellar lines, the greatest effect might be expected 
from stars of great density. Now Eddington showed that in a certain 
class of stars, the ‘ white dwarfs,’ the atoms have lost all their 
electrons, so that only the nuclei remain : and under the influence 
of the gravitational field, the nuclei are packed together so tightly 
that the density is enormous. The companion of Sirius is a star 
of this class : its radius is not accurately known, but the star might 
conceivably have a density about 53,000 times that of water, in 
which case the red-displacement of its lines would be about 30 times 
that predicted for the sun. The comparison of theory with observa­
tion of the red-displacement can, however, hardly be said to furnish 
a quantitative test of the theory.4

We may remark that it is easy to construct models which behave 
so as to account for the observed facts of astronomy. For example, 
it has been shown by A. G. Walker5 that if a particle is supposed 
to be moving in ordinary Euclidean space in which there is a 
Newtonian gravitational potential ф (so that the contribution to 
ф from a single attracting mass M is -yM /r, where y is the New­
tonian constant of attraction) and if the kinetic energy of the 
particle is

(which reduces to T = iu2 when c-*oo), and if the potential energy 
of the particle is

1 The derivation of the effect from Einstein’s equations may readily be constructed 
from the following indications. For an atom at rest in a gravitational field (e.g. on the 
sun) the proper-time is given by

where, as we have seen, V = 1 — (1/c2) П if П is the gravitational potential ; while for an 
atom at rest at a great distance from the gravitational field (e.g. on the earth) we have

The period of the radiation, as measured at its place of emission, is to its period as measured 
by the terrestrial observer, in the ratio that drjdt at the place of emission bears to drjdt 
at the place of the observer, that is, the ratio V to unity ; so, as before, we find that the 
wave-length of the radiation produced in the strong gravitational field and observed by the 
terrestrial observer is ( 1 + Cljc2) times the wave-length of the same radiation produced on 
earth.

* G. E. St. John, Astroph. J .  lxvii (1928), p. 195
3 cf. Miss M. G. Adam of Oxford, Mon. Not. R.A.S. cviii (1948), p. 446
4 For a discussion as to whether the perihelion motion of Mercury, the deflection 

of light rays that pass near a gravitating body, and the displacement of spectral lines 
in the gravitational field, are to be regarded as establishing General Relativity, cf. 
E. Wiechert, Phys. £S. xvii (1916), p. 442, and Ann. d. Phys. lxiii (1920), p. 301.

6 Nature, clxviii (1951), p. 961

T = ie 2̂ C v2 where

</r*=V2 dt\

V =1 and dr2=dt2.

(995) 1 8 1 13



(which reduces to <f> when c-*oo), then the Lagrangean equations 
of motion of the particle are

d f 1 dx \_  1 +v*/c2 дф
dt\ 1 — v2jc2 dt) 1 — v2/c2 dx

and two similar equations in y  and z (which reduce to d2x/dt2 = — дф/дx 
and two similar equations when c-*oo), and that the trajectories 
have the following properties :

(i) the velocity of the particle can never exceed c ;
(ii) a particle moving initially with velocity c continues to move 

with this velocity ;
(iii) the perihelion of an orbit advances according to the same 

formula as is derived from General Relativity ;
(iv) if the particles moving with speed c are identified with 

photons, they are deflected towards a massive gravitating body 
according to the same formulae as is derived from General Relativity.

It is unwise to accept a theory hastily on the ground of agree­
ment between its predictions and the results of observation in 
a limited number of instances : a remark which perhaps is specially 
appropriate to the investigations of the present chapter.

An astronomical consequence of General Relativity which has 
not yet been mentioned was discovered in 1921 by A. D. Fokker,1 
namely that, as a result of the curvature of space produced by the 
sun’s gravitation, the earth’s axis has a precession, additional to 
that deducible from the Newtonian theory, of amount CT-019 per 
annum ; unlike the ordinary precession, it would be present even 
if the earth were a perfect sphere. Its existence cannot however 
be tested observationally, since the shape and internal constitution 
of the earth are not known with sufficient accuracy to give a reliable 
theoretical value for the ordinary precession, and the relativistic 
precession is only about 2A0 of this.

Besides the Schwarzschild solution, a number of other particular 
solutions of the equations of General Relativity were obtained in 
the years following 1916, notably those corresponding to a particle 
which has both mass and electric charge,2 and to fields possessing 
axial symmetry,3 especially an infinite rod,4 and two particles.6 In 
1938 A. Einstein, L. Infeld and B. Hoffman published a method6 
for finding, by successive approximation, the field due to n bodies.

1 P r o c . A m s t .  A c .  xxiii (1921), p. 729; cf. H. A. Kramers, ibid. p. 1052, and 
G. Thomsen, R e n d . L i n e d , vi ( 1927), p. 37. The existence of an effect of this kind had been 
predicted in 1919 by J . A. Schouten, P ro c . A m s t .  A c .  xxi (1919), p. 533.

* H. Reissner, A n n .  d . P h y s . 1 (1916), p. 106 ; H. Weyl, A n n  d. P h y s . liv (1917), p. 117 ; 
G. Nordstrom, P ro c . A m s t .  A c .  xx (1918), p. 1236 ; C. Longo, N. C im e n to> xv (1918), p. 191 ; 
G. B. Jeffery, P ro c . R . S . ( a), xcix (1921), p. 123.

3 T. Levi-Civita, R e n d . L in c e i i ï )  xxviii (i) (1919), pp. 4, 101
4 W. Wilson, P h i l .  M a g .  (6) xl (1920), p. 703
6 H. E. J . Curzon, P ro c . L . M . S A 2 )  xxiii (1924—5), pp. xxix and 477
e A n n .  M a t h ,  xxxix (1938), p. 65 ; cf. H. P. Robertson, ibid., p. 101 and T. Levi- 

Civita, M i m .  des S c . M a t h . y fasc. cxvi (1950)
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Static isotropie solutions of the field equations, and symmetric 
distributions of matter, have been discussed by M. Wyman.1

In 1916 and the following years attention was given 2 to the 
propagation of disturbances in a gravitational field. If the distri­
bution of matter in space is changed, e.g. by the circular motion 
of a plate in its own plane, gravitational waves are generated, 
which are propagated outwards with the speed of light.

If such waves impinge on an electron which is at rest, the prin­
ciple of equivalence shows that the physical situation is the same 
as if the electron were moving with a certain acceleration, and 
therefore an electron exposed to gravitational waves must radiate.3

In 1917 Einstein4 * pointed out that the field-equations of gravita­
tion, as he had çiven them in 1915, do not satisfy Mach’s Principle, 
according to which, no space-time could exist except in so far as it 
is due to the existence of matter (or energy). Einstein’s equations 
of 1915, however, admit the particular solution

gpq = Constant, T^ = 0 (p9 <7 = 0, 1, 2, 3)

so that a field is thinkable without any energy to generate it. He 
therefore proposed now 6 to modify the equations by writing them

— -|gpgK — Xgpq = — кТрд (j?, (7=0, 1, 2, 3).

The effect of the A-term is to add to the ordinary gravitational 
attraction between particles a small repulsion from the origin vary­
ing directly as the distance : at very great distances this repulsion 
will no longer be small, but will be sufficient to balance the attraction : 
and in fact, as Einstein showed, it is possible to have a statical 
universe, spherical in the spatial co-ordinates, with a uniform 
distribution of matter in exact equilibrium.6 This is generally called 
the Einstein universe. The departure from Euclidean metric is 
measured by the radius of curvature R0 of the spherical space, and 
this is connected with the total mass M of the particles constituting 
the universe by the equation

1 P h y s . R e v .  lxvi (1944), p. 267 ; lxxv (1949), p. 1930
* A. Einstein, B e r l in  S i t z .  1916, p. 688 ; 1918, p. 154 ; H. Weyl, R a u m  £ e i t  M a te r i e , 

4th edn. (Berlin, 1921) p. 228 (English edn., p. 252) ; A. S. Eddington, P ro c . R . S . ( a ), 
cii (1922), p. 268 ; H. Mineur, B u l l .  S . M .  F r .  lvi (1928), p. 50 ; A. Einstein and N. Rosen, 
J .  F r a n k l .  I n s t ,  ccxxiii (1937), p. 43 ; M. Brdicka, P ro c . R . I . A .  liv (1951), p. 137.

* This problem was investigated by W. Alexandrow, A n n .  d . P h y s .  lxv (1921), p. 675.
4 B e r l in  S i t z ., 1917, p. 142 ; A n n .  d .  P h y s .  lv (1918), p. 241
6 The new equations can be derived variationally by adding a constant to Hilbert’s 

World-Function.
4 The suggestion that our universe might be an Einsteinian space-time of constant 

s p a t ia l  curvature seems to have been made first by Ehrenfest in a conversation with de 
Sitter about the end of 1916.
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where y  denotes the Newtonian constant of gravitation. The total 
volume of this universe is 27t1 2R03.

It was shown by J. Chazy1 and by E. Trefftz2 that when the 
À-term is included in the gravitational equations, Schwarzschild’s 
metric for the space-time about a single gravitating centre must 
be modified to

(* )2=  ( l  -  -r ~ \ A )  (а УХ + г гт *  + г*5т*в(с1фУj .

r 3

If in this we put a = 0, which amounts to supposing that there 
is no mass at the origin, so the world is completely empty,3 we 
obtain

(ds)*=( 1 -  J  A  (dt)2 -  -, j  + r*(de)* + r*sin*6(d<f>)*\.
V 3 /  c j

Now this metric had been discovered by W. de Sitter4 * in 
1917. It is the metric of a four-dimensional space-time of constant 
curvature.

The de Sitter world, as it was called, was the subject of many 
papers, partly on account of its intrinsic geometrical interest to the 
pure mathematician, and partly because of the possibility that some 
or all of its features might be similar to those of our actual universe 
as revealed by astronomical observation.6

Let us consider the universe as it would be if all minor irregu­
larities were smoothed out : just as when we say that the earth is 
a spheroid, we mean that the earth would be a spheroid if all mountains 
were levelled and all valleys filled up. In the case of the universe 
the levelling is a more formidable operation, since we have to smooth 
out the earth, the sun and all the heavenly bodies, and to reduce 
the world to a complete uniformity. But after all, only a very small 
fraction of the cosmos is occupied by material bodies : and it is

1 Comptes RenduSy clxxiv (1922), p. 1157
* M a t h .  A m .  lxxxvi (1922), p. 317 ; cf. M. von Laue, B e r l in  S itz .>  1923, p. 27
* This, of course, shows the invalidity of the reason Einstein had originally given for 

introducing the A-term.
4 P ro c . A m s t .  A c a d , xix (31 March 1917), p. 1217 ; xx (1917), pp. 229, 1309 ; M o n .  

N o t . R . A . S .  bcxviii (Nov. 1917), p. 3
4 cf. F. Klein, Gôtt. Nach. 6 Dec. 1918, = Ges. Math. Abh. i, p. 604 ; K. Lanczos, 

Phys. ZS. xxiii (1922), p. 539 ; H. Weyl, Phys. Z& xxiv (1923), p. 230 ; Phil. Mag,.(6) 
xlviii (1924), p. 348 ; Phil. Mag.O) ix (1930), p. 936 ; P. du Val, Phil. Mag.i6) xlvii 
(1924), p. 930 ; M. von Laue and N. Sen, Ann. a. Pkys. lxxiv (1924), p. 252 ; L. Silber- 
stein, Phil. MagA&) xlvii (1924), p. 907 ; H. P. Robertson, Phil. Mag.O) v (1928), 
p. 835 ; R. G. Tolman, Astroph. J .  lxix (1929), p. 245 ; G. Castelnuovo, Lincei Rend.

* xii (1930), p. 263 ; M. von Laue, B e r l in  S i t z .  1931, p. 123 ; E. T. Whittaker, P ro c . a), 
cxxxiii (1931), p. 93 ; H.S. Coxeter, A m e r .  M a t h . M o n th l y , 1 (1943), p. 2i7
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interesting to inquire what space-time as a whole is like when we 
simply ignore them.1

The answer must evidently be, that it is a manifold of constant 
curvature. This means that it is isotropic (i.e. the curvature is the 
same for all orientations at the same point) and is also homogeneous. 
As a matter of fact, there is a well-known theorem that any manifold 
which is isotropic in this sense is necessarily also homogeneous, so 
that the two properties are connected. A manifold of constant 
curvature is a projective manifold, i.e. ordinary projective geometry 
is valid in it when we regard geodesics as straight lines : and it is 
possible to move about in it any system of points, discrete or con­
tinuous, rigidly, i.e. so that the mutual distances are unaltered.

The simplest example of a manifold of constant curvature is 
the surface of a sphere in ordinary three-dimensional Euclidean 
space : and the easiest way of constructing a model of the de Sitter 
world is to take a pseudo-Euclidean manifold of five dimensions in 
which the line-element is specified by the equation

-  (ds)2 = (dx)a + (dy)a + (dz)a -  (du)2 + (dv)2y

and in this manifold to consider the four-dimensional hyper-pseudo­
sphere 2 whose equation is

x2 +jy2 + z* — u2 + v2 = R2.

The pseudospherical world thus defined has a constant Riemannian 
measure of curvature — 1/R2.3

The de Sitter world may be regarded from a slightly different 
mathematical standpoint as having a Cayley-Klein metric, governed 
by an Absolute whose equation in four-dimensional homogeneous 
co-ordinates is

x2 +y2 + z* — u* +  v2 =  0

where u is time. Hyperplanes which do not intersect the Absolute 
are spatial, so spatial measurements are elliptic, i.e. the three- 
dimensional world of space has the same kind of geometry as the 
surface of a sphere, differing from it only in being three-dimensional 
instead of two-dimensional. In such a geometry there is a natural 
unit of length, namely the length of the complete straight line,

1 The curvature of space at any particular place due to the general curvature of the 
universe is quite small compared to the curvature that may be imposed on it locally 
by the presence of energy. By a strong magnetic field we can produce a curvature 
with a radius of less than 100 light-years, and of course in the presence of matter the 
curvature is stronger still. So the universe is like the earth, on which the local curvature 
of hills and valleys is far greater than the general curvature of the terrestrial globe.

2 The prefix h yp e r- indicates that we are dealing with geometry of more than the 
usual three dimensions, and the prefix p s e u d o -  refers to the occurrence of negative signs 
in the equation.

8 The world of the Poincaré-Lorentz theory of relativity can be regarded as a four­
dimensional hyperplane in the five-dimensional hyperspace.
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just as on the surface of a sphere there is a natural unit of length, 
namely the length of a complete great circle.

We are thus brought to the question of the dimensions of the 
universe : what is the length of the complete straight line, the 
circuit of all space ? Since 1917 there has seemed to be a possibility 
that, by the combination of theory with astrophysical observation, 
this question might be answered.

Different investigations of the de Sitter world, however, reached 
conclusions which apparently were not concordant. The origin of 
some of the discordances could be traced to the ambiguities which 
were involved in the use of the terms 4 time,’ 4 spatial distance ’ and 
4 velocity/ when applied by an observer to an object which is remote 
from him in curved space-time. The 4 interval ’ which is defined by 
(dsy = ^gpqdxpdxq involves space and time blended together: 

py я
and although any particular observer at any instant perceives in 
his immediate neighbourhood an 4 instantaneous three-dimensional 
space ’ consisting of world-points which he regards as simultaneous, 
and within which the formulae of the Poincaré-Lorentz relativity 
theory are valid, yet this space cannot be defined beyond his immediate 
neighbourhood : for with a general metric defined by a quadratic 
differential form, it is not in general possible to define simultaneity 
(with respect to a particular observer) over any finite extent of space- 
time.

The concept o f4 spatial distance between two material particles ’ 
is, however, not really dependent on the concept of 4 simultaneity/1 
When the astronomer asserts that 4 the distance of the Andromeda 
nebula is a million light-years/ he is stating a relation between the 
world-point occupied by ourselves at the present instant and the 
world-point occupied by the Andromeda nebula at the instant 
when the light left it which arrives here now, that is, he is asserting 
a relation between two world-points such that a light-pulse, emitted 
at one, arrives at the other ; or, in geometrical language, between 
two world-points which lie on the same null geodesic. The spatial 
distance of two material particles in a general space-time may, 
then, be thought of as a relation between two world-points which are on 
the same null geodesic. It is obviously right that 4 spatial distance ’ 
should exist only between two world-points which are on the same 
null geodesic, for it is only then that the particles at these points 
are in direct physical relation with each other. This statement 
brings out into sharp relief the contrast between 4 spatial distance 5 
and the 4 interval5 defined by (ds)2=* ^  gvqdxvdxq : for between two

. . p*q points on the same null geodesic the 4 interval5 is always zero.
Thus 4 spatial distance5 exists when, and only wheny the 4 interval’ is zero.

In order to define 4 spatial distance 5 conformably to these ideas, 
with a general metric for space-time, it is necessary to translate

1 E. T . Whittaker, Proc. R.S.{A), cxxxiii (1931), p. 93 
186



GRAVITATION

into the language of differential geometry the principle by which 
astronomers actually calculate the ‘ distance ’ of very remote objects 
such as the spiral nebulae. The principle is this : first, the absolute 
brightness of the object (the c star ’ as we may call it) is determined1 : 
then this is compared with the apparent brightness (i.e. the brightness 
as actually seen by the observer). The distance of the star is then 
defined to be proportional to the square root of the ratio of the 
absolute brightness to the apparent brightness.

In adopting this principle into differential geometry, we take 
a 4 star 5 A and an observer B, which are on the same null geodesic, 
and we consider a thin pencil of null geodesics (rays of light) 
which issue from A and pass near B. This pencil intersects the 
observer B’s 4 instantaneous three-dimensional space,5 giving a two- 
dimensional cross-section : the ‘ spatial distance AB5 is then 
defined to be proportional to the square root of this cross-section. 
Distance, as thus defined, is an invariant, i.e. it is independent of 
the choice of the co-ordinate system. This invariant, however, 
involves not only the position of the star and the position of the 
observer, but also the motion of the observer, since his 4 instantaneous 
three-dimensional space 5 is determinate only when his motion is 
known. Thus the 4 spatial distance 5 of a star from an observer 
depends on the motion of the observer : but this is quite as it should 
be, and indeed had always been recognised in the relativity theory 
of Poincaré and Lorentz : for in that theory the spatial distance of a 
star from an observer is (X2 + Y2 + Z2)*, where (T, X, Y, Z) are 
co-ordinates referred to that particular inertial system with respect to 
which the observer is at rest : the necessity for the words in italics 
shows that the distance depends on the observer’s motion.

When the de Sitter world is studied in the light of this definition 
of distance (the mass of any material particles concerned being 
supposed to be so small that they do not sensibly affect the geo­
metrical character of the universe), some remarkable results are 
found. Thus a freely moving star and a freely moving observer 
cannot remain at a constant spatial distance apart in the de Sitter 
world. When the observer first sees the star, its spatial distance is 
equal to the radius of curvature of the universe. After this the 
star is continuously visible, the distance passing through a minimum 
value, after which it increases again indefinitely : that is, the star’s 
apparent brightness ultimately decreases to zero, it becomes too faint 
to be seen. When this happens the star is at a point which is not 
the terminus of its own world-line, so the star continues to exist 
after it has ceased to have any relations with this particular 
observer.

The Einstein world, which as we have seen is a statical solution 
of the gravitational equations, spherical in the spatial co-ordinates,

1 For this purpose, astronomers in practice use the known relation between the period 
and absolute magnitude of Cepheid variables, or (in the method of spectroscopic parall­
axes) the known relations between absolute magnitude and spectral behaviour.
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was generalised by A. Friedman1 into a solution in which the 
curvature depends on the time—what in fact came to be known 
later as an expanding universe. Not much notice was taken of this 
paper until, five years afterwards, the Abbé Georges Lemaitre,2 
a Belgian priest who had been a research student of Eddington’s 
at Cambridge, proved that the Einstein universe is unstable, and 
that when its equilibrium is disturbed, the world progresses through 
a continuous series of intermediate states, towards a limit which is 
no other than the de Sitter universe.

Eddington, who at the beginning of 1930 was investigating, in 
conjunction with his research student G. C. McVittie, the stability 
of the Einstein universe, found in Lemaitre’s paper the solution of 
the problem, and at once3 saw that it provided an explanation 
of the observed scattering apart of the spiral nebulae. Since 1930 
the theory of the expanding universe has been of central importance 
in cosmology.

The scheme of general relativity, as put forward by Einstein in 
1915, met with some criticism as regards the unsatisfactory position 
occupied in it by electrical phenomena. While gravitation was 
completely fused with metric, so that the notion of a mechanical 
force on ponderable bodies due to gravitational attraction was 
entirely abolished, the notion of a mechanical force acting on 
electrified or magnetised bodies placed in an electric or magnetic 
field still persisted as in the old physics. This seemed, at any rate 
from the aesthetic point of view, to be an imperfection, and it was 
felt that sooner or later everything, including electromagnetism, 
would be re-interpreted and represented in some way as consequences 
of the pure geometry of space and time. In 1918 Weyl4 proposed 
to effect this by rebuilding geometry once more on a new foundation, 
which we must now examine.

Weyl fixed attention in the first place on the 6 light-cone,’ or 
aggregate of directions issuing from a world-point P, in which light- 
signals can go out from it. The light-cone separates those world- 
points which can be affected by happenings at P, from those points 
whose happenings can affect P : it, so to speak, separates past from 
future. Now the light-cone is represented by the equation (ds)2 =  0, 
where ds is the element of interval, and Weyl argued that this equation, 
rather than the quantity (ds)2 itself, must be taken as the starting- 
point of the subject : in other words, it is the ratios of the ten 
coefficients gpq in (ds)2, and not the actual values of these coefficients,

1 P- x (1922), p. 377. Aberration and parallax in the universes of Einstein,
de Sitter and Friedman, were calculated by V. Fréedericksz and A. Schechter, £ £ ./ .  P. 
li (1928), p. 584.

* Ann. de la Soc. sc. de Bruxelles, xlviiA (April 1927), p. 49
* Mon Not. R .AS. xc (1930), p. 668
4 Berl. Sitz. 1918, Part I, p. 465 ; Math. ZS . ü (1918), p. 384 ; Arm. d. Phys. lix (1919), 

p. 101 ; Phys. Z$- xxi (1920), p. 649, xxii (1921), p. 473 ; Nature, cvi (1921), p. 781 ; 
cf. A. Einstein, Berl. Sitz. 1918, p. 478 ; W. Pauli. Phys. ££. xx (1919), p. 457 ; Verb. d. 
phys. Ges. xxi (1919), p. 742 ; A. Einstein, Berl. Sitz. 1921, p. 261 ; L. ?. Eisenhart, 
Proc. N.A.S. ix (1923), p. 175
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which are to be taken as determined by our most fundamental 
physical experiences. This leads to the conclusion that comparisons 
of length at different times and places may yield discordant results 
according to the route followed in making the comparison.

Following up this principle, Weyl devised a geometry more 
general than the Riemannian geometry that had been adopted by 
Einstein : instead of being specified, like the Riemannian geometry, 
by a single quadratic differential form

Z  gpqdxpdxq
P ,  9

it is specified by a quadratic differential form ^  gpqdxpdxq and a
P> 9

linear differential form ^  <t>pdxp together. The coefficients gpq of
p

the quadratic form can be interpreted, as in Einstein’s theory, as 
the potentials of gravitation, while the four coefficients <f>P of the 
linear form can be interpreted as the four components of the electro­
magnetic potential-vector. Thus Weyl succeeded in exhibiting both 
gravitation and electricity as effects of the metric of the world.1

The enlargement of geometrical ideas thus achieved was soon 
followed by a still wider extension due to Eddington.2 This, and 
most subsequent constructions in the same field, are based on an 
analysis of the notion of parallelism, which must now be considered.

The question of parallelism in curved spaces was raised in an 
acute form by the discovery of General Relativity theory : for it 
now became necessary for the purposes of physics to create a theory 
of vectors in curved space, and of their variation from point to 
point of the space. Now in Euclidean space if U and V are two 
vectors at the same point, P, we can find the vector which is their 
difference by using the triangle of vectors. But if U is a vector 
at a point P and V is a vector at a different point Q, and if we want 
to find the vector which is the difference of U and V, it is necessary 
(in principle) first to transfer U parallel to itself from the point P 
to the point Q, and then to find the difference of the two vectors 
at Q. Thus a process of parallel transport is necessary for finding the 
difference of vectors at different points, and hence for the spatial 
differentiation of vectors : and this is true whether the space is 
Euclidean or non-Euclidean.

The spatial differentiation of vectors in curved space has already 
been discussed 3 analytically under the name of covariant differentiation. 
Evidently this covariant differentiation must really be based on 
a parallel transport of vectors in the curved space : and in 1917 
this particular form of parallel transport was definitely formulated

1 I t  does not seem necessary to describe this geometry in detail, since Weyl himself 
later expressed the opinion (Amer. J . Math, lxvi (1944), p. 591) that it does not (at least 
in its original form) provide a satisfactory unification oi electromagnetism and gravitation.

* Proc. R.S.(a), xcix (1921), p. 104 » cf. p. 161
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by T. Levi-Civita.1 It may be regarded as providing a geometrical 
interpretation for the Christoffel symbols.

After this the idea2 was developed that a space may be regarded 
as formed of a great number of small pieces cemented together, 
so to speak, by a parallel transport, which states the conditions 
under which a vector in one small piece is to be regarded as parallel 
to a vector in a neighbouring small piece. Thus every type of differ­
ential geometry must have at its basis a definite parallel-transport 
or ‘ connection.’

To illustrate these points, let us consider geometry on the surface 
of the earth, regarded as a sphere. It is obvious that directions U 
and V at two different points cannot (unless one of the points 
happens to be the antipodes of the other) be parallel in the ordinary 
Euclidean sense, i.e. parallel in the three-dimensional space in 
which the earth is immersed : but a new kind of parallelism can be 
defined, and that in many different ways. We might, for instance, 
say that V is derived by parallel transport from U if V and U have 
the same compass-bearing, so that, e.g. the north-east direction at 
one place on the earth’s surface would be said to be parallel to the 
north-east direction at any other place.

Having defined parallel-transport on the earth in this way, 
there are now two different kinds of curve on the earth’s surface 
which may be regarded as analogous to the straight line in the 
Euclidean plane. If we define a straight line by the property that 
it is the shortest distance between two points, then its analogue on 
the earth is a great circle, since this gives the shortest distance between 
two points on the spherical surface. But if we define a straight line 
by tne property that it preserves the same direction along its whole 
length, or, more precisely, that its successive elements are derived 
from each other by parallel transport, then its analogue on the 
earth is the track of a ship whose compass-bearing is constant 
throughout her voyage : this is the curve called a loxodrome. The 
existence of the two families of curves, the great circles and the 
loxodromes, may be assimilated to the fact that if an electrostatic and 
a gravitational field coexist, the lines of electric force and the lines of 
gravitational force are two families of curves in space ; and this rough 
analogy may serve to suggest how different physical phenomena may 
be represented simultaneously in terms of geometrical conceptions.3

Weyl’s proposal for a unified theory of gravitation and electro­
magnetism was followed up in another direction by Th. Kaluza,4

1 Palermo Rend, xlii (1917), p. 173
* This idea is due essentially to G. Hessenberg, Math. Ann. lxxviii (1917), p. 187, 

though he did not explicitly introduce Levi-Civita’s notion of parallel-transport.
• Eddington’s generalisation of Weyl’s theory was the starting-point of important 

papers by A. Einstein, Berl. Sitz. (1923), pp. 32, 76, 137, and by Jan  Arnoldus Schouten of 
Delft (b. 1883), Amst. Proc. xxvi ( 1923), p. 850. The latter represented the electromagnetic 
field as a vortex connected with the torsion (in the sense of Cartan) of four-dimensional 
space ; on this cf. H. Eyraud, Comptes Rendus, clxxx (1925), p. 127.

4 Berlin Sitz. (1921), p. 966
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in whose theory the ten gravitational potentials gpq of Einstein and 
the four components фр of the electromagnetic potential were expressed 
in terms of the line-element in a space of five dimensions, in such a 
way that the equations of motion of electrified particles in an electro­
magnetic field became the equations of geodesics. This five- 
dimensional theory of relativity was afterwards developed by Oskar 
Klein 1 and others,2 To ordinary space-time a fifth dimension is 
adjoined, but the curves in this dimension are very small, of the 
order of 10_s0 cm., so that the universe is cylindrical, and indeed 
filiform, with respect to the fifth dimension, and the variations of the 
fifth variable are not perceptible to us, its non-appearance in ordinary 
experiments being due to a kind of averaging over it. A connection 
with quantum theory was made by assuming that Planck’s quantum 
of Action h is due to periodicity in the fifth dimension : and the 
atomicity of electricity was presented as a quantum law, the momen­
tum conjugate to the fifth co-ordinate naving the two values e 
and — e.

In 1930 Oswald Veblen and Banesh Hoffman of Princeton3 
showed that the Kaluza-Klein theory may be interpreted as a four­
dimensional theory based on projective instead of affine geometry.

Weyl’s geometry, and especially his type of parallel-transport, 
suggested to W. Wirtinger4 philosophical considerations which led 
him to a very original form of infinitesimal geometry : this, how­
ever, perhaps on account of its extreme generality, has not as yet 
found applications in theoretical physics.

Besides the investigations that have been described, the work 
of Weyl and Eddington has led, during the last thirty years, to a 
vast number of other investigations aimed at expressing gravitational 
and electromagnetic theory together in terms of a system of dif­
ferential geometry. Some of them, such as those of the Princeton 
school 5 in America, led by O. Veblen and L. P. Eisenhart, the

1 Z ^ » f  Р' xxxvi (1926), p. 835 ; xxxvii (1926), p. 895 ; xlv (1927), p. 285 ; xlvi 
(1927), p. 188 ; J . de Phys, et le Rad. viii (1927), p. 242 ; Ark. f .  Mat. Âst. Fys xxxiv 
(1946), No. 1

2 A. Einstein, Berlin Sitz. (1927), pp. 23, 26 ; L. de Broglie, J . de Phys, et le Rad. 
viii (1927), p. 65 ; G. Darrieus, J . de Pfys. et le Rad. viii (1927), p. 444 ; F. Gonseth et 
G. Juvet, Comptes Rendus, clxxxv (1927), p. 341 ; H. Mandel, <5*. f .  P. xxxix (1926), 
p. 136 ; xlv (1927), p. 285 ; xlix (1928), p. 697 ; liv (1929), p. 564 ; lx (1930), p. 782 ; 
W. Wilson, Proc. R.S.ia), cxviii (1928), p. 441 ; J . W. Fisher, Proc. R.S.ia), cxxiii (1929), 
p. 489 ; H. T. Flint, Proc. R.S.(a ), cxxiv (1929), p. 143 ; J . W. Fisher and H. T. Flint, 
Proc. R.S.i a ), cxxvi (1930), p. 644

8 Phys. Rev. xxxvi (1930), p. 810 ; cf. also J. A. Schouten and D. van Dantzig, Proc. 
Amst. Ac. xxv (1932), pp. 642, 843 ; Z ^> f P. lxxviii (1932), p. 639 ; J . A. Schouten, 
Z S .f. P. Ixxxi (1933), pp. 129, 405 ; lxxxiv (1933), p. 92 ; W. Pauli, Ann. d. Phys, xviii 
(1933), p. 305.

4 Trans. Camb. Phil. Soc. xxii (1922), p. 439 ; Abh. aus dem math. Sem. der Hamb. iv 
(1926), p. 178.

8 cf. L. P. Eisenhart and O. Veblen, Proc. N.A.S. viii (1922), p. 19 ; O. Veblen, 
Proc. N.A.S. viii (1922), p. 192 ; ix (1923), p. 3 ; L. P. Eisenhart, Proc. N.A.S. viii (1922). 
p. 207 ; ix (1923), p. 4 ; xi (1925), p. 246 ; Annals o f Math, xxiv (1923), p. 367 ; O. 
Veblen and J . M. Thomas, Proc. N.A.S. xi (1925), p. 204 ; T. Y. Tnomas, Proc. N.A.S. 
xi (1925), p. 199 ; xiv (1928), p. 728 ; Math. £л. xxv (1926), p. 723, and many papers 
in the succeeding years, in the same journals, by these authors and their associates
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Dutch school at Delft, founded by J. A. Schouten,1 and the French 
school whose most distinguished representative was E. Cartan2 
(1869-1951), have made discoveries which have great potentialities, 
but the significance of which at present appears to lie in pure 
mathematics rather than in physics, and which are therefore not 
described in detail here. The work of E. Bortolotti 3 of Cagliari 
should also be referred to. The outlook of the Germans, and of 
some of the Americans, has been, broadly speaking, more physical.4

It must be said, however, that, elegant though the mathematical 
developments have undoubtedly been, their relevance to funda­
mental physical theory must for the present be regarded as hypo­
thetical.

This chapter has been concerned, for the most part, with General 
Relativity, which is essentially a géométrisation of physics. It may 
be closed with some account of a movement in the opposite direction, 
seeking to abolish the privileged position of geometry in physics, 
and indeed inquiring how far it may be possible to construct a 
physics independent of geometry. Since the notion of metric is a 
complicated one, which requires measurements with clocks and 
scales, generally with rigid bodies, which themselves are systems of 
great complexity, it seems undesirable to take metric as fundamental, 
particularly for phenomena which are simpler and actually inde­
pendent of it.

