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When I consider thy heavens, the work of thy fingers, the moon and the stars, which
thou hast ordained; What is man, that thou art mindful of him? and the son of man, that
thou visitest him?
—Psalm 8:3-4, KJV





Although space travel on a limited scale is an accomplished fact, we are
presently an Earthbound race whose minds yearn to explore the cosmos. Per-
haps well before the end of this century some lucky explorers will have visited
Mars or some other planet within our Solar System. Unfortunately, most of us
will have to be content with imaginary journeys. This book is dedicated to all
of us “armchair explorers” who look up into the night sky and are filled with
curiosity and a burning desire to understand a little better how the universe in
which we live appears to operate. Accordingly, this book was not written by a
professional or even by an amateur astronomer, but rather it was written from
the perspective of an amateur “amateur astronomer.”

This book is most especially dedicated to Mom and Dad for all your years
of encouragement and sacrifice. Because you rescued my brothers and me, I
know the great debt I owe and can only offer only gratitude in return. Mary
Ann, as always, your steadfast support has been the single most important
factor contributing to the completion of this project. David, what would you
have thought about the amazing universe in which we live?

J. L. Lawrence
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Preface

Introductory astronomy books can generally be placed into 1 of 2 categories.
Books in the first category are almost devoid of any mathematics. Such books
are descriptive in nature and are typically filled with photographs and artis-
tic impressions of the awe-inspiring, otherworldly vistas that can be found
scattered throughout the cosmos. By contrast, books in the second cate-
gory approach astronomy from a mathematical standpoint and are filled with
complex equations for describing celestial motion. Such books can be quite
challenging to read because of the level of mathematics and physics required
to understand the concepts being discussed.

This book is an attempt to bridge both categories. While mathematical calcu-
lations are central, this book concerns itself with applying concepts instead of
deriving formulas. As a noncalculus introduction to computational astronomy,
it requires relatively little mathematical skill. Rest assured, high school alge-
bra and a little trigonometry are more than sufficient for following the various
methods presented in this book! Taking a simplified mathematical approach
comes at a cost, however. By avoiding more advanced mathematics, the algo-
rithms and equations presented herein will not produce results that are accurate
enough for professional astronomers. Even so, the methods presented are gen-
erally accurate to within a few minutes of time or a few arcminutes, which
should be sufficient for most amateur astronomers.

Books about celestial mechanics often assume that a reader understands
why a calculation is necessary and needs only to be shown how to derive and
apply the proper equations. By contrast, this book emphasizes understanding
what calculations are required, why they are needed, and how all the pieces
fit together. As this book will also demonstrate, the very same principles that
describe the motion of the planets and stars can be readily applied to track
the man-made satellites and other objects, such as the International Space Sta-
tion, that orbit Earth. The space around our planet has become increasingly
crowded since Sputnik, the world’s first satellite, was hurled into orbit in the
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fall of 1957. Today more than 500,000 objects over 10 cm in size orbit Earth.
Many of those objects are useful satellites while others are debris and remnants
of the rockets used to carry payloads into space. Locating and tracking those
objects can be as entertaining a hobby as amateur astronomy itself.

The chapters ahead do more than merely present the mathematics necessary
to explain a particular concept or predict an astronomical event. A computer is
also used to demonstrate the topics and guide the reader through the incredi-
ble maze of technical details necessary to locate a star or a planet, or predict
when sunrise will occur and what the phase of the Moon will be. By employ-
ing the computational power of modern personal computers, the tedium of
the lengthy calculations required for virtually every task has been eliminated.
When the principles discussed in this book are combined with the use of a
computer, the result is a powerful and stimulating environment for enjoying
the wonders of astronomy. Using a computer allows readers to concentrate on
major concepts rather than getting lost in myriad technical details, and it allows
a chapter review as often as necessary while a computer serves as a patient
guide.

Source code is provided for all of the book’s example programs, although
no claim is made that their implementation is the best or most suitable for the
problem being solved. In particular, the reader is forewarned that relatively
little error checking is done, especially during data entry, so that by virtue of
brevity the programs will be clearer and easier to follow. In addition, imple-
mentation decisions were sometimes made to simplify porting the programs
from one programming language to another; these are decisions that might not
have been made if software portability was not also an objective.

Acknowledgments

A special note of thanks is due to the staff of the MIT Press. Without their
support and professionalism, this project would have been impossible. I also
extend my thanks to the reviewers whose insightful comments did much to
improve this work. Despite everyone’s collective best efforts, any mistakes that
remain must be attributed solely to the author.

J. L. Lawrence
July 2018



1 Introduction

For as long as we humans have been staring up into the starry night sky, we
have pondered the mysteries of the universe. The majesty of a still, dark night
instills a sense of wonder and awe at the vastness of the universe in which we
live. The quiet beauty of a moonlit night, the magical appearance of a shooting
star, or the wispy strands of the Milky Way may well cause us to ponder how
we humans fit into the grand scheme of things. Perhaps it is the ethereal beauty
of the nighttime sky and its propensity for making us wax philosophical that
first entice us and generate our interest in astronomy.

It is impossible to say when astronomy really began. Certainly it began
before recorded history, making it one of the oldest sciences. Archaeological
evidence suggests that our ancestors placed great emphasis upon celestial
events with examples abounding throughout the world. Some believe that
Stonehenge is the world’s oldest astronomical observatory and may once have
been used to predict eclipses. We can look back in time to the ancient Baby-
lonians and see that they had carefully recorded the position of the planet
Jupiter and had derived a calendar based upon astronomical events. Farther
to the west, the Mayas were intrigued by Venus and left religious monu-
ments that reveal a great deal about their understanding of that planet. Even
in modern times, some of our holidays are based upon celestial events like the
phase of the Moon. Easter, for example, is the first Sunday following the Full
Moon that occurs on or after the vernal equinox (around March 21). In turn,
Whitsun Sunday and Trinity Sunday are movable dates because they are tied
to Easter.

With the help of only a moderately sized telescope or a good pair of binoc-
ulars, looking up into the nighttime sky reveals a breathtaking panorama of
galaxies, twinkling stars, colorful nebulae, and mysterious planets. Even when
viewed with the naked eye alone, the universe is an enchanting wonderland, but
we “armchair explorers” can do a lot more than merely appreciate the splendors
of the nighttime sky. For example, learning the constellations is a rewarding
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Figure 1.1 The Milky Way Galaxy
Astronomy is a visual science that requires little more than a willingness to be observant. Even
without the aid of a telescope, the heavens on a dark night are a stunning sight to behold, as attested
by this picture of the Milky Way Galaxy. Measuring some 100,000–120,000 light years across, the
Milky Way is home to 200 billion stars, in addition to our Sun, the Earth, and all of the objects in
our Solar System. (Image courtesy of Dylan O’Donnell)

experience that requires nothing more than some memorization and practice at
stargazing. The ancient Greeks divided the sky into 48 constellations whereas
modern astronomers have divided the sky into 88 constellations. The Greeks
cataloged the visible stars within each constellation, and even today, stars are
still referred to by the constellation in which they are located as a quick and
easy way to approximate their position.

The science of astronomy, especially in modern times, is changing at a
rapid rate. New discoveries and advances in related sciences such as physics
and chemistry require that we periodically reevaluate our theories about the
universe, and even our most fundamental understanding of time and space
itself. A striking example is the controversy over Pluto. In 1992 astronomers
discovered a region of space beyond Neptune that is filled with trillions of
icy objects, many of which are too large to be considered as asteroids but
not large enough to be considered as planets. This region of space is the
Kuiper Belt, which is estimated to contain thousands of objects that are
more than 100 kilometers (62 miles) in diameter. Astronomers at the Palomar
Observatory photographed this region of space, and in 2005 they discovered
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an object approximately the size of Pluto. The discovery of this object, named
Eris after the Greek goddess of strife and discord, forced astronomers to revisit
the very notion of what it means to be a planet. If Pluto is called a planet,
then should Eris take its place as the tenth planet in our Solar System? If
Pluto and Eris are designated as planets, then should Ceres, the largest aster-
oid in the region of space called the Asteroid Belt, also be reclassified as
a planet?

To resolve the controversy, in 2006 the International Astronomical Union
(IAU) met to formally define a planet. The IAU defines a planet as a celestial
body that (a) orbits the Sun, (b) has sufficient mass and gravity to be nearly
round in shape, and (c) has cleared the neighborhood around its orbit. The
phrase “cleared the neighborhood” means that the celestial body is gravitation-
ally strong enough to have collected all other nearby matter into its own mass
or into moons that orbit the celestial body. When a celestial body has cleared
the neighborhood, no other planet-forming debris remains in the vicinity of the
celestial body’s orbit.

Alas! Under this internationally accepted definition, Pluto is no longer des-
ignated as a planet! Pluto, Eris, and Ceres all fail to meet the “cleared the
neighborhood” criteria. The celestial body formerly known as the planet Pluto
is now relegated to the newly created category of dwarf planets. Besides Pluto,
4 other objects within our Solar System are presently classified as dwarf plan-
ets: (1) Eris, which has 1 known moon named Dysnomia, (2) Haumea, a
football-shaped object that rotates every 4 hours and has 2 known moons,
(3) Makemake, which is about two-thirds the size of Pluto, and (4) Ceres, the
largest known asteroid and the smallest of our Solar System’s 5 known dwarf
planets. The number of objects classified as dwarf planets may well increase
in the near future as space probes continue to explore the outer reaches of our
Solar System.

It is an exciting time in astronomy with new discoveries being made at a
rapid pace as spaceborne instruments scan the far reaches of the cosmos and
as space probes and robots arrive at the remotest regions of our Solar System.
Most exciting of all, in this author’s opinion, is that we may be on the verge
of returning to space with manned missions that will far exceed the historic
manned trips to the Moon. The purpose of this book is to create a foundation
that will allow us aspiring amateur astronomers to join in the fun. The chapters
ahead will do so by augmenting our natural ability to observe with the abil-
ity to calculate and predict, even if our contributions must remain limited to
explorations that can be carried out from our armchairs.
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1.1 Accuracy

Before we continue, let us briefly digress to discuss accuracy. Accuracy is a
statement of how well a measurement agrees with the actual or accepted value
of the entity being measured. For example, suppose a ruler with divisions every
inch is used to measure the length of a book, and the result is 8 inches. This
number is really only an approximation of the book’s true length. In reality, is
the book closer to 8.1 inches in length, 7.9 inches, or 8.02 inches?

A better measurement could be obtained by using a ruler that has divisions
every tenth of an inch. With such a ruler, the book’s length could be measured
to the closest tenth of an inch rather than to the closest inch. Similarly, a ruler
could be constructed with even finer divisions, say every hundredth of an inch,
to give an even better measure of the length. However, it is easily seen that
physical considerations limit how finely a ruler may be subdivided.

Any measurement of a physical entity (such as length, time, or temperature)
is by necessity an approximation. Astronomy requires making many differ-
ent kinds of measurements (e.g., a star’s location, the instant a planet passes
through some point in space, the distance to the Sun) that must be understood
as approximations. This is not to say that all numbers encountered are approx-
imations. The length of a mile is exactly 5,280 feet by definition. There are
exactly 1,000 meters in a kilometer. These examples are not approximations
because they are exact by definition rather than being the result of some mea-
surement. However, measurements that use these exact definitions are still only
approximations.

Approximations arise when measurements are made for several reasons.
First, as we have already demonstrated, the accuracy of the instrument used
places a limit on the accuracy of the resulting measurement. Second, a human
must typically judge how closely a measurement falls within the limits of an
instrument. (When measuring with a ruler, what should we do when the length
falls somewhere between 2 divisions?) Third, approximation formulas may be
used to derive other measurements. For example, the chapter on locating plan-
ets uses an approximation to solve Kepler’s equation. That approximation is
in turn used in another formula to estimate the position of a particular planet.
Hence, the final solution, which is based on approximate measurements and an
approximation formula, will not give the exact location of a planet but only an
approximate location.

Why is a discussion of accuracy important? Because the answers obtained
from approximations and subsequently displayed as a result of a computer’s
calculation may imply greater accuracy than is really the case. To illustrate,
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suppose a ruler subdivided every tenth of an inch is used to find the area
enclosed by a rectangle. Assume that the length of the rectangle is measured
to be 3.1 inches, and its width is measured to be 0.5 inches. The area enclosed
by the rectangle is thus

Area = (3.1 inches)(0.5 inches)= 1.55 square inches.

This result implies that the area is known to the nearest hundredth of an inch
when our original measurements were known only to the nearest tenth of an
inch! Clearly, we cannot know the area of the rectangle to the nearest hun-
dredth of an inch when our measuring instrument (a ruler) was only accurate
to the nearest tenth of an inch.

In the context of the algorithms presented in this book, a calculation might
imply that an event, such as sunrise, can be computed to the nearest second
when in reality the result may be accurate only to the nearest 5 minutes. The
situation is compounded because a computer can easily perform calculations
with many more digits of accuracy than the original measurements warrant.

The convention normally used in scientific measurements to specify the
accuracy of a measurement is to give all the accurate digits plus a single digit
of uncertainty. For instance, if a ruler is graduated in millimeter (mm) incre-
ments and a stated measurement is 21.3 mm, there are 3 digits of accuracy. By
convention the digit 3 is a digit of uncertainty because an estimate had to be
made of where the actual length lies between 21.0 and 22.0 mm.

When performing arithmetic operations on numbers, the result obtained
cannot be more accurate than the least accurate measurement. Suppose the
measurements 21.5 mm and 0.003 mm are multiplied together. Since the least
accurate measurement is 21.5 (its accuracy is known only to the first deci-
mal place whereas 0.003 is known to 3 decimal places), the resulting product
should be rounded to have only 1 digit to the right of the decimal point. Thus,
(21.5)(0.003)= 0.0645, which should be rounded to the nearest tenth, giving
an approximate answer of 0.1 mm.

In writing this book, it was difficult to strike a good balance between giv-
ing the correct number of digits of accuracy and providing enough digits to
allow readers to compare their calculations with the examples. The approach
generally taken in both the text and the computer programs is to show inter-
mediate calculations to 6 decimal places while final results may be shown
only to 2 decimal places. Using extended precision for intermediate calcu-
lations does not imply an accuracy of 6 digits. In fact, the algorithms used in
this book are often accurate only to a few minutes of arc or a few minutes of
time.
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1.2 Other Notes

If we compare results obtained from this book with published results in star
charts or astronomy journals, there will likely be discrepancies for several
reasons. Differences may occur because of round-off errors and because the
formulas used in this book are less accurate (and less complex!) than the
methods used by other sources. However, the results in this book should be suf-
ficient for general use. After all, a result accurate to a few minutes of arc is
probably more than adequate for most amateur astronomers’ purposes.

Besides round-off errors and using less accurate approximations, errors can
be introduced by an inaccurate observer’s location. That is, if an observer
has only an approximate latitude and longitude for their location, the results
produced by the programs may differ significantly from what is observed
because they are based on an inaccurate location. Furthermore, the programs
and techniques contained in this book are not intended to work for all
possible dates. The algorithms should be reasonably accurate from about
1800 AD to 2100 AD, but not all algorithms will work well for years outside
that range.

Some readers may wish to use a hand calculator to follow along with the text,
modify the programs for another application, or even convert the programs to
another programming language. Several points of caution are in order.

1. As we already stated, 6 decimal places are generally shown to guide you in
comparing your computations with those of a computer, not to indicate a high
degree of accuracy.

2. Carefully note whether angles are expressed in radians or degrees. In this
book, angles will always be expressed in degrees unless otherwise noted. We
will also assume the trigonometric functions accept degrees rather than radians
and that the inverse trigonometric functions return degrees rather than radians.
When an equation with an inverse trigonometric function requires radians, the
factor π

180 will be included to convert inverse trigonometric function results to
radians.

3. Beware of inverse trigonometric functions. Computers and calculators usu-
ally return a result between plus or minus 90◦, but it is often necessary to
adjust the result to be sure the answer is in the correct quadrant. This will be
explained more fully in chapter 5.

4. Beware of the difference between FIX and INT. This problem surfaces
only when negative numbers are considered. Throughout this book, FIX will
be understood to be a function that returns the integer part of an argument
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while INT will be a function that returns an integer that is less than or equal to
the argument. Some examples will illustrate the difference.

INT(1.5)= 1,

INT(1.4)= 1,

INT(−1.5)=−2,

INT(−1.4)=−2,

FIX(1.5)= 1,

FIX(1.4)= 1,

FIX(−1.5)=−1,

FIX(−1.4)=−1.

In addition to INT and FIX, a few other functions will be useful in the
chapters ahead.

• The ABS function (absolute value) returns the nonnegative value of a number
without regard to its sign. Mathematicians denote this function with 2 vertical
bars, as in |x|. For example,

ABS(−5.0)= 5,

ABS(5.4)= 5.4,

ABS(0)= 0.

• The FRAC function returns the fractional part of a number as a positive deci-
mal value. It is obtained by ignoring the integer part of the number and whether
the number is positive or negative. Thus,

FRAC(1.5)= 0.5,

FRAC(−1.5)= 0.5.

Some programming languages may not have a FRAC function that works as
described here. This deficiency can be overcome by implementing the function

FNFRAC(x)=ABS(x−FIX(x)).

• The modulo function gives the remainder after 1 number is divided by
another. For example, 9 modulo 5 is 4 because 9 divided by 5 is 1 with a
remainder of 4. 9 modulo 3 is 0 because 9 divided by 3 is 3 with a remain-
der of 0. We will most often use the modulo function to adjust angles to be in
the range [0◦, 360◦], where the angle to be adjusted could be greater than 360◦
or even negative. Some programming languages provide a modulo function,
but check to see how they handle negative numbers. This book requires that
the result is always positive when the divisor is positive. For example,
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−100MOD 8 = 4,

−400MOD 360 = 320,

270◦ MOD 180◦ = 90◦,

−270.8◦ MOD 180◦ = 89.2◦,

390◦ MOD 360◦ = 30◦,

390.5◦ MOD 360◦ = 30.5◦,

−400◦ MOD 360◦ = 320◦.

• The ROUND function returns an integer by rounding the given number to the
nearest integer. For example,

ROUND(1.4)= 1,

ROUND(1.8)= 2,

ROUND(−1.4)=−1,

ROUND(−1.8)=−2.

1.3 Layout of the Book

This book begins with a discussion of some basic principles required for com-
puting the location of celestial objects and builds toward a climax at about
chapter 5. Chapter 2 shows how to perform a few unit conversions that are
required in the remaining chapters. Chapter 3 discusses the important topic of
time conversions, which is probably the most difficult topic to understand of
all those presented in this book. The time conversion techniques are simple
enough to perform, but the reason for doing them is not immediately obvious.
In chapter 4, coordinate system conversions are discussed. Coordinate sys-
tem conversions are necessary to account for the location of an observer with
respect to the Earth and to account for changes in perspective, such as view-
ing the Solar System as geocentric (Earth-centered) rather than heliocentric
(Sun-centered).

The real fun begins with chapter 5, which combines the concepts from pre-
ceding chapters into a computer program that will calculate the location of
a star for an observer at a given date, time, and location. Furthermore, the
program presented in chapter 5 will produce a star chart for the date, time,
and location in question. Chapters 6, 7, and 8 apply the same principles to
predict the location of the Sun, Moon, and planets, respectively. In addition,
techniques are described for calculating interesting items such as the phase of
the Moon, distance to the planets, time of sunrise and sunset, and an object’s
weight on different planets. Chapter 9 shows how to apply the concepts from
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preceding chapters to locate the multitude of man-made satellites that now
encircle Earth. Finally, chapter 10 completes the book by discussing how to
use various astronomical aids such as an ephemeris.

1.4 Program Notes

Example programs are provided with this book to illustrate the algorithms and
techniques presented in the text. Source code for the programs, the compiled
executables, and supporting data files can be downloaded from the publisher’s
website, which is given on this book’s copyright page. Once the programs have
been downloaded from the publisher’s website, no special steps are required to
install the example programs; they may be copied to any convenient location on
your computer’s disk drive. The programs do not modify any operating system
files, create any files in user or system directories, or create any Microsoft
Windows registry entries. The programs and data can be completely removed
from your computer by merely deleting them from the location you copied
them to on your computer’s disk drive.

This book’s example programs follow the naming convention RunChapX,
where X is the chapter to which the program applies. Thus, RunChap1 is the
program for this chapter. Refer to the README.TXT file included with the
programs for details about the source code and data files.

All of this book’s programs are menu driven and operate in the same man-
ner. Select the desired operation from a menu of possible options, set check
boxes for items such as whether you wish to see intermediate calculations,
enter any data required, and see the results in a scrollable area within the pro-
gram’s application window. When entering data, avoid using commas. That is,
the value five thousand should be entered into a program as 5000 rather than
as 5,000. Entering a comma may work in some cases but generate an error
in others, so it is best to simply avoid using commas.

This chapter’s program (RunChap1) allows viewing and manipulating
already-built data files containing the names and locations of various celestial
objects. Among other features, this program will list stars and their locations
from a star catalog, list the constellations and the brightest star in each con-
stellation, and determine in what constellation a given location lies. For the
star catalogs provided with this book, a celestial object’s location is given
in equatorial coordinates referenced to the standard epoch J2000, although
constellation boundaries are given relative to the 1875 epoch. The equatorial
coordinate system and the concept of a standard epoch will be explained later
in chapter 4. For the moment, it suffices to know that equatorial coordinates
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tell astronomers where to point their telescopes to see an object whereas an
epoch tells them when that object’s coordinates were measured.

The star catalogs provided with this book are in an “XML-like” format and
can be viewed with any ordinary text editor, such as Microsoft’s Notepad pro-
gram, to understand their format in case you want to build your own catalog of
favorite celestial objects. See the README.TXT file, or open and view any of
the star catalog data files with a text editor for more details about the required
data format.

Chapter 5 uses the data files supplied with this book to produce star charts.
Besides stars extracted from Sky Catalog 2000.0, several other data files are
provided with data about celestial objects as taken from publicly available
NASA data sources. The Messier catalog, the Henry Draper catalog, and the
SAO J2000 catalog, among others, are provided.



2 Unit Conversions

Converting from one system of measurements to another is often necessary in
science and mathematics. The metric system (meters, grams, liters, Celsius) is
used more frequently in science than the English system (feet, pounds, gallons,
Fahrenheit), so it is important to be able to convert between them, for example,
to convert between miles and kilometers when describing the distance to a
celestial object.

Besides converting between systems of measurements, conversions are fre-
quently done within the same system as a matter of convenience. For exam-
ple, we often convert between inches and feet or feet and miles to express
a measurement in more convenient units. That is, it is far more convenient
to state that point A is 30.5 miles away from point B than it is to say that the
distance between them is 1,932,480 inches!

After reviewing a few preliminaries pertinent to unit conversions and han-
dling large numbers, this chapter will define some units that astronomers use
when measuring the vast distances between Earth and the stars. The chapter
will conclude with some time- and angle-related conversions, and some prac-
tice exercises.

2.1 Some Preliminaries

It is assumed that the reader already knows how to convert between measure-
ment units. To be sure, several practice exercises are provided at the end of
this chapter. Moreover, this chapter’s program uses the cross-multiplication
technique and the relationships shown in table 2.1 to perform various unit
conversions. (The letter E in the table indicates a number written in sci-
entific notation, which is described later in this section.) The program for
this chapter also shows how to convert between degrees Celsius and degrees
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Table 2.1 Conversion Factors
The unit on the left is equal to the unit on the right. Cross-multiplication can be used with these
relationships to easily convert between measurement units.

Unit Conversion Relationships

25.4 mm 1 inch

0.3048 m 1 foot

1.609344 km 1 mile

1 light year 5.87E12 miles

1 light year 0.3068 parsecs

1 AU 9.29E7 miles

180◦ 3.14159 radians

360◦ 24h

Fahrenheit.1 Converting between Celsius and Fahrenheit cannot be done by
cross-multiplication, but instead requires the equations

◦C = 5

9
(◦F − 32) (2.1.1)

and

◦F = 32 + 9

5
◦C. (2.1.2)

These equations are provided only for completeness’ sake. Temperature con-
versions will not be needed for the remainder of this book.

Besides converting between units and systems of measurements, the reader
should be comfortable with using scientific notation to express very large and
very small numbers. For example, astronomers measure the wavelength of
light reaching Earth from distant stars to determine the materials that make up
those stars. A typical wavelength is on the order of 1 one-hundred-millionth
of a centimeter (0.00000001 cm). At the other extreme, astronomers mea-
sure vast distances that often exceed trillions of miles (1 trillion miles is
1,000,000,000,000 miles). Writing down so many zeros to express numbers
such as these is inconvenient and error prone. Inadvertently dropping three
zeros changes a trillion miles to a mere billion miles, which is a significant dif-
ference. Expressing numbers in scientific notation is one way to avoid making
such order-of-magnitude mistakes.

1. Another temperature scale, the Kelvin scale, is frequently used in science to describe very cold
temperatures. 0 ◦K is −459.67 ◦F, or −273.15 ◦C.
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A number expressed in scientific notation is written as the product of 2 num-
bers. The first number is between 1 and 10; that is, a number with a single
nonzero digit to the left of the decimal point. The second number is a scaling
factor, written as a power of 10, which indicates where to place the decimal
point. For example, 9.3 × 107 is the proper way to express the approximate
average distance from Earth to the Sun (93 million miles) in scientific nota-
tion. The × symbol means to multiply; it does not mean a variable named x.
In the scaling factor 107, the number 10 is called the base while the number 7
is called the exponent. More generally, we say that the number ab has a base
a and an exponent b, which is shorthand for saying that the number a is to be
multiplied by itself b times. Thus, 23 means to multiply 2 by itself 3 times,
giving the value 23 = 2 × 2 × 2 = 8. Applying this to our example, we have

107 = 10 × 10 × 10 × 10 × 10 × 10 × 10 = 10, 000, 000,

and so

9.3 × 107 = 9.3 × 10, 000, 000 = 93, 000, 000.

Consider the number 1.5 × 10−4. What does a negative exponent mean?
The number a−b is shorthand for expressing the fraction 1

ab
. So 2−3 = 1

23 = 1
8 .

Applying the meaning of negative exponents to our example, we have

10−4 = 1

104
= 1

10 × 10 × 10 × 10
= 0.0001,

which then means that

1.5 × 10−4 = 1.5 × 0.0001 = 0.00015.

The easiest way to deal with scientific notation is to remember that the power
of 10 exponent indicates how many digits to the left (for negative exponents)
or to the right (for positive exponents) to place a decimal point. So in our
example of expressing the average distance to the Sun in scientific notation,
the exponent 7 tells us that there are 7 digits to the right of the decimal point.
This knowledge allows us to quickly write down the number 93 followed by
6 zeros (not 7 because the “3” digit counts as one of the numbers to the right
of the decimal point). Similarly, we easily see that

4.239 × 104 = 42,390

because the exponent 4 tells us that there are to be 4 digits to the right of the
decimal point, with 239 being the first 3 of those 4 digits.

Learning to express a number in scientific notation is easy. Consider the
number 830,600. Place a decimal point after the number 8 and note that there
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are then 5 digits remaining after the decimal point that we just inserted. This
means that 5 will be the exponent of our scaling factor. Drop the two extrane-
ous trailing zeros (but not the zero between 3 and 6!) in our number to give

830, 600 = 8.306 × 105.

Handling numbers less than 1 in scientific notation is also easy. To convert
a number from scientific notation, such as 4.203 × 10−3, first write down the
number before the scaling factor without any decimal point (i.e., 4203 for this
example). Then add zeros to the left of the number we just wrote down equal
to the number of zeros indicated by the exponent as if the exponent were a
positive number. Since our exponent in this case is −3, we write down a total of
3 zeros, giving us 0004203. Lastly, put a decimal point after the first 0, which
in this case gives us

4.203 × 10−3 = 0.004203.

Converting a number less than 1 to scientific notation is even easier. First,
move the decimal point to the right to just past the first nonzero digit in the
number that we wish to express in scientific notation. Count how many places
the decimal point was moved, and that value, expressed as a negative number,
becomes our exponent. If we use 0.00003089 as an example, the digit 3 is the
first nonzero digit to the right of the decimal point. Moving the decimal point
to the right just after the digit 3 requires moving the decimal point 5 places.
Hence we have

0.00003089 = 3.089 × 10−5.

It is common practice in computer programming to use the letter E, which
stands for exponent, to indicate that a number is expressed in scientific nota-
tion (e.g., 9.29E7 represents the number 9.29 × 107). This technique will be
used frequently throughout this book to conform to common practice in
programming languages.

2.2 Measuring Large Distances

Even when large distances are expressed in scientific notation, they are
unwieldy to manipulate. Therefore astronomers have defined other measure-
ment units for dealing with vast distances. For distances within the Solar
System, the astronomical unit (AU) is often used. One AU is defined to be the
distance from Earth to the Sun, but that distance varies as Earth goes around
the Sun. To avoid having a measurement unit that varies as Earth orbits the
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Sun, 1 AU is formally defined to be exactly 149,597,870,700 meters, which is
approximately 92,900,000 miles, and it is the value shown in table 2.1.

When objects are as far away as the stars, even the AU measurement unit
is cumbersome to use. So astronomers defined another unit of measurement,
the light year, for measuring such vast distances. A light year is what the term
implies—the distance that light travels in 1 year. Using the conversion factors
that relate light years and miles (1 light year is 5.87 × 1012 miles) and miles
and AUs (1 AU is 9.29 × 107 miles), it is easy to show that 1 light year is
approximately 63,186 AU. (Hint: first convert 1 light year to miles, and then
convert the resulting miles to AUs.) Clearly, light years are more convenient
measurement units than AUs for expressing stellar distances!

Another unit, the parsec, is sometimes used to measure distances that are of
the same magnitude as light years. A parsec is approximately 3.26 light years.
We will not have occasion to use parsecs in this book, but you may encounter
parsecs when dealing with stars and other objects in the far reaches of space.

2.3 Decimal Format Conversions

It is common practice to express time in terms of hours, minutes, and sec-
onds. One might, for example, say that the time is 4 hours, 32 minutes, and
29 seconds Central Standard Time. This format, which is called the HMS for-
mat, is written as 4h32m29s.2 To avoid difficulties with knowing whether the
time is a.m. or p.m., a 24-hour clock will be used throughout this book. Thus,
1:30 p.m. is expressed in HMS format as 13h30m00s.

Angles are often expressed in the DMS format, which is similar to the HMS
format in that it uses superscripts to represent degrees, arcminutes, and arc-
seconds. For example, an angle that is 24 degrees, 13 minutes, and 18 seconds
of arc would be written in DMS format3 as 24◦13′18′′. Note that degrees are
subdivided into minutes and seconds, which are also units for measuring time.
When confusion may arise as to whether minutes and seconds refer to time or
angles, the terms arcminutes and arcseconds are used to distinguish between
time and angles.

With respect to astronomy, time and angles can be thought of as being
related. Earth rotates once in 24 hours through an angle of 360◦, which gives

2. This example would normally be written as 4:32:29, but this book will use the superscript
notation to conform to how time is normally expressed in astronomy publications. However, this
book’s computer programs will use the : character to indicate HMS time (e.g., 4 :32:29) because
superscripts are cumbersome to produce in computer programs.

3. The computer programs for this book use “d,” “m,” and “s” to indicate DMS format (e.g., 24d
13m 18s).
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Table 2.2 Converting Time and Angles
Converting between time and angles can be done by noting that the Earth rotates 360◦ in 24 hours.

Unit of Time Equivalent Angle Angle Equivalent Time

24h (1 day) 360◦ 1 radian 3.82h

1h 15◦ 1◦ 4m

1m 15′ 1′ 4s

1s 15′′ 1′′ 0.067s

us a simple relationship between time and degrees. That is, 24h = 360◦. We
will frequently use this relationship in later chapters to convert between time
and angles. Table 2.2 expands on this relationship to show some additional
relationships between time and angles. The relationships on the left side of
the table are exact whereas some of those on the right have been rounded. For
practice, use table 2.2 to show that 5h = 75◦.

The HMS and DMS formats are not very convenient for computational pur-
poses. Instead, time (and angles) are usually converted to a decimal format
in which the minutes and seconds are expressed as a fractional part of hours
(or degrees). Once expressed in decimal format, arithmetic operations such as
addition and subtraction are much easier to perform since there is no need to
separately manipulate the hours, minutes, and seconds units in the HMS for-
mat (or degrees, minutes, and seconds units for the DMS format). For instance,
the decimal format for 4h30m0s is 4.5h since 30 minutes is 0.5 hours. Adding
1.5h (1h30m00s) to 4.5h gives 6.0h by simply adding the two numbers without
the need to consider minutes and seconds separately.

It is important to note that 4h30m00s is not the same as 4.3000h, nor is the
time 12:30 the same as 12.30h because three-tenths of an hour is 18 minutes,
not 30 minutes. Also note that valid ranges for the decimal format depend on
whether a number represents an angle or time. When expressed in decimal for-
mat, time is in the range [0h, 24h] while angles are in the range [−360◦, 360◦].

The procedure for converting time expressed in HMS format to decimal
format is the same as that for converting angles expressed in DMS format
to decimal format. Likewise, converting time expressed in decimal format to
HMS format is identical to converting angles expressed in decimal format to
DMS. However, dealing with angles is slightly more complicated than dealing
with time because an angle can be negative, and care must be taken to account
for the sign of the resulting number. The conversion procedures below deal
only with angles. Everywhere degrees are mentioned, substitute hours (as well
as minutes for arcminutes and seconds for arcseconds) and the procedure will
work for time conversions as well.
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Converting DMS to decimal format requires 7 steps. Assume that Degrees,
Minutes, and Seconds are variables that contain the DMS format of an angle.
For example, if we wish to convert 24◦13′18′′ to decimal format, then

Degrees = 24◦,
Minutes = 13′,
Seconds = 18′′.

The steps required to convert to decimal format are then:

1. If the DMS value entered is negative (i.e., Degrees< 0), let SIGN =−1
else let SIGN = 1. (Be sure to notice that SIGN is 1 if Degrees is 0. Many
programming languages and calculators have a function that returns the sign
of a number, but they normally return a result of zero when the number is zero.)

2. Let Degrees =ABS(Degrees).

3. Convert arcseconds to decimal arcminutes (dm) by applying the equation

dm = Seconds

60
.

4. Add the results of step 3 to Minutes to obtain the total number of arcminutes.
Thus,

Total Minutes = dm + Minutes.

5. Convert the total arcminutes to decimal degrees by dividing by 60.

Decimal Degs = Total Minutes

60
.

6. Add the results of step 5 to the results of step 2.

Decimal Degs = (Step 2)+ (Step 5).

7. Account for the possibility that the angle was negative, which can be done
by simply multiplying the results of step 6 by SIGN. Thus,

Decimal Degs = SIGN ∗ (Step 6).

The * symbol in step 7 is the conventional way that computer languages rep-
resent the multiplication operation; this symbol will be used frequently
throughout this book.

Converting an angle from decimal format to DMS format requires 6 steps.
Assume that Dec is an angle in decimal format that we wish to convert to DMS
format. The steps required are:
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1. If Dec is negative, let SIGN =−1 else let SIGN = 1.

2. Dec =ABS(Dec).

3. Degrees =INT(Dec).

4. Minutes =INT[60 ∗FRAC(Dec)]. The computation FRAC(Dec) gives the
total number of arcminutes expressed as a fractional part of the degrees, so
multiplying by 60 converts this value to arcminutes.

5. Seconds = 60 ∗FRAC[60 ∗FRAC(Dec)].
6. To account for a negative angle being converted, use the SIGN from step 1.
Multiply step 3 by SIGN if step 3 is positive, and merely append “−” to step 3
if the result of step 3 is 0.

The procedures for converting between DMS and decimal format can be
tricky to implement because of the need to consider negative angles. Imple-
mentation problems arise when an angle is negative, but its integer part is 0
(e.g., −0.586◦, −0◦35′09.6′′). Consider using the procedure just presented to
convert the angle −0.586◦ to DMS format. The value obtained for Degrees in
step 3 will be 0, so step 6 cannot just multiply step 3 by SIGN because doing so
will lose the fact that the resulting angle should be negative. So step 6 appends
a “−” to the answer to obtain the correct result.

Similarly, care must be taken when implementing a procedure to convert
an angle in DMS format to decimal format. In this case, the implementation
difficulty encountered is that one must allow a user to enter a “negative 0”
value for the integer degrees in the DMS format. In both procedures presented,
the approach taken to ensure that negative angles are properly handled is to
capture whether the angle is positive or negative in the first step, and then
ignore whether the angle is positive or negative until the very last step.

Another implementation issue that arises when doing HMS/DMS conver-
sions is round-off error. Consider steps 4 and 5 of the procedure for converting
an angle in decimal format to DMS format. Round-off errors may cause the
Minutes or Seconds (or both) calculated in those steps to be greater than 60.
For example, suppose that step 5 results in a value of 59.99995 for Seconds.
Round this value to two decimal places and Seconds becomes 60.00, which
is not a valid value for seconds of time or seconds of arc. In such a situation,
Seconds must be set to 0, and 1 minute must be added to Minutes. Having
done so, one must then ensure that the value for Minutes is still valid (i.e., in
the range [0, 59]) and handle accordingly.

The program for this chapter properly handles negative angles. The code
also handles the round-off error problem just described so that the results
displayed do not cause Minutes or Seconds to exceed 60 for angles or time.
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2.4 Program Notes

The program RunChap2 uses cross-multiplication to perform the conver-
sions shown in table 2.1. It also implements Celsius/Fahrenheit temperature
conversions and conversions between HMS/DMS and decimal formats. You
may select the program’s “Show Intermediate Calculations” check box to
see intermediate calculations, or see only the final result by unchecking that
check box.

2.5 Exercises

In the following practice problems, remember that the letter E is used to
express a number in scientific notation. The answers given here may differ
slightly from what you will obtain when using a calculator, but if the results
are not close, check your arithmetic to see if an error has been made.

1. Convert 5 mm to inches.
(Ans: 0.196850 inches.)

2. Convert 10 inches to mm.
(Ans: 254 mm.)

3. Convert 30 meters to feet.
(Ans: 98.425197 feet.)

4. Convert 25 feet to meters.
(Ans: 7.62 meters.)

5. Convert 100 miles to kilometers.
(Ans: 160.9344 km.)

6. Convert 88 km to miles.
(Ans: 54.680665 miles.)

7. Convert 12 light years to miles.
(Ans: 7.044E13 miles.)

8. Convert 9.3E7 miles to light years.
(Ans: 1.5843E-5 light years.)

9. Convert 5 light years to parsecs.
(Ans: 1.534 parsecs.)

10. Convert 3 parsecs to light years.
(Ans: 9.7784 light years.)

11. Convert 2 AU to miles.
(Ans: 1.8580E8 miles.)
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12. Convert 10,000 miles to AU.
(Ans: 1.076426E-4 AU.)

13. Convert 180◦ to radians.
(Ans: 3.141593 radians.)

14. Convert 2.5 radians to degrees.
(Ans: 143.239449◦.)

15. Convert 2h to degrees.
(Ans: 30.0◦.)

16. Convert 156.3 to hours.
(Ans: 10.42h.)

17. Convert 10h25m11s to decimal hours. (Hint: enter the time as 10:25:11.)
(Ans: 10.419722h.)

18. Convert 20.352h to HMS format.
(Ans: 20h21m07.2s.)

19. Convert 13◦04′10′′ to decimal degrees. (Hint: enter the angle as 13d 04m
10s.)

(Ans: 13.069444◦.)

20. Convert −0.508333◦ to DMS format.
(Ans: −0◦30′30.00′′.)

21. Convert 300◦20′00′′ to decimal degrees.
(Ans: 300.333333◦.)

22. Convert 10.2958◦ to DMS format.
(Ans: 10◦17′44.88′′.)

23. Convert 100 ◦C to ◦F.
(Ans: 212.00 ◦F.)

24. Convert 32 ◦F to ◦C.
(Ans: 0.00 ◦C.)



3 Time Conversions

Everyone has at least a rudimentary idea of what time is. Yet explaining what
this abstract concept means is like trying to explain the color red to a blind
person who has never seen any colors. Referring to a dictionary will only
compound the problem! Time, whether or not we can adequately describe it,
plays an important role in our daily lives. Time is also an important quantity in
astronomy and science in general.

This chapter describes how to perform some important time-related conver-
sions that are required to locate stars, celestial objects such as nebulae, and
Solar System objects. This will become clearer later in the book, but the essen-
tial idea is this: if we know (a) where a celestial object was at some instant
in time, (b) how much time has elapsed since we last knew the object’s loca-
tion, and (c) the characteristics of the object’s orbit, then Kepler’s laws and the
power of mathematics can be applied to calculate the object’s current position.
Among other things, determining an object’s position requires converting cal-
endar dates into a more convenient form and converting between “solar” time
and “star” time.

The subject of time can be very confusing. This chapter will briefly mention
8 ways to define a year, 4 ways to define a month, and over a dozen ways to
refer to the time of day. Additionally, just to make things interesting, there
are 2 different calendar systems to worry about. Don’t panic! We’ll actually
trim this morass down to only a few basic definitions that we will use for
the remainder of this book.1 For the moment, concentrate more on how to
perform the various time system conversions rather than why they are needed.
The “why” will become apparent as you progress through this chapter and
especially as you work through the chapters ahead.

1. We’ll mostly be concerned with mean solar and sidereal days, civil months, civil years, and the
Gregorian calendar system. Unfortunately, we must deal with 4 time of day definitions: local civil
time, Universal Time, local “star” time, and Greenwich “star” time.
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3.1 Defining a Day

Among the smaller units of time that can be gauged by astronomical events is
the day. In modern times (no pun intended!), we consider a day as beginning
and ending at midnight. Choosing midnight as the starting point for a day is
really an arbitrary decision. Another choice might be to count a day as begin-
ning and ending at sunset, which is how the Jews in biblical times counted
days. Even today, Orthodox Jews reckon the Sabbath as beginning at sunset on
Friday and ending at sunset on Saturday. In any case, a day is normally defined
in terms of the Sun’s position; that is, as the time it takes for the Sun to return
to the same location in the sky that it was in the day before.

Choosing what position of the Sun to use as the “same location”—highest
point in the sky (noon), rising above the horizon (sunrise), dipping below the
horizon (sunset), and so forth—for defining a day is somewhat arbitrary. We
will shortly see that choosing starting and ending points to define a month and
year is arbitrary, too, but do we also have multiple choices for selecting the
celestial object itself that we will use to measure intervals of time? The answer
is yes! In this section we will use the motion of the Sun, Moon, and stars as the
basis for describing intervals of time. In fact, we are free to choose whatever
starting and ending points we wish as well as whatever celestial object we
deem most convenient as references for defining intervals of time in terms of
astronomical events. This flexibility is a major reason why defining time is
such a complicated undertaking.

A solar day is defined as the time it takes for the Sun to return to the same
apparent location in the sky as it was the day before. Time measured by the
solar day is called apparent or solar time, which means that we are gauging
time by where the Sun appears to be in the sky. A sundial is an example of an
instrument that measures time in terms of the apparent position of the Sun.

Unfortunately, a solar day is not uniform in length because the Sun’s appar-
ent motion across the sky is not uniform. For some days during the year, it
takes the Sun more than 24 hours to return to the same apparent location in the
sky that it was the day before, while on other days it takes less than 24 hours.
Solar days are too imprecise for almost any astronomical calculations.

Why are there irregularities in the Sun’s apparent motion? For one reason,
the Earth-Sun orbit is an elliptical orbit. Thus, as explained by Kepler’s laws,
Earth moves faster as it get closer to the Sun and slower as it gets farther away
from the Sun. This causes the rate of the Sun’s apparent motion along its path
in the sky to vary throughout the year. Moreover, Earth moves around the Sun
at a rate of about 1◦ per day. This causes the Sun to appear to have moved by
about 1◦ per day against the background of stars.
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Figure 3.1 Newton’s Sundial
This engraving from Robert Ball’s 1895 Great Astronomers is the sundial that a young Isaac
Newton carved on a stone wall of his family’s home in Woolsthorpe, England. The signs of the
zodiac are along the sides of the sundial, and the days of the month are at the bottom. Newton did
indeed carve a sundial on the family home, but this depiction is probably more ornate than the one
he actually created.
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To avoid difficulties caused by irregularities in the Sun’s apparent motion,
astronomers define a fictitious Sun, called the mean Sun,2 which moves in a
perfectly circular orbit at a uniform rate along Earth’s equator. A day defined
by the motion of this fictitious Sun is called a mean solar day. A mean solar
day is exactly 24 hours in length whereas, as we have already indicated, a solar
day can vary by a few seconds from 1 day to the next and up to about 30 sec-
onds over the course of a year. Our wristwatches and the clocks in our homes
measure time relative to a mean solar day. The difference between time as mea-
sured by the apparent motion of the Sun and time as measured by the motion
of the mean Sun is called the equation of time. This concept, which we will
discuss in chapter 6, allows us to convert between time measured by a sundial
(apparent solar time) and time measured by our wristwatches (mean time).

Formally speaking, a solar day is the time interval between 2 successive
transits3 of the true Sun across an observer’s meridian.4 A mean solar day
is the time interval between 2 successive transits of the mean Sun across an
observer’s meridian. Carefully note that the only difference between these 2
definitions is whether we’re talking about the Sun’s actual elliptical orbit or a
fictitious Sun’s circular orbit.

One advantage of the mean solar day is that the mean Sun returns to the
same point in the sky in exactly 24 hours. However, a star does not return
to the same position in the sky in 24 hours as measured by a mean solar day
clock. This is true because at the end of a mean solar day, Earth has advanced
in its orbit around the Sun by about 1◦. The effect noticed by an Earthbound
observer is that the stars appear to move with respect to the Sun. This apparent
motion of the stars with respect to the Sun can be avoided if a day is measured
with respect to the stars instead of the Sun, which is in fact what astronomers
have done. Astronomers define a sidereal day as the time interval between 2
successive transits of a fixed star across an observer’s meridian. Time measured
according to a sidereal day is called sidereal time, or is sometimes more loosely

2. We will encounter the adjective “mean” throughout this book in reference to various orbital
characteristics of some celestial object, such as the Moon’s mean position or a planet’s mean
anomaly. The adjective mean indicates that we’re talking about how an object would behave if
it moved in a fictitious circular orbit. The adjective “true” is used, as in true position and true
anomaly, when we wish to talk about how an object behaves in its actual elliptical orbit. More will
be said in chapter 4 about why we bother with a fictitious circular orbit.

3. In the context of our present discussion, a transit means that the Sun has crossed overhead an
observer located at some stated position on Earth.

4. The concept of a meridian will be explained more fully in chapter 4. For now think of an
observer’s meridian as a semicircle that passes through 3 points: Earth’s North and South Poles,
and the point directly overhead the observer. An observer’s meridian depends on where the
observer is located on the Earth’s surface.



Time Conversions 25

called “star” time. At the end of exactly 24 sidereal hours (1 sidereal day), a
star returns to the same position in the sky that it was 1 sidereal day earlier.

Clocks can be built to measure time according to a solar day, mean solar day,
or sidereal day. Sundials, which measure time based on an apparent solar day,
require adjustments5 throughout the year to make them correspond to mean
time, which is what our wristwatches and the clocks in our homes measure.
Although we do not adjust our wristwatches and clocks during the year (except
for the special case of daylight saving time) to account for irregularities in the
Sun’s motion, it is readily apparent from our clocks that events such as sunrise
and sunset occur at different times throughout the year.

Sidereal clocks are specially designed for astronomical purposes and are
regulated by the motion of the stars. A sidereal day is slightly shorter than a
mean solar day with approximately 23h56m of mean solar time being equal
to 24h of mean sidereal time. A sidereal day is shorter than a mean solar day
because Earth’s rotation moves an observer’s meridian, which is what we’re
using to define the beginning and ending of a sidereal day, at a rate of about 1◦
per day. Henceforth, unless otherwise noted, a 24-hour day will be understood
to refer to a mean solar day to correspond with how we keep time with our
wristwatches.

3.2 Defining a Month

Just as the apparent motion of the Sun can be used to define a day and subse-
quently subdivided into smaller time intervals to measure hours, minutes, and
seconds, the Moon’s orbit can be used as the basis for defining a month. Not
surprisingly, there are several ways to define a month. At a simple level, one
can say that a day is the time it takes for the Sun to complete 1 trip around
Earth.6 At a similarly simplistic level, one can say a month is the time it takes
for the Moon to complete 1 orbit around Earth.

To measure a month, it is necessary for the Moon to complete 1 orbit around
Earth with respect to some reference point. If the reference point is a star, the
Moon completes 1 orbit in 27.3217 days. A month defined in this way is a
sidereal month. When the Sun is used as a reference point, the Moon takes

5. The amount of the adjustment that has to be made is the equation of time.

6. Actually, a day is the time it takes for Earth to rotate once on its axis, but this is conceptually
equivalent to the Sun revolving about Earth. We will often find it convenient to assume that the
Sun orbits around a stationary Earth even though in reality Earth orbits the Sun. (Well, sort of!
See chapter 6.) Also, the Sun itself is not stationary. It rotates on its own axis as it travels in an
elliptical orbit around the Milky Way Galaxy.
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29.5306 days to complete an orbit. Using the Sun as a reference defines the
synodic month, which is the “phase” month: New Moon to New Moon, Full
Moon to Full Moon, and so on. The phrase “lunar month” refers to a synodic
month with some specific phase of the Moon (e.g., Full Moon) as the agreed-
upon start of the month. Lunar months are rarely used today except as the basis
for some religious calendars, such as the Jewish and Muslim calendars. In
calendar systems based on lunar months, a given religious festival will always
occur during the same lunar phase.

The definition of a month with which we are most likely familiar is the civil
calendar month, which is not based on an orbital reference point at all. Instead,
a civil year (defined in the next section) is divided into 12 months with the
number of days in a month varying from 28 to 31 days. Calculations based on
civil calendar months are complicated because the number of days in a month
varies according to which month it is. For the remainder of this book, when we
refer to a month we will mean a civil calendar month.

3.3 Defining a Year

To define a year in terms of astronomical events, we again turn our attention
to the Sun’s motion only to find that there are multiple ways to define a year,
just as there are multiple ways to define a day or a month. We briefly mention
some of the different ways to define a year to give a greater appreciation for
how difficult the concept of time really is.

The first definition to consider is the tropical year, for which it is convenient
to assume that the mean Sun orbits Earth. Visualizing the Earth-Sun relation-
ship in this way, the mean Sun crosses the plane of Earth’s equator twice a
year. These 2 times are called the equinoxes, and they occur around March 21
(vernal equinox) and September 22 (autumnal equinox). On these 2 dates the
lengths of daylight hours and nighttime hours are approximately equal. The
equinoxes provide convenient reference points for defining a tropical year as
the time interval between 2 successive vernal equinoxes. A tropical year is
equal to about 365.2422 mean solar days.

A tropical year suffers from the disadvantage of having a fractional number
of days. To circumvent this difficulty, a civil year is defined to be exactly either
365 or 366 days in length, depending upon whether it is a leap year. We are
perhaps most familiar with civil years, as they are the basis for the calendars
that we use each day. The price paid for eliminating the fractional number of
days that occur in a tropical year is that civil years vary in length because of
the necessity to include the concept of leap years.
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The Besselian year is sometimes used in astronomical calculations, and it
is identical to a tropical year except that it begins when the mean Sun reaches
an ecliptic longitude of 280◦, which occurs on approximately January 1.7 A
Besselian year is the same length as a tropical year because both are based
upon the time interval between leaving from and returning to a given celes-
tial reference point (vernal equinox for a tropical year, ecliptic longitude 280◦
for a Besselian year). Because the vernal equinox is the reference point for
a tropical year, a tropical year technically begins and ends around March 21
rather than January 1. By contrast, the reference point of ecliptic longitude
280◦ was deliberately chosen so that a Besselian year will begin and end at
approximately January 1.

It is possible to define a year in many other ways by simply choosing a differ-
ent reference point. When a star is used as a reference point, the sidereal year is
defined, and it is approximately 365.2564 days. Using the point at which Earth
is closest to the Sun as a reference point, the anomalistic year is defined, and
it is approximately 365.2596 days in length. The draconic year combines the
motion of the Sun and Moon to create a reference point for defining a year that
is useful in predicting eclipses; it is approximately 346.6201 days in length.
The Julian year is exactly 365.25 days in length, and it is the average length
of a year in the Julian calendar system, which we will discuss in section 3.5.
The Milky Way Galaxy, in which Earth and the Solar System reside, can also
be used as a reference point and thereby defines a Galactic year. A Galactic
year is the time it takes for the Solar System to orbit once around the center
of the Milky Way Galaxy. A Galactic year is a very long time, approximately
225–250 million years, no matter which of the preceding Earth-based defini-
tions we use for a year!

Fortunately, we need not concern ourselves with all these ways to define a
year. In the sections and chapters ahead, we will generally need to worry only
about civil years.

3.4 Defining Time of Day

At this point, the astute reader may have noted that the various ways for defin-
ing a day (solar, mean solar, and sidereal), a month (sidereal, synodic, lunar,
and calendar), and a year (tropical, civil, Besselian, sidereal, anomalistic, dra-
conic, Julian, and Galactic) create units of time that are independent of where

7. The ecliptic coordinate system is presented in the next chapter. For now, think of ecliptic lon-
gitude as similar to measuring longitude on Earth, except that we’re measuring longitude with
respect to a specific reference point in the sky.



28 Chapter 3

an observer is actually located on Earth’s surface. However, an observer’s loca-
tion is a crucial factor for calculating where in the sky a celestial object will
appear. This is obvious when considering the location of an object such as the
Sun. When the Sun is directly overhead (i.e., noon) for an observer in Europe,
it most certainly is not overhead at that same instant in time for someone on
the West Coast of the United States. Thus, a major concept to understand is
how to adjust time based on an observer’s location, which we can do by more
precisely defining what we mean by time of day.

With a basic understanding of the various ways to define a day, month, and
year, we must now contemplate what it means to answer the question, What
time is it? (We’ll consider the question in the next section.) This deceptively
simple question requires a rather lengthy answer that is even more complex
than the preceding discussion about defining a day, month, and year!

Defining the time of day is a complex undertaking for at least 3 reasons.
First, the time of day depends on how a day is defined; that is, what reference
point (Sun, mean Sun, or stars) is being used. Second, because Earth rotates
on its axis, the time of day with respect to where the Sun is in the sky for 2
different observers depends on where each observer is located. In essence, this
means that when some astronomical event occurs, such as sunrise, it will be
observable at precisely the same instant in time for 2 observers only if they are
both located at exactly the same longitude. Third, with the advent of atomic
clocks and the ability to use radio signals originating from space as time refer-
ences, there are several precise, but very different, ways to measure the passage
of time. Increasingly precise methods for measuring the passage of time is a
necessity in our modern world of globally distributed computer networks and
navigation based on Global Positioning System (GPS) satellites. Because of
such inventions, there is a need to synchronize clocks more precisely than was
feasible with earlier methods for measuring the passage of time. However, we
will limit our discussion in this section by worrying only about defining time
of day for use in the science of astronomy.

Because the instant in time at which an astronomical event can be observed
depends upon an observer’s location, how can 2 observers at different longi-
tudes coordinate time, without directly communicating with each other, so that
they both will know when the event can be seen from their respective loca-
tions? More specifically, how can 2 observers at different longitudes (a) agree
upon the time of day and (b) know when an astronomical event will be observ-
able by each of them given that they know when it will be observable by one
of them? To answer this two part question, consider first how a day should be
defined for our 2 observers.
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As we pointed out earlier, the length of a solar day is affected by seasonal
variations in the apparent motion of the Sun as Earth progresses in its orbit
around the Sun. Moreover, using a device such as a sundial to measure time
in a solar day means that observers at different longitudes will always obtain
different time of day readings. For example, if 1 of our 2 observers is only
50 miles due west of the other, the 2 observers will disagree on the time of day,
as measured by a sundial, by approximately 3 minutes. Such a relatively small
difference in time is probably unimportant for scheduling a meeting between
our 2 observers,8 but the difference is important in the context of astronomical
events. Apparent time (sundial time) is simply too imprecise for most uses,
including astronomy, and therefore it is not appropriate for our 2 observers to
base time of day on a solar day.

We can avoid the daily and seasonal variations inherent in a solar day by
using a mean solar day instead. This is a significant improvement because it
makes time regular from 1 day to the next and makes each day exactly 24 hours
in length regardless of where Earth is in its orbit around the Sun. This advan-
tage is important enough that our 2 observers should agree to use a mean solar
day as their basis for measuring time of day. A mean solar day is in fact what
we implicitly assume in the modern world when we refer to the time of day.

Unfortunately, if we do nothing more than agree to use a mean solar day,
time of day is still relative to each observer’s location. For example, we may
think of noon as when the mean Sun is “directly overhead.” But when the
mean Sun is “directly overhead” for someone in Boston, it certainly is not for
someone in Los Angeles or even for someone only a few hundred miles east
or west of Boston. Simply agreeing to define noon to be with respect to the
position of the mean Sun does nothing to alter this physical reality.

We must find 1 more missing piece of the puzzle before our 2 observers
can agree on the time of day: the need for the observers to synchronize their
clocks. Time zones, which we will now endeavor to explain, are a key element
for achieving this synchronization. By combining time zones and a mean solar
day, not only do we ensure that every day is exactly 24 hours in length, but
the observers’ locations can be accounted for by making a simple adjustment
that takes into account their geographic locations (i.e., what time zone they fall
within). Let’s see how this is possible.

8. Although we have not yet described time zones, 2 observers at opposite ends of the same
time zone will disagree on the apparent time of day by as much as an hour! An hour is clearly a
significant difference, whether we are scheduling a meeting or predicting when an astronomical
event will occur.



30 Chapter 3

Figure 3.2 Greenwich Observatory
Notice the ball on the left cupola of this circa 1850 depiction (from Robert Ball’s Great
Astronomers) of the Flamsteed House at the Greenwich Royal Observatory. This “time ball” was
installed in 1833 and could be seen by ships in the nearby harbor. The ball was drawn up the pole
and then lowered at precisely the same time each day. This gave ships an accurate method for set-
ting their clocks, which were needed for navigation. This and other methods were used historically
to synchronize clocks. Weather permitting, the Royal Observatory still raises and lowers the time
ball each day at precisely 13:00 Greenwich Mean Time.

Since Earth rotates 360◦ in a mean solar day, we can subdivide Earth longi-
tudinally into 24 equal geographic areas, called time zones, that are 15◦ wide in
longitude. Geographical longitude is determined relative to Greenwich, Eng-
land, so time zones are also defined relative to Greenwich (longitude 0◦). Earth
rotates 15◦ in an hour, so in terms of time each time zone is 1 hour in width.

We can directly tie time zones to the motion of the mean Sun by synchroniz-
ing all clocks within a time zone so that noon is the precise moment at which
the mean Sun transits that time zone’s central meridian. The central meridian
is the meridian whose longitudinal location is the geographic center of a time
zone, which means there are 7.5◦ of longitude within a time zone on either side
of the central meridian. The central meridian at Greenwich is 0◦ longitude, the
central meridian for the first time zone due west of Greenwich is 15◦ W longi-
tude, the central meridian of the next westward time zone is 30◦ W longitude,
and so on. Time zones east of Greenwich are handled in the same way. The
central meridian for the first time zone east of Greenwich is 15◦ E longitude,
the second central meridian is at 30◦ E longitude, and so on.
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When we synchronize time within a time zone in this fashion, the time at
the central meridian is called that time zone’s Standard Time. Standard Time
means that all clocks are synchronized to the same standard for everyone in
a given geographic region regardless of their location. Every observer in that
time zone always has the same time of day as everyone else within their time
zone. This, then, is a method whereby our 2 observers can agree on the precise
time of day regardless of their respective locations.

Let’s take the clock synchronization idea a little further by agreeing to make
Standard Time for each time zone relative to Standard Time at Greenwich.
This simplifies matters because rather than each time zone having to deter-
mine when the mean Sun transits a central meridian, it can be done in 1 place
(Greenwich), and then all time zones can synchronize their local time with
Greenwich. When we define time zones relative to Greenwich and synchro-
nize each time zone’s Standard Time with Standard Time at Greenwich, the
resulting system for synchronizing time around the world is referred to as civil
time. Time within a given time zone is called that time zone’s local civil time
(LCT), or simply local time.

By agreeing to base Standard Time for all time zones relative to Greenwich
and adjusting Standard Time by 1 hour for each time zone away from Green-
wich, we have just achieved 2 very important results. First, Standard Time in
adjacent time zones differs from each other by exactly 1 hour of mean solar
time. Second, determining the Standard Time for an observer in any time zone
is a simple matter of adding (or subtracting) an hour for each time zone that
separates the observer from the Greenwich time zone. Because Earth rotates
from west to the east, Standard Time in time zones west of Greenwich is ear-
lier than Standard Time at Greenwich while Standard Time in time zones east
of Greenwich is later.

For example, suppose Standard Time in the Greenwich, England, time zone
is precisely 12h00m00s, and an observer is 2 time zones west of Greenwich.
Then the Standard Time for that westward observer is exactly 10h00m00s (sub-
tract hours when going from east to west). Suppose another observer is 4 time
zones east of Greenwich. Then the Standard Time for that eastward observer’s
time zone is 16h00m00s (add hours when going from west to east).

Let’s return to our 2 observers: if they are in the same time zone and using
Standard Time, they can both agree on a precise instant in time even though
the Sun will be at a different position in the sky for both of them. They can
agree on a precise instant in time by merely adding or subtracting an hour for
each time zone that separates them as explained in the previous paragraph.

There’s a bit more information to consider in the important story of time
zones. In practice, time zone boundaries are irregular because allowances are
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made to accommodate state, country, and other man-made boundaries. For
instance, the continental United States is divided into 4 time zones with very
irregular boundaries, as can be seen from any map that shows US time zones.
Going from east to west, the 4 US time zones are the Eastern Standard Time
(EST), Central Standard Time (CST), Mountain Standard Time (MST), and
Pacific Standard Time (PST) zones.

The fact that time zone boundaries are irregular in practice does not change
how they work. Clocks are still synchronized for all observers within a time
zone, adjacent time zones are 1 hour apart, and observers in different time
zones can still agree on a precise time by adding or subtracting an hour for
each time zone that separates them. Note that in some regions of the world,
this is not strictly true because adjacent time zones may in fact differ by some
amount other than an hour. For example, Canada’s Newfoundland time zone
differs from the immediately adjacent Atlantic time zone by 30 minutes rather
than an hour. Consult a map of time zones to be sure that you apply the correct
time zone adjustment when you are in an area that adjusts time between time
zones by some amount other than an hour.

It is customary in many countries to add or subtract an hour to Standard Time
depending on the season. This is called daylight saving time (DST). Most areas
of the United States have adopted DST and add an hour to the clock during the
spring while subtracting an hour during the fall. (This can be remembered by
the adage “spring forward, fall back,” which describes whether to set the clock
ahead or back.) Remember to account for DST during time of day conversions!

The concept of time zones is relatively recent in human history, having been
introduced in only the late 19th century. Prior to establishing time zones and
Standard Time, time at a particular locality was established relative to a locally
chosen meridian and some well-known time standard, such as the Big Ben
clock for the city of London. Time was measured by the transit of the mean
Sun across that locally chosen meridian, and the locally chosen time standard
was synchronized with that transit. This meant that the time of day would often
differ from city to city because meridians were selected by local authorities
rather than by some central authority for a region. Time defined locally in this
fashion was historically called Local Mean Time (LMT). It should be clear that
Standard Time is simply an improved way to establish LMT over a geographic
region larger than a city—namely, a time zone.

From this point forward, we will use LCT rather than Standard Time or
LMT 9 to refer to time of day within a local time zone. This conforms with

9. Standard Time, LMT, and LCT are technically not the same because of their precise defini-
tions and how they arose historically. For the purposes of this book, however, we do not need to
distinguish between Standard Time, LMT, and LCT.
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current usage, although the acronym LMT does help to emphasize that local
time of day is defined with respect to the motion of the mean Sun.

Astronomical calculations are usually based on time relative to the time zone
in which Greenwich, England, is situated. LMT for Greenwich has histori-
cally been called Greenwich Mean Time (GMT), but this terminology has been
superseded by Universal Time (UT). We can easily convert between UT and a
particular time zone’s LCT by adding or subtracting an hour for each time zone
that separates that time zone from Greenwich. Technically, UT and GMT are
not the same thing because they differ in when a day begins. Astronomers orig-
inally chose to define a GMT day as beginning at noon because that is when
the mean Sun transits the central meridian. This can be confusing because we
normally think of a day as starting at midnight rather than at noon. UT, which
was introduced to avoid this confusion, defines a day as beginning at midnight.

Although GMT and UT define the start of a day differently, they both refer to
the same instant in time. That is, 8h00m00s is the same instant in time, whether
we are using GMT or UT to establish when a day begins. One can think of
GMT and UT as being the same even though technically they are not. Some
authors continue to use GMT rather than UT to emphasize that time of day is
being measured with respect to the motion of the mean Sun at the Greenwich
central meridian. We will conform with common usage and use UT instead of
GMT to refer to time in the Greenwich time zone. Also note that UT and GMT
are often referred to as Zulu Time.

Modern timekeepers no longer establish a time standard at Greenwich by
making astronomical observations of the Sun to determine its precise location.
Quasars, which are distant galaxies that emit radio signals, can be monitored
through a worldwide network of radio telescopes and used to provide a very
precise time standard. Timekeepers can also use atomic clocks to establish an
extremely precise time standard.

Differences in the various timekeeping methods have given rise to a plethora
of ways to define and measure time of day, such as Coordinated Universal Time
(abbreviated as UTC as a compromise between English-speaking and French-
speaking peoples), UT1, and UT2. For technical reasons, the time of day
reported by each of these methods differs, but the differences are sufficiently
small that they matter only when making precise (tenths of a second) time
measurements. We will ignore these differences and assume that UTC, UT,
UT1, UT2, GMT, and so on, all refer to the same time of day at the Greenwich
central meridian.

Now that our 2 observers have a reliable mechanism for agreeing on the time
of day, how can they know when an astronomical event will be observable for
their location, assuming that they know the LCT at which the event will occur?
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The answer is surprisingly simple. We merely note that because Earth rotates
15◦ per hour, we only have to add (or subtract) an amount of time that is pro-
portional to the distance an observer is from his or her time zone’s central
meridian. Let’s look at an example.

Suppose the Sun will rise at precisely 6h30m28s with respect to the central
meridian for the Eastern Standard Time (EST) zone. Assume observer #1 is 2◦
in longitude east of the EST central meridian, and observer #2 is 5◦ in longi-
tude west of the EST central meridian. Since observer #1 is east of the central
meridian, the Sun will rise earlier for him than it will at the central merid-
ian while for observer #2 the Sun will appear to rise later than it will at the
central meridian. Earth rotates 15◦ per hour, which is equivalent to 1◦ every
4 minutes, so we merely have to adjust the stated LCT for sunrise by 4 min-
utes for every 1◦ in longitude that an observer is from the time zone’s central
meridian. Hence, for observer #1, sunrise will occur 2 ∗ 4 = 8 minutes earlier
(6h22m28s EST) while for observer #2 sunrise will occur 5 ∗ 4 = 20 minutes
later (6h50m28s EST).

Publications that list the times for various astronomical events are often based
on UT as the reference point for time. If we know the UT for a particular event,
it can be converted to the proper LCT for any observer by adding/subtracting
4 minutes for every 1◦ of longitude that the observer is from longitude 0◦.
Alternatively, we can convert UT to the LCT for the time zone in which an
observer is situated and then adjust by 4 minutes for every 1◦ that the observer
is from his or her time zone’s central meridian.

