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Preface

The authors gratefully acknowledge the help of Klaas Compaan, who was our ad-
visor during the writing of this book. He guarded us against a number of errors and
unclarities and also allowed us to publish the data for some of the new optical sys-
tems he has designed.

We received further support from Richard Berry, our editor. He invested a
great deal of time in editing the text into a consistent whole, ready for the press.

We also gratefully acknowledge the highly skilled assistance of Diane Lu-
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The authors are indebted to the publisher, Willmann-Bell, Inc., for the excel-
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We want also to record our gratitude to Ans Colaris, who typed and patiently
retyped our manuscript.
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nied the preparation of this book during a period of more than a year.

HARRIE G. J. RUTTEN
MARTIN A. M. VAN VENROOLJ

Editor’s Note

With this book, Martin van Venrooij and Harrie Rutten have placed in the hands
of amateur astronomers and telescope makers both knowledge of optics and pow-
erful tools to apply that knowledge.

This book will both arouse your curiosity and answer your questions. Why
are there so many different kinds of telescopes? What does each type have to of-
fer? What makes one telescope better than another? Which are best? Why? What
are the tradeoffs? As a telescope buyer, you will be better informed; as a telescope
maker, you will be able to design custom optics.

Many readers will find the analyses of existing designs the most valuable
part of the book. Newtonians, Cassegrains, Maksutovs, Schmidt cameras—name
adesign and you'll find it in here—are all described and analyzed so that you can
easily compare them. What's your dream telescope? This book will help you
choose it.

Others wiil make use of the power they now have to check, test, and analyze



iv

new telescope designs. The optional design and raytrace programs give you the
tools you need to begin with a basic design and work systematically until you have
created an optimized optical system that meets your personal design criteria.
You'll be able to try new types of glass, design a telescope around that corrector
shell you have parked in the basement, even compare the performance of many
different eyepieces on your telescope.

No longer must you, as an amateur astronomer, meekly accept someone
else’s opinion about a telescope design. You can scrutinize existing designs and
improve them to meet your own standards. Is that new astrographic camera all it's
cracked up to be? By raytracing it, you'll know the answer.

This book will make you an optical expert. After you've read and studied it,
the intricacies of the Maksutov-Cassegrain and apochromatic refractor will make
sense to you. Of course you may have to work hard to understand, but the rewards
will be great. You'll be privy to the terminology of optics, familiar with the meth-
ods of optical design, and able to share the design goals of professional opticians.
You'll be able to design your own telescopes.

Many books on optics have come and gone. This book will stay. As it finds
its audience, 1 look forward to seeing a multitude of exciting new developments
in telescope design that will surely spring from it.

[ want to thank Mary Steinke Tingbald for keying hundreds of thousands of
text characters into my computer; Eleanor Berry for proofing the entire text, mark-
ing and correcting fuzzy wording and textual inconsistencies; Eugene W. Cross,
Ralph K. Dakin, Harold R. Suiter, John Gregory, Paul A. Valleli, Roger W. Sin-
nott, Robert E. Cox, Robert D. Sigler, Richard A. Buchroeder, and David E.
Stoltzmann who so generously read and commented on the book before publica-
tion. Their practical experience, design sensitivity, and familiarity with optical
practice have made the book more useful and valuable for the amateur telescope
maker.

Finally, all who use the accompanying software owe Diane Lucas—a tele-
scope builder and designer herself—their gratitude and appreciation for her work
on the programs. Whether you use them for the design of new systems or the eval-
uation of existing designs, you will benefit from Diane’s dedication. It was a real
thrill to see this software become fast, efficient, and easy to use.

RICHARD BERRY

Cedar Grove, WI

May 1988

Note Added April 1999: The text for this printing has been completely reset and

the cover redone. Willmann-Bell, Inc, wishes to thank Jack Koester, Sandra Lu-

cas, and Christopher Bechtler for their help in maintaining the accuracy of this
printing.
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Chapter 1

Introduction

This book has been written for every amateur astronomer who owns a telescope
and wants to know more about it. It was not so long ago that we found ourselves
in much the same position and set out to learn more about optics. We soon real-
ized, as we asked questions and searched for answers, that we were hardly alone
in our ignorance. When we set out to find the answers to our questions about tele-
scopes, this book was born.

We were possibly too ambitious in trying to bridge the gap between amateur
astronomer and professional optical designer, but we felt it needed to be done. In
the past, when amateur telescopes were relatively simple and correspondingly
easy to understand, there was no need for a book such as this. But today’s tele-
scopes and astrocameras, with their more sophisticated optics, require an under-
standing of optical theory considerably beyond anything now available in most
amateur-level books. As a result, the modern telescope has become a “black box”
to many of its most dedicated users.

Anyone, of course, can consult the professional literature. However, not only
is this literature difficult to understand, but it is also not widely available, and, to
make matters still worse, little of it deals directly with telescopes. In this book,
when we discuss optics, we apply the theory directly to amateur telescopes and as-
trocameras. We have kept the book practical rather than theoretical, first analyzing
a wide range of optical systems for the reader, then showing the reader how to in-
vestigate the performance of any optical system himself.

We believe it is quite possible for amateurs to design new optical systems
and improve existing designs. Until recently, optical design was carried out only
by professionals because optical calculations required the power of a mainframe
computer. With the advent of fast and powerful home computers, fast ray tracing
and optimization have come within the reach of determined amateurs.

In the process of writing this book, we carried out a comprehensive investi-
gation of many optical systems, analyzing them with our own computer. As we
investigated the different telescope designs, we decided we could not ignore as-
trocameras, field correctors, and eyepieces. These optical systems, we feel, are as
important as the telescopes themselves in understanding today's amateur optics.

It is evident that a book this size cannot consider all the optical systems avail-
able to the amateur. In our search of the patent literature, we found hundreds of
designs for objectives with five or more optical elements. Since we had to restrict
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ourselves somehow, we chose to include only those designs that amateurs would
find practical to build. In the end, and admittedly somewhat arbitrarily, we decid-
ed to limit ourselves to systems consisting of four or fewer optical elements. Even
with this restriction, the number of possible designs remains far too large to cover
exhaustively.

We wish to make it clear that we offer no answer to the often-asked question,
“Which telescope is best?” The answer, if there is one, depends largely on the task
for which an instrument is to be used. If you wish to build or buy a low-cost tele-
scope, your choice is likely to be a Newtonian reflector. If you demand the highest
possible sharpness and contrast in observing planetary surfaces for a given aper-
ture, you may prefer a refractor. For those requiring a compact and portable tele-
scope, the obvious choice is a catadioptric such as the Schmidt-Cassegrain or
Maksutov-Cassegrain. For optimum performance in wide-field photography, a
modern flat-field camera is the best choice; for smaller fields, there are many cat-
adioptric objectives to chose from. The advantage of optical ray tracing is that it
permits an observer to analyze the performance of an optical system before con-
structing or purchasing it, and thus determine whether the system can do the job.

To aid the reader in comparing different optical systems, we have chosen
200 millimeters (8 inches) as the standard aperture for the systems analyzed in this
book. This is a very popular aperture among amateur astronomers, for it is neither
too small to take seriously nor too large for practical construction. We discuss con-
version of optical specifications and performance data from our standard aperture
to other apertures in chapter 4. Because so much is already available in the litera-
ture, we do not discuss optical shop techniques such as grinding and testing mir-
rors or lenses.

This book is organized so that, for understanding what different telescopes
can do, it is not necessary to read beyond chapter 19. For the amateur who simply
wishes to learn a bit about the performance of the different telescope types, we
recommend studying chapters 4 through 19. These cover the properties of Newto-
nians, refractors, Schmidt and Maksutov cameras, Cassegrains—and, in fact, just
about every type of telescope available today.

For the reader who is interested in investigating other systems or in design-
ing new systems with his own computer, we have provided the more technical
chapters 20, 21, and 22, which, when used with the computer programs, provide
the tools to explore the field of telescope optics. The literature references have
been specifically selected with the amateur in mind.



Chapter 2

Development of the Amateur
Telescope

21 Early Developments

More than 300 years have passed since the invention of the telescope. In the fol-
lowing chapters, we shall consider many telescope designs of long standing plus
a number of promising new designs. It is worthwhile, before delving into the op-
tical properties, to consider the telescope’s historic past as well as its flowering in
the twentieth century.

From historical investigations, it appears that until 1600 the telescope was
unknown, with the exception of some individuals who were probably unaware of
its potential. History tells us that, in the year 1608, Hans Lippershey, a Dutch spec-
tacle-maker of Middelburg, applied to the state of Holland for a patent for an in-
strument he had devised for looking at distant objects more closely. The patent,
however, was not granted because Zacharias Janssen, also a Dutchman, claimed
he had built such an instrument earlier than Lippershey. He claimed, in fact, that
Lippershey’s instrument was a copy of his own design.

The original Dutch telescopes were constructed with a positive objective
lens and a negative eyelens—a design which provides upright images. “Dutch”
telescopes were soon being made and sold in large numbers, and they soon spread
throughout the whole of Europe.

The Italian Galileo Galilei also manufactured refracting telescopes, but only
after he had heard about them from others. It would be interesting to know wheth-
er he re-invented the instrument on hearing that they existed, or whether he also
heard how to construct them. In any event, in 1610 he announced the existence of
the Jovian satellites, the phases of Venus, and lunar craters—and thereby revolu-
tionized astronomy.

In the beginning, the color aberration that results from using a simple (i.e.,
single element) objective was suppressed by building refractors of extremely long
focal lengths. Telescopes with apertures of 60 mm and lengths of 5 meters were
common. In an extreme case, Christiaan Huygens made a simple refractor 60
meters long, with an aperture less than 200 mm.

Meanwhile, in 1663, a Scot named James Gregory designed the first mirror
telescope. It consisted of a parabolodial concave primary mirror and an elliposidal
concave secondary mirror to relay the image through a hole in the center of the

3



4 Chapter 2: Development of the Amateur Telescope

primary. The atempts to carry out this design were unsuccessful however, since
no one then knew how to test the complex mirrors.

Credit for the first useful reflector belongs to the Englishman Isaac Newton,
who constructed a prototype of modern large telescopes in 1668. Newton’s design
is the same one used by many amateurs today. Newton had built lens telescopes,
but after experimenting with the refraction of light and its dispersion into a spec-
trum, Newton became convinced that an achromatic (color-free) telescope based
on lenses was impossible. His conclusion, though faulty, spurred his experiments
with reflectors. Nine years after Newton announced his telescope, the Frenchman
Guillaume Cassegrain proposed placing a convex mirror in front of the primary.
Such a system is called a Cassegrain telescope.

Newton’s pronouncement on color aberration in lens telescopes delayed fur-
ther development of refracting telescopes. It was not until 1729 that the English-
man Chester M. Hall succeeded in making an achromatic objective by combining
two lenses with different dispersions. Though he found the lens curvatures empir-
ically, Hall eliminated roughly 95% of the color aberration present in simple re-
fractors.

In 1758, the Englishman John Dollond was the first to construct an achromat
based on calculations; thus, he is quite possibly the first optical designer.

Around 1774, William Herschel, a German who had moved to England, be-
gan constructing telescopes, first as an amateur, later, after his discovery of the
planet Uranus with a home-built 150 mm reflector, as a professional. Herschel’s
reflecting telescopes—his largest had an aperture of 1.2 meters—became very fa-
mous, and the 1.2 meter instrument was the largest telescope in the world for many
years.

During the nineteenth century, major progress took place in making large
glass blanks sufficiently uniform for use in a telescope. By the end of the nine-
teenth century, it had become possible to make objectives up to one meter in di-
ameter—and indeed, large refractors were the crowning glory of all major
observatories at the beginning of the twentieth century.

But one meter remains the practical upper limit of objective lenses even to-
day. During the World Exhibition in Paris in 1900 an objective with an aperture
of 1.25 meters and a focal length of 40 meters was shown mounted horizontally.
Optically, however, this telescope appears to have been a failure because of the
sag of the glass under its own weight.

Until the middle of nineteenth century, all telescope mirrors had been made
from metal. Even when Lord Rosse built a Newtonian telescope with an aperture
of 1.8 meters and a focal length of 17 meters, he used metal “specula.” The
Frenchman Léon Foucault achieved a major step forward by making glass mirrors
using the silvering process invented by Justus von Liebig to attain high reflectiv-
ity. This also meant that heavy metal mirrors could be replaced by much lighter
glass mirrors. Furthermore, since glass mirrors can be resilvered quickly and eas-
ily while metal mirrors must be repolished at great time and expense, reflectors
became far more practical than they had been. Within 30 years, reflectors had
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ousted refractors as the instrument preferred for serious research. Foucault also
developed an important method for testing mirrors which amateur telescope mak-
ers still use today.

Looking over the early history of telescopes, it is striking that many devel-
opments in telescope making are the result of the efforts of amateurs and other in-
dividuals not occupied professionally with astronomy.

22  Twentieth Century Developments

Until the end of the nineteenth century, telescopes had either lenses or mirrors as
objectives, but not both. In the twentieth century, telescopes combining both, or
catadioptric systems, have come into use, driven in large part by the development
of astronomical photography. Soon after photography became possible, astrono-
mers realized that it was not possible to build a purely refracting or reflecting sys-
tem with adequate aperture and speed with a large useful field. Reflectors, though
large, suffered from off-axis aberrations which limited their angular coverage, and
lens systems, though capable of covering relatively wide angles, suffered from se-
vere color aberrations if the aperture was large or the focal ratio short.

The revolution began in 1930, when Bernhard Schmidt built the first
Schmidt camera. He used a large spherical mirror plus a correcting lens placed at
the center of curvature of the mirror. In this way, he combined the focusing power
inherent in the reflector with the aberration-correcting ability of a specially made
weak lens. Schmidt’s invention offered astronomers the unheard-of combination
of large aperture, wide field, and sharp images. The Schmidt camera is discussed
extensively in chapter 8.

Despite their unprecedented performance, Schmidt cameras have some dis-
advantages. The most obvious is that the focal plane lies between the corrector and
the mirror, inside the system. During the *30s and *40s, James Baker, Edward Lin-
foot, and Karl Slevogt investigated ways to improve access to the image plane.
When a convex secondary mirror is placed between the Schmidt corrector and the
primary mirror, the image is formed near the mirror—and in some designs the fo-
cal surface can be flat. These systems, while capable of excellent photography, are
generally unsuitable for visual use on low-contrast objects (e.g., planets) because
of the very large central obstruction of the secondary.

In the meantime, designers sought more compact telescopes. One of the most
successful compact designs is the Schmidt-Cassegrain telescope. The corrector is
closer to the primary mirror than in the Schmidt camera, and a small Cassegrain
secondary mirror is used to form an image behind the primary. In 1962, Ronald R.
Willey, Jr., showed that a compact Schmidt-Cassegrain could give excellent im-
age sharpness both axially and off-axis. Encouraged by this analysis, Tom
Johnson began to manufacture a 200 mm f/10 Schmidt-Cassegrain called the
Celestron.

Some ten years later, Robert Sigler investigated a whole family of Schmidt-
Cassegrain systems. He concluded that certain combinations of Schmidt correc-
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tors and mirrors have minimal image aberrations on and off-axis. We discuss a va-
riety of Schmidt-Cassegrain forms in chapter 9, and in chapter 21 give the
procedures for designing them.

In the 1930s, opticians found it exceedingly difficult to make the compound
curves of Schmidt corrector lenses, so the designers investigated alternative cor-
rectors. Dimitri Maksutov in Russia, Albert Bouwers in the Netherlands, Dennis
Gabor in England, and Karl Penning in Germany independently discovered that a
deep meniscus lens has much the same effect as a Schmidt lens: it can correct the
spherical aberration of a spherical mirror. Maksutov systems—including Maksu-
tov cameras and Maksutov-Cassegrain telescopes—are popular today among am-
ateur telescope makers. This is true especially for a Maksutov-Cassegrain
designed in 1957 by John Gregory. Maksutov systems are discussed in chapters
10 and 11.

Most reflecting and catadioptric systems have a central obstruction caused
by the secondary mirror. Horace Dall, William Pickering, and other experienced
observers have found that the obstruction produces lowered contrast and image
sharpness. These effects are especially pronounced when objects with low inher-
ent contrast, such as planetary detail, are observed. Refractors, though unobstruct-
ed, suffer from residual chromatic aberration. What was needed was a system both
unobstructed and color-free.

In the 1950s, Anton Kutter developed a class of unobstructed reflectors
called schiefspieglers. They are the best known configuration of the larger family
of tilted component telescopes, or TCTs. Chapter 12 deals with the schiefspieglers
designed by Kautter, and chapter 18 covers the loss in contrast and resolution
caused by the secondary obstruction.

The twentieth century has brought not only catadioptric instruments, but also
further development of the classic two-mirror Cassegrain system. Developed by
George Ritchey, an American, and Henri Chrétien, a Frenchman, the Ritchey-
Chrétien configuration offers improved photographic performance. However, be-
cause this design has deeper aspherics than the Classical Cassegrain and suffers
from spherical aberration at its prime focus, the instrument is not frequently built
by amateurs.

Classical achromatic refractors have long focal ratios, typically f715, in order
to suppress chromatic aberration adequately. Using more than two lens elements,
or certain special improved glasses, apochromatic refractors can have greatly re-
duced color aberration and be constructed in shorter focal ratios. Some of these
developments are discussed in chapter 6.

An important part of every telescope, sadly neglected in the past, is the eye-
piece. Since the 1970s, new designs have brought increased apparent field and im-
proved edge sharpness. Chapter 16 surveys the historical development of
telescope eyepieces and the best of the modern designs.

Before 1960, optical design was carried out by hand or with electromechan-
ical calculators. In either case, it was a time-consuming operation. In the 1960s,
large computers became available to professional designers and revolutionized
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optical designing. By the 1980s, computer technology had advanced to the point
where an amateur can write and run his own computer programs. Such programs
can ray-trace existing systems and design new systems. These subjects are cov-

ered in chapters 20, 21, and 22.



Chapter 3

First Order Optics: Lenses and
Mirrors

3.1 Refraction and Reflection

The basic functions of telescopes are two: to enlarge the apparent angle subtended
by a distant object, and to increase the amount of light reaching the observer’s eye.
As a result of the first function, the image of a planet appears larger when viewed
through a telescope; as a result of the second, a star observed with a telescope ap-
pears brighter than with the unaided eye. Both functions are provided by an optical
system, a combination of lenses, mirrors, or lenses and mirrors, called a telescope.

All optical systems are based on the refraction and/or reflection of light.
Light is a wave phenomenon which propagates through space—and optical sys-
tems. Although light does not actually consist of rays, the calculation and design
of optical systems is based on geometric optics, in which we treat light as a fan of
rays, each ray following a straight line as long as it encounters no obstacles.

However, when a light ray traveling in one medium enters another medium,
for instance, a ray in air strikes a glass surface, its direction of travel changes. This
is because the velocity of light in glass is lower than the velocity of light in air.
The measure of this change, called the index of refraction, is inversely proportion-
al to the velocity of light in the medium relative to the velocity of light in a vacu-
um. The index of refraction is, therefore, exactly unity for vacuum. For denser
materials, the index of refraction is greater than unity: 1.00029 for air, 1.33 for wa-
ter, and 1.51 for common soda-lime window glass. Every optical medium has its
own index of refraction; moreover, the index depends on the wavelength of the
light in a complex way.

When Willebrord Snell investigated the refraction of light in the early 17th
century, he discovered a simple relationship between the angle of the incident ray
with the surface normal, €, and the angle of the refracted ray €’ (see fig. 3.1). Ac-
cording to Snell's law:

sing _ n’

me _ 1 (3.1.1)
SInE n

where n and »n” are the indices of refraction of the two media. For instance, in a
situation such as is shown in fig. 3.1, when the angle of incidence € = 30°, and the
index of refraction for the wavelength under consideration is 1.5, then

9
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Fig. 3.1 Refraction and Reflection.

S‘.“3(,) = L3 (3.1.2)
sing 1
Solving for sin €,
sing’ = Si030 _ 05 _ 3333 (3.1.3)
1.5 1.5
and therefore
e = 19.4712°. (3.1.4)

Note that although the index for air is actually 1.00029, it is normally taken
as 1 in the glass catalogs.

When a light ray travels from a dense medium (such as glass) to a less dense
medium (such as air), according to Snell’s law, the sine of the angle of refraction,
€', for large angles of incidence €, may be larger than 1. In this particular case, the
ray does not exit the medium, but is, instead, reflected back into the medium (fig.
3.2). Since sin €’ cannot exceed 1, the “critical angle” is arcsin(1/n). For ordinary
glass (n = 1.5), the critical angle is 41.8°; for an ultradense glass (n = 1.9), the crit-
ical angle is 31.8°. Total internal reflection is useful; it is used in some types of
prisms (see section 3.4).

Reflection follows a simpler law than refraction: the angle of incidence
equals the angle of reflection. Mathematically, this is:

€ = —¢ (3.1.5)

It is important to note that the sign of the angle changes. We may also treat reflec-
tion as a special case of Snell's law in which:

’

n = -n. (3.1.6)

This is shown in fig. 3.1.

3.2 Image Formation

Telescopes, and indeed most optical systems, are made with more than one optical
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Fig. 3.2 Critical Angle for Total Reflection.

element. These are called compound systems. The result of such a combination
may be, for example, a short tube length or a more favorable image position. How-
ever, the most important reason for compound systems is that they offer greater
opportunity to control image aberrations.

In this section, we introduce first-order optics, a simplified and idealized ap-
proach that is very helpful in roughing out compound systems. First-order optics
deals with rays and images close to the optical axis, in the so-called paraxial re-
gion. In first-order optics, the elements of the optical system have rotationally
symmetric surfaces and share a common axis of rotation called the optical axis.
Furthermore the optical elements (lenses and mirrors) are assumed to be infinitely
thin, thus avoiding further complexities found in real optical systems.

Of course, real systems do not conform to the assumptions of first-order op-
tical theory. Instead, they have relatively large apertures and relatively large ray-
angles. In real systems, the focal surface is usually not a plane but a curved sur-
face, and image aberrations can and do occur. We will examine aberrations in
chapter 4. First order optics also ignores the diffraction of light. We will discuss
diffraction and examine its consequences in chapter 18.

Although the formulae derived from first-order optics are insufficiently ac-
curate for an exact design or analysis of an optical system, they are useful and im-
portant for making initial calculations or obtaining an overview of the paths of the
rays in a telescope.

Telescopes are generally used on very distant objects; starlight is an excel-
lent approximation of an infinitely distant point source. A fan of rays from a star
can be considered perfectly parallel. When the star is on the extended optical axis
(i.e. when the telescope is pointed at the star), the star will be imaged as a small
disk of light on the optical axis. When the star is positioned away from the optical
axis, the entering parallel bundle of rays makes an angle with the optical axis. The
resulting image appears off the optical axis also.

Now consider fig. 3.3. Four optical elements each intercept a beam of rays
parallel to the optical axis, possibly coming from a star, entering from the left side.
The beam is imaged on the axis as the focal point F. The distance from F to the
lens or the mirror is called £, the focal length, or focal distance. The focal ratio of
a lens or mirror is defined as f/D, where D is the diameter of the beam, and is also
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Fig. 3.3 Focal Lengths of Lenses and Mirrors for a Constant Radius of Curvature. Note that refracting
systems have longer focal lengths. The assumed refractive index is 1.500.

the aperture of the system. When the focal length of a system is 1000 mm and the
aperture D is 100 mm, then the focal ratio is 10. This system is therefore called an
/10 system. When comparing the focal ratios of different systems, the words
“larger” and “smaller” should be avoided because they are ambiguous. To avoid
confusion, we will use the terms “faster” and “slower” when comparing focal ra-
tios. An f/5 system is, for example, faster than an f/10 system; an f/15 system is
slower than an f710 system.

For a thin Jens having radii of curvature R, and R,, and made of glass with
refractive index n, the approximate focal length may be calculated as follows:

}:(n—l)(i—i). (3.2.1)

For a biconvex lens with R, = 50 mm and R, = —~100 mm (note that the sign
of the second surface means it is concave to the incoming light) and refractive in-
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Fig. 3.4 Image Formation for a Thin Lens (Finite object distance).

dex n = 1.5, the focal length is calculated as:

1 1 1
Lo (5-1) (L1 3.2.2
f ( ) (50 —100) ¢ )
f=66.667Tmm.
For a concave mirror with radius of curvature —R, the focal length is:
-R
= —, 3.2.3
f > ( )

Positive lenses and concave mirrors both act to converge a collimated light
beam; either will focus a beam of parallel rays to a real focal point. A negative lens
or a convex mirror will cause a parallel bundle of rays to diverge. Their focal
points are not real but virtual, as shown in fig. 3.3. Their focal lengths can also be
calculated with the formula above; the focal length will be a negative number.

In most cases a telescope is used for observing distant objects. We can gen-
erally treat the object distance as infinite; hence, the bundle of rays originating
from every object point can be considered parallel. When the object distance is fi-
nite, the image distance lies farther from the system than the focal distance (see
fig. 3.4). For this case we find the object and image distances from:

N S (3.2.4)

Obgiy.  iMgiy.

where fis the focal length, ob, is object distance, and im, the image distance.
If the object is 100 mm in front of the biconvex lens with focal length of 66.667
mm we mentioned above, then the image distance becomes:
1 1 1
—_— = — + —. 3.2.5
66.667 100 im (3.2.5)
Solving for the unknown quantity, we find im, = 200 mm.
The magnification of the system is:
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im _ _image height

M = = —>=
ob object height

(3.2.6)

For this example, M = —200/100; therefore the magnification is —2.

In the case of a finite object distance, the construction of the image distance
for a thin lens is easy if the focal length is already known (fig. 3.4). We draw three
rays:

1. the first through the center of the lens called the principal ray;

2. the second parallel to the optical axis, which passes through the focal
point, F,, behind the lens;

3. the third through the focal point, F,, in front of the lens, which becomes
parallel to the axis after refraction.

The object and image planes lie at the intersections of the three rays.

Optical systems usually consist of more than one optical element. When two
lenses with focal lengths f; and f, are spaced distance d apart, the effective focal
length, ., of the system becomes:

i1
fopem ——2—. 3:2.7)
fitfh-d
When the distance between the lenses is zero, the formula reduces to:
fure = hitfy (3.2.8)
fHi+f

If the position of the converging beam from the system is known, the effec-
tive focal length of the combined system is constructed by extending the converg-
ing rays back to the entering bundle, as shown in fig. 3.5. Note that the effective
focal length may be greater or less than the physical length of the optical system,
depending on the type and spacing of the optical elements.

This has a useful application to telescopes. Two mirrors may be combined
as a Cassegrain telescope, shown in fig. 3.6. The effective focal length of the sys-
tem becomes:

f] ‘fz
Ji +f2—d'

where d is the distance between the two mirrors. Note that the focal length of the
convex mirror, f,, is negative. The figure shows where a lens of the same focal
length as the compound optical system would be: the Cassegrain telescope is con-
siderably shorter than the equivalent simple telescope.

First-order optics can handle the passage of light rays through a thick lens,
shown in fig. 3.7. A thick lens has four cardinal points, namely two focal points,

feee = (3.2.9)
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Fig. 3.6 Effective Focal Length of a Cassegrain Telescope.
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Fig. 3.7 Principal and Focal Points for a Thick Lens.
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Fig. 3.8 Image Formation for a Thick Lens.

F, and F,, and two principal points, P, and P,. The principal points represent the
intersection of two principal planes with the optical axis. The principal plane is the
plane where the converging or diverging beam has the same diameter as the enter-
ing bundle. (We will show how P, P,, F,, and F, are calculated in chapter 20.)
When the principal points and focal points are known, we can construct the image
location as shown in fig. 3.8. The separated thin lens formula remains valid when
the distance between the principal planes is taken into consideration. The position
of the principal planes is quite different for the various lens types in fig. 3.9.

3.3 The Optical System of the Telescope

Optical systems which focus a parallel entering bundle of light into a point are
called focal systems, or objectives. When an objective is used with photographic
film, for example, it is called a camera.

A telescope consisting of an objective and an eyepiece is afocal; that is, it
does not form an external image. Both the entering and the exit bundles of rays are
parallel. Fig. 3.10 shows the principle of a telescopic optical system: two lenses
separated by the sum of their focal lengths. A parallel bundle enters the objective
and a parallel exit bundle leaves the eyepiece. Both the objective and the eyepiece
are drawn as single elements for the sake of clarity.

In a simple telescope, the diameter of the entering bundle, D,, is the entrance
pupil. (In more complex systems, the entrance pupil is the front image of an aper-
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Fig. 3.10 Image Formation in a Telescope.

ture stop.) Let us now follow the edge rays of a bundle of starlight which enters
the objective parallel to the optical axis. After passing through the objective, the
rays converge and finally intersect at the focal point, F. After passing through F,
they diverge again until they reach the eyepiece. From the eyepiece, the rays
emerge parallel again. The lens of the observer’s eye, which is located behind the
eyepiece, can also be considered as an objective. It will focus the parallel bundle
to a point on the retina.

The eyepiece diaphragm, or field stop, is located in front of the eyepiece.
Point F”, located at the edge of this diaphragm, is the focal point of the most ob-
lique beam visible to the eye. This oblique cone of rays, indicated in the figure by
dotted lines, exits as a parallel bundle inclined to the optical axis by angle P after
passing through the eyepiece.

An important function of the telescope is increasing the angle subtended by
the object viewed. Since a star must be displaced by the angle o from the optical
axis to form an image at point F”, the magnification is:

M = 0B (3.3.1)
tano

When these angles are small, the formula simplifies to:
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Table 3.1
Observational Task Exit Pupil (mm)
Wide Fields under dark skies: 5t07
(large galaxies, Milky Way, diffuse
nebulae, open clusters)

General Viewing: 3t04
(nebulae, clusters)

Best match to eye’s resolution: 2
(moon, globular clusters, planetary
nebulae, double stars)

Maximum planetary detail 0.8
(according to Texereau)
Close double stars under best skies 0.5
M = E . (3.3.2)
o

The magnification of the system is also obtained from:

M = Jobj . (3.3.3)
e
The diameter of the exit pupil is:
D
d, = =. 3.34
e =N (3.3.49)

The plane of the intersecting exit bundles is the exit pupil. This is also the
image of the aperture stop formed by the eyepiece.

The greatest magnification possible is seldom the best for viewing a celestial
object through a telescope. Experienced observers have established the guidelines
for the diameter of the exit pupil for different types of observing (See table 3.1).
In older observers, the pupil of the eye may not open to the full 7 millimeters we
assume for youthful observers.

3.4 Flat Plates and Prisms

In addition to lenses and mirrors, plane parallel plates and prisms refract and re-
flect light. Although these elements do not have the ability to focus light, they can
displace and deviate rays (fig. 3.11). For small-angle cones of light, the longitudi-
nal beam displacement, or change of focal position, s, is approximated by:

(3.4.1)

S

where ¢ is the thickness of the plate and » is its refractive index. Although the thin-
lens equation (eq. 3.4.1) does not indicate it, the displacement is dependent on the
cone angle of the beam, and a thick glass plate will introduce detectable aberra-
tions in a fast light beam. In addition to the longitudinal displacement, a tilted plate
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Fig. 3.12 Refraction of a Ray in a Dispersing Prism.

introduces a small lateral displacement of the beam.
Fig. 3.12 shows a dispersing prism. A ray entering the prism exits deviated from
its original direction by angle [3:

=g +&, —. (3.4.2)
1 2

The exit angle, €, is calculated from the angle of incidence, €,, and the top
angle of the prism, ¢, with the aid of Snell’s law. Since the index of refraction de-
pends on the wavelength of the light passing through the prism, the angle of devi-
ation is different for different wavelengths. This is discussed further in chapter 4.

For the modern amateur astronomer, the most useful prisms are the right an-
gle prism and the pentaprism (fig. 3.13). These prisms are commonly used as “star
diagonals” to provide the astronomer a comfortable and convenient viewing posi-
tion when observing objects high in the sky. In the right angle prism, total internal
reflection occurs at the surface, so that this surface need not be silvered, though it
often is in wide-angle or fast optical systems. A pentaprism requires two silvered
surfaces.

Both prisms deviate the optical axis by 90°. A right angle prism, however,
inverts but does not reverse the image because there is a single reflection in it. A
pentaprism, with two reflections, shows the image in its initial orientation. Note
that a tilt error in positioning a right angle prism causes a ray deviation twice the
tilt angle error; because there are two internal reflections, a tilted pentaprism in-
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Fig. 3.13 Reflection by a Right Angle Prism and by a Pentaprism.

troduces an image shift but does not influence the direction of the exit rays.
Placing a prism in the light path of a telescope is equivalent to introducing a

thick, plane-parallel glass plate. The displacement of the image and possible aber-

rations must be considered when designing a telescope for use with a prism.



Chapter 4

Image Aberrations and Their
Presentation

“Experienced amateur astronomers tend to see image aberra-
tions rather than stars through colleagues’ telescopes.”

Dr. W. J. P. van Enckevort

41  The Spot Diagram

Apart from errors in manufacture and assembly, the quality of an optical system
is determined by the design’s residual image aberrations. In the absence of diffrac-
tion, a perfect optical system would produce a point image in the focal surface if
the source were a point. Ideally this would be the case both on the optical axis and
away from it.

In practice, however, this goal is seldom attained over the entire focal surface
even when it is achieved on the axis. In the following pages, we will see that var-
ious types of image aberrations exist. In the presence of aberration, the image of
a point source becomes a blur called the scattering figure. The scattering figure,
or “blur circle,” almost always arises from a combination of aberrations rather
than any single aberration. It is therefore often difficult to decide exactly which
part of the scattering figure results from which aberration.

In order to judge the image quality of an optical system the designer must
compute the magnitude of the aberrations and somehow evaluate the results. Until
the mid—1950s, before the age of electronic computers, optical analysis was car-
ried out with graphs or tables which showed or listed each aberration separately.
Because the optical quality of a system is determined by the combination of its ab-
errations, graphs and tables seldom present the information in a form suitable for
evaluating the overall optical quality. This difficulty is all the more true for those
not involved daily in the design and evaluation of optical systems.

Since digital computers have become widely available, the situation has im-
proved considerably. An ordinary microcomputer programmed in a slow, inter-
preted high-level language such as BASIC can handle the enormous number of
calculations necessary to compute spot diagrams—and spot diagrams display im-
age quality in a way that is intuitively understood by practical workers and optical
professionals alike.

21
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Fig. 4.1 The Principle of the Spot Diagram.

Spot diagrams simulate the size, shape, and light distribution in the image
surface. The principle of the spot diagram is illustrated in fig. 4.1. Using the equa-
tions of geometric optics, we follow a bundle of rays through a system of lenses
and mirrors to the focal plane. Since we typically trace several hundred rays dis-
tributed in a regular array on the entrance pupil through each of the surfaces of the
elements in the optical system, the total number of ray and surface intersections
may easily run into the thousands. The distribution, in the focal plane, of rays from
a point source is called a spot diagram.

We need not restrict ourselves to calculations for a bundle of rays, or pencil,
that is parallel to the optical axis, but can also investigate imagery at various an-
gles off the axis. When the system contains lenses, we may repeat the calculations
for various colors to assess the influence of chromatic aberrations.

By shifting the focal plane forward or backward, we can examine the effect
of focusing on the size of the spot diagram, and also see how it influences the
shape of the image blur. Since the focus may not have an exactly defined position,
we define the “best focus™ as the focal position yielding the smallest scattering fig-
ure, using several trials. Calculating spot diagrams is explained in chapter 20.

In our treatment of the optical systems investigated in chapters 5 through 16,
we often use spot diagrams. In those cases where it is beneficial, we have also em-
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Fig. 4.2 Common Distributions of Rays at the Entrance Pupil.

ployed aberration graphs.

In calculating a spot diagram it is important to trace a sufficient number of
rays, and to be sure that the rays are uniformly distributed over the entrance pupil.
In most cases, 200 rays is sufficient to obtain a good idea of the size and shape of
the scattering figure. Occasionally, when there is a wide range of spot density in
the spot diagram, it may be necessary to trace considerably more rays to gain in-
sight into the intensity distribution of light in the image.

In principle there are numerous possibilities for distributing the incoming
rays in the entrance pupil, but in practice only a few are satisfactory. Those that
we have used—the random, square, triangular, and concentric distributions—are
shown in fig. 4.2.

In the random distribution, positions of the entering rays are determined by
arandom number function in the computer program. Unfortunately, a random dis-
tribution offers no guarantee that a uniform distribution will be obtained. More-
over the distribution pattern changes every time. Only when a very large number
of random rays is used does the distribution become acceptable.

The triangular distribution is equally unsatisfactory because spot diagrams
made with it appear jagged, quite unlike the appearance of a blurry image. Square
and concentric distributions are almost equivalent in giving smooth images with a
relatively small number of rays. We have used a concentric distribution because
we feel it produces spot diagrams that are visually more attractive than those of
the square distribution.

Fig. 4.3 shows, on a greatly exaggerated scale, spot diagrams for a star image
12.5 mm off-axis in a 200 mm f/8 Newtonian telescope. These show not only the
size and shape of the light blur caused by image aberrations, but also the light dis-
tribution within the blur. The number of spots on a certain unit of area is a measure
of the light intensity at that place. A relatively faint comatic tail can clearly be seen
in both spot diagrams. As the total number of spots in the diagram increases from
250 to 1000, however, less obvious features of the comatic blur are more readily
distinguished.

Interpreting spot diagrams is straightforward compared to graphic presenta-
tions. However, there is a pitfall the designer should always keep in mind: the rel-
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Fig. 4.3 Spot Diagrams for a 200 mm f/8 Newtonian, 12.5 mm Off-axis.

ative intensity of parts of an image. Fig. 4.3, and, indeed, all such representations,
under-represent the intensity in the brightest parts of the image. Fig. 4.4 shows the
intensity distribution within the same comatic blur as a “three-dimensional” his-
togram of 25,000 rays. Note the intensity of the tail compared to that of the peak.
If the detector has a threshold for response, as a photographic emulsion does, then
the tail may not record at all. Anyone using the longest dimension of the comatic
blur to assess the effective image size would estimate it approximately three times
larger than normally records.

Furthermore, since part of the light in an image is lost in a tail or blur below
the threshold value, the light which should have been in the image is not, resulting
in the loss of faint stars. If the star is bright, the whole blur will be recorded, pro-
ducing unacceptably “soft” star images. Only spot diagrams showing a high con-
centration of light in the core image are truly satisfactory for astrophotography.

The designers should also remember that spot diagrams do not include the
effects of diffraction. Sophisticated computer programs are necessary to calculate
the combined effects of diffraction and image aberrations. Fortunately, the influ-
ence of diffraction may be neglected in most cases. In section 4.4, we discuss fur-
ther the criteria determining image quality for spot diagrams.

4.2 Image Aberrations

We divide image errors, or aberrations, into the same two broad classes as most
optical textbooks do:

1. Monochromatic aberrations, which may occur in both refracting and
reflecting systems when light of one wavelength is involved; and

2. The chromatic aberrations, which occur because different wavelengths
behave differently in the system. Chromatic aberrations appear only
when a system contains refractive elements.

The monochromatic aberrations were analyzed in the 1850s by the German
mathematician Ludwig von Seidel, and are named the Seidel aberrations after
him. Von Seidel distinguished the following: (See also section 20.6.)
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Fig. 4.4 Comparison of a Spot Diagram and 3-D Distribution of 25,000 Randomly Traced Rays.

1. spherical aberration,
2. coma,
3. astigmatism,
4, curvature of field, and
5. distortion.

Of the five Seidel aberrations, only spherical aberration is an axial one. Co-
ma, astigmatism, curvature of field, and distortion are all off-axis aberrations.

4.2.1 Spherical Aberration

Spherical aberration occurs when light rays parallel to the optical axis entering a
system at different heights come to a focus at different points along the axis. In a
single lens or spherical mirror the outer rays intersect closer to the lens or the mir-
ror than the inner rays. Rays entering very close to the optical axis intersect at F,
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Fig. 4.5 Longitudinal Spherical Aberration (LA) in a Positive Lens.

the paraxial focus (fig. 4.5). (See section 20.5) We may graph this aberration as a
plot of longitudinal aberration against the height of the zone at the entrance pupil.
The longitudinal aberration, or LA, is the difference between the intersection of the
rays at the optical axis and the paraxial focus.

In fig. 4.6, we present another type of graph of spherical aberration. Trans-
verse aberration, TA, is shown for five intercepting planes. The graphs plot the dis-
tance from the ray to the axis for various zones of the entrance pupil in a specific
plane. Because spherical aberration is symmetrical, graphs of longitudinal aberra-
tion are usually drawn for the upper part of the entrance pupil only. From both
graph and spot diagrams, we see that the spread of light is smallest at plane c.

Spherical aberration can be reduced by diaphragming the aperture. The outer
rays will then be intercepted, resulting in an improvement of the sharpness but a
loss in light grasp. The plane of minimum spread, plane ¢, will shift away from a
simple lens or mirror, toward plane d.

4.2.2 Coma

Coma occurs in an oblique bundle of light when the intersection of the rays is not
symmetrical, but is shifted with respect to the axis of the bundle. Off-axis light
rays passing through the lens near its edge (i.e., marginal rays) intersect the image
surface at different heights than those that pass through the center of the aperture.
This results in an image with a comet-like shape, a bright core of light accompa-
nied by a spreading tail (see fig. 4.7). Graphs of TA against ray height for pure
coma are shown for five focal planes. Transverse curves give the intercept distanc-
es from the oblique axis for every zone of the entrance pupil.

Coma is a very troublesome aberration. Not only is the off-axis image un-
sharp, but it is also asymmetric. As a result, it is impossible to measure accurate
star positions from photographic plates taken with systems having coma.

In order to be free of coma, a system which is free of spherical aberration al-
ready must comply with the Abbe sine condition. Discovered by Ernst Abbe, the
sine condition requires that in a system free of coma, every exit ray of an oncom-
ing beam of rays parallel to the axis will satisfy the condition:
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Fig. 4.6 Transverse Spherical Aberration in a Positive Lens.
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where # is the ray height of the ray before it enters the system, U’ is the angle be-
tween the ray and the optical axis as it travels toward focus (fig. 4.8), and C is a
constant which we will define below. This implies that somewhere between the
entrance pupil and the focal plane there exists an imaginary spherical surface con-
necting the parallel entering rays and the exit rays with its center at F, the focal
point. When such a surface exists and the system has no spherical aberration, then
all distances between the imaginary spherical surface and the focal point F are the
same, and there is no asymmetry present in the system. The constant distance is,
in fact, C, the constant we saw above, and it is the effective focal length of each
zone of the entrance pupil. Abbe called a system free of spherical aberration and
coma “aplanatic,” and so will we.

When a system has coma, then the “Offense against the Sine Condition,” or
OSC, is expressed as the fractional difference between the axial value of C and the
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Fig. 4.8 The Abbe Sine Condition and the OSC.
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value of C at height h:
osc = EW_ @.2.2)
C(o)

These values may be plotted against the ray height as shown in fig. 4.8. Departure
from a perpendicular line indicates the presence of coma.

For proper correction of coma in the presence of spherical aberration, the po-
sition of the limiting stop or entrance pupil is critical. Sometimes a non-aplanatic
system can be made aplanatic only by repositioning the stop.

4.2.3 Astigmatism

Astigmatism is probably the most difficult aberration to understand. It exists
whenever there is a difference between the optical power of the system in the tan-
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Fig. 4.10 Tangential and Sagittal Focal Surfaces.

gential plane and in the sagittal plane. This means that there are two focal surfaces,
one formed by the focus of rays from the tangential plane and the other formed
from rays in the sagittal plane of the lens.

In fig. 4.9 we see an oblique bundle of rays entering an optical system. Two
planes are drawn:

1. A plane through the object point and the lens axis called the tangential
or meridional plane, normally shown as the plane of the drawing; and

2. A plane at right angles to the tangential plane called the sagittal plane.

The tangential rays come to focus in b, while the sagittal rays focus in d.

Midway between the tangential and the sagittal focus lines, in plane c, the
blur of light reaches its smallest dimensions. Here it is approximately circular, as
shown in the spot diagrams, but this is true only for pure astigmatism. The diam-
eter of the smallest blur circle depends on the focal ratio of the exit bundle: the
faster the focal ratio, the larger the blur.

Fig. 4.9 also shows transverse aberration curves for pure astigmatism. The
graph plots the interception distance for the tangential and sagittal planes against
the ray height with respect to the oblique axis for every zone of the entrance pupil.

The tangential and sagittal focal surfaces touch each other on the optical ax-
is. Fig. 4.10a shows the focal surfaces of a single positive lens. In the middle, be-
tween these two focal surfaces lies another focal surface where the unsharpness
caused by astigmatism is at its smallest. When astigmatism is fully corrected, so
the tangential and sagittal focal surfaces coincide as shown in fig. 4.10b, the sys-
tem is called anastigmatic.

Depending on how the system has been corrected, the tangential and sagittal
focal surfaces may be concave or convex. All four possible combinations of the
tangential and sagittal focal surfaces have been drawn in fig. 4.11. Vertical lines
are planes perpendicular to the optical axis. In cases 1 and 2, when the position of
the tangential focal surface lies to the left of the sagittal focal surface, the system
is said to have positive, or undercorrected, astigmatism. In cases 3 and 4, the astig-
matism is negative, or overcorrected. Astigmatism is undercorrected for a single
positive lens.
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Fig. 4.11 Possible Tangential and Sagittal Focal Surfaces.

In the presence of astigmatism it is impossible to obtain a sharp off-axis im-
age. If a star is imaged by an astigmatic system, it will appear as a horizontal line
in the tangential focal surface at b and as a vertical line in the sagittal focal plane
at d (fig. 4.9). At c, the star will be imaged unsharply as a round or somewhat
squarish blur.

4.2.4 Curvature of Field

Pure curvature of field means that the sharpest image is formed on a curved focal
surface rather than a flat focal plane. If a flat photographic plate is used, the off-
axis image will be unsharp because it is out of focus. The transverse aberration
curves in fig. 4.12 show the interception distances for every zone of the entrance
pupil with respect to the oblique axis for five intercepting planes.

Many of the systems discussed in the following chapters suffer from curva-
ture of field. Generally speaking, unless deliberate measures are taken to prevent
it, the focal surface will be curved. As mentioned in section 4.1, image aberrations,
to the extent they have not been corrected, always occur simultaneously. For this
reason spot diagrams and aberration curves generally differ from the idealized pat-
terns shown for a single aberration.

4.2.5 Distortion

Distortion is not an image aberration in the normal sense because it influences im-
age scale rather than image sharpness. When the image scale is too large, it is re-
ferred to as pincushion, or positive distortion. If it is too small, we have negative,
or barrel distortion. These are shown in fig. 4.13. The sides of a square are curved
because the image scale varies with the distance to the axis. The graphs in fig. 4.14
show the image scale growing with axial distance of the image (positive distor-
tion) and shrinking (negative distortion).

4.3 Chromatic Aberrations

Chromatic aberrations occur because the refractive index of glass is different at
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Fig. 4.12 Curvature of Field.

different wavelengths. Since wavelength determines the color seen by the eye,
these aberrations render star images as colored blurs. The human eye responds to
wavelengths as in tables 4.1a and b.

Table 4.1a Table 4.1b
Color Sensation Color Sensitivity
Relative Response
Wavelength? Color Wavelength Photopic® Scotopic®

360 to 440 nm  violet 436 nm <.02 .28
4400495 nm  blue 486 nm .20 .86
495t0 580 nm  green 513 nm .60 1.00
580 to 600 nm  yellow 555 nm 1.00 40
600 to 630 nm  orange 587 nm .80 .06
630to 780 nm  red 656 nm .08 <.01

a. Inm=10mm = 10"meter
b.  Photopic: bright enough to see color
c.  Scotopic: too dim for color
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Table 4.2
Standard Wavelengths and Their Sources
Line Wavelength (nm) Element Color
h 404.66 Hg violet
g 435.83 Hg violet
F’ 479.99 Cd blue
F 486.13 H blue
e 546.07 Hg green
d 587.56 He yellow
C’ 643.85 Cd red
C 656.27 H red
r 706.52 He deep red

In their catalogs, optical glass manufacturers list the refractive indices for
many kinds of optical glass for certain standard wavelengths. Some of these wave-
lengths are listed along with the chemical elements that produce them in table 4.2.

White light is dispersed in a prism as a result of different refractive indices
for various colors, shown in fig. 4.15. Refractive index increases as wavelength
decreases; red is refracted less than violet. The rate of change of refractive index
with wavelength is called the dispersion.

Optical glass manufacturers supply a large variety of glasses with a wide
range of refractive indices and dispersions. The refractive index for each type of
glass is given for the d-line (yellow, 587.56 nm) or the e~line (green, 546.07 nm).
Dispersion numbers V, and V, are based on the difference between the refractive
indices for the F and C lines and the F” and C’ lines respectively. The dispersion
measures—called the Abbe numbers—are calculated as follows:

-1
V, = M4 (4.3.1)
Ng—ne
and:
-1
vV, = Mem” (4.3.2)
nFr — an

We will apply these formulae in chapter 21. Note that if the refractive indices at F
and C are only slightly different, indicating a small rate of change of refractive in-
dex with wavelength, the Abbe number is large.

The d-line refractive index for modern optical glasses varies from 1.44 to
1.96; the Abbe number varies from 20 to 90. In fig. 4.16, we see a plot of glass
types by their refractive index and dispersion. Glasses with an Abbe number high-
er than 55 are generally called crowns; those lower than 50 are called flint glasses.

In Appendix A, we list important modern optical glasses. Optical glass now
bears an international standardized six digit code, for example: 517642. This indi-
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Fig. 4.15 Refraction and Dispersion of Light by a Prism. (The dispersion is exaggerated for clarity.)

cates the first three digits after the decimal point in the refractive index, n,, and the
first three digits of the Abbe number, V. Glass 517642 has, for example, a refrac-
tive index of 1.517 and an Abbe number of 64.2. The catalog shows that this glass
is BK7, a borosilicate crown glass made by Schott Optical Glass, Inc.

4.3.1 Longitudinal Chromatic Aberration

This aberration is also called axial chromatic aberration. We have seen that the fo-
cus of a lens on the optical axis is different for various colors because the blue light
is more strongly refracted than the red. Fig. 4.17 illustrates this. Longitudinal
chromatic aberration expresses itself as color fringes on the optical axis. In chapter
21, we will show how this aberration may be corrected for a refracting objective.
This aberration is usually shown by a graph of the focal position at various wave-
lengths relative to the focal position at a standard wavelength versus the wave-
length.

4.3.2 Lateral Color

Lateral color occurs off the optical axis, and is shown in fig. 4.18; the foci for var-
ious colors outside the optical axis simply do not coincide. This is because the im-
age scale varies with the wavelength. You may be most familiar with this
aberration from inexpensive binoculars; it produces color fringes outside the op-
tical axis. This aberration can be expressed graphically as the difference between
the red and the blue image heights versus image height, or off-axis distance, in
green light. Lateral color appears as off-axis color fringes.

4.4 Presentation of Image Aberrations with Spot Diagrams

In chapters 5 through 16, we use spot diagrams to show the performance of optical
systems. How are these to be interpreted? Quite obviously, spots fall within some
diameter. To a first approximation, the smaller the spread of the spots, the better
the image quality will be. However, it is important to define criteria for acceptable
image quality, and this, in turn, implies we must consider the use of the telescope.
We define two criteria, one for visual observation (which we take to include ob-
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Fig. 4.16 Chart of Schott Optical Glasses.

servations at high magnification, lunar and planetary photography), and the other
for use as an objective in astrophotography.

For low-power visual observation, the maximum effective semi-diameter of
the field is 10 mm for 1/—inch eyepieces and 20 mm for 2-inch eyepieces. Fre-
quently, however, the eyepiece aberrations dominate the aberrations of the objec-
tive. This is discussed in chapter 16.

For visual use, especially when high powers may be used, the spread of the
spots in the focal plane of the objective must be very small, but because the field
is small at high magnification, only the image sharpness near the optical axis is
important. Between 90 and 95% of the geometrically traced rays must be concen-
trated within a circle no larger than the Airy disk in e-light (see section 18.2). The
linear diameter of the Airy disk depends entirely on the focal ratio of the objective
and the wavelength of the light; it is independent of the aperture (although a cen-
tral obstruction slightly affects the Airy disk size). This important point we discuss
further in chapter 18.
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Table 4.3
Airy Disk for Various Focal Ratios
Focal Ratio Airy Disk (mm)
20 0.026
5 0.020
10 0.013
173 0.011
16 0.008
75 0.007

When a telescope is used as an astrocamera for stellar and nebular photogra-
phy, the requirements change. For photography, the image quality necessary is en-
tirely dependent on the resolving power of the photographic emulsion. We have
taken this as 0.025 mm, or 0.001 inches. This criterion is based on extensive in-
vestigations (ref. 4.4), which showed that the smallest diameters of star images on
professional astrophotographic plates were never smaller than 0.025 mm. Al-
though certain modern emulsions do give smaller images, a concentration of 90 to
95% of the spots within this 0.025 mm circle is sufficient in almost all cases. (The
designer may, of course, choose a more demanding criterion if he wishes.) The re-
maining 5 to 10% of the light must be well spread out or the star image will be
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Table 4.4
Visual Analysis
Color Wavelength Line
red 656.27 nm C
green 546.07 nm e
blue 486.13 nm F
Table 4.5
Photographic Analysis
Color Wavelength Line
red 656.27 nm C
blue 486.13 nm F
violet 404.66 nm h

asymmetric. For photographing large areas of the sky, these requirements are a
goal to be met over the entire field of interest.

When an optical system contains lenses, the calculation of the spot diagrams
must be carried out for various colors. Of the systems used visually, we compute
a spot diagram for the following colors (see table 4.4).

The peak sensitivity of the eye falls in the green; the red and blue wave-
lengths are limits where the sensitivity of the eye has fallen to about 10% of its
peak sensitivity. For the calculation of the spot diagrams, we pick the focal plane
so the size in the spot diagram is at its smallest in green light. For a system to give
good performance, however, the red and blue images must be reasonably small.

When the optical system is to be used as an astrocamera, the range of impor-
tant wavelengths is larger than it is for the eye (see table 4.5).

Red light is particularly important for photographing emission nebulae since
they give off much of their energy in the H—alpha line. However, galaxies and
young stars emit most of their light in the blue and violet regions. The position of
the focal plane is usually chosen so that blue is in focus.

Because evaluating a system for astrophotography is far from simple, we
will give an example. Consider a Maksutov-Cassegrain telescope, the Simak, us-
ing optical data published in ref. 4.5. This system is intended primarily for photo-
graphic use. It has an aperture of 200 mm and a focal ratio of 5.6. The image is
behind the mirror. We consider several common film formats that might be used
with this instrument:

1. 24 by 36 mm semi-diagonal 21.6 mm

2. 45 by 60 mm (in practice 45 by 57 mm with a semi-diagonal of 36.3
mm)
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Fig. 4.19 Various Film Formats and Off-Axis Distances.

3. 60 by 60 mm (in practice 57 by 57 mm with a semi-diagonal of 40.3
mm):

We first investigate the image sharpness for a flat focal plane both on the op-
tical axis and for distances of 10, 20, and 30 mm off-axis. In fig. 4.19 we show
these off-axis distances superimposed on the film formats. The 20 mm off-axis
distance corresponds rather closely to the extreme corners of a 24 by 36 mm for-
mat.

Fig. 4.20 shows the spot diagrams for a flat focal plane compared to the
0.025 mm image size criterion; spot patterns larger than 0.15 mm are not shown
because of their size. From this illustration, we see that at off-axis distances great-
er than 10 mm the image sharpness on the flat focal surface does not meet the
0.025 mm criterion.

Before concluding that the Simak is not good enough, however, we must
take a closer look. The enlargement of the spot diagrams is a result of field curva-
ture; when we calculate spot diagrams for an optimally curved field (fig. 4.21), the
size of the spot patterns easily meets the 0.025 mm criterion over the whole field.

Note, though, that the spot diagrams for red, green, blue and violet are shift-
ed with respect to each other. These shifts were drawn on the same scale as the
spot diagram itself; they show that the Simak system has lateral color toward the
edge of the field. This aberration means off-axis star images will appear as color
blurs. Because image sharpness is determined by the combined size of the blur for
all four colors, the image of a star 30 mm off-axis would be insufficiently sharp to
meet the criterion of 0.025 mm.

We evaluated the image quality for a curved focal surface, and films are usu-
ally flat. To transfer the full sharpness of this system to a photographic emulsion,
the designer must resort to one of two methods:

1. Some provision for curving the film, thus forcing it to conform to a
radius of curvature of R = —510 mm; or

2. Using a field-flattening lens in front of the focal surface.

These methods are discussed in chapter 14.
We can also look into using the system with flat film by refocusing it some-
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Fig. 4.20 Spot Diagrams for the Flat Focal Surface of a Simak Focused for Blue.
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Fig. 4.21 Spot Diagrams for the Curved Focal Surface of the Simak Focused for Green.
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Fig. 4.22 Enlarging the Useful Field of an Optical System with a Curved Focal Surface.

what (see fig. 4.22). If we focus for the axial image, the extrafocal disk expands
off-axis. However, if the flat film is shifted so that the diameter of the spot dia-
gram on the optical axis becomes as large as we care to tolerate, 0.025 mm, then
at some point toward the edge of the frame, the film will intersect the surface of
best focus. This technique can enlarge a mildly curved field considerably, though
the limiting magnitude will vary nonlinearly with field angle.

45 Scaling Optical Systems

The objective systems discussed in chapters 5 through 13 all have, with a single
exception, an aperture of 200 mm. Suppose the designer wants a system with an
aperture of 100 mm or 400 mm: how will it perform? Fortunately, this can be de-
rived rather easily from the spot diagrams calculated for the 200 mm instrument.
This basic rule applies:

For a system of the same focal ratio, all dimensions of the instrument
must be increased or decreased proportionally by the same factor.
This is true not only for the diameters, thicknesses, radii of curvature,
and distances between the optical components, but also for the off-
axis distances and diameters of the spot diagrams. However, the cri-
teria for visual use (i.e., the diameter of the Airy disk) and for photo-
graphic use (0.025 mm) remain the same.

The linear size of the Airy disk remains the same because this diameter de-
pends solely upon the focal ratio and wavelength, and not on the aperture. The
photographic criterion, of course, depends only on the photographic emulsion and
does not depend on the aperture of the instrument.

Suppose that a designer wishes to double the aperture of a system. All diam-
eters, thicknesses, radii, and spacings must be doubled. So, too, must the comput-
ed off-axis distances and diameters of the spot diagrams. If the spot diagram is
0.020 mm diameter 20 mm off-axis in the 200 mm system, satisfying the 0.025
mm criterion for photography, in a 400 mm aperture version of the same system,
it will be 0.040 mm diameter 40 mm off-axis, and will not satisfy the criterion,
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Fig. 4.23 Spot Diagrams for the Simak with Three Apertures.
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which remains 0.025 mm. To find the diameter of the spot diagram 20 mm oft-
axis, the designer can compute the size of the spot diagram 10 mm off-axis in the
200 mm system, then double it for the 400 mm system.

We show spot diagrams in fig. 4.23 for the Simak instrument scaled to 150
mm, 200 mm, and 300 mm aperture, for both the flat and curved focal surfaces, in
blue light, at off-axis distances of 10, 20, and 30 mm. With this design, we see that
the linear size of the useful photographic field increases somewhat in the larger
instruments, but that the increase is by no means proportional to the increase in
aperture. Such a result is frequently the case.

Note that it is not always possible to scale an optical system to a larger size.
Consider a typical 50 mm focus lens for a 35 mm camera: its aberrations are low
and tolerable. However, if such a lens is scaled up to an aperture of 200 mm, the
residual aberrations will be enlarged by the same scaling factor applied to the lens,
and its performance would, in all likelihood, be intolerable. Moreover, such a sys-
tem would be extremely heavy because of its thick lenses.

Downscaling is usually permissible, or at least not prohibited, by image ab-
errations. However, downscaled systems may not be practical if the axial thick-
ness of lens elements or spacing between lenses becomes too small. Another
problem often encountered in downscaling is that too little space for a focusing de-
vice may remain.

46 Concluding Remarks

In perusing chapters 5 through 13, the reader will find many comparisons of ob-
jective systems with the same aperture, but often with different focal ratios. The
question of how to compare the off-axis performance of these systems soon arises.
Should the comparison be based on linear off-axis distance (expressed in mm), or
on an equal angular off-axis distance (expressed in degrees)?

While both methods of comparison have merit, in this book we have delib-
erately chosen comparison based on linear off-axis distance. The reason is that
most amateurs choose a certain film format irrespective of the objective’s focal ra-
tio or angular coverage. They want the system to produce a sharp image over that
whole film frame. This does not mean that angular coverage may be ignored: the
designer must give full and careful consideration to the desired angular coverage.
For those who wish to, it is easy to convert the linear scale into an angular scale
for a given focal length. In order to facilitate comparison based on a fixed angular
field, every listing of optical data gives the linear size of a one-degree field.

Another important consideration for the designer is curvature of field. As the
reader will see in the following chapters, many objective systems suffer from it—
Newtonians, refractors, Cassegrains, and Schmidt- and Maksutov-Cassegrains all
do. Only systems for which deliberate and special design steps have been taken
have truly flat fields.

In order to demonstrate the effects of curvature of field for the Simak, we
have shown spot diagrams for both the flat and the curved field. The reader must
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understand, however, that we could not show all possible spot diagrams for all
these systems. We wish to emphasize that spot diagrams for the optimally curved
focal surface give a much better idea about the optical performance of an objective
system than the spot diagrams on the flat field can. In most of the systems treated
in the following chapters, we have given spot diagrams for the curved focal sur-
face, and when we have done so, we have provided the radius of curvature of the
focal surface to the left of the spot diagrams.
Keep in mind the following:

1. For visual use of the telescope with an eyepiece, field curvature is, in
most cases, easily compensated by the accommodation power of the
eye. For visual use, it is usually not a problem.

2. For photographic use, the focal surface must be flat or flattened by
means of a field flattener, or the film must be bent to conform to the
focal surface.
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The Newtonian Telescope
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Fig. 5.1 Optical Layout of the Newtonian Telescope.

51 Introduction

The Newtonian is the simplest and probably the most popular type of telescope for
amateur astronomers. It is, without a doubt, the most commonly home-built ama-
teur instrument. As such, the Newtonian is the de facto standard against which the
performance of other types of telescope is measured.

The Newtonian optical system consists of a paraboloidal (often mistakenly
called “parabolic”) primary mirror and a flat secondary mirror which directs the
converging cone of light out of the tube for visual or photographic applications.
The usual arrangement is shown in fig. 5.1.

What are the characteristics of this instrument? Focal ratios generally lie be-
tween f/4 and f712. F/4 is a practical lower limit because of the rapid increase of
coma away from the optical axis; /12 is the upper limit because the length of the
instrument becomes excessive. Those with slow primaries (between f/7 and f712)
are generally considered best for lunar and planetary observing, while those with
fast primaries (/6 to f74) are better suited for observing deep-sky objects and for
prime-focus astrophotography.

The primary is centrally obstructed by the diagonal mirror. Although this el-
ement must be large enough to illuminate the required region of the focal surface,
it should be no larger than necessary because any obstruction degrades the sys-
tem's optical performance. In Newtonians made for visual use, a fully illuminated
region 10 mm in diameter is more than adequate, while a Newtonian telescope
used as an astrocamera usually requires a significantly larger diagonal.

45



46 Chapter 5: The Newtonian Telescope

Fig. 5.2 Spherical Aberration in a Spherical Mirror.
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Fig. 5.3 Spot Diagrams for a 200 mm f/8 Spherical Mirror.

For relatively slow and small Newtonians, the primary mirror need not be
paraboloidal. Although most Newtonians today do have a paraboloidal mirror, we
will begin by examining the characteristics of a Newtonian with a spherical mir-
ror. Because the sphere is quite easy to make, this simplest of all telescopes is of-
ten the amateur’s first.

We wish to remind the reader that the diagrams which follow are based on a
standard aperture of 200 mm. The performance of larger and smaller instruments
may be obtained from the scaling rule given in section 4.5.

5.2 The Spherical Mirror

In a spherical mirror, paraxial rays (i.e., those close to the optical axis) intersect at
point F, in fig. 5.2. Rays at greater distances from the axis focus closer to the mir-
ror; the image suffers from spherical aberration. The bundle of converging rays
reaches its smallest cross-section at plane H,. However, somewhere between H,
and F, at H,, there is a considerably higher concentration of rays in the bundle; this
bright “core” produces sharper images than any other focus.

Fig. 5.3 shows the sequence of axial spot diagrams at different focal planes
for a 200 mm spherical /8 mirror. The sequence begins with the paraxial focus, at
0.0 mm. The blur attains its smallest diameter 0.6 mm inside paraxial focus. The
pattern of changes in the diameter of the blur and the concentration of light in the
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Fig. 5.5 Spherical and Paraboloidal Mirrors Compared.

core of the image is characteristic of pure spherical aberration.

Slow Newtonians need not be parabolized if the spherical aberration blur is
smaller than the Airy disk. This is clearly shown in fig. 5.4. The diameters of spot
diagrams in plane H, for various focal ratios are compared with the corresponding
Airy disks and also with the photographic criterion of 0.025 mm. For the 200 mm
Newtonian, a spherical mirror is acceptable for visual use in f712 and slower sys-
tems; parabolizing is not needed for photographic instruments f/8 and slower.

53 The Paraboloidal Mirror

We compare a paraboloidal and a spherical mirror in fig. 5.5. Close to the optical
axis both mirrors have the same radius of curvature. The paraxial focus for both
surfaces is F; the paraxial sphere “touches”’the paraboloid. At greater off-axis dis-
tances, however, it is necessary to deform the sphere backward if the rays are to
intersect at F. The new curve is a paraboloid.

The equation of the sphere is:

2 2

Zsphere = F— NI —h (5.3.1)

and that of the paraboloid:
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Table 5.1
Az for 200 mm Mirrors

Focal Ratio Az (mm)
4 0.00306

16 0.00091

178 0.00038

10 0.00020

12 0.00011
oW

Zparaboloid = 2_}’ = ATf (5.3.2)

where r is the paraxial radius of curvature; z, the deviation from vertical plane (al-
so called the “sag” or sagittal); and h, the off-axis distance of an entering ray, or
ray height.

Based on these formulae, we can find the difference, Az, between the edges
of a spherical and a paraboloidal mirror, measured parallel to the optical axis,
from:

Az = Zparaboloid - ZSpherf: . (5:3.3)

For mirrors of 200 mm aperture, we have tabulated this difference for focal
ratios between f/4 and f/12 (see table 5.1).

For comparison, the wavelength of green light is 0.00055 mm. The table
shows that for /78 and slower mirrors, the difference between the edges of a spher-
ical and a paraboloidal mirror is less than one wavelength of green light.

The dominant image aberration of the Newtonian is coma. Astigmatism
plays a role at relatively large image angles, and curvature of field is present.
When the entrance pupil is at the mirror, which is usually the case, the best focal
surface lies midway between the tangential and sagittal focal surfaces, and has a
radius of curvature equal to the focal length. It is inward curving. Because coma
so strongly dominates the other aberrations in Newtonians, there is little to be
gained from the use of curved film or a field flattener.

Fig. 5.6 shows spot diagrams calculated for focal ratios between f74 and 712
for distances of 0, 10, 20, and 30 mm off-axis for the optimally curved focal sur-
face. Strong coma and astigmatism show at large off-axis distances, especially for
fast primaries. Coma is the primary aberration near the axis; farther away astigma-
tism is visible as a second tail in the comatic blur figure.

Evaluation of the photographically useful field of a Newtonian is complicat-
ed since the emulsion may not record the faint outer parts of the comatic tail be-
cause it is faint, as discussed in section 4.1. Photographic images are, therefore,
considerably smaller than the spot diagrams indicate, though the loss of light from
the core of the image results in a degraded limiting magnitude. The 0.025 mm
criterion should be applied when the highest demands are made on photographic
image quality. For less critical work, a spread of 0.100 mm in the corner of the
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Fig. 5.6 Spot Diagrams for 200 mm Paraboloidal Mirrors.

film frame will give images that most astrophotographers find acceptable.

5.4  The Size of the Secondary Mirror

In principle, a telescope maker wishes the smallest secondary mirror possible, not
only to avoid the loss of light, but also to prevent loss of image contrast through
diffraction. (This point is further discussed in chapter 18.) Critical observers see a
detectable loss with an obstruction 20% of the aperture, and all agree that the ob-
struction should not exceed 30%. From fig. 5.7 we show that the minimum diam-
eter for a secondary mirror (i.e., the minor axis of an elliptical mirror) is:

d. = 1% (5.4.1)

where N is the focal ratio, /D
A secondary of the minimum size is impractical. Aside from the danger of
figure errors at the edge of the diagonal mirror, the whole light cone cannot reach
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Fig. 5.8 lllumination in the Focal Plane of a 200 mm Newtonian.

the focal plane except on the optical axis, and thus the image is not fully illumi-
nated. To illuminate a focal surface of diameter b, the minor axis of the diagonal
should be:

d=%4p-20 (5.4.2)

N f

For fast Newtonians, the secondary mirror must also be shifted slightly to-
ward the primary and away from the focus in order to illuminate the focal plane
symmetrically about the axis. (See refs. 5.1 and 5.4. For greater precision, refer to
ref. 5.5.)

In fig. 5.8, we have plotted the relative illumination at various off-axis dis-
tances at a variety of focal ratios for secondaries of 40 mm, 50 mm, and 60 mm—
20%, 25%, and 30% obstructions of a 200 mm aperture, respectively. Diagonal to
focus distance, a, is taken as 180 mm, a figure which depends on the minimum
height of the focusing device and the diameter of the telescope tube.

Note that for an f/4 mirror, a 40 mm secondary is too small to reflect the en-
tire light cone of the axial beam; it is not plotted. For an f/12 mirror, a 40 mm sec-
ondary is too small to catch any part of the light cone 30 mm off-axis, and the
illumination drops to zero there.

As arule of thumb, the drop in illumination at the corner of the photographic
negative should not exceed 30 or 40%. When a telescope is used visually, a fully
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illuminated field 10 mm diameter is usually sufficient. Vignetting and light falloff
are treated more fully in chapter 19.
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The Refractor

Fig. 6.1 Achromatic Doublet Lens Corrected for Two Colors.

6.1 Correction of Aberrations

In chapter 4 we saw that a single lens suffers from a number of aberrations. A re-
fractor objective must have more elements to reduce them. In particular, two es-
pecially disturbing aberrations—longitudinal color and spherical aberration—
must be corrected. Furthermore, coma should be corrected over a large field if
possible.

Chromatic aberrations result from the different refractive indices of glasses
at different wavelengths; blue light focuses closer to the lens than green, and red
light focuses still farther from the lens. In a negative lens the sequence is the same,
but the focal points (which are virtual) lie in front of the lens.

To obtain an idea how achromatizing is accomplished, imagine two thin
lenses, one positive and the other negative, very close together. Choose glass for
the lenses such that both elements have the same refractive index but different dis-
persions. What must be done to make the focal points of red and blue coincide?

Suppose we make the positive lens half the focal length of the negative
lens—but pick the glass so the dispersion of the negative lens is twice that of the
positive lens. The combination will be achromatic. Why? The negative lens (be-
cause of its higher dispersion) compensates for the short focus of the blue and long
focus of the red rays with errors of the opposite sign, bringing the rays to focus
together. This is shown in fig. 6.1.

In the real world, we deal with lenses of finite thickness and finite curvature.
Such lenses suffer from spherical aberration. When the refractive indices for the

63
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Fig. 6.2 Spherical Aberration and Coma of a Simple Lens.

design color are the same for both the positive and negative lens elements, it be-
comes difficult to correct spherical aberration, especially if the doublet is cement-
ed. Therefore, the glass for the negative lens will usually have somewhat higher
refractive index than the positive lens.

For a classical two-lens achromat, we choose crown glass for the positive
lens, with a refractive index near 1.5 and relatively low dispersion (an Abbe num-
ber of 60). The negative lens is flint glass, with a refractive index near 1.6 and a
relatively high dispersion (an Abbe number of 35).

Before looking into the correction of spherical aberration and coma in an
achromatic doublet, let’s examine first the spherical aberration and coma of a sim-
ple positive lens. These aberrations can be influenced considerably by the choice
of the radii of curvature of that lens. In fig. 6.2 we graph spherical aberration and
coma for a progression of positive lenses having the same power, but different
shapes. For normal glass (i.e., n =1.5), both aberrations are minimized when the
lens has front and back radii in the ratio 1:6.
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Fig. 6.3 Correction of Longitudinal Spherical Aberration (LA) in Doublet Objective.