The movement was initiated by Friedrich Kottler of Vienna, 
who in 1922 published two papers Newton'sches Gesetz und Metrik 5 
and Maxwell'sche Gleichungen und Metrik.6 Kottler first remarked on

1 cf. J . A. Schouten, Proc. Amst. Ac. xxvii (1924), p. 407 ; xxix (1926), p. 334 ; Palermo 
Rend. 1 (1926), p. 142 ; J. A. Schouten and D. van Dantzig, Proc. Amst. Ac. xxxiv (1932), 
p. 1398 ; xxxv (1932), p. 642 ; £ & /. P. lxxviii (1932), p. 639 ; lxxxi (1933), pp. 129, 405

* cf. E. Cartan, Ann. Éc. Norm, xl (1923), p. 325; xli (1923), p. 1 ; Bull. Soc. M. 
France, lii (1924), p. 205

* Atti Inst. Veneto, lxxxvi (1926-7), p. 459 ; Rend. Lincei, ix (1929), p. 530
4 cf. R. Weitzenbock, Wien. Ber. cxxix 2a (1920), pp. 683, 697 ; cxxx 2a (1921),

Ê. 15 ; H. Weyl, Goff. Nach. (1921), p. 99 ; F. Juttner, Math. Ann. lxxxvii (1922), p. 270 ;
. Reichenbâcher, £ S ./. P. xiii (1923), p. 221 ; A. Einstein, Berlin Sitz. (1925), p. 414 ; 

D. J . Struik and O. Wiener, J . Math. Phys. vii (1927), p. 1 ; E. Wigner, ZS. j .  P. liii 
(1929), p. 592 ; A. Einstein, Berlin Sitz. (1928), pp. 217, 224 ; (1929), pp. 2, 156 ; 
N. Wiener and M. S. Vallarta, Proc. N.A.S. xv (1929), pp. 353, 802 ; M. S. Vallarta, 
Proc. N.A.S. xv (1929), p. 784 ; H. Weyl, Bull. Am. M.S. xxxv (1929), p. 716 ; N. Rosen 
and M. S. Vallarta, Pays. Rev. xxxvi (1930), p. 110 ; A. Einstein, Berlin Sitz. (1930), 
p. 18 ; Math. Ann. cii (1930), p. 685 ; A. Einstein and W. Mayer, Berlin Sitz. (1930), 
p. 110 ; (1931), pp. 257, 541 ; (1932), p. 130 ; W. Pauli, Ann. d. Phys.W xviii (1933), 
p. 305 ; E. Schrôdinger, Proc. R.I.A. xlix (1943), pp. 43, 135 ; G. D. Birkhoff, Proc. 
N.A.S. xxix (1943), p. 231 ; xxx (1944), p. 324 ; A. Barajas, G. D. Birkhoff, C. Graef 
and M. S. Vallarta, Phys. Rev.W) lxvi (1944), p. 138 ; H. Weyl, Am. J . Math, lxvi 
(1944), p. 591 ; E. Schrôdinger, Nature, cliii (1944), p. 572 ; Proc. R.I.A. xlix (a) (1944), 
pp. 225, 237, 275 ; A. Einstein and V. Bargmann, Armais of M . xlv (1944), p. 1 ; A 
Einstein, Annals of M. xlv (1944), p. 15 ; E. Schrôdinger, Proc. R.I.A. 1 (1945), pp. 143, 
223 ; li (1946), p. 41 ; U (1947), pp. 147, 163 ; .141948), p. 205 ; lii (1948), p. 1 ; 
A. Einstein, Appendix II in the third edition of his The Meaning of Relativity (Princeton, 
1949) ; on the further development of this, cf. A. Papapetrou and E. Schrôdinger, 
Nature, clxvii (1951), p. 40, and W. B. Bonnor, Proc. R.S.(a), ccix (1951), p. 353 ; ccx 
(1952), p. 427

• Wien. Sitz., Abt. lia , cxxxi (1922), p. 1 • ibid., p. 119
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the independence of metric which characterises the analysis of skew 
tensors (i.e. tensors for which an interchange of any two indices 
produces a reversal of sign) : thus the divergence of a six-vector 
(Xpg) (which is a skew tensor of rank 2) is

Vg
l è ( v * X " )

and this is clearly unchanged if the metric

is replaced by

(ds)2 = _̂gpq dxp dxq

{dsY^W^gpq dxp dxq
р,я

СЛ‘

V-
\

where Л is any constant. While he recognised that it is impossible 
to abolish metric from physics entirely, he aimed at expressing the 
laws of nature as far as possible in terms of skew tensors, and ascer­
taining in each case the precise point where they cease to be adequate 
and the introduction of a metric becomes inevitable. In the first 
paper he considered the Newtonian theory of gravitation : Poisson’s 
equation for the gravitational potential is

or, if the metric is given by

( d s y ^ ' Z a n d x W  ( p > q =  1 , 2 , 3 ) ,
РИ7

But ^  clP2̂ 0 is the contravariant vector corresponding to the
4 ox9

covariant vector дф/дхр : call it (Lp). Then Poisson’s equation is

In order to transform this into an equation depending on a skew 
tensor, Kottler made use of a theorem of tensor-calculus which 
may be stated thus : in space of three dimensions, where the metric 
is given by

(ds)2= ^  apqdxpdx9 
Pi я
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let Spgr have the value 1 or — 1 according as we obtain (pqr) from 
(123) by an even or an odd substitution : and when p, q> r are not 
all different, let 8РЯГ be defined to be zero. Then л/а . Spqr is a skew 
tensor of rank 3.1 We shall denote it by GWr.

Now write
2  QpqrlT

so Fpg is a covariant skew tensor of rank 2 : its three numerically 
distinct components are

Fi2= V a • Ls> F31= л / а  . L2, F2S= 's/a . L1.

Thus Poisson’s equation may be written
3 F 23 , d F 31 8F ia
dx1 dx2 dx2 = [A 123

where = -  47rpG123.
Now if S be any simple surface enclosing a volume V, then by 

Green’s theorem (which is independent of any system of metric) 
we have

+ dx1dx2dxz

■ я
g(*2, X S)

3 0(и, v) + F31d(x3, Xt) 
8(u, v) + d(*i, xt)

d{u, v) dudv

where (u, v) are any parameters fixing position on the surface. Thus 
we obtain the equation

ТГ &(x3, x3) 
"  0(и, v) + F3id(x3, x3) 

d(u, v) + Fia^dlu, Xv)\ du ™dx4x*dx*.
' \-r

Kottler interpreted the left-hand side of this equation as the total 
flux, through the surface S, of the skew tensor FP<? : and he regarded 
the equation as representing the relation between the occurrences 
inside S and the field (expressed by a skew tensor) acting on S, in 
a form independent of metric. It is of course essentially a form of Gauss’s 
theorem." Kottler regarded this equation as the starting-point of

1 It is generally called the skew fundamental tensor o f  Ricci and Levi-Civita.
1 On Gauss’s theorem and the concept of mass in General Relativity, cf : E. T. 

Whittaker, Proc. R.S.(a ), cxlix (1935), p. 384 ; H. S. Ruse, Proc. Edin. Math. Soc.№  
iv (1935), p. 144; J. T. Cambridge, Phil. M ag.V ) xx (1935), p. 971 ; G. Temple, 
Proc. R S . ( a ), cliv (1936), p. 354 ; J .  L. Synge, Proc. R.S.(a), clvii (1936), p. 434; 
Proc. Edin. Math. Soc.i2) v (1937), p. 93 ; A. Lichnerowicz, Comptes Rendus, ccv (1937), p. 25
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a fundamental non-metrical formulation of gravitational theory : 
metric is introduced, at a later stage, only when the concept of work, 
as distinguished from that of flux, is introduced : that is, when the 
force acting on a particle comes to be considered.

His second paper, on Maxwell’s equations, presented an easier 
problem, since the electric and magnetic forces together constitute 
a six-vector, which is the kind of tensor required for a non-metrical 
presentation of the subject. Moreover there were available the results 
of papers written in 1910 by E. Cunningham1 and H. Bateman,2 
who, starting from the proposition that the fundamental equations 
of electrodynamics are invariant with respect to Lorentz transforma­
tions, i.e. to rotations in the four-dimensional world of space-time, 
had remarked that these electrodynamic equations are invariant 
with respect to a much wider group, namely all the transformations 
for which the equation

(dx2 + (dy)2 + (dc)2 —г2(Л)2 = 0

is invariant. By writing — 1 . cdt = du, this last equation becomes 
(dx)*+(dyy+(dzY+(du)* = 0.

The transformations which leave this latter equation invariant are 
what are called the conformal group of transformations in space of 
four dimensions : they had been studied long before by Sophus Lie, 
who had shown that they are composed of reflections, translations, 
rotations, magnifications and inversions with respect to the hyper- 
spheres of the four-dimensional space. Types of motion of an 
electromagnetic system may be derived from one another by such 
transformations : they are in general more complicated than those 
considered in the relativity theory of Poincaré and Lorentz : for in 
the latter case a fixed three-dimensional configuration is transformed 
into one, every point of which has the same velocity of translation : 
but in the conformal case, under the simplest operation of the group, 
a fixed system becomes one in which the whole is expanding or 
contracting in a certain way.3

Cunningham and Bateman’s work was now developed by 
Kottler,4 H. Weyl,5J. A. Schouten and J. Haantjes,6 and particularly 
by D. van Dantzig,7 into a complete theory of electromagnetism, independent

1 Proc. L.M.SA2) viii, p. 77
* ibid., p. 223 ; cf. also Bateman’s book, Electrical and Optical Wave-motions (Camb., 

1915) ; H. Bateman, Phys. Rev. xii (1918), p. 459 ; Proc. L.M.SA2) xxi (1920), p. 256 ; 
E. Bessel-Hagen, Math. Arm. lxxxiv (1921), p. 258 ; F. D. Mumaghan, Phys. Rev. xvii 
(1921), p. 73 ; G. Kowalewski, J .fü r  Math, clvii (1927), p. 193

3 It is characteristic of these transformations that a sphere which is expanding with 
the velocity of light transforms into a sphere expanding with the same velocity.

4 loc. cit. 6 Raum, Zeit, Materie, 4th Aufl., p. 260 4 Physica I (1934), p. 869
7 Proc. Camb. Phil. Soc. xxx (1934), p. 421 ; Proc. Amst. Ac. xxxvii (1934), pp. 521,

526, 644, 825 ; xxxix (1936), pp. 126, 785 ; Cong. Int. des Math. Oslo (1936), II, p. 225 ;
cf. also J . A. Schouten, Tensor Calculus for Physicists, Oxford, 1951
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of metrical geometry, and in fact needing the ideas neither of metric nor of 
parallelism. It is characteristic of theories such as this that differential 
relations are generally replaced by integral relations : thus for 
the statement that under certain circumstances ‘ the divergence of 
the flux of energy vanishes’ is substituted the statement that ‘ the 
integral of the flux over a closed surface vanishes,’ which is 1 a 
mathematical form of the physical statement that ‘ the algebraic 
sum of the energies of all the particles crossing through a closed 
surface vanishes.’

cf. D. van Dantzig, Erkenntnis, vii (1938), p. 142



Chapter VI
RADIATION AND ATOMS IN THE OLDER QUANTUM

THEORY

In 1916 Einstein1 published a new and extremely simple proof of 
Planck’s law of radiation, and at the same time obtained some 
important results regarding the emission and absorption of light 
by molecules. The train of thought followed was more or less 
similar to that adopted by Wien in the derivation2 of his law of 
radiation, but Einstein now adapted it to the new situation created 
by Bohr’s theory of spectra.

Consider a molecule of a definite kind, disregarding its orienta­
tion and translational motion : according to quantum theory, it 
can take only a discrete set of states ZX,Z 2, . . . Zn, . . . whose internal 
energies may be denoted by €X, e2, . . . en, . . . If molecules of 
this kind belong to a gas at temperature T, then the relative fre­
quency Wn of the state Zn is given by the formula of Gibbs’s canonical 
distribution as modified for discrete states,3 namely,4

Now suppose that the probability of a single molecule in the 
state Zm passing in time dt spontaneously, i.e., without excitation by 
external agencies (as in the emission of y rays by radio-active bodies) 
to the state of lower energy Zn with emission of radiant energy
€m — €n is

a:  dt. (A)

Suppose also that the probability of a molecule under the influence 
of radiation of frequency v and energy-density p passing in time dt 
from the state of lower energy Zn to the state of higher energy Zm, 
by absorbing the radiant energy em — en, is

K p dt (B)

and suppose that the probability of a molecule under the influence 
of this radiation-field passing in time dt from the state of higher

i Mitt. d. phys. Ges. Zürich, No. 18 (1916) ; Phys. ££. xviii (1917), p. 121 ; cf. A. S. 
Eddington, Phil Mag. 1 (1925), p. 803

* cf. Vol. I, p. 382 3 cf. supra, p. 87
* For simplicity we omit consideration of the statistical ‘ weight * of the state.(995) jgy 14
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energy Zm to the state of lower energy Zn, with emission of the 
radiant energy ет -  €П, is

BI p dt. (В')

This is called stimulated emission ; its existence was recognised here 
for the first time.

Now the exchanges of energy between radiation and molecules 
must not disturb the canonical distribution of states as given above. 
So in unit time, on the average, as many elementary processes of 
type (B) must take place as of types (A) and (В') together. We 
must therefore have

— m / n . n\
e и Ваp — e tT (Bmp + Am).

We assume that p increases to infinity with T, so this equation gives

Bm=B ’ (1 )
and the preceding equation may therefore be written

(An/Bn)л _ 4 m1 m '
P~~ T_ I

This is evidently Planck’s law of radiation : in order that it may 
pass asymptotically into Rayleigh’s law for long wave-lengths, and 
Wien’s law for short wave-lengths, we must have

and
€m — €n =  hv

A n 8тгЬг 0 n 
c3 m% (2)

The two equations (1) and (2), first given in this paper of Einstein’s, 
are fundamental in the theory of the exchanges of energy between matter and 
radiation,, and have been extensively used in the later development 
of quantum theory.1 It may be remarked that as there is spon­
taneous emission, but not spontaneous absorption, there is asym­
metry as between past and future : but so far as transitions stimulated 
by radiation are concerned, there is a symmetrical probability,

1 If  the weights of the energy-leveb are gm, gn, the relation (1) must be replaced 
by gn Bn~gm  Relation (2) is unaffected.

* Einstein’s formulae were extended to the case of non-sharp energy-levels by 
R. Becker, P . xxvii (1924), p. 173, and to the laws of interaction between radiation 
and free electrons by A. Einstein and P. Ehrenfest, g S .f .  P. xix (1923), p. 301.



One of the chief problems of quantum theory is to compute 
coefficients, such as these Einstein coefficients, from data regarding 
atoms and molecules. The relation (2) has been verified experi­
mentally by a comparison of the strengths of absorption and emission 
lines. The B’s have been found from measures of the intensities 
of the components of multiplets in spectra by L. S. Omstein and 
H. G. Burger.1

Another important result established in this paper related to 
exchanges of momentum between molecules and radiation. Einstein 
showed that when a molecule, in making a transition from the state Zn to 
Z«, receives the energy ет — en, it receives also momentum of amount (eOT — €n)Jc 
tn a definite direction ; and, moreover, that when a molecule, in the transition 
from Zn to the state of lower energy Zn, emits radiant energy of amount 
(em — €n)y it acquires momentum of amount (em — en) jc in the opposite direction. 
Thus the processes of emission and absorption are directed processes : 
there seems to be no emission or absorption of spherical waves.

Einstein’s theory of the coefficients of emission and absorption 
enabled W. Bothe2 to give an instructive fresh calculation of the 
numbers of quanta hv in black-body radiation which are associated 
as ‘ photo-molecules ’ in pairs 2Av, trios 3hv, etc. He considered a 
cavity filled with black-body radiation at temperature T, in which 
there were a number of gas-molecules, each of which was either in the 
state of energy Zt or the state of energy Z2, where Z2 -  Zx =  hv, their 
average relative numbers being given by the law of canonical distri­
bution at temperature T. He assumed that when a single quant 
hv of the radiation causes a stimulated emission, the emitted quant 
moves with the same velocity and in the same direction as the 
quant that causes it, so they become a quant-pair 2hv ; if the exciting 
quant itself already belongs to a pair, then there arises a trio 3hv, 
and so on. The absorption of a quant from a quant-pair leaves 
a single quant, and a spontaneous emission produces a single quant. 
Writing down the conditions that the average numbers of single 
quants, of quant-pairs, etc. do not change in time, and using 
Einstein’s relations between the coefficients of spontaneous emission, 
stimulated emission and absorption, we obtain a set of equations 
from which it follows that in unit volume and in the frequency- 
range dv the average number of single quants which are united into 
-̂fold quant-molecules shv is

RADIATION AND ATOMS IN THE OLDER QUANTUM THEORY

87TV2
c%

ihv
e~icT dv,

in agreement with the result previously obtained.3 The average 
total energy per unit volume in the range dv is therefore

&Trhvz
â

dv

1 g S .f . P. xx (1923), p. 145
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877ЛУ3 dv 
c3 ehv̂  — 1

in agreement with Planck’s law of radiation.
Einstein’s theory of the coefficients of emission and absorption 

also enabled theoretical physicists within a few years to create a 
satisfactory quantum theory of the scattering, refraction and dis­
persion of light.1 In 1921 Rudolf Ladenburg2 (é. 1882), a 
former pupil of Rôntgen’s at Munich, who afterwards settled 
in America at Princeton, introduced quantum concepts into the 
theory.

It was necessary first for him to find a quantum-theoretic inter­
pretation for the number that in classical theory represented the 
number of electrons bound to atoms by forces of restitution, for it 
was these electrons which were responsible for light-scattering, 
refraction, and dispersion. Let us call them dispersion-electrons. This 
he achieved by calculating the emitted and absorbed energy of a 
set of molecules in temperature-equilibrium with radiation, on the 
basis of classical theory on the one hand and of quantum theory 
on the other.

Suppose then that there are 9Î dispersion-electrons per cm.3, 
capable of oscillating freely with frequency vx. Now for the 
harmonic oscillator of frequency vx if the displacement x at the 
instant t is x0 cos 2тту̂ , the mean value of the energy \m {{dxldty 
+ 47t2vx*x*} is U = 27T2mvia;toa, and therefore3 the average energy 
radiated per second is

I677V
3c3 or 8  7Г 2é?2V13 t t

3 me* U’

and therefore the energy radiated in one second by the 9Î dispersion- 
electrons is

T = 8ttW  
Jel '3  me* Ш

If the molecules are in equilibrium with radiation at temperature T, 
and if we regard the electrons as spatial oscillators with three degrees

1 The classical theory of the scattering of light by small particles had been given 
by Lord Rayleigh in 1871 (Phil. Mag.(^) xli, pp. 107,274, 447) on the basis of the elastic- 
solid theory of Ught, and in 1881 (Phil. Mag.fc) xii, p. 81) and 1899 (Nature, lx, p. 64 ; 
Phil. Mag.fe) xlvii, p. 375) on the basis of Maxwell’s electromagnetic theory ; cf. also 
J . J . Thomson, Conduction of Electricity through Gases, 2nd edn. (1906), p. 321.

2 I '  P* iv (1921), p. 451 ; cf. also R. Ladenburg and F. Reiche, Naturwiss, xi 
(1923), p. 584 ; R, Ladenburg, Z S .f. P. xlviii (1928), p. 15

• cf. Vol. I, p. 326
2 0 0
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of freedom,1 then 2 we have between U and the radiation-density 
p the relation

877V12?•

Thus

The energy absorbed in equilibrium is of course equal to the energy 
radiated.

Now in quantum-theory the emission from a molecule is due to 
transitions from a state of higher energy (2) to a state of lower 
energy (1). The number of spontaneous transitions per second is, 
in the notation we have already used,

N2A2

where N2 is the number of molecules in the state (2). The number 
of transitions from the lower to the higher state per second is

NxB^,

where N1 is the number of molecules in the state (1) : and therefore 
the absorbed energy is

J q — hv iN \ B 1p ,

By Einstein’s relations we have 3

Thus we have

• b - N'8 £ r . A>

Equating J Q to ] ы, we have

9î = Nx mc° A 1
8ir2eW  2‘

1 For a three-dimensional oscillator in an isotropic radiation-field we obtain three 
times the value for a linear oscillator in the same field ; on this point, cf. F. Reiche, 
Ann, d, Phys. lviii (1919), p. 693.

2 cf. Planck, p. 79 supra
3 Supposing for simplicity that the statistical weights of the energy-levels (1) and 

(2) are equal.
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This formula expresses the constant 9Î (which may be derived experi­
mentally from measurements of emission, absorption, anomalous 
dispersion and magnetic rotation, and which in classical theory is 
interpreted as the number of dispersion-electrons) in terms of the 
quantum-theoretic quantities N1 (the number of molecules in the lower 
of the two states) and A£ (the probability of the spontaneous transi­
tions which give rise to radiation of frequency vx). Thus from 
measurements of e.g. anomalous dispersion at different lines of a 
series in a spectrum, we can make inferences regarding the prob­
ability of the various transitions.

Ladenburg’s result enables us to replace the dispersion-formula 
found in Vol. 1 1 by

n a ;
Vi2(vi2-V2)

where (i) denotes the lower level and (k) the upper level of energy 
in the transition corresponding to the frequency vu

Now consider the scattering of light by an atom. We suppose 
the wave-length of the light to be much greater than the dimensions 
of the atom, so that at any instant the field of force is practically 
uniform over these dimensions. We suppose also that the atom 
contains an electron of charge — e and mass m, which is bound to the 
atom so that when the electron is displaced a distance £ parallel to 
the лг-axis from its equilibrium position, a force of restitution 47r2mvi2£ 
is called into play. Then when the atom is irradiated by a light­
wave whose electric field is

Ee27Tivt

it can easily be shown that according to classical theory it radiates 
secondary wavelets such as would be produced by an electric doublet 
of moment

e2Ee2nivt
47r2m(vi2 — V2)*

These secondary spherical wavelets, which are coherent with the 
incident wave, constitute the scattered radiation.

In quantum theory we are concerned with scattering not by a 
single bound electron but by an atom, and therefore in order to 
transfer this expression to quantum theory we must first multiply 
it by Üfï/Nx, the number of classical dispersion-electrons per atom 
(the atom being supposed to be in the state (1) when scattering).

1 At p. 401 : there is a change of notation, the N, ky n of Vol. I being here repre­
sented by 2'Tjvi'y/mt and 2ttv respectively :\ and we suppose now that in the classical 
case there are several kinds of dispersion-electrons with different natural periods. The 
formula had been confirmed by the experiments of R. W. Wood, Phil. Mag.(6) viii (1904), 
p. 293 and P. V. Bevan, Proc. R.S. lxxxiv (1910), p. 209 ; lxxxv (1911), p. 58, on the 
dispersion of light in the vapours of the alkali metals.
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Thus we obtain for the amplitude of the doublet-moment

91 Ee2
N 1 47r2m(vi2—va) ’

Applying Ladenburg’s result, this becomes

c*A\E
3 2 ttW ( v i2- v 2Y

We must sum over all higher states (2) : and thus we have the result 
that an atom in state (1), when irradiated by a light-wave whose electric 
field is E*27nW, emits secondary wavelets like an electric oscillator of frequency 
v, whose electric moment has the amplitude

p _  c3E ^  A i 
“ 3 2 ^ 7

where Ai denotes the probability of the atom performing spontaneously in 
unit time the transition to the state (1) of energy Ei from a higher state (i) 
of energy E<, and where

This result was further modified by Henrik Antony Kramers1 
(1894-1952), who, taking the above Ladenburg formula as correct 
when the atom was in the normal state, took into consideration the 
case when the atom is excited, and proposed to deal with it by 
taking the summation not only over the stationary states i which 
have higher energy-levels than the state (1), but also over the states 7 
which have lower energy-levels than the state (1), so that the formula 
becomes

p _ g3E f ^  A1____ Aj !
3277-4 1 “ ■ V i 2( y t 2 -  V2) , V j * ( v j 2 -  V2) i

where2

This formula of course relates to a single atom, and a factor must 
be adjoined representing the number of atoms in this state.

Now as we have seen, in the classical theory of scattering, the
1 Nature, cxiii (1924), p. 673 ; cxiv (1924), p. 310
* The formula as given by Kramers contained an additional factor 3 ; this was a 

consequence of his assumption that the free oscillations are parallel to the incident field, 
whereas the above formula assumes all orientations of the atom to be equally probable.
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atom behaves like an electric doublet, the amplitude of whose 
moment is

e2E
47r2m(vi2 — v2)*

Comparing the above Ladenburg-Kramers formula with this, 
we see that according to quantum theory the atom behaves with 
respect to the incident radiation as if it contained a number of bound 
electric charges constituting harmonic oscillators as in the classical 
theory, one of these oscillators corresponding to each possible transi­
tion between the state of the atom and another stationary state. 
Thus we can describe the behaviour of an atom in dispersion by 
means of a doubly-infinite (i.e. depending on two quantum numbers 
m and n) set of virtual harmonic oscillators, the displacement in the 
oscillator (m, n) being represented by

q(m, n) = Q(m, n)e27ril<m'n)t

where v(m, n) denotes the frequency of this oscillator. The aggregate 
of these virtual harmonic oscillators was called by A. Landé 1 the 
virtual orchestra. The virtual orchestra is thus a classical substitution- 
formalism for the radiation, and so indirectly becomes a representative 
of the quantum radiator itself.

In place of the classical e2/m we have the value r3AJ/87r2vt2 for 
one of the ‘ absorption oscillators,’ i.e. those corresponding to 
transitions between the state (1) and higher states, but we have 
the value — c3A{/87r2vj2 for one of the * emission oscillators,’ i.e. those 
corresponding to transitions between the state (1) and lower states : 
so that there is a kind of 5 negative dispersion ’ arising from the 
emission oscillators, which may be regarded as analogous to the 
‘ negative absorption ’ represented by Einstein’s coefficient B*. 
Another way of putting the matter is to say that a quantum-oscillator 
which is in the higher state, when irradiated by a light-wave which 
is not markedly absorbed by it, emits a spherical wave, which differs 
from that emitted in the lower state only by being displaced 180° 
in phase.

Almost immediately after the appearance in May 1924 of 
Kramers’s paper, Max Born2 gave a general method, to which he 
gave the name quantum mechanics,3 for translating the classical theory 
of the perturbations of a vibrating system into the corresponding 
quantum formulae. In particular he studied the problem of an 
oscillator exposed to an external field of radiation : his method was 
based on the correspondence-principle, the frequency belonging to 
a transition between states characterised by the quantum numbers

1 Naturwiss, xiv (1926), p. 455
* Z$\f> Р' xxvi (1924), p. 379, communicated 13 June 1924
• This was the first occurrence of the term in the literature of theoretical physics.
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n and ri corresponding to the overtone | n — nf | v of the classical solution : 
but the results he obtained were afterwards shown to be correct in 
the light of the later form of quantum theory.

A theory of scattering is also essentially a theory of refraction. 
For when (in classical theory) light is scattered by atoms, the 
scattered light has the same frequency as the incident light and 
interferes with it : the total effect produced is the same as if the 
primary wave alone existed, but was propagated with a different 
velocity : and this change of velocity is the essential feature in 
refraction. In the Ladenburg-Kramers formula, the terms

RADIATION AND ATOMS IN THE OLDER QUANTUM THEORY

j Vj'2(v /-v 2)

affect the refraction in the opposite sense to the other terms. This 
was verified in 1928 by R. Ladenburg1 and by H. Kopfermann 
and R. Ladenburg,2 who studied the refractive index, in the neigh­
bourhood of a certain spectral line of neon. When a current was 
passed through the gas, many of the atoms were thereby raised to an 
excited level, and it was found that the refractive index dropped, 
the refraction due to the ordinary fall in energy-level being partly 
counterbalanced by that due to the rise.

Even before the appearance of Kramers’s paper, new possibilities 
in regard to scattering had been indicated by A. Smekal.3 It may 
happen that the emission of scattered radiation is associated with 
a quantum transition in the scattering structure, in which case 
there will be a difference of frequency between the scattered and 
primary rays of the same order of magnitude as the spectral fre­
quencies of the scattering atomic system ; if v denotes the frequency 
of the primary radiation, and hvk or hvx denotes the change of energy 
of the atom in the transition, according as this change happens in the 
positive or negative direction, then there may be scattered radiation 
(of low intensity) of frequency v + vk or v -v x. At the time of 
Smekal’s paper, his conjecture of anomalous scattering, as he called it, 
had not been verified experimentally : but in 1928 Sir Chandrasakara 
V. Raman4 showed that light scattered in water and other trans­
parent substances contains radiations of frequency quite different 
from that of the incident light, and it was at once seen that this 
was the effect predicted by Smekal : almost simultaneously
G. Landsberg and L. Mandelstam5 found the same effect experi­
mentally, working with quartz.

In general, radiation of a definite frequency v generates scattered
1 £У ./. P. xlviii (1928), p. 15
2 ibid., pp. 26, 51 ; Ç S.f. phys. Chem. cxxxix (1928), p. 375
8 Naturwiss. xi (1923), p. 873
4 Ind. Joum. of Phys. ii (1928), p. 387 ; C. V. Raman and K. S. Krishnan, ibid., 

p. 399
8 Naturwiss. xvi (1928), p. 557 ; £ $ ./ .  P. 1 (1928), p. 769
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radiation of several modified frequencies, all of the form v±v\  
where v is either an infra-red frequency in the absorption spectrum 
of the scattering material, or a difference of such frequencies.1

In the year following the publication of SmekaPs paper,
H. A. Kramers and W. Heisenberg2 made an exhaustive study of the 
radiation which an atom emits when irradiated by incident light. 
Their method, as in Born’s paper published a few months earlier, 
was first to study by classical theory the perturbation by incident 
radiation of an atom regarded as a multiply-periodic dynamical 
system, and then to employ the correspondence-principle in order 
to translate the results into their quantum-theoretic form.

According to classical theory, under the irradiation the system 
emits a scattered radiation, whose intensity is proportional to the 
intensity of the incident light : when it is analysed into harmonic 
components, a component involves the sum or difference of the 
frequency of the incident light and frequencies occurring in the 
undisturbed motion (as in the Smekal-Raman effect). The quantum- 
theoretic formulae must satisfy the condition that in the region of 
great quantum numbers, where successive stationary states differ 
comparatively little from each other, the quantum scattering must 
tend asymptotically to coincide with the classical scattering. This 
condition is satisfied by interpreting certain derivatives which 
occur in the classical formulae as differences of two quantities : 
in this way, Kramers and Heisenberg obtained equations which 
involved only the frequencies characteristic of transitions, while all 
symbols relating to the mathematical theory of multiply-periodic 
dynamical systems disappeared.

It was shown that when irradiated with monochromatic light, 
an atom emits not only spherical waves of the same frequency as 
the incident light, and coherent with it, but also systems of non­
coherent spherical waves, whose frequencies are combinations of that 
frequency with other frequencies, which correspond to thinkable 
transitions to other stationary states. These additional systems of 
spherical waves occur as scattered light, but they do not contribute 
to the phenomena of dispersion and absorption of the incident 
radiation.

An interesting comment on the Kramers-Heisenberg formula was 
made by P. Jordan,3 who remarked that it remained valid even when 
the incident radiation consisted of very long electromagnetic waves, 
which in the limit of zero frequency tend to a field-strength constant 
in time : and that in this limiting case, the formula actually yields 
the changes of frequency in spectral lines which are observed in the 
Stark effect. He drew the moral that discontinuous jumps must

1 A review of literature on the Smekal-Raman effect to Feb. 1931 was given by 
K. W. F. Kohlrausch, Phys. Z$- xxxii (1931), p. 385. On the Smekal-Raman effect in 
molecules and crystals, cf. E. Fermi, Mem. Acc. Ital. Fis. Nr. 3 (1932), p. 1.

* Z$’f ‘ P- xxxi (1925), p. 681
• P. Jordan, Anschauliche Quantentheorie (Berlin, 1936), p. 85
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not be regarded as the essential characteristic of quantum theory : 
for phenomena in which they occur can be connected continuously 
by intermediate types with phenomena in which there is no dis­
continuity.

About this time much attention was given to scattering of a 
different type. In 1912 C. A. Sadler and P. Mesham,1 working in 
L. R. Wilberforce’s laboratory at Liverpool University, showed that 
when a homogeneous beam of X-rays is scattered by a substance 
of low atomic weight, the scattered rays are of a softer type (i.e. of 
longer wave-length) .2 Moreover, in the case of the y-rays produced 
by a radium salt, it was shown by J. A. Gray3 that the secondary 
or scattered y-rays were less penetrating than the primary, that this 
‘ softening ’ was due to a real change in the character of the primary 
rays when the secondary rays were formed, and that it increased 
with the angle between the primary and secondary rays (generally 
called the angle of scattering).4 * An explanation of these phenomena 
favoured by physicists at the time was that the primary beam was 
not truly homegeneous, and that its softer components were more 
strongly scattered than the harder ones : this, however, was explicitly 
denied by Sadler and Mesham. In 1917 C. G. Barkla6 propounded 
the hypothesis, that there existed a new series of characteristic 
radiations which were of shorter wave-length than the K- and L- 
series which he had discovered previously, and which he named the 
J-series : and that the softening observed in the scattered radiation 
from light elements was due to the admixture of this J-radiation 
with radiation of the same hardness as the primary.8 This е?ф1апа- 
tion, however, lost credit when it was found 7 that the J-series 
had no critical absorption limit similar to the absorption limit of 
the K- and L-series, and that it showed under spectroscopic observa­
tion 8 no spectral lines such as might have been expected. When 
the J-series explanation was dismissed,9 there still seemed to be a
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1 Phil. Mag. xxiv (1912), p. 138 ; cf. J . Laub, Ann. d. Phys. xlvi (1915), p. 785, and 
J. A. Gray, J . Frank. Inst, cxc (1920), p. 633

2 I t will be remembered that the secondary X-rays in general consist of a mixture
of the characteristic rays discovered by Barkla (K, L, etc.) and of truly scattered rays. 
The wave-length of the former depends solely on the chemical nature of the scattering 
substance, but the wave-length of the latter is the same (or nearly the same) as that
of the primary rays. For the heavier elements the characteristic rays predominate, but 
for elements of low atomic weight at that time only the truly scattered rays were normally 
observable. * Phil. Mag. xxvi (1913), p. 611

* These results were confirmed as regards y-rays by D. C. H. Florance (working at 
Manchester under Rutherford) in Phil. Mag. xxvii (1914), p. 225, and Arthur H. Compton, 
Phil. Mag. xli (1921), p. 749.

6 Phil. Trans, ccxvii (1917), p. 315
e cf. C. G. Barkla and Margaret P. White, Phil. Mag. xxxiv (1917), p. 270. They 

found an abnormally great mass absorption coefficient for aluminium at 0*3 7Â, and 
regarded this as additional proof of the reality of J-radiation.

7 cf. F. K. Richtmyer and Kerr Grant, Pays. Rev. xv (1920), p. 547 ; C. W. Hewlett, 
Phys. Rev. xvii (1921), p. 284

8 W. Duane and T. Shimizu, Phys. Rev. xiii (1919), p. 289 ; xiv (1919), p. 389
8 Further proof of this, depending on the polarisation of the scattered rays, was 

given by A. H. Compton and C. F. Hagenow, J . Opt. Soc. Amer, viii (1924), p. 487.
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possibility of explaining the increase of wave-length in the scattered 
light without departing from classical theory : for1 radiation- 
pressure (which had not been taken into account in the previous 
classical theories of scattering) might set the electrons in motion in 
the direction of the primary radiation, and the wave-length of the 
scattered light would then be increased by the Doppler effect. On 
performing the calculations, it was found that the increase in wave­
length should follow the law actually verified by experiment, namely 
that it would be proportional to sin2 \в  where Ô denotes the angle 
of scattering : but its magnitude as calculated was not in agreement 
with observation.

There seemed to be a likelihood therefore that some new type 
of physical explanation was required. In October 1922 a Bulletin2 
of the National Research Council of the U.S.A. appeared, written 
by A. H. Compton and containing a full discussion of secondary 
radiations produced by X-rays : in this the author suggested that 
when an X-ray quantum is scattered, it spends all its energy and 
momentum upon some particular electron. This electron in turn 
re-radiates the whole quantum (degraded in frequency) in some 
definite direction ; the change in momentum of the X-ray quantum 
due to the change in its frequency and direction of propagation is 
associated with a recoil of the scattering electron. The ordinary 
conservation laws of energy and momentum are obeyed,3 so that 
the energy of the recoil electron accounts for the difference between 
the energy of the incident photon and the energy of the scattered 
photon.

Compton’s theory was communicated to a meeting of the 
American Physical Society on 1-2 December 1922,4 and published 
more fully in May of the following year.5 On examining the scattered 
rays e from light elements spectroscopically, he found that their 
spectra showed lines corresponding to those in the primary rays, 
and also other lines corresponding to these but displaced slightly 
towards the longer wave-lengths ; and that the difference in wave­
length increased rapidly at large angles of scattering. It is these 
displaced lines which represent the Compton effect.

In the Compton effect the electron is effectively free, i.e. it is so 
feebly bound to the nucleus of the atom that the binding-energy 
can be neglected in comparison with the energy hv of the incident 
quant ; this condition is realised in the scattering of hard X-rays 
by elements of low atomic number. When the frequency is decreased, 
or the atomic number is increased, the binding forces can no longer 
be neglected in comparison with the energy of the incident photon,
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1 cf. O. Halpem, xxx (1924), p. 153 ; G. Wentzel, Phys» %S. xxvi (1925),
p. 436 a Vol. IV, No. 20

* It may be noted that while the photo-electric effect shows that the energy of radiation
is transferred in quanta, the Compton effect shows that momentum also is transferred in 
quanta. 4 Phys» Rev» xxi (1923), p. 207

* Phys» Rev» xxi (1923), p. 483 * Phys» Rev» xxii (Nov. 1923), p. 409
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and the phenomenon passes over into the photo-electric effect (in 
the case when the energy of the incident photon is transferred to the 
electron) or ordinary scattering (in the case when the photon retains 
its energy and changes only its direction).