Earlier we pointed out that astronomers use mean solar time to avoid the
irregularities caused by Earth’s orbit around the Sun. However, mean solar
time is also affected by Earth’s rotation about its own axis. Earth’s rotation is
not uniform and is impacted by the gravitational influence of the planets in the
Solar System. Consequently, in truth a mean solar day is not really as regular
in length as we have so far assumed.

The IAU has defined the Terrestrial Time (TT) standard to account for
irregularities in Earth’s rotation.10 TT is based on an atomic clock and is inde-
pendent of any irregularities in Earth’s rotation. In chapter 7 we will make
adjustments for the difference between UT and TT in order to make better pre-
dictions about lunar events. For most of this book we will blissfully ignore the
impact on time of day caused by irregularities in Earth’s rotation. The error

10. The IAU defined Terrestrial Time (TT) in 1991 to replace Terrestrial Dynamic Time (TDT),
which was defined in 1976 as a successor to Ephemeris Time (ET). TT, TDT, and ET all have the
objective of accounting for irregularities in Earth’s rotation. The technical details of the differences
between these and other systems of timekeeping are outside the scope of this book. We will discuss
only TT and will assume that all current timekeeping systems are essentially the same.
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incurred in doing so is unlikely to amount to more than a few minutes for this
century, which will generally be sufficient for the level of accuracy aspired
to in this book. In 1980 the error was slightly more than 50 seconds, although
that error increased to about 66 seconds in 2010.

Before we complete our discussion of time of day, we should mention that
there is 1 other important way that time of day can be defined. Just as the def-
inition of a day can be tied to the stars (sidereal day), time of day can also be
measured by the stars. Time of day defined with respect to the position of a
fixed star is called sidereal or “star” time. Sidereal time at Greenwich, England,
is called Greenwich Sidereal Time (GST) while sidereal time for a specific
observer is called that observer’s Local Sidereal Time (LST). The sidereal time
for 2 observers will differ depending on their respective locations. Unlike LCT,
where all observers in the same time zone agree on the mean time of day, 2
observers will not agree on the LST, even if they are in the same time zone,
unless they are also at the same longitude.

Because of wobble in Earth’s rotation, sidereal time is not uniform, just as
mean solar time is not uniform. Astronomers have defined a system of measur-
ing sidereal time, called mean sidereal time, to account for wobble in Earth’s
axis. What has been described so far is apparent sidereal time. The difference
between apparent sidereal time and mean sidereal time is only a few seconds
and will be ignored henceforth. We will assume that apparent sidereal time and
mean sidereal time are equal.

Whew! Clearly, understanding time of day is far more complex than it first
appears. After a brief discussion of calendar systems and Julian day numbers,
we will describe how various time conversions are done. For the moment, con-
centrate more on how to do the various conversions rather than on why they are
necessary. Generally speaking, most of the routines in later chapters will ask
for the LCT for a given location. Given an observer’s LCT, it is usually desir-
able to convert it to the observer’s LST. The process involved is to convert LCT
to UT, UT to GST, and then finally to convert GST to LST. Converting LST to
LCT works by just reversing this process.

In the time conversion procedures presented in later sections, it will often
be necessary to compute a time zone adjustment to account for an observer’s
location. Table 3.1 gives the time zone adjustments (relative to UT) in hours for
each of the 4 time zones (each 1 hour apart) in the continental United States.
If an observer is not located in 1 of these time zones, a time zone adjustment,
expressed in hours, can be calculated as

Adjustment =ROUND

(
ψ

15◦
)
, (3.4.1)
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Table 3.1 Time Zone Adjustments
The continental United States is divided into four time zones, each 1 hour apart. The adjustment
shown in this table is the time adjustment relative to UT.

Time Zone Adjustment

EST −5 hours

CST −6 hours

MST −7 hours

PST −8 hours

where ψ is the observer’s longitude. This equation should be obvious because
it merely uses the fact that time zones are 15◦ wide in longitude. An observer’s
geographic longitude in this equation is expressed in decimal degrees and is
positive for locations east of Greenwich while negative for west longitudes.
For example, the time zone adjustment for 30◦ W longitude is −2h while the
time zone adjustment for 45◦ E longitude is +3h.

Note that table 3.1 and equation 3.4.1 account only for what time zone an
observer is in relative to Greenwich and provide an adjustment to the LCT for
all observers within that time zone. The table and equation do not account for
where an observer is within a time zone (e.g., how far away the observer is
from the time zone’s central meridian). When it is necessary to account for an
observer’s longitude within a time zone, the observer’s LCT will be adjusted
by 4 minutes per 1◦ of longitude away from the prime meridian at Greenwich.
This is accomplished by the equation

Adjustment = ψ

15◦ . (3.4.2)

This equation is necessary so that an observer at a particular location within
a time zone can know the actual local time at which a predicted astronomical
event will occur.

To summarize the salient points, we will use LCT to refer to the local civil
time within an observer’s time zone. LCT is what an observer’s wristwatch
measures, and it is synchronized with UT, which is the local civil time at the
Greenwich, England, prime meridian (longitude 0◦). LST and GST are based
on sidereal time rather than mean solar time and are analogous to LCT and UT.
Additionally, the world is divided into 24 longitudinal time zones starting from
the prime meridian at Greenwich. Time zone boundaries are typically irregu-
lar to account for man-made boundaries, such as national borders. Despite
irregular time zone boundaries, adjacent time zones are usually 1 hour apart
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(15◦ longitude). By using time zones and synchronizing clocks with Green-
wich, all observers within the same time zone will agree on the same LCT,
regardless of the position of the mean Sun.

3.5 Calendar Systems

Because there are so many ways to define a day, month, year, and time of day,
it should be no surprise that there are also several different ways to create a
calendar. Early calendars were based on the apparent motion of the Sun and
Moon, but they generally failed to account for the fact that Earth orbits the Sun
in a fractional number of days. Thus, if a calendar defined a year to be 365 solar
days in length, a calendar year was actually short by 0.2422 days. After
10 years, such a calendar would be wrong by a little more than 2 days. This
was hardly noticeable to early man, and it would probably not be noticeable to
the average person today. However, after 100 years, such a calendar is wrong
by 24 days and wrong by 242 days after 1,000 years. With this kind of cumu-
lative error, it would soon become apparent that the seasons were occurring in
the wrong months (winter in July, summer in December, etc.) when compared
to recorded history. Such a calendar system is very inconvenient indeed.

The Roman emperor Julius Caesar (100 BC–44 BC) introduced an improved
calendar in about 46 BC. His calendar, called the Julian calendar, assumes a
year is exactly 365.25 days in length so that an additional day must be added
to the calendar every fourth year. Therefore any year that is evenly divisible
by 4 is called a leap year and given an extra day. The Julian calendar is off by
about 0.0078 days (approximately 11m14s) a year and by a little over a week
(7.8 days) every 1,000 years. Close, but not close enough.

In 1582, Pope Gregory XIII was informed that the Julian calendar, which
was in common usage, was already incorrect by nearly 2 weeks. To remedy
the situation, a new calendar system was proposed that retained the concept
of a leap year but modified how a leap year is defined. In the calendar system
that Pope Gregory officially established, called the Gregorian calendar in his
honor, a century year (i.e., a year ending in 2 zeros) is a leap year only if it is
also evenly divisible by 400. The length of a year in a Gregorian calendar is
365.2425 days, with an error of about 0.0003 days (25.92 seconds) per year.
The Gregorian calendar is the most commonly used civil calendar in the world
today. Because of the improvements made by Pope Gregory, our modern cal-
endar is only off by 3 days every 10,000 years, making it unlikely that another
calendar reform will occur for quite some time.
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It is worth noting an interesting historical sidelight: the Gregorian calen-
dar was first put into effect on October 15, 1582. At that time, the 10 days
between October 5 and October 14 were simply abolished. (In one sense,
there never was an October 6, 1582!) However, the Gregorian calendar was
not widely adopted outside the Holy Roman Empire until the 18th century.
In fact, England and the American colonies did not accept the new calen-
dar system until 1752. In that year, it is said, rioting protesters in England
demanded that they be given back their “missing” days, although stories of
actual riots are likely untrue. However, even as late as England and Amer-
ica were in adopting the Gregorian calendar, Russia did not follow suit until
1918!

Several other calendar systems have been developed in the past, some of
which are still in use today. The Chinese calendar began in 2397 BC and is
based on 60-year cycles. The ecclesiastical calendar is used by some Roman
Catholic and Protestant countries to reckon years as beginning with Advent
Sunday (the Sunday closest to the last Sunday in November, which means
Advent Sunday is the fourth Sunday before Christmas). Calendars used by
Hindus, Hebrews, and Muslims also base years on important religious events.
Hindus divide the year into 12 months with the months based on the signs of
the zodiac. The Hebrew calendar begins in the year 3761 BC with a cycle of 19
years in which the 3rd, 6th, 8th, 11th, 14th, 17th, and 19th years are leap years.
The year 3761 BC was chosen as the beginning of the Hebrew calendar because
Jewish scholars in the Middle Ages calculated October 7, 3761 BC as the date
when God created Adam and Eve. Muslim countries often use a calendar that
dates from July 16, 622 AD, which is the year that the prophet Mohammed
fled from Mecca to Medina. Only the Julian and Gregorian calendars will be
of further interest in this book.

Determining whether a year is a leap year in the Gregorian calendar is a
simple matter. To be a leap year, the year must satisfy 2 conditions.

1. The year must be evenly divisible by 4.

2. If the year is a century year, it must be evenly divisible by 400.

For example, the year 1906 is not a leap year because it is not evenly divisible
by 4. The year 1908 is evenly divisible by 4 but is not a century year, so it is
a leap year. The year 1800 is evenly divisible by 4 and is a century year, but
because it is not evenly divisible by 400, it is not a leap year. The year 1600 is
a leap year because it is evenly divisible by 4, and it is a century year that is
also evenly divisible by 400.
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3.6 Julian Day Numbers

It is necessary in many astronomical calculations to know the number of days
that have elapsed between 2 events. Julian day numbers, typically abbreviated
as JD, are used to facilitate calculating elapsed days. The Julian day number for
a given date is the number of days, including fractional days, that have elapsed
since noon at Greenwich, England, on January 1, 4713 BC. It is important
to realize that a Julian day number begins at 12h UT (exactly noon) and not at
midnight (0h UT), as we normally reckon the beginning of a new day. This may
seem unusual when first working with Julian day numbers, but the reason for
starting a Julian day number at noon is that astronomers historically used the
transit of the mean Sun across an observer’s meridian to define the beginning
of a day, which of course corresponds to noon at that meridian.

When a calendar date is converted to a Julian day number, the result is some-
times called the Julian date. This can be confusing because the phrase “Julian
date” suggests some connection with the calendar system named after Julius
Caesar. Julian day numbers do not mean that they are given with respect to
the Julian calendar because Julian day numbers cover all years from 4713 BC
forward, regardless of whether a date is from the Julian or Gregorian calendar
system. To avoid confusion, in this book we will use “Julian date” to exclu-
sively mean a date in the Julian calendar system and “Julian day number” to
mean the number of elapsed days since noon UT on January 1, 4713 BC.11

Before we describe how to convert a calendar date to a Julian day number, 1
more detail must be explained. The Julian day number also accounts for the
time of day at Greenwich (UT). To accomplish this, the time of day is expre-
ssed as a fractional part of the day and added to the day of the month. A couple
of examples will illustrate this point.

Express 6:00:00 UT on February 14 as a fractional day.

1. Use the techniques from chapter 2 to express the time in decimal format. In
this case, 6:00:00 becomes 6.0h in decimal format.

2. Divide the decimal hours by 24 to get the time as a fractional part of the
day. For this example,

6.0

24
= 0.25 days.

11. Many astronomy books and websites use “Julian Date” when a Julian day number is meant.
You must determine from context whether a date in the Julian calendar system is meant, or (more
likely) a Julian day number.
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3. Add the fractional part of the day to the day. Doing so for this example gives
February 14.25 as the day we must use for converting a date to its Julian day
number.

As another example, express 14h33m36s on March 21 as a fractional day.

1. In decimal format, 14h33m36s = 14.56h.

2. Dividing by 24, we have 14.56
24 = 0.606667 days.

3. Adding this to the day gives March 21.606667 as the day we must use for
converting a date to its Julian day number.

Converting a calendar date to a Julian day number requires 5 steps. Assume
that the calendar date is Month/Day/Year where Month is an integer ranging
from 1 to 12 with 1 = January, 2 = February, and so on. Day is the day of the
month, including the time of day as a fractional part of the day as explained in
the previous 2 examples. Year is the calendar year, and it is positive to indicate
AD dates and negative to indicate BC dates.

Let’s convert January 1, 2010, at 0.0h UT (i.e., midnight) to its correspond-
ing Julian day number. The necessary steps are listed here with the result for
this sample problem given in parentheses at the end of each step.

1. If Month> 2, set y= Year, and m= Month. Otherwise, y= Year − 1, and
m= Month + 12.

(Ans: y= 2009, m= 13.)

2. If Year< 0, set T = 0.75 else T = 0.
(Ans: T = 0.)

3. Determine if the date is a Gregorian date. Dates before October 15, 1582,
are not, while all other dates are Gregorian.

(Ans: 1/1/2010 is Gregorian.)

4. If the date is Gregorian, computeA=FIX
( y

100

)
andB = 2 −A+FIX

(
A
4

)
.

If the date is not Gregorian, set A= 0 and B = 0.
(Ans: A= 20, B =−13.)

5. Compute

JD =B +FIX(365.25y− T )+FIX[30.6001(m+ 1)] + Day + 1,720,994.5

to complete the calculation.
(Ans: JD = 2,455,197.50.)

As another example, convert March 21, 2015, at 12h00m00s UT (noon) to
its corresponding Julian day number. (Fractional days must be included, so we
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must convert 3/21.50/2015 because noon is half of a day.) The resulting Julian
day number is 2,457,103.0.

Carefully note from these 2 examples that whenever the fractional part of
a Julian day number is 0.0, the time of day was noon (UT) for the calendar
date converted whereas whenever the fractional part is 0.5, the time of day was
midnight (UT). More generally, the time of day (UT) can be retrieved from a
Julian day number by multiplying the fractional part of the Julian day number
by 24 and adding 12h to the result. Note that 12h must be added because Julian
day numbers start at noon (UT), not midnight. If adding 12h produces a result
that is greater than 24h, then 24h must be subtracted to ensure the resulting
time of day is in the range [0h, 24h].

For example, assume the fractional part of a Julian day number is 0.27. Then
the corresponding time of day (UT) is 0.27 ∗ 24 + 12 = 18.48h = 18h28m48s.

As another example, assume the fractional part of a Julian day number is 0.78.
Then the corresponding time of day (UT) is 0.78 ∗ 24 + 12 = 30.72h. Since this
result is greater than 24h, 24 must be subtracted to put the time of day into the
proper range. Thus, the time of day is 30.72h − 24h = 6.72h = 6h43m12s.

Converting a Julian day number back to its corresponding calendar date
requires 10 steps. Assume JD is the Julian day number. We will use the Julian
day number 2,400,000.5 to illustrate the process.

1. Add 0.5 to the Julian day number. That is, let JD1 = JD + 0.5.
(Ans: JD1 = 2,400,001.0.)

2. Compute I =FIX(JD1) and F =FRAC(JD1).
(Ans: I = 2,400,001, F = 0.0.)

3. If I > 2,299,160, set A=FIX[(I − 1,867,216.25)/36,524.25] and
B = I + 1 +A−FIX(A/4). Otherwise set B = I .

(Ans: A= 14, B = 2,400,013.)

4. Set C=B + 1524.
(Ans: C= 2,401,537.)

5. Compute

D=FIX

(
C− 122.1

365.25

)
.

(Ans: D= 6574.)

6. Compute E=FIX(365.25D).
(Ans: E= 2,401,153.)
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7. Compute

G=FIX

(
C−E

30.6001

)
.

(Ans: G= 12.)

8. The day is given by Day=C−E+F −FIX(30.6001G).
(Ans: Day= 17, 0h UT since Day is an integer value.)

9. The month is given by Month=G− 1 if G< 13.5, and Month=G− 13
ifG> 13.5. (Note thatG cannot equal 13.5 because the result obtained in step
7 will always be an integer.)

(Ans: Month = 11.)

10. The year is given by Year =D− 4716 if Month> 2.5, and Year =D−
4715 if Month< 2.5. (Note that Month cannot equal 2.5 because the result
obtained in step 7, and consequently in step 9, is always an integer.) If the Year
obtained is negative, then the resulting date is BC. Otherwise, the date is AD.

(Ans: Year = 1858 AD.)

The calendar date corresponding to the Julian day number 2,400,000.5 is thus
November 17, 1858, at 0h UT. We immediately know that the time of day is
midnight (UT) because the fractional part of the Julian day number is 0.5.

There are a couple of peculiarities to note about these algorithms for per-
forming Julian day number conversions. First, if you convert the Julian day
number 0.0 to a calendar date, the resulting year is –4712, not –4713 as might
be expected. The reason this happens is that astronomers number the year
immediately preceding 1 AD as 0 whereas we normally consider the preceding
year to be 1 BC.

The second peculiarity is that the Julian day number computed by the above
algorithm for the pair of dates October 5.0, 1582, and October 15.0, 1582,
is exactly the same (JD = 2,299,160.50), as is the pair of dates October 6.0,
1582, and October 16.0, 1582 (JD = 2,299,161.50). A moment’s reflection
reveals why this occurs. The Gregorian calendar was instituted on October 15,
1582. The “lost days” between October 5 and 14 are treated as Julian dates
in the algorithm for converting a calendar date to a Julian day number, but as
Gregorian dates in the reverse process.

We need not concern ourselves with either of these peculiarities because in
this book we won’t be performing astronomical calculations for the 16th cen-
tury or earlier! Some websites, such as for the US Naval Observatory, account
for both of these peculiarities by limiting their algorithms to consider only
Gregorian dates.
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The modified Julian day number (MJD) is sometimes used to avoid the large
numbers produced from the previous algorithms for handling Julian day num-
bers. MJD is defined to be the number of days that have elapsed since 0h (UT)
on November 17, 1858, and is given by the equation

MJD = JD − 2,400,000.5, (3.6.3)

where JD is the Julian day number for the date being converted. The rea-
son for choosing 0h (UT) November 17, 1858, should be obvious because its
Julian day number is 2,400,000.5, thus giving a modified Julian day number
of 0.0 for November 17, 1858. For our earlier example (March 21, 2015, at
12h00m00s UT), the MJD is 57,102.5.

Note that when the fractional part of a modified Julian day number is 0.0, the
time of day for the calendar date being converted is midnight (UT), whereas
when the fractional part is 0.5, the time of day was noon (UT). This is exactly
the opposite of what the fractional part of a Julian day number means. Also, note
that the time of day (UT) can be extracted from a modified Julian day number
by simply multiplying the fractional part of the modified Julian day number by
24. There is no need to add 12h to the result, which must be done in the case of
a Julian day number.

3.7 Some Calculations with Dates

Julian day numbers are convenient for several calculations involving dates.
For example, to calculate the number of elapsed days between 2 dates, simply
subtract their corresponding Julian day numbers. One reason for doing so is to
calculate how many days have elapsed since the beginning of the year. Given
a calendar date, some authors reference the number of elapsed days since the
beginning of the year as that date’s day number. To avoid confusion with the
Julian day number, we will refer to this as the “days into the year,” which is a
more descriptive phrase anyway.

It is possible to compute the number of elapsed days into a year without
resorting to Julian day numbers. Only 2 steps are required.

1. If the year is a leap year, set T = 1 else set T = 2.

2. The number of days into the year is given by the equation

N =FIX

(
275 ∗ Month

9

)
− T ∗ FIX

(
Month + 9

12

)
+ Day − 30.



Time Conversions 45

For example, March 9, 2005, was 68 days into the year 2005 while March 9,
2000, was 69 days into 2000 because 2000 was a leap year.

Converting the number of days into a year to a specific calendar date is only
slightly more complex. Assume that N is the number of days into the year. To
illustrate the process, convert N = 68 for the year 2005 back to its correspond-
ing calendar date. The required steps are:

1. If Year is a leap year, set A= 1523, otherwise set A= 1889.
(Ans: A= 1889.)

2. Let

B =FIX

(
N +A− 122.1

365.25

)
.

(Ans: B = 5.)

3. Let C=N +A−FIX(365.25B).
(Ans: C= 131.)

4. Let E=FIX(C/30.6001).
(Ans: E= 4.)

5. If E< 13.5, then Month =E− 1, otherwise Month =E− 13.
(Ans: Month = 3.)

6. Day =C−FIX(30.6001E).
(Ans: Day = 9.)

Sometimes it is interesting to know what day of the week a certain date falls
on. For instance, it might be amusing to determine the day of the week on
which someone was born. Julian day numbers provide a simple way to calcu-
late the day of the week on which a given date falls. Using February 7, 1985,
as an example, the required steps are:

1. Convert the date to its Julian day number, JD, at 0h UT. (Be sure to exclude
the time of day as a fractional part of the day in the date. Thus, for this example,
use Day = 7 and not 7.xxxx.)

(Ans: JD= 2,446,103.5.)

2. Calculate A= (JD + 1.5)/7.
(Ans: A= 349,443.57143.)

3. Let B = 7 ∗FRAC(A).
(Ans: B = 4.000000.)

4. Let N =ROUND(B).
(Ans: N = 4.)
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The number N resulting from the this calculation gives the corresponding day
of the week whereN = 0 is Sunday, N = 1 is Monday, and so on. So, February
7, 1985, fell on a Thursday (N = 4).

3.8 LCT to UT

We now turn our attention to performing conversions between local and Green-
wich time zones, and between solar time and sidereal time. We will begin
by showing how to convert LCT to UT. Converting between LCT and UT is
independent of the date because it is merely a matter of making a time zone
adjustment.

For example, convert 18h00m00s LCT to UT for an observer in the Eastern
Standard Time zone. Assume that this is not daylight saving time.

1. Convert LCT to decimal format.
(Ans: LCT = 18.0h.)

2. If necessary, adjust for daylight saving time. If the LCT given is on DST,
subtract 1h, otherwise do nothing in this step.

(Ans: no adjustment needed, T = 18.0h.)

3. Using equation 3.4.1 or table 3.1 as appropriate, calculate a time zone
adjustment.

(Ans: Adjustment =−5h.)

4. Subtract the time zone adjustment in step 3 from the result of step 2.
(Ans: UT = 23.0h.)

5. If the result of step 4 is negative, add 24h. If the result of step 4 is greater
than 24, subtract 24h. (Note that if 24h must be added to step 4, the result-
ing time is on the previous date whereas if 24h must be subtracted, the resulting
time is for the next day.)

(Ans: no adjustment, UT = 23.0h.)

6. Convert the result of step 5 to HMS format if desired.
(Ans: UT = 23h00m00s.)

Assuming the observer is at 45◦ E longitude rather than in the Eastern Standard
Time zone, the result is UT = 15h00m00s because the observer is 3 time zones
east of Greenwich (the adjustment from equation 3.4.1 is +3h).

3.9 UT to LCT

Convert 23h30m00s UT to LCT for an observer within the Eastern Standard
Time zone, and assume daylight saving time.
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1. Convert UT to decimal format.
(Ans: UT = 23.5h.)

2. Using equation 3.4.1 or table 3.1 as appropriate, calculate a time zone
adjustment.

(Ans: Adjustment =−5h.)

3. Add the time zone adjustment from step 2 to the result of step 1.
(Ans: LCT = 18.5h.)

4. If the result of step 3 is negative, add 24h. If the result of step 3 is greater
than 24, subtract 24h. (Note that adding 24h means that the resulting LCT is
for the next day whereas subtracting 24h means that the resulting LCT is for
the previous day.)

(Ans: no adjustment, LCT = 18.5h.)

5. If necessary, adjust for daylight saving time. If the individual is on DST,
add 1h, otherwise do nothing in this step.

(Ans: LCT = 19.5h.)

6. Convert the result of step 5 to HMS format if desired.
(Ans: LCT = 19h30m00s.)

If the observer was at 45◦ E longitude and on daylight saving time, the result
would be LCT = 3h30m00s on the next day.

3.10 UT to GST

To convert UT to GST, the date must be known. Convert 23h30m00s UT to
GST for February 7, 2010.

1. Convert the given date to its Julian day number at 0h UT (i.e., do not express
the time of day as a fractional part of the day for this step).

(Ans: JD = 2,455,234.5.)

2. Calculate the Julian day number for January 0.0 of the given year. Let this
Julian day number be JD0.

(Ans: JD0 = 2,455,196.5.)

3. Subtract step 2 from step 1 to get the number of elapsed days into the year.
Let Days be this number.

(Ans: Days = 38.)

4. Let T = JD0−2,415,020.0
36,525.0 .

(Ans: T = 1.099973.)

5. Let R= 6.6460656 + 2400.051262T + 0.00002581T 2.

(Ans: R= 2646.636775.)
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6. Let B = 24 −R+ 24(Year − 1900).
(Ans: B = 17.363225.)

7. Let T0 = 0.0657098Days −B.
(Ans: T0 =−14.866252.)

8. Convert the UT given into decimal format.
(Ans: UT = 23.5h.)

9. GST = T0 + 1.002738UT.
(Ans: GST = 8.698091h.)

10. If the GST from the previous step is negative, add 24h. If the GST from
the previous step is greater than 24, subtract 24h.

(Ans: GST = 8.698091h.)

11. Convert the result of step 10 to HMS format if desired.
(Ans: GST = 8h41m53s.)

3.11 GST to UT

Converting GST to UT also requires that the date be known. Calculate the UT
for 8h41m53s GST on February 7, 2010.

1. Convert the given date (at 0h) to its Julian day number.
(Ans: JD = 2,455,234.5.)

2. Calculate the Julian day number for January 0.0 of the given year. Call this
Julian day number JD0.

(Ans: JD0 = 2,455,196.5.)

3. Subtract step 2 from step 1 to get the number of days into the year. Call this
number Days.

(Ans: Days = 38.)

4. Let T =[JD0 − 2, 415, 020.0]/36, 525.0.
(Ans: T = 1.099973.)

5. Let R= 6.6460656 + 2400.051262T + 0.00002581T 2.

(Ans: R= 2646.636775.)

6. Let B = 24 −R+ 24(Year − 1900).
(Ans: B = 17.363225.)

7. Let T0 = 0.0657098Days −B.
(Ans: T0 =−14.866252.)
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8. If the result of step 7 is negative, add 24h. If the result of step 7 is greater
than 24, subtract 24h.

(Ans: T0 = 9.133748.)

9. Convert the GST given to decimal format.
(Ans: GST = 8.698056h.)

10. Let A= GST − T0.

(Ans: A=−0.435692.)

11. If A is negative, add 24h. Otherwise make no adjustment.
(Ans: A= 23.564308.)

12. UT = 0.997270A.
(Ans: UT = 23.499977h.)

13. Convert the result of step 12 to HMS format if desired.
(Ans: UT = 23h30m00s.)

Note that steps 1–7 for converting GST to UT are identical to steps 1–7 for
converting UT to GST.

3.12 GST to LST

Converting GST to LST requires knowing an observer’s longitude, but it is
independent of the date. Assume that the GST is 2h03m41s for an observer at
40◦ W longitude. Calculate the corresponding LST.

1. Convert the GST to decimal format.
(Ans: GST = 2.061389h.)

2. Calculate a time zone adjustment using equation 3.4.2. Remember that east
longitudes are positive while west longitudes are negative. Also note that this
adjustment is almost the same as the time zone adjustment in equation 3.4.1,
but it includes the fractional part of the time zone adjustment whereas equa-
tion 3.4.1 does not.

(Ans: Adjust =−2.666667h.)

3. LST = GST + Adjust.
(Ans: LST =−0.605278.)

4. If LST is negative, add 24h. If LST is greater than 24, subtract 24h. Other-
wise make no adjustments.

(Ans: LST = 23.394722h.)
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5. Convert LST to HMS format if desired.
(Ans: LST = 23h23m41s.)

Notice that the LST is simply the GST with an adjustment that takes into
account an observer’s longitude. This adjustment is the difference, expressed
in hours, between the observer’s longitude and that of Greenwich, England.

3.13 LST to GST

Converting LST to GST is very similar to converting GST to LST. The dif-
ference arises in step 3 in which an adjustment is subtracted from the LST
to calculate the GST whereas an adjustment is added to GST to calculate the
LST. Assume that an observer at 50◦ E longitude calculates the LST to be
23h23m41s. Convert this LST to GST.

1. Convert LST to decimal format.
(Ans: LST = 23.394722h.)

2. Calculate a time zone adjustment using equation 3.4.2. Remember that east
longitudes are positive while west longitudes are negative.

(Ans: Adjust =+3.333333h.)

3. GST = LST − Adjust.
(Ans: GST = 20.061389h.)

4. If GST is negative, add 24h. If GST is greater than 24, subtract 24h. Other-
wise make no adjustment.

(Ans: no adjustment.)

5. Convert GST to HMS format if desired.
(Ans: GST = 20h30m41s.)

3.14 Program Notes

The program RunChap3 does all the time and date conversions described
in this chapter. When doing mean time conversions for time zones inside the
continental United States, the program uses table 3.1 to make time zone adjust-
ments. For other time zones, the program allows a longitude to be entered and
then uses equation 3.4.1 to compute a time zone adjustment. This applies only
to mean time conversions. Sidereal time conversions require including frac-
tional parts of an hour and use equation 3.4.2 to compute time zone adjustments
whether in a US time zone or not.
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It is frequently necessary to enter an observer’s latitude and/or longitude.
Although this book’s programs do not allow entering a numeric sign to indi-
cate latitude/longitude direction, for convenience they do allow omitting the
“E/W” (longitude) and “N/S” (latitude) designators. Thus, one may enter a
longitude as 48.5, 48.5E, or 48.5W (or their equivalent HMS forms). How-
ever, one may not enter −48.5,+48.5,−48.5E, or +48.5W because numeric
signs are not permitted for latitude/longitude. When the direction designator is
omitted, it is assumed that the latitude or longitude entered is positive (i.e., N
latitude, E longitude). To avoid potential confusion, you should get in the habit
of always specifying the direction, particularly for longitudes. The difference
is significant, as you can easily see by converting a value such as 5h LCT to
UT for 75◦ W longitude and comparing the results to the same conversion for
75◦ E longitude!

3.15 Exercises

1. Was 1984 a leap year?
(Ans: yes.)

2. Was 1974 a leap year?
(Ans: no.)

3. Was 2000 a leap year?
(Ans: yes.)

4. Was 1900 a leap year?
(Ans: no.)

5. Convert midnight UT on November 1, 2010, to its Julian day number.
(Ans: 2,455,501.5.)

6. Convert 6h UT on May 10, 2015, to its Julian day number.
(Ans: 2,457,152.75.)

7. Convert 18h UT on May 10, 2015, to its Julian day number.
(Ans: 2,457,153.25.)

8. Convert 2,369,915.5 to its corresponding calendar date.
(Ans: 7/4/1776 at midnight UT.)

9. Convert 2,455,323.0 to its corresponding calendar date.
(Ans: 5/6/2010 at noon UT.)

10. Convert 2,456,019.37 to its corresponding calendar date.
(Ans: 4/1/2012 at 20h52m48s UT.)
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11. On what day of the week did 7/4/1776 fall?
(Ans: Thursday.)

12. On what day of the week did 9/11/2011 fall?
(Ans: Sunday.)

13. How many days into the year was 10/30/2009?
(Ans: 303 days.)

14. If the date was 250 days into 1900, what was the date?
(Ans: 9/7/1900.)

15. Assume that the date is 12/12/2014, and an observer in the Eastern Stan-
dard Time zone is at 77◦ W longitude. Assume that it is not daylight saving
time. If LCT is 20h00m00s, what are the corresponding UT, GST, and LST
times?

(Ans: UT = 1h00m00s (next day!), GST = 6h26m34s (12/13/2014), and
LST = 1h18m34s (12/13/2014).)

16. Assume that the date is 7/5/2000 for an observer at 60◦ E longitude and
that it is daylight saving time. If LST for the observer is 5h54m20s, what are
the corresponding GST, UT, and LCT times?

(Ans: GST = 1h54m20s, UT = 7h00m00s, and LCT = 12h00m00s.)



4 Orbits and Coordinate Systems

Chapter 3 discussed the time element of positional astronomy. The methods
presented there accounted for differences in various methods for measuring
time and, at least as an initial start, for an observer’s location on Earth. With
the techniques from chapter 3 as background, only 2 major items are missing
before we can predict the position of a celestial object. Those 2 missing items
are the ability (a) to locate an object on a sphere and (b) to describe where an
object is in its orbit.

To supply these missing items, we need to understand some of the prop-
erties of spheres and ellipses. Spherical geometry can be applied to uniquely
and unambiguously describe the location of an object on a sphere, which pro-
vides us with the first missing item. Johannes Kepler discovered that celestial
objects move in elliptical orbits and so, as should be expected, the geometric
properties of ellipses will be used to describe where an object is in its orbit. An
understanding of ellipses will therefore provide the second missing item.

Besides spheres and ellipses, this chapter will also discuss orbital elements
and some coordinate systems that astronomers use to locate objects on a
sphere. An understanding of orbital elements is not required to understand
spherical coordinate systems, but orbital elements follow quite naturally from a
discussion of ellipses, and orbital elements are required for later chapters. This
chapter will also include techniques for converting between different coordi-
nate systems, most of which will be repeatedly applied in succeeding chapters
where we will apply an understanding of orbital elements and coordinate
systems to actually compute the location of various celestial objects.

This chapter will describe 5 different coordinate systems and conversion
techniques, all based on spherical geometry, that are frequently used in astron-
omy. We will begin with the terrestrial latitude-longitude system, which is
actually used to locate an object on Earth’s surface rather than in the sky. The
terrestrial latitude-longitude coordinate system is important because in order to
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properly describe where a celestial object will appear, it is necessary to know
an observer’s location since where an object appears in the sky at some instant
in time differs from 1 place on Earth to the next.

A second coordinate system, the horizon coordinate system, is an easy-to-
use coordinate system for locating objects in the sky. Unfortunately, coordi-
nates expressed in the horizon coordinate system constantly change as Earth
rotates. An object’s horizon coordinates are different for observers at different
locations on Earth as well as for different times during the day.

To avoid coordinates that constantly change with respect to the motion of
the Earth, time of day, and an observer’s location, a third coordinate system,
the equatorial coordinate system, is defined in which an object’s position is the
same regardless of an observer’s location or time of day. Because celestial
objects such as stars, galaxies, and nebulae are so very, very far away, their
equatorial coordinates change very slowly over relatively long periods of time.
For most purposes, the unimaginably vast distances involved mean that such
celestial objects can be considered as stationary with respect to Earth and there-
fore have fixed equatorial coordinates. Adjustments can be made to a distant
object’s equatorial coordinates to account for its motion, but such adjustments
are usually made only when high accuracy is required.

On the other hand, objects within the Solar System move much more
rapidly along their orbits with respect to Earth than do distant celestial objects.
Consequently, equatorial coordinates for objects so relatively close to Earth
change daily. For convenience, the positions of Solar System objects are cal-
culated in the ecliptic coordinate system, the fourth coordinate system we will
consider, for some instant in time and then converted to equatorial coordi-
nates.

The final coordinate system we will describe is the galactic coordinate sys-
tem. Calculations involving objects within the Milky Way Galaxy are often
done within the galactic coordinate system and then converted to equatorial
coordinates. The galactic coordinate system is presented for completeness but
will not be used beyond this chapter.

4.1 Trigonometric Functions

Before turning our attention to this chapter’s major topics, we must briefly
digress to consider some properties of the trigonometric functions. This is nec-
essary because dealing with spheres, ellipses, orbital elements, and spherical
coordinate systems requires applying equations that are expressed in terms of
angles and trigonometric functions. It is assumed that the reader already has a
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working knowledge of the basic trigonometric functions (sine, cosine, tangent,
etc.). Based on that assumption, this section will briefly look at making
adjustments so that the angles returned by the inverse trigonometric functions
are in the correct quadrant.

The trigonometric functions are defined over the entire range of real num-
bers and, excepting the tangent and cotangent functions, always produce a
real number between −1.0 and +1.0 inclusive. This fact leads to an ambiguity
when inverse trigonometric functions are involved. For example, the tangent
of 45◦ is 1, which is also the same as the tangent of 225◦. What, then, is
the inverse tangent (also called the arctangent and denoted by tan−1) of 1?
Should it be 45◦ or 225◦? To determine the correct answer, inverse trigono-
metric functions must be considered case by case in the context of the problem
being solved.

By convention, the inverse cosine function (also called arccosine and
denoted by cos−1) returns angles between 0◦ and 180◦ while the inverse sine
(also called arcsine and denoted by sin−1) and arctangent functions return
angles between −90◦ and +90◦. The arcsine and arccosine functions will
rarely cause a problem in the algorithms presented in this book, but the
arctangent function poses an added complexity.

When the arctangent is required and the resulting angle is supposed to be
in the range 0◦ to 360◦, the argument to the arctangent function will be given
in the form y

x
. The correct angle obtained from the arctangent depends on

the numeric sign of y and x. There are 4 cases to consider as summarized
in table 4.1. Remember, however, that an adjustment is needed only if the
resulting angle is to be in the range [0◦, 360◦] instead of [−90◦,+90◦].

For example, suppose y= 5, x=−2, and the angle θ is to be in the range

0◦ to 360◦. Now θ = tan−1
(

5
−2

)
=−68.1986◦. Table 4.1 indicates that 180◦

must be added to θ to place the angle in the correct quadrant. Therefore, the
correct answer is

θ =−68.1986◦ + 180◦ = 111.8014◦.

Table 4.1 Angle Adjustments for the Arctangent
Computing the arctangent requires an adjustment to place the answer in the proper quadrant.

y x Adjustment

+ + 0◦
+ − 180◦
− + 360◦
− − 180◦



56 Chapter 4

Sphere 
Diameters

Not a 
Diameter

Circle

S
Di

Diameter

Sphere 
Center

Sphere 
Diameter

Great 
Circle

Figure 4.1 Great Circles
Cutting a sphere with a plane results in circles of different sizes. When a circle has the same
diameter as the sphere itself, it is called a great circle.

It is important to remember that when an inverse trigonometric function is
needed, an angle adjustment may or may not be required. An angle adjust-
ment may be needed for the arcsine and arctangent functions if the desired
angle could fall outside the range of [−90◦,+90◦]. An adjustment may be
needed for the arccosine function if the desired angle could fall outside the
range of [0◦, 180◦]. Failure to consider the inverse trigonometric functions on
a case-by-case basis in the context of the problem being solved can produce an
incorrect result.

4.2 Locating Objects on a Sphere

The terrestrial latitude-longitude system is probably the most familiar tech-
nique for locating objects on Earth’s surface.1 Several concepts are needed to
properly describe this coordinate system.

Visualize a sphere (see figure 4.1). The length of any line segment that
passes through the center of the sphere and whose endpoints terminate at

1. Earth isn’t really a sphere. However, we will consider it to be a perfect sphere because the error
incurred in doing so is negligible unless high accuracy is required.
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the sphere’s boundary is equal to the length of the sphere’s diameter. The
converse is also true. Any line segment whose endpoints are on the sphere’s
boundary and whose length is equal to the length of the sphere’s diameter
must necessarily pass through the sphere’s center. Referring to figure 4.1,
the vertical, horizontal, and rotated line segments are all sphere diameters
because they pass through the center of the sphere and terminate at the sphere’s
boundary.

Imagine passing a sheet of paper through a sphere. No matter where the
sheet of paper cuts through the sphere, a circle is formed at the intersection
of the paper and the sphere. Some circles formed at such intersections are
larger than others. When the circle formed has the same diameter as the sphere
itself, that circle is called a great circle. It should be obvious that the center
of every great circle is the same as the center of the sphere on which that
great circle is drawn, and that it is impossible to draw a circle on a sphere that
is larger than a great circle. The circle formed when the plane shown in the
middle of figure 4.1 intersects the sphere is a great circle because the circle’s
diameter goes through the center of the sphere. However, the circle formed at
the top of figure 4.1 is not a great circle because that circle’s diameter does not
go through the center of the sphere.

In Earth’s case, a line segment drawn from the North Pole to the South
Pole (see figure 4.2) passes through the center of the Earth and is therefore the
same length as Earth’s diameter. Besides being a diameter, such a line segment
lies on Earth’s axis of rotation. Also, following from the basic properties of a
sphere just discussed, any circle that goes through both the North and South
Poles is a great circle. Not all great circles pass through the North and South
Poles. The equator is but 1 example of a great circle that does not go through
either the North or the South Pole. In fact, an infinite number of great circles
can be drawn on the surface of a sphere and in any orientation.

A semicircle that passes through both the North and South Poles of Earth is
called a meridian. Another way to view meridians is to say that they are half
of a great circle that passes through both the North and South Poles. Great
circles that pass through both poles actually form 2 meridians (semicircles),
1 on either side of the Earth.

The meridian that passes through Greenwich, England, is a special meridian
called the prime meridian. That is, the prime meridian is the semicircle that
starts at the North Pole, goes through Greenwich, and terminates at the South
Pole. Choosing Greenwich as the location for the prime meridian is arbitrary
and done for historical reasons. Even so, the prime meridian is of great impor-
tance because it is used as a standard reference point for locating objects on
Earth’s surface. In essence, as we will see, an object’s position can be described
in terms of its distance from the prime meridian and Earth’s equator.
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Figure 4.2 Meridians
Semicircles that pass through both Earth’s North and South Poles are called meridians. Meridians
are half of a great circle that passes through Earth’s North and South Poles.

Figure 4.2 shows several examples of meridians drawn on Earth’s surface.
Now the center of the arc that forms any meridian is the same as the center of
the Earth. This is because by definition a meridian is one-half of a great circle
that passes through both the North and South Poles, and we know that the
center of every great circle is the same as the center of the sphere on which it is
drawn. We can exploit this relationship between meridians and Earth’s center
to devise a simple method for locating objects on the surface of the Earth. Let’s
see how.

Using the equator as a convenient reference, the location at which an object
falls on a meridian can be described as the angle between 2 specific line seg-
ments. One line segment is drawn from the center of the Earth to the point
where the equator intersects the meridian on which the object lies (see line
segment2 A in figure 4.3). The other line segment is drawn from Earth’s center

2. Mathematicians place a bar over a letter or group of letters to denote a line segment. Omitting
the bar refers to the length of a line segment. So, ABC is a line segment that begins at endpoint A,
goes through point B, and terminates at endpoint C whereas ABC is that line segment’s length.
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Figure 4.3 Latitude
An object’s latitude is its angular distance from the equator measured along a meridian that
intersects both the equator and the object.

to the object (line segment B). The angle between these 2 line segments is the
object’s latitude, represented by the symbol φ. Latitude is thus an object’s
angular distance from Earth’s equator. Notice that an object’s latitude is
independent of the meridian on which it falls.

Objects that fall precisely on the equator, regardless of which meridian they
are on, are at 0◦ latitude. Objects located above the equator are in the range 0◦
to 90◦ N while objects below the equator are in the range 0◦ to 90◦ S. The North
Pole is at precisely 90◦ N latitude while the South Pole is at precisely 90◦ S
latitude. An object exactly halfway between the North Pole and the equator is
at 45◦ N latitude while an object exactly halfway between the South Pole and
the equator is at 45◦ S latitude.

Latitude alone is not sufficient to uniquely locate an object on Earth’s sur-
face. This is obvious because 2 objects can be precisely the same angular
distance from the equator (i.e., at the same latitude) but be on opposite sides
of the Earth. A second reference point and measurement is necessary to
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Figure 4.4 Longitude
An object’s longitude is its angular distance from the prime meridian.

distinguish between locations at the same latitude. This is where the prime
meridian comes into the picture.

Again starting at the equator, imagine drawing a series of circles around
the Earth in such a way that every point on the circle’s boundary has the same
latitude. Figure 4.4 shows several such circles, which we will call latitude
circles. Latitude circles are always parallel to the equator. Note that only 1
latitude circle, the equator itself, is a great circle. All other latitude circles are
smaller in size than the great circle located at the equator.

We can use latitude circles to define 2 very specific line segments. Draw
1 line segment from the object to the center of the latitude circle on which
the object lies (line segment C in figure 4.4). Draw the other line segment
from the center of the latitude circle on which the object lies to the point
where the prime meridian intersects the latitude circle (line segment D). The
angle between these 2 line segments is the object’s longitude, designated by
ψ . Longitude is thus an object’s angular distance from the prime meridian.



Orbits and Coordinate Systems 61

φ

Earth’s 
Center

North 
Pole

La�tude 
Circle

Object of 
Interest

EastWest

Longitude
(distance from Prime Meridian 

measured along a la�tude circle)

φφ

South 
Pole

Equator

Prime
Meridian

East

Meridian

La�tude
(distance from 

Equator measured 
along a meridian)

Figure 4.5 Latitude and Longitude
Latitude combined with longitude uniquely specify an object’s location on Earth.

Starting from the prime meridian, longitudes are in the range 0◦ to 180◦ W and
0◦ to 180◦ E. Objects on the prime meridian are at 0◦ longitude. All objects on
the same meridian have the same longitude.

Although longitude is normally expressed in degrees, sometimes it is use-
ful to express longitude in hours, minutes, and seconds. Since there are 360◦
in a circle and 24 hours in a day, 1 hour corresponds to 15◦. So, longitude
can be converted to HMS format by dividing by 15◦. For example, an object
located at 97◦30′ W longitude is at 6h30m00s when longitude is expressed
in HMS format. That is, convert 97◦30′ W to decimal format (97.5◦ W),
divide by 15◦ to convert to hours (6.5h), and then convert to HMS format
(6h30m00s).

Latitude and longitude are sufficient to uniquely and unambiguously
describe any location on Earth’s surface. Figure 4.5 shows combining the con-
cept of meridians and latitude circles to locate any object on Earth’s surface in
terms of its angular distance from the equator (latitude) and the prime meridian
(longitude).



62 Chapter 4

4.3 The Celestial Sphere

A convenient way to describe the location of stars and other celestial objects
is to assume they are embedded on a large sphere, called the celestial sphere,
that has Earth as its center. By extending the plane of Earth’s equator until it
intersects the celestial sphere, a celestial equator is formed. Extending Earth’s
North and South Poles until they intersect the celestial sphere defines the North
and South Celestial Poles. The star Polaris, often called the North Star or Pole
Star, is very close to the North Celestial Pole, but the Pole Star and North
Celestial Pole do not refer to the same location.

The celestial sphere can be subdivided into meridians in the same manner
as the Earth can, but how should we define a celestial prime meridian? At first
glance, it might appear that Earth’s prime meridian could simply be extended
outward until it intersects the celestial sphere to create a celestial prime merid-
ian. Unfortunately, since Earth rotates on its axis, this would have the most
undesirable effect of having a celestial prime meridian that changes with the
time of day.

Instead of extending Earth’s prime meridian until it intersects the celestial
sphere, astronomers have chosen a fixed point in the sky called the First Point
of Aries, denoted by the symbol ϒ , to play a role analogous to that of Green-
wich, England. Using this fixed point in the sky as a reference, the celestial
prime meridian is defined to be the semicircle that begins at the North Celes-
tial Pole (again, this is not the same as Polaris, the Pole Star!), passes through
the First Point of Aries, and terminates at the South Celestial Pole.

Where is the First Point of Aries, and why was that particular location cho-
sen? The Greek astronomer Hipparchus defined the First Point of Aries around
130 BC. He selected that location because, at that time in history, it was the
point at which the Sun first entered the constellation of Aries as the Sun trav-
eled in its orbit around Earth. However, in the centuries that have passed since
the time of Hipparchus, the location of the First Point of Aries has changed,
due to the effects of precession3, and it is now in the constellation of Pisces
instead of Aries. Although the constellation in which it falls has changed, the
First Point of Aries is still the point at which the Sun crosses the celestial
equator from the south to the north.

Recall from chapter 3 that the equinoxes are the points at which the Sun
crosses the plane of Earth’s equator, which is the same thing as saying when
the Sun crosses the celestial equator. For this reason, the First Point of Aries

3. Precession is a change in the orientation of Earth’s axis similar to the change in orientation of
the axis of rotation for a rapidly spinning top.
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Figure 4.6 Observer’s Horizon
This figure shows an observer’s horizon in which celestial meridians are defined relative to an
observer. Viewed from a position outside Earth, such celestial meridians vary with the time of day
and with an observer’s location.

is also called the vernal equinox because it is at that point in time (around
March 21) and at that location (First Point of Aries) in the Earth-Sun orbit that
the Sun crosses the plane of Earth’s equator.

With the First Point of Aries as a fixed reference point, a celestial prime
meridian can be defined that does not change with the motion of the Earth,
and celestial meridians can be defined relative to this celestial prime meridian.
In fact, any semicircle that passes through both the North and South Celestial
Poles and whose position is defined relative to the celestial prime meridian is
a celestial meridian whose position on the celestial sphere does not vary with
the Earth’s rotation.

Defining celestial meridians relative to the First Point of Aries is not the only
possible way, or even the only useful way, to define celestial meridians. Celes-
tial meridians can also be defined relative to an observer. Consider figure 4.6.
An observer is located at position O and his horizon is extended in all direc-
tions to intersect the celestial sphere. This forms the great circle NESW on the
celestial sphere, where these letters represent compass directions. Notice that
line segment NS does not intersect the North and South Celestial Poles unless
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the observer happens to be at Earth’s equator, in which case points N and S
are the North and South Celestial Poles, respectively.

Suppose point P in figure 4.6 is a star whose position we determine at some
convenient time of day. The semicircle NPS defines a celestial meridian relative
to the observer at positionO. Of course, relative to the stars a celestial meridian
defined with respect to an observer changes as Earth rotates. However, relative
to our Earthbound observer, the celestial meridian stays fixed and it is the stars
themselves, including P , that appear to move relative to the celestial meridian
we have created.

Since the star P moves relative to the central meridian NPS, there is no
advantage in using the star P as a reference point for defining a celestial merid-
ian. Instead of choosing some arbitrary star, consider point Z in figure 4.6,
where Z is the point directly overhead an observer located at position O. Z
is called the observer’s zenith, or simply the zenith, while the point on the
celestial sphere that lies directly beneath an observer is called the observer’s
nadir. The semicircle NZS also forms a celestial meridian, which is called the
observer’s local celestial meridian, or more often the observer’s meridian. The
adjective “local” makes it explicitly clear that the meridian so defined is valid
locally only because it is relative to an observer’s location.

When a celestial object crosses an observer’s local celestial meridian, that
object is said to transit or culminate. Recall from chapter 3 that a day is defined
as the interval between 2 successive transits of a mean Sun (for a mean solar
day) or a fixed star (for a sidereal day) across an observer’s meridian. When
no specific meridian is mentioned, transit (or culminate) is understood to mean
with respect to an observer’s local celestial meridian.

Celestial meridians defined relative to an observer, whether using an
observer’s zenith or a star as a reference point, will appear to move as Earth
rotates when viewed from a location outside the Earth, but they are stationary
when viewed from Earth regardless of an observer’s location. Why one would
want to define a celestial meridian relative to an observer may not be clear
until we discuss the equatorial and horizon coordinate systems in more detail,
which we will do in sections 4.6 and 4.7.

An important side note before we leave this discussion: be aware that the
word “meridian” is frequently used without specifying whether a terrestrial or
celestial meridian is meant. In most cases it should be clear from the context
which type of meridian is meant. If the context is navigation or locating objects
on Earth, meridian is understood to mean a terrestrial meridian. In the context
of astronomy, meridian, when unqualified, will almost always mean a celestial
meridian.
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Similarly, “prime meridian” is sometimes used without specifying whether
a terrestrial or celestial prime meridian is meant. In most cases it will be
clear from context which type of prime meridian is meant. Moreover, “celes-
tial meridian” can be ambiguous because it could refer to a locally defined
celestial meridian or one defined with respect to the celestial prime meridian.
When used without any other modifiers, the phrase typically refers to a celes-
tial meridian defined relative to the celestial prime meridian (i.e., First Point of
Aries). When a phrase such as “observer’s celestial meridian” or “observer’s
meridian” is encountered, that should be understood to refer to the unique
celestial meridian that passes through the North and South Celestial Poles and
an observer’s zenith.

4.4 Ellipses

Kepler discovered that the planets do not move in perfect circles inscribed on
the celestial sphere. Instead, they follow an elliptical orbit as they move around
the Sun. In fact, any celestial object that orbits another (including the Earth,
Sun, Moon, stars, and satellites) moves through the heavens in elliptical orbits
because of the gravitational forces that Newton discovered. Therefore, because
ellipses play a central role in helping us understand how orbiting objects move,
we now examine some of their fundamental properties.

Figure 4.7 shows the geometric figure known as an ellipse. P is any arbitrary
point on the ellipse while the points F1 and F2 are called the foci. The foci
are important in creating and defining an ellipse, but they are not points on
the ellipse itself. The geometric center of the ellipse, point C, is not on the
ellipse either. C will always lie on the line segment A1A2 and will be precisely
halfway between the 2 foci.

An ellipse is generated in such a way that the length of line segment F1P

plus the length of line segment PF2 is always the same value (some constant
K) no matter where P is located on the ellipse. Thus, if P ′ is another point
located anywhere on the ellipse, then

F1P +PF2 =K =F1P
′ +P ′F2.

The line segment A1A2 is called the major axis. Line segments A1C and
CA2 are exactly half the length of the major axis and are the semi-major axes.
Line segment B1B2, the minor axis, is perpendicular to the major axis. The
semi-minor axes, line segmentsB1C andCB2, are exactly half the length of the
minor axis and are the semi-minor axes. An ellipse is symmetric with respect
to both the major and minor axes. Points A1 and A2 are called apsides (the
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Figure 4.7 Ellipse Defined
An ellipse is defined such that if P is a point on the ellipse, and the foci are F1 and F2, the distance
F1P +PF2 is constant no matter where P is located.

singular of which is apsis), and they mark the extreme points on the ellipse
with respect to the foci. Apsis A1 is the point on the ellipse closest to focus
F1 and farthest away from focus F2. Conversely, apsis A2 is the point farthest
away from F1 but closest to F2.

It should be clear from the symmetry of an ellipse that the lengths of F1A1

and F2A2 are the same, which means that

F1A1 +A1F2 =F2A2 +A1F2 =A1A2.

Now A1A2 is the major axis while A1 is just another point on the ellipse.
Therefore, we see that the constant value used to generate an ellipse is the
length of the major axis. That is, K =A1A2.

The eccentricity e measures the “flatness” of an ellipse.4 Mathematically,
eccentricity is the ratio of the distance that a focus lies from the ellipse center
to the length of a semi-major axis. That is,

e= F1C

A1C
, (4.4.1)

4. Do not confuse the symbol for eccentricity with the constant known as Euler’s number, which
by convention is also denoted by the letter e and whose value is ≈ 2.71828. Euler’s number is the
base for the natural logarithm.
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Figure 4.8 Ellipse Attributes
This figure shows the major elements of an ellipse when applied to an orbit.

where the eccentricity will always fall within the range 0<e< 1. Because
of symmetry, it does not matter which focus or semi-major axis is chosen to
compute the eccentricity.

If both foci and the center of an ellipse coincide, the eccentricity is zero
(because F1C in equation 4.4.1 is zero), and the figure becomes a circle. With
respect to figure 4.7, this means that F1, F2, and C are all the same point, and
the resulting geometric figure is indeed a circle. If e= 1, the geometric figure
becomes a parabola. Some comets follow parabolic orbits, but we will not be
discussing such orbits.

Eccentricity is an important characteristic of an object’s orbit. The closer e
is to 0, the closer an orbit is to being a circle. The eccentricity of the Earth-Sun
orbit is approximately 0.0167, which shows how close it is to a circle and why
the Earth-Sun orbit can often be assumed to be a circle when low accuracy is
sufficient.

Figure 4.8 shows an ellipse in the context of orbits. According to Kepler’s
first planetary law, the Sun is at 1 focus of the ellipse that describes a
planet’s orbit. If we apply this law to orbits in general, the body around which
an object orbits is physically located at 1 focus of that object’s elliptical orbit,
which is shown as the “occupied focus” F2 in figure 4.8. There is no object
physically located at the other focus of an elliptical orbit, which is why F1 is
labeled as the “unoccupied focus.”
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Figure 4.8 also shows 1 of an ellipse’s 2 semi-major axes (line segmentA1C)
and 1 of its 2 semi-minor axes (line segment B1C). DF2 is another important
line segment called the semi-latus rectum. Line segmentDF2 is constructed as
a perpendicular line segment that extends from focus F2 until it intersects the
ellipse at point D. There is, of course, another semi-latus rectum that extends
from the occupied focus F2 to the bottom of the ellipse, and there are 2 more
semi-latus rectums at the unoccupied focus F1. The length of the semi-latus
rectum is given by the equation

DF2 = (B1C)
2

A2C
= (A2C)(1 − e2), (4.4.2)

where e is the ellipse’s eccentricity.
When used in the context of orbits, apsides have multiple names. For objects

orbiting the Sun, apsis A2 is called “perihelion,” which is the point at which
an object is closest to the Sun. Apsis A1 is called “aphelion” and it is the point
at which the object is farthest away from the Sun. For objects orbiting Earth,
the point at which an object is closest to Earth is called “perigee” (apsis A2)
while “apogee” (apsis A1) is where the object is farthest away from Earth. In
the more general case, the point at which an object is closest to the body around
which it orbits is called the “periapsis” (A2). “Apoapsis” (A1) is the point at
which an object is farthest away from the body around which it orbits.

There is a simple way to remember which apsis is closest or farthest away
from the occupied focus. Think of the letter “a” in apoapsis, apogee, and
aphelion as meaning “away,” as in the object is “farthest away” from the
body around which it orbits. Another useful memory device is that the “gee”
in apogee and perigee refers to geocentric, which means that Earth is the body
located at the occupied focus. Similarly, “helio” means heliocentric, so we
know that the Sun is the body located at the occupied focus when we refer to
aphelion and perihelion.

4.5 Orbital Elements

Although calculating the position of celestial objects will not be covered until
later, we now have the background necessary to discuss orbital elements
and how astronomers locate objects in an elliptical orbit. This is a complex
undertaking! The primary reason for the complexity is Kepler’s second law,
a consequence of which is that the orbital speed of an object varies throughout
its orbit; a planet’s orbital speed slows down as it moves away from the Sun
but speeds up as it approaches the Sun.
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Newton’s Law of Universal Gravitation, which relates the gravitational
force between 2 objects to the distance between them, explains why an object’s
orbital speed changes. Consider the Sun and a planet as an example. As a
planet recedes from the Sun, the distance between the Sun and the planet
increases, the gravitational force between them decreases, and consequently
the planet’s orbital speed decreases. As a planet approaches the Sun, the dis-
tance between them decreases, the gravitational force between them increases,
and the planet’s orbital speed increases. What is true for the Sun and a planet
is true for any object orbiting another, whether a star, a satellite, Earth, the
Moon, an asteroid, or a planet. The fact that an object’s orbital speed constantly
changes is why a direct analysis of an elliptical orbit is so difficult.

Before getting into the details, let’s begin with an overview of how to app-
roach the problem. The idea is to first determine where an object would be
if it followed a fictitious circular orbit in which the object’s orbital speed is
constant. Given an object’s position in such an orbit, the power of mathematics
can be applied to convert the object’s circular orbit position to its position in
its true elliptical orbit where the object’s orbital speed varies.

This deceptively simple idea of mapping a circular orbit position to an ellip-
tical orbit position requires sorting out 5 interrelated concepts: true anomaly,5

mean anomaly, eccentric anomaly, equation of the center, and Kepler’s equa-
tion. We will describe each of these in more detail shortly, and show how they
are related. For the moment it suffices to know that true anomaly describes
an object’s position in its true elliptical orbit, mean anomaly is where the
object would be if it followed a constant-speed circular orbit, and eccentric
anomaly is where the object would be if it followed a circular orbit in which its
orbital speed varies as it does in its elliptical orbit. The equation of the center
expresses a mathematical relationship between the true and mean anomalies
while Kepler’s equation expresses a mathematical relationship between the
mean and eccentric anomalies.

By applying these 5 interrelated concepts, we can determine where an object
is in its elliptical orbit in either of 2 ways.

Method 1:

1. Compute the object’s mean anomaly (subsection 4.5.2).

2. Use the equation of the center to compute the true anomaly from the mean
anomaly (subsection 4.5.3).

5. “Anomaly” in the context of astronomy does not mean weird, unusual, or abnormal. The ter-
minology arose historically to refer to the nonuniform (hence anomalous) apparent motions of the
planets. For our purposes, think of anomaly as an angle.
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Method 2:

1. Compute the object’s mean anomaly (subsection 4.5.2).

2. Solve Kepler’s equation to compute the eccentric anomaly from the mean
anomaly (subsection 4.5.5).

3. Compute the true anomaly from the eccentric anomaly (subsection 4.5.4).

The astute reader may wonder why there are 2 different methods for comput-
ing the true anomaly. Why not just use the first method since it requires fewer
steps? The reason, as we will see, is that the equation of the center is usually
approximated, but such approximations are typically valid only for orbits with
a “small” eccentricity (e.g., Sun, Moon, planets), or are valid only for a spe-
cific object. Moreover, approximating the equation of the center usually yields
a less accurate true anomaly than when produced by the second method. Even
so, approximating the equation of the center can still be useful because doing
so is less complicated than solving Kepler’s equation.

If the first method has so many shortcomings, then why not shorten the
second method to start with the eccentric anomaly, and convert it directly
to the true anomaly, without bothering to involve the mean anomaly at all?
The answer is that directly computing the eccentric anomaly is difficult
because an object’s orbital speed is not constant along the circular orbit used
to define the eccentric anomaly. So while a circular orbit may be easier to ana-
lyze than an elliptical one, because an object’s orbital speed varies along the
circular orbit used to define the eccentric anomaly, we might as well try to
analyze the elliptical orbit in the first place and not bother with a fictional cir-
cular orbit. Calculating the mean anomaly is easy, so the second method starts
from there and accounts for an object’s varying orbital speed in step 2 (solve
Kepler’s equation).

Note that we can apply the second method in reverse to determine at what
point in time an object will be at a given location in its true orbit. For example,
if we wish to determine when a planet will be at a specific location in the sky,
we apply the following basic steps:

1. Use the true anomaly to describe the planet’s desired orbital position.

2. Compute the eccentric anomaly from the true anomaly (see subsection
4.5.4).

3. Use Kepler’s equation to compute the mean anomaly.

Given the mean anomaly, it is a simple matter to determine when the planet
will be at the desired location.

Armed with these 5 concepts and a general idea of how to proceed, let’s
now get into the details. To make the discussion more concrete, as Kepler did
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Figure 4.9 True Anomaly
A planet’s true anomaly v is the angle formed by the planet’s true position P , the Sun, and
perihelion.

we’ll consider the problem of locating a planet orbiting the Sun. The overall
approach and equations apply to any elliptical orbit, although the terminology
and exact steps may vary depending on the situation. For example, instead of
talking about perihelion for objects orbiting the Sun, we would use perigee for
objects orbiting Earth, or periapsis in the more general case.

4.5.1 True Anomaly

According to Kepler’s first law, the Sun (point S in figure 4.9) is at 1 focus (the
occupied focus F2) of a planet’s elliptical orbit. Because we’re dealing with
elliptical orbits, as the planet P moves around the Sun, the distance between
the planet and the Sun varies. When the planet is closest to the Sun, it is at
perihelion (A2). When farthest away from the Sun, it is at aphelion (A1). The
true anomaly, designated by υ, is the angle PSA2. This angle6 tells us how far
the planet has progressed in its orbit from the moment of perihelion.

Besides describing where an object is in its elliptical orbit, the true anomaly
can be used to calculate several useful items about the object. For example, the
equation

r = a(1 − e2)

1 + e cos υ
(4.5.1)

6. Some authors emphasize that an anomaly is not really an angle, but simply the difference
between where an object is at some instant in time and a reference point. Also, because an object
may have completed several orbits with respect to the reference point, the numeric value for the
anomaly could exceed 360, whereas angles are typically restricted to the range [0◦, 360◦]. Strictly
speaking, those authors are correct. Nevertheless, we will equate anomaly and angle because doing
so makes anomalies easier to conceptualize and understand.
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gives the distance that an orbiting object is from the occupied focus, where
e is the orbital eccentricity and a is the length of the orbit’s semi-major axis.
Carefully note that this equation gives the distance from the center of the object
at the occupied focus to the center of the orbiting object. Also, recall from
equation 4.4.2 that a(1 − e2) is the length of the semi-latus rectum because,
referring to figure 4.8, a=A2C. We will use equation 4.5.1 in the chapters
ahead to compute the distance to the Sun, Moon, and planets.

For example, assume a satellite is circling Earth in an elliptical orbit whose
eccentricity is 0.5 and semi-major axis is 40,000 km in length. If the true ano-
maly is 45◦, how far away is the satellite from the center of the Earth? Applying
equation 4.5.1 gives

r = (40,000)(1 − 0.52)

1 + 0.5 cos 45◦ ≈ 22,163.88 km.

We can also use equation 4.5.1 to determine how far away the satellite is from
the center of the Earth at perigee (υ = 0◦) and apogee (υ = 180◦). At perigee
the satellite is 20,000 km from the center of the Earth and 60,000 km at apogee.

4.5.2 Mean Anomaly

Directly determining the true anomaly for an orbiting object is difficult because
the object’s orbital speed varies throughout its orbit. But what if an object
moved in a circular orbit in which its orbital speed is constant throughout its
orbit? That is, assume that the planet in figure 4.9 completes a single orbit
around the Sun in n sidereal days. This is called the planet’s orbital period.
Since there are 360◦ in a circle, to maintain a constant speed and complete a
circular orbit in the same time as the orbital period, the planet must move by
360/n degrees per day around that circular orbit.

Figure 4.10 illustrates this very useful idea. We have constructed a fictitious
circular orbit, called the mean orbit, so that the center of the mean orbit coin-
cides with the geometric center (C) of the planet’s true elliptical orbit. The
radius of the mean orbit is the length of the semi-major axis CA2. P is where
the planet is in its true elliptical orbit while P ′ is where the planet would be at
that same instant in time if the planet were following the mean orbit at a con-
stant orbital speed of 360/n degrees per day (n is the planet’s orbital period).
The mean anomaly M is the angle P ′CA2. The mean anomaly is analogous to
the true anomaly, with the difference being that M is with respect to the mean
orbit whereas υ is with respect to the true orbit.

To demonstrate that circular orbits make analysis considerably easier,
assume it has been t days since the planet in figure 4.10 was at perihelion,
and assume the planet’s orbital period is n sidereal days. Then the planet’s
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Figure 4.10 Mean Anomaly
A planet’s mean anomaly M is the angle formed by the planet’s mean position P ′, the geometric
center C of the mean orbit, and perihelion.

mean position in its mean orbit (its mean anomaly) is given by the very simple
equation

M = 360◦

n
t. (4.5.2)

As promised, the mean anomaly is indeed easy to calculate!
For example, the orbital period of Mars is 686.97 days. If it has been

300.25 days since Mars was at perihelion, how far has Mars advanced in its
mean orbit? We need only apply equation 4.5.2 to compute the mean anomaly:

M = 360◦

686.97
(300.25)≈ 157.3431◦.

How long will it take Mars to go 230◦ around in its mean orbit from the
point of perihelion? Equation 4.5.2 can be written in the equivalent form

t = Mn

360◦ . (4.5.3)
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Substituting in the proper values, we have

t = (230◦) (686.97)

360◦ = 438.8975 days.