For an optical designer, “bending” a lens without changing the power of its
elements is a very important tool in controlling aberrations. As fig. 6.2 shows,
spherical aberration cannot be eliminated completely in a single lens. However,
by combining a positive lens with a negative lens having the same amount of
spherical aberration, but of the opposite sign, we can greatly reduce it. This prin-
ciple is shown schematically in fig. 6.3.

The third aberration which must be corrected is coma. This aberration is ab-
sent if the lens meets the sine condition. When the elements are separated by an
air space, the radii of curvature of the inner surfaces can be different or the air
space itself can be used to correct coma. This gives the designer enough freedom
to correct both spherical aberration and coma. Small objectives are cemented, but
those larger than 60 mm are generally airspaced to avoid temperature stresses as
well as to correct aberrations.

From a designer's viewpoint, the focal length of a doublet depends on the
outer radii of curvature; the inner radii are used mainly to correct spherical aber-
ration and coma.

Summarizing the foregoing:

1. Inachromatizing a two-lens objective, a positive lens is combined with a
negative lens of lower power, while the positive lens has a lower disper-
sion (i.e., higher Abbe number) than the negative lens.

2. For a better correction of spherical aberration glasses are usually chosen
so the negative lens has a higher refractive index than the positive lens.

3. Spherical aberration is minimized by bending both lenses.
4. Coma is also corrected by bending the lenses.

5. When the objective is air-spaced, the inner radii need not be the same, so
the designer can correct both aberrations more easily.

Astigmatism and curvature of field cannot be corrected in a normal achromatic
doublet. Doublets are not, therefore, suitable as objectives where the desired end
is sharp imagery over a wide angle on flat film. For visual use field curvature is
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Fig. 6.5 Achromatic Doublet Designs.

not generally bothersome over small fields because the eye compensates by refo-
cusing. When the image angle exceeds a few degrees, as it does in a binocular ob-
jective, astigmatism and field curvature may become sources of unsharpness at the
edge of the field.

The tangential and sagittal focal surfaces of a doublet curve inward as shown
in fig. 6.4. The radius of curvature lies between 0.30 and 0.35 times the focal
length. Lateral color can be safely neglected so long as the entrance pupil coin-
cides with the lens. Distortion is very low because of the small image angles and
because the aperture stop 1s in contact with a relatively thin lens.

Over the course of time, many kinds of achromatic doublets have been de-
signed; some bear the name of their designers. The best known, at least in astron-
omy, is the Fraunhofer doublet. The positive crown element of this air-spaced
doublet is in front, the negative flint at the rear; the interior radii are unequal, and
the air space is small. In a Steinheil doublet, the negative element is the front lens
(fig. 6.5), and the positive element, the back lens. The Steinheil design is used
when it offers better correction of aberrations or when the positive element has
poor resistance to weathering (as fluorite does). However, because it has stronger
curves, it is seldom used unless necessary.

In specifying a lens, a designer takes advantage of a number of variables to
influence aberrations. Given an aperture and focal length, ten parameters remain
free:
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¢ types of glass (2)

¢ radii of curvature (4)

e airspace (1)

e sign of the front element (1)
¢ axial thicknesses (2).

Because of the numerous combinations possible, different manufacturers’ designs
are seldom the same. The detailed procedure for designing an achromatic doublet
and apochromatic triplet are discussed in chapter 21.

6.2 Residual Aberrations in Objective Lenses

6.2.1 Chromatic Aberration

When we speak of correcting chromatic aberration, the term should not be taken
literally, as meaning “eliminate,” but should be understood more in the sense of
“suppress.” Complete elimination of color aberration in lens objectives is not pos-
sible. This is true, although to a much lesser extent, of spherical aberration when
the lens surfaces remain spherical.

The degree of correction of the color aberration in a lens objective is often
indicated in a graph of focus shift against wavelength. The color aberration curve
of a typical two-lens refractor objective, corrected for visual use, is given in fig.
6.6. For visual use, the system is designed so the focal length is shortest in yellow-
green light (555 nm), with the focal lengths of blue (the F-line at 486.13 nm) and
red (the Cine at 656.27 nm) longer and coincident. It is then said that the objec-
tive has been corrected for two colors, or that it has been C-F corrected.

This color correction is closely connected with the color sensitivity curve of
the eye, shown in fig. 6.7. Its peak sensitivity (for bright light) lies at 555 nm, cor-
responding roughly to the wavelength of e-light. Although the eye's sensitivity to
C- and F-light is roughly equal, it is much lower for them than it is for e-light.
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The focus for violet light (fig. 6.6) is much longer than either C or F, but this is
not bothersome for visual use because of the low sensitivity of the eye to the vio-
let. However, when a visually corrected achromatic objective is used for photog-
raphy, it is advisable to use a filter to absorb violet light which would otherwise
form an out-of-focus image. Photographic emulsions are much more sensitive to
blue and violet light than the eye is. Systems made for photography must be cor-
rected so the shortest focus lies in blue or violet light.

The difference between the green and the red/blue focus is called secondary
spectrum. For normal Fraunhofer-type astronomical doublets, secondary spec-
trum amounts to 0.0005f, or 1/2000 the focal length of the lens. The very best vi-
sually-corrected doublets possible with slightly abnormal glasses are “semi-
apochromats” or “half-apochromats.” In these designs, secondary spectrum is re-
duced to approximately 0.00025f, or 1/4000 the focal length.

Still better color correction can be obtained with certain new but expensive
glasses. With them, secondary spectrum is suppressed to 1/8000 the focal length.
We give an example of such an objective, the Apoklaas, in section 6.3. However,
the best color correction possible in two-element objectives comes only with the
use of an extremely expensive optical material called fluorite. Fluorite is man-
made monocrystalline calcium fluorite. It has a low refractive index (n = 1.43) and
very low dispersion (V = 95.6). With this material, the secondary spectrum can be
reduced to 1/16,000 the focal length.

Although fluorite is ideal as an optical material, it has its drawbacks. Not
only is it expensive and the size of blanks severely limited, but fluorite is highly
subject to weathering. Despite its drawbacks, a number of telescope manufactur-
ers now offer fluorite objectives.

When the optical designer wishes to bring three colors—such as red, blue,
and violet—to the same focus, the objective requires three lenses made of differ-
ent materials. An objective that does this is termed an apochromat. The secondary
spectrum, i.e., the difference between the green and red/blue focal points, is typi-
cally 0.0001f, or 1/10,000 the focal length. It must be emphasized, however, that
not all three-lens objectives, nor all lenses labelled “apochromatic” have this ex-
cellence of color correction. Secondary spectrum in the three-lens Zeiss Schwer-
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Fig. 6.8 Secondary Spectrum in a Normal Doublet Lens.

flint Apochromat, for example, amounts to 1/3500 the focal length—not as good
as the best normal doublets. Since an apochromat usually focuses a wider range of
wavelengths than an achromat does, apochromatic objectives are more suitable for
photography than doublets.

How much secondary spectrum is objectionable? In conventional doublets,
secondary spectrum is acceptable when the red and blue blurs do not exceed three
times the diameter of the Airy disk in green light. This much blur is tolerable be-
cause the eye is relatively insensitive to blue and red. Fig. 6.8 shows how green,
blue, and red light focus in a normal doublet. Since the difference in focal length,
Af, is typically 0.0005f when the objective is focused for green, the blue and red
blurs have a diameter of 0.0005D. In chapter 18, we show that the diameter of the
Airy disk for green light is 280/D seconds of arc, where D is the aperture in milli-
meters. Since one second of arc is /206265 mm diameter in the focal plane, the
diameter of the Airy disk, d,, becomes:

20 _f _ 1 f_ N
A= D 206265~ 735 D - 735" (621)
where N is the focal ratio, f/D. From this equation, then, it is easy to see that the

condition for freedom from chromatic aberration is:

3N
=— = 0.0005D 6.2.2
735 ¢ )
hence:
N,,;, = 0.122D (6.2.3)

where D is expressed in millimeters. Thus we see that the minimum focal ratio,
N,., increases with increasing aperture. For an aperture of 100 mm, the fastest fo-
cal ratio giving full achromatism is f712.2; for an aperture of 200 mm, f724.4. Be-
cause of the need for stability and ease of movement, however, telescope
objectives seldom exceed f720. This means the greatest aperture for a practical ful-

ly achromatic doublet refractor made with normal glass is approximately 160 mm.
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Fig. 6.9 Spherochromatism in the Achromatic Doublet.

We also see that all large astronomical refractors suffer from serious secondary
spectrum.

6.2.2 Spherical Aberration and Spherochromatism

When a doublet has been corrected for spherical aberration in green light, the lens
will be undercorrected in red light (C-line) and overcorrected in blue (F-line).
This means that in red light, outer rays focus closer to the lens than the paraxial
rays, while the opposite is true in the blue. This occurs for all cemented doublets
and doublets with narrow air gaps—indeed, a large air gap is sometimes used to
control the problem. This change of spherical aberration with wavelength is called
spherochromatism.

In a doublet designed so that the paraxial focal length is the same for red and
blue, spherochromatism introduces considerable difference in the focal lengths of
the outer rays in these two colors, resulting in poor color correction, as shown in
fig. 6.9a. To minimize it, a designer may choose to make the paraxial focus slight-
ly longer in red than it is in blue, shifting the spherical aberration curves for the
two wavelengths so they intersect at the 70.7% zone (fig. 6.9b). This zone is cho-
sen because the areas inside and outside it are equal.

It is important to note that color correction curves for lens objectives are of-
ten referenced to the 70.7% zone rather than the paraxial zone. The curve shown
in fig. 6.6 is an example of this practice. The designer should be aware that it may
not be the best zone for determining the state of color correction since the overall
color correction also depends on the shapes of the C- and F-curves.

6.3 Evaluation of Lens Objectives

We now compare three refractor objectives. In table 6.1 we give the optical char-
acteristics—axial thickness of the lenses, radii of curvature, distances, and glass
types—for systems of 200 mm aperture. The f/15 Fraunhofer doublet employs
normal crown and flint glasses while the /710 Apoklaas utilizes two special glass-
es, reducing its secondary spectrum to 0.00012f. The f/8 fluorite objective offers
half the secondary spectrum of the Apoklaas. Because of its poor weathering re-
sistance, the fluorite element has been placed behind the negative lens, so this lens
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Table 6.1
Three 200mm Doublet Refractor Objectives
(all dimensions in millimeters)
Fraunhofer Apoklaas Fluorite
715 J10 /78
R,RC 2009.753 1175.900 546.292
T, Axial dis. 31.336 24 12
M, Medium 517642 487845 720504
R, -976.245 -513.920 356.146
T, 3.315 1 1
M, Air Air Air
R, —985.291 -522.606 348.299
T, 25.109 12 24
M, 613370 558542 Fluorite
R, -3636.839 —2756.828 —6670.445
T, Back Focal Length 2968.12 2000 1599.996
M, Air Air Air
EFL 3000 2020 1600
1° Field 52.4 35.3 279

is a Steinheil doublet. The Apoklaas and the fluorite objectives were designed by
Klaas Compaan.

Apart from reducing secondary spectrum, a primary advantage of the newer
glasses, and particularly fluorite, is that faster refractor objectives are possible, re-
sulting in considerably shorter telescopes. Conventional 200 mm refractors have
focal ratios between f/15 and f720; the new glasses permit shortening this to f/10.
Spherochromatism limits further shortening. With fluorite, lenses may be f/8 or
even faster.

Three-lens apochromatic objectives are seldom amateur-made because the
glass is expensive. In addition, making such an objective is beyond the skills of
most ATMs because of the close tolerances in grinding, polishing and centering
such a system. Many of these problems are avoided with a special type of triplet:
the oiled objective. The spaces between the lenses are filled with a special oil hav-
ing a refractive index near that of the glass, so only the front and rear surfaces need
to be fully polished and figured. Because of the unusual construction, this objec-
tive is discussed in chapter 13.

In the spot diagrams in fig. 6.10, we show green light (e-line) in focus. The
spot diagrams for the field have been calculated for the optimally curved focal sur-
face shown in the left-hand column. Because of their focal ratios, the diameters of
the Airy disks differ for the different lenses. When judging the performances for
visual use, therefore, be sure to compare the size of the blue and red spot diagrams
with the appropriate green-light Airy disk. For photographic use, apply the 0.025
mm criterion throughout. The off-axis swelling of the spot diagrams results main-
ly from astigmatism which cannot be corrected for these systems.
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In the case of the 715 Fraunhofer achromat, note that the blue and red spot
diagrams are roughly five times the diameter of the Airy disk in green. Since the
limit of good color correction is three times the Airy disk, this lens suffers from
considerable color aberration. With a smaller aperture or a longer focal length, this
lens would yield better images, but it is clear that observers are willing to tolerate
this much color error.

The /78 fluorite and f710 Apoklaas objectives display considerably better col-
or correction. Their blue and red spot diagrams are only 1.5 times the Airy disk
diameters. The fluorite has the lowest secondary spectrum, but greater sphero-
chromatism, resulting in enlargement of the blue and red spot diagrams. Note that
the fluorite objective delivers the same performance at f/8 as the Apoklaas delivers
at f710. For optimum correction of aberrations, the designer combined the fluorite
lens with an expensive high-index glass (720504).

From fig. 6.10, we see dramatic evidence that visually-corrected two-ele-
ment refractor objectives suffer a serious disadvantage in astrophotography. Be-
cause these systems are corrected for red and blue, but not for violet, the violet
image is very large. Even the fluorite objective, which is exceptionally well-cor-
rected for visual use, shows a violet blur (h-light) of 0.20 mm, eight times the pho-
tographic criterion. For this reason, photography with these objectives at this
aperture will result in considerable unsharpness unless they are used with a filter
that absorbs violet light. For the fluorite and Apoklaas, the filter should have a cut-
off wavelength of 450 nm.

The reader may wonder how improved color correction is possible with spe-
cial glasses and fluorite. In particular, what do these materials offer that is not
available in the commonly used crown and flint combinations? The answer is that
they have more favorable dispersion characteristics. We explore this matter more
fully in section 21.13.3.
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The Cassegrain Telescope

Fig. 7.1 Typical Layout of a Cassegrain Telescope.

74 Introduction

All Cassegrain telescopes consist of a concave primary mirror with a small sec-
ondary mirror inside the focus of the primary; the secondary redirects starlight to-
ward the primary. The image, in most cases, lies behind the primary where it is
easily accessible for visual observing and photography. The convex secondary
multiplies the focal length by a factor M. This factor M is termed secondary mag-
nification, and is defined:

focal length of system
focal length of primary

Fig. 7.1 shows the layout of the Cassegrain telescope with the main dimen-
sions. The focal length of the system, f, is equivalent to the distance found by ex-
tending the rays in the exit cone to their height in the incoming beam, as shown in
the figure by dotted lines. The instrument is quite short with respect to its focal
length. The major parameters of a Cassegrain telescope are related by the follow-
ing formulae:

fifs

= M =
f 5 fitfh-d

(7.1.1)
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(fi-dD-f

bfl = (d+b) = ———= .
fl = (d+b) Faf-d (7.1.2)
f=d+b+M-d (7.1.3)
fi = a’+‘%’ (7.1.4)

_ —(d+b)
fh = T (7.1.5)

where f is the focal length of the primary, f, is the focal length of the secondary,
negative in Cassegrains, and d is the separation. The quantity (d + b) is the back
focal length (b.f.1.), and should not be mistaken for the effective focal length, f or
e.f.l,, of the system.

To use an existing mirror as the primary in a Cassegrain system, substitute
the value f; and desired value of M and b to find the parameters for a secondary
mirror:

g MNi-b 7.16)
M+ 1
== ;VI (fi+b). 71D
M -1

The smallest diameter for the secondary mirror, D,, for which no axial loss
of light occurs, is:

D, =D, L (7.1.8)
f
When the designer cannot accept any light loss at the edge of the field, then
given a field diameter at the focal plane of D,, the diameter of the secondary mir-
ror must be:

D, = D‘%‘“b)wr? (7.1.9)

This formula is valid only when the entrance pupil of the system (i.e., the ap-
erture limiting stop) coincides with the primary mirror, which is the case in most
Cassegrain systems. When the entrance pupil lies in front of the primary (as is the
case with most catadioptric systems), the diameter of the secondary must be larger
than indicated by eq. 7.1.9, and the primary must also be enlarged.

Because the secondary blocks light which would otherwise reach the prima-
ry, all Cassegrain instruments suffer some light loss relative to unobstructed in-
struments. Furthermore the obstruction causes a loss of contrast and image
sharpness due to diffraction. The designer usually attempts to make the secondary
as small as possible—generally smaller than indicated by eq. 7.1.9 but larger than
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the minimum derived in eq. 7.1.8—in some cases accepting considerable light
loss at the edge of the field.

7.2  Curvature of Field

Cassegrain telescopes should be designed in such a way that the resulting instru-
ment has the following properties:

1. short tube length
2. small secondary mirror
3. flat focal surface
4. accessible focal surface.

Unfortunately it is impossible to satisfy all four constraints simultaneously. In par-
ticular, control of field curvature, associated with the strong curve of the second-
ary mirror, causes difficulty. Designers and users of Cassegrain telescopes should
never forget the system's inherent curvature of field. Field curvature is stronger for
many Cassegrains than it would be for a Newtonian or refractor telescope of the
same aperture and focal length. The field is inward curving, that is, concave to-
ward the sky. The radius of curvature of the focal surface of a Cassegrain, when
no astigmatism is present in the system, is:

4= 2_Z (7.2.1)

Astigmatism will be discussed later. It is evident that in order to have a flat focal
surface, the radii of curvature of the primary and secondary mirror must be equal.
As we shall demonstrate, a short tube length, small secondary mirror, and flat fo-
cal surface are incompatible with placing the focal plane behind the primary.

Consider two f710 Cassegrain telescopes of equal aperture, as shown in fig.
7.2. In one, make the primary mirror f/2, and set the secondary magnification, M,
equal to 5.0. For the other, make the primary f/5 and set the secondary magnifica-
tion equal to 2.0. Place the focus 150 mm behind the primary in both. With the
help of the formulae above, we calculate the instrumental parameters listed in ta-
ble 7.1.

It will be clear from the example that a configuration with a high secondary
magnification has a short tube, small secondary, and strong field curvature. The
short tube and small secondary are, of course, desirable features in an instrument
intended for visual use, but strong field curvature is unfavorable for photographic
use. We note again that these figures are approximate because eq. 7.2.1 is valid
only when astigmatism is absent.

Since no Cassegrain can be entirely free of astigmatism, eq. 7.2.1 should not
be used for exact results. When astigmatism is present, the curvature of field will
be stronger than indicated by eq. 7.2.1. However, the designer would do well to
keep in mind this general rule:
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Fig. 7.2 Two Cassegrains.

Table 7.1
Comparison of Cassegrains
Primary Focal Length and Secondary Magnification

1 i1
Aperture D, (mm) 200 200
Focal ratio N 10 10
Focal length (mm) 2000 2000
Focal ratio primary 2 5
Secondary magnification M 5 2
Distance between mirrors (mm) 308.3 616.7
Back focal length (mm) 458.3 766.7
Minimum diameter secondary mirror (mm) 45.8 76.7
Radius of primary -800 —2000
Radius of secondary —229.16 —-1533.333
Radius of curvature of focal field* (mm) -160 -3287
*Theoretical values, not corrected for astigmatism
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Table 7.2
Cassegrain Optical Combinations
System Primary Secondary
Classical Cassegrain paraboloid hyperboloid
Dall-Kirkham prolate ellipsoid sphere
Ritchey-Chrétien hyperboloid hyperboloid
Pressman-Camichel sphere oblate ellipsoid
Table 7.3
Schwarzchild Constants
Aspheric Surface Schwarzschild Constant
sphere: SC =0 (i.e., no deformation)
ellipsoid (prolate): -1 <SC<0
paraboloid: SC=-1
hyperboloid: SC<-1
ellipsoid (oblate): SC >0

For a given focal length, field curvature increases as the diameter of the
secondary mirror decreases and the separation of the mirrors decreas-
es.

Taking this rule into account, the designer of a Cassegrain makes a choice between
a system intended for visual use having a small secondary mirror (diameter 25—
30% of the entrance pupil) in which a relatively strong field curvature is accepted,
or one intended only for photographic use with a weakly curved or flat focal sur-
face and a large secondary mirror.

Field curvature may be compensated by using a curved film or a field flat-
tener, as described in chapter 14. Note that field curvature is of practical signifi-
cance mainly in amateur instruments. For large telescopes, Cassegrain field
curvature is relatively unimportant because professional astronomers either use
field flattening lenses or bend their photographic plates to conform to the focal
surface.

7.3  Optical Performance

It must be emphasized that eqs. 7.1.1 through 7.1.7 are valid only in the paraxial
region. Although they are extremely useful for making quick calculations of the
main dimensions, they fail to give the designer any information about the off-axis
aberrations of the system.

Any Cassegrain can be free of spherical aberration, permitting a sharp image
on the axis, provided the proper combination of shapes of both optical surfaces is
chosen, but off-axis image sharpness depends strongly on the shapes of the surfac-
es. The four most important combinations are shown in table 7.4.

We treat aspheric optical surfaces in chapter 20. Let it suffice to mention
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Table 7.4
Optical Characteristics of Four 200mm f/8 Cassegrain Systems
(Dimensions in mm)

Type Ritchey-Chrétien Classical Dall-Kirkham  Pressmann-Camichel
Focal Ratio f 8 8 8 8
Effective fl 1600 1600 1600 1600
Secondary mag. M 8/3 8/3 8/3 8/3
Primary RC —-1200 -1200 -1200 -1200
Primary SC -1.13682 -1 -0.61328 0
Secondary RC —628.36 —628.36 -628.36 —628.36
Secondary SC —6.55243 -4.84 0 7.6755
Mirror sep. —403.64 -403.64 -403.64 -403.64
Back focal length 523.64 523.64 523.64 523.64
1° field (mm) 27.9 279 27.9 279

here that the deviation with respect to a sphere can be characterized by a deforma-
tion factor, SC, the Schwarzschild Constant. For the conic aspheric surfaces, this
factor is shown in table 7.4.

The Schwarzschild Constant, SC, and the paraxial radius of curvature, R, ful-
ly describe the “conic” aspheric mirror surfaces of the instruments evaluated in
this chapter. See tables 7.4, 7.5a and 7.5b for examples of the Schwarzschild Con-
stant.

The Classical Cassegrain is sometimes made as a modification of an existing
Newtonian. The flat diagonal mirror is removed and replaced by a convex second-
ary, or the two mirrors are used interchangeably.

Some optical workers find it difficult to figure the convex hyperbolic sec-
ondary of the Classical Cassegrain, preferring the easy-to-make spherical second-
ary of the Dall-Kirkham system. The elliptical primary of the Dall-Kirkham is also
relatively easy to make. Unfortunately, the Dall-Kirkham has far stronger coma
than the Classical Cassegrain and is therefore used for smaller fields.

The Pressmann-Camichel offers the attractive possibility of a spherical pri-
mary mirror—but the secondary must be strongly deformed to remove spherical
aberration. In practice, the design suffers from such severe coma that it is limited
to a very narrow field.

In the Ritchey-Chrétien, the mirror shapes are chosen to eliminate coma.
This system suffers only from astigmatism and, of course, curvature of field (as
do most Cassegrain systems), permitting a relatively wide field. A Ritchey-Chré-
tien is more difficult to make than the other systems because the shapes of the two
mirrors are more aspheric than the Classical Cassegrain. This system is not easily
made by amateurs, but is highly regarded by professional astronomers.

In order to provide direct comparison between various systems, we calculat-
ed spot diagrams for four systems having the same primary focal ratio and effec-
tive focal ratio but different surfaces. The results are shown in fig. 7.3; system
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Table 7.5a
Optical Characteristics of Six 200mm Classical Cassegrain Systems
(Dimensions in mm)
Focal Ratio f 10 15 20
Effective fl 2000 3000 4000
Secondary mag. M 2 4 2 4 2 4
Primary RC ~2000 -1000 -3000 -1500 —4000 —2000
SC -1 -1 -1 -1 -1 -1
Secondary RC —1600| -373.3333| —2266.6667| -506.6667| —2933.3333 -640
sC -9 -2.7778 -9 —2.7778 -9 —2.7778
Mirror Separation —-600 -360| -933.3333 -560( —1266.6667 760
Back Focal Length 800 560| 1133.3333 760| 1466.6667 960
1° field (mm) 34.9 34.9 52.4 52.4 69.8 69.8
Table 7.5b

Optical Characteristics of Six 200mm Dall-Kirkham Cassegrain Systems

(Dimensions in mm)

Focal Ratio 10 15 20

Effective fl 2000 3000 4000

Secondary mag. M 2 4 2 4 2 4
Primary RC —2000 -1000 -3000 -1500 —4000 -2000
Ne —0.55000| -0.671875 -0.575| -0.703125 -0.5875| -0.71875
Secondary RC -1600| -373.3333| -2266.6667| -506.6667 | -2933.3333 —640
SC 0 0 0 0 0 0
Mirror Separation —~600 -360| -933.3333 —560| —1266.6667 760
Back focal length 800 560| 1133.3333 760| 1466.6667 960
1° field (mm) 349 349 524 524 69.8 69.8

parameters are listed in table 7.4. In each case the aperture is 200 mm and the pri-
mary focal ratio f72.67, a value that is often used for large professional telescopes.
The focal surface lies 120 mm behind the primary mirror.

In evaluating these photographic systems, we calculated spot diagrams at the
optimally-curved focal surface, that is, we show the smallest blur figures each sys-
tem can produce. Because the Ritchey-Chrétien has no coma, the blurs of the star
images are circular when the focal surface chosen is midway between the tangen-
tial and sagittal focal surfaces. Round star image positions are easier to measure
than asymmetric images, the reason professional astronomers prefer the Ritchey-
Chrétien over the Classical Cassegrain.

We also evaluated Classical and Dall-Kirkham Cassegrains at f710, f715 and
720, for systems with secondary magnifications of 2.0 and 4.0 (see fig. 7.4). In
these instruments, the focal surface lies 200 mm behind the primary; they are
mainly intended for visual use. At these focal ratios, the Ritchey-Chrétien offers
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Fig. 7.3 Spot Diagrams of Four 200 mm f/8 Cassegrain Telescopes.

no advantage over the Classical Cassegrain and since it is more difficult to make,
we omitted it.
Comparison of figs. 7.3 and 7.4 supports the following assertions:

1. The Dall-Kirkham and Pressmann-Camichel are unsuitable for wide-
field photographic applications because of strong coma.

2. The Ritchey-Chrétien is the best for photographic use because of its
round star images. Nevertheless this instrument shows considerably
enlarged spot diagrams for off-axis distance greater than 20 mm (0.7°)
as a result of astigmatism. This design has the strongest field curvature.

3. When Classical Cassegrains with the same focal ratio but different sec-
ondary magnification are compared at the same off-axis distance, it
appears that greater secondary magnification leads to a slightly
decreased image sharpness. In the Dall-Kirkham, image sharpness drops
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much more. For a given focal ratio, low secondary magnification pro-
duces better off-axis image quality.

4. For a given focal ratio, greater secondary magnification increases the
field curvature. This confirms the conclusion reached in section 7.2.

5. The Classical Cassegrain produces spot diagrams equal to those of a
Newtonian having the same focal ratio (compare figs. 7.4 and 5.6), but
the field curvature of the Cassegrain is much stronger.

7.4 Baffling

A troublesome feature of Cassegrain telescopes and their derivatives is sky flood-
ing: light entering the tube can reach the focal surface without being reflected by
the mirrors. Under certain circumstances this can lead to considerable loss of con-
trast. Even for observation or photography of the dark night sky, it is important to
install baffling to block stray light. Baffling increases the central obstruction, and
may also introduce or increase loss of light at the edge of the field, especially for
the large fields desired in photography. We discuss baffle systems for telescopes
in chapter 19.
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The Schmidt Camera
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Pupil Pupil

Fig. 8.1 The Position of the Entrance Pupil in Ordinary and Schmidt Systems.

8.1 Introduction

Schmidt cameras, though eminently suited for astrophotography, are used surpris-
ingly little by amateurs. The fact that these instruments cannot be used visually
may play a role in this, but another contributing cause is certainly the difficulty of
making the Schmidt corrector plate. This effectively blocks all but a few optically
skillful amateurs from constructing this instrument.

The Schmidt camera offers the unparalleled combination of a fast focal ratio
and a large image angle. Compared to other astrocameras, the Schmidt camera of-
fers an unparalleled image sharpness over the entire field. Its principal drawback
is that the focal surface is curved and lies inside the instrument.

At the end of this chapter we discuss the lensless Schmidt camera, or “poor
man's Schmidt.” Although this system is suitable for amateur construction, it does
not offer the speed of a genuine Schmidt camera.

8.2  Optical Principles

The Schmidt camera is based on the principle of symmetry and the ability of a cor-
rector lens to suppress the spherical aberration of a spherical mirror. As we saw in
chapter 5, the Newtonian's field is limited by coma. Coma occurs in both spherical
and paraboloidal Newtonians because an oblique beam of parallel rays has no axis
of symmetry with respect to the mirror. The image of this beam is not formed on
the axis of the beam—but is instead formed to one side (see fig. 8.1). The image,
therefore, will not be symmetrical.

75
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Fig. 8.2 The Role of the Corrector Lens in a Schmidt System.

The underlying cause of this asymmetry is that the entrance pupil, which
forms the limiting stop for all entering bundles of light, coincides with the mirror
itself. When the stop is moved from the mirror to its center of curvature, symmetry
is obtained. It is clear that every beam of light passing through the stop, whether
it is parallel to the optical axis or not, has its own axis of symmetry. This is not
true when the stop lies at the mirror. The symmetry principle holds, of course, only
when the mirror is spherical.

But the image formed by the spherical mirror still suffers from spherical ab-
erration. Bernhard Schmidt solved this problem by placing a thin aberration-cor-
recting lens at the center of curvature of the spherical mirror. Although similar
schemes had been described by the Finnish astronomer Viisidld in 1924, Schmidt
succeeded in designing and fabricating a working camera at the end of the 1920s.

8.3 The Schmidt Corrector

In a spherical mirror, the focal distance of the central rays is greater than that of
the rays farther away from the mirror's center—in short, it suffers from spherical
aberration. This can be eliminated by placing a specially shaped lens in front of
the mirror, as shown in fig. 8.2.

The zone where the corrector is thinnest is called the neutral zone because
rays pass through it without deviation. In order to bring light rays entering at other
zones to the same focus, corrector zones outside the neutral zone have negative
power while zones inside the neutral zone have positive power.

Since a Schmidt corrector is a refracting element, it causes chromatic aber-
ration, but the aberration is not severe and can be minimized by the location of the
neutral zone. Higher order residual monochromatic aberrations, coma and astig-
matism, also depend on the place of the neutral zone.

The profile of a Schmidt corrector satisfies the following equation:

Z = A +Bh* + Ch®+ ... (8.3.1)

in which Z is the depth of the curve, 4 is the off-axis distance, and A, B and C are
constants depending on the refractive index of the glass, the focal ratio, the aper-
ture, and the position of the neutral zone.
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Fig. 8.4 Corrector Profiles for 200 mm Schmidt Cameras.

For focal ratios slower than f73, the shape of the Schmidt corrector may be
described with sufficient accuracy by:

Z = Ah* + Bh'. (8.3.2)

For the neutral zone at 86.6% of the aperture of the corrector plate, the values
of A and B are:
2

3D andB = — 1 (8.3.3)

A=_—2>2
32-(n- 1R’ 4-(n-1)R

where n is the design refractive index of the glass, R is the radius of curvature of
the mirror, and D is the aperture of the corrector. These equations are those found
most often in the literature; the designer should remember that eq. 8.3.2 is an ap-
proximation. For systems faster than f73, three terms from eq. 8.3.1 must be incor-
porated to obtain adequate image quality. A more detailed method for determining
the necessary lens shape is described in chapter 20.

Fig. 8.3 shows cross sections of six Schmidt correctors with neutral zones
between 0% to 100% of the radius. The curve depths are strongly exaggerated; in
reality they amount to only a few hundredths of a millimeter. Every one of these
lenses enables a beam of parallel rays striking a spherical mirror to converge to a
focal point. The most interesting corrector is the one with its neutral zone at 86.6%
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Fig. 8.5 Main Characteristics of a Schmidt Camera.

of the radius because its color aberration is smallest. For optimum handling of
monochromatic off-axis aberrations, the neutral zone should be slightly different,
but the difference is negligible for our purposes.

Fig. 8.4 shows the corrector profiles for four 200 mm aperture Schmidt cam-
eras having focal ratios of /73, f/2, f/1.5, and f71. In the case of the f/1 camera, the
maximum curve depth is roughly 0.4 mm; for the f73 instrument, it is only 0.014
mm.

8.4 Characteristics of the Schmidt Camera

Fig. 8.5 shows the main characteristics of the Schmidt camera. The focus is mid-
way between the corrector and mirror, and lies on a convex surface. Clearly, con-
ventional cameras cannot be used with the Schmidt camera. Instead, individual
pieces of film must be bent to the curve of the focal surface and placed at the focus
in a special cassette. The radius of curvature of the film should be equal to half the
radius of the mirror.

To prevent vignetting and light loss at the edge of the field the diameter of
the mirror, D,,, should be:

Dy = Dc+2 Dp. (8:4.1)

The notation is that of fig. 8.5. In practice, though, some edge vignetting may
be tolerated. The diameter of the mirror is often:

D, = Do+ Dy. (8.4.2)

Some suppliers of amateur instruments make the mirror diameter the same
as the diameter of the corrector. While this may cut the cost, it causes considerable
vignetting. In fig. 8.6, we show the light dropoff for a 200 mm aperture Schmidt
camera for the case in which the mirror diameter is the sum of the corrector and
the film diameters, and the case where the mirror diameter equals the diameter of
the corrector. In fig. 8.6, the film diameter is 90 mm and the total central obstruc-
tion is 100 mm.

Because of the fast focal ratio, focusing a Schmidt camera is very demand-
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Fig. 8.6 Vignetting in a 200 mm Schmidt Camera.

ing. The focus tolerance seldom exceeds a few hundredths of a millimeter. In or-
der to avoid defocusing as a result of temperature change, the filmholder should
be supported longitudinally by a material with low thermal expansion such as In-
var. The distance between the corrector and the mirror is not critical.

8.5 Results of Optical Ray Tracing

Spot diagrams in figs. 8.7 and 8.8 show the optical performance of four 200 mm
aperture Schmidt cameras having focal ratios of 73, f72, f/1.5, and f/1, for three
colors, red (656.27 nm), blue (486.13 nm), and violet (404.66 nm). The Schmidt
corrector was designed for best correction in the blue. UBK?7 glass was chosen for
its relatively high transmission in the ultraviolet.

From the image blur sizes shown by the spot diagrams, the /73 and /72 sys-
tems give excellent image-sharpness over the whole focal surface—indeed, for the
colors under consideration, the image blur is smaller than our standard photo-
graphic criterion. This is a result of the relatively small deformation of the correc-
tor and the placement of the neutral zone at 86.6%.

In the f71.5 system, color aberration at the edge of the field has become no-
ticeable, and at f71, monochromatic errors play an appreciable role in expanding
the image. These focal ratios represent the effective limit of the speed of a Schmidt
camera, a conclusion confirmed in the literature and in practical application. At
focal ratios faster than f71.5 to f/1, more complicated systems are used. These are
usually combinations of a mirror with several spherical and aspheric lenses. It is
also clear that making the corrector for an f71 camera is difficult because of its
large deformation. Lateral color does not occur in a Schmidt camera, since this
camera is a symmetrical system with respect to all entering beams regardless of
color. For that reason the spot diagrams for various colors overlap. Table 8.1 gives
the construction parameters for the four Schmidt cameras we have analyzed.

8.6 The Field-Flattened Schmidt Camera

Because of the excellent image sharpness of the Schmidt camera, the inconve-
nience of a curved focal surface located inside the camera is generally tolerated.
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Fig. 8.7 Spot Diagrams for Two 200 mm Schmidt Cameras.

Table 8.1
Four Schmidt Cameras

(All dimensions in millimeters)

Geometric FR 1.0 7.5 2.0 3.0
Corr. Coeff.

A: —~1.13508538 - 10* -3.3408233 - 105 -1.40616246 - 105 -4.15958921 - 10-¢

B: 6.73706618 - 10° 2.12109462 - 10°  9.1256521 - 10-*  2.74057192 - 10-'°

C: 7.3836654 - 104 9.44513913 - 10°°  2.21625683 - 105 2.90241421 - 10-'¢
Corr. Glass 517643 517643 517643 517643
Dist. mir./film 195.141 296.825 397.666 598.431
EFL 204.859 303.175 402.364 601.569
Mir. RC 400 600 800 1200
Dist. mir./corr. 400 600 800 1200
1° Field 3.6 5.3 7.0 10.5
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Fig. 8.8 Spot Diagrams for Two 200 mm Schmidt Cameras.

However, it is possible to flatten the field using a single plano-convex lens placed
with its plano side near or in contact with the flat film. The radius of curvature, R,
of the convex surface of such a lens is:

g =1=D (8.6.1)
n

in which fis the focal length of the Schmidt camera, and » is the refractive index
of the lens at the color for which it is designed. Although the lens introduces some
coma, this may be reduced by shifting the Schmidt corrector slightly toward the
mirror. The residual coma lies within tolerable limits when the speed of the system
does not exceed f73. Color aberrations are also somewhat increased by the field
flattener; when the system is faster than f73, it is necessary to design the Schmidt
corrector and field flattening lens as a system. Despite their feasibility, field flat-
tening lenses are not widely used because bending the film generally causes no
trouble. In section 14.2, we discuss field flatteners in more detail.
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Fig. 8.9 Performance of the Lensless Schmidt.

8.7 The Lensless Schmidt

Many amateurs apparently hesitate to undertake a Schmidt camera because of the
difficulty of making a Schmidt corrector. An alternative is the so-called “lensless
Schmidt” in which the symmetry principle alone is used, and the corrector lens is
omitted from the camera. The resulting system is a coma-free camera with spher-
ical aberration. Since the amount of spherical aberration depends on the aperture
and focal length, the designer can simply select a blur criterion, 0.025 mm, for ex-
ample, and for a given aperture, the instrument is fully specified.

Fig. 8.9 gives a graph for determining lensless Schmidt blur figures. At our
standard 200 mm aperture, meeting the 0.025 mm sharpness criterion requires a
minimum focal length of 1600 mm. The focal ratio is f/8.0, and the tube of the sys-
tem is an ungainly 3200 mm long. This length is necessary because the entrance
pupil must be positioned at the center of curvature of the mirror, which is twice
the focal length.

With a relaxed criterion of 0.050 mm—acceptable for 6 by 6 cm negatives—
the focal length drops to 1120 mm, and the tube length is reduced to 2200 mm for
the f75.6 system. It is evident that to be fast, lensless Schmidts must have a small
aperture. In lensless Schmidt cameras, the optimum focus is located slightly closer
to the mirror than half its radius of curvature.



Chapter 9

The Schmidt-Cassegrain Telescope

9.1 General Classification

The SCT, or Schmidt-Cassegrain telescope, as offered nowadays by a variety of
makers, is exceptionally popular with amateur astronomers. This is mainly due to
the instrument’s compactness, transportability, closed tube, and excellent color
correction. Most systems offered have a focal ratio of f/10.

However, many users of these instruments are unaware that the standard
commercial SCT is merely one member of an extensive family of Schmidt-Cas-
segrain systems with widely divergent characteristics. Although SCTs contain
only three optical components—a primary mirror, a secondary mirror, and a
Schmidt corrector—the number of configurations possible is rather large. Fig. 9.1
shows some of this potential diversity. The corrector, for example, may be placed
near the focus of the primary mirror or near the center of curvature of this mirror.
The first configuration is compact; the second has approximately twice the tube
length. Of course, intermediate forms are also possible. The corrector may even
be placed nearer the primary than the secondary mirror.

The other parameters also permit variety. The secondary may be attached to
the corrector or supported by a spider. The focus may occur in front of the primary
or behind that mirror. Furthermore, the mirrors may be spherical or have aspheric
surfaces. Finally, there are systems designed to have a flat focal surface for pho-
tography, and those with a curved focal surface.

To a crude approximation, the design equations for the spacings and radii of
Cassegrain systems also apply to the Schmidt-Cassegrain. Before continuing this
chapter, therefore, the reader should review chapter 7. However, there are impor-
tant differences between the two designs. The addition of the corrector lens to the
two mirrors of the basic Cassegrain allows the designer to eliminate axial spheri-
cal aberration from any combination of mirrors. This is not at all the case for the
off-axis aberrations. The correction of coma and astigmatism is possible only for
specific combinations of power and position of the Schmidt corrector and certain
shapes of the primary and secondary mirrors. We will explore the design proce-
dure in detail in chapter 21.

However, it is pointless to discuss all possible configurations of the SCT, so
we have restricted ourselves to those forms which are of practical importance to
the amateur. Within the Schmidt-Cassegrain family, the most important distinc-
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Fig. 9.1 Layout of Four Schmidt-Cassegrain Systems.

tion, and one that is most closely related to the needs of the amateur, lies between
the systems with curved and those with flat focal surfaces.

Visual Schmidt-Cassegrain systems generally have strongly curved focal
surfaces. This stems from a high secondary magnification which permits the sec-
ondary mirror to remain relatively small. Because these systems have been de-
signed primarily for visual use, the designer must attempt to keep the diameter of
the secondary mirror (or more precisely, the diameter of its holder) less than 30%
the primary’s diameter. Because of the curved field, these systems are not optimal
for wide-field astrophotography unless a field flattener is used or the film is bent
to fit the concave focal surface.

Flat-field Schmidt-Cassegrain systems are optimized for wide-field astro-
photography on flat film. The flat focal surface is achieved, as it is in Cassegrains,
by making the radii of curvature of the primary and secondary mirrors almost
equal. As a result of this measure, the diameter of the secondary mirror becomes
rather large—45% to 60% the diameter of the primary—when the focal surface
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lies behind the primary mirror. These photographic systems are poor for visual use
at high magnification.

9.2 Treatment of Systems

We first investigate a typical 200 mm f/10 system similar to well-known and pop-
ular commercial SCTs. These instruments have a curved focal surface, but offer a
moderate size secondary mirror, making them suitable for visual use. In this com-
pact design, the secondary mirror is mounted on the inside of the Schmidt correc-
tor lens. The primary is f/2 and the secondary magnification is 5.

Next we discuss two typical flat-field systems with large secondary mirrors.
Both have an aperture of 200 mm. The first system is a wide-field design with a
focal ratio of f/4; the second has a slower focal ratio of f/11.

9.3 “Visual” Schmidt-Cassegrain Telescope

This instrument is similar to commercial 200 mm f710 systems. Although the man-
ufacturers do not supply accurate data on the positions, shapes, and radii of the op-
tical components of their designs, it is possible to measure some of these
dimensions from existing instruments. Fig. 9.2 shows the measured diameters and
spacings of such a typical SCT focused at infinity. Although the exact shapes of
the mirrors and Schmidt corrector are not determined, we have investigated com-
binations of parameters that produce a sharp axial image, and therefore have prob-
ably achieved a design close to that of the commercial systems.

We begin by investigating the performance of an SCT in which both mirrors
are spherical. Fig. 9.3 shows green-light spot diagrams for such a system, on and
off-axis, for flat and curved focal surfaces. The axial sharpness is excellent—the
spot diagram is considerably smaller than the Airy-disk—but off-axis we find
strong coma. This coma is approximately equal to that of a 200 mm f/5 Newtonian
at the same off-axis distances (see fig. 5.6) and considerably worse for the same
off-axis image angles.

It is clear that a compact Schmidt-Cassegrain with two spherical mirrors
gives inadequate off-axis performance. How, then, does the designer confront the
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Fig. 9.3 Spot Diagrams for a 200 mm f/10 All-Spherical Schmidt-Cassegrain Telescope.

problem of eliminating coma while preserving good axial image sharpness? A
number of possibilities exist: a) aspherizing the primary, b) aspherizing the sec-
ondary, ¢) both a) and b), and d) moving the Schmidt corrector, which is equiva-
lent to abandoning the compact design. The most common solution is aspherizing
the secondary. Aspherizing both mirrors has not been used in amateur instru-
ments, at least as far as we know. Methods a) and d) will be discussed later.

Let us now examine the performance of a 200 mm f710 Schmidt-Cassegrain
optimized for both axial and off-axis performance by aspherizing the secondary
mirror. Design data for the system are given in table 9.1; fig. 9.4 shows green light
spot diagrams for both flat and curved focal surfaces. Because of the strongly
curved focal surface, we felt it would be both instructive and interesting to show
the off-axis image sharpness for both.

The upper row of spot diagrams (fig. 9.4) shows the image at the flat focal
surface. It is evident that acceptable image sharpness is obtained only in the cen-
tral 20 mm diameter if we apply the 0.025 mm criterion, and focus on the axial
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Fig. 9.4 Spot Diagrams for an Optimized 200 mm f/10 Schmidt-Cassegrain Telescope.

Table 9.1
Optimized 200mm f/10 Schmidt-Cassegrain
(all dimensions in millimeters)
Corrector
Radius, first surface flat
Thickness 4
Glass 517642
Paraxial Radius, second surface —45029
Radius of Neutral Zone 86.6% of 100 mm
Relative Power 83.42%
Distance to Primary 312.5
Primary
Radius of Curvature -817.465
Distance to Secondary -305.5
Secondary
Radius of Curvature -253.75
Deformation (sphere =0; parabola = 1) -0.8857
Distance to focal surface -503.06
Radius of Optimum Focal Surface -157.6
Effective Focal Length 2027.0
1° Field 354

image. This diameter corresponds to the angular diameter of the full moon. Out-
side this circle the image swells up rapidly, causing fuzziness at the edge of the
field.

The lower row of spot diagrams shows image quality at the curved focal sur-
face. The image appears to be diffraction limited over a large part of the curved
focal surface, so visual performance should be excellent. Using a film curved to
match this focal surface or a field flattening lens would permit markedly better
photographic performance.

In the optimized design, the power of the Schmidt corrector is less than
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would be required to fully correct the primary mirror for spherical aberration. In
this case, it is 83.42% corrected. The rest of the correction of the spherical aberra-
tion is done by the aspherical secondary mirror.

According to our analysis, the power of the corrector must be held within
close tolerances because a relatively small deviation results in off-axis coma. This
sensitivity is demonstrated in fig. 9.5., in which we varied the power of the
Schmidt plate 2% with respect to the optimized design. The axial image sharpness
appears the same in all cases since we also ‘ ‘refigured” the secondary to eliminate
spherical aberration. The spot diagrams in fig. 9.5 are shown for the optimally
curved focal surfaces. We chose the shape of the Schmidt corrector for minimum
color aberration, placing the neutral zone at 86.6% of the radius.

Fig. 9.6. shows spot diagrams for red, green, and blue in a system optimized
for green light. The remaining color aberration is a result of spherochromatism,
i.e., the variation of spherical aberration with wavelength. This is nicely shown in
fig. 9.7. All wavelengths come to the same focus at the neutral zone because at this
zone the corrector has no power so the light is not refracted. At other places on the
corrector, light is refracted, and the amount of refraction is different for each
wavelength. In this example, color appears to be roughly five times smaller than
for an f/15 Fraunhofer doublet refractor of the same aperture.

As we noted earlier, this instrument is intended primarily for visual use. Is
there an SCT with better visual characteristics? The principal disadvantage of the
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present design is the large central obstruction caused by the secondary mirror and
its holder. In the telescope under consideration, this obstruction is 34% the diam-
eter of the entrance pupil. This is larger than desirable, especially since observa-
tions would often involve objects with low inherent contrast, such as planetary
surface details. The diameter of the secondary mirror can be reduced by making
the system slower—f/15 or even f720 instead of f/10. Unfortunately such changes
reduce the angular field, so that the instrument becomes less versatile. The present
instrument has a field of roughly one degree.

In chapter 19, we will see that the central obstruction of Cassegrain type in-
struments cannot be reduced arbitrarily even when a very small secondary mirror
is chosen. The reason is that Cassegrain telescopes must have baffle tubes to pre-
vent sky light from reaching the focal surface directly. Baffles make it difficult, in
practice, to reduce the central obstruction of a 200 mm telescope much below
30%. In ref. 9.1, Ronald Willey presents an f/15 design in which the central ob-
struction is only slightly smaller than our design, namely 33%. When the obstruc-
tion is decreased to 25%, for example, baffling produces such strong vignetting
that the useful field is substantially reduced. In chapter 19 we discuss vignetting
in detail.
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All in all, the optimized visual 200 mm f710 SCT is not a bad compromise
between the conflicting demands of small central obstruction, the focal ratio and
the size of the usable field. Looking back at the lower row in fig. 9.4, we observe
that the spot diagrams at off-axis distances greater than 20 mm swell somewhat as
a result of residual astigmatism. This could be eliminated if the secondary magni-
fication were increased from 5 to 6, a fact that will be explained in chapter 21. For
this instrument, however, this has little practical significance because the image is
already diffraction limited over a field 40 mm in diameter. This corresponds with
the whole effective field diameter of this instrument, restricted as it is by the built-
in rear baffle tube.

In comparing the off-axis performance of our optimized visual SCT with an
equivalent f710 two-mirror Classical Cassegrain, we find the latter displays off-
axis spot diagrams roughly four times larger than those produced by the SCT
(compare fig. 7.4 with the middle row in fig. 9.6). The reader may wonder why
the SCT performs so much better. The improvement appears to be the combined
effect of two changes. First, there is a slight improvement because the entrance pu-
pil has been moved from the primary mirror to the Schmidt corrector. In very
broad terms, the Schmidt corrector introduces an additional optical surface in the
system. This offers the designer freedom to spread and balance the correction of
aberrations over three surfaces instead of two, resulting in better overall perfor-
mance.

Although we abandoned the compact all-spherical SCT earlier, it is worth-
while to explore what happens when the corrector is moved farther from the mir-
rors. As we will explain in chapter 21, the degree of aspheric deformation depends
on the position of the Schmidt corrector. When the corrector is placed 550 mm
from the primary and is given an appropriate power (72.5%), the resulting system
has no coma even though both mirrors are spherical. Unfortunately we sacrifice a
number of desirable properties when the corrector is moved. First, the system be-
comes longer. The secondary mirror, no longer attached to the corrector, must be
supported with a spider, with all the problems involved. Another difficulty inher-
ent in a longer design concerns vignetting of oblique bundles unless the primary
is made larger.

We also investigated a coma-free compact system in which the primary is as-
pherized while the secondary is left spherical. This solution is more difficult than
aspherizing the secondary because the primary is relatively large and the appro-
priate corrector must be stronger. This is apparently why manufacturers prefer to
deform the secondary.

Earlier we mentioned mounting the secondary outside the Schmidt corrector.
This would be advantageous during fabrication of the optics because the second-
ary mirror could be removed from its holder without disturbing the Schmidt cor-
rector, especially for making one-of-a-kind systems. In mass-production, of
course, optics are tested in permanent optical fixtures.

For the designer interested in SCTs, we recommend reading the comprehen-
sive study by Sigler (refs. 9.2 and 9.3), which discusses a whole family of curved-
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Table 9.2
Eyepiece Focusing versus Mirror Focusing
Obj. Distance Eyepiece Focusing (mm) Mirror Focusing (mm)
(meters) Eyepiece Equiv. Image Mirror Equiv. Image
Movement Distance Movement Distance
Infinity 0.00 2027 0.00 2027
1000 4.12 2040 0.163 2027
100 4293 2178 1.675 2027
50 94.5 2336 3.354 2029
30 175 2680 5.598 2031
10 1200 5930 16.87 2037

focal surface SCTs. In this study, Sigler explores the optical characteristics as sev-
eral parameters are varied. We have applied several of Sigler’s formulae in chapter
21 in the section on Schmidt-Cassegrain Design.

9.4 Close Focusing in the SCT

_With commercial Schmidt-Cassegrain telescopes, the ability to view objects at
short range is a valuable asset. Studying and photographing birds, flowers, and in-
sects at short range with a 200 mm telescope offers impressive potential for mar-
keting and sales. While it is possible to correct spherical aberration for a given
object distance, it will be corrected only for that distance. Since the instrument has
been optimized for viewing objects at infinity, we have examined the loss in image
sharpness at short range.

There are two ways of focusing on near objects. In the first, focusing is ac-
complished by moving the primary mirror; in the second, by moving the eyepiece.
Fig. 9.8. graphs the image spread of a point source for the two methods. For object
distances less than 20 meters, mirror focusing gives better images than eyepiece
focusing. However, at such short ranges, neither system offers diffraction-limited
images.

Table 9.2 indicates that there is another rather subtle disadvantage connected
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with eyepiece focusing when observing at short range: the equivalent image dis-
tance, which determines the image scale, grows considerably. This also means that
the image brightness decreases. Moreover, the eyepiece movement becomes ex-
cessive, and vignetting of the light cone from the secondary by the baffle tube re-
sults in further light loss. It is clear that most manufacturers of SCTs have chosen
the more expensive mirror focusing in order to make their instruments suitable for
short range observing.

9.5 Flat-Field Schmidt-Cassegrain Systems

Baker, Linfoot, and others realized the possibility of designing flat-field Schmidt-
Cassegrain systems (ref. 9.4) if the radii of curvature of both mirrors were made
equal. In order to avoid coma and astigmatism, however, at least one of the mirrors
had to be aspheric.

Slevogt developed an alternative in which both mirrors remain spherical (ref.
9.5). His design places the corrector somewhat outside the center of curvature of
the primary, while giving the secondary slightly more power than the primary. The
slight difference between their powers compensates the weak power of the
Schmidt plate. In this way an astrocamera with a large, flat field having no coma
and no noticeable residual astigmatism is obtained.

Fig. 9.1 shows the optical configuration, and table 9.3. contains optical data,
for an instrument based on our optimization of the original Slevogt design. The
instrument has an aperture of 200 mm and a focal ratio f/4. A major disadvantage
of this design is the relatively long tube. Furthermore, when no preventive mea-
sures are taken, oblique bundles are seriously vignetted. Vignetting also depends
on the position of the limiting stop in the instrument. When it coincides with the
corrector, a large primary is necessary to intercept oblique bundles. A further dis-
advantage of this particular design is that the diameter of the secondary mirror is
quite large.

In our version of the Slevogt instrument, we adopt a compromise: placing a
200 mm diameter stop 300 mm behind the corrector. This results in a primary di-
ameter approximately equal to that of the corrector, though both are larger than
the stop. An optical ray trace of the system shown in fig. 9.9 establishes that this
design meets the 0.025 mm criterion over the entire 60 mm diameter flat field un-
der consideration, and that lateral color is within the same limit as well.

To control vignetting in the Slevogt f74 flat-field astrocamera with spherical
mirrors, we balance the light loss due to the secondary obstruction against the vi-
gnetting caused by the large secondary mirror. The secondary’s diameter is 110
mm, or 55% of the aperture. This causes a light loss in the center of the field of
30%. We chose the diameters of the mirrors in such a way that the light dropoff at
the edge of a 6 by 6 cm negative is 35%, thereby illuminating the field almost uni-
formly. The effective focal ratio of the system is /4.8, some 20% slower than the
J74 geometric focal ratio.

In a system designed for visual observation, such a large obstruction would
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Fig. 9.9 Spot Diagrams for a 200 mm f/4 Schmidt-Cassegrain Flat-Field Camera.

Table 9.3
Data 200mm f/4 Schmidt-Cassegrain Flat-Field Camera
(All dimensions in millimeters)
Corrector
Radius, first surface flat
Thickness 4
Glass 517643
Paraxial Radius, second surface -83250
Radius of Neutral Zone 86.6% of 100 mm
Relative Power 50.5%
Distance to Primary 977.2
Primary
Radius of Curvature —845.6
Distance to Secondary -231.6
Secondary
Radius of Curvature -809.7
Distance to Focal Surface 358.285
Radius of Focal Surface flat
Effective Focal Length 800
Geometric Focal Ratio 14
Diameters
Schmidt Corrector 216
Stop 200
Primary Mirror 220
Secondary Mirror 110
Distance, stop to corrector 300
1° Field 14.0

be intolerable because too much light from the Airy disk would spread into the dif-
fraction rings and cause excessive loss of contrast. For a photographic system, the
situation is more favorable. A 55% central obstruction produces a star-image in
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Fig. 9.10 Profile Depths for Two Schmidt Correctors.

which the Airy disk and the first diffraction ring together contain more than 80%
of the light. The outside diameter of the first diffraction ring for an f/4 system is
0.011 mm. This figure is so much lower than our 0.025 mm photographic criterion
that very nearly 100% of the light available will be concentrated within this circle.
From a photographic point of view, a 55% obstruction cannot be considered det-
rimental to the sharpness of photographic images.

A significant advantage of the large secondary mirror is that this particular
instrument can be built without a baffle system. This occurs because the large sec-
ondary, in conjunction with the long tube, prevents stray light from reaching the
film.

From comparing the flat-field Schmidt-Cassegrain camera with the original
Schmidt camera, it is evident that we must pay heavily for the comfort of having
an easily accessible flat focal surface. The system is considerably more complex
than the Schmidt camera.

Offsetting the complexity, however, is the possibility of using the flat-field
camera as a coma-free visual telescope. By replacing the large secondary with a
smaller, slightly aspheric secondary having stronger curvature, we convert it to vi-
sual use. The corrector and the primary mirror remain in their original positions;
the new secondary is farther from the primary mirror. The focus moves back, leav-
ing enough space for installing a focuser and eyepieces. Such a dual system can
be designed rather quickly using computer programs, but, of course, the corrector
must be smoothly aspherized to visual tolerances.

One final note on the practicality of the f/4 camera: in fig. 9.10 we compare
the corrector profiles of the two Schmidt-Cassegrains discussed. Note that the di-
ameter of the corrector for the f74 system is somewhat larger than that of the /10
system. Having seen good photographic images obtained over a flat field with a
long Schmidt-Cassegrain camera, we next ask whether it is possible to design a
compact camera, such as the one shown in fig. 9.1. The instrument would offer
important advantages over the long design. The secondary would not be supported
by a spider, and edge vignetting of oblique bundles would be less serious in a com-
pact design. Unfortunately such a compact design does not appear to be feasible
for most ATMs (see ref. 9.7). Although it is optically possible to make such a sys-
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tem, it requires strongly deformed aspheric mirrors and a Schmidt plate with deep
curves. These factors conspire to place the task beyond amateur skills, so we have
omitted the optical data for this design.

In 1965, A. S. DeVany published the optical data of an f7/11 compact design
flat-field Schmidt-Cassegrain telescope with two spherical mirrors having the
same radius of curvature (ref. 9.6), with the further desirable feature that the sec-
ondary mirror can be attached to the corrector. As ray tracing reveals, however,
this system suffers from stronger coma than the equivalent Newtonian (compare
figs. 5.6 and 9.11). On the positive side, the tube length of the DeVany system is
less than 50% that of the Newtonian.

9.6 Computer-Aided Design

Computer-aided design of Schmidt-Cassegrain telescopes with both curved and
flat focal surfaces is discussed in chapter 21. Computer programs are particularly
useful if the designer wishes to investigate a variety of possible designs.



Chapter 10

The Maksutov Camera

10.1 Introduction

Soon after the success of the Schmidt camera became known, opticians tried to de-
sign a similar camera in which the aspheric Schmidt corrector was replaced by a
corrector that could be more easily manufactured. By the beginning of the 1940s,
researchers all over the world were working on the problem. The solution they
found was a meniscus corrector with spherical surfaces---a strongly-bent negative
lens of weak optical power.

A meniscus lens nearly eliminates the spherical aberration of a spherical mir-
ror, or at least suppresses it, because it introduces spherical aberration opposite
that of a spherical mirror. The idea occurred roughly at the same time, around
1940, to Maksutov in Russia, to Bouwers in the Netherlands, to Gabor in England,
and to Penning in Germany. Because the invention was first published by Maksu-
tov (ref. 10.1.), meniscus cameras are usually called Maksutov cameras.

As it has turned out, the manufacture of meniscus correctors for large astro-
cameras (i.e., those larger than 500 mm aperture) is no easier or less expensive
than making a Schmidt corrector. This is one reason why meniscus correctors are
not often used in large astronomical cameras; for relatively small amateur sys-
tems, however, the meniscus remains an important optical component.

10.2 Maksutov Camera Designs

Designers distinguish between two kinds of meniscus camera systems: those that
are concentric, and those that are non-concentric. Fig. 10.1 shows a concentric
system. All the radii, R,, R,, and R;, as well as the radius of the focal surface, have
the same center of curvature, C. The entrance pupil lies at the center of the system,
in front of the meniscus. In this way every entering bundle, whether it is parallel
to the mechanical axis or not, has its own optical axis of symmetry with respect to
the mirror and the meniscus. Because of this symmetry coma and astigmatism do
not occur. Furthermore, spherical aberration can be eliminated almost completely
by a meniscus with the proper thickness, radii of curvature, and position.

The concentric system has one major disadvantage: because of the relatively
thick meniscus, it suffers from longitudinal chromatic aberration. Bouwers, while
emphasizing the advantages of the concentric system (ref. 10.2),suggests achro-
matizing the corrector by using two kinds of glass with the same refractive index
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Fig. 10.1 Layout of a Concentric Meniscus Camera.

Fig. 10.2 Achromatized Concentric Meniscus Corrector.

at the design wavelength but different dispersions as shown in fig. 10.2. This
method, unfortunately, is too cumbersome for most amateurs.

Maksutov found another method of achromatizing the corrector. He showed
that the chromatic aberration of a meniscus for paraxial rays reaches a minimum
when the axial thickness of the corrector equals:

2
n

n2—l

t = (R~ Ry) (10.2.1)

where n is the refractive index of the color the corrector is designed for. For BK7
glass, with n,. = 1.52237, the axial thickness becomes:

t = 1.76(R,-R)). (10.2.2)
But since:
t = (R,-R)) (10.2.3)

for a concentric meniscus, Maksutov’s condition means that the meniscus is no
longer concentric, and that its thickness is no longer equal at all places. Such a cor-
rector is shown in fig. 10.3. Because the center of curvature is not at the same po-
sition for both optical surfaces, the system cannot be made concentric, so both
coma and astigmatism occur, as well as lateral colors. Coma can be eliminated to
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Fig. 10.3 Non-concentric Meniscus Corrector.

Table 10.1
Four 200mm Maksutov Cameras
(All dimensions in mm)
Focal Ratio 72 .5 73 1A
R, Radius of Curvature -193.4 -224 -252.8 -305.6
T, Axial Distance 20 20 20 20
M, Medium 517643 517643 517643 517643
R, -205.4 -235.8 —264.6 -317.2
T, 489 631 776 1078
M, Air Air Air Air
R, -833 -1037 -1240.8 -1646.4
T, —427.5 -530.98 —-634.65 -839.97
M, Air Air Air Air
Effective Focal Length 400 500 600 800
1° Field 7.0 8.7 10.5 14.0
Axial Blur (Blue) 0.033 0.025 0.010 0.006
Axial Blur (Red/Violet) 0.035 0.030 0.010 0.006

alarge extent by moving the corrector somewhat toward the mirror.

Maksutov even went one step further and placed the entrance pupil at the
corrector instead of at the center of curvature of the mirror, but this leads to more
coma and astigmatism. He could suppress this coma by moving the corrector still
closer to the mirror. The result is a camera more compact than the concentric con-
figuration, having a low chromatic aberration but some residual astigmatism. The
Maksutov design has a tube length approximately 1.3 times the focal length, in-
stead of twice the focal length as in the concentric design. It is also shorter than a
comparable Schmidt camera.

A further advantage of the non-concentric system is that the diameters of the
corrector and the mirror are smaller than they are for a concentric system of equal
aperture. In addition, the corrector is relatively thick and strong. In amateur-size
instruments of this design, it is possible to support the film holder on a bolt passing
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Fig. 10.4 Layouts for Meniscus Cameras.

through a hole in the center of the meniscus. This design, therefore, does not re-
quire a spider.

Table 10.1 gives data for 200 mm aperture f72, f72.5, f/3, and f74 non-concen-
tric cameras designed and optimized by Maksutov. For the corrector, he chose
UBKY7 glass; the axial thickness of the meniscus is D/10 (i.e., 20 mm for our stan-
dard 200 mm aperture) for all focal ratios. The table also lists the diameters of the
axial image blur in blue light, an indication of the residual spherical aberration,
and the combined image blurs for red and violet, a measure of axial color aberra-
tion, but gives no information on coma, astigmatism, or lateral color.

To determine these aberrations, we investigated the off-axis performance of
three meniscus cameras, each having an aperture of 200 mm and a focal ratio of
173. The first is the original Bouwers concentric system with single meniscus cor-
rector; the second a non-concentric system of the type discussed above, by Mak-
sutov; and the third, a concentric system color corrected by placing a weak
positive lens at the entrance pupil.
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Table 10.2
Optical Characteristics of
Three 200mm f/3 Meniscus Cameras
(All dimensions in mm)
System Concentric Non-concentric ~ Achromatic
Bouwers Maksutov Concentric

Focal Ratio 73 73 73

R, Radius of Curvature —382.686 ~252.8 17311
T, Axial Distance 42.286 20 10.16
M, Medium 517643 517643 517643
R, —424.972 -264.6 -17311
T, 843.601 776 380.97
M, Air Air Air
R, -1268.573 —1240.8 —380.98
T, —668.237 —634.65 40.637
M, Air Air 517643
R, —421.607
T, 797.489
M, Air
R; —1219.11
T -619.224
M, Air
Effective Focal Length 600 600 600
1° Field 10.5 10.5 10.5

Table 10.2 lists the optical parameters and fig. 10.4 shows the three systems
at the same scale. The correctors in the concentric systems are approximately 40
mm thick, in accord with Bouwers’ proposal. The non-concentric system has a
corrector with an axial thickness of 20 mm. It is evident that the concentric sys-
tems require longer tubes, and larger mirrors and correctors.

The optical ray traces shown in fig. 10.5 allow the amateur to decide whether
itis worthwhile to construct the more complicated color-corrected concentric sys-
tem or the non-concentric system by Maksutov. The spot diagrams were calculat-
ed for the optimum curved focal surface. Note the large color aberration present
in the concentric Bouwers camera designed for the blue. The Maksutov has some
astigmatism and significant lateral color. Only the achromatic concentric design
meets our 0.025 mm criterion for photography over the whole field and in all col-
ors. The optical performance of this system is roughly comparable with the equiv-
alent f/3 Schmidt camera shown in fig.8.7.

10.3 The Optimum Meniscus Corrector

As we noted above, in his 1944 paper Maksutov points out that a corrector that
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Fig. 10.5 Spot Diagrams for Three 200 mm Meniscus Cameras.

satisfies the condition:

2
n
2
n -1

t = (R,~R)) (10.3.1)
will be paraxially achromatic. This means that rays close to the optical axis will
have approximately the same focus for different colors. However, this is not the
case for rays near the outer zones. As a result of spherochromatism, longitudinal
color aberration occurs in the outer zones.

To minimize the overall influence of spherochromatism, the designer may
wish to choose the axial thickness and the curvatures of the meniscus in such a
way that the LA curves for red, blue, and violet intersect in the 70% zone. Table
10.1 indicates that Maksutov computed the thickness from:

t = 1L70-(R,—-R)) (10.3.2)

rather than:
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t=176-(R,—R)). (10.3.3)
Apparently he introduced a correction factor, k:

170

k = =
1.76

0.97 (10.3.4)

We investigated what correction factor is optimum for a 200 mm f/3 Maksu-
tov camera. In order to determine how this factor depends on the thickness, we
traced two thicknesses, 20 mm and 40 mm, and three values of K, 0.95, 0.975, and
1.00. Each of the resulting six correctors was then individually optimized. The po-
sition of each corrector with respect to the mirror was chosen to minimize coma.

For purposes of comparison, we chose radii of curvature for both corrector
surfaces so that using UBK?7 glass in blue light, the paraxial ray and the edge ray
have the same focus. The radii were back-calculated from the assumed axial thick-
ness using the relation:
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Table 10.3
Five 200mm f/3 Maksutov Meniscus
(All dimensions in mm)

Thickness 10 20 30 40 50
R, RC -213.48 —247.98 —270.59 -287.49 -301.07
T, Axial Dist. 10 20 30 40 50
M, Medium 517643 517643 517643 517643 517643
R, -219.34 -259.70 —288.17 -310.94 —-330.38
T, 825 788 750 710 685
M, Air Air Air Air Air
R, -1226.27 -1240.57 -1253.04 -1262.53 -1272.06
T, -623.101 —634.954 —644.88 —652.773 —660.377
M, Air Air Air Air Air

2

t=k — o (Ry=Ry) (10.3.5)
n -

where k took values of 0.95, 0.975, and 1.00.

Fig. 10.6 shows the LA-curves for the six cases in three colors. We conclude
that optimum color correction for both the 20 and the 40 mm thick correctors oc-
curs for k = 0.97, in accord with Maksutov’s results. It is clear that when k = 1.0,
the paraxial focal distances of the three colors coincide, while for k = 0.95, the
edge rays coincide.

Maksutov’s choice for corrector thickness, D/10, has been followed by many
telescope makers. This thickness is arbitrary and is certainly not optimum from an
optical point of view. In later years various publications (refs. 10.4, 10.5, and 10.6)
indicated that better correction of spherical aberration is obtained with thicker me-
nisci, but that these suffer from worse lateral color.

In order to investigate the influence of the axial thickness on the residual
spherical aberrations, we designed correctors 10 mm through 50 mm thick for a
200 mm f73 Maksutov camera. Table 10.3 gives data for this camera with the dif-
ferent corrector thicknesses. These systems are not optimized for minimum blur.
Correctors thinner than 10 mm are difficult to make without springing or cracking
them, while thicknesses greater than 50 mm are too heavy. Each of the five cor-
rectors was individually optimized.

It appears that as the thickness increases, the corrector can be less strongly
curved and closer to the mirror. From the graph of longitudinal spherical aberra-
tion shown in fig. 10.7, it is evident that a thin corrector exhibits considerable ab-
erration, but that for thicknesses over 30 mm, the benefit from increasing the
thickness is marginal.
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Chapter 11

The Maksutov-Cassegrain Telescope

11.1  Introduction

In their papers published in the forties, Maksutov and Bouwers suggested that the
meniscus camera could be transformed into a Cassegrain system. But it was not
until 1957, when John Gregory published his now-classic design for the f/23 me-
niscus telescope which bears his name, that these catadioptric instruments became
available to amateurs (ref. 11.1). The primary mirror in the Gregory Maksutov-
Cassegrain is spherical; the secondary is an aluminized spot on the back side of
the meniscus corrector. It, too, is spherical. Like the Schmidt-Cassegrain, the Gre-
gory Maksutov is short and closed, and offers good color correction and freedom
from a spider.

In 1958, Gregory improved the color correction of his original design, also
making possible an f/15 design (ref. 11.2). In the f/23 instrument, all the optical
surfaces are spherical, but in the f/15 system, either the corrector or the primary
mirror must be aspherized to eliminate residual spherical aberration. In the years
following, modifications of the original Gregory design have been published.

This chapter describes the Gregory Maksutov and designs that have fol-
lowed it, including systems optimized for astrophotography, and evaluates their
optical performance in visual and photographic applications. As is our practice, all
six instruments have an aperture of 200 mm.

11.2 Maksutov-Cassegrain Systems

Fig. 11.1 shows six representative Maksutov systems at the same scale. These six
instruments offer an excellent opportunity to discuss an important optical concept:
degrees of freedom. A degree of freedom means the ability to make a free choice
with respect to an optical parameter such as a radius of curvature, a distance be-
tween two surfaces, a lens thickness, a glass type, an aspheric surface, and so
forth. To correct the image aberrations in an optical system, the optical designer
requires as many degrees of freedom as the number of image aberrations to be cor-
rected, or more.

Consider now the Gregory Maksutov-Cassegrain system. Note that this in-
strument has strong coma and astigmatism, as shown in fig. 11.2. In this particular
form, there is no possibility of correcting these aberrations because the secondary
mirror is part of the back side of the corrector—and therefore necessarily has the
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11.1 Layout of Six Maksutov-Cassegrain Systems.
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same radius of curvature. In order to improve the off-axis aberrations of this sys-
tem, the designer must have at least one additional degree of freedom, such as in-
dependently changing the radius of curvature of the secondary mirror. Although
one manufacturer of Maksutov-Cassegrain telescopes uses a design of this sort—
grinding the center of the corrector's back surface to a longer radius than the cor-
rector itself—this method is too difficult for most amateurs. A simpler solution is
to attach a separate convex mirror to the corrector.