The Compton effect may be discussed in an elementary way by 
light-quantum methods as follows : 1

Let the incident light-quantum, of frequency v, propagated in 
the positive direction of the axis of x> encounter at O the electron, 
which recoils in a direction making an angle 0 with the axis Олг, 
with velocity v, while the light-quantum, degraded to frequency v', 
is scattered in a direction making an angle — <f> with O*. Then 
(using the relativist formulae for energy and momentum), the 
equation of conservation of energy is

kv = hv' + mc2j ^ l - ^  2- l j ,  

while the equations of conservation of momentum are

A l ~ ? )

hv . I mv . л— Sin Ф = ----7------rr- sin 0.

* A 4 )

From these equations we have to calculate v' in terms of v and ф, 
which are supposed given. We readily find

, ______ v______

1 + £ < 1- с о .Л '

The increment of wave-length ДЛ or ф ' — ф  is

ДЛ = — sin8 i ,  
me 2

a formula which was definitely confirmed by observation.
1 In addition to the papers quoted above and below, cf. the following papers of 

1923 and 1924 : P. Debye, Phys. xxiv (April 1923), p. 161, who discovered tne theory 
independently. A. H. Compton, PhiL Mag. xlvi (1923), p. 897 ; J . Frank. Inst, cxcviii 
(1924), p 57. G. E. M. Jauncey, Phys. Reu.xxsi (1923), p  233. P. A. Ross, Proc. N.A.S. 
ix (1923), p. 246 ; x (1924), p. 304 ; Phys. Rev. xxii (1923), p. 524. M. de Broglie, Proc. 
Phys. Soc. xxxvi (1924), p. 423. D. Skobelzyn, £*>./. P. xxiv (1924), p. 393; xxviii 
(1924), p. 278. A. H. Compton and A. W. Simon, Phys. Rev. xxv (1925), p. 306
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Eliminating v and v, we have

(1+^ ) ,an2 - co,‘l-
The kinetic energy of the recoiling electron is

hv cos2 в me2
( i + ^ V -\ meV тгсх

The quantity (hjmc), which has the dimensions of a length, is called 
the Compton wave-length. Its value is 0*0242 xlO-8 cm. Since the 
mass of a quantum is hvjc2 or h/'Kc, it is seen at once that a quantum 
of radiation, whose wave-length is the Compton wave-length, has a mass 
equal to the mass of the electron.

The recoil electrons of the Compton effect were studied by 
C. T. R. Wilson,1 using his cloud-expansion method. He found that 
X-radiation of wave-length less than about 0-5À in air produced 
two classes of j9-ray tracks, namely (a), those of electrons ejected 
with initial kinetic energy comparable to a quantum of the incident 
radiation : these were photo-electrons : and (b), tracks of very 
short range, which were the recoil electrons. A. H. Compton and 
J. C. Hubbard,2 discussing Wilson’s results, showed that the motion 
of the recoil electrons corresponds precisely to Compton’s theory.

We have seen that in the spectrum of scattered X-rays there are, 
in addition to the lines corresponding to the Compton effect, lines 
corresponding exactly to the primary X-rays. These unshifted 
lines (which are the only lines to appear when the primary rays are 
those of visible light) may be explained by supposing that some 
electrons are closely attached to the nucleus and must scatter while 
nearly at rest. The theory of this state of affairs was investigated 
by Compton,3 who also explained certain results which had been 
obtained by Duane and his collaborators,4 and which appeared to 
be inconsistent with the original Compton theory.

A more accurate treatment of the Compton effect, making use 
of later developments in general theory, was given in 1929 by

1 Proc. R.S.(a ), civ (1923), p. 1 ; cf. also W. Bothe of Charlottenburg, gS. f .  P. xvi 
(1923), p. 319 ; xx (1923), p. 237

* Phys. Rev. xxiii (1924), p. 439
* Phys. Rev. xxiv (1924), p. 168 ; Nature, cxiv (1924), p. 627
* G. L. Clark and W. Duane, Proc. N.A.S. ix (1923), pp. 413, 419 ; x (1924), pp. 41, 

92 ; xi (1925), p. 173. G. L. Clark, W. W. Stifler and W. Duane, Phys. Rev. xxiii (1924), 
p. 551. A. H. Armstrong, W. Duane and W. W. Stifler, Proc. N.A.S. x (1924), p. 374. 
S. K. Allison, G. L. Clark and W. Duane, Proc. N.A.S. x (1924), p. 379. J . A. Becker, 
Proc. N.A.S. x (1924), p. 342. S. K. Allison and W. Duane, Proc. N.A.S. xi П925), p. 25. 
cf. P. A. Ross and D. L. Webster, Proc. N.A.S. xi (1925), pp. 56, 61. A. H. Compton 
and J . A. Bearden, Proc. N.A.S. xi (1925), p. 117
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O. Klein and Y. Nishina.1 The formulae they obtained have been 
found experimentally to be accurate even with the hardest type of 
radiation.2 *

The Compton effect raised in an acute form the controversy 
regarding the reality of light-darts as contrasted with spherical 
waves of light : for in Compton’s explanation, the incident and 
diffracted X-ray quanta were supposed to have definite directions 
of propagation. Opinion among theoretical physicists was divided :
4 In a recent letter to me,’ wrote A. H. Compton in 1924 8 ‘ Sommer- 
feld has expressed the opinion that this discovery of the change of 
wave-length of radiation, due to scattering, sounds the death knell 
of the wave theory. On the other hand, the truth of the spherical 
wave hypothesis indicated by interference experiments nas led 
Darwin and Bohr, in conversation with me, to choose rather the 
abandonment of the principles of conservation of energy and 
momentum.’ The latter policy was embodied in a hypothesis put 
forward in 1924 by N. Bohr, H. A. Kramers and J. C. Slater,4 * * * in 
which it was accepted, that in atomic processes, energy and momentum 
are only statistically conserved.

They abandoned the principle, common to all previous physical 
theories, that an atom which is emitting or absorbing radiation must 
be losing or gaining energy : in its place they introduced the notion 
of virtual radiation, which is propagated in spreading waves as in 
the electromagnetic theory of light, but which does not transmit 
energy or momentum : it has indeed no connection with physical 
reality except the capacity to generate in atoms a probability for the 
occurrence of transitions : and transitions of the atoms are the only 
phenomena actually observable. A transition of an atom from one 
state to another is accompanied by changes of energy and momentum, 
but is not accompanied by radiation : thus the part played by the 
atom in its relations with radiation reduces to interaction with the 
field of virtual radiation, while the atom remains in a stationary 
state. An atom in a stationary state is continually emitting virtual 
radiation, compounded of all the frequencies corresponding to possible 
transitions between this state and lower states : this radiation is 
emitted both spontaneously and by stimulation (in accordance with 
Einstein’s principles of 1917). While in this state, the atom is also 
capable of absorbing radiation corresponding to transitions to states 
of higher energy. The absorption is performed by virtual oscillators 
situated in the atoms, the frequencies of these oscillators corresponding 
to the energy-differences between the state of the atom and all

1 Z S .f. P. Hi (1929), p. 853
3 cf. H. G. Trueblood and D. H. Loughridge, Phys. Rev. liv (1938), p. 545 ; Z. Bay 

and Z. Szepesi, £S'./ .  P. cxii (1939), p. 20
* J . Frank. Inst, cxcviii (1924), p. 57
4 J .  G. Slater, Nature, cxiii (1924), p. 307. N. Bohr, H. A. Kramers, and J . G. Slater,

Phil. Mag. xlvii (1924), p. 785 ; £ £ / .  P. xxiv (1924), p. 69. J . H. Van Vleck, Phys.
Rev. xxiv (1924), p. 330. R. Becker, ZS. f .  P. xxvii (1924), p. 173. J . C. Slater, Phys.
Rev. xxv (1925), p. 395
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higher states. When a virtual oscillator is absorbing virtual radia­
tion, the atom to which it belongs has a certain probability of making 
a transition to the higher state corresponding to the frequency 
of this virtual oscillator. A transition marks the change from the 
continuous radiation appropriate to the old state, to the continuous 
radiation appropriate to the new state : simultaneously with the 
transition, some virtual oscillators disappear and others come into 
being : the transition has no other influence on the radiation. The 
occurrence of a transition in a given atom depends on the initial 
state of this atom and on the states of the atoms with which it is 
in communication through the field of virtual radiation, but not on 
transition processes in the latter atoms : so there is no direct con­
nection between the transition of one atom from a higher to a lower 
state, and the transition of another atom from a lower to a higher 
state : the principles of energy and momentum are retained in a 
statistical sense, though not in individual interactions of atoms with 
radiation. The atoms scatter radiation which is incident on them, 
acting as secondary sources of virtual radiation which interferes 
with the incident radiation. In any transition, say between states 
(p) and (q), the energy of the atom changes by hvvq and its momentum 
by hvpqjc. If the transition is a spontaneous one, the direction of 
this momentum is random : but if it is stimulated, i.e. induced 
by the surrounding virtual radiation, the direction of the 
momentum is the same as that of the wave propagation in this 
virtual field.

The Bohr-Kramers-Slater theory was wrecked when it was shown 
to be inconsistent with the results of more refined experiments relating 
to the Compton effect. One of these was performed by W. Bothe 
and Hans Geiger.1 According to Compton’s theory, a recoil electron 
is emitted simultaneously with the scattering of every quantum ; while 
according to the Bohr-Kramers-Slater theory, the connection was 
much less close, the recoil electrons being emitted only occasionally, 
while the scattering of virtual radiation is continuous. In Bothe 
and Geiger’s experiment two different Geiger counters counted 
respectively the recoil electrons, and the photo-electrons produced 
by the scattered photons. A great many coincidences in time were 
observed, so many that the probability of their occurrence on the 
Bohr-Kramers-Slater theory was only 1/400,000. It was therefore 
concluded that the conservation of energy and momentum holds in 
individual encounters, and the Bohr-Kramers-Slater theory could 
not be true.

Another experiment was performed by A. H. Compton and 
A. W. Simon,2 who remarked that if in a Wilson cloud-experiment 
the‘quantum of scattered X-rays produces a photo-electron in the 
chamber, then a line drawn from the beginning of the recoil track 
to the beginning of the track of the photo-electron gives the direction

AETHER AND ELECTRICITY

1 Z S . f .  P . xxvi (1924), p. 44 ; xxxii (1925), p. 639
» Phys. Rev. xxvi (1925), p. 289
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of the quantum after scattering. It was therefore possible to test 
the truth of the equation

RADIATION AND ATOMS IN THE OLDER QUANTUM THEORY

which connects the directions of the scattered quantum and the 
recoil electron. If the energy of the scattered X-rays were propagated 
in spreading waves of the classical type, there would be no correlation 
whatever between the directions in which the recoil electrons proceed 
and the directions of the points at which the photo-electrons are 
ejected by the scattered photons. The results of Compton and 
Simon’s experiment showed that the scattered photons proceed in 
definite directions and that the above equation connecting ф and 6 
is true.1 And this result, like that of Bo the and Geiger, is fatal to 
the Bohr-Kramers-Slater hypothesis.

The discovery of the Compton effect opened a new prospect of 
solving a problem which had for some years baffled theoretical 
physicists. The thermal equilibrium between radiation and electrons 
in a reflecting enclosure had been investigated by H. A. Lorentz 2 
and A. D. Fokker3 on the basis of classical electrodynamics : and 
they had shown that Planck’s law of spectral distribution of radiation 
could not persist in such a reflecting enclosure, if an electron were 
present : and, moreover, that if the Planck distribution were artifi­
cially maintained, the electron could not maintain the amount |AT of 
mean translational kinetic energy required by the statistical theory 
of heat : so the classical theory failed to account for the interaction 
of pure-temperature radiation with free electrons. W. Pauli now,4 
basing his investigation on the work of Compton and Debye, attacked 
the problem of finding a quantum-theoretic mechanism for the 
interaction of radiation with free electrons, which should satisfy the 
thermodynamic requirement that electrons with the Maxwellian 
distribution of velocities can be in equilibrium with radiation whose 
spectral distribution is determined by Planck’s radiation-formula. 
He found that the probability of a Compton interaction between 
a photon hv and an electron could be represented as the sum of two 
expressions, one of which was proportional to the radiation-density 
of the primary frequency v, while the other was proportional to the 
product of this radiation-density and the radiation-density of the 
frequency v which arises through the Compton process. The latter 
term was puzzling from the philosophic point of view, since it seemed 
to imply that the probability of something happening depended on 
something that had not yet happened. However, it was shown by 
W. Bothe5 that Pauli’s second term was a mistake, arising from

1 cf. R. S. Shankland, Phys. Rev. Hi (1937), p. 414
* At the Solvay conference in Brussels in 1911
8 Diss., Leiden, 1913 ; Arch. Néerl, iv (1918), p. 379

Z S .f .  P . xviii (1923), p. 272 6 Z S . f : P . xxiii (1924), p. 214
(995) 15213
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Pauli’s assumption that the photons scattered all have the energy 
hv : whereas, as we have seen earlier,1 in pure-temperature radiation 
there are also definite proportions of photons having the energies 
2hv, 3hv, etc. : if it is assumed that each of these is scattered as a 
whole, in exactly the same way as the photons of energy hv, then 
Pauli’s second term falls out, and the theory becomes much simpler.2

In the latter half of 1923 Louis de Broglie introduced a new 
conception which proved to be of great importance in quantum 
theory. The analogy of Fermat’s Principle in Optics with the 
Principle of Least Action in Dynamics suggested to him the desira­
bility of studying more profoundly the parallelism between corpus­
cular dynamics and the propagation of waves, and attaching to it 
a physical meaning. He developed this idea first in a series of notes 
in the Comptes Rendus,3 then in a doctorate thesis sustained in 1924,4 
and in other papers.5

In de Broglie’s theory, with the motion of any electron or material 
particle there is associated a system of plane waves, such that the 
velocity of the electron is equal to the group-velocity6 of the waves. 
Let m be the mass and v the velocity of the particle. It is assumed 
that the frequency v  of the waves is given by Planck’s relation

when

is the kinetic energy of the particle, so
me2

hv =

*(■-$)
Since v is equal to the group-velocity of the waves, we have

dvv =

( 1 )

(2)
d( 1/X)

where Â is the wave-length of the waves, so that X — Y/v where V is 
the phase-velocity of the waves.

1 cf. p. 103
2 A simple treatment of the equilibrium between a Maxwellian distribution of atoms, 

and radiation obeying Planck’s law, is given by P. Jordan, Z S . f *  P . xxx (1924), p. 297.
8 C o m p te s  R e n d u s , clxxvii (10 Sept. 1923), p. 507 ; ibia. (24 Sept. 1923), p. 548 ; 

ibid. (8 Oct. 1923), p. 630 ; clxxix (7 July 1924), p. 39 ; ibid. (13 Oct. 1924), p. 676 ; 
ibid. (17 Nov. 1924), p. 1039

4 T h è s e , Paris, Edit. Musson et Cie., 19246 P h i l .  M a g .  xlvii (Feb. 1924), p. 446 ; A n n a le s  de p h y s S Ю) iii (1925), p. 22.
• cf. Vol. I, p. 253, n o te  4. For the purpose of calculating group-velocity, v is regarded 

as a function of Л with c  and m \h  as fixed constants.
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From (1) and (2) we have

where

dv^~dph

P = mv

is the momentum of the particle. Integrating, we have 1/Л=/>/Л, or 
Л = hjp. This equation gives the wave-length of the de Broglie wave associated 
with a particle of momentum p.

The phase-velocity V of the de Broglie wave is

V = Av=^
P

E E 
h p

or

an equation which gives the phase-velocity of the de Broglie wave.1
Now a wave-motion of frequency Е/2тгЛ and of wave-length 

2ттЩру where p has the components (/>*, py, pz)y is represented by 
a wave-function

0 = exp. ' (̂Et-pxX - pyy  - pzz)

1 The following derivation of de Broglie’s result was given by Einstein, Berlin Sitz. 
(1925), p. 3.

A material particle of mass m is first correlated to a frequency vQ conformably to the 
equation me9 « hv0

The particle now rests with respect to a Galilean system K ', in which we imagine 
an oscillation of frequency v0 everywhere synchronous. Relative to a system К/, with 
respect to which K ' with the mass m is moved with velocity v along the positive X-axis, 
there exists a wave-like process of the kind

sin )
The frequency v and phase-velocity V of this process are thus given by

The relation
(phase velocity) x (group velocity) = c%

was shown by R. W. Ditchbum, Revue optique xxvii (1948), p. 4, and J . L. Synge, Rev. Opt. 
xxxi ^1952), p. 121, to be a necessary consequence of relativity theory.
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This is the analytical expression of the de Broglie wave associated with a 
particle whose kinetic energy is E and whose momentum is (px, py ,  p z ) .

But a wave of ordinary light of frequency v in the direction 
(/, m, n) is represented by a wave-function

ф = exp. ^2mv Jf -  ^  (lx + my + nz) J J  
or

Ф = exp. ||(E< -  ptx -  pyy  —piz) J
when E denotes the energy hv and (px, py, jk) the momentum hvjc 
of the corresponding photon. Comparing this with the above 
expression for the de Broglie wave, we see that an ordinary wave of 
light is simply the de Broglie wave belonging to the associated photon. 
It follows that if a de Broglie wave is regarded as a quantum effect, 
then the interference and diffraction of light must be regarded as essentially 
quantum effects. It is, in fact, a mistake to speak of the wave-theory 
of light as the ‘ classical5 theory : that it is usually so called is due 
to the historical accident that the wave-theory of light happened to 
be discovered before the photon theory, which is the corpuscular 
theory. When interference is treated by the corpuscular theory 
(Duane’s method, p. 142), then its quantum character is shown by 
the fact that quantum jumps of momentum make their appearance. 
Moreover, the interference and diffraction of light are evidently 
of the same nature as the interference and diffraction of electron 
beams and of molecular rays, and the latter phenomena are 
undoubtedly quantum effects.

The principle of Fermat applied to the wave may be shown to 
be identical with the principle of Least Action applied to the particle ; 
in fact, Sfds/À = 0 is equivalent to SJpds — 0 if p is a constant multiple 
of 1 /Л.

De Broglie now showed that his theory provided a very simple 
interpretation of Bohr’s quantum condition for stationary states 
of the hydrogen atom. That condition was, that the angular momen­
tum of the atom should be a whole-number multiple of h or А/27Г, say 
nh\ÏTT. But if r denotes the radius of the orbit and p the linear 
momentum of the electron, the angular momentum is rp : so the 
condition becomes

2rrrp = nh
or

2ттг — пК

where Л is the wave-length of the de Broglie wave associated with 
the electron. This equation, however, means simply that the circum­
ference of the orbit of the electron must be a whole-number multiple of the 
wave-length of the de Broglie wave.
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More generally, the Wilson-Sommerfeld quantum condition is 
that the Action must be a multiple of h. But the Action is \pds 
where p denotes the momentum and ds the element of the path : 
so hfds/Л must be a multiple of A, where Л is the de Broglie wave­
length : or, IdsjÀ must be a whole number. We can express this 
by saying that the de Broglie wave must return to the same phase when the 
electron completes one revolution of its orbit.

The connection between the Wilson-Sommerfeld condition and 
the wave-theory can be seen also in the case of the diffraction of 
light or electron beams or corpuscular rays by an infinite reflecting 
plane grating. The solution of this problem by the corpuscular 
theory (Duane’s method) depends on the Wilson-Sommerfeld 
condition, which yields (cf. p. 143)

(pdjh) (sin i — sin r) = a  whole number,

where p now denotes the total momentum of the quantum of 
light. The solution by the wave-theory of Young and Fresnel, 
on the other hand, depends on the principle that (l/27r) times 
the difference in phase between the rays reflected from adjacent 
spacing-intervals must be a whole number, and this at once 
gives

RADIATION AND ATOMS IN THE OLDER QUANTUM THEORY

(d/X) (sin i — sin r) = a whole number.

These two equations are identical if (p/h) = ( 1 /Л), which is assured 
by de Broglie’s relation.

In July 1925 a research student named Walter Elsasser, working 
under James Franck at Gottingen, made an important contribution1 
to the theory. Franck had been told by his colleague Max Born 
of an investigation made in America by Clinton J. Davisson and 
C. H. Kunsman,2 who had studied the angular distribution of 
electrons reflected at a platinum plate, and had found at certain 
angles strong maxima of the intensity of the electronic beam. Born, 
who knew of de Broglie’s theory, mentioned it in this connection, 
and Franck proposed to Elsasser that he should examine the question 
whether Davisson’s maxima could be explained in some way by de 
Broglie’s waves. Elsasser showed that they could in fact be inter­
preted as an effect due to interference of the waves. There were 
strong maxima, which with increasing electron-velocity approxi­
mated to the positions of the maxima which would be observed if 
light of the wave-length given by de Broglie’s law, namely, Л = hjmv 
were diffracted at an optical plane grating, the constants of the 
grating being those of platinum crystals. This was the first con­
firmation of de Broglie’s theory which was based on comparison

1 N aturwiss, xiii (1925), p. 711 * Phys. R tv . xxii (1923), p. 242
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with experiment. Elsasser remarked further that de Broglie’s theory 
provided solutions for some other puzzles of current physics. He 
discussed an effect discovered by C. Ramsauer1 in Germany, and 
independently but later by J. S. Townsend and V. A. Bailey2 at 
Oxford, and by R. N. Chaudhuri3 working in O. W. Richardson’s 
laboratory in London, namely, that the mean free path of an electron 
in the inert gases becomes exceedingly long when the velocity of the 
electron is reduced : thus when an electron moving with a velocity 
of about 108 cm./sec. collides with a molecule of a non-inert gas, 
in general it loses more than one per cent of its energy, but when it 
collides with a molecule of argon, it loses only about one ten- 
thousandth part of its energy : and the mean free path of such an 
electron in argon is about ten times as long as that calculated from 
the kinetic theory. Elsasser explained this by showing that when slow 
electrons are scattered by atoms of the inert gases, the effect follows 
the same laws as the classical scattering of radiation, of the associated 
de Broglie wave-length, by small spheres whose radius is the same as 
that of the atom.

Elsasser further suggested that electrons reflected at a single 
large crystal of some substance might show the diffraction-effect of the 
de Broglie waves decisively.4 The phenomenon thus predicted was 
found experimentally in 1927 by Clinton J. Davisson and Lester H. 
Germer5 of the Bell Telephone Co., who found that a beam of slow 
electrons, reflected from the face of a target cut from a single crystal 
of nickel, gave well-defined beams of scattered electrons in various 
directions in front of the target : in fact, diffraction phenomena were 
observed precisely similar to those obtained with X-rays, of a wave­
length connected with the momentum of the electrons by de Broglie’s 
formula.

In Nov.-Dee. 1927, George Paget Thomson6 examined the 
scattering of cathode rays by a very thin metallic film, which could 
be regarded as a microcrystallic aggregate, and confirmed the fact 
that a beam of electrons behaves like a wave : from the size of the 
rings in the diffraction-pattern it was possible to deduce the wave­
length of the waves causing them, and in all cases he obtained the 
value Л = hjp. If a stream of electrons is directed at a screen in which

1 Ann. d. Phys. lxiv (1921), p. 451 ; lxvi (1921), p. 546 ; lxxii (1923), p. 345
* Phil. Mag. xliii (1922), p. 593 8 Phil. Mag. xlvi (1923), p. 461
4 Another experimental investigation which could be explained by de Broglie’s 

theory was that of E. G. Dymond, Nature, cxviii (1926), p. 336, on the scattering of 
electrons in helium ; the moving electrons could be associated with plane de Broglie 
waves, whose interference governed the scattering. I. Langmuir, Phys. Rev. xxvii (1906), 
p. 806 had shown that inelastic collisions in several gases lead to very small angles of 
scattering.

8 Phys. Rev. xxx (1927), p. 707 ; Nature, cxix (16 April 1927), p. 558 ; Proc. N.A.S. 
xiv (1928), p. 317 ; cf. K. Schaposchnikow, ZS.f. lü (1928), p. 451 ; E. Rupp, Ann. 
d. Phys. i (1929), p. 801 ; G. J. Davisson, J. Frank. Inst., ccv (1928), p. 597

• G. P. Thomson and A. Reid, Nature, cxix (1927), p. 890. G. P. Thomson, Proc. 
R .S . ( a ), cxvii (1928), p. 600 ; cxxviii (1930), p. 641. A. Reid, Proc. R.S.(a), cxix 
(1928), p. 663. R. Ironside, ibid., p. 668. S. Kikuchi, Proc. Tokyo Ac. iv (1928), pp. 271, 
354, 471
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there are two small holes close together, an interference-pattern is 
produced just as with light.

The experimental verification of de Broglie’s formula was 
further extended by E. Rupp,1 who succeeded in obtaining electronic 
diffraction by a ruled grating.

The electron-energies for which the formula has been verified 
range from 50 to 10® electron-volts.2

These effects have been observed not only with streams of 
electrons (cathode rays and the /?-rays from radio-active sources), 
but also with streams of material particles : I. Estermann and 
O. Stern 3 in 1930 found that molecular rays of hydrogen and 
helium, impinging on a crystal face of lithium fluoride, were 
diffracted, giving a distribution of intensity corresponding to the 
spectra formed by a crossed grating. The wave-length, calculated 
from the known constants of the crystal, was in agreement with de 
Broglie’s formula.

Theoretical papers on the diffraction of electrons at crystals 
were published not long after the Davisson-Germer experiment by 
Hans Bethe,4 a pupil of Sommerfeld, and C. G. Darwin.5

The next notable advance in physical theory was made by 
Satyandra Nath Bose6 of Dacca University, in a short paper giving 
a new derivation of Planck’s formula of radiation : Einstein, who 
seems to have translated it into German from an English manuscript 
sent to him by Bose, recognised at once its importance and its con­
nection with de Broglie’s theory.

Bose regarded the radiation as composed of photons, which for 
statistical purposes could be treated like the particles of a gas, but 
with the important difference that photons are indistinguishable 
from each other, so that instead of considering the allocation of 
individual distinguishable photons among a set of states, he fixes 
attention on the number of states that contain a given number of 
photons. He assumes that the total energy E of the photons is 
given, and that they are contained in an enclosure of unit volume.

A photon hv may be specified by its co-ordinates (x>y, z) and the 
three components of its momentum (px, py, pz). Since the total 
momentum is hvjc, we have

px2 +py2 + pz2 = r2 where r = hv/c.

Let volume in the six-dimensional space of (*, y> z , px, py, pz) be
1 % S.f. P. lii (1928), p. 8 ; Phys. ZS. xxix (1928), p. 837
2 J .  V. Hughes, Phil. Mag. xix (1935), p. 129
8 Z S .f .  P. lxi (1930), p. 95 : cf. T. H. Johnson, Phys. Rev. xxxi (1928), p. 103 : F. 

Knauer and O. Stern, Z S > f P. ciii (1929), p. 779
4 Ann. d. Phys. lxxxvii (1928), p. 55
5 Proc. R .S .( a ) ,  cxx (1928), p. 631. This paper is concerned with the polarisation 

of electron-waves, on which, see also C. Davisson and L. H. Germer, Phys. Rev. xxxiii 
(1929), p. 760, and E. Rupp, Z S . f  P- Uii (1929), p. 548.

• Z S .f .  P. xxvi (1924), p. 178
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called phase-space. Then to the frequency-range from v  to v +  dv 
there corresponds the phase-space

J dx dy dz dpx dpy dpz = ̂ ттгНг = 4:7t ~  dv.

Bose now assumes that this phase-space is partitioned into cells of 
volume Л3, so there are T̂rv2dvjcz cells. In order to take account of 
polarisation we must double the number, so we obtain 8 rrv2dvjcz cells.

Now let N5 be the number of photons in the frequency-range dvSy 
and consider the number of ways in which these can be allocated 
among the cells belonging to dv$. Let p 0* be the number of vacant 
cells, p i  the number of cells that contain one photon, p 2s the number 
of cells that contain two photons etc. Then the number of possible 
ways of choosing a set of p 0s cells, a set of p i  cells, etc. out of a total 
of &7Tv2dvlcz cells is

As\ -, where As = — dvs>
PS \ p S \ p t * c 

and we have N* = rpЛ

As the fundamental assumption of his statistics, Bose assumes 
that if a particular quantum state is considered, then all values for 
the number of particles in that state are equally likely, so the proba­
bility of any distribution specified by the p Ts is measured by the 
number of different ways in which it can be realised. Hence the 
probability of the state specified by the p r* (now taking into account 
the whole range of frequencies) is

w=n As!
pS\pS\pS\

Since the pr are large, we can use Stirling’s approximation
log n\ = n log n — n

so log W = £  As log A * -  2  Z  Pr* loS P** since As = ^  Pr'•
S S r  r

This expression is to be a maximum subject to the condition 

E = ^  Ns hvs, when Ns = ^  rpr\
S r

The usual conditions become in this case

Z  Z  *pr\ \1 + logpS) = 0, 2  8N..Av, = 0,
s  r  s

2 2 0



where 

which give
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I I W{(1 +l o g p /  + r ) + Tff } = 0  

where /? and the Xs are constants : so
rhv$

pr = B,e~~P~

where the B» are constants. 
Therefore

»*'« / 4 \ -
A,= £  A‘ = ;£ B ,e 'T - =B s [

r  T

1 -e~ T j

(  hv‘ \or B s =  A ,[ l - e  e  )

rhv, /  _Л'Л hvs
while Ns= ^  rpr‘ =  A»^ re P ^1 - г  P j 1 =  A ,e~r

r  r

Thus
fiv

е~Т
8 S C

/

-1
0 -•-*):

The entropy is 

which gives
S = A: log W

S = * { f - I A , l o g  ( l - Æ ) } .

Since $S/c)E=l/T where T denotes the absolute temperature, we 
have

so
17 V  87ihv-
E - ? - ?

1
.3 hvskTe - 1

dvt

which is equivalent to Planck’s formula.
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Bose’s paper therefore showed that in order to obtain Planck’s 
law of radiation, we must assume that photons obey a particular 
kind of statistics. This point may be illustrated by an analogy, as 
follows. Consider an empty railway train standing at a platform, 
with passengers on the platform who get into the train ; and suppose 
that when they have all taken their places, p0 compartments are 
vacant, p! compartments have one passenger apiece, p2 compartments 
have two passengers apiece, and so on : so that if A is the number 
of compartments in the train, we have

A =po + pi +p2 4— . . .

and if N is the number of passengers, we have

N = 0 . p0+ \  • pi ”4" 2 . p2 H- • • • *

For simplicity, we shall assume that comparatively few people are 
travelling, so that the number of compartments is greater than the 
number of passengers. Let us inquire, what is the probability of 
this particular distribution specified by the numbers (p0y pl9 jb2, . . .)• 
Evidently the probability depends on the assumption that we make 
regarding the motives which influence passengers in their choice of 
a compartment. Three such assumptions are as follows :

(i) We might assume that each passenger chooses his compart­
ment at random, without regard to whether there are already any 
other passengers in it, or not.

(ii) We might assume that each passenger likes to have a com­
partment to himself, so he refuses to enter any compartment which 
already has an occupant.

(iii) We might assume that among the passengers there are small 
family parties whose members wish to be together in the same 
compartment, so that if we know that at least one place in a com­
partment is occupied, there is a certain probability (arising from 
this fact) that other seats in it will also be occupied. We may 
regard each family party or unattached traveller as a unit, and 
assume that each unit chooses its compartment at random, without 
regard to whether there are already other passengers in it, or not.

It is.evident that these three different assumptions will give 
quite different values for the probability of any particular distri­
bution (p0, pu p2y . . .) : this we express by saying that they give 
rise to different statistics. The difference between classical statistics 
and the different kinds of quantum statistics may be illustrated by this 
analogy.

Bose’s discovery was immediately extended by Einstein,1 to the 
study of a monatomic ideal gas. The difference between Bose’s

1 Berlin Sitz. (1924), p. 261 ; (1925), pp. 3, 18 
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photons and Einstein’s gas-particles is that for photons the energy 
is c times the momentum, whereas for particles a different equation 
holds : and, moreover, in Bose’s problem the total energy is fixed 
but the number of photons is not fixed, whereas in Einstein’s

Eroblem the total number of particles is definite. These differences, 
owever, do not affect the general plan of the investigation. The 

analysis leads to the following conclusions : the average number of 
particles of mass m in unit volume with energies in the range e to 
€ + de is

277 (2m^e^de ,*ч
p  e*lkt + „ _ i  \l)
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where fji is a constant : whence the total number of particles in unit 
volume is

e’2’d?€
eejkT +/i _ I

277

A3 {2mkT)K
J 0

x*dx
e I+" - l (2)

and the total energy in unit volume is

E = 2■n
h3

ède
T +/<_ 1

2 7Г

h3
3 5 Г°°

(2m)2 (kT)2 J
J 0

xjdx 
ex+t*— Г (3)

These are the fundamental formulae of what is generally called 
Bose-Einstein statistics.

Now consider the relation between these formulae and the 
formulae of the classical (Maxwellian) kinetic theory of gases. 
We should expect the classical formulae to be obtained as the 
limiting case when A-*0, in which case it is evident from (1) that ft 
must tend to infinity in such a way that A3̂  has a finite value, 
say Л. From (2) we then have, in this limiting case,

n = ^ (2mkT)1 r xie~xd x = ^  (2mkT)1 (4)Л Jo Л

while (1) states in the limiting case that the total number of particles 
in unit volume with energies between e and e + de is

?- (2m)* de
A

or, by (4), out of a total of n particles, the number with energies 
between e and e + de is

2n
ттЦкТ) 2

de

which is precisely the Maxwellian formula.
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Moreover (3) becomes in this limiting case

E = 2-* (2m)*.(*T)l T(f) = Ы Т
Л

which is the Maxwellian formula for the total energy.
We see that in Bose statistics, the slower molecules are more 

numerous, as compared with the faster ones, than is the case in 
Maxwell’s theory.

The similarity in statistical behaviour between Bose’s photons 
and the particles of a gas, revealed by this investigation, was examined 
further by Einstein. He pointed o u t1 that de Broglie’s discovery 
made it possible to correlate to any system of material particles a 
(scalar) wave-field : and he showed the close connection between 
the fluctuations of energy in systems of waves and in systems of 
particles. We have seen 2 that the mean-square of the fluctuations 
of energy per unit volume in the frequency-range from v to v + dv 
in the radiation in an enclosure at temperature T is

e2 = hv E + g3E2 
87TV2dv

the first term representing the fluctuation in the number of molecules 
in unit volume of an ideal gas on the classical theory, when each 
molecule has energy hv. Einstein now showed that when the gas- 
particles are assumed to satisfy the Bose-Einstein statistics, both terms 
appear. In other words, a Bose-Einstein gas differs from a Max­
wellian gas in precisely the same way as radiation obeying Planck’s 
formula differs from radiation obeying the law of Wien.

The next advance in the theory of quantum statistics was made 
by Enrico Fermi3 {b. 1901). He remarked that in the Maxwellian 
kinetic theory of gases, the average kinetic energy per molecule is 
fÆT, and hence the molecular heat at constant volume (i.e. the 
heat that must be communicated to one gramme-molecule in order 
that its temperature may be raised one degree, the volume remaining 
unchanged), calculated from this theory, is = where R is the 
gas-constant. If, however, Nernst’s thermodynamical law, which 
requires (dEjdT)->0 as T->0, is applicable to an ideal gas, then Cv 
must vanish in the limit when T->0, and therefore (as Einstein had 
remarked in 1906) the Maxwellian theory cannot be true at very low 
temperatures. The reason for this must, he argued, be sought in 
the quantification of molecular motions, and this quantification be 
made to depend on Pauli’s exclusion principle, that one system can

1 At page 9 of the first paper in Berlin Sitz. (1925). * cf. p. 101 supra
* Lined Rend, iii (7 Feb. 19*26), p. 145 ; Z/S.j. P. xxxvi (1926), p. 902. A contribution 

of çreat importance was made by P.A.M. Dirac somewhat later in the year, Proc. R.SAa), 
cxii (1926), p. 661, on account of which the type of statistics introduced by Fermi is often 
called the Fermi-Dirac statistics ; but as Dirac’s paper involves the ideas of wave- 
mechanics, its description is postponed for the present.
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never contain two elements of equal value with exactly the same set 
of quantum numbers. Thus he asserted that at most one molecule 
with specified quantum numbers could be present in an ideal gas : 
where by quantum numbers he understood not only those which relate 
to the internal motions of the molecules, but also those which specify 
the molecule’s motion of translation.