4.5.3 Equation of the Center

Finding the mean anomaly is all well and good, but what we really want is the
true anomaly. The mean anomaly and true anomaly are related by the equation
of the center, which is the difference between where a planet is in its true
elliptical orbit and where it would be assuming a mean orbit (with a constant
orbital speed!). The equation of the center is

Ec =υ −M. (4.5.4)

Note that Ec is exactly 0◦ at aphelion and perihelion because the planet is
halfway through its orbit whether we are referring to its true or mean orbit. If
we know the value of Ec, equation 4.5.4 can be written in the equivalent form

υ =Ec +M (4.5.5)

from which it is easy to calculate the true anomaly.
Unfortunately, we most likely will not know Ec, so how do we determine its

value so that we can calculate the true anomaly? The value for Ec is given
by a rather complex equation involving the orbital eccentricity and mean
anomaly—namely, the infinite series

Ec = 180

π

{
2e sinM + 5e2

4
sin(2M)+ e3

12
[13 sin(3M)− 3 sinM] …

}
.

(4.5.6)

This gives Ec in degrees. Without the multiplicative factor 180/π , the result
would be in radians. In the reverse case, determiningEc when the true anomaly
is known requires a similarly complex infinite series expansion of the orbital
eccentricity and true anomaly. The required equation, giving Ec in degrees, is

Ec = 180

π

{
2e sinυ +

(
3e2

4
+ e4

8

)
sin(2υ)− e3

3
sin(3υ)+ 5e4

32
sin(4υ)…

}
.

(4.5.7)

Rather than evaluating an infinite series, there are various methods for
approximating Ec, typically by truncating equations 4.5.6 and 4.5.7 when
enough terms have been computed to achieve an acceptable degree of accuracy.
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We will show how to approximate Ec in later chapters when we compute the
position of the Sun, Moon, and planets.

As an example, given that the Earth-Sun orbital eccentricity is 0.0167 and
that Earth orbits the Sun in 365.2564 sidereal days, what are Earth’s true
and mean anomalies when it is 100.25 days past perihelion? First, apply
equation 4.5.2 to compute Earth’s mean anomaly. That is,

M = 360◦

365.2564
(100.25)≈ 98.8073◦.

Next, apply equation 4.5.6 to compute the equation of the center. Using just
the first term in the equation to approximate the equation of the center, we
have

Ec ≈ 180

π
[ 2(0.0167) sin(98.8073◦) ] ≈ 1.8911◦.

Finally, applying equation 4.5.5, we have

υ ≈ 1.8911◦ + 98.8073◦ = 100.6984◦.

Now repeat this example for when Earth is halfway around in its orbit (i.e.,
at aphelion, or 365.2564

2 = 182.6282 days after perihelion). By plugging in the
appropriate values into the various equations, we obtain

M = 360◦

365.2564
(182.6282)= 180.000◦

Ec = 180

π
[2(0.0167) sin(180.0000◦)] = 0.0000◦

υ = 0.0000◦ + 180.0000◦ = 180.0000◦.

These results should not be surprising. We observed earlier that when a
planet is exactly halfway around in its orbit (for both its true and mean orbits),
the mean position and true position are identical, which means that M =υ
at that instant. It is also obvious from equation 4.5.4 that the equation of the
center is exactly 0◦ at that same instant in time.

4.5.4 Eccentric Anomaly

The previous 3 subsections showed how to apply Method 1 to determine where
an object is in its elliptical orbit. We now turn our attention to the second
method, which is more complex but generally provides a more accurate solu-
tion than approximating the equation of the center. The second method requires
finding the eccentric anomaly and solving Kepler’s equation.
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Figure 4.11 Eccentric Anomaly
A planet’s eccentric anomaly E is the angle formed by projecting the planet’s true position P onto
the auxiliary circle (the point P ′′), the geometric center C of the auxiliary circle, and perihelion.

Just as we did to define the mean anomaly, we start by defining a fictional
circular orbit, which is shown as the auxiliary circle in figure 4.11. However,
this time we will not assume that a planet’s orbital speed is constant as it travels
along the auxiliary circle. The auxiliary circle is constructed so that its center
coincides with the geometric center of the planet’s true elliptical orbit, and
so that the auxiliary circle’s radius is the length of the elliptical orbit’s semi-
major axis CA2. Obviously, this newly defined fictional orbit is represented by
exactly the same circle as for the mean orbit, but the auxiliary circle is not a
“mean orbit” because the orbital speed varies throughout the auxiliary circle
orbit.

In figure 4.11, P is where the planet is in its true elliptical orbit and P ′ is
the planet’s mean position. P ′′ is a projection of the planet’s position onto the
auxiliary circle and is determined by drawing a perpendicular line from the
major axis A1A2 through the planet’s true position P until the perpendicular
line intersects the auxiliary circle. The eccentric anomaly, designated by E, is
the angle P ′′CA2. If we know the eccentric anomaly E and orbital eccentricity
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e, the true anomaly υ can be determined from the equation

tan
(υ

2

)
=
(√

1 + e
1 − e

)
tan

(
E

2

)
. (4.5.8)

An alternative but equivalent equation for relating the true anomaly, mean
anomaly, and eccentricity is

cos υ = cosE− e
1 − e cosE

. (4.5.9)

For example, assume that the orbital eccentricity for a planet is 0.5 and
its eccentric anomaly is 45◦. Determine the planet’s true anomaly. Applying
equation 4.5.8, we have

tan
(υ

2

)
=
(√

1 + 0.5

1 − 0.5

)
tan

(
45◦

2

)
=√

3 tan 22.5◦ ≈ 0.717439.

Taking the inverse tangent of the result and multiplying by 2, we have υ ≈
71.314265◦.

Applying the alternative form in equation 4.5.9, we have

cos υ = cos 45◦ − 0.5

1 − 0.5 cos 45◦ ≈ 0.207107

0.646447
≈ 0.320377.

Taking the inverse cosine of this result gives us υ ≈ 71.314274◦. The differ-
ence between the 2 results for the true anomaly is due to round-off errors
incurred by using only 6 digits of precision. Even with 6 digits of precision,
the 2 results differ by only about 0.03 arcseconds.

If the true anomaly and orbital eccentricity are known, the eccentric anomaly
can be found from the equation

tan

(
E

2

)
=
(√

1 − e
1 + e

)
tan

(υ
2

)
, (4.5.10)

which is very similar to equation 4.5.8.
From our previous example, we know if a planet’s true anomaly is

71.314265◦ and its orbital eccentricity is 0.5, the eccentric anomaly is

tan

(
E

2

)
=
(√

1 − 0.5

1 + 0.5

)
tan

(
71.314265◦

2

)

≈√
0.333333 tan(35.657133◦)≈ 0.414213.
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Taking the inverse tangent and multiplying by 2, we have E≈ 44.999945◦.
The result should, of course, be exactly 45◦. The difference of ≈ 0.20′′ is due
to round-off errors when applying equation 4.5.10.

4.5.5 Kepler’s Equation

Equation 4.5.8, and the equivalent equation 4.5.9, allows us to directly com-
pute the true anomaly if we already know the eccentric anomaly. But how do
we determine the eccentric anomaly so that either of these 2 equations can
be applied to get the true anomaly?

Kepler discovered that the eccentric and mean anomalies are related by the
equation

Mr =Er − e sinEr, (4.5.11)

where e is the orbital eccentricity, Mr is the mean anomaly expressed in radi-
ans,7 and Er is the eccentric anomaly also expressed in radians. This equation
is called Kepler’s equation in his honor. Be very careful when applying equa-
tion 4.5.11 to use angles expressed in radians rather than degrees; otherwise,
the results will be incorrect!

For example, assume a planet has an orbital eccentricity of 0.5 and an eccen-
tric anomaly of 45◦. What is the planet’s mean anomaly in degrees? We will
apply equation 4.5.11, but first we must convert the eccentric anomaly from
degrees to radians. Doing so, we have

Er = πE

180◦ = π45◦

180◦ ≈ 0.785398 radians.

Inserting this value and the orbital eccentricity into equation 4.5.11, we have

Mr ≈ 0.785398 − 0.5 sin(0.785398)≈ 0.431845 radians.

Converting this value from radians to degrees gives us a mean anomaly of

M = 180◦(0.431845)

π
≈ 24.742896◦.

Finding the mean anomaly given the eccentric anomaly is thus straightforward.
If we refer back to section 4.5, we see that step 3 of Method 2 requires deter-

mining the true anomaly from the eccentric anomaly. So how do we apply

7. An angle θ expressed in degrees can be converted to radians through the equation r = θπ

180◦ .
Conversely, an angle r expressed in radians can be converted to degrees through the equation

θ = r180◦
π .
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equation 4.5.11 to get the eccentric anomaly? It’s easy to obtain the mean
anomaly from the eccentric anomaly, but the other way around is difficult
because equation 4.5.11 is a transcendental equation for which there is no
known closed-form solution for E given M .

As was true with the equation of the center, there are various methods for
approximating Kepler’s equation to obtain a value for the eccentric anomaly
when given the mean anomaly. If the object’s orbital eccentricity is “close”
to 0, a reasonable approximation is E≈M. Another approximation that
astronomer Meeus gives in Astronomical Algorithms is

tanE= sinM

cosM − e . (4.5.12)

Unfortunately, as with the approximation E≈M , this equation is also
unsuitable unless the orbital eccentricity is sufficiently “small.”

Rather than attempting to develop an approximation equation that is suit-
able for “larger” eccentricities, astronomers have devised various numerical
algorithms for iteratively solving Kepler’s equation. Such methods work for
“small” as well as “larger” eccentricities. We will show 1 method here to
illustrate how iterative procedures can be applied to solve Kepler’s equation.

Let e be the orbital eccentricity and let Mr be an object’s mean anomaly
expressed in radians. Starting with E0 =Mr , we will iteratively compute

Ei =Mr + e sinEi−1 (4.5.13)

until the difference between 2 successive estimates of the eccentric anomaly
are less than some desired termination criteria. Note that the estimates for the
eccentric anomaly in equation 4.5.13 are in radians, not degrees!

As an example, assume that a planet’s orbital eccentricity is 0.5 and its mean
anomaly is 24.742896◦. Use the iterative scheme implied by equation 4.5.13 to
determine the eccentric anomaly in degrees. Stop iterating when the difference
between 2 successive estimates is less than 0.000002 radians (≈ 0.4 arcsec-
onds). Since this is the inverse of the problem we just solved, we should expect
to arrive at an eccentric anomaly of 45◦.

First, convert the given mean anomaly to radians. Thus,

Mr = πM

180◦ = π24.742896◦

180
≈ 0.431845 radians.

We start our iterative scheme with the estimate E0 =Mr and use this to com-
pute our next estimate, E1. That is,

E1 =Mr + e sinE0 = 0.431845 + 0.5 sin 0.431845 ≈ 0.641119.
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The difference between this new estimateE1 for the eccentric anomaly and the
previous estimate E0 is

|E1 −E0| = |0.64119 − 0.431845| = 0.209274,

which is larger than our desired termination criteria. Our next estimate is
given by

E2 =Mr + e sinE1 = 0.431845 + 0.5 sin 0.641119 ≈ 0.730891.

We again check to see if successive estimates are close enough to stop by
computing

|E2 −E1| = |0.730891 − 0.641119| = 0.089772.

This difference is still larger than our termination criteria, so we compute esti-
mate E3 based on estimate E2. The next few iterations and the difference
between successive iterations are as follows:

E3 ≈ 0.765612,�= 0.034721,

E4 ≈ 0.778334,�= 0.012722,

E5 ≈ 0.782892,�= 0.004558,

E6 ≈ 0.784511,�= 0.001619,

E7 ≈ 0.785085,�= 0.000573,

E8 ≈ 0.785288,�= 0.000203,

E9 ≈ 0.785359,�= 0.000072,

E10 ≈ 0.785385,�= 0.000025,

E11 ≈ 0.785394,�= 0.000009,

E12 ≈ 0.785397,�= 0.000003,

E13 ≈ 0.785398,�= 0.000001.

We can stop at the 13th iteration because the difference between the last 2 esti-
mates (E13 and E12) is less than our termination criteria of 0.000002 radians.
Converting this last estimate to degrees, we have

E= 180◦E13

π
= 180◦(0.785398)

π
≈ 44.999991◦,

which differs from the expected answer of 45◦ by only 0.0324 arcseconds.
Although no algorithm is always the “best” for every problem, the simple

scheme just presented can be improved to converge more rapidly, especially
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for “large” eccentricities. An alternative iterative method that we now describe
is based on the Newton/Raphson method for finding the roots of equations. It
is also an iterative method, but it uses a different iteration scheme and initial
estimate than the previously described method.

For the Newton/Raphson method, we will choose an initial estimate of
E0 =Mr when the orbital eccentricity is 0.75 or less, and E0 =π when the
eccentricity is larger than 0.75. By using a different first estimate for the
eccentric anomaly for highly eccentric orbits, it is hoped that the algorithm
will converge faster for those orbits. The Newton/Raphson method uses the
iteration scheme

Ei =Ei−1 − Ei−1 − e sinEi−1 −Mr

1 − e cosEi−1
(4.5.14)

and stops when the difference between 2 successive estimates is acceptably
small. As with the prior iterative method, Ei and Mr must be expressed in
radians.

To illustrate the Newton/Raphson approach, let us again solve the previous
problem (e= 0.5, M = 24.742896◦). As before, we will iterate until the dif-
ference between 2 successive estimates is less than 0.000002 radians (≈ 0.4
arcseconds).

As with equation 4.5.13, all calculations must be performed in radians, and
hence the first step is to convert the mean anomaly to radians, which we com-
puted previously to be 0.431845 radians. Since the planet’s eccentricity is less
than 0.75, we will use

E0 =Mr = 0.431845 radians

as our initial estimate. Applying equation 4.5.14 to this initial estimate, the
next few iterations are:

E1 ≈ 0.815198,�= 0.383353,

E2 ≈ 0.785642,�= 0.029556,

E3 ≈ 0.785399,�= 0.000244,

E4 ≈ 0.785399,�= 0.000000,

E5 ≈ 0.785399,�= 0.000000.

The Newton/Raphson method does indeed converge rapidly to a solution for
this particular problem. We could have stopped after estimate E4 because
our termination criterion was already met, but chose to go 1 more iteration.
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Within the limits of the computing precision used for this example, no amount
of iteration beyond E5 will change the solution because � has reached
zero.

Using the estimate E4 and converting it to degrees give us

E≈ 180◦E4

π
= 180◦(0.785399)

π
≈ 45.000048◦,

which differs from the expected answer of 45◦ by 0.173 arcseconds. Inter-
estingly, in this example the Newton/Raphson method converged much faster
than the prior method, but it produced a less accurate solution mostly due to
round-off errors. In both cases, had we rounded the answer to 4 digits, they
would have produced exactly the same result.

When implementing the Newton/Raphson method, or any other such itera-
tive scheme, always use a termination criterion that is larger than zero. Because
round-off errors are inherent in digital computers, comparing a decimal num-
ber to see when it exactly reaches zero rarely works. In addition to using a
termination criterion, set an upper limit on the number of iterations that can be
performed in case the termination criterion was set too small, or the algorithm
oscillates between values and never converges.

Kepler’s equation is a fascinating subject in its own right, and numerous
methods have been formulated for solving it (Colwell’s book Solving Kepler’s
Equation over Three Centuries is perhaps the most complete treatment of the
subject). The simple iteration and Newton/Raphson methods given here are
sufficient for our needs.

4.5.6 The Ecliptic Plane

Until now we have looked at orbits as essentially being in 2 dimensions; that is,
without explicitly saying so we have assumed that an object’s orbit, such as a
planet’s, lies in the same plane as that of Earth and the Sun. The plane contain-
ing Earth and the Sun is called the ecliptic plane. Earth’s orbit lies entirely
within the ecliptic plane, but the orbits of other Solar System objects do
not completely lie within the ecliptic plane. In general, a celestial object’s
orbit will not lie in the ecliptic plane, so how an object’s orbit is inclined
with respect to Earth’s orbit is an important consideration for locating that
object.

Figure 4.12 illustrates a celestial sphere in which the ecliptic plane is
the sphere’s “equator.” The orbit for planet P is also shown and labeled as
the planet’s orbital plane. The Sun S is located in the center of the sphere.
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Figure 4.12 A Planet’s Orbital Plane
This illustration shows how a planet’s orbital plane is defined. Calculating the location of a planet
is complicated by the fact that the planet’s orbit does not lie in the Earth-Sun plane.

The point of perihelion, the location of planet P , the vernal equinox (ϒ , the
First Point of Aries), and the true anomaly υ are also labeled.

When planet P changes in its orbit from being below the ecliptic plane to
being above the ecliptic plane, it has passed through the ascending node N1.
N2 is the descending node and the point at which the planet transitions from
being above the ecliptic plane to being below the ecliptic plane. Angle 	 in
figure 4.12 is measured from the vernal equinox to the ascending node, and it
is the longitude of the ascending node. Angle ω, measured from the ascending
node to the point of perihelion, is the argument of perihelion. Angle ι is the
angle of inclination and measures the degree to which the planet’s orbital plane
is inclined with respect to the ecliptic plane.

The angles shown in figure 4.12 can be used to completely describe the
orbital characteristics of any object with an elliptical orbit, although the Sun
and Earth-Sun plane will have to be replaced with different reference points
suitable for the object in question. The chapters ahead will return to these
angles to describe the orbits of the Sun, Moon, and planets and will use them
to calculate positions for those objects for any given date, time, and location
on Earth.
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4.6 Equatorial Coordinate System

At long last, it is time to turn our attention to the coordinate systems used
to locate celestial objects in the sky! We begin with the equatorial coordi-
nate system because it may well be the most widely used coordinate system
in astronomy. Star atlases and star catalogs usually give the location of stars,
nebulae, quasars, and so forth, in equatorial coordinates whereas astronomy
journals, such as Sky & Telescope and Astronomy, list the location of Solar
System objects by equatorial coordinates. A major reason for the popularity of
the equatorial coordinate system is that equatorial coordinates are independent
of time and an observer’s location. (However, carefully note the discussion
later in this section of hour angle as a way to make equatorial coordinates vary
with time and an observer’s location.)

The equatorial coordinate system is also widely used because converting
between the various other coordinate systems is simplified by using the equa-
torial coordinate system as an intermediate step. Figure 4.13 shows the process.
For instance, to convert galactic coordinates to horizon coordinates, first con-
vert the galactic coordinates to equatorial coordinates and then convert the
equatorial coordinates to horizon coordinates. With this approach we only
need to know how to convert a given coordinate system to/from the equatorial
coordinate system and not from the given coordinate system to all others.

The equatorial coordinate system is similar in concept to the terrestrial
latitude-longitude system for locating a position on Earth. In the equatorial
coordinate system, the celestial sphere plays the same role as the Earth in the
terrestrial latitude-longitude system, the celestial equator plays the same role
as Earth’s equator, and the celestial prime meridian (as defined by the First
Point of Aries) plays the same role as Greenwich.

EquatorialHorizon Eclip�c

Galac�cGalac�c

Figure 4.13 Coordinate System Conversions
Coordinate system conversions are simplified by using the equatorial coordinate system as an
intermediate step.
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Figure 4.14 Equatorial Coordinate System
Equatorial coordinates are defined relative to the celestial equator and celestial prime meridian.

Figure 4.14 shows how the equatorial coordinate system is defined. Instead
of using the terms longitude and latitude, the equatorial coordinate system uses
declination (δ) and right ascension (α). Declination is analogous to latitude and
indicates how far away an object is from the celestial equator. Declination is
measured in degrees and falls within the range ±90◦ with positive angles indi-
cating locations north of the celestial equator and negative angles indicating
locations south of the celestial equator. Because declination is measured with
respect to the celestial equator, and the celestial equator’s location does not
vary with time of day or an observer’s location, declination for an object is
fixed and does not vary with the time of day or an observer’s location.

Right ascension is analogous to longitude and indicates how far an object is
away from the First Point of Aries, which is the point used to define a celestial
prime meridian. Thus, just as longitude measures an object’s distance away
from the terrestrial prime meridian, right ascension measures the distance from
an object to the celestial prime meridian. As with declination, right ascension
does not vary with time of day or an observer’s location because it is measured
with respect to a fixed location (the First Point of Aries).

Although analogous to terrestrial longitude, right ascension differs from lon-
gitude in a very important way. Right ascension is normally expressed in HMS
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format and is therefore in the range [0h, 24h]. Right ascension is expressed in
units of time rather than degrees because we normally think of Earth’s rotation
in terms of time rather than degrees. Right ascension can be easily converted
to degrees by multiplying the right ascension by 15. Doing so makes right
ascension even more similar to terrestrial longitude.

In our earlier discussion about celestial meridians, we noted that a celestial
meridian can be defined relative to an observer rather than the celestial prime
meridian. If we use an observer’s meridian instead of the celestial prime merid-
ian as a reference point, we have another way to measure “celestial longitude.”
This frequently used measurement is called the “hour angle” (H ). While right
ascension is really an angular measurement (although expressed in HMS for-
mat) of an object’s distance from the First Point of Aries, hour angle is very
much a time measurement. The hour angle for an object is a measure of how
long it has been since the object crossed an observer’s meridian.

Because of the way that an hour angle is defined (i.e., relative to an obser-
ver’s local celestial meridian), it varies both with time of day and an observer’s
location. Notice also that an hour angle measures time relative to a sidereal
day, not a mean solar day. For example, a star will transit an observer’s local
celestial meridian again after 24 sidereal hours have elapsed, at which time the
star’s hour angle is precisely 0h. Moreover, a star will transit when the local
sidereal time (LST) equals the right ascension.

Because both right ascension and hour angle are expressed in HMS format
and both express angles in terms of sidereal time rather than degrees, they can
be easily confused. To avoid confusion, always check whether right ascension
or hour angle is being used. Star catalogs and star atlases typically list objects
in right ascension rather than hour angle, but you should always check to be
sure. Additionally, remember that right ascension does not vary with time of
day or an observer’s location because it is based on a fixed location (First Point
of Aries) whereas the hour angle does vary with time of day and an observer’s
location. Declination does not vary irrespective of whether right ascension or
hour angle is being used as the other coordinate.

Hour angle and right ascension are clearly closely related. Converting
between them is straightforward because the hour angle is really the difference
between the LST and the right ascension. That is,

H = LST −α. (4.6.1)

This equation again points out that a star will transit when the LST is equal
to the right ascension (i.e., the hour angle is 0h because the star is directly
overhead the observer). Recall from chapter 3 that calculating the LST involves
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knowing an observer’s location. Thus, as expected, the hour angle for a star
does indeed vary with an observer’s location.

As an example, consider a star whose right ascension is 3h24m06s. Suppose
the LST for an observer is 18h. Calculate the corresponding hour angle. The
required steps are:

1. Convert LST to decimal format.
(Ans: LST = 18h.)

2. Convert the right ascension to decimal format.
(Ans: α= 3.401667h.)

3. Calculate H = LST −α.
(Ans: H = 14.598333h.)

4. If H is negative, add 24h.
(Ans: no adjustment is necessary.)

5. Convert H to HMS format.
(Ans: H = 14h35m54s.)

This star will culminate when the observer’s LST is 3h24m06s because, acc-
ording to equation 4.6.1, that is when the star’s hour angle will be 0h for the
observer.

The reverse process is no more difficult. Equation 4.6.1 can be rewritten as

α= LST −H (4.6.2)

to compute the right ascension (α) given the observer’s local sidereal time
(LST) and an object’s hour angle (H ).

Assume a planet’s hour angle is 1h15m00s and an observer’s LST is 21h.
Find the corresponding right ascension.

1. Convert the LST to decimal format.
(Ans: LST = 21.0h.)

2. Convert H to decimal format.
(Ans: H = 1.25h.)

3. Calculate α= LST −H.
(Ans: α= 19.75h.)

4. If α is negative, add 24h.
(Ans: no adjustment is necessary.)

5. Convert α to HMS format.
(Ans: α= 19h45m00s.)
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The example program for this chapter performs conversions between hour
angle and right ascension. However, the program requires that the UT, date,
and observer’s longitude be specified rather than just the observer’s LST, as
was done in these 2 examples.

4.7 Horizon Coordinate System

Horizon coordinates are expressed by 2 angles: azimuth and altitude. Consider
figure 4.15, which shows an observer and his horizon. P is an object in the sky
whose horizon coordinates are desired while P ′ is the projection of the object
onto the plane of the observer. Angle NOP′, designated by A, is the azimuth
and can be easily measured with a compass. Azimuth is in the range of 0◦ to
360◦ and indicates how far P is from the north as measured along an observer’s
horizon. Angle POP′ is the altitude, represented by the symbol h, and ranges
from −90◦ to +90◦. Positive altitudes indicate objects above the horizon while
negative altitudes indicate objects below the horizon.

Four equations are necessary to convert between the horizon and equatorial
coordinate systems. To convert horizon coordinates to equatorial coordinates,
apply the following 2 equations (φ is an observer’s latitude, δ is the declination,

Z

N

EW

P

S

EW
O

Figure 4.15 Horizon Coordinate System
The horizon coordinate system is easy to use, but it varies with location and time of day.
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α is the right ascension, and H is the hour angle):

sin δ= sin h sinφ+ cos h cosφ cosA (4.7.1)

cosH = sinh− sinφ sin δ

cosφ cos δ
. (4.7.2)

To convert equatorial to horizon coordinates, apply the following equations:

sinh= sin δ sinφ+ cos δ cosφ cosH (4.7.3)

cosA= sin δ− sinφ sinh

cosφ cos h
. (4.7.4)

There are 2 important items to note about these equations. First, equa-
tions 4.7.2 and 4.7.3 use the hour angle (H ) instead of the right ascension
(α). This should not be surprising because horizon coordinates change with
an observer’s location and time of day. Using the hour angle rather than the
right ascension in these equations makes the results vary with time of day and
an observer’s location. Given an observer’s LST, equation 4.6.1 can be used
to convert between the hour angle and right ascension as required. The sec-
ond important item is that all coordinates in these equations are expressed in
degrees. In particular, be sure to convert H to degrees when applying these
equations.

Consider converting altitude 40◦, azimuth 115◦ to equatorial coordinates for
an observer at 38◦ N latitude. We need to apply equations 4.7.1 and 4.7.2.

1. Convert the altitude H to decimal format.
(Ans: H = 40.0◦.)

2. Convert the azimuth A to decimal format.
(Ans: A= 115.0◦.)

3. Compute T0 = sinh sinφ+ cos h cosφ cosA.
(Ans: T0 = 0.140626.)

4. δ= sin−1 (T0) .

(Ans: δ= 8.084044◦.)
5. Compute T1 = sinh− sinφ sin δ.

(Ans: T1 = 0.556210.)

6. Compute cosH = T1
cosφ cosδ

.

(Ans: cosH = 0.712925.)

7. Take the arccosine to get H .
(Ans: H = 44.526604◦.)
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8. Compute sinA.
(Ans: sinA= 0.906308.)

9. If sinA is positive, then subtract the result of step 7 from 360◦.
(Ans: H = 315.473396◦.)

10. Compute H = H
15 . This converts H to hours to give the hour angle.

(Ans: H = 21.031560h.)

11. Convert H and δ to HMS and DMS format.
(Ans: H = 21h01m54s, δ= 8◦05′03′′.)

After step 11 we can use the techniques presented in chapter 3 to determine
the observer’s LST and apply equation 4.6.1 to convert the hour angle to its
corresponding right ascension.

No angle adjustment is needed in step 4 since declination is in the range
±90◦, which matches the range of the arcsine function. However, steps 8 and
9 are required sinceH is in the range [0h, 24h] (i.e., [0◦, 360◦] when expressed
as an angle), but step 7 produces an angle in the range [0◦, 180◦].

Let us now use equations 4.7.3 and 4.7.4 to convert equatorial coordi-
nates to horizon coordinates. Suppose a star is located at δ=−0◦30′30′′,
H = 16h29m45s. For an observer at 25◦ N latitude, where will the star appear
in the sky?

1. Convert H to decimal format.
(Ans: H = 16.495833h.)

2. Multiply step 1 by 15 to convert to degrees.
(Ans: H deg = 247.437500◦.)

3. Convert δ to decimal format.
(Ans: δ=−0.508333◦.)

4. Compute T0 = sin δ sinφ+ cos δ cosφ cosH deg.

(Ans: T0 =−0.351478.)

5. h= sin−1 (T0).
(Ans: h=−20.577738◦.)

6. T1 = sin δ− sinφ sinh.
(Ans: T1 = 0.139669.)

7. Compute T2 = T1
cosφ cosh

.

(Ans: T2 = 0.164610.)

8. A= cos−1 (T2) .

(Ans: A= 80.525393◦.)
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9. Compute sinH deg.

(Ans: sinH deg =−0.923462.)

10. If the result of step 9 is positive, then A= 360◦ −A.
(Ans: A= 80.525393◦.)

11. Convert A and H to DMS format.
(Ans: A= 80◦31′31′′,H =−20◦34′40′′.)

Since the altitude is negative in this example, the observer will not be able to
see the star because it is below his horizon. Notice also that no angle adjust-
ment is needed in step 5. Why? Steps 9 and 10 calculate an azimuth adjustment.
Why?

4.8 Ecliptic Coordinate System

The equatorial and horizon coordinate systems are not particularly convenient
for calculating the location of Solar System objects. Instead, it is generally eas-
ier to compute their position in the ecliptic coordinate system and then convert
the results to equatorial or horizon coordinates as required. Because objects
within the Solar System are constantly moving, their ecliptic coordinates
change appreciably over months or even weeks.

Figure 4.16 shows the elements required to describe the ecliptic coordinate
system.8 Shown as a shaded circle, the ecliptic plane is extended until it inter-
sects the celestial sphere to create an “ecliptic equator” as the reference point
from which ecliptic latitudes are measured. The ecliptic latitude, denoted by
β, is the angular distance that an object P lies above or below the ecliptic
plane and falls within the range ±90◦. Latitudes above the ecliptic plane are
positive angles while latitudes below the ecliptic plane are negative angles. An
object, such as the Sun, whose orbit lies entirely within the ecliptic plane has
an ecliptic latitude of 0◦.

To define an ecliptic longitude, the First Point of Aries (the vernal equinox)
again plays a role similar to that of Greenwich, England. Recall that the
equinoxes are the 2 points at which the celestial equator intersects the eclip-
tic plane. The ecliptic longitude, designated by λ, measures how far away an
object is from the First Point of Aries. The ecliptic longitude is in the range
[0◦, 360◦] and measured along the ecliptic toward the First Point of Aries.

8. The ecliptic coordinate system described here is a geocentric ecliptic coordinate system because
it is defined with respect to the ecliptic plane and uses Earth as the coordinate system’s center. A
heliocentric ecliptic coordinate system can also be defined that uses the Sun as the coordinate
system’s center instead of Earth. Heliocentric ecliptic coordinate systems can be useful, but they
will not be discussed further.
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Figure 4.16 Ecliptic Coordinate System
In the ecliptic coordinate system, the ecliptic plane plays the role of a celestial equator while the
point at which the First Point of Aries intersects the ecliptic plane plays the role of a celestial
prime meridian.

The ecliptic plane and the plane containing the celestial equator are at an
angle to each other, as illustrated in figure 4.16. The angle between the 2
planes is the obliquity of the ecliptic and denoted by ε. Converting between
the ecliptic and equatorial coordinate systems requires knowing the obliquity
of the ecliptic, whose average value is about 23.4◦. For improved accuracy,
this angle should be computed since it varies slowly with time. Before show-
ing how to compute the obliquity of the ecliptic, we must digress briefly to
discuss the concept of a standard epoch.

Due to an effect called precession of the equinoxes (see section 4.10), right
ascension and declination for a given celestial object change very slowly over
time. Because of this slow change in coordinates over time, when right ascen-
sion and declination are given, it is customary to indicate on what instant
of time the measurements are based. That instant of time is called a stan-
dard epoch. Star atlases and star catalogs can still be obtained that give
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equatorial coordinates for the standard epoch 1950.0, although as of the time
that this book is being written, most recent atlases and catalogs use the stan-
dard epoch 2000.0. The standard epoch 2000.0 is often designated as J2000,
which means that the instant of time being referred to is 12h UT on January 1,
2000.

If high accuracy is not needed, the epoch can often be ignored. However,
when computations involve the obliquity of the ecliptic, they should be made
for the instant of time corresponding to the standard epoch. For example, if
the right ascension and declination are based on the standard epoch J2000,
then the obliquity of the ecliptic should be calculated for the standard epoch
J2000.

Until 1983, an equation developed by the mathematician and astronomer
Simon Newcomb was typically used to calculate the obliquity of the ecliptic.
His equation is

ε= ε0 − 46.845T + 0.0059T 2 − 0.00181T 3

3, 600
, (4.8.1)

where ε0 = 23.452294◦ (i.e., 23◦27′08.26′′) is the obliquity of the ecliptic
at the standard epoch 1900.0 and T is the number of Julian centuries since
1900.0. The fraction on the right-hand side of equation 4.8.1 provides an
epoch-dependent correction in degrees for the obliquity of the ecliptic angle.

Starting in 1984, astronomers and publications such as the Astronomical
Almanac have used an updated equation developed by the Jet Propulsion Lab-
oratory (JPL) to compute the obliquity of the ecliptic. Whereas Newcomb’s
equation was derived from a massive manual analysis of planetary positions up
until about 1895, JPL’s equation was derived from a computer analysis of the
position of the planets from 1911 through 1979. JPL’s equation for computing
the obliquity of the ecliptic is given by

ε= ε0 − 46.815T + 0.0006T 2 − 0.00181T 3

3, 600
, (4.8.2)

where ε0 = 23.439292◦ (i.e., 23◦26′21.45′′) is the obliquity of the ecliptic at
the standard epoch J2000 and T is the number of Julian centuries since 2000.0.

Using equation 4.8.2, ε is computed in 4 steps. For the following example,
assume that we wish to compute the obliquity of the ecliptic for the standard
epoch 2010.0.

1. Calculate the Julian day number for January 0.0 (i.e., midnight) of the
desired standard epoch (i.e., 1/0.0/2010).

(Ans: JD= 2,455,196.5.)
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2. Compute T = (JD− 2, 451, 545.0)/36, 525. This is the number of Julian
centuries since 1/0.5/2000.

(Ans: T = 0.099973 centuries.)

3. Compute De = 46.815T + 0.0006T 2 − 0.00181T 3.

(Note: Round-off error can be reduced when implementing this equation by
using the equivalent formDe = T [46.815 + T (0.0006 − 0.00181T )] , but this
enhancement will be ignored here for the sake of clarity.)

(Ans: De = 4.680222′′.)
4. Compute ε= ε0 − (De/3600). This is the desired obliquity of the ecliptic
for the standard epoch 2010.0.

(Ans: ε2010.0 = 23.437992◦.)

The obliquity of the ecliptic ε could be converted to DMS format in step 4, but
it is left in decimal format for ease of use in other procedures.

Using Newcomb’s equation for this example instead of JPL’s equation yields
a result of ε2010.0 = 23.437979◦, a difference of only 0.000013◦ (0.0468′′).
For the standard epoch 1950.0, Newcomb’s equation produces 23.445788◦ as
the obliquity of the ecliptic while the JPL equation produces 23.445794◦, a
difference of about 0.0216′′. Despite the relatively small differences in the
results produced by equations 4.8.1 and 4.8.2, the differences may accumulate
to a few arcseconds when computing equatorial coordinates. A few arcseconds
may or may not be important depending on whether the instruments being used
are sufficiently accurate to even measure arcseconds. All of the programs for
this book use JPL’s equation instead of Newcomb’s equation.

Given the ability to compute the obliquity of the ecliptic, the ecliptic and
equatorial coordinate systems are related by the following equations:

sin δ= sinβ cos ε+ cosβ sin ε sin λ (4.8.3)

tanα= sin λ cos ε− tanβ sin ε

cos λ
(4.8.4)

sinβ = sin δ cos ε+ cos δ sin ε sinα (4.8.5)

tan λ= sinα cos ε− tan δ sin ε

cosα
. (4.8.6)

Equations 4.8.3 and 4.8.4 are used to convert ecliptic coordinates to equatorial
coordinates whereas equations 4.8.5 and 4.8.6 are used to convert equatorial
coordinates to ecliptic coordinates. ε in each of these equations is the obliquity
of the ecliptic at the standard epoch.

Notice the similarity between these 2 pairs of equations. They are identical
when δ is interchanged with β and α is interchanged with λ. All measurements
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are expressed as angles, so α must be converted from hours to degrees before
using these equations.

Suppose the ecliptic coordinates of Jupiter are ecliptic latitude 1◦12′00′′ and
ecliptic longitude 184◦36′00′′. Use equations 4.8.3 and 4.8.4 to find Jupiter’s
equatorial coordinates for the standard epoch J2000.

1. Using equation 4.8.2, calculate ε for the given standard epoch.
(Ans: ε2000 = 23.439292◦.)

2. Convert the ecliptic latitude β to decimal format.
(Ans: β = 1.2◦.)

3. Convert the ecliptic longitude λ to decimal format.
(Ans: λ= 184.6◦.)

4. Using equation 4.8.3, compute T = sinβ cos ε+ cosβ sin ε sin λ.
(Ans: T =−0.012680.)

5. δ= sin−1(T ). This is the declination at the given standard epoch.
(Ans: δ=−0.726531◦.)

6. Compute y= sin λ cos ε− tanβ sin ε. This is the numerator of the fraction
in equation 4.8.4.

(Ans: y=−0.081913.)

7. Compute x= cos λ. This is the denominator of the fraction in equation
4.8.4.

(Ans: x=−0.996779.)

8. Compute R= tan−1
( y
x

)
.

(Ans: R= 4.697898◦.)
9. Compute an angle adjustment for R based on y and x to put the arctan-
gent from step 8 into the correct quadrant. This will be the right ascension in
degrees.

(Ans: Since x and y are both negative, table 4.1 gives a quadrant adjustment
factor of 180◦. Applying this adjustment factor gives αdeg = 184.697898◦.)
10. Let α= (αdeg/15), which converts the right ascension from degrees to
hours.

(Ans: α= 12.313193h.)

11. Convert α and δ to HMS and DMS format.
(Ans: α2000 = 12h18m47.5s, δ2000 =−0◦43′35.5′′.)

Let us illustrate converting right ascension and declination to ecliptic
longitude and latitude by doing the previous problem in reverse. Given
Jupiter’s equatorial coordinates of right ascension 12h18m47.5s, declination
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−0◦43′35.5′′, and the standard epoch J2000, compute Jupiter’s ecliptic coordi-
nates. This time we need equations 4.8.5 and 4.8.6.

1. Using equation 4.8.2, calculate ε for the given standard epoch.
(Ans: ε2000 = 23.439292◦.)

2. Convert α2000 to decimal format.
(Ans: α= 12.313194h.)

3. Convert α from the previous step to degrees. αdeg = 15α.
(Ans: αdeg = 184.697917◦.)

4. Convert δ2000 to decimal format.
(Ans: δ=−0.726528◦.)

5. Using equation 4.8.5, compute T = sin δ cos ε+ cos δ sin ε sinαdeg.

(Ans: T = 0.020943.)

6. β = sin−1 (T ) . This is the ecliptic latitude at the given standard epoch.
(Ans: β = 1.200010◦.)

7. Compute y= sinαdeg cos ε− tan δ sin ε. This is the numerator of the frac-
tion in equation 4.8.6.

(Ans: y=−0.080188.)

8. Compute x= cosαdeg. This is the denominator of the fraction in equation
4.8.6.

(Ans: x=−0.996640.)

9. Compute R= tan−1
( y
x

)
.

(Ans: R= 4.600016◦.)
10. Compute an angle adjustment for R based on y and x to put the arctangent
result from step 9 into the correct quadrant. Applying the appropriate quadrant
adjustment to R gives the ecliptic longitude.

(Ans: Since x and y are both negative, table 4.1 gives a quadrant adjust-
ment factor of 180◦. Applying this adjustment factor gives λ= 184.600016◦.)

11. Convert the ecliptic latitude and the ecliptic longitude to the DMS format.
(Ans: β2000 = 1◦12′00.0′′, λ2000 = 184◦36′00.0′′.)

4.9 Galactic Coordinate System

The last coordinate system we will consider is the galactic coordinate system.
Three reference points are needed to define any spherical coordinate system:
an origin, an “equator” from which latitudes are measured, and a “prime
meridian” from which longitudes are measured. Table 4.2 summarizes these
reference points for the coordinate systems discussed so far.
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Table 4.2 Coordinate System Reference Points
Defining a spherical coordinate system requires three reference points.

System Origin “Equator” “Prime Meridian”

Terrestrial Lat/Lon Center of Earth Earth’s Equator Greenwich, England
Equatorial Earth Celestial Equator First Point of Aries
Horizon Observer Observer’s Horizon Observer’s Meridian
Ecliptic Earth Ecliptic Plane First Point of Aries

For the galactic coordinate system, the center of our Milky Way is cho-
sen to be the coordinate system’s origin. The equatorial coordinates for the
center of the Milky Way for the standard epoch 1950.0 are right ascension
17h42m and declination −28◦45′. These coordinates were formally defined by
the 1958 IAU and were based on the best known estimate for the galactic cen-
ter at that time. Although modern estimates differ, subsequent measurements
place the center of the Milky Way, with respect to the standard epoch J2000,
at right ascension 17h45m37.22s, declination −28◦56′10.23′′.

With a coordinate system origin selected, the plane containing the Sun and
the center of the Milky Way is extended until it intersects the celestial sphere to
form a “galactic equator.” Galactic latitudes, denoted by b, are measured with
respect to this galactic equator. Galactic latitudes are in the range of ±90◦
with positive angles being north of the galactic plane and negative angles
being south of the galactic plane. The galactic equator does not lie in the
same plane as the celestial equator, but it is inclined at an angle of approxi-
mately 62◦.

Extending a line connecting the Sun and the center of the Milky Way until
it intersects the celestial sphere will form 2 points on the celestial sphere.
The intersection point farthest away from the Sun that lies in the direction
of the constellation Sagittarius is the reference point for measuring galactic
longitudes, denoted by the symbol l. Galactic longitudes are measured counter-
clockwise so as to increase from 0◦ to 360◦ in the same direction as increasing
right ascension.

The equations that relate equatorial and galactic coordinates require know-
ing the location of the Galactic North Pole. For the standard epoch 1950.0,
the equatorial coordinates of the Galactic North Pole, as agreed to by the
1958 IAU, are exactly right ascension 12h49m, declination 27◦24′. It will be
more convenient in the following equations to convert these coordinates to dec-
imal degrees. Thus, the Galactic North Pole’s right ascension is 192.25◦ while
its declination is 27.4◦. The longitude of the ascending node of the galactic
plane is also required, and its value is 33◦. The latitude of the ascending node
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of the galactic plane is 0◦. All of these values are with respect to the standard
epoch 1950.0.

The equations relating galactic and equatorial coordinates are

sin δ= cos b cos δ0 sin(l−N0)+ sin b sin δ0 (4.9.1)

tanα= cos b cos(l−N0)

sin b cos δ0 − cos b sin δ0 sin(l−N0)
+α0 (4.9.2)

sin b= cos δ cos δ0 cos(α−α0)+ sin δ sin δ0 (4.9.3)

tan l= sin δ− sin b sin δ0

cos δ sin(α−α0) cos δ0
+N0, (4.9.4)

where (for epoch 1950.0) α0 = 192.25◦, δ0 = 27.4◦ are the equatorial coor-
dinates of the Galactic North Pole, and N0 = 33◦ is the longitude of the
ascending node of the galactic plane. Equations 4.9.1 and 4.9.2 convert galactic
coordinates to equatorial coordinates while equations 4.9.3 and 4.9.4 convert
equatorial coordinates to galactic coordinates.

Strictly speaking, the equatorial coordinates for the Galactic North Pole and
the longitude of the ascending node should be adjusted to the same standard
epoch as the equatorial coordinates being converted to or being converted from.
The next section will demonstrate how to compute precession corrections to
adjust the equatorial coordinates given here for the Galactic North Pole. Once
the corrected coordinates are known, replace the right ascension (192.25◦),
declination (27.4◦), and longitude of the ascending node (33◦) in the previous
equations with the corrected coordinates to make all calculations with respect
to the new standard epoch. For J2000, the Galactic North Pole is at right ascen-
sion 12h51m26.36s (192.8598◦), declination 27◦07′40.90′′ (27.128027◦), and
the longitude of the ascending node is 32.9319◦.

Instead of adjusting equations 4.9.1 through 4.9.4 to a new standard epoch,
there is a simpler approach. Equations 4.9.1 and 4.9.2 produce equatorial
coordinates with respect to the standard epoch 1950.0. Once calculated, the
equatorial coordinates produced can be adjusted for precession to convert
them to a different standard epoch. When converting equatorial coordinates
to galactic coordinates (equations 4.9.3 and 4.9.4), first adjust the equatorial
coordinates to be with respect to epoch 1950.0, and then convert the epoch
1950.0 equatorial coordinates to galactic coordinates.

Galactic coordinates are not used beyond this chapter, so we will ignore the
effects of precession and perform all calculations with respect to the epoch
1950.0. This chapter’s program allows calculations to be done with respect
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to epoch 1950.0 or J2000, although it can be easily modified for any other
standard epoch.

Assuming epoch 1950.0, convert galactic latitude 55◦20′, galactic longitude
180◦ to equatorial coordinates. We need equations 4.9.1 and 4.9.2.

1. Convert b1950 to decimal format.
(Ans: b= 55.333333◦.)

2. Convert b1950 to decimal format.
(Ans: b= 180.0◦.)

3. Using equation 4.9.1, compute T = cos b cos δ0 sin(l−N0)+ sin b sin δ0,
where δ0 = 27.4◦ is the right ascension of the Galactic North Pole and
N0 = 33◦ is the longitude of the ascending node for epoch 1950.0.

(Ans: T = 0.653540.)

4. Compute δ= sin−1 (T ) . This is the declination for epoch 1950.0.
(Ans: δ= 40.809063◦.)

5. Compute y= cos b cos(l−N0). This is the numerator in equation 4.9.2.
(Ans: y=−0.477037.)

6. Compute x= sin b cos δ0 − cos b sin δ0 sin(l−N0). This is the denominator
in equation 4.9.2.

(Ans: x= 0.587640.)

7. Compute R= tan−1
( y
x

)
.

(Ans: R=−39.069133◦.)
8. Calculate an adjustment for R based on y and x to put the arctangent in the
correct quadrant. Apply the appropriate quadrant adjustment to R and add N0

to get the right ascension in degrees.
(Ans: Since x is positive and y is negative, table 4.1 gives a quadrant adjust-

ment factor of 360◦. Applying this adjustment factor and adding N0 gives
αdeg = 513.180867◦.)

9. If αdeg> 360◦, subtract 360◦.
(Ans: αdeg = 153.180867◦.)

10. Convert αdeg to hours. α= (αdeg/15). This is the right ascension for epoch
1950.0.

(Ans: α= 10.212058◦.)
11. Convert α and δ to HMS and DMS format, respectively.

(Ans: α1950 = 10h12m43s, δ1950 = 40◦48′33′′.)
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If done with respect to the standard epoch J2000, the results would be

α2000 = 10h15m43s, δ2000 = 40◦33′35′′.

Again assuming epoch 1950.0, convert right ascension 10h12m43s, dec-
lination 40◦48′33′′ to galactic coordinates. We need to use equations 4.9.3
and 4.9.4.

1. Convert α1950 to decimal format.
(Ans: α= 10.211944h.)

2. Convert α to degrees. αdeg = 15α.
(Ans: αdeg = 153.179167◦.)

3. Convert δ1950 to decimal format.
(Ans: δ= 40.809167◦.)

4. Compute T0 = cos δ cos δ0 cos(α−α0)+ sin δ sin δ0.

(Ans: T0 = 0.822462.)

5. Compute b= sin−1 (T0) . This is the galactic latitude for epoch 1950.0.
(Ans: b= 55.332048◦.)

6. Compute y= sin δ− sin b sin δ0. This is the numerator of equation 4.9.4.
(Ans: y= 0.275045.)

7. Compute x= cos δ sin(α−α0) cos δ0. This is the denominator of equation
4.9.4.

(Ans: x=−0.423535.)

8. Compute T1 = tan−1
( y
x

)
.

(Ans: T1 =−32.999772◦.)
9. Calculate an adjustment for T1 based on y and x to put the arctangent in the
correct quadrant. Apply the appropriate quadrant adjustment to T1 and add N0

to get the galactic longitude l for epoch 1950.0.
(Ans: Since x is negative and y is positive, table 4.1 gives a quadrant adjust-

ment factor of 180◦. Applying this adjustment factor and adding N0 gives
l= 180.000228◦.)

10. If l > 360◦, subtract 360◦.
(Ans: l= 180.000228◦.)

11. Convert b and l to DMS format.
(Ans: b1950 = 55◦19′55′′, l1950 = 180◦00′01′′.)

The discrepancy between the original galactic coordinates used in the first
example and the galactic coordinates computed here is due to round-off
errors.
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4.10 Precession and Other Corrections

Despite how carefully positional calculations are performed and no matter
what coordinate system is used, an object may not appear in the sky in the
position that it is calculated to be. This is due to several factors; we will briefly
discuss 4 related phenomena: atmospheric refraction, parallax, precession, and
nutation. First, consider the impact of atmospheric refraction on the apparent
location of a celestial object.

Light rays are bent whenever they pass from one medium, such as air, to
another, such as water. This effect is called refraction and is easily observable
by filling a glass with water and placing a pencil in the glass. The image of the
pencil when viewed through the water is enlarged and appears to be bent with
respect to the portion of the pencil that remains outside the water.

Earth is surrounded by an atmosphere, which means that before light from
objects outside the Earth reaches our eyes, the light must first pass through
Earth’s atmosphere. Light rays are bent when they enter the atmosphere so
that stars and other celestial objects do not appear to be quite where they are
calculated to be. This effect is called atmospheric refraction. The extent to
which it distorts the location of an object depends upon air temperature, air
pressure, and the object’s altitude in the sky. Objects at an observer’s zenith
are not refracted at all, while those on the horizon may be refracted a great
deal. Atmospheric refraction can change the apparent location of an object by
as much as 34′ of arc for objects at the horizon. Because atmospheric refraction
is generally greater the closer an object is to the horizon, the higher an object is
in the sky the closer its calculated position will come to matching its observed
position.

Parallax is an effect in which the apparent position of an object changes
when viewed along 2 different lines of sight. The effect can be easily demon-
strated. Close your left eye and use your right eye to look at an object a few
feet away. Using the index finger on your right hand and with your left eye
still closed, point at the center of the object or to some prominent feature on
the object. Now without moving your head or your finger, close your right eye
and look at the object with your left eye. Relative to your right index finger, the
object will appear to have moved to a significantly different position than when
viewed through your left eye. This apparent change in position is the parallax
effect.

To better understand parallax, consider figure 4.17 in which 2 observers, A
and B, are looking at the Moon (M) from 2 different locations on the surface
of the Earth. S is some distant star that both observers are using as a reference
point in much the same manner as using our right index finger as a point of
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Figure 4.17 Parallax
Parallax is the result of viewing an object from different locations.

reference in the experiment just described. Since S is so far away relative to
the distance between the 2 observers, the distance between the observers is
negligible, and both observers will agree on the star’s location. However, the
2 observers will not agree on the location of the Moon with respect to the star
S because ∠MAS measured by observer A is clearly not the same as ∠MBS
measured by observer B.

When viewing celestial objects from 2 different locations on Earth, parallax
distortion can amount to 1 degree of arc for the Moon but only a few seconds of
arc for the planets within our Solar System. Parallax is so small when viewing
stars and other distant celestial objects from 2 different locations on Earth that
it is virtually unmeasurable. However, the parallax effect can be amplified by
increasing the distance between the points at which an object is viewed. When
viewing an object from different places along Earth’s orbit around the Sun, the
effect is referred to as stellar parallax. The greatly increased viewing baseline
afforded by Earth’s orbit around the Sun, along with some simple trigonometry,
provides a way for astronomers to estimate the distance to a star.

The last 2 effects we will describe are precession and nutation. Precession
is a gradual shifting of Earth’s axis of rotation similar to the axial motion of a
rapidly spinning top. When a top spins, its axis of rotation moves around in a
circle rather than staying in exactly the same orientation. The circular motion
exhibited by the rotational axis of a spinning object is called precession.
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Figure 4.18 Precession
Earth’s rotational axis moves around in a small circle as Earth rotates, similar to the motion
of a spinning top. This effect is precession. Earth’s axis of rotation also “wobbles” due to the
gravitational effects of the Sun and Moon. This effect is nutation.

As Earth rotates, its axis of rotation moves around in a circle so that it grad-
ually sweeps out the surface of a cone. This is shown as a solid circle above
the North Pole in figure 4.18. Because of precession, Earth’s North Pole com-
pletes 1 full trip around this circle about every 25,800 years. Historically, this
circular movement of Earth’s axis of rotation has been called precession of the
equinoxes because the observed effect is that the equinoxes appear to move
westward along the ecliptic relative to the fixed stars.

Precession of Earth’s axis of rotation is not really a perfect circle as
figure 4.18 implies. There is a periodic “wobbling” of Earth’s axis due to the
combined gravitational pull of the Sun and Moon on Earth’s orbit. This wob-
bling is called nutation and shown in figure 4.18 as a dashed oscillation
superimposed on the precession circle. Nutation is a much smaller effect than
precession, although nutation may affect an object’s apparent location by a few
seconds of arc. The nutation oscillation has a period of 18.6 years, which is the
same period in which the Moon’s orbital plane precesses around Earth, and an
amplitude of 9.2 seconds of arc.

Both precession and nutation must be accounted for to obtain highly accu-
rate equatorial coordinates for celestial objects. However, we will present an
algorithm only for precession to illustrate how equatorial coordinates can be
adjusted to account for various effects.

Calculating precession corrections requires knowing the equatorial coordi-
nates of interest, the reference epoch for which the coordinates are given, and
the new standard epoch to which the coordinates are to be converted. The
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equations required to compute precession corrections for right ascension (α)
and declination (δ) are

�α= (M +Nt sinα tan δ)D (4.10.1)

�δ= (Nd cosα)D, (4.10.2)

whereD is the difference between the new epoch and the reference epoch. Nd ,
Nt , and M are corrections calculated from interpolating polynomials that are
a function of T , the number of Julian centuries from the desired new epoch
to the standard epoch 1900.0. The interpolating polynomials are given by the
following equations:

M = 3.07234s + 0.00186sT (4.10.3)

Nd = 20.0468′′ − 0.0085′′T (4.10.4)

Nt = Nd

15
. (4.10.5)

Be careful when applying equation 4.10.1. Remember that right ascension
(α) is normally expressed in hours. It must be converted to degrees (i.e., mul-
tiplied by 15) before the sine function can be applied. The result, however,
of equation 4.10.1 is a correction to the right ascension in hours, not degrees.
Since Nd is a correction in degrees (equation 4.10.4), it must be converted to
hours (equation 4.10.5) before being used in equation 4.10.1.

As an example, calculate the equatorial coordinates for the Galactic North
Pole with respect to the standard epoch J2000. Recall that the epoch 1950.0
equatorial coordinates for the Galactic North Pole are right ascension 12h49m,
declination 27◦24′.

1. Convert α1950 to decimal format.
(Ans: αh= 12.816667h.)

2. Multiply αh by 15 to convert it to degrees.
(Ans: αdeg = 192.250000◦.)

3. Convert δ1950 to decimal format.
(Ans: Decl = 27.400000◦.)

4. Let Et be the epoch to convert to (2000.0 in this example) and compute
T = Et−1900

100 .

(Ans: T = 1.000000.)

5. Use equation 4.10.3 to compute M in seconds of time.
(Ans: M = 3.074200s.)

6. Use equation 4.10.4 to compute Nd in seconds of arc.
(Ans: Nd = 20.038300′′.)
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7. Compute Nt = (Nd/15). This converts arcseconds to seconds of time.
(Ans: Nt = 1.335887s.)

8. Let Ef be the epoch to convert from (1950.0 in this example) and compute
D=Et −Ef .

(Ans: D= 50.0.)

9. Use equation 4.10.1 to compute �α, which is an adjustment factor for the
right ascension in seconds of time.

(Ans: �α= 146.363795s.)

10. Use equation 4.10.2 to compute �δ, which is a correction for the declina-
tion in arcseconds.

(Ans: �δ=−979.102504′′.)
11. Divide�α by 3600 to convert it to hours and divide�δ by 3600 to convert
it to degrees.

(Ans: �α= 0.040657h,�δ=−0.271973◦.)
12. Add �α to the right ascension from step 1 and �δ to the declination from
step 3 to obtain the corrected equatorial coordinate for the new standard epoch.

(Ans: α= 12.857323h, δ= 27.128027◦.)
13. Convert α and δ to HMS and DMS formats, respectively.

(Ans: α2000 = 12h51m26.36s, δ2000 = 27◦07′40.90′′.)

Other precession correction methods can be found in the literature, and
algorithms can be found to correct for nutation, parallax, and atmospheric
refraction. For the purposes of this book, however, it is sufficient to understand
that the basic process is to compute the equatorial coordinates for an object,
calculate right ascension and declination adjustments, and add the adjustments
to arrive at corrected equatorial coordinates.

4.11 Program Notes

RunChap4 does all the coordinate system conversions described in this
chapter, computes precession corrections, and provides both the simple iter-
ative method and Newton/Raphson method for solving Kepler’s equation.
The program supports galactic coordinate system conversions for epochs
1950.0 and J2000 only, but can be easily modified to handle other epochs
by adding constants with the appropriate galactic coordinates, and then mod-
ifying the routines that convert to/from galactic coordinates to use the new
epoch.

Modern programming languages provide an arctangent function that takes y
and x arguments, but such functions may not return angles in the correct quad-
rants for use in this book’s algorithms. For this reason, this book’s programs
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include routines to properly apply quadrant adjustments for the arctangent
function. Additionally, the trigonometric functions in most programming
languages assume radians rather than degrees. Thus, this book’s programs
implement trigonometric functions that accept angles in degrees and inverse
trigonometric functions that return results in degrees rather than radians.

The programs for this book allow coordinates expressed in degrees to be
entered in decimal or DMS format. Right ascension and hour angle coordinates
may likewise be entered in either decimal or HMS format. Be sure to enter a
direction of N or S for latitudes and E or W for longitudes when terrestrial
coordinates are required.

4.12 Exercises

The following example problems should be thoroughly understood before pro-
ceeding further. The chapters ahead will frequently perform coordinate system
conversions to locate objects, so it is important to have a solid understanding
of the material in this chapter.

1. A star with hour angle 15h30m15s is observed from longitude 64◦ W. The
date is 6/5/1976 and UT is 14h. What is the star’s right ascension?

(Ans: α= 11h10m13s.)

2. A star has right ascension 12h32m06s. An observer is at 40◦ E longitude,
the date is 1/5/2015, and UT is 12h. What is the hour angle for this star?

(Ans: H = 9h06m58s.)

3. A celestial body is seen in the sky at altitude 10◦00′00′′, azimuth
200◦10′20′′. The observer’s latitude is 35.6◦ N. What is the hour angle and dec-
lination of the object?

(Ans: H = 1h46m15s, δ=−40◦34′58′′.)
4. The hour angle for a star is 7h00m00s and its declination is 49◦54′20′′. If an
observer is at latitude 80◦ S, where will this star appear in the sky?

(Ans: h=−51◦28′21′′, A= 267◦07′04′′. The star is below the observer’s
horizon.)

5. Mercury is located at ecliptic latitude 0◦00′00′′, ecliptic longitude
120◦30′30′′. What are its equatorial coordinates assuming epoch J2000?

(Ans: α2000 = 8h10m50s, δ2000 = 20◦02′31′′.)
6. For epoch J2000, assume that a celestial body is at right ascension
11h10m13s, declination 30◦05′40′′. What are its ecliptic coordinates?

(Ans: β2000 = 22◦41′54′′, λ2000 = 156◦19′09′′.)



Orbits and Coordinate Systems 107

7. A star within the Milky Way is at galactic latitude 30◦25′40′′, galactic
longitude 120◦00′00′′ for the standard epoch 1950.0. What are its equatorial
coordinates?

(Ans: α1950 = 15h29m53s, δ1950 = 85◦59′33′′.)
8. Repeat the previous problem by assuming the coordinates are relative to
epoch J2000.

(Ans: α2000 = 15h20m18s, δ2000 = 85◦49′05′′.)
9. If a star’s location is right ascension 11h10m13s, declination 30◦05′40′′ for
epoch 1950.0, what are its galactic coordinates?

(Ans: b1950 = 68◦13′25′′, l1950 = 200◦00′15′′.)
10. Repeat the previous problem but assume the coordinates are relative to
epoch J2000.

(Ans: b2000 = 67◦38′01′′, l2000 = 199◦18′42′′.)
11. If the epoch 1950.0 equatorial coordinates for an object are right ascension
12h32m06s, declination 30◦05′40′′, calculate its epoch J2000 coordinates by
correcting for precession.

(Ans: α2000 = 12h34m34s, δ2000 = 29◦49′08′′.)
12. If the epoch J2000 equatorial coordinates for an object are right ascension
12h34m34s, declination 29◦49′08′′, calculate the epoch 2015.0 coordinates by
correcting for precession.

(Ans: α2015 = 12h35m18s, δ2015 = 29◦44′11′′.)
13. Assume that a planet has an orbital eccentricity of 0.00035 and a mean
anomaly of 5.498078◦. Use both iterative schemes to solve Kepler’s equation
for the eccentric anomaly. Use a termination criteria of 0.000002 radians. (The
exact answer is 5.5◦.)

(Ans: For the simple iteration scheme, after 2 iterations E= 5.500000◦.
For the Newton/Raphson method, after 2 iterations E= 5.500000◦.)

14. Repeat the previous problem assuming an orbital eccentricity of
0.6813025. (The exact answer is 16.744355◦, not 5.5◦ because the orbital
eccentricity has changed.)

(Ans: For the simple iteration scheme, after 26 iterations E= 16.744172◦,
or 16◦44′39.02′′. For the Newton/Raphson method, after 4 iterations
E= 16.744355◦, or 16◦44′39.68′′.)
15. Repeat the previous problem assuming an orbital eccentricity of 0.850000.
(The exact answer is 29.422286◦.)

(Ans: For the simple iteration scheme, after 39 iterations E= 29.421983◦,
or 29◦25′19.14′′. For the Newton/Raphson method, after 7 iterations
E= 29.422286◦, or 29◦25′20.23′′.)





5 Stars in the Nighttime Sky

At this point, the reader may well be a bit confused. Chapter 3 discussed time
and presented a maze of calculations for converting from one time system to
another. Why is all that necessary? Different calendar systems and techniques
for dealing with Julian day numbers were also described. Why are Julian day
numbers necessary?

Chapter 4 may have seemed a little more illuminating when different coor-
dinate systems were presented along with algorithms for converting between
them. The horizon and equatorial coordinate systems in particular may have
appeared promising and left the reader on the verge of understanding …
something. Still, how does time fit in with coordinate system conversions?
How do orbits and orbital elements relate to time systems and coordinate sys-
tem conversions? The basic question we’re ultimately trying to answer is: For a
given date, time, and location, where will the Sun, Moon, planets, and stars
appear in the sky? The necessary pieces seem to be in place, but how do they
fit together?

This chapter will demonstrate how and why the pieces fit together to locate
a specific star, nebula, galaxy, or other deep space object. In fact, this chapter
culminates in a sample program that will produce a star chart showing the
nighttime sky for any given time, date, latitude, and longitude. Believe it or
not, all of this can be done with just the concepts and equations presented for
time systems and coordinate system conversions.

There’s no need (yet!) to worry about orbital elements because the stars are
so far away that we will consider them as stationary in the sense that we will
treat them as if they aren’t orbiting anything. Of course, that isn’t true. Even
the most distant celestial objects are in constant motion as they move along
their own orbits and as they rotate on their own axes. Nevertheless, we will
ignore all that and pretend that they are truly stationary, albeit very distant,
celestial objects.
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Figure 5.1 The Mystic Mountain
Located in the Carina Nebula, the Mystic Mountain is an enormous pillar of gas and dust that is 3
light years tall! This image, which is even more stunning in color, was created in 2010 by a team of
NASA, European Space Agency, and Space Telescope Science Institute astronomers in celebration
of the 20th anniversary of the Hubble Space Telescope. (Image courtesy of NASA/ESA/STScI)

Locating Solar System objects is a different matter. Such objects are clearly
not stationary, and so knowing their orbital elements is vital to finding them in
the sky. Because they cannot be considered as stationary, calculating the loca-
tion of objects within the Solar System and understanding how orbital elements
fit into the scheme of things must wait a little while longer.

Although this chapter is primarily concerned with deep space objects such as
stars, the concepts and methods presented in this chapter are not really limited
to “stationary” deep space objects; they can be applied to any celestial object
whose equatorial coordinates are known. For example, one could consult an
astronomy periodical to get the equatorial coordinates for a planet and then use
this chapter’s program to locate that planet in horizon coordinates for a given
observer’s location, date, and time. In later chapters, instead of consulting
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astronomy periodicals we will directly calculate the equatorial coordinates for
the Sun, Moon, and planets for a given point in time. Once we have equatorial
coordinates in hand we will then use the results of this chapter to locate such
objects in the sky.

Be forewarned that some license is taken in this chapter by omitting or gloss-
ing over technical details that might be more confusing than illuminating. This
is done to promote conceptual understanding by providing a simple framework
in which all the pieces fit. May the purists be forgiving for this simplified treat-
ment! Nonetheless, clean off the table and get some glue ready. The pieces are
all assembled. We will now put them together to form a picture of mathemat-
ical beauty and elegance. The result should be a much better, albeit still very
basic, understanding of how the universe works with regard to orbits.

5.1 Locating a Star

Our basic objective in this section is to convert an object’s equatorial coordi-
nates (which are fixed because we are assuming the object is stationary) to hori-
zon coordinates for a stated date, time, and location. Once we have an object’s
horizon coordinates, we then know precisely where to point a telescope to view
that object.

To locate a deep space object in horizon coordinates, it is necessary to
account for 3 things: date, time of day, and an observer’s location. Julian day
numbers provide a convenient (well, at least a manageable) method for
accounting for dates. Julian day numbers are especially useful for comput-
ing elapsed days, and many of the calculations, such as converting UT to GST,
do precisely that. Why are elapsed days important?

In order to answer that question, assume Earth is stationary (in the sense
that we’ll assume it doesn’t orbit anything) and that the stars, embedded in the
celestial sphere, orbit Earth. If a snapshot is taken of the position of the stars
relative to Earth, then in exactly 1 sidereal year the stars will return to precisely
the same location in the sky that they were when the snapshot was taken. That
is, the stars will have moved through 360◦ along the celestial sphere. If only
half a sidereal year has elapsed, then the stars will have moved only by 180◦
along the celestial sphere.

The “snapshot” that we have taken is simply the equatorial coordinates of the
stars for a stated instant in time (i.e., standard epoch). The amount of elapsed
time since we made our snapshot tells us how far along the celestial sphere the
stars have moved. Because there are 365.2564 sidereal days in a sidereal year,
the stars move along the celestial sphere at a rate of 0.985609◦ per day. So,
if N days have elapsed since we took our snapshot, then the stars will have
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moved by 0.985609N degrees. The date at which we want to know an object’s
location is thus accounted for by using Julian day numbers to calculate elapsed
days, which is precisely what steps 4–7 in converting UT to GST are all about
(see section 3.10).

Of course we know that Earth rotates on its axis even if it were not orbiting
anything. Because Earth rotates, the time of day affects the apparent motion
of the stars in the sky. While the elapsed days tell us how far a star has moved
along the celestial sphere, the time of day tells us how far Earth has rotated and
must be applied as an adjustment to a star’s apparent position in the sky.

Actually, time of day has 3 components that must be considered:

1. Time zone

2. Sidereal time

3. Time of day

First, time zone differences are handled by converting from LCT to UT. Sec-
ond, our wristwatches measure mean solar time while celestial motion is
measured by “star” time. Converting UT to GST accounts for this difference
in time units. Third, converting GST to LST accounts for how much Earth has
rotated during the fractional part of a day represented by the LCT.