Fig. 11.1 shows such a system, the Rumak, designed by Harrie Rutten. The
Rumak is an 715 system, like the Gregory Maksutov, so we can make a direct
comparison of their optical performance (see fig. 11.2). The all-spherical Rumak,
with one extra degree of freedom, gives considerably better off-axis images, im-
proved color correction, and a flatter focal surface.

Because the Gregory and the Rumak are primarily visual instruments, the
spot diagrams are shown for red, green, and blue only. We see that both instru-
ments appear to be diffraction limited on-axis. However, fig. 11.3 shows curves
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for the spherical aberration in four colors, including violet light which is necessary
for photography. The Gregory design suffers from considerable spherochroma-
tism. The Rumak’s aberration curves lie closer together, particularly in the outer
zones, where it most matters. The improvement of the Rumak is largely due to the
less steeply-curved meniscus.

Of course, the Rumak also has its disadvantages: the tube is longer and the
secondary mirror is larger than those of the Gregory. Would it be possible to de-
sign a Rumak-like system with the same tube length as the Gregory? It is possible,
but the designer needs still another degree of freedom. Aspherizing one optical
surface—corrector, primary, or secondary mirror—is sufficient, but the difficulty
of figuring aspheric optical surfaces renders this possibility unattractive.

However, other degrees of freedom may be exploited. In specifying a fast
Maksutov-Cassegrain (i.e., faster than f/8) in which the optical surfaces must be
left spherical, the designer may alter the distance between the corrector and the
secondary mirror. Two examples of this are the Simak (ref. 11.3) and the Sigler



112 Chapter 11: The Maksutov-Cassegrain Telescope

Table 11.1a
Three 200 mm Maksutov Cassegrain Systems
(All dimensions in millimeters)

System Gregory Rumak Simak
Focal Ratio 715 715 f15.6
R, Radius of Curvature -219.4132 —334.956 -217.465°
T, Axial Distance 17.347 20 19.425
M, Medium 517642 517642 517642
R, -229.6 —346.673 -229.025
T, 403.653 605.8 355.575
M, Air Air Air
R, —980.453 -1592.2 —847.2
T, —403.653 —589.7 —289.675
M, Air Air Air
R, -229.6 —598.072 —451.75
T, 620.679 832.12 388.222
M, Air Air Air
RS

TS

MS

R6

Tﬁ

M[)

Effective Focal Length 3000 2964 1122
1° Field 52.4 51.7 19.6

a. aspheric deformation approx. 1/4-wavelength

Maksutov (ref. 11.4). Both are shown in fig. 11.1. In these instruments, the cor-
rector was moved with respect to the secondary mirror.

The limiting focal ratio for a Maksutov-Cassegrain with three spherical op-
tical components appears to be approximately f74. The aberration of faster systems
becomes intolerable when only spherical surfaces are used.

The designer of the f/2.5 Companar, Klaas Compaan, suppressed color aber-
rations in his concentric meniscus system by placing a weak positive lens in front
of the corrector. In order to eliminate residual spherical aberration, this lens was
made slightly aspheric. An entirely spherical /2.5 design would have an axial im-
age blur of 0.045 mm; aspherizing the lens is unnecessary for focal ratios slower
than f72.85.

The optical characteristics of the six Maksutov systems are given in table
11.1a and b, while their spot diagrams are shown in figs. 11.2, 11.4, and 11.5.
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Table 11.1b
Three 200 mm Maksutov Cassegrain Systems
(All dimensions in millimeters)

System Sigler Companar Companar
Focal Ratio 8.0 2.5 12.85

(aspheric) (spherical)
R, Radius of Curvature -297.709 110707 12300
T, Axial Distance 20.6 10.0 11.1
M, Medium 517642 517642 517642
R, -309.455 -11070 -12300
T, 693.582 210.0 2333
M, Air Air Air
R, -1311.818 -210.0 -233.3
T, -413.473 18 20.1
M, Air 517643 517643
R, —847.091 -228.0 -253.4
T, 631.75 388.175 439.88
M, Air Air Air
R -520.84 -584.13
T -140.0 -155.56
M, Air Air
R, -500.68 -562.44
T, 240.283 275.19
M Air Air
Effective Focal Length 1595 504 572
1° Field 27.8 8.8 10.0

a. aspheric deformation approx. 1/4-wavelength

11.3 Meniscus Correctors

The meniscus correctors used in the Gregory, Rumak, Simak, and Sigler are all
designed for low color aberration. As we saw in chapter 10, for an optimal color
correction of paraxial rays, the corrector thickness is:

2
n

nz—l

t = “(Ry—Ry). (11.3.1)

For BK7 glass this becomes:
t = 1.7T6(R,—R)). (11.3.2)

Gregory'’s original 1957 design and Sigler’s instrument conform, at least ap-
proximately, to this value. In Gregory’s improved 1958 design, and for the Rumak
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and Simak, however, the corrector thickness is:

The slightly thinner corrector offers better overall color correction than the parax-
ially designed corrector, as explained in the previous chapter. In order to minimize
coma and lateral color, the meniscus of the Companar has been made fully con-
centric with respect to the entrance pupil, so that this meniscus satisfies:

Although the meniscus thickness causes longitudinal color aberration, this is elim-

t = 1.70(R,—R,).

t = (R,-R,).

inated by placing a weak positive lens in the entrance pupil.
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11.4 Curved- and Flat-Field Maksutov-Cassegrain

Of the Maksutov-Cassegrain telescopes we have examined, all except the Compa-
nar have a curved focal surface. The Companar was designed solely for photo-
graphic use as an astrocamera; the other instruments can also be used visually. For
visual use, the diameter of the secondary should be kept as small as possible. Table
11.1 does not list the diameters of the primary and secondary mirrors for the visual
Maksutov-Cassegrain telescopes because they depend not only on the size of the
desired field and the baffling employed, but also on the amount of vignetting and
diameter of central obstruction that the user will accept. The relationships between
these parameters are discussed in detail in chapter 19. With the guidelines given
there, the amateur can readily determine the dimensions required for his own de-
sign.

As we said above, the Companar has been designed exclusively for photo-
graphic use. Its flat field results from making the radii of curvature of both mirrors
nearly equal. The design unfortunately requires a secondary mirror 120 mm in di-
ameter—60% of the entrance pupil. At the center of the field, approximately 36%
of the light is blocked, so the effective focal ratio is some 20% slower than the geo-
metric focal ratio. In order to prevent excessive vignetting of oblique bundles of
rays in the extreme corners of a 6 by,6 cm negative, the meniscus must be slightly
larger and the primary mirror considerably larger than the entrance pupil. For zero
edge vignetting, the secondary should actually have a larger diameter. When the
secondary mirror is restricted to 60%, a light dropoff of 35% occurs at the extreme
edge.

A 60% central obstruction is far less detrimental to the photographic image
quality than it would be in a visual system. It produces a star image in which the
Airy disk and the first diffraction ring together contain approximately 80% of the
light reaching the focal surface. At /2.5, the outside diameter of the first diffrac-
tion ring is 0.007 mm, so much smaller than our photographic criterion that nearly
100% of the light available will fall within our 0.025 mm blur criterion. From the
point of view of diffraction, the instrument's 60% obstruction is not detrimental to
the photographic image sharpness of this instrument.

When we compare this flat-field Maksutov-Cassegrain design with the orig-
inal Maksutov camera, it is evident that the convenience of an accessible, flat focal
surface necessitates a considerably more complex system. In the Sigler and Com-
panar designs, the secondary mirrors must be supported with a spider; in the other
instruments, the secondary is attached to the corrector. In one respect, however,
the Companar is simpler: it can be built without a baffle system because the large
secondary mirror prevents stray light from reaching the film directly.

How do the Maksutov and Schmidt-Cassegrain systems compare? In the
Maksutov, the elements must be slightly larger than in the Schmidt. Because the
Maksutov corrector is a negative lens, rays passing through it are bent outward, so
the primary mirror, in order to catch all rays, must have a larger diameter than the
corrector, even for the axial bundle. The outer rays in a Schmidt corrector are bent
slightly outward, too, but in a Maksutov corrector this effect is stronger.
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How does the Maksutov-Cassegrain stack up against the Schmidt-Casseg-
rain? We may compare the image quality of the flat-field Maksutov-Cassegrain
with an 74 Schmidt-Cassegrain (described in section 9.5, spot diagrams in fig. 9.9)
with the spot diagrams for the aspheric Companar shown in fig. 11.5. Both are ex-
ceptional in their performance, but neither instrument is easy to build. Only expe-
rienced workers will be able to overcome the difficulties involved in making these
instruments to the required accuracy. These astrocameras are intended for people
who wish a wide-field instrument with a truly flat focal surface that is easy of ac-
cess, and who demand the very best photographic image quality over a wide spec-
tral range.
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The Schiefspiegler

12.1 Introduction

The simplest Schiefspiegler is a two-mirror reflecting telescope that offers, as its
most desirable feature, an obstruction-free light path. This is accomplished by tilt-
ing the system’s primary mirror so that the secondary mirror does not block incom-
ing light. Although tilting a single mirror results in strong coma and astigmatism,
by the proper choice of radii and figure, one aberration can be corrected and the
other reduced to an acceptable low value in small telescope systems.

Conventional reflecting telescopes such as the Newtonian and Cassegrain,
and ail the various catadioptrics, have a central obstruction in their light path due
to the secondary mirror. In the Newtonian and the Cassegrain these mirrors are
supported with a spider. In the Schmidt- and Maksutov-Cassegrain designs, the
secondary may be attached to the corrector. The obstruction of the mirror and spi-
der diffracts light from the Airy disc into the diffraction rings, resulting in loss of
image contrast. This can be observed particularly in objects having a low inherent
contrast, such as planetary surface details. In chapter 18, these effects will be dis-
cussed in detail.

In the 1950s, Anton Kutter, a German, designed various mirror-systems
which do not have these obstructions. He named them schiefspieglers, or “oblique
reflectors.” Kutter was not the first to investigate unobstructed mirror systems.
William Herschel had, over 150 years earlier, tilted the mirror of his largest tele-
scope in order to be able to observe outside the entering bundle of light. Although
Herschel's motives had mainly to do with avoiding light loss due to the low reflec-
tivity of his speculum-metal mirror, tilted primary systems are still called Her-
schelian telescopes.

The first two-mirror telescope without an obstruction was the Brachyt, or
“broken,” telescope. This system consists of an off-axis part of a parabolic prima-
ry and an off-axis part of a hyperbolic secondary. Both mirrors have the same op-
tical axis. The Brachyt is an eccentric part of a conventional Cassegrain telescope.
Because the mirrors are difficult to make, these instruments have never become
popular.

Schiefspiegler systems are called tilted-component telescopes, or TCTs for
short. Owners of the Kutter schiefspieglers and the later designs by Buchroeder
(ref. 12.8) are enthusiastic about the contrast and image sharpness of their instru-
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Fig. 12.1 Derivation of the Schiefspiegler Telescope.

ments. In this chapter, we investigate the design principles of schiefspieglers, then
evaluate the optical performance of three forms of the TCT.

12.2 Optical Principles of Schiefspieglers

When designing his schiefspieglers, Anton Kutter took the Cassegrain reflector as
his starting point. To avoid hard-to-make aspheric surfaces, Kutter began with two
spherical mirrors, and cut an eccentric pupil from the incoming light, as shown in
fig. 12.1. In this initial form, however, the convergence of rays at the focal plane
is rather bad. Coma can be clearly recognized in this figure: the ray intersection
points P, P,, and P, do not coincide. Astigmatism, which is also present, cannot
be seen in this particular drawing, because this aberration results from rays in the
sagittal plane, outside the plane of the drawing.

Anton Kutter’s merit as an optical designer is that he examined methods to
eliminate or suppress sufficiently coma and astigmatism, and thereby found vari-
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Fig. 12.2 The Schiefspiegler for Various Tilt Angles (after A. Kutter).

ous solutions. His first important decision was to set the radii of curvature of both
mirrors equal, or roughly equal, to facilitate fabrication.

His second decision was to make the radii of curvature of both mirrors large.
In a normal Cassegrain telescope, in order to obtain a short tube length, the focal
ratio of the primary mirror is normally between 3 and 5. In a schiefspiegler, the
primary’s focal ratio may be 12. In an ordinary Cassegrain, the secondary magni-
fication lies between 2 and 5; in a schiefspiegler, this number lies near 1.7. The
focal ratio of the whole system normally comes out between 20 and 30. This
makes the schiefspiegler less suitable for observation or photography of large star-
fields and nebulae, but preeminently suitable for observing lunar and planetary de-
tails and close double stars. This is consistent with the high contrast available from
an unobstructed aperture.

Anton Kutter emphasized the great importance of a small secondary magni-
fication. When a high secondary magnification is used, he felt that great demands
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are placed on the surface accuracy of the primary mirror because the irregularities
are magnified by the secondary. In this notion, he was wrong, because the optical
path differences caused by surface irregularities do not depend on secondary mag-
nification. Nevertheless, for the observation of low contrast objects, smooth mir-
ror surfaces are of the utmost importance. Moreover, the difficulty of producing
the rather “shallow” mirrors for a schiefspiegler should not be underestimated by
amateur opticians.

In considering the performance of schiefspieglers, the importance of the long
focal length for obtaining high performance from eyepieces should not be ignored.
Image aberrations, particularly the off-axis aberrations of an eyepiece, are strong-
ly dependent on the focal ratio of the telescope objective. At focal ratios between
20 and 30, eyepieces deliver sharper images than they do at focal ratios around 5.
This point, one that is often forgotten, will be elucidated more fully in chapter 16.
With schiefspieglers, relatively cheap long focal length Huygenian eyepieces can
be used to advantage. This type of eyepiece, which the amateur can easily con-
struct, is normally rejected by users of fast Newtonians because of intolerable ab-
errations.

Kutter's third and most important decision was to minimize image aberra-
tions by tilting the secondary mirror. Fig. 12.2 shows a secondary in three posi-
tions: I, original position based on the configuration of the original Cassegrain
system with coma and astigmatism; I1, the position giving an anastigmatic system,
corrected for astigmatism but suffering from residual coma; and I1I, a coma-free
system, with residual astigmatism.

In an anastigmatic system, the rays in a plane perpendicular to the plane of
the drawing will intersect at the same point F, as the rays in the plane of the draw-
ing itself, F,, so F, = F. In the coma-free system, the points P, P,, and P, coincide,
so P, = P, = P,. Kutter established that it is impossible to find a tilt angle whereby
coma and astigmatism are corrected simultaneously. However, he developed var-
ious methods to solve, or at least minimize, this problem.

In anastigmatic systems, coma can be suppressed below the size of the Airy
disc by choosing a long focal length. The focal ratio required depends on the ap-
erture as follows:

1. 80 mm aperture: f720, with a tube length of 700 mm
2. 110 mm aperture: f724.7, with a tube length of 1100 mm
3. 150 mm aperture: /729, with a tube length of 1780 mm.

A 200 mm aperture anastigmatic schiefspiegler would require a tube some
2500 mm long, which would be impractical.

Coma-free systems can be freed from astigmatism by giving the secondary
mirror a special deformation in the sagittal plane. Since the deformation has a sad-
dle form, it is very difficult to make with the required accuracy. In order to restrict
the tube length for apertures up to 400 mm, Kutter proposed a different solution,
one which he called the “golden mean,” of tilting the secondary mirror to an angle
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Fig. 12.3 Three Forms of Tilted-Component Telescopes.

between those of the anastigmatic and the coma-free systems.

Such a two-mirror system has both residual astigmatism and coma, but these
can be nearly eliminated by placing a weak, tilted plano-convex lens in the exit
bundle of the secondary mirror. The color aberration of this weak lens is small,
and may be further decreased by making the lens very slightly wedged. Kutter
calls this compound system the catadioptric schiefspiegler system.

According to the literature, for apertures greater than 220 mm, the primary
mirror must be elliptically deformed to 60% of a parabola, to suppress the residual
spherical aberration. Calculations show, however, that even for an aperture of 200
mm, the aspheric primary leads to better results. The overall length of a 200 mm
catadioptric schiefspiegler is approximately the same as a 150 mm anastigmatic
system. Because of these barely-suppressed aberrations and larger geometric ab-
errations in a larger system, Schiefspieglers may not always be scaled up; propor-
tional downscaling is, of course, always allowed.
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Fig. 12.4 Spot Diagrams for the 110 mm f/24.7 Anastigmatic Schiefspiegler.

In the 1960s, Kutter also developed a trischiefspiegler, a system with three
mirrors. This system is much more compact than the two-mirror schiefspieglers,
but looks rather exotic. (Fig. 12.3 compares the optical layout of the three tele-
scopes.) The secondary and tertiary mirrors of the trischiefspiegler are spherical;
the primary mirror is elliptical.

12.3 Results of Optical Ray Tracing

It would be cumbersome to give ray-tracing results for all the TCT designs pro-
posed by Anton Kutter, Arthur Leonard, Richard Buchroeder, and others. Instead,
we have restricted ourselves to three systems popular among amateurs (see refs.
12.2,12.3, and 12.5). We have based our analyses on Kutter’s original designs.
The three systems are: an anastigmatic 110 mm f/24.7 two-mirror system, a
200 mm f720 catadioptric two-mirror system, and a 200 mm f714.7 trischiefspie-
gler. Table 12.1 gives the construction data; fig. 12.7 shows their layouts.
Before discussing the ray-tracing results, we must explain the unusual spot
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diagrams. When an optical system is
rotationally symmetric, the image
characteristics on the axis in the tan-
gential and sagittal directions are the
same, as are the focal surfaces. On the
optical axis, such systems produce
round, rotationally-symmetric image
blurs, so the calculation of spot dia-
grams can be restricted to a tangential
calculation only.

For a tilted system, a different
situation occurs. Because the optical
power of the various tilted elements is
different in the tangential and sagittal
planes, the positions of the tangential
and sagittal foci on the principal axis
of a schiefspiegler can be different. If
only the tangential calculation is car-
ried out, the designer may draw false
conclusions, because the blur on the
sagittal axial focus can have a consid-
erable size.

Off-axis imaging characteristics
for the two types of systems differ. In
rotationally symmetric systems, the
calculations can be restricted to one di-
rection because the spot diagrams are
the same no matter what direction they
are from the axis. This is not the case
for a schiefspiegler; the calculations
must be carried out for more direc-
tions. Here, we give spot diagrams for
four directions: two in the tangential
direction and two in the sagittal direc-
tion, in each case calculated for off-
axis distances of 10, 20 and 30 mm.
Note that for schiefspieglers, spot dia-
grams are mirror-symmetric with re-
spect to the tangential direction, while
for a rotationally symmetric system
these are mirror-symmetrical about the
optical axis.

In studying the spot diagrams,
note that in the 110 mm f724.7 anastig-

Table 12.1
Schiefspieglers

(All dimensions in millimeters)

110 mm f724.7
Anastigmatic Schiefspiegler

Primary

Radius of Curvature -3240

Angle of Deviation o, 5.234°

Distance to Secondary -965
Secondary

Radius of Curvature -3240

Angle of Deviation c, 13.666°

Distance to Focal Plane 1108
Angle of Image Plane o, 5.16°
Effective Focal Length 2720
1° Field 475

200 mm f720
Catadioptric Schiefspiegler

Primary

Radius of Curvature -4800

Deformation -0.6

Angle of Deviation o, 6.3°

Distance to Secondary -1365
Secondary

Radius of Curvature -5060

Angle of Deviation o, 18.133°

Distance to Corrector Lens 745
Corrector

Radius of Curvature —15000

Thickness at Center 7

Medium 517642

Angle of Wedge 0.0382°

Angle of Tilted Plane Surface o, 28°
Distance, Secondary to Focus 1725
Angle of Image Plane o, 8.05°
Effective Focal Length 4000
1° Field 69.8

200 mm f714.7
Trischiefspiegler

Primary

Radius of Curvature -4065

Deformation —0.53

Angle of Deviation ¢, 10.313°

Distance of Secondary -1012.5
Secondary

Radius of Curvature -5930.25

Angle of Deformation o, 30.419°

Distance to Tertiary 613.5
Tertiary

Radius of Curvature -32745

Angle of Deviation o, 68.893°

Distance to Focus 879
Angle of Image Plane o, 9.15°
Effective Focal Length 2930
1° Field 51.5
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Fig. 12.5 Spot Diagrams for the 200 mm f/20 Catadioptric Schiefspiegler.

matic system (fig. 12.4), residual coma is clearly visible but does not, on the main
axis, exceed the size of the Airy disk. The 200 mm f720 catadioptric system (fig.
12.5) gives excellent sharpness on the main axis, and is diffraction-limited over a
field approximately 15 mm in diameter. The main-axis spot diagrams for blue and
red light do not exceed the Airy disk either. Although there is a slight amount of
lateral color axially, caused by the oblique rays on the tilted corrector lens, this
could probably be eliminated by slightly changing the wedged shape of the lens.
The 200 mm f714.7 trischiefspiegler (fig. 12.6) appears to be a special case.
For it, the spot diagram does not have its smallest size on the main axis. The di-
ameter of the axial spot diagram is approximately 67 microns diameter, while
about 14 mm off-axis to the left, the smallest spot diagram is some 30 microns di-
ameter. This is still somewhat larger than the Airy disk, 20 microns diameter. Note
that in all cases the optimum focal plane, for which all spot diagrams were calcu-
lated, is not perpendicular to the axis, but is slightly tilted (fig. 12.7).
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Other Compound Systems

Schmidt [ Spherical or Elliptical
Corrector l Primary Mirror

I

Fig. 13.1 Layout of the Schmidt-Newtonian and Wright Systems.

13.1 Introduction

Each of the telescopes treated in the previous chapters belongs to a particular fam-
ily of systems. This is not the case with the systems to be discussed below. Three
groups are treated:

1. Full-aperture correctors, mirror/lens systems in which a corrector is
placed in the parallel entering bundle.

2. Focal correctors, mirror/lens systems in which a corrector is placed in
the converging light cone in front of the focal plane.

3. Miscellaneous systems that can be useful for the amateur.

13.2 Full-Aperture Correctors: Schmidt Derivatives

As we saw in chapter 8, the Schmidt camera consists of a spherical mirror and a
Schmidt corrector. The special characteristic of the Schmidt camera is that the cor-
rector lies at the center of curvature of the mirror. In this way a symmetrical con-
figuration is obtained, that is, there is no preferential direction for the entering
bundles. All bundles, whether these enter parallel to the optical axis or obliquely,
have, at least in principle, the same image sharpness in the focal plane. Such a sys-
tem should be free of coma and astigmatism.

A disadvantage of the Schmidt camera, however, is its long tube, which must
be twice the focal length of the mirror. In order to avoid this disadvantage, the
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Table 13.1
Two 200 mm Schmidt-Derived Systems
(All dimensions in mm)

System Schmidt-Newtonian Wright
Focal Ratio 14 1A

R, Radius of Curvature flat flat
T, Axial Distance 4 4
M, Medium 517642 517642
R, Paraxial Radius —282040 -108016
T, 617 617
M, Air Air
Relative Power of Corrector 100% 259.319%
R, -1600 -1600
T, Back Focal Length —798.825 -796.988
Deformation of Mirror 0 1.561
M, Air Air
Effective Focal Length 799.8 797.0
1° Field 14.0 139

Schmidt corrector may be placed nearer to the mirror, for instance, at or near the
focal plane. The resulting instrument is the Schmidt-Newtonian. The mirror re-
mains spherical (fig. 13.1).

In the Schmidt-Newtonian, the symmetry with respect to entering bundles is
lost so that coma and astigmatism are not completely corrected. The system is,
nevertheless, better corrected than a Newtonian of the same aperture and focal
length. The amount of coma and astigmatism depends on the position of the cor-
rector. The shorter the distance between corrector and mirror, the stronger these
aberrations will be.

Coma correction can be obtained by deforming the mirror to an ellipsoid.
The resulting system is called the Wright telescope. The ellipsoidal deformation
must be carried out in such a way that the degree of curvature at the edges of the
mirror is stronger than in the center, unlike the normally-used conic aspherical de-
formations in which the curvature of the center is greatest. The Wright ellipsoid is
the figure of revolution produced by an ellipse where the focal points of the ellip-
soid are not located on the optical axis, but on both sides of the axis. This is the
so-called oblate ellipsoid. (The more familiar ellipsoid, having greatest curvature
in the middle of the mirror, is called a prolate ellipsoid.)

Table 13.1 shows the strong aspherical deformation of the Wright mirror.
This is necessary in order to eliminate coma for the particular chosen position of
the Schmidt corrector. In order to compensate this deformation and bring all axis-
parallel rays to one point on the axis, the power of the Schmidt corrector must be
approximately 2.6 times stronger than for the Schmidt-Newtonian of the same fo-



Section 13.2: Full-Aperture Correctors: Schmidt Derivatives 129

Off-axis Distance (mm)

30

Color

System
10 20

200 mm f/4
Newtonian .

Rp=800mm |-

200 mm f/4
Schmidt-Newton

Rf=1000mm |G| °

200 mm f/4
Wright System

Rp=3750mm |G| -

k0.025 mm

AiryoDis

Fig. 13.2 Comparison of Newtonian, Schmidt-Newtonian, and Wright Systems.



130 Chapter 13: Other Compound Systems

Table 13.2
Four 200 mm Houghton-Derived Designs
(All dimensions in millimeters)
System Buchroeder Lurie Houghton Houghton
Houghton Houghton Cassegrain Cassegrain
Focal Ratio 13 f4 J10 f/5.3
R, Radius of Curvature 1143.73 1286.81 939.8 566.6
T, Axial Distance 16.67 16 14.5 22.5
M, Medium 517642 517642 517642 517642
R, flat —4810.34 -1196.6 -585.5
T, 10 3.0 1.5 0.6
M, Air Air Air Air
R, —-1143.73 —-1286.81 —939.8 -566.6
T, 8.33 12 5 5
M, 517642 517642 517642 517642
R, 1143.73 4810.34 1196.6 585.5
T, 10 617.67 435 11123
M, Air Air Air Air
R, flat —1590.97 ~1200 -1200
T 16.67 —-793.84 —415.38 -338.5
M 517642 Air Air Air
Ry -1143.73 -527.47 -1200
T, 1182.67 595.48 443.78
M, Air Air Air
R, -1200
T, -597.3
M, Air
Effective Focal Length 604.26 800.4 1968.97 1072.3
1° Field 10.5 14.0 34.4 18.7

cal ratio. The color aberration of the Wright design is higher than in the Schmidt-
Newtonian, but it remains within acceptable limits.

In fig. 13.2, we show a direct comparison between the 200 mm aperture f74
Newtonian, Schmidt-Newtonian, and Wright telescopes. In the Schmidt-Newto-
nian, coma is about 40% less than it is in the f/4 Newtonian. Far better off-axis im-
ages are achieved in the Wright design because coma can be fully corrected,
despite the astigmatism remaining. Note that in both Schmidt-derived designs, the
entrance pupil has been moved from the mirror to the corrector, which means that
the mirror should have a larger diameter to avoid vignetting off-axis beams. The
mirror remains smaller in both cases than in the case of the Schmidt camera. An
advantage of the configurations shown is that the diagonal mirror can be attached
to the Schmidt corrector so that no spider problems exist.



Section 13.3: Full-Aperture Correctors: Houghton Derivatives 131

Fig. 13.3 The Buchroeder-Houghton Camera.

Fig. 13.4 Layout for Lurie’s Houghton Telescope.

13.3 Full-Aperture Correctors: Houghton Derivatives

In 1944, Houghton suggested a new type of full-aperture corrector for spherical
mirrors as an alternative to the hard-to-make Schmidt corrector (ref. 13.1). These
correctors consist of a combination of two or three positive and negative spherical
lens elements that can be considered afocal (i.e., having no optical power) and
achromatic. They are over-corrected for spherical aberration in order to compen-
sate for that of the mirror.

One special advantage of the Houghton corrector is that its spherical aberra-
tion depends on the spacing between the lenses. This means that a residual spher-
ical aberration in the assembled system can be corrected by decreasing or
increasing the spacing between the lenses.

Houghton pointed out the possibility of using a single type of glass for all of
the lenses. Other designers were inspired by the Houghton systems to design vari-
ations; a few of these systems are analyzed here. We have deliberately chosen
those systems having lenses with the same kind of glass and, in pairs, the same
radii of curvature of the lens surfaces, because this facilitates making the optics.
Furthermore, in the four cases discussed, all of the optical surfaces are spherical.

The first system we analyzed was designed by Buchroeder (ref. 13.2). In it,
the corrector lies at the center of curvature of the mirror, as is the case in a Schmidt
camera. This system is shown in fig. 13.3. A much shorter configuration was pre-
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Fig. 13.5 Layout for an /10 Houghton-Cassegrain Telescope.

Fig. 13.6 Layout for an /5.3 Houghton-Cassegrain Flat-Field Camera.

sented by Lurie (ref. 13.3). Lurie placed a two-lens corrector close to the mirror
(fig. 13.4), even closer than the focus. This system has the same configuration as
the Schmidt-Newtonian and the Wright, so that a direct comparison of the perfor-
mance of these systems can be made.

The Houghton-based corrector lens can also be placed at the entrance pupil
of a catadioptric Cassegrain, following the example of the Schmidt or Maksutov
corrector. Two designs are presented here: an 710 and an f/5.3 system, the last one
being a flat-field camera (shown in figs. 13.5 and 13.6). These were designed by
a method given by Sigler in ref. 13.4 and are described in chapter 21.

Fig. 13.7 summarizes the ray-tracing results for these four Houghton-derived
designs. All systems are coma-free. This may be surprising, especially in the fast
system designed by Lurie. The reason is that, compared with Schmidt-derived de-
signs, Lurie’s design contains three (rather than two) elements, giving the designer
an additional degree of freedom to correct this aberration. The mirror can be left
spherical.

The Buchroeder design appears to be excellent. On the whole curved focal
surface the photographic image sharpness is sufficient over a wide spectral range.
The system designed by Lurie is suitable for both visual and photographic use
over a large flat field. Note that although the Lurie has astigmatism, it is only half
that of the Wright camera, and the system is much easier to build. The Lurie in-
strument seems to be an almost ideal rich field telescope for the demanding ama-
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Fig. 13.7 Spot Diagrams for Four 200 mm Houghton-Derived Designs.

teur.

The f/10 Houghton-Cassegrain was designed with the computer program de-
scribed in chapter 22. Its performance for visual use is comparable with the com-
pact f710 Schmidt-Cassegrain described in chapter 9. The f/5.3 flat-field
Houghton-Cassegrain was designed likewise. It must be emphasized that both sys-
tems were the result of a single computer run—just to show what can be achieved
with the design program—and have not been optimized. The resulting /710 system
is satisfactory as designed, but the /5.3 should be optimized in order to reduce the
color aberration. This can be accomplished by using two different glasses or
changing the radii of curvature. Of course, the ease of manufacturing would then
be partially lost. We conclude that designs derived from Houghton have favorable
characteristics and deserve more attention from amateurs (see ref. 13.18).

13.4 Focal Correctors: Jones, Bird, and Brixner

By placing a combination of lenses in the converging light cone of a spherical mir-
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Jones Brixner

Fig. 13.8 Focal Correctors for Spherical Mirrors.

Table 13.3
Three Focal Correctors for 200 mm Spherical Mirrors
(All dimensions in millimeters)

System Jones Brixner Jones-Bird
Focal Ratio 10 710 16
R, Radius of Curvature -1600 -1600 —-1562.96
T, Axial Distance -586.87 -579.4 -610.06
M, Medium Air Air Air
R, 252.67 587.833 331.66
T, -11 -11 -5.02
M, 648338 517642 517642
R; 110.67 -93.933 —~174.14
T, -11 -11 -0.6
M, 517642 617366 Air
R, -350 —202.033 -104.04
T, -512.9 -518.8 -5.64
M, Air Air 620364
R; -178.12
T, -247.54
M, Air
Effective Focal Length 1999.46 2000 1200
1° Field 349 349 209

ror, at some distance from the focal plane, we can correct the spherical aberration
of the spherical mirror and as much coma as possible, without introducing much
chromatic aberration.

In 1957, Jones presented such a design (ref. 13.5), while Brixner (ref. 13.6)
and Bird (ref. 13.7) published improved designs in later years. These are shown in
fig. 13.8. These correctors have negative power, so that the focal length of the mir-
ror is increased. Jones, Brixner, and Bird all used an f/4 spherical primary mirror.
The focal length amplification factor for the Jones and Brixner correctors is 2.5
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Figl13.9 Spot Diagrams for Corrected Spherical Primaries.
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Fig. 13.10 An Achromatic Mangin Mirror.

times, while Bird used 1.5 times, producing /710 and f76 systems, respectively. Un-
like the arrangement of a normal refractor objective, but similar to all negative
achromats, the negative element is made from crown glass and the positive lens
consists of flint glass. Brixner’s paper shows that the best results are obtained
when the first element is the negative lens. An advantage of these systems is their
relatively short tube length in comparison with a Newtonian of equal focal length.

The ray-tracing results, presented in fig. 13.9, reveal that it is difficult to
achieve a good performance with these systems. The reason for this is that three
aberrations (spherical aberration, coma, and color) must be corrected simuita-
neously with a simple doublet. The axial color correction of the third system, the
Jones-Bird, appears to be good, but the system exhibits both astigmatism and field
curvature. Note that coma could be eliminated by separating the two lenses. Focal
correctors of this type are sometimes mistakenly called Barlow lenses. This is in-
correct because a Barlow lens does not change spherical aberration (see section
15.1); rather, a Barlow lens is designed for use in systems in which spherical ab-
erration is already corrected.

13.5 Unusual Compound Systems

A Mangin mirror is a negative meniscus with the back aluminized to produce a
catadioptric mirror, as shown in fig. 13.10. The system bears the name of its de-
signer, Mangin, a French officer who applied this form of mirror instead of a pa-
raboloidal mirror in searchlights. The meniscus suppresses the spherical
aberration of the spherical mirror. Mangin mirrors are still in use today in, for ex-
ample, modern catadioptric telephoto lenses.

When the Mangin mirror consists of a single element, the system suffers
from chromatic aberration. This can be corrected when two kinds of glass are
used. Since most of the optical power is supplied by the mirror, the lens need only
correct spherical aberration, and thus has a relatively low power. Despite the fact
that the light passes the lens twice (quite unusual in astronomical units) the sec-
ondary spectrum amounts to only 0.0002f with two kinds of normal glasses. Com-
pare section 6.2: with a Fraunhofer doublet with the same kinds of glass the
secondary spectrum amounts to 0.0005f. Table 13.4 lists the characteristics of a
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Fig. 13.11 Spot Diagrams for a 200 mm f/5 Achromatic Mangin Mirror.

200 mm f/5 achromatic Mangin mirror.

Note that the positive part of the lens, contrary to a refractor, consists of flint
glass and the negative lens of crown. Despite its relatively low secondary spec-
trum, a 200 mm f75 system would not be satisfactory. A focal ratio of /10 would
be necessary to reduce the visual secondary spectrum sufficiently, But this tele-
scope would lose much of its attraction because of its long tube length. Coma of
this system appears to be somewhat lower than half of the coma of an equivalent
Newtonian (see fig. 13.11) but may be reduced by choosing matching glasses and
even eliminated by air spacing.

An intriguing design that uses a Mangin relay lens to correct the chromatic
aberration of a simple primary lens is known as the Schupmann, or medial tele-
scope (ref. 13.20). There are many variations, including an all spherical “super-
" Schupmann” design.

As we saw in chapter 6, good color correction of a 200 mm doublet refractor
objective can only be obtained with special glasses or by increasing the focal
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Fig. 13.12 The Christen Triplet Objective.
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Fig. 13.13 Spot Diagrams for the f/10 Christen Triplet Objective.
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Fig. 13.14 Layout for the Loveday Telescope.
Table 13.4
Four 200 mm Optical Systems
(All dimensions in millimeters)
System Achromatic Christen Loveday Maksutov-
Mangin Triplet Newtonian
Focal Ratio 15 10 124 §Z3
R, Radius of Curvature —922 2080 —2400# —-308.76
T, Axial Distance 15 225 -900 20
M, Medium 517642 517642 Air 517642
R, -3502.42 -507.5 —600* -320.439
T, 20 12.5 900 617
M, 613370 613443 Air Air
R, -1515.27 476.25 —24002 -1627
T, -20 225 —-1200 -829.9
M, 613370 670471 Air Air
R, -3502.42 —2080
T, -15 1998.9
M, 517642 Air
R -922
T -985.5
M Air
Effective Focal Length 1000.7 2012.5 4800 799.81
1° Field 17.5 35.1 83.8 14.9
a. Deformation: SC = 1 (parabola)

length enormously. By adding a third element of an abnormal dispersion glass,
however, we can readily obtain excellent color correction. Various multi-lens re-
fractor objective designs have been published in amateur-oriented literature; one
very special design is the “oiled” triplet objective. Four of six surfaces have
matching radii of curvature, which facilitates their manufacture. The thin spaces
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Fig. 13.15 Spot Diagrams for the 200 mm f/24 Loveday Telescope.

Fig. 13.16 The Maksutov-Newtonian Telescope.

between the lenses are filled with an oil which compensates small surface irregu-
larities so that the intermediate surfaces need not be fully corrected (fig. 13.12).
Only the front and back surfaces need be fully corrected. Table 13.4 lists the con-
struction data of an f/10 design made by Roland Christen (ref. 13.8). Fig. 13.13
shows that this triplet has been optimized for visual use. It has a very good color
correction. Unfortunately there is some coma. For photographic use a filter should
be used to avoid unsharpness. We discuss several optimized three-lens designs in
section 21.16.4.

A further interesting and unconventional design is the system discussed by
Loveday (ref. 13.9), which consists of a concave and a convex parabolic mirror
which are placed confocally, i.e., their focal points coincide. This results in a sit-
uation where the converging beam of the primary, after being reflected by the sec-
ondary, is a parallel beam. This reflects again from the primary (which is a tertiary
mirror now) and comes to focus at the original focal plane of the primary (fig.
13.14). This is a dual telescope design: when the secondary mirror is removed, the
system is a fast Newtonian; with the secondary in place, the telescope is a slow
system. In order to limit the central obstruction, the secondary mirror and its hole
should be made as small as possible. Therefore this kind of instrument has a
strongly restricted field, but an excellent diffraction limited image, mainly the re-
sult of the small image (fig. 13.15).

The system with two confocal paraboloids was originally proposed by
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Fig. 13.17 Spot Diagrams for the 200 mm f/4 Maksutov-Newtonian.

Mersenne in the 17th century. Unlike Loveday’s design, the Mersenne telescope
delivers a paralle] exit beam of smaller diameter than the aperture, so this system
can be used in combination with another imaging device (ref. 13.10).

Another possibility is the Maksutov-Newtonian. In it, the Maksutov menis-
cus corrector is placed closer to the mirror than in the original Maksutov camera
so the diagonal can be easily attached to the meniscus. In the design shown, the
corrector has been optimized for its particular position and is slightly flatter than
the corrector for the original f/4 Maksutov camera. Fig. 13.16 shows an f/4 system
which has approximately the same main dimensions and configurations as the
Schmidt-Newtonian and Wright telescopes, so that a direct comparison of their
spot diagrams can be made. The Maksutov Newtonian is not free of coma, but the
aberrations are about half those of a comparable Schmidt-Newtonian (compare
figs. 13.17 and 13.2). Because the Maksutov-Newtonian should also be somewhat
easier to make, this instrument seems to be a more favorable rich-field telescope
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Fig. 13.18 Layouts for Gregorian Systems.

than the Schmidt-Newtonian.

13.6 Gregorians, Relay Telescopes, and Wright’s Off-Axis
Catadioptric

Many more possibilities exist. We present just a few of these, but without spot di-
agrams or detailed analysis. Advanced amateur designers may wish to explore
these systems further.

A significant and interesting variation on the Cassegrain is the Gregorian
telescope. Instead of a convex secondary inside the focus of the primary, this sys-
tem has a concave secondary outside the focus. As can be seen from fig. 13.18,
this leads to a longer tube length. The distance between the mirrors is slightly
more than the sum of their focal lengths. The image is upright; before the inven-
tion of the achromatic objective, this design was often used for terrestrial obser-
vation.

The classical Gregorian has a parabolic primary and an elliptical secondary.
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Modified Sigler

Fig. 13.19 Layout for Three Relay Telescopes.

Spherical aberration is eliminated, but the off-axis images suffer from coma, astig-
matism, and field curvature. As is the case with the Cassegrain, other mirror
shapes are possible; likewise, although both spherical aberration and coma can be
corrected, astigmatism remains present. Fig. 13.18 also shows some derivations of
the Gregorian with a Schmidt and a meniscus corrector. The correctors close the
tube, and, of course, the secondary can be attached to the corrector. A meniscus
system of this design would be called a Maksutov-Gregorian, and should not be
confused with the Gregory Maksutov described in chapter 11. Bouwers (ref.
13.11) reports a good axial sharpness when the secondary is an aluminized spot
on the spherical back side of the meniscus, but the off-axis performance leaves
much to be desired. Better correction of coma is possible when the secondary is
separate and aspheric.

Unlike the Cassegrain and most other telescopes, the Gregorian has an out-
ward curving focal surface. This suggests the possibility of making an almost ab-
erration-free visual telescope by matching the focal surface to the focal surface of
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Fig. 13.20 The Off-axis Catadioptric Wright-Newtonian.

the eyepiece. In a Schmidt-Gregorian system (ref. 13.12) in which coma has been
fully corrected by choosing the proper aspherically deformed secondary mirror,
we find astigmatism still present (fig. 4.11, case 4). This means that the tangential
focal surface is farther away from the objective than is the sagittal focal surface,
or that astigmatism is overcorrected.

Suppose that we use this telescope with an eyepiece which has its tangential
and sagittal focal surfaces coinciding exactly with the corresponding focal surfac-
es of the objective. In this way, the astigmatism of the eyepiece, which is mainly
responsible for the off-axis unsharpness in telescopes, could be fully eliminated,
resulting in an equally sharp image in the center and the field edge. Of course, this
can only be achieved when the objective and the eyepiece are designed as an inte-
grated system, and objective and eyepieces are fully matched.

Another group of systems are the relay telescopes. These are Cassegrain-like
instruments in which the focus lies between the two mirrors, inside the system, re-
sulting in a smaller secondary mirror and a simpler baffle system. In order to be
viewed or photographed, the image is transferred out of the system by relay lenses
to a location behind the primary mirror. Outstanding examples are the Dilworth
(ref. 13.13), Sigler (ref. 13.14), Buchroeder (refs. 13.21 and 13.22), and Dall (ref.
13.15) systems.

A special aspect of the Sigler relay telescope, shown in fig. 13.19, is the flat
backside of the Mangin secondary mirror. This allows an alternate configuration
(also shown) in which a double-thickness secondary transmits the beam to the re-
lay elements rather than reflecting it to them. The Dilworth is not shown because
it is quite similar to the Sigler system. The main difference between them is that
the back side of the Dilworth secondary is curved rather than flat.

Relay systems are not easy for the amateur telescope maker to fabricate be-
cause of their close centering and mounting tolerances. In most cases, their field
of view is limited, making such systems mainly useful for visual observing.

Many unobstructed catadioptric systems other than the Schiefspiegler have
been proposed. One such design, proposed by Wright (ref. 13.16), is a mixture of
the Herschelian TCT and an eccentric section of a Maksutov corrector (fig. 13.20).
Because of its closed tube, this unobstructed system may reasonably be expected
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to give excellent definition, making it particularly suitable for lunar and planetary
observation. Note, however, that Wright’s design incorporates a prismatic lens.
This element would be difficult to make because of the close tolerances. An alter-
native to this design could employ a tilted concentric meniscus, which would be
equally thick in all places, but it would suffer from color aberration.



Chapter 14

Field Correctors

14.1 Introduction

Field correctors are lenses, or combinations of lenses, placed in the converging
light cone of the telescope in front of focus. Their purpose is to enlarge the usable
field of the instrument by correcting image aberrations in an existing system with-
out introducing other serious aberrations. Field correctors are used mainly in pro-
fessional telescopes, but seldom in amateur instruments. The reason is that
professional astronomers place much higher demands on off-axis image quality
than most amateur astronomers do. However, amateurs should be aware of the
possibilities created by field correctors, especially for fast Newtonians. In this
chapter we will examine two kinds of correctors: field flatteners and field correc-
tors for Newtonians.

14.2 The Single-Lens Field Flattener

As we have seen in previous chapters, many telescopes and astrocameras have a
curved focal surface. For visual use, this is not detrimental because the eye accom-
modates when viewing off-axis images. If the telescope is used photographically,
particularly when high demands are made on off-axis sharpness, however, it is de-
sirable that best focus coincide with the photographic emulsion.

One way to accomplish this is to bend the film to the same curvature as the
focal surface. Refractors, Newtonians, and Cassegrain-like telescopes all have an
inward curving, or concave, field. In order to bend it properly, a piece of the film
must be held against the inside of a concave cassette by suction from behind. It
should be obvious that a precise focus would be difficult with such a system.

Another method is to use a field flattening lens.

The simplest possibility is a single plano-concave lens placed as close as
possible in front of the film, with its flat side to the film. Fig. 14.1 shows this sys-
tem with three converging bundles of light. Since the light path in the lens is long-
er at the edge than near the axis, the originally curved focal surface is flattened.
When the radius of curvature of this focal surface is r, the radius of curvature of
the lens, R, must be:

(14.2.1)

147
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Fig. 14.2 Field Flattener for a Schmidt Camera.

where n is the refractive index of the glass in the color light for which the lens is
designed. It must be emphasized that this formula is valid only when the original
system has no astigmatism. Furthermore, in order to limit the aberrations, espe-
cially the color aberrations, such a lens must be placed very close to the film. If
astigmatism is present, R must be optimized for the particular system to minimize
astigmatism for the combined system.

This can be nicely illustrated with three examples. First, consider a focal
field flattener that was designed for the 200 mm f/3 Schmidt camera, as described
in section 8.6. This system has very little astigmatism, so we expect that the cur-
vature R of the field flattener will follow the formula quite accurately. The radius
of curvature of the convex focal surface, r, is = -600 mm. When we use a BK7
glass field flattener in blue light (n = 1.52237), the value of R turns out to be:

R = —-600 -

?g;ig; = -205.9 mm. (14.2.2)
This also appears to be the best practical value of the first surface of this pl-
ano-convex lens (fig. 14.2). The spot diagrams shown in fig. 14.3 were calculated
with this value. In order to achieve this result, the Schmidt plate had to be moved
25 mm toward the mirror to minimize coma. Compare this with section 8.6.
Next, consider a field flattener that was designed for the 200 mm f710 curved
field Schmidt-Cassegrain described in section 9.3. Note that this instrument has a
concave field, so in this case the field flattener is a plano-concave lens. The
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Fig. 14.3 Spot Diagrams for Four Optical Systems with Field Flatteners.
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Schmidt-Cassegrain has some residual astigmatism, so we expect that the first-or-
der and optimized values of R will differ. The radius of curvature of the Schmidt-
Cassegrain's focal surface is —155 mm (see fig. 9.4). Using BK7 glass again, we
find R:

052237 _ 53 18 mm. (14.2.3)

R =-155-155037 =

However, when we optimize the radius for this particular system, we find it
should be —73.95 mm.

Our third example is a telescope with pure and rather strong astigmatism: the
200 mm f78 Ritchey-Chrétien described in section 7.3. Its optimum curved focal
surface has a radius of —199 mm, so that the theoretical value of R is:

0.52237 _ —68.28 mm. (14.2.4)

R=-199-15037 =

The optimized value of the radius of the field flattener was found to be —-82.8
mm. As it appears from fig. 14.3, the original astigmatism of the Ritchey-Chrétien
could be reduced by 30% with the introduction of a field flattener though some
coma was introduced (i.e., compare fig. 14.3 with fig. 7.3, upper row).

Note that while field flatteners with negative power exhibit some lateral col-
or, this is opposite and much less important for the positive field flatteners. In
some cases this effect can be favorable, particularly when the original system has
lateral color of the opposite sign. This is the case, for instance, with the Simak de-
scribed in section 4.4. When this instrument is combined with a single lens plano-
concave field flattener of the correct dispersion, the combined system can be made
free of lateral color.

The single-lens focal field flattener, having the advantage of a simple con-
struction, has also its disadvantages. Mounting such a lens close to the film in a
conventional 35 mm SLR or 6 by 6 cm camera body is difficult. Focusing is also
a problem. Because the lens must be very close to the film plane, small surface
irregularities (scratches) and dust particles will be visible as shadows on the film.
Moreover, this lens is often a source of internal reflections (ghosts). These can be
reduced by a good antireflection coating.

14.3 The Distant Field Flattener

To avoid the problems inherent in single-lens field flatteners close to the focal sur-
face, we can call upon another design class: the distant field flattener. Because of
its greater distance from the focal surface, this type of field corrector causes far
fewer focusing and mounting problems, and may be used with 35 mm SLR and
6 by 6 cm reflex camera bodies. A representative of this design class is shown fig.
14.4. In order to suppress color aberrations, the design must be achromatized, i.e.,
it must have at least two elements. As is the case with the single-lens field flatten-
er, the distant field flattener is a negative lens. As a result of the divergence of the
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Fig. 14.4 Distant Field-Flattener for a 200 mm f/10 Schmidt-Cassegrain Telescope.

light bundles, the image scale, and also the effective focal length and focal ratio
of the system will be increased by the ratio A,/h, (defined in the figure), which is,
of course, a disadvantage. In fact, a distant field flattener works like a focal ex-
tender (see sec. 15.1).

An important point, especially with respect to the two-element achromatic
field flattener, is that this lens must be designed for a specific telescope. When a
field flattener designed and optimized for one telescope is combined with another
telescope, even when both telescopes have the same curvature of field, optimal
functioning is not guaranteed. This is especially the case when the incident angles
of the light cones from the objective (i.e., the objective’s focal length, ratio, and
field curvature) are different from those the lens was designed for.

The lens data in table 14.1 specifically refer to a field flattener for the 200
mm f710 Schmidt-Cassegrain telescope described in section 9.3. The field flatten-
eris placed 48 mm ahead of the film in an SLR camera, increasing the focal length
of the combined system from 2027 mm to 2543 mm. Note that to achieve proper
correction, the negative element must be crown glass and the positive element
flint. In the example given, the leading element is the negative lens, which results
in a biconcave lens combination. When the positive lens is placed in front, it will
be a meniscus, and the resulting color aberrations will be slightly greater than
those of the biconcave crown-first design, assuming the same glasses are used.

In fig. 14.3, we show spot diagrams for various off-axis distances and colors
for a flat focal surface. Some of the color aberration in red and violet results from
the Schmidt-Cassegrain telescope itself, because this instrument has some sphero-
chromatism (see fig. 9.7).

14.4 Field Correctors for Newtonians

Over the years, many proposals have been made for increasing the useful field of
aNewtonian telescope. The best-known example is that of the Ross corrector (ref.
14.1). Designed by Frank Ross in 1935, at the request of the director of Mount
Wilson Observatory, for the 2.5-meter reflector, the system consisted of three
lenses placed close to the focal plane in the converging light cone of the telescope.
The corrector had no optical power, but it effectively corrected coma, expanding
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Fig. 14.5 Spot Diagrams for Two Newtonians with Field Correctors.
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Fig. 14.6 Field Correctors for Newtonians.
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Table 14.1
Field Correctors
(All dimensions in millimeters)
System Dist. Field Flatnr. Ross Corrector  Meniscus Corrector
System Corrected 200 mm 710 200 mm f/6 Par- 200 mm f74
Schmidt- abolic Parabolic
Cassegrain Mirror Mirror

Combined Focal Ratio 12,7 /5.8 14
Light Travels left to right right to left right to left
Distance from Mirror 460.5 -1122 =530
R, Radius of Curvature -102.41 -123.44 146.64
T, Axial Distance 4 -3.048 -25.04
M, Medium 517642 517642 517642
R, 157.99 -60.45 146.64

2 5 -8.13 =270
M, 762270 Air Air
R, 570.69 -217.42
T, 47.86 -8.89
M; Air 517642
R, 217.42
T, -64.53
M, Air
Effective Focal Length 2543.2 1196.4 800
1° Field 444 20.9 14.0

the photographically useful field from a few arcminutes to roughly half a degree.
Without such correctors, large Newtonian telescopes would have been impracti-
cal.

The Ross corrector we analyzed was a combination with a 200 mm f/6 pa-
raboloidal mirror, employing two lenses (ref. 14.3). This combination would be
too poorly corrected for visual use—the axial spot diagrams are larger than the
Airy disk (fig. 14.5)—but for photography, the combination satisfies the 0.025
mm criterion over a 24 mm by 36 mm field.

However, an even simpler solution (particularly suitable for amateur-size in-
struments) for reducing coma of a parabolic mirror was invented by Maksutov
(ref. 14.2). Maksutov placed a relatively thick meniscus lens ahead of focus, with
its concave side toward the mirror. A recent modification (ref. 14.4) is shown in
fig. 14.6. Although coma is considerably less than that of an f/4 Newtonian, the
sharpness in the outer field leaves much to be desired (compare figs. 14.5 and
13.2).
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Focal Extenders and Reducers

15.1 Focal Extenders

A focal extender is a system of lenses with negative power placed in the converg-
ing light cone of an objective to increase the effective focal length of this objec-
tive. Focal extenders—or “tele-X-tenders”—are often used in combination with
photographic objectives as an easy and cheap way to produce a greater focal
length. Those focal extenders typically consist of three or more lenses in order to
maintain good off-axis sharpness.

The focal extenders used by amateur astronomers with telescopes are, in
contrast, simpler. Most consist of two lens elements, and are called Barlow lenses.
The focal length amplification factor usually lies between 1.5 and 3.0. A Barlow
lens is an extremely useful accessory for the following reasons:

1. when it is used with a fast objective, for instance an f/5 Newtonian, high
powers can be obtained without resorting to eyepieces having extremely
short focal length and low eye relief;

2. when it is used for photographing lunar and planetary details, an
increase of the image scale is easily attained; and,

3. the application of a Barlow lens usually improves the off-axis sharpness
of the eyepiece used.

This last occurs because the image surface of most telescope objectives is inward
curving; the Barlow tends to flatten the focal plane. (This is explained in greater
detail in section 14.2, on field flatteners.) In addition, the greater focal ratio of the
system reduces astigmatism present in the eyepiece.
Some manufacturers supply a set of eyepieces with a matched Barlow lens.
The Barlow may be designed so that its inherent astigmatism partially compen-
sates the eyepiece astigmatism, thus providing considerable improvement in the
off-axis definition of the eyepieces used with it. Furthermore, a Barlow lens often
permits the use of relatively poorly corrected eyepieces with Newtonians and oth-
er telescopes with fast focal ratios. These eyepieces are normally rejected by users
of fast Newtonians because of the intolerable off-axis aberrations.
An important point that should be kept in mind is that the Barlow's ampli-
fication factor depends on the position of this lens with respect to the original focal

155
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Fig. 15.1 Barlow Lens for a 200 mm f710 Schmidt-Cassegrain Telescope.

plane. The amplification factor, M, and the effective focal length of the system
used with a Barlow, F are computed from:

comb?

Fo i FB
Feomp = F _d (15.1.1)
B~ %1
F F
My = —Somb "B (15.1.2)
Fo FB_dl

where F is the focal length of the objective, Fj is the focal length of the Barlow
lens, and d is distance the Barlow lens lies inside the original focus. In developing
these equations, the thickness of the Barlow was ignored. The image height and
the position of the new focal surface are thus:

h, = Mg - h,
and
dy, = Mg-d,.

Thus the amplification factor is independent of the focal length and focal ra-
tio of the objective. When d, = 0, then M, = 1, meaning that the Barlow has no
effect. This phenomenon, in fact, also happens with a single-lens field flattener.
When d, = F, the magnification goes to infinity, meaning that the Barlow has con-
verted the converging beam into a parallel beam, and the telescope becomes a Ga-
lilean, or Dutch, telescope.

However, in the design of a Barlow, the optical characteristics of the objec-
tive must be taken into account in order to obtain optimum performance. Because
coma, astigmatism, and field curvature are different in Newtonians, Cassegrains,
and refractors, Barlow designs should be different too. Unfortunately, this is often
ignored in practice. Few Barlow lens construction data have been published in the
literature. In table 15.1, we give data for a Barlow designed for use with the 200
mm 710 Schmidt-Cassegrain described in section 9.3. This Barlow design is
shown in fig. 15.1.
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Table 15.1
Focal Extenders and Reducers
(All dimensions in millimeters)
System Focal Extender Focal Reducer
Used With 200 mm f710 200 mm f710
Schmidt-Cassegrain Schmidt-Cassegrain

Combined Focal Ratio 120 5.5
Distance from Secondary Mirror 432 390

R, Radius of Curvature 799.34 71913

T, Axial Distance 8 20

M1 Medium 613370 517642

R, -58.038 -85.316

T, 5 5

M, 517642 762270

R, 48.048 —225.59

T, 124.75 4591

M, Air Air
Combined Effective Focal Length 4000 1100

1° Field 69.8 19.2

Common glasses were used in this- case. Note that the positive element
(made of flint glass) leads, while the negative lens (made of crown) comes second.
This arrangement gave better performance. When the elements are reversed, the
inner radii of the Barlow must be strongly curved, leading to greater off-axis ab-
errations. This is confirmed in the literature (ref. 15.1).

The amplification factor of the particular Barlow we designed is 2.0, but the
aberrations are still acceptable when it is used at an amplification of 3.0. For great-
er amplification, the Barlow must be moved toward the telescope. The distance
between a Barlow and its new focal plane is:

dy = Fg-(Mg-1). (15.1.3)
The difficulty of designing a Barlow increases as
1. the Barlow amplification factor increases,
2. the focal ratio of the objective decreases, and
3. off-axis aberration present in the objective increases.

When designing a Barlow for use with an eyepiece, a rather subtle effect
must be kept in mind. Normally telescope eyepieces are designed to work best
when the principal (i.e., central) rays of the entering off-axis light cones are par-
allel to the optical axis. A Barlow bends off-axis light beams outward, as shown
in fig. 14.4. When off-axis light enters the eyepiece at an angle it was not designed
for, the exit pupil is moved back, and additional off-axis aberrations occur. The
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Fig. 15.2 Spot Diagrams for a 2 x Barlow Lens and 200mm f/10 Schmidt-Cassegrain.

first effect is unavoidable, but the second can be suppressed, providing the eye-
piece manufacturer designs his “matched” Barlow in such a way that this effect is
taken into account.

We would like point out the possibility of using a Barlow lens attached to the
diagonal in a Newtonian telescope. Because the Barlow extends the light cone, the
diagonal can be made smaller than it would be without using the Barlow. This is
favorable because the diagonal will then cause less diffraction (ref. 15.2).

15.2 Focal Reducers

A focal reducer (sometimes called a Shapley lens) is a positive system of lenses
placed in the converging beam of an objective with the aim of decreasing the ef-
fective focal length of this objective. Focal reducers are used to increase the speed
of slow systems (from, for instance, f/10 to f/5) in order to obtain shorter exposure
times for astrophotography.
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Fig. 15.3 Focal Reducer for a 200 mm f/10 Schmidt-Cassegrain Telescope.

Sometimes focal reducers are employed in hopes of increasing the angular
field. This is often problematic in small telescopes because of limitations intro-
duced by vignetting, either from the inner diameter of the baffle tube in Casseg-
rain-like instruments or from the size of the rack and pinion mount, which in fact
prohibits increasing the angular field. Therefore, in many cases there is a reduction
of the linear field coverage; often only part of the 24 by 36 mm negative is cov-
ered.

A focal reducer is a positive lens system and works in the opposite sense
from a focal extender. This means there is a tendency to produce a focal surface
more strongly curved than it was initially. Unless care is taken, off-axis image
sharpness may suffer.

When a focal reducer is used, the focal length of the system and the amplifi-
cation factor are computed as follows:

F)‘FR
Fcomb= F(+d
R 1
M _Fcomb_ FR
K™ F, 7 Fg+d,

the image height and the position of the new focal surface are thus:
hy = Mg-h,

and
dy = Myp-d,

where F is the focal length of the objective, Fy is the focal length of the focal re-
ducer and 4, is the distance the focal reducer lies inside the original focus.

In order to flatten the field it is necessary to design the focal reducer over-
corrected for astigmatism, so that the situation shown in the third panel in fig. 4.11
occurs. Table 15.1 lists the optical data of a focal reducer designed especially for
our 200 mm f710 Schmidt-Cassegrain telescope (see fig. 15.3). The focal length
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Fig. 15.4 Spot Diagrams for a 200 mm Schmidt-Cassegrain with an f/5.5 Photographic Focal Reducer.

reduction factor is 0.55, producing an overall focal length of 1100 mm.

Fig. 15.4 shows spot diagrams for the combination. The design has a useful
field of about 25 mm, and is restricted by astigmatism and light drop-off. This lens
turned out to be quite difficult to design. Because of its short focal length and re-
sultant strong radii of curvature, astigmatism was difficult to suppress. A better
design could probably be achieved with high-index glasses.

Before a focal reducer is used for serious astrophotography, especially with
a Schmidt-Cassegrain system, the design should be optimized for the refocused
telescope.

15.3 Remarks on Achromatic Combinations

In chapters 13, 14, and 15, we have seen a variety of two-lens combinations with
positive or negative power. These include focal correctors, distant field flatteners,
focal extenders, and focal reducers. To be achromatized these lenses must consist
of a positive and a negative element.

When the combination has a positive power (for instance, the focal reducer),
the positive lens is made from a crown glass, while the negative is a flint. For neg-
ative-power two-lens combinations, the situation reverses, and the positive ele-
ment must be flint while the negative one is crown.

In every system we analyzed from the literature, the powers of the positive
and negative element of the combinations were found to follow the thin-lens ach-
romatization formula quite closely. This formula, derived in section 21.13.3 (the
section on refractor design), states that the focal lengths of the positive and nega-
tive elements of an achromatic doublet are inversely proportional to the Abbe
numbers of the glasses. In order to facilitate the correction of spherical aberration
and spherochromatism, glasses are chosen so that the flint has a somewhat higher
refractive index than the crown glass; this is true for both positive and negative
lens combinations. The difference between the Abbe numbers of both glasses
should not be too small or the design will require strongly curved surfaces, which
hampers the correction of monochromatic aberrations.

The choice of glass remains a matter of trial and error. We found many de-
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signs in the literature with common flint and crown glasses. When it is important
to reduce aberrations to a minimum, a special category of glasses should be con-
sidered: the lanthanum glasses. They combine a relatively high refractive index
with a relatively low dispersion (see fig. 4.16), allowing shallower curved surfaces
and facilitating the correction of aberrations. These glasses are not normally used
in production telescopes because of their high cost. For the amateur telescope
maker, however, the situation can be different. Because the lenses under consid-
eration are often rather small, and because only one element made of lanthanum
glass is sufficient, this glass is a viable alternative. The lanthanum glasses lie in
the upper part of the glass chart.

When a two-lens combination is designed for use with a particular telescope,
after the designer has determined the powers of the positive and the negative ele-
ments, the lenses should be bent to minimize the axial and off-axis aberrations.
We have found that the best bending for minimal on-axis aberrations does not al-
ways coincide with the best bending for off-axis aberrations. In order to achieve
the best off-axis correction, a slight amount of axial spherical aberration must be
allowed. When the lenses are separated (i.e., not cemented), the inner radii of cur-
vature may be different, giving the designer an extra degree of freedom to correct
aberrations. Separating the elements is particularly recommended when coma
from the telescope must be corrected.
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Eyepieces for Telescopes
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Fig. 16.1 Image Formation in a Telescope.

16.1 Introduction

The eyepiece is a vital part of every telescope used visually. The eyepiece is, in
fact, the part which makes it possible to examine the image formed by the objec-
tive on the focal surface more closely than is possible with the unaided eye. De-
spite its importance, however, this component receives relatively little attention in
the amateur-oriented literature. In this chapter we examine the optical character-
istics and performance of a number of telescope eyepieces. We do not discuss how
to design eyepieces because that rather specialized aspect of telescope design goes
beyond the scope of this book.

A most important aspect of the eyepiece (self-evident but not always recog-
nized by telescope users) is that the focal ratio of the light cone entering the eye-
piece, f/d,, is the same as the focal ratio of the objective system, or f/D,, when
there are no other optical elements between the objective and the eyepiece. This
equality of focal ratio has important consequences, particularly in the off-axis per-
formance of eyepieces. This is especially evident when eyepieces are used in com-
bination with fast objectives, i.e., those with focal ratios under f/5. This is
discussed fully in section 16.3.

For a thorough understanding of the ray paths through an eyepiece, we direct
the reader to chapter 3, and to fig. 3.10 in particular. In that chapter, we defined
the focal length of an eyepiece, its exit pupil, and the eyepiece diaphragm.

The angle P in fig. 16.1 between the axis-parallel and oblique exit bundles
-corresponds with half of the apparent field of this particular eyepiece. Eyepieces
with a total apparent field, 23, of 60° or more are called wide-field eyepieces. The
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Fig. 16.2 Milestones in the Development of Telescope Eyepieces.
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Table 16.1

€ Apparent Field
0.51 30°
0.69 40°
0.86 50°
1.03 60°
1.20 70°

size of the apparent field can be found with an accuracy of a few degrees, provided
the eyepiece has only moderate distortion, from the ratio:

eyepiece diaphragm diameter
eyepiece focal length

(16.1.1)

using table 16.1. Precise determination of the apparent field of a particular eye-
piece requires an optical ray trace.

16.2 Eyepiece Types

The telescope eyepiece has had a long history of development. Between the very
first compound two-lens design, the Huygenian, and the modern multi-element |
eyepiece, some 280 years have passed. Without making any claims for complete-
ness, fig. 16.2 shows the important milestones in this development. The various
designs are shown at the same scale.

Eyepieces generally bear the name of the original designer. Most of the types
shown are not the original designs, but are modern modifications. Using modern
high index glass, the axial image quality exceeds that of the prototype, and, in
many cases, a larger apparent field has been realized with the same or improved
sharpness at the edge of the field. The Huygenian and Ramsden have more or less
gone out of use except in cheap telescopes. Long focal length Huygenian eyepiec-
es, however, are still employed in combination with slow objective systems, for
instance, in Schiefspieglers, and also in professional observatories. The reason for
this will be explained later on.

Before World War II two-lens eyepieces were appreciated because of their

low internal reflections. After the war anti-reflection coating techniques were im-
proved to such an extent that multi-lens eyepieces with improved optical perfor-
mance are now used to advantage.

A single-lens eyepiece suffers badly from the following aberrations: lateral
color, astigmatism, curvature of field, and distortion. In addition, the field of view
is very narrow. Huygens showed that lateral color, the most disturbing aberration,
is corrected by choosing two lenses of the same glass having focal lengths f; and
f,» spaced a distance d apart:
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Today, modified Huygenian eyepieces are made in such a way that the eye
lens has half the focal length of the other lens. The lens closer to the objective
serves as a field lens: as a result, the angular field of view is larger than in the sin-
gle lens eyepiece. The most important aberration remaining is curvature of field.

Ramsden also chose two lenses of the same glass for his design, but set f, =
Jf>=d. With this spacing, however, the exit pupil coincides with the eye lens, and
the intermediate image with the field lens. To avoid these effects, the lenses are
set closer together, causing lateral color to exceed that of the Huygenian. Howev-
er, the intermediate image of the modified Ramsden lies in front of the field lens,
and the exit pupil lies outside the eyelens.

With simple two-lens eyepieces, all available degrees of freedom must be
employed to control spherical and chromatic aberration and coma. When design-
ers substituted two-element (crown and flint) lenses, as did Kellner, they gained

d (16.2.1)
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Fig. 16.4 Flat and Curved Focal Surfaces in Eyepieces.

the freedom to correct other aberrations and improve eye relief. The Huygenian
and Ramsden suffer from eye relief only 0.2 to 0.3 times the focal length. Modern
achromatic eyepiece designs offer eye relief between 0.4 and 0.9 times the focal
length of the eyepiece, and sometimes even more.

We especially wish to direct the reader's attention to the Konig eyepiece and
Plossl eyepiece designs because many modifications of these types are available,
and they have become popular among amateurs.

The Abbe eyepiece is known for its low distortion, and therefore is referred
to as an “orthoscopic” eyepiece. The first genuine wide-field eyepiece was the Er-
fle. In its original form, it consisted of two achromatic doublets with a biconvex
lens in between. Since its invention in 1912, numerous modifications have ap-
peared. Although a field larger than 50° is not strictly necessary for astronomical
observation, the Erfle and other wide-field eyepieces are popular among amateurs.

We have included in our analysis two eyepieces having very large (i.e., 82°)
apparent fields. The first is a modified six-element Erfle eyepiece; the second is a
new development, the Nagler eyepiece. The Nagler was developed for the amateur
market in 1980. Cross sectional drawings of these new designs are given in fig.
16.3. Note that the scales of figs. 16.2 and 16.3 are different.

16.3 Aberrations and Other Eyepiece Characteristics

The major difference between an objective and an eyepiece, as far as the designer
is concerned, is the image angle it must cover. In contrast to an objective, which
seldom exceeds 2°, the image angle of an eyepiece may exceed 80°. As a conse-
quence, the designer must pay careful attention to the correction of off-axis aber-
rations.

Axial color and spherical aberration are normally well corrected in eyepiec-
es. However, for use with objectives faster than f/5, spherical aberration in the eye-
piece has often been insufficiently suppressed. Correction of coma seems to be
easy because in every eyepiece the authors examined by means of ray tracing,
coma was either small or absent.

Astigmatism and curvature of field are by far the most difficult to correct.
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Fig. 16.5 Tangential and Sagittal Focal Surfaces in Telescope Eyepieces.

These aberrations must be treated in combination because correction of curvature
of field often leads to an increase in astigmatism, and vice versa. The field of an
eyepiece is usually curved: fig. 16.4 shows flat, concave, and convex focal surfac-
es. In conventional eyepieces, when the eyepiece is well corrected for astigma-
tism, the image surface is concave. Within limits, though, field curvature can be
compensated by the accommodation power of the eye, i.e., its ability to focus in
order to accommodate for viewing distance.

When an eyepiece suffers from field curvature, the accommodation required
of the eye for a simultaneously sharp image at both the center and edge increases
in inverse proportion to the focal length of the eyepiece. This means that for eye-
pieces with field curvature (for instance, the Huygenian), those of relatively long
focal length are more satisfactory than an eyepiece with same design but having a
short focal length.

If we assume that the focal surface of the objective is flat and the field of the
eyepiece is concave, the observer should first focus on the edge of the field with
an unaccommodated eye, then accommodate as much as necessary to view the
center. Over a certain level—approximately three diopters for young observers
and one diopter for older observers—accommodation becomes fatiguing to the
eye. Therefore an observer will normally observe with an unaccommodated eye
and focus on the center of the field. This means the edge of the field will appear
unsharp.

To avoid this situation, designers generally prefer a flat focal surface, and
will accept some astigmatism to get it. As we saw in fig. 4.9, when astigmatism is
present, two focal surfaces exist: the tangential and sagittal focal surfaces. Fig.
16.5 shows three typical cases of the positions of the tangential and sagittal focal
surfaces in eyepieces. Note that in the presentation of such curves, we always as-
sume the eyepiece lies to the left of the curves and, according to a convention to
be explained in section 16.4, light travels from the eye to the focal surface, from
left to right.

Fig. 16.5(a) shows a situation in which a strong inward-curving focal surface
(concave toward the eyepiece) occurs. This is typical of the Huygenian eyepiece.
Although astigmatism is well corrected, this situation is undesirable, particularly
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for short focal length eyepieces, because the eye cannot easily compensate the
field curvature by accommodation.

In fig. 16.5(b) we show an intermediate case, one with more astigmatism but
aless strongly curved field.

In fig. 16.5(c), the tangential and sagittal focal surfaces are symmetrically
placed with respect to a plane perpendicular to the optical axis, thus avoiding field
curvature altogether. As noted above, many designers prefer this correction; such
curves are typical of modern eyepieces.

As we saw in fig. 4.9, the image of a star on the tangential focal surface ap-
pears as a horizontal focal line, and on the sagittal focal surface as a vertical focal
line. Midway between these surfaces the image of a star appears as a circular blur
of light. The diameter of this blur is inversely proportional to the focal ratio of the
light cones entering the eyepiece. If the focal ratio is f75, the diameter of the blur
will be three times as large as that of an f715 light cone. This is the reason why the
edge unsharpness of a particular eyepiece used in combination with an f/5 tele-
scope will be much more detrimental than in combination with an f/15 telescope.
Users of fast Newtonians often attribute image softness at the edge of their eye-
piece field to the coma of the mirror. In reality, however, eyepiece astigmatism
usually dominates coma because the eyepiece is not corrected for such a fast light
cone.