The quantification may be performed as follows : suppose the 
gas is contained in a cubical vessel whose edge is of length /, so 
that the possible quantum values of the components of momentum 
of the particle are p x =  (Sih/l), py= (s2hjl), pz= (.szhjl), where su s2, s3 
are whole numbers or zero ; then Pauli’s principle asserts that in the 
whole gas there can be at most one particle with specified quantum 
numbers sx, s2, sz.

The energy of the particle is

€ = Wm (,*, + * , + ,«')

and as in the case of Bose statistics, the number of quantum states 
of the particle which correspond to kinetic energy between €» and 
€* + de$ is

R, = 2 |V  (2,b)* € * a *.

Now suppose that Ns particles have energies between and o  + rfc*, 
so of the R* states, N* are occupied (by one particle each) and the 
rest unoccupied. The number of ways in which this can occur is

R,!
N» ! (Rs-Ns)  !

so the total number of ways in which the allocation specified by 
the N, can be realised is

T A T  _  y j ____________R* !____________

W ? N , ! ( R J- N , ) !

and we assume that this is proportional to the probability of this 
allocation. Thus

lo g W = £  I log Rj ! -  log N» ! — log (R.< -  N«) !|.

Using Stirling’s approximation to the log. of a factorial, this gives 

log W = £  {R- log R, -  N« log Ns -  (Rs -  N.) log ( R . - N s) | ,

This is to be made a maximum, subject to
^  Ns = 7z, where n is the total number of particles

s
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and
^  6,N, = E, where E is the total energy.

The usual procedure yields
R s

+ 1

where and fx are independent of s. Now the entropy is
S = *logW

and

whence we find

d S ^ l 
dÊ V

Hence the number of particles per unit volume with kinetic energy between 
e and € + de is

n(e)dç = 2тг(2 m ) i  

h3
e2de

еФТ +/, + i

This is the fundamental equation of the Fermi statistics 
The total density of particles is therefore

n = j: x2dx 
ex+t* +1

an equation which determines fx as a function of the density and 
temperature.

The parameter fx has a thermodynamical significance. If for 
a finite mass of gas U is the total energy, S the entropy, T the 
temperature, p the pressure and v the volume then

G - U - T S + ^

is called the Gibbs’s thermodynamical potential ; and the Gibbs’s thermo­
dynamical potential per molecule is defined as ifj = dG/dn, where n denotes 
the number of molecules, and the temperature and pressure are 
kept constant in the differentiation. The Fermi constant fx is now 
given 2 by

±
kT 1

1 This may be modified, e.g. when the particles concerned have different possibilities 
of spin. • W. Pauli, £ S .f .  P. xli (1927), p. 81, at p. 91

226



RADIATION AND ATOMS IN THE OLDER QUANTUM THEORY 
The total kinetic energy of the particles in unit volume is

E - £ « ( . ) *  -  |ï(2m )*(JT)*£

The close similarity of these equations to the corresponding equations 
n the Bose statistics is evident, the only difference being in the 
occurrence of + 1 instead of — 1 in the denominator. In exactly 
the same way as in the case of Bose statistics, we see that in the 
limit when 0, /z-> + oo, Fermi statistics pass into Maxwellian 
statistics : speaking physically, a Fermi gas approximates to a 
:lassical gas at sufficiently high temperatures and low pressures. 
The deviation of Fermi statistics from classical behaviour is in the 
opposite direction to the deviation in the case of Bose statistics.1

The pressure of a gas in Fermi statistics is related to the energy- 
iensity by the same equation as in classical theory,

Classical statistics is not the only limiting case of Fermi statistics : 
:here is another limiting case at the opposite extreme, namely when 
x is very large and negative. If we write — a for /z, the integrals 
occurring in the theory are of the form

Г  xpdx
Jo ex~a+ 1

md it can be shown that

ю the total density of particles becomes

n = |£(2m*Ta)f

md the total kinetic energy of the particles in unit volume is

E -|H (2m )f (ATa)*.
Eliminating a, we have

E-w (i)l£ ”la№ro,dmatdyi
:he neglected terms involving T 2 and higher powers 2 of T.

1 The thermodynamical functions for a gas with Fermi statistics were studied by 
E. G. Stoner, Phil. M ag. xxviii (1939), p. 257.

* For an electron-gas, e.g. in metals, there is an extra factor 2 arising from the two 
>ossible values of the spin of the electron.
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It is evident from this equation that at the zero of absolute 
temperature the particles of a gas with Fermi statistics are not at 
rest, but have a definite zero-point energy.

In this limiting case we see from the above value of n that

п№(ткТ) _2Ъ>1,

which is realised if the temperature is low, the density n is large 
and the mass m of the individual particles is small. The deviation 
from classical behaviour is due fundamentally to the circumstance 
that the quantum states of very small momentum are all occupied 
by particles. In fact, since (in accordance with Nernst’s heat 
theorem) the entropy S vanishes at the absolute zero of temperature, 
and since S = Æ log W, it follows that W = 1 when T =0, i.e. there 
is only one way of distributing the particles : they occupy every 
quantum state in the neighbourhood of the state of zero momentum.

This fact has an interesting application in astrophysics. In 1844 
Bessel concluded from irregularities in the motion of Sirius that it 
was one component of a double star, the other member of the pair 
being invisible with the telescopes then available. Some years later 
the companion was observed telescopically, and found to be a star 
between the 8th and 9th magnitude. Its mass is not much less than 
that of the sun, and it is a ‘ white 5 star, so that its surface-brightness 
must be greater than the sun’s ; but its total radiation is only about 
siffth of that of the sun : hence the area of its surfaces must be 
very much smaller than the sun’s, and in fact not much larger than 
the earth’s. Its density must therefore be very great—about 60,000 
times that of water. This surprising inference was confirmed in 
1925, when Walter S. Adams1 of Mount Wilson found in the spectrum 
of the companion of Sirius a displacement of the lines which might 
well be the decrease of frequency that is to be expected in lines 
that have been emitted in an intense gravitational field.

The explanation2 of this abnormal density is that matter can 
exist in such a dense state if it has so much energy that the electrons 
escape from the nuclei, so they are no longer bound in ordinary 
atomic orbits but are, in the main, free. The density of the matter 
is then limited no longer by the size of atoms, but only by the sizes 
of the electrons and atomic nuclei : and as the volumes of these are 
perhaps 10~14 of the volumes of atoms, we may conclude that 
densities of as much as 1014 times that of terrestrial matter may be 
possible : this is much greater than that of any of the ‘ white 
dwarfs,’ as stars like the companion of Sirius are called.

According to the classical theory of the relation between energy 
and temperature, such a star, having excessively great energy, 
would have a very high temperature, and would therefore radiate 
intensely. It was, however, shown by R. H. Fowler3 that this is

1 Proc. N.A.S. xi (1925), p. 382 * Due chiefly to Eddington
* Mon. Not. R.A.S. Ixxxvii (1926), p. 114
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lot the case. The radiation depends on the temperature, and 
lepends on the energy only in so far as the energy determines the 
emperature : the apparent difficulty was due to the use of the 
dassical correlation between energy and temperature : the correct 
elation, for such dense stellar matter, is that of the above-mentioned 
imiting case of Fermi’s statistics, when p is very large and negative : 
he energy is still very great, but the temperature is not corres­
pondingly great, and indeed ultimately approaches zero : so 
*adiation, which depends on temperature, stops when the dense 
natter still has ample energy.

The absolutely final state (the ‘ black dwarf’) is one in which 
here is only one possible configuration left : the star is then 
inalogous to one gigantic molecule in its lowest quantum state, 
ind the temperature (which ceases to have any meaning) may be 
aid to be zero.

It was shown in 1927 by L. S. Ornstein and H. A. Kramers1 
)f Utrecht that the formulae of Fermi statistics may be derived in 
l totally different way by considering the kinetics of reactions.

Let the possible values of the energy of a gas-molecule in an 
enclosure be €2, €3, . . . ; for simplicity we suppose these values 
dl different. Consider two molecules in the states k' and V respec- 
ively, which by their interaction are changed to the states k" 
ind /" respectively. Let the a priori probability that this transition 
hould take place in unit time be denoted by a j . In order that 
he transition may actually take place, it is necessary that there 
hould exist a molecule in the k' state and one in the I' state, and, 
noreover (by the Pauli principle), that neither a molecule in the

state nor one in the Г  state is present. Denoting by m the 
probability that a molecule is in the k state, the mean frequency 
or the process in which k\  V tend to Æ", is

A,/ = a j  n* fir (1 -  Й* ") (1 -  fir)

vhile the frequency of the reverse process is

A/' = д," nv> nr (1 -nv) (1 -  fiv).

n thermodynamic equilibrium we must have

А / = А /

ind if we postulate further, that the a priori probability for reverse 
processes is equal, i.e.

1 £ £ ./ .  P. xlii (1927), p. 481. On the kinetic relations of quantum statistics, cf. also : 
\  Jordan, Z $ - f’ P- xxxiii (1925), p. 649 ; xli (1927), p. 711. W. Bothe, Z S .f. P. xlvi 
1928), p. 327. L. Nordheim, Proc. R.S.(a), cxix (1928), p. 689. S. Kikuchi and 
.. Nordheim, ^ . / .  P. lx (1930), p. 652. S. Flügge, £ $ ./ .  P. xciii (1935), p. 804

(996) 229 ie
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then if we write
Пк

\ — fit-  =  mk.,

the above equations give
mk’ mv = mk" mV\

This equation must hold for all the values of k\ k'\ for which 
the equation of conservation of energy

-f- €/' = €jfc" + €r

holds : whence it follows that the only possible reasonable distribu­
tion is given by

mk = e~a~t*k

where a and ft are constants : whence we have
1Ylh =  ------------------ =  ------------------l +ér*-0cfc *a+^*+ l

which is Fermi’s law of distribution.
Another application of the Fermi statistics was to the theory 

of electrons in metals.
In 1927 Pauli1 succeeded in accounting for the observed character 

of the paramagnetism of the alkali metals, which is feeble and 
nearly independent of the temperature, by assuming that the 
conducting electrons in a metal may be regarded as an electron-gas 
which is degenerate in the sense of Fermi’s statistics (i.e. ц is large 
and negative). In the following year Sommerfeld2 discussed the 
main problems of the electron-theory of metals on the same assump­
tion : the conducting electrons may be supposed to have free paths 
of the order of 100 times the atomic distances.

To see that the assumption is justified, we have to show that

nh3(mkT)~%̂ > 1.

Now we may suppose that the number n of free electrons is of the 
same order as the number of atoms, say 1022 per cm3. The mass of

1 £ £ ./ .  P. xli (1927), p. 81 ; communicated 16 Dec. 1926 ; published 10 Feb. 1927
2 Preliminary note in Naturwiss, xv (14 Oct. 1927), p. 825 ; xvi (1928), p. 374 ; 

ZS. f .  P. xlvii (1928), p. 1. His associate G. Eckart, ibid. p. 38, discussed the Volta- 
effect, and his associate W. V. Houston, Z ^-f-  P* xlviii (1928), p. 449, discussed electric 
conduction. Sommerfeld’s theory has been developed and improved by : E. Kretschmann, 
Z S . f : P. xlviii (1928), p. 739. F. Block, £ & /. P. lii (1928), p. 555 ; lix (1930), p. 208. 
L. W. Nordheim, Proc. R.S.(a), cxix (1928), p. 689. R. Peierls, Z ^-f-  P* liii (1929), 
p. 255 ; Ann. d. Phys. iv (1930), p. 121 ; v (1930), p. 244. L. Brillouin, Les Statistiques 
quantiques (Paris, 1930), Tome II. L. Nordheim, Ann. d. Phys, ix (1931), p. 607. A. H. 
Wilson, Proc. R.S.(a), cxxxviii (1932), p. 594. On semi-conductors, cf. A. H. Wilson, 
Proc. R.S.(a), cxxxiii (1931), p. 458 ; cxxxiv (1931), p. 277.
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tfïe electron m is 9 x l0 -28 gr., Planck’s constant h is 6*6 xl0~27 
erg. sec., Boltzmann’s constant k is 1*4 x 10~ie erg./deg. Thus the 
condition is roughly

Ю -5Т ( 1 0 -43

or
T<^105

which is satisfied at all ordinary temperatures. Thus the electron-gas 
inside a metal has a degenerate Fermi distribution. At the zero of absolute 
temperature, there is a finite energy given by the equation

RÀDÏATÏON AND ATOMS IN THÉ OÉDE& (ÿjANTÜM THEORY

and the derivative dE/dT is zero in accordance with Nernst’s theorem : 
the specific heat of the electron-gas is in fact proportional to T for 
low temperatures, whereas the classical statistics made it a constant. 
Thus it is understood why the specific heat of the electrons in metals 
is exceedingly small: the specific heat of a metal is usually what 
would be expected if it were due to the metallic atoms alone.

The replacement of classical by Fermi statistics does not appreci­
ably change the theoretical ratio of the thermal and electrical con­
ductivities.

We have seen that in Fermi statistics, the probability that a 
quantum state whose energy is e is occupied
is (**/“ +0+1)-1,

and that p = — ф/кТ where ф is Gibbs’s thermodynamical potential 
per molecule. For the electron-gas inside a metal, this quantity 
ф is called the electrochemical potential. It has the property that the 
electrochemical potentials of electrons in any two regions which 
are in thermal equilibrium (e.g. electrons in different metals which 
are in contact with each other at the same temperature) must 
be equal.

In a second paper1 in the Zeitschrift fiir Physiky Sommerfeld 
discussed thermo-electric phenomena, obtaining new formulae for 
the Peltier and Thomson effects, and showing that the new expression 
for the Thomson heat agreed with the experimental values much 
better than the old. Shortly before this a new thermo-electric effect 
had been discovered by P. W. Bridgman,2 namely, that when an 
electric current passes across an interface where the crystal orienta­
tion changes, an ‘ internal Peltier heat ’ is developed. A theoretical 
discussion of this and other thermoelectric phenomena was given in 
1929 by P. Ehrenfest and A. J. Rutgens.3

1 ZS. f .  P. xlvii (1928), p. 43
* Proc. N.A.S. xi (1925), p. 608 ; Phys. Rev. xxxi (1928), p. 221
• Proc. Amst. Ac. xxxii (1929), p. 698
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The twentieth century brought considerable developments in the 
subject of thermionics. Richardson had deduced his original formula1 
from the assumption that the free electrons in a metal have the same 
energy as is attributed in the kinetic theory of gases to gas-molecules 
at the same temperature as the metal. H. A. Wilson2 showed that 
the phenomena could not be explained completely by this theory, 
and proposed to replace Richardson’s treatment by one analogous 
to the theory of evaporation. Now the latent heat of vaporisation 
of a liquid may be shown by thermodynamical methods to be given 
by what is called the equation of Clapeyron and Clausius, which may 
be written in the form

where x is the latent heat of evaporation per gramme-molecule at the 
absolute temperature T, R is the gas-constant per gramme-molecule 
(= 1-987 cal./deg.), and p is the vapour-pressure at temperature T : 
and Wilson proposed to apply this equation. Under the influence 
of these ideas, Richardson3 suggested as an alternative to his earlier 
formula that the saturation emission per unit area, in ampères per 
cm.2, should be represented by an equation

I = АТ2Г ^

where A is a constant, k is Boltzmann’s constant, and x represents 
the energy required to get an electron through the surface : x> which 
is called the work-function, is analogous to the latent heat of evapora­
tion of a monatomic gas : it is usually reckoned in electron-volts 
and is often written еф where ф is expressed in volts, and so is in 
fact the potential in volts necessary to impart to an electron the 
kinetic energy required for evaporation.

It may be remarked that although the conducting electrons 
inside a metal have a degenerate Fermi distribution, the external 
electrons produced by thermionic emission have a distribution which 
is practically Maxwellian : this is explained by their much smaller 
concentration.

In 1923 Saul Dushman,4 by use of the Clapeyron-Clausius 
formula, and on the assumption that the electrons within the metal 
obey Maxwellian statistics, obtained Richardson’s second formula, 
showing, however, that it is not rigorously true if x is a function 
of temperature (though for clean metals the deviations are small) ;

1 cf. Vol. I, pp. 425-8 2 Phil. Trans.{a ), ccii (1903), p. 243
* Phil. Mag. xxviii (1914), p. 633
4 Phys. Rev. xxi (1923), p. 623 ; cf. earlier papers by : W. Schottky, Phys. ZS. xv (1914), 

p. 872 ; xx (1919), pp. 49, 220. M. von Laue, Ann. d. Phys. lviii (1919), p. 695. 
R. G. Tolman, J . Am. Chem. Soc. xlii (1920), p. 1185 ; xliii (1921), p. 866. And cf. later 
papers by : P. W. Bridgman, Phys. Rev. xxvii (1926), p. 173 ; xxxi (1928), p. 90. L. Tonks 
and I. Langmuir, Phys. Rev. xxix (1927), p. 524. L. Tonks, Phys. Rev. xxxii (1928), 
p. 284. K. F. Herzfeld, Phys. Rev. xxxv (1930), p. 248
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in fact x should be understood as relating to the work-function for 
the zero of absolute temperature : and he showed that A is a uni­
versal constant, having the value

A = 2 ~m̂  =60*2 amp./cm.2 deg2.

RADIATION AND ATOMS IN THE OLDER QUANTUM THEORY

Sommerfeld’s discovery that the electrons in a metal have 
degenerate Fermi statistics naturally led1 to a new treatment 
of thermionics, but the formula finally obtained had the same 
general character as Richardson’s formula of 1914. L. W. Nord- 
heim 2 found

* = А (1-г)Т 2Д

the quantities in this equation being defined as follows : A has twice 
the value of Dushman’s universal constant A, so

a 47ттек2 
A = - f r - = 120 amp./cm.2 deg.2 :

the factor 2 arises when we take account of the two possible values 
of the electron-spin. It might be thought easy to discriminate 
experimentally between Dushman’s and Nordheim’s formulae for A : 
but small uncertainties in the values of x and T, which occur in the 
exponential, affect the value of i  so much that the experimental 
determination of A is very uncertain.3 r is the reflection coefficient, 
i.e. the ratio of the number of electrons reflected internally at the 
surface to the total number reaching it, only those electrons being 
considered that have velocity components normal to the surface 
sufficient to allow them to escape, r is small and need not usually 
be considered, since the experimental value of A is so doubtful. 
X corresponds to Richardson’s work-function : but x now has the 
form

X — W a  — W t

where Wa is e times the difference in electrostatic potential between the 
inside and outside of the metal, and W< is an energy which depends 
on the pressure of the electron-gas, and which assists the escape of 
the electrons from the metal : we may take W< to be the kinetic 
energy of the highest filled level at the absolute zero of temperature.

Now we saw that in a Fermi distribution, the number of quantum
1 A. Sommerfeld, £«S.y. P. xlvii (1928), p. 1
* Z S .f. P. xlvi (1928), p. 833 ; Phys. Z$- xxx (1929), p. 177
8 L. A. du Bridge, Phys. Rev. xxxi (1928), pp. 236, 912, found that for clean platinum 

the thermionic constant A has the value 14,000 amp./cm .8 deg2, which is 230 times 
Dushman’s theoretical value 60*2 ; cf. L. A. du Bridge, Proc. N.A.S. xiv (1928), p. 788, 
and R. H. Fowler, Proc. R.S.(a ), cxxii (1929), p. 36.
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states of a particle (in unit volume) which correspond to kinetic 
energy between € and e -f de is

^ (2 m )* eV e

or inserting a factor 2 on account of the two values of the electron 
spin, it is

47Г(2m)3 1
V A .

At zero temperature, all the quantum states are occupied up to a 
certain level of kinetic energy, say Wt : so if n be the number of free 
electrons per unit volume, we have

« =% (2"*)5j W' (2mWi)ïï

so W ,= hi 
2 m

2
3

It can be shown that
W i =  fJL +

where p is the electrochemical potential of the electrons just inside 
the metal, and ф* is the electrostatic potential just inside the metal.1

The function Wa, the true total energy necessary to liberate an 
electron from the metal, may be determined independently by a 
method which depends on the diffraction of beams of electrons by 
metallic crystals.2 For although the experiments of Davisson and 
Germer, already referred to, were explained qualitatively by de 
Broglie’s theory of the wave-behaviour of electrons, there was a 
quantitative discrepancy, which was resolved by assuming that the 
wave-length of the electron-waves in the metal was different from 
the wave-length in vacuo, or in other words, that the metal had a 
refractive index for the electron-waves : this refractive index, which 
could be determined from the diffraction-experiments, determined 
the grating-potential and thence the function Wa : Wa was found 
to be considerably greater than the work-function

In a complete treatment of thermionic and photoelectric pheno­
mena, it is necessary to take account of factors that cannot be fully 
discussed here, e.g. the fact that an electron just outside a metal is

1 The use of the electrochemical potential in thermionics is due to W. Schottky and 
H. Rothe, Handbuch d. Expenmentalphysik (Leipzig, 1928), XII/2.

* cf. C. Eckart, Proc. N.A.S. xii (1927), p. 460 ; H. Bethe, Naturwiss, xv (1927), 
p. 787 ; L. Rosenfeld and E. E. Winner, % S.f. P. xlix (1928), p. 534
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influenced by a force due to its own image in the metal r1 in the 
case of a flat perfectly-conducting surface this force is of amount 
£8/4£8, where z is the distance of the electron from the surface.

The constants and functions that occur in thermionics occur also 
in related branches of physics. If two metals A and B at the same 
temperature are in contact, electrons flow from one to the other 
until the electrochemical potentials of the electrons in the two 
metals are equal, and there is a difference of potential (the Volta 
effect or contact potential-difference2) between a point just outside A 
and a point just outside B. Since the work-function % is

Wa —Wi ОГ -£ ф 0 + £фг- ( f A  +  e<&i)

where ф0 is the electrostatic potential at a point just outside the 
metal, we see that the Volta effect (Ф 0) а — (Ф 0) в is equal to 
(Xb — where x̂  and Xb we the thermionic work-functions of the two 
metals : so if iA and iB are the thermionic electric saturation currents 
per unit area at the same temperature, the contact potential- 
difference is 3

RADIATION AND ATOMS IN THE OLDER QUANTUM THEORY

£*B
Ia

Thermionics is closely connected also with photoelectricity, as 
we have seen in Chapter III.4 The frequency of light which will 
just eject electrons photoelectrically, but with zero velocity, is called 
the threshold frequency, and the corresponding wave-lengtn is called 
the photoelectric long wave-length limit. R. A. Millikan5 verified, by 
a series of careful experiments, that if vQ is the threshold frequency, 
the photoelectric quantity hvQ is equal to the thermionic work-function 
еф measured at the same temperature. L. A. Du Bridge 6 found 
that for clean platinum the photoelectric long wave-length limit is 
1962Â, which by the above equation corresponds to 6-30 volts, 
while the thermionic work-function is 6*35 volts : the two are thus 
in agreement within the limits of error.

The theory of the connection between photoelectric threshold 
frequency and thermionic work-function was studied in the light of 
Sommerfeld’s electron theory of metals by R. H. Fowler.7

1 The theory of electric images is due to William Thomson (Kelvin). This effect 
had been considered in P. Lenard’s early work on the photoelectric effect, Ann. d. Phys. 
viii (1902), p. 149 ; cf. P. Debye, Ann. d. Phys. xxxiii (1910), p. 441, and Walter Schottky, 
Phys. ZS • xv (1914), p. 872.

* cf. Vol. I, p. 71
8 O. W. Richardson, Phil. Mag. xxiii (1912), p. 265 ; verified by O. W. Richardson 

and F. S. Robertson, Phil. Mag. xliii (1922), p. 557
4 cf. p. 90 supra 6 Phys. Rev. xviii (1921), p. 236
• Phys. Rev. xxxi (1928), pp. 236, 912 ; cf. also A. H. Warner, Proc. N .A S . xiii (1927),

p. 56, who worked with tungsten.
7 Proc. R.S.{a ) , cxviii (March, 1928), p. 229 ; cf. G. Wentzel, Sommer/eld Festschrift

(1928), p. 79
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The effect of temperature on the photoelectric sensibility of a 
clean metal near the threshold was studied by J. A. Becker and 
D. W. Mueller1 in 1928, by E. O. Lawrence and L. B. Linford2 
in 1930 and by R. H. Fowler in 1931.3 It was shown that the 
photoelectric long wave-length limit is shifted towards the red.

Some interesting experiments on the photoelectric properties of 
thin films were carried out in 1929 by H. E. Ives and A. R. Olpin.4 * 
They found that the long-wave limit of photoelectric action in the 
case of films of the alkali metals on platinum varies with the thick­
ness of the film. As the film accumulates, the long-wave limit moves 
towards the red end of the spectrum, reaches an extreme position 
and then recedes again to the final position characteristic of the 
metal in bulk. The wave-length of the maximum excursion of the 
long-wave limit was found in every case to coincide with the first 
line of the principal series of the metal in the form of vapour, i.e. 
the resonance potential. This seemed to suggest that photoelectric 
emission is caused when sufficient energy is given to the atom to 
produce its first stage of excitation.

Richardson6 in 1912 studied the photoelectric emission from a 
surface exposed to black-body radiation corresponding to some 
high temperature T : this has been called the complete photoelectric 
effect. It was shown by A. Becker6 that the relative distribution 
of the velocities of the electrons released from platinum photo- 
electrically under these conditions is identical with that of electrons 
released thermionically. If there is equilibrium, the surface must 
itself be at temperature T, and then the total number of electrons 
leaving the surface, whether as a result of thermionic or photo­
electric action, must be given by the Richardson equation.

Sommerfeld’s discovery that the conducting electrons in metals 
obey Fermi statistics made possible a satisfactory theory of a pheno­
menon which had long been known7 but which, in some of its features, 
had not been explained : namely, the extraction of electrons from 
cold metals by intense electric fields.8 Experimental work by 
R. A. Millikan and his coadjutors 9 had shown that the currents 
obtained at a given voltage are independent of the temperature, 
provided the latter is not so high as to approach the temperature at 
which thermionic emission becomes appreciable : whence Millikan

1 Phys. Rev. xxxi (1928), p. 431 * Phys. Rev. xxxvi (1920), p. 482
8 Phys. Rev. xxxviii (1931), p. 45 ; cf. J . A. Becker and W. H. Brittain, Phys. Rev.

xlv. (1934), p. 694
4 Phys. Rev. xxxiv (1929), p. 117 ; cf. Hughes and du Bridge, Photoelectric Phenomena

(New York, 1932), p. 178
* Phil. Mag. xxiii (1912), p. 594 * Ann. d. Phys. lx (1919), p. 30
7 Knowledge of it seems to have evolved gradually from R. F. Earhart’s experiments 

on very short sparks. Phil. Mag. i (1901), p. 147.
8 A first approximate theory was given by W. Schottky, Z S .f .  P. xiv (1923), p. 63, 

following on J . E. Lilienfeld, Pays. xxiii (1922), p. 306.
8 R. A. Millikan and C. F. Eyring, Phys. Rev. xxvii (1926), p. 51 ; R. A. Millikan 

and G. C. Lauritsen, Proc. N.A.S. xiv (1928), p. 45 ; cf. also N. A. de Bruyne, Proc. Camb. 
Phil. Soc. xxiv (1928), p. 518
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concluded that the conduction electrons extracted in this way do not 
share in the thermal agitation, whereas the thermions, which are 
expelled at high temperatures, do.

Millikan and Lauritsen showed that if I is the current obtained 
by an applied electric force F, then log I when plotted against 
I/F yields approximately a straight line. In 1928 the subject 
was attacked in several theoretical papers,1 most completely by 
R. H. Fowler and L. Nordheim.2 They calculated the emission 
coefficient (i.e. the ratio of the number of electrons going through 
the surface, to the number of electrons incident from inside the 
metal) and the reflection coefficient, at the surface, and integrated 
over all incident electrons according to Sommerfeld’s electron theory 
of metals ; and they showed that it is the electrons with small 
energies that are pulled out by strong fields. Now these electrons 
with small energies have Fermi statistics, and that is why the intensity 
of the emitted current is, at ordinary temperatures, independent of 
the temperature. The formula obtained theoretically by Fowler and 
Nordheim for the current I was

t  _  € Ф * p a g -4K X !!/3F

2nh (x+ '/')**

where € is the electron-charge, k2 = Q^m/h2, ф is Gibbs’s thermo­
dynamical potential per electron, x is the thermionic work-function 
and F is the applied electric force. This formula agrees with the 
experimental results.3

1 R. H. Fowler, Proc. R .S .(a ), cxvii (1928), p. 549 ; L. Nordheim, %S. f .  P. xlvi 
(1928), p. 833 ; W. V. Houston, Z S .f. P. xlvii (1928), p. 33 (working with Sommerfeld) ; 
O. W. Richardson, Proc. R.S.{a), cxvii (1928), p. 719; W. S. Pforte, 7S- / .  P. xlix 
(1928), p. 46

* Proc. R.S.(A), cxix (1928), p. 173; cf. also J . R. Oppenheimer, Phys. Rev. xxxi
(1928) , p. 66

8 cf. also : O. W. Richardson, Proc. R .S .(a ), cxix (1928), p. 531 ; N. A. de Bruyne, 
Proc. R.S.(a), cxx (1928), p. 423; A. T. Waterman, Proc. R.S.(a), cxxi (1928), p. 28; 
L. W. Nordheim, Proc. R.S.(a ), cxxi (1928), p. 626; T. E. Stern, B. S. Gossling and 
R. H. Fowler, Proc. R.S.{a), cxxiv (1929), p. 699; W. V. Houston, Phys. Rev. xxxiii
(1929) , p. 361
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Chapter VII
MAGNETISM AND ELECTROMAGNETISM, 1900-26

At the end of the nineteenth century the classical theory of electrons 
was well established, and one magnetic phenomenon, namely, the 
Zeeman effect, had been explained in terms of it by Lorentz and 
Larmor. The time was evidently ripe for the consideration of dia­
magnetic, paramagnetic and ferromagnetic phenomena in the light 
of electron-theory.

It will be remembered1 that Weber had explained diamagnetism 
(the magnetic polarisation of bodies induced in a direction opposite 
to that of the magnetising field) by postulating the existence in 
molecules of circuits whose electric resistance is zero (but whose 
self-induction is not zero), so that the creation of an external field 
causes induced currents in them : the total magnetic flux through 
the circuits remains zero, and therefore by Lenz’s law the direction 
of the induced currents corresponds to diamagnetism. Para­
magnetism was explained by postulating Ampèrean electric currents 
in the molecules, whose planes were orientated by the magnetising 
field : and Ewing had developed on this basis an explanation of 
ferromagnetism.

The re-statement of these ideas in terms of the theory of 
electrons was undertaken in 1901-3 by W. Voigt2 andj. J. Thomson.3 
They studied the effect of an external magnetic field on the 
motion of a number of electrons, which are situated at equal intervals 
round the circumference of a circle, and are rotating in its plane 
with uniform velocity round its centre ; and they found that if a 
substance contained a uniform distribution of such systems, the 
coefficient of magnetisation of the substance would be zero ; so 
that it would be impossible to explain the magnetic or diamagnetic 
properties of bodies by supposing that the atoms contain charged 
particles circulating in closed periodic orbits under the action of 
central forces.

The origin of the difference between the effects produced by 
charged particles freely describing orbits, and those produced by 
constant electric currents flowing in circular circuits, as in Ampère’s 
theory of magnetism, is that in the case of the particles describing 
their orbits we get, in addition to the effects due to the constant 
electric currents, effects of the same character as those due to the 
induction of currents in conductors by the variation of the magnetic 
field : these induced currents tend to make the body diamagnetic,
1 cf. Vol. I, pp. 208-11 » Gôtt. Naeh. (1901), p. 169 ; Am. d. Phys. ix (1902), p. 115
* Phil. Mag.tf) vi (1903), p. 673
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while the Ampèrean currents tend to make it magnetic ; and in 
the case of the particles describing free orbits, these tendencies balance 
each other.

Voigt showed that spinning electrons, obstructed in their motion 
by continual impacts, would lead to paramagnetism or diamagnetism 
according as they possessed, immediately after the impact, an 
average excess of potential or kinetic energy. However, besides the 
complexity of this representation, there is the objection that it 
attributes to the same cause phenomena so different as paramagnetism 
and diamagnetism, and that it offers no interpretation of certain laws, 
established experimentally by P. Curie,1 namely, that the para­
magnetic susceptibility varies inversely as the absolute temperature, 
whereas diamagnetism is in all observed cases except bismuth, 
rigorously independent of T.

The first successful application of electron-theory to the general 
problem of magnetism was made in 1905 by Paul Langevin.2 He 
accepted Weber’s view that diamagnetism is really a property

S)Ossessed by all bodies, and that the so-called paramagnetic and 
ferromagnetic substances are those in which the diamagnetism is 

masked by vastly greater paramagnetic and ferromagnetic effects. 
The condition for the absence of paramagnetism and ferromagnetism 
is that the molecules of the substance should have no magnetic 
moment, so that they have no tendency to orient themselves in an 
external magnetic field.

In order to explain diamagnetism, we observe that the external 
applied magnetic field H creates a Larmor precession,3 each electron 
acquiring an additional angular velocity eH/2me in its orbit4; 
whence it follows, as Langevin showed, that the increase of the 
magnetic moment of a molecule due to one particular electron 
circulating in it is

MAGNETISM AND ELECTROMAGNETISM, Г90О-2 6

where r is the distance of the electron from the atomic nucleus, 
projected in a plane perpendicular to H, and r2 is an average extended 
over the duration of several revolutions. The negative sign shows 
that the effect is diamagnetic. In order to obtain the total effect on 
a molecule we must sum over all the electrons in it. Thus if N 
denotes Avogadro’s number, i.e. the number of molecules in a 
gramme-molecule (which is the same for all elements and compounds), 
then the diamagnetic susceptibility per gramme-molecule is

4me*
1 Ann. chim. phys. v (1895), p. 289
8 Comptes Rendus, cxxxix (26 Dec. 1904), p. 1204 ; Soc. Française de phys., Résumés 

(1905), p. 13 * ; Ann. chim. phys.(8) v (1905), p. 70 s cf. Vol. I, pp. 415-6
4 As usual, H  and M are in electromagnetic units, and e in electrostatic units.
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where the summation is taken over all the electrons in the atom 
or molecule, and (r, z , <f>) are the cylindrical co-ordinates of the 
electron when the £-axis is taken in the direction of the magnetic 
field H.1 Since atoms which exhibit diamagnetism without para­
magnetism have spherical symmetry, ^  r2 can be replaced by R2, 
where R denotes the distance of the electron from the centre of the 
atom.

The smallness of the diamagnetic effects is accounted for by the 
smallness of the radius r, which is necessarily less than the molecular 
dimensions.

The diamagnetic property is acquired instantaneously, at the 
moment of the creation of the external field.

The intramolecular motions of the electrons depend very little 
on the temperature, as is shown by the fixity of spectral lines : so 
the diamagnetic susceptibility should vary very little with the 
temperature, in agreement with Curie’s experimental result. It 
varies also very little with the physical or chemical state : dia­
magnetism is an atomic property.

