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INTRODUCTION

Nomography was introduced by Professor Maurice
d’'Ocagne, in 1884, in France. It has been developed
chiefly by French and German mathematicians since
that time in works given in the Bibliography. A debt
to d’Ocagne is universally admitted by American
writers. The full scope and power of several parts of
the complete subject as he practiced it is scarcely
known in the United States though we make heavy
use of its elementary parts. His chief work was pub-
lished in 1921, “Traite de Nomographie”, and has a
large number of practical problems. The subject
matter, appearing in the Table of Contents in the
last five pages of the book, is not divided or arranged
into easily taught topics but follows mostly physical
characteristics of charts. The Index is seventy-five
percent authors’ names and chart titles. Although at
least one translation has been made, none appears
ever to have been published. The Perpetual Calen-
dar of Crepin (Figure 4—17) and the double rectifica-
tion of a family of curves (Figure 9—5) of Colonel
Lafay, both faithfully credited by d’Ocagne, seem
the most common references actually drawn from his
work, but his authorship and paternity of the broad
subject of Nomography are unquestioned.

The magic and fun of Nomography arrived full-
blown with d’Ocagne. There is apparently an inner
satisfaction that comes with each use of an alignment
diagram — as though somehow the operator were
getting away with something that was quite smart
and for which he could claim some portion of the
credit. Then, of course, a nomogram saves a lot of
time. This happy feeling has in no way diminished
over close to one hundred years, and to this day a
kind of half-chuckle accompanies each use. How to
make nomograms is a different story and is usually
the first question asked by each new operator.

The basic philosophy of this book is entirely dif-
ferent from the d’Ocagne treatment. It is intended
for self-study as well as classroom use. The classical
elements of the subject are presented through a thor-
ough grounding in determinants, central projection,
duality and all those basic graphical techniques so
helpful in conceiving and interpreting nomographic
strategy and operations. Empirical data and imper-
fect canonical forms have been included. Careful
attention to the many examples worked out and
numerous problems assigned will provide a student
with a good foundation for extending the theory into
new regions made possible by modern electronic de-

velopments. For suggestions as to what some of these
might be, the reader is referred to Vol II listed in the
Bibliography.

This book is the selection and final arrangement
of material presented to undergraduate and gradu-
ate college students and found helpful in preparing
nomograms and nomographic devices at the profes-
sional level for some twenty-five years. A consider-
able portion of the material is entirely new to the
best of the writer’s knowledge.

The author wishes to thank the Rome Air Devel-
opment Center for preparing the first draft of this
text and publishing it for Air Force use, and for
similar treatment of the second volume of modern
electronic applications of this material given in the
reference as Final Report, Vol. II. Mr. Denis May-
nard of Griffiss Air Force Base, Rome Air Develop-
ment Center, is to be thanked for his encouragement
and for implementing the first writing. Thanks
should also go to the following persons each of
whom, as students of the subject, designed with the
writer a chart, drafted it and permitted its use in
this text: W. L. Allison, M. E. Arnold, A. N. Aron-
sen, Glen Bennett, Roy Blackmer, R. K. Breese, Noel
Davis, A. W. Eade, K. H. Epple, G. Eichenseer, John
R. Fennessey, Ralph Franke, William R. Frazier, Jr.,
George Fuld, Phillip Gladding, Robert J. Hecht,
J. H. Hughes, E. J. Kletsky, Richard M. McCul-
lough, Paul Michaels, Dick Perley, William Rice,
Paul M. Robinson, R. W. Stanhouse, Robert A.
Vietch, and R. Weithoff.

A subdivision into main and appendix parts has
been made because readers will vary so widely in
background, knowledge and experience. It was be-
lieved that basic material in determinants should be
at the back of the book so as not to clutter the devel-
opment of earlier chapters. The applicability of
material in Chapter 14 will become clearer as the
knowledge and facility of the reader grows. To sep-
arate perfectly what should be in the front and what
in the rear does not deserve further effort now. The
present division is a working start. There will be
readers to whom a considerable portion of the book
is merely review; for others, most of it can present
a challenge. The book aims to follow a middle
course.

Problem work is important in a text of this kind
so a considerable number of these appear in the
appendix chapters as well as the earlier ones. These
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have often been selected for double or triple duty
to provide practice and training in adjacent material
and to support and illustrate the theory of other
sections. Also, illustrative examples are used fre-
quently.

Nomography cannot be practiced with “approxi-
mate” diagrams. It is not ethical to use the term
“nomogram” for a diagram which looks like one but
was put together surreptitiously. A nomographer’s
algebraic procedures should either have a clear
mathematical pedigree or state clearly what their
limitations are. No approximations appear in this
book.

Since nomograms are made to be used by people,
a great deal of common sense and good judgement
is needed to minimize errors and fatigue and keep
users in a happy frame of mind. Patient study of
each chart for improvement of design and practical
use is a hall-mark of first rate nomography. If this
book can encourage and develop all these elements
of professional attitude and provide each reader with
a basis for carrying them through, it will have served
a good purpose,

The best success in turning out good nomograms
will accordingly come by drawing upon all the
mathematical knowledge a person can muster. In-
genuity is in demand almost all the time, as the
topics in the Appendix chapters show. The Per-
petual Calendar. Example 4-8, Figure 4—-17,is a good
illustration of how a seemingly complex problem
can get put into nomographic form. The type of
chart used here is the simplest but the adaptation
of the calendar problem to it is quite ingenious.

And so we come full circle back to the subject a
brilliant young Professor pulled out of a hat almost
a hundred years ago. We should compare the ele-
mentary ways in which it can be presented to the
general level he used in his own presentation. It is

vi

true that Nomography can be studied in limited
degree by using Euclidean geometry on each of a
rather small number of diagrams. In contrast to such
a limited attack, notions of dual correspondence of
point and line, crossratio, etc., are projective in
nature. Nomography is a lot more fun and more pro-
ductive at the higher level where projective tools
are used and the projective transformation is actu-
ally used as an operator upon a canonical form.

What makes Nomography especially challenging
is that at any level the driving force is the actual
construction of workable charts. This requires meas-
urements with linear scales and since the canonical
form has just been observed to be a projective ele-
ment, the metric and projective disciplines are in-
extricably meshed. The separate elements of the
determinant are admirably adapted to metric use,
that is for measurements, while the arrangement of
these parts in a canonical form has a projective sig-
nificance amenable to projective transformation by
determinant operator. Thus this curious and prac-
tical field might be thought of as an excursion
through intermixed metric and projective territor-
ies. For this excursion, most readers will find it prof-
itable to learn to operate the projective vehicle. That
is one skill this book tries to give them. If a lesser
skill is conveyed so that the person fascinated by
nomograms feels competent to turn his hand to their
accurate and practical design when needed, whether
or not they are the most sophisticated of diagrams,
this book will have served a good purpose. It will
have brought him the enjoyment that comes with
making and using them and the savings from their
efficiency.

The author will appreciate having any errors
brought to his attention or learning of any sections
that seem hard to understand.



PART |

These first three chapters give the essential ingredi-
ents of the determinant approach to Nomography in
both theory and practice. Although some reference
to the appendices may be necessary for persons not
used to determinants and other elementary proces-
ses, the basic procedures unique to Nomography are
presented in these fifty pages. A thorough under-
standing of this material is advised to see the reader
through the rest of the text.






CHAPTER 1
THE DETERMINANT IN NOMOGRAPHY

1-1. The Equation of a Straight Line in Deter-
minant Form. The equation of a straight line deter-
mined by two points Py(X;, Y;) and Py(X,, Ys) is

Y-Y, X-X
Yo —Y,  X,—X, a-n

Hence the condition that three points Py, Py, P3 be
collinear is

Y; - Y,
Y — Y,y

_ X3 — X4
T X,—-X, 1-2)

or

X2Y3 - X2Y1 - X1Y3 - X3Y2 -+ X3Y1 + X1Y2 = (.

This turns out to be the expansion of 0
X, Y 1
X, Y, 1|=0
X; Yy 1 (14)

which is likewise the condition that the three points
be collinear.

1-2. Parametric Representation of a Relation Be-
tween Two Variables. The equation y = f(x) says
that for any given value of x the value of y is deter-
mined.

Another way of expressing the relation between y
and x is by a pair of equations which tie y and x
together through a third variable, u. These are of
the form

y = y(u) X = x(u). (1—5)

Since u is in turn a function of x, u = u(x), we get, on
substituting into (1-b)

y = f(x). (1-6)
This is called “eliminating the parameter.”

Example 1-1. Given the equation y = u? x = u,
eliminate the parameter u and express y directly as a
function of x.

Answer: y = x2 The curve is a parabola.
1-3. Plotting Parameter Values on the Curve.

Since any value of u gives rise to a value of x and one
of y and determines a point of the curve, that value

of u can be attached to the curve at the point that has
x and y for its coordinates. This creates a scale in u.
Convenient values of u can be chosen permitting easy
reading of it along this curved scale.

Example 1-2. Figure 1-1. Plot the scales of the fol-
lowing three parametric functions in terms of their
respective parameters:

) X;=0Y, =0

0 X3=35%Y;= ‘%7

Example 1-3. Figure 1-2. Plot the following three
functions in terms of their respective parameters:

a) X, =0;,Y, =U/5

60 — W

b) X2=3;Y2=T‘

3 6

C) X3=‘,—;Y3'—V
7+ 1 z+1

1-4. Determinant Equation of a Straight Line in
Parametric Form. Write three parametric equations.

X =U; Y, =10,
where U; and U, are functions of parameter U,

X2 = VIJ Y2 = V2

V, and V, are functions of parameter V,

X3 = Wl’ Y3 = Wz
and W, and W, are functions of parameter W.
(-7
These determine three curves in U and V and W

which can be imagined to appear as in Figure 1-3.
Substituting (1-7) into (1-4) one obtains

U, U, 1
vV, V, 1]=0.
w, W, 1 (1-8)

Expansion of this determinant produces some func-
tion
FU,V, W) =0. (1-9)

Values of U, V and W which satisfy (1-9) satisfy (1-8).
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Through (1-7) they give rise to X, Y coordinates
which satisfy (1-4) and are collinear. Hence, they also
give rise to U, V, W points which are collinear. Con-
versely, any straight line cuts the U, V, W scales of
Figure 1-3 in points which satisfy equation (1-9).

The given equation (1-9), its determinant form
(1-8) and the interpretation of the form in the man-
ner (1-7) are basic equipment of nomography. Be-
-cause of their importance the above steps are now
repeated using definite quantities. These examples
should be well-understood.

Example 1-4. The three parametric equations from
Example 1-2 whose graphs appear in Figure 1-1 were

X,=0Y,=0U

X2 = 6, Y2 = V
w
Kg=3Yy =+ (1-10)
Put these into the determinant (1-4) to obtain
0 U 1
6 V 1| _,
W
3 g 1 (1-11)
The expansion of this determinant is
U+4+V=W. (1-12)

Then values of U, V and W which satisfy (1-12) satisfy
(1-11) and by (1-10) give rise to X, Y coordinates
satisfying (1-4). Hence these are X, Y coordinates for
points U, V, W which lie on a straight line. Con-
versely any straight line cuts Figure I-1 in U, V, W
values which satisfy U + V = W.

Example 1-5. The three parametric equations from
example 1-3 whose graphs appear in Figure 1-2 were

X1=O,Y1=%
60 — W
)(2=3;Y2=T
3 6
X3=V ;Y3=V .
241 Y -
5+ 5+ 1 (1-13)

Put these into determinant (1-4) to obtain

2

U
0 3 1
60 — W

3 M) 1| =0

3 6 1
v A%
—+1 —+1
2 + 2 + (1-14)

On expansion this is found to be the equation
U-V=W, (1-15)

The values of U, V, and W which satisfy (1-15) satisfy
(1-14) and by (1-13) give rise to X, Y coordinates
which satisfy (1-4). Hence these are X, Y coordinates
for points U, V, W which lie on a straight line. Con-
versely, any straight line across Figure 1-2 will cut
the U, V, W scales at values which satisfy the equa-
tionU -V =W.

Example 1-6, Figure 1-4. 1) Find by expansion the
equation represented by the determinant form

_U V3 1

2 2

Vv 0 1 = 0.
W V3
tg W

(1-16)

2) Plot the U, V, W scales parametrically presented
here, assuming that X, = — U/2; Y; = \/3/2 U,
etc., following the form of (1-4). 3) Draw a straight
line across the chart and show that the values in
which it cuts these scales satisfy the equation repre-
sented. 4) Record these U, V, W values along this
straight line.
1 1 1

Answer: ﬁ' + "—/: = W
Example 1-7, Figure 1-5. 1) Find by expansion the
equation represented by the determinant form

3 3U_
T+0: 1+0°
+3 -3V | _,
T+v: T+ w2 =
3
1T+ W 0 1 1-17)

2) Determine the shape of the U curve before plot-
ting, eliminate the parameter U and identify the
resulting function. 3) Plot the U, V, W scales pre-



sented parametrically here, assuming that X, =
3/14+ U2 4) Verify that the diagram works.

Answer: U - V=W

The U-curve is a circle.

1-5. Limitations of the Method thus Far; Its
Promise. All that has been shown thus far is that
when three parametric functions are plotted and a
determinant formed from them as in the examples,
following the pattern of (1-4) and (1-7), any straight
line will meet these curves in values which are solu-
tions to the equation obtained by expanding the
resulting determinant (1-8). The converse problem
asks how, if the equation is given, one gets (when
possible) the determinant for it. This is the subject
of the following chapter. Necessary and sufficient
conditions for doing this are discussed in the Appen-
dix but are not very useful.

A student will sometimes ask if functions other
than straight lines can be put into a determinant
form analogous to (1-4) and hence that, say, a circle
or other curve, rather than a straight line may be
made the “join” of values which satisfy the expansion
of the determinant. This is discussed in the Appen-
dix.

1-6. Scale Multipliers or Scale Factors. "The no-
mographer is always interested in certain ranges of
the variables in the equation he has at hand. The
range of one or all of these variables may be infinite,
but usually a variable’s range is finite, dictated by the
practical limits of the problem it came from. At the
same time, the amount of space that can be devoted
to the scale for such a variable is limited by the size
of the diagram the nomographer wishes to make and
the way the scale spreads out over it. Hence, it be-
comes necessary to devise ways of enlarging or reduc-
ing any scale until it uses the available space well.

Ascale X; =0 Y, =U 0=U=<10

is vertical and ten units long. It can keep its pattern

but be made twenty inches long by the device
Xl =0 Y1 = 2U,

that is, by introducing a multiplier 2 as shown. In

general, a scale
X]_ = Ul Yl = U2

where U,, U, are functions of U, can be written arbi-
trarily with multipliers inserted

X, = al, .Y, = bU,

and then values of a or b or both arrived at which
spread this scale out advantageously in X and Y. If
the available length in X for the scale is Ly, and the
range in U is

U,=U=U,

then one has

Lx=a(U,(Uyp)—U,(Uy); a= Lx/(U,(U,)—U,(Uy)

(1-18)
Similarly for

Ly=b(U,(Up)—UyU), b=Ly/(UyU,)—UxU,)

Example 1-8, Figure 1-6. A nomographer has the
equation U + V = W in determinant form,

0 ulU 1
u-15 uvw
u+v u+v (1-19)

where u and v are constants whose value can be
chosen. He wishes to have a chart for this equation
which is 15 inches wide and 20 inches high. Ranges
of the variables are 0 = U = 10; 0 << V =< 20. This
chart consists of three vertical uniform scales placed

. <15
tivelyat X = 0, X = 15, and X = =
respectively a and X Ty and
with scale multipliers, u, v, and w = uv . The
u-+v

width of the chart is already fifteen inches. The U
scale can be stretched out to cover twenty inches if
u is given the value 2, while the V scale will cover
twenty inches if v is assigned the value 1. Then the
multiplier of the scale W becomes 2/3 and it lies 10
inches from the U scale.