A particularly annoying aberration is lateral color, in which the magnifica-
tion of the image depends on the color of the light. This manifests itself by more
or less strongly colored fringes around objects off the optical axis.

Another aberration is distortion. Distortion becomes especially important in
wide-field eyepieces. In discussing distortion, however, one must clearly distin-
guish between rectilinear distortion and angular magnification distortion. For ter-
restrial telescopes, it is often required that straight lines in the focal surface look
straight in the eyepiece. For zero rectilinear distortion the following relationship
should apply:

y = f-tanf (16.3.1)

where y is the off-axis distance in the focal plane, B the image angle from the op-
tical axis, and f the focal length of the eyepiece.

For astronomical observation, however, it is important that the angular mag-
nification remain constant over the field. For instance the angular distance be-
tween double stars should be the same and a round object (a planet) should retain
its shape whether viewed in the center of the field or at the edge of the field. In this
case, the following relationship should apply:

y=rB (16.3.2)
where B is expressed in radians.
With zero angular magnification distortion, straight lines on a focal plane ap-

pear curved in a pincushion fashion, with the curvature becoming greater the far-
ther they lie from the center. It is impossible to correct an eyepiece simultaneously
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for rectilinear distortion and angular magnification distortion.

Yet another phenomenon of eyepieces is spherical aberration of the exit pu-
pil. Although not an aberration in the normal sense, because it does not influence
the image sharpness, in eyepieces with long focal lengths, wide fields, or both, it
can be annoying. In fig. 16.6., we show an eyepiece as a single lens. Four principal
rays (i.e., central rays of bundles) enter it parallel to the optical axis, at different
distances from the optical axis. Popular treatments of telescope optics state that all
exit beams leaving the last eyepiece lens will intersect in the exit pupil. This means
that the principal rays of the beams intersect in the same point on the optical axis.

In reality, this is only an approximation. Generally, the rays with large exit
angles will intersect the optical axis nearer the last eyepiece lens than rays with
moderate or small exit angles. For eyepieces with moderate apparent fields, 50°
for example, and short focal lengths, this is not detrimental. For ultrawide eyepiec-
es and eyepieces with long focal lengths, the observer may need to move his eye
toward the eyepiece in order to see the outer parts of the field. Parts of the field
lying between the center and the edge may then become invisible. This manifests
itself as fleeting bean-shaped shadows moving around the field, a phenomenon re-
ferred to as the kidney-bean effect. In the treatment of the wide-field eyepieces in
section 16.5, this effect will be explored more in detail.

Shadows resulting from the kidney-bean effect should not be confused with
another effect which occurs when a telescope is used for daytime terrestrial obser-
vation. In full daylight, the pupil of the eye is 2 mm to 3 mm. If the exit pupil of
the telescope is small too, then it is difficult for many observers to hold their heads
steady enough to keep the pupil of the eye in the exit pupil of the telescope. Small
side-to-side shifts of the head may cause the image to disappear partly or totally,
or a black shadow to move across the field.

The same phenomenon can occur when the observer tries to observe at the
field edge of a wide-field eyepiece. Because the eye pivots in its socket with the
center of rotation behind the pupil, the pupil shifts sideways. The eye can lose the
image unless the observer simultaneously shifts his head to the side. These effects
are much more important during daytime observation than during the night be-
cause the pupil is then so much larger.
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Users of Newtonian and Cassegrain-like telescopes often find their instru-
ments difficult to use at low magnification during the daytime because of a shad-
ow in the center of the field. This results when the small pupil of the eye lies in the
image of the secondary mirror, which is typically /4 the diameter of the exit pupil.
The eye receives no light when the observer looks straight into the eyepiece, but
when the eye pivots, the edge of the field can be seen.

To astronomers, it is important that the pupil of the eye be larger than the exit
pupil of the telescope so the exit pupil determines the diameter of the pencil of
light entering the eye. In daytime observation, for instance with a binocular, an en-
tirely different situation may occur.

Consider the case of the 7 by 50 binocular. Such a binocular has an exit pupil
of %% = 7.1 mm. Binocular objectives normally have a focal length of 200 mm, or
aspeed of f74. If the full 7.1 mm exit pupil were used during daytime observations,
the simple Kellner eyepieces would exhibit intolerable astigmatism because this
type of eyepiece is insufficiently corrected to handle an f74 light cone. However,
in the day, the eye pupil is typically only 2.5 mm, so the exit pupil is vignetted to
this diameter, and the effective focal ratio of the objective is f711.4—much more
favorable for the eyepiece. Of course, only a small part of the 50 mm entrance pu-
pil is used; in this case, the effective entrance pupil is only 17 mm!

During the night the eye pupil expands to approximately 7 mm, so the full
f74 light cone can pass through the instrument. Of course the eyepiece will exhibit
large off-axis aberrations, but at this low light intensity, visual acuity drops by a
factor 10 to 20, so the off-axis unsharpness of the binocular is not disturbing to the
eye.

This explains why the 7 by 50 binocular can be used during daytime and dur-
ing the night, and give acceptable performance, despite the fact that a fast objec-
tive and simple eyepieces are used.

The aberrations we have discussed above will be examined by means of spot
diagrams in section 16.4. We emphasize that these spot diagrams exhibit no aber-
rations due to the objective; all aberrations shown originate in the eyepiece itself.
Generally the off-axis image aberrations of the objective, including its field cur-
vature, are relatively unimportant in comparison to the eyepiece aberrations, as we
show in section 16.7. Consequently, the off-axis ray-trace results of an eyepiece
give, in most cases, an accurate picture of the off-axis performance of the tele-
scope as a whole, when it is used visually.

16.4 Ray-Tracing Eyepieces

A thorough evaluation of the optical performance of an eyepiece requires consid-
erably more work than does evaluation of an objective system. Let us see why this
is so. In chapter 4 we explained how to ray trace reflecting or refracting objectives.
In principle the same methods can also be applied to eyepieces, but there are sig-
nificant differences and several complications. In ray-tracing an objective, rays
travel from a star and come to focus. For tracing eyepieces, we reverse the direc-



172 Chapter 16: Eyepieces for Telescopes

Objective ~ - ~
(Entrance Pupil) | \ ~—

. ~
Eyepiece / Exit Pupil
Diaphragm Eyepiece

Fig. 16.7 Ray Tracing Objective and Eyepiece.

I
Diaphragm

Determination of the Ray tracing with
Normal courses intersection points reversed ray paths
of the rays for three principal rays

Fig. 16.8 The Ray-Tracing Procedure for a Kellner Eyepiece.

tion of travel: parallel beams of light travel from the eye to the eyepiece and come
to focus at the focal plane (see fig. 16.7). This calculation leads us to the same con-
clusions as would tracing real rays through the eye, but is easier than tracing the
true course of the light rays.

Before discussing the calculation scheme, several points deserve mention.
Construction data of an eyepiece, such as the axial thicknesses of lenses, distances
between lenses, and radii of curvature, are generally given for a focal length of 100
mm, and in the normal sequence of the lenses, with light traveling from left to
right (see table 16.2). On this basis the sizes of the blurs produced by the eyepiece
are calculated. The image sharpness is determined by the apparent diameter of the
spot diagrams. For a focal length of 100 mm, one minute of arc corresponds to
0.0291 mm in the focal plane. We then compare the angular sizes of the calculated
spot diagrams with a maximum allowable spread criterion. Near the center of the
field the blur should not exceed one minute of arc, the maximum resolving power
of the eye for bright objects. At the edge of the field we allow a spread of five min-
utes of arc.

What problems do we encounter in tracing an eyepiece that we do not en-
counter when tracing an objective? Recall that the first mirror or lens surface en-
countered is normally the entrance pupil of an objective. However, when we trace
an eyepiece, the “entrance” pupil lies “in front of” the eye lens, outside the system,
so the size of the entering pencil is limited by a fictitious diaphragm at the position
of the exit pupil.
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Another problem is that the exact position of the fictitious entrance pupil is
not known at the outset because of the spherical aberration of the exit pupil. Be-
fore we can begin the ray trace, we must determine the exact positions of the in-
tersecting points, S, for a set of angles, as shown in fig. 16.6. The calculation,
shown graphically in fig. 16.8, proceeds as follows:

Decide the off-axis angles for which spot diagrams should be calculated. For
a50° field, you might use 0, 10, 20, and 25° off-axis; for a 60° field, 0, 10, 20, and
30° off-axis; for an 80° field, 0, 10, 20, 30, and 40° off-axis.

Next, determine the intersecting points S. (This process is shown in fig. 16.6
for a single lens eyepiece, and in fig. 16.8(b) for a Kellner eyepiece.) Begin by
finding the off-axis distances of the horizontally entering rays, s, shown in fig.
16.6. These rays are the central (principal) rays of entering light cones which exit
the eyepiece at 10, 20, etc., degree angles from the optical axis.

Unfortunately, no direct method of doing this exists, so a trial and error
method is necessary. Table 16.1 may be useful in this respect. Search for i by
moving these rays up and down until the exit angles are exactly 10°, 20°, etc. From
the ray heights, calculate the intersection points, S, along the optical axis.

Now reverse the eyepiece. This is the equivalent of changing the direction of
travel of the light with respect to that of the foregoing calculation.

Establish the exact position of the focal surface by tracing a paraxial bundle
of green light (546 nm); then trace the other parallel bundles of light for the vari-
ous off-axis image angles. The central rays of these pencils pass through the inter-
section points, S, as calculated in the first step.

Calculate the initial set of spot diagrams for a flat focal surface. These should
be done in three colors (blue, green, and red) and for a range of focal ratios, for
example, 75, 710, and f715. The diameters of the entering beams for an eyepiece
with a focal length of 100 mm will be 20 mm for an f/5 objective, 10 mm for an
10 objective, and 6.67 mm for an f/15 objective.

The focal surface may be curved rather than flat, which further complicates
the analysis. If the off-axis spot diagrams seem excessively large, shift the focus
for them with respect to the paraxial focal plane to see if they can be made smaller.
If they can be, then the sizes of the spot diagrams must be calculated for the curved
focal surface and then analyzed to determine whether the eye is able to compen-
sate for the field curvature by accommodation.

This scheme of eyepiece analysis clearly involves more complications than
analyzing an objective system does. While the analysis of an objective is largely
straightforward, a thorough analysis of an eyepiece requires many trial calcula-
tions.

16.5 Ray-Trace Results for Eyepieces

In making a general study of the performance of eyepieces, the designer soon dis-
covers that every eyepiece type has numerous variants and modifications. More-
over, the development of certain types (the Plossl, for example) is still going on.
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Table 16.2 Part 1
Construction Data for Nine Telescope Eyepieces
(Focal Length of 100 mm)
Huygenian =~ Ramsden Kellner Pl6ssl Abbe
Dist* —49.53 21.24 62.47 59.65 56.38
R} 91.6 oo 404.5 oo 184.07
Ty 16.8 12.2 21.86 10 31.31
M¢ 607567 517642 620603 667330 607494
R, oo -80.14 -163.43 101.8 -77.53
T, 101 86.8 45.76 50 6.25
M, Air Air Air 564604 762265
R, 45.8 64.11 86.82 -101.8 77.53
T, 7.2 9.6 34.42 5 3431
M, 607567 517642 603606 Air 607595
R, = oo -79.47 93.3 -156.06
T, 5.72 35 0.6
M, 728284 564608 Air
R, -1190 -97.1 101.04
T, 10 21.91
M, 667330 728284
R, oo oo
T(»
M6
R7
T7
M7
RS
TX
MK
R,
T<)
M‘)
Rll)
T]()
MI()
R]I
Eye reliefe 10/20.18  10/33.34 . 10/47.70  10/68.99  10/81.00
20/17.35  20/1646  20/43.93  20/63.32  20/80.88
25/15.08 25/~ 25/40.83  25/58.60  30/82.34

o a0 o

The distance from the focal plane to the first lens can be negative when this focal plane
lies between the lenses.

Radius of curvature
Axial thickness or distance
Medium, glass or air, six digit code

The distance between the exit pupil and the eye lens for various exit angles (angle
degree/distance mm)
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Table 16.2 Part 2
Construction Data for Nine Telescope Eyepieces
(Focal length of 100 mm)
Konig Erfle 5-lens  Erfle 6-lens  Nagler 7-lens
Dist? 51.155 39.615 23.357 -155.60
R/ 225 —465.1 —466 =376
T, 10 9.8 9.1 38
M4 755276 648338 648338 717295
R, 83.6 136.13 131.5 -140
T, 50 55.01 61.4 15
M, 623569 552635 517642 620603
R, -102 -179.54 -156 235
T, 0.7 0.7 0.9 405
M, Air Air Air Air
R, 110 246.05 194.5 -756
T, 333 39.31 522 84
M, 607567 487704 557587 620603
R —458 —-246.05 -141 -299
T, 0.7 9 5
M, Air 728284 Air
R 107.02 -247 529
T, 52.31 0.9 15
M, 552635 Air 717295
R, -176.04 143 252
T, 9.8 38.7 168
M, 728284 557587 620603
R, ~3020.62 -168 -529
T, 9.1 5
M, 728284 Air
R, —451 252
T,y 15
M, 717295
R, 127
Ty 84
M, 620603
R, 756
Eye relief® 10/97.42 10/57.53 10/63.47 10/185.26
20/91.61 20/55.73 20/59.96 20/173.82
30/88.21 30/49.93 30/54.31 30/152.72
35/46.75 40/47.04 40/121.31

a. The distance from the focal plane to the first lens can be negative when
this focal plane lies between the lenses.

Radius of curvature
Axial thickness or distance
Medium, glass or air, six digit code

The distance between the exit pupil and the eye lens for various exit
angles (angle degree/distance mm)

o a0 o
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Off-axis Image Angle (degrees)
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Fig. 16.9 Optical Performance of Seven Eyepieces for an f/5 Light Cone and Flat Field.
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Fig. 16.10 Optical Performance of Seven Evepieces for an f/10 Light Cone and Flat Field.
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Off-axis Image Angle (degrees)
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Fig. 16.11 Optical Performance of Seven Eyepieces for an f/15 Light Cone and Flat Field.
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Off-axis Image Angle (degrees)
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Fig. 16.12 Optical Performance of Two Eyepieces for Various Light Cones and Curved Field.
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Luckily, though there are many designs, we need not contend with an endless pro-
liferation of names. As long as the configuration of lenses remains the same, a de-
sign retains the name of its original designer.

Eyepiece manufacturers seldom publish construction data for their products.
The construction data given in table 16.2 were obtained from many sources. In
studying eyepiece characteristics, one is entirely dependent upon data published
in the literature. It is hardly possible, based on a literature study alone, to draw spe-
cific conclusions about the performance of a type in comparison with others.

In the end, the best and most effective method to judge a particular eyepiece
remains testing and comparing it by actual observation. Nevertheless, it is possible
to determine the broad characteristics of various designs. Analyses were done for
all the eyepieces shown in figs. 16.2 and 16.3, but the results for the two groups
are presented in a somewhat different way.

Figs. 16.9, 16.10, and 16.11 show the results for the eyepiece types shown in
fig. 16.2, the Huygens, Ramsden, Kellner, P1ossl, Abbe, Konig, and Erfle. These
spot diagrams are for green light, for a flat focal surface, for appropriate off-axis
image angles. Fig. 16.9 shows spot diagrams for f/5; fig. 16.10, for f710; and fig.
16.11, for an f715 focal ratio.

In order to obtain an impression of lateral color (color aberration outside the
optical axis), compare the relative position of the intersecting points of the princi-
pal rays in the focal plane for blue and red with respect to green as shown in fig.
16.11. We have omitted here the complete spot diagram for each color because of
their similarity in shape and size to the green spot diagrams. Moreover spot dia-
grams larger than 40 minutes of arc are not shown in these figures because of their
large size. Of the eyepieces shown, the Huygenian and the Ramsden suffer most
obviously from curvature of field. In fig. 16.12, we show spot diagrams for the
best focal surface. It appears that the image sharpness for the curved focal surface
is much better than for a flat focal surface.

From figs. 16.9 through 16.12, we draw the following conclusions:

1. Image sharpness depends strongly on the focal ratio of the objective.
None of the eyepieces is sufficiently well corrected to give excellent
performance over its entire field when combined with an objective hav-
ing a focal ratio of f75, mainly as a result of astigmatism.

2. Even with an f715 objective, the image blur at the edge of the field con-
siderably exceeds five minutes of arc.

3. Lateral color is moderate except in the Ramsden, Kellner and Erfle. The
Huygenian exhibits particularly low lateral color.

4. The Huygenian exhibits a large amount of spherical aberration at f/5. It
cannot even form an acceptable axial image at that focal ratio.

5. The Huygenian and Ramsden exhibit better sharpness for the curved
field than for the flat field. Critical observation of off-axis objects
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Fig. 16.13 Fundamentals of the Nagler Eyepiece.

requires refocusing by moving these eyepieces forward. Then, of
course, the center of the field will become unsharp to the extent the eye
is unable to accommodate.

To use a Huygenian with a 50° field for an image that is simultaneously
sharp at both center and edge requires an accommodation of one diopter for an
eyepiece having a focal length of 110 mm. Recall that the amount of accommoda-
tion is inversely proportional to the focal length. This, and conclusions (4) and (5)
explain why Huygenian eyepieces with focal lengths up to 150 mm are still used
in professional observatories, in combination with large refractors.

In the foregoing we have seen that astigmatism and curvature of field strong-
ly influence the image sharpness outside the optical axis, particularly when used
with a fast (i.e., f/5) objective system. Although eyepiece designers had already
tried for many years to eliminate these aberrations, it was not until 1980 that a ma-
jor breakthrough, the Nagler eyepiece, occurred. Because of this, we give this de-
sign a more detailed treatment than other eyepiece designs.

We now examine the optical performance and characteristics of the Nagler
eyepiece compared to a six-lens modified Erfle. Both eyepieces have a 13 mm fo-
cal length and an apparent field of 82°. Fig. 16.3 shows both at the same scale. The
Nagler is much larger, and contains more elements (7) than the Erfle. Unlike most
modern eyepieces, the field diaphragm of the Nagler is between the lenses. One
drawback is that, as we will show, the Nagler in this particular form is feasible
only in short focal lengths.

In order to understand the principle of the Nagler eyepiece, imagine the sys-
tem reduced to its simplest form, as shown in fig. 16.13. To the left of the stop, on
the side nearer the objective, is a negative lens, and to the right of the stop is a pos-
°itive lens.

As mentioned above, it is possible to reduce astigmatism in a positive eye-
piece system at the expense of introducing field curvature. By placing a negative
lens between the objective and the positive eyepiece, however, we can compen-
sate this field curvature. The reason is that the negative lens introduces curvature
in the intermediate focal surface, F,. If this is chosen to match that of the positive
lens, the resulting combination of lenses can be free of both astigmatism and field
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Scale: 13 mm
—_—

Fig. 16.14 Spherical Aberration of the Exit Pupil in the Nagler Eyepiece.

Fig. 16.15 The Kidney-Bean Effect.

curvature in the imaginary focal surface, F,.

The design principle of the Nagler is not totally new. The combination was
proposed long ago by Smyth; hence, the negative lens is called a Smyth lens (see
ref. 16.1). In a more recent publication (ref. 16.4), this possibility is again pointed
out. Despite the excellent optical correction which can be obtained with such a
combination, this design is rarely seen because the strong divergence of rays in the
negative lens section means the positive lens section must be large, resulting in
relatively high manufacturing costs and weight.

This is the case with the Nagler eyepiece: for a focal length of 13 mm, the
eyepiece is 62 mm in diameter and weighs 24 ounces. A 25 mm eyepiece of the
same design would be 120 mm in diameter and weigh 10 pounds! For this reason
alone, the Nagler eyepiece would be used only for short focal lengths.

However, these eyepieces also suffer from spherical aberration of the exit
pupil, and the resultant kidney-bean effect. Fig. 16.14 shows a scale drawing of
the eye lens of a 13 mm Nagler eyepiece with its exit rays. In order not to compli-
cate the drawing, the principal rays of each parallel exit bundle, but not the bun-
dles themselves, are drawn. (In fig. 16.13, we show the bundles.) The shift of the
intersection points with the optical axis at increasing exit angles is readily visible.
We list the value of the shift in table 16.2.

It should be emphasized that this “spherical aberration” must not be con-
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fused with longitudinal spherical aberration (LA); it does not lead to unsharpness.
However, in order to capture all the exit rays, the pupil of the eye must be as large
as the smallest cross section of the bundles. The smallest cross section of the prin-
cipal rays is 3.5 mm, and the bundles would be 3 mm diameter for an f/5 objective.
The smallest cross-section of all exit beams together would then be 6.5 mm.

This means that the 13 mm Nagler use is restricted to observation when the
pupil of the eye is wide open. When the eyepiece is used with a pupil of 2 or 3 mm,
some of the exit beams will never reach the retina. Depending on the position of
the eye with respect to the eyepiece, parts of the image will not be visible, result-
ing in the kidney-bean effect, shown in fig. 16.15. For Nagler eyepieces with focal
lengths shorter than 13 mm, the situation is more favorable. They can be used for
daytime observation and by older individuals whose maximum dark adapted pupil
is smaller than 7 mm.

It is interesting to note that three years after the introduction of the original
Nagler, the eyepiece was redesigned to eliminate spherical aberration of the exit
pupil. The improved design is called the Nagler 2, and is available in longer focal
lengths than the original Nagler design.

One especially favorable characteristic of the original Nagler eyepiece is the
large eye relief, roughly 1.2 times the focal length. Large eye relief is realized by
the combination of two effects. First, the positive part of the eyepiece has a focal
length which is 1.7 times that of the system, so the eye relief is that of a longer
focus system. Second, since the negative element diverges the rays, the exit rays
converge less steeply. The eye relief of the 13 mm Erfle is only 0.6 times the focal
length.

Based on the data given in table 16.2, we analyzed the optical performance
of the Nagler and Erfle eyepieces at 0, 10, 20, 30 and 40° off-axis, for red, green,
and blue light, at focal ratios of f/5, /710 and f/15. Figs. 16.16 and 16.17 show the
resulting spot diagrams.

Let us look first at the Erfle eyepiece. The specimen we traced is a relatively
well-corrected representative of the many modifications of Erfle designs we
checked. Nonetheless, fig. 16.16 shows how swollen the spot diagrams are, espe-
cially for fast focal ratio (f/5) and large off-axis angles. At the edge of the field,
the blur circle has an angular diameter of some 60 minutes of arc—twice the an-
gular diameter of the full moon!

Another striking point concerns the lateral color. This aberration is deter-
mined by the shift of the spot diagrams for red and blue with respect to each other.
This shift varies between 5 and 9 minutes of arc for the Erfle. Correction of lateral
color seems to be difficult in Erfle type eyepieces because all Erfle designs we
checked suffer from this aberration.

Spot diagrams for the Nagler are shown in fig. 16.17. It is impressive to see
how well astigmatism has been suppressed in this design. For a 20° field angle, it
is a factor of 6 better than the Erfle; for a large field angle (40°) it is a factor of 10
better than the Erfle.

Lateral color is also under control. It lies between 1.5 and 3 arc minutes, a
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Fig. 16.16 Optical Performance of a Modified Erfle Eyepiece.
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Fig. 16.17 Optical Performance of the Nagler Eyepiece.
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Fig. 16.19 Distortion in the Erfle and Nagler Eyepieces.

factor of 3 better than the Erfle. The Nagler has a slightly outward curving field;
the spot diagrams were calculated for the flat focal plane. In this particular case,
though, the eye can easily accommodate since an accommodation of less than one
diopter is necessary. For the curved focal surface, the off-axis spot diagrams are
smaller and rounder than those in fig. 16.17.

Fig. 16.18 shows the positions of the tangential and sagittal focal surfaces for
a focal length of 100 mm. In this case, as in fig. 16.8c, light travels from left to
right, from the eye to the focal surface. The graph clearly shows how far astigma-
tism in the Nagler has been suppressed relative to the Erfle.

We also investigated the degree of distortion. As we noted above, it is im-
possible to correct simultaneously for both rectilinear distortion and angular mag-
nification distortion. Fig. 16.19 gives the results of the calculations. Rectilinear
distortion is considerable in both eyepieces, meaning that straight lines in the outer
field are pincushions. The angular magnification distortion, which is more rele-
vant in astronomical observation, is low and probably invisible.

16.6 Eyepieces Used for Projection

We have compared various eyepieces for visual use, with parallel exit beams.
When eyepieces are used for projection, typically for lunar or planetary photogra-
phy, the exit beams do not remain parallel, and the imaging characteristics will be
changed (fig. 16.20). The image angle will generally be smaller than it is for visual
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Fig. 16.20 Eyepieces with Parallel and Converging Exit Beams.

applications, typically 5° or less off-axis.
For a given projection ratio, gamma, ¥ = f_,mbinationfobjectiver the eyepiece
movement, x, can be calculated from:

x =1, (16.6.1)

Because of the large variety of telescope focal ratios, eyepieces, and projec-
tion ratios possible, spot diagrams are not given. However, since the eyepiece
forms a real image in projection, calculation of spot diagrams for a particular sys-
tem is straightforward.

16.7 The Performance of Objective-Eyepiece Combinations

16.7.1 Introduction

In the foregoing we have examined the optical performance of telescope objec-
tives and eyepieces as separate entities. The visnal observer, however, is far more
interested in their combined performance than in the performance of either taken
alone. It is often difficult to predict, based on spot diagrams of each alone whether
aberrations will be diminished or reinforced when they are combined. Both situa-
tions can occur.

Recall that in section 13.4 we analyzed the Jones-Bird telescope objective.
The image appeared to be free of both spherical aberration and coma, but suffered
from strong astigmatism and field curvature—indeed, field curvature is some 16
times as strong as for a Newtonian reflector of the same aperture and focal ratio.
Despite this, various users have reported (see refs. 16.5 and 16.6) that these aber-
rations are hardly visible in actual use.

Bird and Bowen, the instrament's designers, explained this effect as due to
partial compensation by opposing eyepiece aberrations. It was this that inspired us
to investigate various objective-eyepiece combinations.

We examine, by means of ray tracing, several objective-plus-eyepiece com-
binations with a view to gaining insight into how to obtain a final image of high
quality. In particular, we are interested in discovering to what extent the aberration
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Fig. 16.21 The Relationship Between Sagittal and Tangential Field Curvature for Eyepieces and Ob-
Jjectives.

of an objective may be compensated by opposite aberrations in the eyepiece. If,
by means of suitable design, the compensation of aberrations could be fully real-
ized, we could make virtually aberration-free telescopes without the need of de-
signing both objectives and eyepieces that are aberration-free.

16.7.2 Astigmatism and Field Curvature

As we have seen in previous chapters, most objectives suffer from both astigma-
tism and field curvature. In most cases we observe undercorrected (or positive)
astigmatism in which the tangential focal surface is located nearer the objective
than is the sagittal focal surface. Between the tangential and sagittal focal surfaces
lies the average curved field, a somewhat imaginary construct. For most objec-
tives—refractors, Newtonians, and Cassegrain-like systems—this surface is in-
ward curving (fig. 16.21).
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Fig. 16.22 Matching Field Curvature in Eyepieces and Objectives.

In eyepieces, the situation is generally reversed: the tangential focal surface
lies farther from the eyepiece than the sagittal surface, giving rise to overcorrected
(or negative) astigmatism. The case that most often occurs is shown in fig. 16.21a.
Note that the tangential surfaces and sagittal surfaces are positioned on the same
side of the average focal surfaces. Here astigmatism is partially compensated but
not eliminated, and some field curvature remains.

When the corresponding focal surfaces coincide exactly (i.e., if both the dis-
tances between the tangential and sagittal focal surfaces and their radii of curva-
ture are the same), we have a system without noticeable astigmatism or field
curvature. This is because the aberration generated by one system, the objective,
is just compensated by the other, the eyepiece. This ideal situation is shown in fig.
16.21b.

In addition to the two cases described, there is a third case in which astigma-
tism is eliminated but field curvature remains, shown in fig. 16.21c. This case oc-
curs when the distances between the tangential and sagittal focal surfaces are the
same, but their curvatures are not. In this case, it is impossible to obtain a uniform
focus over the whole field; the eyepiece must be moved forward and back or the
observer’s eye must accommodate when observing different parts of the field.

While designers are free to pursue the ideal case in telescopes with fixed or
permanently attached eyepieces, most observers want astronomical telescopes
having interchangeable eyepieces. Most of the time then, the telescope functions
somewhere between the cases shown in fig. 16.21a and 16.21b: astigmatism and
field curvature are reduced but not eliminated.

16.7.3 Accommodation of the Eye

The eye tends to automatically seek optimum image sharpness by means of ac-
commodation, or changing its focus. This enables the observer to compensate, at
least in part, for incompletely-corrected field curvature. The relaxed eye is fo-
cused for distant viewing; accommodation involves contracting the muscles
around the lens so it focuses closer. The eye will not focus farther than its relaxed
focus.

We distinguish two cases where the eye can correct field curvature by ac-
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Fig. 16.23 Analyzing the Performance of an Objective-Eyepiece Combination.

commodation. These are shown in fig. 16.22. In fig. 16.22a, the field of the objec-
tive curves inward while the field of the eyepiece is flat. In order to be able to
accommodate, the observer must focus on the edge of the field with the unaccom-
modated eye. The eye can then accommodate for the center of the field.

In fig. 16.22b, the field of the objective is flat, while the field of the eyepiece
curves outward. In this case, the observer must focus on the center of the field us-
ing the unaccommodated eye. The eye can then accommodate as necessary to fo-
cus the edge of the field.

In the analyses that follow, we show the accommodation, expressed in diopt-
ers, required for each field angle in each objective-eyepiece combination exam-
ined.

16.7.4 Analyzing Objective-Eyepiece Combinations

Telescopes are afocal, that is, the objective-eyepiece combination does not form a
real image. In principle, both the entering and exiting bundles are parallel beams.
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To simulate how the eye images the exit bundle on its retina, we must place an
image-forming system in the exit pupil, a system with little or no inherent aberra-
tion. We have chosen a paraboloidal mirror with such a long focal ratio that aber-
rations caused by the mirror itself are entirely negligible. The mirror is placed in
the exit perpendicular to the exit bundle under examination, as shown in fig.
16.23.

To position the mirror properly, we first determine the location of the axis of
the bundle (i.e., the principal ray) with respect to the optical axis of the system it-
self. This is where the eye would be positioned during actual observation through
a telescope. This intersection is not fixed, but generally shifted toward the eye-
piece as the exit angle increases due to spherical aberration of the exit pupil. The
computer program developed for this task automatically positions the mirror and
determines its tilt angle for every exit bundle examined.

If the bundle emerging from the eyepiece consists of parallel rays, the mirror
focuses them to a single point in its focal plane. If the rays are non-parallel, the
image formed by the mirror will be spread, and may be represented in a spot dia-
gram. The size of the blur shown by the spot diagram can be expressed by the an-
gle it subtends from the mirror, corresponding to the angular blur that would be
seen by the eye. Furthermore, by calculating the position of best focus, we were
able to calculate the degree of accommodation needed to give the sharpest image.

16.7.5 Combinations Examined

As examples of the performance of objective-eyepiece combinations, we chose
four objectives in combination with two eyepieces. We deliberately chose rela-
tively fast objectives because the aberrations would be large. The objectives are a
200 mm f/6 Newtonian, a 200 mm /76 Jones-Bird telescope, a 100 mm /78 two-el-
ement fluorite refractor (a scaled-down version of the design given in section 6.3),
and a 100 mm f75.5 four-lens objective with reduced field curvature and astigma-
tism relative to a two-element objective (ref. 16.7). Of these objectives only the
Newtonian has any coma; the others are aplanatic.

The eyepieces are the same as those investigated in section 16.5, a 13 mm
modified Erfle with six elements and the 13 mm Nagler design with seven ele-
ments. Both eyepieces have fields in excess of 80° and a field diameter of approx-
imately 17 mm. Note that the tangential and sagittal surface curves shown in fig.
16.18 are reversed relative to those shown in fig. 16.21, because of the reversed
position of the eyepiece.

16.7.6 Results of Ray Tracing

Figs. 16.24, 16.25, and 16.26 show the results of tracing the eight combinations of
four objectives and two eyepieces. For each combination three rows of five spot
diagrams are shown. Each row shows star images 0, 10, 20, 30, and 40° off-axis;
they represent the star images as seen by the eye in the exit pupil of the eyepiece,
and their sizes are expressed in arcminutes. Near the field center, the spread of the
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spot diagram should not exceed one minute of arc. At the edge of the field a spread
of five minutes of arc is allowable. Spot diagrams are given for the optimally
curved field.

The three rows are labeled as follows:

Objective: Spot diagrams for the objective alone. The spot diagram
represents the angular size of the blur that would be seen if it were ob-
served with an aberration-free eyepiece of 13 mm focal length.

Eyepiece: Spot diagrams for the eyepiece alone. The spot diagram
shows the aberration that would result from the eyepiece used with an
aberration-free objective. (Since these are computed for a curved focal
surface, they differ from those shown in figs. 16.16 and 16.17, for the
flat focal surface.)

Combination: Spot diagrams for the objective-eyepiece combination.

A final row of figures labeled “Accommodation” gives the accommodation
required of the eye, expressed in diopters. Note that the point of zero accommo-
dation need not lie at the field center or edge, but may lie between. All accommo-
dations are positive because a normal eye cannot accommodate beyond infinity.

We began by discussing possible compensation of the astigmatism of an ob-
jective by compensating astigmatism in the eyepiece, but in most cases it appears
that just the opposite has happened: astigmatism of the eyepiece is partially com-
pensated by astigmatism in the objective.

Full compensation will occur only when the astigmatisms are equal and have
opposite signs. Unfortunately, for conventional eyepieces such as the Erfle, the
astigmatism of the eyepiece is much greater than the astigmatism of the objective.
Only in the new generation of low astigmatism eyepieces, such as the Nagler, does
astigmatism approach the levels found in most objectives.

Spot diagrams presented in figs. 16.24 and 16.25 show the off-axis perfor-
mance encountered when different objectives are combined with the 13 mm Erfle
eyepiece. Note that accommodations up to three diopters are sometimes required.
In several cases, we see spot diagrams exceeding 40 minutes of arc. Where this
has occurred, we have substituted a number giving the diameter in minutes of arc.

Two findings are especially significant:

First, eyepiece astigmatism strongly dominates the net astigmatism of
the combination, and astigmatism from the objective plays only a small
part. In most cases, a compensation effect, though it may be present,
will hardly be noticeable in practical observation when conventional
eyepieces are used.

Second, eyepiece astigmatism strongly dominates the coma seen in the
Newtonian reflector, particularly in the outer parts of the field. This
confirms the statement made in section 16.3. Owners of fast Newto-
nians often ascribe the unsharpness at the edges of the field to the coma
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Fig. 16.27 An Optimized Objective-Eyepiece Combination.

of the paraboloidal mirror. In reality, it is the astigmatism of the eye-
piece that causes the blurring.

Fig. 16.26 displays spot diagrams for the 13 mm Nagler eyepiece. Note that
these blurs are much smaller, the result of greatly reduced astigmatism in the Na-
gler design. In such combinations, noticeable compensation is far more likely.

Note that the comatic blur in the Newtonian is not reduced. Coma compen-
sation generally does not occur because most eyepieces are designed in such a way
that they have no inherent coma. It is possible, however, to design coma-correct-
ing eyepieces (see ref. 16.9).

Among the combinations examined, that of the 200 mm Jones-Bird objective
and 13 mm Nagler eyepiece (see fig. 16.26, second series of rows) best illustrates
the “compensation effect” we originally sought (see table 16.3).

Fig. 16.27 illustrates the performance of an optimized objective-eyepiece
combination. The objective is a 182 mm f/6 downscaled version of the 200 mm
Jones-Bird telescope, while the eyepiece is a recent Ploss] design with a 26 mm
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Table 16.3
200 mm f/6 Jones-Bird + 13 mm Nagler Eyepiece

Field Angle, (°) 0 10 20 30 40
Spot Size

Objective, arcminutes 0.3 1 4 9 15
Eyepiece, arcminutes 1 2 32 5.5 5.5
Combination, arcminutes 1 2 23 3 11
Compensation, arcminutes 0 0 +1.7 +6 +4

focal length (ref. 16.8). Because they compensate, astigmatism at the edge of the
field is greatly reduced. A 224 mm f/6 Jones-Bird with a 32 mm Pl6ssl would be
another compensating combination.

16.7.7 Discovering Favorable Objective-Eyepiece Combinations

From the foregoing, we see that for some combinations it is possible to obtain a
great deal of mutual compensation for astigmatism and field curvature. But how
can we predict which will be the favorable cases? Computer ray tracing is helpful,
of course, but not particularly feasible. The more like the situation shown in fig.
16.21b, the better the chance of compensation. To predict the off-axis perfor-
mance requires a detailed knowledge of the tangential and sagittal focal surfaces
of the objective and the eyepiece. Although aberration curves are sometimes avail-
able for objectives, most manufacturers do not supply the aberration curves of
their eyepieces. Coma of the objective generally disturbs the possibility of mutual
compensation because, as we have seen, most eyepieces are coma-free. However,
a coma-correcting eyepiece has been designed (see ref. 16.9).

In the absence of adequate eyepiece aberration data, the most expedient way
to find good objective-eyepiece combinations remains empirical testing of many
different combinations. However, from the foregoing it should be clear that the
new generation of low-astigmatism eyepieces, and the introduction of coma-cor-
recting eyepieces, will offer the telescope maker the best chance to achieve this
goal.



Chapter 17

Deviations, Misalignments, and
Tolerances

17.1 Introduction

The performance of a telescope is degraded not only by image aberrations but also
by surface inaccuracies, deviations in assembly, and misalignments. In this chap-
ter we examine these problems. However, because it would be impractical to treat
them in combination, we have restricted ourselves to discussing each of these fac-
tors in turn.

A single surface may have errors only in its accuracy and in its radius of cur-
vature. Several surfaces in combination may also deviate from the design ideal in
their positions relative to one another. We divide these errors into axial shifts,
transverse shifts, and tilt errors. Of course, all kinds of combinations of these de-
viations can and do occur.

17.2 Surface Accuracy

We place high demands on the surface accuracy of optical components. These are,
however, considerably different for reflecting and refracting surfaces. When a ray
is reflected, the effect of a surface error is doubled. For refracting surfaces the er-
ror depends on the refractive index and is proportional to (n—1). While this means
that higher refractive index materials have smaller surface tolerances, it also
means that the surface accuracy required in refracting surfaces is generally lower
than for reflecting surfaces. Moreover, since refractive elements have two surfac-
es, their errors may either neutralize or reinforce each other.

The extent to which surface inaccuracies will influence optical performance
is difficult to predict. Because optical surfaces shape the wavefront, the more op-
tical surfaces used, the greater the requirement for accuracy in each surface in the
system.

This picture, however, fails to take into account the complexity of the wave-
front. If an error of given wavefront deviation is restricted to a small part of the
wavefront, the performance of the system will be better than it would be if an error
of the same magnitude were smoothly distributed over the entire surface. Howev-
er, the deleterious effect of numerous small errors may well exceed that of a single
smoothly distributed error even though the wavefront deviation is the same in both

199
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Fig. 17.1 Measuring Surface Curvature with a Ball Spherometer.

cases.

This means that surface errors are very difficult to model mathematically.
We can easily enough ray-trace the effects of a mathematical deviation from the
correct spherical or aspheric figure by altering the appropriate variables in the ray-
trace program. Real-world surface errors are more difficult to quantify. Suffice it
to say that such defects should be kept smaller than the largest tolerable figuring
eITOTS.

Optical surfaces generated by optical surfacing machines often have better
average accuracies than surfaces made by hand. However, most amateur telescope
makers work by hand. Hand-finishing optical surfaces allows local retouching,
which is particularly important for aspheric surfaces. In the case of all-spherical
telescope designs, hand-working also permits the elimination of residual spherical
aberration by aspherizing.

Amateurs usually check the radius of curvature of an optical surface by
means of a spherometer. With a spherometer, the sagitta of a section of the spher-
ical surface is measured. The sagitta may be measured relative to a ring or a con-
figuration of balls. Both the ring spherometer and the ball spherometer are used
by ATMs.

Of the two, the ball spherometer is preferable. A ring spherometer must have
an exceedingly accurately made ring. When the ring has a finite edge thickness,
its diameter is different for convex and concave surfaces. Furthermore, the pre-
cious optical surface is easily damaged by the sharp edges of this kind of spher-
ometer.

The ball spherometer (Fig. 17.1) consists of three small balls mounted on a
flat plate on a circle, with a micrometer spindle in its center. Obviously, the ring
has been replaced by three balls. In large ball spherometers, the instrument con-
sists of a bar with one ball at one end and the remaining two balls mounted close
together at the other end.

We find the radius of the surface from:
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2

D,z
Reoncave = :427 +Ry (17.2.1)
%2 +7
R onvex = 57 Rp (17.2.2)
where:
R ncave = Tadius of curvature of a concave surface
R = radius of curvature of a convex surface

convex

D = diameter of the circle the balls are mounted on

Z = measured value of sagitta

Ry = radius of balls (all balls same diameter).

From these formulae it follows that the value of Z must be measured very ac-
curately, and D must be well-known. This is particularly the case when the diam-
eter of the spherometer is small in comparison with the radius of the surface,
because the sagitta will be very small then. The accuracy of the calculated radius
of curvature is approximately M/Z, where M is the value of the smallest increment
on the micrometer’s scale and Z the measured value of the sagitta. Suppose, for ex-
ample, that the smallest increment of the measuring instrument is 0.001 mm and
the smallest acceptable accuracy of the radius is 1%. The minimum sagitta that
must be measured to attain this accuracy is 0.1 mm, since 1% = 0.01, and Z =
0.001/0.01 = 0.1.

The user should apply a drum micrometer rather than a dial micrometer. Dial
micrometers are handy devices but often suffer quite large deviations over their
range, so they should be used only to monitor changes, or for rough measure-
ments. The diameter of the spherometer, D, must be known with an accuracy of
0.01 mm or better. For accurate measurements, the diameter of the spherometer
should be as large as possible, and a flat reference plate should be available to pre-
cisely “zero” the spherometer.

17.3 Deviations and Misalignment

Misalignment degrades telescope performance. It may stem from errors in assem-
bly, result from the flexibility of the telescope tube, or occur because of tempera-
ture changes. In general, the deviations that produce misalignment are caused by
the manufacturing process, the assembly of the optical components, and the use of
the instrument.

To some certain degree, manufacturing deviations cannot be eliminated, but
they must remain within some specified limit. The maximum allowable deviations
are called tolerances. In the case of a lens, the tolerances may refer to the radii of
curvature, center thicknesses, and variation in edge thickness.

The smallest measurable deviation from the nominal radius of curvature de-
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Table 17.1

Optical Component Tolerance Guidelines
Diameter 50 150 250 350 Comment
Radius of 1% reasonable (by hand)
curvature 0.25% very accurate (by hand)?

0.5 0.75 1 1.5 rough
Diameter 0.2 0.4 0.6 0.8 accurate

0.05 0.1 0.15 0.2 very accurate
Center 0.3 accurate
thickness 0.1 very accurate
Edge
thickness 0.05 0.08 0.12 0.15 accurate
difference 0.01 0.01 0.015 0.02 very accurate

a.  When commercial radiused tools are available, it is possible to generate surfaces to nominal value.

pends on the spherometer used. Often it is difficult to make a lens to a certain cen-
ter thickness. This is true particularly when both radii of curvature of a lens are
sufficiently accurate already, but the center thickness should still be brought with-
in the desired tolerance. A

Advanced amateur optical workers can often meet close tolerances. The am-
ateur can spend more time on the optics than a professional optical workshop be-
cause the manufacturing time need not be held within limits. One particular
problem for the amateur is wedge error (figs. 17.2 and 17.3). For eliminating
wedge error, the professional optical workshop has a centering machine. This is
seldom the case for the amateur telescope maker, so correcting wedge error can be
a time-consuming job.

It is difficult to give generally valid tolerances for optical components. How-
ever, for diameters between 50 mm and 350 mm, the guidelines in table 17.1 may
be used (all dimensions are in millimeters). A general rule is that halving the tol-
erance doubles the manufacturing time to meet that tolerance. This means that a
component specified for a tolerance of 0.2% typically takes eight times longer
than the same component “spec'ed” with a 1.5% tolerance.

Assembly deviations are the differences between the positions of the optical
components after they have been mounted and the design ideal. Here the actual
distance between components is important. When components are close together,
close tolerances are not difficult to meet. For example, in an airspaced doublet,
where the edge distance may be several tens to a hundred microns, thin foils can
be used as precise spacers. When the distance is larger, spacing rings can be used.
Generally, these require larger tolerances than foil.

Another factor is the play that lenses must have in their mounts. This play
may be small, but it cannot be reduced to nothing. In order to center a lens accu-
rately, centering cones may be ground into the edge of the lens. This technique is
usually not available to amateur telescope makers, however.

The situation is entirely different when optical components have large dis-
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Fig. 17.3 Parameters of a Meniscus Lens with a Tilted Surface.

tances with respect to each other, as is the case in reflecting telescopes and cata-
dioptrics. Spacers are normally not used. Instead every component has its own
mount, which is attached to the tube or to a spider. Because it is difficult to find
reference points to position the components correctly, these elements are normally
provided with adjustment devices. With these devices it is possible to align the el-
ements in an indirect way, for example, by studying the reflections of elements in
one another, inspecting the Airy disk, or measuring the focus position. In most
cases, such alignment procedures are rather time-consuming.

Further deviations from ideal alignment occur when a telescope is used.
These may result from thermal expansion and deformations of the tube. Thermal
expansion causes changes in the length of the tube and also in the distance be-
tween the optical components. When the tube is made of a synthetic material, the
thermal expansion is much larger than is the case for metal tubes. Over a 30° Cel-
sius (54°F) temperature difference, a tube 1.5 meters long of aluminum will ex-
pand 1.1 mm; of polyvinyl chloride, 3.6 mm; of polyethylene, 10 mm. When the
distances are critical, for instance the distance between the mirror and the film
holder in a Schmidt camera, compensating elements or ultra-low-expansion Invar
bars must be built in.

When the telescope tube deforms or bends under its own weight, misaligned
and tilted elements occur. Long tubes may bend differing amounts depending on
the tilt angle of the telescope. This is especially a problem when a synthetic mate-
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rial is not reinforced. Glass-reinforced resin (“fiberglass”) works quite well.

As with lens cells, mirror cells in large telescopes must allow some play.
These cells may deform under the weight of a large element, causing the element
to be misaligned. Large spider-mounted secondary mirrors are especially at risk,
since the cell must be supported in the light path by thin spider legs, and must often
weigh as little as possible.

Some telescopes have moveable optical components. In some catadioptric
Cassegrainians, for example, the primary mirror is moved for focusing. When
there is looseness or play in the mirror support system, misalignment of this mirror
with respect to the other components may occur.

17.4 Influence of Deviations and Misalignments

We illustrate the three possible deviations of an optical surface in fig. 17.4, using
the secondary mirror of a Cassegrainian telescope as our example. In this case, a
small axial shift of an optical surface does not usually lead to serious aberrations.
The most striking effect caused by an axial error is the shift of the focal plane. The
magnitude of this shift depends on the power of the surface. The stronger the pow-
er is, the larger this shift. The aberration caused by an axial shift of the surface is
mainly spherical aberration and to a lesser extent also coma and astigmatism.
Transverse shifts and tilt angles are much more serious, causing coma and astig-
matism in the axial image. A transverse shift of the image also occurs, which may
be especially noticeable if the system is used for astrophotography.

In a single spherical lens, a transverse error of one surface with respect to the
other manifests itself as a tilt error. The lens then works like a prism, and axial lat-
eral color occurs. This holds true not only for glass lenses, but also for air lenses
such as the air space in a doublet. There is no difference between transverse and
tilt errors in lenses with spherical surfaces. This is illustrated in figs. 17.2 and 17.3
for two types of lenses. A transverse error of d, has the same effect as a tilt angle
of arcsin d /R.

Knowing that the optical axis is the connecting line of both centers of curva-
ture, it is clear from fig. 17.2 and 17.3 that a wedged meniscus is much more det-
rimental than a wedged biconvex lens.

The tilt angle corresponds with a transverse error of:

R-sin¢ = d,. (17.4.1)

Conic surfaces are quite similar in this respect to spherical surfaces, except that a
transverse error cannot be replaced by a tilt error. However, a different situation
occurs for certain nearly flat aspheric surfaces. A Schmidt corrector's surface is
rather insensitive to tilt error. Because the lens has little optical power and has
mainly a corrective action, coma introduced by a tilt will be low. Some astigma-
tism is introduced.
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Fig. 17.4 Assembling Errors in a Cassegrain Telescope (Deviations Strongly Exaggerated for Clarity).

17.5 Tolerance Analysis

Every telescope designer is faced with the problem of finding what deviations are
allowable before intolerable image aberrations will occur. Naturally, it is impor-
tant to know what tolerances the telescope maker can reasonably achieve. Follow-
ing this, the designer must determine the allowable deviations; for this, a tolerance
analysis is required. Here, the designer tries to determine, for each optical compo-
nent in the system, what deviations and misalignment errors are allowed before in-
tolerable image aberrations occur. For components that will be mounted in
adjustable supports, it is not necessary to make a misalignment analysis.

For visual systems, the allowable aberrations must be compared to the Airy
disk. For photographic systems, the photographic criterion should be applied. Cal-
culations should be carried out both on-axis and off-axis, and, when refractive el-
ements are used, for more than one color.

Sometimes the number of required calculations can be reduced considerably.
When spherical surfaces are involved, transverse errors can be directly related to
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Fig. 17.5 LA-Curves for an Apochromatic Doublet.

tilt errors, as we have shown. In the case of Cassegrainian telescopes, the trans-
verse and tilt errors are interchangeable for both mirrors.

When refractive elements are involved, the tolerance of the refractive index
must also be investigated. Normally optical systems with refractive elements are
designed on the basis of the refractive indices given in the glass catalog. The glass
manufacturer will supply the glass with the actually measured refractive indices.
If these deviate from the values given in the glass catalog, the system should be
re-analyzed and possibly optimized for the actual glass.

The amateur telescope maker considering a new optical system should guard
against “peak designs.” These are optical designs which may offer very high op-
tical performance, but have tolerances which are so tight that minuscule deviations
produce intolerable aberrations. Tolerance analysis can be carried out rather
quickly with our ray-tracing computer program.

17.6 Correcting Manufacturing Deviations

Manufacturing deviations from a specified optical design can often be corrected
during further manufacturing or assembly. While a complete discussion lies out-
side the scope of this book, we include a simple example to illustrate this tech-
nique. We have chosen a refracting optical system with four surfaces, a highly-
corrected 200 mm f710 objective.

The design employs two special glasses, both quite expensive, and achieves
very good correction for color. (For the design procedures employed, see section
21.13.) The nominal design appears in the tables on the following page.

Because of its close tolerances, this system may be considered a “peak de-
sign.” Fig. 17.5 shows the spherical aberration curves for five colors. Note that the
LA curves for C, e, and F light intersect at the 82% zone, so that this two-element
objective is apochromatic when the refractive indices are in exact accord with the
values given above.

The nominal design has been chosen so that when the OSC value for the edge
zone is zero, the intersection points of the edge ray and paraxial ray coincide in
green light (compare this with section 21.13.5). This will allow us to evaluate the
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Table 17.2
Two-Element Apochromat
(Dimensions in mm)

1143.8432

28.5577 FK 52

-463.4415
2.000 Air

-471.807

12.000 KzFSN2

-2685.629
1973.238 Air

» 2000.000

FOFARSR

—
I's

11

Table 17.3

Refractive Indices

FK 52 KzFSN2:
n 1.487471 1.560818
ne 1.484238 1.555208
ny 1.490179 1.565518
n 1.483204 1.553394
n, 1.486052 1.558361
n 1.493375 1.571111
n, 1.496008 1.575776

a. Since we designed this system,
KzFSN2 has been replaced by
KzFS2

effects of manufacturing deviations on LA, OSC, and color correction quite easily.

Each surface and thickness has its own tolerance. This can be calculated with
the aid of a tolerance analysis. However, for the practical lens maker, it would be
too cumbersome to finish every surface and thickness to its individual tolerance.
This is especially true for a peak design, since the tolerances will be so close. (Of
course, the nominal system specifications should remain the lensmaker’s goal.)

Rather, it is more practical to compensate for the unavoidable deviations that
occur in the beginning stages of manufacture by taking compensatory steps later
in the manufacturing process. First, however, it is necessary to know which of the
surfaces are most critical and which are the least critical. To do this, we carry out
a sensitivity analysis (which we emphatically point out should NOT be confused
with a tolerance analysis!). ’

Work as follows: Select a reasonable deviation in the sagitta measurement.
A deviation that can be detected easily with most spherometers would be 0.01
mm. For each of the surfaces, calculate the new radius of curvature corresponding
to this hypothetical manufacturing deviation. Ray-trace the lens, varying the radi-
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Table 17.4
Sensitivity Analysis
(Deviation on the spherometer is 0.01 mm)
(Spherometer diameter is 200 mm)
(Dimensions in mm)

Surface Raduus Z Z+0.01 New Radius AR
1 1143.8432 4.380 4.390 1141.147 -2.696
2 -463.4415 10917 10.927 ~463.046 0.396
3 —471.807 10.719 10.729 —471.391 0.416
4 -2685.629 1.862 1.872 -2671.876 13.753

Table 17.5
Resulting Aberrations

Deviation (mm) LA (mm) OSC ()
Nominal 0 0 0
R, 2.696 -0.141 1.62 103
R, 0.396 -0.502 22.7 - 1073
R, 0.416 -0.537 24.3-10°%
R, 13.753 -0.055 1.71 - 105
T, 0.1 +0.001 0
T, 0.1 +0.149 -6.08 - 10-°
T, 0.1 +0.000 0

us of one curve at a time; then tabulate the deviations in the LA and OSC values
and the color correction. Repeat this procedure for the lens thicknesses. A devia-
tion of 0.1 mm is a reasonable manufacturing tolerance.

The influence of these deviations on the color correction is negligible in this
particular case, so no color data are given here.

The values of R, and R, are the most sensitive to manufacturing deviations.
R, and T, are considerably less fussy, while R,, T,, and T, are quite insensitive. A
variety of methods can be used to compensate the aberrations caused by these de-
viations, but the best (and, unfortunately, most time-consuming) method is called
the matching principle.

The Matching Principle: We begin by making the most sensitive surface
first. When this is finished, if the radius appears to deviate from design specifica-
tions, we change other parameters to compensate. In effect, we must redesign the
system, using the new radius of curvature of the most sensitive surface as a fixed
value.

The second-most sensitive surface is made, and again, if there is any detect-
able deviation, a new design based on two fixed parameters is made. This process
continues until the last surface is completed. Thickness variations must be taken
into account, of course. This method, which produces a system closely matching
the performance of the nominal design, is best suited to making a single critical
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Table 17.6
Correction Strategies Compared
Method Action LA OSsC
Compensation R,=R;+0.389 0 0
Aspherize R, SC, = -0.067 0 2.37-10-5
Aspherize R, SC, =-0.862 0 2.64 - 10-5
Air Space T,=T,-0.337 0 -2.12-10-5

system. A computer design program should be available for best results.

Simple Compensation: A somewhat simpler alternative to the matching prin-
ciple also begins with the most sensitive surface. However, the deviation in the
first surface is corrected, as much as possible, by altering the second most sensi-
tive surface. Although the final system will be less well corrected than a system
built by the matching principle, in most cases it will be acceptable.

In our example, we would alter the radius of curvature of R,. By applying a
correction to the radius proportional to the sensitivity of this surface, we determine
a new radius of curvature. Assuming an error in R, of 0.396, note that we must
compensate for LA variation by a factor of (-0.502/-0.537) times the deviation for
R,. R, then becomes R, +0.389. Note that R, must be made very accurately.

Aspherizing: We can correct LA by aspherizing one or more of the optical
surfaces. This method can become quite time-consuming. It is desirable to apply
this correction to the surface which requires the least aspheric correction.

Changing the Air Space: The simplest and quickest compensation is chang-
ing the air space between the lenses. We compare the relative sensitivities of R,
and T,, then multiply T, times this difference: —0.502/0.149 - 0.1 = —0.337. The
new T, becomes T, —-0.337. Obviously this method will not work if the air space
becomes negative or when edge contact occurs.

The optical errors produced by these methods are shown in table 17.6.

In this example, the compensation method eliminates both LA and OSC,
providing R, which is nearly as sensitive as R,, can be made precisely enough. Of
the two aspherizing alternatives, R, is preferable since it requires relatively little
correction. Respacing this objective is by far the simplest method, and results in a
new T, of 1.663 mm.



Chapter 18

Resolution, Contrast, and Optimum
Magnification

18.1 Introduction

Every telescope is limited in its ability to resolve or separate details in the object
observed. This property is called resolving power. In this chapter, we discuss the
most important factors influencing resolving power.

Let us begin by distinguishing clearly between resolving power for point
sources such as double stars, and resolution as it applies to extended objects such
as planetary surface details. Most treatments for amateur astronomers touch only
on resolving power for double stars. Much more interesting—but also more com-
plex—is the meaning of resolving power for extended objects. This subject, par-
ticularly the role of contrast transfer, forms the basis for most of this chapter.

Specifically, the definition of resolving power used in this chapter, ex-
pressed in line pairs per millimeter (the so-called linear resolving power) should
not be confused with the angular resolving power, expressed in arcseconds. The
(theoretical) linear resolving power is connected with the focal ratio of the tele-
scope and for a given focal ratio is independent of the aperture. For a given focal
ratio f/D and a wavelength A, in millimeters, the linear resolving power is:

SL = % Ip/mm. (18.1.1)

For example, if /D = 10 and for green light (A = 555 nm):

SL=—1  _ 180lp/mm. (18.1.2)

10-5.55- 107"
The angular resolving power depends on the aperture, and for a given aper-
ture is independent of the focal ratio. For an aperture D, the angular resolving
power is:

SA = &radians =

206265 - A
D — arcseconds. (18.1.3)

For an aperture of 100 mm:

211
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§A = 206265-5.55-10  _ | 14 srcseconds. (18.1.4)

100

The linear resolving power SL and the angular resolving power SA are relat-
ed through the focal length, f, of the optical system:

[ - 206265
SA-f

From the example above, in which SA = 1.14 arcseconds and f= 1000 mm,

(18.1.5)

206265

SL = ————
1.14 - 1000

= 180 lp/mm (18.1.6)

18.2 Resolving Point Sources

The resolving power of a telescope depends on the size of the diffraction pattern
and the distribution of intensity in it. Every telescopic image is made of overlap-
ping images of the optical system’s response to a point source of light, the point
spread function.

Diffraction for a lens with a narrow slit is shown in fig. 18.1. Monochromatic
light from a distant point source enters an aberration-free lens through a slit of
width AB. For a flat cross section, all the light has the same phase. Because all light
waves from AB retain the same phase at point P, these waves reinforce each other,
so that at P a high intensity exists. According to the principle of Huygens-Fresnel,
every point that is hit by a light wave acts like a new center of waves. Point C, for
example, sends light toward both P and P".

Suppose we choose a line BA “in such a way that the distance AA’ is equal to
the wavelength, A, of the light. This means CC” = A/2. Light arriving at B differs
a half wavelength from light from C’, and light rays from B and from C” arrive at
P’ exactly out of phase. They destructively interfere, so P’ is dark. The same argu-
ment holds for the points Q and R, which differ by a half wavelength when
BQ = C’R. On the line BA’ one can find for every point Q another point R at which
the light will interfere destructively so that P’ is dark.
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Fig. 18.2 Light Intensity Distributions in the Airy disk.

Between P and P’ the light arrives only partially out of phase. These points
will always be darker than P. We say that a diffraction maximum exists at point
P. Mathematical analysis shows that at certain distances outside P’, for instance
P”, intensity maxima with a much lower intensity than P will occur, and that the
intensity of these points decreases the farther they are from P.

From fig. 18.1, it can easily be understood that:

PP _ A

sino = =
CP" A’B

(18.2.1)

When the angle a is sufficiently small that sin o = ¢, then angle PCP’ be-
comes:

o = 3 radians. (18.2.2)
AB

This says that the width of the diffraction maximum is proportional to the wave-
length and inversely proportional with the width of the slit.

For a circular aperture, usually the case in telescopes, the situation is more
complicated. The analysis must be carried out by integrating over the whole en-
trance pupil. In 1835, Airy succeeded in making the mathematical analysis of this
problem and found exact values for the diameters and intensity distribution in the
diffraction pattern formed by a circular entrance pupil. In his honor, we call the
diffraction pattern the Airy pattern and the central light spot the Airy disk.

The intensity distribution in the Airy pattern is shown in fig. 18.2a. At the
center is an intensity maximum. This is separated by a dark ring from the first dif-
fraction ring, which again is separated from the second diffraction ring, and so on.

Airy calculated that for an ideal system with a circular aperture, the central
disk contains 84% of the total light from a point source. The first diffraction ring
contains 7%, the second 3%, and so on. The diameter of the first dark ring is
2.44 - MD radians, where A is the wavelength of the light and D is the aperture.
(For more detail on computing the Airy disk, see ref. 18.13)

Because one radian is 206,265 arcseconds, for green light (555 nm) the an-
gular diameter of the first dark ring is 280/D arcseconds when D is in millimeters.
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Fig. 18.3 Resolution for Equally Bright Double Stars.

For red light (656 nm) the angular diameter is 330/D arcseconds, and for violet
light (404 nm), 203/D arcseconds.

It should be clear that the image of a star in white light is a composite of nu-
merous overlapping diffraction patterns in various colors. (Under laboratory con-
ditions, this can be seen in a color-free instrument as rainbow rings around the
Airy disk.) Because the eye has its greatest sensitivity at 555 nm, we usually take
280/D arcseconds as the angular diameter of the first dark ring.

From the size of the Airy disk, we might expect that a telescope could easily
distinguish two Airy disks separated by their own angular diameter (see fig.
18.3a). Rayleigh showed that stars with intensity maxima separated by roughly
half that distance can be distinguished visually. Fig. 18.3b shows diffraction pat-
terns separated by 140/D arcseconds.

The image seen by the eye is the sum of the light patterns. For stars of equal
brightness, the intensity in the dip between the stars’ maxima is 74% of the maxi-
mum. Although Rayleigh defined this angular distance as the resolving power of
a telescope, he realized that even closer stars could be distinguished. For small in-
struments Dawes empirically determined the resolving power is 117/D arcsec-
onds, which implies a dip of only 3.2% between the intensity maxima (see fig.
18.3c).

To the values cited above, however, the following should be added:

1. The Dawes criterion is strictly valid only for white double stars consist-
ing of two sixth magnitude components, viewed with a 150 mm tele-
scope.

2. The diameter of the Airy disk, thus the resolving power, depends on the
wavelength of the light. The Dawes criterion, for instance, does not
apply to red double stars.

3. For stars of unequal brightness, the dip in the combined Airy pattern
will be less favorable, so distinguishing the star images will be more dif-
ficult. Lewis found a 3 times worse resolving power for a double star
pair with magnitudes 6.2 and 9.5, and 8 times worse for a pair with mag-
nitudes 4.7 and 10.
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4. The Dawes criterion is only valid when the diffraction pattern has the
ideal intensity distribution. Optical aberrations affect this distribution
and decrease the resolving power of the telescope.

5. Air currents smear the combined Airy pattern of the double star. Only
after careful examination under good seeing conditions can definitive
conclusions with respect to the optical performance of telescopes be
drawn.

18.3 Resolving Power and Contrast for Extended Objects

Amateurs most often test their telescopes on double stars. But the ability to resolve
close doubles does not always measure the capacity to resolve details on lunar and
planetary surfaces, or “‘extended objects.” For the observation of this kind of detail
in extended images, the transfer of contrast by the optical system is of great im-
portance.

An image of an extended object is far more complex than an image of a point
source. The image consists of a multitude of details having different size, shape,
color, brightness, and contrast—a virtually infinite number of bright and less
bright point sources. Each of these contributes a diffraction pattern to the focal
plane, so the final image is the composite of the overlapping diffraction patterns.

Large uniformly illuminated surfaces are uniformly illuminated in the image
as well. No unsharpness is visible. Noticeable diffraction effects are present only
at the borders of surfaces with different brightness. In the case of a bright surface
and an adjacent dark surface, diffracted light encroaches into the dark border,
causing blurring and unsharpness of the border line.

A thin dark line on a bright background is “greyed,” while a bright line on a
dark background is widened. These effects are visible particularly when these
lines have an angular width comparable with or smaller than the diffraction pat-
tern. Depending on the shape, size, brightness, contrast, and color of the object ob-
served, the influence of diffraction on the final image will be different. Since the
image of an extended detail can be very complicated, it is difficult to find a repre-
sentative and reproducible method to define the resolution of an optical system for
this kind of image.

However, in 1946, P. M. Duffieux developed the concept of contrast transfer
for optical systems (ref. 18.1). This approach yields considerable insight into what
happens in the image forming process. For details to be visible, they must have
sufficient contrast. If the image contrast lies below the eye's visibility threshold,
then the detail will be invisible.

Image contrast depends not only on the inherent contrast in the object (e.g.,
the contrast of faint markings on Saturn), but also on how much contrast the opti-
cal system transfers from the object to the image plane. Contrast transfer is the key
for understanding, for example, why a planetary detail may be visible in one tele-
scope, but not in another of the same aperture.

Resolving power and contrast transfer are both quality criteria for every tele-
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Fig. 18.4 The Definition of Contrast.

Fig. 18.5 Contrast Transfer by an Optical System.

scope. Today it is possible to measure the contrast transfer of an optical system
with special equipment, and the relation between image contrast and resolution
can be determined for every point in the image plane.

18.4 Contrast Transfer in a Perfect Optical System

An optical system may be characterized as perfect if, in the absence of diffraction
and providing no obstructions such as a secondary mirror or spider are present, it
would produce a point image of a point source. When a telescope meets these cri-
teria, then the Airy diffraction pattern will have the ideal intensity distribution.

Before discussing the contrast transfer of this perfect system, let’s define
contrast and contrast transfer (see fig. 18.4). The contrast, C, between two adja-
cent surfaces with the intensities /, and 1, is defined as:

11_[2

= 18.4.1
I +1, ( )

when [, > I,. Using this definition, the contrast always lies between 0 and 1 (or 0%
and 100%).

Suppose we examine two sinusoidal intensity distributions in a grating of
parallel lines. If the intensity varies between 0 and 1 (as shown in fig. 18.4a), the
contrast between the highest and lowest intensity is:
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Fig. 18.6 Contrast Transfer Curves for Ideal and Imperfect Optical Systems.

c =120 _ 1 (< 100%). (18.4.2)
1+0

But if the intensity varies from 0.33 and 1 (fig. 18.4b), the contrast is:

c=12033_ 45 (=50%). (18.4.3)

1+033
In principle, contrast transfer is measured by placing a grating having a sinu-
soidal intensity distribution as an object in front of the optical system, then mea-
suring the contrast of the resultant image (see fig. 18.5). The ratio between image

contrast and object contrast is called the contrast transfer coefficient, CT.

C.
CT = %gﬁ . (18.4.4)

object

The contrast transfer coefficient for the example in fig. 18.5 would be:

CT=(¥

= 0.5 (= 50%). (18.4.5)

Each combination of a bright line and a darker line is called a line pair (Ip).
A coarse target has a small number of line pairs per millimeter in the target grat-
ing, while a fine target has a high count of line pairs per millimeter (Ip/mm). To
evaluate an optical system, we vary the spacing of line pairs in the grating, and
measure the contrast in the image.

As the number of the line pairs increases, the optical system renders them
with lower and lower contrast because every point in the object is represented by
adiffraction pattern in the image. This diffraction pattern scatters light around ev-
ery image point so that the dark places in the image are illuminated by diffracted
light. This effect becomes more important as the distance between elements in the
image approaches the size of the diffraction pattern.

At some value the image contrast is reduced to zero. The image of the grating
will then be uniformly bright and without any structure. This is the highest resolv-
ing power the system can attain.

A graph showing the relation between the contrast transfer coefficient and
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the number of line pairs in the image is called the contrast transfer function (CTF),
the modulation transfer function (MTF), or the optical transfer function (OTF).
Duffieux found that the contrast transfer function for a perfect system is a smooth-
ly decreasing monotonic curve, as shown in fig. 18.6a. The curve shown in the fig-
ure is for a perfect telescope with a focal ratio f/10, imaging light with a
wavelength of 555 nm (green).

18.5 Contrast Transfer for Imperfect Optical Systems

CTF curves are extremely useful because we can compare the performance of im-
perfect optical systems with the curve for a perfect system. Since the CTF of real
systems is the accumulation of both diffraction effects and various aberrations, we
gain information about the magnitude of image aberrations.

The curves for imperfect systems generally lie below the ideal CTF curve.
This means that for the same resolution, the image contrast of the imperfect sys-
tem is lower than that of a perfect system. Spherical aberration, coma, astigma-
tism, and chromatic aberration are important, but the CTF curves also reveal
unsmoothness in the optical surfaces and the influence of the spider and secondary
mirror.

Image aberrations usually lower the CTF curve more at large numbers of line
pairs per millimeter than at low numbers because the diffraction rings are bright-
ened at the cost of the Airy disk (Figs. 18.2b and 18.2c). Only very severe aberra-
tions illuminate the image plane at large distances from the Airy disk. The
influence of aberrations on the CTF is shown in fig. 18.6b.

Other contrast-diminishing effects in an optical system are internal reflec-
tions and stray light. They reduce the contrast by the same percentage for all res-
olution values (fig. 18.6c¢).

18.6 Central Obstructions

One subject of ongoing, and seemingly never-ending, discussion among amateurs,
and therefore probably interesting for the reader, is the reduction in contrast
caused by the central obstruction in a mirror telescope. This happens in Newto-
nians, Cassegrains, and catadioptric telescopes.

First, how are the Airy disk and diffraction pattern affected? This is shown
in fig. 18.2b. The diameter of the Airy disk for an obstructed system is actually
slightly reduced with respect to an unobstructed system, but the rings are bright-
ened at the expense of the central intensity of the Airy disk. Fig. 18.7 shows CTF
curves for systems with the linear obstruction ratio, 1, equal to 0% (i.e., no ob-
struction), 25%, 50%, and 75% (ref. 18.4). Table 18.1 gives the influence of 1 on
the distribution of light in the Airy pattern for typical refractors (0%), Newtonian
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Fig. 18.7 Contrast Transfer for Obstructed Systems.

reflectors (25%), and Cassegrain instruments (50%).

Table 18.1
Distribution of Light in the Diffraction Pattern
Obstruction (%) 0 25 50
Airy disk (% of total) 84 73 48
First ring (% of total) 7 18 35
All other rings (% of total) 9 9 17
Airy disk diameter® 280 262 230

a. In arcsecond-millimeters (of aperture) for green light.

There is clearly a loss of contrast in obstructed systems. But surprisingly, for
higher resolutions, contrast appears somewhat enhanced in obstructed systems.
The reason for this is that the Airy disk diameter is slightly reduced when a large
central obstruction is introduced.
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Fig. 18.7 also shows, as a dotted line, the CTF for an unobstructed system
with Y4-wave of spherical aberration, corresponding with the Rayleigh limit on
wavefront errors. We draw the following conclusions:

1. For a 25% obstruction, the loss of contrast is not severe; only 15% with
respect to the unobstructed system at 60 Ip/mm.

2. An obstruction of 50% causes considerable loss of contrast, some 55%
at 70 lp/mm.

3. Contrast in a system having a 75% obstruction, which would hardly
ever be used in practice, would be very poor.

4. The CTF curve for a system having 1/4-wave of spherical aberration
corresponds roughly with an obstruction of 30%. In other words, a 30%
obstruction is approximately as bad for image quality as a 1/4-wave
error in the optical system.

18.7 Obstructed Telescopes for Visual Use

Let us now compare a typical obstructed system, one with a 40% obstruction (typ-
ical of a Cassegrain), with an unobstructed system, in terms of their CTF curves.
We will assume that both systems have the same aperture and focal ratio, f710 in
our example shown in fig. 18.8. Although the comparison looks rather complicat-
ed at first glance, we’ll go through it step by step and see what parameters matter
when extended details are observed visually in a telescope.

Theoretically, the maximum resolving power for both systems is the same.
Both resolve 180 Ip/mm in the focal plane. However, the effective resolution of
the system in combination with the eye depends on the minimum contrast the eye
can detect. The eye, however, is not a simple detector. Its contrast threshold de-
pends on the brightness of the image and the angular distance between the lines.
Moreover, it is different for every individual.