The exception presented by solid bismuth, whose diamagnetic 
susceptibility diminishes approximately linearly when the tempera­
ture rises, was attributed by Langevin (following J. J . Thomson) 
to the presence in the metal of free conduction-electrons.

The fact that diamagnetism and the Zeeman effect both depend 
on the Larmor precession shows that the two phenomena (at any 
rate when considered classically) are very closely connected, and 
indeed may be regarded as different aspects of the same phenomenon.

If the intrinsic magnetic moment of a molecule is not null, there 
is superposed on the diamagnetic effect another phenomenon, due 
to the orientation of the molecular magnets by the external field ; 
this paramagnetic effect, when it exists, is large compared with the 
diamagnetic, and completely masks it. In discussing it we shall 
assume that the molecular magnets are not associated in aggregates 
within which their mutual actions are of importance (this is the 
case with ferromagnetic substances, which will be considered later) : 
and in fact we shall suppose that they can be treated in the same way 
as the molecules in the kinetic theory of gases. In an external 
magnetic field H, a molecule whose magnetic moment is M has 
a potential energy -  MH cos a , where a  is the angle between M 
and H ; the potential energy being thus least when the molecular 
magnet is parallel to the external field. The situation may now 
be compared with that of a gas composed of heavy molecules and 
acted on by gravity, where the ascent of a molecule causes an increase 
in its gravitational potential energy and a decrease in its kinetic 
energy ; similarly the magnetic molecule experiences a change 
of kinetic energy when a changes, and the partition of kinetic 
energy between the molecules becomes incompatible with thermal

1 W. Pauli, % 5.f. P. ii (1920), p. 201
240
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equilibrium. Through the mediation of collisions, a rearrangement 
is brought about, by which the mean kinetic energy of a mole­
cule is made independent of its orientation : the temperature 
becomes uniform, and the molecular magnets are directed pre­
ferentially in the direction of H ; though this orientation is not 
universal, on account of the thermal agitation and the collisions. 
Unlike diamagnetism, paramagnetism does not appear instan­
taneously, since collisions are required to create it.

Langevin found that if denotes the intrinsic magnetic moment 
of a molecule, T the absolute temperature, k Boltzmann’s constant, 
N Avogadro’s number, M the magnetisation in one gramme-molecule, 
then

M = NM (coth X -  i )  where X =

When X is small, so that we need retain only the first term in 
(coth X -  1/X), this gives for the molecular susceptibility x>

_ m _ i v .
* H 3AT ’

this formula involves Curie’s law, that the paramagnetic susceptibility varies 
inversely as the absolute temperature-1

From the point of view of the Rutherford-Bohr theory of atomic 
structure, paramagnetism, being due to the possession of intrinsic 
magnetic moment, is associated with incomplete shells of electrons2 ; 
for every closed shell has spherical symmetry. This explains why 
the alkaline and alkaline-earth elements in the metallic state are 
paramagnetic, while their salts are diamagnetic : for the electrons 
which do not belong to closed shells in the metals are taken into 
gaps in the shells of the elements with which they are combined. 
In the case of the incomplete inner shells of the rare earths, however, 
this kind of compensation does not take place, so the salts are para­
magnetic.3

In 1907 Langevin’s theory was extended so as to give an account 
of ferromagnetism, by Pierre Weiss4 (b. 1865). Ferromagnetism is 
a property of molecular aggregates (crystals), so Weiss took into con­
sideration the internal magnetic field, assuming that each molecule 
is acted on by the surrounding molecules with a force equal to that 
which it would experience in a uniform field proportional to the 
intensity of the magnetisation and in the same direction. On this

1 On the magnetic susceptibility of oxygen, hydrogen and helium, cf. A. P. Wills and 
L. G. Hector, Phys. R e v xxiii (1924), p. 209 ; for helium, neon, argon and nitrogen, 
cf. L. G. Hector, Phys. Rev., xxiv (1924), p. 418. For theoretical predictions regarding 
these gases, cf. G. Joos, £ S ./. P. xix (1923), p. 347.

* cf. N. W. Taylor and G. N. Lewis, Proc. N.A.S., xi (1925), p. 456 
8 F. Hund, £У ./. P. xxxiii (1925), p. 855
4 Bull, des séances de la soc. fr .  de phys., Année 1907, p. 95 ; Joum. de phys. vi (1907),

p. 661
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assumption Weiss showed that a ferromagnetic body when heated 
to a certain critical temperature, the Curie point* ceases to be ferro­
magnetic, and that for higher temperatures the inverse of the sus­
ceptibility is a linear function of the excess of the temperature above 
the Curie point.

It follows from Weiss’s work that in a ferromagnetic substance 
there must be domains (i.e. regions larger than a single atom or 
molecule) which are inherently magnetic, although if the magnetic 
moments of the domains are not oriented in any preferential direction, 
a finite block of the substance may show no magnetisation.

Weiss found2 that the magnetic moments of all known molecules 
were multiples of a certain greatest common divisor, which he called 
a magneton. This is called Weiss’s magneton in order to distinguish 
it from the natural unit of magnetic moment to which W. Pauli3 
in 1920 gave the name Bohr magneton, and which has the value

he
47ттс*

The Bohr magneton is nearly five times the Weiss magneton. For 
the vapours of the elements in the first column of the Newlands- 
Mendeléev table (i.e. the alkalis and Cu, Ag, Au), it was shown by 
W. Gerlach and O. Stern,4 by W. Gerlach and A. C. Cilliers,5 and 
by J. B. Taylor,6 that the intrinsic magnetic moment is one Bohr 
magneton. As we have seen,7 the Bohr magneton was found in 
1925 to be the magnetic moment of an electron ; and from this 
time the Weiss magneton ceased to figure in physical theory.8

The researches of Langevin and Weiss represented notable 
advances in the theory of magnetism, and the agreement of their 
results with experimental data was striking : yet it was shown in 
Niels Bohr’s inaugural-dissertation9 in 1911 and by Miss H. J. van 
Leeuwen,10 a pupil of Lorentz’s, in 1919, that the validity of these 
results could be explained only by supposing that Langevin and 
Weiss had not consistently applied classical statistics to all the 
degrees of freedom concerned : in other words, they had made 
assumptions of a quantistic character. The difficulty was eventually 
removed only by the development of quantum mechanics.

An account must now be given of some questions which had been
1 The name was introduced by P. Weiss and H. Kamerlingh Onnes, Comm. phys. 

Labor. Leiden, No. 114 (1910), p. 3.
* Journ. de phys. i (1911), pp. 900, 965 ; Phys. Z$- xii (1911), p. 935 ; cf. B. Cabrera, 

Joum. de phys. iii (1922), p. 443
* Pkys. ZS. xxi (1920), p. 615 4 Ann. d. Phys. Ixxiv (1924), p. 673
6 ZS. f> P* xxvi (1924), p. 106 8 Phys. Rev. xxviii (1926), p. 576
1 cf. p. 136 supra 8 cf. W. Gerlach, Phys. xxiv (1923), p. 275
8 N. Bohr, Studies over Metallernes Elektronteori (120 pp.), Copenhagen, 1911 

18 Inaugural dissertation, Leiden, 1919 : her argument, which was based on Boltzmann’s 
H-theorem, was substantially reproduced in her paper J . de phys. et le radium, ii (1921), 
p. 361 ; cf. also J . N. Kroo, Ann. d. Phys. xlii (1913), p. 1354, who argued that the electron 
theory could explain only diamagnetism ; E. Holm, Ann. d. Phys. xliv (1914), p. 241 ; 
R. Gans, Ann. d. Phys. xlix (1916), p. 149.
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left unsettled in the nineteenth century and were definitely answered 
in the twentieth.

Maxwell had suggested1 the possibility that an electromotive 
force might be produced by simply altering the velocity of a con­
ductor. This effect was not known to exist until 1916, when it was 
observed by Richard G. Tolman and T. Dale Stewart.2 They 
rotated a coil of copper wire about its axis at a high speed and 
then suddenly brought it to rest, so that a pulse of current was 
produced at the instant of stopping by the tendency of the free 
electrons to continue in motion. The ends of the coil were connected 
to a sensitive ballistic galvanometer, which enabled the experi­
menters to measure the pulse of current thus produced. Denoting 
by R the total resistance in the circuit, by l the length of the rotating 
coil, by v the rim speed of the coil, by Q, the pulse of electricity 
which passes through the galvanometer at the instant of stopping, 
by F the charge carried in electrolysis by one gramme-ion, that is 
Nejc electromagnetic units, where N is Avogadro’s number, and by 
M the effective mass of the carrier of the current (the electron), they 
found the equation

n  M vl
^ “ F R’

by use of which they inferred from the experiments that the carriers 
of electric current in metals have approximately the same ratio of 
mass to charge as an electron.

Maxwell3 mentioned another possible effect which might be 
caused by the carriers of electricity in conductors. He proposed 
to take a circular coil of a great many windings and suspend it by 
a fine vertical wire, so that the windings are horizontal and the 
coil is capable of rotating about a vertical axis. A current is supposed 
to be conveyed into the coil by means of the suspending wire, and, 
after passing round the windings, to complete its circuit by passing 
downwards through a wire which is in the same line with the sus­
pending wire and dips into a cup of mercury. If a current is sent 
through the coil, then at the moment of starting it, a force would 
require to be supplied in order to produce the angular momentum 
of the carriers of electricity passing round the coil ; and as this 
must be supplied by the elasticity of the suspending wire, the coil 
must rotate in the opposite direction.

Maxwell failed to detect this phenomenon experimentally, but 
it was successfully observed in 1931 by S. J. Barnett4 (b. 1873). 
Like the preceding effects of electron-inertia, it provides a measure 
of mje.

1 In § 577 of his Treatise
2 Phys. RevA2) viii (1916), p. 97 ; ix (1917), p. 164 ; cf. R. C. Tolman, S. Karrer 

and E. W. Guernsey, Phys. Rev. xxi (1923), p. 525 ; R. C. Tolman and L. M. Mott- 
Smith, Phys. Rev. xxviii (1926), p. 794

2 Treatise, § 574 4 Phil. Mag. xii (1931), p. 349

MAGNETISM AND ELECTROMAGNETISM, I g o O -2  6

243



In 1908 O. W. Richardson1 suggested the existence of a 
mechanical effect accompanying the act of magnetisation. He 
imagined a long thin cylindrical bar of iron suspended by a fibre, 
so that it is capable of small rotations about a vertical axis. When 
the bar is not magnetised, the electrons which are moving in closed 
orbits in the molecules (Ampère’s molecular currents) will not 
possess any resultant angular momentum, since one azimuth is as 
probable as another for the orbits. Now consider the effect of 
suddenly applying a vertical magnetic field : the orbits will orient 
themselves so as to leave a balance in favour of the plane per­
pendicular to the direction of the field, and thus an angular momen­
tum of electrons will be created about the axis of suspension. This 
must be balanced by an equal reaction elsewhere, and therefore a 
twisting of the suspended system as a whole is to be expected.

Richardson himself did not succeed in obtaining the effect, 
which was first observed by A. Einstein and W. J. de Haas2 in 
1915. They were followed by many other experimenters, par­
ticularly J . Q . Stewart3 of Princeton and W. Sucksmith and 
L. F. Bates,4 working with Professor A. P. Chattock in Bristol. 
Sucksmith and Bates concluded that the gyromagnetic ratio, i.e. the 
ratio of the angular momentum of an elementary magnet to its 
magnetic moment, has a value only slightly greater than mc/e. 
This is only half the value of the ratio for an electron circulating in 
an orbit, and has been taken to imply that the magnetic elements 
responsible for the phenomenon are chiefly not orbital electrons but 
are electrons spinning on their own diameters.5

The converse of the Richardson effect has also been observed, 
namely, it has been found possible to magnetise iron rods by spinning 
them about their axes. John Perry6 said in 1890 ‘ Rotating a large 
mass of iron rapidly in one direction and then in the other in the 
neighbourhood of a delicately-suspended magnetic needle ought, 
I think, to give rise to magnetic phenomena. I have hitherto failed 
to obtain any trace of magnetic action, but I attribute my failure to 
the comparatively slow speed of rotation which I have employed, 
and to the want of delicacy of my magnetometer.5

The effect predicted by Perry was anticipated also by Schuster7 
in 1912, but was first observed in 1914—15 by S. J. Barnett8: the 
Ampèrean molecular currents, since they possess angular momentum,

1 Phys. Rev. xxvi (1908), p. 248
8 Verh. d. deutsch. phys. Ges. xvii (1915), p. 152 ; cf. A. Einstein, ibid, xviii (1916), 

p. 173 and W. J . de Haas, ibid, xviii (1916), p. 423
« Phys. Rev. xi (1918), p. 100
4 Proc. R.S.(a), civ (1923), p. 499 ; cf. W. Sucksmith, Proc. R.S.(a ), cviii (1925), p. 638 ; 

also Emii Beck, Ann. d. Phys. lx (1919), p. 109 ; and G. Arvidsson, Phys. <£. xxi (1920),
p. 88

4 On the gyromagnetic effect for paramagnetic substances, cf. W. Sucksmith, Proc. 
RS.{a), cxxviii (1930), p. 276 ; cxxxv (1932), p. 276

• J . Perry, Spinning Tops, p. 112 7 Proc. Phys. Soc. xxiv (1911-12), p. 121
* Phys. Rev.i2) vi (1915), p. 239 ; Bull. Nat. Res. Council, iii (1922), p. 235; cf. 

S. J . Barnett and L. J . H. Barnett, Phys. Rev. xx (1922), p. 90 ; Nature, cxii (1923), p. 186
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behave like the wheels of gyroscopes, changing their orientation, 
with a tendency to make their rotations become parallel to the 
impressed rotation. Thus a preponderance of magnetic moment is 
caused along the axis of the impressed rotation.

From time to time papers appeared on questions belonging to 
the same class as the problem of unipolar induction. This problem, 
which had first been considered by Faraday,1 may be stated as 
follows. A magnet, symmetrical with regard to an axis about 
which it rotates, has sliding contact with the ends A and B of a 
stationary wire ACB, at two points A and B not in the same equa­
torial plane of the magnet. As Faraday found, a steady current 
flows through the wire. The question is, do the lines of magnetic 
induction rotate with the magnet, so that the electromotive force 
is produced when they cut the stationary wire ACB : or do the 
lines of magnetic induction remain fixed, so that the electromotive 
force is produced when the moving part of the circuit (the magnet) 
rotates through them? Faraday believed the latter explanation to 
be the true one : but Weber, who introduced the name unipolar 
induction, took the contrary view.2 It was known in the nineteenth 
century that the experimental results could be explained equally 
well on either hypothesis.

More generally, we can consider a magnet which is capable of 
being rotated about its axis of symmetry (whether it is actually so 
rotated or not) and a conducting circuit composed of two parts, 
one of which is rotated about the axis of the magnet (in the case 
considered above it is the magnet itself) while the other, ACB, 
remains fixed. It is found that if the moving part of the circuit 
is distinct from the magnet, the electromotive force is independent 
of whether the magnet is rotating or not. The electromotive force 
round the circuit is in all cases, if co denotes the angular velocity 
of the moving part of the circuit, (co/27tc)  times the flux of magnetic 
induction through any cylindrical surface having as boundaries 
the circles described round the axis of revolution by the two 
contact points A and B of the fixed with the rotating part of the 
circuit.

In the twentieth century some new types of experiment were 
devised. In 1913 Marjorie Wilson and H. A. Wilson3 constructed 
a non-conducting magnet by embedding a large number of small 
steel spheres in a matrix of wax, and rotated this in a magnetic 
field whose direction was parallel to the axis of rotation. Their 
measures of the induced electromotive force were in satisfactory 
agreement with the predictions of the electromagnetic theory 
of moving bodies published by A. Einstein and J. Laub4 in 
1908.

Further contributions to problems of this class were made by
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1 cf. Vol. I, pp. 173-4
8 Proc. R.S.(a), lxxxix (1913), p. 99

(995)

* loc. cit., Vol. I
4 Ann. d. Phys. xxvi (1908), p. 532 
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S. J. Barnett,1 E. H. Kennard,2 * G. B. Pegram,8 and W. F. G. 
Swann,4 and in 1922 a comprehensive review of the whole subject 
was published by J. T. Tate.5

The problems of classical electromagnetic theory which were 
studied in the early years of the twentieth century related chiefly 
to the expression of the field due to a moving electron, and the 
rate at which energy is radiated from it outwards. Formulae for 
the electric and magnetic vectors of the field were given by many 
writers.® The most interesting terms are those which involve the 
acceleration of the electron. Denote by (vx, vVy vt) the velocity 
and by (wx, wy wz) the acceleration of the electron at the instant t 
when it emits the radiation which reaches the point (*, y , z) at the 
instant t : let the co-ordinates of the electron at time t' be z')i
and let x'(t),y'(t)} £'(?), be denoted by ( x \J y z') ; and let

f2= (x '-x )2+ ( j '  -j>)* + ( ? '- z)2,

so 1 = t — rfc.

Then the terms in the ^-component of the electric force which 
involve the acceleration are

D*= _ ewx | e{(xf -  x)wx + ( f  -y)w y + ( ? - z)w*} (x '-x  vx 
rs2 f 2 s9 t  r c

where cr
From this we have at once

D* (* '-* )+ D y {y’-y )  + Bz ( z ' - z )  = 0

so the vector (Dx, Dy, D̂ ) is perpendicular to r. Moreover, the part of 
the magnetic vector which depends on the acceleration of the electron 
(call it H) is perpendicular to both D and r, and equal in magnitude to D. 
So the wave of acceleration as Langevin 7 called the field specified by 
D and H, has all the characters of a wave of light.

At great distances from the electron, the intensity of D and H 
decreases like 1/r, whereas the intensity of the terms in the electric

1 P h y s . £ S .  xiii (1912), p. 803 ; P h y s .  R e v .  xxxv (1912), p. 323
a P h y s . ZS. xiii (1912), p. 1155 ; P h y s .  R e v . i2) i (1913), p. 355
* P h y s . R e v .  x (1917), p. 591 « P h y s .  R e v .  xv (1920), p. 365
* B u l l .  N a t .  R e s .  C o u n c il, iv, Part 6 (1922), p. 75
* K. Schwarzschild, G o tt.  N a c h .  (1903), p. 132. G. Herglotz, G o tt.  N a c h .  (1903),

p. 357. H. A. Lorentz, P ro c . A m s t .  A c a d , v (1903), p. 608. A. W. Conway, P ro c . b o n d .  
M . S . Q )  i (1903), p. 154. A. Sommerfeld, G o tt.  N a c h .  (1904), p. 99. P. Langevin, 
J .  d e p k y s .  iv (1905), p. 165. H. Poincaré, P a le r m o  R e n d , xxi (1906), p. 129. G. A. Schott, 
A r m . d . P h y s .  xxiv (1907), p. 637 ; xxv (1908), p. 63. F. R. Sharpe, B u l l .  A m e r .  M a t h .  
S o c . xiv (1908), p. 330. A. Sommerfeld, M u n ic h  S i t z .  (1911), p. 51. A. W. Conway, 
P ro c . R . I . A .  xxix, A (1911), p. 1 ; P ro c . R . S . ( a), xciv (1918), p. 436

7 loc. cit.
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and magnetic vectors which do not involve w decrease like 1 /r2 : 
so at great distances the field consists solely of the wave of acceleration, 
which represents the radiation emitted by the electron.

The rate of loss of energy by radiation from a charge e moving 
with an acceleration w and a velocity small compared with c is, as 
we have seen.1
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2 e2w2
3 c3 *

When vjc is no longer neglected, it was shown by Heaviside 2 that 
the energy radiated per second is

2 e2w2 1 — (v2/c2) sin2 vw
3 (1 - v 2jc2Y •

The question as to a reaction or ‘ back pressure * experienced 
by a moving mass on account of its own emission of radiant energy 
was discussed by O. Heaviside,3 M. Abraham,4 J. H. Poynting,5 
A. W. Conway,6 J. Larmor7 and Leigh Page.8

A striking unification of electromagnetic theory was published 
in 1912 by Leigh Page9 (b. 1884). It had been realised long before 
by Priestley10 that from the experimental fact that there is no electric 
force in the space inside a charged closed hollow conductor, it is 
possible to deduce the law of the inverse square between electric 
charges, and so the whole science of electrostatics. It was now 
shown by Page that if a knowledge of the relativity theory of Poincaré 
and Lorentz is assumed, the effect of electric charges in motion can 
be deduced from a knowledge of their behaviour when at rest, and 
thus the existence of magnetic force may be inferred from electro­
statics : magnetic force is in fact merely a name introduced in order 
to describe those terms in the ponderomotive force on an electron 
which depend on its velocity. In this way Page showed that Ampère’s 
law for the force between current-elements, Faraday’s law of the 
induction of currents and the whole of the Maxwellian electro­
magnetic theory, can be derived from the simple assertion of the 
absence of electric effects within a charged closed hollow conductor.

In 1914 two new representations of electromagnetic actions were 
introduced, both of which were evidently inspired by Maxwell’s 
Encyclopaedia Britannica article on the aether, in which it was regarded 
as composed of corpuscles, moving in all directions with the velocity

1 cf. Vol. I, p. 396 2 N a tu r e , lxvii (1902), p. 6
8 N a tu r e , lxvii (1902), p. 6
4 A n n . d . P h y s . x (1903), p. 156 ; B r i t .  A s s .  R e p . ,  C a m b rid g e  1904, p. 436
6 P h i l .  T r a n s ,  ccii (1904), p. 525 • P ro c . R . I . A .  xxvii (1908), p. 169
’ P ro c . I n t .  C o n g . M a t h . ,  C a m b rid g e  1912, Vol. I, p. 213 ; N a tu r e ,  xcix (1917), p. 404
8 P h y s . R e v . xi (1918), p. 376
9 A m e r . J. S c i . xxxiv (1912), p. 57 ; P h y s . ZS. xiii (1912), p. 609 

* cf. Vol. I, p. 53
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of light, never colliding with each other, and possessing some vector 
quality such as rotation.

The first of these representations was due to Ebenezer Cunning­
ham of Cambridge1 (b. 1881). Cunningham remarked that if the 
aether is supposed to be at rest, as it is in Lorentz’s theory, then 
the transfer of energy represented by the Poynting vector cannot 
be identified with the rate of work of the stress in the aether. This, 
indeed, can be done only if the aether is supposed to be in motion ; 
for a stress on a stationary element of area does not transmit any 
energy across that element. He therefore proposed to assign a 
velocity to the aether at every point, such that a state of stress in 
the medium would account both for the transference of momentum 
and for the flow of energy.

He found that the component of the aether-velocity which is 
in the direction of the Poynting vector must be the smaller root of 
the quadratic equation (c2 + #2)g = 2W* where g is the value of the 
momentum (1 /с) [E. H], and W is the density of energy : that the 
other component lies in a definite direction in the plane of E and 
H : and that the total velocity of the aether at every point must be 
equal to c : so the direction and magnitude of the aethereal velocity 
are completely determined. The scheme is relativistically invariant : 
so that an objective aether is not necessarily foreign to the point of 
view of the principle of relativity : and the mechanical categories 
of momentum, energy, and stress can also be maintained in their 
entirety. The only essential modification of the ordinary theory of 
material media is that (as in relativity generally) we no longer take 
momentum to be in the direction of, or proportional to, the velocity.

The true stress in the aether may be defined as differing from 
the Faraday-Maxwell stress by an amount representing the rate at 
which momentum is convected by the aether across stationary elements 
of area. This 4 true stress 5 consists of a tension P, defined by the 
equation

P2 = W2 -  c2g2

in the direction of the component velocity of the aether in the plane 
of E and H, together with an equal pressure P in all directions at 
right angles to this. It is this ‘ true stress 5 which does work by 
acting on moving elements, and so transfers energy.

Cunningham gave examples of the determination of the aether- 
velocity in some simple cases. For a train of plane waves of light 
the stress P vanishes, and the system is one of pure convection : the 
aether moves as a whole in the direction of propagation of the 
waves. For a moving point charge, the aether moves as if con­
tinually emitted from the charge with velocity c, every element 
travelling uniformly in a straight line after emission.

1 E. Cunningham, The Principle of Relativity, Cambridge, 1914 ;
Electron Theory, London, 1915

2 4 8

Relativity and the



The continual emission from an electron of corpuscles moving 
with velocity c in all directions is the chief feature also of an emission 
theory of electromagnetism published in the same year (1914) by Leigh 
Page.1 Page’s work is in some ways reminiscent of ideas which had 
been put forward by J. J. Thomson in an Adamson lecture2 delivered 
in Manchester University in 1907, when the concept of aether in 
motion with velocity c was brought into relation with Thomson’s 
favourite concept of moving lines of electric force.

Page proposed to regard an electron, when viewed in an inertial 
system in which it is at rest, as being like a sphere whose surface 
is studded with emittors distributed uniformly over it : each emittor 
is continually projecting into the surrounding space a stream of 
corpuscles, each corpuscle moving radially in a straight line with the 
velocity of light : it is assumed that the emittors have no rotation 
relative to the inertial system. When the electron is in motion in 
any way, the stream of corpuscles that have been ejected from any 
one emittor at successive instants form a curve in space which, as 
Page showed, is a line of electric force in the field due to the moving 
electron.

As in Thomson’s theory,3 each electron is supposed to possess 
its own system of lines of force, independently of other electrons, 
so that in general there will be as many lines of force crossing at 
a point as there are electrons in the field.

Owing to the motion of the electron, the direction of the line 
of force at a point of space does not generally coincide with the 
direction of motion of the corpuscles at the point. The component 
of the electric vector d in any direction is measured by the number 
of lines of force which cross unit area at right angles to this direction. 
The magnetic vector h is defined as in Thomson’s papers, by the 
equation
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where c is the (vector) velocity of the corpuscles at the point. Page 
worked out the consequences of these assumptions for an electron 
of given velocity and acceleration, and found expressions for d  and b 
at any point of the field at any time, which agreed exactly with the 
values deduced by previous investigators from the Maxwell-Lorentz 
equations.

In 1913 the existence of a hitherto unknown phenomenon was 
deduced by John Gaston Leathern4 (1871-1923) of Cambridge,

1 A m e r . J .  S c i . xxxviii (1914), p. 169 ; L. Page, A n  In tr o d u c t io n  to  E le c tro d y n a m ic s , Boston, 
1922 ; L. Page and N. I. Adams, E le c tro d y n a m ic s , London, 1941

* M a n c h e s te r  U n iv .  L e c tu re s , No. 8 (Manchester Univ. Press, 1908) : reprinted in the 
S m ith s o n ia n  R e p o r t for 1908, p. 233 ; cf. also J . J . Thomson, P h i l .  M a g . xxxix (1920), 
p. 679, and M e m .  a n d  P ro c . M a n c h e s te r  L i t .  a n d  P h i l .  S o c . lxxv (1930-1), p. 77

* cf. J . J . Thomson, P ro c . C a m b . P h i l .  S o c . xv (1909), p. 65
4 P r o c . R . S . ( A), lxxxix (1913), p. 31 ; cf. Larmor’s C o lle c te d  P a p e r s , Vol. II, p. 72
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rom classical electrodynamics, namely, a minute mechanical force 
exerted by a varying electric field on a magnetic dipole. On the 
assumption that the magnetism is due to molecular electric currents, 
ie found that the ponderomotive force1 on the dipole is

( mi8x +?%|  + m'£)H + 47r [m,S
where m is the magnetic moment of the dipole, H is the magnetic 
force, and D is the electric displacement. The first term is the 
Drdinary formula for the force exerted on a magnetic dipole, 
regarded as a polarised combination of positive and negative magnet­
ism, by a field of magnetic force. The second term was unexpected : 
it represents a mechanical force exerted on a magnet by a displace­
ment-current, at right angles to the displacement-current and to 
the magnetic moment, and proportional to the product of the two 
and the sine of the angle between them.

It might seem possible to test the matter by hanging a small 
magnet horizontally between the horizontal plates of a charged 
condenser and then effecting a non-oscillatory discharge of the 
condenser. If the upper plate were originally charged with positive 
electricity, the displacement-current on discharge would be upwards, 
and an eastwards impulse on the magnet might be looked for : the 
effect would, however, be too small to be observed.

In the first quarter of the twentieth century several interesting 
results in classical electrodynamics were discovered by Richard 
Hargreaves (1853-1939). In 1908 he proved2 that Lorentz’s 
fundamental equations (with r=  1) can be replaced by two integral- 
equations

f[(H xdydz + H ydzdx  + H zdxdy + E xdxdt -f E ydydt + E zdzdt) = 0 (I)

and
I j  (Exdydz + Eydzdx + Ezdxdy -  YLxdxdt -  Hydydt -  Hzdzdt)

= -  J  J  J  (pWxdydzdt + pw ydzdx dt + pw zdxdy dt — pdxdydz). (I I)

Here (/, x, y, z) denotes the co-ordinates of a point in space-time, 
E is the electric and H the magnetic vector, and w is the velocity 
of the charge-density p. Let any closed two-dimensional manifold 
S2 in the four-dimensional space-time be assigned, and let S2 be 
the boundary of a three-dimensional manifold S3 in which the 
co-ordinates t, x, y> z are functions of three parameters a, 0, y, of 
which y = 0 on S2 and y < 0 in S3 : so that on S2 the co-ordinates

1 In  electromagnetic units * T r a n s .  C a m b . Phil. Soc. xxi (1908), p. 107
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are functions of a, p only. Then any term such as JJHxdydz may 
be interpreted to mean JJH* 8{y9 z)/8(a9 p) dadp taken over S2, and 
any term such as fâpdxdydz may be interpreted to mean
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8(x,y, Z)
ft y)dadpdy

taken over S3. In the general case the quantities occurring in these 
equations are evaluated at different points of space at different times : 
the integrals are thus more general than the usual surface and 
volume integrals.

Let S be an arbitrary closed surface in the (x, y 9 z) space, and 
let t be expressed in terms of (x9y 9 z) by an arbitrary law t = t{x9y y z). 
Each particle is supposed to be within S at the moment when its 
charge is evaluated, but since the charges on the particles are 
evaluated at different times, the particles need not all be within 
the closed surface at a given time. This explains why the total charge 
on the particles is not Sffpdxdydz, but is the triple integral on the 
right-hand side of equation (II).

Hargreaves showed further that the equations

E*= - дФ
dx

dAx 
8t >

tt _ 8 Am dAi
x dy dz etc.,

which express the electric and magnetic vectors in terms of the 
scalar and vector potentials, are equivalent to the single integral 
equation

{̂ Axdx + Aydy + Azdz — Ф dt)

■If(H xdydz “Ь H ydzdx  -f- H zdxdy -f- E xdxdt 4- E ydydt -f- E zd zd f).

Here we are considering a closed curve, and a surface bounded by 
this curve, and we can suppose that t is expressed in terms of (x, y 9 z) 
by an arbitrary known law : then the line-integral may be under­
stood to mean

\ [(̂  -ф!) *+(А’ - ф|) *+(A- -ф tH •
In 1920 Hargreaves1 generalised Maxwell’s theory of light- 

pressure 2 by showing that when a general electromagnetic field is 
present near the surface of any perfectly-reflecting (i.e. perfectly- 
conducting) body, which is in motion in any way, the pressure is 
normal, and is measured by the difference between the magnetic 
and electric energies (per unit volume) at the surface.

1 PhiL Mag. xxxix (1920), p. 662 1 cf. Vol. I, pp. 274-5
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In 1922 Hargreaves1 discovered remarkable expressions for the 
scalar and vector potentials of a moving electron. Let 
z'(t) specify the position of the electron at time t : let (/, x> y> z) be 
the world-point for which the potentials are to be calculated : let t be 
the value of t for the electron at the instant when it emits actions 
which reach the point (x,_y, z) at the instant t : let x* denote x'(t), 
letУ  denotey'(t) and let z' denote z'(t). Then Hargreaves showed 
that the scalar potential has the value

in fact, the harmonic operator applied twice to any function of 
t yields a zero result, except at the source.

and the x-component of the vector-potential is

Other properties found by him were :

and

Mess, of Math, lii (1922), p. 34
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Chapter VIII
THE DISCOVERY OF MATRIX-MECHANICS

A young German named Werner Heisenberg (b. 1901), shortly after 
taking his doctor’s degree in 1923 under Sommerfeld at Munich, 
moved to Niels Bohr’s research school at Copenhagen. Here he 
became closely associated with H. A. Kramers, who in 1924 made 
important contributions to the theory of dispersion,1 in the develop­
ment of which Heisenberg took part.

The concepts employed in this theory suggested to Heisenberg 
a new approach to the general problems of atomic theory. It will 
be remembered that the quantum theory of dispersion had originated 
in Ladenburg’s successful translation into quantum language of the 
analysis that was used in the classical theory. In place of classical 
electrons in motion within the atom, Ladenburg introduced into 
the formulae transitions between stationary states : so that instead 
of the atom being regarded as a Rutherford planetary system of 
nucleus and electrons obeying the laws of classical dynamics, its 
behaviour with respect to incident radiation was predicted by means 
of calculations based on the ‘ virtual orchestra.’2 The great 
advantage thereby gained depended on the circumstance that the 
motions of the electrons in the Rutherford planetary system were 
completely unobservable, and did not yield directly the frequencies 
of the spectral lines emitted by the atom : whereas the virtual 
orchestra emitted radiations of the frequencies that were actually 
observed, and thus was much more closely related to physical 
experiments.

Heisenberg saw that this idea of replacing the classical dynamics 
of the Rutherford atom by formulae based on the virtual orchestra 
could be applied in a far wider connection. He took as his primary 
aim to lay the foundations of a quantum-theoretic mechanics which 
should be based exclusively on relations between quantities that are 
actually observable. Previous investigators had found integrals 
of the classical equations of motion of the atomic system, and so had 
obtained formulae for the co-ordinates and velocities of the electrons 
as functions of the time. These formulae Heisenberg now abandoned, 
on the ground that they do not represent anything that is accessible 
to direct observation : and in their place he proposed to make the 
virtual orchestra the central feature of atomic theory.

By taking this step, he made it no longer necessary to find first 
the classical solution of a problem and then translate it into quantum 
language : he proved, in fact, that it is possible to translate the 

1 cf. p. 203 supra * cf. p. 204 supra
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classical problem into a quantum problem at the very beginning, 
before solving it : that is to say, he translated the fundamental 
laws of classical dynamics into a system of fundamental quantum 
laws constituting what Born1 had adumbrated under the name 
quantum mechanics.

He considered problems defined by differential equations, such 
as, for instance, the problem of the anharmonic oscillator, which is 
defined by the differential equation

~  + ̂ o2* + te 2 = 0

and inquired how a solution of this equation can be obtained which, 
like a virtual orchestra, refers to a doubly-infinite aggregate of 
transitions between stationary states. Let us suppose that * can 
be represented by an aggregate of terms xmn, where xmn is associated 
with the transition between the stationary states m and n : and let 
these terms be arranged in a double array thus :

* 1 1 * 1 8 * 1 3 * 1 4 * *

* 2 1 * 2 2 * 2 3 * 2 4 • •

* 3 1 * 3 2 * 3 3 * 3 4 , ,

The differential equation involves x2, and therefore Heisenberg 
suggested that x2 should be capable of being represented by a 
similar array

( * % ( * % (* • )»

(* 2)гг (* 2)гз

( * % (* 2)зг (* 2)зз

The question is, what is the relation between the elements (x*)mn 
and the elements xmn ? Now since xmn refers to the transition between 
the stationary states m and щ we may expect it to have the time- 
factor where v(m> n) = (Wm-Wn)/A is the frequency of

1 cf. p. 204 supra
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the spectral line associated with this transition. Guided by the 
principle that the time-factor of ( * 2)m n must be the same as the 
time-factor of xmn, Heisenberg suggested that the element (x2)mn 
could be expressed in terms of the elements of the x-array by the 
equation

(xa)ron — Xmr Xrn• 
r

He went further and proposed that if x and y  are two different 
co-ordinates, then

(Xy)mn  — ^  XmrУтп*

Since this involves the equation

( y x ) m n  =  Утг Xrn9
r

it is evident that in general the products xy and yx are represented 
by different arrays : multiplication of the quantum-theoretic x and y  is 
not commutative.