Expansion of the determinant (1-19) shows that
this diagram is for the equation U + V = W.

Example 1-9, Figure 1-7. A nomographer has the
equation U - V=W in determinant form:

0 ulU 1
15 20—wW 1| =0
15
15 1

1+ v 142V

+ + (1-20)
and he wishes a rectangular chart tor it 15 inches
wide and 20 inches high. Ranges of the variables are
0<U =200, 0=<W =<10. The chart consists of
vertical, uniform scales in U and W, U increasing up,
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W down, 15 inches apart, and a diagonal scale in V
from lower left (V=00) to upper right (V=0). Then
u = 1/10, w = 2. Figure 1-7.

.

PROBLEMS

In each of the following eleven problems three
curves are given in parametric form. In each prob-
lem:

1) Replace the X and Y coordinates in the deter-
minant of equation (1-4) by the expressions in the
variables given below.

2) Expand this determinant and find the equation
between the three variables.

3) Plot and calibrate a short portion of each of the
three curves and check these on the completed figure
accompanying each problem.

4) For each curve, wherever possible, eliminate the
parameter, express the curve in the form ¥ = Y(X)
and identify the kind of curve.

5) Show that the diagram ““works” by drawing one
or more straight lines across its face and noting that
the values where it cuts the scales satisfy the equation
between those variables found in step 2). (Use the
complete figure for this.)

PROBLEM 1-1. Ordinary addition. Figure 1-8.

X, =0 Y, =10 U
X2=15 Y2=20'V
X3=5 Y3=667'W

The chart scale-stems fill a space 15 X 20 inches.
Show that expansion of the determinant yields the
equation U + V=W,

PROBLEM 1-2. General quadratic. Figure 1-9.

X; =0 Y, = 10B’

X, =15 Y, = 10A
15 —10x2

X = TF1 = FT

The chart scale-stems fill a space 15 X 20 inches.
Show that the expansion of the determinant yields

x2+ Ax + B =0.

PROBLEM 1-3. Parabolic nomogram for multi-
plication. Figure 1-10.

X, = -V Y, = V2
X2=U wY2=IJ2
X3=ﬂ Y3=W

The chart scale-stems fill a space 6 X 9 inches.
Show that the expansion of the determinant gives
UVU+ V)=WU+V),U# —V)orU:-V=W.

PROBLEM 1-4. Cubic with a constant term. Fig-
ure 1-11.

Y, = 10A
Y, = 10B

_15x _—10(—0.4 + x3)
T x4+ x2 Y3 = x + x2

The chart scale-stems fill a space 15 X 20 inches.
For this problem, consider only the curve C = —0.4.
Show that the expanded determinant gives

x3 + Ax2 4+ Bx —04 = 0.
PROBLEM 1-5. Air flow problem. Figure 1-12.

X3

The chart scale-stems fill a space 20 X 15 inches,
divided as shown.

This problem requires a compound diagram, as
the figure shows — a combination of three diagrams.
Two of these compute the quantities.

LT
= — -3

r

The ranges on these will be found to be

1
A from 0 to —m

B from 0 to — 125

On this basis, the scales for A, B and V are given
by the equations shown below. A and B, being nega-
tive quantities, are thus made to plot in the upward
direction. There is no need to draw in these two
scales since they are merely intermediate scales on the
use of the chart.

The student should check the operation of the
chart by one or more collineations. With A and B
known, this problem then proceeds like the rest.

X, =0
X2 = 20
X, = 20(88,300,000)
87 0.12 - V4 + 88,300,000
Y, = —88,300,000 A
Y, = —0.12B
0.12(88,300,000)V

0.12 - V4 + 88,300,000



Show that the expanded determinant gives

1 %
V= 52.8[K a-— B/SV):’

PROBLEM 1-6. Trajectory range. Figure 1-13.

This problem has scale-stems filling a space 20 X
15 inches. It is also one of those requiring a com-
pound diagram —one made up of two diagrams in
this case, namely one for W = Ry + Rg and the
other as stated. Since the ranges on Ry and Rg are
known, the range of W can be found and the solution
obtained for the remainder of the chart as specified.

X, =0
X2 - 4.58
X, 4.58

~ 0.00959/H + 1

Y, = 0.06S
Y, = —0.0023W + 15

_0.000205H + 15
0.00959./H + 1

Ys

Show that the expanded determinant gives

VH:S +H
4 11.19

=W=R0+RG

PROBLEM 1-7. Compound pendulum. Figure
1-14.

Xl = 0 Y]_ = 2L
X, = —7.5/A Y, = 2A
X, = 7.5/B Y, = 9B

The chart scale-stems fill a space 15 X 20 inches.
Show that the expanded determinant gives

L = (A? + By)/(A + B).

PROBLEM 1-8. Two-dimensional probability
density. Figure 1-15.

X, =0

X2 = 15
1215

Xy = 2s2 + 81

Y, = 4.15 logys = 20
Y, = 0.0222r2

V. = 252(20—415 lOgey 27['52)
8 252 + 81
The chart scale-stems fill a space 15 X 20 inches.
Show that the expanded determinant gives

=L .. 1=z
V= G 252§
The latter term is an exponential.

PROBLEM 1-9. Complex variables. Figure 1-16.

X, =W Y, = -1 where:
X, =0 Y, = —1/V2 V = tanh n/2
X;=U Y; = U2 U = tane/2

The chart scale-stems fill a space 15 X 20 inches.
Show that the expanded determinant gives

W+ VU 4+ WU2V2 — U = 0.

PROBLEM 1-10. Altered quadratics. Figure 1-17.

X1= 15
X2=O

15x2
Y=
Y, =2
Y2=b

—-x
B= et

The chart scale-stems fill a space 15 X 20 inches.
Show that the expanded determinant gives

a-x+b/x+1=0.

PROBLEM 1-11. Logarithmic mean. Figure 1-18.

Xl =0 Yl =M
__5 =N
X, = Iny, Yo = Iny,
__b = J2
T Inys, Ya—lny2

The chart scale-stems fill a space 7.5 X 9 inches.
Show that the expanded determinant gives

M = (y, — Y1)/(ln y2 — Inyy).
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CHAPTER 2
EQUATIONS IN DETERMINANT FORM

2-1. An Equation in the Form of Three Compat-
ible Equations. It is possible to write down three
equations which express a single three-variable equa-
tion. These three equations are said to be compatible;
that is, they do not conflict with each other, or with
the original equation. Thus, if the original equation
is

U+V=W (2-1)
one can write:
Let A=TU
B=V
Then A4+ B =W, (2-2)

These three equations are compatible. They can be
written in the form

A-1+4B-0—-U=0
A 0+B:-1—-V =0
A 14+B-1—-—W=0. (2-3)
(2-3) is identical with (2-1).
2-2. An Equation Put in Determinant -Form.

Since equations (2-3) are compatible, the determi-
nant of their coefficient vanishes, or

1 0—-U
0 1-V|{=0
1 1-W 2-4)

Equation (24) isa relationship betweenU, Vand W,
It is consistent with the three equations (2-3) and
(2-2) which were based upon (2-1). Hence, (24) and
(2-1) must be identical. This can be proved by ex-
panding (2—4) to prove it is indeed the relation

U+ V=W

Any equation F(U, V, W) = 0 can be put in deter-
minant form, the simplest of which would be

1 0 0
0 1 0 =0

but (2—4) has theadvantage that it has distributed the
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variables of its equation into various places through-
out the determinant.

Example 2-1. Place the equation U - V = W in
determinant form in three different ways.

Method 1) Let A=1U
B=W
A-1+B-0—-U=0
A-04+B-1—-W=90
A-V—-B-140=0
Answer 1 0-U
0 1-W|=0.
Vv—-1 0 (2-6)

Check by expanding the determinant

U-V=W
Method 2) Let A=1U
B =
A-14+B-0-U=90
A-0+B-1—-V =0
A-V+B-0-W=0
Answer 1 0—U
0 1-V|=0.
vV 0-WwW 2-7N

Check by expanding the determinant

U-Vv=W
Method 3) Let A=TU
B = V asin2)
A-1+B-0-U=0
A-04+B-1-V =0

A 0+B-U-W=0



Answer 1 0 - U l
0 1 -V =0
0 U - W (2-8)

Check by expanding the determinant
U-v=W

All three of these ways are valid, but Method 1)
will be shown to be better for our use than 2) or 3).

Example 2-2. Place the equation x? + Ax + B = 0
in determinant form. To avoid confusion, call the
two unknowns here P and Q.

Let P=A

Q=B
P-1+4Q-0—-A=0
P-04+Q-1—-B=0
P-x+Q-1+x2=0

Answer 1 0 — A

0 1 —-B}| =0

x 1 +x2 2-9)
Check x2+ Ax+ B =0

Conclusions:
a. Anyequationcan be put into determinant form.
b. This can be done in a number of different ways.

c. The expansion of the determinant then yields
the equation.

d. The determinant is the equation in a special
form.

Definition: Form ((A)). If an equation is in determi-
nant form, it is said to be in Form ((A)).

2-3. Disjoining Variables in a Determinant. Form
((B)). It is often possible to thake changes in the deter-
minant according to the standard rules (see Appen-
dix) until each of the three variables appears in only
one row (or in only one column.)

Definition: Form ((B)). When each of the three vari-
ables of an equation in determinant form appears in
only one row (or one column) the variables are said
to be disjoined. The determinant equation is then
said to have form ((B)). All equations in determinant
form ((B)) are also in form ((A)), but those in form

((A)) are not in form ((B)) unless they are disjoined.
In (2-4) the equation U + V = W appeared in a
determinant form

1 0 —U
0 1 —V|=0 (B)
1 1 —-w 2-10)

Here disjunction had already occurred, so the deter-
minant can be labeled ((B)).
In Example 2-1, Method 1), the equation

U-V=W
appeared in the form (2-6).

1 0 —U
0 1 —-W | =0 (B)
vV -1 0 @-11)

which can be labeled ((B)). However, the same equa-
tion also appeared in the form, Method 2) (2-7)

1 0 —-U
0 1 -V |=0 (A
vV 0 —-W (2-12)

to which only the symbol ((A)) can be attached be-
cause the variables have not been disjoined since the
bottom row contains both a Vand a W. (2-12) can be
put in form ((B)) by the following determinant
changes:

1 0 —-U
O0=(0 1 -V
v 6 —W

(a) Multiply column III by (—1)
(b) then multiply column II by (—V) and add to

column III
1 0 U
0= 0 1 0
Vv 0 W

Add row II to row IIX

1 0 U
0=|(0 1 0
Vv 1 W
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Multiply column II by (—V) and add to column I.

1 0 U
0=1| -V 1 o0 | (®)
0 1 W 2-18)

Conclusions: A determinant in form ((A)) can some-
times be disjoined and thus placed in form ((B)) by
formal determinant changes.

Note: It is not always possible to change a determi-
nant from form ((A)) to form ((B)). Necessary and
sufficient conditions have ‘been derived which can
theoretically tell when an equation can and when it
cannot be disjoined but they are not in useful form.
The practitioner can only go through various manip-
ulations such as appear above in the hope of effect-
ing disjunction. Though success is possible, he may
lack the skill to achieve it. Continued attempts at
disjoining are always a gamble since the way may not
be possible. After some experience, the student
usually gets so that he can find any solution that
exists in a reasonably short time.

RULE: As a first step toward placing a three-vari-
able equation in disjoined form ((B)), one should
look to see if there are any variables which appear
only once in the equation. The substitutions should
preferably be tried for those variables. In the ex-
ample below, Methods 1) and 2) do not follow this
rule, Method 3) does and gives the desired result
quicker and easier.

Example 2-3. Place the following equation for two-
dimensional probability density in form ((B)).
y = FISZ e{—r2/252}  (exponential)
Taking logs
Iny+In2x + InS2+12/282 =0
let y=ny+In2z
282y’ + 482InS 4+ 12 =0

Method 1) Let A =82

B=r
A-1+4B-0—-5=090
A 0+B-1—-1r2=0

A-2y+B-1+448InS =0

20

1 0 —s
o=[0 1 —p
9y 1 4StInS

(a) multiply column III by (—1)
(b) divide row II by r?

1 0 s2
0=| 0 1/ 1
2y 1  —4S$2InS| ((B))

now write rows as columns, or columns as rows

1 0 2y’
0=|0 1/ 1 ((B))
S2 1 —4821n S (2-14)

Method 2) as before, let
A=8

B =r2
A-14B-0-5=0
A-0+B-1—-1r=0
A2y +4InS)+B -1+ 0=0
1 0 -8
0= 0 1 —712
2y+4InS 1 0
(a) multiplyrowI by 4 In S and subtract from row JII

(b) divide row II by r?

1 0 —82
0={ 0 1/r -1 ((B))
2y’ 1  4$82InS

write rows for columns, columns for rows

1 0 2y’
0o=| 0 1/ -1 | (B))
—-§ =1 482InS§ (2-15)



Method 3) Iet A=y

B=r2
A-1+B-0—-y =0
A-0+B-1—12=0

A-2824+B-1+482InS =0

1 0 -y
=10 1 —1? ((BY)
282 1 482In S (2-16)

In Methods 1) and 2), the disjoining occurred first by
columns. In Method 3), disjunction occurred by rows
and right away with no need for changes within the
determinant. These three approaches show the effects
of different substitutions and the value of trying
different ones for A and B if the disjoining seems to
be coming hard.

2-4. Canonical Form of Variables in a Determi-
nant. Form ((C)).

Once disjunction of variables in an equation has
been carried through and form ((B)) obtained, a
further final form of the determinant can always
easily be found. This is known as the canonical form,
or form ((C)).

Definition. Form ((C)). 1f the disjunction of a deter-
minant has been by rows, ((C)) is made to have a
column of 1’s usually placed on the right as in (1-8).
If the disjunction of a determinant has been by
columns, ((C)) is made to have a row of 1’s usually
placed along the bottom.

Example 2—4. The equation U 4+ V = W was placed
in form ((B)) in (2—4). We now change it into canon-
ical form ((C))

1 0 -0
0=10 1 -V
1 1 -Ww

(@) multiply column III by (—1)
(b) add column II to column I

1 0 U
0=1}1 1 V
2 1 W

(a) divide row IlI by 2
(b) shift column I to column II1

o U 1

1 \Y [N ((®)]
12 W/2 1 @-17)

Following (2-12, 13) equation U + V = W can be
placed in the canonical form ((C)) as follows:

0 U 1
1 w 1| =0 (<)
1
—v ¢ 1 (2-18)

Following (2-9), the equation x? + Ax + B = 0 can
be put into canonical form ((C)) as follows:

0 A 1
] B 1|=0 ()
1 =X 1
T+x T1+x 2-19)

Following (2-16) the equation

1

Y= m e{—r/252}

(exponential)

can be put into canonical form ((C)) as follows:

0 ¥ 1
1 12 +| =0 Q)
1 —482%InS _
1+ 282 1+ 282 (2-20)

2-5. Bringing New Quantities into the Determi-
nant. For the equation U 4+ V = W, the substitution

A =ulU
B =vV (2-21)
yields three equations:
A-1+B-0—-—uU=0
A-0+B-1—-v=0

A-tes.lowoo
u \%

A canonical form ((C)) is now found into which we
shall have brought several new quantities which can
serve as adjustment factors:
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1 0 —uU

0=]0 1 —vV
11 _w
u v

(a) multiply column III by (—1)
(b) add column II to column I
(c) then shift column I to column III

0 ulU 1
=11 vV 1

1 W u+v

v uv

(a) divide row III by u +
u-v

(b) multiply column I by G

0 ulU 1
= G vV 1
Gu uvW
u+v u+v (2-22)

(2-22) will be found on expansion to yield the orig-
inal equation U 4+ V = W. It should then be com-
pared with form ((C)) of (2-17) for the same equation.
The new quantities give the interpretation of ((C))
much greater flexibility. G permits varying the width
of the diagram. u and v are scale multipliers or scale
factors and can be used to expand or contract their
respective scales.