For brightly illuminated objects, for instance the moon, we’ll assume a min-
imum required contrast for fine detail of 5%, and for coarser patterns, a somewhat
lower minimum contrast. This is shown in curve 5 in fig. 18.8. (Strictly speaking,
this curve is not the same for both telescopes because the obstruction blocks 16%
of the light, but for the purposes of this discussion we will neglect this minor dif-
ference.) In order to distinguish details for dimly illuminated objects, the eye
needs higher image contrast; this is shown in curve 6.

The maximum resolution for the eye/telescope combination occurs at the in-
tersection of the CTF curve and the minimum contrast curve for the eye. Here,
however, another very important factor, the intrinsic object contrast, enters.
Curves 1 and 2 show the contrast transfer from an object having an intrinsic con-
trast of 100%. Many astronomical objects, particularly planetary surfaces, have a
much lower intrinsic contrast. Curves 3 and 4 show the image contrast as seen in
the telescope for objects with 10% intrinsic contrast.

Regarding the resolving power of the combination of a telescope and the eye,



Section 18.7: Obstructed Telescopes for Visual Use 221

100
\ 1 and 2: Object with High Inherent Contrast (100%)
909 3 and 4: Object with Low Inherent Contrast (10%)
\ 5: Minimum Contrast Required for the Eye for a
\ Brightly Illuminated Object
80 \ 6: Minimum Contrast Required for the Eye
\ for a Dimly Illuminated Object

Contrast (%)

Resolution (line pairs/mm)

Fig. 18.8 Comparison of Two Telescopes for Visual Use.

we can now draw a number of conclusions:

1. The resolving power is higher for brightly illuminated objects than for
dimly illuminated objects. Note and compare points F and B.

2. The resolving power for high-contrast objects is higher than for low
contrast objects. Note and compare points F and G.

3. The resolving power for high-contrast objects such as double stars can
be slightly higher for an obstructed system than for an unobstructed sys-
tem used in very fine seeing. Compare points F and F.

4. The resolving power of an obstructed system for low-contrast objects
such as planetary detail is less than that of an unobstructed telescope.
Compare points H and G.

This last situation occurs whenever the intrinsic contrast of the object is low

enough that the crossover point (P’) falls below the eye’s contrast threshold curve.
This conclusion is confirmed by the experiences of Pickering and Dall: “For the
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observation of low-contrast extended details, an unobstructed telescope is superi-
or to a telescope having a central obstruction.” (ref. 18.5.)

What is the largest obstruction that will not noticeably degrade a telescope's
resolving power? Unfortunately no consensus exists in the literature on this sub-
ject. Anton Kutter, a well-known advocate of unobstructed telescopes, wrote in
1975: “In my opinion the limit is a diameter of the obstruction of 10% of the ap-
erture.” (ref. 18.12.) Horace Dall found that the influence becomes noticeable
when the diameter of the central obstruction exceeds 20% (ref. 18.6), while inves-
tigators Steel (ref. 18.7) and Bouwers (ref. 18.10) put the limit at 25% to 30% of
the entrance pupil. These last values correspond, at least approximately, to the
Rayleigh limit.

However, this does not always imply that a telescope with a 30% central ob-
struction will perform in an essentially perfect manner. If it suffers from any ad-
ditional image aberrations or surface errors, the effects will accumulate in the
contrast transfer diagram. The final system may then no longer be diffraction lim-
ited.

This means that centrally obstructed systems must be considerably more ac-
curate than unobstructed systems to attain the same net performance. In other
words, Rayleigh's Y4-wave criterion, while perhaps adequate for an unobstructed
system, is insufficient for telescopes with a central obstruction!

18.8 Residual Aberrations

We have seen that a central obstruction causes a loss of contrast which decreases
the resolving power of the telescope, and that this effect is particularly important
for objects with low intrinsic contrast. The same reasoning applies to telescopes
with residual aberrations. The problems mostly likely to affect the axial perfor-
mance of an amateur telescope are spherical aberration and surface roughness.

It can be shown that the residual aberrations result in relatively little loss of
resolving power for high contrast objects. However, for objects with a low intrin-
sic contrast, a relatively large drop in resolving power will take place. This corre-
sponds with the experience of Conrady (ref. 18.11), who found that residual
aberrations and slightly imperfect worked optical surfaces do not much influence
the resolving power of the telescope for high contrast objects, and that the effects
are much more noticeable for objects with low intrinsic contrast.

18.9 The Value of the Contrast Transfer Function

The CTF curve gives a better overall picture of the telescope's optical quality, and
certainly yields far more information, than testing on double stars possibly can. It
takes into account not only the accumulation of diffraction effects but also the im-
perfections in the optical system, and in this realm, not only errors of fabrication
but also of design. The net capability of the telescope finds its expression in the
position of the contrast transfer curve with respect to the idealized curve.

For visual observation of low contrast details on extended objects—plane-
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Table 18.2
Resolving Power of the Eye
contrast (%) 89 70 49 38 27 16 10 6 2.5

resolving power (arc- 74 76 80 82 84 8 95 105 127
sec)

tary detail—it is difficult to define a meaningful resolving power for a telescope.
Parameters such as brightness of the image, intrinsic contrast, obstruction ratio,
image aberrations, and magnification, as well as the contrast sensitivity and visual
acuity of the eye must be taken into account. Because of this, any definition of re-
solving power is always subject to strict conditions.

Finally, because the resolving power for high contrast objects is not sensitive
to optical errors, it is obvious that the common practice of testing telescopes (and
camera lenses) with charts consisting of black and white bars is a poor test of op-
tical quality. Conclusions drawn on the basis of such charts do little to predict the
performance of a telescope on objects with a low intrinsic contrast. Test charts
with dark grey and light grey lines are more suitable for testing the performance
of a telescope.

18.10 Optimum Magnification

Telescopic magnification for a given detail is optimum when the visibility of that
detail decreases at both lower or higher magnification.

We often see the following stated: The resolving power of the unaided eye
amounts to 60 seconds of arc, and the telescope's resolving power is 120/D arc-
seconds. The optimum magnification is 60/(120/D), or 0.5 - D, where D is in mil-
limeters.

In this reasoning several important factors have been overlooked. The re-
solving power of 60 seconds of arc refers to a brightly illuminated test chart with
high contrast, and is not valid for everyone. Danjon (ref. 18.8) gives the values for
the resolving power of the unaided eye for well illuminated test charts shown in
table 18.2.

For lunar and planetary objects the contrast is generally much lower than
100%, so that a higher magnification is necessary to resolve the detail. Coleman
(ref. 18.9) studied the optimum magnification of a telescope. He observed test
charts with black/white and grey/white grids with a variety of intrinsic contrasts.
His results are given in fig. 18.9.

Depending on the intrinsic contrast of the object observed (5% to 100%),
Coleman found that the optimum magnification lies between 1.1 - D and 2.7 - D,
where D is the objective diameter in millimeters. This is considerably higher than
the 0.5 - D derived by the faulty logic above. In judging Coleman's results, how-
ever, bear in mind that the experiments were carried out under laboratory condi-
tions, using brightly illuminated test charts and optimal seeing conditions. For less
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Fig. 18.10 Optimum Magnification in the Presence of Scintillation.

brightly lit objects, the optimal magnification will be lower. This is also true when
air currents are present.

Moreover, from the data underlying fig. 18.9, it follows that the gain in re-
solving power above 1.0 - D magnification is no larger than 5%. In other words,
at 1.0 - D magnification the observer already enjoys 95% of the maximum resolv-
ing power the telescope can show him. Even at 0.5 - D magnification, roughly
80% of the telescope's full resolving power is attained.

According to Texereau, an experienced planetary observer, the optimum di-
ameter of the exit pupil for observing planetary details is 0.8 mm. This implies a
magnification of 1.25 - D. This is in accord with Coleman's results for objects with
low (10%) contrast.

Treatments of optimum magnification are usually based on perfect atmo-
spheric conditions. In reality, seeing conditions must always be taken into ac-
count. Under conditions of poor seeing, large instruments are relatively
disadvantageous because the influence of air currents increases with the square of
the entrance pupil diameter.

In fig. 18.10, we show how the optimum magnification and the objective di-
ameter for observing lunar and planetary details depends on scintillation. Scintil-
lation, expressed in arcseconds, is classed as: 0.3 arcsec, exceptionally good; 1
arcsec, good; and 5 arcsec, severe turbulence.
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From the diagram, we can see that for every degree of scintillation, there is
an optimum objective diameter. For severe turbulence, it is 150 mm; and for good
seeing, 500 mm to 600 mm. For exceptional seeing, the aperture is off the scale of
the chart. Note that for observation of planetary detail, instruments larger than 300
mm are only useful under good seeing conditions.



Chapter 19

Opaquing and Vignetting

Fig. 19.1 Reflections in an Unbaffled Telescope Tube.

19.1 Introduction

Few telescope makers pay enough attention to opaquing, or blocking stray light in
their telescopes. Good opaquing is of the utmost importance for daytime observa-
tion, and it is vital for the best night sky viewing and photography. Eliminating
stray light produces images with the highest contrast that can be obtained from a
given optical system.

The authors have evaluated a number of commercially available telescopes
with respect to their opaquing. Most manufacturers pay far too little attention to
this subject. Glossy baffle tubes, shiny telescope walls, and glaring internal stops
are the rule rather than the exception. Yet these evils can be avoided at relatively
low cost.

Consider the internal reflection in a refractor in which no opaquing measures
have been taken (fig. 19.1). Off-axis light simply reflects from the tube wall and
reaches the focal plane. In theory, at least, reflections from such surfaces are dif-
fuse reflections since the light is supposed to scatter in all directions. However, for
small angles of incidence, these surfaces tend to become mirror-like (see fig.
19.2), producing specular reflections. Since light usually enters telescopes at small
angles to the tube axis, this phenomenon occurs frequently.

The authors have measured the reflectance for flat black paint, flock paper,
and black velvet. For normal incidence, the reflectance of black paint is low, and
that of flock paper and black velvet is near zero.

However, at grazing angles of incidence, the reflectance, especially of black
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Fig. 19.2 Reflection from Various Surfaces.

paint, increases rapidly. At grazing angles of incidence, flock paper and especially
black velvet represent a considerable improvement over black paint. The reflec-
tance of flock paper is about twice that of black velvet. Black paint reflects about
a hundred times as much.

Therefore, if there is no space for mounting annular baffles, it is often worth-
while to cover the inside of a telescope with black velvet or flock paper rather than
black paint. When using black velvet the direction of the pile should be taken into
account.

The best, but most expensive, method of preventing reflections from enter-
ing the focal plane is to install annular baffles. For a maximum effect, such baffles
must have carefully designed diameters and spacings. Baffles require a larger tube
diameter, but the improved performance usually justifies the expense.

Baffling and shielding Cassegrain-like systems is notoriously difficult. Re-
flections occur along the inside walls at grazing angles of incidence, and, in most
cases, there is not enough space to install annular baffles. The inner surfaces of the
baffles and shields used should be scored, roughened, or threaded, then painted
matte black to break up the internal reflections and reduce glare. Covering some
surfaces with velvet or flock paper can be useful as well.

19.2 Baffles for Refractors and Newtonians

Fig. 19.3 shows how annular baffles are to be placed in a refractor. The positions
must be chosen so that no place on the wall illuminated by the entrance pupil can
be seen from the focal plane. Examples are given for different tube diameters. The
designer starts by drawing the auxiliary lines A~A, B—B and C—A. The graphic con-
struction of the baffles is then quite easy. When the instrument has a lens shade,
the auxiliary lines can start at the edge of this shade.

Note that the shaded areas cannot be seen from any point of the focal plane.
The unshaded areas can be seen, but are illuminated at near-normal incidence by
strongly reduced scattered light. Fig. 19.3 shows clearly the price of reducing the
tube diameter: the number of baffles increases rapidly.

The position of the baffles in a Newtonian can be found in a similar way (fig.
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Fig. 19.3 Baffle Positions in a Refractor.

19.4). The fundamental difference is that in a refractor the wall is illuminated di-
rectly only from the entrance pupil. In a Newtonian, illumination occurs not only
from the open end of the tube but also from the mirror. The designer starts by de-
termining diameter D,, chosen to be larger than D, so as to avoid vignetting ob-
lique bundles. The principle of the design is that no part of the tube wall A—J
should be visible from point Q (which corresponds to point Q). The first auxiliary
line is QA, after which the construction proceeds to B, C, et cetera. From the sec-
tion of tube wall J-K, you will see that no light can reach the focal plane P’Q’ via
the secondary mirror.

However, if the secondary mirror is relatively small, light reflected by the
wall opposite the eyepiece and between J and K reaches the eyepiece directly. It
is often useful to place additional baffles or black velvet at the front side of the
tube opposite the eyepiece.

As is the case with the refractor, the number of baffles increases rapidly as
the tube diameter decreases. To be effective, the baffles must be matte black,
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Fig. 19.5 Stray Light in an Unbaffled Cassegrain.

rough-surfaced, and sharp-edged. When constructing baffles, it is useful to make
a large scale drawing (preferably 1:1 or even larger) of the instrument. This is also
true for designing the baffle tube system in a Cassegrain, as described in the fol-
lowing section. Of course, baffle design can be carried out analytically, and only
simple mathematics is necessary.

19.3 Baffling for Cassegrain Telescopes

In Cassegrain optical systems, light entering the tube can reach the focal plane di-
rectly without being reflected by the mirrors (fig. 19.5). For daytime observation,
serious loss of contrast can take place. In order to prevent this, Cassegrain tele-
scopes must be provided with baffle tubes. The shape and size of the baffles de-
pends strongly on the configuration of the mirrors and the size of the field that
must be free of vignetting. When a large unvignetted field is desired, the diameters
of the baffle tubes and the central obstruction become quite large. Usually a cer-
tain off-axis light loss must be accepted to reduce the diameters of the baffle tubes.

Basically the baffle system must be designed in such a way that on the opti-
cal axis no vignetting occurs. So, for a beam of light that is parallel to the optical
axis, all light available must reach the focal plane. Before discussing the method
for designing a baffle system for a Cassegrain telescope, it should be remarked
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Fig. 19.6 Axial and Off-axis Rays in a Cassegrain.

that this is not a straightforward process, but an iterative process of successive ap-
proximations that goes on until an acceptable compromise between various con-
flicting demands has been attained.

We will first discuss the case in which a minimal light loss at the edge of the
field is allowed. This implies that no constraints are to be applied with respect to
the maximum allowable central obstruction. The designer starts by making a large
scale drawing showing the axial light and off-axis bundle illuminating the edge of
the desired field. (This is shown as two separate drawings in fig. 19.6. In a single
drawing, it will immediately become clear how baffles can be placed.) This deter-
mines the size of the secondary mirror. Next, for both cases determine which parts
of the mirrors do not participate in the image-forming process; then draw the re-
gions through which no image-forming light passes. These are shown as black re-
gions in fig. 19.6.

For the bundle parallel to the optical axis, two black zones occur. For axial
light shielding, we could place in these zones two cylindrical baffles, one, called
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Fig. 19.7 Baffles for a Cassegrain Telescope.

the rear baffle tube, projecting from the primary mirror toward the secondary mir-
ror; the other, the front baffle tube, extending from the secondary toward the pri-
mary.

However, if the oblique bundle must pass through these tubes without vi-
gnetting, the rear baffle tube must be shorter and have a somewhat different posi-
tion. We also note that if the front baffle must be a cylinder, it should be omitted
completely to avoid vignetting of the oblique bundle. If this is allowed, an oblique
entering ray could reach the focal plane directly.

To prevent the oblique ray from reaching the focal plane directly, make the
front baffle a diverging cone around the secondary mirror, as shown in fig. 19.7.
The degree of divergence is adjusted to fit the oblique bundle. It should be clear
that the conical front baffle increases the diameter of the central obstruction. This
is the price that has to be paid to avoid vignetting at the edge of the field of view.

We will now consider the case which is most often encountered, in which a
small central obstruction is desired and a considerable vignetting of the field is al-
lowed. In the literature, a 30% to 40% light drop-off at the edge of the field is con-
sidered normal for photographic use, and produces negligible deterioration in
image quality. For visual use, even larger values of light drop-off may be accept-
able in order to obtain the smallest possible central obstruction, and only a small
field of view is necessary.

Usually the front tube is assumed to be cylindrical in order to prevent enlarg-
ing the central obstruction, but the rear baffle tube may be made conical, because
the diameter at the front end of this tube should be as small as possible in order to
block direct oblique rays but not block the center of the bundle reflected from the
primary mirror, while the back end should be large to prevent additional and un-
necessary obstructions in the off-axis bundle. This important point will be eluci-
dated further on. Although the baffle design must be carried out in such a way that
no vignetting on the optical axis occurs, it is inevitable that oblique bundles will
be vignetted to some degree.

Although all Cassegrain-like systems are similar, the designer should be
aware that the size and placement of baffle tubes also depend on the position of
the entrance pupil, the limiting stop of the system, and the optical power of refrac-
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tive elements in catadioptric systems. For a two-mirror Cassegrain, the entrance
pupil usually coincides with the primary mirror. In the Schmidt-Cassegrain de-
sign, the entrance pupil is located at the Schmidt corrector. This makes the posi-
tion of oblique bundles in a Schmidt-Cassegrain somewhat different from those in
a Cassegrain, and this influences the layout of the baffle tubes.

In a Maksutov-Cassegrain, the entering light bundle will be widened and dis-
placed by the power of the meniscus corrector lens. This influences the baffle sys-
tem more than the near-zero power Schmidt corrector does in the Schmidt-
Cassegrain.

The design of a baffle tube system for Cassegrain telescopes consists of se-
ries of successive approximations. Every step should be accompanied with a com-
plete ray tracing for straight and oblique bundles. Because the process is difficult,
we give an example in the next section.

The following guidelines for the design of a baffle tube system in a Cassegrain
telescope may be helpful. Refer to fig. 19.8.

¢ D, is the entrance pupil, i.e., the aperture.
¢ D, is the secondary mirror illuminated by the axial bundle.
¢ D, is the largest allowable central obstruction.

e D, is the secondary mirror illuminated by the most oblique bundle,
unless this diameter is larger than D,.

¢ Dy is the desired field of view.
¢ D, should not be larger than D,.

¢ The ratio D/D, should not be larger than the ratio D,/D,. If it is, the
front end of the rear baffle tube forms an artificial central obstruction in
the conic bundle between the primary and secondary mirror. (This con-
straint is easily overlooked by beginning amateur designers.) Note also
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Fig. 19.9 Aperture Stops, Field Stops, and Vignetting.

that this condition changes when the telescope is a catadioptric Casseg-
rain.

In designing the baffle tubes, don’t forget that the rear baffle tube can be
stepped if this is easier to make than a conical baffle. The front baffle length, L,,
should be just enough to nearly touch the axial beam, or slightly shorter. The
length of the rear baffle, L,, must be such that the tip of the rear baffle lies on line
A-A, which runs from the tip of the front baffle to the edge of the desired field of
view.

It is difficult to design a baffle tube system for a 200 mm Cassegrain-like
telescope having a central obstruction smaller than 30% of the entrance pupil.
When a smaller obstruction is pursued in a single-minded fashion, the baffle sys-
tem that results causes such excessive vignetting that the useful field is consider-
ably reduced.

Sometimes the designer of a baffle tube system carries out a “stop analysis.”
In this analysis, the designer discovers how the various stops “look” from the focal
plane. Vignetting and stray light sources are readily visible for both axial and ob-
lique beams. Readers interested in this subject should consult reference 19.2.

The literature contains a variety of articles on the design of Cassegrain baf-
fles (refs. 19.3-19.5). In the most advanced of these (ref. 19.5), Alan W. Grey-
nolds gives a computer optimization method which designs the baffle tubes as
well as additional annular baffles to reduce stray light to an absolute minimum.

For visual use, we should point out that it is possible to use a telescope en-
tirely without baffle tubes. To intercept stray light, a small diaphragm can be
placed behind the eyepiece, in the plane of the exit pupil. This method can only be
used for visual observing, and is of no value for direct photography through the
telescope.

19.4 Stops and Vignetting

In the foregoing sections, we have mentioned stops, vignetting, and light drop-off
several times. In this section we examine these subjects more fully. In fig. 19.9a,
we see a single lens with a diaphragm in front of it. This diaphragm forms the lim-
iting stop, for both the axial and oblique beams. It, and not the lens, determines the
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Fig. 19.10 The Effect of Preceding Optical Elements on Apparent Stop Size.

aperture and thus the light-gathering power of the system. Such a diaphragm is
called an aperture stop.

An aperture stop also determines the position of oblique beams and the place
where they pass through the lens. This particular point is important because the
position of the stop often influences the off-axis image aberrations.

Each objective system also contains another type of stop—a field stop. Field
stops limit the size of the image field and determine the most oblique beam that
reaches the focal plane. They may be square or rectangular, as they are in a cam-
era, or circular, as they are in telescopes used in combination with an eyepiece.
The situation shown in fig. 19.9a is a simple case in which the size and the position
of the oblique beam are determined entirely by the aperture stop and the field stop.

In fig. 19.9b, however, quite another situation occurs. The diameters of the
aperture stop and the field stop are the same as in fig. 19.9a, but now part of the
oblique beam is cut off by the edge of the lens. This situation often occurs in am-
ateur telescopes, and is called edge vignetting. Rays more oblique than a certain
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Table 19.1
Edge Vignetting
Type Aperture stop Edge vignetting by
Newtonian Primary mirror Secondary mirror
Refractor Objective Focuser tube
Cassegrain Primary mirror Secondary mirror,
Baffle tubes
Schmidt/Mak Corrector Primary mirror
Camera
Schmidt/Mak Corrector Primary mirror,
Cassegrain Secondary mirror,
Baffle tubes
Schmidt-Cass Separate stop or Primary mirror,
Camera Corrector Secondary mirror

angle get cut off, resulting in light loss towards the edge of the field. In the chap-
ters on the design of various optical systems, this point has come up several times.

The aperture stops in fig. 19.9 were external to the optical system. When the
stop is inside the system, the situation changes. In a typical camera lens, fig. 19.10,
the aperture stop is an adjustable diaphragm between the lens elements. When the
front element has positive power, the ray bundle is narrowed, so its original diam-
eter is larger than the stop. The reverse occurs when the first element is negative.

Apart from the change in size, the entering oblique bundle “sees” the aper-
ture stop shifted to a new position. This means that the tilt point of the oblique bun-
dles does not occur at the actual position of the stop, but at its apparent position.
(In this case, the entrance pupil coincides with the apparent aperture stop.) Before
a skew-ray-trace analysis can be carried out, both the diameter of the entering bun-
dles and the position of the apparent stop must be calculated.

In an amateur telescope, vignetting is caused by other lens or mirror rims, or,
particularly in Cassegrain-like telescopes, by the baffle tube system. Table 19.1
gives the positions of the aperture stop and the place where edge vignetting usu-
ally occurs. In a number of cases central vignetting will also occur as a result of a
central obstruction.

Locating vignetting and determining its magnitude can sometimes be rather
complicated, particularly when the system contains baffle tubes. The degree of
off-axis light loss can be calculated using a standard ray-tracing analysis such as
the program available as an option with this book.

The method is as follows: Parameters for all the elements are fed into the
program. Stops and obstructions are entered as optical surfaces having zero pow-
er. Central obstructions, which cause vignetting, are also entered. Then the ray
trace is carried out for an axial beam and various oblique beams.

Our computer program has been written so that if a ray cannot pass an ob-
struction, or falls outside the rim of an optical element, it is not traced any further.
The off-axis light loss is calculated for various off-axis distances by counting the
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Table 19.2
Vignetting Parameters of a 200 mm f/10 SCT
(All dimensions in millimeters)
No.  Position in system Edge diameter Obstruction diameter

1. Corrector, retaining ring 200 (200) —

2. Secondary, retaining ring 200 (200) 68 (75)
3. Corrector, front side 200 68 (75)
4. Corrector, back side 200 68 (75)
5. Corrector, support 200 —

6. Front baffle, outside rear end — 68 (75)
7. Retaining ring, primary — 68
8. Primary mirror edge 201 (211) 68
9. Retaining ring, primary — 68
10. Rear baffle, outside front end — 41 (45)
11. Front baffle, inner rear end 66 (73) =
12.  Secondary mirror edge 60 (67) —
13. Front baffle, inside back end 66 (73) —
14. Rear baffle, inside front end 38 (42) —
15. Rear baffle, inside rear end 38 (42) (60) —

number of rays that reach the focal plane. If, for instance, 200 rays reach the focal
plane on axis, but only 150 rays reach the focal plane at some off-axis distance,
the light loss at that place is:

200 - 150

So0- - 100% =25%. (19.4.1)

The relative illumination amounts to 75% at that place.

We have performed this analysis for the 200 mm Schmidt-Cassegrain tele-
scope described in section 9.3. Its dimensions are given in fig. 19.11. Table 19.2
shows that a vignetting analysis of this system takes into account no less than fif-
teen places. The number in the table corresponds with the position numbers in the
figure.

In some places only edge limitations must be considered; in other places,
only the central obstruction; and at other places, both. Numbers between brackets
refer to alternative cases. Based on this table, five situations were analyzed with
respect to the light drop-off:

1. The configuration shown in fig. 19.11 with a 68 mm (34%) central
obstruction. The diameter of the primary mirror is 201 mm, which is just
sufficient to catch all outer rays of an axis-parallel bundle.

2. The same configuration as (1), but with a 5% oversize mirror (211 mm).

3. A configuration with a widened baffle tube system. Instead of an inner
rear baffle tube diameter of 38 mm, 42 mm is used. To stop stray light
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Fig. 19.12 Relative [llumination in the Focal Plane of a 200 mm f/10 Schmidt-Cassegrain Telescope.

from reaching the focal plane, the front baffle must then be widened to
75 mm, so that the central obstruction is increased to 37%. The diameter
of the primary is held to 201 mm.

4. The same configuration as (3), but with a 5% oversize primary mirror
(211 mm).

5. The same configuration as (3), but instead of a cylindrical rear baffle
tube, a conical baffle tube. The inside front diameter is still 38 mm, but
the back end is widened to 60 mm. This enlarges the field because the
back end blocks skew bundles. The conical baffle would make focusing
by moving the primary mirror either quite difficult or impossible.

In fig. 19.12, we graph the light loss curves for these five cases relative to
the axial bundle. Note that in the 37% central obstruction, the illumination will be
some 2% lower than in the cases of 34% obstruction.

The illumination curves of cases 1 and 2, and of 3 and 4, coincide. We con-
clude that the oversize primary mirror is useless in these particular cases, because
the rear baffle tube determines the vignetting for off-axis light.

Curve 5 is an interesting one. For off-axis distances less than 15 mm, it co-
incides with cases | and 2, because the front end of the rear baffle tube mainly de-
termines the vignetting. More than 15 mm off-axis, the back side of the rear baffle
tube also plays its part. A considerably larger field is obtained when the rear baffle
tube is conical.

The reader may have noticed that for most telescopes and astrocameras that
were treated in the foregoing chapters, the diameters of the various optical com-
ponents were not specified. The reason for this is that these diameters are partly
dependent on the compromises that the designer wishes to make between various
conflicting demands.

As soon as the designer has determined the optical data such as the axial
thickness and distances, radii of curvature and kinds of glass, the diameters must
be specified. As should be obvious, the minimum required diameters of the com-
ponents are determined by the axial bundle.

Next, the diameters may be increased for a wider field, but this depends en-
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Fig. 19.13 Stray Light in a Schmidt-Cassegrain Telescope Caused by Reflection at the Corrector.

tirely on the degree of vignetting and off-axis light loss that the designer is willing
to accept. In the presence of a secondary mirror, the maximum acceptable central
obstruction plays an important role too. As we have seen, in Cassegrain-like in-
struments the baffle tubes may be the determining factor.

In production telescopes, economic considerations often play an important
role in choosing the sizes of the optical elements. The computer program, with its
capability for performing the vignetting analysis, is an excellent tool for the de-
signer seeking the best compromise between the conflicting demands in a partic-
ular design.

19.5 Internal Reflections in Catadioptric Systems

Internal reflections in catadioptric telescopes can sometimes lead to a consider-
able loss of contrast. In fig. 19.13, we show a Schmidt-Cassegrain telescope. Nor-
mally, those ray bundles inclined at small angles relative to the optical axis will
be imaged in the focal plane. Bundles entering at larger off-axis angles will be re-
flected by the primary mirror and thrown on the back side of the corrector. Most
of this light passes through the corrector. Approximately 8% for a non-coated cor-
rector and 2% for a well-coated corrector is reflected back to the primary mirror
and thence to the focal plane, diminishing image contrast.

The authors have noticed that considerable loss of contrast can occur during
daytime observing with a non-coated corrector, especially when the object under
observation has a bright background. At night, Schmidt-Cassegrain telescopes
with coated optics show a considerably darker sky than those with non-coated op-
tics. As little off-axis light as possible should enter the telescope; this can be par-
tially realized by providing the telescope with a long lens shade.

Yet another source of reflections that occurs in Schmidt correctors is ghost-
ing. Ghost images result from reflections between the two surfaces of the corrector
plate. Ghosts appear as halo-like effects when bright objects are observed or pho-
tographed against a dark background.

Internal reflections and ghosts are less bothersome for bent correctors, such
as the Maksutov corrector. One European supplier has developed a special tech-
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Table 19.3
Reflection by Optical Glasses
Refractive index: 1.4 1.5 1.6 1.7 1.8 1.9
% Reflection: 2.8 4.0 53 6.7 8.2 9.6

nique for generating bent Schmidt correctors. Another technique for suppressing
these two sources of internal reflections is coating. Contrary to popular belief, the
elimination of reflections and the resultant gain in contrast is more important for
the observer than the gain in light transmission, which amounts to only 4% per
surface.

19.6 Lens Coatings

The unwanted surface reflectance of lens surfaces can be reduced by an optical
coating. The reflectivity of an uncoated lens surface depends on the refractive in-
dex of the glass and the angle of incidence. For normal incidence, the reflectivities
are shown in table 19.3.

Note that the reflectivity becomes quite high in high-index glasses. For an-
gles of incidence greater than roughly 30 degrees, reflectivity increases rapidly.
This rise is graphed in fig. 19.14.

To reduce unwanted reflections, we can coat the surface with a layer of a
substance having a refractive index equal to the square root of the index of the
glass. Nowadays, magnesium fluoride, a durable substance with a refractive index
of 1.38 at 550 nm, is the most commonly used coating. The optical coating thick-
ness is 1/4 the wavelength of the light we wish to suppress.

What happens in a coating on a lens?

Instead of one reflection at the air-glass interface, there are two. One occurs
at the air-coating surface, and the other at the coating-glass interface. The light
from the reflections interferes destructively because it differs by half a wave-
length. The shift of phase of a half wavelength occurs because the glass-reflected
light has traversed the coating layer twice. The result is that the reflection is min-
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Fig. 19.15 Reflectance of Magnesium-Fluoride-Coated BK7 Glass.

imized.

The effectiveness of the interference requires that both reflections have the
same strength. This happens when the ratios of the indexes at the two interfaces
are the same. For magnesium fluoride this occurs for glass having a refractive in-
dex of 1.90 (i.e., 1.38 - 1.38). For glasses with a lower refractive index, this coating
is somewhat less effective.

For BK7 glass, a magnesium fluoride coating reduces the reflectance from
4% to 1% at normal incidence. Because of the principle of energy conservation
the reduction of reflectivity results in a corresponding increase of light transmis-
sion, from 92% to 98% for a lens with two surfaces.

As can be seen in fig. 19.15, the efficiency of a single-layer coating is opti-
mum at one wavelength, and the reflectance for other wavelengths is higher. By
using multiple layers and a combination of different coating materials, the reflec-
tance can be reduced over a wider spectral range, or reduced to 0.25% or less over
a narrow spectral range.

Coatings have become a necessity, especially for modern telescope eyepiec-
es. These often contain many lenses, frequently employing high-index glass, and
large angles of incidence occur in the wide-field designs.
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Optical Calculations

20.1 Introductory Remarks to Chapters 20 and 21

In order not to discourage our readers, we have placed chapter 20 (Optical Calcu-
lations) and 21 (Design of Optical Systems) at the end of the book. Optics, by its
very nature, is a science with many and often complicated formulae, so it is un-
likely that a large number of telescope makers will be inclined to become familiar
with optical calculation and design. In our experience, though, telescope making
provides the deepest satisfaction to the telescope maker who not only constructs,
but also designs, his optics.

Chapters 20 and 21 are not intended io replace handbooks on optical design.
Instead, they are written to instruct the reader in the use of the standard optical for-
mulae. After reading these chapters carefully and patiently, the telescope maker
will be able to design excellent telescopes.

The reader should not be awestruck, frightened, or daunted by the many for-
mulae presented in these chapters. In the past, optical computing was time-con-
suming and burdensome, and this alone prevented amateurs from contemplating,
let alone attempting, optical design. Today, however, such formulae can be pro-
grammed on a personal computer—and satisfying results produced with remark-
able speed.

20.2 Methods of Optical Calculation

In chapter 3 we gave a brief account of image formation, and how the focal length
for a compound system can be determined. The formulae given in that chapter are
approximations: they neither take into account the thickness of the optical compo-
nents nor give any indication of the quality of the images formed.

The best method for determining the performance of an optical system is to
perform a skew-ray-trace calculation. This generates a set of spot diagrams for
various off-axis distances and colors, as described in chapter 4. However, because
running a full set of spot diagrams is still time-consuming, we need another meth-
od for evaluating designs in their early stages. Ideally, we would like to obtain a
sense of the influence of small changes of the design parameters on the optical per-
formance, the focal length, and the position of the focus. Since optical design is
often not a straightforward process, but proceeds iteratively, as a series of small
steps toward perfection, it is of the utmost importance that the designer maintain
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an overview of the changes, and possess some way telling whether each change
improves or worsens the optical quality.

With a new telescope design, the designer will start with approximations that
are quick and easy, but not very accurate. As he improves the system’s perfor-
mance, he relies more and more on the precise skew-ray trace, until the design can
no longer be improved. Given a design that already performs moderately well,
though, the early stages can be skipped, and the skew-ray trace used to arrive at a
final design.

This is the situation readers of this book will most often encounter with cat-
adioptric telescopes “predesigned” with the computer program which is an option
with the book. It is difficult to give rules for how to arrive at a final, fully-opti-
mized design because of the numerous types of designs and starting points. Fre-
quently, however, the design progresses through these four stages:

The paraxial calculation. This method, called a “first-order” calculation, is
carried out for the region in the pupil close to the optical axis, with small off-axis
distances and angles. This gives the position of the principal planes (described in
chapter 3) and the focal length of the system, but offers no information about im-
age aberrations. Having roughed out preliminary values for the radii of curvature,
thicknesses, and distances of the elements, the designer proceeds to:

The Seidel calculation. Using what is called “third-order” aberration theo-
ry, the designer explores the types and magnitudes of the image aberrations. The
Seidel method offers a quick optical evaluation, and is therefore well-suited to the
initial design stages. It is followed by:

The meridional ray trace. This technique gives rigorous results, but in one
plane only, that of the cross-sectional, or meridional plane. In most cases this cal-
culation is carried out for a small number of rays, typically the center ray (or “prin-
cipal” ray), a rim ray, and some rays between them. This method has been used
for a long time for presenting the optical quality of optical systems.

The three preceding methods can be carried out quickly with no more than a
small programmable calculator. When high-speed computer equipment is avail-
able to the designer, though, the meridional ray trace can be augmented with:

The skew-ray trace. In this technique, we calculate the paths of a large
number of rays covering the entire entrance pupil, to produce spot diagrams.
These show what sort of image the optical system will produce, and allow the de-
signer to study the system fully before it is built.

20.3 Optical Surfaces

Before treating methods of optical calculation, it is necessary to define the types
of optical surfaces used and how these can be described mathematically. From
the foregoing chapters, it is clear that plane and spherical surfaces are the most
frequently used, followed by paraboloids, hyperboloids, and ellipsoids. Occa-
sionally Schmidt surfaces are used.



Section 20.3: Optical Surfaces 245

Fig. 20.1 Conic Sections.

As far as plane, or flat, surfaces are concerned, no further explanation is nec-
essary.

20.3.1 Conic Sections

The circle, parabola, hyperbola, and ellipse are all conic sections. The sphere, pa-
raboloid, hyperboloid, and ellipsoid are three-dimensional surfaces generated
when these two-dimensional curves are rotated about their axes.

The origin of a conic section is shown in fig. 20.1. The circle is a section of
acone that lies on a plane perpendicular to the axis of the cone. For an ellipse, the
intersecting plane lies between perpendicular and parallel to a side of the cone.
When the axis of the plane containing the section is parallel to one side of the cone,
we have a parabola. When the angle is still larger, we have the hyperbola. Note
that in the opposite cone another hyperbola exists.

There are two types of ellipses: the prolate ellipse, with both focal points on
the optical axis, and the oblate ellipse, in which the focal points lie on opposite
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z=Sagitta

244, 20.2 Some Parameters of the Circle.

Table 20.1

Eccentricity and Schwarzschild Constant
Surface Eccentricity (e) Schwarzschild Constant (SC)
Circle 0 0
Parabola 1 -1
Hyperbola > 1 <-1
Prolate ellipse <land>0 <0and > -1
Oblate ellipse — >0

sides of the optical axis. It should be kept in mind that only the circle and the pa-
rabola are strictly defined, because only one circle and one parabola exist. How-
ever, an indefinite number of ellipses and hyperbolas can be drawn.

There are a variety of mathematical means of describing conic sections. We
have chosen to use the deformation parameter, also called the Schwarzschild con-
stant. The eccentricity, e, is related to the Schwarzschild constant (SC) as - 2. The
values of e and SC (Note: SC is frequently called K in the optical industry) are
shown in table 20.1.

The general shape is then defined by:
2
z = h (20.3.1)
r(1+ 1= B2/ (SC+ 1))

in which z is the “sagitta” or height with respect to the (X-Y) plane, A is the inci-
dence height, SC is the Schwarzschild constant, and r is the paraxial radius of cur-
vature. You may see these equations with the variable C in them, where C is the
reciprocal of the radius and is called the curvature.

For every conic section, there exists a reference circle (and in three dimen-
sions, a reference sphere) which has the same radius as the paraxial radius of cur-
vature of the conic section. fig. 20.1 shows a set of conic sections with different
deformations sharing a common reference circle. Note that even an aperture as
large as f74 occupies only a small part of the curve.
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For a circle (see fig. 20.2), the equation above reduces to:

z=r—Art—h. (20.3.2)

For a parabola, the sagitta is:

h2

Z=2—r

(20.3.3)
where r is the paraxial radius of curvature.

These formulae are important for the grinding of mirrors. As we have seen
in chapter 5, the difference between the shape of a parabola and that of a circle is
quite small. In a 200 mm f74 mirror, for instance, the edge difference, Az, is only
0.003 mm.

20.3.2 Higher-Order Surfaces

These are surfaces that are neither flat nor conic sections but nevertheless rotation-
ally symmetric. The most important optical higher order surface is the Schmidt
shape, sometimes called the “doughnut” profile. The general equation for a higher
order surface is:

2= AR+ Ah AR+ AR + AGR" (20.3.9)

In this equation, we start with the X-Y plane where h = X*+ Y>. While this
method is perfectly general, it is not necessarily the most useful way to represent
conic sections because faster methods of calculation exist. The exponents are even
because the surface is rotationally symmetric.

For generalized aspherics, the first term in eq. 20.3.4 may be replaced by eq.
20.3.1, 1/r by C, and SC by K, thusly:

2
z = Ch AR AR

1+ J1—(K+ 1)C*H?

See ref. 20.3. Note that A,, A,, etc. in this equation do not have the same value as
those in eq. 20.3.4.

Because this general equation is important, we will look at several examples.
Consider first, that it contains the equation of the parabola if the constant A, is set
equal to 1/2r and the other constants, A,, A,, A,, and so on, are equal to zero. For
the circle, we use the series expansion yielding A, = 1/2r, A, = 1/81°, A, = 1/1675,
and so on.

Consider now a Schmidt corrector. As we saw in chapter 8, the general equa-
tion of a Schmidt surface is:

7 = Ah® + Bh' (20.3.5)
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and even more accurately:

2= Ak + Bh* + Ch® + ... (20.3.6)

As the number of terms in this equation increases, the shape will be de-
scribed more accurately. What do these terms mean? Suppose, for the sake of ar-
gument, that we restrict ourselves to the paraxial region, and consider the first
term as representing a sphere of radius r. In this region, the higher terms represent
the surface deviation relative to the radius of that sphere. Outside the paraxial re-
gion, the first term represents a parabola, and the higher-order terms represent de-
viations from that parabola.

Note that polynomial aspherics do not scale linearly. For a scale factor, SF,
then a new value of z, z, must be used:

7 = ihz+ A—23h4+ A—35h6+—A—47h8+—A—59

- RO,
SE- sF SF SF SF

Note that /4 is not scaled when the scale factor is applied.

In chapter 8 we saw that for a Schmidt camera, the constants in the two-term
equation are:

2

A = L3 (20.3.7)
32(n-1)r
and
B -1
=— (20.3.8)
4(n—1)r

for a neutral zone at 86.6% of the radius. These formulae play an important role
in the paraxial and third-order calculations to be discussed later. The factors in the
three-term Schmidt equation are discussed in section 21.11.

In chapters 9 (on the Schmidt-Cassegrain) and 13 (on the Wright camera),
we introduced the term “relative power” for a Schmidt corrector. The relative
power factor, g, is defined as the optical power of the Schmidt corrector in a sys-
tem divided by the power required to make a true Schmidt camera with a mirror
having the same paraxial radius as the mirror used in the Schmidt-Cassegrain or
Wright camera. The relative power of the corrector in a Schmidt-Cassegrain is of-
ten less than 1, but it is considerably greater than 1 in the Wright camera. This rel-
ative power factor must be taken into account in the equations given above. For
the simple paraxial calculation the aspheric shape of the Schmidt corrector need
not be taken into account. For such a calculation only the paraxial radius of the
Schmidt shape is used, and this equals:

_4(-nr
(N2)’D*g

r

bar (20.3.9)
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Fig. 20.3 Terms Used in Paraxial Calculations.

where g is the relative power factor and NZ is the relative position of the neutral
zone. NZ is 0.866 for a corrector having the minimum of chromatic aberration.

20.4 Sign Conventions

Before starting optical calculations and derivations, we must be sure to understand
the sign conventions we will use, namely:

Light entering the optical system travels from left to right.

Distances from left to right are signed positive; those from right to left,
negative.

Curvatures with the convex side to the left are signed positive; otherwise
they are negative.

Intersection points above the optical axis are positive; those below the
axis are negative.

An angle between a ray and the optical axis is measured in the direction
of the ray. When this angle is up from the axis, it is positive.

The sign of the refractive index is the same as the sign of the direction in
which light travels in the medium.

In the case of reflection, therefore, the signs of the refractive indices are
reversed, so that n” = —n.

Surfaces are numbered in the sequence that they are hit by the rays.

20.5 The Paraxial Calculation

As mentioned before, the paraxial calculation is used to obtain an overview of the
geometry of a system—to find the distances between optical elements, the lens
thicknesses, and the radii of curvature—and, derived from that, the focal length
and the position of the focal plane.

The paraxial calculation is carried out in a region very close to the optical
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axis. Fig. 20.3 shows the geometry of the paraxial calculation. In the paraxial re-
gion, angles between the rays and the optical axis are so small that the sines and
tangents of these angles are very close to the angles themselves, and the cosines
of the angles are very close to unity. Moreover, the off-axis distance 4 is so small
that the value of the sagitta, z, is approximately zero.

Angles and off-axis distances in fig. 20.3 are shown considerably enlarged
for the sake of clarity. The following terms are defined:

h = height of the incident ray on the optical surface.
z = sagitta of the sphere at incidence height 4.

r = paraxial radius of curvature of the optical surface.
d = axial distance to the next plane.

S = axial distance between the optical surface and the intersection point
along the light ray without refraction or reflection.

S” = axial distance between the optical surface and the intersection point
along the light ray after refraction or reflection.

€ = angle of incidence at the optical surface before refraction or reflec-
tion.

“ = angle of refraction or reflection at the optical surface after refraction
or reflection.

o = angle between the ray and the optical axis before refraction or
reflection.

o~ = angle between the ray and the optical axis after refraction or reflec-
tion.

¢ = angle between the normal and the optical axis at the point of inter-
section.

n = refractive index of the medium before refraction or reflection.

n’= refractive index of the medium after refraction or reflection.

The formulae for the paraxial calculations are as follows:

MW+ €

1l

¢ }co +e = +¢ (20.5.1)

o' +€e =0

o="
\)
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o = ﬁ
S
h
¢ =-.
r
For small angles:
e_n
g n
€ =0-0 =ﬁ_h _(l_l)h h(l—l)=n’h[1—l,)
r S r S r r S
eomarntbe (b | ) - o(0-3)
r S r S r S r S
From these equations, we then derive:
S/ — n'
n, n'-n
=+
S r
or
, 1
§ = - (20.5.2)

l_ﬁ(l_l)
r n’\r §

From §’ and d, we find a new value of S for the next surface:
Sx +1 = N ,s - ds

where s is the number of the surface.

In this way, the location of the paraxial focus can be determined. As we saw
from fig. 3.5, the focal length of a compound optical system is the length of the
light cone which has a diameter equal to that of the entering bundle. In a paraxial
calculation, however, the height of the incident bundle is not considered, so we
must derive the focal length from the quantities S and S’. Since the definition of
the focal length is always based on an infinite object distance, the distance S of the
first optical surface will be infinite.

Fig. 20.4 shows the geometry of a ray passing a single lens. If only the first
surface is taken into account, the focal length equals S,”, or:

Si_f

h h

When more surfaces are present, we repeat this procedure:
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\ —
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h —
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—
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d , S2 -

Si S1 -

Fig. 20.4 First-Order Geometry of a Simple Lens.

f.5e
h™ h

We calculate the next ray height, k,, from the cone defined by 4 and S,’, and d, the
thickness of the lens:
S —d

h, = h'h—&h
1T T - h or: ‘—S',.‘

Substituting these results:

Hence we find the focal length:
_ S,l S’z e

f S,...

(20.5.3)

From this value of f and the last value of §’, we can calculate the positions of the
principal points of a lens, as illustrated in fig. 20.5.
Consider a biconvex lens with the following characteristics:

R, =+100 mm
R, = -600 mm
N = 1.5

glass

thickness = 10mm.

The position of the foci, the principal points, and the focal length are deter-
mined as follows. For the first surface:
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p !
2
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|
|| = -
|
|

Distance P; Py f

Fig. 20.5 The Paraxial Calculation of a Principal Point.

S, = oo
= 100 ’
r mml| e, "y 15 300mm.
n, =1 rﬂ+n1—n1 l+1.15061
n', =15 Siooon *
For the second surface,
S, =(8,-4d)
= 300-10 = 290mm
o= —600mm S, = ——2 = L = 166.507mm.
n, n,—n, £+1—1.5
n, =15 s, T, 290 -600
n, =1

This places f, 166.507 mm behind the lens.

Calculating backwards, we then determine the position of f,. For the first sur-
face:

§, = —eo
= —600 ’ -
r L O 1 1-155 - = ~1800mm.
n = -1 e e
n’1 =-15 Sl "

For the second surface, we find
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S, = (S,l_d)
= — 1800+ 10 = 1790mm
’ -1
ry = 100mm Sy = m = -171.291mm.
n, =-1.5 —1790 100
n, = -1

Therefore, f, is located 171.291 mm in front of the lens.

To determine the focal length, we can use either the left-to-right or the right-
to-left calculation. From left to right, it is:

po S8 300 166,507

= = 172.248mm
S, 290
and from right to left, it is:
po 5008 <1800 (171.291) | 475 4gmm

S, ~1790

The negative sign in the last value does not mean that the lens has a negative pow-
er, but only that the focal length is described as a distance measured from left to
right.

The distance from a principal point P to the lens surface S, is defined by:
S, =8~f
as shown in fig. 20.5. The position of the principal points is calculated as follows:

A

= 8§ —f = 166.507 — 172.248 = -5.741mm

Syn

The distance P, — P, is equal to 10 — 5.741- 0.957, or 3.301 mm.

=8 —f=-171.291 + 172.248 = 0.957mm

20.6 The Seidel Calculation

The Seidel, or third-order, calculation was derived in 1856 from the paraxial cal-
culation by Seidel to gain insight into the magnitude of the image aberrations of
an optical system without making a complete ray-tracing analysis. In the middle
of the 19th century, optical calculations were carried out entirely by hand, and ex-
act ray tracing was very time-consuming. Seidel’s method can still save a lot of
time in the early stages of roughing in a new design.

The term “third-order,” sometimes used for the Seidel calculation, and the
term “first-order,” used for the paraxial calculation, refer to certain properties of
the trigonometric functions. Image aberrations are highly dependent on the image
angle, particularly the sine and tangent functions. The sine may be expanded in a
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series,

sinx = x-—+2 X ¢ (20.6.1)

where x is in radians.

In paraxial calculations, the angles involved are so small that the sine of the
angle equals the angle itself, or sinx = x, which means that the higher-order terms
of the expansion are neglected. Only the first-order term in x is taken into account,
hence the name of the paraxial calculation.

For systems with larger angles, however, we must use more terms in the ex-
pansion in order to describe the imaging properties of the system accurately.
Seidel took the third-order term in x into account, neglecting the fifth, seventh, and
higher orders. The Seidel calculation takes its name from this fact. This method is
still frequently used in the initial design stage, especially when many optical com-
ponents are involved. More sophisticated schemes utilizing the fifth- and higher-
order terms are used by professional optical designers, but they involve very com-
plicated formulae.

For the practical optical designer, it is not necessary to give the derivation of
the Seidel formulae; anyway, modifications of the original theory have been
adopted over the years. For instance, H. Kohler derived simpler formulae than the
original Seidel formulae. We use the Kohler formulae here, though we still call the
calculation the Seidel method.

Unlike exact ray-trace methods, in which we find actual blur patterns, the
Seidel method treats every individual monochromatic aberration (spherical aber-
ration, coma, astigmatism, curvature of field, and distortion) as a separate calcu-
lation. The power of the method is that each optical surface makes its own
contribution to each of these aberrations, so that it is immediately evident which
of the surfaces has made the largest contribution to each aberration. In using the
Seidel method, the designer should recognize that the formulae are accurate only
for rather slow systems, with rather weak curves, and small ray angles.

The following method is used in making Seidel calculations. We first deter-
mine the focal length and the values of S, S’, and so on for each of the optical sur-
faces. Then all values of the radii of curvature r, axial thicknesses, and axial
distances, and the values of S and S’ are divided by the system focal length, so the
resulting numbers are correct for a unit focal length. The incident ray heights for
the system are computed next, likewise scaled so that the incidence height of the
entering bundle is equal to 1. As in the paraxial calculation, the incidence height
at the second surface is then:

S
h2=—,2~
S

And for the third surface:
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he = hy - S5
3 S12 *
For each surface, in fact, we find that:
h,_-S,
h, = % (20.6.2)

s—1

where s is the number of the surface.
We next compute the following auxiliary quantities:

1 1 1 1
(T O . 2063
o "S(rs ss) " (r S’) (2063)
1 1 1
Al—] = =~ 20.6.4
(n . S)s n' -8 ng-S, ( )
ds— 1
TH, = X —d,. (20.6.5)

. . P
15 g hg_y-hy

The summation sign X means the sum of all previous terms of the fraction after
this sign, and d,, is the distance from the entrance pupil to the first optical surface.
This is taken into account only for the first surface.

py = ——+TH, (20.6.6)
hs : Qs

P, = l(i _ i). (206.7)
Fs\n'y ng

Using these auxiliary quantities, we then calculate the aberration contribu-
tion for each spherical surface in this optical system:
Spherical aberration:

4 2 1
= h,- A= . 20.6.8
A =002 ag) (2059)
Coma:
B, = p,-A,. (20.6.9)
Astigmatism:
C,=p -A,. (20.6.10)

Curvature of field:

P,. (20.6.11)



Section 20.6: The Seidel Calculation 257
Distortion:

3
Ve =p,-A;+p,- P,

)

(20.6.12)

A similar method can be used for aspheric surfaces. Conic sections can all
be derived from a sphere; the deviation of the calculation method is small. To the
coefficient for the reference sphere (defined in section 20.3.1), we add the extra
term K:

K = 2= (20.6.13)

in which r, is the curvature ratio of the reference sphere, that is, the actual radius
divided by the system focal length.

Other aspheric surfaces cause considerably more trouble. While it is beyond
the scope of this book to treat all possible aspheric surfaces, we have included one
extremely important aspheric surface for astronomical optics: the Schmidt sur-
face. The profile is described using a paraxial radius of curvature with aspheric
factors, just as we did in the paraxial calculation. The aspheric factor is:

K, =8 (20.6.14)

4(n, - 1)r

in which n, is index of refraction of the glass for the design color, r,_ is the curva-
ture ratio of primary (i.e., the radius of curvature divided by the focal length), and
8. is relative power of the Schmidt corrector. The paraxial radius of curvature of
the Schmidt corrector r,,, (derived in section 20.3.2) is substituted for r, in the for-

mulae above. The surface coefficients are then calculated with the aid of following
auxiliary quantity:

The surface coefficients for the aspheric surfaces (designated with *) are as
follows:

A* = 8K} -K,- An, (20.6.15)
B* =TH -A* (20.6.16)
C* = TH: - A* (20.6.17)

P =0 (20.6.18)
V* = TH, - A (20.6.19)

The Seidel parameters for the whole system are the sums of the individual
surface contributions. So the Seidel sums are:
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ZA = ZA+ ZA*

l—>s 1—>s

zB = ZB+ ZB*

1->s 1—>s

Zc: ZC+ Zc*

l—>s 1-s

Ypr=3r

1->s

ZV: 2V+ Z*

1—>s 1->s

(20.6.20)

(20.6.21)

(20.6.22)

(20.6.23)

(20.6.24)

With the formulae given above, nearly all amateur optical systems can be an-

alyzed.

Now let us see how to use the Seidel sums to calculate the size of the image
aberrations. In the calculations above, we did not consider the focal ratio, the focal
length, or the image angle. The actual image aberrations depend on these quanti-
ties, and are calculated as shown below. In these equations, F is the effective focal
length, N is the focal ratio, and @ is off-axis image angle for which the aberrations

are calculated.

SPHERICAL ABERRATION
Longitudinal Aberration:

F
_EIVZAZA

Transverse Aberration:

F

. A
16N° 2
Coma

Transverse Aberration:

3F
—tan® - B
L)Y

ASTIGMATISM
Transverse Aberration (Tangential):

(20.6.25)

(20.6.26)

(20.6.27)
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——tan w(23 C+ ZP) (20.6.28)

Transverse Aberration (Sagittal):

— tan m(ZC + ZP) (20.6.29)

Transverse Aberration (Average Curved Surface):

-F 2
Iytan mZC (20.6.30)

CURVATURE OF FIELD
Tangential Radius of Curvature:

-F
3 SO TP (20.6.31)
Sagittal Radius of Curvature:
) (20.6.32)
XC+ZXP e
Average Radius of Curvature:
. (20.6.33)
2.-2C+ZX2P s
DISTORTION
tan’®
=22 (20.6.34)

2

When the spherical aberration is not equal to zero and coma is present, the
coma can be eliminated by changing the location of the entrance pupil. The posi-
tion for zero coma is:

B

= -F. e (20.6.35)
It must be emphasized again that all of these formulae are approximations.
Apart from the third-order aberrations we have calculated, there are fifth-, sev-
enth-, and higher-order aberrations which can occur. The higher-order aberrations
are completely neglected in the Seidel method, but can be quite important in sys-
tems with large image angles and fast focal ratios. Exact ray-trace analysis takes

all orders into account.

Third-order Seidel analysis is very useful in the initial stages of a design,
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when the designer is still trying to establish parameters such as the axial lens thick-
nesses and distances, the types of glass, the radii of curvature, and the lens bend-
ings. Despite the complicated appearance of the formulae, the sums can be
calculated very quickly with a programmable calculator or a computer, and the in-
fluence of small changes in the system parameters analyzed in a short period of
time.

When a calculation of the aberrations is made with the help of the Seidel
method, it is clear that criteria for the maximum acceptable aberrations must be
defined. The criterion is expressed as the diameter of the admissible spread figure,
in seconds of arc. The Seidel sums can be converted by multiplying by /7206,265,
where fis the effective focal length of the system.

Since coma and astigmatism only occur away from the optical axis, an off-
axis angle must be specified for them. When 0 is the maximum admissible un-
sharpness criterion, and ® is the off-axis angle, then the maximum allowable
Seidel sums are:

Apax = 0 16-% (20.6.36)
2
N
B = 08 57— (20.6.37)
Crax = 6.4 '2N . (20.6.38)
Ftan o

For example, consider a 200 mm /710 telescope for which we have estab-
lished an imaging criterion of 1 second of arc 15 minutes of arc off axis. The cri-
teria are | arcsecond = 0.0097 mm at tan15” = 4.36 - 103. The maximum Seidel
sums are then:

YA, = 0078

ZBmax
yc,. = 10.185.

0.296

Examine the tables on the next page as examples of the calculation of the
Seidel sums. These systems are also analyzed by skew-ray tracing in this book, so
that a direct comparison between the Seidel method and the exact ray trace is pos-
sible.

Note in the second table that the values of XA and B are not exactly zero.
This results from the fact that the construction parameters in table 7.2 are rounded-
off values.

Because the Schmidt-Cassegrain has strong curves, and also because the
Schmidt corrector is treated as a spherical surface with a strong aspheric deforma-
tion, the third order results will deviate somewhat from the exact ray trace. For ex-
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Parabolic Mirror
(R = 2000, F = 1000, SC = -1)

Surface R K A B C P \%
1 -2.000 -0.2500 -0.5000 -1.000 -1.0000 0
1* 0.015625 0.2500 0 0 0
z 0 —-0.5000 -1.000 —-1.0000

Ritchey-Chrétien Cassegrain
(see Table 7.2)

Surface R K A C P \Y
I -0.75 4.7404 -3.5554 2.6667 -2.6667 0
1* 0.336814 -5.3890 0 0 0
2 -0.3927 -1.8332 1.6423 -1.4712 5.0925 -3.2441
2% 13.583227 2.4930 1.9218 1.4815 1.1420
) 0.0112 0.0087 2.6770 2.4258 -2.1021

Schmidt-Cassegrain
(see Table 9.1)

Surface R K A B C P \%

1 0 0 0 0 0.5664
2 -22.2230 0.001 -0.0016 0.0233 0.0154 -0.5663
2% 6.122664 -25.4076  -0.0330 0.0000 0

3 -0.4034 30.5914 -7.5399 1.8584 -4.9574 0.7638
4 -0.1252 -8.7408 5.1205 -2.9996 159703  -7.5984
4* 56.370156 34194 2.6189 2.0058 1.5362
) -0.1366 0.1649 0.8879 11.0283  -5.2983

ample, if the design were optimized using only the Seidel method, so that XA and
LB were both zero, the design would still show aberrations when it was ray-traced.
The reason is that the Seidel calculation is an approximation.

20.7 The Meridional Calculation

Unlike the two previous approximation methods, the meridional calculation is an
exact method. It is an exact ray trace in which the path of each ray is computed
through the optical elements using the laws of refraction and reflection. The me-
ridional ray trace is restricted to a plane passing through the center of the elements
often called the meridional or tangential plane. It is convenient to think of this as
“the plane of the drawing.”

The equations describing the passage of a ray through a spherical surface are
given below, and shown in fig. 20.6:
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Fig. 20.6 Terms Used in the Meridional Calculation.
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SINE = —COSM + (‘—1 + l)smw (20.7.1)

r r
A = rsin(®+ ¢€) (20.7.2)
2= r—rcos(®+¢€) (20.7.3)

., n .
SINg” = —SInE (20.7.4)

n

o = on+e-¢. (20.7.5)

The ray intersects the optical axis at distance /, after the last surface:

[(, = h -+ 2. (20.7.6)
tan ®

The incident height in the focal plane at a distance /, after the last surface is:
x = h'—(l;-2)tanw’. (20.7.7)

These formulae are valid only for spherical surfaces, and can be used quite
easily with a small programmable calculator. Employing a meridional trace for as-
pheric surfaces is rather cumbersome because an iterative method must be used to
determine the point of intersection. A more effective method for calculating the
intersection points for aspheric surfaces is discussed in the following section.

20.8 The Skew-Ray Trace

20.8.1 Introduction

The best method for evaluating the performance of an optical system is to calcu-
late a series of spot diagrams; the skew-ray trace is used to do this. Skew rays are
rays that lie outside the meridional plane. Skew rays generally do not remain in
the same plane during their passage through an optical system, complicating the
calculations and requiring considerably more computing time. This explains why.
before the advent of programmable computing equipment, the method of skew-
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Fig. 20.7 Skew-Ray Tracing.

ray tracing was hardly used.

The trigonometric methods described in section 20.7 will not be used for the
skew-ray trace because the calculations are slow and not very accurate on small
computers. Instead, we have employed algebraic methods.

The skew-ray trace uses a different method to calculate each of the following
types of surface:

¢ plane surfaces

e spherical surfaces

¢ non-spherical conic sections

e arbitrarily defined rotationally symmetric surfaces.

In the skew-ray trace, the position of a light ray is defined by the X, ¥, and Z
coordinates of the intersection point in a certain reference or optical surface, and
by the direction cosines /, m, and a. In this scheme, / is the cosine of the angle be-
tween the ray and the X-axis; m, of the angle with the Y-axis; and n, of the angle
with the Z-axis (see fig. 20.7). Note that the X—Z plane is considered the meridi-
onal or tangential plane (“the plane of the drawing”), while the Y-Z plane is the
sagittal plane (“out of the page”).

When the calculation is started, the ray has the coordinates (X,, Y, Z ). and
travels in the direction (/, m,, n,).

The first step is the calculation of the intersection point at the next surface,
with the coordinates (X, Y, Z)). After we calculate the refraction or reflection at
the surface, the ray has the new direction cosines (/, m, n ).

Continuing the calculation, we treat the new surface as a new starting point,
so that:
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Fig. 20.8 Skew-Ray Tracing Through a Plane Surface.

In the following sections, we have shown rays in the meridional plane for the
sake of clarity, but it should be understood that the equations apply to skew rays.

20.8.2 Flat Surfaces

We first compute these auxiliary quantities:

The coordinates of the new intersection point are:
Xy = Xo1, - 1y

Yo=Y, -u,-m,.

(Note that Z = 0 because a plane surface is two-dimensional.)
Finally, the new direction cosines of the ray are:

lx = l’l.\' ’ [()

mg = WUo-m,

)

no= Ul (ni-1y+ 1.

20.8.3 Spherical Surfaces

We first compute the auxiliary quantities:

|r| = abs(r)
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Fig. 20.9 Skew-Ray Tracing through a Spherical Surface.

ﬁ = sgn(r)(r#0)

no=
t,=2,—-d
Z, =1t,—-r
Zr = t,—r

C=B+|LI A+ B (20.8.1)
14

The coordinates of the new point of intersection are:

Next:

Xs = X(;_C‘lo
Y.s' = Y(,-C-m(,

Z.\' = tn- C: n,.

C, = Ju-(CI-1)+1

P = Crfl“lshc'

i-

Finally, the new direction cosines of the ray are:
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/ Pa Py,

at d,
r=positive

at db
r=negative

da

P
li=u,-1,-5x
$ H.\ 0 r A

P
=W m, =Y
,n.‘ HA 'n[) r S

20.8.4 Conic Sections

The calculation of conic sections is based on the paraxial radius of curvature, or
reference sphere. The method of calculating the point of intersection of the ray and
the conic section is based on methods used in matrix algebra. There are two points
of intersection between a conic surface and a straight line (with the exception of a
parabola and a line parallel to its axis); only the intersecting point nearest the ver-
tex of the surface is relevant (figs. 20.10 and also 20.11). It is, therefore, necessary
to check only this point. Determining the new direction cosines is treated differ-
ently for reflecting and refracting surfaces, but in determining the point of inter-
section, it does not matter whether the surface is reflecting or refracting.

We begin by calculating the intersection of the ray with an auxiliary plane.
We calculate the following quantities, just as we did in section 20.8.2, above:

We then find the point of intersection (X, Y,, Z ) between the ray and the
plane:

Xr = Xn—l'l\'.l

(2]
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Fig. 20.11 Skew Ravs Reflected and Refracted at a Conic Surfuce.

Y\' = Yr) —W.-m,

Z =0.

I

Starting from the plane, we determine the intersection of the ray and the con-
ic surface:

A= [:')+m,2)+n,2,(SC+ 1)
B=2X.,1,+Y.-m,—r-n,

2 2
C=X+Y,.

A, B, and C are the three constants of the general quadratic equation. When
A = 0 there is only one solution. This is:

When A # 0, then the nearest point of intersection is determined from:

h. = —2C .
- B-(F-so
The intersection point between the ray with the conic section is then:
X, =X, +h. 1,
Y.=Y.+h.-m,
Z.=h,-n,.

In order to be able to calculate the refraction or reflection, we must first know
the direction of the normal to the surface at the intersection point. This is calculat-
ed with the aid of the following auxiliary quantities:

K. =(C+1)-Z—-r
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C=X+Y,

n, = JC+ Kf,

The direction cosines of the normal are:

X,
Xn = —
n,
Y,
Yn = -
n,
K.
7, = =
n

V/z = Xn : la + Yn s, + Zn n

0"

If Z - n, <0, the normal points in the wrong direction. This is corrected by
reversing the signs of the direction cosines:

Xn = _Xn
Yn = _Yn
Zn = _Zn

All the necessary quantities are now known. For reflecting conic surfaces the
new direction cosines are:

Although refracting conic surfaces are seldom used, we have included the
equations for refraction. We begin by calculating the intersection of the ray with
the auxiliary plane, as we did above, then find the intersection of the ray with the
conic surface:

C,=wVi-1)+1

A, = (V,— 1) (V,—1+2-C,)
B,=2-(1-C,)-(V,-1)
C.=1-C,.

If A, = 0, only one solution is possible:
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C.
[, ==
Bb
For all other cases:
-2C..
[vl = < .
2 78/7
Bb*( B[)#44Au : Cz) ! ’B ‘
b

This quantity should be positive. If it is not, then we have found the negative
root of the equation. The positive root is:

We next find the direction cosines of the normal to the surface:
= Xn+[v([u_xn)
m, = yn + l\'(mo - Yn)

= Zn + [\'(no - Zn)

[2 2 2
V, = Jl,+m,+n,.

Finally, the new direction cosines of the ray are:

Iy =1,/V,
mg=m,/V,
ng=n,/V,.

20.8.5 Higher-Order Surfaces

It is not possible to determine the intersection point of a ray with a deformed sur-
face directly; instead we use an iterative procedure. This means that we use a trial
value, then check whether the height of the calculated intersecting point coincides
with the height of the real profile (see fig. 20.12). As long as this aim has not yet
been achieved, we repeat the procedure using the previous value as the starting
point. Because of round-off errors, an iterative process must be stopped at some
point, otherwise the results begin to oscillate. A value for the error that is suitable
for microcomputers using double-precision variables is 10-'? millimeters.
We first calculate the curvature of the surface:

c =1

a
r

When ris e, C,=0.
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The process works as follows: we determine the point of intersection with a
reference surface, which can be either a plane or a spherical surface. This point
has the coordinates (X, Y,, Z,). For a plane reference surface, Z, = 0 and R, = X ?
+ Y 2. Using the deformation constants A, A,, ..., we find the height of the profile:

C, R
Z,= ——4 "M LA -R,+A, Rj+A; Ro+A, -R,+As-R,.

’ 1+ J1-C.-R,

We then compute the auxiliary quantities:

Ay. = 2-A, +4A, R, +6A;-R, +8A,- R, + 10A5 - R

ng = J1-R, C.

l, = X,-~(C,+n,-A)

a

m, = Yv ’ —(Ca +n,: AZ)
Fu = lo'la+mo'ma+no'na
G = Za - Z‘,

s = Mg F

a

from which we obtain a new intersection point:

X, = Gs‘lo"'Xv

s

Y, = G, -m,+7Y,

s

Z, =G, n +Z,

s

The new value for R, is then:

R, =X +Y. (20.8.2)
The height of the surface at that point is:

C, R
Z, = — < " 4y A R,+A, R,+Ay-R +A, R, +As R, .

’ L+ J1-C.-R,

This process continues until the difference in the profile heights (Z, - Z,) is
less than the difference criterion. If this value is larger than the criterion, then we

treat the new point as a new starting point:
X, =X

v s

Y

Y

v s
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Final Intersection .
Point X_Y,Z, [Reference First Slope
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Higher-Order
Surface

Final Intersection
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Second Approximation

The iterative process is shown
for a reference plane

Fig. 20.12 The Calculation of a Higher-Order Surface.

zZ =27

v s

and the procedure is repeated.
If the criterion is satisfied, then we continue the calculation as follows:

2 2 2
P, =1 +m,+n,

oo A/Pa-(nz—n'2)+n'2-F[2,
S |
Ga_ Fs—;ls'Fa

Finally, the new direction cosines of the ray are:

lS = us'lo-"Ga.la
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d=d;,+d, / d=dy3—d, . z
dyo

dg3

Fig. 20.13 Terms Used for an Axial Deviation.

S1

Fig. 20.14 Terms Used for a Transverse Deviation.

m

s us'm()+G(l‘m(l

ng,=W,-n,+G,-n,.

In our computer program, the variables X, Y,, and Z, are called X, Y, and Z,,
respectively. This is possible because the two sets of variables do not appear si-
multaneously.

20.9 Calculation of Non-Centered Systems

As is true in the calculation of centered systems, there are a number of ways to
compute non-centered systems. The method presented here is quite simple, and
has been chosen because it leads directly to the intersection points for each optical
element. This is extremely useful in making size or vignetting calculations.

An optical element can have three deviations with respect to another ele-
ment; this is demonstrated in chapter 17. The simplest deviation is an axial shift
of one element. In principle, nothing in the calculation is changed except that the
distance from the preceding surface is increased or decreased (fig. 20.13), and the
distance to the following surface is decreased or increased by the same amount.

For a transverse shift (see fig. 20.14), the calculation remains relatively sim-
ple:

In the X-direction:
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Fig. 20.15 Terms Used with Tilted Elements.

X, =X,+d,.

0

In the Y-direction:

Y =Y, +d

14 13 v
And after passing the shifted surface:
In the X-direction:

X =Y,-d

s s X

In the Y-direction:

Y, = Y,—d,.

s

A more complex situation occurs when elements or surfaces are tilted with
respect to the optical axis (see fig. 20.15a). The simplest method of calculating is
achieved by rotating the preceding surface around the vertex of the tilted element
(fig. 20.15b). The values of X , Z , I , and n, change with respect to the tilted sur-

face, but the Y and m values remain unchanged. We first assign values to the tem-
porary variables:

X, =X,
ti = t()
li = l()
n; =n,
We then find:
P, = sing
h, = cos@.

New values are then:
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Fig. 20.16 Terms Used in a Schiefspiegler.

X

4

Xi-hp+ti-Ph

ty=1t;-h,=X;- P,

o

o

l,= 1 h,+n; P,

n, =n;-h,—1;-P,.

If the rest of the system is tilted, nothing changes, but if this is the only tilted
surface, then it must be tilted back after the new values of X, Y,, Z and [, m, n,
are calculated. When the rest of the system is tilted, this is not necessary.

For a lens with an axial and transverse shift, there is no difficulty because
this calculation can be done simultaneously. When a surface is both tilted and
shifted, the axial shift must be calculated first, next the transverse, and lastly the
tilt calculated. The sign conventions are of the utmost importance in such work.

When an optical system has tilted surfaces, as, for example, in the Schief-
spiegler, use the method illustrated in fig. 20.16. Treat the main beam as an ob-
lique entering bundle for the first surface encountered. For each of the next
surfaces, project the distance between centers onto the axis of the previous sur-
face. In this way, you can find the transverse distance between the centers of both
surfaces. The tilt angle is the angle between the axes of the surfaces. The calcula-
tion is then carried out as described above.

20.10 Using Ray-Trace Results

In sections 20.7 through 20.9, we treated methods of meridional and skew-ray
tracing of various optical surfaces. The results of these calculations have two pri-
mary applications: first, determining the magnitude of image aberrations, and sec-
ond, determining the intercept height of the rim rays on the various optical
surfaces to establish the necessary diameter and, if required, making vignetting
calculations.

20.10.1 Magnitude of the Image Aberrations

We must clearly distinguish between the longitudinal and transverse presentation
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of image aberrations. The best-known longitudinal presentation is the longitudinal
spherical aberration (LA). To calculate this, we trace parallel rays entering the sys-
tem at various entrance heights (also called zones) until they intersect the optical
axis. The spread of the intersecting points along the axis with respect to the parax-
ial focus is the LA. The longitudinal presentation is interesting in the beginning
stage of a new design.