During the month of June 1925 Heisenberg, then on holiday 
in the island of Heligoland, worked out the solution of the anharmonic 
oscillator equation according to these ideas, and was delighted to 
find that principles such as the conservation of energy could be 
fitted into his system. In the first week of July 1925,1 he wrote a 
paper embodying his new theory. Being then on Professor Max 
Born’s staff at Gottingen, he took the MS to Bom and asked him 
to read it, at the same time asking for leave of absence for the rest 
of the term (which ended about 1 August), as he had been invited 
to lecture at the Cavendish Laboratory in Cambridge. Born, who 
granted the leave of absence and then read the MS., at once 
recognised and identified the law of multiplication which Heisenberg 
had introduced for the virtual-orchestra arrays : for having attended 
lectures on non-commutative algebras by Rosanes in Breslau and 
then discussed the subject with Otto Toeplitz in Gottingen, Born saw 
that Heisenberg’s law was simply the law of multiplication of matrices. 
For the benefit of readers who are not acquainted with matrix- 
theory, some simple explanations may be given here. Consider any 
square array

a n # 1 2 # 1 8  • • . #m
a % i # 1» • • . #2П

#ni #na #пз • • . #nn

» % 5 .f. P. xxxiii (1925), p. 879 (received 29 July 1925)
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formed of ordinary (real or complex) numbers аПз a12, . . which 
we shall call the elements. This array we shall call a m a tr ix and 
we shall regard it as capable of undergoing operations such as 
addition and multiplication—in fact, as a kind of generalised 
number, which can be represented by a single letter. The number n 
of rows or columns is called the order. Two matrices of the same order

an йп . . am \ B - / + bli Ш • . bm
a%i aZi . . . atn \ /  b,, bit • • . bin

am am • • • ann J \  L bnt • . bnn

are said to be equal when their elements are equal, each to each : 
that is

avq = bpq (py q— 1,2, . . . n).

The sum of A and B is defined to be the matrix
Ü11 +  bn an  +  bn . . am  +  bin
йц +  bn a n  +  bn  • • . a%n +  bm

am  +  bm am  +  bm • • ann +  bnn

It is denoted by A + B. Evidently addition so defined is com­
mutative (that is, A + B = B + A) and associative (that is, [A + B] 
+ C = A+[B + C]). The null matrix is defined to be a matrix all of 
whose elements are zero : and the unit matrix is defined to be the matrix

1 0 0.. . O'
0 1 0.. . 0
0 0 1. . . 0

0 0 0.. . 1-
If k denotes an ordinary real or complex number, the matrix 1

kan kan , . . kam
k a n ka%i » . . ka%n

ham kan% • • . kann
1 The term matrix was introduced in 1850 by J . J . Sylvester (Papers I, p. 145) ; 

but the theory was really founded by A. Cayley, jf.fiir  Math. 1 (1855), p. 282 and Phil. 
Trans, cxlviii (1858), p. 17. Under the name linear vector operator the same idea had been 
developed previously by Sir W. R. Hamilton : some of the more important theorems 
are given in his Lectures on Quaternions (1852).
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which is obtained by multiplying every element of the matrix A by k ,  
is called the product of A by k, and denoted by kA.

We shall now define the multiplication of two matrices. With 
the above matrices A and B we can associate two linear substitutions

THE DISCOVERY OF MATRIX-MECHANICS

'У \ —  d \ \X \ + Ü12X 2 4~ . . 4* d in X n

JV> = a ,  1X1 + а г%х *  +  . • . 4" d in X n

= d n iX i + d n zX z + . • • 4" d n n X n

'U i = 1̂1^1 + Ь\%у?2 4" . . 4~ b in y n
Uz = b z iy i + Ьму% + . . 4* b tn y n

*Un ~  b n i j i  4~ b n tÿ z  4" . • . 4" ЬппУп^

A matrix may in fact be regarded as a symbol of linear operation, 
representing the associated substitution.

The effect of performing these substitutions in succession is 
represented by the equations

Û\ — (bnün  +  bnün  +  • • •)#! +  +  bitün  +  • . +  • • • •

1 Un =  (bnidii 4~ bnzdzi +  . • »)Xi -f- {bn\du “Ь Ъпъйчг +  • . «)Xe 4" . . . .

This suggests that the product BA of the two matrices should be defined 
to be the matrix which has for its element in the pth row and qth 
column the quantity

b p id iq  -{- bpzdzq  4* • • • 4* b p n d n q y

so in multiplying matrices we multiply the rows of the first factor, 
element by element, into the columns of the second factor. Multiplica­
tion so defined is always possible and unique, and satisfies the 
associative law

A(BC) = (AB)C.

It does not, however, satisfy the commutative law : that is, AB and 
BA are in general two different matrices. The distributive law 
connecting multiplication with addition, namely,

A(B + C) = AB + AC 
(B 4- C) A = BA + CA

is always satisfied.
The derivation, with respect to the time, of a matrix whose elements 

are Am is the matrix whose elements are dAmn/dt. The derivative
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of a function of a matrix with respect to the matrix of which it is 
a function may be defined by the equation

^ - К т ^ Л {ЯА+А1)- л А)>

where 1 denotes the unit matrix : whence we readily see that 
matrix differentiation obeys the same formal laws as ordinary 
differentiation.

The above elementary account refers to matrices of finite order. 
The matrices which represent the co-ordinates in quantum theory 
are of infinite order, and differ in some of their properties from finite 
matrices : in particular, the multiplication of infinite matrices is 
not necessarily associative (though the associative law holds for 
row-finite matrices, i.e. those in which each row has only a finite 
number of non-zero elements).

Let us now return to Born’s train of thought. He considered 
dynamical systems with one degree of freedom, represented classically 
by the differential equations

dq^dH dp= _ m  
dt d p ’ dt dq’

where q denotes the co-ordinate, p the momentum, and H the 
Hamiltonian function : and following Heisenberg, he retained the 
form of these equations, but assumed that q ana p can be repre­
sented by matrices, (representing a matrix by the element in its nth 
row and mth column)

q = {q(n, m)e2niv̂ m̂ } 
p = {p(n, m)e27Tiv(-n'm)t}

where v(n9 m) denotes the frequency belonging to the transition 
between the stationary states with the quantum numbers n and m, so

hv(n, m) = Wn-Wm

where Wn and Wm denote the values of the energy in the states.1
Since v(/2, n) = 0, the elements in the leading diagonals of the 

matrices do not involve the time. This suggests the question, what 
is the physical meaning of these diagonal-elements ? Now in the 
classical Fourier expansion of a variable, the constant term is equal 
to the average value (with respect to the time) of that variable in

1 Since v(m, n) = — v(n> m), it is natural to assume that the matrices are Hermitean, 
i.e. the elements obtained by interchanging rows and columns are conjugate complex 
quantities.

It is obvious that if two matrices which have equal frequencies in corresponding



the type of motion considered : so by the correspondence-principle 
we infer that a non-temporal element xnn of the matrix representing a variable 
x is to be interpreted as the average value of the variable x in the stationary 
state corresponding to the quantum number я, when all phases are equally 
probable. The non-diagonal elements have not in general an equally 
direct physical interpretation : but it is obvious that a knowledge 
of the non-diagonal elements of the matrix representing a variable 
x would be necessary in order to calculate the diagonal elements 
of (say) x2 : and, moreover, we must not lose sight of the connection 
of the non-diagonal element xmn with the transition between the 
stationary states m and n : this will be referred to later.

Conversely, if the derivative of a matrix with respect to the time 
vanishes, the matrix must be a diagonal matrix. Hence the equation 
of conservation of energy (dH/dt) =0, has in general1 the con­
sequence, that the matrix which represents the energy H is a diagonal 
matrix. The diagonal element Hnn of this matrix represents the 
average value of H in the stationary state of the system for which 
the energy is Hn, i.e. it is Hn itself : that is, Hnn = Hn. So Bohr’s 
frequency-condition may be written

v (n , « ) - H(”>

As might be expected in matrix-calculus, the products pq and 
qp are not equal. Now Heisenberg had given a formula, derived 
originally by W. Kuhn2 of Copenhagen and W. Thomas3 of Breslau, 
which constituted a translation, into the new quantum theory, of 
the Wilson-Sommerfeld relation

THE DISCOVERY OF MATRIX-MECHANICS

and from this formula Born deduced that the terms in the leading 
diagonal of the matrix

p q - q p

must all be equal and must each have the value hftm. He could 
not, however, obtain the values of the non-diagonal elements in the 
matrix, though he suspected that they might all be zero.

At this stage (about the middle of July 1925) he called in the 
help of his other assistant, Pascual Jordan (b. 1902), who in a few 
days succeeded in showing from the canonical equations of motion

dq _ dH dp___ 8H
dt dp9 dt dq

1 The case of degenerate systems requires further consideration.
* Z S .f. P• xxxiii (1925), p. 408 
8 Naturwiss, xiii (1925), p. 627
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that the derivative of pq — qp with respect to the time must vanish : 
pq -  qp must therefore be a diagonal matrix, and Born’s guess was 
correct. The equation thus arrived at, namely,

p q - q p 2 ni
where 1 denotes the unit matrix, corresponds in the matrix-mechanics to the 
Wilson-Sommerfeld quantum condition

= nh

of the older quantum theory. It is known as the commutation rule. A 
proof of it, much simpler than the method by which Born and 
Jordan established it, is as follows : from the equation

q = {q(n, m)e™iv{n' m)t}
we have

ot n

= ^ (H q -q H )

or
IT ЖТ h ШН ч _ , И , 7 _

and therefore the equation
r * h df /tx( 1)

is valid for f= H  and f= q . Now suppose that (1) is valid for any 
two values of f, say f = a  and f = b  : then we can show easily that 
it must be valid for f  = a + b and for f  = ab. Since all matrix functions 
depend on repeated additions and multiplications, we conclude that 
equation (1) is valid when f  is any function of H and q. Now the 
equation H = H(q, p) determines p  as a function of H and q : and 
therefore equation (1) is valid for f= p  : that is, we have1

p q - q p = j l

It may be remarked that this relation could not hold if p and q 
were finite matrices, since in that case the sum of the diagonal 
elements of p q - q p  would be zero.

Bom and Jordan published their discoveries in a paper which was 
received by the editor of the %eitschrififtir Pkysik on 27 September.2

1 On the physical meaning of the commutation-rule, cf. H. A. Kramers, Physika, v 
(1925), p. 369 * ZS-f- P- xxxiv (1925), p. 858
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In it they applied the theory to the case of the harmonic oscillator. 
For the harmonic oscillator the Hamiltonian function is

T H E  D ISC O V ER Y  OF M A TR IX -M EC H A N IC S

H = — (p2 + m2œ2q2) Im
( i )

so the matrix equations of motion are

Hence

dq = dH = 1_
dt dp

dp _ 8\H
dt dq

— mco2q.

d2 q
dt2 + co2 q = 0

of which the solution is

(2)

q = Aem + Be-ico‘ (3)

where A and B are matrices not involving the time.
Now in a matrix which has the time-factor eiwt, in the system 

of reference in which H is represented by a diagonal-matrix, the 
only possible non-zero elements are those to which the time-factor 
еш belongs, i.e. those in the sub-diagonal immediately below the 
principal diagonal. Thus
A = 0 0 0 0 .

0 0 0 .
0 a 2 0 0 .
0 0 “ 3 0 .

and B = 0 ft 0 0
0 0 ft 0
0 0 0 f t

(4)

From (2) and (3)

p = /л = imœ(Аеш — "Ве~ш).

From (3) and (5),
pq -  qp = 2гто>(АВ -  BA)

or
~ = 2imco i

CLxfii 0 0

0 — 0-2̂ 2 0

0 a2/?2 ~

(5)
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whence
O à O 2h o _ 3h 

i^1~2nm' e ,A “ »  “3̂ 3 _ W  etC‘

Also H = —- (p2-f m2ô 2q2) = m<o2 (A B + B A)
2 m

<4/3, 0 0 0
0 alPi + а2$г 0 0
0 0 a2p2 + 03̂ 3 0

(i>h / 1 0 0 0 . . . \
~2 / 0 3 0 0 . . . \

I 0 0 5 0 . . . 1

(6)

(7)

so H is a diagonal matrix, as it should be.
Moreover, q must be a Hermitean matrix, so ar and f$r must 

be complex-conjugates : and therefore from (6)

a\ —/  h ’\K iS‘ ( 2h \ i  A ( M U A  • •
\2 tnu>,) e » “* \2ma>) * 3 \2ma>) ’

f t - l
f h Л 
к2тш)| * л

where Si Sa, 83, . . .  are arbitrary real numbers. If we write Sr = yr 
-7 t/2, from (3), (4) and (8) we have

q=t 0 0
e-nwt+Yl) 0 •v/2.«-i("*'+n)
0 -  0
0 0 -  ■v/3«,*<a"+V

0
0

у'З e-i^+yj. 
0

and then

/ ° 0 0
P = l" 2 " j /  ^ал+у,) 0 у/2е-%<м+у} 0

/  0 \/2е«ш+Уг> 0 л/3ег<(ш‘+у,>

Г
0 у/Зе*ш+Ч 0

\ • • • • 
\ .  . . .
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Thus the matrices which represent the co-ordinate and the momentum in the 
problem of the harmonic oscillator are determined. Equation (7) shows 
that the values of the energy, corresponding to the stationary states of the 
oscillatory are

T H E  D ISC O V E R Y  OF M A T R IX -M EC H A N IC S

toh 3 coh 5coh
2 ’ ~ 2 ’ T  ■ • ’

or in general
(л + $)а>Й.

The squares of the moduli of the elements of the matrix which 
represents the electric moment of an atom are in general the measure 
of its transition-probabilities. A connection is thus set up with Einstein’s 
coefficients A” and with Planck’s theory of radiation.

Bom and Jordan’s paper represented a great advance : it 
contained the formulation of matrix mechanics, the discovery of 
the commutation law, some simple applications to the harmonic 
and anharmonic oscillator and (in its last section) a discussion of 
the quantification of the electromagnetic field.

When the paper had been sent off to the Zeitschrift für Physik, 
Born went for a holiday with his family to the Engadine. On his 
return in September to Gottingen, there began a hectic time of 
collaboration with Jordan, and also by correspondence with 
Heisenberg, who was now in Copenhagen. Bom had received and 
accepted an invitation to lecture during the winter at the Massa­
chusetts Institute of Technology, and was bound to leave at the 
end of October ; but the joint paper was finished in time before 
his departure, and was received by the editor of the Zê sĉ f i  f i r 
Physik on 16 November.1

The first important result in it was a general method for the 
solution of quantum-mechanical problems, analogous to the general 
Hamiltonian theory of classical dynamics. A canonical transformation 
of the variables p, q to new variables P, Q, was defined to be a 
transformation for which

p q - q p  = P Q ,-Q ,P =  -ih  ;

when this equation is satisfied then the canonical equations

transform into

dq _ 
dt dp’

d Q S t l
dt 8P’

àp_ гн
dt dq

8H
It

1 M. Born, W. Heisenberg and P. Jordan, £ £ ./ .  P. xxxv (1926), p. 557
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A general transformation which satisfies this condition is
P = SpS 1 
Q = S q S -

where S is an arbitrary quantum-theoretic quantity. Wë then have 
for any function / ( P, QJ.

f(P ,Q )= S /(p , q)S-‘.

The importance of canonical transformations depends on the follow­
ing theorem : matrices p and q which satisfy the commutation-rule

p q - p q  - й

and which, when substituted in H(p, q) make it a diagonal matrix, represent 
solutions of the equations

dq _ cH dp _ _ cH.
~dt dp' dt dq ‘

Therefore if we take any pair of matrices p0, q0, which satisfy the 
commutation-rule (for instance, we might take p 0, q0, to be the 
solution of the problem of the harmonic oscillator), then we can 
reduce the problem of the integration of the canonical equations 
for a Hamiltonian H(p, q) to the following problem : To determine 
a matrix S such that when

the function
p =  SpoS-1. q = S q 0S 1, 

H(p, q) = SH(p0, q0)S-1

is a diagonal matrix. This last equation is analogous to the Hamilton’s 
partial differential equation of classical dynamics, and S corresponds 
in some measure to the Action-function.

The next question taken up in the memoir of the three authors 
was the theory of perturbations. Let a problem be defined by a 
Hamiltonian function

H = H 0(p, q) + AH1(p, q ) +A2H 2(p, q ) + . . .

and suppose that the solution is known of the problem defined by 
the Hamiltonian function H 0(p, q), so that matrices p0, q0 are 
known which satisfy the commutation-rule and make Н0(р0, q0) 
a diagonal matrix. Then it is required to find a transformation- 
matrix S such that if

p  = Sp0S-1 and q = Sq0S*1

H(p, q) = SH(p0, q0;S_1 
264
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will be a diagonal-matrix. It was shown how to solve this problem 
by successive approximations, and one of the formulae of Kramers’ 
theory of dispersion was derived.

The theory was then extended to systems with more than one 
degree of freedom. If the Hamiltonian equations are

d q * _ d H  d p k _____d H
dt d p ъ dt ~  d q S

then the commutation-rules are

{p*qz — q*p* = — ihbki, where Ьы = 1 or 0 according as k = / or k Ф l
p*p*-p/p* = 0

q*qi -  q/q* = 0.
Among those who listened to Heisenberg’s lectures at Cambridge 

in the summer of 1925 was a young research student named Paul 
Adrien Maurice Dirac (b. 1902), who by a different approach arrived 
at a theory essentially equivalent to that devised by Born and Jordan. 
On 7 November he sent to the Royal Society a paper 1 * in which 
Heisenberg’s ideas were developed in an original way.

Dirac investigated the form of a quantum operation (denote it 
by d/dv) that satisfies the laws

and
•7

It was found that the most general operation satisfying these 
laws is

d
dv x = xy —yx

where y  is some other quantum variable. By considering the limit, 
when for large quantum numbers the quantum theory passes into 
the classical theory, Dirac showed that the corresponding expression 
in classical physics is

т т  (0*. ?*\
r \8qr dpr dqr dpj

where the p’s and ÿ’s are a set of canonical variables of the system. 
This is ih multiplied by the well-known Poisson-bracket expression3

1 Proc. R.S.(a), cix (1925), p. 642
* Note that the order of * and y  is preserved in the second equation.
• cf. Whittaker, Analytical Dynamics, § 130
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of the functions x and y. Thus, if in quantum theory we define 
a quantity [,xyy ] by the equation

xy-yx = ih[x,j>],

then [x,y\ is analogous to the Poisson-bracket expressions of classical 
theory.

Now the Hamiltonian equations of classical theory,
dqr _ SH dpr _  _ ÔH
dt dpr d t dqr (r= l, 2

may be written in terms of the classical Poisson-brackets (*, y)

The fundamental postulate on which Dirac built his theory was, 
that the whole of classical dynamics, so far as it can be expressed in terms 
of Poisson-brackets instead of derivatives, may be taken over immediately 
into quantum theory. Thus, for any quantum-theoretic quantity x the 
equation of motion is

(’■H-H*)-
Moreover, if

P r , q r  ( r - 1 , 2 , . . . n)

are any set of canonical variables of the classical system, then we 
have for the classical Poisson-brackets the values

(#r, q$) — 0, (pry p s) = 0, (qTy ps) = 8r,

and therefore in quantum theory we must have
qrq* -  q*qr = 0, p rp» -  p*pr = 0, qrp* -  p^qr = Й8«1.

Thus Dirac arrived at all the fundamental equations of Heisen­
berg, Born and Jordan, without explicitly introducing matrices. He 
introduced the name q-numbers for the quantum-mechanical quantities 
whose multiplication is not in general commutative, and c-numbers 
for ordinary numbers.

In a second paper1 he applied the theory to the hydrogen atom, 
and obtained the formula for the Balmer spectrum. This was done 
at about the same time by Pauli,2 who observed, moreover, the 
automatic disappearance of certain difficulties, which had been

1 Proc. R.S.(a), cx (1926), p. 561
• % 5.f. P. xxxvi (1926), p. 336 
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found 1 to occur in examining the simultaneous action on the 
hydrogen atom of crossed electric and magnetic fields. Pauli also 
gave a matrix-mechanical derivation of the Stark effect.

In the same year Heisenberg and Jordan2 applied the theory 
(using the hypothesis of the rotating electron) to the problem of the 
anomalous Zeeman effect, and obtained Landé’s ^-formula.3 The 
fine-structure of spectral doublets in the absence of an external field 
was also completely explained. Dirac4 treated the Compton effect 
by quantum mechanics, and obtained formulae for the angular 
distribution of the recoil electrons and the scattered radiation which 
agreed completely with experiment.

Meanwhile Born had been in America since November 1925, and 
had there met Norbert Wiener (b. 1894), who worked with him at the 
problems of continuous spectra and aperiodic phenomena. In 
February 1926 they wrote a joint paper5 on the formulation of the 
laws of quantification. As they pointed out, the representation of 
the quantum laws by matrices incurs serious difficulties in the case 
of aperiodic phenomena. For example, in uniform rectilinear 
motion, since no periods are present, the matrix which represents 
the co-ordinate can have no element outside the principal diagonal. 
They therefore tried to generalise the quantum rules in such a way 
as to cover these cases, and this they effected by developing a theory 
of operators, representing a co-ordinate by a linear operator instead 
of by a matrix ; and they enunciated the general principle that to 
every physical quantity there corresponds an operator. The case of un­
accelerated motion in one dimension, which has no periodic com­
ponents, was shown to be as amenable to their methods as a periodic 
motion.

The development of matrix mechanics in the year following 
Heisenberg’s first paper was amazingly rapid : and, only eight 
months from the date of his discovery, it was supplemented by 
a parallel theory, which will be described in the next chapter.6

1 O. Klein, Z $-f' P- xxii (1924), p. 109 ; W. Lenz, £ £ ./ .  P. xxiv (1924), p. 197
* Z S .f. P. xxxvii (1926), p. 263
8 On the Zeeman effect, cf. also S. Goudsmit and G. E. Uhlenbeck, Z&* /•  P» xxxv 

(1926), p. 618 ; L. H. Thomas, Phil Mag.. iii (1927), p. 13.
4 Proc. R.S.(a), cxi (1926), p. 405
* J . Math. Phys. Mass. Inst. Tech, v (1926), p. 84 ; £ £ ./ .  P. xxxvi (1926), p. 174
® On the state of matrix-mechanics at the end of 1926, cf. Dirac, Physical interpretation 

of quantum dynamicsy Proc. R.S.{\)y cxiii (1 Jan. 1927), p. 621
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Chapter IX
THE DISCOVERY OF WAVE-MECHANICS

In 1926 a new movement began, which developed from de Broglie’s 
principle,1 that with any particle of (relativistic) energy E and 
momentum (jpx, py, pz) there is associated a wave represented by 
a wave-function

ф = е (</Л) №-vxx-VyV-Vz*).

De Broglie had not hitherto extended his theory to the point of intro­
ducing a medium—a kind of aether—whose vibrations might be 
regarded as constituting the wave, and whose behaviour could be 
specified by partial differential equations. A step equivalent to 
this was now taken.

With the above value of ф, we have

so

and

so

ey*
dx2

I щ. ,&Ф = _P lé
dx2 dy2 Bz2 h2

1 ^ =  E* jj
c2 dt2 c2h2 ^

1 д2ф д2ф д2ф _ д2ф _ __ /Е 2 _ . 2\ Ф _ _ тп2с2 ,
Р № ~ № ~ ~ д у 2 Ve2 Р )h 2~

where m denotes the mass of the particle. Thus the de Broglie wave- 
function satisfies the partial differential equation

1 д2ф __ д2ф д2ф д2ф 
72 dt2~dx2 + d f + ëz2

m2c2 #
ЦГ+-

This equation was discovered by L. de Broglie2 and others.8 
It is satisfied by all possible de Broglie waves belonging to the 
particle, but it does not specify their passage into each other as 
the particle moves—that is, it yields no information as to the varia­
tion from moment to moment of the energy and momentum of

1 cf. p. 214 * Comptes Rendus, clxxxîii (26 July 1926), p. 272
“ E. Schrôdinger, Ann. d. Phys. lxxxi (1926), p. 109; O. Klein, ZS. f, Jr. xxxvii (1926), 

p. 895, at p. 904 ; cf. also W. Gordon, £ £ ./ .  P. xl (1926), p. 117
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the particle. What was really wanted was a partial differential 
equation for the de Broglie waves associated with a particle, which 
would yield the equations of motion of the particle by a limiting 
process similar to that by which geometrical optics is derived 
from physical optics : a partial differential equation, in fact, whose 
filiform solutions (i.e. solutions which are zero everywhere except 
at points very close to some curve in space-time) are the trajectories 
of the particle. Such an equation can be obtained, at any rate, in 
the non-relativistic approximation. For from the above equations 
we have at once

^  &Ф dhjj= p* д*ф
dx2 + dy2 + dz2 E2 Ыr

Substituting the values for p and E in terms of the velocity v of the 
particle, this becomes

дгф Щ = /дч
dx* dy* dz* c* dt*' K ’

This equation is not relativistically invariant, so we shall restrict 
ourselves to the non-relativistic case of a particle m moving in a 
field of potential V, whose equation of energy is

\mv2 + V = e

where € is its total non-relativistic energy. The equation (A) has 
filiform solutions, each of which is1 a null geodesic of the metric 
for which the square of the element of interval is

(c*jv2) (dt)2 — (dx)2 — (dy)2 — (dz)2.

It can be shown that the null geodesics of this metric are the 
curves which satisfy the differential equations

d2x 8Vm-rrz- = —
d t2 dx and similar equations injy and z ;

but these are the ordinary Newtonian equations of motion of the 
particle. Thus the filiform solutions of equation (A) are precisely the 
trajectories of the particle in the given potential field. The solution ф of 
equation (A) is therefore the wave-function we are seeking.

The time factor in ф is exp {(ijh)Et}9 so if ф now denotes the wave- 
function deprived of its time-factor, we have from (A)

д2ф д2ф 82ф_ __v2 E2, 
dx2 dy2 dz2 с4 h2^

-  m%v2 6
h2( l - v 2/c2y

1 E. T. Whittaker, Proc. Camb. Phil. Soc. xxiv (1928), p. 32
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Since we are considering only the non-relativistic approximation, 
we can replace the factor (1 — v2/c*) in the denominator by unity, 
and thus obtain

or

д2ф , dffj , д*ф _ _ m2v2 , 
faulty* dz*~ ha V

This equation, which was published by Erwin Schrôdinger1 in 
March 1926, gave the first impetus to the study of wave-mechanics. 
Schrôdinger’s own approach, which was different from that given 
above, laid stress on a connection with the theory of Hamilton’s 
Principal Function in dynamics. This will now be considered.

He considered a particle of mass m with momentum p and total 
energy € in a field of force of potential V(x, jj, z), so that the (non- 
relativist) equation of energy is

2^/>a + V = e, or p=  y/{2m{e- V)}.

If we associate with this moving particle a frequency v given by 
c = hv, and a de Broglie wave-length A given by 7i = hjp9 then the 
phase-velocity of the de Broglie wave is

Э — A — € ^  — €
“  h 'p ~  V{2*z(€-V)}‘

Take any phase-surface, or surface of constant phase, at the instant 
/= 0  ; and suppose that the equation of the phase-surface at the 
instant t, which has been derived (as in Huygens’ Principle) by 
wave-propagation with the phase-velocity from this original 
phase-surface, has the equation

т{х,У> z) — t.

Then by elementary analytical geometry we have

(г;)Ч!)‘+©Ч.
and therefore

0 ,+® ),+© ,- ?5i¥ a - (1)
This equation can, however, be obtained in a very different way.

1 Ann. d. PhysA4) lxxix (1926), pp. 361, 489 
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The Hamilton’s partial differential equation associated with the 
particle1 is

m
dt

+ H [х>У, Z
d w  aw aw\ n

5 dx’ dy9 d z) 9

where H is the Hamiltonian function for the particle, namely,

and W is Hamilton's Principal Function, The Hamilton’s equation is 
therefore in this case

The Principal Function may be written
W = -€* + S(*,jy, z)

where € denotes the total energy and S is Hamilton's Characteristic 
Function. The equation for S now becomes

or

( ! ) 4 ! ) ' +© ' = 2'”<'-v>-
Comparing this with equation (1), we see that the equation of the 
phase-surfaces of the de Broglie waves associated with a particle, namely,

t (*,JV, Z) =  t

is obtained by equating to zero the Hamilton's Principal Function of the 
particle. Thus the theory of Hamilton's Principal Function in Dynamics 
corresponds to Huygens' Principle in Optics,

This investigation so far belongs to what may be called the 
‘ geometrical optics 5 of the de Broglie waves ; a similar equation 
exists in ordinary optics, the surfaces r(x9y 9 z) = constant being the 
wave-fronts, whose normals are the 6 rays.5 Schrôdinger now put 
forward the idea that the failure of classical physics to account for 
quantum phenomena is analogous to the failure of geometrical optics to 
account for interference and diffraction : and he proposed to create in 
connection with de Broglie waves a theory analogous to PhysicalOptics.

Considering the stationary states of an atom, we have seen2 
that the de Broglie wave associated with an electron in an atom

1 cf. Whittaker, Analytical Dynamics, § 142 * cf. p. 216 supra
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returns to the same phase when the electron completes one revolution 
of an orbit belonging to a stationary state. Therefore at any one point 
of space the de Broglie disturbance in a stationary state is purely 
periodic, with the frequency v = е/Л, where e is the energy of the 
stationary state ; and it can be represented by a wave-function of 
the form

ф =  e(i*lh)[-t+TOr, y, t)]m

Differentiating this twice, we have

dx2
ic д2т , 

* 1 8 ? *

which gives, using (1),
+ Щ + дЧ =  2 m ( e - V )  , ie , 

dx2 dy2 dz2 ft* k^ \dx2 by2 dz2/*

The ratio of the second term to the first term on the right-hand side 
of this equation is excessively small if h is excessively small, as it is : 
so we may neglect the second term, and write

&Ф+ РФ + <̂ Ф= 2от(е-V) ,
dx* dy2 dz2 h2

which is again Schrôdinger's equation for the wave-function ф of the particle.
The potential function V which occurs in this equation will 

possess singularities at certain points or at infinity, and these points 
(with others) will in general oe singular points of the solution ф 
of the differential equation. But if ф is to represent the de Broglie 
wave of a stationary state, it must be free from singularities ; and 
therefore Schrodinger laid down the condition that the solution of the 
wave-equation corresponding to a stationary state must be one-valued, finite 
and free from singularities even at the singularities of V (*, y, z)*1

Now it is known that the partial differential equation possesses a solution 
of this character only for certain special values of the constant €, which are 
known as the proper-values.2 These proper-values will be the only 
values of the energy e which the atom can have when it is in a 
stationary state ; and thus was justified the title which Schrôdinger 
gave to his first paper, Quantification as a Problem of Proper-values.8

1 The conditions laid down in Schrôdinger’s earlier papers were unnecessarily stringent : 
on this, cf. G. Jaffé, %S. / ,  P. lxvi (1930), p. 770 ; R. H. Langer and N. Rosen, Phys♦ 
Rev. xxxvii (1931), p. 658 ; E. H. Kennard, Nature, cxxvii (1931), p. 892.

* The undesirable hybrid word eigenvalues has often been used, but proper-values, 
which is in every way preferable, is used in the English translation of Schrodinger’s 
Collected Papers on Wave Mechanics (Blackie and Son, 1928).

• * In the winter of 1926, Born and Jordan having just announced a new development 
in quantum mechanics, I found more than twenty Americans in Gottingen at this fount 
of quantum wisdom. A year later they were at Zürich, with Schrodinger. A couple 
of years later, Heisenberg at Leipzig, and then Dirac at Cambridge, held the Elijah 
mantle of quantum theory.* (K. T. Compton, Nature, cxxxix (1937), p. 222.)
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The first problem that Schrôdinger investigated by his new 
method was that of the hydrogen atom, consisting of a proton and 
an electron ; denoting their distance apart by r, so that the potential 
energy is -* 2/r, and neglecting the motion of the nucleus, the 
wave-equation is (now writing E for the total energy)

дЦ bn
8x2 + by2 + dz2 + h2 =  0.

We want the values of E for which solutions of this equation exist 
that are one-valued and everywhere finite.1 To find these, we 
introduce spherical-polar co-ordinates defined by

x = r sin 0 cos ф, v = r sin 0 sin <f>9 z = r cos 0,

and try to obtain a solution of the form

j/r = RY

where R is a function of r alone, and Y is a function of 0 and ф 
only. The wave-equation now becomes

r2R dr\ dr) г 'УЫ пвёв (- 'S + 1
sin2 0 дф

2m(v e*\
м - Г т ( Е + т) - 0 ,

and this may be broken up into the two equations :

_1 d 
R dr + ̂  (Er2 + e'r) = G

i b
sin в 86(sin 6 8Y\ 

'88 )
1 82 Y

sin2 в 8ф2+ CY = 0.

The latter is the well-known equation of surface harmonics,2 and 
the requirements of one-valuedness, finiteness and continuity, make 
it necessary that G should have the value n{n-\-1), where n is zero 
or a positive whole number. The surface-harmonic Y(0, ф) is then 
a sum of terms of the form

Pn^(cos ff)e±ifX<i>

where ц is one of the numbers 0, 1, 2, . . . я, and where Pn/1(cos 0)
1 The problem was first solved by Schrôdinger, Ann. d. Phys. lxxix (1926), p. 361 ; 

lxxx ( 1926), p. 437. For a rigorous proof of the completeness of the set of proper functions, 
cf. T. H. Gronwall, Annals of Math. xxxii (1931), p. 47. It will of course be understood 
that the solution given above was improved later when relativity, electron-spin, etc. 
were taken into account.

2 cf. Whittaker and Watson, Modem Analysis, § 18-31
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is the Associated Legendre Function.1 The differential equation 
for R now becomes

f  ) + £  (Er- + <V)R -« ( . + 1)R -  0.

From the elementary Bohr theory of the hydrogen atom, we know 
that for the energy-levels whose differences give rise to the Balmer 
lines, the total energy E is negative. Suppose this to be the case : 
writing k for (e2l2h) V( — 2m/E) and z for (2/Й) \/(  — 2mE)ry the 
equation becomes

J2R 2 rfR ( 1 , k 1)) -p л
JT'*ïTi + \ - i +i — Г -0

of which the solution that remains finite as r-*oo is

Uv*,n+* (z)

where W*,n+i(^) is the confluent hypergeometric function.2 Thus 
ф must be a constant multiple of

-  W*,n+è(£)Pn"(cos в)е±{̂ .
T

It is, however, necessary also that ф should be finite at r = 0. This con­
dition requires that the asymptotic expansion of W*, *+*(£),3 namely,

W*. „+*(*) v [ i  + (K + è)a- ( * - è ) 8 
1 ! z

{(« + j ) 3~ (A:-j)aH(« + è)3- (A:-f)n 
2 U 2 +

should terminate ; which evidently can happen only if
±(n + \ ) = k - \ ,  or k - f, or k - f, . .

that is, к  must be a whole number : and on account of the factor z k, 
it must be a positive whole number : thus

e2 / /  2 m\
2W  l  Ё /

must be a positive whole number : so
me4

W k2 where k= 1, 2, 3, 4, . . . .