Note: Passing from form ((A)) to form ((B)) is usually
simpler if no scale factors are present. It is better to
put thru a “pilot plant” procedure for ((B)) with no
scale factors present and then, if successful, to see if
the change can still be made when scale factors are
brought in.

2-6. Finding Scale Factors for a Particular Chart.
Breadth of the Chart. The nomographer is usually
interested in a certain range of each variablé of a
formula and in a nomogram of a certain physical size,
usually rectangular in shape. This permits use of
(1-18) to determine such quantities as u and v, as
discussed in Section 1-6. Quantities like G control-
ling breadth can often be worked into the determi-
nant toward the end whenever desirable.

Example 2—4. A pilot plant for Example 2-2 has
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already been put thru without scale factors. (2-9),
(2-19). Scale factors are now desired, because vari-
ables A and B are both to range from —100 to 100
and the chart is to be 15 inches wide and 20 inches
high. Following the pattern of Example 2-2, for the
equationx? + Ax + B =10

Let P =aA
Q =bB
P-14+Q-0—2A=0

P-0+Q-1—bB=0
PXrotlye=
a Qb =

1 0 —aA

0= 0 1 —bB
x/a 1/b x2

1 0 aA
= 1 1 bB
X 1 1

_— — —_— —_—2

L

1 0 aA

= |1 1 bB
1 a —abx?
bx + a bx + a

Using the material from Section 1-6, and the equa-
tion (1-18)

20 = a(100—(—100))
a=1/10

90 = b(100—(—100))

b=1/10
0 A/10 1
0= 15 B/10 1 ,
15 —x2

x+1 I10x+1)



PROBLEMS

Each of the following problems appeared in Chap-
ter 1 under the same number.

1) Place each equation in canonical form ((C)) such
that each term X, Yy, X,, Yo, X3, Y3, of ((C))

X, Y, 1
X2 Yz 1 =0
X, Yy 1

is the same as shown in the problems of correspond-
ing number in Chapter 1.

2) By comparing with the problems in Chapter 1,
read off the values of the scale factors and constants.

3) Using the scale lengths and ranges of the vari-
ables in the completed diagrams referred to in Chap-
ter 1 for each problem, show that the values of scale
factors agree with those of Chapter 1.

For example: In Problem 2-1 place the equation
U + V = W in the canonical form of Problem 1,
Chapter 1:

0 ulU 1

G vV 11 =0
uG uvW
u-+v u-+v

and by further comparison with that problem con-
clude that G = 15, u = 10, v = 20. On looking at
completed Figure 1-8, it will be clear that these

values of G, u and v were the ones used there since
they make each variable’s range fit its scale length
and put it in proper position.

PROBLEM 2-1. U+ V=W

PROBLEM 2-2. x2+ Ax + B =0
PROBLEM 2-8. UV(U + V) = W(U + V)

PROBLEM 24. x*+ Ax?+Bx+ —04=0

. %

PROBLEM 2-5. V =528 (% a- B/3V))
VH . +H _
PROBLEM 2-6. Y= -8 — s =W
_ AZ + BZ

PROBLEM 2-7. L=
PROBLEM 2-8 S ek

— y”2w52'83ﬁ§

(exponential)

PROBLEM 2-9. W+ VU +WUV2—-U=0

PROBLEM 2-10. a - x+b/x+1=0

Y2 — V1

PROBLEM 2-11. ==
Iny, —Iny,

23



CHAPTER 3
THE CANONICAL FORM FOR MORE THAN THREE VARIABLES

3-1. Disjoining an Equation in Four Variables.
Canonical Form ((C)). Assume that it is possible to
put an equation in four variables:

FU,V, W, T)=0 (3-1)
in the form

U, U, 1
Vl V2 1 =0
W, T); (WT) 1 (3-2)

U,, U, are functions of U only
V3, V, are functions of V only
(W, T, (W,T), are functions of W and T only.

This would be done in the same way as described
earlier for three variables. The equation in four vari-
ables is then said to be disjoined and in canonical
form ((C)).

3-2. Interpretation of a Disjoined Equation in
Four Variables. One writes the following equations,
planning to interpret them as in Chapter 1 for three

variables:
v,=u, )

A parametric equation in U, yielding a curve ‘
graduated in U.

Xl = Ul;

Xp = Vg Y=V, (8-3)

A parametric equation in V, yielding a curve\
graduated in V. ‘

Y; = (W,T), /

To interpret X3, Y3, let T have the constant value
T = T,, then X; and Y3 are functions of W only,

Xs = (W, T)y;

Xs = (W, Ty)s; Y3 = (W, Ty,

(3-4)

Figure 3-1 shows the three curves for U, V and W
when T = T,. Now repeat the process using a value
of T differing just a little from T, namely Ty. Then

X3 = (W, Th); Y3 = (W, Ty,

(3-5)
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and again X3 and Y; are functions only of W. The U,
V and W curves when T = T, are shown on the
same Figure -1, the U and V curves being the same
as before. The scale stems bearing W values have
been labelled for T, and T,. The new W gradua-
tions will not be far from the old ones because T}
differed very little from T, This process can be
carried out many times, and with each new scale,
each new W graduation moves a little way across the
paper, tracing out a W curve with that value.
Imagine many such values of T. Then all the T
curves and all the W curves form a two-variable net,
as shown in Figure 3-2. Actually the roles of T and W
could have been interchanged. On holding W con-

“stant at value W = W, one would have X3, Y; func-

tions of T alone. The U and V curves and gradua-
tions would be the same as above; the third curve,
graduated in T and labelled Wy, would turn out to
be identical with the curve of the first net labelled
W,.

Such a chart consisting of U and V scales and a
two-variable net of W and T curves aligns three
points at values of U, of V, and the intersection of a
W curve and a T curve such that these values of
U, V, Wand T satisfy the equations (3-1) (3-2). Itisa
common, effective form of chart.

Suggestion: As a first step toward placing a multiple
variable chart in disjoined form ((C)), if there are any
variables which appear only once in that equation,
the substitutions should preferably be made for those
variables.

If two variables play symmetric roles in an equa-
tion, the substitutions should be tried for either
those variables or others.

The first of these rules is used in Examples 3-1,
3-2; the second in Example 3-3.

Example 3-1. Figure 3-3 represents the equation
X3+ AX2+BX +C=0 (3-6)

nomographically. A, B, C range from — 100 to + 100,
X is dependent. The available chart space is 15 inches
wide and 20 inches high.

Let ¢ =aA 87
9 = bB -7
¢14+6-0—-—2A=0 (3-8)



$-0+d-1—bB=0

2
°£+0 -§+X3+C=O
a b
These are three linear, compatible equations in ¢
and 9 and hence the determinant of these coefficients

vanishes.

¢ (3-8)

1 0 —aA

0 1 —~bB =0 (B)

Xz X

= p XtC (3-9)

The disjunction of variables has already occurred
here since the first row contains only functions of A,
the second only functions of B, the third only func-
tions of X and C.

One now proceeds toward a canonical form ((C))
for four variables as follows:

1 0 aA
1 1 bB =0
Xz X X
(F+3) & —x+o (3-10)
1 0 aB
1 1 bB = 0, form ((C))
1 X ab —ab(X3 + Q)
b bX?z 4+ aX bX2 4+ aX (3-11)
0 aA 1
G bB 11| =0, form ((C))
GX —b(X3 + Q)
b b 1
— X2 —X2
X+ 22X X+2X 5-12)

Applying (1-18) to evaluate scale factors, one has

a(100 —(—100)) = 20: a=1/10
b(100—(—100)) = 20; b=1/10
Let ¢ = aA
6 =cC

¢ 1+6-0—-aA=0
¢ 0+6:-1—-—cC=0 (3-15)

2
s Xt ol rBe=0
a C

and making the width 15,

G =15
0’ A/10 1
15 B/10 1 1 0, final form ((C))
15X ~X+ 0
X + X2 10X + X?) (3-13)

Vertical, uniform scales in A and B, 15 inches
apart, are the result. Variables X and C yield an X, C
net, which at first glance poses formidable plotting
problems, but a moment’s inspection provides an
easy way out:

In the equations

15X =X+ Q)

XB=xrx’ B IOERFXY

One observes:

1) when X is kept constant and C varies, only Y3 is
affected. Hence, “X = constant” curves are vertical
lines on this net.

2) when X is kept constant, Y3 varies uniformly
with C. Hence, on a vertical line for given X, loca-
tion of one high and one low value of C permits
rapid determination, by uniform subdivision of the
interval, for those values of C lying in between. This
does not imply that the C curves are straight lines—
they are wavy.

(3-14)

Example 3-2. The substitution (3-7) above was a
natural start toward ending up the uniform scales
in A and B on the sides of the diagram and this
turned out to be the case. It is sometimes possible to
know in advance which variables it would be good to
have in these positions. Such a case would arise, as
shown later, when it is clear that their diagram will
have to be joined to another one by means of such a
scale along the side. The diagrams resulting from
starting with variables A and C, and B and C now
follow, on the left and right down the page. Figures
3—4 and 3-5.

Let ¢ = cC
6 = bB

¢ 14+6-0—-cC=0
$0+6-0—-bB=0 (3-16)

1 X
¢ - E+0' B+X3+AX2—0
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1 0 —aA 1 0 —cC
1 —cC =0 (3-17) 0 —bB =0
g .1_ x3 4+ Bx l X x3 4+ Ax?
a c c b
1 0 aA 1 0 cC
1 1 cC =0 (3-18) 1 bB =0
cxt+a 1 b+cx x . y
ac c (¢ + Bx) | bc b (ot + Ax)
0 aA 1 0 cC 1
G cC 11=0 (3-19) G bB 11=0
G —c(x? + 3x) Gx —b(x3 + Ax?)
cx? cx? 1 b b 1
—+1 —+1 x +— X+ —
a a c C
0 A/10 1 0 C/10 1
15 C/10 1 [=0 (3-20) 15 B/10 1[({=0
15 —(x3 + Bx) 1 . I5x  —(x® + Ax?) 1
x24+1 10xz+4+1) x +1 10(x + 1)

3-38. Scope of the General Case. The fullest use of the method just developed would be given by the form

R, 8)y R, S) 1
(T, U), (T, U), 1|1 =0 where (R, S), is a function of R and S only, etc. (3-21)
(V’ W)l (V’ W)Z 1

which would have come from an equation in six variables,

FR,S, T, U,V,W)=0 (3-22)

and would be interpreted as three nets, namely those of R and S, T and U, V and W. Equations in six vari-
ables adaptable to this form are not common. One classical case often referred to is that of the stress in the
walls of a thick hollow cylinder with closed ends under internal pressure, external pressure or both. It has a
twin equation where the cylinder has open ends. These formulas are called Clavarino’s and Birnie’s respec-
tively, and they state:

T2« Wy — T2+ Wy + 4212 (wy — wp) /12

P= 3(re? — 1,%) (3-23)
_ 2% - wy — 21y - Wy + 41,212 (wWy — Wy) /1P .
P= 3(re? — 11%) (-29)

Example 3-3. Figure 3-6. Prepare alignment diagrams for Clavarino’s and Birnie’s equations. In Clavarino’s
equation, (3—23) p enters simply and w; and w, next simply. Because of the somewhat symmetric roles of the
latter, one might try the substitution

let A =w,

let B=w, (3-25)
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A -1 + B -0 - W, =0
A-0 + B - 1 - Wy =0
4r,2 192 41,2 152
A ( r12 + %) + B (—"r22 __“11_7&) + 3p(1’12 - rzz) =0 (3_26)
1 0 —wy
0 I —w 0 (a) add column II to column I
2 - (b) multiply column III by (—1).
41,2 1ry? 41,2 152
r12 + 1r 2 22 er 2 3P(r12 — rz"’) (3_27)
1 0 wy
I 1 w —0 (a) divide row III by r;2 — 1,2
2 - (b) then multiply column II by r;2 — 1,2
4r,? ry?
2 —r? —r? — 1r2 2 —3p(ry? — 1p?) (3-28)
1 0 Wy
=11 12 — ry? wy Multiply column I by r,? and add to column II (3-29)
41,2 1y?
I —ry2 lrz 2 —3p
1 o2 Wy
=11 1,2 W (a) Interchange column I and column III
A2 p.2 (b) Multiply column II by 10/1,2 ry? (3-30)
1 - =22 -3
r2
Wy I/r2 - 10 1
Wo l/rs2 - 10 1|1 =0
—3p —4/r2 - 10 1 (3-31)
The twin determinant, for equation (3—24), reads by analogy
2w, 2/ry2 - 10 1
2w, 2/r2 - 10 1 | =0
—8p —4/r2 - 10 1 (3-32)

Figure (3-6) shows how both of these diagrams can
be condensed onto a single diagram. To avoid hav-
ing the nets overlap, the x-coordinate is reversed for
the second problem, thereby reversing the direction
of reading p. A y-coordinate scale multiplier of 10
has been introduced in the last form of each deter-
minant. The x-coordinate scales have been kept
natural size.

Equations (3-23), (3—24) are also good illustrations
of “homogeneous equations,” for if p, r, 1y, 15, Wy, Wo
are solution values, then kp, kr, kr,, kry, kw,, kw, are
also a set of solution values. Here k can take on any
value but is the same for a particular use. This for-
tunate fact implies that a diagram made for a limited
range of the variables will be usable for a greater
range. A favorite value for k is 10, but others such
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as 2 or 3 are also sometimes practical. Equations
which are not completely homogeneous may be
“semi-homogeneous” as in Problem 1-8. Equations
in five variables, interpretable as two nets and a
scale, are met reasonably often, while those with a
single net, like Figures 3-3, -4, and -5 are quite
common.

3—4. Collapsed Net in a Diagram. Remedies.
Occasionally an equation in more than three vari-
ables turns up in a canonical form, where an ex-
pected net has “collapsed” onto an axis or some other
line or curve, as where F(U, V, R, S) = 0 takes on the
form:

U, U, 1
V, V, 1]=0
®R,S), 0 1 (3-33)

Here, what should be an R, S net lies only along the
X-axis. Not being spread out, a pair of values, R, §
do not fix a point through which an alignment can
be drawn. On the other hand, one has the relation-
ship

X3 = (R, ) (3-34)

which is a three-variable equation for which an
alignment diagram can perhaps be made. If this dia-
gram can be arranged to have a linear scale for the
variable X, this scale can be placed in coincidence
with the X-axis. A collineation through a value of U
and of V, and one through a value of R and of § will
then cross the X-axis at the same point, X3, if U, V, R
and § satisfy the equation F(U, V, R, S) = 0. If values
of three of these variables are known, that of the
fourth can be found in this way. (Problems 3-8, 3—4.)

PROBLEMS
PROBLEM 3-1. Given the equation

b-h

P=a—%m

use the substitution
A =D,
B=H

to derive the canonical form

0 b 1
G H 1|=0
GP Ph_

P-h P—h (3-35)
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In the botiom row of this determinant, eliminate
first P (leaving h constant) and then h (leaving P
constant) to show that both families of the net are
straight lines. Make a quick sketch of the diagram
and show that it works.