Transverse aberration (TA), in contrast, shows the spread of the intersection
points of the rays on a plane perpendicular to the optical axis. It is particularly in-
formative for the designer because it gives the size of the image blur in the focal
plane. Because the size of this image blur can be directly related to the sharpness
criteria (section 4.4), the designer can easily see whether or not the optical perfor-
mance is adequate. Such a conclusion cannot be easily drawn from the longitudi-
nal presentation.

The major problem with the transverse display is that the optimum position
of the plane of the presentation, or focal plane, may not be well-defined. In the
case of spherical aberration, the best focus (i.e., the sharpest image) lies farther
along the axis than the point where the image blur is smallest. This is illustrated
in section 5.2., for the spherical mirror. Particularly when the image aberrations
are large, as is often the case when a mixture of coma and astigmatism is present,
it is difficult to find the position of the best focal plane.

Our ray-trace program permits the user to find a best-fitting focal plane using
aprocess called refocusing. The computer holds the positions of all exit rays com-
puted in its memory. The user chooses a plane he expects to be close to the best
focal plane. From the size, shape, and distribution of light in the spot diagram, he
decides whether to shift the focal plane, and repeats this until the best focal plane
has been found. This procedure can be carried out for axial and off-axis images,
which also allows the designer to determine system’s field curvature.

20.10.2 Determining the Diameters of Optical Elements

To determine the diameters required for the optical components in a system, the
designer must know the intercept heights of the edge rays for a beam parallel to
the axis and for the most oblique beam, for every optical surface. Often we see that
vignetting occurs somewhere in the system, so that the full oblique beam cannot
pass. This was, for instance, the case for the Schmidt-Cassegrain discussed in sec-
tion 19.4, because of the presence of a baffle tube system. In such a case, it is not
necessary for all the other components to have the full diameter required to pass
the edge rays of the most oblique beam. The minimum size required for optical
components is determined by the height of the edge rays for a beam entering the
system parallel to the axis, having a diameter which is equal to the entrance pupil.
Often, the designer must compromise, and select optical component diameters
somewhere between the maximum and minimum required values.
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20.11 Other Optical Calculations

Many methods for the calculation and presentation of image aberrations exist. One
method of presentation which bears mention is the H tanU’ plot (ref. 20.4). H’
means the intercept height of the exit ray with respect to the optical axis at some
reference plane. Its calculation is described in this chapter. The reference plane
normally chosen is the paraxial focal plane. U’ means the exit angle with respect
to the optical axis. From the slope and the shape of the resulting plots, the designer
can draw conclusions about the aberrations present in the image.

Another common analytical tool is the optical path difference (OPD). In this
method, rays at various heights are followed through the system until they arrive
at the focal plane. The total length of the optical path of the ray, expressed in
wavelengths, is then computed. Where light rays pass through refractive elements,
the transfer lengths are multiplied by the refractive index of the glass. In a perfect
optical system, the path lengths of all the rays will be exactly the same; the light
will arrive in phase. If the rays arrive at the focal plane out of phase, aberrations
will be present. When the optical path length variation differs less than 1/4 of the
wavelength of the light, the system is normally considered diffraction-limited.
Readers interested in these subjects are referred to refs. 20.1 and 20.2.
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Designing Telescope Optical Systems

21.1 Introduction

In this chapter we describe design procedures for ten telescope types. These are
Cassegrains, Schmidt-Cassegrains, Houghton-Cassegrains, Maksutov-Casseg-
rains, Schmidt cameras, Wright cameras, Houghton cameras, Maksutov cameras,
doublet refractors, and triplet refractors.

Most of these systems are not difficult to design. Only the refractors and the
variants on the Maksutov pose any real difficulty. The reason for this is that a sys-
tem like a two-mirror Cassegrain is, in fact, a very simple optical system, and of-
fers just a few degrees of freedom. As soon as the configuration has been chosen,
the system is optically almost fixed. The only changes that can still be made are
the asphericities of the optical surfaces, and these are readily derived from
third-order Seidel theory. Thus, designing is a straightforward process of applying
established formulae.

The same is true for the Schmidt and Houghton derivatives, because the op-
tical power and curvatures of the correctors are relatively weak. These catadioptric
Cassegrains are simply modifications of a two-mirror Cassegrain, and can be de-
scribed with good accuracy with a number of formulae. This greatly facilitates the
design procedure.

On the other hand, refractor objectives and Maksutov systems offer the de-
signer more degrees of freedom. At the outset, it will not be immediately clear to
the designer what starting values he should choose for the optical parameters, and
what optimization procedure he should follow. In most cases, then, the design pro-
cedure for refractors must be iterative. The same holds true for Maksutov systems
because the corrector has highly curved surfaces in relation to its power. A
straightforward design process is possible, but would require very complex for-
mulae.

In the 1970s, Robert D. Sigler studied extensively various catadioptric Cas-
segrain systems (refs. 21.1, 21.2, and 21.3). His work opened up a large area of
telescope systems which are particularly interesting to the amateur. It is due to the
work of this researcher that we can present the design procedures for these sys-
tems here.

The telescope design program available as an option with this book performs
the predesign for all the mirror systems listed above; refractors have a separate de-

277
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f;

d U )

Fig. 21.1 Characteristics of the Cassegrain Telescope.

sign program of their own. For doing a design of Cassegrain and catadioptric sys-
tems, optimization by means of a skew-ray trace is required. This final “touch-up”
process takes only a little time because the predesign methods produce systems
that are already quite good.

21.2 Designing a Cassegrain

Cassegrain telescopes are preferred by many amateurs when a combination of a
short tube and a long effective focal length is desired. We described the general
layout of a Cassegrain in chapter 7, and discussed the relations among various pa-
rameters. Insight into the optical performance of four types of Cassegrains was
given there.

We present the following dimensionless quantities which were algebraically
defined by Schwarzwald (see fig. 21.1):

s_h_n
hi r

=2
D,

rR=4
fi

E=2t
h

M = % (secondary magnification)
1

B="%.
f

Note that f,, f,, r;, and r, are two focal lengths and radii of the primary and second-
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ary respectively; fis the focal length of the system.

Designing begins by determining the demands on the system. The basis of
the design is the geometric layout. The value of b, for example, is not fixed, but
depends on the thickness of the primary mirror, the type of the mirror support, and
the length of the focusing mechanism; it is the first design value to be defined. The
value of E will almost always be larger for small telescopes than for large tele-
scopes.

The secondary magnification, M, may be a design condition. This often oc-
curs when the designer wants to build a system having focal length fusing an ex-
isting primary mirror with focal length f,. M is then fixed by fand f;.

The maximum admissible obstruction, T, is often an independent design
condition. If this is the case, the secondary magnification will depend on the value
of T, chosen. Allowance must be made, in setting the size of the secondary mir-
ror, for oblique beams. The obstruction for only the axial parallel beam is usually
some 20% smaller. For example, if T, = 0.3, the design should specify T as (0.3
(02x0.3)), or 0.24.

From this value, we find the secondary magnification:

l+E
T

M =

1. (21.2.1)

The maximum length of the instrument is often another independent design
condition. In that case, the distance between the mirrors, d, is an important param-
eter. The secondary magnification can be determined as follows:

M = E+R

= . 21.2.2
T_R ( )

The parameters of the system are then calculated using the following formu-
lae, at least to the extent that they are not yet defined as design conditions.

_M-E

R = 21.2.3

M+1 ( )

E=M-(M+1)-R (21.2.4)

7= 1+E (21.2.5)
M+1

s = MU-R) (21.2.6)
M-1

At this stage, the type of Cassegrain has not yet been chosen. The formulae
above apply equally well for the classical Cassegrain, the Dall-Kirkham, the
Ritchey-Chrétien, and the Pressmann-Camichel. The type of Cassegrain is deter-
mined by the aspheric deformation of the mirrors.

The third-order Seidel coefficients for a two-mirror Cassegrain are:
Spherical aberration:
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2 — 3. —
A = “SCI‘[SCﬂ(ZiD }(M 1) 3(1 R) @127)
M
Coma:
2 M+ 1YY M-1)-R
B = 5+ [SC2+(M_ 1) ] s (21.28)
Astigmatism:
4M~R) M+ 1\ (M—-1) - R
Ceass = 2—“—[SC2+(M 1)] 3 . (21.2.9)
M*(1-R) - M’(1-R)

In order to simplify the formulae above, we introduce several auxiliary quan-
tities. These will also be used in the derivations of the Schmidt-Cassegrain sys-
tems, in section 21.4.

o= (%i })2 (21.2.10)
B = %33(1—1?) (21.2.11)
y = (_M_;Ii)le (21.2.12)
5 = A%z (21.2.13)
e = % (21.2.14)
9 = (1‘1:13(—_11_)3:;:_ (21.2.15)

Spherical aberration must be zero; that is, A_,, = 0. From this condition we
can determine the deformation constants (Schwarzwald constants) SC, and SC, of
the primary and secondary mirrors for the various types of Cassegrains.

For the classical Cassegrain, the primary mirror is parabolic (i.e., SC, = -1).
Eq. 21.2.7 may be reduced to:

SC, = —a. (21.2.16)

In the Dall-Kirkham, the secondary mirror is spherical (i.e., SC, = 0), so eq.
21.2.7 reduces to:
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Fig. 21.2 Parameters for a Cassegrain Telescope with Spherical Mirrors.

SC,=o0-B-1. (21.2.17)

For the Ritchey-Chrétien, both spherical aberration and coma are eliminated,
s0 A = 0 and B = 0. The resulting two equations with two unknowns are solved
thus:

SC, -(1 + [%3) (21.2.18)

SC,

M(a . §) , (21.2.19)
Y

Finally, in the Pressmann-Camichel, with its spherical primary, SC, = 0, so
€q. 21.2.7 reduces to:
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SC, = 1‘%@ = %—a. (21.2.20)

When an instrument is intended only for observation of objects of small an-
gular size (planets), both mirrors can sometimes remain spherical. Considering
that the spherical aberration of the primary mirror is partially corrected by the sec-
ondary mirror, above a certain focal ratio combinations in which the diameter
of the spread figure is smaller than the Airy disk must exist. Analysis shows that
for a given aperture the primary must exceed a minimum focal length. This de-
pends only slightly on the secondary magnification, M, and the value of R (fig.
21.2). For apertures from 100 to 350 mm, the minimum allowable focal ratio for
the primary mirror rises from 7 to 10.5. For any given aperture, the minimum sys-
tem focal ratio occurs when M is chosen to be 3.0. Fig. 21.2 shows clearly that it
is not possible to build an all-spherical Cassegrain with a short tube unless at least
one mirror is aspheric.
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21.3 Designing a Catadioptric Cassegrain

In the following sections we will discuss the design procedures for various cata-
dioptric Cassegrain systems. These systems consist of a Cassegrain system plus a
weak refractive corrector. The corrector may be a Schmidt plate, a two-element
Houghton corrector, or a Maksutov corrector. These instruments were described
in chapter 9 for the Schmidt, chapter 11 for the Maksutov, and chapter 13 for the
Houghton. We saw that all of them are capable of good to excellent performance.

Unlike two-mirror Cassegrain systems, catadioptric systems can produce flat
fields with good off-axis performance. Consider the catadioptric Schmidt-Casseg-
rain systems discussed in chapter 9. In the compact system, the corrector is placed
close to the secondary mirror so that it can support the secondary. In the non-com-
pact design, the corrector is placed farther from the primary, and the secondary
mirror must be supported with a spider (fig. 21.3). However, non-compact designs
generally offer better possibilities for correcting off-axis aberrations.

Since the starting point in designing a catadioptric Cassegrain is a two-mir-
ror Cassegrain, the equations for the system geometry (eqs. 21.2.1 through 21.2.6)
remain valid. These formulae are valid for both curved- and flat-field designs.
However, flat-field designs result only when the two mirrors have approximately
the same radius of curvature, provided the system is also free of astigmatism.
When a system suffers from astigmatism, the secondary mirror can be more
strongly curved to flatten the field. This may be carried out afterwards, during op-
timization of the designs, or when some design experience has been gained, taken
into account in the design as the ratio of the curvatures of the primary and second-
ary mirrors.

The starting point for a flat-field design is the system focal length, the dis-
tance from the front surface of the primary mirror to the focal plane, and the
knowledge that the two mirror curvatures must be approximately the same. Com-
bining B = b/f and eq. 21.2.4, we find:

B = 1—R(1 + l). 21.3.1)
M

Combining this with eq. 21.2.6, we find the secondary magnification:

_1+./1+4S(S-B)
- 2(S-B) '

For a flat-field system, the ratio of the focal lengths of the primary and secondary
mirrors, S, is approximately 1. The value of M is used to calculate the focal length
of the primary mirror, and also to evaluate eqs. 21.2.3 and 21.2.5.

As noted above, the starting point for a catadioptric Cassegrain is the
two-mirror Cassegrain in which the refractive elements are considered to have
zero power. In reality, the zero power assumption is not always true. Therefore,
after a predesign has been completed, the system must be skew-ray traced to ana-
lyze and minimize residual aberrations. Optimization procedures are described in

(21.3.2)
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section 21.12, and some results are shown in chapter 22.

When you introduce the real refractive element, watch for a shift in the focal
plane caused by the element’s optical power. It is often difficult to guess the mag-
nitude of this shift beforehand, because it depends on the shape and kind of the
corrector used.

The shift of the focal plane is most easily understood for Schmidt correctors.
In this type of corrector, the power depends on the paraxial curvature of its optical
surface. When the neutral zone of the Schmidt corrector lies on the optical axis,
the surface is paraxially flat and has no optical power. As the neutral zone is
moved towards the edge of the corrector, the paraxial curvature increases, and so
does the power. Thus the change in focal length increases as the neutral zone is
moved towards the edge.

The situation is different for the Houghton and Maksutov correctors. In the
Houghton system, the thickness of the lenses can initially be ignored.

When the design is optimized by ray tracing, the slight shift in the focus can
be corrected in one of two ways: by moving the secondary mirror and corrector
simultaneously, or by changing the curvature of the secondary mirror. Both meth-
ods proceed by trial and error until the original focus position is achieved. It
should be obvious, though, that in flat-field designs, changing the radius of the
secondary mirror involves some risk that the field will no longer be flat. This
means that considerable trial and error work may be necessary to determine the
best position and curvature for the secondary mirror, once the power of the cor-
rector or the field curvature is taken into account.

In the following sections, we will treat only the correction of aberrations, and
will not further discuss the two-mirror part of the design because the process is the
same for all of the telescope types. We wish to emphasize that the techniques are
based on Sigler’s formulae (refs. 21.1, 21.2, and 21.3), and that his design formu-
lae are derived from Seidel theory.

In discussing catadioptric designs, we will be using an additional dimension-
less number, namely, the ratio between the distance to the corrector and the focal
length of the primary mirror:

D = —¢. (21.3.3)

21.4 Designing a Schmidt-Cassegrain

As we saw in chapter 9, the Schmidt-Cassegrain telescope can provide excellent
optical performance for a system with only three optical elements. Although the
optical literature has paid a great deal of attention to the Schmidt-Cassegrain, this
type of instrument is scarcely ever found in professional observatories. The reason
for this is that large-diameter Schmidt correctors are expensive and difficult to
make. Observatories have instead concentrated their efforts on field correctors to
enlarge the field of their telescopes. For amateur size instruments, however, the
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situation is entirely different because the cost of manufacturing a Schmidt correc-
tor up to 500 mm in diameter is moderate. Above this size, the cost of manufacture
rises sharply.

Important constants for the Schmidt-Cassegrain are g, the relative power of
the Schmidt corrector (that is, the actual power divided by the power that would
be necessary to fully suppress the spherical aberration of the spherical primary
mirror), and SC, and SC,, the deformations of the primary and secondary mirrors.
A sphere has a deformation of zero, and a parabola’s is —1.

Sigler gives the following third-order formulae for the Seidel coefficients for
the Schmidt-Cassegrain (refs. 21.1 and 21.2).

Spherical aberration:

M+ I)ZJ(M— 1’1 -R)_,

A= l+SCl—[SC2+(M_1 " @21.4.1)
Coma:
2 M+ 1\ (M-1) - R
B=—+[SC +( ﬂ -g-D 21.4.2)
Yz 2T \M-1 M
Astigmatism:
2 3' 2
Czw_[gcﬁ(’”“”w;l) L _g-D° (21.4.3)
M*(1-R) M-1) 1 M (1-R)

Before starting the design procedure, the geometrical layout must be deter-
mined using the same formulae as for a two-mirror Cassegrain (eqs. 21.2.1
through 21.2.6). Once all main parameters have been calculated, the designer de-
termines the deformations of the mirrors and the power of the Schmidt corrector.
In the Schmidt-Cassegrain, the position of the Schmidt corrector is a free param-
eter. In most compact designs, the corrector distance, D, lies between R and 1.1 R.

In order to be able to make derivations from the formulae, the auxiliary quan-
tities (given in eqgs. 21.2.10 through 21.2.15) may be substituted into eqs. 21.4.1
through 21.4.3 above. The calculations can then be simplified using following
equations:

Spherical aberration:

A=1+S8SC,-(SC,+a)-B-g (21.4.9)
Coma:
B =08+(SC,+o)y—-g-D (21.4.5)

Astigmatism:

C=¢e-(SC,+a)d—g-D. (21.4.6)
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Fig. 21.4 Influence of Position of the Corrector for an f/10 Aplanatic Curved-Field Schmidt-Cassegrain
Telescope with one Aspheric Mirror.

These formulae give us the opportunity to find the conditions for which spherical
aberration, coma, and astigmatism are eliminated, because the values for A, B, and
C will then equal zero.

Before the design procedure is started, it is important to define what de-
mands are to be made with respect to off-axis aberrations. When a sharp axial im-
age is the only requirement (i.e., no correction of coma and astigmatism is
necessary), then both mirrors can remain spherical because the corrector lens can
completely eliminate spherical aberration. By substituting A = 0 and SC, = SC, =
0 into eq. 21.4.4, we obtain the following simple condition for such a system:

g=1-a-B. (21.4.7)

In the case of two spherical mirrors, coma can be eliminated by moving the
corrector farther from the primary mirror. The distance, D, is found by setting B =
0 and SC, = 0, and substituting eq. 21.4.7 in 21.4.5:
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D= d*roy (21.4.8)
1-o-B

Because the corrector has been moved, the system is no longer a compact design.
Equations 21.4.4,21.4.5, and 21.4.6 can also be used for finding design con-
ditions for other modifications. To maintain a compact design, for example, we
might choose to correct coma by aspherizing one of the two mirrors. If we choose
to aspherize the secondary while keeping the primary spherical, we find the fol-

lowing conditions from eqgs. 21.4.4 and 21.4.5:

g=1tB:8 (21.4.9)

and

(21.4.10)
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Fig. 21.6 Parameters for Compact Schmidt-Cassegrain Telescopes.

If, instead, we decide to aspherize the primary and leave the secondary
spherical:

g = dra-y (21.4.11)
D
and
SC, = a- B+%+8—1. (21.4.12)

Figs. 21.4 and 21.5 show the influence of the position of the corrector on the
Schmidt power, g, and the asphericities, SC, of the mirrors for aplanatic systems.
Fig. 21.4 shows data for an 710 curved-field design with a mirror configuration
similar to table 9.1. Fig. 21.5 shows data for an f74 flat-field design with the mirror
configuration given in table 9.3. Changes in the values of M and E change these
graphs.
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We have so far not taken correction of astigmatism into consideration. The
systems characterized by the eqs. 21.4.7 through 21.4.12 are generally not correct-
ed for astigmatism. However, Sigler has shown that within a family of aplanatic
systems (i.e., systems in which spherical aberration and coma are already correct-
ed), there are members for which astigmatism is corrected as well. For certain
combinations of M and E, therefore, these systems can be made both aplanatic and
anastigmatic.

Fig. 21.6 graphs values of M as the parameters E and R vary, for compact
designs (R lies between 0.9D and 1.0D) for a spherical primary and aspheric sec-
ondary, and for a spherical secondary and aspheric primary.

For a value of E=0.4 and R = 0.95, systems that are both aplanatic and anas-
tigmatic have values of M equal to 5.6 and 4.0, for the cases of a spherical primary
and spherical secondary, respectively.

If a compact Schmidt-Cassegrain that is both aplanatic and anastigmatic for
combinations other than those indicated in fig. 21.6 is desired, then it is necessary
to aspherize both mirrors. The power of the Schmidt corrector and the deformation
factors of the mirrors are:

gz D V+eEY (21.4.13)
D +D-v)
SC, = ﬁ(a+£‘a'Y'D‘8'D‘°"ﬂ)+ 8- 0+EY | (59414
v+7y-D D%+ D -v)
SC2=€"“‘Y'D"6'D'°‘"(}. (21.4.15)

9+vy-D

21.5 Designing a Houghton-Cassegrain

The Houghton-Cassegrain offers an important advantage: all surfaces can be left
spherical, because the Houghton corrector can correct both spherical aberration
and coma for every position of the corrector. This is not the case for the Schmidt
and Maksutov correctors, which eliminate spherical aberration, but correct coma
for one position only, if both mirrors are spherical. The Houghton corrector can
~orrect both because it consists of two elements. This also implies that the color
ierration can be corrected.

If the elements are placed close together and have equal power of opposite
iigns, they can be made of the same kind of glass. Furthermore, if we make radii
f curvature in pairs (i.e., r, = —r, and r, = —r,), then the lenses can be tested against
:ach other by means of interference. Although the literature advises against testing
he surfaces of the two elements against each other, amateurs should be able to get
iway with this because they can retouch the surfaces locally, and because the con-
;ave surface can usually be independently tested by a simple test such as the Fou-
sault or Ronchi test.

In chapter 13, we saw that the color aberration of the f/10 system was suffi-
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ciently low, but for the flat-field f75.3 design, this was not the case. Color aberra-
tion can be reduced by making the elements from glasses having the same index
of refraction at the design color, but different dispersions. Glasses with different
indexes of refraction could be chosen, too, but the design optimization procedure
would be very time-consuming.

Sigler derived the following equations for the Seidel coefficients, in the two
spherical mirror configuration of the Houghton-Cassegrain (ref. 21.3), without the
corrector:

Spherical aberration:

M+ 1)’(M-1)(1-R)

A=A, =1 - (21.5.1)
M
Coma:
2
B=A5=-2_2+(M+1)(A3'1_1)'R (21.5.2)
M M
Astigmatism:
2 2
C=A,= 4(2M—R) M+ 13) (M-1)R . (2153)
M*(1-R) M’(1-R)
For the corrector, he defined a number of calculation constants:
A = LZE (21.5.4)
nn-1)
A, = 2(2”—*12) (215.5)
(n-1)
A, = 2(n+1) (21.5.6)
nn-1)

In these equations 7 is the refractive index of the corrector for which the system is
designed.

Sigler then derived the equation for the Seidel coefficient for the spherical
aberration of a complete Houghton-Cassegrain system:

_ 2004, -4y)
L3

A A,. (21.5.7)

Spherical aberration must always be corrected, so A must equal zero. In that case,
the following equation is valid for coma:

_ —2Q 'A3
L2

B DA, +As. (215.8)
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Fig. 21.7 Parameters for Compact Houghton-Cassegrain Telescopes.

When we have an aplanatic system, so both A = 0 and B = 0, we have the following
equation for astigmatism:

C=D"A,-2D As+Aq. (21.5.9)

In these equations, Q is the bending coefficient of both corrector lenses, that is,
(ri+r)/(ry=r,); D is the distance from the corrector to the primary mirror expressed

in units of the focal length of this mirror; L is the focal length of the corrector el-
ement, expressed in units of the focal length of the primary mirror, f;.

From the equation for astigmatism, we find that astigmatism also can be cor-
rected when the corrector is at a distance from the primary mirror given by the fol-

lowing equation:
D = AS T ‘VAg_ (A4 ’ A6)

Ay

(21.5.10)

D is again expressed in units of the focal length of the primary mirror. This is a
quadratic function with two possible solutions, one—a compact design—with the
corrector close to the primary mirror, the other—a non-compact design—with the
corrector far from the primary. For a compact system, then, depending on the dis-
tance of the focal plane from the front side of the primary and the position of the
corrector, an aplanatic and anastigmatic design exists, for a certain secondary
magnification. Fig. 21.7 shows the values of M for these combinations, as E var-
ies, for values of R between 0.9 D and D. Here M is close to 3.6 for all values of
Rand E.

From the equations for spherical aberration and coma, we can derive the fo-
cal length of the corrector element and the bending coefficient of the corrector
lenses, as follows:

_(D-A;-A5)(2- A -4y)
Az~ Ay

L

(21.5.11)
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2
As—-D-A))-L
Q = (As=D-4) L (21.5.12)
2-A,
With these values, the radii of curvature of the first lens of the corrector can
be calculated:

r = M (21.5.13)
0o+1
r, = HIQ;_(';_I) (21.5.14)

Since the curvatures of the two lenses are equal in value but opposite in sign, it
follows that the curvatures r; and r, of the second lens are —r, and —r, respectively.

21.6 Designing a Maksutov-Cassegrain

The design procedure for a Maksutov-Cassegrain differs from those for the cata-
dioptric systems discussed above. While the Schmidt corrector and the Houghton
corrector have, in third order, little power and consist of relatively thin lenses with
moderate curvatures, a Maksutov corrector always has considerable power and
relatively thick lenses with—and this is the most important difference—relatively
strong curvatures. The Seidel theory has some difficulties with these optical sur-
faces. For this reason no direct derivations are made, as for the Schmidt and
Houghton correctors. For the Maksutov-Cassegrain the Seidel coefficients for the
corrector and the two-mirror systems are determined separately and added after-
wards. The maximum admissible values of these Seidel sums were discussed in
section 20.6.

Designing a Maksutov-Cassegrain is a trial-and-error procedure. The radii of
curvature of a Maksutov corrector are determined by the shape, the axial thick-
ness, the focal length of the primary, and the refractive index at the design color.
After the Seidel sums are calculated, a certain corrector is defined and the system
is analyzed. Then the shape and the position of the corrector are changed until the
system meets the desired criteria. After the configuration of the two-mirror set-up
has been determined, the Seidel coefficients (for a mirror part with two spherical
mirrors, as in section 21.5) can be calculated:

M+ 1)’(M-1)(1-R)

Agass = 1 3 (21.6.1)
M
2
2 M+1)Y(M-1

By = _2+( +1) (3 R (21.6.2)

M M

2 2

Copee = 4(M-R) (M+1)y(M-1)R ) (21.63)

M*(1=R) M(1-R)
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Unfortunately the Seidel coefficients of the corrector are not simple expres-
sions. According to Sigler (ref. 21.3):

4,3
Ao = —3an }21 3 (21.6.4)
(n+ D)(n*=1)"(Q* - 1)
{(Q+ 1) —Y[Yr*(Q-1)—(n" = 1)(Q + 1)]-
[Y-n(Q-1)-(n-1)(Q+ DI’}
2,2
Bcorr= —16n h 5" (21.6.5)
(n+ 1)(n* - 1)(Q*-1)
{(Q+ 1) =YY (Q-1)= (i’ = 1)(Q+ 1)]-
[Yn(Q-1)-(n-1)(Q + 1)]-
2
[1-¢}}+D-Am
(n—1)(Q+1)
—-8h
CCOrr— (I’l+ 1)(Q2— 1) (21.6.6)

{(Q+ 1) =Y[Yn’(Q-1)-(Q+ 1)(n" = 1)]

2

2n’ 2

|:l*( 2 1)"(Q l)jl }+2'D'Bcorr_D “Acorr
n° - +

In these formulae, 7 is the refractive index at the design color; 4 is the ratio of the
focal length of primary to the axial corrector thickness; Q is the bending coeffi-
cient, that is, (r,+r,) / (r,~r,); D is the distance from the corrector to the primary,
expressed in units of the focal length of the primary; and Y is the ratio of both in-
tercept heights in the corrector:

-1 2n
=l4—-"
(n+1)(Q-1)
Formulae 21.6.4 to 21.6.6 can be greatly simplified by defining the follow-
ing auxiliary quantities:

(21.6.7)
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np=n+l q;=0+1

n, = n-1 q,= 0" -1
ny=n-1 ¢g3=0-1

y=1--20 (21.6.8)

ny-43
Q =Y-n-q3-n3-q (21.6.9)
0, = Y(Y 1’ q3-n,-qy) (21.6.10)
0; = —8h (21.6.11)

n -4

2
Q4 = -2 (21.6.12)

ny-q,

The resultant simplified equations for the corrector are:
2 4
4.0,-h"-n 3 5
Acorr = % (q1—- Qs 01) (21.6.13)
q; Ny

2.0 k0,

By = —————-(¢1-0,-0,-Q)+D A, (21.6.14)
q2" Ny
2 2

Coorr = 03-(g,—-0,-0)+2D-B,, .. -D"-A_,,, . (21.6.15)

Adding the Seidel coefficients for the mirror part and for the corrector (see
above), we get the Seidel coefficients for the complete Maksutov-Cassegrain sys-
tem:

ZA = Acass +Acorr (21.6.16)
zB = Bcass + By (21.6.17)
ZC = Ccass + Ccorr . (21.6.18)

When these values meet the criteria, the corrector can be designed. First, the
power of the corrector must be determined:
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2
K = —3hn (21.6.19)

fi-ny-q,
As discussed in section 10.3, to obtain a better color correction, the power of the
corrector must be somewhat adjusted. The correction factor, K, is approximately
0.97. The curvatures of the corrector are then:

2.
r o= =M (21.6.20)
K- Kc "4
2.
ry = A N (21.6.21)
K- KC : q3

When all surfaces are held spherical, coma can be corrected as well, but only
under certain conditions. Fig. 21.8 shows how M varies relative to E, with various
corrector thicknesses and distances, for aplanatic compact designs. As we saw in
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Fig. 21.9 Aluminized-Spot Secondary Mirror Maksutov-Cassegrain Designs.

chapter 10, the degree of spherical aberration in a Maksutov system depends rath-
er strongly on the thickness of the corrector D,. The value of M also depends on
that thickness. For instance, for D_= 0.02 f|, the value of M is in the range 3.5 to
4.0, while for D_= 0.1 f;, M is approximately 2.7. For thin correctors the influence
of D/R is larger than for thick correctors.

For a given configuration outside fig. 21.8, coma as well as astigmatism can
be corrected by aspherizing one of the surfaces of the mirrors or by moving the
corrector farther away from the primary (the latter method results in a non-com-
pact design).

In designs with an aluminized-spot secondary mirror, the second curvature
of the corrector must be equal to the curvature of the secondary mirror. This places
an extra constraint on the design, and the designer is thus deprived of an important
degree of freedom. With this system, as we saw in chapter 11, spherical aberration
can be corrected, but coma and astigmatism remain present.

In principle spherical surfaces are used. From an analysis it appears that for
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Fig. 21.10 Compact and Non-Compact Single-Mirror Catadioptrics.

any given combination of system parameters (the focal length of the primary, the
distance of focus behind the primary, the axial thickness of the corrector, the de-
sign refractive index, and the extra color correction factor), there is only one sec-
ondary magnification for which spherical aberration can be corrected. (In systems
with separate secondaries, this is not the case.)

The design proceeds as follows. First, a secondary magnification is chosen,
and the system is optimized until spherical aberration is at a minimum. Note that
the distance from the corrector to the primary mirror must be the same as the dis-
tance between the mirrors. The predesign is correct once the curvatures calculated
for the secondary mirror and for the back side of the corrector are equal. If the mir-
ror curvature is larger, the value chosen for the secondary magnification was too
small; pick a new value and repeat the calculation.

Once the correct secondary magnification has been found, further optimiza-
tion by skew-ray tracing is necessary. This is more complicated than for systems
with a separate secondary because the curvature of the secondary mirror and the
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curvature of the back side of the corrector, which must be equal, are changing at
the same time. Note that when the back side curvature is altered, the front side cur-
vature must be recalculated.

Fig. 21.9 shows how the values of the secondary magnification vary depend-
ing on the back focus distance, with the corrector thickness, D, as an additional
parameter. Fixed values are the design refractive index, 1.51872 (BK?7 for 546.1
nm), and the color correction factor, 0.97. Both the degree of correction of spher-
ical aberration and particularly the secondary magnification, M, depend strongly
on the thickness of the corrector. For instance, for a typical value, E = 0.4, for cor-
rector thicknesses D :

D,=0.02f, : M=17.3
D,=0.1f, :M=47

21.7 Designing Single-Mirror Catadioptrics (Astrocameras)

Various combinations of a single mirror and a corrector were treated in chapters
8 (Schmidt), 10 (Maksutov) and 13 (Wright and Houghton). These systems are
normally used for photographic applications where the image lies between the
corrector and the mirror. With these systems, it is possible to achieve good sharp-
ness over a large, more or less curved field with a minimum number of optical
components (fig. 21.10).

When a much larger central obstruction, compared with the image diameter,
is allowed, it is possible to bring the image outside the tube by using a diagonal.
In the following sections, the design procedure of these single-mirror catadioptrics
will be discussed.

Seidel coefficients of a spherical mirror are:

Spherical Aberration A=1
Coma B
Astigmatism C

2
4

In all cases, for a single-mirror catadioptric, spherical aberration must be
corrected, that is, the Seidel coefficient for spherical aberration must be zero (A =
0). For an astrocamera, coma must be corrected as well, so B = 0.

21.8 Designing Schmidt and Wright Cameras

Schmidt and Wright cameras are aplanatic systems, that is, both spherical aberra-
tion and coma are corrected. The Schmidt camera, with its corrector at the center
of curvature of a spherical mirror, is also anastigmatic. In a Wright camera the cor-
rector is closer to the mirror, so the mirror must be aspheric in order to correct co-
ma.

The Seidel coefficients for both cameras are:
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A

1+5C-g (21.8.1)
B=2-gD. (21.8.2)

When the power of the corrector, g, and D are both O, the corrector is a
plane-parallel piece of glass in contact with the primary. To correct spherical ab-
erration for this case, the mirror must be parabolic, that is, SC must be —1.

The following equations give the power of the corrector and its distance from
the primary in units of the focal length of the primary for all spherical aberration-
and coma-free systems:

-1 (21.8.3)

(21.8.4)

Astigmatism can be corrected only when the corrector is located at the center of
curvature of the primary, i.e., in the special case of the Schmidt camera, where D
= 2. In the case of the Schmidt-Newtonian, with a spherical mirror and the correc-
tor displaced from the center of the curvature, coma is present.

21.9 Designing a Houghton Camera

For the Houghton camera the mirror is always spherical. To design a Houghton
camera, a method of calculation similar to that for the Schmidt and Wright cam-
eras can be used. First, the position of the corrector must be given. Spherical ab-
erration and coma can be corrected for every given position of the corrector.
Astigmatism can only be corrected when the corrector is near the center of curva-
ture of the primary.

Using the same symbols as we used as in section 21.5., the Seidel coeffi-
cients for the Houghton camera are:

Acorr =7 2 z{n +2 40 -202n + l)} (21.9.1)
L(n-1)* 2n

Beonw = —iL'Hl) +D- Ay, - (21.9.2)
L' (n—1)n

Calculate these auxiliary quantities:

Al = _n+2 (21.9.3)

n(n-1)>
_2@2n+1)

> (21.9.9)
(n-1)
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2(n+1)
= =7 21.9.5
nn-1) ¢ )
Then find the following:
D— _
L= (D-2)(24,-4y) (21.9.6)
Az
2
(2-D)-L
=«-P) L 21.9.7
0= 557 (21.97)
The radii of curvature of the first lens are:
2-fi-L(n-1
r o= 2 fi Ln-1) (21.9.8)
0+1
2-f;-L(n-1
ry = f‘—(n) (21.9.9)
0-1

Since the curvatures of the two lenses are equal but opposite, the radii of the
second lens are ry = —r, and r, = —,.

21.10 Designing a Maksutov Camera

The mirror of the Maksutov camera is spherical, and the meniscus corrector lies
nearer the mirror than the corrector in a Schmidt camera. Spherical aberration can
be corrected for every position of the corrector. Coma can only be corrected for
one corrector location; this depends on the thickness and refractive index of the
corrector.

The method of derivation of the corrector shape is identical to that used for
the Maksutov-Cassegrain (section 21.6). However, the magnitude of the aberra-
tions that must be corrected in a single-mirror Maksutov telescope is different
from that in a Makustov-Cassegrain. As we saw in section 21.7, for a single spher-
ical mirror, the Seidel coefficients are A = 1, B = 2, and C = 4. The Seidel coeffi-
cient for the corrector should have the opposite sign. For example, a visual
instrument should have A .= -1, and an astrocamera should have B = -2.

As we showed in chapter 10, as the corrector thickness increases, it becomes
less strongly curved, and the distance between the corrector and primary at which
coma is corrected decreases. Furthermore, the residual aberrations also decrease.
As we saw for a 200 mm f/3 Maksutov camera, a corrector thickness greater than
30 mm is impractical. However, the correction of astigmatism requires a thick cor-
rector.

21.11 The Shape of the Schmidt Corrector

In sections 21.4 (Designing a Schmidt-Cassegrain) and 21.8 (Designing Schmidt
and Wright Cameras) we employed third-order predesign methods, for which only
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the overall power of the Schmidt corrector was required. After the data of the pre-
design have been determined, the predesign must be optimized by means of ray
tracing (section 21.12), and to do this, we need to determine the exact shape of the
corrector.

The equations given below are valid for the Schmidt camera, the
Schmidt-Cassegrain, and the Wright camera. The relative power factor g (defined
in section 20.3.2) comes into play. In the Schmidt camera, it is 1.0 by definition;
in a Wright camera this factor will be larger than one, and in most Schmidt-Cas-
segrain systems, smaller than one.

In section 8.3, we pointed out that the equation of the corrector surface may
consist of two, three, or even more terms. For slow systems, two terms often suf-
fice to describe the surface adequately, but for fast systems, the third term must
also be taken into account.

The coefficients in the terms depend on the position of the neutral zone, the
radius of curvature of the mirror, and the refractive index of the glass. The shape
of the Schmidt profile must be chosen so that the optical path length from the en-
trance pupil to the focus is the same for all zones. The constants can be derived by
using a paraxial ray and a second ray through the neutral zone.

We will use the following quantities:

h, = radius of the neutral zone

D = diameter of the corrector (entrance pupil)

NZ = relative position of the neutral zone ( = 2k, /D)
r = radius of curvature of the mirror

n = refractive index for the design color

z = deformation.

To reduce the complexity of the formulae, we introduce the following auxiliary
quantities, based on the derivation given in ref. 21.4:

h
h, = - (21.11.1)
r
P,=2h, J1-h (21.11.2)
h
f== (21.11.3)
Ph

a = r[l —;] (21.11.9)
201K

b=r-a (21.11.5)
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c=rfl-h (21.11.6)

(r+a—b—c).

(21.11.7)
1-n

X =

The two-term formula for the Schmidt shape given in section 8.3 applies

when the neutral zone lies at 86.6% of the radius (NZ = 0.866), because the color

aberration is then reduced to a minimum. For an arbitrary position of the neutral
zone, the two-term equations are:

: = Ah* + Bh' (21.11.8)
2 2
A = (;(’Z)—l')DS 21.11.9)
n-— r
B - -1 1.11.1
s (21.11.10)
n-— r

These equations are used in the ray-trace program that is an option with this book.

Often the maker of a Schmidt corrector wishes to minimize the volume of
glass that must be removed. This is achieved when the edge thickness of the cor-
rector is the same as the center thickness or the thickness at the edge of a hole
made for the secondary support. For this case, we calculate the position of the neu-

tral zone as follows:
H,+H,
NZ = [2X -
D

where H, is the minimum radius, either zero for the center or a value for the radius
of the hole, and H, is the radius of the edge of the corrector.
The three-term equations of surface are:

z = AR® + Bh* + CK® (21.11.11)
-
A = f'ﬁ (21.11.12)
. r n_.
3x—2h2-A
B=—71"— (21.11.13)
hn
2
h -A-2
Cc=-"= = ) (21.11.14)
h

When a corrector has a relative power of g, then the coefficients of the sur-
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face are:
A=A-g B=B-gandC=C-g. (21.11.15)

Please note that the values of A, B and C are NOT programmed into our
ray-trace program. To use three-term instead of two-term surface equations, the
designer must calculate the values of A, B, and C separately and insert them into
the higher-order surface equation as aspheric coefficients.

21.12 Optimization Techniques

Despite their sometimes complicated appearance, the equations given in the pre-
vious sections, indicating the values of the corrector shapes or asphericities of the
mirrors, are all third-order approximations. The primary advantage to using these
formulae is that the method of design is straightforward, and little design experi-
ence is required. Although the formulae will lead to solutions that are close to the
final design, it is usually necessary to optimize the systems by means of an exact
ray trace, minimizing residual aberrations as much as possible.

Only for two-mirror Cassegrains is a ray trace optimization not necessary,
because the third-order equations given in section 21.2 give designs that are very
close to the final design. Nevertheless, an optimization procedure similar to the
method for the catadioptric systems, described below, can be used. Unlike the
straightforward calculations done in predesign, final design optimization involves
some trial and error. During this work, the designer will gain a sense of the influ-
ence of small changes of optical parameters on the residual aberrations.

As we pointed out in section 21.3, the design formulae for catadioptric sys-
tems ignore the optical power of the corrector; only its corrective action is taken
into account. When a real corrector element is introduced, the focal position and
the focal length of the mirror system are changed, and residual aberrations appear.

The ray-tracing program first prompts the user for the data obtained from the
predesign program. Next, the designer makes minor changes in the optical param-
eters to restore the original focal position. This is done by moving the corrector
and secondary mirror combination, or, in the case of two-mirror systems, by
changing the radius of the secondary mirror.

Because changes in the power of the corrector will result in a shift of the fo-
cal plane until the final design has been obtained, it is useful to define some toler-
ance for the position of the focal plane.

Now the process of optimization begins. It consists of finding a particular
combination of two or three parameters—the shape of the corrector, the position
of the corrector, and (if there is an aspheric mirror surface) the degree of aspheric-
ity—for which axial and off-axis aberrations are smallest.

During optimization, the designer should keep certain ground rules in mind,
rather than changing every parameter in sight. In Schmidt correctors, for example,
the paraxial power depends on the position of the neutral zone. A Schmidt correc-
tor with its neutral zone at 86.6% of the radius has the minimum color aberration
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Fig. 21.11 Optimization Procedure for an Optical System.

possible. Other positions of the neutral zone may be chosen, of course, but they
will result in greater color aberration. While optimizing the shape of a Maksutov
corrector, the designer must remember to alter both corrector radii so that the cor-
rector always satisfies the achromatization formula given in section 10.3.

Optimizing a system such as the Houghton is more difficult than optimizing
a Schmidt or Maksutov system because there are more degrees of freedom. Start
by changing the radii of curvature of both lenses in pairs at the same rate, and ex-
haust the possibilities before changing them independently. The distance between
the lenses is another free parameter to test for its effect, but such changes should
be made systematically. Only when color aberration cannot be suppressed suffi-
ciently with lenses made of the same glass, should the designer resort to two dif-
ferent glasses with the same design index but different dispersion.

Spherical aberration must be eliminated first. Unless the axial spot diagram
is smaller than the Airy disk, the system will never have value as an astronomical
telescope. Next, trace an oblique beam consisting of five rays through the system,
as shown in fig. 21.11. The tilt angle of this beam should be defined in the x-di-
rection.

To trace this beam, use a square regular distribution with an intercept of 0.5
x D (see section 22.4.1). The principal ray will also be traced, and is shown as ray
a. These rays will form a pattern in the focal plane that is symmetric with respect
to the line c—d. The y-coordinates of the points c, a, and d will always be zero, and
the y-coordinates of the points » and e will be of equal value but opposite sign. The
coordinates of the five resulting intersection points help the designer decide what
residual aberrations are present. Please refer to fig. 21.11 for the following cases.

Incase 1,

Xe=Xqg = Xg=Xg = Vg Yp
and:
X, = Xx,.

At first sight, it appears that the image is simply out of focus, that is, that field cur-
vature is present. However, this configuration may also indicate astigmatism if the
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intersecting plane happens to lie exactly midway between the tangential and sag-
ittal focal surfaces. Consult fig. 4.12, which shows how curvature of field occurs.

If the intersection points remain on the same side of the principal ray as they
do in the aperture pupil, then pure field curvature is present; if they are reversed,
then astigmatism is present. If b and e are interchanged while ¢ and d are not, then
the sagittal focal surface is closer to the last optical surface. If ¢ and d are inter-
changed, but b and e are not, then the tangential focal surface is closer to the last
optical surface.

For cases 2 and 3:

—X, = X,— Xy
and:
X, = xb.

This is pure astigmatism. These are similar to case 1, with the difference that the
interception plane is not exactly midway between the tangential and sagittal focal
surfaces. Refer to fig. 4.9, on astigmatism.

In case 4:

Xp=Xe = Yp—Va
and ¢ and d coincide.

This configuration indicates pure coma. When ¢ and d do not coincide and/or
the other conditions are not complied with, then curvature of field and/or astigma-
tism may also be present. Refer to fig. 4.7 for more about coma. Lastly, cases 5
and 6 demonstrate two of a very large number of possibilities that indicate a com-
bination of aberrations is present.

The trial and error optimization procedure is continued until the optimum
values of the power and position of the corrector and the asphericities of the mir-
rors, if any, are found. As more experience is gained, the process of optimization
can be done in a shorter period of time.

21.13 Designing a Two-Element Achromatic Refractor Objective

21.13.1 Introduction

An achromatic refractor objective is somewhat more complicated to design than
the previously discussed designs. Not only must the monochromatic aberrations
be corrected, but also considerable attention must be devoted to correcting chro-
matic aberration.

For a given aperture and focal ratio, the designer has control over the kinds
of glass used, the curvatures of the surfaces, the axial thicknesses of the lens ele-
ments, the width of the air gap, and whether the positive lens or negative lens will
be placed in front. With these parameters, it is possible to correct longitudinal
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chromatic aberration, spherical aberration, coma, and spherochromatism in an
achromatic doublet, as we saw in chapter 6. We also saw that astigmatism and cur-
vature of field cannot be corrected in a doublet, but that over the 1- to 2-degree
image angles normally used, these aberrations are not detrimental. Lateral color
and distortion are very small, and need no separate correction.

It is possible to write an entirely automatic design program for an achromatic
refractor objective, one that is small and simple enough to run on a personal com-
puter. In such a program, the designer need only enter the aperture, desired focal
ratio, and the kinds of glass available, and the program will design the system. The
problem with such a program is that it does not give a beginner designer any in-
sight into the effects of variations in various parameters on the image quality.

The method we describe allows the designer to control the computer and to
remain a participant in the design process. Within seconds of changing a parame-
ter, for example, increasing or decreasing a radius of curvature, the computer dis-
plays the results of the change. The designer rapidly gains a feel for the design,
and an understanding of the sensitivity of each parameter of the design, while the
tiresome calculations are done by the computer.

21.13.2 Doublet Design Procedure

The design of an achromatic refractor doublet is a trial and error process. The de-
signer varies the available degrees of freedom until the aberrations have been re-
duced to an acceptable level.

It is important to work systematically, and to vary only one parameter at a
time. In order to keep a good overview of the operations done, it is necessary to
write down the main results on paper, or use a printer to keep a record of changes.

The design procedure includes four steps. These are:

1. Selecting the kinds of glass,

2. Correcting spherical aberration,

3. Correcting coma,

4. Minimizing the spherochromatism.

In practice, steps 2, 3, and 4 are carried out partly at the same time. For the
sake of clarity, however, we will discuss them separately. If one or more of the
above mentioned aberrations cannot be reduced to an acceptable level, the design-
er returns to the first step and selects another combination of glasses.

21.13.3 Achromatizing a Doublet Lens

Before discussing the factors that determine the color aberration of a doublet, we
must first determine the axial longitudinal color aberration of a single positive
lens. In fig. 21.12, we show the foci of a single lens in blue, green, and red light.
We begin by asking: What is the difference, (f;—f3), between the foci of a thin lens
in red and blue light? (Note that subscript R means red, B means blue, and G
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Blue Green Red

v

Fig. 21.12 Longitudinal Chromatic Aberration for a Simple Lens.

means green light.)
The following equation is valid for a thin lens:

1 1 1
1 _ (,,_1)(___)_ (21.13.1)
f Rl RZ

Thus:
N 8 S
f - s "R)(R, Rz)
and therefore:

fr—1Is _ _ 1 1
AR ””)(Rl Rz)'

Now, since (fy—f;) is small in comparison with f;, we see that f; - f; = f2, so
that:

fr—=Js _ _ 11
A ("5 "’*)(R1 Rz)'

Then, because:
1 1 1
e oo ig3)
fo % R R
by substitution, we derive the following:

fr—fp _ np—ng

fe ng—1

which simplifies to:



308 Chapter 21: Designing Telescope Optical Systems

+—#—HEdge Thicknesses

Axial Thicknesses

Fig. 21.13 Dimensions Characterizing an Achromatic Doublet.

_fe
Tre=15 = ng—1 ’
np—ng

The denominator in the term on the right is called the dispersion number, or Abbe
number.

This means that the focal difference between red and blue for a single posi-
tive lens equals the focal distance divided by the dispersion number. This also im-
plies that the axial color aberration will be small when the dispersion number is
high.

The derivation of an expression for the color aberration of an achromatic
doublet is somewhat more complicated, but is interesting because the expression
yields insight into the factors that control this aberration. It is difficult, for in-
stance, to see why a fluorite objective can have much better color correction than
a doublet with conventional crown and flint glasses without understanding the
derivation of these expressions. Fig. 21.13 shows the dimensions used to charac-
terize an achromatic doublet. The quantities used in the derivation for color aber-
ration are:

* R, R,, R,, and R, are the radii of curvature of the optical surfaces;

® Ny, Ngps Hgps By Ry, and ng, are the refractive indices for the first (posi-
tive) and the second (negative) lenses in green, blue, and red light,
respectively;

*  fous Joi Jris Jor Joor and fp, are the focal lengths of the first (positive) and
the second (negative) lenses in green, blue, and red light, respectively;

*  focomb /5 comps @04 fr comp ar€ the focal lengths for the combined system
for green, blue, and red light, respectively;

* and V| and V, are the dispersion numbers for the first and second lenses.

Since the focal length of a combination of thin lenses close together is defined by
the equation:
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T (o & PUCR (e

fcomb fl fZ R] Rz R3 R4
the focal lengths of the doublet for blue and red light are:
1 1 1 1 1
= (ng — 1)(— - —) + (ng - 1)(— - —) (21.13.2)
/3. g R, R, b Ry Ry
1 1 1 1 1
= (np — 1)(————)+(n - 1)(———). (21.13.3)
TRy R R, R, fo Ry R,

To make an achromatic doublet for visual use, the focal lengths in red and
blue light must be equal, and their reciprocals must also be equal. Combining egs.
21.13.2 and 21.13.3:

(ng,— 1)(L—i)+ (ng,— 1)(L_L)

R, R, R, R,
1 1 1 1
= - 1) === 1) ===
(g, )(Rl R) + (e, )(R3 R4)
and simplifying:
1 1 1 1

- = — — - - =0. 21.13.4
(Rl R2)(nB‘ ng,)+ (R3 R4)("32 ng,) ( )

Substituting dispersion numbers into eq. 21.13.4, we obtain:

1 1
+

fG, Vi sz' v,

=0

thus:

_f G, _ E
fo, V2
This means that the focal lengths of the components of an achromatic dou-
blet are inversely proportional to their dispersion numbers. Consider the Fraun-
hofer doublet discussed in section 6.3, with a dispersion number for the positive
element of 64.4, and for the negative element of 37.27. In order to obtain the same
focal length for blue and red, the power of the positive element must be equal to
(-64.4 /37.27), or —1.73 times the power of the negative element. The powers of
the individual elements are calculated from the total focal length of the system,
f5 comb Thus from eq. 21.13.5 and the expression for two thin lenses in contact, we
find the powers of the elements in green light:

(21.13.5)
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1 _ #( 4 j (21.13.6)
fGI chomb Vl a V2

1 1 ( v, )
—_ = . (21.13.7)
fGZ chomb V2 h Vl

These are called the thin lens achromatization formulae. For example, given the
200 mm f715 doublet described in section 6.3, we find these focal lengths for the

front and rear elements:

1 _ 1 644 1 _
Fo = 3000 64a-3727 - Taed o = 1204mm

1 _ 1 37.27 _ 1 o
fo. 3000 3727-644 2184 fg, = —2184mm.

We can also calculate the secondary spectrum of a doublet. This is the dif-
ference between the focal length of the doublet in green light and the focal length
in red and blue, i.e., (frgcomb —fGeoms)- Ve begin by deriving expressions for the

powers of the individual elements:

1__1 W
fo, Jo ., Vi—V2
1 1 1
£ o)
fe, @ R, R,
n; —1
Vl = Gl
Np, — g,

(L _ L) - 1 (21.13.8)
R, R, chomb(Vl - Vy)(ng, —ng)

(L _ L) - 1 . (21.13.9)
Ry R, chomb(V2 —V)(ng,—ng,))

Next, we find the reciprocal focal lengths in green and in the combined red and
blue light:

1 L1 11 11
S D T e LI _pfLi_L
* (15, )(Rl R2)+(n62 )(R3 R4)
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From this we derive an expression for the reciprocal of the secondary spectrum,
that is, the focus difference between green and the combined red and blue focal
length:

combo

fG fBR
1 _ 1 — comb comb _ (21.13.10)
fRBcomb chomb chomb .fBRcomb
1 1 1 1
(nBI —nGI)(IT]—R—Z)‘F (ﬂBz*nGZ)(E-R—L‘).

Substituting eq. 21.13.8 and 21.13.9 into 21.13.10 and simplifying, we ob-
tain a very important relationship that gives the amount of secondary spectrum of
an achromatic doublet:

nBI _nG, l’le—nGZ

_ _ nBI R, B, nRz
RBcomb V] — Vz

fe “frB (21.13.11)

comb comb

The fractions in the numerator are the relative partial dispersions. By custom, we
use the blue F-line (486.13 nm), the red C-line (656.27 nm), and the green e-line
(546.07 nm) as reference wavelengths. The relative partial dispersion is expressed
then as P, which is shorthand notation for:

np—n,
PF, e = . (21.13.12)
Rgp—Ne

In the case of the classical Fraunhofer doublet given above, the partial dis-
persions are 0.4532 and 0.4689, and the Abbe V numbers are 64.40 and 37.27, for
F and e light, respectively. Placing these values in eq. 21.13.11, we find the sec-
ondary spectrum to be:

Af _ 0453204689 _ 1
f - 6440-3727 1728

or somewhat over 1/2000 of the focal length in green light.
For compactness, we rewrite eq. 21.13.11 as:

P F,e, — p F,e,

= ———2 . f. 21.13.13

Because of the importance of the values P and V in achromatizing doublets,

optical glass manufacturers supply plots of these values, as a P-V diagram, for the
optical glasses they supply.

Let us now explore how the designer can find suitable combinations of opti-
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Fig. 21.14 P-V Diagrams for Schott Glass Combinations for Some Achromatic Refractor Objectives.

cal glasses for a doublet with the help of a P-V diagram. From eq. 21.13.13, it is
evident that to minimize secondary spectrum, we must find a combination in
which the difference between P, and P, is as small as possible and the difference
between V, and V, is as large as possible.

Fig. 21.14 shows the P, versus V diagram for Schott glasses. The three lines
connecting types of glass represent the three refractor objectives described in sec-
tion 6.3, i.e., the Fraunhofer objective using BK7 and F3 glasses, the Apoklaas
with FK51 and KzFSN2 glasses, and the Fluorite objective made with LaK10 and
fluorite.

To minimize the secondary spectrum of the combination, the two glasses
must be chosen so that the connecting line runs as much as possible horizontally,
resulting in a small AP, and the distance between the points in the horizontal di-
rection is as large as possible, yielding a large AV.

Notice that the line for the Fraunhofer objective is rather steeply inclined.
The reason for this is that P and V are closely related. All “normal” glasses lying
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near a straight line in the P-V diagram are shown in the figure as a thick dotted
line. For normal glasses it is not possible to find suitable combinations of glasses,
that is, combinations for which the P-values are close together.

For certain of the modern glasses, however, the close relationship between
P and V is broken to some extent. This is true especially for fluor-crown glasses
that deviate quite strongly from the normal glasses. One very striking exception is
fluorite, an artificial crystal. Both fluor-crown and fluorite lie far from the line of
normal glasses, so that it is relatively easy to find a large AV for two materials.

Furthermore, it is rather easy to find a suitable negative element glass in
combination with fluor-crown or fluorite, having approximately equal P -values.
An additional advantage of fluor-crown and fluorite is their relatively low refrac-
tive indices. This facilitates finding a glass for the negative element with a higher
refractive index. This is favorable because, as we saw in section 6.1, for easy cor-
rection of spherical aberration the negative element glass should be chosen to have
a higher refractive index than the positive element.

This is absolutely necessary when a cemented doublet is being designed be-
cause spherical aberration cannot be corrected if the design indices are equal (as-
suming spherical lenses). For a cemented doublet, there are additional problems.
Only a limited number of matched glass combinations exist for an aplanatic design
(i.e., a design free of both spherical aberration and coma) with good color correc-
tion, and these can be found only by trial and error. This is a laborious process be-
cause spherochromatism remains to be corrected, and because the choice also
depends on the focal ratio of the doublet. Therefore, it is not surprising that we of-
ten find cemented doublets that have not been fully corrected for coma.

The designer must decide at the outset whether he wants to design a normal
achromat or an achromat with special (but expensive) glasses. As we have seen,
with the normal glasses a secondary spectrum of 1/2000 f will be obtained. With
fluor-crown glass, this can be diminished to 1/8000 f, and with fluorite to 1/16,000
f- The newer glasses also allow higher speed refractor objectives to be designed:
with fluor-crown, f710 is possible in a 200 mm refractor, and with fluorite /8 is
possible. This results in shorter tube lengths than conventional refractors.

Based on the foregoing discussion and on chapter 6, the following rules ap-
ply to the choice of glass:

1. The glass of the positive lens must have a higher Abbe number than the
negative lens.

2. A large difference between the Abbe numbers is desirable because less
strongly curved surfaces are necessary, allowing spherical aberration
and coma to be more easily minimized.

3. The negative lens should preferably have a higher refractive index than
the positive lens, especially when the lenses are cemented.
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4. The difference of the relative partial dispersions of the two glasses
should be as small as practical so that the secondary spectrum will be
small.

As soon as a choice of glass has been made, the powers of the positive and
negative elements can be computed using eqs. 21.13.6 and 21.13.7.

First Lens: AN ( Y j (21.13.14)
G chomb Vl B V2

Second Lens: L = —1 . ( V2 ) (21.13.15)
G, chomb V2 - Vl

These formulae give the powers of the two elements for which, to a first approxi-
mation, the foci for red and blue will coincide. Strictly speaking, these formulae
are valid only for very thin lenses. Since they have finite thicknesses, the red and
blue foci differ slightly. This can be corrected by giving the positive or the nega-
tive element a slightly higher power by means of an amplification factor. The de-
termination of this factor is discussed later on.

The fact that lenses have finite thicknesses sometimes causes another effect:
for certain combinations of glasses the final design can have unacceptably large
residual spherical aberration, coma, or spherochromatism. If this happens, the de-
signer must select another combination of glasses. The number of possible glass
combinations is very large. From a selection of 30 suitable crown and 30 suitable
flint glasses, there are 900 possible combinations.

A major concern of the professional designer, particularly when large series
of optics must be made, is the cost of the glass and of manufacturing the lenses. In
that case the designer will try to find a combination of glass types which allows
the lowest cost consistent with an acceptable level of aberrations. For the amateur
telescope maker, cost is often a less important factor because he will make only
one objective. Therefore, the amateur can select more expensive glasses, and ob-
tain a lower level of secondary spectrum.

There is still another difference between professional and amateur manufac-
turing. The amateur can remove a small amount of residual spherical aberration
by aspherizing one of the surfaces. Because of the high costs of generating asphex-
ic surfaces, the professional must nearly always specify spherical surfaces.

21.13.4 Correcting Spherical Aberration

Although we will discuss designing a Fraunhofer doublet (positive lens in front),
the following method is also valid for the Steinheil form, with minor modifica-
tions. Fig. 21.13 indicates the various characteristics of the two-element achro-
matic doublet.

From the equations giving the power of the system as a function of the Abbe
numbers and the radii:
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1 ( Vi ] (21.13.16)
FGI fG omb Vl B V2
1 1 1
Lo - 1)(_ - _) (21.13.17)
fq, “ R, R,
we find the powers of the two elements:
11 ) 1 ( 4 )
1) = : (21.13.18)
[Rl R, chomb(nGI -1) \V,-V,
11 ) 1 ( Va )
4 1= : (21.13.19)
. (R3 R, chomb(nGZ -1 \V,-V,

so that the second and fourth radii will be:

R, 1

(21.13.20)

z‘le‘fc (1nG— 1) (V.‘fvz)

comb

R, 1

(21.13.21)

e o)
R; chomb(nG2 -1) \V,-V,
For best results we will not use V,, as our dispersion number, but instead use:

n,—1
V:

np—nhc

This is because, for visual use, the minimum focal distance should be in green
light at 555 nm wavelength, which corresponds to e-light (546.07 nm). Note that
the peak spectral sensitivity of the eye shifts toward the blue in the dark-adapted
eye (see fig. 6.7).

For calculating the longitudinal spherical aberration in e-light, the following
data are necessary:

¢ the diameters of the elements D,

e the four radii of curvature R, R,, R, and R,,

¢ the axial lens thicknesses,

e the axial width of the air gap, and

e the refractive indices for both glasses for e-light.

For a cemented doublet, the width of the air gap is zero, and R, = R,.
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Fig. 21.15 Lens Shape Recognition Procedure.

It is customary to set the minimum edge thickness for the positive lens and
the minimum axial thickness for the negativz lens at the beginning of the design
procedure. For a 200 mm lens, these will be around 15 mm. In a positive lens, the
center thickness is always larger than the edge thickness. The center thickness of
the positive shaped lens is calculated from the edge thickness and the sagittas of
both surfaces. In computer aided design it is essential to use a procedure allowing
the computer to recognize whether a lens is positive or negative based only on its
curvatures, without the need to calculate its power. Lens-shape recognition is im-
portant not only for the glass lenses, but also for the shape of the airspace between
them. Applying the following method will allow you to avoid the embarrassment
of designing a lens with a negative edge or center thickness.

First, calculate the sagittas of both surfaces, taking the signs of the curvatures
into account:

2
Z = ) (21.13.22)

aR(14 1_(2’;)2)

When the curvature is positive (convex to the left), then Z is positive. When
the curvature is negative (concave to the left), then Z is negative. For a flat surface,
R=0c,50Z=0.

Fig. 21.15 shows all possible cases of curvature in a lens; the first three are
negative, the others positive. When the signs are taken into account, then:

e Z, <Z,for all negative-shape lenses,
* Z, > Z, for all positive-shape lenses.

When a lens is negative, its center thickness is set equal to the minimum val-
ue selected. When a lens is positive, then the center thickness is calculated from:
T =

center

cage + 21— Z, - (21.13.23)

Do not forget to use the correct signs for Z, and Z,.
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Fig. 21.16 LA-Curves Encountered in the Design of an Achromatic Doublet.

When the center thickness of the negative lens is set equal to the edge thick-
ness of the positive lens, the calculation is simplified. In that particular case, the
center thickness can be calculated with the following formula, whether it is a pos-
itive or negative lens:

T =T,-((Z,>2,) (Z,-Z,)). (21.13.24)

(Z, > Z,) is a Boolean expression which is evaluated as -1, if true. If the ex-
pression is false, it is evaluated as zero.

In an air-spaced doublet, the air gap between the lenses is typically set to 1
or 2 millimeters. If the shape of the air lens is positive, then the edge distance must
be checked. If this is zero or negative, then the axial distance must be increased.
This can also be done automatically using the procedure above.

We now determine the longitudinal spherical aberration, then proceed to
minimize it by an iterative process. The initial values of the radii of curvatures are
not very critical, but it is useful to study some existing designs before starting. The
designs given in table 6.1. make good starting points. On the basis of these de-
signs, we might assume an initial R, equal to 2/3 of the focal length of the objec-
tive. The value of R, follows from eq. 21.13.20. Since the starting value of R, is
assumed to be the same as R,, we next compute R, from eq. 21.13.21. Following
this, we compute the longitudinal spherical aberration for various zones. In the
first trial, we generally find a large amount of spherical aberration, for example,
curve 1 in fig. 21.16. In order to reduce this aberration, the lenses must be “bent,”
that is, the radii must be changed without changing the net power of the lens.

It may be that the LA cannot be reduced sufficiently as long as the values of
R, and R, are held the same; making them different is an effective tool in reducing
spherical aberration. Suppose we set R, equal to 1.01R, for a Fraunhofer design,
or R, equal to 0.99R, for a Steinheil type, then recalculate the LA.

Eventually an LA such as curve 3 in fig. 21.16 will be obtained for one par-
ticular combination of R, and R, / R,. This must then be checked to see whether
the LA has been reduced sufficiently, and to decide whether the shape of the LA
curve is optimum. This point is not easy to judge.

Fig. 21.17 graphs four kinds of LA curves; of course, one can also get curves
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Fig. 21.17 Types of LA-Curves.

that are mirror images of these. The maximum deviation, LA ,,, is the same in all
four cases. Which is best? In the literature we often see LA curves having some-
thing similar to shape 2, the case for which the edge ray has the same focal dis-
tance as the paraxial ray. This LA shape offers no guarantee that the transverse
spherical aberration (that is, the spread at best focus) is as small as it can be. Quite
often, a curve of type 3 has a smaller transverse spherical aberration. At this point,
the magnitude of the transverse spherical aberration should be calculated using the
H’ tanU’-method, or by carrying out a complete ray-trace analysis, resulting in a
spot diagram. Note that the transverse aberration should not exceed the diameter
of the Airy disk for green light.

However, rather than carry out the full calculation of transverse aberrations,
it is often easier to apply a simple rule-of-thumb guideline and postpone a com-
plete ray-trace analysis until the design has been finalized. We recommend the fol-
lowing maximum allowable values of LA between the rim ray and the paraxial ray:

120 2.0 mm
15 1.2 mm
710 0.6 mm
78 0.4 mm

VA 0.16 mm.

Although these criteria are independent of the aperture, they depend some-
what on the shape of the LA-curve.

21.13.5 Correcting Coma

When a design has been found for which spherical aberration is sufficiently small,
we must still check that coma is low enough. Often this will not be the case be-
cause spherical aberration and coma occur independently of each other. This
means that we must find other lens shapes for which both spherical aberration and
coma are simultaneously corrected. Although it is possible to test for coma by cal-
culating a complete off-axis spot diagram, during optimization it is easier to cal-
culate the offense against the sine condition, or OSC, in which the magnitude of
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Fig. 21.18 The Sine Condition and OSC.

the coma present is expressed as a single number. The principle of the OSC was
explained in section 4.2.2, and is shown in fig. 4.8.

Fig. 21.18 shows an optical system that does not meet the sine condition, and
also suffers from spherical aberration. The lengths of lines C, and C, are:

H

C, = 21.13.25

T sinU, ( )
h

L= (21.13.26)
sinU,

In these equations, A, is the entrance height of the paraxial ray, and H belongs
to a zonal ray. When the spherical aberration, LA, is zero, then the offense against
the sine condition is:

C inU
0SC = (—"—1) = ( H_ s "—1). (21.13.27)
C sinU, h

4 o

If the LA is not zero, a correction factor, L,/ L, is introduced, and the OSC is:

0SC = ( (21.13.28)

sinU, H L, 1)

Of course the same zones must be used to calculate the OSC as are used for
the LA calculations. In the optical literature, a maximum allowable value of the
OSC of 0.0025 is sometimes quoted. If stringent demands are made with respect
to freedom from coma, however, the OSC must be reduced to 0.001 or less.

Although we have treated LA and OSC separately here, in LENSDES, our
semi-automatic design program, the values of LA and OSC are calculated and dis-
played simultaneously on the monitor screen for various zones. Because the de-
signer can monitor both aberrations during all stages of the design process,
optimization proceeds smoothly.

If spherical aberration has been sufficiently corrected but the value of the
OSC s still too large, change the radius of curvature of the first lens, R,. From the
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Fig. 21.19 LA-Curves for an Achromatic Doublet.

new values of R, and R, / R, the whole procedure of the LA and OSC correction,
as described above, is carried out again, and repeated until LA and OSC have been
reduced to an acceptable level. Once this situation has been attained, the lens is
corrected for LA and coma in green light. This does not necessarily mean that
chromatic aberration for red and blue light have yet been corrected sufficiently.
This is discussed next.

21.13.6 Reducing Spherochromatism

Spherochromatism is the change of spherical aberration with wavelength. As we
saw in chapter 6, an achromatic doublet that is corrected for green light will be un-
dercorrected for red and overcorrected for blue.

Fig. 21.19 graphs a number of different possibilities. In case 1, the lens has
too short a focal length in blue (F) light with respect to red; in case 2 the blue focal
length is too long. Normally refractor objectives intended for visual use are cor-
rected so that the C and F curves intersect somewhere between 50 and 100% of
the semidiameter, as in case 3. The optimum position for the point of intersection
of the two curves depends on the shape of the C and F curves, but it should be cho-
sen so that the diameters of the spot diagrams for blue and red light are roughly
equally large when green is at best focus.

After bending the two lenses so that LA and OSC are corrected, you will of-
ten discover that the red light and blue light curves are situated as in case 2. The
reason for this is that the powers of the lenses are based on eqs. 21.13.20 and
21.13.21, which are valid only for thin lenses. Now you must move the F curve
with respect to the C curve. This is accomplished by giving the first lens a slightly
stronger power (i.e., shorter focal length), resulting in the more favorable situation
shown in case 3. The “lens power” factor, LP, of the first lens in a Fraunhofer type
doublet normally lies between 1.00 and 1.01, while that of the negative first lens
of a Steinheil objective lies between 1.01 and 1.02.

With the introduction of this factor, the focal length of a Fraunhofer lens will
be slightly reduced, while that of a Steinheil type will become somewhat longer.
These effects are normally negligible, but if it is necessary, the original focal
length can be achieved by rescaling. After the lens power factor has been intro-
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duced, the whole procedure for correcting spherical aberration and coma, and
checking the position of the F and C curves must be repeated.

It is recommended that you introduce the lens power factor early in the de-
sign process, as soon as LA has been reduced to a reasonable value. This saves
considerable time, since the intersection height of the blue and red light curves
will hardly change during subsequent bendings because the color correction of a
thin doublet is only slightly dependent on the state of the bending.

In summary, we have seen that for a given set of glasses, the design process
works by altering only three parameters,

¢ the curvature ratio R, / R,, which mainly influences the LA;

e the radius of curvature of the first surface, R, which mainly influences
the OSC value; and

¢ the lens power factor of the front lens, LP, which influences the relative
positions of the LA curves for red and blue light.

The designer works by manipulating these three variables until a satisfactory de-
sign solution has been achieved.

Once the designer has gained some experience, it is advisable to begin a new
design with suitable starting values of R,/ R, and LP. For a Fraunhofer objective,
we suggest:

& = 1.02 and LP= 1.005 .
R,

For a Steinheil design:
R,
— =0.98 and LP= 1.015 .
R,

While the value of LP seldom deviates far from 1.0 for close elements, the value
of R, / R, can deviate rather strongly in the case of extreme glass combinations.

Although the iterative design method looks cumbersome at first sight, expe-
rience shows that a final design can be obtained within twenty or thirty computer
trials. Because the computer needs only a few seconds per trial, a final design can
usually be achieved within an hour of starting.

We recommend that the aspiring lens designer maintain a good overview of
these results by using a matrix with the variables R, and R, / R, as the axes. As the
LA and OSC values are found, note them on the matrix. The direction toward each
optimum combination is then obvious, and can be quickly found. As the designer
proceeds, a second matrix with a finer grid can be used to locate the optimum more
precisely.

The final design should be checked by a complete axial and off-axis ray trace
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for three colors.

The procedure described above is valid for a broken doublet with different
inner radii. For a cemented doublet it may be impossible to obtain a low OSC val-
ue in combination with a low LA and good color correction. The designer may
have to choose between accepting a lens that is not fully corrected for coma or
seeking other combinations of glass.

21.140Other Degrees of Freedom

If the designer cannot reduce the aberrations for a particular combination of glass-
es, a number of degrees of freedom remain. These are the thicknesses of the ele-
ments and the width of the air gap, if there is one. The air space is most useful in
controlling spherical aberration. Spherochromatism can be reduced by making the
air gap larger. This approach leads to a design called the Clark objective.