Recall that converting GST to LST (see section 3.12) requires knowing an
observer’s longitude. An observer’s longitude is just another way of expressing
how far Earth has rotated from 0h for the calculated UT. The important thing
to realize, however, is that the reason for converting from LCT to UT and
ultimately to LST is to synchronize clocks so that star time is being used.

Up to this point, calculations have been made to cancel out effects of the
date, time of day, and longitude. Only 2 details remain. First, equatorial coor-
dinates are independent of time of day, but they somehow need to be converted
to a format that is time (sidereal) dependent. Second, an observer’s latitude
must be considered. The first detail is resolved by converting an object’s right
ascension to its equivalent hour angle and using the hour angle to calculate
altitude and azimuth. Recall that an hour angle is time varying, which thus
provides us with an object’s coordinates in a form that is time dependent. Lat-
itude adjustments, the second detail to account for, are made in steps 4–7 of
the procedure for converting equatorial coordinates to horizon coordinates (see
section 4.7).

Table 5.1 summarizes these steps and explains why each step is needed
to locate an object for a given observer’s location, local time, and date. The
effects of precession, nutation, refraction, and parallax can also be included by
applying corrections to the equatorial coordinates before beginning the steps
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Table 5.1 Converting Equatorial to Horizon Coordinates
Converting equatorial to horizon coordinates requires these fundamental steps.

Calculation Reason

1. LCT to UT Account for time zone

2. UT to GST Synchronize clocks to sidereal time vice solar mean time

3. GST to LST Account for observer’s longitude

4. Date to JD Calculate elapsed days to account for date

5. Right ascension to hour angle Make equatorial coordinates time varying

6. Equatorial to horizon Adjust for observer’s latitude

outlined in the table. Chapters 6, 7, and 8 will demonstrate how to calculate the
equatorial coordinates for the Sun, Moon, and planets, which can then be trans-
formed into horizon coordinates using the steps outlined in the table. Once bro-
ken down into a series of major steps, the process is not so bewildering after all.

Before working out an example, an important word of warning is in order.
Converting UT to GST (step 2 in table 5.1) requires a computation involving
the calendar date, as does converting the date to its Julian day number (step 4).
It is possible that the calendar date will not be the same for the LCT and UT
times. When adding a time zone adjustment to LCT to convert it to UT, the
resulting UT might be greater than 24h or less than 0h. If the UT computed
is greater than 24h, then we must subtract 24h from the UT to put it into the
proper range. When this occurs, the resulting UT is actually for the next day,
so the date must be adjusted accordingly. Likewise, if UT is negative, 24h must
be added with the result that the UT is actually for the previous day and the
date must be adjusted accordingly. Be sure to watch out for this adjustment
in the source code for converting LCT to UT and in the code for converting
UT to LCT. As a general rule, time conversions should be done first (as shown
in table 5.1) so that the UT date is used for the Julian day number and GST
calculations.

Let us proceed with an example and compute the horizon coordinates for
Venus. Assume an observer at 38◦ N latitude, 78◦ W longitude is in the East-
ern Standard Time zone and an astronomy periodical showed that Venus was
at right ascension 17h43m54s, declination -22◦10′00′′ on January 21, 2016.
Where did Venus appear at 21h30m00s LCT for the observer? Assume that the
observer was not on daylight saving time and ignore precession.

1. Convert LCT to decimal format.
(Ans: LCT = 21.5h.)
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2. Convert LCT to UT.
(Ans: UT = 2.5h, next day so use the date 1/22/2016 for subsequent time-

related calculations.)

3. Convert UT to GST.
(Ans: GST = 10.559460h.)

4. Convert GST to LST.
(Ans: LST = 5.359460h.)

5. Convert α (right ascension) to H (hour angle).
(Ans: H = 11.627793h.)

6. Convert equatorial coordinates to horizon coordinates.
(Ans: h=−73.455227◦, A= 341.554820◦.)

7. Convert h and A to DMS format.
(Ans: h=−73◦27′19′′, A= 341◦33′17′′.)

Venus was not visible for the observer at the stated time since its altitude (h)
was below the observer’s horizon. Also notice that the date had to be adjusted
in step 2.

Sometimes it is desirable to reverse the process just described and cal-
culate equatorial coordinates for a given set of horizon coordinates. At
21h45m00s LCT, the observer from the previous example noticed a bright star
at approximately altitude 59◦13′, azimuth 171◦05′. What were the object’s
equatorial coordinates?

1. Convert LCT to decimal format.
(Ans: LCT = 21.75h.)

2. Convert LCT to UT.
(Ans: UT = 2.75h, which is the next day so use the date 1/22/2016 for

subsequent time-related calculations.)

3. Convert UT to GST.
(Ans: GST = 10.810145h.)

4. Convert GST to LST.
(Ans: LST = 5.610145h.)

5. Convert horizon coordinates to equatorial coordinates.
(Ans: H = 23.694054h, δ= 7.498241◦.)

6. Convert H to α.
(Ans: α= 5.916091h.)

7. Convert α and δ to HMS and DMS format, respectively.
(Ans: α= 5h54m58s, δ= 7◦29′54′′.)
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A star chart shows that Betelgeuse in the constellation Orion (see figure 5.2) is
very near that location, so Betelgeuse is most likely what the observer saw.

5.2 Star Rising and Setting Times

The preceding section has 1 small problem. The horizon coordinates for a star
can be calculated easily enough for a given observer, date, and time, but there is
no guarantee that the star will be visible. There are 2 reasons why a star might
not be visible. First, it might not be visible because the observer’s location is
such that the star is never above the horizon, or it may not be above the horizon
at the given LCT. For instance, an observer at Earth’s South Pole will never be
able to see Polaris, the Pole Star, because it is never visible in the Southern
Hemisphere. Venus in the example from the previous section was not visible
because it was below the observer’s horizon at the stated observation time.
Another reason a star might not be visible is because it rises and sets during
daylight hours. Unless an eclipse occurs, sunlight will prevent one from being
able to see a star even if it is above the observer’s horizon.

This section will demonstrate how to calculate the rising and setting times
for a given set of equatorial coordinates. Once it is known when and if a star
will be above the horizon, an observer can choose a convenient viewing time
(assuming the star will appear at night!) and then calculate where the star will
appear. The following procedure will explicitly tell us when we have chosen a
star that will never rise or set for an observer.

Determining star rise and set times is accomplished by first determining a
star’s LST rising and setting times and then converting the LST times to LCT
times. Using the subscript r to denote rising time and the subscript s to denote
setting time, the required LST equations are

LSTr = 24h +α− cos−1 (− tanφ tan δ)

15
(5.2.1)

LSTs =α+ cos−1 (− tanφ tan δ)

15
, (5.2.2)

where φ is the observer’s latitude and α and δ are the star’s equatorial
coordinates.

To demonstrate, assume an observer is located at 38◦ N latitude, 78◦ W lon-
gitude in the Eastern Standard Time zone. What were the rising and setting
times for Betelgeuse (α= 5h55m, δ= 7◦30′) on January 21, 2016? In the fol-
lowing calculations, remember that the subscript r refers to rising times while
the subscript s refers to setting times.
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Figure 5.2 The Constellation Orion
Orion is one of the most easily recognized constellations in the Northern Hemisphere’s night-
time sky. The bright star Betelgeuse in Orion’s shoulder, which lies some 640 light years away
from Earth, is a red supergiant about 20 times more massive than our Sun. (Image courtesy of
the IAU and Sky & Telescope, Roger Sinnott & Rick Fienberg, released under CC BY 3.0, see
http://creativecommons.org/licenses/by/3.0/)

http://creativecommons.org/licenses/by/3.0/
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1. Convert α to decimal format.
(Ans: α= 5.916667h.)

2. Convert δ to decimal format.
(Ans: δ= 7.5◦.)

3. Convert the observer’s latitude to decimal format.
(Ans: φ= 38.000000◦.)

4. Compute the value Ar = (sin δ/ cosφ).
(Ans: Ar = 0.165640.)

5. If |Ar | >1, the star doesn’t rise or set.
(Ans: Star may rise and set since Ar = 0.165640< 1.)

6. R= cos−1 (Ar) .

(Ans: R= 80.465578◦.)

7. S= 360◦ −R.
(Ans: S= 279.534422◦.)

8. H1 = tanφ tan δ.
(Ans: H1 = 0.102858.)

9. If |H1| >1, then the star doesn’t rise or set.
(Ans: Star does rise and set since H1 = 0.102858< 1.)

10. Calculate H2 = cos−1
(−H1)

15 .

(Ans: H2 = 6.393586h.)

11. LSTr = 24h +α−H2. This is the LST for when the star rises above the
observer’s horizon.

(Ans: LSTr = 23.523081h.)

12. If LSTr > 24h, subtract 24h.
(Ans: LSTr = 23.523081h.)

13. LSTs =α+H2. This is the LST for when the star sets below the observer’s
horizon.

(Ans: LSTs = 12.310252h.)

14. If LSTs > 24h, then subtract 24h.
(Ans: LSTs = 12.310252h.)

15. Convert LSTr and LSTs to LCTr and LCTs . These are the star rise and set
LCT times.

(Ans: LCTr = 15.679566h, UTr = 20.679566h, LCTs = 4.497348h,

UTs = 9.497348h.)

16. Convert LCTr and LCTs to HMS format.
(Ans: LCTr = 15h40m46s,LCTs = 4h29m50s.)
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Figure 5.3 The Horsehead Nebula
The Horsehead Nebula lies just below Alnitak, the easternmost star in Orion’s belt. It is far more
difficult to view than the Orion Nebula (M42). The Orion Nebula lies south of the middle star in
Orion’s belt and can be seen with the naked eye whereas the Horsehead Nebula cannot.

In this example, Betelgeuse will rise above the observer’s horizon during day-
light hours. It will not be visible until the Sun goes down even though it is
above the observer’s horizon.

There are some important notes to make about this algorithm.

• Steps 4 and 8 are necessary because the arccosine function is not defined for
values less than −1 or greater than +1. The physical interpretation of this fact
is that the star never rises or sets for the observer whenAr orH1 is out of range.
This does not necessarily mean that the star isn’t visible. Polaris, for instance,
is always above the horizon for observers in the Northern Hemisphere. This
algorithm will indicate that Polaris never rises or sets for our observer, but it
will certainly be visible.

• The values R and S appear to be needless calculations. However, if a star
does rise and set, R is the star’s azimuth when it rises and S is the star’s azimuth
when it sets. Hence, for this example Betelgeuse will rise at 15h40m46s LCT
and will appear in the sky at azimuth 80◦27′56′′ (80.465578◦), altitude 0◦.
Moreover, Betelgeuse will set at 4h29m50s LCT the next day at azimuth
279◦32′04′′ (279.534422◦), altitude 0◦.

• It should be obvious from the calculation for Ar that this algorithm will not
work for polar observers (latitude 90◦ N or 90◦ S). This is because cos 90◦ = 0
so that the value of Ar is undefined. Also note that the algorithm will “blow
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up” for latitudes close to the poles because as latitude approaches ±90◦, the
result of the division to produce Ar becomes increasingly large.

This algorithm gives the times when the altitude for a star or other celestial
object will be 0◦. Because the algorithm does not consider atmospheric refrac-
tion or other factors (see section 4.10), the apparent rise and set times will vary
from what is calculated. Moreover, objects such as hills may block a view of
the horizon.

5.3 Creating Star Charts

With the procedures outlined in the previous sections, it is a relatively simple
matter to produce star charts for a given date, time, and location. All that is
required is to take the equatorial coordinates of stars or other celestial objects,
convert them to horizon coordinates, and plot those objects that are above the
observer’s horizon.

Plotting objects in the sky is a problem that is very similar to making a map
of Earth’s surface. Both involve converting points on a sphere (3-dimensional
space) into points in a plane (2-dimensional space). Unfortunately, mapping
points from a sphere onto a plane causes distortion. Techniques for reducing
distortion are beyond the scope of this book but can be investigated in texts
that deal with cartography.

One way to map points from a 3-dimensional sphere onto a 2-dimensional
surface is to project the points on the surface of the sphere into a plane. This
can be done by converting each individual point’s spherical coordinates to
Cartesian coordinates and then simply ignoring the z-axis.

To explain the process, consider figure 5.4. Point P is some object located
on a sphere of radius r . Angle θ, called the azimuthal angle, measures how far
around P is in the xy plane while angle ϕ, called the polar angle, measures
how far down P is from the z-axis. Expressed in spherical coordinates, the
point P is located at (r, θ, ϕ).

Now consider figure 5.5, which is the same as figure 5.4 except that the
sphere has been removed for clarity and point P is expressed in Cartesian
coordinates rather than spherical coordinates. Recall that in the Cartesian coor-
dinate system, an origin is chosen and 3 perpendicular axes are drawn from
that origin. We will choose the origin for our Cartesian coordinate system to
be the same point as the center of the sphere from figure 5.4. This means
that the distance from point P to the origin is r , the radius of the sphere
from figure 5.4. The location of point P is then expressed as an ordered triple
(x1, y1, z1) that indicates how far away point P is from the origin along each of
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Figure 5.4 Spherical Coordinate System
The spherical coordinate system locates an object in 3-dimensional space in terms of a radius
(r), an azimuthal angle (θ ), and a polar angle (ϕ). The coordinates for point P in this figure are
expressed as the ordered triple (r, θ, ϕ).

the 3 axes. P can be projected into the xy plane by simply ignoring the z-axis,
which is shown as point P ′ in figure 5.5 and has the 2-dimensional coordinate
(x1, y1).

How do we get the Cartesian coordinates for P ′ from P ’s spherical coor-
dinates? We do so by applying 3 equations that relate spherical and Cartesian
coordinates:

x= r sinϕ cos θ (5.3.1)

y= r sinϕ sin θ (5.3.2)

z= r cosϕ. (5.3.3)

Because we are interested in P ′, the projection of point P into the xy plane,
we don’t actually need to compute z. Now that we can convert spherical coor-
dinates to Cartesian coordinates and project points into a 2-dimensional plane,
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z-axis

x-axis

y-axisOrigin

Figure 5.5 Cartesian Coordinate System
In the Cartesian coordinate system, the location of a point P in 3-dimensional space is expressed
as an ordered triple (x1, y1, z1) that indicates how far away from the coordinate system origin P
is along each of the 3 axes. P ′ is the projection of point P into the xy plane.

all that remains is to align our xy plane with the compass directions for a map
and relate horizon coordinates to spherical coordinates.

Figure 5.6 shows how the x and y axes from figures 5.4 and 5.5 can be
drawn on a flat map with the compass direction north at the top of the map,
south at the bottom, west on the left, and east on the right. Our observer is
located at the origin. The x and y axes shown without parentheses in figure 5.6
are with respect to the map we are creating with the map’s x-axis correspond-
ing to east-west and the map’s y-axis corresponding to north-south. The axes
designations in parentheses show how the north-south and east-west directions
relate to figures 5.4 and 5.5. Notice that we have chosen to align the x-axis
of the sphere in figure 5.4 with the y-axis (north-south) of figure 5.6, and to
align the y-axis of the sphere in figure 5.4 with the x-axis (east-west) from
figure 5.6. This choice is made so that θ in figure 5.6 is identical to the defini-
tion of azimuth in the horizon coordinate system. Furthermore, ϕ and altitude
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Figure 5.6 Plotting 3D Points in 2D Space
This figure shows 1 method for plotting 3-dimensional points on the surface of a flat map.
After converting spherical coordinates to Cartesian coordinates and performing a projection, the
projected points are plotted onto a 2-dimensional map.

are related by the equation

ϕ= 90 −h. (5.3.4)

For convenience, assume that the radius of our sphere in figures 5.4 and 5.5
is r = 1. Then applying equations 5.3.1 and 5.3.2 (and remembering that we
have chosen to swap the x and y axes in figure 5.6 from those in figures 5.4
and 5.5), we can derive 2 simple equations for relating an object’s horizon
coordinates (h,A) to (x, y) coordinates for plotting on a map. The necessary
equations are:

x= sin (90◦ −h) sinA= cos h sinA (5.3.5)

y= sin (90◦ −h) cosA= cos h cosA. (5.3.6)
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Given these 2 equations, producing star charts is a matter of computing the
horizon coordinates, solving the mapping equations, and plotting the resulting
(x, y) pairs onto a display. Appropriate scaling factors need to be considered
to put each point in its proper place on the display.

The chart produced by this technique will be circular in shape. North will
be at the top of the circle, south at the bottom, east to the right, and west to
the left. Distortion increases as points get farther away from the center, but the
charts produced serve to show the position of constellations relative to each
other.

5.4 Program Notes

The program RunChap5 uses the star catalog data files from chapter 1 to pro-
duce a star chart for the objects in the selected catalog. Code from previous
programs are combined in this chapter’s program as the basis for calculating
a star’s location. In particular, the time conversion routines from chapter 3 are
required to convert between LCT, UT, GST, and LST while the coordinate sys-
tem conversions from chapter 4 are required to convert between equatorial and
horizon coordinates. Code is also included to compute precession corrections,
although precession corrections are applied only to the specific equatorial coor-
dinates that a user enters. Precession corrections are not automatically applied
to objects in a star catalog or when creating a star chart. This chapter’s pro-
gram is worth examining since it demonstrates how the previous chapters are
tied together.
RunChap5 uses the methods described in section 5.3 to create a star chart

that plots horizon coordinates on a circular plotting surface. The chart created
will plot the stars from the currently loaded star catalog as would be seen in the
sky for the observer date, time, and location entered into the program. In addi-
tion to creating star charts based on horizon coordinates, the program will also
create rectangular star charts showing equatorial coordinates. An observer’s
location is irrelevant to this type of star chart because equatorial coordinates
are independent of the date, time, and observer’s location.

To avoid entering an observer’s latitude, longitude, and time zone each time
the program starts, default values can be entered into the DefaultObsLoc.
dat data file in the data directory. See the README.TXT file for more details.
If the DefaultObsLoc.dat data file is present, it will be read to establish
the initial observer latitude, longitude, and time zone each time the program
starts.
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5.5 Exercises

1. An observer is located at latitude 45◦ N, longitude 100◦ W in the Pacific
Standard Time zone. Assuming the LCT is 9h00m00s on December 1, 2015 and
the observer is not on daylight saving time, calculate the horizon coordinates
for a star at right ascension 6h00m00s, declination -60◦00′00′′.

(Ans: h=−59◦41′58′′, A= 224◦15′27′′.)
2. An observer is located at latitude 38.25◦ N, longitude 78.3◦ W in the Eastern
Standard Time zone. At 21h00m00s LCT on June 6, 2015, the observer located
an object at altitude 45◦00′00′′, azimuth 90◦00′00′′. Assuming this is daylight
saving time, what are the object’s equatorial coordinates?

(Ans: α= 16h14m42s, δ= 25◦57′41′′.)
3. What are the rising and setting times for the star from problem number 1?

(Ans: Star doesn’t rise or set for the observer.)

4. What are the rising and setting times for the star from problem number 2?
(Ans: LCTr = 16h57m49s,LCTs = 7h59m51s.)
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Of all the objects in the sky, the Sun is the most important to life on Earth. The
Sun is responsible for giving us heat and light without which life as we know
it would be impossible. We are able to see the Moon because it reflects light
from the Sun. Moreover, we are able to see the planets and other objects in the
Solar System because they too reflect light from the Sun.

In this chapter, we will consider the Sun in more detail. Calculations will
be presented for determining the Sun’s ecliptic coordinates from which we
can apply the results of the preceding chapter to locate it in the sky for any
observer. Of course, on a clear day the Sun’s location is readily apparent, but
being able to calculate the Sun’s position is important for locating the plan-
ets and predicting details about the Moon, such as when eclipses will occur.
Other calculations will be presented for determining sunrise and sunset, the
equinoxes and solstices, and the distance from Earth to the Sun.

6.1 Some Notes about the Sun

Before diving into the mathematics, let’s consider some basic facts about the
Sun. Our Sun is a star much like the stars we see in the nighttime sky—a fact
that is sometimes overlooked because the Sun is so much closer to Earth than
any other star. Our Sun belongs to a class of stars called yellow dwarfs, which
appear to be a very common type of star in the universe. Astronomers study the
Sun, among other reasons, because understanding the processes and physical
laws that govern how our Sun operates may help explain how other stars in the
universe behave.

The Sun is not a stationary object by any means. It rotates on its axis
every 25–30 days. Interestingly, the Sun rotates faster at its equator than at its
polar regions, which is a consequence of the Sun being a massive ball of gas
instead of a solid object as Earth is. Additionally, the Sun moves in an elliptical
orbit around the center of the Milky Way Galaxy, cruising through our galaxy
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Figure 6.1 Solar Flare
This extraordinary picture taken on August 31, 2012, shows both a solar flare (bright area on the
top left) and an enormous solar prominence extending outward from the Sun’s surface (bottom
left). The prominence shown here erupted, sending hot plasma and electrically charged particles
out into space at over 900 miles per second. Although the eruption did not directly strike Earth, it
struck a glancing blow that caused an aurora to appear in northern skies on September 3. (Image
courtesy of NASA/SDO/AIA/Goddard Space Flight Center)

at 782,000 km/hour (486,000 miles/hour). It takes the Sun 225–250 million
years to complete 1 orbit. By comparison, Earth rotates at a speed of
1770 km/hour (1,100 miles/hour) and revolves around the Sun in 365.25 days
at 108,000 km/hour (67,000 miles/hour). Lying roughly 93 million miles from
Earth, the Sun is nearly perfectly spherical in shape as opposed to the ellipsoid
shape of the Earth. Although estimates of its size and mass vary considerably,
the Sun’s diameter is about 1,391,000 km (864,000 miles), which is 109 times
larger than Earth’s diameter.

The first person known to have estimated the mass of the Sun was Sir Isaac
Newton, who in the third edition of his Principia Mathematica estimated the
Sun to be 169,282 times more massive than Earth. A more modern estimate is
that the Sun’s mass is 1.9885 × 1030 kg (2.1919 × 1027 tons), making the Sun
333,000 times more massive than Earth and by far the most massive object
in our Solar System. In fact, the Sun alone accounts for about 99.86 percent
of the total mass in our Solar System. Applying Cecilia Payne-Gaposchkin’s
groundbreaking research in stellar astronomy,1 astronomers did a spectral

1. In 1925, Payne-Gaposchkin showed that a star’s temperature and light spectrum are related. She
was the first person to receive a PhD in astronomy from Harvard University and the first woman
to chair Harvard’s Astronomy Department.
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Figure 6.2 Sunspots
This group of sunspots was photographed in July 2012 and designated as AR11520. These
sunspots stretched some 200,000 miles across the Sun’s surface. The large sunspot at the bot-
tom left is 11 times larger than Earth. (Image courtesy of NASA Goddard and Alan Friedman,
released under CC BY 2.0, see https://creativecommons.org/licenses/by/2.0/)

analysis of sunlight and discovered that the Sun is composed primarily of
hydrogen and helium, with hydrogen accounting for three-fourths of the Sun’s
total mass. Because the Sun is made up mostly of these lighter elements, its
mean density is only 1.4 times that of water whereas Earth has a mean density
of 5.5 times that of water.

The chemical composition of the Sun is the key to why it gives off heat
and why it shines. Our Sun is like a gigantic nuclear furnace with thermonu-
clear reactions constantly occurring inside it at incredible rates. It is estimated
that the Sun converts about 600 million tons of hydrogen into helium each
second through the process of nuclear fusion. As a by-product of this ongo-
ing nuclear fusion, the Sun loses about 4 million tons of mass per second as
that mass is released into space in the form of light and heat energy. Despite
such unimaginable losses in mass each second, it is estimated that the Sun
will not run out of fuel for another 5–7 billion years. The heat generated by
the Sun’s thermonuclear reactions is estimated to be up to 27 million ◦F at the
Sun’s core. The Sun’s surface is significantly cooler, but it is still a scorching
10,000 ◦F.

The enormous heat generated by the burning Sun makes it very bright. In
terms of visual magnitude, the Sun is magnitude −26.7. By contrast, a Full
Moon is magnitude −12.7 while the faintest star visible to the naked eye is
about magnitude 6.5. It is very hazardous to look directly at the Sun and even
more dangerous to directly view the Sun through a telescope. The only safe
way to view the Sun, even during an eclipse, is to project its image onto a
screen or use specially designed filters.

https://creativecommons.org/licenses/by/2.0/
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When an image of the Sun is projected onto a screen, its surface features
become more apparent. Sunspots, which Galileo wrote about in 1610 after
viewing them through his telescope,2 appear on the surface of the Sun as
dark blotches. These spots appear dark only because they are cooler than
their surrounding environment. Estimated to have temperatures in the range
6,000−7,000 ◦F, sunspots are indeed substantially cooler than the Sun’s sur-
face. Sunspots are typically enormous in size relative to Earth. The largest
sunspot ever recorded was in March 1947 and was 40 times larger than Earth!

Sunspots increase and decrease in frequency over a cycle that averages about
11 years, although the reasons why sunspots form and tend to occur over
an 11-year cycle are not completely understood. Astronomers do know that
sunspots are a result of magnetic storms on the surface of the Sun, and that sun-
spots usually occur in pairs.

In addition to sunspot activity, bright areas are often observed on the surface
of the Sun that may last for a few minutes or for several hours. These bright
spots are solar flares and are the largest-known explosions in our Solar System.
Solar flares periodically erupt and shoot out from the Sun’s surface with great
speed, sending out showers of proton particles that reach Earth in a matter of
hours. Such showers of protons may cause disruptions in Earth’s magnetic
field, which can in turn disrupt radio and other forms of electromagnetic
communications. Solar flares may also affect Earth’s climate.

Landing on the surface of the Sun is impossible since the Sun is not a solid
body and because of the Sun’s extreme temperatures. If a probe could some-
how land on the surface of the Sun, it would have to travel at 618 km/second
(384 miles/second) to escape the Sun’s gravitational pull. By comparison,
Earth’s escape velocity is a mere 11.19 km/second (7 miles/second).

Although getting close to the Sun’s surface is impractical, spacecraft can be
sent to within a few million miles of the Sun. Such probes can greatly increase
our understanding of the Sun and hence our understanding of the stars. A num-
ber of probes have been launched to study the Sun, starting in the 1960s with
the Pioneer probes, whose missions were to observe solar flares and other
solar-related phenomena. More recently, in 2006 NASA launched the Solar
TErrestrial RElations Observatory (STEREO) probes, which produced stun-
ning ultraviolet images of the far side of the Sun that were beamed back to
Earth in July 2015. The images returned by STEREO A and B have been
combined to produce 3-dimensional views of the Sun, Earth’s nearest star.

2. No, Galileo did not go blind by looking at the Sun through a telescope! His blindness was
caused by cataracts and glaucoma. Still, looking directly at the Sun with or without a telescope is
a very bad idea!
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Figure 6.3 Total Solar Eclipse
A solar eclipse occurs when the Moon comes between Earth and the Sun. In this photograph of
a total solar eclipse that occurred in 1999, the Sun’s corona can be clearly seen as an irregu-
larly shaped halo encircling the Sun. (Image courtesy of Oregon State University, released under
CC BY-SA 2.0, see http://creativecommons.org/licenses/by-sa/2.0/)

NASA launched the Parker Solar Probe in 2018 to make close-range obser-
vations of the Sun and even fly into the Sun’s corona, which is the bright halo
of light around the Sun that extends for millions of miles into space. The
Sun’s corona can be most easily observed during a total solar eclipse. Solar
Probe Plus will be a truly historic milestone in mankind’s exploration of space
because it will be our very first visit to a star.

As impressive as the Sun is, there are much larger and more impressive
stars in the universe. For example, the red hypergiant VY Canis Majoris in the
constellation Canis Major is 17 times more massive than the Sun. As one of the
largest stars in our galaxy, VY Canis Majoris is 3,900 light years away from

http://creativecommons.org/licenses/by-sa/2.0/


130 Chapter 6

Earth and has an estimated diameter of 1.2 billion miles, making it 1,420 times
larger in diameter than the Sun. If placed at the center of our Solar System, the
surface of this massive star would extend beyond Jupiter!

As of 2015, hundreds of stars with diameters significantly larger than that
of our Sun have been cataloged. The largest one presently known is UY Scuti
in the constellation Scutum. This red supergiant, which is 7–10 times more
massive than our Sun, has a diameter of over 1.5 billion miles, making it 1708
times larger than the Sun. If UY Scuti were placed at the center of our Solar
System, its surface would extend into the orbit of the planet Saturn.

The most massive star known as of the year 2015 is 265 times more massive
than the Sun. It is the star R136a1 in the Tarantula Nebula, which is in the Large
Magellanic Cloud Galaxy. The star with the hottest known surface tempera-
ture (377, 540 ◦F) is the star WR 102 in the constellation Cygnus. Compared
to stars such as these, our Sun in many respects is an average and somewhat
unremarkable star indeed.

One last fun fact: we’ve been taught since grade school that Earth and the
planets revolve around the Sun, but to be technical and precise about the mat-
ter, this is not true! Earth and the planets actually revolve around the Solar
System’s center of mass (its barycenter), and not the center of the Sun. To
understand the concept of a barycenter, imagine trying to balance a ruler on the
end of your finger. The ruler will balance on your finger when there is an equal
amount of the ruler’s mass on either side of your finger. The position of your
finger relative to the ends of the ruler is the barycenter.

To determine the location of the Solar System’s barycenter, and hence the
real point around which Earth and the planets revolve, we must theoretically
know the position of the Sun and every planet, asteroid, comet, and interstellar
speck of dust in our Solar System. Because all these objects are in con-
stant motion along their respective orbits, the location of the Solar System’s
barycenter is constantly changing.

Imagine that Earth and the planets are all arranged in a straight line on
the same side of the Sun (say, at perihelion). Then instead of Earth revolv-
ing around the Sun’s center, Earth would revolve around a point 800,000 km
(500,000 miles) above the surface of the Sun! The Solar System’s barycenter
is frequently located above the surface of the Sun, but it is never beyond the
Sun’s corona.

Astronomers cannot always ignore the barycenter of a system, particularly
when studying deep space objects. There are many instances in which 2 objects
in relatively close proximity are sufficiently close to having the same mass
that their common center of mass is between them. This means neither object
orbits the other; they both orbit a point that lies somewhere between them.
When 2 relatively close objects orbit a barycenter located between them, they
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form what astronomers call a binary system. Binary systems are very com-
mon. It is estimated that 50 percent of all stars are part of a binary system and
that 80 percent of all stars are part of a multistar system comprised of at least
2 stars.

Situated about 4 light years away, Alpha Centauri in the Centaurus constel-
lation, is the closest star to Earth, other than the Sun. It is the third brightest star
in the nighttime sky, with Sirius being the brightest star and Canopus being the
second brightest. What appears to be a single star to the naked eye is actually 2
stars, Alpha Centauri A and Alpha Centauri B, that form a binary star system.
It may also turn out that another very faint red dwarf star, Proxima Centauri,
is gravitationally bound to Alpha Centauri A and B, and if true, they form a
nearby 3-star system revolving around a common barycenter that lies between
them.

We don’t have to look into deep space to find a binary system. Pluto and its
moon Charon orbit around a point situated between the 2 of them, thus forming
a binary system in our very own Solar System.

We will ignore the Solar System’s barycenter and smugly state that Earth and
the planets revolve around the Sun. We can safely say so because the Sun is so
much more massive than anything else in the Solar System and the distances
involved are so great that except for extreme accuracy (such as to detect rela-
tivistic effects), the difference between the Solar System’s barycenter and the
Sun’s center is negligible. We will also ignore the barycenter for objects orbit-
ing Earth. Earth is so much more massive than the Moon that the Earth-Moon
barycenter is always located below the surface of the Earth.

6.2 Locating the Sun

Calculating the position of the Sun, Moon, or a planet may seem a daunting
task. Conceptually, however, the process is really quite simple:

• Take a snapshot of the ecliptic coordinates for the object of interest at some
convenient instant in time.

• Calculate how many days (D), including fractional parts of a day, have
elapsed since the snapshot was taken.

• Calculate how far the object has moved along its orbit in D days.

• If necessary, apply corrections, such as precession, to account for irregulari-
ties in the object’s orbit.

• Convert the corrected ecliptic coordinates to horizon coordinates.

In the Sun’s case, this process is further simplified because only the ecliptic
longitude (λ) needs to be calculated. Recall from chapter 4 that the ecliptic
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Figure 6.4 Sun’s Orbital Elements
This illustration shows the Sun’s orbital elements. Assuming a circular geocentric orbit simplifies
calculating the Sun’s location.

latitude (β) of the Sun is 0◦ because the Earth-Sun orbit lies completely within
the ecliptic plane.

Figure 6.4 shows the orbital elements we will use to locate the Sun. For con-
venience, a geocentric model is chosen in which the Sun (S) revolves around
Earth in an elliptical orbit, labeled as the Sun’s True Orbit, with Earth at the
occupied focus of that orbit. An imaginary mean Sun (S′) is defined that moves
in a constant-speed circular orbit, labeled as the Sun’s Mean Orbit, around
Earth. The mean orbit is defined so that its center coincides with the geometric
center (C) of the true elliptical orbit and its radius is the length of the elliptical
orbit’s semi-major axis CA2. The figure is exaggerated because the true Earth-
Sun orbit has an eccentricity of about 0.0167, making the Sun’s true orbit much
more circular than the figure suggests.

Figure 6.4 should look very familiar because of its close similarity to
figure 4.10. However, there are 2 significant differences between the 2
figures. First, figure 6.4 is a geocentric model instead of a heliocentric model
and therefore uses terminology appropriate for a geocentric Earth-Sun orbit
(such as apogee/perigee rather than aphelion/perihelion, Earth at the occu-
pied focus rather than the Sun). Second, figure 6.4 shows the position of
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the vernal equinox and a line labeled Epoch, which are used to define 2
new angles, εg and �g . Both of these angles will be discussed later in this
section. Since figures 6.4 and 4.10 are so clearly similar, the reader may wish
to review section 4.5 to remember why we define a mean anomaly and how it is
used.

As shown in figure 6.4, the Sun’s mean anomaly M is measured from the
moment of perigee. Since Earth completes an orbit of 360◦ around the Sun in
365.242191 mean days, in a geocentric model the mean Sun moves along its
circular orbit by

360◦

365.242191 days
≈ 0.985647◦ per day.

The mean anomaly is easy to calculate from this relationship because it is
simply how far the mean Sun has gone around its mean orbit since the moment
of perigee. The mean anomaly is thus given by

M = 360◦Dp
365.242191 days

, (6.2.1)

where Dp is the number of days (including fractional portions of a day) that
have elapsed since the moment of perigee. The subscript p emphasizes that
the moment of perigee is being used as a reference point. This equation should
also look familiar because it is the same as equation 4.5.2 with the Sun’s orbital
period substituted for n and the number of elapsed days Dp substituted for t.

Take a moment to compare figure 6.4 with figure 4.16, which we used to
describe the ecliptic coordinate system. The Sun plays the role of point P (the
point whose ecliptic coordinates are desired) in figure 4.16. As should be clear
from figure 4.16, the Sun’s ecliptic latitude is β = 0◦ because the Sun’s orbital
plane coincides with the ecliptic plane.

There are 2 problems with using equation 6.2.1 to calculate the Sun’s mean
anomaly and then applying section 4.5 to derive the Sun’s true anomaly. First,
the mean anomaly is defined with respect to the moment of perigee, which
occurs in early January but does not occur at the same time of day or even
on the same day from year to year. How do we relate the varying date and
time at which perigee occurs to the date and time at which we want to know
the Sun’s position? Selecting a specific place in the Sun’s orbit (perigee) as a
reference is really an arbitrary choice. Instead of using a specific place in the
Sun’s orbit, we could just as easily use a specific instant in time (e.g., 12h UT
on January 1, 2000) as a reference point. This is precisely what we will do to
resolve this first problem.
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The second problem is that although we can determine the Sun’s true
anomaly from its mean anomaly, how do we relate the Sun’s true anomaly
to its ecliptic longitude? The true anomaly is measured with respect to perigee,
but the ecliptic longitude is measured with respect to the First Point of Aries.
We will resolve this second difficulty by defining an angle relative to the First
Point of Aries that we can combine with the true anomaly to get the Sun’s
ecliptic longitude. Let’s now see how both of these difficulties are resolved.

Figure 6.4 shows the position of a standard epoch, which we are free to
choose to be whatever instant in time we wish, and defines a new angle εg as
the angular distance from the First Point of Aries to the standard epoch. The
subscript g is used to emphasize that we are using a geocentric model. Defined
this way, εg is the Sun’s ecliptic longitude at the instant in which the Sun is
located at the standard epoch. This resolves our first problem because it allows
us to compute the Sun’s mean anomaly relative to a fixed epoch instead of a
varying moment of perigee.

Figure 6.4 defines another angle, �g , which is the ecliptic longitude of the
Sun at the moment of perigee for the standard epoch. This resolves our second
problem because we can now easily relate the true anomaly and the eclip-
tic longitude. We merely add �g to the true anomaly υ to get the ecliptic
longitude.

Given εg and �g , we first adjust the mean anomaly so that it is with respect
to the moment of perigee rather than the standard epoch. That is, if M is the
mean anomaly measured from the standard epoch we have chosen, then the
mean anomaly M� measured from the moment of perigee is

M� =M + εg −�g. (6.2.2)

The subscript � is used to emphasize that we are describing elements of the
Sun’s orbit.3

We can combine equations 6.2.1 and 6.2.2, which gives

M� = 360◦De
365.242191 days

+ εg −�g, (6.2.3)

where De is the number of days since the standard epoch. Once we have the
Sun’s mean anomaly, we can solve either the equation of the center or Kepler’s
equation to obtain the Sun’s true anomaly. For the purposes of this chapter, we

3. The symbol � is frequently used in astronomy to refer to the Sun.
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Table 6.1 Sun’s Orbital Elements
This is a geocentric snapshot of the Sun’s orbital elements at the standard epoch J2000 as given by
The Astronomical Almanac 2000.

Orbital Element Value

e, eccentricity of the Earth-Sun orbit 0.016708

a0, length of the Earth-Sun orbital semi-major axis 1.495985E08 km

θ0, Sun’s angular diameter when a distance of a0 from Earth 0.533128◦
εg , Sun’s ecliptic longitude at the epoch 280.466069◦
�g , Sun’s ecliptic longitude at perigee at the epoch 282.938346◦

will approximate the equation of the center by

Ec ≈ 360◦

π
e sinM�. (6.2.4)

The true anomaly is then

υ� =M� +Ec. (6.2.5)

Once the true anomaly is known, determining the Sun’s ecliptic coordinates is
a simple matter. The ecliptic latitude is always 0◦ while the ecliptic longitude,
as can be seen from figure 6.4, is simply the true anomaly adjusted by �g .
That is,

λ� =υ� +�g. (6.2.6)

Table 6.1 shows some of the Sun’s orbital elements with respect to the
standard epoch J2000. The Astronomical Almanac 2000 provides some useful
interpolation equations that allow the Sun’s orbital elements to be referenced
to another epoch, such as 2010. In Practical Astronomy with your Calculator
or Spreadsheet, Duffett-Smith also provides interpolation equations that allow
e, εg , and �g to be determined for a different standard epoch. (a0 and θ0 do
not need to be adjusted because their values are independent of the epoch.) If
JDe is the Julian day number for the desired standard epoch, Duffett-Smith’s
equations for adjusting e, εg , and �g to the standard epoch are:

T = JDe − 2,415,020.0

36,525
(6.2.7)

e= 0.01675104 − 0.0000418T − 0.000000126T 2 (6.2.8)

εg = 279.6966778 + 36,000.76892T + 0.0003025T 2 (6.2.9)

�g = 281.2208444 + 1.719175T + 0.000452778T 2. (6.2.10)
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Note that equation 6.2.7 calculates the number of Julian centuries the
standard epoch is from 12h UT (noon) on January 0, 1900.

Using the equation of the center to find the true anomaly, let’s now work
through a complete example to find the Sun’s location on February 5, 2015,
at 12h LCT. Assume that an observer is in the Eastern Standard Time zone at
78◦ W longitude, 38◦ N latitude and is not on daylight saving time.

1. Use the equations from chapter 3 to perform all needed time conversions.
That is, compute UT, GST, and LST from the given LCT. Adjust the date if
necessary.

(Ans: UT = 17.0h,GST = 2.035013h,LST = 20.835013h,Date = 2/5/2015.)

2. Compute the Julian day number JDe for the standard epoch. Be sure to
include the fractional part of the day.

(Ans: JDe = 2,451,545.0 for J2000.)

3. Compute the Julian day number JD for the desired date. Use the Greenwich
date and UT from step 1, not the LCT time and date, and be sure to include
the fractional part of the day. From step 1, we need the Julian day number for
17.0h UT on 2/5/2015.

(Ans: JD = 2,457,059.20833.)

4. Compute De, the total number of elapsed days since the standard epoch, by
subtracting JDe from JD.

(Ans: De = 5514.20833 days.)

5. Use equation 6.2.3 to compute M�.
(Ans: M� = 5432.592589.◦)

6. Add or subtract multiples of 360◦ to adjust M� to the range of 0◦ to 360◦.
(Hint: use M� mod 360◦.)

(Ans: M� = 32.592589◦.)

7. Use equation 6.2.4 to approximate the equation of the center.
(Ans: Ec = 1.031320◦.)

8. Add Ec to M� to get the true anomaly.
(Ans: υ� = 33.623909◦.)

9. Add or subtract multiples of 360◦ to adjust υ� to the range of 0◦ to 360◦.
(Ans: no adjustment is necessary.)

10. Add υ� and �g to get the ecliptic longitude.
(Ans: λ� = 316.562255◦.)

11. If λ�> 360◦, subtract 360◦.
(Ans: no adjustment is necessary.)
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At this point, the Sun’s ecliptic coordinates are λ� ecliptic longitude, 0◦
ecliptic latitude.

12. Convert the ecliptic coordinates from the prior step to equatorial coordi-
nates.

(Ans: α= 21.267801h, δ=−15.872529◦.)

13. Finally, convert the equatorial coordinates to horizon coordinates.
(Remember that converting equatorial to horizon coordinates requires that the
right ascension α from the previous step be converted to an hour angle.)

(Ans: h= 35◦47′01′′, A= 172◦17′46′′.)

As we pointed out earlier, we can solve either the equation of the cen-
ter or Kepler’s equation to obtain the true anomaly from the mean anomaly.
Let’s repeat the previous example to determine the Sun’s ecliptic coordinates
by using the simple iterative scheme from subsection 4.5.5 to solve Kepler’s
equation. Steps 1–6 of the algorithm above are identical whether solving the
equation of the center or solving Kepler’s equation. Thus, our objective is to
solve Kepler’s equation to determine the true anomaly from the mean anomaly
found in step 6 (M� = 32.592589◦).

Recall from subsection 4.5.5 that we will iteratively compute the equation

Ei =Mr + e sinEi−1,

where both the eccentric anomaly and mean anomaly are expressed in radians,
not degrees. Thus, we must first convertM� from degrees to radians, giving us

Mr = M�π
180◦ = 32.592589◦π

180◦ ≈ 0.568848 radians.

This gives us a first estimate of the eccentric anomaly as E0 =Mr = 0.568848
radians. The next few iterations follow, where � is the difference between
successive approximations to the eccentric anomaly.

E1 ≈ 0.577848,�= 0.009000,

E2 ≈ 0.577974,�= 0.000126,

E3 ≈ 0.577976,�= 0.000002.

Only 3 iterations are necessary to obtain a sufficiently accurate approxima-
tion for the eccentric anomaly (0.577976 radians, which is ≈ 33.115588◦).
The rapid convergence to a solution is achieved because the Earth-Sun orbital
eccentricity is so small.
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Given the eccentric anomaly, we can obtain the true anomaly by applying
equation 4.5.8, which is

tan
(υ�

2

)
=
(√

1 + e
1 − e

)
tan

(
E

2

)
.

Doing so gives υ� ≈ 33.642307◦. This differs from the result in step 8 by
about 0.018◦, or by a little over 1 arcminute.

Solving Kepler’s equation replaces steps 7 and 8, after which we merely
continue with steps 9–13 to determine the Sun’s horizon coordinates. Using
the true anomaly obtained by solving Kepler’s equation instead of the value
from the equation of the center, we obtain

λ� = 316.580653◦,

α= 21.269018h, δ=−15.867003◦,

h= 35◦47′13′′, A= 172◦16′25′′.

The method presented here for determining the position of the Sun, whether
by solving the equation of the center or Kepler’s equation, is usually accurate
to within about 1′, which is sufficient for the purposes of this book. For the best
accuracy, however, one should use a standard epoch as close as possible to the
date for which the Sun’s position is desired, or use equations 6.2.7 through
6.2.10 to adjust the Sun’s orbital elements to the desired date.

More accurate algorithms can be found from other sources, such as The
Astronomical Almanac or Meeus’s Astronomical Algorithms. Although more
accurate algorithms exist, the method presented here is sufficient to demon-
strate how orbital elements, the anomalies, and the various coordinate systems
are interrelated.

6.3 Sunrise and Sunset

As with locating a star in horizon coordinates, there is no guarantee that the
Sun will be visible in the sky at the given date, time, and location. For exam-
ple, let’s use the algorithm from the previous section (and solve the equation of
the center) to compute the Sun’s location at 20h LCT on February 5, 2015, for
an observer in the Eastern Standard Time zone at 78◦ W longitude, 38◦ N
latitude. Assume the observer was not on daylight saving time. For that
observer, date, and time, the Sun’s horizon coordinates were h=−28◦01′04′′,
A= 271◦26′04′′, which was well below the observer’s horizon. This should
not be a surprise because it is easy to know when the Sun will or will not
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be visible. Quite simply, the Sun cannot be seen during the LCT evening
hours.

Determining the times for sunrise and sunset is not as easy as determining
when a star will rise or set. The reason is that the coordinates calculated for
the Sun are good only for the specific time chosen. For stars we applied 2
equations (5.2.1 and 5.2.2) to a star’s fixed equatorial coordinates to determine
its rising and setting LST times. However, since the Sun moves rather rapidly
across the sky, its equatorial coordinates at sunrise can differ substantially from
its coordinates at sunset. So, the simple approach we used for stars based on a
single set of fixed coordinates will not work.

Our strategy for handling the Sun’s rapidly changing coordinates is to first
calculate its position at midnight for the date in question and then again at mid-
night the next day. Given the Sun’s ecliptic longitude λ1, its ecliptic longitude
24h later is

λ2 = λ1 + 0.985647◦ (6.3.1)

because the Sun advances in its orbit by 0.985647◦ per day. Using these 2 loca-
tions λ1 and λ2, we will next apply the procedure from chapter 5 to compute 2
sets of rising and setting times, ST1 and ST2. Finally, we will interpolate these
2 sets of rising and setting times to arrive at an interpolated sunrise and sunset
time. The interpolation equation required is

T = 24.07ST1

24.07 + ST1 − ST2
. (6.3.2)

Let’s work through an example by calculating sunrise and sunset on Febru-
ary 5, 2015, for an observer at 78◦ W longitude, 38◦ N latitude in the Eastern
Standard Time zone. Assume the observer is not on daylight saving time.

1. Calculate the Sun’s ecliptic location at midnight (UT = 0h) for the date in
question.

(Ans: λ1 = 315.844356◦, β1 = 0◦.)

2. Convert the Sun’s ecliptic coordinates to equatorial coordinates.
(Ans: α1 = 21.220290h, δ1 =−16.086932◦.)

3. Using the equatorial coordinates from the previous step, treat those coor-
dinates as if they were a star and apply equations 5.2.1 and 5.2.2 to compute
ST1r and ST1s , the Sun’s LST rising and setting times for the first set of coor-
dinates.

(Ans: ST1r = 16.088377h, ST1s = 2.352202h.)

4. Use equation 6.3.1 to calculate the Sun’s ecliptic coordinates 24h later.
(Ans: λ2 = 316.830003◦, β2 = 0◦.)
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5. If λ2> 360◦, subtract 360◦.
(Ans: no adjustment is required.)

6. Convert the ecliptic coordinates from the previous step to equatorial coor-
dinates.

(Ans: α2 = 21.285495h, δ2 =−15.791967◦.)

7. Using the equatorial coordinates from the previous step, calculate ST2r and
ST2s , the Sun’s LST rising and setting times for the second set of coordinates.

(Ans: ST2r = 16.136536h, ST2s = 2.434454h.)

8. Use equation 6.3.2 to interpolate the 2 sets of LST rising times.
(Ans: Tr = 16.120631h.)

9. Interpolate the 2 sets of LST setting times.
(Ans: Ts = 2.360268h.)

10. Convert the LST times to their corresponding LCT times.
(Ans: LCTr = 7.298498h,LCTs = 17.510180h.)

11. Convert the LCT times to HMS format.
(Ans: LCTr = 7h18m,LCTs = 17h31m.)

The calculated sunrise and sunset times may not match what is observed for
the same reasons that the star rise and set times from chapter 5 may not match
actual observations. Additionally, atmospheric conditions create another effect
that is particularly observable with the Sun. This effect is what we call dawn
in the morning and twilight in the evening. When the Sun is less than 18◦
below the horizon at sunrise, light is reflected by the atmosphere so that we see
sunlight before the Sun actually rises. The same situation occurs at sundown
when the Sun is no more than 18◦ below the horizon.

Calculating the LCT times of sunrise and sunset over a period of several
months illustrates very clearly that days as defined by the apparent Sun are not
equal in length. An interesting experiment to perform is to plot the length of
daylight hours throughout the year and observe when the days are the shortest
and when they are the longest.

6.4 Equinoxes and Solstices

As we noted earlier, the ecliptic plane is inclined with respect to the celestial
equator (see figure 6.5 and compare it to figure 4.16) by approximately 23◦26′.
Because the Earth-Sun orbit is inclined with respect to the celestial equator, we
can use the geometry of that fact to identify 4 specific points in the Earth-Sun
orbit: 2 equinoxes and 2 solstices.
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Figure 6.5 Equinoxes and Solstices
Equinoxes and solstices mark the beginning and end of the seasons.

Referring to the geocentric Earth-Sun model in figure 6.5, it is clear that
the Sun crosses the celestial equator twice a year in its orbit around Earth.
The 2 times at which those crossings occur are the equinoxes, which take
place at about March 21 and September 22. The March equinox, known as the
vernal or spring equinox, is the point at which the Sun transitions from being
south of the celestial equator to north of the celestial equator. The Septem-
ber equinox is called the autumnal or fall equinox, and it is 180◦ around the
ecliptic plane from the vernal equinox. The autumnal equinox is the point at
which the Sun transitions from being north of the celestial equator to south of
the celestial equator. There are 2 interesting facts to note about the equinoxes.
First, the Sun’s right ascension is 0h at the vernal equinox while its right ascen-
sion is 12h at the autumnal equinox. Second, at the times of the equinoxes,
the lengths of day and night are very close to the same. This can be shown
quite easily by comparing the sunrise and sunset times around March 21 and
September 22.
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The solstices occur when the Sun has no apparent northward or southward
motion. That is, the solstices occur when the Sun is at its highest point above
the plane of the celestial equator and when it is at its lowest point below the
celestial equator. Those 2 times occur at about June 22 (summer solstice) and
December 22 (winter solstice). The summer solstice is the longest day of the
year while the winter solstice is the shortest day of the year. The word “day”
is being used here in the sense of the number of daylight hours.

Both the solstices and equinoxes play a practical role in our calendar sys-
tem because passage through a solstice or equinox defines the beginning of a
season. The March equinox marks the beginning of spring, the June solstice
marks the beginning of summer, the September equinox marks the beginning
of fall, and the December solstice marks the beginning of winter.

Although it may not be readily apparent from figure 6.5, the Sun’s ecliptic
longitude at the equinoxes and solstices is always an integer multiple of 90◦
(0◦, 90◦, 180◦, or 270◦). This fact could theoretically be exploited to calculate
the precise moment at which the equinoxes and solstices occur by working
backward from the Sun’s ecliptic coordinates to get the true anomaly, then the
mean anomaly, and from there a Julian date. However, taking such an approach
requires a great deal of mathematical expertise.

Instead of attempting to solve such a difficult mathematical problem, an
easier approach is to collect several years of equinox/solstice data and apply
curve fitting to create a function, based on historical data, that approximates
when an equinox or solstice will occur. The curve-fitting functions we will
use are derived from those presented by Meeus in Astronomical Formulae for
Calculators, 3rd edition. His 4 equations are:

March Equinox:

JDM = 1,721,139.2855 + 365.2421376Y + 0.0679190T 2 − 0.0027879T 3

(6.4.1)

June Solstice:

JDJ = 1,721,233.2486 + 365.2417284Y − 0.0530180T 2 + 0.0093320T 3

(6.4.2)

September Equinox:

JDS = 1,721,325.6978 + 365.2425055Y − 0.126689T 2 + 0.0019401T 3

(6.4.3)



The Sun 143

Table 6.2 Equinoxes and Solstices
This table shows the 2004 equinoxes and solstices as calculated by the equations in this book and
by the more accurate equations in Astronomical Algorithms.

This Book Meeus �

March Equinox 3/20 at 6h42m36s 3/20 at 6h49m42s 7m

June Solstice 6/21 at 0h49m41s 6/21 at 0h57m57s 8m

September Equinox 9/22 at 16h27m20s 9/22 at 16h30m54s 4m

December Equinox 12/21 at 12h44m22s 12/21 at 12h42m40s 2m

Note: Meeus’ results have been converted to UT.

December Solstice:

JDD = 1,721,414.3920 + 365.2428898Y − 0.0109650T 2 − 0.0084885T 3,

(6.4.4)

where Y is the year in question and T is the year divided by 1000. The result
of each equation is a Julian day number.

Let us calculate the solstices and equinoxes for the year 2010. The previous 4
equations are accurate only to about 15–20 minutes, although the intermediate
calculations that follow below will be given to the nearest second.

1. Calculate T = (Year/1000).
(Ans: T = 2.01.)

2. Using equations 6.13 through 6.16, compute the Julian day numbers.
(Ans: March JDM = 2,455,276.23384, June JDJ = 2,455,368.98427,

September JDS = 2,455,462.63777, December JDD = 2,455,552.48727.)

3. Convert the Julian day numbers from the previous step to calendar dates.
(Ans: JDM gives 3/20.733836/2010, JDJ gives 6/21.484267/2010,

JDS gives 9/23.137774/2010, JDD gives 12/21.987267/2010.)

4. Convert the day part of the dates to a day and decimal format UT.
(Ans: March: day 20, 17.612067h; June: day 21, 11.622418h;

September: day 23, 3.306565h; December: day 21, 23.694398h.)

5. Convert the UT results to HMS format.
(Ans: March equinox occurred 3/20/2010 at 17h37m, June solstice occurred

6/21/2010 at 11h37m, September equinox occurred 9/23/2010 at 3h18m,
December solstice occurred 12/21/2010 at 23h42m.)

Meeus gives a more accurate set of curve-fitting equations in Astronomical
Algorithms, but those equations require considerably more computation than
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the ones presented here. For example, table 6.2 shows the equinoxes and sol-
stices for the year 2004 as calculated by equations 6.4.1–6.4.4 and as calculated
by Meeus’s more accurate equations. For the purposes of this book, the addi-
tional calculations required for greater accuracy are not warranted, especially
when the gain in accuracy is only a few minutes.

6.5 Solar Distance and Angular Diameter

The Sun is about 93 million miles away, but its distance from Earth varies
throughout the year because Earth’s orbit is elliptical in shape. If Earth’s orbit
were a perfect circle, the Earth-Sun distance would be constant. At first glance,
it might seem that the varying Earth-Sun distance is the reason for our seasons.
It is true that distance from the Sun is an important factor in determining how
much heat reaches a planet’s surface. For example, Mercury’s surface is very
hot because its orbit is so close to the Sun whereas Pluto’s surface is very cold
since its orbit is so far away from the Sun. However, Earth’s seasons are more
attributable to the inclination of the axis of rotation with respect to Earth’s orbit
than to the varying Earth-Sun distance.

The heliocentric model in figure 6.6 shows Earth orbiting the Sun in an
elliptical orbit. The figure is highly exaggerated to make it easier to see the
relationship of Earth’s rotational axis, shown as a line extending through the
Earth, to Earth’s orbit. The axis of rotation is not perpendicular to the plane
of Earth’s orbit, but is inclined by approximately 23◦26′. As we have noted
before, this angle is the obliquity of the ecliptic.

Sun

Vernal Equinox

Winter 
Sols�ce

Aphelion Perihelion
SSSSSSuuuuunnnnnnSun

Summer 
Sols�ce

Autumnal Equinox

*Note: the seasons are 
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Figure 6.6 Earth’s Seasons
Our seasons are more attributable to the tilt of Earth’s axis than the varying Earth-Sun distance.
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Figure 6.6 also shows where Earth is in its orbit for the equinoxes and sol-
stices. It may seem surprising that the solstices do not coincide with perihelion
and aphelion, or that the equinoxes do not lie on the orbit’s semi-major axis.
This is because the solstices and equinoxes are defined relative to when Earth
crosses the plane of the celestial equator, not with respect to the apsides.

The seasons labeled in figure 6.6 are for the Northern Hemisphere. Since
Earth’s axis of rotation is not perpendicular to Earth’s orbital plane, the Sun
shines more directly on the Northern Hemisphere during 1 portion of the year
(summer) than 6 months earlier or later (winter). The result is that more sun-
light reaches the Northern Hemisphere during the summer, which results in
warmer weather than in winter even though Earth is actually farther away from
the Sun during summer than it is in winter.

Figure 6.6 also explains why seasons in the Southern Hemisphere occur at
opposite times during the year from when they occur in the Northern Hemi-
sphere. For example, it is clear from the figure that the Sun shines more directly
on the Southern Hemisphere when it is winter in the Northern Hemisphere
and vice versa. Perhaps less commonly known is that summer in the Northern
Hemisphere lasts 2–3 days longer than in the Southern Hemisphere. This is a
direct consequence of Kepler’s second law, which in essence states that Earth
moves faster along its orbit near perihelion than when it is near aphelion.

Because the distance to the Sun varies throughout the year, the Sun’s
apparent size varies too. As figure 6.7 illustrates, apparent size, which is syn-
onymous with angular diameter and angular size, is an angular measurement
of how large an object appears to be when viewed from some distance away. If
an object of diameter d is viewed from a distance D, then the object’s angular
diameter is given by the equation

θ = 2tan−1
(
d

2D

)
, (6.5.1)

where d and D must be expressed in the same units (e.g., km).

d
D

θ
Viewpoint

Object

Figure 6.7 Defining Angular Diameter
The angular diameter, or apparent size, is expressed in degrees and measures how large an object
appears to be when viewed from some distance away.
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For example, the Sun’s diameter is approximately 1,391,000 km. From
table 6.1, the Earth-Sun orbital semi-major axis is 1.495985E08 km in length.
So, applying equation 6.5.1, when the Sun is that distance away from Earth,
its apparent size is 0.532745◦. This differs from the value given in table 6.1
because the astronomers who provided the value in the table used more precise
measurements for the angular diameter and distances involved.

Equation 6.5.1 can be rewritten as

d = 2D tan

(
θ

2

)
, (6.5.2)

which allows one to find an object’s diameter when its angular diameter and
distance away have been measured or otherwise determined. Thus, using equa-
tion 6.5.2 with the angular diameter (θ0) and distance (a0) from table 6.1, one
can calculate that the Sun’s diameter is approximately 1,392,000 km.

Note that equation 6.5.1 requires that we know both an object’s diameter and
its distance away. Although the Sun’s diameter can be considered as constant,
its distance varies significantly throughout the year so that equation 6.5.1 is not
very convenient for determining the Sun’s angular diameter. However, once
we know the Sun’s true anomaly so that we know where it is in its orbit, the
distance to the Sun and its angular diameter can be calculated as by-products
from calculating the Sun’s position. The equations required are

Dist� = a0(1 − e2)

1 + e cos υ� (6.5.3)

and

θ� = θ0
(
1 + e cos υ�

)
1 − e2

, (6.5.4)

where a0 is the length of the semi-major axis of the Earth-Sun orbit, θ0 is the
angular diameter of the Sun when it is a0 distance away, and e is the orbital
eccentricity. a0, θ0, and e are listed in table 6.1. If we let

F = 1 + e cos υ�
1 − e2

, (6.5.5)

then equations 6.5.3 and 6.5.4 can be rewritten in the equivalent forms

Dist� = a0

F
(6.5.6)

and

θ� = θ0F. (6.5.7)
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Equation 6.5.3 should look familiar. We saw it earlier in subsection 4.5.1
when the true anomaly concept was first introduced. The equation holds for any
object in an elliptical orbit and expresses the relationship between an orbiting
object’s true anomaly and the characteristics of its orbit (specifically, the orbital
eccentricity and the semi-latus rectum).

To illustrate, let us find the distance to the Sun and its angular diameter on
February 15, 2015.

1. Using the steps in section 6.2, compute the Sun’s true anomaly for the
given date at 0h UT. For this example, we’ll solve the equation of the center
rather than Kepler’s equation and assume that the observer is at 0◦ latitude, 0◦
longitude.

(Ans: υ� = 43.025813◦.)

2. Compute F from equation 6.5.5.
(Ans: F = 1.012497.)

3. Use the values from table 6.1 and equation 6.5.6 to compute the distance to
the Sun.

(Ans: Dist� = 1.478E08 km.)

4. Use equation 6.5.7 to compute the Sun’s angular diameter.
(Ans: θ� = 0.539790◦.)

5. Convert distance to miles and angular diameter to DMS format if desired.
(Ans: Dist� = 9.181E07 miles, θ� = 0◦32′.)

6.6 Equation of Time

Recall from section 3.1 that the apparent motion of the Sun can be used to
define a solar day whose time can be measured by a sundial. However, in a
geocentric model the motion of the Sun as it orbits Earth is irregular through-
out the year. For this reason, the motion of a mean Sun is used to define a
mean solar day. The amount by which time for a mean solar day and time for
an apparent solar day differ varies throughout the year. The difference between
these 2 times is the equation of time. Mathematically, the relationship between
apparent solar time (T�), mean solar time (TM�), and the equation of time
(�T ) is

�T = TM� − T�. (6.6.1)

Finding the equation of time is straightforward. By definition, the mean Sun
transits an observer’s horizon at exactly 12h, which gives us a value for TM� at
a specific instant in time. All that is needed now is to find the equivalent solar
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time at that same instant. This can be done by recalling that the right ascension
and sidereal time are the same at transit. Therefore, finding the Sun’s right
ascension when it transits an observer’s horizon will give the GST from which
the UT can be calculated. The equation of time is the difference between 12h

and the calculated UT.
An alternative way to find the equation of time is to compute it directly from

the Sun’s ecliptic longitude λ� and mean anomaly M�. Adapted from W. M.
Smart’s equation in Textbook on Spherical Astronomy, �T is given by

−�T = y sin
(
2λ�

)− 2e sinM� + 4ey sinM� cos
(
2λ�

)

− y2

2
sin
(
4λ�

)− 5e2

4
sin
(
2M�

)
, (6.6.2)

where y= tan2
(ε

2

)
and the resulting �T is in radians.

Table 6.1 gives Earth’s orbital eccentricity e while an acceptable value for
the obliquity of the ecliptic ε is 23.439292◦, which was its value at the standard
epoch J2000. For better accuracy, one can use JPL’s equation presented in
section 4.8 to compute ε for any particular date. It is important to note that
equation 6.6.2 gives the equation of time in radians, which must be converted
to degrees and then to hours.

To illustrate, calculate the equation of time for May 5, 2016.

1. Compute the Sun’s ecliptic longitude and mean anomaly for the given date.
For this example, we will solve the equation of the center rather than Kepler’s
equation.

(Ans: λ� = 44.954290◦, M� = 120.363970◦.)

2. Use equation 4.8.2 to compute the obliquity of the ecliptic for the given year.
(An acceptable degree of accuracy can be obtained by using ε= 23.439292◦
rather than computing it.)

(Ans: ε= 23.437212◦.)

3. Compute y= tan2
(ε

2

)
.

(Ans: y= 0.043027.)

4. Using equation 6.6.2, compute �T in radians.
(Ans: �T = 0.014500 radians.)

5. Multiply by −1 to account for the minus sign on the left side of equa-
tion 6.6.2.

(Ans: �T =−0.014500 radians.)

6. Convert radians to degrees.
(Ans: �T =−0.830768◦.)
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7. Convert degrees to hours by dividing by 15.
(Ans: �T =−0.055385h.)

8. Convert the equation of time to HMS format if desired.
(Ans: �T =−0h03m19s.)

For this example, −0h03m19s must be subtracted from “sundial” time to get
the corresponding “wristwatch” time.

6.7 Program Notes

The program for this chapter contains all the algorithms described in this chap-
ter for calculating the Sun’s location, sunrise and sunset, the equinoxes and
solstices, and the equation of time. The program also includes an option to
select whether the equation of the center or Kepler’s equation will be used to
calculate the Sun’s position.

6.8 Exercises

For the following problems, use the Sun’s orbital elements for the standard
epoch J2000.

1. An observer is located at 95◦ W longitude, 30◦ N latitude within the Central
Standard Time zone. The date is August 9, 2000, and the observer is on day-
light saving time. If the LCT is 12h, what are the Sun’s ecliptic coordinates?
What are the Sun’s equatorial coordinates? What are the Sun’s horizon coordi-
nates? Solve the equation of the center for this problem.

(Ans: β� = 0◦, λ� = 137.386004◦, α= 9.322193h, δ= 15.623648◦,
h= 65◦43′, A= 121◦34′.)
2. What are the LCT sunrise and sunset times for the previous observer?

(Ans: LCTr = 6h46m, LCTs = 20h05m.)

3. Another observer is located at 30◦ W longitude, 20◦ S latitude within the
Eastern Standard Time zone. Assume the observer is on daylight saving time. If
the date is May 6, 2015, and the LCT is 14h30m00s, what are the Sun’s ecliptic,
equatorial, and horizon coordinates? Use the Newton/Raphson method to solve
Kepler’s equation for this problem.

(Ans: β� = 0◦, λ� = 45.917857◦, α= 2.896770h, δ= 16.603118◦,
h= 13◦34′, A= 293◦37′.)
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4. What are the LCT sunrise and sunset times for the previous observer?
(Ans: LCTr = 4h24m, LCTs = 15h30m.)

For the remaining problems, when computing the Sun’s location, solve the
equation of the center rather than Kepler’s equation.

5. For the year 2010, what were the UT times for the solstices and equinoxes?
(Ans: March equinox: March 20 at 17h37m; June solstice: June 21 at

11h37m; September equinox: September 23 at 3h18m; December solstice:
December 21 at 23h42m.)

6. On August 9, 2015, how far away was the Sun? What was its angular diam-
eter?

(Ans: Dist� = 1.517E08 km or 9.425E07 miles, θ� = 0◦32′.)
7. On May 6, 2010, how far away was the Sun? What was its angular diameter?

(Ans: Dist� = 1.509E08 km or 9.377E07 miles, θ� = 0◦32′.)
8. On August 9, 2015, what was the equation of time?

(Ans: �T = 0h05m37s.)

9. On May 6, 2010, what was the equation of time?
(Ans: �T =−0h03m21s.)

10. On January 1, 2020, what will be the estimated equation of time?
(Ans: �T = 0h03m07s.)



7 The Moon

This chapter is devoted to Earth’s only natural satellite—the Moon. Our Moon
is by far the most visible celestial object in the night sky. Unlike most other
objects that grace the nighttime sky, it is quite often visible during daytime
hours. The Moon’s domination of the nighttime sky and its quiet beauty
have caused it to be a source of wonder throughout the ages. Even when
viewed with the naked eye, the Moon is an interesting object to behold. Its
splendor is greatly enhanced by a low-powered telescope or a good pair of
binoculars.