PROBLEM 3-2. Given the equation

b-h

P=a—%

use the substitution
A=P
B=b

to derive the canonical form

0 P 1
H +b 1| =0.
h o0 1 (8-36)

Make a quick sketch of the diagram and show that it
works.

PROBLEM 3-3. Given the same equation

_b-h

P H-h

use the substitution
A=P
B=b

to derive the canonical form

o P 1
G b 1|=0
Gh

sh—m ° ! (3-37)

Here the h, H net has collapsed onto the X-axis.
However, the expression

Gh

Xs=oh—H

(3-38)

can be placed in the canonical form below. Derive
the form

X; 0 1

G H

7 3 1|=0

0 h 1 (3-39)



Here X; is interpreted as an x-coordinate. Hence, a
diagram with a collapsed net can be replaced by
two diagrams (a compound diagram) using two
alignments which cross the X-axis at the value X.
Make a quick sketch of the compound diagram and
show that it works.

PROBLEM 3-4. Given the same equation

use the substitution

It
=

il

B=H

to derive the canonical form

0 h 1
G H 1|=0
—GP
5 0 1 (3-40)

Here the P, b net has collapsed onto the X-axis. How-
ever, the expression
_—GP

Xy = —p—

can be thought of as ordinary multiplication

b - X3 = —GP.

The collapsed net diagram of (3—40) can be replaced
bya compound diagram using two collineations, (one
for each of its component charts) which cross the
X-axis at the value X3 = —GP/b. Make a quick
sketch of the diagram and show that it works.

PROBLEM 3-5. Given the same equation

b-h

P=——

H-h

derive a canonical form for it different from any of
the above four forms. Use any substitution you wish.
The substitutions 1) A =P,B =H;2)A =P,B = h;
3) A = b, B = h, have not been used above up to
now.

PROBLEM 3-6. The equation from textiles
103N —C - I+ 0911S(C —943) =0

can be placed in a variety of canonical forms. Derive
the three different canonical forms for this equation
needed to yield three charts (two of which are shown
complete in Figure 3-7). Introduce scale multipliers
in each case and evaluate them to yield these charts.
Expand each canonical form to prove that it does
represent the original equation. In each case, derive
the equations of any families of straight lines in the
net.

PROBLEM 3-7. Figure 3-8. The law of cosines
can be placed in desirable nomographic form:

A*=B2 4+ C2—2BC - cosa (341
15 A2/20 1
0 104+ 10cosa 1 | =0
150 [1/2)B*+Cy + BC |

10 + BC/10 10 + BC/10 (342)

Derive (342) from (3-41). It will be necessary to
introduce scale factors and give them the values
needed for this result. Show that this was the form
used to obtain the completed diagram of Figure 3-8.
Note: The equations for the net in the bottom row
of (3—42) are symmetric in B and C, causing the B
and C curves to coincide. This does not interfere
with the use of the net unless B and C happen to
have the same value. Even then the coordinates of a
point for each such pair of equal values of B and C
are definite, for such a point will lie at the point of
tangency of the overlapping pair with the envelope
of the family and have been marked there on the
chart.

PROBLEM 3-8. Figure 3-9. The law for design fac-
tors for close wound coils can be written

0.2A2N2

L=satoDN

(3—43)

A chart for this diagram appears in Figure 3-9. A
smaller chart for a limited portion appears to the
upper left. Derive the canonical forms required to
provide these diagrams. Evaluate all scale factors.
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PROBLEM 3-9. In cycloidal cam theory, one meets the equation

2M tan p, = tan (Ma) + (M — L) a{csc2Ma)

Bearing in mind the rule about substitutions quoted in Section 3-2, derive the canonical form

1 tan p, 1
0 L 1|=0.
2M tan Ma + Ma * csc2Ma 1
2M + a - csc2tMa 2M + a * csctMa (3—44)

Plot enough points to check the diagram. See also Problems 44, 4-5.

PROBLEM 3-10. Figure 3-10. The solution of the second order secular equation can be represented graph-
ically by the nomogram of Figure 3-10. Derive this diagram, especially the two forms shown there using
respectively the vertical and inclined lettering.

This is an interesting chart. It is clear that the range of the chart can be changed by multiplying all the
variables by the same factor. It is also clear that

10 — A, — (10 — ) -R
—R 10 — A, — (10 — )

0 (3—45)

Al_)\ R
R A2_)\

This justifies the vertical numerals if the inclined ones have already been derived, or conversely. The user
should verify that either set of numerals will give both answers although one of the answers will lie each time
in the congested corner of the net and be hard to read. The diagram based on the other set of values (vertical
or inclined, respectively) gets around this difficulty and was derived for this reason.

PROBLEM 3-11. Figure 3-11. An alignment diagram for speed at sea level is given in Figure 3-11. Derive
this figure and check several values.

PROBLEM 3-12. The design of reinforced concrete columns uses a formula for which a diagram has been
made in Figure 3-12. Derive this diagram in the form shown there.

PROBLEM 3-13. The astronomical triangle formula appears in Figure 3-13. Derive the diagram shown there
and check it with numerous measurements.
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PART i

Chapters 4 through 10 show what can be done with
the approach outlined in Part I, when ingenuity and
extrapolation of ideas are practiced. They also de-
velop the underlying theory of central projection
and the general projective transformation into effec-
tive operator form. The useful parallelisms in dual-
ity of point and line are naturally placed here.






CHAPTER 4
THE IMPERFECT CANONICAL FORM ((C)) * INGENUITY * NETWORK CHARTS
DEPENDENT AND INDEPENDENT VARIABLES *+ COMPOUND DIAGRAMS
SUBSTITUTIONS * ELEMENTARY DIAGRAMS

4-1. Imperfect Canonical Form. ((C)). A nomog-
rapher may be unsuccessful in attempting to place
an equation in canonical -form ((C)). However, he
may arrive at a stage that is not perfect but lends
itself to a practical interpretation.

Example 4-1. (See also Problem 4-10). Figure 4-1.
The equation

10W + V= 20)+ (W+ V) (U —V)=0

(4-1)
can be placed in the form
5 U 1
10 vV 1| =0
W+ Vv
w 1
2 (4-2)

Figure 4-1 is a direct interpretation of this
canonical form. The V scale is vertical, linear and
placed at X, = 10. Its scale factor is unity. The U
scale is vertical, linear, placed at X; = 5, with a
scale factor of unity.

A W scale of unit scale factor appears at the
extreme left, fixing the height of the coordinate
Y;. To find the x-coordinate of the W point, X3 =
W+ V

2
for addition (Chapter 1) whose sum scale is half-

way between the W and V scales and with a scale
factor 1/2. When W is joined to V, the join cuts
W+V .

. This

ordinate is then brought to the 45° ray. This fixes
the abscissa value X3 and with the original ordi-
nate W, the third point of the collineation. If U
is the dependent variable, the steps for finding it
are as numbered on the figure.

. Hence W and V are treated by a diagram

this central stem at a height X; =

Example 4-2. Figure 4-2.
Represent in alignment diagram form the equation.

9
2
X+

= T
2K x* ]
K-—1 (4-3)

2Kx?y2 —(K—-1y2—(K—-1x2—-2=0

(4-4)

Let A =x2

B =y?

A+14+B-0—-x2=0

A-0+B-1—-y=0

2K x2 2

A(U+B§K_1 li_K?T_O
1 0 — x2
0=1| 0 1 -y
2K x2 -2

! K—l_% K -1

(a) multiply column III by (—1)

(b) multiply column I by % and add to

column II. (4-5)
1 2K x2
K-—-1
0= 0 1 y?
2
1 1 =1

(a) divide row I by x2
(b) multiply column I by x?

() multiply row III by K — 1. (4-6)
2K
1 E=1 1
0= 0 1 y2
—xK—-1) —-K-1) 2
write rows for columns, columns for rows 4N
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1 0 —x(K-1
= | 2K —(K —
0= =1 1 (K - 1)
1 y? 2
(a) move column I to column III
(b) divide column II by —(K — 1) (4-8)
0 x2 1
2K
0=11 1 K1
—2
P gy | !
(@) multiply row II by K2—_1
(b) multiply column I by G 4-9)
0 x2 1
(K—-1) K-1
0=| =g ¢ —x l|=0
-2
G k=1 ! (4-10)

Several other forms of arranging the three variables
of this equation are also possible, depending on what
the dependent variable is.

In (4-10) X,, Y, define a ray through the origin
which can be graduated in K. The only difficult
point of the collineation, X3 = y2G; Y3 = =2 CIf

K—-1
(K—1) .. . .
Xo = 5K G is now correlated with Y5 and if one
eliminates the parameter K, one derives the curve
given below, where X,, Y,, X3, Y3 refer to form
shown in equation (1-4)

G

X, =
2 2—"Y3

4-11)

This is the rectangular hyperbola shown in Figure
4-2 with asymptotes X = 0 and Y = 2. As shown in
the key, entry in K supplies an abscissa value X, =
K—1

T G which, through the curve, yields an ordi-

nate value Yg =

=1 With X; = y2G, this fixes

the third point of the collineation.

4-2. Ingenuity in Nomography. Section 4-1 has
just shown how ingenuity can help the nomog-
rapher. The distinction between a seemingly obvi-
ous and an ingenious scheme will vary with the indi-
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vidual depending upon his knowledge of the subject
and his experience with it. An awareness of a wide
variety of possible developments will give him flexi-
bility. See Problem 4-2 and especially Problem 4-19,
Figure 4-33, for an ingenious treatment of Example
4-2. A broad base of information is helpful in con-
ceiving such possibilities. Properties of conics, ele-
ments and processes of projective geometry, proce-
dures in algebra and calculus, can contribute to
facility with nomography.

4-3. Network Charts. A network chart is a device
for showing the behavior between three variables,
F(U, V, W) = 0. Two of the variables, say U and V,
are plotted (usually, though not necessarily) as
Cartesian coordinates. If the third is held constant
at some value W = W, a relationship between U
and V results which can be plotted and labelled
W = W,. W is sometimes called the “family vari-
able” or “family parameter” because differing values
of it give rise to a whole family of such W curves on
the U, V grid. Schemes like changing the family pa-
rameter from W to U or to V may change the nature
of the curves of the family drastically.

Example 4-3. Show various forms of network chart
for the equationU - V. =W,

1. Letting U and V be uniform scales at right
angles (conventional Cartesian scales) then for each
W = W, = constant, one has the relation U - V =
W,, which yields a family of rectangular hyperbolas.
Figure 4-3.

2. Letting U and W be plotted uniformly on
Cartesian axes and V be family parameter, the ratio
of W to U remains constant for constant V and the
family of V curves appear as straight lines through
the origin. Figure 44.

2a. The roles of U and V can be interchanged here
with V plotted along the prime axis and constant U
lines through the origin. Figure 4-5.

3. Taking logsof U + V= W, log U + logV =
log W. Plotting X = log U, Y = log V, then constant
W yields X 4+ Y = log W, = constant. Figure 4-6.

4. Returning to 1 and plotting a reciprocal scale
in U, U’ = 1/U, rather than a uniform scale of U on
the prime axis, one has V/U’ = W, = constant,
yielding straight lines through the origin on the
W-family. Figure 4-7.

Other forms of a network chart appear in the
Appendix. When an equation cannot be put into
practicable alignment diagram form it can always



appear in network chart form. Empirical behavior of
variables is usually recorded graphically in network
chart form. The development of an alignment dia-
gram for such empirical behavior must then always
come from this graphical plot—a technique dis-
cussed later. Having the “family variable” graph as a
set of straight lines is an important special case
which will be discussed later.

4—4. Dependent and I dependent Variables. This
subject is being treated more frequently in texts for
it must be understood for good results. In the chart
for the equation U + V = W, Figure 4-8, a value of
W can always be found for each pair of assigned
U, V values, that is, the chart is NOT well adapted
to finding V when U and W are given, because the
line of collineation could cut the.V scale at a value
outside the chart (dotted line). For the same reason,
it is NOT well adapted to finding U when V and W
are given. In other words, it is best adapted to the
situation where values of U and V are chosen freely
or independently and W is then, found as a result—
W being dependent on the choice of U and V. In
practice, in any problem it should be possible to
know which variable is regarded as dependent. If
this is not clearly stated in words, the ranges assigned
the variables will frequently indicate which is the
dependent or answer variable. In contrast with the
above, in Figure 4-9 it is now V which will always
yield an answer for any chosen values of U and W.
V is the dependent variable, U and W are independ-
ent variables. The ranges of U and W will be
observed to be the same in both figures. The differ-
ence in the ranges of the two V scales shows the differ-
ence in the diagrams.

The answer scale for the dependent variable
should apparently lie in the area between the scales
of the independent variable for the most effective use
of chart space. This broad principle should be kept
in mind and violated only for good reasons. This will
almost always improve the efficiency of a chart. Tech-
niques by which a dependent variable scale can be
made to fall within the space between other scales
are treated later and are part of this subject. In dia-
grams where the dependent variable scale must, for
good reason, lie outside the scales of the independent
variables, it must be extensive enough to “receive”
any ray determined by values of the independent
variables. Figure 4—10 shows the situation where V is
dependent variable and lies outside the U, W, scales.
Compare the poor use of space here to the better use
in Figure 4-9.

4-5. Compound Diagrams. It may be impossible
to place an equation in four or, more variables in
determinant form needing only one alignment.
Sometimes the best way seems to be to use two or
more alignments by hitching two or more alignment
diagrams in tandem, or by using one or more net-
work charts in tandem with alignment diagrams.
Problems 3-3 and 34 have already used this
approach.

Example 44. Figure 4-11. Make a diagram for the
equation U - V=R + S WritingW = U - Vand
W = R + §, we have two diagrams whose alignment
and network types are familiar to us. Two alignment
diagrams, or an alignment diagram and network
chart can be joined in tandem provided their W-
scales are identical. This requires that the scale fac-
tors and placement of the two W scales be identical.
Assuming V is dependent variable, then U, R and §
are independent. Hence in using values of R and S,
W must first be regarded as dependent. Once its
value has been learned, it is then considered an inde-
pendent variable along with U for the purpose of
determining the dependent variable answer in V.
Frequently an equation in several variables is best
treated, or can only be treated, by a succession of ele-
mentary or advanced diagrams operating in series in
this way.

Example 4-5. The relationships of stereoscopic draw-
ing are given in an equation which can be expressed
by means of three alignment diagrams— two are N-
shaped charts and the other, three concurrent lines.
The final diagram is shown in Figure 4-12. The
effective joining of diagrams is one of the chief skills
of the professional nomographer. Facility with all
the forms each component equation could take is
needed to yield the optimum pattern of the com-
bined diagrams. The best design is based upon sim-
plicity and ease of operation as well as accuracy of
solution values. It is always hoped that the chart
can be designed so that no variables will have to be
scaled more than once. The natural goal for each
chart is “single entry”.

There are many relationships from geometry
which can help to join together alignment diagrams,
network charts and combinations of them. As noted
earlier the ingenuity of the nomographer has to fit
the pieces together. What needs to be done is often
quite clear and he shows his ability by hitting upon
the simplest combination of devices to do it.
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Example 4-6. Figure 4-13. A cost equation for peat
excavation appears on Figure 4-13. It can be figured
by hand but with frequent errors. The nomogram
is for checking purposes. Here only the variable &
has required double entry. It has been necessary,
however, to combine the use of five N-shaped dia-
grams for multiplication with an alignment dia-
gram and a reference curve. In many instances, a
chart would not be worthwhile if it had to be used
in such a complicated way, but for checking, this one
was worthwhile.