Another reason for selecting a larger lens separation is that the designer can
achieve an aplanatic system with equal R, and R,. This simplifies fabrication be-
cause the surfaces can be tested against each other by interference. If the ratio R,
/ R, approaches unity as the separation of the elements is increased, then this goal
can be achieved.

Unfortunately, a large lens distance has some disadvantages: it is very sen-
sitive to decentering, and lateral color may occur. For this reason, the Clark objec-
tive is not often used.

The designer may also opt for a Steinheil objective rather than a Fraunhofer.
However, only in exceptional cases can a better design be achieved with the Stein-
heil form.

21.15An Alternate Method of Designhing a Doublet

While the iterative method of designing an achromatic doublet is reasonably fast
with a computer, an alternative exists. To achromatize the system and bring the
blue and red color to a single focus, the designer can use a special application of
the optical path difference (OPD) method proposed by Conrady, and called the D-
d method. Kingslake has used this method also, and has worked out an elegant
graphical procedure for minimizing spherical aberration and coma. This method
is detailed in ref. 21.4.

21.16 Designing a Three-Element Apochromatic Refractor Objective

As we have seen in previous sections, a doublet refractor objective corrected for
visual use brings red (C-light) and blue (F-light) to a common focus, while the
shortest focus lies in the green (e-light). We then say that such an objective has
been corrected for two colors (fig. 6.6). Violet light still comes to focus well be-
hind the C and F foci, so that the violet image is blurred.

The color aberration curve of a doublet (shown in fig. 6.6) can be made con-
siderably flatter by using special glasses or fluorite. But a less expensive alterna-
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Fig. 21.20 Types of Triplet Refractor Objectives.

tive can be achieved when three different kinds of glass are used. Then it is
possible to bring three colors, and with some combinations of glass, four colors,
into common focus.

Such an objective may be suitable for photographic applications as well as
visual use. Additionally, triplet refractors can be designed to work at focal ratios
between f/6 and f/10, as compared with the f/15 focal ratio of a conventional dou-
blet. A triplet corrected for three colors is called an apochromat, whereas a triplet
corrected for four colors, according to a proposal by Herzberger, is termed a su-
perachromat. Some triplets corrected for five colors have been designed. In this
section we discuss the design of an apochromat and a superachromat; we assume
that the reader is already familiar with the material we have presented on doublet
objectives.

21.16.1 Choosing Glass for a Triplet

Although the sequence of the three elements of a triplet can be freely chosen, nor-
mally the system is constructed of:

* apositive biconvex element
¢ anegative biconcave element
* apositive biconvex element.

Such a system is shown in fig. 21.20. We will also apply this sequence in the
equations.

For a good color correction, the proper glass is of the utmost importance.
Finding a suitable combination is considerably more laborious and takes more
time than for a doublet. In 1959, Herzberger (ref. 21.5) formulated the conditions
these glasses must satisfy for systems corrected for both three and four colors. The
choice is closely connected with the behavior of the dispersion of the three glasses
with respect to each other. We define this dispersion with respect to green. For the
blue partial dispersion:



324 Chapter 21: Designing Telescope Optical Systems

0.49
Pr.e = (np — n.)/(nr — nc) ~
] \
V = (n. — 1)/(nr — nc) ’)
/7
0.484 ;!
/ /
, /
/ //
7
/
Pp. , //
0.47- s/
// /
7 /
z, . o, .
e TiF2 (Second Positive Lens)
BaFNiOR| ,/
/
0.46 /Il(z FS1 (Negative Lens)
/BK? (First Positive Lens)
0.45 ¥ T T T T
100 90 80 30 20 10 0
Fig. 21.21 Two Glass Combinations for Triplet Refractor Objectives.
ngp—n
P Fe = —_
Rp—nRc
For the red:
n,—n
Pe,C = = < .
np—nc
And for violet:
n,—n
Pg e = £ ¢
' ngp—nc

These three quantities define the dispersion behavior for the full range from red to

violet.

In the same way we did in fig. 21.14 for the doublet, we plot a number of
glasses in the P, — V diagram. A combination of glasses suitable for a triplet will
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Fig. 21.22 P — P Plots of Two Glass Combinations for Triplet Refractor Objectives.

form a wide triangle in this particular diagram. The larger the area of this triangle
is, the easier the design will be. This also facilitates the design of f/6 to f710 triplets
with low spherochromatism. Fig. 21.21 shows two of many possible combina-
tions. The first consists of BK7, KzFS1, and BaFN10 (517642, 613443, and
670471, respectively). This combination is the same one used in the Christen trip-
let described in section 13.5. For the second combination, the BaFN10, a relatively
cheap glass, is replaced by the considerably more expensive glass TiF2 (533460).
In general a suitable combination of glasses for a triplet consists of:

e a glass with a relatively high V-number and relatively low P-number,
such as a crown with an Abbe number between 60 and 70;

¢ a glass with a relatively low V-value and high P-value such as one of the
KzFS glasses; and
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¢ aglass with a low V-value and a P-value even higher than that of the sec-
ond glass, usually a dense flint.

As we mentioned earlier, the first element is biconvex, the second biconcave,
and the third element biconvex. Under no circumstances can these glasses lie on
a straight line in the P — V diagram. If this were the case, the elements would have
to have very high powers, which would hamper the correction of the monochro-
matic aberrations. In principle, there are numerous possible combinations of glass
for an apochromat, that is, for an objective to be corrected for three colors, such
as red, green and blue.

When we require that the lens bring four colors to a common focus (red,
green, blue, and violet, for example), the three glasses must satisfy an additional
condition (see figs. 21.21 and 21.22). The partial dispersion on the vertical axis is
the red side value; the violet side partial dispersion is plotted on the horizontal ax-
is. It can be shown mathematically that when four colors are to be corrected, the
three glasses in the P — P diagram will lie on a straight line (ref. 21.5). This is the
case shown for the combination that includes TiF2. The glass combination with
BaFN10 glass does not satisfy the straight line condition; with this combination
only three colors can be brought into a common focus.

Strictly speaking, these conditions are valid only for three thin lenses placed
close together. It should be immediately obvious that the number of suitable com-
binations for a four-color triplet is lower than for a three-color triplet. Despite this,
Herzberger found several hundred glass combinations for which four-color trip-
lets could be designed.

Because these glasses are in many cases exotic, and therefore expensive, the
choice of glass for a triplet is often based on economic considerations. Exotic
glasses are also often unstable, or can be etched by weak acids or water. Before
making a final choice, check the price of the glass, its chemical and physical prop-
erties, and the cost of grinding it.

21.16.2 The Powers of the Elements

Once a suitable glass combination has been found, the powers of the three ele-
ments are determined, then the radii of curvature calculated. To calculate the focal
lengths, £, f,, and f;, we need three independent equations. The first equation con-
cerns the combined focal length of the system, f:

1, 1,1_1 (21.16.1)

—+ -+ =

Hh L K f

The second condition to be fulfilled is that red and blue light must be brought

to a common focus. As shown for a doublet in eq. 21.13.5, a triplet with the same
C and F focus satisfies the following equation:

1 + 1 + 1 _
H-Vy /L Vy [0V,

0. (21.16.2)
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The third condition to satisfy is that green light must have the same focus as
the combined red-blue focus. In a way similar to that shown in eq. 21.13.10, for a
triplet:
P P P
(LIS SRt S
fi- Vi farVa 30V,

Solving these three equations for the powers of the three elements, we find:

0. (21.16.3)

1 1 (P,—P3)-V,
LI (21.16.4)
fi  f Vi(Py—P3)+ Vy(P3—P)+ V3(P - P,)
P,—P))-V
1_1 (Ps—P1)- Vs (21.16.5)
fr f Vi(Py=P3)+ Vo (P3—Py)+ V3(P - P,)
P, -P) -V
r_1 (P =Py) Vs ) (21.16.6)
fi  f Vi(Py=P3)+ Vy(P3—P)+ V3(P - Py)
For P-values, we use the blue side P, quantities, and for the V-values:
n,—1
V= . (21.16.7)
np—ng

21.16.3 Designing a Triplet

We will first discuss the design procedure for a broken triplet, and follow that with
the design of a cemented triplet. In designing a broken doublet, we saw that after
finding the powers of both lenses, we chose a trial value for R, and calculated R,
from it. R, follows from an initial choice of R, / R,, and from R, we determine the
value for R,. Analysis of the LA and OSC in green light follows. For a given set of
spacing, lens powers, and lens thicknesses, only one combination of R, and R, / R,
exists for an aplanatic doublet. The system is then fixed because all available de-
grees of freedom have been used.

In a broken triplet, the number of degrees of freedom is larger than it is in a
doublet because we can change R,/ R, as well as R, and R,/ R,. We also have two
lens power factors, LP, and LP,, for the first and the second element with respect
to the third element. In the design of a broken triplet, we use the variables R,, R,
/R, and R,/ R, to correct spherical aberration and coma, while LP, and LP, are used
to minimize the influence of spherochromatism.

We start with a matrix displaying the values of R,/ R, and R, / R, on the two
axes for one starting value of R,. Through trial and error, we determine what par-
ticular combination of both variables gives the smallest LA and OSC. We repeat
the procedure for other values of R, until the best values of LA and OSC are ob-
tained. In effect, we are constructing a three-dimensional matrix with R, as the
third variable.
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Fig. 21.23 LA Curves for Three 200 mm f/10 Triplet Refractor Objectives.

As is the case for doublets, triplets have spherochromatism because the lens-
es have finite thickness. During the first trials, the three or four desired colors gen-
erally do not focus at a common point on the LA-curves. As soon as the value of
LA has been sufficiently decreased, we vary slightly the powers of the first and
second lens with respect to the third lens. After several trials, the colors are made
to coincide and intersect somewhere between the 70% and 100% zone. After cor-
recting spherochromatism, we continue to optimize LA and OSC. In a broken trip-
let the final values of LP, and LP, are normally very close to one.

More difficult is the design of a system in which the inner radii are equal
(i.e., Ry = R, and R, = R,). A design of this type is called a cemented triplet, though
the optical surfaces need not be cemented. Instead, they can be filled with an im-
mersion oil, or left with a small air space. Triplets can also be partly broken, as
shown in fig. 21.20. For a fully cemented triplet we have only one degree of free-
dom once the powers of the three elements are fixed, and that is R,. All other radii
depend on the chosen value of R,. Often it is not possible to correct LA and OSC
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Table 21.1
Three 200mm f/10 Triplet Designs

(All dimensions in mm)

Example I  Example 2 Example 3

R, (radius of curvature) 2080 2402.1 1825
T, (axial thickness or distance) 22.5 25.7151 30.1584
M, (medium—six-digit code) 517642 517642 517642
R, -507.5 -498.7921 -449.641
T, 12.5 1 1

M, 613443 Air Air
R, 476.25 —499.2909  —434.5556
T, 225 12.5 12
M, 670471 613443 613443
R, -2080 413.9897 501.4963
T, 1998.9 1 1

M, Air Air Air

R 418.9989 462.7206

T 28.5082 32.4128
M, 670471 533460
R, -1868.7758  -973.0116
T, 1980.66 1989.86
M, Air Air

sufficiently with R, alone; and we must vary LP, and LP, to achieve a good design.
Contrary to the situation with the broken triplet, the values of LP, and LP,
needed to achieve an aplanatic design can deviate quite strongly from 1.0, so the
designer should keep a strict eye on the color correction. Often it is necessary to
compromise between good color correction and good off-axis correction.

21.16.4 Examples of Triplets

To obtain a better sense of the correctability of various triplets, we compare three
200 mm f710 designs. LA curves for each lens in C, e, F, g, and h light are shown
in fig. 21.23. Design data for the three triplet designs appear in table 21.1.

Example 1: The immersion triplet designed by Roland Christen consists of
BK7, KzFS1, and BaFN10 glasses. From the spot diagrams shown in fig. 13.13,
we see that this objective has about the same chromatic performance for visual use
as the two-element Apoklaas with expensive glass types (see fig. 6.10), but that
the triplet’s violet blur is much larger. Because the triplet is cemented or oil-im-
mersed, coma is uncorrected.

Example 2: A broken triplet designed by the authors to be constructed from
the same glasses as the Christen triplet. Note that the C, e, and F lines intersect at
one zone. This system is a true apochromat.

Example 3: A broken triplet with the same first two glasses as the previous
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examples, but with third glass the more expensive TiF2. In this case, four colors
(C, e, f, and g) have been brought to a common focus in one zone. This system can
be called a superachromat and is much better for photographic use.

The results obtained in examples 2 and 3 are in accord with fig. 21.22. In
example 2, it appears the glasses do not lie on a straight line in the P—P diagram,
so four colors cannot be corrected.

21.17 Thick Optical Elements

As we saw in section 3.4, a reflecting prism behaves as a plane-parallel plate. We
also saw that some effects will occur when a plane-parallel glass plate is inserted
into a non-parallel light beam. The most striking effect is a longitudinal displace-
ment of the image. Oblique beams are displaced to the side. In section 3.4, we gave
a first-order approximation formula for the longitudinal displacement:

n—1

S = 1. (21.17.1)
n

However, the shift increases slightly more than this as the angle increases,
causing overcorrected spherical aberration. Eq. 21.17.1 implies that the image dis-
placement is dependent on the wavelength, so that for blue light the displacement
will be larger than it is for red. This produces longitudinal chromatic aberration.

When a beam strikes a flat plate at an angle, as shown in fig. 3.11, it is shift-
ed to the side. The magnitude of the shift is approximately:

n-1
n

| =

-t- o (o in radians). (21.17.2)

For oblique, non-parallel beams, the plane-parallel plate introduces coma,
astigmatism, and lateral color which increases as the focal ratio of the beam de-
creases, so fast systems will suffer more from the aberrations than slow systems.
Refs. 21.6 and 21.7 give formulae with which the magnitudes of the aberrations
can be calculated. (These formulae are not treated here because the reader can in-
vestigate the magnitudes of the aberrations rather easily with the computer pro-
gram that is an option with this book.) Whenever an instrument is used in
combination with a prism, it is necessary to carry out a ray-trace analysis of the
system with the prism.

The spherical aberration and chromatic aberration caused by a prism can be
corrected by placing a weak positive lens near the prism. This lens must be de-
signed in such a way that it just corrects the aberrations introduced by the prism.
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How to Use the Telescope Design
Programs

22.1 Capabilities

We have written three computer programs to be used in conjunction with this
book. The programs are suitable for use with any IBM PC compatible and most
work-alikes. The IBM executable file version of these programs is available from
the publisher for a nominal charge. (An order form may be found in the back of
this book.)

TDESIGN is a powerful telescope design program. It allows the user to select
a design type—any Cassegrain or catadioptric form treated in chapter 21—and
produces a pre-design based on third-order aberration theory.

LENSDES allows the user to design high-performance doublet and triplet
lenses. These are completed designs, and do not need further optimization.

RAYTRACE is a fast and powerful ray tracing program. It can trace up to 2,500
rays through axially symmetric, tilted, or decentered systems with flat, spherical,
conic, or aspherically deformed optical surfaces, with or without vignetting. The
output of RAYTRACE can be in graphical or tabular form.

Each of these programs is present as a compiled executable file with the ex-
tension .EXE. The executable file runs directly from DOS. The graphics in the
programs require a CGA, EGA or Hercules graphics card in the computer; print-
ing screen graphics requires loading the memory-resident program GRAPH-
ICS.COM before starting the design programs.

We have worked hard to make these programs easy to use. Once you have
become familiar with them, you should be able to run them without consulting the
documentation. We recommend, however, that you read this chapter carefully so
that you are aware of the capabilities and limitations of the programs, and the
meaning of all of the commands.

The distribution diskette also contains FIRST, a program to modify the de-
fault parameters used by RAYTRACE; INT . REC, a file of startup parameters created
by FIRST; and README . TXT, a text file that updates this documentation to the cur-
rent release of the program.

You may run FIRST to set the ratio between the height and width of the mon-
itor screen and of a graphics printer; FIRST also controls form feed at the end of
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printouts, sets the default path for design files, and permits display of exit angles
for tabular longitudinal traces (useful in eyepiece design). The values entered in
the FIRST program are saved in the file INT.REC, which is read by RAYTRACE if
it is present in the current directory when RAYTRACE is started; if INT . REC is not
in the current directory, default values are used.

Finally, on the program distribution diskette you will find files with exten-
sions .RLD, .TDS, and . DES. These files are optical design files. Files with the ex-
tension .RLD have been created by LENSDES, the doublet and triplet design
program, and may be retrieved by this program as design examples. Files with the
. TDS extension have been created by TDESIGN, the telescope design program, and
may be retrieved by this program only as design examples. The .DES files have
been saved by RAYTRACE, the optical ray-trace program. RAYTRACE can also re-
trieve . RLD and . TDS files created by LENSDES and TDESIGN to optimize a design
or carry out an optical analysis.

You will find it is easier to become familiar with the programs if you load
and work with several “canned” designs before striking out on your own.

The programs have been extensively tested against a large number of optical
systems, and they give consistent and accurate results. However, large computer
programs are seldom entirely free of bugs. The authors and publisher are interest-
ed in hearing about any errors you find. Please be specific in describing the prob-
lem. Tell us what you did and exactly what happened. If you were working on a
telescope design file, please make a copy of the file for us. Mail your comments
and bug reports to Willmann-Bell, Inc. P.O. Box 35025, Richmond, VA 23235.

22.2 Designing Telescopes with TDESIGN

TDESIGN allows you to select any Cassegrain or catadioptric system shown in the
telescope design tree (fig. 22.1) and produces a pre-design based on third-order
aberration theory to your specifications. If you want to design lenses for refractors,
see section 22.3 for a description of LENSDES. After developing a predesign with
TDESIGN, you will use RAYTRACE to optimize it.

All of the telescope designs shown in the design tree are examined in this
book. In the section that follows we give a brief summary of each design's char-
acteristics, advantages, and disadvantages to help you decide which designs are
most interesting.

22.2.1 Designs Available with TDESIGN

Cassegrain Telescopes The shortest possible configuration for a certain focal
length is achieved with the Cassegrain-like telescopes. The disadvantages of two-
mirror systems are the relatively large obstruction caused by the secondary mirror
and the need for a spider or window. Because Cassegrain systems are normally not
closed, air turbulence and atmospheric deterioration of the mirrors can occur. An-
other factor is the relatively strong field curvature, especially when the diameter
of the secondary must be held small. Field curvature is closely connected with the
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curvature of the secondary mirror and, therefore, with the value of the secondary
magnification.

Of the Cassegrain designs, the Ritchey-Chrétien is the most difficult to man-
ufacture because the two hyperbolic mirrors must be exactly matched in shape. It
offers the best image quality possible with a two-mirror configuration, and is
aplanatic. This type is usually built for photographic applications. Although it has
astigmatism, off-axis star images are round when curved film is used.

The Dall-Kirkham is easier to build because the secondary mirror can be
kept spherical, but the instrument has strong coma, so the usable field is small. The
original Cassegrain lies between the Ritchey-Chrétien and the Dall-Kirkham with
respect to both difficulty of fabrication and image quality. A virtually unknown
type of Cassegrain is the Pressmann-Camichel, with a spherical primary; it has
coma even stronger than that of the Dall-Kirkham, resulting in a very small usable
field.

One-Mirror Catadioptrics Consisting of a spherical or aspheric mirror
with a corrector placed in front of it, this group provides good off-axis perfor-
mance. The corrector closes the tube, protecting the mirror from the weather. In
the compact configuration, the spider can be omitted because the secondary mirror
or film holder can be attached to the corrector. In one-mirror catadioptrics, how-
ever, only concentric systems can be entirely free from astigmatism.

The best-known single-mirror catadioptric is the Schmidt camera. A concen-
tric configuration with the corrector placed in the center of curvature of the spher-
ical mirror, the Schmidt system is both aplanatic and anastigmatic. A derivative
system, the Schmidt-Newtonian, also has a spherical mirror. In it, the corrector is
placed much closer to the mirror, resulting in a compact system. Because the prin-
ciple of concentricity has been abandoned, the system suffers from both coma and
astigmatism. For a compact Schmidt system to be free of coma, the mirror must
be ellipsoidal, and the corrector must have considerably more power than in a non-
compact system.

The Wright camera has its corrector at the paraxial focal plane, and offers the
photographer a flat focal surface. Another one-mirror catadioptric is the Houghton
system; with the two-lens Houghton corrector, a compact system with all spheri-
cal surfaces is possible.

An aplanatic Maksutov configuration has a greater tube length than the
Houghton, but is shorter than the Schmidt camera. In its original form, the Mak-
sutov camera is not compact in most cases, so the film holder must be supported
by a spider. The length of the tube depends on the thickness of the corrector.

Two-Mirror Catadioptrics This, the largest group shown in the design tree,
can be designed with a flat or a curved field, in a compact or a non-compact con-
figuration, and with a variety of types of correctors. In most cases, the focal plane
is outside the system, behind the primary mirror, for good accessibility.

In flat-field designs, the radii of curvature of the primary and secondary mir-
rors are approximately equal. For the image to lie behind the primary mirror, a rel-
atively large secondary mirror, typically 50% to 60% of the diameter of the
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entrance pupil, is needed. Therefore, these flat-field instruments are not well suit-
ed for visual applications.

In designs that allow a curved field, the secondary mirror can be more
strongly curved and smaller than in flat-field designs, typically only 30% to 40%
of the entrance pupil. Curved film or a field flattener must be used when these in-
struments are employed for photography.

In comparison with the compact design, the non-compact design two-mirror
catadioptric suffers from greater tube length, a secondary mirror that must be sup-
ported by a spider, and, for the same degree of light drop-off at the edge of the
field, larger primary and secondary mirrors. However, for flat-field designs, the
baffle system required can be smaller or even omitted.

When the designer chooses between a non-compact or a compact-built sys-
tem, he must take into account not only these points, but also the possibilities for
correcting aberrations. Of course, all types are corrected for spherical aberration.
For the Schmidt-Cassegrain, the correction of coma in a compact design requires
at least one aspheric mirror, while in a non-compact design both mirrors can be
left spherical for one particular position of the corrector. In the Houghton-Casseg-
rain, in both the compact and non-compact designs, an aplanatic system can be
achieved with two spherical mirrors and a corrector doublet. With Maksutov-Cas-
segrains, however, the correction of coma depends on the thickness of the correc-
tor with respect to the focal length of the primary. For each thickness ratio, there
is a single secondary magnification that yields an aplanatic design.

An interesting alternative is a Maksutov system with an aluminized spot sec-
ondary on the back of the corrector. This system, however, is not aplanatic, and
no satisfactory flat-field designs are possible. (We have so far considered only
aplanatic systems.)

For simultaneous correction of coma and astigmatism, the situation is more
complicated. The reader is referred to chapter 21 for a detailed description. De-
pending on the type of corrector and the configuration, the designer must find one
specific position for the corrector and two aspheric mirrors if he is to obtain a sys-
tem that is both aplanatic and anastigmatic.

With the exception of a few non-compact flat-field designs, all Cassegrain-
derived telescopes require a baffle tube system. Depending on the width of the
field, baffling may cause a considerable light drop-off toward the edge of the field.
This is a decided disadvantage compared to the one-mirror catadioptrics, which
do not require such baffles.

22.2.2 Using TDESIGN

TDESIGN produces preliminary optical designs that must be further optimized, or
“predesigns.” This is because the formulae used in the program are based on third
order Seidel theory (see chapter 21), which is an approximation. In most cases,
predesigns are quite accurate—within 5% of the final values and often much bet-
ter.



336 Chapter 22: How to Use the Telescope Design Programs

Designing begins with choosing what sort of system to design. We stress that
different designs require different design procedures. Systems with Schmidt and
Houghton correctors are easy to design. Construction data are displayed on the
screen immediately because these predesigns result from straightforward calcula-
tions.

For systems using Maksutov correctors, however, the designer must proceed
by trial and error until a satisfactory predesign has been obtained. We recommend
learning to use the program by designing systems similar to those described in this
book.

After preliminary construction data have been produced by TDESIGN, you
can save design data as a disk file. This design file is then loaded into, and opti-
mized by skew-ray tracing with, RAYTRACE (described in section 22.4).

Starting TDESIGN: Load the program by typing TDESIGN. As soon as the
program loads, the main menu appears on the screen:

C=Create new design R=Retrieve file H=New file path ESC=Exit

Creating a new design is the primary function of TDESIGN. Selecting C will
send you through a series of menus and requests for design parameters. You will
see only the menus and enter only the information required for the design you are
creating. If you feel a bit lost, refer to the telescope design tree shown in fig. 22.1;
it shows all the design options TDESIGN offers.

The Retrieve option allows you to display a file on the disk. This is fully
described at the end of the section. Pressing the ESC key stops the program and
returns you to DOS.

Creating a Design: Begin by entering a design title. Then select a design
class from the Telescope System Selection menu:

1. Two-Mirror Cassegrain
2. One-Mirror Catadioptric
3. Two-Mirror Catadioptric

Telescope System Selection: Two-Mirror Cassegrains For two-mirror
Cassegrains, you must first specify what criteria you wish to use in specifying the
system. There are three options: the focal length of the primary mirror and the sys-
tem focal length, or the maximum axial obstruction, or the maximum mirror sep-
aration. You enter your choice of one specification set at the Design-Limiting
Specifications menu:

1. Set Primary and System Focal Length
2. Set Maximum Axial Obstruction
3. Set Maximum Mirror Separation

Telescope Specification Entry: Once you have selected which set of limit-
ing factors you wish to work from, TDESIGN requests further information based
on your choice.

Regardless of your selection, it asks the clear aperture of the telescope and
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the position of the focal surface with respect to the primary. Depending on your
selection, however, TDESIGN will ask for the focal length of the primary mirror
and the system focal length, or the maximum axial obstruction, or the maximum
mitror separation.

TDESIGN will accept any reasonable input values, but rejects impossible
conditions. For example, you cannot specify a system focal length that is less than
the focal length of the primary.

If you have chosen the axial obstruction as the design-limiting factor, you
must remember that TDESIGN does not take off-axis vignetting or the optical pow-
er of the corrector into account when it makes a predesign. If it is important to keep
the secondary as small as possible, the designer must make a reasonable allowance
for these effects. We recommend an initial maximum obstruction that is 80% of
the maximum value you can accept; if you want the obstruction smaller than 50%,
then specify a maximum axial obstruction of 40%.

The maximum permissible distance between the mirrors is usually chosen
for a practical reason, for example, that the instrument must fit into an existing
tube or will be housed in a small observatory. TDESIGN requires that the distance
between the mirrors be smaller than the focal length of the primary mirror.

You next select the optical design type of the telescope:

1. Classical Cassegrain

2. Dall-Kirkham Cassegrain

3. Ritchey-Chrétien Cassegrain
4. Pressmann-Camichel

Within a few seconds of selecting the design type, TDESIGN will display the con-
struction parameters of the predesign.

Telescope System Selection: One-Mirror Catadioptrics There are
three types of one-mirror catadioptric to choose from, based on the type of correc-
tor:

1. Schmidt Design
2. Houghton Design
3. Maksutov Design

Your choice influences the questions and design parameters you will need to
supply later on in the design process. First, however, TDESIGN needs to know the
telescope’s specifications: clear aperture, primary and system focal length, prima-
ry to corrector distance for some designs, corrector refractive index and thickness.

Although TDESIGN will not accept impossible values, it does not signal an
error if rays pass twice through the corrector, since this might be the designer’s in-
tent. For one-mirror catadioptrics, the corrector-to-primary distance must be
greater than half the focal length. This distance is always positive. For the
Schmidt- and the Houghton-derived systems, the design will be aplanatic, that is,
simultaneously corrected for spherical aberration and coma. If the designer delib-
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erately places the Schmidt corrector inside the center of curvature of the primary,
TDESIGN will design a Wright system. For Schmidt-Newtonians, the program
places a normal Schmidt camera corrector at the desired position, but of course
coma is not corrected.

For Schmidt systems, TDESIGN asks the thickness of the corrector and the
refractive index of the glass at the design wavelength. TDESIGN accepts index val-
ues between 1.4 and 2.1.

For Houghton systems, you must enter the refractive index and the primary-
to-corrector separation. The program sets the edge thickness of the positive ele-
ment and the center thickness of the negative element to 1/40th of the aperture,
and spaces the lenses so that they are no closer than 0.15 mm. All Houghton de-
signs produced by TDESIGN are aplanatic, that is, corrected for spherical aberra-
tion and coma.

Unlike the systems described above, Maksutov systems must be designed by
trial and error. First, you must enter the refractive index for the design color and
thickness. The refractive index must lie between 1.4 and 2.1, and the thickness
must be larger than 1/20th of the clear aperture. Next, an initial bending coeffi-
cient (a value describing the shape of the corrector) is entered; this value can be
arbitrary, a number between 20 and 80. The larger the thickness of the corrector
with respect to the focal length of the primary, the smaller this factor can be. The
program calculates the Seidel coefficients of the corrector and the mirror separate-
ly and subsequently adds them.

TDESIGN analyzes the system and prints the Seidel coefficients, then asks:

Optimize or Final Design (O/F)?
If you select O, the following question is asked:
Optimize Shape or Position corrector (S/P)?

Begin a design by selecting S to alter the shape of the corrector. Vary the val-
ue of S until spherical aberration reaches an absolute value less than 0.01. During
this procedure, coma and astigmatism will change, too.

When you have reduced spherical aberration to an acceptable value, select P
and change the position of the corrector. Changing the position influences coma
and astigmatism, but does not influence spherical aberration. After a number of
changes of P, you will obtain a shape and position that minimize both spherical
aberration and coma.

Now select F to do a final design. TDESIGN now allows you to introduce an
extra factor, Kc, for achromatizing the corrector, and completes the design. After
a few seconds, you will see the construction data on the screen.

Telescope System Selection: Two-Mirror Catadioptrics This imme-
diately takes you to the Possible Catadioptric Systems menu, which asks what
type of corrector you want your system to have:

1. Schmidt Design
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2. Houghton Design
3. Maksutov Design

Your choice influences the questions and design parameters the program will need
later in the design process.

You will next see the Possible Focal Plane Design Choices menu:

1. Curved-Field Design
2. Flat-Field Design

Typing 1 selects a two-mirror catadioptric Cassegrain telescope with a curved
field, intended mainly for visual use. When 2 is selected, TDESIGN designs a two-
mirror catadioptric astrocamera, which will have, in principle, a flat field. TDE-
SIGN requires somewhat different specifications for the two types of designs; we
discuss the peculiarities of flat-field designs below.

Design Limiting Specifications: You must next specify what criteria you
wish to use in specifying the system. There are three options:

1. Set Primary and System Focal Length
2. Set Maximum Axial Obstruction
3. Set Maximum Mirror Separation

Enter your choice of specification. This choice, and the selection of a curved- or
flat-field design, affects the specification questions TDESIGN asks later.

Flat- versus Curved-Field Systems: Unlike those in curved-field designs,
the radii of curvature of the two mirrors in flat-field designs are approximately the
same. In the flat-field specifications, TDESIGN therefore asks not for the focal
length of the primary mirror, but for the focal length of the system. You may spec-
ify the ratio of the curvatures of the two mirrors, in the F-sec/F-prim Ratio
menu, as a value between 0.8 and 1.1. Your choice depends on the type of correc-
tor you have chosen and its optical power, and is a matter of your design experi-
ence. Once this is done, TDESIGN computes the diameter of the central
obstruction. If this is too large, you must reduce the back focus distance, select a
new curvature ratio to flatten the field, then calculate a new central obstruction.

TDESIGN does not check whether the rays pass the corrector twice, but it will
not accept impossible values. For two-mirror catadioptrics, the program only ac-
cepts primary-to-secondary values that are less than 0.9 times the corrector-to-pri-
mary distance.

At this point, TDESIGN branches into three major telescope types: Schmidt,
Houghton, and Maksutov.

Schmidt Designs: In designing a Schmidt-Cassegrain, select one of the fol-
lowing options:

1. Spherical Mirrors
2. One Aspheric Mirror
3. Two Aspheric Mirrors
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If both mirrors are spherical, TDESIGN automatically places the corrector so
that the system will be free of both coma and spherical aberration, i.e., aplanatic.
At this point, the program computes and displays construction data for the system.
Although this is not a compact design, the designer can move the corrector closer
to the primary, but then, of course, the design is no longer coma-free.

When one mirror is chosen to be aspheric, the designer is also asked to spec-
ify whether the primary or secondary mirror is to be aspheric. The corrector can
be placed in any position; TDESTGN prompts the designer for the position desired.
The resulting system is always aplanatic.

When two aspheric mirrors are chosen, it is possible to find an aplanatic and
anastigmatic compact Schmidt-Cassegrain design for every mirror configuration.
A few seconds after the desired distance between the corrector and the primary
mirror has been entered, the construction data of the Schmidt-Cassegrain prede-
sign are displayed.

Houghton Designs: For Houghton correctors, astigmatism is corrected for
some positions of the corrector. The program will ask whether you want an anas-
tigmatic design. If you do, two possible corrector positions will be displayed after
a few seconds. If an aplanatic (but not anastigmatic) system is desired, you must
enter your choice of distance from the corrector to the primary mirror.

Maksutov Systems: For Maksutov correctors, the design is an iterative pro-
cess exactly like that described above for the one-mirror catadioptric Maksutov
camera. Please refer to the design instructions found there.

Displaying the Results: When all necessary data for a system have been en-
tered, TDESIGN displays the design on the screen in tabular form. The following
menu then appears at the bottom of the screen:

P=Print; S=Save design; B=Begin again; ESC=Exit

The P command prints a hard copy of the results.

The S command stores the design on disk; the computer will ask for a file
name. The extension . TDS need not be keyed in; it is added automatically by the
computer. The maximum allowable filename length is eight characters, and the
program will not accept longer names.

The B command takes you back to the opening menu, to start all over again.

If you press the ESC key, TDESIGN returns you to DOS.

Recalling a File: Pressing R in the initial menu recalls a telescope design
file. A list of all . TDS files saved on the selected diskette or directory will appear
on the screen. Type the desired filename without the . TDS extension. After the file
has loaded, the design is displayed on the screen. A file retrieved in this way can-
not be edited, redesigned, or optimized, but the user can view the contents of the
file. Any . TDS file can be loaded into RAYTRACE for detailed evaluation.

22.3 Lens Design with LENSDES
LENSDES is a design program for doublet and triplet refractor objectives. The de-
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signs it produces do not require further optimization, though you may enjoy
checking your latest efforts using RAYTRACE.

22.3.1 Designing Lenses

The design of a refractor objective used to be a time-consuming task, but with the
aid of LENSDES, you can complete a design in a few minutes, providing you ini-
tially select the proper kinds of glass. Design time for a doublet is typically five to
fifteen minutes; for a triplet, half an hour to two hours. The design proceeds rap-
idly because the analysis of intermediate results takes only a few seconds.

In this context, it is interesting to consider J. H. Wyld’s well-known treatise
on lens design (see Amateur Telescope Making, Book III, p. 581 or in the new
edidton published by Willmann-Bell: Amateur Telescope Making Book 2, p.139).
Wyld comprehensively describes how to design and ray-trace an achromatic dou-
blet with goniometric and logarithmic tables, and describes the perseverance re-
quired of the designer to carry out this painstaking job.

When a programmable pocket calculator is used, there is a significant de-
crease in design time—to several evenings. With LENSDES, the authors found they
could redesign the Apoklaas or the fluorite objective shown in table 6.1 in a very
short time. Naturally, the better the original choice of glasses and the more expe-
rienced the designer, the shorter the design time will be.

It is possible, using a fully automatic program, to decrease the design time
even further. However, the involvement of the designer is reduced to nothing, and
he does not gain a “feel” for the sensitivity of the design to varying parameters.
For that reason we have left the program semi-automatic. This means that the de-
signer must participate actively in the various steps of the design process even
though all of the calculations are carried out by the computer. The greatest advan-
tage of this hands-on process is that the designer obtains a good idea of the toler-
ances of the system parameters.

The program is used in almost the same way to design both doublets and trip-
lets. Of course, because a triplet contains an additional lens, more data must be in-
put and more choices must be made during optimizations.

New designs are generally based on the standard refractive indices given in
the catalog of the glass manufacturer. When the glass is delivered, the manufac-
turer will also supply the measured refractive indices of the blanks. The final de-
sign must be re-optimized based on the actual indices since these often deviate
slightly from the indices in the catalog. The reader is advised to review sections
21.13 through 21.16 before starting a design in order to obtain some necessary
background.

22.3.2 Using LENSDES

Load the program by typing LENSDES at the DOS prompt. As soon as the program
loads, the “short” menu appears on the screen:

Enter program choice (L for list).
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Type L. The following menu of commands will appear:

Create lens design

Display lens design

Print lens design and results
One-color lens analysis
Three-color lens analysis
Graph spherical aberration
zone change for analysis
Retrieve lens design file
Save lens design file

File path ( )

Modify lens radii

Indices modifications

Airgap and thickness modification
New title

Here is design reference

List of commands

ESC=exit design session.

All of the commands except ESC are entered by pressing the key of the first
letter of the command. Only some of the commands—C, Z, R, F, H, and L—
operate when the program has just been loaded and before a lens design has been
entered into the computer. All other commands require a design to be in the com-
puter and will not operate without one.

Create lens design To start a new design, enter C. The program will
first ask for the name (limited to 40 characters) of the new design. The design pro-
cedure then begins.

Display lens design The current lens design and design parameters can
be displayed with the D command. If you are starting a new design, this command
will operate only after the design parameters have been entered and LENSDES has
made a predesign.

Print lens design and results The P command tells the printer to
print a hard copy of the design and an analysis of it.

One-color lens analysis O causes LENSDES to make a one-color anal-
ysis of the current lens design at the first of the indices listed for each surface. The
focal length, focal ratio, spherical aberration, and OSC are also calculated.

Three-color lens analysis T initiates a three-color analysis of the
current lens design, and shows the results in tabular form on the computer screen.

Graph spherical aberration G shows a graph of spherical aberration
in three colors; thus spherochromatism is shown. The program must run an anal-
ysis of all colors that have not already been analyzed. If neither the T nor the O
command was given before the G command, all three colors will be analyzed and
tabulated before the graph is drawn.
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Zone change for analysis LENSDES traces five zones. The 1% and
100% zones are always traced; the remaining three zones are initially set to 50%,
70%, and 90%. Using the Z command, these can be changed to any integer values.

Retrieve lens design file The R command retrieves a design from
the disk. LENSDES first shows all . RLD (Refractor Lens Design) files. To load the
contents of a file, enter the filename without the . RLD extension. After the file has
loaded, the design can be analyzed and optimized. LENSDES allows you to specify
new indices (such as melt indices) for the optical glasses, or to move the lenses
with respect to each other (thereby changing the airgap) using the I and A com-
mands.

Save lens design file S saves adesign on a diskette. After the com-
mand has been given, the computer will list all the . RLD files. Enter any filename
(up to eight characters) without an . RLD extension. If a longer filename is entered,
the program will not accept it. If the filename you enter is the same as that of an
already existing file, that file will be overwritten.

File path ( .. ) This shows the current file path to the design file and
permits changing the path. The current path appears between parentheses.

Modify lens radii Use M for optimizing a design. When this key is
struck, LENSDES asks for a new first radius, a new ratio R3/R2, and a new power
ratio Lens1/Lens2, if you are designing a doublet. If a triplet is being designed,
LENSDES asks for the ratios R5/R4 and power ratios Lensl/Lens3 and
Lens2/Lens3 as well. To leave a value unchanged, simply press the ENTER key.
For cemented and immersion lenses, R3/R2 and R5/R4 are held at unity.

Indices modifications I allows you to change the refractive indices
of the glasses. This is extremely useful for re-optimizing a design when actual
melt indices are known.

Airgap and thickness modification You can alter the airgap and/or
the lens thickness with the A command. This is particularly useful for doing a tol-
erance analysis about these parameters. The degree of correction depends some-
what on the thickness of the lenses and very strongly on the airgaps.

New title With the N command, the current design can be given a new
name.

Here is design reference The H command summons a comprehen-
sive help screen. It will remind you of the best and most efficient approaches to
optimizing a design.

List of commands L shows the list of commands on the screen. These
commands are active from any point in LENSDES, even without the command list.

ESC = exit design session Pressthe ESC key to quit the program and
return to DOS. LENSDES does not save the current design automatically; always
check that you have saved your work before quitting.

22.3.3 Doublet Design with LENSDES

The method used and background information on its application are given in sec-
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tion 21.13. Before beginning your design session, choose glass types for the ele-
ments and have available the refractive indices for the three colors of interest.

Load the program by typing LENSDES. Begin the design procedure with the
Create command. After you have entered a name for the design, the computer
will ask whether you wish to design a doublet or a triplet. It will then ask:

Enter lens diameter?

Only positive values are accepted, preferably lenses equal to or larger than 100
units. To design a smaller lens, scale it down afterwards—the focal ratio will re-
main the same, of course!

After the lens diameter has been entered, the computer will ask:

Enter focal length of the lens?

Both positive and negative focal lengths will be accepted. The absolute value of
the focal length should be at least 5 times its diameter. It is not necessary to indi-
cate whether a Fraunhofer or a Steinheil configuration is chosen, because this is
calculated by LENSDES with the aid of the Abbe numbers of the two glasses: the
positive lens will have the higher Abbe number and the negative lens the lower.

After the focal length has been entered, the computer will ask for the refrac-
tive indices. The refractive indices should be given for one lens at a time. The first
index (N1) is the design index of the color for which the design is optimized for
spherical aberration and offense against sine condition. The computer next asks
for the red side index (longer wave length) and the blue side index (shorter wave
length). Then it asks for the refractive indices of the second lens in the same way;
these indices must be given for the same wavelengths as for the first lens.

After this the computer asks:

Enter thickness at edge of positive lens?
and:
Enter thickness at center of negative lens?

The program assumes the edge thickness you enter is for a 4% oversize blank.
This value should not be too small because thin edges quickly chip. The center
thickness should not be too small either, or the lens will be liable to break. Fur-
thermore, overly thin elements bend during grinding and polishing, and are diffi-
cult to figure. Lastly, thin lenses bend during use, causing aberrations.

After the edge and center thickness have been entered, the computer asks:

Enter airgap?

The airgap is the distance between the lenses on the optical axis. This distance
should be made reasonably large, i.e., larger than about 3 millimeters for a 200
mm aperture. After the system has been ground and polished, any residual spher-
ical aberration can be corrected by moving the lenses with respect to each other.
For cemented or oil immersion doublets, however, the airgap should be set to zero.
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After these data have been entered, the computer makes a predesign. The
predesign has a first lens curvature of 2/3 of the given focal length, and other op-
timization parameters are preset. The program automatically calculates the other
radii of curvature and the thickness of the positive lens, and checks the airgap. It
also checks that the distance between the edges of the lenses is equal to or greater
than zero. If it is not, the program increases the distance between the lenses until
the edge distance is 0.025 mm. The predesign is then printed on the screen, and
the program is ready to do analyses or to optimize the design manually.

To explore the aberrations of the design, enter T to initiate a three-color anal-
ysis. After a few seconds, you will see the longitudinal spherical aberrations and
OSC values for all three colors. If you want to see the same information in graphic
form, enter a G for a graph of the spherochromatism.

If the design is not correct, you may now modify it by entering the M com-
mand. This allows you to vary three parameters:

¢ the radius of curvature of the first surface (R1)
¢ the ratio of the radii (R3/R2)
¢ the ratio of the powers (Lensl/Lens?2)

Changing R1 has the greatest effect on the OSC. Changing R3 /R2 influences
the LA, and changing Lensl/Lens2 influences the spherochromatism. Of
course, when any one parameter is altered, it influences all of the aberrations.
Whenever you are optimizing a design, it is important to make notes or print out
successive designs and aberrations.

Begin an optimization by changing the power ratio, ignoring the LA and
OSC. Look first to see in which zone the red and blue curves intersect, and wheth-
er the design is achromatic. For airspaced designs, slight changes in the power ra-
tio are usually needed, so keep R1 and R3/R2 constant by pressing the ENTER key,
and alter Lens1/Lens2.

If the design is achromatic—that is, if the red and blue curves intersect some-
where between 50 and 90% of the semidiameter—vary the ratio of the radii while
keeping the other parameters constant to suppress LA.

Once the spherical aberration has been reduced to an acceptable level,
change R1 to reduce the OSC. As you alter the parameters, you will gain insight
into which changes improve the design. When you have completed the first set of
optimizations, note how much the position of the achromatic zone has moved and
how much spherical aberration has been introduced, then reoptimize the design.
After several trial and error runs, you will be able to create a good design easily.

During the optimizations, the computer constantly checks that the inside cur-
vatures do not become too strong. Very exotic designs with curves like Christmas
tree balls are generally not practical. Whenever the radius of curvature becomes
smaller than the diameter of the lens, the program generates an error message and
returns to the menu.

After you have purchased glass for the lenses, you should reoptimize the de-
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sign for the measured melt indices. At that time, start the program with the R com-
mand, enter the filename (without the .RLD extension), and enter the new true
values using the T command.

After this change has been made, the computer makes a new predesign. Enter
the original design parameters and check the correction with the new indices. Be-
cause actual melt indices are always close to the catalogue indices, re-optimization
takes only a short time.

A final note about doublet design: if you are new to lens design, alter only
one parameter at a time. The more design experience you gain, the faster you can
achieve a good design.

22.3.4 Triplet Design with LENSDES

Using LENSDES for a triplet is nearly the same as using it for a doublet. But there
are some important differences.

Naturally, the program will ask for the refractive indices of three lenses rath-
er than two. The three lenses must be three different glasses. It will also ask for
the edge thickness of the second positive lens and the second air gap.

When designing a triplet, the choice of a proper glass combination is very
important, so much so that it is the choice of glass, and not the computer design
process, that is the most time-consuming part of making a new design. Recom-
mendations for proper glass choices for both three-color and four-color triplets are
given in section 21.16.1.

With a triplet, the number of design parameters is higher than with a doublet.
The additional parameters are the curvature ratio R5/R4 and the lens power ratio
Lens2/Lens3. Because there are more ways to achieve very low spherical aber-
ration and OSC with apochromatic color correction, designing a triplet is consid-
erably more complex than designing a doublet.

The optimization procedure is begun by altering both lens power ratios to
achieve good color correction. Generally, it is possible to keep the power ratios
close to unity. Each design starts with a fairly short R1 (the default value is 3/8 of
the focal length). The curvature ratios R3/R2 and R5/R4 are altered to reduce
spherical aberration and OSC. That completed, make a new design with an R1
about 7/8 of the focal length. Once the second design has been done, you can haz-
ard a guess for a suitable value of R1.

Designing cemented and immersion objectives is difficult because the air-
gaps are fixed at zero and both curvature ratios are fixed at unity. Only the lens
powers and R1 are free parameters. It may take a long time to find a good design;
making a good glass choice is essential to success.

We have found that some users of LENSDES do not succeed in designing a
triplet on the first try. If you do not start with a good combination of glasses you
may not reach an acceptable design. If you have trouble, read section 21.16 again
to be sure you have selected suitable glass types.
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22.3.5 Rescaling Doublet and Triplet Designs

When you have completed the design of a telescope objective with LENSDES, you
may notice that the effective focal length of the design is no longer the value you
specified initially. This is because the routine the program uses to calculate the
powers of the original lens elements does not take into account their thicknesses,
the airgaps, or whether the positive or negative element is first.

When the airgaps are small and the lenses thin, the final focal length will be
quite close to the original focal length specification. When the airgaps exceed
0.25% of the focal length and the lenses are thick, relatively large deviations may
occur. If this difference is not acceptable, the design must be rescaled.

There are two ways to rescale. The easiest method is to multiply the radii of
curvature, thicknesses, and airgaps by the ratio between the desired focal length
and the focal length of the lens design. Because the aberrations will change a little
and the zone of spherochromatism will shift, it is necessary to check and possibly
correct the design. If the new aberrations are unacceptable, then you must use the
second rescaling method.

Create a new design giving a desired focal length scaled proportionately
from the previous design. For example, if the focal length in the first design came
out 0.92 of the desired focal length, begin the design with a focal length the recip-
rocal of 0.92, or 1.087 times the focal length you want, and enter proportionally
scaled values for the radii, thicknesses, and airgaps. (You may wish to retain the
original lens thicknesses and airgaps for mechanical reasons, but the resulting de-
sign will, of course, then depart slightly from the desired focal length, but by a
much smaller amount.) Optimize the new design; then check its focal length. It
may be necessary to repeat this process several times if the focal length must ex-
actly match some value.

22.4 The Telescope Optics Ray-Tracing Program

RAYTRACE is a powerful ray-trace program suitable for examining axially sym-
metric, tilted, or decentered optical systems with flat, spherical, conic, and aspher-
ic surfaces as far as these surfaces are rotationally symmetric, using the skew ray-
tracing methods described in chapter 20. The program can present the results as a
table or as a graph.

22.4.1 Using RAYTRACE
Load the program by typing RAYTRACE from the DOS prompt.

Key Commands

After the program has loaded, the following appears at the bottom of the screen:
Enter the program choice (L for list).
Entering L will display the Main Menu:

Create new design
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Display design parameters

Toggle to scale for MONITOR/printer
Print screen

X = examine design

Alter analysis results

File path ( )

Retrieve design

Save design

Modify design radii/distances
Indices modification
Vignetting/decentering modifications
New design title

Here is design reference

ESC = Exit program

The keyboard is ready to receive a command as soon as the previous command
has been completed; it is not necessary, once you know all of the commands, to
use the L command to display the list of possible commands.

Create new design The C command allows you to start a new design.
Designs are limited to a maximum of 35 surfaces.

Display design parameters After a design has been entered, it may be
modified, retrieved, or displayed. The display allows you to re-examine a system
you are optimizing.

Toggle to scale for MONITOR/printer This command allows you
to set the height and width proportions for the monitor and printer if their scales
differ. This is needed for spot diagrams only; otherwise, scale doesnt matter. (If
the default scales are correct, no adjustments are needed. If they are not right, run
FIRST to set them correctly for your system.) When the menu reads:

Toggle to scale for MONITOR/printer

the height to width ratio is correct for the monitor, but the program may give a dis-
torted diagram on a printout. When the menu reads:

Toggle to scale for monitor/PRINTER

the height to width ratio is correct for the printer, but the program may give a dis-
torted diagram on the monitor.

Print screen With this command, a printout of the current screen is made.
This may be a tabular or graphic output of the design parameters.

X = examine design This command initiates an analysis of the perfor-
mance of the current design. The analyses possible are described below.

Alter analysis results After a design has been analyzed, the A com-
mand allows you to refocus, convert the output from tabular to graphic, or convert
it from graphic to tabular.
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File path ( ) Youcanchange the drive or directory on which design files
will be stored by entering the desired path, i.e., B: \WORK or C:.

Retrieve design A design which has been saved on disk can be retrieved
and loaded into the memory of the computer. The full filename, including the ex-
tension, must be entered.

Save design The current design can be saved as a disk file. This file may
be retrieved later for further work. All files saved will automatically be given a
.DES extension.

Modify design radii/distances The current design can be modified.
This includes altering radii, shapes, thicknesses, and distances between the ele-
ments. Refractive indices cannot be changed with the M command.

Indices modification The I command allows you to change the refrac-
tive indices of the elements.

Vignetting/decentering modifications If a design contains vi-
gnetting or decentering parameters, these can be modified with the V. command.
When a design has been entered or retrieved without vignetting parameters, these
may be added to the design with this command.

New design title Once a design has been modified, it is no longer the
same design. The N command allows you to change the name of the current de-
sign. The filename does not depend on the title.

Here is design reference The H command calls up a summary of the
method for entering data and of the analyses possible in RAYTRACE. If you need
an extended description of RAYTRACE, please read on.

ESC = Exit Atany point in the program, hitting the ESC key permits the
user to quit the program and return to DOS.

Loading and Saving Design Files

There are two ways to load a design into RAYTRACE: by retrieving a file using the
R command, and by creating a file using the C command, then entering each of the
parameters manually. Once you have entered a design, you may save it as a disk
file for later reference.

Retrieving a file The designer will often wish to ray-trace a design
created with the TDESIGN or LENSDES. RAYTRACE can load files with extensions
.RLD, .TDS, and .DES. .RLD files are those saved by LENSDES ( .RLD means Re-
fractor Lens Design). The TDS files are those saved by TDESIGN ( .TDS means
Telescope Design). . DES files (DESign) are those that have been saved by RAY -
TRACE in a previous operation.

To retrieve a file, enter the R command; then, at the prompt, enter the filena-
me and its extension:

BERRY022.RLD
RUMAKDES.TDS
DIANEQOQO1.DES
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Alternatively, typing L and Enter to exit from this procedure. If you request a file
that does not exist on the disk or in the directory, the program will give an error
message and prompt for program choice again.

When a design is retrieved, all parameters are displayed on the screen. Ac-
cept the file by pressing RETURN; the program will then proceed as if you had just
created a new design.

Creating a New Design

To create a new design, use the C command. The first series of prompts is for gen-
eral information about the system, and includes questions that affect the types of
analysis you will be able to perform.

Pay strict attention to entering data into RAYTRACE correctly. Especially crit-
ical is complete adherence to all sign conventions. Especially confusing, therefore
especially important to check, is whether you have correctly entered the sign of
the refractive index. If light is reflected, thus traveling from right to left, the re-
fractive index must be preceded by a minus sign, and all subsequent surfaces, until
a second reflector occurs, must also use a minus sign with the refractive index.

RAYTRACE begins by asking you for a name to use with the design. This is
not a filename, but a label for your information and reference. The name should
be 60 characters or less in length. The program next asks:

Enter entrance pupil diameter = ?

Enter the diameter of the entering bundle of light. This diameter need not be that
of the aperture stop. If you do not know the diameter of the entrance pupil, you
can determine it with the “Trace a ray” option discussed later. If you enter 0 (zero)
or press ENTER, the program will ask you for the diameter of the entrance pupil
with every analysis. This is very useful when the diameter of the aperture stop is
initially unknown.

Next, the program asks:

Enter number of surfaces
(include stops & pupils) = ?

If you do not plan to make vignetting calculations, it is not necessary to include
vignetting diameters such as annular diaphragms, obstructions, and holes. How-
ever, you must include the entrance pupil position if it is not at the first optical sur-
face. For example, a Newtonian is entered as one surface, and a lensless Schmidt
as two surfaces. For an eyepiece, include an extra surface positioned at the ficti-
tious entrance pupil as described in section 16.4.

To examine the vignetting of a two-mirror Cassegrain without a baffle sys-
tem, enter four obstructing surfaces: the secondary mirror blocking incoming
light, the outside rim of the primary, the outside rim of the secondary, and the hole
in the primary. Vignetting calculations are discussed in greater detail below.

Next, enter the number of refractive indices (to a maximum of five). When
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adesign is traced for only one color, or when a design contains only mirrors, enter
1. If, however, a design must be calculated in more colors, enter the number of col-
ors to a maximum of five. Note that the program does not know what wavelengths
have been chosen, so you must enter the refractive indices for each type of glass
in the same sequence.

You must next enter the back focal length. This need not be the last optical
surface, but may refer to any position you choose as a reference. Enter this posi-
tion relative to the last optical surface. It causes no problem to enter the back focal
length as 0 or press ENTER.

Enter vignetting parameters (Y/Enter = N)

If you do not wish to make vignetting calculations, then type ENTER in response.
If you enter Y, the program will ask the diameters of the optical components during
the entry of the optical data. When N is entered, the program does not ask for these
diameters. Note that RAYTRACE does not check whether the optical elements touch
each other or if they have negative edge thicknesses.

If the system is axially symmetric, then answer N (press ENTER) to the ques-
tion:

Enter non-centered parameters (Y/Enter=N) ?

If you answer Y, the program will ask for the decentering parameters at every sur-
face as you enter the optical data. When N or ENTER is pressed, the program does
not ask for these parameters.

Note that if the focal surface is not perpendicular to the optical axis of the
last optical surface or vignetting dummy surface you enter, then the focal surface
must be entered as a separate optical surface.

RAYTRACE next asks for the optical parameters of the system. The screen
clears and the entrance pupil and number of surfaces are printed at the top:

CREATE NEW DESIGN

new design

Entrance pupil: 200 Surfaces: 3
Surface 1:
Surface code:S=SphericalC=conic F=Flat M=Schmidt Corr.
P=Pupil B=Baffle T=Stop 1-5=#Aspheric Coeffs.

Enter Surface code =
Then the following appears:
Surface 1: Enter radius of curvature = ?

Input the radius of curvature. Pay close attention to the sign convention. If the cen-
ter of curvature is right of the vertex of the surface, the sign should be positive; if
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the center of curvature is left of the vertex of the surface, the sign should be neg-
ative. If the surface is a flat, a stop, an obstruction, or a diaphragm, enter 0 (zero).

Enter distance to the next surface = ?

Again, you must adhere strictly to the sign convention. If the direction to the next
surface is to the right, the sign of the distance must be positive; if the direction is
to the left, the sign must be negative.

Enter N(1) = ?

Enter the first refractive index. Once again, the sign convention is important. If a
ray continues its direction, the sign of the index is the same as the sign of the pre-
vious surface. (The initial index is 1.000, for air.) If the ray encounters a stop, the
index is the same as for the previous surface. However, when a ray is reflected,
the sign of the index changes.

If you are tracing more than one wavelength, the program will now prompt:
N(2) = ?

until all of the refractive indices (up to five) have been entered. The surface codes
are listed in the prompt to help you remember them.

Simple surfaces: S means the surface is spherical, F means flat, B means the
surface is a baffle, and T means a stop. If you are running vignetting calculations,
the program will ask for vignetting parameters; if the system is decentered, the
program will ask for non-centered parameters. After you respond, it will continue
to the next surface.

Conic surfaces: C means the surface is a conic section. The computer asks
for conic surface deformation. If the surface is a paraboloid enter —1; if it’s a
sphere enter 0. If the surface is a prolate ellipsoid, enter a value between —1 and 0.
A Dall-Kirkham primary might have a conic deformation of —0.65355. If the sur-
face is an oblate ellipsoid, the value will be greater than 0, for example, 2.12 for a
Wright primary. If the surface is a hyperboloid, the conic deformation must be less
than —1; a value of —1.0123 would be typical of a Ritchey-Chrétien primary. After
the deformation has been entered, the computer continues.

Schmidt surfaces: M means the surface is an aspheric Schmidt surface. The
program expects a second-order surface and calculates the higher-order coeffi-
cients automatically after asking for the relevant parameters:

Enter relative power (+ for back, - for front) = 0.0000)?
Enter neutral zone position (0 = center, 1 = edge) = ?
Enter design index = 0.000000)?

Enter primary radius = ?

Enter distance to next surface = ?
Enter N( 1 ) = °?
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Fig. 22.2 Vignetting Calculations Showing Maximum and Minimum Diameters of Optical Surfaces.

The relative power of the Schmidt surface is that which is necessary to cor-
rect the spherical aberration of a primary mirror of the desired radius as specified
in the fourth prompt. Full correction has an absolute value of 1; partial correction,
a value between | and zero, or no correction; over-correction, absolute values
greater than 1. If the surface is a back side corrector (glass-air), then the sign of
the power will be positive; if it is a front side corrector (air-glass), the sign will be
negative.

The position of the neutral zone indicates where the thickness of the correc-
tor is at a minimum. This position is given as a relation to the diameter of the en-
trance pupil, not to that of the optical component. In a Compact Schmidt-
Cassegrain telescope, for example, the diameter of the entrance pupil and the di-
ameter of the corrector are the same; but for a Flat-Field Schmidt-Cassegrain
Camera with internal stop, the diameter of the corrector is larger than that of the
entrance pupil. The best color correction is given at a value of 0.866. The mini-
mum amount of glass to remove depends on the oversized corrector diameter. This
is explained more fully in section 21.11.

The primary radius is that of the primary for which the corrector is designed.
Normally this radius is the same as the radius of curvature of the primary in a
Schmidt Camera or a Schmidt-Cassegrain Telescope. The sign of the radius
should match that of the primary.

The design index is the refractive index of the corrector glass at the wave-
length for which the corrector is designed. If the instrument is intended for visual
observation, give the index for yellow-green light (546.1 nm); if it is for a photo-
graphic instrument, enter an index for blue light (486.1 nm).

Higher-Order Surfaces: When the surface is an arbitrary higher-order sur-
face, it is described as a function of the intercept height from the axis, A:

2=A R +Ay b A RO A R+ AR (22.4.1)

Enter the number of aspheric coefficients, to a maximum of five, including the in-
termediate zeros you wish to include in the surface description. After the number
has been entered, the program will prompt you for each successive surface coef-
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ficient.

Vignetting and Non-Centered System Parameters: If you have told the
program not to ask for vignetting parameters or non-centered parameters, the com-
puter will clear the screen, print the entered data, and continue with the next sur-
face.

However, if the program expects vignetting parameters, it will continue, us-
ing the notation shown in fig. 22.2:

Enter field stop or maximum diameter = ?

Enter the diameter of the optical component or of an annular diaphragm. If a sec-
ondary mirror or a baffle tube creates an obstruction at this position, then enter the
internal diameter of the tube. The computer assumes that optical elements and
stops are round.

Enter hole or obstruction minimum diameter = ?

Enter the diameter of a hole in a mirror or of any obstruction such as the external
diameter of a baffle tube. When rays pass through a hole in a mirror, this should
be treated as a diaphragm.

If you told the program to expect non-centered parameters, it will ask for
these parameters:

Enter axial surface shift = ?

The sign of the axial shift depends on the direction the surface has been shifted. If
the surface is moved to the right, the sign is positive; if to the left, the sign is neg-
ative. RAYTRACE assumes that the rest of the optical system is shifted together with
this shift, so if only one surface in a design is shifted, you must enter the same val-
ue with the opposite sign as the shift at the next surface.

Enter surface decentering in x-direction = ?

RAYTRACE allows decentering of components only in the x—axis. Decentering in
one direction usually gives adequate information for testing design sensitivity.
The program assumes that the rest of the optical system is centered with respect
to the decentered surface, so if only one surface is decentered, enter the same value
with opposite sign for the decentering of the next surface.

Enter sine of surface tilt angle = ?

The sign of the sine of the angle is positive when the surface is tilted clockwise,
and negative when it is tilted counterclockwise.

RAYTRACE allows components to be tilted in only one direction. As with
decentering, if tilt were allowed in both directions, results would be difficult to in-
terpret. Moreover, tilted telescope designs with components decentered and tilted
in two directions are very rare.

Note that a surface tilt influences the distance between the surfaces and in-
troduces decentering as described in section 20.9. RAYTRACE assumes that the rest
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of the telescope design lies on the optical axis of the tilted surface, so if only one
surface is tilted, you must enter the next surface so that the system is centered with
respect to the other surfaces.

When the last surface of a design is decentered, RAYTRACE assumes that the
focal surface is perpendicular to the optical axis of the last optical surface. If the
focal plane is tilted, as it is in a Schiefspiegler, then the focal surface must be en-
tered as an extra surface like a tilted diaphragm.

After these data have been entered for each surface, RAYTRACE clears the
screen and continues to the next surface.

After data have been entered for the last surface, the computer calculates the
effective focal length, the back focal length, and the effective focal ratio. The pro-
gram next displays these values and all optical data, and then waits for a com-
mand. (This is the same point as that at which the program continues after a design
has been retrieved from disk.)

To save the newly entered data to disk, use the S command. RAYTRACE will
list all .RLD, .TDS, and .DES files and ask the name of the file to be saved. The
filename may be up to eight characters long; do not add the extension . DES, since
RAYTRACE does this automatically. To avoid saving a file, type L and press ENTER.
After the program has saved the file, the computer returns to the command menu.

Examining an Optical System

The X command tells RAYTRACE to examine the optical properties of the system
currently loaded into memory. Each analysis begins with a summary screen:

04-08-1988 SELECTION OF DESIGN ANALYSIS 11:55:36

gamma

Entrance pupil: 200.00 Focal ratio: 15.5 Effective focal length: 3096.6
Back focal length: 3076.795

Trace a single ray

Longitudinal tabular

Longitudinal graphical

Transverse tabular

Transverse graphical

Sagittal tabular

Sagittal graphical

Skew tabular

0
1
2
3
4
5
6
7
8] Skew graphical

— — /e
S

The entrance pupil is the diameter entered at the beginning of the program
or through a modification of the design using the M command. The effective focal
length is calculated assuming all optical components are positioned as in a cen-
tered system. When you are investigating a decentered design, there may be a
small discrepancy in the results.
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The focal ratio is the effective focal length divided by the diameter of the en-
trance pupil. The back focal length is the distance from the vertex of the last sur-
face to the paraxial focus. These values are all calculated using the first set of
refractive indices.

If more than one index per surface is entered, the following prompt appears:
Enter number of color to trace?

The number you enter must be equal to or less than the number of indices per sur-
face.

After this, RAYTRACE continues with a menu of possible types of analysis:

Trace a single ray
Longitudinal tabular
Longitudinal graphical
Transverse tabular
Transverse graphical
Sagittal tabular
Sagittal graphical
Skew tabular

Skew graphical

W ~J o Ul WO
— e e e e e e

Enter the number of the selected analysis, or type ESC to exit.

Options 0 through 6 perform simple one-ray or one-plane analyses of sys-
tems. They are powerful tools for exploring the surface-by-surface passage of one
or more rays through the optical system.

Option 0 is used to trace a ray through the optical system. This option is use-
ful mainly for determining the size of the optical components and for checking the
data entered for a tilted-component telescope design. A ray in the meridional plane
can be defined by its object parameters: for an object at infinite distance, the angle
and the zone; for an object at finite distance, the distance, the height, and the zone.
An intercepting plane can also be defined—usually the position of the focal sur-
face—when entering the distance from the last surface to the focus (BFD).

Options 1 and 2 are used to make longitudinal analyses. With these options,
the longitudinal spherical aberration can be determined. These analyses cannot be
carried out for tilted-component telescope designs, because with the shifting and
tilting of optical components, the optical axis is no longer definable. For these de-
signs, options 3 and 4 are applicable.

Options 3 and 4 are used to make transverse analyses. With these options,
the minimum meridional blur can be determined. When an off-axis analysis is
done, the position of the best focus in the tangential plane, or best tangential focus,
can be determined.

Options 5 and 6 are also used to make transverse analyses. The difference
from options 3 and 4 is that the calculations are for the sagittal, rather than the tan-
gential, plane. In this case, when an off-axis analysis is done, the position of the
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best focus in the sagittal plane, or best sagittal focus, can be determined.

Spot Diagrams from the Skew-Ray Trace: Options 7 and 8 are the most
powerful and most difficult menu choices to use. When you select them, you must
select a series of ray-trace parameters, beginning with the distribution of rays on
the entrance pupil:

SELECT INTERCEPT DISTRIBUTION AT THE ENTRANCE PUPIL

(1) Regular square distribution
(2) Regular concentric distribution

Enter the number of the selected analysis.
Under the head:

SELECTION OF STARTING LIGHT RAYS

you will be prompted for the diameter of the entrance pupil. If the system has an
internal stop, the diameter of the entering bundle may be different from the stop
diameter (for an example, see fig. 19.10). In this case, the diameter of the entering
bundle must first be determined by ray-tracing, and the correct value subsequently
filled in. If you enter 0, RAYTRACE will ask the diameter with every analysis.

The entrance pupil intercept determines the number of zones for which the
ray-tracing analysis is carried out. An intercept distance of 20 mm on an aperture
of 200 mm will trace 11 zones, 5 above the optical axis, 5 below the optical axis,
plus the principal ray. Note that all spot diagrams are calculated for the full aper-
ture pupil; only in this way can non-rotationally symmetric systems be analyzed
in all directions.

The distance from last surface to focus, or back focal distance, is requested
next. The BFD is the axial distance from the last surface to a chosen reference in-
tercepting plane. Begin by entering the distance to the paraxial focal plane (this is
the back focal length shown on the summary screen), and search for a better focal
position in subsequent analyses. The spot diagram will lie on this plane of focus.

The object distance is, in most cases, infinite. Enter 0 to specify this. If the
value is finite, the actual distance from the object to the aperture stop must be giv-
en as a positive value in the same units as used for the design. Note that when you
examine a design at a finite distance, the first surface you have specified must act
as the entrance pupil.

For infinite object distances, you next enter the sine of incidence angle in the
X-plane. This is the sine of the incidence angle of an oblique bundle of rays with
the axis in the X-Z plane. For small angles, the sine can be taken the same as the
angle expressed in radians. For a bundle entering parallel to the optical axis, this
value is, of course, 0.

The sine of incidence angle in the Y-plane is precisely the same as above,
but for the angle with respect to the optical axis in the Y-direction. Ray tracing in
the Y-direction is not necessary for rotationally symmetric systems because the
system has the same characteristics and aberrations for all directions. Only tilted
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and decentered systems, i.e., systems which are not rotationally symmetric, re-
quire separate analysis in the Y-direction.

For finite object distances, RAYTRACE will calculate the values of X-sine and
Y-sine from the values the user supplies for the X displacement (or height), of the
object above or below the optical axis in the X-Z plane; and the Y displacement
(or width), of the object in the Y-Z plane. The ray-trace calculations are carried
out for rays in a diverging beam originating at a point source at these X,Y coordi-
nates. They can be used, for example, to calculate measurement data for a Fou-
cault test, given the position of the light source.

If you have specified that you wish a graphic analysis, RAYTRACE continues
by asking:

Enter X-distance from optical axis = ?

For the graphic presentations of the meridional, sagittal, and skew-ray tracing, the
value of the off-axis distance of the image point is the product of the angle of in-
cidence and the focal length. When the X-sine of incidence is 0.01 and the focal
length 2000 mm, for example, the X-distance from the axis should be 2000 x 0.01,
or 20 mm. If the system suffers from distortion, this image may be lower or higher.
This datum can also be obtained from the tabular display of ray-trace data.

Enter Y-distance from optical axis = ?

This is same as for the X-distance. If the object is on the Y-axis, that is, if either
the Y-sine or the Y-axis displacement is zero, this question will be omitted.

Enter width of plotting screen = ?

The value chosen depends on the size of the aberrations you expect to see. If you
enter 0.5 mm, the full width of the plotting screen will represent 0.5 mm. For scale,
RAYTRACE shows a bar 0.025 mm long on the screen, so that a quick estimate of
the aberration is possible. If the plotting screen width is too small, the aberration
curve or the spot diagram may not fit within the screen, and the analysis will have
to be repeated with a larger plotting screen.

If the plotting screen is too small, you may also miss an off-axis image en-
tirely, especially if you estimate the off-axis distance incorrectly. In that case, you
will not see a spot diagram or aberration curve on the screen because it falls out-
side the chosen position of the plotting screen.

If this happens, you will need to increase the size of the plotting screen until
you locate the aberration curve or spot diagram. Read its X-distance from the axis;
then make a new plot centered on the curve or spot diagram, using an appropriate
plotting screen width.

Displaying the System Analysis: Once all necessary data are in the comput-
er, RAYTRACE carries out its optical calculations. Results may be presented in tab-
ular or graphic form. (Graphics output is available only if the computer has CGA
graphics.) You may print graphic results (provided you have installed GRAPH-
ICS.COM in memory before starting RAYTRACE); modify the display; or modify
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Fig. 22.3 Sizes and Positions of the Plotting Screen.

the optical system or direction of the incoming rays, and run another analysis.

The longitudinal, meridional, and sagittal aberration graphs appear on a sys-
tem of coordinate axes. The display of LA (longitudinal aberration), because it is
a symmetrical aberration, uses only the upper half of the coordinate axis system,
unless vignetting data for the design are present and a vignetting analysis is re-
quested. The graphics-mode skew-ray trace presents a spot diagram.

Modifying a Design: The M command allows you to change the optical pa-
rameters of a design. During the modification, the data of the design will appear
in the same sequence as you entered them. If it is not necessary to modify a value,
simply press the ENTER key.

Altering the Display: RAYTRACE stores the numerical results in memory, so
you may display the results (using the A command) in as many ways as the pro-
gram allows. Only results for the rays that have actually been traced can be altered,
so if the chosen starting light rays have to be altered, a new analysis must be done.

After A has been pressed, the screen clears and RAYTRACE offers you the
chance to switch from graphics to tabular, or tabular to graphics, mode. You may,
of course, remain in the present mode.

If the presentation of the results is not fully satisfactory, you can change the
location and size of the plotting screen. If you do not wish to alter a value, hit the
ENTER key. This capability is extremely useful for centering or enlarging an aber-
ration figure on the screen. Fig. 22.3 shows some possibilities for the apparent size
of the plotting screen and its position with respect to the optical axis.