1 cf. Whittaker and Watson, Modern Analysis, § 15*5
* cf. Whittaker and Watson, Modern Analysis, § 16*1
• cf. Whittaker and Watson, Modem Analysis, § 16*3
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These values of E are precisely the energy levels of the stationary orbits in 
Bohr's theory ; to each value ofIL there corresponds a finite number ofparticular 
'olutions ; and thus we obtain the line spectrum of the hydrogen atom. 
[t is evident from this equation for E that k must be identified with the 
lotal quantum number.

The question may now be raised as to the physical significance 
the wave function ф. Schrodinger at first, in a paper1 received 

[8 March 1926, supposed that if ф* denotes the complex quantity 
;onjugate to ф, then the space-density of electricity is given by the 
real part of ф dp*jdt. In a paper2 received on 10 May, however, 
le corrected this to фф*, basing his new result on the fact that the 
ntegral of фф* taken over all space is, like the charge, Constantin time. 
This interpretation of ф was, however, soon again modified. The 
notion of waves which do not transmit energy or momentum, but 
which determine probability, had become familiar to theoretical 
physicists from the Bohr-Kramers-Slater theory of 1924 : and in a 
paper3 received 25 June, and one received 21 July,4 both dealing 
with the treatment of collisions by wave-mechanics, Max Born adopted 
this conception, and proposed that фф* should be interpreted in terms 
nf probability ; to be precise, that фф* dx dy dz should be taken to be 
the probability that an electron is in the infinitesimal volume-element 
ix ay dz. This interpretation was soon universally accepted.

It is convenient to normalise the wave-functions by the condition

^pnpn*dr— 1

where dr denotes the element of volume and the integration is taken 
Dver all space. As an example of normalisation, consider the 
fundamental state of the hydrogen atom, for which к = 1, n = 0, 
fj, = 0. The wave-function is now some multiple of ( 1/r)Wx, i(z), and 
since Wl5 t(z)=e~*zZ> this gives for the wave-function a multiple of 

or e~(r/a) where a is the radius of the first circular orbit in Bohr’s 
theory of the hydrogen atom. The wave-function may therefore 
be written

r

ф = Ce a where C is a constant.

The normalisation condition is
f 00 Гтт C2n 2r

C j  I I e a r* sin 0 drdddp = 1
which gives

тга3С2 = 1
1 Ann. d. PhysM) lxxix (1926), p. 734, equation (36)
2 Ann. d. Phys.i4) lxxx, p. 437r, note on p. 476
* ZS-f- T5. xxxvii (1926), p. 863
* P- xxxviii (1926), p. 803
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and therefore the normalised wave-function of the fundamental state of the 
hydrogen atom is

Of course this is to be multiplied by the time-factor where
Ex is the energy of the state.

Similarly the normalised wave-function of the hydrogen atom 
in the state k = 2, n = 0, /x = 0, is

where E2 is the energy of the state ; and the normalised wave-function 
of the hydrogen atom in the state k = 2, n= 1, /x = 0, is

where E3 is the energy of the state.
Now suppose that to two different proper-values of the total 

energy, say En and Em, there correspond respectively solutions фп 
and фт of the wave equation, so that

Multiplying these equations by фт and фп respectively, subtracting 
and integrating over all space, we have

The first integral may by Green’s theorem be transformed into a 
surface-integral taken over the surface at infinity, which vanishes ; 
and thus we have

that is, two wave-functions фт and фп, corresponding to different values 
of E, are orthogonal to each other. .

Since in this equation we can replace фт by its complex-conjugate 
0m*, we can combine it with the normalisation-equation into the 
equation

VV« + ̂ (E » -V )^ n  = 0 

угфт + ?Е(Ет-У)фт = 0.nù

^  фпфтС[т =  0 ,
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where 8mn = 1 or 0 according as m and n are the same or different 
numbers.1

In the case of the hydrogen atom, a single proper-value of the 
energy, say

T H E  D ÏSC Ô V É R Ÿ  O F W A V É -M È C flA N IC S

p  _  _  т е *
W k2

where k is a definite whole number, corresponds to many wave- 
functions

jw * ,n+i(£)P»"(cos

n and p being able to take different whole-number values. This 
phenomenon—the correspondence of several different stationary 
states to the same proper-value of the energy—is called degeneracy, 
a term already introduced in Chapter III. It is known from the 
general theory of partial differential equations that we can always 
choose linear combinations of the wave-functions which belong to 
the same value of the energy, in such a way that these combinations 
are orthogonal among themselves 2 (and, of course, orthogonal to 
the wave-functions which belong to all other proper-values of the 
energy). The degeneracy of the hydrogen atom, so far as it is due 
to the fact that many different values of n correspond to the same 
value of k, can be removed, exactly as in Sommerfeld’s theory of 
1915, by taking account of the relativist increase of mass with 
velocity : while the degeneracy, so far as it is due to the choice 
of different values of /z, can be removed by applying a magnetic 
field, as in Sommerfeld and Debye’s theory of 1916. It is evident 
that n is essentially the azimuthal quantum number, and that ц is 
the magnetic quantum number.

Now consider the case when the total energy E of the electron 
in the hydrogen atom is positive. — E) is now imaginary, and 
all the confluent hypergeometric functions which are solutions of 
the differential equation for rR remain finite as oo, so R tends 
to zero as r>oo. Moreover, at least one solution of the differential 
equation exists which is finite at r = 0. Thus every positive value of E 
is a proper-value, to which correspond wave-functions possessing 
azimuthal and magnetic quantum numbers, in the same way as the 
discrete wave-functions. Physically, this case corresponds to the 
complete ionisation of the hydrogen atom, or to the reverse process, 
i.e. the capture of free electrons.

1 If the proper-values of Schrodinger’s wave-equation have also a continuous spectrum, 
the above equations persist in a modified form, for which, see H. Weyl, Math. Ann. lxviii 
(1910), p. 220, and Gott. Nach. (1910), p. 442 ; E. Fues, Ann. d. Phys. lxxxi (1926), p. 281.

* There is a certain degree of arbitrariness in the choice, the arbitrariness being 
represented by an orthogonal transformation which may be performed on the wave- 
functions of the set.
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In a further paper,1 Schrodinger extended his theory by find­
ing the wave-equation for problems more general than those con­
sidered hitherto. Still restricting ourselves for simplicity to the 
motion of a single particle, suppose that its Hamiltonian Function 
H(qu q2> ?з, pu p 2,pz) is the sum of (1) a kinetic energy represented 
by a general quadratic form T in the momenta (pl9 pu p3)y with 
coefficients which depend on the co-ordinates (qu q2i q3), and (2) 
a potential energy V which depends only on (qu qZy qz). Then the 
wave-equation may be derived by a process similar to that followed 
already in the case of the particle referred to Cartesian co-ordinates. 
It will be evident from what was there proved that the wave-function 
must be of the form

ÀËTHER AND ELECTRICITY

*)}

where S(x, y 9 z) is Hamilton’s Characteristic Function, satisfying 
the equation

H es as ds \
dqi dq2 dqz) = E.

Differentiating the expression for 0, we have
i #2S
h dqr2Ф-

As before, the second term on the right is very small compared with 
the first, and may be neglected. Thus

d h d h d \  . rj,/h
i dqi

es  es as\,
’ Bqx dqV d q j%

and therefore
w /  „ „ h 8 H d H 8 \ .  „ /  <S
H V 1’ 4"  i to? 7 V  i d q j Ф = Н V*’ 4" Ç*> dai dq2> 8 J  Ф

or as we may write it

% ) * - * + ■

This is the extension of the wave-equation, applicable to the more general 
form of the Hamiltonian Function.

Since
дф
Ы

* A n n .  d . P h y s A 4) Ixxix (1926), p. 734
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we have

This equation, which does not involve E explicitly, may be called 
the general wave-equation. l  It is clearly the equation that would be 
obtained by replacing p by H/i djdq and E by -  hji d/dt in the equation 
of energy, and then operating on ф.

It would seem from the foregoing derivations that Schrodinger’s 
wave-equation is connected with Hamilton’s Principal and Character­
istic Functions by equations which are not exact, but only approxi­
mate, involving the neglect of powers of It was shown 2 many 
years after the discovery of the wave-equation that this conclusion is 
incorrect : Schrodinger’s equation is rigorously equivalent to Hamilton’s 
partial differential equation for the Principal Function, provided the 
symbols are understood in a certain way.

Considering for simplicity a conservative system with one degree 
of freedom, let the co-ordinate at the instant t be q> and let Q, be 
the value of the co-ordinate at a previous instant T. Then, as 
Hamilton showed, there exists in classical dynamics a Principal 
Function W (q, Q , / —T), which has the properties

aw(g,Q . , / - T )
dq P

Ô W (? ,Q ,< -T )_ _ p0Q,
д Щ д , 0 . , ( - Т ) _ н

ci
where p and P are the values of the momentum at the instants t and 
T respectively, and H is the Hamiltonian Function.

Now consider the quantum-mechanical problem which is specified 
by the Hamiltonian H(qyp). As explained in Chapter VIII, the 
variables q and p are no longer ordinary algebraic quantities, but 
are non-commuting variables satisfying the commutation-rule

. . hpq-qp = i -

The quantity Q, which represents the co-ordinate at the instant 
T, also does not commute with q or p. A function of q and ÇHs said 
to be well-orderedy when it is arranged (as of course it can be, by

1 With regard to the general character of Schrodinger’s theory, Heisenberg
xxxviii (1926), p. 411, at p. 412] said 1 So far as I can see, Schrodinger’s procedure does 
not represent a consistent wave-theory of matter in de Broglie’s sense. The necessity 
for waves in space of /  dimensions (for a system with /  degrees of freedom), and the 
dependence of the wave-velocity on the mutual potential energy of particles, indicates 
a loan from the conceptions of the corpuscular theory.’

2 E. T. Whittaker, Proc. R.S. Edin. lxi (1940), p. 1
2 7 9
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Use of the commutation-rules) as a sum of terms, each of the form 
f ( q ) g { the factors being in this order.1 Then it can be shown 
that there exists a well-ordered function U (q, Q, t — T), which formally 
satisfies exactly the same equations as Hamilton’s Principal Function, 
namely,2

0U
Ы -H .

U may be called the quantum-mechanical Principal Function. Although 
it satisfies the same equations as Hamilton’s Principal Function, its 
expression in terms of the variables q ,Q ,t — T, is quite different from 
the expression of the classical function W : the reason being that 
the above equations for U are true only on the understanding that 
all the quantities occurring in them are well-ordered in q and Q,: 
but on substituting the well-ordered expression for p in the Hamil­
tonian H(^, p)y we shall need to invert the order of factors in many 
terms, by use of the commutation-rules, in order to reduce H to 
a well-ordered function of q and Q, ; and this introduces new terms 
which do not occur in the classical equations. This explains why, 
although the equations of quantum mechanics are formally identical 
with those of classical mechanics, the solutions in the two cases are 
altogether different.

Now introduce a function R (q9 Q., t — T), which is obtained by 
taking the well-ordered function U and replacing the non-commuting 
variables q and Q  by o r d i n a r y  algebraic quantities q and Q. It 
may be called the Third Principal Function. by what has been said, 
it is quite different from the classical Principal Function W belong­
ing to the same Hamiltonian. Then if we write

ф(Я, Q , / - T ) = J B(î' Q' ‘- T}

it may be shown that ф (qy Q , / — T) satisfies Schrôdinger"s differential 
equation for the wave-function belonging to the Hamiltonian H (q,p). Thus 
the relation between Principal Function and Schrôdinger""s wave-function is 
rigorous, not requiring the neglect of any powers of A, provided the Principal 
Function is understood to be the Third Principal Function R, and not Hamilton’s 
classical Principal Function W.

We must now consider how the proper-values and wave-functions 
of Schrôdinger’s equation are to be determined. The following 
method for determining them, at least approximately, was given 
in 1926 by G. Wentzel,3 H. M. Kramers4 and L. Brillouin.5

1 This conception is due to Jordan, £ £ ./ .  P. xxxviii (1926), p. 513
* The first two of these equations were given substantially by Dirac, Phys. gjeits. 

Sowjetunion, iii (1933), p. 64.
* Z S 'P  P- xxxviii (1926), p. 518 4 Z&f» P• xxxix (1926), p. 828
* Comptes RenduSj clxxxiii (1926), p. 24 ; J . de phys. et le rad. vii (1926), p. 353. The 

method was to a great extent anticipated by H. Jeffreys, Proc. L.M.SA2) xxiii (1925), 
p. 428 ; cf. also R. E. Langer, Bull. Amer. M.S. xl (1934), p. 545, who indicated a correc­
tion in Jeffreys’s paper.
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Consider a one-dimensional oscillatory motion defined by a 
Hamiltonian

THE DISCOVERY OF WAVE-MECHANICS

H_é +V(,)-
The Schrôdinger equation for the wave-function ф is

£ $ +<e - v>*-°
where E is the proper-value of the energy. Suppose that the range 
in which the particle would oscillate according to classical dynamics, 
namely, that defined by E —V = 0, is so that qx and q2
are roots of the equation V(^) = E ; within this range put

{ ^ (E -V )} * = C ( ? ) ,

so the wave-equation becomes

$ + { № ) } V - o .

If V, and therefore £, were constant, the solution would be of the 
form

ф = Constant x sin (£q + Constant) :

this suggests that even when Ç is variable, we should try within the 
range q ^ q ^ q 2 to represent ф by a sine-curve of slowly varying 
amplitude and wave-length, say

ф = A(q) sin S(^).

Substituting in the wave-equation, we have

(A "-A S '2 + A£2) sin S+ (2A'S' + AS") cos S = 0.

Let us try to satisfy this equation by imposing on A and S the two 
conditions

A" -  AS'2 + A£2 = 0, 2A'S' + AS" = 0.

Now suppose that A' varies so slowly that |A"| is very small com­
pared to £2|A| (it is at this stage that the approximation enters) : 
then we may neglect the first term in the former of these equations, 
which now becomes

S'2 = £a 
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giving
S = I £dq + a , where a  is a constant. 

The second condition
2A'S' + AS" =* 0

gives at once
A = r(S')“* where c is a constant

or
A -*(£)-*.

The approximate expression for ф is therefore

0 «*(£)“* sin (J? W?+ a)-

Attention must be given, however, to the behaviour of ф at the 
points for which q = qx and q «  ̂ 2, say P and Q  respectively, since at 
these points £ vanishes, and A" cannot be neglected in comparison 
with A£2. A closer consideration of this difficulty1 shows that the 
function ф must have at P the phase 7t/4, so the approximate 
expression of ф in the range PÇHs

Ф = с(£)~1 sin ( £  W7 + j ) .

This is the Wentzel-Kramers-Brillouin approximate solution of Schrodinger*s 
equation.

Similarly the function ф must have at Q, the phase 37r/4 : so 
when q = q2,

\q rAn \ 77 , 37ГJ„W?+4-"' + T
where n is a whole number, representing the number of nodes com­
prised between P and Q, ; that is to say,

J?1

This equation determines the proper-values E oj the energy, in the Wentzel- 
Kramers-Brillouin approximation.

Between P and Q  the graph of ф oscillates like a sine-curve, 
whereas to the left of P and to the right of ÇHt decreases exponentially.

The Wentzel-Kramers-Brillouin approximation throws light on 
the connection between wave-mechanics and the formula of quanti­
fication enunciated by Wilson and Sommerfeld in the older quantum

1 For which cf. E. Persico, N . Cimento, xv (1938), p. 133
282



THE DISCOVERY OF WAVE-MECHANICS

theory, namely that fpdq, where the integration is taken round an 
orbit, is a multiple of Planck’s constant A.

For the momentum, calculated according to classical dynamics 
from the equation

£ + v ( , H e

j f t - ± { 2m ( E - V ) } * - ± « ( f )

where the upper sign must be taken for the semi-oscillation from 
q1 to qiy and the lower sign from q2 to qx. Thus

round the orbit = 2^pdq = 2h^\{q)dq,

and thus the Wentzel-Kramers-Brillouin condition becomes

pdq=(n + $)iT 

or
J  pdq={n + \)h,

which is the Wilson-Sommerfeld condition, completed by the term 
\  which appears in the more accurate theory.

So far we have connected Schrodinger’s wave-equation only with 
the stationary states of the atom, to which correspond proper-values 
of the total energy. We shall now consider more general states.

In Bohr’s theory a stationary state meant a particular kind of 
orbital motion, so that an atom could be in only one stationary 
state at one time. In Schrodinger’s theory, on the other hand, 
the stationary states correspond to different solutions of a linear 
partial differential equation, and therefore the various stationary 
states can be superposed just as overtones can be superposed on the 
fundamental tone of a violin string. We have to consider what is 
the physical interpretation of this superposition.

Suppose that plane-polarised light whose vibrations are in a 
direction a  passes through a Nicol prism, which resolves it into 
vibrations in directions jS and y respectively parallel and perpen­
dicular to the plane of polarisation of the Nicol, and permits only 
the former to pass through. Fixing our attention on a single photon, 
which is initially polarised in the direction a , we can regard tnis state 
as a superposition of two states, namely, that of polarisation in the 
direction jS and polarisation in the direction y.1 We can speak of the

1 The superposition here spoken of must not be confused with superposition in classical 
mechanics ; in classical mechanics, the superposition of a certain state of vibration on 
itself gives a vibration of twice the amplitude, but in quantum-mechanics it gives merely 
the same state of vibration.
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probability of the photon being in either of the states and y, these 
probabilities being such as to account for the observed intensity 
of light polarised in the direction ft which emerges from the 
Nicol.

This connection between superposition and probability will now 
be extended to wave-functions. Consider two stationary states of an 
atom, for which the energy has the proper-values Ei and E2 re­
spectively. Let фг and ф2 be the corresponding normalised solutions 
of the wave-equation, with their appropriate time-factors e~̂ iEiin) 1 and 
e-{iE3ih)  ̂ an(j jet 0a __ с ф̂1 + where cx and сг are arbitrary complex 
numbers. Then the state or physical situation represented by ф3 is 
said to be formed by the superposition of the states represented by фх 
and фг. ф3 of course satisfies the general wave-equation

Let us find the condition that must be satisfied by cx and c% if ф3 is 
normalised. We have

This equation can be interpreted to mean that there is an uncertainty 
as to the value which would be found by a measurement of the energy of the 
atom, either of the values Ex or E2 being possible : and their respective 
probabilities are |cx|2 and |r2|2.

More generally, if </r0, ф1у ф2, • . . are the normalised wave- 
functions (with their appropriate time-factors) belonging respectively 
to the proper-values E0, Ex, E2, . . . (supposed for simplicity to be 
all different) of the energy of the atom, and if a normalised solution 
ф of the general wave-equation is expanded in the form

then in the physical situation defined by the wave-function ф, the probability 
that a measurement of the energy will yield the value En is \cn |2. On account 
of the relation \фnфm*dт = 8mn, it is seen at once that the value of the 
coefficient cn is }ффn*dт.

The equations which we have found lead to a certain connection 1 
with the classical electromagnetic theory of the emission of radiation. 
Suppose that we consider an atom in a stationary state, so that the 
wave-function ф involves the time through a factor (say) e27Tivt.

- |* i |e+ k .la.

ф =  Софо +  С\ф\ +  С2ф2 +  . .

1 E. Fermi, Rend, Lincei, v (May 1927), p. 795 
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Then ф* will have the time-factor er27riv/, so in the product фф* these 
time-factors will destroy each other : that is to say, the distribution 
of electric charge in the atom, and therefore its electric moment, 
will not vary with the time : and therefore according to the classical 
theory, the atom, when it is in a stationary state, will not emit radiation.

Suppose next, however, that the atom is not in a pure stationary 
state, but is in a state which is represented by the superposition of 
two stationary states, for which the wave-function has the time- 
factors e2TriP>t and e2irip** respectively, so that

ф = Ae27Tiv̂  + He2™*1

where A and B do not involve the time. Then we have 

фф* = (Ae27Tiv+ Be27riv*£) (A*r*27r*Vi< + B*e-27riy*‘)

=  AA* + BB* + AB ‘ +  A*Bé?-2m'(v‘ -*•>

and hence the electric moment of the atom, which depends on an 
integral involving t only in the combination фф*, will be periodic, 
with frequency (v1 — v2)9 and consequently the atom, according to the 
classical theory, will emit radiation of frequency (vx — v2). This radia­
tion will continue until the consequent exhaustion of energy has 
again reduced the atom to a single pure stationary state.

If Ei and E2 are the energies associated with the two stationary 
states, then Ei = hvx and E2 = hv2, so the radiation is of frequency 
(1/A) (Ei — Ea), just as in Bohr’s theory, and this result has now been 
obtained by what are essentially classical methods—-the classical 
theory of the solutions of partial differential equations—without 
doing violence to the electromagnetic theoiy of light.

Schrôdinger did not, at the outset of his researches, suspect any 
connection between his theory and the theory of matrix-mechanics.1 
He now, however,2 showed that the two theories are actually 
equivalent. In the first place, the commutation-rules of matrix- 
mechanics, which in the case of systems with one degree of freedom 
reduce to

T H E  D ISC O V ER Y  OF W A V E -M E C H A N IC S

qp-pq = ih,

become obvious identities if we write />= (H/i) 8/cq, since

я{ ; ^ ) ф~ т щ {яф]~ шф'

To any physical quantity £(q, p) we can correlate a differential
1 He says so in Ann. d. PhysA4) lxxix (1926), p. 734 ; * I naturally knew about his 

[Heisenberg’s] theory, but was discouraged by what appeared to me as very difficult 
methods of transcendental algebra.’

* loc. cit. : cf. also G. Eckart, Phys. Rev. xxviii (1926), p. 711
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operator £(q, hli.d/dq). Let us consider the operation of this quantity 
on a wave-function ifs(q). As we have seen, it is possible to expand 
ip(q) as a series of normalised orthogonal wave-functions, in the form

ф{я)*=с1фх + с%ф% + . • •

where

If £(q, hji djdq)i/j(q) has a corresponding expression

j  ^ Ф (я )= с1ф1 + с*Ф* + • • •>

then evidently we must have

=  4" вп\С% -f" ^па^з -j- • • •

where *«r =

But this equation shows that the column-vector (ci, c2 cz', . . .) is 
derived from the column-vector (cu c2y r3, . . .) by operating on it 
with a matrix whose element in the nth row and 7th column is enr. 
Thus the physical quantity t,(qy p), or the operator £(q, kji d/dq), may be 
correlated to the matrix whose element in the nth row and 7th column is

e„, = j  щ)фтШя>

in the sense that the performance of the operator on any wave-function p(q) 
is equivalent to the operation of the matrix (enr) on the column-vector of the 
coefficients cr, which express p(q) in terms of the normalised orthogonal wave- 
functions ф^), ф%{д), . . . .

We observe that the matrix thus found for the physical quantity 
£(q, p) is specially associated with the set of normalised ortnogonal 
wave-functions фп )̂ which belong to a particular Schrôdinger’s 
equation

We may call this set of wave-functions the basis of the matrix.
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In order to establish completely the identity of this correlation 
(between physical quantities and matrices) with matrix-mechanics, 
it is necessary to prove some other mathematical theorems, e.g. that 
the result of operating with the product of two operators £(q> hji djdq) 
and hji a/dq) on a wave-function is the same as the result of 
operating on the column of coefficients of the wave-function with the 
matrix-product of the matrices corresponding to £ and 77. The 
proofs will be omitted here.

Suppose now that the basis of the matrix representing £(ÿ, p) is 
the set of wave-functions belonging to the Hamiltonian function 
£(#, P)> so it is the set of wave-functions of the Schrôdinger equation

T H E  D ISC O V E R Y  OF W A V E -M E C H A N IC S

Then the matrix-elements are given by

enr = jipn*(q)£,(q, j  j^ t f ir(q)dq

=  j'<Jtn*(q)Erilir(q)dq

where Er is the proper-value of the energy corresponding to the wave- 
function ifjr(q). Thus

6nr = ErSr”

so the matrix is now a diagonal matrix whose elements are the proper-values 
of the energy for the Schrodinger equation

Thus the physical quantity £(<7, p), when expressed as a matrix in terms of 
this basis, is a diagonal matrix whose elements are its proper-values.

Therefore the problem as formulated in matrix-mechanics, 
namely, to reduce the matrix for £(q,p) to a diagonal matrix, is solved when 
we have found a solution of the problem as formulated in wave- 
mechanics, namely, to find the proper values of E and the corresponding wave- 
functions for the Schrôdinger equation

The basis constituted by the wave-functions of this equation enables 
us, by the above formulae, to calculate the matrices that represent 
q and p. Thus matrix-mechanics and wave-mechanics are equivalent.

Let us now investigate more closely the physical meaning of the
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matrix-elements. Consider the electric moment MPQ of the classical 
oscillator which would emit the radiation associated with a transition 
from a stationary state P to a stationary state Q, of the atom : let 
M denote ^  er} the electric moment of the atom, expressed in terms 
of the co-ordinates of the electrons : and let i/rP and фrQ be the wave- 
functions of the states P and ÇL We may expect that MPQ will 
depend in some way on M, фР and ^Q. Now we know that the time-
factor in MPQ is e~2mv̂ \ where vPQ = (1 jh) (EP — EQ), the time-factor in 
j/rP is e-ïE*W 9 the time-factor in ф§ is -̂Æq̂/Л } and M has no time- 
factor. We therefore expect that the expression for M PQ will involve 
the product 0PM*/rQ*5 where ф§* is the complex-conjugate of 0Q. The 
explicit expression of the co-ordinates has to be removed from this, 
which can evidently be done by integrating over space. Thus we 
obtain the expression

^фFMфçt*dт9

and this matrix-element we shall identify with MPQ, the electric moment 
of the classical oscillator which would emit the radiation associated with the 
transition P->Q. This identification is justified by comparison with 
the results of experiments.

Let us now illustrate the equivalence of matrix-mechanics and 
wave-mechanics by considering the harmonic oscillator in one 
dimension, for which the Hamiltonian function is

h  = 2^(/>2 + ̂ Y )

AETHER AND ELECTRICITY

where m and œ are constants. The Schrôdinger wave-equation is

Й* + {2mE -  m2a>y) ф=* 0

where E is the total energy of the motion.

Writing q= (HI2mw)kz> this may be written

which is the well-known differential equation of the parabolic- 
cylinder functions.1 It has a solution which is finite for all real 
values of z only when

JE
ha>

1 cf. Whittaker and Watson, Modem Analysis, § 16*5
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where n is a whole number,1 and the solution is then a 
constant multiple of the parabolic-cylinder function Dn(^),
which is a polynomial multiplied by e~l*. Thus the proper-values 
of H are

Е*=(я + £)Аш where n = 0, 1, 2, 3, . . . 

and the corresponding wave-functions are

where Л is a constant to be determined by the normalising 
condition

J _\>!>«{q)\*dq=\.

Since

J “j D»(*)№ = (27r)H

this gives

where an is real ; so the normalised wave-functions are

The definition of the element in the Ith row and nth column 
of the matrix representing the co-ordinate q, in terms of the wave- 
functions, is

f яФ1*{я)Ф»(я)(1Я'
J  — 00

Using the known properties of the parabolic-cylinder functions

and
zT)n{z) = D n+1(£) + « D n-i( t)

Г  T>m(z)Dn{z)dz = (2тг)‘й ! Snm,
— —  00

1 The Wilson-Sommerfeld quantum condition would lead us to expect the Action 
to be a whole multiple of A, that is, energy x period to be a multiple of A, or E equal 
to a multiple of Hw. The occurrence of (n + \ ) instead of n is characteristic of the quantum- 
mechanical solution.
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the value of the matrix-element can readily be calculated, and we 
obtain (inserting the time-factor)

î e
2^<(w<+/5a)

in agreement with the value found in chapter VIII.
Similarly the element in Ith row and nth column of the matrix 

representing the momentum p is expressed in terms of the wave- 
functions by

which when evaluated gives the same value as was found in Chapter

It was shown by C. Eckart1 by use of the wave-equation that in 
general problems, an element of the matrix representing a co-ordinate 
can be expressed as a series of the form

я) =Xo(m, n ) + h x i ( m 9 я)+Л2х2(т, я) + . . .

whereas oo, Хо{щ n) tends to the coefficient of the (m—n)th 
harmonic in the Fourier expansion of the co-ordinate as determined 
by the classical theory of the motion. This is in accord with Bohr’s 
correspondence principle.

In a later paper 2 he illustrated this theorem by calculating the 
matrix-elements of the radius vector for the hydrogen atom, and 
showing that their limiting values, as h->0 and the quantum numbers 
tend to infinity, coincide with the Fourier coefficients of the classical 
motion. In particular, the diagonal terms of the matrix tend to 
the constant term of the Fourier expansion.

In a paper entitled ‘ The Continuous Transition from Micro- 
to Macro-mechanics,’ 3 Schrôdinger showed how to construct for the 
harmonic oscillator a wave-packet, i.e. a group of wave-functions of 
high-quantum number and small quantum-number-differences 
such that the electric density is very nearly concentrated at a single 
point. He proved that the differential equation of the wave-functions 
of the harmonic oscillator, namely,

2 m( + m2to2q
•)

= ihдф
8t

is satisfied by

Л0 - =ф( - J.W + v/(?F  ) - 4 '  -  2 - 2V“")
1 Proc. Nat. Ac. Sci. xii (1926), p. 684 ; cf. P. Debye, Phys. £S. xxviii (1927), p. 170 
* Z S .f. P. xlviii (1928), p. 295 * Naturwiss, xxviii (1926), p. 664
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when k is any constant. This gives
{q — (2fj/mœ)* k cos

h/mœ У

The probability that at the instant / the co-ordinate q lies in the range 
from q to q + dq is ifnfj*dq : and clearly if H is very small (as it is) and k 
is very large, while hk2a> is finite, say equal to E, so (2à/m<o)*k becomes 
(2E/та>*у, then фф* is negligibly small except when the numerator of 
the argument of the exponential is approximately zero ; that is, the 
wave-function represents a wave-packet whose position at time / is 
given by

(Л) cos ы >

which is precisely the equation determining the position of the particle in the 
classical problem when the energy is E.

The quantum-mechanical theory of collisions was founded in two 
papers of 1926 by Max Born.1 A classical treatment of the problem 
had been given in 1911 by Rutherford,2 whose investigation of the 
scattering of particles by a Coulomb field will first be described.

Consider the scattering of a narrow beam of a-rays by a sheet 
of metal foil on which the beam impinges at right angles. The 
scattered particles afterwards strike a screen of zinc sulphide, and 
the number of scintillations on each square millimetre of the screen 
is observed.

Let the number of atoms per unit volume in the foil be n, and 
let q be the thickness of the foil, so there are nq atoms per unit cross- 
section of the beam. The area of that part of this unit cross-section 
which is within a distance B of the centre of an atom is therefore 
тгяуВ2, and out of a incident particles the number that are scattered 
at distances between B and B + rfB is 2тгащШВ. Now according 
to classical dynamics the path of a particle is a hyperbola having 
the centre of the atom as its external focus : and since the perpen­
dicular from the focus on an asymptote of the hyperbola is equal 
to the minor semi-axis, it follows that B is the minor semi-axis of 
the hyperbola. The angle 6 through which the particle is scattered 
is equal to the external angle between the asymptotes of the hyper­
bola, so

cot $0-®

where A is the major semi-axis. The number of particles scattered 
in the annulus between angles 6 and в + dd is therefore

TranqA2 cot cosec2 \9 dd.
1 Z S .f. P. xxxvii (1926), p. 863 ; xxxviii (1926), p. 803 
• Phil. Mag. xxi (1911), p. 669
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These fall on the screen, which is supposed to be at a distance l 
beyond the foil, on an annulus of area

d(jrl2 tan2#) or 27rl2 tan # sec2# de.

The number of scintillations observed per unit area is therefore
anqA2 cos3# cos |#  Qr anqA2 cos3#
2/2 sin # sin3 4/2 sin4 \9 '

Writing distance of the scintillation from the atom = //cos #, 
we see that the number of scintillations per unit area perpendicular 
to r is

anqA2 
4ra sin4 |# e

Now if E be the charge at the centre, e the charge and m the mass 
of the incident particle, and v0 the velocity at infinity, the usual 
formulae of hyperbolic motion give A^eE/mvo2 : so the number 
of scintillations per unit area perpendicular to v is

anqe2 E2
4mW  r2 sin4*#’

Thus if the beam of incident particles is of such intensity that one 
particle crosses unit area in unit time, and the beam falls on a 
single scattering centre, then the probability that in unit time 
a particle should be scattered into the element of solid angle sin # ddd<f> 
(whose #, ф are spherical-polar co-ordinates, the polar axis being 
the direction of the incident particle) is

g2E2
4m2fl04 sin4 £#

sin # d9d(j>.

This formula, given in Rutherford’s paper, was verified experi­
mentally. It afforded a means of determining the charge E on the 
nucleus of an atom, and led to the conclusion that the nuclear charge 
is equal to the electronic charge multiplied by the atomic number.

The quantum-mechanical treatment of collision problems 
originated in the two papers of Max Born already referred to. 
Consider the scattering of a beam of particles by a fixed centre 
of force, the potential energy of one particle at a distance r from 
the scattering centre being V(r). Schrôdinger’s wave-equation for 
a particle in presence of the scattering centre is
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where k=zmv0lfi, m being the mass and v0 the initial velocity of the 
incident particles. The general solution of the equation

Угф + к2ф=/(х,у, z)

where / i s  a given function, is known to be

ф - С(*,Л «) Z’)dr'

where C(x>y9 z) is the general solution of the equation VV + к2ф = 0, 
and where p2 = ( * '- x)2+ ( /- jv )2+ (z' — z)2> and dr is the volume- 
element dx'dy'dz’i the integration being extended over all space. 
So a solution of the wave-equation for the particle is a solution of 
the integral-equation

ф{х,у, Z) = c (x,y, Z) -  2S j y  V « ')* '. (!)

Now if the incident beam is directed parallel to the £-axis, it may 
be represented by a wave-function, which involves z only : since 
this wave-function must satisfy the Schrodinger equation

W + * 2<A=o,

it must satisfy (d2ifj/dz2) + к*ф = 0, so it must be a linear combination of 
etie and е~%кг : a stream moving in the positive direction along the 
axis of z9 with electron-density unity, will be represented by the 
term e%kz alone. The incident beam is thus represented as a plane 
monochromatic «/r-wave, whose wave-length is inversely proportional 
to the momentum of the particles.

The complete wave-function ф of equation (1) must represent 
this incident beam together with the scattered wave, which is a 
wave diverging from the scattering centre, of the form

THE DISCOVERY DE WAVE-MECHANICS

where (r, 0, ф) are spherical-polar co-ordinates, with the scattering 
centre as origin, so that в is the angle of scattering. Evidently the 
second term in (1) represents the scattered wave, and therefore 
G(x,y, z) must represent the incident wave. Thus (1) becomes

Ф(х,у, z) = < * * * - Z’W .  (2)

Let us find the asymptotic form of the second term on the right 
at great distances from the origin. When r is very large we have 
approximately

p = r~ r ' cos (rr'),
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so (à) becomes
*n  Г  A

ф {х ,у ,  z ) = e * ‘ - ^  е- \ е - ^ - ^ {г'Ш х 'г У )  Z'W .

When the particles of the incident beam are travelling so fast that 
the scattering is not very great, the function ф(х\у'> z ') in the integral 
may be replaced by the wave-function of the incident wave alone, 
so the last equation becomes

J  1er

ф (х ,у ,  z ) = e il* +  eT g(e)

where
g (e )  =  -  ^ - cos A ) V ( r')d T ' .