4-6. The Principle of Substitutions. It is often
possible to use an alignment diagram for a simple
equation as the basis of a diagram for a complicated
equation. If an equation in P, Q, and R can be put
in the form,

f(P) + g(Q) = h(R) (4-12)

then, regardless of how involved these functions are,
one can make the substitutions:

let U = {(P)

V =g(Q)
W = h(R) (4-13)
or, U+V=W (4-14)

The limits on variables P, Q and R are assumed to be
known so that those on U, V and W can be com-
puted. Imagine that a chart in U, V and W for these
limits has been made. It would be possible to regrad-
uate it in P, Q and R by means of (4-13). As soon as
the scale equations for U, V and W are known, it
would be possible to substitute (4-13) into these scale
equations and obtain directly scale equations in P,
Q and R which would enable the scales to be grad-
uated in these variables directly without intermedi-
ate plotting of U, V or W. This is the principle of
substitutions. It can be applied best where an ele-
mentary equation, such as (4-14) can be seen by
inspection to be the result of substitutions. The tech-
nique is particularly effective where an equation has
a good many variables in it and can be simplified by
such substitutions into more easily treated combina-
tions of variables.

Example 4-7. Figure 4-14. Here the substitutions shown below have permitted the final determinant forms:

Original equation: X =

Substitution:
0 X 1
Final forms: 20 20—-2/5 1
100 100 — u
forYo <l 5= s—uv !

Z+1-Y,

Yo 1 :I [Ioge Yo - (1 - l/Yo)]

u=Y,— L;V=x/log,@+ )= u/(u + 1)

0 X 1
20 20—-72/5 1
100 100 — u
Exu/V 5+ u/v 1 |forY,>1

The principle is also useful sometimes to permit
quick identification of cognate types of diagrams
such as were found in various canonical forms ((C))
coming from the same form ((A)) in Chapter 1. Con-
sider the equation U’ + V/ = W’ in the form

W-Vv=U
Let U= W
V= -V
W=U (4-15)

Then U + V = W. The charts for U + V = W and
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the corresponding one in the original, primed vari-
ables appear in Figure 4-15(a). When the equation
U’ + V/ = W’ is given in the form

U-W=-V (4-16)
one writes
U=u
V= —-—W
W= -V 4-17)

and the charts in U, Vand W, U’, V' and W’ appear
as in Figure 4-15(b). These diagrams are the same



variations discussed in Section 4—4 under Depend-
ent and Independent Variables. In the standard dia-
gram for U + V = W, the W scale appears between
the U and V scales. If in the equation U’ + V’ =
W’, W’ is dependent, then the standard diagram
form can be used with W’ between U’ + V’. If, how-
ever, U’ is dependent, or V' dependent, then proce-
dures (4-15), (4-17) will place the dependent vari-
able in the interior position between the other two
scales. Similar arrangements can be made where U,
V, W are more complicated functions of P, § and R
as in (4~12), (4~13).

In Chapters 1 and 2, different substitutions fre-
quently led to different forms ((A)) and hence of the
final determinant form ((C)). Also, the same form
((A)) could be made to yield several different forms of
((C)) by changing the determinant differently. Earlier
in this chapter, principles of dependent and inde-
pendent variables showed the need for these differ-
ent forms ((C)). Now they are shown to be related
through substitutions. In Chapter 6 the cause of
these extensive interrelationships will be shown to
be that these various charts are frequently linked by
central projection. See Elements of Nomography,
R. D. Douglass and D. P. Adams, McGraw-Hill
(1947), Chapters X, XI.

4-7. Elementary Diagrams. See Elements of
Nomography for a thorough treatment of this sub-
ject. Our application of determinants to nomog-
raphy has used the most elementary equations and
diagrams possible and all explanations of these dia-
grams thus far have been made on this basis. Ele-
mentary diagrams can also be based on plane geom-
etry and trigonometry and can sometimes be thought
of most effectively in these simpler terms. The dia-
grams, their derivations, scale equations and charac-
teristics are now listed briefly.

The Three-Parallel-Line Chart. U + V = W.
U - V= W. Figure 4-16.

Sy—Sy _a+b, — . — —
5, =5, a ; Sy =ul; Sy = vV, Sy = wW
vV—uU:—a':buU+a':wa

;—)uU+vV=WU(a:b)+wV(a:b)

(4-18)

U, V, W scales are uniform forU + V=W
U, V, W scales are logarithmic for U-V=W.

Example 4-8. Figure 4-17 is a combination of three
nomograms of the form (d) above, which is a very use-
ful special case of (a). For day-of-the-week purposes,
any elapsed number of days can be divided by seven
and represented by the remainder (a number from
0 to 6) two days being represented by the same num-
ber if they are an even number of weeks apart. Scales
I, III, V and VII record in this way respectively
elapsed days from the beginning of the month to
the given day, from the beginning of the year to the
beginning of the month, from the beginning of the
calendar to the beginning of the century, and from
the beginning of the century to the beginning of the
year. The three combined charts add all these, the
inner scale being central in. each case and twice as
densely spaced as the outer two, as in Figure 4-16(d).
Each non-leapyear advances by one position because
365 =7 - b2 + 1 and is represented by one (1). The
change of calendar in 1582 omitting ten days appears
in column V; leapyears are compensated for at the
beginning of the year in column VII and this being
premature for January and February, requires
double entry for those months in column III.

N-, Z-,or H-Chart. U - V = W.

Sw Sy Sy
Sy = ulU; Sy = wW. (See Figure 4-18)
ulU K
wtl=g,
Kvu = Sv; S,\' =WL
v+ o " V+1 (4-19)

U and W scales are uniform. Midpoint of V scale is
u/w (or —u/w, below).

Hexagonal Chart. 1/U + 1/V = 1/W.
DB _OA + OD

oC — OA
OB OB
oc-oat!

(See Figure 4-19(a))
1/0A + 1/0B =1/0C

OA =gU; OB =gV; OC = gW

/U + 1/V = 1I/W (4-20)
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Sy =ulU; Sy = vV
Sy=\EFVE=W

(See Figure 4-19(b))

\'%
tan § = a (4_21)

All scales everywhere are uniform.
Circular Chart. Parabolic Chart. U - V = W.

sin (90 — 9) _ sin (90 — ¢ + 9)
Sw - a* cos¢

Sw =a/(l + tan ¢ tan ¢)

Tet: U=tang; V =tan¢
Then: Sy =a/(1 + UV)=a/(1 + W)

Let: mU’ = tan §; nV’ = tan ¢

Then: Sy = a/(l + mnW’)

U-Vv=W
Ul . V/ = WI (4_22)
W-Uz_ U
V:—Uz V+U
W — Uz
v-u -V Ur-V
U-v=Ww (4-23)
(See Figure 4~19(c))
PROBLEMS

PROBLEM 4-1. Example 4-1 can be done in the
following way. In imperfect canonical form:

5-U/2 U 1
10-v2 v 1|=0

V2 W 1 (4-24)

Expand this determinant to check that it represents
(4-1). Draw a key to show a simple way of using this
imperfect canonical form. Sketch the diagram and
show that it works.

PROBLEM 4-2. In Example 4-2, Figure 4-2, the
canonical form had three functions of k in it so that
the chart had an x-scale, a k-scale and a y,k-scale but
was arranged to need entry in k only once. Place this
same equation in a canonical form shown below hav-
ing three functions of x in it so that the chart has a
k-scale, an x-scale and a y, x-scale and can be used by
entering only once in x. Sketch this chart and show
that it works.
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2
—t 0 !
o—1/x2 l/xr 1 | =0
x? y: 1

Compare and contrast it with Figure 4-2.

PROBLEM 4-3. Place the equation

UlogU + VW — VU2 - UW = 0
in the canonical form

U U2 1
V logU 1| =0
0 W 1

Sketch a diagram that will permit solution of this
equation using this canonical form. Include several
major calibrations of each variable and at least one
alignment for checking. Draw a key which explains
clearly how the diagram is used.

PROBLEM 44. Figure 4-20. The equation for the
angle « of a cycloidal cam is given by

2M tany = tan M ¢ + (M — L) « [csc2 Ma],
a in radians.

In this figure, X; = L/tanp, Y; = 0; Xo = 0; Yo = L.
Derive the canonical form that has these quantities
in it this way with M and ¢ entering in an M, ¢ net.
Plot enough points to check the diagram. See also
Problems 3-9 and 4-5.

PROBLEM 4-5. Figure 4-21. The equation from
Problem 4-3 can be put in the canonical form

1 tan Ma
1 — acscBMa 1 — gcsc2Ma
0 M-—-L 1 = 0.
-1 2M tan . 1

Here an elementary diagram for multiplication for
Y, = 2M tan y, and for subtraction for Y, = M — L
can be arranged to use the same M scale and yet to
have Y, and Y, scales fall in the right places at X, =
0 and X3 = —1 respectively.

1) Arrange these elementary diagrams this way.

2) Sketch the entire diagram including a number
of values.

3) Show two alignments working successfully.



4) Compare the form of this diagram with that of
the preceding problem and describe clearly the com-
parative merits of the two as practical nomograms.

5) Compare the form of this diagram with those
of Problems 3-9 and 4—+4.

PROBLEM 4-6. 1) In each of the problems for
Chapters 1, 2 and 3, where the chart for the problem
is supplied, identify the dependent variable.

2) -Where a net is present, note that either of the
two variables of the new net may be dependent or
they may be taken as a dependent pair.

PROBLEM 4-7. In Problem 3-6 note that different
forms of the diagram imply different variables as
dependent variable. Note the changes in the form
of the rest of the diagram such as the direction and
relative placement of vertical scales. These will be
referred to later and used as the means of making
one variable or another dependent. Can you reach
any conclusions about dependent variables and
direction of vertical scales?

PROBLEM 4-8. Combinations of Elementary Dia-
grams.

The inductance of a single-layer air core solenoid
is given by the formula shown in Figure 4—22. De-
rive the canonical forms, with scale-factors, of the
equations that give the form of the diagram shown
for this equation.

PROBLEM 4-9. The equation for Weick’s coeffici-
ent in the relation between speed and power can be
expressed by means of two three-parallel-line dia-
grams shown in Figure 4-18. Derive this diagram.

PROBLEM 4-10. The equation for the gain of an
amplifier can be expressed by two alignment dia-
grams compounded as in Figure 4-24. Derive this
diagram.

PROBLEM 4-11. Return on investment is gov-
erned by an equation which can be represented by
two alignment diagrams with a common index scale.
Show that Figure 4-25 expresses this relationship
accurately by deriving the scale equations for this
diagram.

PROBLEM 4-12. In wood beam design, the load,
stress, and beam dimensions are related as shown by
the formula in Figure 4-26. Show that the combined

diagrams drawn there accurately give the behavior
of the variables. Note that W and L have been ex-
pressed in feet and should be changed to inches for
checking purposes.

PROBLEM 4-13. The equation for upper half-
power frequency in an R-C Coupled Amplifier
appears in the chart of Figure 4-27. The key shows
that this diagram has been compounded from three
elementary diagrams—two with three concurrent
scales and an N-shaped diagram. Derive the scale
equations for these diagrams and show that they
work.

PROBLEM 4-14. The relationship between Carte-
sian and polar coordinates can be expressed by two
diagrams which can be so combined, as in Figure
4-28, that a single collineation will change from one
pair of coordinates to the other. Derive this chart.

PROBLEM 4-15. In treating the circular nomo-
gram for the equation U - V = W, Example 1-7,
the upper half of the circle bearing the positive U
scale was given parametrically by the equations

aU

X = =T ruoe

a
T+ 02’ Y

Then Y/X=1U.

A line from the origin with slope Y/X = tan ¢ will
cut the U-scale on the circle at the value tan § = U.
If a chord from the zero end of the W scale to this
point of the U scale has length aG and makes an
angle ¢ with the W scale, then ¢ = cos'G, U =
tan § = cot ¢ = cot cos'G. The equation § =
r cot cosi(cosU — d#) relates the settings of the
Buerger Precession Camera as indicated in Figure
4-29. Derive the scale equations for this diagram.
See Review of Scientific Instruments, Volume 20,
March 1949, pages 150-160. Derive the scales of
Figure 4-29.

PROBLEM 4-16. The determination of stress in
small wires under tension uses the equations shown
on the chart of Figure 4-30. This diagram needs two
N-diagrams and an alignment diagram with a net.
The latter is somewhat unusual in that one of the
scales is reduced to a point. Derive the scale equa-
tions for this diagram and verify its operation.

PROBLEM 4-17. The dependence of the length of
a wound roll upon the thickness of the material and
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the inner and outer radii of the roll is expressed by
the equation in Figure 4-31. If the equation is put
in a form to yield the S and T scales shown there, it
will be found that an r,, r. net results which, for the
scale factors present, lies for all purposes right along
the X-axis. It is impossible to separate the curves
there sufficiently to use the net in a practical manner.
Hence an artificial network chart has been made by
assigning even levels to r, values and plotting r,
curves on them so that the x values of intersection
would agree with those of the actual net. Verify the
chart.

If r, r,, and t are multiplied by a factor k, then S
is multiplied by this factor. This makes it possible to
interpret the given ranges of the variables three
different times, as the vertical numbers, the inclined
numbers and the primed numbers. In view ol the

u.7;

42—4

s

o o
)

fact that t turned out to be a reciprocal scale, this is
a great help.

PROBLENMN 4-18. The Lamé-Maxwell Equation of
Equilibrium appears on Figure 4-32. Its solution in
that figure uses a three-parallel-line chart, a fixed
point, a network chart and an N diagram. Derive the
equations for this diagram and show that it works.

PROBLEM 4-19. Figure 4-33 (not drawn at time
of publication). Problem 4-3, it turns out, can result
in a diagram requiring only one collineation. This
is not done thru a canonical form, but rather by
arranging two diagrams to share the same collinea-
tion. 1dentify the component parts of these diagrams
and derive the equations for them.

5 5
i |
Lo 1 1| ok
5 10

O(W+V-2U)«(W+VHU-V)=0

Figure 4-1.
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ONE-DIMENSIONAL NORMAL-SHOGCK FUNGTION

M2 = (M2+ &)/ (BEME- 1)
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Figure 4-2.
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U+v=w

Figure 4-9.
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OPTIMUM RATIO OF
OVERALL TEMPERATURE DIFFERENCES
IN
CONDENSERS AND COUNTERFLOW
COOLERS
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THE GAIN OF AN AMPLIFIER

A Gain

Gm  Transconductance in mhos
21 Load Impedance in kilohms
Rp Plate Resistonce in kilohms

To increase the range of the chart,
multiply the Rp, Zi, ond A scales
by the same power of ten.
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Drow line 1-2.
Draw line 3-4.
Read "A" at 5.

Figure 4-24.
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the page, 20
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CHAPTER 5
THREE-DIMENSIONAL NOMOGRAMS*

5-1. Three-Dimensional Nomogram Theory. The method used to construct two-dimensional ‘“align-
ment” charts, or nomograms, can be extended for three-dimensional “coplanar” diagrams. The theories for
the two types of charts are parallel and are shown side by side below:

Three points are in alignment when:

Xy ) Yl l

X2 Yo 1| =0

X3 Ys 1

Assume that a function
F(U,V,W)=0

can be put in the form.

U, U, 1
V, V, 1|=0
Wl W2 .l

where U,, U, are functions of U only, and
similarly for V and W. Interpret U,, U,
as the X and Y coordinates of a plane
curve. Then the curve can be plotted on
X, Y axes and calibrated in U. Similarly
for Vand W. Values of U, V and W which
satisfy the original equation also satisfy
the determinant and hence, are “aligned.”