You may also focus the optical system by changing the intercept plane. Nor-
mally analyses are begun with the intercept plane at the paraxial focus. When ab-
errations are present, however, the image blur is usually not smallest there. By
moving this plane—“refocusing”—you will determine the optimum position for
the intercepting surface.

Finally, you may re-specify the focal surface curvature. If you know the ra-
dius of curvature, you can select and display the off-axis spot diagram lying on
this surface. If the radius of curvature is not known, you must determine the opti-
mum position of an off-axis interception point by refocusing, then calculate by
hand the radius of curvature from the off-axis distance and the focal shift, using
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the sagitta formula.

22.4.2 Vignetting Calculations

The principles behind the vignetting analysis are explained in section 19.4.

The calculation can be carried out with either the tabular or the graphic trac-
ing method, and the result of the calculation is shown on the screen as, for in-
stance, “19 of 81 rays are vignetted.” Tabular data are labeled with a V to designate
vignetted rays; graphical rays are not plotted if they are vignetted.

Much more data must be input for an analysis of vignetting than for a normal
ray-tracing analysis. All limitations of the optical elements, stops, and central ob-
structions must be included (see fig. 22.2). Each stop or central obstruction is
treated as an optical surface with zero power and the same refractive index as the
medium in which it is placed.

When tracing a bundle of rays through a mirror with a hole, you may either
calculate the position of the edge of the hole by hand and enter the surface as a
plane, or treat the surface as one with the same radius of curvature and position as
the mirror and the same refractive index as the adjacent medium. In the latter case,
it is not necessary to calculate the position of the edge of the hole with respect to
the vertex of the curvature.

A vignetting analysis is rather slow because every vignetting surface is treat-
ed as an optical surface. For an adequate understanding of vignetting, three or four
off-axis points must be checked (see fig. 19.12). In spot diagrams, the effect of vi-
gnetting on the light distribution can be seen nicely.

22.4.3 Tilted and Decentered Surfaces

The optical calculations for tilted and decentered surfaces are described in section
20.9. In RAYTRACE, the decentering parameters are entered and the system is cal-
culated as a centered system. Axial shifts are very easily handled: the axial dis-
tance of the particular surface is increased or decreased according to the shift.
Tilted surfaces are more difficult, but the notation used in RAYTRACE is made clear
in section 20.9. For a decentered system, the focal surface must be treated as a spe-
cific optical element with the same refractive index as the surrounding medium.

Tilted-Component Telescopes: When calculating TCTs, the greatest diffi-
culties occur when the focal plane is tilted; that is, the position of smallest spot di-
agram is ahead of the focal plane on one side of the axis, but behind it on the other
side. Find the tilt angle of the true focal plane, phi, with respect to the reference
plane, from:

ldf+ | +|df- |

= t.
(0] arctan W 1+ h ]

(22.4.2)
where |df+| and Idf-| are the absolute values of the focal deviations, and Ih+| and
lh—| are the absolute values of the off-main-axis distances. This formula is valid
when the reference plane is perpendicular to the main ray.
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Because the focal plane is tilted, the shape of the spot diagram will be slight-
ly distorted if the display plane is not tilted. If a distortion error of 2% is accept-
able, the maximum permissible tilt angle is arccos(0.98), or 11.5 degrees. For
larger angles, the reference plane should be tilted to avoid any distortion due to tilt.

22.4.4 Notes on Vignetting Computations

It is possible when ray-tracing a system that a ray will miss a surface or that the
iteration process to find the intercept of a higher-order aspheric surface will fail.
It is also possible that a ray traveling from a dense medium to a less-dense medium
will be internally reflected. RAYTRACE checks for these eventualities and works as
follows.

1. For Trace a Single Ray Calculations: The program will stop the print-
out at the surface previous to the one which the ray misses or in which it
is reflected internally.

2. For Vignetting Calculations: The program adds all rays which miss a
surface or are internally reflected to the total number of vignetted rays.

3. For Non-Vignetting Calculations: The program counts the number of
rays that miss a surface, are reflected internally, or, if an aspheric sur-
face, for which the iteration process fails. RAYTRACE does not record
how the ray was lost, and does not continue to trace a lost ray. After the
analysis is complete, the program prints the number of ‘‘vignetted” rays.

22.4.5 Data Input Exercises

We recommend that you key in the following seven system designs treated in this
book as examples. By keying in the specifications from the tables in the book you
will be able to achieve a working understanding of the data input procedure.

1. 200 mm f74 Newtonian parabolic mirror

2. 200 mm f/8 Ritchey-Chrétien (table 7.4)

3. 200 mm f710 Apoklaas doublet (table 6.1)

4. 200 mm f710 compact Schmidt-Cassegrain (table 9.1)
5

. 200 mm f710 compact Schmidt-Cassegrain vignetting calculations (sec-
tion 19.4)

6. 200 mm f710 Apoklaas with second lens shifted 1 mm with respect to
the first (table 6.1)

7. 200 mm f714.7 Trischiefspiegler (table 12.1)

We recommend that you also run the program with these examples, repeat-
ing the calculations that the authors themselves have made, and compare the re-
sulting spot diagrams with those shown in this book.
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22,5 Optimizing Predesigns from TDESIGN

TDESIGN creates third-order approximations of telescope designs. As noted in
chapter 21, these designs, especially those for catadioptrics, need optimization by
skew-ray tracing. When rays are traced, they will show deviations from the prede-
sign, especially in the focal length of the telescope and position of the focal sur-
face (BFL). The size of the deviation depends on the power of the corrector used.
Two-mirror designs do not normally need optimization, but when strong curves
are present, it is best to ray-trace the system in order to gain a thorough under-
standing of the design and its performance.

Iteration is always necessary in the design of a two-mirror catadioptric, to
choose the right secondary magnification factor to make an anastigmatic or
aplanatic design with the desired telescope focal length and back focal length be-
hind the front of the primary mirror.

The telescope systems presented below were made using the curves for anas-
tigmatic and aplanatic designs presented in chapter 21. These examples show
quite dramatically the influence of the optical power of the corrector on the per-
formance of each system.

Using RAYTRACE to optimize a design is a lot like optimizing a lens using
LENSDES. The designer enters each change by hand and follows how much the ab-
errations change. (Use the M command to modify the optical system parameters in
RAYTRACE.) This process is effective because the results TDESIGN produces are
so close to final that manual optimization takes only a little time. More important-
ly, however, the process of manual optimization gives the designer a feeling for
how critical the optical components are, and a sense of the tolerances.

If you notice that small changes during optimization produce large changes
in optical performance, a good tolerance analysis is more than worthwhile. Of
course, for any critical application, running a manual optimization does not obvi-
ate the necessity of running a full tolerance analysis.

22.5.1 The Wright Design

The Wright camera is just about the simplest case possible: an oblate ellipsoid
with a Schmidt corrector at half the radius. Starting with the following inputs:

Clear Aperture 200 mm
Focal Length 750 mm
Position Corrector 750 mm

we obtain the following as a result of skew-ray tracing:

Focal Length 752.50 mm (+0.3%)
Back Focal Length -747.49 mm (-0.3%)

These deviations cannot be reduced unless the focal length of the primary
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Wright Camera
Predesign Og;:;‘gfd

Clear aperture 200 200
Focal length 750 752.5
Geometric focal ratio 3.5 3.76
Primary radius ~1500.00 -1500
Primary aspheric deformation 1.000000 1.0000
Schmidt corrector (n = 1.51872) strength 2.000000 2.0000
Schmidt corrector thickness 5.00 5.00
Primary corrector distance 750.00 750.00
Back focal length (behind the primary) -750.00 —747.49

mirror or the position of the neutral zone on the corrector is changed. The latter is
currently 0.866 for the best color correction, and should not be modified.

The overall optical performance is good. The diameter of the axial spot dia-
gram is 0.0015 mm, small enough that it needs no optimization. The spot diagram
22.5 mm off axis is 0.045 mm diameter and round because astigmatism is present.
It is not possible to reduce coma in this design even though it is noticeable. In any
case, when so little coma is present, it is not necessary to reduce it.

Wright cameras seldom need optimization.

22.5.2 The Schmidt-Cassegrain Telescope

The goal is an anastigmatic 200 mm f710 Schmidt-Cassegrain design. With a few

iterations of TDESIGN, we obtained a predesign for a telescope with a clear aper-

ture of 200 mm and a focal length of 2000 mm, having a primary focal length of

350 mm, a back focal length of 175 mm (i.e., E=0.5), an aspheric secondary with

a magnification of 5.75, and the corrector at 1/0.95 times the mirror separation.
When we ran a skew-ray trace, we found:

Focal length of telescope 1763.2 mm (-12
Back focal length (behind primary) 111.39 mm (-36

)
)

o° oo

These values deviate strongly from those in the predesign. This difference is due
to the optical power of the Schmidt corrector. The position of the neutral zone is
especially important; if the neutral zone were at the optical axis, deviations would
be absent but the color correction of the telescope would be poor.

There are two ways to optimize these parameters: change the curvature of the
secondary mirror or change the distance between the mirrors and the corrector-to-
primary distance. If the distance between the mirrors is fixed, or if the obstruction
is fixed, then the curvature must be changed. However, if the radius of curvature
is fixed, as it would be in a flat-field design, then the distances must be changed.
When this is done, the distance between the mirrors and the corrector-to-primary
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distance must be changed proportionally.
We altered the radius of curvature of the secondary mirror:

R(4) (TDESIGN) -189.56
R(4) (RAYTRACE) -175.56
This now gave:
Focal length 2031.7 mm (+1.6%)
Back focal length 169.8 mm (-3%)

These departures are sufficiently close to the design goals to be worth optimizing
again.

However, spherical aberration is —2.16 mm. By changing the power of the
Schmidt corrector in several iterations, we obtained:

G (DESIGN) 0.823664

G (RAYTRACE) 0.841664

This system produces an axial spot diagram of 0.010 mm diameter. At 20 mm

from the optical axis, the size on a curved focal surface is about 0.008 mm. No

coma can be seen in the spot diagram, and the design is free of astigmatism.
This time we will alter the distances between the two mirrors and between

the corrector and the primary. A few iterations give us the following parameters:

Mirror separation (TDESIGN) -271.81 mm
Mirror separation (RAYTRACE) -269.56 mm
Corrector-primary (TDESIGN) 286.1 mm
Corrector-primary (RAYTRACE) 283.85 mm

This gives new parameters:

Focal length 1998.9 mm (+0.05%)
Back focal length 177.6 mm (+1%)

These deviations are sufficiently small. The spherical aberration is now —1.4 mm.
A few iterations of changing the power of the Schmidt corrector yields:

G (TDESIGN) 0.823664
G (RAYTRACE) 0.835664

The axial spot diagram is 0.010 mm, and 20 mm from the optical axis, the size on
a curved focal surface is about 0.006 mm. No comatic shape is visible in the spot
diagram.

It is possible, of course, that when the design specifications are changed,
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Schmidt-Cassegrain Telescope
. Optimized
Predesign lgesign

Clear aperture 200 200
Focal length 2000 1998.9
Minimum secondary diameter 44.68 45.02
Geometric focal ratio 10.00 9.99
Photographic focal ratio 10.33 10.26
Primary radius —700.00 —700.00
Primary aspheric deformation 0.000000 0.0000
Secondary radius —-189.56 -189.56
Secondary aspheric deformation -0.622782 -0.622782
Primary to secondary distance -271.81 -269.56
Schmidt corrector (n=1.51872) strength 0.823664 0.835664
Schmidt corrector thickness 5.00 5.00
Primary to corrector distance 286.50 283.85
Secondary to focal plane distance 446.81 447.16
Back focal length (behind the primary) 175.00 177.6

some coma will be introduced. If the design contains aspheric mirrors, then not
only the power of the Schmidt corrector but also the aspheric deformation of the
mirror must be changed. If the system has no aspheric mirrors, then the distance
from corrector to primary must be changed.

Take care: although changing the Schmidt corrector is the fastest way to op-
timize a system, changing the mirror deformations very quickly introduces a large
amount of coma.

22.5.3 The Houghton Camera

We started this design with a clear aperture of 200 mm and a focal length of 750
mm, with a corrector-to-primary distance of 750 mm and a design index of
1.51872 (BK7 at 546.1 nm). Other data were less important and did not influence
the optimizations.

Results of skew-ray tracing with RAYTRACE were:

Focal length +754.1 mm (=0
Back focal length -748.5 mm (-0

ul

.55%)
.2%)

oo

These deviations are comparable with those of the Wright system. They cannot be
optimized unless the curvature of the primary mirror is changed.

The optical performance is quite good; the axial spot diagram is 0.0016 mm
in diameter, and 0.022 mm in diameter 22.5 mm from the axis. The best off-axis
performance is obtained on a curved focal surface. The spot diagram on the optical
axis is small, so it is not necessary to optimize. The size of the spot diagram on the
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Houghton Camera
. Optimized
Predesign ]p)esign
Clear aperture 200 200
Focal length 750 754.1
Geometric focal ratio 3.75 3.77
Primary radius —-1500.00 -1500
Houghton corrector (n = 1.51872)
First radius 1185.40 1185.4
Thickness 11.43 11.43
Second radius —2264.41 —2264.41
Air space 2.17 2.17
Third radius -1185.40 -1185.4
Thickness 5.00 5.00
Fourth radius 2264.41 2264.41
Primary to corrector distance 750.00 750
Back focal length (behind the primary) —750.00 —748.5

curved focal surface does not need optimization either.

Houghton camera designs seldom need further optimization. If spherical ab-
erration and/or coma occur, first change R(1) and R(3), keeping R (1) =-R(3).
Once spherical aberration is minimized, check the coma. If coma is present,
change R(2) and R(4), keeping R (2) =-R(4). This, of course, introduces some
spherical aberration which can be minimized by changing R (1) and R(3) again.
After several iterations, you may begin to see some kind of relationship between
the front and back curvatures. Once you know this relationship, you can complete
the optimization much faster.

22.5.4 The Houghton-Cassegrain Telescope

Our goal was an anastigmatic 200 mm f/12.5 Houghton-Cassegrain telescope.
Again after some iterations in TDESIGN, we settled on a design with a clear aper-
ture of 200 mm and a telescope focal length of 2500 mm. The focal length of the
primary was 715 mm (so the secondary magnification was 3.5), and the back focal
length was 250 mm (E=0.35). The corrector distance came out to 1/0.95 of the
mirror separation, and the design index for BK7 at 546.1 nm wavelength was
1.51872.

The skew-ray trace gave us:

o

Focal length 2465 mm (

-1 )
Back focal length 229.21 mm (-8

.4
.3%)

[

As you can see, these results do not deviate very much from the design desired.
A look at the optical performance shows that the size of the axial spot dia-
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Houghton-Cassegrain Telescope
. Optimized

Predesign Igesign
Clear aperture 200 200
Focal length 2500 2465
Minimum secondary diameter 60.03 59.32
Geometric focal ratio 12.50 12.33
Photographic focal ratio 13.10 12.91
Primary radius -1430.00 —-1430.00
Secondary radius —601.15 -601.15
Primary to secondary distance —-500.39 -500.39
Houghton corrector (n = 1.51872)
First radius 1072.84 1072.84
Thickness 13.47 13.47
Second radius -1317.28 -1317.28
Air space 1.02 1.02
Third radius -1072.84 -1072.84
Thickness 5.00 5.00
Fourth radius 1317.28 1317.28
Primary to corrector distance 526.50 526.50
Secondary to focal plane distance 750.39 729.6
Back focal length (behind the primary) 250.00 229.21

gram is 0.0055 mm, which is more than sufficient. At a distance of 20 mm from
the optical axis, the size of the spot diagram is 0.007 mm, which is also very good.
The smallest off-axis spot diagram was obtained for a curved focal surface.

If we wish to reduce the differences between our design goal and the initial
design, we can do the same as with the Schmidt-Cassegrain design. Using the
original corrector from TDESIGN gives spot sizes comparable with the values
above, which do not need further improvement. If there is any residual spherical
aberration or coma, follow the iterative procedure described in section 22.5.3
above.

22.5.5 The Maksutov Camera

The Maksutov camera has the strongest corrector of any catadioptric design. Be-
cause of this, the deviations of the first-order values are larger than in any of the
other systems. Therefore even TDESIGN, using third-order methods, requires an
iterative optimization procedure.

Our design goal is a 200 mm clear aperture f/3.75 camera. To correct coma,
we needed a corrector distance of 1008 mm for a 20 mm thick corrector designed
for green light (546.1 nm) and a color correction factor of 0.98. Using BK7 glass,
the design index is 1.51872.
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Maksutov Camera
Predesign Og:;lgzned
Clear aperture 200 200
Focal length 750 727.2
Geometric focal ratio 3.75 3.64
Primary radius -1500.00 -1500.00
Maksutov corrector (n = 1.51872, shape
factor = .98)
First radius -285.71 -285.71
Thickness 20.00 20.00
Second radius -297.27 -297.27
Corrector to primary distance 1008.80 1008.80
Back focal length (behind the primary) -750.00 -765.75
From skew-ray tracing, we see:
Focal length 727.2 mm (-3%)

Back focal length 765.75 mm (2.1%)

These values are close to the design values. They can be changed only by altering
the thickness of the corrector or the focal length of the primary. Optical perfor-
mance is excellent; the spot diagram on axis is 0.005 mm, 0.006 mm at 21.8 mm
from the axis on a curved focal surface. TDESIGN has done a fine job!

If you use a corrector with a different thickness, some residual spherical ab-
erration and/or coma may be introduced. Minimize spherical aberration by chang-
ing R(1) and R(2). To keep the color correction optimal, these changes should
be the same for both surfaces:

R(1l)new = R(1)old + dR
R(2)new = R(2)old x (R(1l)new/R(1)old)

Once the spherical aberration has been minimized, check for coma. If coma
is present, the position of the corrector should be altered until coma has been elim-
inated. After this is done, check the color correction by ray-tracing two other col-
ors of interest, red and blue, for example. If the color correction is not optimal, the
first or second radius should be recalculated as discussed in chapter 10. This will
influence spherical aberration and coma, so the new design must again be re-opti-
mized.

22.5.6 The Maksutov-Cassegrain Telescope

The Maksutov-Cassegrain, because of the optical power of the secondary mirror,
has an even stronger corrector than the Maksutov camera. We set out to design a
200 mm f715 telescope. The focal length of the primary was 910 mm, giving a sec-
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ondary magnification of 3.5. The back focal length was 230 mm (E=0.25). We
chose a corrector made of BK7 (design index 1.51872 at 546.1 nm) with a thick-
ness of 36.4 mm (0.04 Fprim) and a color correction factor of 0.98. The corrector
distance was chosen to give us a coma-corrected system.

The skew-ray trace gave the following rather depressing output:

Focal length telescope 3508 mm (+16.9%)
Back focal length 477.7 mm (207%)

These results depart strongly from the data originally entered in TDESIGN. As in
the Schmidt-Cassegrain design, the designer can alter the radius of curvature of
the secondary mirror or change both the distance between the mirrors and the dis-
tance from the corrector to the primary mirror.

In this example, we decided to change the radius of curvature of the second-
ary mirror. We felt that by reducing the back focal length, the secondary would
become flatter and thus also give us a longer focal length.

After some iterations, we obtained:

R(4) (TDESIGN) -761.68 mm
R(4) (RAYTRACE) -836.68

This gives new parameters of:

Focal length telescope 2775 mm (-7.5%
Back focal length 242.3 mm (+5.3%)

If you want a design that more exactly matches the desired design parameters, the
curvatures and the distance between the mirrors would have to be changed. (For
flat-field designs, it would also be necessary to change the primary mirror because
the ratio of Rsec/Rprim should be kept constant. After an analysis of the curvature
of field, a new design can be made with TDESIGN if the focal surface is not flat.
Optimizing flat-field designs is more time-consuming than optimizing curved
field designs.)

Back to the design described here. With the corrector unchanged, there was
residual spherical aberration. After a few iterations, the radii of curvature of the
corrector became 3 mm stronger. Thus,

(TDESIGN) R(1)=-425.21 mm R(2)=-446.25 mm
(RAYTRACE) R(1)=-422.31 mm R(2)=-443.2 mm

The optical performance is very good. The axial diameter of the spot diagram is
0.003 mm, and the spot diameter 19.5 mm off-axis is only 0.005 mm. The best off-
axis images lie on a curved focal surface. Neither coma nor astigmatism is present.
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Maksutov-Cassegrain Telescope
) Optimized

Predesign pDesign
Clear aperture 200 200
Focal length 3000 2775
Minimum secondary diameter 58.31 64.06
Geometric focal ratio 15.00 13.88
Photographic focal ratio 15.68 14.65
Primary radius -1820.00 -1820.00
Secondary radius —761.68 -836.68
Primary to secondary distance —644.68 —644.68
Maksutov corrector (n = 1.51872, shape
factor = .98)
First radius —425.21 -422.31
Thickness 36.40 36.40
Second radius —446.25 —443.21
Corrector to primary distance 679.00 679.00
Secondary to focal plane distance 874.68 877.04
Back focal length (behind the primary) 230.00 2423

22.5.7 Automatic Optimizations

It would, of course, be possible to write an automatic optimization program. We
intentionally did not write such a program because then optimizing a design would
not provide the user with hands-on design experience.

Besides, hand optimization is more satisfying and fun to do. You decide for
yourself to what extent to optimize a design, what course of action you will follow,
and what results you will be content with. The higher your goal, the more time op-
timization takes.

In optimizing your first telescope design, you may have trouble finding your
way, and you could be disappointed if you take a wrong direction. We recommend
working through the designs above before attempting totally new designs. When
you are ready to work with your own designs, you will be experienced, capable,
and ready to go.



Appendix A:

Schott Optical Glass Specifications

6-digit Glass  Costvs Glass n, ne n, n, ng n, n,
number Type BK 7 density

434954  Fluorite ? ? 143171 143249 143388 143496 1.43704 1.43949 144151
437907 FK 54 19.83  3.18 143467 143552 143700 143815 1.44034 144291 1.44501
458678  Quartz ? ? 145515 145637 145846 146008 1.46313 1.46670 1.46962
465658 FK 3 297 227 146107 146232 146450 1.46619 146939 147315 147626
471673 FK 1 ? 231 146728 1.46853 1.47069 147236 147552 1.47924 1.48230
479587 TiK 1 ? 239 147479 147621 1.47869 148063 1.48436 1.48880 1.49249
486818 FK 52 18.58  3.64 148320 1.48424 148605 1.48747 149018 1.49337 1.49601
487704 FK5 269 245 148410 1.48535 1.48749 1.48914 149227 1.49593 149894
487845 FK 51 13.54 373 148379 148480 1.48656 1.48794 1.49056 1.49365 1.49619
498651 BK 3 ? 2.37 1.49457 1.49594 149831 150014 1.50360 1.50767 1.51101
498670 BK 10 309 239 149419 1.49552 1.49782 1.49960 1.50296 1.50690 1.51014
500614 K11 ? 250 1.49621 1.49764 1.50013 1.50207 1.50578 1.51019 1.51385
501564 K10 1.93 252 149713 149867 1.50137 1.50349 1.50756 1.51243 1.51649
504669 PK 1 ? 244 150011 1.50146 1.50378 1.50558 1.50898 1.51298 1.51627
505596 K51 ? 247 150109 150258 1.50518 1.50720 151106 1.51564 1.51945
508612 ZK N7 1.34 249 1.50445 1.50592 1.50847 1.51045 151423 1.51869 1.52238
510635 BK 1 1.28 246 150621 1.50763 1.51009 1.51201 151566 1.51998 1.52355
511510 TiF 1 ? 247 150648 1.50818 1.51118 151356 1.51820 1.52384 1.52866
511604 K7 L.10 253 150707 1.50854 1.51112 1.51314 151700 1.52159 1.52540
515547 KF3 1.70 2.56 1.51008 1.51169 1.51454 1.51678 1.52110 1.52627 1.53060
517522 KF6 1.61  2.67 151274 1.51443 1.51742 151978 1.52434 1.52984 1.53446
517642 BK7 1.00 251 151289 1.51432 1.51680 1.51872 1.52238 1.52669 1.53024
517643 UBK7 174 251 1.51290 1.51433 1.51680 1.51872 1.52237 1.52667 1.53022
518590 K3 1.64 254 151404 1.51556 1.51823 1.52032 1.52435 1.52913 1.53311
518602 BaLKN3 1.13 261 1.51436 151586 1.51849 1.52054 1.52447 1.52914 1.53301

371
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6-digit Glass  Costvs Glass n, ne n, n, ng n, n,
number Type BK 7 density

518651 PK2 1.50 251 151434 1.51576 1.51821 1.52011 1.52372 1.52798 1.53148
519574 K4 5.41 2.63 151463 1.51620 1.51895 1.52111 1.52524 1.53017 1.53428
520637 BK8 ? 2.57 151620 1.51764 1.52015 1.52210 1.52581 1.53019 1.53380
521697 PK 50 13.54 259 151690 1.51824 1.52054 1.52232 1.52570 1.52968 1.53294
522595 KS 090 259 151829 1.51982 1.52249 1.52458 1.52860 1.53338 1.53735
523515 KF9 134 271 151862 1.52035 1.52341 1.52583 1.53052 1.53616 1.54093
523602 K50 130 262 151841 151992 1.52257 1.52464 1.52861 1.53331 1.53721
523604 UK 50 ? 2,62 1.51842 1.51993 1.52257 1.52464 1.52858 1.53327 1.53715
525647 PK3 242 259 152148 1.52292 1.52542 1.52736 1.53104 1.53538 1.53896
526600 BalK 1 ? ?1.52223 152375 1.52642 1.52851 1.53252 1.53729 1.54125
527511 KzF6 ? 2.54 152193 1.52370 1.52682 1.52927 1.53400 1.53969 1.54446
529517 KzF2 237 254 152457 1.52634 1.52944 1.53188 1.53658 1.54222 1.54695
529770 PKS51 17.53 397 1.52528 1.52646 1.52855 1.53019 1.53333 1.53704 1.54010
531511 KF50 ? 270 1.52599 1.52776 1.53088 1.53335 1.53814 1.54391 1.54877
531621 BK6 ? 2.69 152701 1.52851 1.53113 1.53317 1.53706 1.54166 1.54546
532488 LLF6 139 281 1.52661 1.52845 1.53172 1.53431 1.53935 1.54546 1.55064
533460 TiF2 ? 251 1.52718 1.52911 1.53256 1.53531 1.54070 1.54734 1.55309
533580 ZK1 1.35 271 152877 1.53036 1.53315 1.53534 1.53955 1.54457 1.54875
534553 ZKS ? 2.76 152919 1.53084 1.53375 1.53605 1.54049 1.54579 1.55023
540511 KF1 ? 2.78 1.53544 153723 1.54041 1.54293 1.54781 1.55371 1.55869
540597 BaK2 136 2.86 1.53564 1.53721 1.53996 1.54212 1.54625 1.55117 1.55525
541472 LLF2 1.77 287 153537 1.53729 1.54072 1.54344 1.54876 1.55521 1.56070
547536 BaLF5 1.54 295 1.54258 1.54432 1.54739 1.54982 1.55452 1.56018 1.56492
548422 TiF3 ? 261 154169 1.54382 1.54765 1.55072 1.55680 1.56433 1.57091
548458 LLF1 1.28 294 1.54256 1.54457 1.54814 1.55099 1.55655 1.56332 1.56910
549454 LLF7 ? 298 1.54320 1.54523 1.54883 1.55170 1.55731 1.56415 1.56998
551497 KzF 1 2.87 281 1.54592 1.54781 1.55115 1.55379 1.55891 1.56508 1.57028
552635 PSK3 1.89 291 154811 1.54965 1.55232 1.55440 1.55836 1.56303 1.56689
554512 BaLF8 ? 2.99 1.54854 1.55036 1.55361 1.55618 156118 1.56721 1.57230
557587 BaK5 1.81 3.02 1.55219 1.55383 1.55671 1.55897 1.56332 1.56850 1.57280
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6-digit Glass Costvs Glass n, ne ny n, n

s n, n,
number Type BK 7 density

558542 KzFSN2  9.55 2.56 1.55339 1.55521 1.55836 1.56082 1.56552 1.57111 1.57578

558673 PSK 50 ? 293 1.55353 1.55499 1.55753 1.55951 1.56327 1.56771 1.57138
560472 LLF3 ? 2.99 1.55458 1.55658 1.56013 1.56295 1.56845 1.57515 1.58084
560612 SK 20 ? 3.03 1.55525 1.55684 1.55963 1.56181 1.56598 1.57093 1.57502
561452 LLF4 ? 3.02 1.55561 1.55768 1.56138 1.56433 1.57009 157713 1.58313
564438 LF8 old - 1.55846 1.56060 1.56444 1.56750 1.57350 1.58085 1.58713
564608 SK 11 1.90 3.08 1.55940 1.56101 1.56384 1.56605 1.57028 1.57530 1.57946
567428 LF6 ? 311 1.56119 1.56339 1.56732 1.57047 1.57663 158419 1.59067
568580 BaK 50 225 2.93 1.56306 1.56476 1.56774 1.57007 1.57455 1.57987 1.58429
569561 BaK 4 1.02 310 156402 1.56576 1.56883 1.57125 1.57590 1.58145 1.58609
569631 PSK2 222 3.06 1.56438 1.56597 1.56873 1.57088 1.57498 1.57982 1.58382
571529 BalF3 ? 3.18 1.56628 1.56810 1.57135 1.57392 1.57890 1.58488 1.58990
573426 LF1 ? 3.16 1.56687 1.56910 1.57309 1.57629 1.58256 1.59025 1.59684
573575 BaK1 1.29 3.19 1.56778 1.56949 1.57250 1.57487 1.57943 1.58488 1.58940

574521 BaLF 51 ? 3.03 1.56875 1.57062 157393 1.57656 1.58164 1.58776 1.59290

574564 BaK 6 ? 310 1.56961 1.57136 1.57444 1.57687 1.58154 158713 1.59180
575415 LF7 1.25 3.20 1.56862 1.57090 1.57501 1.57830 1.58476 159271 1.59953
578416 LF4 ? 321 1.57203 1.57433 1.57845 1.58175 1.58824 1.59620 1.60305
580537 BalF4 1.46 3.17 157448 1.57632 1.57957 1.58214 158711 1.59307 1.59806
581409 LF5S 1.11 322 1.57489 1.57723 1.58144 1.58482 1.59146 1.59964 1.60667
582421 LF3 ? 321 1.57576 1.57805 1.58215 1.58544 1.59188 1.59980 1.60660
583465 BaF3 1.72 3.28 1.57685 1.57893 1.58267 1.58565 1.59147 1.59857 1.60460
583595 SK 12 2.79 3.27 1.57845 1.58015 1.58313 1.58547 1.58996 1.59529 1.59971
584370 TiF4 ? 2.68 1.57690 1.57945 1.58406 1.58779 1.59521 1.60452 1.61274

586610 LgSK2 18.43 415 1.58149 1.58311 1.58599 1.58828 1.59271 1.59801 1.60245

589409 LF2 ? 330 1.58259 1.58495 1.58921 1.59263 1.59935 1.60762 1.61473
589485 BaF N6 ? 3.17 1.58331 1.58536 1.58900 1.59189 1.59752 1.60435 1.61016
589514 BaLF 50 1.66 3.11 1.58354 1.58549 1.58893 1.59166 1.59695 1.60333 1.60869
589530 BaLF6 ? 3.32 1.58381 1.58569 1.58904 1.59169 1.59681 1.60296 1.60812

589613 SKS 1.80  3.30 1.58451 1.58619 1.58913 1.59142 1.59581 1.60100 1.60529
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6-digit Glass  Costvs Glass n, ne n, n, ng n, n,
number Type BK 7 density

592485 KzFS 6 ? 3.03 1.58617 1.58827 1.59197 1.59487 1.60048 1.60723 1.61292
592583 SK 13 279 337 158698 1.58873 1.59181 1.59423 1.59888 1.60442 1.60902
594355 TiF N5 1192 271 1.58598 1.58867 1.59356 1.59751 1.60538 1.61529 1.62405
596392 F8 1.37  3.38 1.58853 1.59102 1.59551 1.59912 1.60622 1.61500 1.62257
599469 KzFS N9 ? 3.01 1.59252 1.59471 1.59856 1.60159 1.60747 1.61456 1.62055
601382 F 14 1.74 344 159419 1.59676 1.60140 1.60513 1.61249 1.62160 1.62946
603380 F5 1.17 347 159615 1.59874 1.60342 1.60718 1.61461 1.62380 1.63174
603425 BaSF5 ? 3.49 1.59669 1.59902 1.60323 1.60660 1.61323 1.62136 1.62833
603606 SK 14 1.86  3.44 159834 1.60007 1.60311 1.60548 1.61003 1.61541 1.61988
603654 PSK 52 11.47 338 1.59867 1.60028 1.60310 1.60530 1.60950 1.61447 1.61858
604536 SSK 51 2.12 328 1.59830 1.60022 1.60361 1.60629 1.61147 1.61770 1.62292
606378 F 15 ? 348 1.59833 1.60094 1.60565 1.60945 1.61695 1.62623 1.63426
606439 BaF 4 1.27 3.5 1.59925 1.60153 1.60562 1.60889 1.61532 1.62318 1.62990
607494 BaF 5 ? 3.54 1.60155 1.60361 1.60729 1.61021 1.61590 1.62279 1.62862
607567 SK?2 1.80  3.55 1.60230 1.60414 1.60738 1.60994 1.61486 1.62073 1.62562
607595 SK7 1.90 351 1.60241 1.60418 1.60729 1.60973 1.61440 1.61995 1.62455
609464 BaF 52 143 332 1.60251 1.60469 1.60859 1.61170 1.61779 1.62521 1.63154
609589 SK3 224 353 1.60388 1.60567 1.60881 1.61127 1.61600 1.62163 1.62630
610567 SK1 ? 3.56 1.60515 1.60699 1.61025 1.61282 1.61775 1.62365 1.62856
611559 SK8 ? 3.57 1.60600 1.60787 1.61117 1.61378 1.61880 1.62479 1.62979
613370 F3 1.35 355 1.60537 1.60806 1.61293 1.61685 1.62461 1.63423 1.64256
613443 KzFS 1 ? 3.14 1.60658 1.60894 1.61310 1.61639 1.62276 1.63048 1.63702
613443 KzFSN4  5.01 3.20 1.60689 1.60924 1.61340 1.61669 1.62309 1.63085 1.63745
613574 SK 19 ? 3.56 1.60834 1.61018 1.61342 1.61597 1.62087 1.62672 1.63159
613586 SK4 1.84 357 1.60774 1.60954 1.61272 1.61521 1.62000 1.62569 1.63042
614552 SK9 ? 3.60 1.60879 1.61069 1.61405 1.61670 1.62182 1.62795 1.63306
614564 SK 6 222 3.60 1.60860 1.61046 1.61375 1.61634 1.62134 1.62731 1.63227
615512 SSK3 254  3.61 1.60920 1.61123 1.61484 1.61770 1.62325 1.62995 1.63559
617310 TiF6 ? 279 1.60769 1.61080 1.61650 1.62118 1.63070 1.64308 1.65448
617366 F4 1.10  3.58 1.60891 1.61164 1.61659 1.62058 1.62848 1.63828 1.64678
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6-digit Glass Costvs Glass n,
number Type BK 7 density

ne n, n ng n, n,

617539 SSK 1 ? 363 1.61180 1.61375 1.61720 1.61993 1.62520 1.63152 1.63681
618498 SSK N8 2.39 333 1.61191 1.61400 1.61772 1.62067 1.62641 1.63336 1.63925
618526 SSK 50 2.79 342 1.61243 1.61442 1.61795 1.62075 1.62617 1.63268 1.63816
618551 SSK 4 229 3.63 1.61235 1.61427 1.61765 1.62032 1.62547 1.63163 1.63677

620364 F2 0.86 3.61 1.61227 1.61503 1.62004 1.62408 1.63208 1.64202 1.65063
620381 F9 1.54 3.56 1.61299 1.61565 1.62045 1.62431 1.63194 1.64140 1.64959
620603 SK 16 179 3.58 1.61548 1.61727 1.62041 1.62286 1.62756 1.63312 1.63774
620635 PSK 53 7.48 3.60 1.61548 1.61717 1.62014 1.62247 1.62693 1.63222 1.63660
621362 FNI11 1.83 2.66 1.61314 1.61593 1.62096 1.62502 1.63309 1.64320 1.65211
621603 SK 51 6.96 3.52 1.61600 1.61778 1.62090 1.62336 1.62807 1.63368 1.63835
622360 F13 ? 3.62 1.61451 1.61730 1.62237 1.62646 1.63457 1.64465 1.65341
622532 SSK2 2.38 3.67 1.61679 1.61878 1.62230 1.62509 1.63048 1.63696 1.64240
623569 SK 10 1.84 3.66 1.61761 1.61949 1.62280 1.62541 1.63043 1.63642 1.64141
623581 SK 15 1.79 3.58 1.61788 1.61973 1.62299 1.62555 1.63046 1.63631 1.64118
624470 BaF 8 1.73 3.67 1.61757 1.61978 1.62374 1.62690 1.63305 1.64054 1.64691
625356 F17 1.27 3.62 1.61737 1.62021 1.62536 1.62953 1.63779 1.64809 1.65704
626357 F1 1.13 3.65 161790 1.62074 1.62588 1.63004 1.63827 1.64851 1.65741
626390 BaSF 1 1.42 3.66 1.61871 1.62133 1.62606 1.62987 1.63740 1.64671 1.65476
636353 F6 1.29 376 1.62818 1.63108 1.63636 1.64062 1.64909 1.65963 1.66879
639452 BaF 12 ? 3.60 1.63274 1.63509 1.63930 1.64266 1.64924 1.65728 1.66415

639554 SKNI18 196 3.64 1.63308 1.63505 1.63854 1.64129 1.64658 1.65290 1.65819
639555 SK 52 ? 330 1.63307 1.63505 1.63854 1.64128 1.64655 1.65284 1.65808
640346 SF7 ? 3.80 1.63141 1.63439 1.63980 1.64418 1.65288 1.66372 1.67317
640597 LaKL21 6.01 297 1.63530 1.63719 1.64048 1.64304 1.64791 1.65367 1.65844
641601 LaK 21 362 374 1.63538 1.63724 1.64050 1.64304 1.64790 1.65366 1.65844

643480 BaF9 ? 3.85 1.63703 1.63927 1.64328 1.64647 1.65269 1.66023 1.66663
643580 LaK N6 3.67 3.8  1.63722 1.63913 1.64250 1.64514 1.65022 1.65625 1.66127
646341 SF 16 1.32 3.85 1.63751 1.64056 1.64611 1.65061 1.65954 1.67069 1.68043
648338 SF 12 1.23 374 1.63963 1.64271 1.64831 1.65285 1.66187 1.67315 1.68301

648339 SF2 1.17 3.86 1.63902 1.64210 1.64769 1.65222 1.66123 1.67249 1.68233
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6-digit Glass  Costvs Glass n, ne n, n, ng n, n,
number Type BK 7 density

650337 SF 17 ? 3.87 164143 1.64453 1.65017 1.65474 1.66384 1.67521 1.68514
650392 BaSF 10 224 391 1.64257 1.64527 1.65016 1.65410 1.66188 1.67150 1.67980
651419  BaSF 57 544 373 1.64431 1.64687 1.65147 1.65516 1.66242 1.67134 1.67901
651559 LaKN22 284 373 1.64560 1.64760 1.65113 1.65391 1.65925 1.66563 1.67093
652449  BaF 51 1.53 342 1.64551 1.64792 1.65224 1.65569 1.66244 1.67067 1.67769
652585 LaK N7 451  3.84 1.64628 1.64821 1.65160 1.65426 1.65935 1.66540 1.67042
654337 SF9 1.76 391 1.64565 1.64878 1.65446 1.65907 1.66822 1.67966 1.68965
654396 KzFSNS 973 3.46 1.64645 1.64920 1.65412 1.65804 1.66571 1.67512 1.68319
655329 SF 50 ? 3.79 1.64575 1.64892 1.65473 1.65944 1.66884 1.68061 1.69093
657367 BaSF 56 ? 3.85 1.64901 1.65190 1.65715 1.66139 1.66979 1.68023 1.68931
658509 SSK N5 2.01 3.71 1.65237 1.65456 1.65844 1.66152 1.66750 1.67471 1.68080
658509 SSK 52 ? 3.76 165236 1.65455 1.65844 1.66152 1.66749 1.67468 1.68072
658573 LaK 11 594 379 165281 165480 1.65830 1.66104 1.66630 1.67256 1.67775
660329 SF 51 ? 3.81 1.65121 1.65441 1.66025 1.66499 1.67445 1.68630 1.69670
664358 BaSF2 1.59 390 1.65604 1.65903 1.66446 1.66885 1.67757 1.68844 1.69791
667330 SF 19 1.69 402 1.65766 1.66090 1.66680 1.67158 1.68110 1.69302 1.70345
667482 BaF 54 ? 378 1.66026 1.66258 1.66672 1.67001 1.67641 1.68416 1.69072
667484 BaFNIl1  2.05 376 1.66029 1.66260 1.66672 1.67000 1.67637 1.68411 1.69066
668419 BaSF 6 230 379 166023 1.66284 1.66755 1.67133 1.67876 1.68790 1.69577
669450 BaF 13 2.13 380 1.66203 1.66450 1.66892 1.67245 1.67937 1.68783 1.69507
669574 LaK 23 ? 4.00 1.66326 166527 1.66882 1.67159 1.67693 1.68328 1.68855
670392 BaSF 12 ? 3.90 1.66216 1.66495 1.66998 1.67403 1.68204 1.69194 1.70052
670471 BAFNIO 199  3.76 1.66341 1.66579 1.67003 1.67341 1.68001 1.68803 1.69486
670471 BaF 53 ? 3.75 1.66340 1.66578 1.67003 1.67341 1.68000 1.68801 1.69482
673289 TiSF 1 ? 2.81 1.66300 1.66667 1.67339 1.67889 1.68997 1.70417 1.71698
673322 SFS 1.51 407 1.66328 1.66661 1.67270 1.67764 1.68750 1.69985 1.71068
678552 LaKNI12  4.49 4.1 167209 1.67419 1.67790 1.68083 1.68647 1.69320 1.69881
681319 SF62 ? 4.15 1.67172 1.67512 1.68134 1.68639 1.69646 1.70909 1.72018
681372 KzFSN7  9.58  3.51 1.67221 1.67523 1.68064 1.68498 1.69353 1.70412 1.71330
682482  LaF 20 382 3.87 167586 1.67824 1.68248 1.68585 1.69240 1.70033 1.70704
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6-digit = Glass Costvs Glass n, ne ny n, ng n n,
number Type BK 7 density

683445 BaF 50 274 3.80 1.67561 1.67816 1.68273 1.68637 1.69350 1.70219 1.70959

689306 SF 52 ? 4.10 1.67843 1.68200 1.68852 1.69384 1.70448 1.71789 1.72970
689312 SF8 1.82 422 1.67899 1.68250 1.68893 1.69416 1.70460 1.71772 1.72926
689495 LaF 23 404 420 1.68250 1.68483 1.68900 1.69232 1.69876 1.70655 1.71311
691547 LaK9 576 351 1.68498 1.68716 1.69100 1.69401 1.69979 1.70667 1.71240
693516 LaK 20 old - 1.68716 1.68944 1.69349 1.69669 1.70289 1.71033 1.71657

694533 LaKNI13 569 424 1.68737 1.68958 1.69350 1.69660 1.70258 1.70975 1.71573
697554 LaKN14 10.17 3.63 1.69078 1.69297 1.69680 1.69980 1.70554 1.71237 1.71804
697564 LaK 31 12.54  3.68 1.69080 1.69296 1.69673 1.69968 1.70531 1.71200 1.71755
698386 BaSF 13 3.07 397 1.68935 1.69229 1.69761 170190 171038 1.72090 1.73004

699301 SF 15 1.90 4.06 1.68853 1.69221 1.69895 1.70445 1.71546 1.72939 1.74174
700347 BaSF 55 ? 395 1.69066 1.69391 1.69981 1.70459 1.71409 1.72597 1.73641
700350 BaSF 14 ? 400 1.69061 1.69383 1.69968 1.70442 1.71384 1.72563 1.73596
702410 BaSF 52 4.01 396 1.69389 1.69673 170181 170587 1.71384 172362 1.73201
706303 SF N64 2.33 3.00 1.69528 1.69909 1.70585 1.71135 1.72238 1.73637 1.74882

710366 BaSF 50 ? 4.07 170133 1.70449 171020 1.71480 1.72388 1.73515 1.74492

713538 LaK 8 6.68 3.78 1.70668 1.70898 1.71300 1.71616 1.72222 1.72944 1.73545
717295 SF1 210 446 170647 171032 1.71736 1.72311 1.73462 1.74916 1.76199
717480 LaF N3 4.01 4.14 171003 171253 1.71700 1.72055 1.72747 1.73584 1.74289
720346 KzFS 8 ? 4.13 1.71095 1.71434 172047 1.72540 1.73516 1.74726 1.75777

720504 LaK 10 7.31 3.81 1.71323 1.71568 1.72000 1.72340 1.72996 .1.73784 1.74444

722293 SF18 215 449 171046 1.71436 1.72151 1.72734 1.73903 1.75380 1.76685
724381 BaSF 51 4.01 431 171504 1.71813 172373 1.72823 1.73712 1.74810 1.75758
728284 SF 10 194 428 1.71682 1.72085 1.72825 1.73430 1.74648 1.76197 1.77578
728287 SF53 237 445 171696 172096 1.72830 1.73430 1.74635 1.76161 1.77515

734517 LaKNI16 10.17 395 1.72675 1.72920 1.73350 1.73688 1.74340 1.75119 1.75769
735416 LaF N8 6.51 4.02 172702 1.72995 1.73520 1.73940 1.74763 1.75772 1.76638
736322 BaSF 54 ? 441 172597 172961 173627 1.74169 1.75251 1.76614 1.77817
740282 SF3 2.69 4.64 1.72829 1.73242 1.74000 1.74620 1.75866 1.77444 1.78844
741276 SF 13 249 436 172884 1.73304 1.74077 174710 1.75988 1.77621 1.79084



378 Appendix A: Schott Optical Glass Specifications

6-digit Glass  Costvs Glass n, ne ny n, ng n, n,
number Type BK 7 density

741281 SF 54 317 456 1.72904 1.73318 1.74080 1.74703 1.75955 1.77546 1.78959
744448 LaF N2 506 434 1.73630 1.73905 1.74400 1.74795 1.75567 1.76507 1.77305
744508 LaK 28 ? 4.09 1.73734 173985 1.74429 1.74778 1.75451 1.76257 1.76931
746400 LaF 26 ? 420 173736 1.74044 1.74597 1.75040 1.75909 1.76977 1.77897
748277 SF63 377  4.62 1.73637 1.74061 1.74840 1.75477 1.76761 1.78393 1.79845
750350 LaF N7 584 438 173970 1.74319 1.74950 1.75458 1.76464 1.77713 1.78798
751275 SF61 ? 4.64 173869 1.74297 1.75084 1.75728 1.77026 1.78677 1.80147
755276 SF4 2.17 479 1.74300 1.74730 1.75520 1.76167 1.77468 1.79121 1.80589
757318 LaFN11 6.31 4.60 1.74616 1.74998 1.75693 1.76256 1.77378 1.78784 1.80016
757478 LaFN24 1441 404 1.74973 1.75242 1.75719 1.76096 1.76826 1.77706 1.78446
762265 SF 14 244 454 174910 1.75358 1.76182 1.76859 1.78229 1.79988 1.81574
762270 SF 55 282 472 1.74924 1.75366 1.76180 1.76847 1.78193 1.79908 1.81438
773496 LaFN28 1297 4.24 1.76578 1.76843 1.77314 1.77686 1.78403 1.79264 1.79984
773497 LaF 28 old - 1.76579 1.76844 1.77314 1.77684 1.78400 1.79257 1.79974
776378 LaF 13 ? 4.55 1.76611 1.76946 1.77551 1.78037 1.78996 1.80179 1.81201
782371 LaF 22 9.50 421 1.77217 1.77559 1.78179 1.78679 1.79667 1.80895 1.81965
784413 LaF 25 ? 445 177549 1.77863 1.78427 1.78878 1.79762 1.80846 1.81775
784439 LaFNI10 13.67 4.16 1.77610 1.77909 1.78443 1.78868 1.79694 1.80699 1.81552
785258 SF 11 279 474 1.77126 1.77599 1.78472 1.79190 1.80645 1.82518 1.84211
785261 SF 56 299 492 177136 1.77605 1.78470 1.79180 1.80614 1.82448 1.84091
785261 SFL56 6.71 328 1.77136 1.77606 1.78470 1.79179 1.80615 1.82461 1.84128
788475 LaFN21 1327 434 1.78050 1.78332 1.78831 1.79226 1.79992 1.80915 1.81693
795284 LaF9 7.61 496 1.78254 1.78695 1.79504 1.80166 1.81495 1.83180 1.84675
802443 LaSF 11 old - 1.79320 1.79624 1.80166 1.80597 1.81435 1.82452 1.83314
803304 LaSF 32 9.05 3.52 1.79161 1.79581 1.80349 1.80974 1.82225 1.83805 1.85206
803464 LaSFN30 16.41 446 179506 1.79799 1.80318 1.80730 1.81530 1.82496 1.83309
805254 SF6 240 518 179117 179609 1.80518 1.81265 1.82775 1.84705 1.86436
805254 SFL6 6.71 3.37 1.79116 1.79609 1.80518 1.81265 1.82780 1.84731 1.86497
806342 LaSF 33 9.68 448 1.79529 1.79908 1.80596 1.81153 1.82261 1.83646 1.84856
807316 LaSF8 ? 4.53 1.79587 1.79996 1.80741 1.81345 1.82550 1.84062 1.85389
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6-digit Glass  Costvs Glass n, ne n, n,
number Type BK 7 density

ng n, n,

808408 LaSFN3 19.88 421 1.79884 1.80212 1.80801 1.81272 1.82195 1.83326 1.84293

847238 SF 57 4.79 551 1.83104 1.83651 1.84666 1.85504 1.87205 1.89391 1.91363
850322 LaSFN9 1146 444 183834 184256 1.85026 1.85651 1.86899 1.88467 1.89844
855366 LaSF 13 old - 1.84476 1.84856 1.85544 1.86099 1.87194 1.88547 1.89713

878381 LaSFNI15 26.08 475 1.86738 1.87118 1.87800 1.88347 1.89424 190746 1.91881

878382 LaSF 15 old - 1.86739 1.87118 1.87800 1.88346 1.89419 1.90735 1.91863
881410 LaSFN31 31.85 541 1.87075 1.87429 1.88067 1.88577 1.89576 1.90793 1.91824
913324 LaSFNI8 2855 4.82 190068 190522 191348 192016 1.93345 1.95007 1.96462
918215 SF58 7.13 595 1.89900 1.90550 1.91761 1.92765 1.94816 1.97486 1.99923
953204 SF 59 1237 626 193221 1.93928 1.95250 1.96349 1.98605 2.01559 2.04279
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A
Abbe
eyepiece 163, 167, 176-178
number 308
numbers 34
sine condition 26, 28
Abbe, Emnst 26
aberration
aberration-correcting lens 76
astigmatism 29
coma 25
distortion 31
lateral color 35
accommodation of the Eye 189
achromatic 4
combinations 160
Mangin 137
refractor 305, 306
achromatizing 53
afocal 16
air gap 322
air space, change of 209
air-spaced (Fraunhofer) doublet 55, 56,
317
Airy disk 36,213
amplification factor, Barlow's 156
angular
magnification distortion 169
off-axis distance 43
resolving power 211
annular baffles 228
aperture stop 235
aplanatic 27, 29
apochromat 58, 59, 322, 323
apochromatic color correction 346
Apoklaas 60
apparent field 163
aspheric optical 111
aspherizing 209
assembly deviations 202
astigmatism 25, 29, 168, 180, 256, 258,
304
caused by axial shift 204
negative or overcorrected 30

389

Newtonian 48
obj. eyepiece combinations 188
positive or undercorrected 30
role in image sharpness 181
Schiefspiegler 120
Schmidt-Newtonian 128
astrocamera 37, 116, 298
astrophotography 38
automatic design 306
axial
chromatic aberration 35
deviation, diagram 272
lateral color caused by tilt 204
perfornamce
effect of spherical aberration 222
effect of surface roughness 222
shift and aberrations 204, 274

B

back focal length (b.f.l.) 66
baffles 72, 89, 228-234, 335
Baker, James 5

ball spherometer 200

Barlow lens 136, 155, 156, 158
“bending” a lens 55

best focus 22

Bird focal corrector 134
blocking stray light 227
Bouwers, Albert 6,97, 107
Brachyt 117

brightly illuminated objects 221
Brixner focal corrector 134, 135
Buchroeder-Houghton 131

C
calcium fluorite 58
camera 16
cardinal points 14
Cassegrain 65, 119, 228, 230, 233, 278,
279, 282, 334, 335
Cassegrain, Guillaume 4
catadioptric
cassegrain 283
internal reflections 240
Schiefspiegler 121
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two-mirror 334
Wright-Newtonian 144
cemented objectives 55
centering cones 202
central obstruction 89
effects of 222
Chrétien, Henri 6
Christen triplet objective 138, 329
Christen, Roland 329
chromatic aberrations 24, 31, 53, 57
circle
a conic section 245
Clark objective 322
classical
Cassegrain 70, 279
Gregorian 142
close focusing 91
coincidence of tangential and sagittal focal
surfaces 189
Coleman, H.S. 223
color
aberration curve 57
aberration in lens 57
corrected concentric system 101
sensitivity curve 57
coma 25, 55, 256, 258, 305
caused by axial shift 204
correcting eyepieces 196, 197
Houghton-derived designs 132
in design of refractor 306
Newtonian 48
reduction, Maksutov method 153
residual caused by glass
combinations 314
Schiefspiegler 120
Schmidt-Newtonian 128
Compaan, Klaas 61
Companar 112
compensation of astigmatism by the
objective 195
compound systems 11, 127
computer programs 331
FIRST 331
INT 331
LENSDES 331
using the program 341-343
doublet 340, 343
triplet 340
RAYTRACE 331, 347
README 331
TDESIGN 331
available designs 332-340
optimizations 362

Houghton camera 365
Houghton-Cassegrain 366
Maksutov camera 367
Maksutov-Cassegrain 368
Schmidt-Cassegrain 363
Wright 362
using the program 335-340
concave field 147
concentric
distribution 23
meniscus camera 98
Conrady, A.E. 322
contrast 211, 216
for extended objects 215
transfer concept 211, 215, 216
transfer function (CTF) 218
for perfect system 218
convex secondary 65
correcting chromatic aberration 57
corrector
achromatizing 98
focal 127
full-aperture 127, 131
Houghton 131
plate ghost images 240
profiles 77
thickness 113
correctors
full-aperture 131
criteria
Dawes 214
for acceptable image quality 35
for visual use 41
Rayleigh 214
Sparrow 214
critical angle 10
crown glass 54, 308
CTF (contrast transfer function) 218,219,
220
curvature of field 25, 31, 32, 43, 67, 167,
180, 256, 259
in a Newtonian 48
role in image sharpness 181
curve
color aberration 57
color sensitivity 57

D

Dall relay telescope 144

Dall, Horace 6

Dall-Kirkham 70, 72, 279, 334
Danjon, M.A. 223

Dawes criterion 214



degree of freedom 107
design, automatic 306
DeVany, A.S. 95
deviations 199
diagonal mirror 45
diameters of optical elements
off-axis light loss and vignetting 239
why not specified 239
diaphragm, adjustable 236
diffraction
effects of 24
foralens 212
image diagram 212
pattern 212
ring 213
diffuse reflections 227, 228
Dilworth relay telescope 144
direction cosines 263
dispersion 34
dispersion number = Abbe number 308
distant field-flattener 150, 151
distortion 25, 31, 169, 257, 259
negative, or barrel 31
positive, or pincushion 31
Dollond, John 4
doublet design 306
program LENSDES 340, 343
“doughnut” profile = Schmidt shape 247
downscaling 43
drop in illumination, rule of thumb 50
drum micrometer vs dial micrometer 201
Duffieux, PM. 215, 218

E
eccentricity 246
effective focal length 14, 66
ellipse, conic section 245
entrance pupil 23
Erfle eyepiece 163, 166, 167, 176, 177,
178, 180, 183, 184, 186
exit pupil 18
extended objects, i.e. lunar, planetary
surfaces 215
eye
accommodation 189
compensating for field curvature 168
peak sensitivity of 38
pupil 171
relief 167
sensitivity 57
eyepiece 163
astigmatism 167
axial color 167

Index 391

coma 167
field diagrams 167
projection 186

F
fictitious entrance pupil 173
field corrector 147, 284
field curvature 168
compensated by eye 168
in obj. eyepiece combinations 188
field flatteners 79, 147, 148, 149
field stop 235
fifth-order term 255
film formats 38
first useful reflector 4
first-order
calculation 244
optics 11
term 255
flat-field
camera 94
Schmidt-Cassegrain 84
flint glass 54, 308
fluor-crown glasses 313
fluorite 58, 313
fluorite objective 60, 308
focal
corrector 127,133, 135
distance 11
extenders 155
point 11
ratio 11
reducer 158, 160
focus tolerance 79
foil spacers 202
Foucault, Leon 4
Fraunhofer doublet 56, 60, 320, 321, 322

G

Gabor, Dennis 6

Galilei, Galileo 3

geometric optics 9

Ghost images, corrector plate 240
“golden mean” 120
Gregorian 142

Gregory Maksutov 107, 110
Gregory, James 3

Gregory, John 6

Greynolds, Alan W. 234

H

H’ tanU" plot 276
half-apochromats 58
Hall, CM. 4
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Herschel, William 4, 117
Herschelian TCT 144
Herzberger, M. 323
Houghton
camera design 299, 365
Cassegrain 132, 289, 290, 335, 366
corrector 131
derivatives 131
Seidel coefficients 290, 299
system 334
Huygenian eyepiece 120, 163, 165, 166,
176, 177, 178, 179, 180
Huygens, Christiaan 3
hyperbola, a conic section 245

|
image

aberrations 11, 21

blur 180

distance 13

quality 37

sharpness 39
image aberrations 24
immersion objective 61
index of refraction 9
intensity distribution 24
internal reflections 240
intrinsic contrast 223
Invar bars 203
invention of the telescope 3
inward curving field 147

J
Jones focal corrector 134, 135
Jones-Bird
focal corrector 135
telescope 187

K
Kellner eyepiece 163, 176, 177, 178, 180
kidney-bean effect 170, 182
Kingslake 322
Kohler, H. 255
formulae 255
Konig eyepiece 163, 167, 176, 177, 178
Kutter, Anton 6, 117
Kautter’s “golden mean” 120

L
LA (longitudinal aberration) 26
lateral color 35, 169, 180, 183
lens

coatings 241
lens cell, play 204

lens shape recognition procedure
diagram 316
lensless Schmidt 75, 82
light loss curves, Schmidt-Cassegrain 239
light rays 9
linear off-axis distance 43
linear resolving power 211
Linfoot, Edward 5
Lippershey, Hans 3
longitudinal
aberration 26
beam displacement 18
chromatic aberration 35, 307
color aberration 306
presentation 274
spherical aberration 26, 275
Lord Rosse 4
Loveday telescope 139, 140
low contrast objects 221
low-astigmatism eyepieces 197
Lurie Houghton 131

M
magnesium fluoride 241
magnification 17, 18
Maksutov 97, 107
camera design 97, 300, 367
Cassegrain 108, 116
baffling 233
coma correction 335
design 292, 368
Seidel coefficient 292, 294
configuration 334
corrector 292
corrector thickness 104
Gregorian 143
method of recucing coma 153
Newtonian 141
non-compact design diagram 297
Maksutov, Dimitri 6
Mangin 136
Mangin mirror 136, 137
Manufacturing deviations 206
manufacturing tolerance 208
Matching Principle 208
meniscus corrector 97, 113
Meniscus Newtonian corrector
diagram 152
meridional
plane 30
ray trace 244
Mersenne 141
Mersenne telescope 141



mirror cell, play 204

misalignment 199, 201, 203

modulation transfer function (MTF) 218
monochromatic aberrations 24

N
Nagler eyepiece 166, 167, 181, 182, 183,
185, 186
nebular photography 37
negative lens 13
neutral zone 76
Newton, Isaac 4
Newtonian 129
aberrations 48
baffles 228
field correctors 147, 152
optical system 45
use of Barlow 158
non-centered systems 272
non-concentric
meniscus camera 97
meniscus corrector 99
system 101

(o)
object distance 13
objective 16
objective-eyepiece combinations,
performance 187
oblique reflectors 117
obstruction 66
offense against the sine condition
(08C) 27
opaquing 227
optical
calculation 243
path difference 276, 322
transfer function 218
transfer function (OTF) 218
optimization techniques 90, 303
optimizing predesigns from
TDESIGN 362
optimum magnification 211, 223
orthoscopic eyepiece 167
0SC 27

P
P-P diagram 326
P-V diagram 311, 313, 326
parabola 245
paraboloidal mirror 46
paraxial
calculation 244, 249
focus 26

Index 393

partial dispersions, relative 314
peak design 206
peak designs 206
Penning, Karl 6, 97
pentaprism 19, 20
perfect optical system, def. 216
photographic
criterion 41
image quality 116
useful field of a Newtonian 48
Pickering, William 6
plane parallel plates 18
planetary details 224
plano concave lens 147
play 202
Plossl eyepiece 163, 167,176, 177, 178
point spread function 212
positive lenses 13
predesign, deviations from 362
Pressmann-Camichel 70, 72, 334
formulae 279
principal
planes 16
points of a lens 16, 252
ray 14
prism 18
reflecting behaves as a plane-parallel
plate 330

R
radius of curvature 13
Ramsden eyepiece 163, 167, 176, 177,
178, 179, 180
ray-trace program, RAYTRACE 347
ray-tracing objective and eyepiece,
diagram 172
rectilinear distortion 169
reference
circle 246
sphere 246
reflectance of opaquing materials 227
reflection 9, 10, 227
reflectivity and refractive index 241, 341
refraction 9
refractor
baffles 228
objective 53
visual use 320
relative power factor 248
relay telescope 142, 143
rescaling doublet and triplet designs 347
residual aberrations in objective lenses 57
resolution 211
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resolving power 37,211, 215, 221

retouching aspheric surfaces 200

right angle prism 19, 20

ring spherometer 200

Ritchey, George 6

Ritchey-Chrétien 72, 150, 334
formulae 279

Ross corrector 151

Ross Newtonian corrector diagram 152

Ross, Frank 151

Rumak 110

S
sagitta 200
sagittal
focal surface 30, 56, 168, 169, 305
plane 30, 263
scaling optical systems 41
Schiefspiegler 117,119, 120
Schmidt camera 75, 127, 247, 334
corrector 75,204, 298, 300
design 298
diagram 80, 297
Schmidt, Bernhard 5, 76
Schmidt-Cassegrain 83, 84, 85, 92, 116,
148, 233, 238, 239, 335, 363
design 284
neutral zone shape formulae 302
Schmidt-Newtonian 128, 129, 334
Schott optical glasses 36
Schwarzschild constant 70, 246
Schwerflint Apochromat 58
SCT 83
secondary
magnification 65, 119
mirror 49
spectrum 58, 59, 312
Seidel
calculation 244
sums 257
Seidel, Ludwig von 24, 254
sensitivity analysis, difference from toler-
ance analysis 207
Shapley lens (focal reducers) 158
Sigler relay telescope 144
Sigler, Robert D. 5, 277, 290
sign conventions 249
Simak 38, 39, 150
simple compensation 209
sine condition 55
skew-ray trace 236, 244
sky flooding 72
Slevogt flat-field astrocamera 92

Slevogt, Karl 5
35 mm SLR 150
Smyth lens 182
Snell's law 9, 19
Snell, Willebrord 9
specular reflection 227, 228
spherical aberration 25, 54, 55, 170, 173,
182, 204, 256, 258, 304, 306, 314
spherochromatism 60, 88, 103, 306, 314,
320, 328
spherometer 200
spot diagram 21, 22, 23, 35, 44, 86, 95,
140, 141, 149
for lenses 38
made with skew-ray trace 244
star diagonal 19
Steinheil doublet 56, 320, 321, 322
stellar photography 37
stop analysis 234
stray light diagram 240
superachromat 323, 330
surface
accuracy 199
coefficients 257

T
tangential focal surface 30, 168, 169, 305
tangential plane 29, 30, 263
tangential surface of a doublet 56
TCTs 117
tertiary mirror 122
Texereau, Jean 224
thermal expansion 203
thick lens 14
thin lens 13
thin lens achromatization formulae 310
third-order
aberration theory 244
approximations 303
calculation 254
term 255
threshold, of a detector 24
tilt angles 204
tilted
component telescopes 117
elements, diagram 273
surfaces 274
tilted elements, due to weight 203
tolerance 199, 201
analysis 205, 206, 207
total internal reflection 10
transverse
aberration 26, 27, 275



presentation 274
shifts 204
triplet corrected for three colors =
apochromat 323
triplet design 323, 346
triplet design program, LENSDES 340
Trischiefspiegler 122

)
unobstructed telescopes 222
unsmoothness and CTF curves 218

\')

vignetting 89, 229, 232, 234, 236, 238
calculations 350

virtual focal points 13

visual acuity 223

von Liebig, Justus 4

w
wedge error 202
wide-field eyepieces 163
Willey, Jr., Ronald R. 5
Wright camera 128, 129, 142, 297, 334,
362
corrector 298
design 298
Wyld, J. H. 341
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Computer Software

In order to compare various telescope designs for Telescope Optics, Harrie Rutten
wrote programs to run on his home computer. These programs were not “user
friendly” since his main goal was only to secure data and spot diagrams. Diane Lu-
cas has adapted these programs for the IBM-PC.

The result of this effort is three easy-to-use programs:

1. TDESIGN, a powerful design program for Cassegrain or catadioptric
telescopes, which produces a pre-design based on third-order aberration
theory. These designs are preliminary and must be further optimized
since they are computed on third-order Seidel theory. In most cases,
these predesigns are quite accurate—within 5\% of the final values—
and often much better. Final optimization is done by skew ray tracing
with RAYTRACE.

2. LENSDES, a powerful design program for doublet and triplet lenses,
which produces designs that are complete and require no further optimi-
zation.

3. RAYTRACE, a fast and powerful raytracing program that can trace up
to 2,800 rays through axially symmetric, tilted, or decentered systems
with flat, spherical, conic, or aspherically deformed optical surfaces,
with or without vignetting. The output of this program can be in graphi-
cal or tabular form.

The programs were written in Borland TURBO BASIC. They are provided
as compiled, executable files and are protected under United States Copyright
Law but are not copy protected. You can make archival copies. Each diskette is
serialized. The source code is not provided. Software is available only from Will-
mann-Bell, Inc., which will maintain a list of software users eligible for updates
or enhancements at reduced rates.

TDESIGN and LENSDES will run on any IBM PC compatible and most
work-alikes. RAYTRACE requires CGA, EGA, or Hercules compatible monitors
for graphic display of the spot diagrams. However, raytrace data can be displayed
in tabular form, in which case any monitor will work. The raytrace program can
direct spot diagrams to a dot matrix printer capable of graphics.

In addition to the three “core” programs, startup files and a selection of
“canned” designs are provided to aid you in learning the programs. The programs
are not sold without the purchase of the book Telescope Optics. The serial number
for this copy of Telescope Optics and the order form to order software is on the
following page. Photocopies of the order form will be acceptable.
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TELESCOPE OPTICS
SOFTWARE ORDER FORM

[J Yes, send me Telescope Optics for the IBM-PC at $24.95 plus $1.00 handling

for delivery in the United States.! I want a [] 3.5-inch 720k or [ 5.25-inch 360k
diskette.

I wish to pay with:
[ Check [J Money Order

(visa [J MasterCard [] American Express

Card No.

Card expiration date

Signature

Name (Please Print)

Street

City, State, ZIP

Willmann-Bell, Inc.
P.O. Box 35025
Richmond, Virginia, 23235
Voice (804) 320-7016 FAX (804) 272-5920

SERIAL NUMBER OF THIS BOOK_

Prices and Specifications Subject to Change

! Foreign Orders: Shipments to foreign countries (including Canada) should include an additional $3.20 for post-
age. We do not guarantee delivery to foreign countries unless the shipment is made by registered mail. If you have
experienced lost mail in the past, we suggest that you include an additional $4.40, and we will ship by registered
mail. $3.20 + $4.40 = $7.60. Payment must be in United States funds, either an International Postal Money Order,
Visa (EuroCard), American Express or Master Card, or a check drawn on a United States branch of your bank.



ABOUT THE AUTHORS

Martin van Venrooij was born in 1934 in the Netherlands. He holds degrees in chemical and mechanical
engineering and is employed in the chemical industry. His interest in astronomy started as a youth. In 1970,
he took up astro-photography. His photographs showed the effects of strong image aberrations that are
often found in amateur telescopes. Admiringly described by his co-author as “a critical perfectipnist” he set
about learning the causes of these aberrations. Finding that Harrie Rutten shared his interest in telescopes and
also owned a personal computer they decided to combine their talents in the search for better telescopes. This
collaboration resulted in numerous articles in European and American astronomy magaziaes and this book.

Harrie Rutten was born in 1950. He holds degrees in mechanical engineering and precision technology
and is employed as head of the instrumentation department for a world-wide copy machine manufacturer
where his responsibilities include the design and manufacture of mechanical, electrical, optical and acoustical
measuring devices. He is a board member of the Dutch Society of Precision Technicians and editor of Micron
magazine. Rutten became interested in astronomy when he was 11 years old; at 13 he built his first telescope.
His most recent instrument is a high performance 305mm f/13.3 Schmidt-Cassegrain based upon his own
design. He is currently chairman of the Working Group on Instrumentation of the Dutch Society for
Meteorology and Astronomy.

ABOUT THIS BOOK

This book will both arouse your curiosity and answer your questions. Why are there so many different
kinds of telescopes? What does each type have to offer? What makes one telescope better than another?
Which are best? Why? What are the trade-offs? As a telescope buyer, you will be better informed; as a
telescope maker, you will be able to design custom optics.

Many readers will find the analyses of existing designs the most valuable part of the book. Newtonians,
Cassegrains, Maksutovs, Schmidt cameras and more are described and analyzed so that you can easily
compare them. What's your dream telescope? This book will help you choose it.

Others will make use of the power they now have to check, test, and analyze new telescope designs. The
design and raytrace programs available as an option to this book will give you the tools you need to begin
with a basic design and work systematically until you have created an optimized optical system that meets your
personal design criteria. You'll be able to try new types of glass, design a telescope around that corrector shell you
have parked in the basement, even compare the performance of many different eyepieces on your telescope.

No longer must you, as an amateur astronomer, meekly accept someone else’s opinion about a telescope
design. You can scrutinize existing designs and improve them to meet your own standards. Is that new
astrographic camera all it's cracked up to be? By raytracing it, you'll know the answer.

FROM THE REVIEWERS

The great merit of the book is in the large number of ray trace spot diagrams shown for the specific
designs covered, which allow quick comparison of their performance with regard to field of view, focal
ratio, and tube length. Complete optical prescriptions for each design are included.

In addition, the book offers the professional designer, who may not have been exposed to the concerns of
amateur astronomers, the opportunity to round out his experience.

There is a marvelous diagram, the “Telescope Design Tree,” which displays the genealogy of the multitude
of design types in a clear, efficient manner and updates the old adage about pictures worth a kiloword. It
is remarkable that once again amateurs have contributed so greatly to fill a gap left by the professionals.

Optics & Photonics News

This is a ‘comprehensive manual for amateur astronomers’. It describes the optical performance of most
of the types of telescope bought (or built) and used by amateurs, and expiaing why some are suitable for
visual observations, and others for photography, some for lunar and planetary work, others for faint and
extended nebulae or star clusters. To facilitate comparisons, spot diagrams have been computed for all
the telescopes described, and nearly all of them for a standard aperture of 200mm... The chapter on
eyepieces is particularly informative... recommended for advanced amateurs...

Journal of the British Astronomical Society

Anyone who wants to know more than just how to use a telescope can learn some optics from this
book by two Dutch amateur astronomers, turned optical designers. You'll acquire a good understanding
of the performance possible with the various types of telescopes and have a chance to try your hand as
an optical designer.

Telescope Optics provides a comprehensive analysis of practically any type of telescope an amateur
would use for visual observation or photography. Coverage of the many types of catadioptric systems is
outstanding. Taken in total, it is an optical design book, but written in such a way that amateur
astronomers will find it of value whatever their level of interest, and the person seriously interested in
design will find it a godsend. | recommend it highly for any serious amateur and for the professional
who is going to work in these areas. Sky & Telescope Magazine
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