This chapter will demonstrate how to calculate the position of the Moon.
This may seem to be more trouble than it’s worth since the Moon’s location can
be readily determined by simply looking up into the sky. However, calculating
the Moon’s position is required for predicting eclipses and determining when
the Moon will rise and set. This chapter will show how to calculate the Moon’s
rising and setting times, but it will only describe predicting eclipses in general
terms. This chapter will also show how to calculate the distance to the Moon
and its angular diameter.

The historical definition of a month is closely tied to the Moon. The reason
a month is divided into roughly 4 weeks is related to the 4 phases of the Moon.
This chapter will discuss different ways of describing the Moon’s phases and
show how to predict the lunar phases. It will conclude with a general discus-
sion about eclipses and some of the rules that govern when eclipses must and
cannot occur.

7.1 Some Notes about the Moon

Although the Moon is the only natural satellite orbiting Earth, it is hardly the
only moon in our Solar System. Pluto and all full-fledged planets in our Solar
System, except Mercury and Venus, also have moons. Observing the motion of
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Figure 7.1 The Moon from Apollo 11
This photograph was taken from Apollo 11 during its journey homeward when the spacecraft was
about 10,000 nautical miles away from the Moon. (Image courtesy of NASA)

the moons of Jupiter is part of what convinced Galileo that the Sun is the center
of our Solar System. However, as Isaac Asimov once observed, our Moon may
have been a contributing factor for the delay in the widespread acceptance of
a heliocentric Solar System. Since the Moon obviously orbits Earth, it could
be argued, then so must all the other objects within the Solar System and the
universe.

The Moon is roughly 240,000 miles away from Earth. At perigee, it is
225,700 miles away while at apogee it is 252,000 miles away. With a diam-
eter of nearly 2,160 miles, the Moon is one-fourth the size of Earth and has a
mass 0.0123 times that of Earth. Because it has such a low mass, the Moon’s
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gravitational field is too weak to hold much of an atmosphere. Hence, the
Moon is a place with no sound because there is no atmosphere to carry sound
waves. Shadows on the Moon are very dark and sharply defined because there
is no atmosphere to scatter light rays. There is no weather to alter the Moon’s
landscape, so its surface remains unchanged over eons of time except for the
impact of meteoroids and the occasional Moonquake, or the infrequent visits
by humans and our machines.

The absence of an atmosphere is largely responsible for the very hot lunar
days and very cold lunar nights. With no atmosphere to shield the Moon from
the intense solar rays that reach it, surface temperatures during the day may
soar to 250 ◦F while with no atmosphere to hold in heat, nighttime surface
temperatures may drop to −300 ◦F. In 2009 NASA’s Lunar Reconnaissance
Orbiter (LRO) measured the temperature at the bottom of some of the craters
at the Moon’s North and South Poles to be −413 ◦F, which is colder than the
surface temperature of Pluto and the lowest naturally occurring temperature
ever recorded anywhere in our Solar System.

Lunar days with their searing heat last for a little over 13.5 Earth days while
the Moon’s bitterly cold nights also last 13.5 days. Despite the Moon’s extreme
surface temperatures, establishing a lunar base is feasible, especially if part of
the base is built under the Moon’s surface. Underground homes on Earth are a
rarity, but they could well be the norm on the Moon when colonizing the Moon
becomes a reality.

Fascination with the Moon inspired early science fiction writers to create
fanciful tales about lunar creatures and daring space flights. Perhaps most
notable among these writers was the French author Jules Verne, who wrote
an imaginary tale of a trip to the Moon with surprising scientific accuracy. His
approach to sending a man to the Moon is not all that far from what modern day
rockets do. Verne envisioned a spacecraft being shot out of a gigantic cannon,
which may be a fair description of how astronauts feel when they are blasted
into space. His rather accurate description of the state of weightlessness on
such an imaginary flight shows how prophetic Verne turned out to be.

The Moon has a more direct effect on our planet than simply fueling our
imaginations and providing romantic Moonlight. Tides are caused by the grav-
itational pull of the Sun and Moon upon the oceans and are readily visible
effects to anyone who lives near an ocean. Moreover, the gravitational pull
of the Moon affects Earth’s orbit while the gravitational pull of Earth in turn
affects the Moon’s orbit. In an effect called tidal braking, the Moon’s gravi-
tational pull is slowing down Earth’s rate of rotation and thereby increasing
the length of our days by 2 milliseconds per century. The rotational energy that



Figure 7.2 Tides at the Bay of Fundy
The author took these photographs at Hopewell Cape’s The Rocks in the Bay of Fundy. The pho-
tograph on the top was taken at high tide; the one on the bottom was taken 16.5 hours later at low
tide. The people in the bottom photograph are quite literally walking on the ocean’s floor! Spring
tides at Hopewell Cape average 50 feet while the highest tide ever recorded there was 71 feet.
The Bay of Fundy’s geography contributes to the extreme tides found there, but it is the Moon’s
gravitational pull that sets this awesome power into motion.
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Earth loses is transferred to the Moon with the result that the Moon’s orbit is
moving farther away from Earth at a rate of about 4 cm a year.

A curious fact about the Moon is that only 1 of its sides is ever visible from
Earth. The Moon rotates on its axis at 10 miles per hour, which means that a
lunar day with respect to the stars is 27.322 Earth days. This is the same amount
of time that it takes the Moon to complete 1 orbit around Earth with respect to
the stars. It is because the Moon’s rotational and orbital periods are the same
that Earthbound observers can only ever see 1 side of the Moon. However, over
time we can actually view almost 60 percent of the Moon’s surface because of
the effect of lunar libration, a slow oscillation in the Moon’s orbit and axis
of rotation. The net result of this lunar wobbling is that slightly different parts
of the lunar surface are viewable from Earth over time.

The unseen side of the Moon, erroneously called the “dark side,” was first
photographed in 1959 by the Soviet Union’s Luna 3 space probe and was later
seen by human eyes during the Apollo Moon missions. There is in reality no
“dark side of the Moon” because, except for the bottoms of some of the deepest
craters at the Moon’s poles, all areas of the Moon’s surface are exposed to
sunlight.

Features on the Moon’s surface enhance its romantic attraction and splendor.
Its silvery color, with its contrasting dark patches scattered here and there, have
caused some observers to look at the full Moon and visualize the face of a man.
Others deny there is a “man in the Moon” and have seen the profile of a woman
instead. Still others have imagined great oceans on the Moon, as evidenced by
the dark areas on its surface. For this reason, the Moon’s dark areas are called
maria, which is Latin for seas. The lighter colored areas are called terrae,
which is Latin for earth or dry land. Satellite photographs and samples returned
from manned and robotic lunar expeditions confirm that the great lunar maria
were never seas at all; they are in fact relatively flat plains formed by ancient
volcanic eruptions. Lunar terrae are highlands or mountainous regions that are
at a higher elevation than maria.

Samples returned from lunar missions confirm that although the Moon’s sur-
face appears bright white in color, it is actually quite dark and reflects only
about 7–12 percent of the light that strikes the surface. By contrast, grass
reflects 15 percent of the light that strikes it whereas snow reflects 40–85
percent, depending on how directly the light strikes the snow.

Satellite photographs reveal surprising differences between the Moon’s far
side and near side (the side that always faces Earth). While about 31 percent
of the near side of the Moon is covered in maria, less than 2 percent of the far
side has any maria at all. Almost 90 percent of the Moon’s far side is covered
in craterous regions while only 60 percent of the side visible from Earth is
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Figure 7.3 Eagle Leaving the Moon
In this photograph, Apollo 11’s Lunar Excursion Module Eagle is about to dock with the Com-
mand Module Columbia in preparation for returning home. Earth is in the background above the
lunar horizon while an extensive maria area can be seen on the surface. (Image courtesy of NASA)

covered in craters. Astronomers continue to debate why there are such striking
differences between the 2 sides of the Moon.

Modern studies have dispelled many of the romantic notions once held about
the Moon. Lunar features are easily recognizable with even a moderately sized
telescope, and because of this, much of the Moon’s mystery and romance are
gone, or at least greatly diminished. This is certainly true of the craters seen
in great profusion across the lunar surface, denoting the Moon’s violent past.
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Scientists have long debated whether lunar craters were a result of volcanic
eruptions or the impact of objects such as meteoroids or asteroids striking the
Moon.1 Evidence collected from the Apollo missions proved conclusively that
lunar craters were formed by the impact of objects striking the Moon’s surface.

Easily visible to the naked eye and located in the southern part of the Moon,
the crater Tycho gives mute evidence of the tremendous size of the objects
that must have struck the Moon in ages past. Tycho is a sharply defined crater
approximately 53 miles in diameter and 3 miles deep. It is of considerable
scientific interest because it appears to be the most recently formed of the
ancient lunar craters. Tycho’s clearly discernible rays emanating from around
the crater’s rim offer important clues to the Moon’s age and how lunar craters
were formed.

Located slightly northwest of the center of the Moon’s near side, the giant
impact crater Copernicus is 58 miles wide and 2.4 miles deep. Copernicus is a
relatively young crater, although not as young as Tycho. Apollo 12 astronauts
brought back samples from the Copernicus crater region that have yielded a
wealth of geological information about the Moon, how it was formed, and the
timescale on which the lunar features were formed.

Tycho and Copernicus are not the largest lunar craters. They are actually
rather average in size compared to other craters. The largest impact crater is
the Aitken Basin, which is located at the Moon’s South Pole and is mostly on
the far side of the Moon so that it cannot be observed from Earth. The Aitken
Basin is 1,550 miles in diameter and over 5 miles deep in some places. By
comparison, the puny Meteor Crater in Arizona is only 3,900 feet in diameter
and 560 feet deep. The largest impact crater on Earth is the Vredefort crater in
South Africa, which is estimated to have been originally 185 miles in diameter
but has decreased in diameter over time due to the effects of erosion.

In 2005, NASA initiated a program to actively monitor the Moon to deter-
mine how often it is struck by objects more massive in size than a few ounces.
Understanding how often objects bombard the Moon is important because of
the dangers such objects would pose to spacecraft orbiting the Moon and to any
colony established on the Moon. Although meteor showers regularly pepper
Earth, we are protected by Earth’s atmosphere, so most “shooting stars” burn
up long before they reach the surface. However, the Moon is not so fortunate
because it essentially has no atmosphere. In fact, NASA has detected hundreds
of impacts on the lunar surface since their formal monitoring efforts began.

1. Meteoroids and asteroids are both rocky objects in our Solar System. Asteroids are generally
considered to be the same as meteoroids, except that an asteroid is much larger in size (“planet or
moon sized” versus “rock sized”) than a meteoroid. When a meteoroid enters Earth’s atmosphere,
it is called a meteor or shooting star. If a meteor does not vaporize in Earth’s atmosphere but
reaches the surface, it is called a meteorite.



158 Chapter 7

The most phenomenal impact detected to date occurred on September 11,
2013, when a meteoroid, estimated to have a mass of 880 pounds and a width
of 2–4.5 feet, struck the Moon at a speed of nearly 40,000 miles per hour. The
impact gouged a 130-foot crater in the lunar surface and generated a flash of
light that was bright enough to be visible from Earth with the naked eye. Had
such an object struck a lunar colony or an orbiting spacecraft, the results would
have been disastrous.

Another striking feature of the lunar surface is that it contains a number
of large mountain ranges. The most mountainous region visible from Earth is
near the lunar South Pole where the Leibnitz Mountains have peaks that reach
32,800 feet. These mountains are actually part of the Aitken Basin impact
crater’s rim, and they are the highest mountain range on the Moon. Other
mountainous regions include the lunar Caucasian Mountains, which tower to
19,600 feet, and the lunar Alps, which reach a height of 12,000 feet. By com-
parison, Earth’s Mount Everest is 29,000 feet high while Mount Kilimanjaro
is 19,300 feet high.

Surface water cannot last long on the Moon because direct exposure to the
Sun’s rays would cause it to vaporize and quickly be lost into space. Despite
this physical fact and the fact that the lunar maria are known not to be ancient
sea beds, scientists debated whether water was ever on the Moon. The long
debate is now over. In October 2008, India launched the Chandrayaan-1 space-
craft whose mission included attempting to detect water on the Moon. The
Chandrayaan-1 sent a probe to the Moon’s surface that detected evidence of
water in the thin atmosphere just above the Moon’s surface.

NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) arrived
at the Moon in 2009 and confirmed the presence of ice in the permanently
shadowed crater Cabeus located at the Moon’s South Pole. Even more conclu-
sively, in 2010 sensors aboard the still-functioning Chandrayaan-1 discovered
over 40 permanently shadowed craters near the North Pole that may contain
as much as 600 million tons of water in the form of ice. Although no liquid
water exists on the Moon’s surface, it is now believed that water in the form
of ice is abundant. With the prospect of available sources of water, can the
establishment of a lunar colony be much further in our future?

7.2 Lunar Exploration

It would be grossly untrue to claim that significant exploration of the Moon
did not begin until the advent of the Space Age. Nevertheless, it is per-
haps fair to say that the most exciting phase of lunar exploration began when
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Americans and Russians first sent spacecraft to the Moon. The first space probe
to successfully reach the Moon was the Soviet’s Luna 2, which was intention-
ally crashed onto the Moon in September 1959. In October of that same year,
the Luna 3 sent back humankind’s first photographs of the far side of the Moon
before it, too, was crashed onto the lunar surface.

The United States, which had been trailing behind the successes of the
Soviet Luna Program, launched a series of Ranger space probes in the early
1960s to explore the lunar surface. The Ranger probes were designed to send
back lunar photographs before crashing into the Moon. Between 1966 and
1968, the United States launched a series of Surveyor space probes intended
to actually land on the Moon and send back important scientific data in prepa-
ration for a manned mission. Once again, however, the Soviets were first with
Luna 9, which in February 1966 was the first space probe to successfully soft
land on a celestial object. Luna 9 predated Apollo 11’s lunar landing by 3 years
and sent back the first close-up pictures of the lunar surface, which were also
the first pictures ever to be sent back from the surface of another world.

Despite Luna being a successful exploration program that contributed
greatly to our understanding of the Moon and space travel in general, Soviet
achievements were largely overshadowed by the manned American Apollo
missions. The last spacecraft in the Luna Program was Luna 24, which was
launched in 1976. Luna 24 successfully landed on the Moon and returned 6
ounces of soil that Soviet scientists analyzed and discovered evidence of water
on the Moon. Other scientists within the international community dismissed
the Soviets’ findings, disagreed with them, or were simply unaware of them.

The pinnacle of the American space program was reached when Apollo 11
crew members Neil Armstrong, Edwin “Buzz” Aldrin, and Michael Collins
succeeded in accomplishing a feat that has been dreamed about since time
immemorial. On July 20, 1969, Neil Armstrong stepped onto the lunar sur-
face while the entire world watched in awe and wonder. It is doubtful that
the excitement of that moment will be realized again until a manned mission
succeeds in landing on a planet within the Solar System.

Apollo 17 was launched in December 1972 and remains to date the last
manned mission to the Moon. Before leaving the Moon, Apollo 17 astronauts
Eugene Cernan and Harrison Schmitt unveiled a plaque on their Lunar Excur-
sion Module (LEM) that would remain behind as they returned to Earth. The
plaque read, “Here man completed his first exploration of the Moon, Decem-
ber 1972 AD. May the spirit of peace in which we came be reflected in the lives
of all mankind.” To date only 12 humans, all of whom were astronauts from
the Apollo Program, have walked on the surface of the Moon. All manned
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Figure 7.4 Crew of Apollo 11
From left to right, the crew of Apollo 11: Commander Neil A. Armstrong, Command Module
Pilot Michael Collins, and Lunar Module Pilot Edwin E. Aldrin Jr. On July 20, 1969, the Lunar
Module Eagle landed at the Sea of Tranquility. Shortly thereafter, Neil Armstrong became the first
person in history to set foot on another world. (Image courtesy of NASA)

landings took place on the near side of the Moon because of the difficulty of
communicating with a spacecraft on the far side of the Moon.

Fortunately, exploration of the Moon did not end with the manned Apollo
missions. After a hiatus of over 20 years, NASA returned to the Moon with
the Clementine mission. Launched in January 1994, the Clementine spacecraft
orbited the Moon and spent 2 months extensively mapping the lunar surface.
NASA returned again in 1998 with the Lunar Prospector to continue mapping
the Moon’s surface, and again in 2011 with the Lunar Reconnaissance Orbiter
(LRO) spacecraft. As a result of these missions, we now have extraordinarily
detailed and precise maps of the entire Moon. The LRO was the spacecraft that
carried the previously mentioned LCROSS probe, whose mission was to look
for evidence of water on the Moon. The LRO is still operational, doing its part
to add to our growing knowledge about the Moon.

Lunar exploration is presently a truly international effort. The European
Space Agency (ESA) launched the Small Missions for Advanced Research
in Technology-1 (SMART-1) spacecraft in 2003, whose primary mission was
to capture 3-dimensional X-ray and infrared images of the lunar surface. In
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2007 the Japan Aerospace Exploration Agency (JAXA), Japan’s equivalent
of NASA, launched the SELENE (also called Kaguya) lunar orbit explorer
to investigate the origin and evolution of the Moon. Also in 2007, the Chi-
nese National Space Agency (CNSA) launched the first of their Chang’e lunar
orbiters. Chang’e 3, which soft-landed on the Moon in December 2013, was
the first unmanned spacecraft to successfully do so since the Soviet Luna 24
spacecraft in 1976. The Chang’e 3 deployed a robotic rover that moves around
the lunar surface as it performs various scientific experiments.

In 2008, India’s national space agency, the Indian Space Research Organi-
zation (ISRO), launched the lunar orbiter Chandrayaan-1 that played such a
vital role in confirming the presence of water on the Moon. ISRO is cur-
rently engaged in an ambitious effort to create a 3-dimensional atlas of the
entire Moon and conduct a thorough mineralogical mapping of the lunar
surface.

All the previously mentioned lunar missions were directed and funded by
various governmental agencies. However, commercial industries have now
entered the modern “race” to the Moon. In 2007, Google announced that it
would award $30 million to the first privately funded team to successfully land
a robot on the Moon that can travel at least 0.3 miles on the lunar surface and
send back still images and video to Earth. More recently, in October 2014
the German company LuxSpace, whose spacecraft was carried onboard the
Chang’e 5 test spacecraft, made a successful lunar flyby as a memorial to the
German space pioneer Manfred Fuchs.

These exploration efforts and others make it clear that humans will someday
return to the Moon to explore it, take advantage of its resources, and live there
in what will surely be the first of many colonies formed throughout our Solar
System. As but 1 example of the current race to return to the Moon, JAXA
has announced plans for a manned lunar landing around 2020 and the estab-
lishment of a manned lunar base by 2030. It is indeed an exciting time in the
history of the exploration of the Moon!

7.3 Locating the Moon

Calculating the Moon’s position is the most ambitious and complex calcula-
tion we have presented so far. The complexity is because—in the parlance
of astrophysics—determining the Moon’s position requires solving a 3-body
problem. That is, we must consider 3 bodies (Earth, Sun, and Moon) in our
calculations because the masses of the Earth and Sun are so much greater than
the Moon’s mass and they are so close to the Moon that they significantly
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Figure 7.5 The Moon’s Orbital Elements
This illustration shows the Moon’s orbital plane and orbital elements. Calculating the Moon’s
position requires knowing the Sun’s position as well.

affect the Moon’s orbit. In contrast, determining the position of the Sun can
be accomplished to an acceptable degree of accuracy by solving only a 2-body
(Earth and Sun) problem. Although all masses in the Solar System (planets,
asteroids, comets, etc.) affect the Earth-Sun orbit, their effects are negligi-
ble for most purposes because the collective mass of those objects, coupled
with their relatively large distances, is greatly overwhelmed by the combined
masses of the Earth and Sun.

Figure 7.5 shows the angles required for locating the Moon. This figure is
similar to figure 4.12 (section 4.5), except that figure 7.5 is a geocentric model
and uses the nomenclature from table 7.1 to explicitly show the Moon’s orbital
elements. The Sun’s position is also shown because it has such a significant
impact on calculating the Moon’s position.

To determine the Moon’s position, we will proceed conceptually in much
the same manner as for determining the Sun’s location. The basic idea is to
calculate the Moon’s true anomaly from which the Moon’s position can be
determined. However, we will not attempt to solve Kepler’s equation to find
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Table 7.1 Moon’s Orbital Elements
These geocentric orbital elements for the Moon are for the standard epoch J2000, as given in The
Astronomical Almanac 2000.

Orbital Element Value

e, eccentricity of the Moon’s orbit 0.0549

a0, length of the Moon’s orbital semi-major axis 384,400 km

θ0, Moon’s angular diameter when a distance of a0 from Earth 0.5181◦
ι, inclination of the Moon’s orbit with respect to the ecliptic 5.1453964◦
λ0, Moon’s ecliptic longitude at the epoch 218.316433◦
� 0, Moon’s ecliptic longitude at perigee at the epoch 83.353451◦
	0, Moon’s ecliptic longitude of the ascending node at the epoch 125.044522◦

the Moon’s true anomaly but will instead rely on solving the equation of the
center. This will considerably simplify our calculations.

Besides being a 3-body problem, calculating the Moon’s position is more
complicated than calculating the Sun’s position in 2 ways. First, locating the
Moon is a 3-dimensional problem because the Moon’s orbit does not lie within
the ecliptic plane. Recall that the Sun’s orbit does lie completely within the
ecliptic plane, so only the Sun’s ecliptic longitude must be calculated to deter-
mine the Sun’s position (the Sun’s ecliptic latitude is 0◦). The Moon’s ecliptic
latitude and longitude must both be calculated.

Second, several adjustments must be made to account for various effects.
We will limit our considerations to 4 effects:

• Annual equation correction (Ae)

• Variation correction (V )

• Evection correction (Ev)

• Mean anomaly correction (Ca)

The annual equation and variation corrections account for the gravitational
pull of the Sun, which varies depending on where the Moon and Earth are rel-
ative to the Sun. The annual equation accounts for the fact that the Earth-Sun
distance varies throughout the year and hence affects the gravitational pull of
the Sun on the Moon. The Sun’s gravitational pull on the Moon is greater as
Earth approaches perihelion and less as Earth approaches aphelion. The vari-
ation correction is an adjustment that varies with where the Moon is in its
orbit around Earth. When the Moon is between the Earth and Sun, the Sun’s
gravitational attraction is stronger. When Earth is between the Moon and Sun,
the Sun’s gravitational attraction is weaker. As for the remaining effects, the
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evection correction accounts for changes in the Moon’s orbital eccentricity,
which is also affected by the Sun’s gravitational pull. The mean anomaly cor-
rection is applied to obtain a better estimate of the Moon’s true anomaly when
solving the equation of the center.

Professional astronomers make many more corrections than these to cal-
culate the Moon’s position. In fact, to achieve high accuracy, hundreds of
corrections are necessary to account for the gravitational effects of the plan-
ets, parallax, variations in the longitude of the ascending node, variations in
the position of perigee, precession, and other effects! Fortunately, sufficient
accuracy can be obtained for our purposes with just these 4 corrections. The
accuracy achieved in doing so is better than a quarter of a degree,2 which is
sufficient for this book since our primary goal is to convey a conceptual under-
standing of the factors involved rather than achieving arcsecond accuracy.

The approach for calculating the Moon’s position can be summarized as
follows:

• Calculate the Sun’s ecliptic longitude λ� (section 6.2). Better accuracy will
usually be obtained in finding the Sun’s location by solving Kepler’s equa-
tion instead of the equation of the center, but the additional effort may not be
warranted.

• Compute the Moon’s mean ecliptic longitude (λ) with respect to the standard
epoch.

• Compute the Moon’s mean ecliptic longitude for the ascending node (	).

• Compute the Moon’s mean anomaly (Mm) with respect to the standard
epoch.

• Compute corrections Ae, Ev , and Ca and use Ca to solve the equation of the
center to get the Moon’s true anomaly (υm).

• Compute the variation correction V .

• Apply corrections to λ and 	 from which the Moon’s true ecliptic coordi-
nates will be determined.

Several equations are required for this rather lengthy process. In order to
avoid confusion, we will use the subscript m when referring to the Moon
and the subscript � when referring to the Sun. You may wish to refer back
to section 6.2 to see how the approach for calculating the Moon’s position
parallels the approach for calculating the Sun’s position.

2. Duffett-Smith provides an accuracy of one-fifth of a degree in Practical Astronomy with Your
Calculator or Spreadsheet. The algorithm Meeus presents in Astronomical Algorithms is accurate
to within 10′′. For greater accuracy than these sources, refer to the resources cited in sections 10.6
and 10.7.
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Since the Moon orbits Earth with respect to the stars in 27.3217 days, the
Moon moves along its mean orbit by

360◦

27.3217 days
≈ 13.176339686◦ per day.

Thus, the Moon’s mean ecliptic longitude before any corrections are made is

λ= 13.176339686De + λ0, (7.3.1)

where De is the number of days (including fractional days) since the standard
epoch, and λ0 is the Moon’s ecliptic longitude at the epoch (see table 7.1).

The Moon’s (uncorrected) mean ecliptic longitude of the ascending node is

	=	0 − 0.0529539De, (7.3.2)

where 	0 is the Moon’s ecliptic longitude of the ascending node at the stan-
dard epoch (see table 7.1). Recall that the ascending node is the point in an
orbit at which an object transitions from being below its orbital plane to being
above it.

The Moon’s (uncorrected) mean anomaly is

Mm= λ− 0.1114041De −� 0, (7.3.3)

where � 0 is the Moon’s ecliptic longitude at the moment of perigee for the
standard epoch.

The annual equation, evection, and mean anomaly corrections are given by

Ae = 0.1858 sinM� (7.3.4)

Ev = 1.2739 sin
[
2
(
λ− λ�

)−Mm

]
(7.3.5)

Ca =Mm+Ev −Ae − 0.37 sinM�. (7.3.6)

Given the mean anomaly correction, we will use the following approxima-
tion to solve the equation of the center to get the Moon’s true anomaly:

υm= 6.2886 sinCa + 0.214 sin (2Ca) . (7.3.7)

The variation correction is given by

V = 0.6583 sin
[
2
(
λ′ − λ�

)]
, (7.3.8)

where λ′ is a corrected ecliptic longitude that includes the true anomaly υm
plus the Ae and Ev corrections. That is,

λ′ = λ+Ev +υm−Ae. (7.3.9)
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Applying the variation correction V to λ′ gives the Moon’s true ecliptic
longitude, λt .

λt = λ′ +V. (7.3.10)

The corrected ecliptic longitude of the ascending node is given by

	′ =	− 0.16 sinM�. (7.3.11)

Finally, once 	′, λt , and the Moon’s orbital inclination ι (see table 7.1) are
known, the Moon’s ecliptic longitude (λm) and latitude (βm) are given by:

λm=	′ + tan−1
[

sin(λt −	′) cos ι

cos(λt −	′)

]
(7.3.12)

βm= sin−1 [sin(λt −	′) sin ι
]
. (7.3.13)

The resulting ecliptic coordinates can then be converted to the equatorial or
horizon coordinate systems as desired.

For all the preceding chapters, we blissfully ignored the difference between
TT and UT. (TT was briefly discussed in chapter 3.) For the Moon, however,
the difference between TT and UT can be significant and should be considered
for greater accuracy because of the distance that the Moon travels in its orbit
in a mere few minutes. The difference between TT and UT varies year to year
and day to day. Nevertheless, we will approximate it as 63.8s, which was the
difference between TT and UT at the beginning of the year 2000. We will
assume that

T T =UT + 63.8s (7.3.14)

for all calculations in this chapter, irrespective of the date and actual time dif-
ference. One can consult the US Naval Observatory website, The Astronomical
Almanac, or any of a number of other readily available sources to get a more
accurate time difference and therefore improve the accuracy of predicting the
Moon’s position.

To illustrate the lengthy process required, let’s compute the Moon’s position
for January 1, 2015, at 22h LCT. Assume an observer is at 38◦ N latitude,
78◦ W longitude within the Eastern Standard Time zone, and that the observer
is not on daylight saving time.

1. Convert LCT to UT, GST, and LST times and adjust the date if needed.
(Ans: UT = 3.00h,GST = 9.762547h,LST = 4.562547h, Date = 1/2/2015.)

2. Use equation 7.3.14 to compute TT.
(Ans: TT = 3.017722h.)
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3. Compute the Julian day number for the standard epoch.
(Ans: Epoch: 2000.0, JDe = 2,451,545.00.)

4. Compute the Julian day number for the desired date using the Greenwich
date and TT from steps 1 and 2, and include the fractional part of the day.

(Ans: JD = 2,457,024.62574.)

5. Compute the total number of elapsed days, including fractional days, since
the standard epoch (i.e., JD − JDe).

(Ans: De = 5479.625738 days.)

6. Use the algorithm from section 6.2 to calculate the Sun’s ecliptic longitude
and mean anomaly for the given UT date and time. (For this example, we will
solve the equation of the center when computing the Sun’s position.)

(Ans: λ� = 281.394034◦,M� = 358.505618◦.)

7. Apply equation 7.3.1 to calculate the Moon’s (uncorrected) mean ecliptic
longitude.

(Ans: λ= 72,419.726515◦.)

8. If necessary, use the MOD function to put λ into the range [0◦, 360◦].
(Ans: λ= 59.726515◦.)

9. Apply equation 7.3.2 to compute the Moon’s (uncorrected) mean ecliptic
longitude of the ascending node.

(Ans: 	=−165.123031◦.)

10. If necessary, adjust 	 to be in the range [0◦, 360◦] (i.e., 	MOD 360◦).
(Ans: 	= 194.876969◦.)

11. Apply equation 7.3.3 to compute the Moon’s (uncorrected) mean anomaly.
(Ans: Mm=−634.079710◦.)

12. Adjust Mm if necessary to be in the range [0◦, 360◦].
(Ans: Mm= 85.920290◦.)

13. Use equation 7.3.4 to compute the annual equation correction.
(Ans: Ae =−0.004845◦.)

14. Use equation 7.3.5 to compute the evection correction.
(Ans: Ev =−0.237497◦.)

15. Use equation 7.3.6 to compute the mean anomaly correction.
(Ans: Ca = 85.697288◦.)

16. Use equation 7.3.7 to compute the Moon’s true anomaly.
(Ans: vm= 6.302897◦.)

17. Use equation 7.3.9 to apply all of the applicable corrections and the true
anomaly to arrive at a corrected mean ecliptic longitude.

(Ans: λ′ = 65.796760◦.)
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18. Use equation 7.3.8 to compute the variation correction.
(Ans: V =−0.623159◦.)

19. Apply equation 7.3.10 to calculate the Moon’s true ecliptic longitude.
(Ans: λt = 65.173601◦.)

20. Apply equation 7.3.11 to compute a corrected ecliptic longitude of the
ascending node.

(Ans: 	′ = 194.881141◦.)

21. Compute y= sin(λt −	′) cos ι where ι is the inclination of the Moon’s
orbit with respect to the ecliptic (see table 7.1). This is the numerator of the
fraction in equation 7.3.12.

(Ans: y=−0.766215.)

22. Compute x= cos(λt −	′). This is the denominator of the fraction in equa-
tion 7.3.12.

(Ans: x=−0.638869.)

23. Compute T = tan−1
( y
x

)
.

(Ans: T = 50.178711◦.)

24. Using the algebraic signs of y and x, determine a quadrant adjustment
for T to remove the angle ambiguity. This value will be used to calculate the
Moon’s true ecliptic longitude, which must be in the range [0◦, 360◦].

(Ans: Adjustment = 180◦, so T = 230.178711◦.)

25. Calculate λm=	′ + T . This uses the temporary results computed in the
preceding steps to apply equation 7.3.12.

(Ans: λm= 425.059853◦.)

26. If λm > 360◦, then subtract 360◦.
(Ans: λm= 65.059853◦.)

27. Use equation 7.3.13 to compute the Moon’s ecliptic latitude.
(Ans: βm=−3.956258◦.)

28. Convert the Moon’s ecliptic latitude (βm) and longitude (λm) to their cor-
responding equatorial coordinates.

(Ans: αm= 4.257714h, δm= 17.248880◦.)

29. Convert the equatorial coordinates to horizon coordinates for the observer
stated at the beginning of these calculations.

(Ans: hm= 68◦52′, Am= 192◦11′.)

The calculations just presented are long indeed. Care must be taken at each
step to avoid making mistakes in such a lengthy process!

Instead of using the equation of the center to compute λ� andM� in step 7,
we could have solved Kepler’s equation. Had we done so with the simple
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iterative method, for this example the result would be

λ� = 281.392970◦,M� = 358.505618◦.

Using these values and carrying through the calculations, steps 27 and 29
would yield

λm= 65.059814◦, βm=−3.956255◦,

which then leads to horizon coordinates of

hm= 68◦52′, Am= 192◦11′

for the stated observer. The additional effort required to solve Kepler’s
equation is not worth it in this example.

7.4 Moonrise and Moonset

In section 6.3, we noted that the Sun’s equatorial coordinates change rapidly
and that fact makes it more difficult to determine when the Sun will rise/set
than to determine when a star will rise/set. So, we employed a strategy in
which we computed the Sun’s position at midnight on the date for which we
want to calculate sunrise and sunset and then computed the Sun’s position 24h

later. We used those 2 locations to compute 2 sets of rising and setting times
and then interpolated to estimate sunrise and sunset for the date of interest.

The Moon’s equatorial coordinates also change rapidly with time. Hence,
to compute moonrise and moonset, we will employ the same strategy, except
that we will calculate positions for the Moon that are 12h apart rather than
24h apart. Specifically, we will first determine the Moon’s position at midnight
(UT = 0h) on the date in question. Using the equatorial coordinates obtained,
we will compute an initial set of rising and setting times. Next, we will com-
pute the Moon’s position 12h later to arrive at a second set of rising and setting
times and then interpolate the 2 sets of rising and setting times to arrive at an
estimate for moonrise and moonset.

Determining the Moon’s position at midnight requires the calculations pre-
sented in section 7.3. Although we can repeat those calculations to determine
the Moon’s position 12h later, there is a much easier way that is sufficiently
accurate for our purposes. Assume that the Moon’s position at some point in
time is ecliptic latitude β1, longitude λ1. Then the Moon’s coordinates t hours
later are given by:

β2 =β1 + 0.05 cos
(
λt1 −	′

1

)
t (7.4.1)

λ2 = λ1 + [0.55 + 0.06 cos
(
Ca1

)]
t. (7.4.2)
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λt1 is the Moon’s true ecliptic longitude (equation 7.3.10), 	′
1 is the corrected

ecliptic longitude of the ascending node (equation 7.3.11), and Ca1 is the mean
anomaly correction (equation 7.3.6) that result from calculating the Moon’s
position at midnight (i.e., when computing β1 and λ1).

The equation we will use to interpolate the 2 sets of rising and setting
times is

T = 12.03ST1

12.03 + ST1 − ST2
. (7.4.3)

As an example, compute the rising and setting times for the observer from
the previous section. That is, compute moonrise and moonset on January
1, 2015, for an observer at 38◦ N latitude, 78◦ W longitude within the Eastern
Standard Time zone who is not on daylight saving time.

1. Calculate the Moon’s ecliptic coordinates for midnight (UT = 0h) for the
stated date. Save the values of λt1 ,	

′
1, and Ca1 for use in a later step.

(Ans: β1 =−2.981288◦, λ1 = 50.279952◦, λt1 = 50.389191◦,
	′

1 = 194.943809◦, Ca1 = 71.289991◦.)

2. Compute α1 and δ1, the equatorial coordinates for the ecliptic coordinates
calculated in the previous step.

(Ans: α1 = 3.244116h, δ1 = 14.941252◦.)

3. Using α1 and δ1, compute ST1r and ST1s , which will be the LST rising and
setting times for these equatorial coordinates. See equations 5.2.1 and 5.2.2 to
calculate rising and setting times.

(Ans: ST1r = 20.441871h, ST1s = 10.046360h.)

4. Use λt1 ,	
′
1, Ca1 , and the Moon’s ecliptic coordinates from step 1 with

equation 7.4.1 to compute the Moon’s ecliptic latitude 12 hours (i.e., t = 12)
later.

(Ans: β2 =−3.470089◦.)

5. Use equation 7.4.2 to compute the Moon’s ecliptic longitude 12h later.
(Ans: λ2 = 57.110913◦.)

6. If λ2> 360, subtract 360 degrees.
(Ans: λ2 = 57.110913◦.)

7. Compute α2 and δ2, the equatorial coordinates for the ecliptic coordinates
calculated in the previous steps.

(Ans: α2 = 3.170028h, δ2 = 16.133568◦.)

8. Using α2 and δ2, compute ST2r and ST2s , which are also rising and setting
times.

(Ans: ST2r = 20.839239h, ST2s = 10.580817h.)
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9. Use the interpolation formula given in equation 7.4.3 with ST1r and ST2r
to compute the LST for moonrise.

(Ans: Tr = 21.140161h.)

10. Use equation 7.4.3 with ST1s and ST2s to compute the LST for moonset.
(Ans: Ts = 10.513441h.)

11. Convert the LST times Tr and Ts from the previous 2 steps into their cor-
responding LCT times for moonrise and moonset.

(Ans: LCTr = 14.597889h,LCTs = 4.000179h.)

12. If desired, convert the LCT times to HMS format.
(Ans: LCTr = 14h36m,LCTs = 4h00m.)

This straightforward algorithm will not always work because converting an
LST setting time to LCT may give a calculated setting time that is on the
day before the calculated rising time. Should this happen, use the algorithm to
determine the LCT rise/set times for a date prior to the date of interest and for a
date after the date of interest that do not result in a setting time that is on the day
before the rising time. Use those 2 sets of LCT rise/set times to calculate how
much the rise/set times are changing over those dates, then use that information
to estimate when the Moon will rise and set on the date of interest.

To illustrate, compute the Moon’s rising and setting times for the previous
observer for January 22, 2015. Converting the LST rise/set times to LCT gives
a setting time that is the day before the rising time. So, try the algorithm again
for January 21, which gives

LCTrp = 7.929372h,LCTsp = 17.978205h.

Now try January 23. This date also gives a setting time on the day before
the rising time when converting LST times to LCT times. The first date after
January 22 that does not have this problem is January 27. For that date, we
obtain

LCTra = 11.932303h,LCTsa = 0.944280h.

Given these 2 sets of rising/setting times around the date of interest, take
the 2 rising times and divide their difference by the number of days between
January 21 and January 27. This gives

avgr = LCTra − LCTrp
6

= 0.667155h.

This means that on average, the Moon’s rising time is increasing by 0.667155h

per day. So, the estimated rise time for January 22 is

LCTrp + 0.667155h = 8.596527h.
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The estimated rising time for January 23, 2 days later, would be

LCTrp + 2 ∗ 0.667155h = 9.263682h,

and so on, for any other date in the interval January 21 through January 27.
Performing the same analysis for the setting times gives

avgs = LCTsa − LCTsp

6
=−2.838988h,

which means that on average, the Moon’s setting time is decreasing by
2.838988h per day. So, the estimated setting time for January 22 is

LCTsp + (−2.838988h)= 15.139217h.

This chapter’s program detects when converting a setting time to LCT cre-
ates a problem. However, the program does not perform the steps just outlined
to estimate new rise/set times. That extra bit of work is left as an easy exercise
for the reader!

7.5 Lunar Distance and Angular Diameter

Because the Moon’s orbit is an ellipse instead of a circle, the Earth-Moon
distance varies throughout the month by as much as 50,000 km. Moreover,
the apparent size of the Moon changes as the distance between Earth and the
Moon changes. When the Moon is at perigee, it appears to be 14 percent larger
and 30 percent brighter than when it is at apogee. When either a Full Moon or
a New Moon occurs at perigee, it is called a supermoon. Conversely, when a
Full Moon or New Moon occurs at apogee, it is called a micromoon. Three to
6 supermoons occur each year, and 3 to 6 micromoons occur each year.

Calculating the distance to the Moon and the Moon’s angular diameter is a
very simple task once the Moon’s true anomaly υm is known. The distance is
given by the equation

Distm= a0(1 − e2)

1 + e cos υm
(7.5.1)

while the angular diameter is given by

θm= θ0(1 + e cos υm)

1 − e2
. (7.5.2)

a0 is the length of the semi-major axis of the Moon’s orbit, θ0 is the angular
diameter of the Moon when it is a0 distance away from Earth, and e is the
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Moon’s orbital eccentricity (see table 7.1). These 2 equations are identical to
those in section 6.5 for determining the Sun’s distance and angular diameter,
except obviously that data for the Moon must be used in the equations instead
of data for the Sun. As we did for the Sun, let

F = 1 + e cos υm
1 − e2

, (7.5.3)

so that equations 7.5.1 and 7.5.2 can be rewritten as

Distm= a0

F
(7.5.4)

and

θm= θ0F. (7.5.5)

For example, calculate the distance to the Moon and the Moon’s angular
diameter on January 1, 2015, for an observer at 38◦ N latitude, 78◦ W longi-
tude within the Eastern Standard Time zone who is not on daylight saving
time.

1. Using the steps in section 7.3, calculate the Moon’s true anomaly at 0h UT
for the given date.

(Ans: υm= 6.086312◦.)

2. Use equation 7.5.3 to compute F .
(Ans: F = 1.057779.)

3. Use the values from table 7.1 and equation 7.5.4 to compute the distance to
the Moon.

(Ans: Distm= 363,403 km.)

4. Use equation 7.5.5 to compute the Moon’s angular diameter.
(Ans: θm= 0.548035◦.)

5. Convert distance to miles and angular diameter to DMS format if desired.
(Ans: Distm= 225,808 miles, θm= 0◦33′.)

7.6 Phases of the Moon

When viewed from Earth, the amount of the Moon’s surface that we see as
illuminated changes as the Moon orbits Earth. The phase of the Moon, age of
the Moon, and percentage of illumination all describe how much of the Moon
will appear to be illuminated to an Earthbound observer. Phase of the Moon
refers to the shape of the portion of the Moon illuminated by the Sun as seen
by an observer on Earth. Figure 7.6 shows the phases of the Moon, which cycle
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Figure 7.6 Phases of the Moon
The phases of the Moon, as seen from Earth, continuously cycle from no illumination (New Moon)
to fully illuminated (Full Moon).

from no illumination (New Moon) to being fully illuminated (Full Moon) by
the Sun’s rays.

Figure 7.7 shows the phases of the Moon in the context of where the Moon
is in its orbit with respect to Earth and the Sun. As the figure demonstrates,
half of the Moon is always illuminated by the Sun (except, of course, during an
eclipse) regardless of where the Moon is in its orbit. Likewise, half of the Moon
is always facing Earth regardless of where the Moon is in its orbit. The amount
of the Moon’s surface that appears illuminated as seen from Earth constantly
changes because the angle A between the Moon and the light source (the Sun)
continually changes.

Before proceeding, there are 2 points to make about figure 7.7. First, apogee
and perigee are not shown because they are irrelevant to the phase of the Moon.
Therefore, do not interpret the figure as meaning that a Full Moon can occur
only at apogee simply because earlier figures showed apogee/aphelion on the
left side of a figure depicting an orbit. Any phase of the Moon can occur at any
point in the Moon’s orbit. Second, in section 7.3 we pointed out that the plane
containing the Earth-Moon orbit is not in the same plane as the Earth-Sun orbit
(see figure 7.5). In fact, the two orbital planes are inclined with respect to each
other by about 5◦ (see table 7.1). Hence, figure 7.7 must be understood as a
3-dimensional representation, not as a 2-dimensional one. If the Earth-Moon
orbit did lie in the same plane as the Earth-Sun orbit, then a solar eclipse would
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Figure 7.7 Cycle of Lunar Phases
The Moon’s phases were an early basis for defining the months. In modern times, the phase cycle
defines the synodic month (29.5306 days).

occur at each New Moon while a lunar eclipse would occur at each Full Moon,
which clearly is untrue.

Age of the Moon is another way to express how much of the Moon appears
to be illuminated. In this context, age of the Moon has nothing to do with
how old the Moon is, but it is instead an angle that measures how much of the
Moon’s orbit has been completed with respect to some reference. The age of
the Moon, ∠A in figure 7.7, is measured from the position where the Moon is
not illuminated at all (as viewed from Earth) to the Moon’s current position.
The position of no illumination is New Moon, as shown in the figure.

The equation for computing the Moon’s age A (in degrees) is

A= λt − λ�, (7.6.1)

where λt is the Moon’s true ecliptic longitude and λ� is the Sun’s ecliptic
longitude. Instead of degrees, the age of the Moon is often expressed in days.
Since the Moon orbits Earth in 29.5306 days, it moves by

360◦

29.5306 days
≈ 12.1907◦ per day.
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So, the Moon’s age can be expressed in days by

Adays = A

12.1907◦ , (7.6.2)

or, by combining with equation 7.6.1, as

Adays = λt − λ�
12.1907◦ . (7.6.3)

When equations 7.6.2 and 7.6.3 are used, be sure that the numerator (A or
λt − λ�) is adjusted to be in the range [0◦, 360◦] before the division is done.

At New Moon, the age of the Moon is 0◦ (0 days). When the Moon’s age
is 90◦ (7.4 days), half of the visible portion of the Moon is illuminated and it
is a First Quarter Moon. At age 180◦ (14.8 days), the Moon is at maximum
illumination and is a Full Moon. Ninety degrees later, when the Moon’s age
is 270◦ (22.1 days), the visible portion of the Moon is again half illuminated
and is a Last Quarter Moon. First Quarter and Last Quarter Moon are equally
illuminated, but the geographic area of the Moon that appears illuminated to
an Earthbound observer is different for First and Last Quarter.

When the age of the Moon is expressed in days, the Moon transitions
between major phases (New Moon, First Quarter Moon, Full Moon, Last Quar-
ter Moon) about every 7 days. Alternatively, another way to express this idea
is that the amount of the visible Moon that appears to be illuminated changes
by 50 percent about every 7 days. Also, when the age of the Moon is 360◦,
the Moon has completed a full orbit from New Moon to New Moon. Using
equation 7.6.2 with A= 360◦, we see that the Moon completes an orbit about
every 29.5 days. Thus, the phase of the Moon provides an astronomical event
for measuring both a week (transition between major phases of the Moon) and
a month (transition from New Moon back to New Moon).

Instead of arbitrarily limiting the phase of the Moon to the 8 phases shown
in figure 7.6, the phase of the Moon can be precisely defined mathematically
in terms of the age of the Moon. The required equation is

F = 1 − cosA

2
, (7.6.4)

where the Moon’s age A is expressed in degrees. This equation always returns
a result in the range [0.0, 1.0], which is intuitively appealing because it ranges
from a value of 0.0 when the visible portion of the Moon is not illuminated at
all (New Moon) to 1.0 when the visible portion of the Moon is fully illuminated
(Full Moon).

Figure 7.7 shows that the terms “waxing” and “waning” are used to describe
the Moon as it transitions from 1 phase to the next. As the Moon transitions
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SunEarth

Figure 7.8 Lunar Elongation
Elongation is the angle between the Sun and a celestial object when Earth is a reference point.

from New Moon to Full Moon, it is waxing because the amount of illumina-
tion (as seen from Earth) increases and correspondingly, the age of the Moon
increases from 0◦ to 180◦. When the Moon proceeds from Full Moon back to
New Moon, it is waning because the amount of illumination is steadily decreas-
ing. When the Moon is waning, the age of the Moon is increasing from 180◦ to
360◦. The term “crescent” refers to the phases of the Moon in which the visible
portion of the Moon is less than half illuminated. “Gibbous” means that more
than half of the visible portion of the Moon is illuminated, but the Moon is less
than fully illuminated.

Astronomers are often interested in the angle between a celestial object,
such as the Moon, and the Sun when Earth is used as a reference point. This
angle, shown in figure 7.8, is called an object’s “elongation.” When comparing
figure 7.8 to figure 7.7, it should be clear that the Moon’s elongation and age
refer to the same angle.

At Full Moon, the Moon’s elongation (and age) is 180◦ and the Moon is
said to be at the point of opposition with the Sun. Two objects are at opposi-
tion when they are on opposite sides of the Earth and have ecliptic longitudes
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Figure 7.9 Phase Angle
The phase angle is the angle made between a light ray striking an object and the light ray reflected
back from the object to an observer.

that are 180◦ apart. At New Moon, the Moon’s elongation is 0◦ and it is said to
be in conjunction with the Sun. Two objects are in conjunction when they are
on the same side of the Earth and have the same ecliptic longitude. Knowing
when lunar conjunctions and oppositions occur is required to determine when
an eclipse will occur. When the Moon is at First or Last Quarter, its elonga-
tion is 90◦ and 270◦, respectively. In both cases, the Moon is said to be in
“quadrature,” a term astronomers use to denote that when viewed from Earth,
a celestial object is at a right angle with respect to the Sun.

The amount of the visible Moon that appears illuminated to an Earth-bound
observer can also be expressed as a percentage. Carefully note that this refers
to how much of the visible portion of the Moon appears to be illuminated and
ranges from 0 percent to 100 percent. It does not refer to how much of the
Moon is illuminated by the Sun, which is always 50 percent. Calculating the
percent illumination requires knowing an object’s phase angle, which is angle
∠PA in figure 7.9. The phase angle is the angle made between an incident
light ray striking an object and the light ray reflected back from the object.
In other words, the phase angle is the angle formed by the Earth-Object-Sun.
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The phase angle is related to, but it is not the same as, an object’s elongation.
An object’s elongation is the angle Object-Earth-Sun, which in the case of the
Moon is the same as the Moon’s age.

Three equations are required to calculate percent illumination. First,

d = cos−1
[
cos

(
λm− λ�

)
cosβm

]
, (7.6.5)

where λm and βm are the Moon’s ecliptic coordinates and λ� is the Sun’s
ecliptic longitude. d is actually the same as the Moon’s age A, but we will
use a different variable here to keep it distinct from equation 7.6.1 in which
we arrived at the Moon’s age by a different approximation. Second, the
equation

PA = 180 − d − 0.1468

[
1 − 0.0549 sinMm

1 − 0.0167 sinMm

]
sin d (7.6.6)

approximates the Moon’s phase angle from the Moon’s mean anomaly. Finally,
percent illumination is given by

K% = 100

[
1 + cos(PA)

2

]
. (7.6.7)

It should be clear that phase, age, and percent illumination are simply dif-
ferent ways of expressing how much of the Moon is illuminated by the Sun’s
rays as seen from Earth. Table 7.2 summarizes the relationship between age,
phase, and percent illumination for each of the 8 phases of the Moon shown in
figure 7.6.

Table 7.2 Age, Phase, and Percent Illuminated
All three measures in this table are ways of expressing how much of the Moon is illuminated as
seen from Earth.

Age

Phase Degrees Days F %

New Moon 0 0.0 0.00 0

Waxing Crescent 45 3.7 0.15 15

First Quarter 90 7.4 0.50 50

Waxing Gibbous 135 11.1 0.85 85

Full Moon 180 14.8 1.00 100

Waning Gibbous 225 18.5 0.85 85

Last Quarter 270 22.1 0.50 50

Waning Crescent 315 25.8 0.15 15

New Moon 360 29.5 0.00 0
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Let us work through an example by calculating the age of the Moon (in
degrees and days) and its phase on January 1, 2015, for the observer from the
previous section.

1. Compute the Sun’s ecliptic longitude. (We will solve the equation of the
center for this example to compute the Sun’s ecliptic longitude.)

(Ans: λ� = 280.248151◦.)

2. Compute the Moon’s true longitude for the given date.
(Ans: λt = 50.389181◦.)

3. Use equation 7.6.1 to calculate the age of the Moon in degrees.
(Ans: A=−229.858970◦.)

4. If necessary, adjust A to be in the range [0◦, 360◦].
(Ans: A= 130.141030◦, or Adays = 10.7 days.)

5. Apply equation 7.6.4 to compute the Moon’s phase.
(Ans: F = 0.82.)

Since we calculated the phase to be about 130◦, this is closest to a Waxing
Gibbous Moon (see table 7.2).

Let us continue with this example by also computing the percent illumi-
nation.

1. Compute the Sun’s ecliptic longitude. (We will solve the equation of the
center for this example to compute the Sun’s ecliptic longitude.)

(Ans: λ� = 280.248151◦.)

2. Calculate the Moon’s mean anomaly and ecliptic coordinates.
(Ans: Mm= 71.222237◦, βm=−2.981288◦, λm= 50.279952◦.)

3. Apply equation 7.6.5 to compute the Moon’s age in degrees. (Note how this
value compares to the Moon’s age obtained earlier when equation 7.6.1 was
used.)

(Ans: d = 129.966690◦.)

4. Use equation 7.6.6 to calculate the Moon’s phase angle.
(Ans: PA = 49.924934◦.)

5. Use equation 7.6.7 to calculate the percent illumination.
(Ans: K% = 82%.)

Again, be sure to note that percent illumination (82 percent in this case)
refers only to how much of the visible portion of the Moon is illuminated. Also,
note that if the phase F obtained for this example (0.82) is multiplied by 100, it
gives the Moon’s illumination as a percentage. The values obtained for F and
K% may differ slightly because they are obtained by different approximations,
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Figure 7.10 Lunar Eclipse
In a lunar eclipse, Earth passes between the Moon and Sun. (This figure is not to scale.)

in particular by how the Moon’s age is calculated. However, they should be the
same value to at least 1 decimal point of accuracy.

7.7 Eclipses

An eclipse is one of the most exciting astronomical events to observe. An
eclipse occurs when one celestial object, such as the Moon, moves into the
shadow of another, such as Earth. Similar to but distinct from an eclipse is
an occultation. An occultation occurs when one object is hidden or partially
obscured because another object is in the line of sight. For example, when the
Moon passes in front of a star or a planet, the Moon occults the star or planet.
One could hardly say that the star or planet is in the Moon’s shadow; hence,
this type of astronomical event is an occultation rather than an eclipse. We will
not consider occultations any further.

There are 2 types of eclipses: lunar and solar. Both are caused when the
Moon or the Earth passes into a shadow, thus blocking out the Sun’s light.
Figure 7.10 shows a total lunar eclipse. In this case, the Moon enters Earth’s
shadow. The darkest portion of the shadow is the umbra whereas the lighter
portion of the shadow is the penumbra. A total lunar eclipse occurs when the
Moon is totally within the umbra. A partial lunar eclipse occurs when the Moon
is partly in the umbra and partly in the penumbra.

A lunar eclipse can be seen from anywhere on the nighttime part of the
Earth. Determining whether a particular observer can see an eclipse is easy.
Once the time for a lunar eclipse is known, compute the moonrise and moonset
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Figure 7.11 Solar Eclipse
In a solar eclipse, the Moon passes between Earth and the Sun. (This figure is not to scale.)

time for the observer. If the time at which the eclipse will occur falls within
the moonrise and moonset times for the observer, then that observer can see
the eclipse.

Solar eclipses occur when Earth moves into the shadow cast by the Moon.
Refer to figure 7.11. Because the Moon is a smaller object, the shadow cast
by the Moon is not as long or as large as that cast by Earth. Therefore, as
shown in figure 7.11a, the umbra formed during a solar eclipse does not always
reach Earth. This type of eclipse is an annular solar eclipse and the result,
as seen from Earth, is that the Moon appears as a smaller disk on top of
the Sun.

When the orbital geometry is just right, the umbra in a solar eclipse will
reach Earth, as shown in figure 7.11b. This type of eclipse is a total solar
eclipse. During a total solar eclipse only a small part of Earth is in the umbra
of the Moon’s shadow, yet a larger portion of Earth is in the penumbra. Thus,
solar eclipses are more difficult to predict because an observer’s location on
Earth is important. Observers who fall within the umbra will see the Sun as
totally obscured by the Moon while observers who fall within the penumbra
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will still see an eclipse, but they will only see the Sun as partially obscured.
Observers outside the penumbra will not see an eclipse at all.

Through careful observation, astronomers have devised a set of rules that
can be used to determine if an eclipse will occur. Although we will not actu-
ally compute the occurrence of an eclipse, some of the rules can easily be
used to determine whether an eclipse is likely. Determining exactly when and
where an eclipse will occur is much more difficult and beyond the scope of
this book.

After a moment’s reflection, it should be obvious that eclipses can occur
only when the Moon is near opposition to, or conjunction with, the Sun. That
is, an eclipse can occur only near a Full Moon or a New Moon. At a Full Moon,
Earth is between the Sun and Moon so a lunar eclipse is possible only at a Full
Moon. At a New Moon, the Moon is between the Earth and Sun so a solar
eclipse is possible only at a New Moon. However, eclipses do not occur each
month because the position of the Moon must be such that it is in, or very close
to, the ecliptic plane.

Astronomers have observed that eclipses follow a pattern called the Saros
cycle, which, although not exact, is 18 years, 11 days, 8 hours in length. There
are at least 2 solar eclipses, even if they are only partial solar eclipses, but not
more than 5 solar eclipses each year. While at least 2 solar eclipses will occur
each year, there may not be any lunar eclipses. If there are any lunar eclipses,
there will be at most 3 in a single year. However, the total number of eclipses
(solar and lunar) for a given year will not exceed 7. A lunar eclipse is often
preceded by a solar eclipse that occurred 2 weeks earlier, or it is followed by a
solar eclipse that will occur 2 weeks later.

In the algorithm presented in section 7.3 for determining the Moon’s posi-
tion, the Moon’s true orbital longitude (λt ) and corrected ecliptic longitude
of the ascending node (	′) are computed. Those values can be used to
determine when an eclipse cannot occur as well as when an eclipse must
occur.

With regards to lunar eclipses, if

|λt −	′|> 12◦15′ (7.7.1)

or

|λt −	′ − 180◦|> 12◦15′, (7.7.2)

then a lunar eclipse cannot occur. However, if

|λt −	′|< 9◦30′ (7.7.3)
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or

|λt −	′ − 180◦|< 9◦30′, (7.7.4)

then a lunar eclipse must occur. These seemingly arbitrary bounding angles
(12◦15′, 9◦30′, and the 2 bounding angles presented in the following equations
for solar eclipses) are arrived at by considering the Moon’s angular size and
how close the Moon must be to the ecliptic plane for an eclipse to occur. When
a lunar eclipse occurs, the maximum time that it can be seen, including the
time that the Moon is in Earth’s penumbra, is 3h40m. The maximum time for
the umbral phase of a lunar eclipse is 1h40m.

With regards to solar eclipses, if

|λt −	′|> 18◦31′ (7.7.5)

or

|λt −	′ − 180◦|> 18◦31′, (7.7.6)

then a solar eclipse cannot occur. However, if

|λt −	′|< 15◦31′ (7.7.7)

or

|λt −	′ − 180◦|< 15◦31′, (7.7.8)

then a solar eclipse must occur. The maximum time that an annular solar
eclipse will last for a given place on the Earth’s surface is 12m24s, while a
total solar eclipse will last for a maximum of 7m40s.

In applying the various rules for determining the occurrence of an eclipse, it
is important to remember that an eclipse can occur only during Full Moon or
New Moon. Thus, for example, there is no point in looking at λt and 	′ for a
First Quarter Moon to determine if an eclipse will occur.

7.8 Program Notes

The program for this chapter builds upon many of the routines from prior
chapters, such as the routines for performing time and coordinate system con-
versions, and calculating the position of the Sun. When calculating the Sun’s
position, the program for this chapter allows choosing whether to solve the
equation of the center or Kepler’s equation. However, the program only solves
the equation of the center to determine the Moon’s position.
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7.9 Exercises

For these sample problems, solve the equation of the center when it is
necessary to calculate the Sun’s position.

1. An observer is at 95◦ W longitude, 30◦ N latitude. The date is August 9,
2000, and the observer is in the Central Standard Time zone on daylight saving
time. If the LCT is 12h, what are the Moon’s ecliptic, equatorial, and horizon
coordinates?

(Ans: βm= 3.044500◦, λm= 257.219940◦, αm= 17.094802h,

δm=−19.794427◦, hm=−50◦44′, Am= 84◦56′.)
2. For the observer in the last problem, at what time will the Moon rise and
set?

(Ans: LCTr = 15h47m,LCTs = 2h35m the next day.)

3. Another observer is located at 30◦ W longitude, 20◦ S latitude within the
Eastern Standard Time zone. For the date May 15, 2010, assume that the
observer is on daylight saving time. If the LCT is 14h30m, what are the eclip-
tic, equatorial, and horizon coordinates for the Moon?

(Ans: βm= 2.417166◦, λm= 76.416359◦, αm= 4.998364h, δ= 25.150750◦,
hm= 26◦32′, Am= 313◦24′.)
4. At what time will the Moon rise and set for the previous observer?

(Ans: LCTr = 6h21m,LCTs = 16h25m.)

5. At 12h UT on August 9, 2005, for an observer at 0◦ latitude, 0◦ longitude,
how far away was the Moon? What was its angular diameter?

(Ans: Distm= 363,361 km or 225,782 miles, θm= 0◦33′.)
6. At 14h30m UT on May 6, 2005, for an observer at 0◦ latitude, 0◦ longitude,
how far away was the Moon? What was its angular diameter?

(Ans: Distm= 363,402 km or 225,807 miles, θm= 0◦33′.)
7. On August 9, 2005, at 12h UT, what was the Moon’s age? What was the
phase of the Moon? What percentage of the visible portion of the Moon was
illuminated?

(Ans: A= 42◦, Adays = 3.5 days, F = 0.13,K% = 13%, which is closest to
a Waxing Crescent Moon.)

8. On May 6, 2005, at 14h30m UT, what was the Moon’s age? What was the
phase of the Moon? What percentage of the visible portion of the Moon was
illuminated?

(Ans: A= 331◦, Adays = 27.1 days, F = 0.06,K% = 6%, which is closest to
a Waning Crescent Moon.)





8 Our Solar System

The structure of our Solar System as the ancients understood it was simple and
straightforward: it consisted of the Sun, Earth, Moon, and a handful of planets.
Modern astronomers, however, recognize that our Solar System has a complex
structure with a rich variety of objects held captive by the Sun’s gravitational
pull. We will briefly examine our Solar System’s structure and some of its
objects before we proceed to algorithms for locating the planets. Building upon
the foundations laid in preceding chapters, this chapter provides a valuable set
of additional mathematical tools for exploring the nighttime sky.

Broadly speaking, astronomers describe our Solar System’s structure in terms
of regions of space. Objects within those regions orbit the Sun or are locked
in orbit around another object that in turn orbits the Sun (e.g., Earth and the
Moon). Proceeding outward from the Sun, the structure1can be categorized as:

• Inner Planets: This region of space contains the 4 planets closest to the Sun
(Mercury, Venus, Earth, and Mars).

• Asteroid Belt: Situated between Mars and Jupiter, this region of space is a
massive debris field containing the dwarf planet Ceres and tens of thousands
of asteroids.

• Outer Planets: This region lies beyond the Asteroid Belt and contains the Solar
System’s largest planets (Jupiter, Saturn, Uranus, and Neptune). While the inner
planets are rocky objects, the outer planets are enormous gaseous objects.

• Kuiper Belt: This region of space is a large debris field beyond Neptune that
extends to about 50 AUs (4.65 billion miles) from the Sun. Three dwarf planets
(Pluto, Haumea, and Makemake) lie within the Kuiper Belt.

1. Astronomers do not universally agree that these groupings are the best way to describe the
Solar System’s structure. Moreover, the regions may change as our knowledge grows, and regions
may overlap because their boundaries are not sharply defined.
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• Scattered Disc: Icy objects with highly eccentric orbits that may extend
100 AUs (9.29 billion miles) or more from the Sun characterize this sparsely
populated region of space. The dwarf planet Eris lies within this region.2

• Oort Cloud: This theoretical region of space marks the outermost boundary
of our Solar System. It begins beyond the Scattered Disc region and extends
200,000 AUs (18.5 trillion miles) from the Sun.

Astronomers categorize Solar System objects in a variety of ways, including
by the region of space in which they reside or originate, by their physical size,
whether they are massive enough to have cleared their neighborhood, and by
various orbital characteristics. Trojans and centaurs are 2 interesting classes of
objects. A trojan shares the same orbit as a planet or a larger moon and is in
a stable orbit in which it remains in the same position relative to that larger
object. For technical reasons beyond the scope of this book, a trojan’s position
in the shared orbit is 60◦ ahead of or behind the larger object.3 To stay in a
stable position relative to the object it leads or follows, a trojan must have
roughly the same orbital period as the object whose orbit it shares.

More than 6,000 trojans have been discovered in Jupiter’s orbit and there
may be millions more that are larger than 1 km in size. Astronomers have
confirmed the presence of 7 trojans in Mars’s orbit, 12 in Neptune’s orbit, 1 in
Uranus’s orbit, and a temporary one in Venus’s orbit. Trojans have been discov-
ered in the orbits of 2 of Saturn’s moons (Tethys and Dione). Moreover, a tem-
porary trojan has been discovered in Ceres’s orbit and in the asteroid Vesta’s
orbit. The IAU Minor Planet Center maintains a list of all known trojans and
their orbital elements, which is updated as new trojans are discovered.

Perhaps more interesting than these trojans is the discovery, announced by
NASA in 2011, of a near-Earth asteroid designated as 2010 TK7. With a dia-
meter of 1,000 feet, this trojan shares the same orbit as Earth! Earth is in no
danger of colliding with 2010 TK7 because the 2 objects have nearly the same
orbital period and are never closer to each other than 12.4 million miles.

In contrast to trojans, centaurs do not have stable orbits. Centaurs are thought
to originate in the Kuiper Belt, but because of the strong gravitational forces
of the giant planets in the Outer Planets region, centaurs periodically cross the
orbits of 1 or more of those giants. Because they have unstable orbits, centaurs
will eventually crash into the Sun or a planet, leave the Solar System entirely,
or become a short-period comet.

2. Some astronomers consider the Scattered Disc region to be part of the Kuiper Belt.

3. In a 3-body problem, there are exactly 5 places, called Lagrange points, at which the grav-
itational and centripetal forces acting upon the smaller object are in balance, thus allowing the
smaller object to remain in a stable position relative to the larger object whose orbit it shares.
Trojans oscillate around the Lagrange points designated as L4 (60◦ ahead) and L5 (60◦ behind).
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The first centaur was discovered in 1977 and named Chiron. The second one,
Pholus, was not discovered until 1992. Chiron was originally classified as an
asteroid, but subsequent analysis showed that it also exhibited the characteristics
of a comet. Because objects such as Chiron and Pholus are “half-asteroid” and
“half-comet,” they are called centaurs after the half-man, half-horse creature
in Greek mythology.

Although only a few hundred objects have been confirmed as centaurs since
Chiron and Pholus were discovered, astronomers estimate that there may be
tens of thousands of centaurs in the Solar System that are 1 km or larger in size.
The largest known centaur, 10199 Chariklo, is estimated to have a diameter of
162 miles and lies in an orbit between Saturn and Uranus. Despite its relatively
small size, 2 rings encircle Chariklo! There is also evidence that Phoebe may
have been a centaur that wandered too close to Saturn and was captured by
Saturn’s gravity to become a Saturnian moon.

With so many exotic objects having been discovered, we now know that our
immediate neighborhood, astronomically speaking, is indeed very different
from the simple Solar System that the ancients knew. Our Solar System is a
fascinating place with untold numbers of new discoveries awaiting us.

The next few sections will describe various objects and their relative bright-
nesses in the night sky. For example, when viewed from Earth, Venus has an
average apparent visual magnitude of −4.9 while Jupiter has an average appar-
ent visual magnitude of −2.9. This means that Venus will appear to be brighter
than Jupiter. However, Jupiter is much larger and much farther away from
Earth than Venus is. If both planets were viewed from the same distance, the
much larger Jupiter would appear to be brighter than Venus (an apparent visual
magnitude of −9.4 for Jupiter versus −4.4 for Venus). To account for differ-
ences in planetary sizes and their distance from Earth, astronomers typically
give a planet’s apparent visual magnitude as if measured from a standard dis-
tance of 1 AU. So, the data given in section 8.6 and the calculations in section
8.11 assume that an object is 1 AU from Earth. That is why the visual magni-
tudes given for the planets will seem to vary in this chapter and why one would
state that Venus is brighter than Jupiter when in fact Venus only seems brighter
because it is closer to the Earth.