Four points are coplanar when:

X Yl Z; l
Xo Y2 Zg 1
=0
Xg Y3 zz 1
Xg Yo 2y 1 (5-1)
Assume that a function
FUV,W, T)=0
can be put in the form
U, U, -U; 1
vV, Vs Vs 1
=0
W, W, W; 1
T, T, Tg 1 (5-2)

where U,, U,, Uj are functions of U only,
and similarly for V, W, and T. Interpret
U,, U,, Ug as the X, Y, and Z coordinates
of a space curve. Then the curve can be
plotted on X, Y, Z axes and calibrated in
U. Similarly for V, W and T. Values of U,
V, W and T which satisfy the original
equation satisfy the determinant and
hence, are “coplanar.”

If the equation for which the chart is made is
F(U, V, W, T) = 0, values of any three variables
(such as U, V, and W) will determine a plane and the
value of the fourth variable, which in this instance
is T, is found at the point where this plane intersects
the T-scale.

Example 5—-1. The equation
p=_0b
“H-h (6-3)

*Based on an article in Product Engineering, August, 1955,

can be placed in the form ((B))

0 1 0
-1 1 0 -—b
=0
0 H 1
h 0 1 0 (5-4)
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and then in the canonical form ((C))

0 1 P 1
-1 1 —b 1
=0
H
0 3 +H 0 1
h 0 0 1 (5-5)

Figure 5-1 shows a pictorial sketch for this canonical
form complete with graduated scales. For P = 3/4,
b =1/2,h =1, (5-3) gives H = 5/3, which checks
with the Figure 5-1.

In Figure 5-1, joining P, b and h values has pic-
tured the plane of the solution. To find where this
plane cuts the H scale, a point X; where line Pb cut
the XY plane was marked, joined to h, and the line
observed to cut the H scale at the answer. This shows
how a three-dimensional nomogram can sometimes
break down into a compound, two-dimensional one,
for these two collineations are a direct steal from the
treatment given this equation in Problems 3-1 to
3-5. From (3-36),

0 P 1 0 P 1
H —-b 1 = —1 —b 1 =0
h 0 1 —X, 0 1| (5-6)
h
X:= g G-7)

Equatior~ (5-6) and (5-7) are the bases of compound
two-dimcensional diagrams in their respective
planes—similar to the treatment given Problems

3-3 and 3—4. It is interesting to note that Figure 5-1,
a pictorial representation of a three-dimensional
nomogram together’ with the method of solution,
can be used on the page as it stands as a compound,
two-dimensional diagram. The significance of this
will be discussed later.

Space diagrams have been suggested in the past
and drawn pictorially, but they do not seem to have
been used for harder problems because of the diffi-
culty of handling space figures on the two-dimen-
sional page. This can be overcome with the aid of
such descriptive geometry techniques as now follow.

5-2. The Method of Auxiliary Line and Parallel
Join. Here is a technique that can be used effectively
when the four variables have straight, vertical scales
as shown in Figure 5-2. Although the equation for
this illustration is simple, U + V + W = T, more
difficult problems can also be solved by the same
method, as shown in Section 5-5.

Considering first an equation that can be solved
with a two-dimensional alignment diagram, it has
been shown that U + V = W can be put in the
determinant form (2-22)

0 ulU 1
G vV 1|1 =0
G uvw 1
ut+v u+4v (5-8)

Coordinate Interpretation:

X Y

where u, v, and G are constants.

In similar manner, the equation of Figure 52, U + V + W = T, can be put in determinant form and

given a coordinate interpretation.

0 0

G 0

0 K
uwG uvkK

uv + vw + wu

Coordinate Interpretation:

X Y

uv + vw + wu

ulU 1
vV 1
=0
wW 1
uvwT 1
uv + vw + wu (6-9)
Z

where u, v, w, G and K are constants with roles like those in (2-22).

78



A space nomogram for this determinant is pic-
tured in Figure 5-2foru = 2,v=1,w=3,G =5,
and K = 5. Hence the T-scale is located at X = 2.731,
Y = 0.9; and the scale factor of the T-scale is 0.546.
In Figure 5-2(b), a solution plane is shown for
U =3,V =2 and W = 1. Pictorially, it appears
that this plane cuts the T-scale at T = 6. Figure
5-2(c) shows pictorially a descriptive geometry “cut-
ting plane” device for finding precisely the intersec-
tion of the T-scale with such a plane. The cutting
plane « has been passed through the T-scale parallel
to the plane of the V and W scales, cutting the UW
plane (Y, Z plane) in the vertical line T”. The ortho-
graphic projection of the entire space figure onto the
U, W, (Y, Z) plane is now used. Here the line T”V”p
is parallel to the known line WVp, also Vp = V and
the solution takes the form shown in Figure 5-2(d).
A conventional double-alignment diagram (Section
4-6) could also solve this particular equation, but
the method shown here will be useful later.

5-8. The Method. of Numbered Line Pairs. This
is a second general method that can be used effec-
tively. Figure 5-3(a) shows pictorially a three-dimen-
sional nomogram for a function of U, V, W and T
where the U, V and W scales are vertical, straight
lines at three corners of a rectangle and the T-scale
is a helix with a horizontal axis.

Projections of this curve on the two coordinate
planes are shown. The projection on the YZ plane
is defined by the combined behavior of the Y and Z
functions in the determinant form of the equation.
SinceY=T+2,T=Y—-2,(Y—-22+(Z—-2¢2=
(1.5)? and the YZ projection is a circle, center at (2, 2),
radius 1.5. In the X, Y plane, Y=T + 2, T =Y — 2,
Y — 2 = 1L.5sin (X — 0.75) and the X, Y projection
is a sine curve of period two units, amplitude 1.5
units, zero point (0.75, 2). Graduations of T will
appear on this curve according to the equation T =
Y -2

Values of U, V and W could be assigned such that
the plane determined by them would not cut the
T-helix at all, indicating there is no solution in T
for these values of U, V, W. Or, a plane cutting the
helix and lying parallel to its axis could determine
an infinite number of solutions. In Figure 5-3(a), the
values of U = 7.20, V = 11.20, W = 5.15 are shown
determining a solution plane. This plane cuts the
helix cylinder in an ellipse, helix and ellipse meet-
ing at points where the plane cuts the helix—at
values of T which are solutions. The boldline por-
tions of the helix lie above the plane and end at the

ellipse —at the solution T-values. (Calibrations have
been shown only for these bold portions of the T-
curve.) There are actually some fourteen intersec-
tions, seven of which are shown. They certainly
could not be found readily by trial and error.

With descriptive geometry, it is possible to repre-
sent this space diagram and find its solution by
means of the projections of these curves as in Figure
5-3(b). This shows the YZ and XY projections of the
T-curve previously discussed and also twelve num-
bered horizontal section planes on edge in the cir-
cular view. Their parallel lines of intersection with
the cylinder are shown in the lower view, numbered
correspondingly. A horizontal plane through U =
7.20 will cut a horizontal masterline from the U, V,
W solution plane and is showa by its two projections
in Figure 5-3(b) (section line). Each of the twelve
horizontal section planes cuts lines parallel to this
from the U, V, W plane which can be drawn in the
lower view and numbered as soon as the masterline
has been established. Then in the lower view, a line
from the cylinder and a line from the plane with
the same number are coplanar and determine a point
common to both the U, V, W plane and the cylin-
der—namely a point on the desired ellipse. The
projected ellipse will cut the projected T-curve at
values of T as shown, which are solutions of the
given equation.

Example 5-2. Find and check a solution to the equa-
tion for which the chart of Figure 5-3(b) was made.
(In Figure 5-3(a), one of these solutions appears
pictorially to lie in line with W = 2.) Referring to
this one in Figure 5-2(b), its value is read as T =
—0.55. When this is put into the determinant of
Figure 5-3(a), the following values result which
check quite well.

5 0 3.60 1
0 5 1.05 1
0 0 515 1
188 145 340 1

5—4. Method of Doubly-Indexed Scales. The third
descriptive geometry technique involves calibrating
each nomographic scale in a given orthographic
view, both in the value of its variable and also (along
the other side of the scale stem) in its space coordi-
nate perpendicular to the plane of that view. Let an
equation be given by
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U 5+%(U——5)’ U 1

V41 v o
W-1 10— (W=108 W I -
10-T T T 1 |G-10)

Coordinate Interpretation:

X Y Z

In Figure 54 two views are given of U, V, Wand T
curves for the above equations. V and T havestraight
scales, the other two are curves. In the upper (front,
YZ) view, a vertical calibration is the value of the
variable at that point, the inclined calibration is the
X-coordinate of the curve at that point. Now the
X, Y view can be discarded.

Example 5-3. f U = 2, V = 3, W = 6, what value
does T have? The values of U, V, and W have been
circled and joined to indicate a solution plane.
Several methods are available for finding that value
of T where the T-scale is cut by the plane. For
example, an “auxiliary view” which shows the plane
on edge will show it cutting the T-scale at this answer
value. Such a view could be found in the direction of
“constant X-value” of the solution plane because
this direction is parallel to the Y, Z plane. In the
present case, for the plane V = 3, X = 4; U = 2,
X =2; W = 6, X = b, one finds by proportional
division the point on line U = 2, W = 6, such that
X = 4. Joining this point with V = 3, X = 4, gives
the direction of the strategic edge view. In the auxil-
iary view taken in this direction (the double arrow)
the “levels” represent values of X and can be chosen
to any convenient scale. In this view, the U, V, W
plane is seen on edge cutting the T curve at the
answer-value of T, point “Q”, where one reads T =
5.75. If this value is placed along with the others in
(5-10), one has

9
2 b — 5 2 1
4 3 6 1
=0
16
5 10 — 10 6 1
4.25 5.75 575 1

which checks out very closely.
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5-5. Applications. To illustrate the application
of the first technique, Section 5-2, consider the fol-
lowing fifth degree equation

x5+ A"+ A3+ B2+ Ox+ D' =0.
(5-11)

This can have the fourth power of x removed by
reducing the roots by a real value, when it becomes

x5+ Ax3+ Bx2+ Cx+ D =0. (5-12)

This can be put in the canonical nomographic form

0 0 —A 1
15 0 —-B 1
0 15 —c 1|7
15x2 15x (D + x3)
¥+x2+x x3+x24+x x¥3+x2+x (5-13)

Coordinate Interpretation:

X Y Z

where A, B, C range from —10 to 10 and the chart
is 15 units wide and 20 units high. The reader should
check the determinant by expansion. The A, B, C
scales are uniform and lie upon straight, vertical
lines. For constant x, D enters only into Z, so a con-
stant x-value is represented by a vertical line with
known X, Y coordinates graduated uniformly in D.
Taken together, these x-lines form a vertical, cylin-
drical surface whose X, Y projection has the equa-
tion

15x2 15x

R ET TS e
(5-14)

This is a smooth, convex curve in the X, Y plane.
Curves of constant D wind over the vertical cylin-
drical surface rising from it. When values of A, B,
C, D are specified and x sought, a plane in space is
determined by the first three which cuts the cylin-
drical surface in a smooth curve. Each intersection
of the letter with the specified D-curve on that surface
lies on a vertical x answer line. Figure 5-5 shows the
two-dimensional representation and use of this
nomogram. It is based on Figure 5-2(d) which was:
(1) a projection of the space scales onto the UW
plane, plus (2) a T’ line derived from the T scale-
stem by a section plane a parallel to the VW plane.
Correspondingly in the present case: (1) the entire



space figure is projected onto the AC (Y, Z) plane,
and (2) each x-line is carried into an x’line by a
section plane passing through it and parallel to the
plane of scales B and C. Each pair of x (solid) and x’
(dotted) lines is correlated by being given the same
serial numbers (vertical and inclined respectively),
and is then used exactly as the pair of T and T” lines
were in Figure 5-2(c), (d). Variable A of Figure 5-5
corresponds to U, B to V, Cto W, and X to T. Each
point on an x-line obtained this way gives one point
on a curve, namely on the curve of intersection of the
x, D cylinder and the A, B, C plane as projected on
the AC plane (YX-plane). Wherever this projected
curve cuts the projected D curve, there lies a vertical
solution-line in x. In the working nomogram, this
projected curve of the intersection always lies within
the sector ACB, passing from.C to A and arching
toward B.

Practical use of the chart is quite rapid because the
only portion of the projected intersection curve
which needs to be drawn is that which stands some
chance of cuttingthe D-curve. This portion can be
identified by inspection. The chart is made for posi-
tive roots of the quintic but yields negative roots on
reversal of the signs of B and D. Multiple roots are
indicated by tangency of the intersection curve with
the D-line: Horner’s or Newton’s methods are
natural complements of the chart getting their basic
root values from it before refining them.

The chart is applicable to fourth degree equations
for if a fourth degree equation has the third power
missing, it can be multiplied by x = 0 to become a
reduced fifth degree equation for which this chart
is made in which the fourth power is missing and
D =0.

Example 5—4. Given equation, Figure 5-5, to find
the roots of :

xXS—3x3+4x2+8x—1=0 (5-15)

On establishing lines AC and BC, it is clear from
the path of D = — 1 that there will be only one real,
positive root. Two or three points establish as much
of the curve as is necessary and the root x = 0.13
(refined value x = 0.1294).

Reversing signs of B and D, the AC line remains
the same and curve D = + 1 cuts through a limited
portion of the new sector. A few points show that the
projection of the intersection curve will not cut
D = + 1. Hence there are no negative roots,

PROBLEMS

PROBLEM 5-1. Place the equation P = ﬁtl———ilh

in a four-rowed, determinant canonical form ((C))
different from (5-5). Make a pictorial sketch to show
that the diagram works. Derive any two-dimensional
compound diagrams to which it may be equivalent.

PROBLEM 5-2. Derive the equations for a three-
dimensional diagram for the complete quartic.
Sketch it and show that it works.

PROBLEM 5-3. Verify the real roots of the quintic
by using Figure 5-6.
XX —9x34+10x2—3x+02=0

Improve them by Horner’s or Newton’s method.
Check by showing that the sum of the roots is zero
and the product is —0.200.
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CHAPTER 6
CENTRAL PROJECTION IN NOMOGRAPHY

6-1. 4 Central Projection of One Plane onto
Another Plane Preserves Collineation. (Figure 6-1)

By a central projection of a plane « onto a plane §,
one means that planes ¢ and §, fixed somewhere in
space, are intersected by rays through some fixed
point 0 of space, and hence that to every point A of ,
there corresponds uniquely some point A’ of g, where
line AA’ passes through 0. If A, B, C are three points
of a collinear in line L, line L and point-0 determine
a plane whose intersection with ¢ is a line I”. Hence
A’, B’, ¢’ are collinear and points aligned in « are
aligned in 8. The central projection onto plane § of
any diagram in plane « is the diagram consisting of
the projection of its points onto plane §. This pro-
jected diagram may have a very different aspect from
the original diagram in a. An alignment diagram
in o will, however, be projected into an alignment,
diagram in § since every collineation in o is preserved
under the projection into @. The projected align-
ment diagram in §, it is worth repeating, may bear
small physical resemblance to the alignment dia-
gram of «. The ability to preserve the alignment
property but vary the physical aspect of the diagram
is useful. An acquaintance with the elements of cen-
tral projection will obviously be necessary. Other-
wise, as noted in the foreword, many seemingly com-
plicated relations will appear chaotic rather than as
related applications of a small number of far-reach-
ing principles.