Making use of Gegenbauer’s formula,1 this integral becomes

(3)

À E T H É k  A 'N b E L EC T R IC ITY

where p  = 2kr sin £0.
Now denoting the electric density ефф* by />, and denoting 

the quantity

grad ф-ф  grad ф*)

by s, it can be shown from the wave-equation that

| f  + div s = 0 ct

and this equation suggests that s may be interpreted as the electric 
current2 ; and therefore the number of particles which in unit time 
pass through a unit cross-section is the component, normal to the 
cross-section, of the vector

so
S = 2 grad ^ ^ grad

S —  ̂ ( V s* etcdx ^Jx ) etc-

For the incident plane wave, ф = егкгу so Sz = kklm = v0y so the number 
1 G. N. Watson, Bessel functions, p. 378
1 Schrôdinger, Ann» d. Phys, lxxxi (1926), p. 109. Born, £S. / .  P. lxxxviii (1926), 

p. 803 ; xl (1926), p. 167. Gordon, Z S .f  P. xl (1926), p. 117
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ôf particles which in unit time pass through a unit cros$-$ettion at 
right angles to the beam is v0, the velocity of the particles,* as it must 
be. For the scattered wave we have

so
Sr. «  Ш1а _ vJ s(e) \\

m r% r*

Thus, with an incident beam in which one particle crosses unit area transverse 
to the path in unit timey the number of particles scattered into the solid angle 
sin 0 dOd(f) in unit time is |g(0)|2 sin 0 ddd<f>, where g(B) has the value given 
by (3).

Of course in this treatment, which is called the Born approximation, 
the interaction Vfr) has been treated as a small perturbation, and 
only the first approximation has been retained.1 Born’s formula 
was applied by Wentzel2 to the scattering of a beam of electrically- 
charged particles by an electrically-charged centre. Suppose the 
charges of the centre and of a particle are Ze and Z’ey where e is 
the electronic charge ; we suppose the Coulomb force of the centre 
to be modified by ‘ shielding,’ so we can write

V(r) =£!ZZ'e-s

where the factor e a represents the shielding, a being the effective 
radius of the atom. Evaluating (3) on this assumption, we find

*(*)-
2тегЪЪ'

НЧ {2k  sin

In the usual experiments, 1 /a2 is small compared with (2k sin £0)*, 
so may be omitted. Thus

g ( e) =  -
me2 ZZ'

2h2k2 sin2 \9

e*ZZ'
2mv0% sin2 £0’

and this is precisely the formula obtained classically by Rutherford. 
Agreement with experiment confirmed the interpretation of фф* 
that had been used in the derivation.

1 The wave-lunction ф of the quantum-mechanical treatment of the problem was 
derived analytically from the classical solution (by considering the Action) by W. Gordon, 
%S.f. P. xlviii (1928), p. 180. * £ S ./. P. xl (1926), p. 590
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BofrTs iftethod was applied in 1927 and following years to 
investigate the collision of an incident beam of electrons with the 
atoms of a gas, the atoms being possibly raised to excited states, 
and the electrons scattered : this work, however, falls outside the 
limits of the present volume.1

On 10 May 1926 Schrodinger contributed another paper to the 
Annalen der Physik,2 in which he set forth a general method for treat­
ing perturbations (Le. solving problems which are very closely 
related to problems that have already been solved), and applied 
his theory to investigate the Stark effect in the Balmer lines of 
hydrogen. The method was essentially the same as that given by 
Born, Heisenberg and Jordan, a few months earlier, or indeed as 
that used long before by Lord Rayleigh 3 in discussing the vibrations 
of a string whose density has small inhomogeneities. The wave- 
equation for the unperturbed system is

{h(*4 ' ?) - e}'1- 0-
Let the proper-values of E, and the corresponding normalised wave- 
functions ф (which are supposed to be known) be Eb E2, E3, . . . ; 
0i(<7), Ф*{я), . . . .  Let the perturbation be represented by
the adjunction of a small term Хгф to the left-hand side of the wave- 
equation, where Л denotes a small constant and r is a known function 
of the ^’s, so that the wave-equation for the perturbed system is

{4 f s H +v- E}*-°-
Let the new proper-values of the energy be E'l5 E'2, . . ., where 

E # = Es + Xcs + terms involving higher powers of Л,

and let the new wave-functions be ф'и ф'2, . . ., where
ф'а = фз + hvs + terms involving higher powers of Л.

Substituting in the wave-equation, and retaining only the first power 
of Л, we have

Л Е Т Й Е к  A N D  E L EC T R ÏC ITŸ

{H -  E, + A(r- €*ЖФ* + Лъ) = 0*

Since (H — Е*)фа = 0, this gives

(H — Es) Vs = — (r — €s) Фs.
1 Though Bom himself obtained important results in Gôtt. Nach. 1926, p. 146. 
■ Ann. d. Phys.W lxxx (1926), p. 437 
1 Theory of Sound, 2nd edn. (London, 1894), i, p. 115
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Now in Rayleigh’s problem of the vibrating string, if there is reson­
ance between the applied force and a proper vibration of the un­
perturbed system, the oscillation increases without limit, and no 
finite solution exists : it can be shown that corresponding to this 
in the present case, in order that there may be a finite solution, 
the right-hand side of the last equation must be orthogonal to the 
wave-function which is the solution фа of the equation obtained by 
equating the left-hand side to zero ; so we must have

or, since \ifjsi/js*dq= 1,

J  (r — €a) фзфз*(1д = 0

€s =  J  npsi/js*dq.

This equation gives the new proper-value of the energy as

E « = E* + \ r̂i/}Sifjs*dq.

We now proceed to find the corresponding wave-function, the new 
part of which is given by the equation

( H - E ,) * -  - ( r —

The integration of this presents no difficulty, and gives for the per­
turbed system the wave-function

I r i / jk * if j s d q

Ф’. = ф,+ '-L —  фь
Je Ljs — Ы

where the prime above the 2  means that the term corresponding 
to k =s is to be omitted.

Schrôdinger then considered the case of degeneracy, when to 
a single proper-value E* of the energy there correspond several 
wave-functions : in the perturbed system, the degeneracy will in 
general be wholly or partly removed, so that a single original energy- 
level gives rise to a number of energy-levels close together, and 
spectral lines are split, as in the Stark and Zeeman effects.

In applying this theory to the investigation of the Stark effect 
in the Balmer lines of hydrogen, we suppose that there is an electric 
field of intensity F in the positive ^-direction, so the wave- 
equation is

W + ^ ( e + ^ - « f ^ = o.

297



A E T H E R  A N D  E L E C T R IC IT Y

Schrodinger followed Epstein 1 in introducing space-parabolic 
co-ordinates Â, fi, ф by the equations

cos ф, y  — (Л/x)* sin фу ^ = |(Л~/х)

for which the volume-element dxdydz is |(Л + ll)d\dцdф. The wave- 
equation now becomes

+ ̂ f{E(X + /*) + 2*2 -  K (A a -  ц г))ф = 0.

To solve this equation we write
ф = А МФ

where Л is a function of Л only, M is a function of ц only and Ф 
is a function of ф only. The equation for Ф is

^Ф
dф*= - п 2Ф

where n is a constant which (in order that Ф and its derivatives 
should be single-valued and continuous functions of ф) must be a 
whole number, so я = 0, 1, 2, 3, . . . . The equations for Л and M 
are both of the form

K{fM D«’+Af+2B- 1)л-°-
The term D£2 represents the Stark-effect perturbation. So for the 
unperturbed system

d
dt + 2 В - | ) л - ° .

Put Л = £-*и, 2£V {-A )= y>  and B (-A ) “*=/>. The equation 
becomes

d*u 1 - я 2\ 
V  / k = 0

the solution of which is the confluent hypergeometric function
k = Wp,}„(■»?),
1 cf. p. 121 supra
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so in order that the solution may be finite everywhere we must have 
— £(я+1)+А (A: = 0, 1, 2, . . •)>

and the corresponding solutions are

There are two values of k> corresponding to the equations for Л 
and M respectively : call them kx and k2. Then % kx and k2 are 
the three quantum numbers of the unperturbed motion. Denoting 
the values of B in the Л- and M-equations respectively by Вг and 
B2, we have

Bi“ C r 1 + *i) v '( - A)

Ba = V (—A)

so

But
Bi + B2 = (n + 1 + ki + k2) \/(  A) •

B1 + B2= me*
2Й2 and A mE

W

so the energy in the unperturbed motion is
________ _________

2 1 + ki + Àj2)2

an equation from which it is evident that (n + 1 -f kx + Л;2) is the 
principal quantum number.

If we now carry out the process described above for finding the 
energy-levels in the perturbed motion, we obtain

E — _ me* _ 3ff*F (k2 — £i) (n + 1 + kx + k2)
2 k2(n+ 1 +A1 + A:2)a 2 me

which is precisely the formula found by Epstein 1 for the energy- 
levels in the Stark effect of the Balmer lines of hydrogen.

Schrôdinger proceeded to discuss the intensity of the Stark 
components. In order to find the intensity of a line, it is necessary 
to calculate the matrix-element relating to the corresponding transi­
tion. This matrix-element can be determined, as we have seen, 
from the wave-functions : and it was found to vindicate the selection 
and polarisation rules given by Epstein. Some of the theoretical 
results on intensities were confirmed experimentally in the following 
year by J . S. Foster.2

1 c f . p . 121 supra '  Proc. R .S .(a ), cx iv  (1927), p . 47 ; cxvii (1927), p . 137
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The terms proportional to the square of the applied electric 
force in the Stark effect were calculated in the following year by
G. Wentzel1 and I. Waller.2 The Stark effect was investigated in 
1926 also by Pauli3 from the standpoint of Heisenberg's quantum- 
mechanics.

Schrodinger's treatment, like that of Schwarzschild and Epstein, 
ignored the fine-structure of the hydrogen lines : the theory was 
completed in this respect not long afterwards by R. Schlapp,4 whose 
work was based on the new explanation of the fine-structure which 
had been provided by the theory of electron-spin.

Another phenomenon which is to be treated by the quantum- 
mechanical theory of perturbations is the Zeeman effect.5 If in a 
first treatment of the subject we ignore electron-spin, and consider 
simply the motion of an electron attracted by a fixed nucleus of charge 
e and under the influence of a magnetic field of intensity H parallel 
to the axis of £, then the Lagrangean function is

and therefore the Hamiltonian function is e

(measuring e in electrostatic and H in electromagnetic units, as 
usual) or

2^ j/k2 +Pv* + P* + ~jr(xPv —ypx) + (x2 +У ) j  — -•

The corresponding wave-equation, obtained by replacing p x by 
ifiti) (djdx) etc., is

- S W ) * - » .

Introducing spherical-polar co-ordinates (r, в, ф), with the г-axis 
as polar axis, this becomes
1 a
t* dr + 1

r* sin 0 дв
__ 1__

+ r* sin2 0
дгф 2m 
дф*+ F

leH  8ф
+ ~ch Ц 4с*№ r2 sin2 0 ф =  0 .

1 Z S .f. P . xxxviii (1927), p. 518 * %S.f. P . xxxviii (1927), p. 635
* < 5 ./ . P . xxxvi (1926), p. 336 ; cf. also C. Lanczos, Z $-f-  bdi (1930), p. 518 ; 

lxv (1930), d. 431 ; Ixviii (1931), p. 204
* Proc. RJ1.(a), cxix (1928), p. 313 ‘ cf. Schrodinger, Phys. Rev. xxviii (1926), p. 1049
* cf. V. Fock, Z S -f. P . xxxviii (1926), p. 242
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We shall ignore the term 1 quadratic in the magnetic intensity H : 
and we shall regard the linear term in H as a perturbation : so 
the wave-equation of the unperturbed system is the ordinary wave- 
equation of the hydrogen atom, which has already been considered : 
the wave-function is a constant multiple of

^W *,,+»(«)P.'*(coe в)в***

and the energy-levels are

E*= where k=  1, 2, 3, 4, . . .  .

Now in the above wave-equation the perturbation-term implies the 
replacement of E by E — Ar where

-v _  ieftH d .
2ш Ц '

so the term Л€* to be added to E* on account of the perturbation is 
(by the general theory)

= |{  -  ( ±*>) j-0ьФМд

when фк is supposed to be normalised, so $фкфк*йд = 1. Thus the 
displacement of the energy-level in the Zeeman effect is

Ae* = ± 2 me

where (i is the magnetic quantum number : which is precisely the value 
found in Lorentz’s classical theory.2

The above derivation accounts only for the normal Zeeman 
effect ; as might be expected, since we know3 that the anomalous 
Zeeman effect requires for its explanation the assumption of electron- 
spin. The problem thus presented was solved by W. Heisenberg 
and P. Jordan4 by matrix-mechanical methods in 1926, and by 
C. G. Darwin5 by wave-mechanics in 1927.

Darwin’s model consists of a charged spinning spherical body 
moving in a central field of force. Denoting the charge by —e,

1 The effect of the quadratic term was considered by O. Halpern and Th. Sexl, 
Ann. d. PhysA$) iii (1929), p. 565.

2 Vol. I, p. 412 ; cf. P. S. Epstein, Proc. N.A.S. xii (1926), p. 634 ; A. E. Ruark, 
Phys. Rev. xxxi (1928), p. 533

2 p. 136 supra
4 Z S .f. P. xxxvii (1926), p. 263 • Proc. R.S.(a), cxv (1927), p. 1
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the mass by m, the position of the centre by (*,y, z) and the potential 
energy at distance r by V(r), then the motion of revolution con­
tributes terms

AETHER AND ELECTRICITY

4 (£)4 ! ) '+(f ) ‘}+'vw
to the Lagrangean function. There is also a contribution

+ toy* +o>z%)

where I is the moment of inertia and (cox, coy, <oz) the components 
of spin about (*, jy, z)- The orbital motion in the magnetic field 
H along z gives a contribution

_?H l x dy_ydx\
2c\ dt y dt)'

The spin gives

since ejmc is the ratio of magnetic moment to angular momentum. 
Lastly there is the interaction of the spin and the motion. The 
electric force has components — (*/r) V' etc., so we obtain a term

- Z

All these terms were taken together and converted into Hamiltonian 
form, and the Schrodinger wave-equation was then deduced. From 
this equation by use of spherical harmonic analysis the proper-values 
and wave-functions were calculated and Lande’s ^-formula was 
obtained.1

Schrôdinger followed up his work on perturbations and the 
Stark effect by another paper2 in which he extended the perturba­
tion theory to perturbations that explicitly involve the time, and 
succeeded in obtaining by wave-mechanical methods the Kramers- 
Heisenberg formula for scattering.3 Let q represent the co-ordinates 
which specify the state of the atom at the instant /, and let H0 (q, p) 
represent its energy, so the wave-function for the unperturbed atom 
is given by the equation

1 cf. K. Darwin, Proc. R S . ( a ) ,  cxviii (1928), p. 264
* Ann. d. PhysA4) lxxxi (1926), p. 109 ; cf. O. Klein, £ S ./ .  P. xli (1927), p. 407
* cf. p. 206 supra
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Let the atom be irradiated by light whose wave-length is so great 
compared with atomic dimensions that we can regard the electric 
vector of the light as constant over the atom : let this electric 
vector be

E __ \ * е2ттЫ 'yç-ÏTTivt

T H E  D ISC O V E R Y  OF W A V E -M E C H A N IC S

where V is a complex vector. The additional energy of the atom 
due to this perturbation is -  (M . E), where M denotes the electric 
moment er of the atom : so the wave-function of the perturbed 
atom is determined by the equation

Йй = {н»(*»?4 ) -(М,Е)}*‘
The wave-function, when the atom is in the state P, may be denoted 
by Hpf

ф*0-е * М я )
and a general solution may be represented by a series of these wave- 
functions. Supposing that the atom is initially in the state P, let 
us solve the wave-equation of the perturbed atom by writing

Ф = фр° + фр1, where ф?1 is small.

Substituting in the differential equation, and neglecting small quan­
tities of the second order, we have

Ho(<7, дФЫ = { М - E)^°*

We solve this by substituting in it
Нр+Лу { Нр-Лу t

фр1 = фр+е л + фр~~е ih

and equating terms which have the same time-factor : the resulting 
equation for фР+ is

Ho(?, J ц)ф г+ -  (Hp + Ь)фР+ = (M . У)фР.

Now expand фр+ and MфР as series of the wave-functions i/rR, say

and
Фр+ — 2! аРяФъR

М0р = ^  MPRфъ
R

where MpR = dr,
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so MPR is the element in the (matrix) electric moment of the atom, 
that corresponds to a transition from the level R to the level P. 
Thus

I  *Pe{H o(?} Д 1 )  -  Hp -  hv}^r = I  (MpR . \)ф я

or I  ЯРЕ(He -  Hp - Ь ) ф к  = I  (Mpe . V)^BR R

and therefore tfpR_ ( MpR.V)

Similarly the coefficient of фъ in the expansion of фр~ is determined : 
and thus

f (MpB.V ) ^
1 VEP-V

+ (Mpe . V*)^
VRP + V

This equation gives the perturbed value of the wave-function. The electric 
moment of the classical oscillator which would emit the radiation 
emitted in the scattering process of an atom in the state P, associated 
with the transition to the state Q, is the real part of

or in this case J (0Q° + ^Q1) *M(0p° + <ДР1)</т.

Neglecting terms of the second order, this is found to be

MrQr*"'W +-  J  | m bq(Mpê V) + Mpr(MrQ . V) 1 
h  b  1 VEP-V VEQ +  V J

+ 1 y  (Mbq(Mpr . V*) j Mpr(Mrq . V*) ) t„<f> 
A l r l  *'ep +  v vm ~ v J

The term MPQ̂“2mW represents the spontaneous emission associated 
with the transition P->Q,, and the other terms are precisely those found by 
Kramers and Heisenberg for the electric moment corresponding to the scattered 
radiation associated with the transition P->Q.

The Compton effect was investigated quantum-mechanically in 
1926 by Dirac1 by means of his symbolic representation of matrix- 
mechanics, and by W. Gordon 2 by wave-mechanics. Gordon found 
that the quantum-mechanical frequency and intensity are the

1 Proc. R.S.(a), cxi (1926), p. 405
1 Z S .f . P. xl (1926), p. 11/ ; cf. G. Breit, Phys. Rev. xxvii (1926), p. 362 ; O. Klein, 

Z S .f .  p. xli (1927), p. 407, at p . 436 ; G. Wentzel, £ & / .  P . xliii (1927), pp. 1, 779 ; 
G. Beck, Z S .f . P. xlin (1927), p. 658
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geometric means of the corresponding classical quantities at the 
beginning and end of the process. Breit1 remarked that according 
to Gordon, the radiation in the case of the Compton effect may be 
regarded as due to a фф* wave moving with the velocity of light. 
Similarly Breit showed2 that if the motion of the centre of gravity 
of an atom is taken into account, emission takes place only by 
means of unidirectional quanta due to фф* waves moving with the 
velocity of light.

In 1927 Schrôdinger3 showed that by means of the conception 
of de Broglie waves, the Compton effect may be linked up with some 
other investigations of a quite different character. He began by 
recalling an investigation of Léon Brillouin4 on the way in which 
(according to classical physics) an elastic wave, in a transparent 
medium, affects the propagation of light. Let there be an elastic 
compressional or longitudinal wave (i.e. a sound-wave) of wave­
length Л, which is propagated in a transparent medium. It reflects 
at its wave-front light-rays which traverse the medium ; but the 
reflected ray has negligible intensity except when there is between 
the wave-lengths and the angles the relation

Л = 2Л cos i

where i is the angle of incidence and Â is the wave-length of the 
light in the medium (so it is times the wave-length of the light in 
vacuo, where K is the dielectric constant). This is precisely the 
equation which had been found in 1913 by W. L. Bragg as the 
condition that X-rays of wave-length Л should be reflected by 
the parallel planes rich in atoms in a crystal, when i was the angle 
of incidence and Л was the distance between the parallel planes 
in the crystal.5 In Brillouin’s theorem it is supposed that the velocity 
of propagation of the elastic wave is small compared with the 
velocity of light : more accurately, the formula must be modified 
as in the case of reflection at a moving mirror.6

Schrôdinger now showed that the Compton effect can be 
assimilated to the Brillouin effect, if the electron of the Compton 
effect in its initial state of rest is replaced by a ‘ wave of electrical 
density 5 and also in its final state is replaced by another wave. 
The two waves form by their interference a system of intensity- 
maxime located in parallel planes, which correspond to Bragg’s 
planes in a crystal. The analytical formulae are, as he showed, 
identical with those found by Compton in the particle-interpretation. 
Thus a wave-explanation is obtained for the Compton effect. Other cases 
are known in which a transition of a particle from one state of motion

1 Proc. N.A.S. xiv (1928), p. 553 * J .  Opt. Soc. Amer. xiv (1927), p. 374
• Ann. d. Phys. lxxxii (1927), p. 257 4 Ann. d. Phys. xvii (1921), p. 88
* cf. p. 20 supra
4 Brillouin’s problem was treated quantum-mechanically in Phys. Z$- xxv (1924), 

p. 89 by Schrôdinger, who found that quantum theory led to the same formula as classical 
physics.

THE DISCOVERY OF WAVE-MECHANICS
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to another may be translated into the superposition of two interfering 
matter-waves.

The year 1926 saw the publication of some important papers 
on the problem of atoms with more than one electron. It had 
been known for some years that the energy-levels or discrete station­
ary states, that account for the spectrum of neutral helium (which 
has two electrons), constitute two systems,1 such that the levels 
belonging to one system (the ̂ дга-system) do not in general combine 
with the levels of the other system (the ortho-system) in order to yield 
spectral lines. This fact led spectroscopists at one time to con­
jecture the existence of two different chemical constituents in helium, 
to which the names parhelium and orthohelium were assigned. The 
para-level system consists of singlets and the ortho-system consists 
of triplets.

Heisenberg2 and Dirac 3 now investigated the general quantum- 
mechanical theory of a system containing several identical particles, 
e.g. electrons. If the positions of two of the electrons are inter­
changed, the new state of the atom is physically indistinguishable 
from the original one. In this case we should expect the wave- 
functions to be either symmetrical or skew in the co-ordinates of the 
electrons (including the co-ordinate which represents spin). Now 
a skew wave-function vanishes identically when two of the electrons 
are in states defined by the same quantum numbers : this means 
that in a solution of the problem specified by skew wave-functions 
there can be no stationary states for which two or more electrons 
have the same set of quantum numbers, which is precisely Pauli’s 
exclusion principle. A solution with symmetrical wave-functions, 
on the other hand, allows any number of electrons to have the same 
set of quantum numbers, so this solution cannot be the correct one 
for the problem of several electrons in one atom.

In a second paper,4 Heisenberg applied the general theory to 
the case of the helium atom. There are energy-levels corresponding 
to wave-functions which are symmetric in the space-co-ordinates 
and skew in the spins of the electrons (i.e. the spins of the two 
electrons are antiparallel) : these may be identified with the para- 
system. There are also wave-functions which are skew in the space- 
co-ordinates and symmetric in the spins (i.e. the spins of the two 
electrons are parallel) : these are associated with the ortho-system. 
In both systems the wave-functions involving both co-ordinates and 
spin change sign when the two electrons are interchanged. Now 
if a wave-function is symmetrical (or skew) at one instant, it must 
remain symmetrical (or skew) at all subsequent instants, and there­
fore the changes in the system cannot affect the symmetry (or

1 For studies of the helium atom and the related ions Li+ and Be++ from the stand­
point of the earlier quantum theory, cf. A. Landé, Phys. £S. xx (1919), p. 228 ; H. A. 
Kramers, Z S - f  P. » ii (1923), p. 312 ; J . H. van Vleck, Phys. Rev. xxi (1923), p. 372 ; 
M. Born and W. Heisenberg, Z ^-f-  P- xxvi (1924), p. 216.

* Z S - f  P- xxxviii (1926), p. 411 * Proc. R.S.(a ), cxii (1926), p. 661
‘ Z S - f  P- xxxix (1926), p. 499
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skewness), so the para-levels and ortho-levels cannot have transitions 
into each other ; which explains their observed property.

Heisenberg’s first paper was notable for the discovery of the 
property of like particles known as exchange interaction, which had 
an important place in the physical researches of the years immed­
iately succeeding : an account of these must be reserved for the 
next volume.

T H E  D ISC O V E R Y  O F W A V E -M E C H A N IC S
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nection with quantum theory of 
emission 284-5 ; deduced from electro­
statics 247

electrom agnetism , independent of 
metric geometry 195 ; Page’s emis­
sion theory of 249 ; fusion with 
gravitation 188-92

electrom otive force produced by alter­
ing the velocity of a conductor 
243

electron, energy radiated by 247 ; field 
due to a moving 246

electronic charge, calculated by Planck
85

electron-inertia, effects of 243 
electrons, diffraction of 218 ; extracted 

from cold metals by electric fields 
236-7 ; in metals 230 ; thermal 
equilibrium with radiation 213 

emission theory of electrom agnetism , 
Page’s 249

em ission and absorption, Einstein’s 
theory of coefficients of 197 ; they are 
directed processes 199 

Encke’s com et, anomalous acceleration 
of 148

energy and temperature of a star, relation 
between 229 ; as observed by a 
particular observer 74 ; connection of 
mass with 51, 53 ; kinetic, relativist 
formula for 46, 48 ; conservation of 
68 ; conservation of, in impact, 51 ; 
of moving system 73

energy-m om entum  vector 69 ; con­
nection with energy-tensor 72 

energy-tensor 66, 67 ; connection with 
energy-momentum vector 72 ; Min­
kowski’s, derived from Hilbert’s world- 
function 172 ; expressed in terms of 
Lagrangean function 76 

entropy, connected by the Boltzmann- 
Planck law with probability 82 

equivalence, Einstein’s principle of 152 
exchange interaction 307 
exchanges of energy between matter and 

radiation 198 ; of momentum in 
emission and absorption 199 

exclusion-principle 142 
expanding universe 188

Ferm i statistics 224 
ferrom agnetism , explanation of 241-2 
filiform disturbances 165 ; solutions of 

partial differential equations 269 
fine-structure constant 120 ; of hydrogen 

lines 120, 134
Fitzgerald contraction 37 
five-dimensional relativity 191 
flat space, relativity in 175 
fluctuations in radiation 101 
force in relativity 69 
fundam ental ten sor 62, 63
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gam m a - rays discovered 3 ; wave­
lengths of 20 

Geiger counter 7
geom etry, attempts to make physics 

independent of 192-6 
Gibbs’s canonical distribution 86 
Gibbs’s therm odynam ical potential

226
grating, quantum theory of diffraction by

42-З
gravitation, relation between Einsteinian 

and Newtonian constants 170 
gravitational field, Einstein’s equations 

of 166- 8, 173 ; potentials 157 ;
properties essentially the same as 
inertial properties 152 ; waves 183 

gyromagnetic ratio  244

hafnium 140
Halley’s com et, anomalous motion of 

149
Ham ilton’s Principal Function, connec­

tion with Schrôdinger’s equation 
270-2, 279-80 ; principle, connection 
with quantum theory 104 

Hamiltonian form in relativity 47 
harm onic oscillator, solved by matrix 

mechanics, 261-3 ; by wave mechanics 
288-90

helium, ionised, spectrum of 1 1 4 ;
nucleus 6-8 ; spectrum of 306 

Huygens’ principle in optics 271 
hydrogen atom , discussed by Dirac and 

Pauli 266 ; discussed by wave- 
mechanics 273-5

hyperfine structure of spectral lines 142

identical particles, quantum-mechanical 
theory of a system containing 306 

inertial system s of reference 27, 35 
inequalities 144 ; secular, of Jupiter and 

Saturn 145
instantaneous three - dimensional 

space of observer 159 
integral form  of electromagnetic equa­

tions 250
interference and diffraction are essen­

tially quantum effects 216 
interval 65
ionisation-potential of a gas 91 
ionised helium, spectrum of 114 
ionium, parent of radium 11 
isotopes 11—13

kinetics of reactions 229

Lagrangean form  in relativity 47 
lam bda-term  in the gravitational equa­

tions 183

Landé splitting-factor 135 
lead, end-product of radio-active series 13 
Leathern effect 249-50 
lever, Lewis and Tolman’s bent 55 
light, deflection of a ray by a gravitating 

body 180 ; rays are null geodesics 165; 
velocity of, with respect to an inertial 
frame of reference 159 

light-darts 211
Lorentz’s suggested explanation of gravity

149-51
Lorentz transform ations 33

M ach’s principle 167 
m agnetic m om ent of electron 134, 136 
m agnetic quantum num ber 129 
m agnetisation, mechanical effect pro­

duced by 244 ; produced by spinning 
rods about their axes 244 

m agneton, the Weiss and Bohr 242 
m ass, connection with energy 51, 53 ; 

proper 51
m atrices, diagonal 259, 264 
m atrix-elem ents, physical meaning of 

288
m atrix-m echanics, connection with 

wave-mechanics 285-7 
m atrix-theory 255-8 
M ercury, motion of perihelion of 148, 179, 

180
m esons, rate of disintegration 44 
m etals, electrons in 230 
m etric 62
m etric, general, introduced by Bateman 

154
M ichelson-Morley experim ent, theory 

of 43
m irro r, light reflected from a moving 39 
mixed tensor 59 
m olecular heats of gases 100 
m om entum , of a photon 91 ; of moving 

system 74 ; conservation of 68 ; 
Planck’s definition of 54 ; relativist
47.48

moon, secular acceleration of 146-8 
m otion, relation of Einstein’s to Newton’s 

laws 168 
multiplets 137
m ultiply-periodic system s 127

needle radiation, J .  J .  Thomson’s intro­
duction of 94

Newtonian doctrine of gravitation, diffi­
culties in 144 ; law of attraction, 
derived from Schwarzschild’s solu­
tion 179 ; mechanics, relativity of 27 ; 
laws of motion, relation to Einstein’s 
168

norm alisation of wave-function 275
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nuclei» disintegration of atomic 25-6  
null cone 65, 165
null geodesics are tracks of rays of light 

165

operator corresponding to any physical 
quantity 267

orchestra, virtual 204, 253 
orthogonal vectors 64 
orthogonality defined 64, 159 ; of wave- 

functions 276
outer product of tensors 61

parallel-transport 189 
param agnetism , explanation of 238, 242 
particle, free motion of, in gravitational 

field 156 ; single massive, field of 
175-7

Peltier effect 231 
periodic table 11
perturbations, matrix theory of 264 ;

wave-mechanical theory of 296 
phase, of photons 95 
phase-surfaces of de Broglie waves 270- 

271
photo-chem ical decomposition 91 
photo-electric phenomena 234-6 ; Ein­

stein’s theory of 89 ; photo-electric 
effect for gases 90 ; compound photo­
electric effect 90

photo-molecules in radiation, numbers 
of 89, 103, 199

photons introduced 88 ; momentum of 91 
Planck’s second theory 103 ; third 

theory 104
Planck’s law of pure temperature radia­

tion, discovery of 81, 83 
Poisson-bracket, quantum analogue of 

266
polonium, discovered 2 
ponderomotive force in electrodyna­

mics 71
positive-ray analysis 12 
potential, electrochemical 231 ; Gibbs’s 

thermodynamical 226 ; gravitational 
157 ; of electromagnetic field 164 ; 
scalar and vector, Hargreaves’ ex­
pressions for 252 

potential-vector, electric 75-6  
precession of earth’s axis, relativist 182 
pressure due to electromagnetic field 251 
principal function, connection with 

Schrodinger’s equation 270-2, 279- 
280

probability of value of energy found by a 
measurement 284 ; that an electron 
is in a given volume-element 275 ; 
thermodynamic 82 

proper-m ass 51

proper-tim e 68 
proper-values 272 
proton, named 23

q-num bers, 266
quantum  of action, introduced 83 ; 

calculated 84
quantum  condition, expressed in terms 

of de Broglie waves 216-17 
quantum  m echanics, introduction of 

term 204

radiation, discovery of Planck’s law 81,
83

radio-activity 1-8, 10- 14, 20 
radium , discovered 2 
Ram an effect 205
Rayleigh’s law of radiation, derived from 

Planck’s 83
reaction on moving mass due to its 

radiation 247 ; kinetics of 229 
rectilinear orbits in field of a single 

particle 178
refraction, scattering, and dispersion of 

light, quantum theory of 200-6 
refractive index of a metal for electron- 

waves 234
relativity, principle of 30 
R icci-tensor 167 ; identical relations of 

173
Riem ann tensor 166 
rod, rotating, longitudinal vibrations of 

43
rotation of coil produced by starting 

current 243 
Rydberg constant 111

scalar 57
scalar-cu rvatu re 167 
scattering, wave-mechanical derivation 

of the Kramers-Heisenberg formula
302-4

scattering of charged particles by a
charged centre 295

scattering, refraction and dispersion,
quantum theory of 200-6 

Schrodinger’s p artial differential 
equation for the wave-function 270, 
272

Schwarzs child’s solution for a single 
massive particle 175-7 

selection-principles 131, 132 
shells in atom s 137- 9, 141, 149 
sim ultaneity 36 
de Sitter world 184- 5, 187 
six-vectors 35, 60
skew fundam ental tensor of Ricci and 

Levi-Civita 194 
skew tensor 59
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Sm ekal-Ram an effect 205 
solutions of equations of general 

relativity, particular 182 
space quantification 130 
space-tim e, four-dimensional 64 ; as a 

Cayley-Klein manifold 65 
spatial directions 65 ; spatial distance 

between two particles 186 
specific beats of solids 96 ; Einstein’s 

formula for 97 ; Debye’s formula 
for 99

spectra , Bjerrum’s theory of molecular 
108 ; Bohr’s explanation of Balmer 
lines n o ;  Conway’s discovery re­
garding 106 ; Nicholson proposes a 
quantum theory of 107 

spin of electron 134
Stark effect, discovered 117 ; Schwarz - 

schild and Epstein’s theory 121 ; dis­
cussed by matrix mechanics 267 ; 
wave-mechanical theory of 297 

statistics, Bose 219 ; Fermi 224 
Stefan-Boltzman law 86 
Stern-Gerlach effect 130 
stim ulated em ission 198 
superposition of states 283 
sym m etric tensor 59

tem perature and energy of a  s ta r,
relation between 229 

tem poral directions 65 
tensors 57
therm ionic work-function 90 
therm ionics 232
therm odynam ic potential, Gibbs’s 226 
therm oelectric phenomena 231 
Thom son effect 231 
transition of an atom , brought about 

by collision 115 
transition-probabilities 263 
transport, parellel 189 
transvection of tensors 62

unipolar induction 245 
universe, Einstein 183 ; expanding 188

vector, nature of 56 ; contravariant 58 ; 
covariant 59

vectorial divergence of a tensor of rank 
two 163

velocity cannot exceed velocity of light
38

virtual orch estra  204, 253 
virtual radiation, Bohr-Kramers-Slater 

theory of 211 
Volta effect 90, 235

wave-equation, general 279 
wave-function, physical significance of

275
wave-length, Compton 210 
w ave-m echanics, connection with matrix 

mechanics 285-7 
w ave-packets 290-1 
waves, gravitational 183 
W entzel-K ram ers-Brillouin method for 

approximate solution of wave- 
equation 280-3

W eyl’s fusion of electromagnetism with 
gravitation 188 

white dw arf stars 181, 228 
W hitehead’s relativity theory 174 
W ien’s displacement law 84 ; his law 

of radiation derived from Planck’s 
82

W ilson’s cloud-cham ber 4 
W ilson-Sommerfeld quantum  condi­

tions 118 ; connection with wave- 
mechanics 283 

w orld, de Sitter 184- 5, 187 
w orld-function, Mie’s 154 ; H ilbert’s 

170 ; Lanczos’s 174 
w orld-line of particle 158

X -ra y s, characteristic (K- and L-groups)
16 ; Moseley’s law of 24 ; diffraction 
of 18 ; polarisation of 14 ; spectra of 
138, *39 i spectrometer for 20

Zeem an effect, anomalous 135 ; dis­
cussed by matrix mechanics 267 ; 
Paschen-Back effect 135 ; Sommer- 
feld and Debye’s quantum theory 
of 128 ; wave-mechanical theory of 
300

zero-point energy 104
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