8.1 The Search for Planets

With Pluto now relegated to being a dwarf planet, there are 8 confirmed planets in
our Solar System. Proceeding outward from the Sun, they are Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Pluto’s orbit lies beyond
that of Neptune, although Pluto is sometimes closer to Earth than Neptune is.
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Figure 8.1 NASA Montage of Planets
Images taken by various NASA spacecraft were combined to create this montage. From top to
bottom are Mercury, Venus, Earth (the Moon is to the right of Earth), Mars, Jupiter, Saturn,
Uranus, and Neptune. The planets are not shown to scale. (Image courtesy of NASA/JPL)
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Whether other planets remain to be found within the Solar System has been
a topic of considerable debate for many years. Searching for a new planet is
difficult, even with sophisticated telescopes, powerful electronic sensors, and
extensive mathematical tools at our disposal. Finding a needle in a haystack,
to borrow a tired phrase, is almost certainly an easier job.

Mathematics and physics are arguably the most powerful tools that astro-
nomers have at their disposal to explore the universe and search for new
planets. To explain perturbations observed in Mercury’s orbit, the French
mathematician Urbain Le Verrier (1811–1877) hypothesized that an unknown
planet would be found in an orbit between the Sun and Mercury. Le Verrier
named the hypothetical planet Vulcan, after the Roman god of fire, because of
its close proximity to the Sun. Since Le Verrier had earlier used mathematical
analysis alone to successfully predict the existence of Neptune, astronomers
took his predictions quite seriously and began to search in earnest for Vulcan.

In March 1859, the French physician and astronomer Edmond Modeste
Lescarbault was studying the Sun when he noticed what he first thought was a
sunspot. After observing it for some time, Lescarbault realized that whatever
he was seeing was moving too rapidly across the Sun’s surface to be a sunspot.
He continued observing the object for over an hour and made calculations from
which he concluded that he was observing the transit of a previously unknown
planet. Lescarbault announced to the world that he had found the planet whose
existence Le Verrier had predicted.

All subsequent efforts to find the object Lescarbault observed, including
attempts made in this century by astronomers and NASA’s STEREO space-
craft, have failed to find anything that could be the hypothesized planet Vulcan.
Moreover, by applying Einstein’s Theory of General Relativity, astrophysi-
cists are able to explain the perturbations in Mercury’s orbit without having to
assume the existence of some new planet. It is possible that what Lescarbault
saw was an asteroid transiting the Sun. Even today, some still search for small
asteroids orbiting the Sun in the region of space between the Sun and Mercury.
All attempts to date to find any such objects, referred to as vulcanoids, have
been unsuccessful.

Despite our considerable knowledge about the Solar System, the search for
new planets within our Solar System continues. In January 2016, Michael
Brown and Konstantin Batygin of the California Institute of Technology (Cal-
tech) announced they had mathematical evidence for a new planet, dubbed
Planet 9,4 that they predict lies in an orbit 20 times farther away from the Sun

4. Incidentally, Brown was a driving force behind the effort to downgrade Pluto to a dwarf planet.
Perhaps discovering Planet 9 will be his penance for demoting Pluto!
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than Neptune. Furthermore, they predict that Planet 9 has an orbital period of
10,000–20,000 years and a mass 10 times greater than Earth’s mass.

Planet 9 is presently just a theory. It has yet to be observed or otherwise
confirmed, and so it is not known whether Planet 9 will someday be celebrated
as the ninth planet in our Solar System or if it will eventually be viewed as
merely a 21st-century version of the search for Vulcan. Ironically, just as Le
Verrier proposed Vulcan to explain perturbations in Mercury’s orbit, Brown
and Batygin proposed Planet 9, in part, to explain perturbations in the orbits of
Uranus, Neptune, and certain objects that lie beyond the Kuiper Belt.

The quest for other planets is not restricted to our Solar System. Planets out-
side our Solar System are called exoplanets. The first confirmed exoplanet was
discovered in 1992 when radio astronomers Aleksander Wolszczan and Dale
Frail discovered 2 exoplanets orbiting a pulsar (designated as PSR B1257+12)
in the constellation of Virgo.5 A third exoplanet, located 2,300 light years from
the Sun, was discovered in 1994 orbiting that very same pulsar.

As of February 2016, nearly 2,000 exoplanets, almost all of which are in
the Milky Way Galaxy, have been confirmed. Most were discovered through
NASA’s Kepler Space Telescope, which was launched in 2009 specifically to
search for exoplanets. Future missions and spacecraft are already in the plan-
ning stages to continue the search and to discover which exoplanets are in their
corresponding star’s so-called habitable zone. The habitable zone is the region
of space around a star in which orbiting objects large enough to be planets can
hold an atmosphere and support liquid water on their surface.

NASA maintains an online Exoplanet Archive with the equatorial coordi-
nates and other basic data about all confirmed exoplanets. One such exoplanet,
Kepler-186f, is located in the Cygnus constellation, some 490 light years away
from Earth. Announced in 2014, Kepler-186f is the first confirmed exoplanet
that is about the same size as Earth and whose orbit lies within its sun’s
habitable zone.

Located 50 light years away, exoplanet 51 Pegasi b (now officially named
Dimidium) was discovered in 1995 in the constellation of Pegasus. Dimidium
orbits a star that is very much like our Sun. However, with surface temperatures
of 1,000 ◦C (1832 ◦F), Dimidium is hardly habitable. It is half as massive as
Jupiter and orbits its sun at approximately the same distance as Mercury is from
our Sun. Dimidium orbits its sun in only 4 days while its orbit is such that 1 side
of Dimidium always faces its sun while the other side is in perpetual darkness.

5. A pulsar is a rotating star that emits a beam of electromagnetic energy. The beam can be detected
only when it is pointing in the same direction as Earth. A pulsar is similar to a lighthouse in that
a ship at sea can see the lighthouse’s beam of light only when the beam is pointing in the same
direction as the ship. The first pulsar was discovered in 1967 by Antony Hewish and Jocelyn Bell.
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The real exploration of, and search for, exoplanets and star systems simi-
lar to our Solar System is just beginning. Each new discovery raises a host of
new questions while continuing to demonstrate how truly immense and amaz-
ing our universe is. For example, the largest currently known “solar system”
is 100 million light years away. It has an exoplanet, designated as 2MASS
J2126-8140, in orbit around its sun at an astounding distance of 642 billion
miles (6,900 AUs)! Estimated to be 12 times more massive than Jupiter,
this exoplanet requires nearly a million years to complete just 1 orbit around
its sun.

8.2 The Inner Planets

Named inner planets because they orbit so close to the Sun, the 4 inner planets
Mercury, Venus, Earth, and Mars are terrestrial planets. Terrestrial objects are
Earthlike, which means that they are similar to Earth in terms of their com-
position, not that they are necessarily capable of supporting life. Terrestrial
objects have a solid surface composed primarily of silicon-based or metal-
bearing rocks. To be classified as terrestrial, an object must also have a molten
metallic (typically iron) core and surface features similar to those found on
Earth (craters, mountains, volcanoes, canyons, etc.). Earth is the only terres-
trial planet with liquid oceans, although Mars may have had liquid oceans
in its remote past. Terrestrial objects are not limited to planets. For exam-
ple, the dwarf planet Ceres is a terrestrial object because it meets the required
geological criteria. Moreover, terrestrial objects are not limited to our Solar

Figure 8.2 Terrestrial Planets
These images taken by various NASA spacecraft show the relative sizes of the Solar System’s 4
terrestrial planets. Proceeding outward from the Sun (left to right) are Mercury, Venus, Earth, and
Mars. (Image courtesy of NASA/JPL/HST/JHUAPL)
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Figure 8.3 Mercury’s Caloris Basin
Mercury’s Caloris Basin, the bright area at the upper right, was photographed by NASA’s MES-
SENGER spacecraft. Much like our Moon, Mercury’s surface is pitted with craters caused by the
impact of numerous meteoroids. (Image courtesy of NASA/Johns Hopkins University Applied
Physics Laboratory/Arizona State University/Carnegie Institution of Washington)

System. Data gathered by the Kepler Space Telescope indicates that there may
be 40 billion terrestrial exoplanets in the Milky Way alone!

8.2.1 Mercury

Mercury is the closest planet to the Sun. It is named after the Roman god Mer-
cury, the speedy winged messenger of the gods who was the god of commerce,
travel, and thievery. Mercury sometimes appears in the sky as a “morning
star” and sometimes as an “evening star.” The Greeks called it Apollo when it
appeared in the morning and Hermes when it appeared in the evening, although
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they eventually realized that both names referred to the same object. The
Greeks and Romans were not the first to discover Mercury; it was well known
long before the rise of the Greek and Roman civilizations. The earliest known
reference to Mercury comes from the ancient Sumerians, whose writings about
the planet on cuneiform tablets date back to 3000 BC.

Mercury’s orbit is so close to the Sun that it is often difficult to see even
though it is bright enough to be visible to the naked eye. While the dwarf
planet Pluto is smaller than Mercury, Mercury is the smallest known planet in
our Solar System. With a diameter of 3,030 miles, Mercury is slightly larger
than the Moon, and like the Moon it exhibits phases when viewed from Earth.
Orbiting at an average distance of 36 million miles (0.39 AU) from the Sun,
Mercury’s orbital period is 88 Earth days (a Mercurian year) while it takes
nearly 59 Earth days (a Mercurian day) to complete 1 rotation on its axis
relative to the stars. No moons have been detected orbiting Mercury.

Because Mercury is so close to the Sun, daytime surface temperatures soar
to 800 ◦F while nighttime temperatures drop to as low as −280 ◦F. Mercury’s
density is nearly the same as Earth’s density, but its mass is so much smaller
(0.06 times that of the Earth) that Mercury’s gravitational field is not strong
enough to hold much of an atmosphere. Technically called an exosphere,
Mercury’s atmosphere consists of only trace amounts of oxygen, hydrogen,
helium, and other gases. Its atmospheric pressure is so low that it is essentially
a vacuum.

The first space probe to reach Mercury was Mariner 10, which sent back
images of the planet in 1975 during the course of 3 different flybys. NASA
launched the MErcury Surface, Space ENvironment, GEochemistry and Rang-
ing (MESSENGER) space probe in 2004 to do a more detailed study of the
planet. From data that MESSENGER captured, it was discovered that Mer-
cury’s surface is much like the Moon with maria-like plains, craters, and
impact basins all over its surface. Mercury’s largest crater is Caloris Basin,
which has a diameter of 960 miles, making it larger than the state of Texas.
MESSENGER also detected water in the form of ice in craters at Mercury’s
North Pole. After orbiting Mercury some 4,000 times over the course of
4 years, MESSENGER used its last remaining fuel to intentionally leave orbit
and crash onto the planet.

The next mission to Mercury will most likely be the joint ESA-JAXA
BepiColombo mission, which was launched in 2018 and consists of 2 space-
craft: the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric
Orbiter (MMO). Its ambitious scientific mission includes studying Mercury’s
geological structure, exosphere, and magnetic field. In what is perhaps a
poetic nod to Le Verrier, who tried so valiantly to explain perturbations
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in Mercury’s orbit, the BepiColombo mission includes performing experi-
ments to confirm Einstein’s theory of relativity, which astronomers believe is
the true explanation for those perturbations.

8.2.2 Venus

Venus is named after the Roman goddess of love and beauty. The planet
sometimes appears in the evening sky and sometimes in the morning sky, as
Mercury does. Venus is usually the planet that is meant when a reference is
made to the morning or evening star. The ancient Greeks gave Venus the name
Phosphorus when it appeared as a morning star and Hesperus when it appeared

Figure 8.4 Venus
A dense cloud cover perpetually obscures the surface of Venus. This picture is a composite of radar
images taken by NASA’s Magellan spacecraft to show the Venusian surface without the planet’s
dense cloud cover. (Image courtesy of NASA/JPL)
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as an evening star. However, thanks to the Greek mathematician Pythagoras,
the Greeks came to realize that both names referred to the same object.

Except for the Moon, Venus is the brightest natural object in the nighttime
sky. Venus has a visual magnitude of −4.9, making it significantly brighter
than Mercury, whose visual magnitude is −2.6. Both planets are brighter
than Sirius, the brightest star in the sky with a visual magnitude of −1.5. By
comparison, the Pole Star (Polaris), with a visual magnitude of 2.0, is much
dimmer than Sirius or either planet.

Venus was well known in the ancient world. The oldest known reference
comes from the Sumerians whose priests composed hymns to honor the god-
dess Inanna, which was their name for Venus. In the Western Hemisphere,
the Aztecs offered human sacrifices to placate Venus because they believed
Venus was the harbinger of disasters. Venus was the most important planet to
the Mayans, who considered it to be a companion of the Sun and associated
with war. Mayan astronomers made exacting observations from which they
created a highly accurate calendar for predicting when Venus would appear in
the morning sky. Mayan leaders tried to arrange battles to coincide with favor-
able movements of the planet. When victorious, they offered captured warriors
as human sacrifices to Venus.

Venus is unique in the Solar System for at least 2 reasons. First, Venus
rotates on its axis from east to west. All other planets in the Solar System,
with the possible exception of Uranus, rotate in the opposite direction. If Earth
rotated from east to west, the Sun would rise in the west and set in the east.
Second, Venus is unique because its day is longer than its year! Venus rotates
on its axis with respect to the stars once every 243 Earth days whereas it takes
225 Earth days to complete 1 orbit around the Sun.

In terms of size, mass, composition, and proximity to the Sun, Venus is so
similar to Earth that it is sometimes called Earth’s sister planet. Venus orbits
the Sun at an average distance of 67 million miles (0.72 AU), has a diameter
of 7,500 miles (Earth’s diameter is 7,900 miles), and is 0.82 times as massive
as Earth. There are no Venusian moons, but a trojan presently shares the same
orbit as Venus.

Although Venus and Earth may share enough similarities to be considered
sister planets, they are starkly different. Venus is the hottest planet in the Solar
System with surface temperatures measured as high as 900 ◦F, which is hot
enough to melt lead (whose melting point is 622 ◦F). Dense clouds perpetu-
ally cover the entire planet, causing a runaway greenhouse effect as heat from
the Sun’s rays is retained in a heavy atmosphere that is more than 95 per-
cent carbon dioxide. Whereas Mercury has almost no atmospheric pressure,
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atmospheric pressure on the surface of Venus is 92 times greater than the
atmospheric pressure on Earth’s surface.

The ancients used the Latin name Lucifer to aptly refer to Venus. Space
probes sent to Venus reveal a hellish world in which sulfuric acid rains down
from billowy clouds of sulfur. Lightning bursts periodically light up the sky
when storms rage across the planet. Over 1,000 volcanoes, some of which
may still be active, dot the landscape with lava flows that extend for hundreds
of miles. In ages past, the flowing lava carved out immense canals on the
surface, one of which is more than 3,000 miles in length.

Space probes reveal that Venus has 2 large highland areas. The Aphrodite
Terra extends for 6,000 miles at Venus’s equator, making it about the size of
South America. The Ishtar Terra located near Venus’s north pole is approxi-
mately the size of Australia. Maxwell Montes, the tallest mountain on Venus,
is located in the Ishtar Terra region and reaches a height of 6.8 miles, making
it over a mile higher than Earth’s Mt. Everest.

More than 40 space probes have been sent so far to explore this hostile alien
world. Some of those probes were sent into the Venusian atmosphere, and
some even landed on its surface. Because of the extreme surface temperatures,
high atmospheric pressure, corrosive sulfuric acid from Venusian rainstorms,
and generally harsh conditions on Venus, none of the probes sent toward the
surface survived for more than a few hours.

The first space probe to reach Venus was Mariner 2, which reached the
planet in December 1962 and sent back data showing the planet’s extreme tem-
peratures. Mariner 2 was a historic milestone because it was the first time that
a space probe from Earth visited another planet. Between 1965 and 1978, the
Soviets successfully landed 10 Venera space probes on Venus. Although the
Soviets’ Luna 9 successfully landed on the Moon in 1966, when Venera 7
landed on Venus in December 1970 it was the first space probe to ever land
on the surface of another planet. The Soviets achieved another first in Octo-
ber 1975 when Venera 9 was the first space probe to send back photographs
from the surface of another planet. Venera 13 followed in March 1982 and sent
back the first ever color images of the Venusian surface.

In the early 1990s, NASA placed the Magellan and Galileo spacecraft in
orbit around Venus to map its surface with radar and infrared sensors. Both
ESA and JAXA sent spacecraft to Venus in the early 2000s to explore the
Venusian surface and atmosphere. The joint ESA-JAXA BepiColombo mis-
sion destined for Mercury will make 2 flybys of Venus before proceeding on
to its primary mission. Additionally, NASA’s Solar Probe Plus will perform
7 flybys on its way to study the Sun. The Russians plan to return to Venus as
well with the Venera-D program, which will continue the program that enjoyed
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so many successes in the mid-20th century. The first Venera-D space probe is
expected to land on Venus around the year 2025.

8.2.3 Mars

Perhaps no planet has stirred as much controversy and imagination as has Mars,
the so-called red planet whose distinctive color is due to the presence of iron
oxide on its surface. Named for the Roman god of war, Mars has been scrutinized
for signs of life ever since the 1870s when the Italian astronomer Giovanni
Schiaparelli reported seeing canali (translated as “channels” or “canals”) on the
planet’s surface. Science fiction writers capitalized on this and wrote fanciful
stories about “little green men from Mars” intent on invading the Earth. The
classic example is H. G. Wells’s War of the Worlds, which was broadcast as
a radio drama on October 30, 1938, and briefly succeeded in making some
listeners believe that Earth really was being invaded by hostile Martians and
their nefarious war machines. Mariner 9 reached Mars in 1971 but found no
signs of Martian canals, built by “little green men” or otherwise. Likewise, the
Viking space probes that landed in 1976 found no evidence of Martian canals
or life, intelligent or otherwise. The canali Schiaparelli and others saw may
have been the result of periodic dust storms on the surface of Mars.

With a diameter of 4,200 miles, Mars is the second smallest planet in our
Solar System. It orbits the Sun at an average distance of 141.6 million miles
(1.52 AU) and completes 1 orbit around the Sun in 687 Earth days. Thus, a
Martian year is a little less than twice the length of an Earth year. A Martian
day with respect to the stars is 24.7 Earth hours, which makes a Martian day a
little more than a half hour longer than a day on Earth.

Both Mariner 9 and the Viking space probes sent back important data about
Mars. With a mass 0.11 times that of Earth, the atmospheric pressure on Mars
is 1/100 that of the Earth. This means that if humans ever walk on its surface,
they will require pressurized space suits to survive. Moreover, they will need
to bring their own oxygen because the Martian atmosphere is chiefly carbon
dioxide with some argon and nitrogen, but only trace amounts of oxygen.

Surface temperatures on Mars are much colder than they are on Earth. This
is partially due to Mars being farther away from the Sun, but primarily because
Mars has such a thin atmosphere that it does not retain much of the Sun’s heat
energy. Temperatures near the Martian poles may be as low as −195 ◦F. Day-
time temperatures near the equator reach a comfortable 70 ◦F, but nighttime
temperatures drop to −100 ◦F.

Mars, like Earth, has seasons. Martian polar caps grow and shrink in much
the same way that Earth’s polar regions grow and shrink with the changing
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Figure 8.5 Mars
This picture taken by NASA’s Viking 1 Orbiter shows 3 Martian volcanoes on the left. The topmost
is Ascraeus Mons, which is 10 miles high; the base is 300 miles across. Below Ascraeus Mons are
Pavonis Mons and Arsia Mons, the latter of which is barely visible at the left edge of the picture.
The largest volcano, Olympus Mons, is located slightly above Ascraeus Mons and is just beyond
the horizon in this view. The great rift Valles Marineris in the middle of the picture stretches for
2,500 miles across the planet’s surface. At the left end of Valles Marineris is Noctis Labyrinthus,
a mazelike area filled with steep valleys and canyons. (Image courtesy of NASA/USGS)

seasons. This, along with its dust storms, may account for the apparent changes
on the surface of Mars.

Two Martian moons were discovered in 1877 and named Phobos and
Deimos. With a diameter of 14 miles, Phobos is 7 times more massive than
Deimos, whose diameter is a mere 8 miles. Phobos orbits at a distance of only
3,700 miles above the Martian surface. By comparison, the Moon orbits the
Earth at an average distance of 384,400 miles. Phobos is so close to Mars that
it completes an orbit in 7.7 hours, which means that Phobos orbits Mars faster
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than Mars rotates on its axis. Consequently, anyone on the surface of Mars
would see Phobos rise and set twice a day. Phobos is the only moon in the
Solar System that revolves about its parent planet faster than the planet itself
rotates on its own axis.

As of February 2016, 13 man-made satellites are orbiting Mars. Of these,
NASA’s 2001 Mars Odyssey, ESA’s Mars Express, NASA’s Mars Recon-
naissance Orbiter (MRO), ISRO’s Mars Orbiter Mission, and NASA’s Mars
Atmosphere and Volatile EvolutioN Mission (MAVEN) are actively sending
back important scientific data. NASA also has 3 rovers on Mars (Curiosity,
Spirit, and Opportunity) that are providing an unprecedented amount of data
about the planet.

Much to the surprise of astronomers, the first space probes to reach Mars
revealed that its surface is pitted with craters that are partially filled in with
windblown sand. The craters demonstrate that like our Moon and Mercury,
Mars had a violent past in which it was repeatedly struck by meteoroids. The
largest visible impact crater is Hellas Planitia, whose rim rises up from the
surface by more than a mile. The crater’s floor is over 4 miles lower than
the Martian surface while radar data from the MRO space probe suggest that
glaciers may exist beneath that floor.

The Vastitas Borealis basin in Mars’s northern hemisphere is a lowland area
that lies 2–3 miles below the surface. It covers about 40 percent of the planet
and may be the result of an ancient collision with an immense meteoroid.
Located to the east of the Argyre Planitia impact basin is the Galle crater.
First photographed by the Viking 1 Orbiter, Galle is known as the “Happy
Face Crater” because a curved mountain range in the crater’s interior gives the
illusion that there is a giant “smiley face” on the surface of Mars.

The most infamous optical illusion discovered on Mars is undoubtedly the
“Face on Mars,” which is in the Cydonia region at 40.8◦ N latitude, 9.6◦ W lon-
gitude, about halfway between the Arandas and Bamberg craters. Somewhat
resembling a human face, it was discovered in images captured by Viking 1
and was quickly seized upon by some as proof of the existence of life on Mars.
However, better images taken by NASA’s Mars Global Surveyor (MGS) in
September 1997 revealed that the formation is actually a mesa. What appeared
to some to be a huge monument and a surrounding complex built by an alien
race was simply a product of fortuitous lighting and human imagination.

The Tharsis region is a large mountainous area centered near Mars’s equa-
tor in its western hemisphere. This region is 1,120 miles across and contains
3 enormous volcanoes first discovered by Mariner 9. More recently, NASA’s
Mars Odyssey discovered a group of 7 caves near Arsia Mons, the southern-
most of those 3 volcanoes. The smallest of the 3 volcanoes is Pavonis Mons,
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Figure 8.6 Face on Mars
The “Face on Mars” is located in the Cydonia region. The black dots in this image are errors in
the original data from the Viking 1 Orbiter. More recent imaging confirms that this formation is
nothing more than a mesa. (Image courtesy of NASA/JPL)

which is located between the other 2. Ascraeus Mons is the tallest of the 3
with a height of 10–11 miles and a diameter of 300 miles. By comparison,
Earth’s largest volcano is the Mauna Loa volcano in Hawaii. Mauna Loa has a
maximum diameter of 75 miles and rises about 2.6 miles above sea level. The
extinct volcano Olympus Mons is the tallest volcano on Mars and the tallest
volcano in the Solar System. Located northwest of the Tharsis region, it is
370 miles, wide and reaches a height of 13–17 miles, making it about 3 times
higher than Mount Everest.

Seemingly everything on Mars is larger than its counterparts on Earth. The
same is true of Valles Marieneris, the Martian equivalent of Earth’s Grand
Canyon. Valles Marieneris is a canyon system located just below the Martian
equator that stretches east to west for 2,500 miles. It is 120 miles wide in some
places and over 6 miles deep at its deepest point. Earth’s Grand Canyon is a
mere 227 miles long with a maximum width of 18 miles and a maximum depth
of 1 mile.

Several space probes sent to Mars have confirmed the presence of ice at the
poles and even liquid water at other places on its surface. With the confirmed
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presence of water and the discovery of natural shelters, such as the caves near
Arsia Mons, Mars is likely to be the first planet that humankind will colonize.
Several proposals for a manned mission to Mars have been made, but the first
such visit may not be until 2025. In the meantime, ESA plans to send their
own rover in 2020, while NASA plans to send an astrobiology rover to Mars
in 2020. The United Arab Emirates has also announced their plans to launch a
Mars probe in 2020 to study the Martian atmosphere.

With active probes orbiting Mars and multiple robotic rovers on its surface,
our understanding of the planet continues to grow by leaps and bounds. Much
of the imagery and data are available online for us armchair explorers to enjoy
and explore firsthand. Detailed maps can be viewed online at Google Mars.
NASA’s Mars Trek and Experience Curiosity online tools and ESA’s Mars
Express website allow one to “fly” around Mars to explore the planet in 3D.
These types of tools and ready access to the treasure trove of images garnered
from Martian space probes provide amazing views of the Martian surface that
earlier generations with even their best instruments could only dream of.

8.3 The Outer Planets

The outer planets (Jupiter, Saturn, Uranus, and Neptune) are those Solar Sys-
tem planets whose orbits lie in the region of space between the Asteroid and
Kuiper Belts. They are sometimes called the Jovian planets because they are
so dominated by the sheer size and mass of Jupiter. The outer planets are
also called the Gas Giants because of their composition, although that ter-
minology is falling out of favor. Some astronomers categorize only Jupiter and

Figure 8.7 Outer Planets
This grouping of images shows the sizes of the outer planets relative to Earth. Earth is on the left,
followed by Jupiter, Saturn, Uranus, and Neptune. Although not an outer planet, Pluto is the small
dot on the extreme right. (Original image courtesy of NASA/Lunar and Planetary Institute, edited
by the author)
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Saturn as Gas Giants while categorizing Uranus and Neptune as Ice Giants.
“Giant” is indeed appropriate for all 4 planets, all of which are at least 10
times more massive than Earth and have a diameter at least 3.8 times greater
than that of Earth. By any measure, relative to Earth the outer planets are giants
indeed.

In terms of their composition, the outer planets are substantially different
from the inner planets. The inner planets all have a solid surface primarily com-
posed of rocky materials. While it is true that about two-thirds of the Earth’s
surface is covered by water, that water exists on top of an underlying rocky
surface. Space probes can, and have, landed on the surface of all the inner
planets. By contrast, the outer planets do not have a solid, well-defined surface
on which a space probe could land. Instead, the outer planets are composed pri-
marily of hydrogen, helium, and water in various physical states (gas, liquid,
ice). The outer planets may have some rocky materials, but such materials are
largely found only within the planets’ cores. Trying to land on the “surface” of
Jupiter or Saturn would be like trying to “land” in Earth’s atmosphere, while
landing on Uranus or Neptune would be like landing on a block of ice that has
nothing solid underneath it.

8.3.1 Jupiter

Jupiter is by far the largest planet in our Solar System. With a diameter exceed-
ing 86,800 miles, it is 11 times larger in diameter than Earth and has 318 times
more mass. Jupiter is so enormous that it is 2.5 times more massive than all
the other planets in the Solar System combined. It is therefore appropriate that
Jupiter is named after the Roman ruler of the gods. Jupiter is the same as the
Greek god Zeus, who, in addition to being the king of the gods, was also the
god of the sky and thunder.

With an apparent visual magnitude of −2.9, Jupiter is the third brightest
natural object in the nighttime sky. Only the Moon and Venus, and sometimes
Mars (depending on how close it is to Earth), appear brighter. Jupiter is easily
visible to the naked eye and was well known to the ancient world. The earliest
written references to Jupiter come from the Babylonians who recorded their
astronomical observations in the 7th or 8th century BC. The ancient Babyloni-
ans knew the planet as Marduk, who in their theology was both the king of the
gods and the patron god of the city Babylon.

Jupiter orbits the Sun at an average distance of 483.9 million miles
(5.20 AUs), completing a single orbit with respect to the stars in 4,333 Earth
days (11.86 Earth years). Jupiter rotates on its axis in 9.9 hours, making it the
planet with the shortest day in our Solar System. Jupiter’s atmosphere is 90 per-
cent hydrogen with some helium, methane, and ammonia. The temperature at
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Figure 8.8 Jupiter and Its Moons
Jupiter with its 4 planet-size moons, called Galilean satellites, were photographed by NASA’s
Voyager 1 and assembled into this collage. Although not shown to scale, they are in their correct
relative positions. Io (center left) is nearest Jupiter, Europa is in the center, Ganymede is bottom
center, and Callisto is on the lower right. Four much smaller satellites circle Jupiter inside Io’s
orbit while Jupiter’s other satellites lie millions of miles away. (Image courtesy of NASA/JPL)

the top of the clouds in its atmosphere is estimated to be as low as −234 ◦F
while temperatures at the planet’s core may be 43,000 ◦F. Jupiter’s core is thus
about 4 times hotter than the surface of the Sun.

As one of the gas giants, Jupiter has no clearly definable surface. Even if it
were possible to land on Jupiter, it would hardly be a hospitable place. In
December 1995, the Galileo orbiter parachuted a titanium space probe about
100 miles into Jupiter’s atmosphere. The probe transmitted data for nearly
an hour before it was destroyed by an atmospheric pressure 23 times greater
than the pressure on Earth’s surface and an atmospheric temperature exceed-
ing 300 ◦F. The Galileo orbiter was itself sent into Jupiter’s atmosphere in
September 2003. Before vaporizing in Jupiter’s hostile atmosphere, the orbiter
recorded temperatures in excess of 570 ◦F and wind speeds in excess of
400 miles per hour.
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Figure 8.9 Jupiter’s Great Red Spot
Voyager 1 took this image of Jupiter’s famous Great Red Spot in December 1998 through a series
of color filters to highlight subtle features. The Great Red Spot is a raging, structurally com-
plex storm in Jupiter’s upper atmosphere that is 3.5 times the size of Earth. (Image courtesy of
NASA/JPL)

The clouds in Jupiter’s atmosphere form alternating dark and light beltlike
zones that encircle the planet. These zones are bands of high- and low-pressure
areas that run parallel to Jupiter’s equator because of the planet’s rapid rotation.
Because Jupiter rotates so rapidly, objects at its equator whirl around at nearly
28,000 miles per hour. By comparison, objects at Earth’s equator move at a
mere 1,000 miles per hour as Earth rotates.

Jupiter’s most prominent feature is the Great Red Spot. Located south of
Jupiter’s equator, the Great Red Spot is a massive anticyclonic (a cyclone that
rotates in a counterclockwise direction) weather system in Jupiter’s upper
atmosphere. With wind speeds reaching 350 miles per hour, the phenomenon
has been observed from Earth for over 300 years. However, it is noticeably
shrinking in size at about a rate of 580 miles per year. In 1831, Samuel Heinrich
Schwabe measured the Great Red Spot to be 25,000 miles long. The Pioneer
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and Voyager space probes of the 1970s showed that it had shrunk to about
15,000 miles long. Recent images from the Hubble Space Telescope show that
it is now just over 10,000 miles long. Even so, the Earth would easily fit into
the Great Red Spot with plenty of room to spare.

What caused the Great Red Spot, why it is red, and why it is shrinking are
unsolved mysteries. If it continues shrinking at its present rate, the Great Red
Spot will be gone in about 20 years. However, some computer simulations
suggest that the Great Red Spot weather system is relatively stable and will
eventually stop shrinking. Even if it does disappear, recent images from the
Hubble Space Telescope show 2 smaller red spots adjacent to the Great Red
Spot. Perhaps red spots, however and for whatever reason they form, are a per-
manent feature of Jupiter’s atmosphere.

With its 67 moons, Jupiter has the most moons of any object in the Solar Sys-
tem. The 4 largest Jovian moons, as large as some planets, are called Galilean
satellites in honor of Galileo, who saw them in 1610 through his telescope.
Simon Mayr, a German astronomer, discovered them at about the same time as
Galileo and gave them the names by which we know them today. The names
of the Galilean satellites are, in order of their orbits around Jupiter, Io, Europa,
Ganymede, and Callisto. Ganymede has a diameter of 3,300 miles and there-
fore has a larger diameter than that of the planet Mercury. Ganymede is the
largest Jovian moon and the largest moon in the Solar System.

As of February 2016, 8 spacecraft have reached Jupiter: Pioneer 10 and 11,
Voyager 1 and 2, Galileo, Cassini, Ulysses, and New Horizons. Of these, the
only one to orbit the planet was the Galileo orbiter, which orbited Jupiter for
7 years before it was sent plunging into Jupiter’s atmosphere. The remaining
spacecraft captured their images and data in flybys as they made their way to
other parts of the Solar System. These spacecraft have revealed many surprises,
such as Voyager 1’s discovery that Jupiter has rings. Subsequent investigation
has revealed that Jupiter has 4 distinct sets of rings: a 7,500-mile-wide halo
ring that is nearest to the planet, a brighter but much narrower 4,000-mile-
wide main ring, and 2 very faint rings called the Amalthea and Thebe gossamer
rings. These rings are made up mostly of tiny dust particles and are too faint to
be seen from an Earthbound observatory.

Data returned by these spacecraft has greatly increased our knowledge
of Jupiter. Onboard cameras have allowed astronomers to witness events
that cannot be observed from Earth. For example, Voyager photographed light-
ning flashes in the nighttime Jovian sky. The New Horizons flyby in 2007 also
captured lightning strikes near Jupiter’s poles that, for some unknown rea-
son, were occurring at a rate of about one strike per second. Perhaps the most
phenomenal event occurred in July 1994 when the Galileo orbiter captured
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Figure 8.10 Jupiter’s South Pole
The Cassini space probe took this remarkable picture of Jupiter’s South Pole in December 2000.
It shows the complex atmosphere characteristic of this distant planet. (Original image courtesy of
NASA/JPL/SSI, enhanced by the author)

the moment that a fragment from the Shoemaker-Levy 9 comet collided with
Jupiter.

Spacecraft sent to Jupiter also made flybys of several of Jupiter’s moons.
From those flybys, astronomers discovered that Ganymede has a magnetic
field, making it the only moon in the Solar system known to have this char-
acteristic. The presence of a magnetic field suggests that Ganymede’s core is
composed of iron. Ganymede also appears to have an underground ocean as
well as exposed water-ice at its north pole.

Images captured of Callisto show that it is the most cratered object in the
Solar System. It is so heavily cratered that any new impact creates a new crater
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that obliterates an older one. Callisto’s most prominent feature is its 1100-
mile-wide Valhalla impact basin.

In contrast to Callisto, Europa is so smooth that it has been compared to a
billiard ball. Europa may have an ocean underneath its surface that is mainly
salty water. Europa’s icy crust is cracked, making it possible that water from
Europa’s underground ocean may have seeped through to the surface.

Io is unlike any other known moon in the Solar System. It has more than
400 active volcanoes that are constantly erupting and spewing out massive
amounts of sulfur, sulfur dioxide, and ash. Some of the volcano plumes on Io
are 125 miles high while some of Io’s mountains are as high as Mount Everest.
Io is the most volcanic object in the Solar System.

Three new missions are under way to continue our exploration of Jupiter,
and those missions will undoubtedly reveal even more surprises. NASA’s Juno
spacecraft reached Jupiter in July 2016 and is now in a polar orbit around the
planet. ESA plans to launch the Jupiter Icy Moon Explorer (JUICE) spacecraft
in 2022 to study the Galilean moons. It will be a long journey, requiring 8 years
before JUICE will be in orbit around Jupiter. NASA plans to launch the Europa
Multiple-Flyby Mission in 2025 with the specific mission of making a detailed
study of Europa. The spacecraft will include a robotic lander that will land on
Europa to study the moon’s surface and see if there really is an ocean of liquid
water beneath the crust. The lander will also perform various experiments to
determine if conditions are favorable for life on Europa.

8.3.2 Saturn

Bright enough to be visible to the naked eye, Saturn is the most distant planet
known to the ancients. The first reference to Saturn comes from the Assyrians
who called the planet the Star of Ninib after their god of war, hunting, and
agriculture. In 700 BC, the ancient Assyrians described the Star of Ninib as
a god surrounded by a ring of serpents. Why the Assyrians and other ancient
civilizations came to believe that Saturn has a ring around it is an intriguing
mystery. The rings of Saturn cannot be seen with the naked eye, yet the tele-
scope was not invented until the 17th century, several hundred years after the
Assyrians wrote about the Star of Ninib.

Soon after the telescope was invented, Galileo turned his attention to Sat-
urn. Because of the limitations of his telescope, Galileo could not distinguish
rings around Saturn and instead thought that he was seeing a triple planet. In
1655, the Dutch mathematician, physicist, and astronomer Christiaan Huygens
(1629–1695), using a higher quality 50-power telescope that he designed him-
self, saw that a ring encircled Saturn. Huygens also discovered the Saturnian
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Figure 8.11 Saturn’s Rings
The rings of Saturn are quite evident in this image taken by the Hubble Space Telescope in
March 2004. The wide, bright ring closest to the planet is the B ring while the narrower adja-
cent bright ring is the A ring. The dark gap between the A and B rings is the Cassini Division.
(Image courtesy of NASA/ESA/E. Karkoschka [University of Arizona])

moon Titan and explained why Saturn’s rings seem to appear and disappear.
The reason, as Huygens correctly surmised, is that Saturn’s rings are so thin
they cannot be seen when viewed from their edge. They can only be seen when
the rings are inclined with respect to an Earth-bound viewer. Twenty years
later, the Italian astronomer and mathematician Giovanni Domenico Cassini
(1625–1712) discovered a dark gap separating what Huygens thought was a
single ring into 2 distinct rings. This gap is called the Cassini Division in his
honor. Cassini also discovered 4 more moons orbiting Saturn.

Saturn is hardly the only ringed object in our Solar System, but its rings
are the most impressive. Early data from Voyager 1 and Voyager 2 clearly
demonstrated that the rings of Saturn are far more numerous and complex than
astronomers imagined. Astronomers generally agree that there are 7–8 main
ring groups encircling the planet, but those groups are themselves made up of
many smaller rings and divisions, including the Cassini Division and several
other divisions and gaps that have only recently been discovered. Determining
how many rings Saturn has is difficult because it is a matter of how one decides
where 1 ring ends and another begins.

Regardless of how many rings there are, they are comprised of billions of
rocks and chunks of ice ranging in size from a grain of sand to several feet in
diameter. Objects in the rings are thought to be remnants of a comet, asteroid,
or an exploded Saturnian moon. The main rings, according to some estimates,
are only 30 feet thick. However, the Cassini-Huygens space probe discovered
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that particles in some of the rings form bumps and ridges that may be as much
as 2 miles high. The space probe also discovered spokes in the rings that form
and disperse over a period of only a few hours. Perhaps because of the gravi-
tational interaction of 2 small shepherd satellites, Saturn’s F ring even appears
to be braided! Astronomers continue to struggle to understand the incredibly
complex structure of Saturn’s rings.

Saturn is the second largest planet in our Solar System and lies about
887 million miles (9.54 AUs) from the Sun. It has a diameter of 72,400 miles
and is 95 times more massive than Earth. Saturn orbits the Sun with respect
to the stars in 29.45 Earth years. As with Jupiter, Saturn has a very short day
compared to Earth’s. Saturn rotates on its axis in only 10.7 hours. Like Jupiter,
Saturn’s atmosphere is composed mostly of hydrogen and helium with small
amounts of methane and water ice. Saturn is the least dense planet in our Solar
System with a density that is only 0.7 times that of water. This means that
objects with the same density as Saturn would float in water.6

Atmospheric pressure on Saturn is 100 times greater than the atmospheric
pressure on Earth’s surface. Temperatures at the top of Saturn’s clouds aver-
age −350 ◦F, while temperatures in the lower layers of Saturn’s atmosphere
may reach 135 ◦F. Saturn has a highly active weather system that spawns
tremendous storms that may last for months or even years. Winds have been
measured in some storms to reach 1,100 miles per hour. Monitored by the
Cassini-Huygens space probe in 2004, the Dragon Storm located in Saturn’s
southern hemisphere generated lightning that was 1,000 times more powerful
than lightning on Earth. The space probe also monitored a large band of white
clouds in Saturn’s northern hemisphere that astronomers named the Northern
Electrostatic Disturbance. Such giant storms appear to be cyclical in nature,
appearing about every 30 years. This suggests that Saturn’s reoccurring storms
may somehow be tied to the length of its year.

An unusual weather pattern near Saturn’s north pole was first discovered
by Voyager 1 and Voyager 2. This strange weather system has a hexagonal,
honeycomb-like structure that is 15,000 miles across and extends downward
60 miles into the atmosphere. More than 20 years later, the Cassini-Huygens
space probe captured the same weather pattern, suggesting that it may be a
permanent feature of Saturn’s atmosphere, or that it is periodic and by chance
Cassini-Huygens reached Saturn in time to see the storm reappear.

6. Would Saturn actually float in water? Well, sort of. While it is true that Saturn is less dense
than water, it is physically impossible for a body of water large enough to float Saturn to exist. For
a detailed explanation, see Rhett Allain’s “No. Saturn Wouldn’t Float in Water” in the July 2013
issue of Wired magazine. The safest statement to make (which is true), is that objects immersed in
water will float if they are less dense than water.
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Figure 8.12 Saturn’s Hexagonal Storm
Numerous storms have been detected in Saturn’s atmosphere. The Cassini spacecraft captured this
strange hexagonal-shaped storm at Saturn’s North Pole in April 2014 from a distance of 1.4 million
miles. The storm is twice as wide as the Earth! (Image courtesy of NASA/JPL-Caltech/SSI)

Saturn has a periodic feature called the Great White Spot that has been
observed approximately every 20–30 years since 1876. The Great White Spot,
also called the Great White Oval, is a gigantic storm system analogous to
Jupiter’s Great Red Spot. It was last seen in 2010 when the Cassini-Huygens
probe sent back data and high-resolution images of the phenomenon. Located
at that time in Saturn’s northern hemisphere, the Great White Spot was
25 miles above Saturn’s clouds and covered a surface area of more than
600 million square miles. It had sustained winds of 300 miles per hour that
lasted over 7 months before dissipating

The largest of Saturn’s moons, and the first to be discovered, is Titan. Titan
has a diameter of 3,200 miles making it a little smaller than Ganymede, the
Solar System’s largest moon, and 1.5 times larger than our Moon. Titan’s
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atmosphere is 95 percent nitrogen with trace amounts of methane. Its atmo-
sphere extends over 370 miles above its surface, as compared to Earth whose
atmosphere extends less than 40 miles above the surface.

Liquid seas and rivers abound on Titan’s surface, but they flow with liquid
methane instead of water. Methane rivers are not the only hazards abounding
on Titan. The Cassini-Huygens space probe discovered a cloud of hydrogen
cyanide 185 miles up in Titan’s atmosphere that is roughly the size of Egypt.
Despite such dangers, Titan has been described by some as the least hostile
place in the Outer Planets region of our Solar System!

As of 2015, 62 moons, including Titan, are known to orbit Saturn; 16 of
those moons always present the same side toward Saturn. Titan may seem
bizarre to those of us more accustomed to Earth’s Moon, but Saturn has even
stranger moons in its diverse collection of companions.

• Prometheus, Pandora, Pan, and several others are shepherd moons. This
means that they interact gravitationally with objects in Saturn’s rings to keep
the rings in their orbit.

• Four of Saturn’s moons are also trojans. Telesto and Calypso share the same
orbit as Tethys while Helene and Polydeuces share the same orbit as Dione.

• Tethys has a huge rift called Ithaca Chasma that runs nearly three-quarters
of the way around the moon.

• Janus and Epimetheus sometimes pass close to each other with the result that
they swap orbits about every 4 years.

• Enceladus has more than 100 geysers near its southern pole. They are like
ice volcanoes and they eject plumes of water when they erupt, forming a huge
cloud of water vapor over the moon’s south pole.

• Iapetus is like “Dr. Jekyll, Mr. Hyde” in that 1 of its sides is as bright as snow
while the other side is as dark as coal. Besides having several craters, Iapetus
has a large ridge on its dark side that almost perfectly follows its equator for
nearly three-fourths of the way around the moon.

• Anthe and Methone have partial rings around them while Pallene has a
complete ring encircling it. Rhea may also have a ring system around it.

• Phoebe is irregularly shaped and may be an object captured from the Kuiper
Belt by Saturn’s strong gravitational pull. Phoebe has a retrograde orbit,
which means that it orbits Saturn in a direction opposite to that of Saturn’s
rotation.

• Mimas is about the size of Spain and has a large bullseye crater named Her-
schel whose diameter is about one-third that of the moon itself. The impact
that created Herschel almost shattered Mimas.
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Four space probes have been sent to explore Saturn and its moons. The first
was Pioneer 11, which arrived in 1979 and was followed a short time later by
Voyager 1 and Voyager 2. The last spacecraft sent to Saturn was the Cassini-
Huygens spacecraft jointly sponsored by ESA, NASA, and the Italian space
agency, Agenzia Spaziale Italiana (ASI). In 2005, the Huygens probe separated
from the larger spacecraft and landed on Titan, making it the first, and presently
the only, spacecraft to land on another planet’s moon. The probe transmitted
data from the surface for 90 minutes before going silent. Cassini remained on
station near Saturn until it reached the end of its mission in September 2017. It
was then sent into Saturn’s atmosphere, where it was destroyed.

From the early Pioneer and Voyager flybys to the present day Cassini-
Huygens spacecraft, our knowledge of Saturn and its neighboring moons has
greatly expanded. For all our efforts, however, our understanding of this part of
the Solar System is still very primitive. Saturn remains as mysterious as ever,
still beckoning us like a beautiful siren.

8.3.3 Uranus

Sir William Herschel is credited with discovering Uranus on March 13, 1781.
His discovery marked the first time in history that a planet was discovered with
a telescope. Herschel was conducting a sky survey, which eventually became
the basis for the widely used New General Catalog (NGC), when he thought
he had discovered a comet. In fact, he first announced his discovery as being
a comet. But as he studied the object in subsequent weeks, Herschel came to
the startling realization that instead of a new comet he had found a previously
unknown planet. Discovering Uranus assured Herschel of a respected place in
the history of astronomy. A star, a crater on the Moon, a crater on Mimas,
an impact basin on Mars, an asteroid, and a space telescope are all named in
Herschel’s honor.

Despite the acclaim, Herschel was not the first to view Uranus, which is just
barely visible to the naked eye. The Greek astronomer Hipparchus may have
viewed Uranus, and Ptolemy may have recorded it as a star in The Almagest,
an ancient catalog of the visible stars in each constellation. The British
Astronomer Royal John Flamsteed definitely included Uranus as a star, which
he designated as 34 Tauri, on a star chart produced in 1690. Also, 4 different
astronomers viewed Uranus on multiple occasions between 1690 and 1771.
Even so, Herschel was the first to recognize that Uranus is a planet.

As the one who discovered Uranus, Herschel wanted to name it Geor-
gian Sidus (George’s Star) in honor of King George III. Instead, the German
astronomer Johann E. Bode suggested naming the new planet Uranus after the
Greek god of the sky. Uranus is the only planet in our Solar System named after



Figure 8.13 Uranus
This image of Uranus taken in 2005 through the Hubble Space Telescope shows a storm in the
northern atmosphere and a faint set of rings. Note that Uranus is “lying down” in its orbit around
the Sun. (Image courtesy of NASA/ESA/M. Showalter [SETI Institute])
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a Greek god instead of a Roman god. Had the convention of using Roman gods
to name the planets been followed, Uranus might well have been called Caelus
since that is the Roman counterpart of the Greek god Uranus.

Uranus is one of the ice giants, so called because it is composed mostly of
icy materials such as water, ammonia, and methane. It is 14.5 times more mas-
sive than Earth, and it has a diameter of 31,500 miles. Uranus lies 1.8 billion
miles (19.19 AUs) from the Sun and takes 84 Earth years to make 1 trip around
the Sun. It rotates on its axis in just 17.2 hours. Uranus has seasons, but seasons
on Uranus last for 20 years!

The atmosphere on Uranus consists mostly of methane, hydrogen, and
helium. The methane in Uranus’s atmosphere absorbs the red light rays from
the Sun, thereby giving the planet its characteristic blue-green color. The tops
of the methane clouds that cover Uranus have an average temperature of about
−350 ◦F. The lower layers of those clouds may be composed of water vapor.

An interesting feature of Uranus is that it is “lying down” in its orbit. That
is, its axis of rotation lies almost entirely in its orbital plane. This means that
the planet’s poles point almost directly toward the Sun rather than being more
nearly perpendicular to the Sun, as is the case for all the other planets in the
Solar System. Astronomers do not presently agree on which of Uranus’s poles
is its north pole and which is its south pole. For that reason, they do not
agree on whether the planet rotates east to west or west to east. In any case,
because of the orientation of Uranus’s poles with respect to the Sun, some
areas of the planet do not face the Sun for over 40 years. A night on Uranus is
very long indeed!

In 1977, astronomers at the Australian Perth Observatory discovered that
Uranus has rings. Voyager 2 came within 50,600 miles of Uranus in a 1986
flyby and confirmed the existence of rings around the planet as well as dis-
covering 10 moons. Voyager 2 is the only spacecraft to date that has visited
Uranus; consequently, most of what we know about the planet is limited to
what can be discovered from Earth. Fortunately, astronomers periodically use
the Hubble Space Telescope and various Earthbound tools to study Uranus.
Because of such efforts, we know that Uranus has 27 moons and 13 faint
rings. Unfortunately, no new missions to send spacecraft to Uranus have been
announced, so our knowledge of this ice giant may well remain limited for the
foreseeable future.

8.3.4 Neptune

Before the discovery of Neptune, the only hope for discovering a new planet
was by chance. No one pointed their telescope to a spot in the sky and expected
to find a new planet there. However, 2 astronomer/mathematicians, John C.
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Figure 8.14 Neptune
Voyager 2 took this image of Neptune in 1989. It shows 3 large anticyclonic storms: the Great
Dark Spot is on the left near Neptune’s equator, the Scooter storm is the white area just below the
Great Dark Spot, and the Small Dark Spot is at the bottom. (Image courtesy of NASA/JPL)

Adams of England and Urbain Le Verrier of France, independently and almost
concurrently calculated the position of where Neptune should be. The German
astronomer Johann G. Galle sighted the planet where it was predicted to be on
September 23, 1846. To date, Neptune is the only planet whose discovery was
predicted by mathematics before it was actually observed.

There is, however, evidence that perhaps Galileo should be given credit as
Neptune’s discoverer. Neptune and Jupiter were at about the same place in
the sky in December 1612 when Galileo was studying the moons of Jupiter.
He included what he may have thought to be a star in a sketch of Jupiter and
its moons, but he noted that the object had moved when he again turned his
telescope to Jupiter in January 1613. There is also evidence that at least 2
other astronomers saw the planet prior to Galle’s sighting. Even so, Galle was



218 Chapter 8

the first to announce that he had observed a new planet, and he had done so
by turning his telescope to the very location that Adams and Le Verrier had
predicted.

Following the tradition of naming planets after Roman gods, Neptune was
named after the Roman god of the seas. That is perhaps appropriate because
the methane in Neptune’s atmosphere gives the planet its characteristic blue
color, which is reminiscent of the color of Earth’s oceans. The temperature
in Neptune’s atmosphere has been measured as low as −360 ◦F, while storms
observed in Neptune’s atmosphere have been measured with speeds in excess
of 1,500 miles per hour. It is truly a giant planet with a mass more than 17
times that of Earth and a diameter of 30,600 miles. Neptune lies 2.8 billion
miles from the Sun (30.07 AUs) and has an orbital period of 165 Earth years.
Neptune rotates on its axis every 16.1 hours.

To date, the only spacecraft to visit Neptune has been Voyager 2, which
discovered 3 large anticyclonic storms in Neptune’s atmosphere. Neptune has
the most violent storms ever discovered on any planet in our Solar System.
The largest storm Voyager 2 discovered, the Great Dark Spot, extended 8,000
miles in the east-west direction and 4,100 miles in the north-south direction.
Voyager 2 also discovered a storm that was named Scooter because of how
quickly it moves across the planet’s surface. Slightly larger than Scooter but
substantially smaller than the Great Dark Spot, the Small Dark Spot is another
storm in Neptune’s southern hemisphere that Voyager 2 imaged during its 1989
flyby. Because of its appearance, the Small Dark Spot is sometimes known
as the Wizard’s Eye. Some have compared Neptune’s Great Dark Spot to
Jupiter’s Great Red Spot. While storms on Jupiter appear to have long lives,
storms are relatively short lived on Neptune. The Hubble Space Telescope was
trained on Neptune in 1994, but by then all 3 storms Voyager 2 discovered had
disappeared.

In 1982, astronomer Edward Guinan announced the tentative discovery of
a ring encircling Neptune. However, Voyager 2 data showed that Guinan had
actually discovered Neptune’s moon Larissa. Then in 1984, astronomers at
the Chilean La Silla Observatory and the Chilean Cerro Tololo Interamerican
Observatory announced that they had observed rings around Neptune. Voyager
2 confirmed that the 1984 observations were indeed of rings around Neptune,
thus bringing the number of confirmed ringed planets in our Solar System from
1 (Saturn) to 4 (Saturn, Jupiter, Uranus, and Neptune).

Unlike the other ringed planets in our Solar System, the objects encircling
Neptune are unique in that they do not form a complete ring, but instead form
1 or more incomplete arcs. Three faint arcs comprise the Adams ring, named
in honor of John C. Adams who had predicted Neptune’s position. Two other
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rings with incomplete arcs are named after Le Verrier, who had also predicted
Neptune’s position, and Galle, who is credited with discovering Neptune.

As of January 2016, 14 moons have been discovered orbiting Neptune. The
largest is Triton, which is larger than our Moon and may be an object from
the Kuiper Belt captured by Neptune’s gravity. Triton, like Saturn’s moon
Phoebe, has a retrograde orbit. Triton’s orbit is rapidly decaying. In 1966,
Caltech student Thomas McCord predicted that Triton will collide with Nep-
tune in 100 million years because it will be within Neptune’s Roche Limit.
The Roche Limit is the distance at which an orbiting body will disintegrate
due to the overpowering tidal forces of the body around which it orbits. Mod-
ern astronomers agree with McCord’s conclusion, although they predict that
Triton’s orbit will not decay to the Roche Limit for another 3.6 billion years.
When that happens, the result may be another asteroid belt in the outer reaches
of our Solar System, or the creation of a ringed planet whose rings rival those
of Saturn.

8.4 The Dwarf Planets

The discovery of Eris created quite a stir within the astronomy community.
When it was discovered, astronomers thought that Eris was 27 percent more
massive than Pluto and had a diameter a little larger than Pluto’s diameter.
However, subsequent study has shown that Eris is very close to being the same
size as Pluto. Even so, the obvious question that arose was whether Eris should
be designated as the 10th planet in our Solar System; in fact, the IAU met in
2006 to resolve that very question. In so doing, they formally defined a planet
and created the new category of dwarf planets. Under the definitions formulated
by the IAU, Eris is classified as a dwarf planet. At present, the IAU officially
recognizes 5 Solar System objects as dwarf planets: Pluto, Ceres, Haumea,
Makemake, and Eris. A dozen or more other objects are being evaluated to
determine if they, too, meet the qualifications for a dwarf planet.

NASA’s New Horizons space probe reached the Kuiper Belt in 2015 while
NASA’s Dawn space probe reached the Asteroid Belt in the same year. A major
mission for both probes is to study the known dwarf planets in their proximity
and to look for other dwarf planets. Some estimate that 200 more dwarf planets
may be found within the Kuiper Belt when the New Horizons probe completes
its mission. When the search is extended to regions of space outside the Kuiper
Belt, there may be tens of thousands more dwarf planets patiently waiting to be
discovered. Consequently, the data about the dwarf planets shown in table 8.1,
as well as the number of officially recognized dwarf planets, is very likely
to change substantially as these space probes carry out their missions. As the
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Figure 8.15 Pluto’s “Heart”
This image of Pluto was taken by NASA’s New Horizons spacecraft in July 2015. A prominent
feature of Pluto’s surface is the heart-shaped area seen at the bottom of the image. (Image courtesy
of NASA/JHUAPL/SwRI)

table shows, all known dwarf planets (and indeed all currently suspected dwarf
planets) are much smaller than Earth’s Moon. The two largest, Pluto and Eris,
are only about two-thirds the size of our Moon.

We now briefly turn our attention to the 5 official dwarf planets, starting
with Pluto. We begin with Pluto because of its historical importance and in
deference to those of us who cannot resist still fondly thinking of it as a full-
fledged planet.

8.4.1 Pluto

Relatively little is known about Pluto. Even with the largest Earthbound tele-
scopes, Pluto appears only as a point of light. Fortunately, NASA’s New
Horizons space probe has arrived in the vicinity and is currently studying Pluto
and other objects in the Kuiper Belt. New information about Pluto will surely
be revealed in the coming years.

Discovered by the American astronomer Clyde Tombaugh in 1930 at the
Lowell Observatory, Pluto was named after the Greek god of the underworld.
Tombaugh did not suggest the name Pluto; it was suggested by an 11-year-
old girl, Venetia Burney, from Oxford, England. The name was considered
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Table 8.1 Our Solar System’s Dwarf Planets
This table provides basic information about the 5 officially recognized dwarf planets.

Object Distance from Sun (AUs) Diameter (Miles) Orbital Period (Years)

Ceres 2.77 590 4.6

Pluto 39.48 1,464 247.9

Haumea 43.13 1,218 283.3

Makemake 45.79 890 309.9

Eris 68.01 1,445 560.9

especially appropriate because not only did it continue the tradition of naming
celestial objects after mythological characters, but its first 2 letters (PL) would
also honor Percival Lowell, who founded the Lowell Observatory. Lowell
had also predicted Pluto’s existence in 1915 because of perturbations he had
observed in the orbits of Uranus and Neptune.

Pluto lies 3.7 billion miles (39.48 AUs) away from the Sun. It takes Pluto
247.9 years to complete 1 orbit around the Sun while rotating on its axis in
6.4 Earth days. Like Uranus, Pluto’s axis of rotation is nearly in the plane of its
orbit around the Sun. Its diameter is 1,430 miles, making it much smaller than
the smallest planet (Mercury) and smaller even than our Moon. Its mass is only
0.002 times that of the Earth. Because of Pluto’s relatively small size, some
astronomers suggested that it might once have been one of Neptune’s moons.
It is true that Pluto’s orbit overlaps Neptune’s orbit, and therefore sometimes it
is closer to the Sun and the Earth than Neptune is. However, Pluto’s orbit is
highly inclined relative to Neptune’s orbit and their orbits do not intersect.
Thus, it seems unlikely that Pluto was ever one of Neptune’s moons.

The surface of Pluto is a frozen mixture of nitrogen, methane, carbon
monoxide, and water with surface temperatures that reach as low as −400 ◦F.
As Pluto’s orbit takes it closer to the Sun, the surface temperature rises and
thaws some of the surface ice to give Pluto a measurably larger atmosphere.
The atmosphere refreezes as Pluto gets farther away from the Sun.

NASA’s New Horizons space probe has revealed an amazing variety of geo-
logical features on Pluto’s surface. Although those features have been given
appropriately dignified scientific names such as Tombaugh Regio and Sputnik
Planum, Pluto’s surface features have also been assigned more descriptive
names such as the Heart, Whale, and Brass Knuckles. The Sputnik Planum
region, which is the so-called Heart, is a frozen plain of nitrogen and carbon
monoxide ices. In other places, there are frozen nitrogen mountains that rise as
much as 11,000 feet above the surface.
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Figure 8.16 Pluto’s “Snakeskin” Terrain
This image taken in 2015 by the New Horizons spacecraft shows Tartarus Dorsa, Pluto’s
“snakeskin” terrain. (Image courtesy of NASA/JHUAPL/SwRI)

The New Horizons space probe also imaged an area near Sputnik Planum
that has been named Tartarus Dorsa. The 330-mile-wide terrain in this area
resembles a snakeskin, and it may actually be tightly packed elevations of
frozen methane that rise some 1,650 feet above the surrounding area that give
the terrain a scaly appearance. In other areas on Pluto’s surface, there appear to
be hills of frozen water that float on a surface of frozen nitrogen. According to
NASA scientists, “These water-ice hills are floating in a sea of frozen nitrogen
and move over time like icebergs in Earth’s Arctic Ocean.”

Pluto has 5 known moons, the first of which was discovered in 1978 by
James Christy and Robert Harrington. Named Charon by its discoverers, it is
the largest of Pluto’s moons with a diameter of 730 miles. As we mentioned
in section 6.1, Pluto and Charon form a binary system. They are locked in
a synchronous orbit so that they always face each other with the same side.
The remaining 4 moons orbiting Pluto are named Hydra, Nix, Kerberos, and
Styx in keeping with the theme of naming objects related to Pluto after the
mythological Hadean world of the Greeks.

8.4.2 Ceres

Astronomers in the latter part of the 18th century suspected that there must
be a planet between Mars and Jupiter. The gap between the 2 planets just
seemed too big for there not to be at least 1 planet located there. After extensive
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Figure 8.17 Ceres’ Occator Crater
Taken in September 2015 at an altitude of 915 miles, this image from NASA’s Dawn spacecraft
shows the bright spots in Ceres’s Occator crater. The Occator crater is 60 miles wide and 2 miles
deep. (Image courtesy of NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

searching by several astronomers, in 1801 the Italian astronomer, mathemati-
cian, and Catholic priest Giuseppe Piazzi discovered a “planet” that he named
Ceres. Astronomers later reclassified Ceres as an asteroid because it was too
dissimilar to the other known planets to be considered a planet. Ceres is now
categorized as both an asteroid and a dwarf planet.

Piazzi named his discovery after the Roman goddess of the harvest. Ceres is
the largest known asteroid, the closest dwarf planet to Earth, and the smallest
of the currently recognized dwarf planets. With a mass 0.012 times the mass
of our Moon, Ceres constitutes about 25–33 percent of the entire mass of the
Asteroid Belt. Ceres does not have any known moons, but there are multiple
temporary trojans that share its orbit.

Orbiting the Sun at an average distance of 257.6 million miles (2.77 AUs),
Ceres has an orbital period of 4.6 Earth years and rotates on its axis in
9.1 hours. Unlike other asteroids, Ceres is nearly spherical in shape and is
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bright enough that those with exceptionally good eyes may be able to see it
with their naked eyes on very dark nights.

In 2014 ESA’s Herschel Space Observatory detected water vapor being
ejected from 2 different regions on the surface of Ceres. NASA’s Dawn space
probe is currently in the area and has imaged 2 “bright spots” inside the Occa-
tor crater in Ceres’s northern hemisphere. Despite these findings, there does
not appear to be volcanic activity on Ceres. The escaping water vapor may
be due to temperature changes or underground pressure. The bright spots are
presently thought to be water ice or salt deposits, but astronomers in the La
Silla Observatory in Chile have noted that they randomly change their appear-
ance on a daily basis. Ceres’s bright spots are presently an intriguing mystery
that astronomers are actively studying to understand.

8.4.3 Haumea

Haumea was discovered in the Kuiper Belt in 2004 or 2005, the date depending
on who should receive credit for its discovery. It was named after the Hawai-
ian goddess of childbirth and has 2 known moons: Hi’iaka, named after the
goddess of the island of Hawaii, and Nakama, named after the Hawaiian water
spirit.

Haumea lies 4 billion miles (43.13 AUs) from the Sun and requires 283.3
Earth years to complete 1 orbit. With a mass a third of that of Pluto and a
rotational period of 3.9 hours, Haumea is the fastest known spinning object
in our Solar System. It is unique among the dwarf planets because of its
football-like shape, with a minimum width of 620 miles and an end-to-end
length of 950–1,200 miles. Because its surface features are difficult to detect,
astronomers were forced to deduce Haumea’s shape by analyzing data from
sensors. Additionally, a red spot has been detected on its surface.

Little else is known about Haumea because it is so far away and so small.
With a visual magnitude of 17.3, under optimum viewing conditions it can
be viewed through a telescope with a minimum aperture of 25–35 inches.
Even then, Haumea will appear as a mere speck of light. No spacecraft
have yet visited Haumea, although NASA’s Dawn space probe is currently
surveying objects in the Kuiper Belt. Perhaps Dawn will soon provide
more detailed information about this odd object and provide images of its
surface.

8.4.4 Makemake

Makemake was discovered in 2005 by a team of astronomers at the Palomar
Observatory. The team decided, somewhat in keeping with how Haumea was
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named, to name the newly discovered dwarf planet after the Rapa Nui god of
fertility. The Rapa Nui are the native inhabitants of Easter Island.

Makemake lies in the Kuiper Belt at an average distance from the Sun of
4.3 billion miles (45.79 AUs). It requires 309.9 Earth years to complete 1 orbit
around the Sun, and it rotates on its axis in an estimated 7.8 hours. Makemake
has no known moons, which makes its mass difficult to calculate. Its diameter
is estimated to be two-thirds the size of Pluto, making it a respectable-sized
dwarf planet. With a visual magnitude of 17.0, it is brighter and easier to view
with an Earthbound telescope than Haumea. Still, it is unlikely that much more
will be known about Makemake until the Dawn space probe or some other
space probe is sent to gather data.

8.4.5 Eris

By some estimates, Eris is the largest dwarf planet, although other estimates
name Pluto as the largest. Eris is 28 percent more massive than Pluto, but it has
a slightly smaller diameter. Because it is so close in size to Pluto, it is often
described as Pluto’s twin. In any case, Eris is large enough that if all the objects
in the Asteroid Belt were coalesced into 1 object, it would easily fit inside Eris.

Eris was discovered in 2005 in the Scattered Disc region of space by a team
of astronomers led by Michael Brown. It was originally named Xena after a
popular television character, but its name was later changed to Eris, the Greek
goddess of discord and strife. It orbits the Sun at a distance of 6.3 billion miles
(68.01 AUs) and has an orbital period of 560.9 Earth years. Eris’s orbital plane
is the most inclined of any dwarf planet with a tilt of 47◦. It has a rotational
period of 25.9 hours and 1 known moon named Dysnomia.

Exploration of Eris is just beginning, so little is known about this remote
dwarf planet. The surface of Eris is more reflective than snow, which suggests
that its surface may be covered in ice.

8.5 Belts, Discs, and Clouds

Astronomers have historically concentrated on studying the Sun, Moon, and
planets more than other Solar System objects, primarily because those objects
are larger, have more predictable orbits, and are more easily within the range
of Earthbound instruments. There are, however, other fascinating objects
throughout our Solar System that are revealing their secrets to increasingly
sophisticated Earthbound and spaceborne instruments. With such tools we are
poised to study even the most remote objects in the Solar System.
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8.5.1 The Asteroid Belt

When Ceres was discovered, astronomers soon found that what appeared to
be a new planet was actually one of several large objects orbiting between
Mars and Jupiter. Between 1801 and 1807, 3 more objects were found: Pallas,
Vesta, and Juno. All were discovered in the region of space that we know as
the Asteroid Belt.

Unlike planets and dwarf planets, there is no generally accepted definition
of what properties an object must possess to be classified as an asteroid. Also
known as planetoids or minor planets, asteroids are small, rocky objects that
are typically highly irregular in shape, although some, such as Vesta, are nearly
spherical. Asteroids are pitted and cratered just as the planets are. Vesta, for
example, has an impact crater 250 miles wide, which is more than 80 percent
of the diameter of Vesta itself. The asteroid/centaur Chariklo has 2 rings,
while more than 150 asteroids are accompanied by a companion moon. Some
asteroids even have 2 moons orbiting them.