6-2. One-to-One Correspondence. Two sets of
elements can be said to be in one-to-one correspond-
ence if there exists some law, procedure or arrange-
ment whereby when an element of one set is named,
one and only one element of the other is identified
with it, and conversely. Two such sets of elements
might be all the lines of the plane and all the points
of the plane, etc.

Consider all the points on the non-negative X-axis
as split into two groups:

0<=x <1 and 1 < x, (6-1)

These can be put into one-to-one correspondence, for
instance, by the equation

1
Xy = —;0rXy =

Xs X, (6-2)

One regards the point x; = x, = 1 as lying in both
sets and being self-corresponding. It is assumed that
there is one and only one point at o on the line, this
being in correspondence with x, = 0.

One can establish this correspondence geometrically
by using the curve y = 1/x, Figure 6-2.

6-3. Infinity in the Line, Plane and Space. The
notion that a line is a continuous set of finite points
with a single point at e turns out to be practical.
The infinite point lies at either end of the line. This
way of thinking can be extended so that, in the
plane, a family of parallel lines has a single point in
common-—the point at infinity in their common
direction. All of such infinite points of the plane
make up the line at infinity of the plane. The state-
ment is sometimes made that this “line” at infinity
should be regarded at best as a “circle” at infinity
because it “‘surrounds” the observer. This should be
countered in the following way. If one is at point P
of the plane, Figure 6-8, then, no matter what slope
a line through P may have, it will be seen to meet
any given line, L, of the plane at some point Q,, Q,,
... The fact that the line at o also “has a point in
every direction from P” should, then, no longer
bother the student.

Extending these motions to three-dimensional
space, a family of parallel lines has a single point in
common at infinity in their direction. Every plane
has its own infinite line shared by every plane par-
allel to it. All of such lines together make up the
plane at infinity. Thus a one-dimensional set of
points, a line, has a point at infinity; a two-dimen-
sional set of points, a plane, has a line at infinity; a
three-dimensional set of points, space, has a plane at
infinity. These notions can be extended to hyper-
space. They can be dealt with algebraically by using
homogeneous coordinates. (See Appendix.) They are
a convenient way of handling problems of central
projection.

6—4. Central Projection of the Points of a Line
into the Points of a Line. In Figure 64, line q, line
8 and point 0 all lie in a plane. There is a one-to-one
correspondence between the points of line a and
those of line B, as A to A’, B to B’, established by
requiring that lines connecting corresponding points,
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like lines AA’ and BB’, are always drawn through 0.
This is the central projection of line ¢ on line § or
line § on line a.

Special attention should be given certain corre-
spondences, namely (1) where the two given lines
intersect at C and C’, these two points being identi-
cal; (2) where a “ray of correspondence” lies parallel
to line « cutting it at co,, cutting line § in point G
and causing points o, and G to correspond, (3)
where a “ray of correspondence” lies parallel to line
@, cutting it at oo, cutting line a in point F and caus-
ing points «pg and F to correspond. This arrange-
ment assumes that there is a single point at « on
each line as described in Section 6-3.

6-5. Central Projection of a Plane into a Plane.
Infinite Lines. An extension of central projection
from the line to the plane is natural. Figure 61 has
already presented the general idea and Figure 6-5
shows further that there is a line of points common
to both planes, which are in self-correspondence.
Rays of correspondence or projection through point
0 parallel to plane g, cutting it in oo, put the points
of the infinite line in correspondence with points of
G. Hence the statement: the infinite line of plane «
is projected into line G of plane 8. Correspondingly,
the infinite line of plane is projected into line F of
plane o.

6-6. Central Projection Pictorially. Cognate
Types of Alignment Diagram. We can make pic-
torial drawings of many central projections which
will be as accurate as graphical procedure permits.
Although such a projection provides an accurate
way, within graphical limits, of changing the shape
of a chart, it is more useful in visualized form to hint
at what this outcome could be and to prompt definite
algebraic steps to bring this about.

Figure 6-6(a) shows that a pictorial can suggest
Figure 4-16(a) from Figure 4-16(d) and supply the
new advanced relations for the more general dia-
gram of Figure 4-16(a). Figure 6-6(b) shows the same
sort of thing for Figure 4-18(a). Figure 6-6(c) shows
projective relations between Figures 4-17(a) and (b).
Figure 6-6(d) shows projective relations between
Figures 4-19(a) and (b). Figure 6-6(c) relates projec-
tively Figures 4-8 and 4-9. Thus the pictorial projec-
tion can probe for cognate forms.

When nomograms are related- to one another
through some central projection, they are said to be
cognate types of nomogram. Three straight lines are
either (a) concurrent or (b) non-concurrent, both
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configurations being preserved by any central pro-
jection. If the three lines are thought of as scale stems
for alignment diagrams, then (a) gives rise to the
familiar diagram for (1) three paraliel or (2) three
concurrent lines, (1) and (2) being related by project-
ing the point of concurrency of (2) to infinity in (1).
Figure 6-6(c) shows that the various N-diagrams are
projectively related through a basic diagram con-
sisting of three non-concurrent lines, it being usually
more convenient to project the intersection of two of
them to infinity and to make them parallel. The cir-
cular, elliptical, parabolic and hyperbolic diagrams
for multiplication are a group cognate to each other
but to none of the above. One can think of the vertex
of a cone as a center of projection with these various
conic sections being scale stems for nomograms pro-
jected from the scale stem of the circular nomogram
onto planes cutting the cone. Using later material, a
picture or sketch of such projections can suggest the
kind of changes necessary in one canonical form to
bring about a new canonical form for a better dia-
gram.

6—7. Central Projection by -Engineering Drawing.
A central projection can also be represented and car-
ried through with graphical accuracy by means of
conventional engineering drawing. Figure 6-7 shows
the same central projection pictured in figure 6-6(d).

6-8. Central Projection by Analytic Geometry.
The analytic equations for a central projection can
be found for certain useful cases as follows:

In Figure 6~8(a), a general straight line is shown
with P, a running point upon it.

X2_xo_y2_YD=22_Zo

X1 — X, Yl_Yo Z; — 1,

Xg — Xo _ ZZ - Z,

X1 — X, Zy — L,

Y2 — Yo — Zy — 1,

Vi— Yo Z1— 1% (6-3)

In Figure 6-8(b), planes I and II are the zy and xy
planes respectively, P, the center of projection and P,
and P, intersection points with planes I and II.
Then

X, =k, y, =1Lz =m
x; =0y, =Y, =X,

Xg = X2, Y2 = Y2, 29 = 0 (6—4)



This results in
Xo—k _ 0—m
0—k  X;—m
Yz—'l_ O—m
Y,—1l X;—m

- KX
X2_-Xl—m
Y _le _mYl
27 X, —m (6-5)
_ mX,
XI_XQ—k
17X, -k (6-6)

This central projection turns out to be very useful
and more general than might at first be suspected,
because it will be found that the angle between
planes I and II, here 90°, can be varied without
affecting the form of the equations if “affine” coordi-
nates of P, are used.

6-9. Parallel and Orthographic Projection. Rota-
tion and Translation of the Plane. Let the center of
projection move out to infinity in space. Then a par-
allel projection results, that is, a projection using
rays having a common direction from that infinite
point where the center now lies. When this common
direction is ‘at right angles to one of the two given
planes, an orthographic projection upon it results.
Thus parallel and orthographic projections are
special cases of central projection.

Now imagine two superposed planes with dupli-
cate Cartesian coordinates. If the upper one is
rotated and translated, a point in one is related to
the point it touches in the other one through the
conventional equations of rotation and translation
of points in the plane. (6-8). Now let the upper plane
be moved away from the first plane while remaining
parallel to it. Then parallel rays in the direction of
this motion create the same correspondence between
the points of the two planes as before their separa-
tion, namely (6-8). Figure 6-9.

New and old coordinates under a pure rotation
are given by the familiar formulas, with inverses,
Figure 6-10,

x =x'cosg — y'sinf; x’ = xcosfd + ysin g

: . (6-7)
y=x'sinf +y cosf; yy = —xsing + ycosf

The inverse is derived from the original most easily
by replacing 6 by (—46). If a translation is added to.
the rotation, one obtains,

X =x'cos § —y sin § + X,;
x' =xcosf +ysing + ¥,
(6-8)
y=x’sin§ + y’ cos § + y,;
y = —xsing + ycosd + Yy,

The added constant of translation here, it is con-
venient to remember, is the coordinate of the old
origin in the new system. Likewise, the angle ¢ is
reckoned positively from the new to the old prime
direction.

6-10. Central Projection Between Inclined Planes
with “Natural” Coordinate Systems. One wishes
now to project centrally between inclined planes. By
“natural” coordinates is meant that the Y-axes of
both the systems of coordinates coincide, value for
for value, in the line of intersection of the two
planes. In Figure 6-11, P, in plane 1is projected into
P, of plane II through a center of projection 0. The
angle between the planes is ¢. The Cartesian coordi-
nates of the two planes have also been set up so that
a plane through 0 perpendicular to their line of
intersection cuts the latter at the common origin of
the two natural systems.

An orthographic view taken in the direction y,, y,
(Figure 6-12(a)) showing this line of intersection on
end, gives

ry/sing _ X, — 1y/sin ¢ or
X Xo ’

= Xl
X; 8in ¢ — 1y (6-9)

An orthographic view taken in the direction of x;,
(right side view above), showing this axis on end,
gives

Y1 Y2
o} Xg Sin ¢ — 1y (6-10)
Y1, :
Yo = T (r; — Xg sin ¢) (6-11)
N o Xl sin ¢
2T T Gsing — 1 (6-12)
Yo = — T2y1/(X18in ¢ — 1p) (6-13)
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6-11. Central Projection Independent of Planes’
Angle. Affine Coordinates.

Equations (6-9) and (6-13) can be written

% r _ Ty
‘. = lsingb.y " Vdng
g = Yo =
Xy — 22 X, — 2
sin ¢ sing  (6-14)
Make the substitution
=_0
Ri=sm é
= _ T2
27 sing (6-15)
Then
Xy = x; Ry .y=:Y1R2
2 Xy — R2 )2 Xy — R2 (6—16)

The quantities R, and R, are shown in Figure
6-12(a) and are slanting or “affine” coordinates,
They “follow” the angle ¢ between the planes, so
that equations (6-16) are true for all angles ¢. Com-
paring Figures 6-8(b) and 6-12,

k=R,Il=0,m=R,

and equations (6-5), and (6-16) are identical, the
former being a special case of the latter. These rela-
tions are verified graphically in Figure 6-13. Here
plane I (seen on edge) is shown in fixed position
while plane II (also seen on edge) occupies two differ-
ent positions corresponding to two values of angle ¢.
Let 0, be a center of projection for the first position
of plane II, projecting line o« II into line F of plane I
and line o I into line G of plane 1I, these four lines
appearing as points. Corresponding points in the
two positions of plane II are connected with equal
angle arcs of rotation. Then if a projection preserves
the same correspondence between the points of I and
II, that is the same transformation (6~16), for both
positions of plane 11, it would have to be centered
at points 0, and 0, respectively. Afine coordinates for
this point R, and R, have been labelled. The figure
verifies graphically that center 0, does project A,, B,,
and G, into the same points Ay, By, C, of plane II as
does center 0,. (See Appendix for further treatment
of this central projection.)

Hence one can picture plane I and plane I as lying
at right angles without loss of generality. This is an
example of the remark at the end of Section 6-1. A
second example now follows.
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6-12. Inversion of the Plane. Pictorial visualizing
shows the following property of every central projec-
tion, Figure 6-14. Let L, and L, be corresponding
lines under projection through 0 parallel to the
intersection, Y, of planes I and IIL. Then plane I is
divided into four strips, two A strips being inside of
the L,Y area, two B strips outside the 1,Y area.

Plane II is similarly divided but now the A strips
are outside the L,Y area and the B strips are inside.
Hence it is possible to shift material by a central pro-
jection from outer to inner positions and conversely.
It is possible, for instance, to shift a vertical scale K
lying in B,” to a vertical position in By”. T his would
reverse the direction of such a scale. The position
in By” would be preferable if scale K carried the
dependent variable, the position in B,” if line L car-
ried the dependent variable. To provide the change
in determinant form, achieving this same result, one
would attempt to reverse the sign of this scale in the
form ((C)) by starting with determinant changes in
form ((A)). See Sections 4-6, 4-7 and many others for
examples. These remarks bring together earlier mate-
rial dealing with dependent and independent vari-
ables, central projection, determinant changes, etc.,
and later material on the projective transformation
and projective operators. The approach here has
been largely descriptive. In the next chapter it
becomes quantitative,

PROBLEMS

PROBLEM 6-1. In Figure 6-15, alignment dia-
gram scales for the equation U - V = W appear in
the y, z plane, plane I. A center for projection is
given at 0. Duplicate this layout, then check the trt
angular diagram for the scales projected into the x,
y plane, plane II. Mark all zero and 00 points, ten
typical graduations, and indicate all positive and
negative ranges of U, V and W that are not already
shown. Check that this triangular diagram “works.”

PROBLEM 6-2. In orthographic views lay out the
same diagram for the above equation including ten
values on each of the scales. Carry through the pro-
jection by engineering drawing as in Section 6-7.
Show three alignments on the original and projected
diagrams.

PROBLEM 6-3. In Figure 6-16, alignment dia-
gram scale stems for the equation U - V = W appear
in the y, z plane, plane 1. A center for projection is
given at 0. Sketch the triangular diagram of the scale



stems projected into the x, y plane, plane II. Show all
zero values, infinite values, and plus and minus
ranges for the variables. Establish an alignment of
values in the plane diagram I, project them into the
diagram of plane II.

PROBLEM 6-4. Using the pictorial figure just
derived establish ten values on each scale of plane I
and project them into the scales of plane II. Now
choose a new center of projection O/ which will take
the intersection of the W and V scales off to infinity
when projected back into plane I. Carry back the ten
points of each scale and show that the V-scale now
turns out to be uniform—which is natural since the
roles of U and V are symmetricin U « V = W and
are now interchanged compared to the original dia-
gram of plane I.

PROBLEM 6-5. Show pictorially how a quadri-
lateral of any shape and size in plane I can be taken
into a rectangle of specified dimensions (but not loca-
tion) in plane II by a suitable projection. Let the
planes be arranged as in Figure 6-16. Use a straight
edge on all lines. Derive an exact center for the pro-
jection. See Figure 13-13 for solution.

PROBLEM 6-6. Make a sketch along the lines of
Figure 6-8(b) and derive the equations (6-5) by plane
geometry.

PROBLEM 6-7. Make a sketch illustrating the cen-
tral projection of the following points:

(0,0) to 0,0)
(0,20) to (0,20)
(15,0 to (15,0)

(15,20) to (15,30)

Show by plane geometry that the center of projection
required to do this will have coordinates k = —30;
[ = 0; m = 45. See Section 74.

PROBLEM 6-8. Check by engineering drawing
and prove by plane geometry that changing the size
of angle ¢ in the space figure shown on edge in Fig-
ure 6-13 does NOT cause any shift of projected
points A,, B,, G, etc., parallel to the dihedral edge E
as they move to positions A,, By, C,. Their positions
in plane II, remain identical to those in plane II;.
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Figure 6—4.

Figure 6-5.
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CHAPTER 7
THE GENERAL PROJECTIVE TRANSFORMATION

7-1. Form of the Projective Transformation. Let
the points of plane II be related to those of plane I
by the equations

_ax +by+qg _axx’+ by + ¢y

A byt ) aX F by G
(7-1)
a; by ¢
a, by | =|abc|s£0
ag by Cg (7_2)

This relation is called the general projective trans-
formation because it will always be found to give rise
to the same transformation or correspondence of
points in plane I to those in plane II, as a central
projection. Conversely every central projection will
be found to give rise to a correspondence or relation

like (7-1). Equations (6-5), (6-6), (6-7), (6-8), (6-9),
(6-18), (6-16) are examples. The restriction
| abc | 54 0 is vital, for it can be shown that it assures
that the center of projection lies outside of either
plane.

Thelineax’ + by + ¢ = 0in plane I causes (7-1)
to blow up and hence corresponds to the oo-line of
plane II. If the inverse transformation were easily
found, the line of plane II corresponding to the
oo-line of plane I could be read off. For purposes like
this, it is helpful to study the transformation (7-1).

7-2. The Projective Transformation as an Opera-
tor. Figure 6-1 showed that a central projection of
an alignment diagram of plane I onto plane II was
again an alignment diagram. Consider an equation
in canonical determinant form (but with rows and
columns interchanged from their conventional posi-
tions):

Uy Uy
FUVW)=(@)=| vV VY
The interpretation being employed now is,
Xy XY Xy
(@Y= YW Yy Yy
1 1 1

vy WY

Correspondingly the transformed alignment diagram in plane II is assumed to have the canonical form

Xl” X2I’
FUVW)=@C)=| Yy Y
1 1

Applying (7-1) to (7-3)
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] Uy
1 = U2, V2, W2, =0
1 1 1 1 (7-3)
— 0 Xll = Ull
- Y, = Uy etc
U, is a function of U
only, etc. (74)
Xall UI// V]_” Wlll
Y3/I E U2I’ V2II W2’l —_ 0
1 1 1 1 (7-5)



2, Uy + b,Uy + ¢

a, V)’ + b, Vy + ¢,

Wy + byWy + ¢

3.3U1’ + b3U2, + Cs
FU, VW)= (C") =

23V, + bgVy + ¢3

3.3W1’ + b3W2, + Cs

=0
azUl’ + b2U2’ + Co a2V1, + b2V2’ + Co a2W1' + szz’ + Co
agUlr + b3U2’ + Ca 3.3V1, -+ b3V2’ + Cg a3W1’ + b3W2’ + Cs

1 1 1 (7-6)

Under the interpretation (7-5), (7-6) yields parametric curves in U, V, W which make up the new, pro-
jected alignment diagram for F(U, V, W) = 0. A more compact way of making the transformation lies in han-
dling only the constants of it. These are written in a form, /\, already observed as a condition (7-2), namely

4,

A

o

ag

b,
b,
bs

€
#0

Co

C3

The action of the transformation upon a canonical form ((C’)) is expressed by writing down that form

preceded by the A of the transformation.

a, by
do b2
A (CYE ()=
ag by
row

Uy viyowy
Uy VY Wy
=0
1 1 1
column (7-7)

The result of (7-7) is (7-6), the three-rowed determinant ((C)). This is a product determinant formed by
conventional determinant multiplication of A and ((C)); that is, each element of ((C”)) is an “inner product”
of a row of A and a column of ((C")). The row number of the elernent being formed in the product is the num-
ber of the row being used from A to form the element. The column number of the element being formed in
the product is the number of the column being used from ((C")) to form the element. Hence

3,U, + byUy + ¢
A (C) = | aUy" + bUy’ + ¢
agUg’ + b3U3, + C3

Each column of (7-8) can be divided by the ele-
ment of its bottom row, which gives, by (7-6)

A (€)= (€
See Examples (7-2), (7-3), (74), (7-5).

(7-9)

Summary: (1) a projective transformation is an oper-
ation, (7-1); (2) the operation can be symbolized by
an operator (7-2), A = | abc | 5£ 0; (3) the operator
/A multiplies a canonical form ((C”)) for a diagram in
plane I to yield the canonical form ((C”)) for the pro-
jected diagram in plane II by the familiar rules of

alvl/ + b]_Vl’ + C]_
32V2, + b2V2, + Co

3.3V3’ + b3V3’ + Cg

a;Wy + bW + ¢
a2W2, + b2W2’ + Co

a3W3’ + b3W3’ + C3 (7—8)

determinant multiplication; (4) A is never zero, ((C))
always is zero, ((C")) is always zero.

It is possible to make several central projections in
succession each represented by the /\ of its projective
transformation. The order in which these central
projections are carried through is important. Let us
assume this order to be A;, Ag, Az ... A; This
order is preserved leftwards of the canonical form
((C")) being projected

JAYEERWAY WAV Ay - (€)= (C)
(7-10)
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A pair of adjacent A\’s can operate on each other
under the same rules used for A\ and ((C")), the prod-
uct /A remaining in their place. Thus, the A’s are
“associative but not commutative.”

7-3. Some General Rules of Nomography Opera-
tors. Identity and Inverse Operators. The right
hand sides of both equations (7-1) can be divided top
and bottom by the same quantity without altering
the transformation. Any one of the nine constants can
thus be reduced to unity. Thus, the general projec-
tive transformation has nine homogeneous, or pro-
portional, parameters. Assume one of the constants
has been made unity. The transformation now has
eight independent parameters. Altering one alters
the transformation and the correspondence between
points in the planes arising from the implied central
projection. Since the nine elements of the transform-
ation are proportional, the elements of /\ taken
from this transformation can be altered by multi-
plication of them all (or division) by a constant. No
other determinant change of /\ is permissible. Evalu-
ation of an operator as though it were arf ordinary
determinant is meaningless. A product canonical
form such as (7-8) can have each column divided by
the lowest element but any other determinant
change will alter the true significance of the product.
The determinant operator I

1 0 0
I=|0 1 0
0 0 1 (7-11)

when applied to a canonical form ((C’)) leaves it
unaltered. In ordinary multiplication this would be
like multiplying a quantity by unity. I is accordingly
called the identity operator. It can be shown that I
is unique in this property. It is also clear

K 0 0
I=|0 K 0 K-£0
0 0 K (7-12)

If a given transformation of coordinates from
plane I to plane II is represented by A\, then the
inverse transformation from plane II to plane I is
the one which “undoes” the work of the first. It is
written symbolically A-! to convey the impression
that A= - A (that is, A followed by its inverse, or
undoing) is an operator of zeroth order or one with
null effect. It has just been observed, however, that
this is the identity operator, so it is sensible to write
for any

AT A=A ATEIZF|0 1 0
0

(Care should be taken not to confuse A with é)

1 0 O

(7-18)

1
-1 .
A AN

Given A, there will be times when it will be useful to know A explicitly. For our purposes, the inverse

determinant is, by definition,

a; by C -

a; by ¢

ag by C3
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ag

ag

a;bi¢y
25byCy
agbscy

aybyCy

agbsCo
azbscy
agbscg

agboCy

agbscy

bacy
bscy
bycy
bscs
bycy

bacs

a;bic,
a;bi¢;
agbgcy
a; by
a9boCo
agbscy
a;bicy
agbscs

agbscy

-8
Ap

ag

A9Co

43C3

AoCo

3C3

A9Co

A3C3

51
b,

Co
by

Cs
by

+ca

+c;

a;biq
asbocy
a;b;c;
a;b;¢y
asbycy
ayb,cy
a;by¢

a,bsCy

azbscy

asby
agbs
asb,
agbg
agb,

agh;

i

._al
>

. _a2
"y

.__a3
’

4

A

ag

b
by
Ao
ag
a2

ag

Co
C3
Co
C3
b,
by
by
bscs
by
bscs
b;¢y
bscg
by
bacy
by
byc,
bycy

bace

| abc |

0
0

+b,

+b,

+bs

0

| abe |

0

b,
by
231
ag
a

a3

51
C3
¢
C3
by
by
;G
a3C3
;¢
A3C3
;G
a3Cy
;¢
29Co
4G
25Co
;¢

a2Co

0
0

| abc |

-G

—Cy

—C3

+¢

+c

b,
b,
a3
g
31

dg

C1
Co
(51
Co
b,
by
a;b;
aghbg
a;,by
agbg
a;b,
agbs
a,b;
asb,
a; b,
asb,
a,b,

asb,

(7-14)
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Example 7-1. The transformation (6-5)

= : - X, —mY,
X, —m’ -

Xo X, —m

Y2

has an inverse (6—6) which was derived there by direct solution for X, Y,. Check this result using determinant
operator methods:

K o0 0 m? 0 0 m 0 0
A=|1 —m 0 ;A1=|lm —Km 0 = I —-K 0
1 0 —m m 0 —Km 1 0 —K (7-15)
$O
X = XI:)_(zK ; Y, = l);zz _I§Y2
which agrees with (6-6).

7-4. Four Points Carried into Four Points by the Projective Transformation. The transformation (7-1)
sets up a correspondence between the points of plane I and plane II and hence between their coordinates. If
the coordinates of a point in plane I are inserted into the right hand side of (7-1), those of the corresponding
point in plane II will result on the left. One can specify by this equation that a point P, with certain coordi-
nates in plane I shall be carried into a point P, with certain coordinates in plane II by putting the coordinates
of those points into their places in (7-1). This creates a relationship between the eight independent constants
of the equation consisting of two linear equations. If we repeat the process four times we get eight simultaneous,
linear equations which will permit us to solve for the eight constants. It is often possible to arrange that
enough of the coordinates in plane I and plane II shall be zero so that it is not hard to solve this rather large
number of equations for the eight constants. Let us assume, for instance, that the origin of coordinates in
plane I is carried by the transformation (7-1) into the origin of coordinates in plane II. When these coordi-
nates are placed in their proper positions in (7-1), one has the pair of relations

oot 0+b - 04¢

0_a2'0+b2' 0+C2
_3.3'0+b3'0+C3

T ag+0+by- 0+ (7-16)

or 0=q 0=cy

Make a second assumption that the point (0, 20) of plane I is carried into the point (0, 20) of plane II. Then
(7-1) becomes, including results from (7-16),
0_a1'0+b1'20+0 20_32'0+b2'20+0
T 23 0+Dby - 20 + ¢4 T 2;°0+Dbg 20+ (7-17)

or b, =0 bg - 20 + ¢c3 = b,

Let a third assumption be that point (15, 0) of plane I is carried into point (15, 0) of plane II. Then

15 = a; - 15+040 0_a2-15+b2-0+0
_33‘15+b3'0+C3 _33'15+b3'0+(:3 (7“18)
or ag * 15 +cg=a, a, =10
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Let the fourth and last assumption be that point (15, 20) of plane I is carried into (15, 30) of plane II, then

a, - 15+0-20+0

15:33‘15+b3'20+€3

or ag* 154+by 20+ c;=2a,

Using above results these become

3.1+b3'20=3.1
b3=0
by = ¢3

By insisting that the projective transformation (7-1)
should carry four specific points of plane I into four
specific points of plane II, it has thus been possible
to find the values of eight of the nine constants
required to do this in terms of the ninth—c;. These
results are:

a; = 2¢3/3 b, =0 =0

dg = 0 b2 = C3 Cg = 0

ag = — c3/45 by =0 C3 = C3
(7-21)

If the value of c; is taken arbitrarily as 1, then all
nine have definite values. The transformation then
becomes

2 40 +0
XII:

__X’ ,

5 tO-Y+1
., 80X’
X'=—xr45
L 0-X+1-Y+0
Y=

T-I-O.Y +1
R ) 4
V=13

(7-22)

Expressed in operator form, this central projection
can be written in either of the forms

0-15+by-20+0

30 = ag* 154 by * 20 + ¢ (7-19)
30(az + 154+ ¢3) +30 - 20bg = b, - 20
30a, + 0=Db, - 20
2c
2 =23
20c¢
15 -.a3 = (—3-0—3 - c3)
dg = — C3/(3 ° 15) (7“20)
2/3 0 0
A= 0 1 0
—1/45 0 1
or
—30 0 0
A= 0 —45 0
1 0 —45 (7-23)
with inverse
45 0
A1T=] 0 8 0
1 0 30 (7-24)

Both A and A are of the form of the operator
shown in equation (7-15)

where for A and for A!
= — 30 k =45
I=0 =0

m = + 45 m= — 30

The central projection has been sketched in Problem
6—7, where it was solved by similar triangles and
equations (7-22) derived.

The carrying of four points of plane I into four
points of plane II can be very useful. Among other
things, it enables a desirable non-rectangular portion
of a nomogram in plane I to be carried into a rec-
tangular diagram of specified proportions and posi-
tion in plane II. The operator representing the cen-
tral projection, when applied to the canonical form
((C")) defining nomogram I in plane I, yields the
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carfonical form ((C”’)) defining nomogram II in plane Example 7-2. A translation in the x direction by the

II. The desirable nomogram in plane II can be amount a, would have the equations
chosen to have two sides on the axes of coordinates in
that plane, while the non-rectangular, undesirable Xo=X; + a

quadrilateral in plane I can also have one vertex at

o : ) Y2 = V1 (7-25)
the origin and another on an axis of coordinates

without loss of generality. In such ways, the maxi- and hence the operator

mum number of zeros in eight simultaneous equa-

tions are used and the solution made practical. A 1 0 a

translation of the plane is useful in operator form. -
. . . A0 1 0
It can be found from its equation or by carrying four
points into four translated points. 0 0 1 (7-26)

Applied to (1-4), this operator works as expected

1 0 a X, X, X X;+a Xp+a Xz+a
0 1 of-1Y, Y, Y| = Y, Y, Y, =0
0 0 1 1 1 1 1 1 1

(7-27)

The circular nomogram for multiplication appears in (1-17) with infinite points at the origin and zero points
to the right of the origin. Let the x-coordinates be reversed in sign, placing these to the left of the origin and
let the diameter of the circle be “a”. Now translate the plane by the amount a, using (7-26) in order to find the

canonical form of the circular nomogram when the zero points are at the origin and the infinite points to the
right.

—a —a —a —a —a —a
I 0 a T+0: T+V: TF¥W T T2 Trwe T2 TywT?
aU —aV al —aV
o 1 0 T+o: 1+wv: O = T+ U T+ Ve 0
0 0 1 1 ] 1 1 1 1
alz2 aVz aw
T+02 1+V: 1+W
_ al —aV _
Tl 1T+0: 1T HVe 0 =0
1 1 1
alz? +aU 1
T+0: T+U02
_ aVvz —aV 1 =0
T+v: T+
aWw
+w ! (7-28)

The same result could have been obtained by multiplying the row of I's by a and adding to the top row of X
values in the original canonical form (7-27).
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7-5. Cognate Forms Related Algebraically by Central Projection

The operator

0 0 k 0
0 —m 0 is a special case of (6-5) ! —m
0 —m 1 0 —m

and able to relate many of the cognate forms of each type of diagram we have considered.

Example 7-3. If the central projection comes from
the pointk = B/2,1 = 0, m = B/2 then two related
(cognate) forms arise, one given, one derived, for the B2 B2

u
three-parallel-line diagram for addition which are 0 2 9 lu+v
well known to us. F igures 6-6(e) and 4-16. We ap.ply _B B B (uvW
the operator above described to the known canonical o ul o vV 2 lutv =
form to obtain the new canonical form, that is, by B B .
(7-9). 2 (== LI
2 2 B u+v 2
B/2 0 0
0 —B/2 0 X
1 0 —-B/2 0 B Bu
u-—v
0 B ——B —uv
u+tv ul —vV p— W | =0
w v W 11 1
u-+v
1 1 1

Example 74. A canonical form for the circular nomogram has been derived in (7-28). The zero point for all
three scales here is at origin, and the three infinite points are at (a, 0). It is interesting to project this familiar

nomogram now from a point k = —a,1 = 0, m = +a. Figures 7-1 and 1-10.
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