Most, but not all, asteroids lie between Mars and Jupiter. Over 200 asteroids
with a diameter greater than 60 miles have been discovered in the Asteroid
Belt. Moreover, it is estimated that there may be 2 million more asteroids with
diameters larger than 1 km. Because of their small size—with the exception
of the brightest asteroid, Vesta, and on occasion some near-Earth asteroids—
asteroids cannot be seen with the naked eye. Table 8.2 lists the 10 largest
asteroids, their size, and their average distance from the Sun. The asteroids

Table 8.2 Largest Asteroids
This table is representative of the thousands of cataloged objects in the Asteroid Belt. These are
the 10 largest asteroids, as determined by their diameter, along with their average distance from the
Sun.

Asteroid Diameter (miles) Distance (AUs)

Ceres 480 2.77

Vesta 326 2.36

Pallas 318 2.77

Hygiea 268 3.14

Interamnia 203 3.06

Europa 196 3.10

Davida 180 3.17

Sylvia 178 3.49

Cybele 170 3.44

Eunomia 167 2.64
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listed in the table are representative of the thousands of cataloged objects in
the Asteroid Belt.

Beginning with the German physician and astronomer Wilhelm Olbers, who
discovered both Pallas and Vesta, many have suggested that the Asteroid Belt is
the remnant of an exploded planet. Such a planet could have exploded because
of a collision with another massive object or due to gravitational pressures gen-
erated by Jupiter. However, since the total mass of all the asteroids is less than
the mass of the Moon, such a preexploded planet would have been relatively
small. A more recent theory is that the Asteroid Belt is the result of thousands
of planetesimals that subsequently collided and fragmented.

The sheer number of asteroids makes it impossible to assign each the name
of a mythological god, person, mountain, or some otherwise interesting object.
Instead, astronomers use a provisional naming scheme to name an asteroid
until it is given a formal name. The scheme consists of a number followed by
2 letters followed by an optional number. The first number is the year in which
the asteroid was discovered while the first letter indicates the month in which
the asteroid was discovered. Instead of using A for January, B for February, and
so on, astronomers use the letter A for January 1–15, B for January 16–31, C
for February 1–15, D for February 16–29, and so forth. The second letter in the
naming convention is used in case more than 1 asteroid is discovered within the
same time period with A representing the first one discovered, B the second,
and so on. For example, asteroid 1984 BC was the third asteroid (letter C)
discovered between January 16 and January 31 (letter B) in 1984. The optional
number is given in case more than 26 asteroids are discovered within a time
period covered by a single letter.

The great number of asteroids and their sizes might lead one to think that
the Asteroid Belt poses a serious threat to space travel. Attempts to visualize
the Asteroid Belt often depict a zone of densely packed boulders that barely
leave enough room for a hapless spaceship to pass through. This view is wrong.
Isaac Asimov estimated that the asteroids, except for occasional clusters, might
have an average distance of 10 million miles between them, which makes the
probability of accidentally encountering an asteroid, much less colliding with
one, small. Voyager passed through the Asteroid Belt on its way to Jupiter and
Saturn without mishap, which is further evidence that the Asteroid Belt poses
little real navigational danger.

Astronomers classify asteroids based on their orbits and spectral reflectivity.
About 95 percent of all known asteroids lie totally within the Asteroid Belt and
are known as Main Belt asteroids. Near-Earth asteroids have orbits that carry
them outside the Asteroid Belt and are subdivided into 3 major subgroups.
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Asteroids in the Amor subgroup’s asteroids have orbits between Earth and
Mars, the Apollo subgroup have orbits that cross Earth’s orbit, and those in the
Aten subgroup have orbits that cause them to spend most of their time inside
Earth’s orbit.

As of November 2014, 11,600 near-Earth asteroids have been classified as
Earth-crossers, meaning that their orbits cross Earth’s orbit at 1 or more points.
Of these, approximately 1,000 are 1 km or larger in diameter. Astronomers
are interested in tracking these objects because if they were to collide with
Earth, the results could be catastrophic. For example, on February 15, 2013, an
asteroid estimated to be only 65 feet in diameter entered the Earth’s atmosphere
over Chelyabinsk, a city in the northeast part of Russia. The asteroid created a
shock wave that left a trail of damage for 55 miles and injured 1,200 people,
mostly from flying glass as the shock wave blew windows out of buildings.

The asteroid that struck near Chelyabinsk was a member of the Apollo sub-
group of asteroids. Earth’s trojan asteroid, 2010 TK7, also belongs to the
Apollo subgroup, but it is in no danger of striking Earth. More ominously,
as of August 2015, more than 1,000 Apollo asteroids have been found that are
large enough and close enough to Earth to be potentially dangerous. In addi-
tion, over 100 Aten asteroids have been identified as potentially dangerous to
Earth. The IAU Minor Planets Center has the responsibility of identifying and
tracking all potentially hazardous asteroids.

Besides classifying asteroids by their orbital trajectory, astronomers also
classify asteroids by spectral reflectivity, which offers clues to an asteroid’s
composition. There are presently 14 classes of asteroids based on spectral
reflectivity. It is estimated that over 75 percent of asteroids are C-type aster-
oids. They are gray in color and their reflectivity suggests that they are largely
composed of carbonaceous materials. S-type asteroids are reddish or greenish
in color and are stony, silicate rocks. Some 17 percent of all known asteroids
are S-type. M-type asteroids are metallic, F-type asteroids have a flat reflec-
tivity, R-type asteroids are reddish in color, and V-type asteroids appear to be
basaltic in nature, which suggests that they are a result of volcanic activity.

In a remarkable demonstration of space navigation and engineering, NASA’s
Near Earth Asteroid Rendezvous (NEAR) Shoemaker space probe orbited the
asteroid 433 Eros and then landed on it in February 2001. In 2006, JAXA’s
Hayabusa spacecraft performed an even more amazing feat; it landed on the
near-Earth asteroid 25143 Itokawa, collected samples, and then returned to
Earth. Images, data, and samples collected from these space probes have done
much to increase our knowledge of asteroids.

In perhaps the most ambitious undertaking since the manned Apollo Moon
missions, in 2013 NASA announced the early planning stages for a mission to
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capture a near-Earth asteroid and move it into an orbit around the Moon. Once
in a lunar orbit, it could be visited by astronauts and studied first hand. The
audacity of such a mission is truly the stuff of which science fiction writers
dream.

8.5.2 The Kuiper Belt

The Kuiper Belt does not have well-defined boundaries. Astronomers gener-
ally agree that it begins beyond Neptune’s orbit and extends 50 AUs from the
Sun. Like the Asteroid Belt, the Kuiper Belt is a massive debris field containing
thousands of objects following their own orbits around the Sun. However, the
Kuiper Belt differs from the Asteroid Belt in at least 2 significant ways. First,
the Kuiper Belt is 20 times larger than the Asteroid Belt and may contain 200
times more mass than the Asteroid Belt. Second, most asteroids are composed
of rocks and metals whereas the denizens of the Kuiper Belt are largely frozen
objects composed of methane, water, and ammonia.

Objects within the Kuiper Belt are sometimes referred to as trans-Neptunian
objects (TNOs), or more often as Kuiper Belt Objects (KBOs). Pluto is the
largest known KBO, although it is estimated that there may be 200 or more
other dwarf planets in this region of space. Little hard data is available about
KBOs because they are so far away. NASA’s New Horizons spacecraft is cur-
rently in the Kuiper Belt collecting important data, but it will be several years
before the data is fully understood. At present, astronomers generally believe
that some of the moons orbiting the Outer Planets, such as Saturn’s Phoebe
and Neptune’s Triton, originated in the Kuiper Belt.

The total amount of mass estimated to be in the Kuiper Belt is small in com-
parison to the planets and moons that populate the rest of the Solar System. The
total mass is estimated to be as much as a tenth to as little as a hundredth of the
Earth’s mass. Because they have such little mass, KBOs are dominated by and
heavily impacted by Neptune’s gravitational pull. The cumulative effects of
Neptune’s gravity over eons of time have created gaps in the Kuiper Belt. Even
so, Neptune’s gravity alone is insufficient to explain perturbations observed in
some KBOs. Attempting to explain such perturbations is part of what prompted
Caltech astronomers Brown and Batygin to postulate the existence of Planet 9.

8.5.3 The Scattered Disc Region

The Scattered Disc region of space, which some include as part of the Kuiper
Belt, begins 30–35 AUs from the Sun and extends up to 100 AUs away from the
Sun. Objects within this region of space, called Scattered Disc Objects (SDOs),
are icy objects much like those in the Kuiper Belt. However, SDOs typically
have an orbital eccentricity that may be as high as 0.8 and orbital planes
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inclined by as much as 40◦ with respect to the ecliptic plane. Astronomers
believe that the strong gravitational influence of Neptune causes SDOs to have
erratic orbits. Although perihelion for most SDOs lies within the Kuiper Belt,
perihelion for some may be as much as 150 AUs from the Sun.

Because of the erratic nature of a typical SDO orbits, the Scattered Disc
region is thought to be the source of short-period comets. A short-period comet
is one that may take up to 200 years to complete 1 orbit around the Sun.
Halley’s Comet, whose orbital period is 75–76 years, is one such short-period
comet thought to originate in the Scattered Disc region of space.

Sedna is an example of an SDO. Discovered in 2004, Sedna is three-fourths
the size of Pluto. Its highly elliptical orbit causes its distance from the Sun to
range between 8 billion (86 AUs) and 84 billion miles (937 AUs). This makes
Sedna the most distant and coldest known object within the confines of our
Solar System. Because of its vast distance away from the Sun, Sedna takes
10,500–11,400 years to complete just 1 orbit around the Sun. With an esti-
mated diameter of 1,100 miles, Sedna is quite likely to be a dwarf planet.

The individual sometimes credited as having discovered the most comets is
American astronomer Carolyn Shoemaker. She was the codiscoverer of the
Shoemaker-Levy 9 comet that was observed crashing into Jupiter in 1994.
Besides discovering or codiscovering 32 comets, Shoemaker is also credited
with discovering 800 asteroids and 377 minor planets.

8.5.4 The Oort Cloud

The Oort Cloud is a theoretical region of space that begins at about 50,000 AUs
(0.8 light years) from the Sun and extends to 200,000 AUs (3.2 light years)
from the Sun.7 Instead of being flat like the Asteroid and Kuiper Belts, the
Oort Cloud is theorized to be spherical in shape with the Sun at the center of
the sphere. No one has yet seen the Oort Cloud or found any objects within that
region of space. However, that fact does not keep astronomers from theorizing
what may be in the Oort Cloud! It is not surprising that because of the vast
distances involved, Oort Cloud objects are expected to be icy objects varying
in size from a few feet to perhaps a few hundred miles across. The Oort Cloud
may contain trillions of objects that are at least 0.5 miles across, and perhaps
billions of objects 10 or more miles across.

Why do astronomers believe there is an Oort Cloud? In 1932, the Estonian
astronomer Ernst Öpik suggested that long-period comets might originate in a
cloud located at the outermost boundary of our Solar System. Öpik’s idea did

7. Some astronomers limit the farthest extent of the Oort Cloud to 100,000 AUs.
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not catch on until the Dutch astronomer Jan Oort independently suggested the
same idea in 1950. Hence, this theoretical region of space is named in Oort’s
honor.

Long-period comets, such as Comet Hale-Bopp, take thousands of years to
complete an orbit around the Sun. Hale-Bopp’s orbital period is 2,500 years
and it is up to 25 miles wide. When it made its way toward Earth in the late
1990s, it was considerably brighter than Halley’s Comet and was easily visible
to the naked eye for about 18 months.

Another example of a long-period comet that may have originated in the
Oort Cloud is Comet Hyakutake. It was discovered in January 1996 and passed
near Earth in March of that same year. When it was first spotted, astronomers
calculated Hyakutake’s orbital period as 17,000 years. However, as it passed
through the Solar System, the gravitational effects of the objects it came near
to altered its orbital period. Astronomers calculate Hyakutake’s orbital period
to now be in the range of 70,000 years!

8.6 Locating the Planets

Calculating the location of a planet is a lengthy undertaking.8 As with locating
the Sun and Moon, the main idea is to calculate a planet’s true anomaly from
which it can be determined how far the planet has moved along its orbit. The
process is more complicated than for the Sun or Moon because we must know
whether the planet under consideration is an inferior or superior planet,9 and
we must determine the location of the Earth.

Determining where a planet will appear in the sky begins by computing the
planet’s position with respect to the Sun. We essentially did this with Earth as
an example planet in section 6.2, although we used a geocentric model to make
the computations easier. Unfortunately, following the techniques in section 6.2
alone gives a planet’s heliocentric ecliptic coordinates (i.e., with respect to the
Sun) when what we really want are a planet’s geocentric ecliptic coordinates
(i.e., with respect to Earth). The need to convert from heliocentric to geocentric
coordinates is why it is necessary to compute Earth’s location.

8. For the remainder of this chapter, we will treat Pluto as a planet because determining the
location, angular size, etc. of an object depends only on its orbital elements, not an arbitrary classi-
fication (planet, dwarf planet, etc.) it falls under.

9. The adjectives inferior and superior refer to where an orbit falls with respect to the Earth. Orbits
for the inferior planets (Mercury and Venus) are between Earth and the Sun. Orbits for the superior
planets (Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto) are farther away from the Sun than
Earth’s orbit. Inferior and superior must not be confused with Inner and Outer Planets, which refer
to regions of space.
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When determining a planet’s position, it can be confusing whether a cal-
culation is being done for Earth or a planet. To avoid confusion, we will use
the subscript e when referring to Earth (e.g., Me for Earth’s mean anomaly)
and the subscript p when referring to a planet (e.g., Mp for a planet’s mean
anomaly). The overall steps required are:

1. Compute the planet’s mean anomaly Mp with respect to the Sun.

2. Compute the planet’s true anomaly υp.

3. Compute the planet’s heliocentric ecliptic longitude Lp and latitude �p.

4. Compute Earth’s position in the ecliptic plane to get its mean anomaly Me.

5. Compute Earth’s true anomaly υe.

6. Compute Earth’s heliocentric ecliptic coordinates Le and �e.

7. Given the heliocentric ecliptic location for Earth and the planet, project
the planet’s location onto the ecliptic plane to obtain its geocentric ecliptic
coordinates.

The process for projecting a planet’s heliocentric coordinates onto the ecliptic
plane depends on whether the planet is an inferior or superior planet. Pro-
jections for both types of planets will be demonstrated in this section.

Several equations are required for this lengthy process. A planet’s mean
anomaly measured from the standard epoch is given by

Mp = 360◦De
365.242191Tp

+ εp −�p, (8.6.1)

where Tp is the planet’s orbital period in tropical years, De is the number
of days since the standard epoch, εp is the planet’s ecliptic longitude at the
standard epoch, and �p is the ecliptic longitude of the planet at the moment
of perihelion. The values for Tp, εp, and�p are provided in tables 8.3 (Inferior
Planets) and 8.4 (Superior Planets).10

We can solve the equation of the center or Kepler’s equation to obtain the
true anomaly from the mean anomaly. We will approximate the equation of the
center for planets by

Ep ≈ 360◦

π
ep sinMp, (8.6.2)

10. The data in the 2 tables has been rounded to no more than 6 decimal digits to fit on the page.
Although only 6 decimal digits may be shown, the data is provided with more digits of accuracy in
the orbital elements data file for this book, and the full accuracy of the data is used in the example
calculations for this chapter.
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where ep is the planet’s orbital eccentricity. The true anomaly is then appro-
ximated by

υp ≈Mp +Ep. (8.6.3)

A planet’s heliocentric ecliptic longitude is given by

Lp =υp +�p (8.6.4)

while the heliocentric ecliptic latitude is given by

�p = sin−1 [sin(Lp −	p) sin ιp
]
, (8.6.5)

where 	p is the planet’s ecliptic longitude of the ascending node and ιp is the
planet’s orbital inclination.

Except for equation 8.6.5, the preceding equations should look familiar.
They are the same as those in section 6.2 for computing the Sun’s mean
anomaly M�, equation of the center Ec, true anomaly υ�, and ecliptic lon-
gitude λ�. Of course, the orbital elements for the planet in question are used
here instead of those for the Sun or Earth.

Once a planet’s heliocentric coordinates are computed, we repeat the same
computations for Earth. We could save ourselves 1 step by assuming �e is
0◦, which would be true if the inclination of Earth’s orbit with respect to the
ecliptic were exactly 0◦. This is easily seen by substituting ιe = 0◦ into equa-
tion 8.6.5. However, table 8.3 shows that Earth’s orbit is actually inclined with
respect to the ecliptic by a small amount. So, we will compute Earth’s helio-
centric ecliptic latitude as a matter of principle, even though it will not improve
our answer by very much.

When the coordinates for the planet and Earth have been calculated, we
next need to know both the distance from the Sun to Earth and the distance
from the Sun to the planet in question. This is because we will use spheri-
cal geometry to project the planet’s heliocentric coordinates into a geocentric
coordinate system, and we need to know the radius of the spheres involved
to do so. The distance from the Sun in AUs, called the radius vector Rp, is
given by

Rp =
ap

(
1 − e2

p

)
1 + ep cos υp

, (8.6.6)

where ap is the length (measured in AUs) of the object’s orbital semi-major
axis, ep is the orbital eccentricity, and υp is the true anomaly.
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The remaining detail is to project the heliocentric coordinates into the
ecliptic plane to produce geocentric ecliptic coordinates. The equation

L′
p =	p + tan−1

[
sin(Lp −	p) cos ιp

cos(Lp −	p)
]

(8.6.7)

calculates an adjustment to the planet’s ecliptic longitude, so a quadrant adjust-
ment may need to be applied to resolve the ambiguity of the arctangent
function. As a longitude, L′

p must be in the range [0◦, 360◦].
If the planet is an inferior planet, compute the planet’s geocentric ecliptic

longitude λp via the equation

λp = 180◦ +Le + tan−1

[
Rp cos�p sin(Le −L′

p)

Re −Rp cos�p cos(Le −L′
p)

]
. (8.6.8)

If the planet is a superior planet, use the following equation instead:

λp =L′
p + tan−1

[
Re sin(L′

p −Le)
Rp cos�p −Re cos(Le −L′

p)

]
. (8.6.9)

A quadrant adjustment may need to be made when the arctangent function
is applied in either of these 2 equations to ensure that the longitude is in the
proper range. Moreover, λp may need to be adjusted after applying the other
terms in the equations to ensure that it is still in the range [0◦, 360◦].

The equation for determining a planet’s geocentric ecliptic latitude, whether
an inferior or a superior planet, is

βp = tan−1

[
Rp cos�p tan�p sin(λp −L′

p)

Re sin(L′
p −Le)

]
. (8.6.10)

No quadrant adjustment is needed in this last equation since the arctangent
returns a value that is already in the proper range. Computing a quadrant
adjustment in this case will give an incorrect ecliptic latitude!

This lengthy process will be demonstrated for both an inferior and a superior
planet. For the purposes of both examples, assume that an observer is in the
Eastern Standard Time zone at 78◦ W longitude, 38◦ N latitude. Assume that
it is January 3, 2016 at 22h LCT, and the observer is not on daylight saving
time.

8.6.1 Inferior Planet Example

For the stated observer, determine the location of Venus.
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1. Use the equations from chapter 3 to convert the LCT to UT, GST, and LST
times, and adjust the date if necessary.

(Ans: UT = 3.0h,GST = 9.878053h,LST = 4.678053h, Date = 1/4/2016.)

2. Compute the Julian day number JDe for the standard epoch.
(Ans: JDe = 2,451,545.0 for J2000.)

3. Compute the Julian day number JD for the desired date. Be sure to use the
Greenwich date and UT from step 1, not the LCT time and date, and be sure
to include the fractional part of the day.

(Ans: JD = 2,457,391.625.)

4. Compute De, the total number of elapsed days since the standard epoch, by
subtracting JDe from JD.

(Ans: De = 5846.625 days.)

Steps 5–8 calculate the planet’s mean anomaly Mp and true anomaly υp.
For this example, we will use equations 8.6.2 and 8.6.3 to approximate the
equation of the center to obtain the true anomaly.

5. Use equation 8.6.1 to compute the mean anomaly for Venus. Since Venus is
an inferior planet, use table 8.3 to get the tropical period Tp, ecliptic longitude
at the epoch εp, and the ecliptic longitude at perihelion �p.

(Ans: Tp = 0.615197, εp = 181.979100◦,�p = 131.602467◦,
Mp = 9417.633039◦.)
6. If necessary, adjust Mp so that it falls in the range [0◦, 360◦].

(Ans: Mp = 57.633039.◦)

7. Use equation 8.6.2 to solve the equation of the center for Venus.
(Ans: Ep = 0.655907◦.)

8. Apply equation 8.6.3 to compute the true anomaly from the equation of the
center.

(Ans: υp = 58.288946◦.)

Steps 9–13 calculate the planet’s heliocentric ecliptic coordinates (Lp, �p)
and radius vector length Rp.

9. Use equation 8.6.4 to compute the planet’s heliocentric longitude Lp.
(Ans: Lp = 189.891413◦.)

10. If necessary, adjust Lp so that it falls in the range [0◦, 360◦].
(Ans: no adjustment is necessary.)

11. Use equation 8.6.5 to compute the planet’s heliocentric latitude �p.
(Ans: 	p = 76.679843◦, ιp = 3.394676◦,�p = 3.119613.◦)
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12. If necessary, adjust �p so that it falls in the range [0◦, 360◦].
(Ans: no adjustment is necessary.)

13. Use equation 8.6.6 to compute the planet’s radius vector length Rp.
(Ans: ap = 0.723336 AUs, ep = 0.006777,

Rp = 0.720735 AUs.)

Steps 14–22 are identical to steps 5–13 except that the calculations are done
for Earth.

14. Compute Earth’s mean anomaly. Use table 8.3 to get the necessary data
for Earth.

(Ans: Te = 1.000017, εe = 100.464572◦,�e = 102.937682◦,
Me = 5760.137095◦.)
15. If necessary, adjust Me so that it falls in the range [0◦, 360◦].

(Ans: Me = 0.137095◦.)
16. Use equation 8.6.2 to solve the equation of the center for Earth.

(Ans: Ee = 0.004582◦.)
17. Apply equation 8.6.3 to compute Earth’s true anomaly from the equation
of the center.

(Ans: υe = 0.141677◦.)
18. Compute Earth’s heliocentric longitude Le.

(Ans: Le = 103.079359◦.)
19. If necessary, adjust Le so that it falls in the range [0◦, 360◦].

(Ans: no adjustment is necessary.)

20. Compute Earth’s heliocentric latitude �e.
(Ans: 	e = 0.0◦, ιe =−0.000015◦,�e =−0.000015◦.)

21. If necessary, adjust �e so that it falls in the range [0◦, 360◦].
(Ans: �e = 359.999985◦.)

22. Compute Earth’s radius vector length Re.
(Ans: ae = 1.000003 AUs, ee = 0.016711, Re = 0.983291 AUs.)

Now that we have the heliocentric positions and radius vector lengths for
Earth and the planet, we need to project the planet’s location onto the ecliptic
plane with respect to Earth. Steps 23–33 perform that projection.

23. Use equation 8.6.7 to calculate an adjustment to the planet’s ecliptic lon-
gitude. Because a quadrant adjustment may be necessary, we will first form
just the argument to the arctangent function with y being the numerator and x
being the denominator.

(Ans: y= 0.917443, x=−0.394128.)
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24. Let T = tan−1
( y
x

)
.

(Ans: T =−66.751959◦.)

25. Apply a quadrant adjustment factor to T to remove the ambiguity of the
arctangent function. This is necessary because T will be used to calculate a
longitude, which must be in the range [0◦, 360◦].

(Ans: Adjustment = 180◦ because y is + and x is −,
T = 113.248041◦.)
26. Finish computing L′

p via equation 8.6.7.
(Ans: L′

p = 189.927883◦.)

27. Adjust L′
p if necessary to ensure it is in the range [0◦, 360◦].

(Ans: no adjustment is necessary.)

Steps 28–32 are for an inferior planet only.

28. This is an inferior planet, so use equation 8.6.8 to compute the planet’s
geocentric ecliptic longitude. Since an arctangent is again involved, we will
first compute the numerator y and the denominator x for the argument to the
arctangent function.

(Ans: y=−0.718579, x= 0.943727.)

29. Let T = tan−1
( y
x

)
.

(Ans: T =−37.286603◦.)

30. Apply a quadrant adjustment factor to T to remove the ambiguity of the
arctangent function. This is necessary because T will be used to calculate a
longitude, which must be in the range [0◦, 360◦].

(Ans: Adjustment = 360◦ because y is − and x is +, T = 322.713397◦.)

31. Finish computing λp using equation 8.6.8.
(Ans: λp = 605.792756◦.)

32. Adjust λp if necessary to ensure it is in the range [0◦, 360◦].
(Ans: λp = 245.792756◦.)

33. Use equation 8.6.10 to compute the planet’s geocentric ecliptic latitude.
No quadrant adjustment is needed here because the arctangent returns a value
in the proper range for a latitude. Computing a quadrant adjustment will give
an incorrect answer!

(Ans: βp = 1.893914◦.)

The remaining steps convert the ecliptic coordinates to their corresponding
equatorial and horizon coordinates.

34. Convert λp and βp to their corresponding equatorial coordinates.
(Ans: αp = 16.283091h, δp =−19.407214◦.)
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35. Finally, convert the equatorial coordinates to the appropriate horizon coor-
dinates.

(Ans: hp =−70◦42′, Ap = 17◦08′.)

Instead of using the equation of the center to compute the true anomalies in
steps 7–8 (for the planet) and steps 16–17 (for Earth), we could have solved
Kepler’s equation. Had we used the simple iterative scheme to do so, the results
would be

υp = 58.291919◦, υe = 0.141774◦.

Using these values and carrying through the calculations, steps 32 and 33
would yield

λp = 245.793823◦, βp = 1.893824◦,

which then leads to horizon coordinates of

hp =−70◦42′, Ap = 17◦08′

for the stated observer.
The values obtained for the Earth’s and planet’s true anomalies and ecliptic

coordinates by using the equation of the center versus Kepler’s equation are
fairly close when rounded to 1 or 2 decimal places. Since our purpose in this
example was only to get horizon coordinates for Venus within a few arcminutes
of precision, the additional effort required to solve Kepler’s equation was not
worth it. However, the values obtained by solving Kepler’s equation versus the
equation of the center are different enough that using the equation of the center
may not be sufficiently accurate for many purposes.

How accurate is this algorithm? NASA’s online Horizon program gives the
equatorial coordinates for Venus as

αp = 15.952147h, δp =−18.316056◦

for an observer at 0◦ latitude, 0◦ longitude and 0h UT on January 1, 2000.
Using the algorithm presented here and solving Kepler’s equation, the results
obtained are

αp = 15.952334h, δp =−18.317877◦,

for a difference of 0.7s in right ascension and 6.6′′ in declination.
Determining the position of an inferior planet is a long process indeed! We

now turn our attention to locating a superior planet. The process for doing so
is not any shorter.
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8.6.2 Superior Planet Example

For the stated observer, determine the position of Saturn.

1. Use the equations from chapter 3 to convert the LCT to UT, GST, and LST
times, and adjust the date if necessary.

(Ans: UT = 3.0h,GST = 9.878053h,LST = 4.678053h, Date = 1/4/2016.)

2. Compute the Julian day number JDe for the standard epoch.
(Ans: JDe = 2,451,545.0 for J2000.)

3. Compute the Julian day number JD for the desired date. Be sure to use the
Greenwich date and UT from step 1, not the LCT time and date, and be sure
to include the fractional part of the day.

(Ans: JD = 2,457,391.625.)

4. Compute De, the total number of elapsed days since the standard epoch, by
subtracting JDe from JD.

(Ans: De = 5846.625 days.)

Steps 5–8 calculate the planet’s mean anomaly Mp and true anomaly υp.
For this example, we will use equations 8.6.2 and 8.6.3 to approximate the
equation of the center to obtain the true anomaly.

5. Use equation 8.6.1 to compute the mean anomaly for Saturn. Since Saturn is
a superior planet, use table 8.4 to get the tropical period Tp, ecliptic longitude
at the epoch εp, and the ecliptic longitude at perihelion �p.

(Ans: Tp = 29.447498, εp = 49.954244◦,�p = 92.598878◦,
Mp = 153.049767◦.)

6. If necessary, adjust Mp so that it falls in the range [0◦, 360◦].
(Ans: no adjustment is necessary.)

7. Use equation 8.6.2 to solve the equation of the center for Saturn.
(Ans: Ep = 2.797300◦.)

8. Apply equation 8.6.3 to compute the true anomaly from the equation of the
center.

(Ans: υp = 155.847067◦.)

Steps 9–13 calculate the planet’s heliocentric ecliptic coordinates (Lp, �p)
and radius vector length Rp.

9. Use equation 8.6.4 to compute the planet’s heliocentric longitude Lp.
(Ans: Lp = 248.445945◦.)

10. If necessary, adjust Lp so that it falls in the range [0◦, 360◦].
(Ans: no adjustment is necessary.)
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11. Use equation 8.6.5 to compute the planet’s heliocentric latitude �p.
(Ans: 	p = 113.662424◦, ιp = 2.485992◦,�p = 1.764216◦.)

12. If necessary, adjust �p so that it falls in the range [0◦, 360◦].
(Ans: no adjustment is necessary.)

13. Use equation 8.6.6 to compute the planet’s radius vector length Rp.
(Ans: ap = 9.536676 AUs, ep = 0.053862, Rp = 10.000499 AUs.)

Steps 14–22 are identical to steps 5–13 except that the calculations are done
for Earth.

14. Compute Earth’s mean anomaly. Use table 8.3 to get the necessary data
for Earth.

(Ans: Te = 1.000017, εe = 100.464572◦,�e = 102.937682◦,
Me = 5760.137095◦.)

15. If necessary, adjust Me so that it falls in the range [0◦, 360◦].
(Ans: Me = 0.137095◦.)

16. Use equation 8.6.2 to solve the equation of the center for Earth.
(Ans: Ee = 0.004582◦.)

17. Apply equation 8.6.3 to compute Earth’s true anomaly from the equation
of the center.

(Ans: υe = 0.141677◦.)

18. Compute Earth’s heliocentric longitude Le.
(Ans: Le = 103.079359◦.)

19. If necessary, adjust Le so that it falls in the range [0◦, 360◦].
(Ans: no adjustment is necessary.)

20. Compute Earth’s heliocentric latitude �e.
(Ans: 	e = 0.0◦, ιe =−0.000015◦,�e =−0.000015◦.)

21. If necessary, adjust �e so that it falls in the range [0◦, 360◦].
(Ans: �e = 359.999985◦.)

22. Compute Earth’s radius vector length Re.
(Ans: ae = 1.000003 AUs, ee = 0.016711, Re = 0.983291 AUs.)

Now that we have the heliocentric positions and radius vector lengths for
Earth and the planet, we need to project the planet’s location onto the ecliptic
plane with respect to Earth. Steps 23–33 perform that projection.

23. Use equation 8.6.7 to calculate an adjustment to the planet’s ecliptic lon-
gitude. Because a quadrant adjustment may be necessary, we will first form
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just the argument to the arctangent function with y being the numerator and x
being the denominator.

(Ans: y= 0.709105, x=−0.704430.)

24. Let T = tan−1
( y
x

)
.

(Ans: T =−45.189506◦.)

25. Apply a quadrant adjustment factor to T to remove the ambiguity of the
arctangent function.

(Ans: Adjustment = 180◦ because y is + and x is −, T = 134.810494◦.)

26. Finish computing L′
p via equation 8.6.7.

(Ans: L′
p = 248.472919◦.)

27. Adjust L′
p if necessary to ensure it is in the range [0◦, 360◦].

(Ans: no adjustment is necessary.)

Steps 28–32 are for a superior planet only.

28. This is a superior planet, so use equation 8.6.9 to compute the planet’s
geocentric ecliptic longitude. Since an arctangent is again involved, we will
first compute the numerator y and the denominator x for the argument to the
arctangent function.

(Ans: y= 0.558447, x= 10.805079.)

29. Let T = tan−1
( y
x

)
.

(Ans: T = 2.958627◦.)

30. Apply a quadrant adjustment factor to T to remove the ambiguity of the
arctangent function.

(Ans: no adjustment is necessary.)

31. Finish computing λp using equation 8.6.9.
(Ans: λp = 251.431546◦.)

32. Adjust λp if necessary to ensure it is in the range [0◦, 360◦].
(Ans: no adjustment is necessary.)

33. Use equation 8.6.10 to compute the planet’s geocentric ecliptic latitude.
No quadrant adjustment is needed here.

(Ans: βp = 1.629973◦.)

The remaining steps simply convert the ecliptic coordinates to their corre-
sponding equatorial and horizon coordinates.

34. Convert λp and βp to their corresponding equatorial coordinates.
(Ans: αp = 16.675230h, δp =−20.537509◦.)



244 Chapter 8

35. Finally, convert the equatorial coordinates to the appropriate horizon coor-
dinates.

(Ans: hp =−72◦32′, Ap = 0◦08′.)

Had we used the simple iterative method to solve Kepler’s equation in
steps 7–8 and 16–17 instead of approximating the equation of the center, the
results for Saturn would be

υp = 155.687438◦, υe = 0.141774◦, λp = 251.284449◦, βp = 1.634685◦.

These lead to horizon coordinates hp =−72◦31′, Ap = 0◦37′ for the stated
observer. The additional accuracy obtained by solving Kepler’s equation
appears warranted in this example, particularly with regards to the result
obtained for the azimuth.

NASA’s online Horizon program gives the equatorial coordinates for
Jupiter as

αp = 4.870576h, δp = 22.131222◦

for an observer at 0◦ latitude, 0◦ longitude and 0h UT on May 5, 2001.
Using the algorithm presented here and solving Kepler’s equation, the results
obtained are

αp = 4.873366h, δp = 22.137182◦,

for a difference of 10.0s in right ascension and 21.5′′ in declination. Better
accuracy can be obtained by using a standard epoch closer to the desired date
(e.g., 2001.0), but this accuracy is more than sufficient for the purposes of this
book.

The astute reader has probably wondered why the gravitational attraction
of various planets is not considered in the preceding steps. Various orbital
perturbations must be considered to calculate a planet’s location with a high
degree of accuracy, especially for the giant planets Jupiter and Saturn, which
can account for a discrepancy of as much as 1◦. If higher accuracy is desired,
orbital corrections would need to be added for each of the planets in much the
same manner that orbital corrections were considered during the calculations
for the Moon’s position.

8.7 Planet Rise and Set Times

The examples worked out in the previous section show why it is useful to
know when a planet will rise and set. After all that work, neither Venus nor
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Saturn is visible to our observer because in both cases, the planets are below
the observer’s horizon.

Calculating sunrise, sunset, moonrise, and moonset required an interpola-
tion scheme since the equatorial coordinates of the Sun and Moon change so
rapidly. Fortunately, this is not the case with the planets. Calculating the posi-
tion of a planet only once during the day is sufficient to determine its rise and
set times to a reasonable degree of accuracy.

To calculate a planet’s rising and setting times, we will use the same method
that we used in section 5.2 to calculate the rising and setting times for a star.
To illustrate, let us again refer to the observer from the previous section. When
will Saturn appear above the observer’s horizon? The required steps are as
follows:

1. Calculate the geocentric ecliptic coordinates of the desired planet at 0h UT
on the date of interest.

(Ans: λp = 251.311100◦, βp = 1.629447◦.)

2. Convert the geocentric ecliptic coordinates to equatorial coordinates.
(Ans: αp = 16.666734h, δp =−20.521694◦.)

3. Using the equatorial coordinates from the previous step and treating the
planet as if it were a star, use the algorithm from section 5.2 to compute LST
rising and setting times.

(Ans: LSTr = 11.800372h,LSTs = 21.5333096h.)

4. Convert the LST times to LCT times.
(Ans: LCTr = 5.168407h,LCTs = 14.874561h.)

5. Convert the LCT times to HMS format.
(Ans: LCTr = 5h10m, LCTs = 14h52m.)

8.8 Planetary Distance and Angular Diameter

Calculating the distance from Earth to a planet falls out quite readily from the
work done to calculate a planet’s position. The equation required is

Dist =
√
R2
e +R2

p − 2ReRp cos(Lp −Le), (8.8.1)

where Re and Rp are the radius vector lengths of the Earth and planet, respec-
tively, and Le and Lp are the heliocentric ecliptic longitudes of the Earth and
planet, respectively.

To illustrate, calculate the distance from Earth to Saturn for the observer
from our previous example.
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1. Using the steps from section 8.6, calculate the radius vector length for Earth
and the planet, and the heliocentric ecliptic longitude for Earth and the planet
at 0h UT.

(Ans: Rp = 10.000361 AUs, Re = 0.983294 AUs, Lp = 248.411905◦,
Le = 101.933467◦.)

2. Apply equation 8.8.1 to calculate the distance in AUs from Earth to the
planet.

(Ans: Dist = 10.833730 AUs.)

3. If desired, convert the distance to kilometers and miles.
(Ans: Dist = 1.6207E09 km, or 1.0071E09 miles.)

Calculating a planet’s angular diameter requires the distance just calculated.
The equation required is

θ = θp

Dist
, (8.8.2)

where θp is the angular diameter when the planet is 1 AU from Earth (see
tables 8.3 and 8.4) and Dist is the distance from the planet to Earth measured
in AUs. Since θp is given in arcseconds, the result from equation 8.8.2 will
also be in arcseconds.

Again using Saturn and the observer from the previous section, we have

θ = θp

Dist
= 165.60′′

10.833730 AUs
= 15.29′′.

Recall that sections 6.5 and 7.5 presented a method for calculating distance
and angular diameter directly from an object’s orbital elements. Why have we
not used those equations here? Those equations are, of course, still valid, but
they are stated in a form relative to the object being orbited, which is not Earth
in the case of the planets. Thus, if we directly apply the equations in section
6.5 to a planet, we will obtain a planet’s distance from the Sun and its angular
diameter when viewed from the Sun whereas our interest here is a planet’s
distance and angular diameter with respect to Earth.

Theoretically, it is possible to adjust a planet’s orbital elements to be with
respect to Earth rather than the Sun so that the equations presented in section
6.5 will give us what we want. Unfortunately, because the planets and Earth are
constantly in motion, a planet’s orbital elements with respect to Earth would
have to be constantly recomputed to account for that motion. Moreover, to
account for their motion, we have to calculate the positions of Earth and the
planet in question to get the data we need to reference everything with respect
to Earth. Since we have to compute the position of Earth and the planet in the
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first place, we might as well take advantage of that fact and use the method
presented here for determining distance and angular diameter as a byproduct
of calculating a planet’s position.

8.9 Perihelion and Aphelion

As the planets move in their respective orbits, the distance between them and
the Sun varies. In this section we calculate when a planet will pass through per-
ihelion and aphelion. These are the points at which a planet is closest to (peri-
helion) or farthest away (aphelion) from the Sun. The method presented here is
based on the technique Jean Meeus presents in Astronomical Algorithms, 2nd
edition. First, K is calculated by the equation

K = k0(Y − k1), (8.9.1)

where k0 and k1 are chosen from table 8.5 for the planet of interest, and Y is
the date of interest obtained from

Y = Year + Days into year

365.25
. (8.9.2)

The value obtained for K in equation 8.9.1 must be rounded to the nearest
integer for computing perihelion or to the nearest number ending in 0.5 for
aphelion.

Given K , the next step is to use it to compute the Julian day number for
perihelion (K is an integer) or aphelion (K ends in 0.5). The Julian day number
is given by

JD= j0 + j1K + j2K
2, (8.9.3)

Table 8.5 Perihelion and Aphelion
These coefficients are used to calculate a planet’s passage through perihelion and aphelion.

Planet k0 k1 j0 j1 j2

Mercury 4.15201 2000.12 2,451,590.257 87.96934963 0.0

Venus 1.62549 2000.53 2,451,738.233 224.7008188 −3.27E-8

Earth 0.99997 2000.01 2,451,547.507 365.2596358 1.56E-8

Mars 0.53166 2001.78 2,452,195.026 686.9957857 −1.187E-7

Jupiter 0.08430 2011.20 2,455,636.936 4332.897065 1.367E-4

Saturn 0.03393 2003.52 2,452,830.120 10,764.21676 8.27E-4

Uranus 0.01190 2051.10 2,470,213.500 30,694.8767 −5.41E-3

Neptune 0.00607 2047.50 2,468,895.100 60,190.3300 3.429E-2
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where j0, j1, and j2 are obtained from table 8.5 for the planet of interest. Once
we have the Julian day number, it is easy to convert it to the corresponding
calendar date and UT via the methods presented in section 3.6. The Julian day
number obtained from equation 8.9.3 will be the date closest to the date used
in equations 8.9.1 and 8.9.2, but it may well be significantly later or earlier
than the date used in those 2 equations.

For example, compute perihelion and aphelion for Mars closest to October
30, 1938, the date of the infamous War of the Worlds broadcast. The steps are:

1. Compute Days, the number of days into the year (see section 3.7).
(Ans: Days= 303.)

2. Use equation 8.9.2 to compute Y .
(Ans: Y = 1938.829569.)

3. Use equation 8.9.1 to computeK with the appropriate values for Mars taken
from table 8.5.

(Ans: k0 = 0.53166, k1 = 2001.78,K =−33.468226.)

4. Let Kper be the integer value closest to K , and let Kaph be the fraction
ending in 0.5 that is closest to K.

(Ans: Kper =−33,Kaph =−33.5.)

5. Use equation 8.9.3, the appropriate values from table 8.5, andKper to com-
pute the Julian day number corresponding to perihelion.

(Ans: j0 = 2,452,195.026, j1 = 686.9957857, j2 =−1.187E-7,
JDper = 2,429,524.16494.)

6. Use equation 8.9.3, the appropriate values from table 8.5, andKaph to com-
pute the Julian day number corresponding to aphelion.

(Ans: JDaph = 2,429,180.66705.)

7. Convert the Julian day numbers from the previous step to calendar dates.
(Ans: Dateper = 09/17.664943/1939,Dateaph = 10/9.167046/1938.)

8. Convert the fractional days from the previous step to an integer day and UT.
(Ans: Dayper = 17 at 15.958623h UT, Dayaph = 9 at 4.009100h UT.)

9. Convert the UT results to HMS format.
(Ans: Perihelion on 9/17/1939 at 15h58m UT, Aphelion on 10/9/1938 at

4h01m UT.)

Thus, Mars passed through perihelion on September 17, 1939, at 15h58m UT
and through aphelion on October 9, 1938, at 4h01m UT.

Meeus indicates that his equations are not highly accurate, with errors that
may range from a few hours for Mars to a month or more for Saturn and the
more distant planets. Hence, computing UT in step 7 just shown implies a
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greater accuracy than is warranted; therefore, one may wish to truncate the
day in step 6 to an integer and stop.

Using noninteger values ofK in equation 8.9.3 or that do not end in 0.5 will
produce meaningless results. Furthermore, greater error is incurred for years
significantly distant from 2000. In practice, one would typically consult The
Astronomical Almanac or similar resource for highly accurate perihelion and
aphelion times.

If one knows the times at which a planet will pass through perihelion and
aphelion, it is natural to ask is how far away will the planet be from Earth
and from the Sun at those times. Determining a planet’s distance from Earth
when the planet is at perihelion or aphelion is straightforward, although the
calculations are quite lengthy:

• Use the equations in this section to determine the dates and times at which a
planet will pass through perihelion and aphelion.

• Once the dates and times are known for perihelion and aphelion, use section
8.6 to determine the position of the planet and Earth at those times.

• Finally, use section 8.8 and the positions from the prior step to determine the
distance from Earth to the planet.

Be careful to note that these steps determine how far away a planet is from
Earth when the planet is farthest from (aphelion) or closest to (perihelion) the
Sun. These steps do not determine when a planet is farthest or closest to the
Earth, which is an entirely different and more difficult problem that we will
not address.11

A planet’s distance from the Sun at perihelion and aphelion can be deter-
mined quite easily and directly from just the characteristics of the planet’s
orbit. If ep is a planet’s orbital eccentricity and ap is the length of its orbital
semi-major axis, then the planet’s distance from the Sun at perihelion and
aphelion are

Distper = ap(1 − ep) (8.9.4)

Distaph = ap(1 + ep). (8.9.5)

Since ap is given in AUs, the result of both of these equations will also be in
AUs.

Let us determine how far away Jupiter is from the Sun at perihelion and
aphelion. The required steps are:

11. It is improper to say apogee and perigee here because the planets orbit the Sun, not Earth.
Hence, apogee and perigee are meaningless in this context.



250 Chapter 8

1. Use equation 8.9.4 and the appropriate ep and ap values (from table 8.4 for
this example) to compute the distance at perihelion.

(Ans: ep = 0.0483927, ap = 5.202887 AUs,Distper = 4.951105 AUs.)

2. Use equation 8.9.5 to compute the distance at aphelion.
(Ans: Distaph = 5.45669 AUs.)

3. Convert the distances to km or miles if desired.
(Ans: Distper = 7.46067E08 km, or 4.6023E08 miles,

Distaph = 8.1601E08 km, or 5.0704E08 miles.)

Although we will not consider the problem of determining when a planet is
closest to or farthest from Earth, equations 8.9.4 and 8.9.5 can be applied to
determine how far away the Moon is from Earth at perigee and apogee. In fact,
those equations can be used to determine the apside distances for any object
that orbits another.

To determine lunar perigee and apogee distances, the required steps are:

1. Obtain ep and ap from table 7.1.
(Ans: ep = 0.0549, ap = 384,400 km.)

2. Use equation 8.9.4 to compute the Moon’s distance at perigee. Since ap is
given in km, the answer will be in km.

(Ans: Distper = 363,296 km, or 225,742 miles.)

3. Use equation 8.9.5 to compute the Moon’s distance at apogee. The answer
is in km.

(Ans: Distaph = 405,504 km, or 251,968 miles.)

8.10 Planet Phases

Planets go through phases just as the Moon does. Instead of computing phases
and age as we did for the Moon, in this section we will deal only with percent
illumination because phase, age, and percent illumination are really the same
thing. The percent illumination for a planet is

K% = 100

[
(Rp + Dist)2 −R2

e

4RpDist

]
, (8.10.1)

where Rp and Re are the radius vector lengths computed in section 8.6, and
Dist is the distance from Earth to the planet as computed in section 8.8.

To illustrate, consider Saturn on January 3, 2016. The steps required to
compute how much of Saturn is illuminated as seen from Earth are:
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1. Compute the radius vector length for the planet and for Earth for the given
date at 0.0h UT (see section 8.6).

(Ans: Rp = 10.00361 AUs, Re = 0.983294 AUs.)

2. Compute the distance from Earth to the planet (section 8.8).
(Ans: Dist = 10.833730 AUs.)

3. Apply equation 8.10.1 to calculate percent illumination.
(Ans: K% = 99.9%.)

8.11 Planetary Magnitude

How bright an object appears to be is obviously related to how far away it is
from the viewer. Thus, as the Earth and planets move in their respective orbits,
how bright a planet appears to be depends upon how far away it is from Earth.
We saw how to calculate how far away a planet is from Earth in section 8.8. We
can use that information along with the following equations to approximate a
planet’s visual magnitude:

PA= 1 + cos(λp −Lp)
2

(8.11.1)

mV =Vp + 5 log10

(
RpDist√

PA

)
, (8.11.2)

where λp is the planet’s geocentric ecliptic longitude, Lp is the planet’s helio-
centric ecliptic longitude, Rp is the planet’s radius vector length, Dist is the
distance from Earth to the planet, and Vp is the visual magnitude of the planet
when it is 1 AU from the Earth (see tables 8.3 and 8.4). Note that PA is
the planet’s phase angle while λp −Lp is its elongation. Both concepts were
introduced in section 7.6.

As an example, what was Saturn’s visual magnitude on January 3, 2016?

1. Compute the planet’s position for the given date at 0.0h UT to obtain Lp,
λp, and Rp.

(Ans: Lp = 248.411905◦, λp = 251.311100◦, Rp = 10.000361 AUs.)

2. Compute the distance from Earth to the planet.
(Ans: Dist = 10.833730 AUs.)

3. Apply equation 8.11.1 to calculate the planet’s phase angle.
(Ans: PA = 0.999360◦.)

4. Obtain Vp from the appropriate table (table 8.4 for this example) and apply
equation 8.11.2 to calculate the planet’s visual magnitude.

(Ans: Vp =−8.88,mV = 1.29.)
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It is easy to compare the relative brightness of 2 objects from their respec-
tive visual magnitudes. If m1 and m2 are the magnitudes of 2 objects, then
the brightness of the first object (m1) with respect to the second (m2) is

�b = 100.4(m2−m1). (8.11.3)

For example, how much brighter does the Sun appear to be than a Full Moon?
The visual magnitude of the Sun is −26.7 while the Moon’s visual magnitude
is −12.7. Using these values for m1 and m2, we have

�b = 100.4(m2−m1)= 100.4(−12.7−(−26.7))

= 100.4(14) = 105.6 ≈ 398,107.

Thus, the Sun appears to be nearly 400,000 times brighter than a Full Moon.
On January 3, 2016, how much brighter was Saturn than the Andromeda

Galaxy whose visual magnitude is about 3.4? In this case, we have

�b = 100.4(m2−m1)= 100.4(3.4−1.29)

= 100.4(2.11) = 100.844 ≈ 6.98,

so Saturn was about 7 times brighter in the sky at that time than the Andromeda
Galaxy.

Be careful to note that an object’s apparent magnitude (or visual magni-
tude) is not the same as its absolute magnitude. The apparent magnitude of
an object is simply a measure of how bright it appears in the sky. An object’s
absolute magnitudeM is how bright the object would appear to be if it were at
a standard distance of 10 parsecs (approximately 32.64 light years) away from
Earth.

Astronomers use absolute magnitude because it measures the intrinsic
brightness of an object and therefore does not depend on the object’s distance
from Earth, as apparent magnitude does. In other words, apparent magnitude
indicates only how bright an object appears to be while absolute magnitude
indicates how bright the object really is. For example, the apparent magnitude
of the Sun is −26.7, while its absolute magnitude is +4.7. This means that if
the Sun were 10 parsecs away from Earth, its visual magnitude would appear
to be +4.7. The Pole Star (Polaris) has an apparent magnitude of +1.97 but an
absolute magnitude of −3.64. So, although Polaris appears much dimmer in
the nighttime sky than the Sun (mV of −26.7 compared to +1.97), Polaris is
actually a much brighter object than the Sun (M of +4.7 compared to −3.64).
Polaris only appears dimmer because it is so much farther away. Apply-
ing equation 8.11.3, in terms of apparent magnitude the Sun appears to be
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290 billion times brighter than Polaris, while in terms of absolute magnitude,
Polaris is in reality about 2,000 times brighter than the Sun.

Apparent and absolute magnitude are related by the equation

M =mV + 5 − 5 log10(d), (8.11.4)

where d is the distance in parsecs away from Earth. We will not consider
absolute magnitude any further.

8.12 Miscellaneous Calculations

It is perhaps fair to say that the Space Age began with the launch of Sputnik 1
in 1957. The progress made since then to explore the cosmos has been truly
amazing. Although manned flights into space are still relatively infrequent,
launching manned flights and space probes are so routine that a rocket launch
rarely makes the evening news. With so many countries actively engaged
in space exploration, and with serious discussions being held about manned
flights to the Moon and Mars, space exploration may be even more dramatic
in the very near future. Unfortunately, most of us will not have the oppor-
tunity to participate in these exciting adventures. Even so, as a poor man’s
substitute we can at least look at some of the interesting factors that have to
be considered by those who are fortunate enough to be engaged in a space
program.

We will begin this section by determining what an astronaut or spacecraft
would weigh on some distant celestial object and then calculate how long it
takes light to reach us from that object to understand the delays inherent in
radio transmissions. Just for fun, we will also calculate the length of a planet’s
year and how fast a planet is moving. Finally, one of the most important calcu-
lations we will make is to determine how fast a spacecraft must travel to escape
a planet’s gravitational pull.

8.12.1 Weight on a Celestial Object

Newton’s Law of Universal Gravitation provides a way to determine what an
object will weigh on a celestial body. Newton’s law states that objects are
attracted to each other with a force directly proportional to the product of their
masses and inversely proportional to the square of the distance between them.
Mathematically, this is expressed as

F =Gm1m2

R2
, (8.12.1)
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where G is the gravitational12 constant, m1 and m2 are the masses of the
2 objects, R is the distance between them, and F is the resulting force of
attraction.

To illustrate this important equation, let m be an astronaut’s mass, let me be
Earth’s mass, and let mp be the mass of a celestial object such as a planet. Let
re and rp be the radius of Earth and the celestial object, respectively. Also, let
We and Wp be the weight of the astronaut on the Earth and celestial object,
respectively. Substituting these values into equation 8.12.1, we have

We =Gmme
r2
e

(8.12.2)

and

Wp =Gmmp
r2
p

. (8.12.3)

Now if we divide Wp by We, that will produce the ratio of the astronaut’s
weight on the celestial object to the astronaut’s weight on Earth. That is,

Wp

We

=
(
G

mmp
r2
p

)
÷
(
G

mme
r2
e

)
=
(

Gmmp
r2
p

)(
r2
e

Gmme

)
= mpr

2
e

r2
pme

. (8.12.4)

Notice that this ratio depends only upon the size and mass of Earth and the
celestial object. The gravitational constant and astronaut’s mass do not appear
at all in the final equation. This should not be surprising because it says that the
percentage by which 1 astronaut’s weight is affected by being on some celestial
object is the same as the percentage by which another astronaut’s weight is
affected, regardless of how much each individual astronaut weighs. Once the
weight-factor ratio is known for a celestial object, one only has to multiply that
ratio by an object’s weight on Earth to obtain how much the object weighs on
that celestial object.

For example, how much did Neil Armstrong’s spacesuit weigh on the Moon?
(The weight of the multilayer space suit he wore was a hefty 180 pounds on
Earth!) To answer this question, we apply equation 8.12.4 to find the ratio of
weight on the Moon to weight on Earth. From table 8.3, we find that me = 1.0,
mp = 0.0123, re = 6378.14 km, and rp = 1738.1 km. (Actually, table 8.3 gives
masses relative to Earth, but this makes no difference in solving the problem
because we are only interested in ratios.) Applying equation 8.12.4 to these

12. Although scientists have accurately determined the value of the gravitational constant G, we
do not need to concern ourselves with its value.
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values, we obtain

Wp

We

= (0.0123)(6378.142)

(1738.12)(1.0)
≈ 0.166.

This ratio can be rewritten as Wp = 0.166We, which says that weight on the
Moon is 16.6 percent of what it is on Earth. Since Armstrong’s spacesuit
weighed 180 pounds on Earth, its weight on the Moon was Wp = (0.166)
(180 lbs)≈ 30 lbs.

Assuming it were possible to land on the surface of the Sun, how much
would Armstrong’s spacesuit weigh on the Sun? We proceed as before to
apply equation 8.12.4. From table 8.3, we find that me = 1.0, mp = 333,000,
re = 6378.14 km, and rp = 695,700 km, which gives us

Wp

We

= (333,000)(6378.142)

(695,7002)(1.0)
≈ 27.989.

This can be rewritten as Wp = 27.989We. So, the spacesuit would weigh an
astonishing Wp = (27.989)(180 lbs)≈ 50,368 lbs on the surface of the Sun!
Clearly, dealing with the Sun’s extreme temperatures is only one of the issues
involved in attempting to explore the Sun from close proximity.

More realistic than landing on the Sun would be a manned mission to Mars,
which is likely to take place within the next 20 years or so. How much would
Neil Armstrong’s spacesuit weigh on Mars? From table 8.3, we find that
me = 1.0, mp = 0.107447, re = 6378.14 km, and rp = 3389.5 km. Working
through the math as in the previous examples, we arrive at Wp = 0.380We, so
Armstrong’s spacesuit would weigh about 68 lbs on Mars.

8.12.2 Radio Transmission Delays

During the Voyager missions, there was a noticeable communications delay
between the time a command was sent from Earth until the Voyager space
probe received and acted upon that command. This is because radio waves,
although traveling at the speed of light, travel at a finite speed. In typical elec-
tromagnetic communications on Earth we do not notice a delay because the
distances involved are so relatively short. However, for a distant object such as
a planet or a galaxy, the delay is very noticeable. Let us find out how much of
a delay there is.

Suppose an object travels uniformly at s miles per second for t seconds. The
distance traveled (in miles) is

Dist = st. (8.12.5)
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We want how long it takes to travel some distance for a given speed, so solving
for t gives

t = Dist

s
. (8.12.6)

To make future calculations easier, let us use this last equation to find out
how long it takes light to travel 1 AU. Radio waves propagate at the speed of
light, so the results will be applicable to radio waves too. The speed of light is
186,400 miles per second while 1 AU is 9.29 × 107 miles. Substituting these
values into equation 8.12.6 gives

t = 9.29 × 107 miles

186,400 miles/sec
≈ 498.39 seconds.

Converting seconds to hours, we find that light travels 1 AU in about 0.1384
hours.

Given this information, finding out how long it takes light and radio waves
to reach Earth from another planet is simple: multiply the distance from Earth
to the planet (expressed in AUs) by 0.1384, as indicated in the equation

t = 0.1384Dist (8.12.7)

where the resulting time is in hours. Alternatively, we can use

t = 498.39Dist (8.12.8)

to obtain a result in seconds. Because of how we derived both equations, Dist
must be expressed in AUs.

Suppose a space probe reached Saturn on January 3, 2016. How long will it
take to send a radio message from Earth to the space probe? We already cal-
culated the distance to Saturn in section 8.8 to be 10.833730 AUs. Applying
equation 8.12.7, the result is 1.499388h (1h30m). Any message sent from Earth
to the probe would take 1h30m to get there, while a reply from the probe would
also take 1h30m to reach Earth. Hence, if a command were sent to the probe
that required a reply, there would be a net communications delay of 3h00m.

As another example, consider sending a radio message from New York City
to London. The distance between the 2 cities is about 3,500 miles, or 3.767−5

AUs. This time we apply equation 8.12.8 and find that it will take 0.02 seconds
for the transmission to occur. Of course, we could also have applied equation
8.12.6, which gives

t = Dist

s
= 3,500 miles

186,400 miles/sec
≈ 0.02 seconds.
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Regardless of which equation is used, such a small delay is hardly noticeable,
except to very precise instruments, which is the reason we typically do not
notice delays in Earthbound communications. For the relatively close Moon,
however, the 1-way communications delay is about 2.1 seconds, which is prob-
ably noticeable to most humans and is certainly noticeable to most instruments.

8.12.3 Length of a Planetary Year

As presented in section 3.3, a year is the time it takes for Earth to revolve
around the Sun. We also pointed out in that section that the length of a year
depends on how one chooses a reference point for defining when a year starts
and ends (a tropical year uses the vernal equinox as a reference, a sidereal year
uses a star, etc.). For the discussion here, we will only be concerned about a
Julian year (exactly 365.25 days) and a tropical year.

A planetary year, like an Earth year, is defined as the time it takes a planet
to make 1 complete orbit around the Sun. That is, the length of a planet’s year
is simply another way of referring to a planet’s orbital period. Tables 8.3 and
8.4 give the orbital period for each of the planets in terms of Earth’s tropical
years. Since a tropical year is 365.242191 mean solar Earth days, the length of
a planet’s year in Earth days can be calculated by multiplying its orbital period
Tp by 365.242191. Stated as an equation, we have

Yearp = 365.242191Tp. (8.12.9)

For example, Saturn’s orbital period is 29.447498 tropical years. Applying
equation 8.12.9, this means Saturn’s year is 10,755.468689 Earth days. Divid-
ing this number by 365.25, Saturn’s year is thus equal to 29.446868 Julian
years, or 29 years, 163 days, 5h15m. In actual practice, given the limited accu-
racy of the data in tables 8.3 and 8.4, one would not express the result in terms
of hours and minutes because Saturn’s orbital period and the factor for con-
verting to tropical Earth years are not sufficiently precise to warrant such an
implied level of accuracy.

How do astronomers determine a planet’s orbital period in the first place?
The answer is to apply Kepler’s laws. Specifically, Kepler’s third law relates
a planet’s orbital period to its distance from the Sun and is stated mathemati-
cally as

P 2 ∝A3, (8.12.10)

where P is a planet’s period, A is the planet’s average distance to the Sun (its
semi-major axis), and ∝ is the symbol mathematicians use for “is proportional
to.” In the case of planets and other objects orbiting the Sun, Kepler’s third law
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can be stated as an equality. That is,

Tp =
√
a3
p, (8.12.11)

where Tp is a planet’s orbital period in tropical years and ap is the length of
the planet’s semi-major axis in AUs.

For example, getting the length of Saturn’s semi-major axis ap from
table 8.4 and applying equation 8.12.11, we obtain

Tp =
√

9.5366763 ≈ 29.450694 years.

This result differs from table 8.4 by less than 1.2 days. The difference is due to
the precision and accuracy with which a planet’s semi-major axis is measured,
how precisely an AU is measured, and how precisely the conversion factor
for tropical years is stated. If one applies equation 8.12.11 to Mercury and
compares the result to table 8.3, the difference is 2 minutes. For Neptune, the
difference is 37 days.

Equation 8.12.11 can be used to determine the length of a planet’s orbital
semi-major axis when its orbital period is known. Rewriting equation 8.12.11
to solve for the semi-major axis, we have

ap = 3
√
T 2
p . (8.12.12)

This equation is very useful because it provides a way to calculate the length of
a planet’s orbital semi-major axis from observational data: that is, by observing
a planet long enough to determine its orbital period.

Using equation 8.12.12 and Pluto’s orbital period from table 8.4, we have

ap = 3
√

247.920652 ≈ 39.464669 AUs.

This result differs from the semi-major axis shown for Pluto in table 8.4 for
the same reasons that the earlier calculation of Saturn’s orbital period from its
semi-major axis differs from what the table shows for Saturn.

8.12.4 Orbital Velocity

In the previous subsection, we used Kepler’s laws to determine a few char-
acteristics of a planet’s orbit. The discovery of Kepler’s laws was a major
milestone in astronomy and physics, and they remain indispensable tools for
understanding the motion of celestial objects. We will now use Kepler’s second
law to determine how fast a planet is moving.

Kepler’s second law states that as a planet orbits the Sun, it sweeps out equal
areas of space in equal amounts of time. This means that a planet’s orbital
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velocity constantly changes as it moves along its elliptical orbit, getting faster
as it approaches perihelion and slowing down as it approaches aphelion. The
only way a planet’s orbital velocity would be constant is if the planet’s orbit is
a perfect circle. We will address circular orbits in chapter 9 when we deal with
satellites.

A planet’s orbital velocity in km/s at perihelion is given by

Vper =
√

μ(1 + ep)
ap(1 − ep)(1.5 × 108)

, (8.12.13)

whereμ is the standard gravitational parameter for the object being orbited (the
Sun in this case), ep is the planet’s orbital eccentricity, and ap is the length
of the planet’s semi-major axis in AUs. The denominator in this equation is
the planet’s distance from the Sun at perihelion (see section 8.9), except that
multiplying by 1.5 × 108 gives the distance in kilometers rather than AUs.

The equation for determining a planet’s orbital velocity at aphelion is very
similar:

Vaph =
√

μ(1 − ep)
ap(1 + ep)(1.5 × 108)

. (8.12.14)

In this case the denominator in the equation is the planet’s distance from the
Sun at aphelion (see section 8.9), and we have also expressed the distance in
kilometers.

The standard gravitational parameter μ that appears in these 2 equations
requires some explanation. Because the value Gm is so frequently encountered
in astrophysics (due to Newton’s law of universal gravitation), it is called the
standard gravitational parameter and denoted by the symbol μ. We encoun-
tered this value earlier in subsection 8.12.1 when we calculated an object’s
weight on some planet. Recall that G is the gravitational constant while m is
the mass of the celestial object in which we are interested. The standard grav-
itational parameter is provided for the Sun, Moon, and each of the planets in
tables 8.3 and 8.4, and it is expressed in km cubed per second squared (km3/s2).

As an example, let us calculate the orbital velocity for Mercury at perihelion
and aphelion. The required steps are:

1. Apply equation 8.12.13 to determine the planet’s orbital velocity at perihe-
lion.

(Ans: μ� = 1.32712 × 1011, ep = 0.205636, ap = 0.387099 AUs,
Vper = 58.897 km/s, which is 36.597 miles/s or 131,749 mph.)
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2. Apply equation 8.12.14 to calculate the planet’s orbital velocity at aphelion.
(Ans: Vaph = 38.806 km/s, which is 24.113 miles/s or 86,807 mph.)

It is important to be sure that the proper value for μ is used to calculate orbital
velocity. The standard gravitational parameter for the object being orbited
(e.g., Sun) must be used and not the standard gravitational parameter for the
object that is doing the orbiting.

If we use the correct μ and know the other orbital parameters required, we
can determine the orbital velocity of any object that orbits another when the
orbiting object is at its closest point or its most distant point. To illustrate,
let us determine the Moon’s orbital velocity at perigee and apogee. The steps
are:

1. Apply equation 8.12.13 to determine the Moon’s orbital velocity at perigee.
(Ans: μp = 398,600 (Earth!), ep = 0.0549, ap = 0.00257 AUs,

Vperigee = 1.074 km/s, which is 0.667 miles/s or 2,401 mph.)

2. Apply equation 8.12.14 to calculate the Moon’s orbital velocity at apogee.
(Ans: Vapogee = 0.962 km/s, which is 0.598 miles/s or 2,153 mph.)

We can also compute a planet’s average orbital velocity. Deriving a suitable
equation is straightforward. Assuming the planet orbits the Sun in a perfect
circle, the total distance it travels around the Sun is simply the circle’s circum-
ference, which is 2πr where r is the radius of the planet’s assumed circular
orbit. If t is the time it takes for the planet to travel around the circle (i.e., the
orbital period), then the planet’s speed is

V = 2πr

t
. (8.12.15)

Since planets orbit the Sun in elliptical orbits instead of circular orbits, we
will replace the radius r in this equation with an “average radius.” There are
several possible ways to define an average radius, but the definition we will
use is the length of the orbit’s semi-minor axis, which can be easily compu-
ted as

bp = ap
√

1 − e2
p. (8.12.16)

This is a reasonable definition because the semi-minor axis is the average
length of the distance from the occupied focus to the ellipse boundary. As
for t , we will replace it with Tp because that is the planet’s orbital period for
its true elliptical orbit.
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Combining these concepts, equation 8.12.15 becomes

Vavg =
2π
(
ap

√
1 − e2

p

)
(1.5 × 108)

Tp(365.242191)(24)(3600)
.

Multiplying by 1.5 × 108 in the numerator converts the distance from AUs to
kilometers. Multiplying by 365.242191 in the denominator converts tropical
years to days, multiplying by 24 converts days to hours, and multiplying by
3600 converts hours to seconds. This allows us to obtain a result expressed in
km/s. Carrying out the multiplications to simplify the equation gives

Vavg = 29.865958

⎛
⎜⎝ap

√
1 − e2

p

Tp

⎞
⎟⎠ . (8.12.17)

Applying this equation to Mercury as an example, we find that its aver-
age orbital speed is 46.976 km/s, which is 29.190 miles/s or 105,084 mph.
Combining this result with our earlier calculations for Mercury, we see that

Vper = 58.897 km/s,

Vavg = 46.976 km/s,

and

Vaph = 38.806 km/s.

As we should expect, Mercury is indeed going faster as it approaches perihe-
lion but is slowing down as it approaches aphelion. By comparison, for the
Earth we have

Vper = 30.246 km/s,

Vavg = 29.861 km/s,

and

Vaph = 29.252 km/s.

Suppose that instead of average velocity, we want to know how fast a planet
is moving at an arbitrary point in its orbit. The required equation is

Vdate =
√(

μ

1.5 × 108

)(
2

Rp
− 1

ap

)
, (8.12.18)

where Rp is the distance from the planet to the Sun in AUs at the desired date
and time.
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To illustrate, let us determine the velocity for Venus at the date and time
from the example in subsection 8.6.1 (January 3, 2016, at 22h LCT). The steps
are:

1. Calculate the planet’s radius vector length.
(Ans: Rp = 0.720605 AUs.)

2. Apply equation 8.12.18 to calculate the orbital velocity for the given date
and time.

(Ans: μ� = 1.32712 × 1011, ap = 0.723336 AUs, Vdate = 35.11 km/s,
which is 21.82 miles/s or 78,552 mph.)

8.12.5 Escape Velocity

Our final calculation is to determine a planet’s escape velocity, which is the
speed necessary for 1 object to escape the gravitational field of another. From
Newton’s law of universal gravitation, it is clear that the force acting upon an
object is greater for a more massive planet than for a smaller one. Hence, we
would expect that the velocity required to leave a more massive planet is
greater than it is for a less massive one.

The equation for the escape velocity in km/s is

Vescape =
√

2μp
rp

, (8.12.19)

where μp is the planet’s standard gravitational parameter and rp is its radius
in km.

As an example, calculate the velocity required for a rocket to escape Earth.
From table 8.3, for Earth we have μp = 398,600 and rp = 6,378.14 km.
Putting these values into equation 8.12.19 yields an escape velocity of 11.18
km/second, which is 40,248 km/h or 25,009 mph. For another example, cal-
culate the Moon’s escape velocity. From table 8.3, for the Moon we have
μp = 4,900 and rp = 1,738 km. Using these values yields an escape veloc-
ity of 2.37 km/second, which is 8,532 km/h or 5,302 mph. As expected from
Newton’s law of universal gravitation, the Moon’s escape velocity is indeed
less than Earth’s escape velocity because the Moon is less massive.

Surprisingly, escape velocity depends only upon the mass of the object being
escaped, which is captured in the equation by the standard gravitational para-
meterμp. The escape velocity does not depend upon the mass of the object that
is trying to escape. So, from a velocity point of view, it doesn’t matter whether
an astronaut is trying to escape the Moon via a jet pack or a huge rocket. The
escape velocity in both cases is still 5,302 mph. However, the energy (i.e., the
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amount of fuel required) necessary to reach escape velocity is significantly
different and very much dependent upon the total mass trying to reach escape
velocity.

8.13 Program Notes

The program for this chapter provides the software necessary to locate inferior
and superior planets (and the dwarf planet Pluto!), determine when the planets
will rise and set, calculate their phases and visual magnitude, and make the
sundry calculations described in the previous section. The program builds on
the software from chapter 5 to plot star locations as well as the position of the
Sun, Moon, and planets. This will allow you to produce your own star charts
showing the location of the planets and major stars for your location.

Although the standard epoch J2000 is used for the examples in this chapter,
this chapter’s program reads the required orbital elements from a data file so
that any standard epoch can be supported. See the README.TXT file included
with the source code for more details about this data file. Also, this chapter’s
program lets you choose between using the equation of the center or Kepler’s
equation to calculate the position of the planets.

8.14 Exercises

For these problems, solve the equation of the center when required rather than
Kepler’s equation.

1. The date is January 22, 2015, at 22h LCT. Assume an observer is not on day-
light saving time but is within the Eastern Standard Time zone. If his location
is 78.3◦ W longitude, 37.8◦ N latitude, calculate the equatorial and horizon
coordinates for Mercury and Jupiter.

(Ans: For Mercury: α= 21.249399h, δ=−14.171598◦, h=−40◦03′, A=
284◦19′. For Jupiter: α= 9.477288h, δ= 15.875033◦, h= 38◦26′, A= 100◦00′.)
2. For the previous problem, calculate the rising and setting times for Mercury
and Jupiter.

(Ans: For Mercury: LCTr = 8h09m, LCTs = 18h35m.

For Jupiter: LCTr = 18h44m,LCTs = 8h27m.)

3. For problem number 1, calculate the distance from Earth and the angular
diameter for Mercury and Jupiter.

(Ans: For Mercury: Dist = 0.785535 AU, θ = 08.6′′.
For Jupiter: Dist = 4.381208 AUs, θ = 44.9′′.)
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4. Calculate the times of perihelion and aphelion closest to January 22, 2015,
for Mercury and Jupiter. Also calculate their perihelion and aphelion distances.

(Ans: For Mercury: perihelion occurred on 1/21/2015 at 20h34m,
aphelion occurred on 3/6/2015 at 20h12m, Distper = 0.307498 AUs,
Distaph = 0.466701 AUs. For Jupiter: perihelion occurred on 3/16/2011 at
10h28m, aphelion occurred on 2/18/2017 at 21h14m, Distper = 4.951105 AUs,
Distaph = 5.454669 AUs.)

5. For problem number 1, calculate the percent illumination for Mercury and
Jupiter.

(Ans: For Mercury: K% = 23.4%. For Jupiter: K% = 99.9%)

6. For problem number 1, calculate the visual magnitude for Mercury and
Jupiter.

(Ans: For Mercury: mV =−1.93. For Jupiter: mV =−2.56.)

7. For problem number 1, calculate the weight factor, time for light to reach
Earth, orbital period, length of semi-major axis, orbital velocities, and escape
velocity for Mercury and Jupiter.

(Ans: For Mercury: Wp = 0.38We, t = 7m, Tp = 0 years 87 days 23h,
Tp = 0.240843 tropical years (when calculated from the semi-major axis),
ap = 0.387104 AUs (when calculated from the orbital period), Vper = 58.90
km/s, Vavg = 46.98 km/s, Vaph = 38.8 km/s, Vdate = 58.89 km/s, Vescape = 4.25
km/s. For Jupiter: Wp = 2.65We, t = 36m, Tp = 11 years 314 days 23h,
Tp = 11.867701 tropical years (when calculated from the semi-major
axis), ap = 5.201400 AUs (when calculated from the orbital period),
Vper = 13.69 km/s, Vavg = 13.08 km/s, Vaph = 12.42 km/s, Vdate = 12.74 km/s,
Vescape = 60.20 km/s.)



9 Satellites

It is not known who first thought of launching artificial satellites to orbit the
Earth. Sir Isaac Newton alluded to artificial satellites in his landmark work
Principia Mathematica, published in 1687. The German physicist Hermann
Oberth wrote his doctoral dissertation on rocket travel in 1922, but his ideas
were initially dismissed as fantasy. He was later awarded a doctoral degree in
physics based on the very same ideas that were originally dismissed as imprac-
tical. It may be fair to credit Oberth as being the first to develop realistic
concepts—grounded in solid mathematics and physics—for using rockets to
reach space.

Wernher von Braun, the chief engineer behind the Saturn V rockets that
sent Apollo astronauts to the Moon, was greatly influenced by Oberth’s ideas.
Oberth and von Braun briefly worked together in 1929 to test Oberth’s first
liquid-fueled rocket engine, and then later at Germany’s Peenemünde research
facility during World War II. It is almost certain that von Braun and other
scientists at Peenemünde considered using rockets to launch instruments and
people into space.

The scientist credited as being the first to publish a workable concept for
space-based communications is Arthur C. Clarke. Near the end of World War II
in a Wireless World article entitled “Extra-Terrestrial Relays,” he proposed
using German V2 rockets to launch communications satellites into orbit. Few
took Clarke’s concept seriously at the time, but 20 years later, the Intelsat I
Early Bird satellite became the world’s first commercial satellite to employ
Clarke’s ideas. The pioneering Intelsat I provided live TV coverage of the
Gemini 6 splashdown and the Apollo 11 lunar mission. Although still in orbit
today, Intelsat I is no longer in service.

Regardless of who first conceived of them, satellites are relatively new in
history, with the Russians having launched Sputnik 1, the world’s first satel-
lite, in October 1957. In the short decades since that historic event, satellites
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Figure 9.1 Sputnik 1
Launched in October 1957, Sputnik 1 was the world’s first artificial satellite. This replica of
Sputnik 1 is in the National Air and Space Museum in Washington, DC. (Image courtesy of NASA)

have become indispensable tools that in one way or another impact all our
lives. It is difficult to imagine living in the modern world without them. Tens
of thousands of active satellites encircle our globe; they perform a variety of
vital tasks including providing precise worldwide navigation, capturing data
and imagery for weather forecasting, allowing nearly instantaneous communi-
cations to every corner of the globe, and supporting scientists and astronomers
as they explore Earth, the Solar System, and deep space.

We can only briefly look at the fascinating world of satellites, but it is
important to note from the outset that Kepler’s and Newton’s laws still apply.
Satellites obey the same laws of physics that all orbiting bodies do. However,
there are at least 3 important differences between satellites and other celestial
objects that directly affect how we must approach their study.

First, satellites are relatively close to the Earth. Because shorter distances are
involved with them than with the planets and stars, greater accuracy and preci-
sion are required when measuring or computing distances and angles. Whereas
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Figure 9.2 Chandra X-ray Observatory
This artist’s rendition is the Chandra X-ray Observatory, which was launched in 1999 by the space
shuttle Columbia (STS-93) crew. It can detect X-ray sources 100 times fainter than any previous
telescope making it, at present, the most sensitive X-ray telescope ever built. This important space-
based telescope allows astronomers to analyze distant supernovas, stars, and galaxies, and search
for black holes unhindered by Earth’s atmosphere. (Image courtesy of NASA)

a distance of a few thousand miles is usually insignificant when dealing with
distant celestial objects, a measurement that is off by only a few dozen feet
can be very important when dealing with satellites. Moreover, we will be con-
cerned about whether a stated distance is with respect to the center of Earth or
Earth’s surface. The difference between the center of the Earth and sea level
is a matter of nearly 4,000 miles! Unless otherwise indicated, we will use the
center of the Earth as our reference point when stating distances to satellites.

It is also important to account for an observer’s distance from the center
of the Earth. This was unnecessary in the preceding chapters because the dis-
tance an observer is from the center of the Earth is so small relative to the
distance to a star or planet as to be negligible except for the most exacting
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measurements. An observer’s distance from the Earth’s center is not negligible
for satellites. For greatest accuracy one should also use geodetic coordinates
to specify an observer’s location instead of the terrestrial latitude/longitude
coordinates we used in prior chapters. This is because geodetic coordinates
are based on an ellipsoid model of the Earth (e.g., World Geodetic System 84
[WGS84]) whereas the terrestrial latitude/longitude system presented in chap-
ter 4 is based on a spherical model. Although we will consider an observer’s
height above sea level, we will continue to assume a spherical Earth to simplify
calculations, albeit at the price of some loss in accuracy.

Second, because satellites are so close to Earth, they appear to Earth-bound
observers to move much faster than the Moon, planets, or other celestial
objects. This reality means that while the principles of physics for tracking
satellites are the same as for any other orbiting object, practical techniques for
tracking satellites differ from tracking celestial objects. For stars and celestial
objects within the Solar System, we essentially record their position at some
point in time (a standard epoch) and then use an object’s orbital elements to
calculate where it will be at some future point in time. Once equatorial coordi-
nates are calculated for a star or planet, the object can be treated as being in a
fixed location for a night of viewing, and we have to be concerned about only
the Earth’s rotation to track the object.

This is not true for satellites! Although we will still capture a satellite’s posi-
tion at an instant in time and use its orbital elements to determine how far it
has moved, attempting to state a standard epoch for all satellites is meaning-
less. The epoch to which a satellite is referenced and its orbital elements must
be updated weekly or even daily, depending on a satellite’s particular orbit, in
order to maintain a reasonable degree of accuracy. It is almost a certainty that
the epoch used to reference one satellite’s position will be different from every
other satellite.

Third, unlike orbiting objects found in nature, satellites can, and must, peri-
odically maneuver. Satellites usually have thrusters to periodically adjust their
orbit so that they stay within their assigned orbit. This is called orbital station
keeping, and it is necessary because satellite orbits decay over time because of
the gravitational forces of the Sun and Moon, the effects of space weather, and
drag from Earth’s atmosphere. Moreover, a satellite’s mission may require it to
maneuver to change its orientation, such as to change where an onboard cam-
era is pointing. A satellite may also need to adjust its orbit to avoid colliding
with another satellite or debris from an expended rocket that has not yet fallen
back to Earth. Colliding with even a small object orbiting the Earth would be
disastrous because the speed of objects orbiting Earth, regardless of their size,
is thousands of miles per hour.



Satellites 269

We must now digress briefly to cover some preliminaries about vectors,
ellipses, coordinate systems, orbital elements, and types of orbits. Once armed
with the information from the preceding chapters as supplemented here and
noting the aforementioned differences between satellites and natural celestial
objects, we are well prepared for the topics ahead. By the end of this chapter,
we will have seen how to apply the principles used to locate the Moon and
planets to locate a satellite and calculate some of its flight dynamics.

9.1 Vectors

In this chapter, it will often be convenient to express coordinates as a vector. A
vector is a 1-dimensional array used to encapsulate information about some-
thing.1 For instance, assume an object’s Cartesian coordinates are (x, y, z).
Then that point can be represented as a column vector by


R=
⎡
⎣ x

y

z

⎤
⎦

or as a row vector by


R= [x y z] .
A vector of Cartesian coordinates actually provides both direction (i.e., in

what direction to point from the coordinate system’s origin to the object) and
magnitude (i.e., the object’s distance from the origin). To calculate a vector’s
magnitude (also called its length or norm), we simply sum up the squares of
the vector’s elements and then take the square root of the sum. 
R’s magnitude,
whether expressed as a row or a column vector, is

R=
√
x2 + y2 + z2. (9.1.1)

We will sometimes need to rotate a vector about the x and z axes. To do so,
let us define 2 families of functions. The f family of functions are

fx(θ, x, y, z)= x (9.1.2)

fy(θ, x, y, z)= y cos θ + z sin θ (9.1.3)

fz(θ, x, y, z)= z cos θ − y sin θ. (9.1.4)

1. An arrow is placed above a variable’s name to indicate that it represents a vector (e.g., 
R) while
a bar is placed over its name to indicate the vector’s length (e.g., R). We will use R and Rlen inter-
changeably to represent a vector’s length because Rlen is easier to see than R when a vector length
is in the numerator of a fraction.
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These functions rotate a vector in a Cartesian coordinate system by θ degrees
about the x-axis. The set of functions in the g family are

gx(θ, x, y, z)= x cos θ + y sin θ (9.1.5)

gy(θ, x, y, z)= y cos θ − x sin θ (9.1.6)

gz(θ, x, y, z)= z. (9.1.7)

These functions rotate a vector by θ degrees about the z-axis. Rotations such
as those performed by our f and g families of functions are usually described
in terms of linear algebra, but we will use these 2 families of functions instead
to avoid introducing matrix operations. The mathematical results are exactly
the same.

The f and g families of functions take as input the x, y, and z elements of
a vector in a Cartesian coordinate system. They produce as output what the
vector elements are after the rotation has been performed. Rotations do not
change the length of a vector, so we can calculate a vector’s length before or
after a rotation is performed.

When applying these 2 families of functions, take care to use the same values
of x, y, and z for each function in the family. That is, the sequence

x= 1000,

y=−5000,

z= 2000,

x= gx(60◦, x, y, z),

y= gy(60◦, x, y, z),

z= gz(60◦, x, y, z)

is incorrect because the new x value produced by applying function gx is used
for functions gy and gz rather than the original x value. A further error is that
the modified y value produced by applying gy is used as input to gz. Apply-
ing the sequence of steps exactly as shown will produce the erroneous result
(rounded to 2 decimal places)


R′ = [−3830.13 816.99 2000.00]
when the correct answer is


R′ = [−3830.13 − 3366.03 2000.00].
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Figure 9.3 Ellipse for Satellites
This figure shows the components of an ellipse in the context of a satellite orbiting Earth.

9.2 Ellipses Revisited

As is true for natural celestial objects, satellites can travel in circular, elliptical,
or parabolic orbits. Therefore, all the properties of circles, ellipses, and orbits
discussed in chapter 4 still apply. Mathematicians have derived a number of
useful equations for ellipses, some of which we will enumerate in this section.
Do not be overwhelmed by the number of equations in this section! We will
have occasion to use only a few of them, but the list is provided as a ready
reference that you can use in designing your own programs. Keep in mind that
all the equations in this section are true for any ellipse. They are not unique to
satellites, but they apply equally well to any object that orbits another.

Figure 9.3 shows the components of an ellipse that are of interest with res-
pect to satellites while figure 9.4 shows how a satellite’s true anomaly is
defined. Both figures should be familiar because they appeared earlier in
chapter 4, although the nomenclature has been adjusted here to be specific
to satellites orbiting Earth. For example, the occupied focus in this case is
the Earth’s center and is so labeled. Additionally, this chapter references
apogee and perigee rather than aphelion and perihelion because we are dealing
specifically with the Earth.
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Figure 9.4 Satellite True Anomaly
This shows a satellite’s true anomaly and radius to the satellite.

In the context of satellites, the distances shown in figures 9.3 and 9.4 are:

1. Semi-major axis (a)

2. Semi-minor axis (b)

3. Linear eccentricity (c)

4. Semi-latus rectum (ρ)

5. Perigee height (hp)

6. Apogee radius (ra)

7. Perigee radius (rp)

8. Radius to the satellite (r)

9. Radius of the Earth (re)

For the purposes of this chapter, we will assume that Earth is a perfect sphere
whose radius re is 6378.135 km.

Carefully note that r in figure 9.4 is the distance from the center of the Earth
to the center of mass of the satellite. Knowing the precise location of a satel-
lite’s center of mass is usually unimportant, but it is important to realize that
the radius to the satellite is measured with respect to the center of the Earth,
not the surface of the Earth! Because of the relatively short distances involved
when dealing with satellites orbiting Earth, we cannot assume that Earth is a
geometric point, but we must deal with it as a sphere (or even better, as an ellip-
soid). Therefore, we must constantly remember to distinguish between Earth’s
center and its surface, as shown in the 2 figures.
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The distance a satellite is above an observer when the satellite is at the
observer’s zenith is given by

rdist = r − re − rsea, (9.2.1)

where rsea is an observer’s distance above sea level. (This equation only holds
for a truly spherical Earth and when the satellite is at the observer’s zenith.)
When rsea = 0, rdist is typically called the satellite’s altitude.

Suppose a satellite is 25,000 km above the center of the Earth when it is pre-
cisely overhead the Palomar Observatory in California. How far is the satellite
above the observatory? Palomar Observatory is 1.702 km above sea level, so
applying equation 9.2.1, we have

rdist = r − re − rsea = (25,000 − 6378.135 − 1.702) km = 18,620.163 km,

which equates to 11,570.033 miles.
A very important attribute of an ellipse that is not shown in figures 9.3 and

9.4 is an ellipse’s eccentricity. Recall from section 4.4 that eccentricity is the
ratio of the distance between a focus and the geometric center to the length of
the semi-major axis. In terms of the nomenclature of figure 9.3, this means

e= c

a
. (9.2.2)

Although equation 9.2.2 is the definition of eccentricity, there are several
ways to determine eccentricity based upon what other attributes of the ellipse
are known. Some additional equations for calculating an ellipse’s eccentricity
are:

e=
√

1 −
(
b

a

)2

(9.2.3)

e=
√

1 −
(ρ
a

)2
(9.2.4)

e= 1 − rp

a
(9.2.5)

e= ra

a
− 1 (9.2.6)

e= ra − rp
ra + rp . (9.2.7)

The semi-major axis of an ellipse is a in figure 9.3. Equations for finding
the length of the semi-major axis include:
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a= c

e
(9.2.8)

a= rp + ra
2

(9.2.9)

a=
√
c2 + b2 (9.2.10)

a= ρ

1 − e2
. (9.2.11)

The semi-minor axis is b in figure 9.3. Equations for finding the length of
the semi-minor axis include:

b= a
√

1 − e2 (9.2.12)

b=
√
a2 − c2. (9.2.13)

The linear eccentricity is c in the figure. Equations for finding its length are:

c= ae (9.2.14)

c= (rp + ra)e
2

(9.2.15)

c=
√
a2 − b2. (9.2.16)

Equations for finding the semi-latus rectum ρ are:

ρ= a(1 − e2) (9.2.17)

ρ= 2rpra
rp + ra (9.2.18)

ρ= b2

a
. (9.2.19)

Equations for finding perigee and apogee heights (apogee height is not
shown) are

hp = rp − re (9.2.20)

ha = ra − re. (9.2.21)

The radius (i.e., distance from the center of the Earth) to the satellite can be
calculated from the semi-latus rectum and true anomaly by these equations:

r = ρ

1 + e cos υ
(9.2.22)

r = a(1 − e2)

1 + e cos υ
. (9.2.23)



Satellites 275

Note that at apogee, ra = r while at perigee rp = r . From the definition of
the true anomaly, υ = 0◦ at perigee and υ = 180◦ at apogee. We can make use
of these facts about perigee and apogee and apply them to equations 9.2.22 and
9.2.23, while also making use of equations 9.2.5 and 9.2.6, to derive equations
for the apogee radius and perigee radius. The apogee radius is given by

ra = ρ

1 − e (9.2.24)

ra = a(1 + e) (9.2.25)

ra = a+ c. (9.2.26)

Similarly, the perigee radius is given by

rp = ρ

1 + e (9.2.27)

rp = a(1 − e) (9.2.28)

rp = a− c. (9.2.29)

Chapter 4 described how to calculate the true anomaly by either solving the
equation of the center or Kepler’s equation. That discussion applies here as
well. However, if we know the radius to the satellite, the orbital eccentricity,
and either the semi-major axis or the semi-latus rectum, then the true anomaly
can be easily calculated from equations 9.2.22 and 9.2.23. If we also know the
apogee radius and perigee radius, we can use equation 9.2.18 to determine the
true anomaly and thereby derive these equations:

υ = cos−1
(
ρ− r
re

)
(9.2.30)

υ = cos−1
[
a(1 − e2)− r

re

]
(9.2.31)

υ = cos−1

(√
2rpra − r(rp + ra)

r(ra − rp)

)
. (9.2.32)

Equations such as these that allow us to determine orbital information from
satellite distances are particularly useful because radar and other types of sen-
sors can be used to determine the distance (range) to a satellite. Of course, a
ranging sensor will typically give the distance from the sensor to the satellite
rather than the distance from the center of the Earth. Thus, the range reported
by the sensor must be adjusted to obtain the proper value for r . Equation 9.2.1
cannot be applied unless the satellite’s range was measured when the satellite
was at the sensor’s zenith.
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We can determine a satellite’s true anomaly without resorting to the com-
putational complexity involved with the equation of the center and Kepler’s
equation in a few other special cases. In these additional special cases, we can
take advantage of what we know about the true anomaly at specific points
in a satellite’s orbit. When a satellite is at perigee, υ = 0◦ while υ = 180◦
when it is at apogee. As a satellite travels from perigee toward apogee and
reaches the semi-latus rectum shown as ρ in figure 9.3, we have υ = 90◦.
Another semi-latus rectum extends downward from the occupied focus to the
ellipse, which is the semi-latus rectum that is reached as a satellite travels from
apogee toward perigee. When a satellite reaches that semi-latus rectum, we
have υ = 270◦.

The true anomaly can also be determined when a satellite reaches the semi-
minor axis point in its orbit. When it reaches the semi-minor axis point
traveling from perigee toward apogee, the true anomaly is

υ = cos−1 (−e) . (9.2.33)

When a satellite reaches the semi-minor axis point while traveling from apogee
toward perigee, the true anomaly is

υ = 360◦ − cos−1 (−e) . (9.2.34)

Equations in this section are useful because they allow us to determine the
essential elements of an ellipse from the elements we know. This is impor-
tant because we may be able to determine only some of the orbital elements
from observing an object over a period of time, such as its distance at
perigee/perihelion and apogee/aphelion. However, we can then use that infor-
mation to calculate other orbital information, such as eccentricity and length
of the semi-major axis. Moreover, we can apply Kepler’s laws to deduce other
orbital characteristics, as we did in subsection 8.12.3 to calculate a planet’s
period from its semi-major axis. We can apply exactly the same techniques
to satellites to determine, for instance, a satellite’s period from its semi-major
axis.

9.3 Geocentric and Topocentric Coordinates

Before looking at a satellite’s orbital elements and other attributes, we need
a coordinate system for describing a satellite’s location that meets 4 criteria.
First, Earth should be the coordinate system origin to simplify calculations.
Second, the system should be independent of any specific observer’s location.
Third, a location described in such a system should be fixed regardless of the
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Figure 9.5 Cartesian Coordinate System
A geocentric Cartesian coordinate system can be used to specify a satellite’s location.

time zone. Fourth, it should be simple to convert a location in such a coordinate
system to an observer’s horizon-based coordinate system so that an observer
knows where to point a telescope or sensor to view the satellite.

Criteria 2 and 3 are of practical importance. Without them, if we wanted to
publish a satellite’s position, we would have to publish it for different places
around the globe and for different time zones. A coordinate system that
requires publishing so many different coordinates for the same satellite to
account for different locations and time zones would make publishing a catalog
of satellite positions impractical.

Figure 9.5 shows a geocentric Cartesian coordinate system that meets all 4
criteria. Its x-axis lies in the plane of the Earth’s equator and extends from the
center of the Earth toward the vernal equinox. The y-axis also lies in the plane
of the equator and extends eastward from the center of the Earth. The z-axis
is perpendicular to the plane of the equator and extends northward from the
center of the Earth through Earth’s North Pole. The location of any object in
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Figure 9.6 Spherical Coordinate System
This figure shows a geocentric coordinate system in spherical coordinates rather than Cartesian.

the sky, such as a satellite, can be uniquely described by stating its Cartesian
coordinates, as shown in the figure. The length r is the distance from the center
of the Earth to the object (e.g., satellite). We will see shortly how to calculate
that distance directly from an object’s Cartesian coordinates.

The coordinate system shown in figure 9.5 is technically known as the Earth
Centered Inertial (ECI) coordinate system.2 It is a fixed geocentric coordi-
nate system in which coordinates do not change as the Earth rotates because
it is oriented (via the x-axis) to a fixed point in the sky—namely, the vernal
equinox.3

2. It is also known as the IJK coordinate system and as the Conventional Inertial System (CIS)
coordinate system.

3. This is not quite true. Precession causes the location of the vernal equinox to change over time.
To account for this, a standard epoch, such as J2000, is used to state the location of the vernal
equinox. Nutation also causes the orientation of Earth’s axis of rotation to change over time. We
will ignore these practical considerations, but they must be accounted for when high accuracy is
required.
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The issue we must now deal with is satisfying our fourth criterion; that is,
how can we convert between the just-introduced ECI coordinate system and
a horizon-based coordinate system? To answer that question, suppose instead
of defining ECI as a Cartesian coordinate system, we define it as a spherical
coordinate system that meets the same criteria that motivated defining the ECI
coordinate system in the first place. The result is shown in figure 9.6.4 It, too,
can be used to uniquely describe the location of any object in the sky. It is
exactly the same as figure 9.5 except that figure 9.6 describes a location in
terms of 2 angles and a distance rather than in terms of 3 distances, as the
Cartesian coordinate system does.

As we saw in section 5.3, converting Cartesian to spherical coordinates
requires 3 equations:

r =
√
x2 + y2 + z2 (9.3.1)

α= tan−1
(y
x

)
(9.3.2)

ϕ= cos−1
(z
r

)
. (9.3.3)

Equation 9.3.1 gives the distance from the center of the Earth to the satel-
lite shown in figure 9.6; it is simply the magnitude of a vector that captures
the satellite’s position in Cartesian coordinates (compare equations 9.3.1 and
9.1.1). Because equation 9.3.2 involves the arctangent, we must use the method
presented in section 4.1 to remove the ambiguity of the arctangent function to
ensure that α is in the range [0◦, 360◦].

Converting spherical to Cartesian coordinates is simple and requires 3
equations:

x= r cosα sinϕ (9.3.4)

y= r sinα sinϕ (9.3.5)

z= r cosϕ. (9.3.6)

What have we accomplished by changing from a Cartesian coordinate sys-
tem to a spherical one? Well, let us make 1 minor change to figure 9.6. Instead

4. The Greek letters used to label the angles in the figure are unimportant. Although mathemati-
cians have historically used θ instead of α when describing the spherical coordinate system (which
we also did in section 5.3), the reason we choose to use α instead of θ will become apparent shortly.
Also note that in describing a spherical coordinate system, physicists typically use the same Greek
letters for the angles that mathematicians use, but historically they have reversed which Greek
letter is used for which angle. This can be very confusing when looking at figures and formulas
from physicists versus mathematicians!
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of using the angle ϕ, which is measured from the z-axis downward toward the
xy plane, let us use the angle δ and measure it upward from the xy plane to the
radius r . The relationship between these 2 angles is simply

δ= 90◦ −ϕ. (9.3.7)

If we make this minor change, then figure 9.6 is the same as the equatorial coor-
dinate system defined in section 4.6 with δ being the declination and α being
the right ascension! This simple change means we can easily convert a satellite
location in the ECI coordinate system to the horizon coordinate system pre-
sented in section 4.7. The process required is as follows: convert the satellite’s
Cartesian coordinates to a spherical coordinate system, apply equation 9.3.7 to
convert the angle ϕ to the declination δ, and then convert equatorial coordinates
(α, δ) to horizon coordinates through the methods presented in chapter 4. To
convert horizon coordinates to the ECI coordinate system, we merely reverse
this process.

Do not confuse the horizon coordinate system’s altitude h with distance to
the satellite r! Altitude in the horizon coordinate system is just an angle that
indicates how far above the horizon one must look to see an object while r is
the actual distance (from the center of the Earth) to the object.

Consider an example. Assume that at precisely 18h UT on February 15,
2016, the Cartesian coordinates, expressed in km, for a satellite are


R= [15,300 24,600 –18,000] .

An observer at sea level located at 38◦ N latitude, 78◦ W longitude in the
Eastern Standard Time zone was stargazing at that same time (i.e., 13h LCT).
For that observer, what were the satellite’s horizon coordinates and what was
the satellite’s distance from the center of the Earth? Assume that the observer
was not on daylight saving time.

1. Convert the UT to its LCT, LST, and GST times for the observer.
(Ans: LCT = 13h, UT = 18h, GST = 3.678934h, LST = 22.478934h,

date = 2/15/2016.)

2. Convert the Cartesian coordinates to spherical coordinates. Remember to
use the sign of y and x to adjust α if necessary to put it into the correct quad-
rant.

(Ans: r = 34,106.45100271 km, α= 58.12040315◦, ϕ= 121.85419091◦.)

3. Use equation 9.3.7 to convert ϕ to declination.
(Ans: δ=−31.85419091◦.)

4. Convert α from degrees to decimal hours (i.e., divide by 15).
(Ans: αt = 3.87469354h.)
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5. Convert the equatorial coordinates (αt , δ) to horizon coordinates.
(Ans: h=−12◦40′42.72′′, A= 120◦42′40.55′′.)

At the stated time, the satellite was 34,106.451 km above the center of the
Earth, and it was below the horizon.

The preceding example has a significant problem. The steps just shown pro-
duce geocentric horizon coordinates; the results are valid only for an observer
at the Earth’s center. We failed to take into account an observer’s distance from
the center of the Earth. When calculating horizon coordinates in the preceding
chapters, an observer’s distance from the center of the Earth was negligible
because that distance was insignificant compared to the distance from Earth
to the object. Or, to state it differently, when calculating distances in the
preceding chapters we could essentially treat Earth as a point rather than a
sphere.

For satellites we need a horizon-based system whose origin is located at the
observer’s location on the surface of the Earth rather than at the center of the
Earth. A coordinate system whose origin is on the Earth’s surface is called
a topocentric coordinate system and can be expressed in Cartesian or spher-
ical coordinates. In a topocentric system, the x-axis points south, the y-axis
points east, and the z-axis points toward the observer’s zenith. A topocentric
spherical coordinate system is the same as the horizon coordinate system pre-
sented in chapter 4 except for where the origin is located: observer’s location
(topocentric) or center of the Earth (geocentric).

Given a satellite’s Cartesian coordinates expressed in km, how do we convert
them to topocentric coordinates?5 Assume an observer at latitude φ, longitude
ψ is hsea meters above sea level. We first convert the observer’s location to
Cartesian ECI coordinates and rotate the result to account for how far away
the observer is from the vernal equinox. A rotation is necessary because the
x-axis in the ECI coordinate system points toward the vernal equinox while
the x-axis direction in an observer’s topocentric coordinate system depends
upon the observer’s longitude. The LST is how far an observer is from the
vernal equinox and, when converted from hours to degrees, it is the angle by
which the coordinates must be rotated. The necessary equations are

r ′e = re + (hsea/1000) (9.3.8)

req = r ′e ∗ cosφ (9.3.9)

xobs = req ∗ cos(LSTd) (9.3.10)

5. The approach here is adapted from Kelso’s articles on orbital coordinate systems referenced in
section 10.7.
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yobs = req ∗ sin(LSTd) (9.3.11)

zobs = r ′e ∗ sinφ, (9.3.12)

where re is the Earth’s radius in km, r ′e combines the Earth’s radius and the
observer’s distance above sea level, req is a projection of the observer’s latitude
onto the plane of the equator, and LSTd is the observer’s LST multiplied by 15
to convert it to degrees.

We must now adjust the satellite’s coordinates so that its distance is with
respect to the observer’s location instead of the center of the Earth. This is
done by calculating the range vector, which is just the difference between 
R
(the satellite’s position) and the observer’s location. That is, the range vector is


R′ = [x′ y′ z′] = [x− xobs y− yobs z− zobs]. (9.3.13)

The range vector’s length is the satellite’s distance from the observer’s location.
The next step is to rotate the range vector by LSTd degrees about the z-axis

and by φ around the y-axis so that it is aligned with the observer’s location.
The equations required are:

x′′ = x′ ∗ sinφ ∗ cos(LSTd)+ y′ ∗ sinφ ∗ sin(LSTd)− z′ ∗ cosφ (9.3.14)

y′′ =−x′ ∗ sin(LSTd)+ y′ ∗ cos(LSTd) (9.3.15)

z′′ = x′ ∗ cosφ ∗ cos(LSTd)+ y′ ∗ cosφ ∗ sin(LSTd)+ z′ ∗ sinφ. (9.3.16)

The final step is to convert the rotated range vector to topocentric coordi-
nates to get a topocentric azimuth and altitude. The required equations are:

rdist =
√
x′′2 + y′′2 + z′′2 (9.3.17)

Atopo = tan−1(−y′′/x′′) (9.3.18)

htopo = sin−1(z′′/rdist). (9.3.19)

The subscript topo is used to reinforce the fact that the altitude and azimuth
are topocentric coordinates, not geocentric. Because it involves an arctangent,
the azimuth computed by equation 9.3.18 may have to be adjusted to put it into
the correct quadrant.

The astute reader may have wondered why an observer’s longitude does not
seem to appear in any of the equations because obviously an observer’s longi-
tude must be considered. In fact, the observer’s longitude is accounted for in
the calculations that include the LST because calculating the LST requires a
longitude.
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To demonstrate the process, let us compute the topocentric coordinates for
the example whose geocentric horizon coordinates we just calculated.

1. Convert the UT to its LCT, LST, and GST times for the observer.
(Ans: LCT = 13h, UT = 18h, GST = 3.678934h, LST = 22.478934h,

date = 2/15/2016.)

2. Convert the observer’s LST to an angle.
(Ans: LSTd = 337.184015◦.)

3. Convert the observer’s location to ECI coordinates.
(Ans: r ′e = 6378.135 km, req = 5026.03896796 km,

xobs = 4632.77655106, yobs =−1948.96103999, zobs = 3926.77200393.)

4. Compute the range vector.
(Ans: x′ = 10,667.22344894, y′ = 26,548.96103999,

z′ =−21,926.77200393.)

5. Rotate the range vector by LSTd and φ.
(Ans: x′′ = 16,993.85177868, y′′ = 28,608.09635272,

z′′ =−13,863.84303584.)

6. Compute the rotated range vector’s magnitude.
(Ans: rdist = 36,047.47312815 km.)

7. Compute the topocentric azimuth. Adjust if necessary to put it in the correct
quadrant.

(Ans: Atopo = 300.711263◦.)

8. Compute the topocentric altitude.
(Ans: htopo =−22.618884◦.)

9. Convert the altitude and azimuth to DMS format.
(Ans: htopo = -22◦37′7.98′′, Atopo = 300◦42′40.55′′.)

The topocentric coordinates are significantly different from the geocentric hori-
zon coordinates computed for this example!

Practitioners sometimes collectively refer to a satellite’s altitude and azimuth
as the look angle. Moreover, the word “elevation” will sometimes be used
instead of “altitude,” but it has the same meaning as the topocentric altitude.
We will refer to altitude and azimuth instead of look angle as a reminder
of their similarity to the horizon coordinate system used in the preceding
chapters.
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Figure 9.7 Satellite Orbital Elements
A satellite’s orbital elements are the same as for a planet or other celestial object. The major
difference is what plane (equatorial or ecliptic) is used as a reference plane.

9.4 Satellite Orbital Elements

Section 9.2 presented various components of an ellipse to describe a satellite’s
orbit in 2 dimensions. Of course, satellites travel through space in 3 dimen-
sions. Therefore, just as we did in chapter 4 for celestial objects, we must
extend the discussion to consider orbital motion in 3-dimensional space. In this
case, we must describe how a satellite is oriented with respect to Earth.

We begin with the orbital elements shown in figure 9.7. This figure is nearly
identical to figure 4.12 (subsection 4.5.6), which describes a planet’s orbital
elements. Because we are dealing here with objects orbiting Earth, we use
perigee/apogee rather than perihelion/aphelion to describe the points at which
a satellite is closest to/farthest away from Earth. Some authors prefer the more
generic terms “periapsis” and “apoapsis,” but they are the same as perigee and
apogee when dealing with objects orbiting Earth.

Note that a satellite’s angle of inclination ι is measured with respect to the
plane of the Earth’s equator, not the ecliptic plane. An object’s angle of incli-
nation is always stated relative to a reference plane, which by convention is the
ecliptic plane for objects orbiting the Sun but is the Earth’s equatorial plane
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for satellites orbiting Earth. If ι is in the range [0◦, 90◦], the satellite is orbiting
in an easterly direction. If in the range [90◦, 180◦], the satellite is orbiting in a
westerly direction and is said to have a retrograde orbit.

Orbital elements in figure 9.7 have the same meaning as for the planets
except that the frame of reference is different (equatorial versus ecliptic plane).
So, N1 and N2, the ascending and descending nodes, are the points at which
a satellite goes above (N1) or below (N2) the equatorial plane. A satellite’s
longitude of the ascending node (	) is typically called the right ascension of
the ascending node and abbreviated RAAN.

Before leaving this discussion of orbital elements, we note that problems
arise with circular (i.e., e= 0) and equatorial orbits (i.e., ι= 0◦ or ι= 180◦).
Some orbital elements are undefined for such orbits because the reference
points used to define them do not exist. Refer to figure 9.7. If an orbit lies
within the equatorial plane (ι= 0◦ or ι= 180◦), there are no ascending or
descending nodes (N1 and N2) for defining the RAAN (	). Similarly, if the
orbit is a true circle (e= 0), the object is always at a constant distance from
the occupied focus so there is no perigee or apogee from which to measure the
argument of perigee (ω), nor from which to measure the true anomaly (υ). To
handle circular and equatorial orbits, 3 additional angles are defined:

• u, argument of latitude for circular orbits that are not in the equatorial
plane

• λt , the true longitude at the epoch for circular orbits in the equatorial plane

• ωt , true longitude of perigee for elliptical orbits in the equatorial plane

The equations for u, λt , and ωt are given later in subsection 9.4.2.
Four cases must be considered to handle circular and equatorial orbits:

1. e= 0, and ι= 0◦ or ι= 180◦: These are circular orbits in the equatorial
plane. 	 and ω are undefined, and both are given the value 0◦. υ is also
undefined and given the value λt .

2. e > 0, and ι= 0◦ or ι= 180◦: Such orbits are elliptical and are in the equa-
torial plane. 	 is undefined, so it is given the value 0◦. ω is also undefined, so
ωt is used instead.

3. e= 0 and ι > 0◦: These orbits are circular but are inclined with respect to
the equatorial plane. ω is undefined and given the value 0◦. υ is also undefined
and given the value u.

4. e > 0 and ι > 0◦: These elliptical orbits are inclined with respect to the equa-
torial plane. All orbital elements in figure 9.7 are defined and have their usual
meaning.
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We did not need to worry about different orbit types before now because all
objects in prior chapters have elliptical orbits inclined with respect to their
reference orbital plane.

For the algorithms ahead, we will sometimes need to know what type of
orbit is being analyzed. For convenience, define Otype to be an integer whose
value (1, 2, 3, or 4) corresponds to 1 of the 4 orbit types in the preceding list.
Thus, if Otype = 3, we are dealing with a circular orbit that is inclined with
respect to the equatorial plane. We will usually be concerned with orbit type 4.

9.4.1 Which Orbital Elements?

The labeled items in figures 9.3, 9.4, and 9.7 provide a lot of information about
an object’s orbit. How many of those items do we actually need to com-
pletely specify an object’s orbital characteristics? It turns out that only 6
measurements are needed to completely and uniquely describe the location
and orientation of any orbiting object. This is because, regardless of the coor-
dinate system being used, 3 measurements are required to uniquely describe an
object’s position in 3-dimensional space, and 3 more are required to uniquely
describe its orientation. In astronomy these 6 elements have historically been
called Keplerian elements in honor of Johannes Kepler, who first discovered
that heavenly bodies move in elliptical orbits. More precisely, the historical
Keplerian elements are:

1. Inclination (ι)
2. Eccentricity (e)
3. Length of the semi-major axis (a)
4. Longitude of the ascending node (	)
5. Argument of perigee/perihelion (ω)
6. Mean anomaly at the epoch (M0)

The length of the semi-major axis specifies how big an orbit is while the eccen-
tricity specifies an orbit’s shape. The inclination, longitude of the ascending
node, and argument of perigee specify an orbit’s orientation with respect to
a reference plane. The only remaining item required is to indicate where an
object is in its orbit, which in the case of satellites is done by specifying the
mean anomaly with respect to an instant in time (i.e., an epoch).

Sometimes there are variations in this basic set, such as giving the true
anomaly instead of the mean anomaly, or giving some attribute other than the
semi-major axis. Recall from chapter 4 that the true anomaly can be deter-
mined from the mean anomaly and vice versa. Likewise, equations such as
those presented in section 9.2 provide flexibility in computing the attributes of
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an ellipse when given one attribute but another is desired. Thus, these 6 Keple-
rian elements can always be derived even if some other set of orbital elements
are provided, as long as the orbital elements given are sufficient to completely
describe an object’s location and orientation.

Let us pause for a moment to be more precise with terminology. The phrases
orbital elements, Keplerian elements, mean orbital elements, and osculating
orbital elements are often used interchangeably. However, there are subtle dif-
ferences that should be understood even though practitioners often neglect to
distinguish between these phrases. One way to understand the distinctions is as
follows:

• Orbital elements refers to the elements shown in figure 9.7, plus the orbital
eccentricity and length of the semi-major axis. When used generically, as this
phrase often is, the elements that define an orbit are not referenced to any
particular point in time.

• Keplerian elements are the 6 items previously listed plus an epoch as a
reference point in time. Keplerian elements assume an ideal elliptical orbit that
is unaffected by real-world effects such as precession and gravitational forces.

• Mean orbital elements are the same as Keplerian elements except that mean
orbital elements are “averaged out” over an entire orbit so that various per-
turbation effects are accounted for through the averaging process. That is,
although an ideal elliptical orbit is assumed, orbital elements have been aver-
aged out over the object’s real, perturbed orbit. Moreover, for satellites mean
orbital elements are typically given with respect to a stated model of the Earth
(spherical, ellipsoid, etc.) and with respect to some model for representing the
orbit’s various perturbations.

• Osculating orbital elements are the same as Keplerian and mean ele-
ments except that they are instantaneous values instead of mean values. These
elements reflect a real orbit undergoing “real world” perturbations from var-
ious effects (solar weather, nonspherical Earth, solar and lunar gravitational
effects, etc.).

We will not concern ourselves with the subtle differences between these
descriptions of orbital characteristics. We will generally refer to them simply as
orbital elements or Keplerian elements, in keeping with common practice.

9.4.2 Keplerian Elements and State Vectors

If we do not know a satellite’s orbital elements, it is necessary to locate
the satellite at 3 different points in its orbit to determine its orbital ele-
ments. Once derived, they are typically stated as Keplerian elements (the set
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[ι e a 	 ω M0]). However, Keplerian elements are not the only way to describe
a satellite’s position. Another way is to use Euler angles, which Leonhard Euler
(1707–1783) developed to describe the orientation of objects in 3-dimensional
space. We will not discuss Euler angles, but you may see them in other
references on satellite orbits.

State vectors are frequently encountered as a way to specify a satellite’s posi-
tion and orientation. A state vector expresses position and orientation in terms
of two 3-element vectors: a position vector 
R and a velocity vector 
V , which
we will express as


R= [x y z]

V = [Vx Vy Vz] .
Vx is the object’s velocity in the x direction, Vy is the velocity in the y direc-
tion, and Vz is the velocity in the z direction. 
R and 
V combined completely
describe an object’s position and orientation.

An object’s position and orientation in 3-dimensional space can be described
by Keplerian elements or state vectors because the two are mathematically
equivalent. The choice of one over the other is largely a matter of preference.
Although osculating orbital elements are often expressed as state vectors, Kep-
lerian elements are more widely used in satellite catalogs, and especially when
expressed in the Two-Line Elements (TLE) format, which we will address in
subsection 9.4.3.

Significant mathematical expertise is required to derive a process for con-
verting between Keplerian elements and state vectors. We will show how to
do the conversions, but we will not attempt to explain why the process works
because doing so requires calculus and linear algebra, which are beyond the
scope of this book. Readers who wish to understand the mathematics involved
can find a list of helpful resources in chapter 10, such as Fundamentals
of Astrodynamics by Bate, Mueller, and White and Fundamentals of Astro-
dynamics and Applications by Vallado. The conversion techniques presented
here were derived by combining methods presented in both those references.

To convert between Keplerian elements and state vectors, we will need to
determine the argument of latitude (u), true longitude at the epoch (λt ), and
true longitude of perigee (ωt ) for certain orbit types. The required equations are

u= cos−1
(
xNx + yNy
NlenRlen

)
(9.4.1)

λt = cos−1
(
x

Rlen

)
(9.4.2)
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ωt = cos−1
(ex
e

)
, (9.4.3)

where x and y are elements in the positional vector 
R, Rlen is the length of the
positional vector, Nx andNy are elements in the node vector (see the following
algorithm), Nlen is the length of the node vector, e is the orbital eccentricity,
and ex is a component of the eccentricity vector (see the following algorithm).
We will address only satellites with circular (e= 0) or elliptical (0<e< 1)
orbits. The algorithms presented here will not work for parabolic (e= 1) or
hyperbolic (e > 1) orbits.

Let us first convert a state vector to its equivalent Keplerian elements. On
November 19, 1996, at 20h UT (the date and time will not be needed), the
positional components in the state vector for space shuttle STS-80 were


R= [x y z
]= [−6260.434 2221.183 1094.143] ,

where all units are in km. STS-80’s velocity components were


V = [Vx Vy Vz]= [−2.675419 − 5.812131 − 3.449434] ,

where all units are in km/s. What were STS-80’s Keplerian elements for this
state vector, how far was it above the center of the Earth, and how fast was it
going?

The steps required to answer these questions are as follows:

1. Compute the length (magnitude) of the position vector (use equation 9.1.1).
(Ans: R= 6732.29802462 km, which is how far STS-80 was above Earth’s

center.)

2. Compute the length of the velocity vector.
(Ans: V = 7.26892898 km/s, which is how fast STS-80 was traveling.)

3. Compute the angular momentum vector 
H = [Hx Hy Hz] by the equations

Hx = yVz − zVy,
Hy = zVx − xVz,
Hz = xVy − yVx.

(Ans: Hx =−1302.52171169, Hy =−24,522.24486527,
Hz = 42,329.05772553.)

4. Compute the length of the angular momentum vector.
(Ans: H = 48,936.55263679.)



290 Chapter 9

Figure 9.8 Space Shuttle Columbia
This is space shuttle Columbia (STS-80) being launched November 19, 1996 from the Kennedy
Launch Complex in Florida. With a mission lasting 17 days, 15 hours, and 53 minutes, STS-80
was the longest of all the space shuttle missions. (Image courtesy of NASA)
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5. Compute the node vector 
N = [Nx Ny Nz] by the equations

Nx =−Hy,
Ny =Hx,
Nz = 0.0.

(Ans: Nx = 24,522.24486527, Ny =−1302.52171169, Nz = 0.0.)

6. Compute the length of the node vector.
(Ans: N = 24,556.81282337.)

7. Calculate 2 temporary variables, A and B, defined as

A=V 2
len − μ

Rlen

B = xVx + yVy + zVz,
where μ is the Earth’s standard gravitational parameter (we use a more precise
value for μ than given in section 8.6 to provide more accuracy).

(Ans: μ= 398, 600.4418 km3/s2, A=−6.36986053, B = 65.30343581.)

8. Compute the eccentricity vector via the equations

ex = (xA−BVx) /μ,
ey = (yA−BVy

)
/μ,

ez = (zA−BVz) /μ.
(Ans: ex = 0.10048360, ey =−0.03454355, ez =−0.01691990.)

9. Compute the length of the eccentricity vector to obtain the orbital eccentri-
city.

(Ans: e= 0.10759411.)

10. Compute the semi-latus rectum via the equation

ρ= (H )2 /μ.
(Ans: ρ= 6007.98677783 km.)

11. Use the semi-latus rectum and eccentricity to determine the length of the
semi-major axis (see equation 9.2.11).

(Ans: a= 6078.35278389 km.)

12. Compute the orbital inclination from the equation

ι= cos−1
(
Hz

Hlen

)
.

(Ans: ι= 30.11976874◦.)
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13. Determine the orbit type.
(Ans: Otype = 4.)

14. If Otype = 1 or Otype = 2, the RAAN is undefined, so set 	= 0◦. Other-
wise, calculate the RAAN from the equation

	= cos−1
(−Hy
Nlen

)
.

If Hx < 0, then subtract 	 from 360◦ to put the result in the correct quadrant.
(Ans: 	= 356.95953889◦.)

15. If Otype = 1 or Otype = 3, the argument of perigee (ω) is undefined, so set
ω= 0◦ and skip to step 18.

(Ans: must perform the next step to calculate ω.)

16. If Otype = 2, set ω to ωt and skip to step 18. ωt is given by

ωt = cos−1
(ex
e

)
.

If ey < 0, then subtract ωt from 360◦ to put the result in the correct quadrant.
(Ans: must perform the next step to calculate ω, but ωt = 339.0533209◦.)

17. For all other orbit types, calculate the argument of perigee from the equa-
tion

ω= cos−1
(
eyHx − exHy

eNlen

)
.

If ez < 0, then subtract ω from 360◦ to put the result in the correct quadrant.
(Ans: ω= 341.73698644◦.)

18. If Otype = 1, set υ = λt and skip to step 21. λt is given by the equation

λt = cos−1
(
x

Rlen

)
.

If y < 0, then subtract λt from 360◦ to put the result in the correct quadrant.
(Ans: must perform the next step to calculate υ, but λt = 158.42085347◦.)

19. If Otype = 3, set υ =u and skip to step 21. u is given by the equation

u= cos−1
(
xNx + yNy
NlenRlen

)
.

If z< 0, then subtract u from 360◦ to put the result in the correct quadrant.
(Ans: must perform the next step to calculate υ, but u= 161.10280826◦.)

20. For all other orbit types, compute the true anomaly from the equation
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υ = cos−1
(
exx+ eyy+ ezz

eRlen

)
.

If B < 0, then subtract υ from 360◦ to put the result in the correct quadrant.
(Ans: υ = 179.36582182◦.)

21. Use the true anomaly to calculate the eccentric anomaly. We will use the
equation

E= cos−1
(
e+ cos υ

1 + e cos υ

)
.

This form of the eccentric anomaly differs from that given in subsection 4.5.4,
but it is easier to use in this situation. If υ > 180◦, then subtract E from 360◦
to put it in the correct quadrant.

(Ans: E= 179.29348834◦.)

22. Use the eccentric anomaly to compute the mean anomaly. From Kepler’s
equation,

M =E− e sinE,

where E must be in radians and the result is in radians. Multiply E by π/180
to convert it to radians before applying this equation.

(Ans: M = 3.12793499 radians.)

23. Multiply the mean anomaly by 180/π to convert it to degrees.
(Ans: M0 = 179.21747378◦.)

Thus, STS-80 was traveling at 7.269 km/s (4.517 miles/s) at a distance of
6732.298 km (4183.256 miles) above the center of the Earth. Its Keplerian
elements were

ι= 30.11976874◦,
e= 0.10759411,

a= 6078.35278389 km,

	= 356.95953889◦.
ω= 341.73698644◦,

M0 = 179.21747378◦.

Converting Keplerian elements to a state vector is similarly complex. The
strategy for doing so is to use yet another coordinate system, the perifo-
cal coordinate system, for which the state vector is easy to derive. We will
not describe the perifocal coordinate system beyond noting that it is defined
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Figure 9.9 Hubble Space Telescope
The Hubble Space Telescope (HST) as photographed in 1997 from space shuttle Discovery (STS-
82). The HST gives astronomers views of distant objects in the universe that are impossible to
obtain from Earth-based telescopes. (Image courtesy of NASA)

relative to the object whose orbital elements we know rather than relative to
Earth. Once the state vector is in the perifocal coordinate system, a series
of rotations about coordinate system axes will transform it to the ECI coor-
dinate system. The details need not concern us too much, but understanding
the strategy will help in following the logic behind the algorithm presented
below.

Let us do an example. On February 18, 2016, at 22h26m51s UT (as for the
previous example, the date and time will not be needed) the Hubble Space
Telescope (HST) had the following Keplerian elements:

ι= 28.47◦.
e= 0.000284,

a= 6919.90 km,

	= 326.13◦,
ω= 11.39◦,

M0 = 83.01◦.
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Determine the HST’s state vector, how fast it was traveling, and how far it was
above the center of the Earth.

To properly handle circular and equatorial orbits, the following algorithm
assumes that if Otype = 1, the mean anomaly at the epoch (M0) we are given
was derived from the true longitude at the epoch (λt ). IfOtype = 3, it is assumed
that the given mean anomaly was derived from the argument of latitude (u).
Similarly, if Otype = 2, it is assumed that the argument of perigee (ω) is actu-
ally the true longitude of perigee (ωt ). Based on these assumptions, the steps
required to determine the HST’s state vector are:

1. Compute the semi-latus rectum from the length of the semi-major axis and
the eccentricity (use equation 9.2.17).

(Ans: ρ= 6919.89944187 km.)

2. Solve Kepler’s equation to get the eccentric anomaly. (We will use the sim-
ple iterative method from subsection 4.5.5 for 2 iterations. So few iterations are
required because the orbital eccentricity is so close to a circle in this example.)

(Ans: E= 83.02615162◦.)

3. Apply equation 4.5.8 to the eccentric anomaly and eccentricity to get the
true anomaly.

(Ans: υ = 83.04230351◦.)

4. Apply equation 9.2.22 to the true anomaly, eccentricity, and semi-latus rec-
tum to get the length of the positional vector.

(Ans: R= 6919.66138642 km, which is how far the HST was above the
center of the Earth.)

5. Compute the positional vector 
R′ = [x′ y′ z′] in the perifocal coordinate
system using the equations

x′ =Rlen cos υ,

y′ =Rlen sinυ,

z′ = 0.0.

(Ans: x′ = 838.22341038, y′ = 6868.70404203, z′ = 0.0.)

6. Calculate a temporary variable A=√
μ/ρ, where μ is the Earth’s standard

gravitational parameter.
(Ans: A= 7.58960190.)

7. Compute the velocity vector 
V ′ = [V ′
x V

′
y V

′
z] in the perifocal coordinate

system using the equations
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V ′
x =−A sin υ,

V ′
y =A(e+ cos υ),

V ′
z = 0.0.

(Ans: V ′
x =−7.53371102, V ′

y = 0.92153309, V ′
z = 0.0.)

8. Compute the length of the velocity vector 
V ′.
(Ans: Since a rotation does not change a vector’s length, the length of 
V ′

will be the length of the state vector’s velocity vector. V ′ = 7.58986330 km/s,
which is how fast the HST was traveling.)

9. Determine the orbit type.
(Ans: Otype = 4.)

10. If Otype = 1 or Otype = 2, set 	′ = 0◦. Otherwise, set 	′ =	.
(Ans: 	′ = 326.13◦.)

11. If Otype = 1 or Otype = 3, set ω′ = 0◦. Otherwise, set ω′ =ω.
(Ans: ω′ = 11.39◦.)

12. Use the g family of functions to rotate 
R′ by −ω′ degrees about the z-axis.
(Ans: x′ =−534.75943697, y′ = 6898.96702755, z′ = 0.0.)

13. Use the f family of functions to rotate the new 
R′ vector from the previous
step by −ι degrees about the x-axis.

(Ans: x′ =−534.75943697, y′ = 6064.65308848, z′ = 3288.72755997.)

14. Use the g family of functions to rotate the new 
R′ vector from the previous
step by −	′ degrees about the z-axis. The result will be the positional vector
component 
R of the state vector.

(Ans: x= 2935.88146621, y = 5333.53398371, z= 3288.7275600.)

15. Use the g family of functions to rotate the 
V ′ vector by −ω′ degrees about
the z-axis.

(Ans: V ′
x =−7.56732964, V ′

y =−0.58442022, V ′
z = 0.0.)

16. Use the f family of functions to rotate the new 
V ′ vector from the previous
step by −ι degrees about the x-axis.

(Ans: V ′
x =−7.56732964, V ′

y =−0.51374443, V ′
z =−0.27859227.)

17. Use the g family of functions to rotate the new 
V ′ vector from the previous
step by −	′ degrees about the z-axis. The result will be the velocity vector
component 
V of the state vector.

(Ans: Vx =−6.56950077, Vy = 3.79078765, Vz =−0.27859227.)

Thus, the HST’s positional component of the state vector at the stated time was


R=[2935.881 5333.534 3288.738],



Satellites 297

where all units are in km. The velocity component of the state vector was


V =[−6.570 3.791 − 0.279],
where all units are in km/s. From the lengths of these vectors, the HST was
6919.661 km (4299.678 miles) above the center of the Earth and traveling at
7.590 km/s (4.716 miles/s).

9.4.3 Satellite Catalogs

A satellite catalog is similar to a star catalog, with some important differences:

• A star catalog provides the location of stars and other natural objects. A
satellite catalog provides the location of man-made objects orbiting Earth (e.g.,
satellite, International Space Station [ISS], expended rocket bodies).

• Star catalogs provide an object’s coordinates (typically equatorial). Satellite
catalogs provide orbital elements from which a satellite’s coordinates can be
calculated.

• Star catalogs are referenced to a standard epoch (e.g., J2000) and may not be
updated to a new epoch for several years. Satellite catalogs are updated daily,
weekly, or monthly, depending on how frequently a satellite catalog provider
publishes their catalog.

• All objects in a star catalog are referenced to the same standard epoch. By
contrast, each object in a satellite catalog will likely be referenced to a different
epoch.

Satellite catalogs can be published in several different formats, includ-
ing a format unique to a specific satellite or space mission. However, the
most widely used format is the Two-Line Element (TLE) format (shown in
table 9.1), which is a fixed format that dates back to the 1960s when punched
cards were the standard method for entering data into a computer program. We
will not need the classification, piece of the launch, mean motion derivatives,
drag, ephemeris type, element number, or checksum.

Table 9.2 shows several examples of TLE-encoded orbital data extracted
over a period of time from multiple satellite catalogs. The first 2 lines in the
table are not part of a satellite catalog but are provided to help delineate the
columns in the catalog data fields. The first line after the column markers is
the name of the orbiting object to which the immediately following 2 lines
pertain. This name is not part of the TLE data format either, but it is provided
by some catalog publishers to make it easier to find objects of interest. In this
example table, the first set of TLE data is for an Atlas Centaur rocket body (R/B
is an abbreviation for “rocket body”), which is the remains of a rocket that was
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Table 9.1 TLE Data Fields
This table lists the columns in which TLE data is located and what the data means.

TLE Data Line 1

Column Description

1 Always the number 1

3–7 Satellite catalog number

8 Classification

10–11 Last 2 digits of the launch year

12–14 Launch number for the launch year

15–17 Piece of the launch (for multiple payloads)

19–20 Last 2 digits of the epoch year

21–32 Epoch day of the year and fractional part of the day

34–43 1st derivative of the mean motion

45–52 2nd derivative of the mean motion

54–61 Drag term

63 Ephemeris type

65–68 Element number

69 Checksum

TLE Data Line 2

Column Description

1 Always the number 2

3–7 Satellite catalog number (same as TLE data line 1)

9–16 Orbital inclination in degrees

18–25 RAAN in degrees

27–33 Orbital eccentricity (a leading decimal point is assumed)

35–42 Argument of perigee in degrees

44-51 Mean anomaly in degrees

53–63 Mean motion in revolutions per day

64–68 Number of orbits as of the epoch

69 Checksum

used to launch some object into space. The first set of TLE data shown is an
example of space debris!

Using the Atlas Centaur rocket body as an example, let us decode the infor-
mation in its 2 TLE lines of data. Column 1 in each data line shows whether
the data is in the format for data line 1 or data line 2. Then starting in column 3
of either card, the next 5 digits are the standard satellite catalog number for the
object. This must be the same on both data lines, and it is a way to ensure that the
2 TLE lines of data refer to the same object. In this example, the authoritative
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Table 9.2 Sample TLE-Encoded Orbital Data
The first 2 rows at the top of this table indicate columns. The first line in each group of 3 rows that
follow indicates the object (e.g., Hubble) to which the next 2 rows of TLE data pertain.

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890123456789

ATLAS CENTAUR R/B

1 06155U 72065B 16111.89078645 .00000269 00000-0 46396-4 0 9993

2 06155 35.0043 52.6400 0037491 110.2876 250.1858 14.71170973329733

DIRECTV 7S

1 28238U 04016A 16110.82212388 -.00000015 00000-0 00000+0 0 9993

2 28238 0.0368 299.3000 0003158 92.6354 353.2969 1.00272514 43861

HUBBLE

1 20580U 90037B 16105.15775463 .00001419 00000-0 77939-4 0 9999

2 20580 28.4706 321.5331 0002637 239.4290 47.7753 15.08299214225439

HST

1 20580U 90037B 16112.45538286 .00000992 00000-0 51061-4 0 9993

2 20580 28.4700 273.3474 0002697 322.5891 68.4694 15.08311977226539

ISS (ZARYA)

1 25544U 98067A 04130.36064403 .00008712 00000-0 77799-4 0 7409

2 25544 51.6265 163.6249 0010999 114.4982 338.6494 15.69280476312220

ISS (ZARYA)

1 25544U 98067A 04130.48651632 .00010015 00000-0 88635-4 0 7419

2 25544 51.6262 162.9814 0011098 115.5233 329.2179 15.69287238312240

ISS (ZARYA)

1 25544U 98067A 04130.68807870 .00013239 00000-0 11546-3 0 7426

2 25544 51.6263 161.9566 0011096 116.0931 28.1298 15.69296145312270

ISS

1 25544U 98067A 16123.57970227 .00005319 00000-0 86668-4 0 9998

2 25544 51.6443 285.5413 0001902 85.2256 2.3282 15.54406887997889

NOAA-15

1 25338U 98030A 16105.49980982 .00000088 00000-0 55868-4 0 9995

2 25338 98.7836 109.5213 0010891 17.3827 342.7723 14.25716987931913

NOAA-18

1 28654U 05018A 16105.51343707 .00000068 00000-0 62268-4 0 9994

2 28654 99.1983 110.7876 0014120 189.3160 170.7751 14.12278716561742

NOAA-19

1 33591U 09005A 16105.52875582 .00000154 00000-0 10855-3 0 9992

2 33591 99.0337 61.8026 0014786 41.5380 318.6912 14.12061607370158

STS-134

1 37577U 11020A 11136.56805556 .00002509 11310-4 93195-5 0 17

2 37577 51.6414 323.1388 0070233 179.6223 5.9150 15.98772296 01

STS-134

1 37577U 11020A 11152.08121728 -.00033187 00000-0 -20329-3 0 367

2 37577 51.6547 243.2564 0005364 343.6636 83.5992 15.76245694 2438

STS-134

1 37577U 11020A 11152.21025809 -.00393293 00000-0 -25707-2 0 377

2 37577 51.6547 242.5934 0003887 349.9801 90.0149 15.76147802 2453



300 Chapter 9

Figure 9.10 International Space Station
This photograph of the International Space Station (ISS) was taken in 2011 by the crew of space
shuttle Discovery (STS-133). The ISS allows long-term space missions to study the Earth and the
universe. (Image courtesy of NASA)

international identifier for this particular Atlas Centaur rocket body is 06155.
The standard satellite catalog number for the Hubble Space Telescope is 20580
while the satellite catalog number for the International Space Station is 25544.

The satellite catalog number should always be used to reference an object
because the catalog number is the only authoritative identifier and will be the
same across all catalogs.6 For example, you can see from the table that the
Hubble Space Telescope is referred to as HST in one catalog but as Hubble
in another. Similarly, the International Space Station is known as ISS in one
catalog but as ISS (ZARYA) in another. In both cases, the satellite catalog
numbers 20580 (HST) and 25544 (ISS) ensure that there is no confusion about
what object is being referred to regardless of the satellite catalog being used.

Columns 10–14 on the first data line provide information about when
the object was launched. The launch year is represented by the 2 digits in
columns 10 and 11 while columns 12–14 indicate in what sequence this object
was launched in that year. Only the last 2 digits of the year are encoded in

6. Satellite catalog number 00001 is the rocket body that launched Sputnik 1 into space while
00002 is the satellite itself. Neither object is still in orbit. The oldest object still in orbit is
Vanguard 1, which was launched in March 1958 and whose catalog number is 00005.
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the TLE data format. If the 2 digits are greater than or equal to 57, then the
year is assumed to be in the 1900s; otherwise, the year is in the 2000s.7 In this
example, the Alpha Centaur rocket was the 65th launch in 1972.

Columns 19–32 in data line 1 provide the epoch for when this Atlas Centaur
observation was made. Columns 19 and 20 are the last 2 digits of the year,
which for this example was the year 2016. The date in 2016 on which this
data was captured is provided in columns 21–32 (111.89078645). The first
3 digits (111) are how many days into the year, while the fractional portion
(0.89078645) indicates the UT time for the observation. Applying the algo-
rithm from section 3.7, 111 days into the year occurred on April 20, 2016.
Converting the fractional part of the day to UT time (see section 3.6) gives

0.89078645 ∗ 24 = 21.3788748h,

which is 21h22m43.95s. Thus, the epoch at which this Alpha Centaur rocket
body data was captured was April 20, 2016, at 21h22m43.95s UT.

The Keplerian orbital elements are obtained from columns 9–63 on the sec-
ond data line. Following the format indicated in table 9.1 for the second data
line, we have

ι= 35.0043◦ (columns 9–16),

	= 52.6400◦ (columns 18–25),

e= 0.0037491 (columns 27–33),

ω= 110.2876◦ (columns 35–42),

M0 = 250.1858◦ (columns 44–51).

Note that a leading decimal point is assumed for the eccentricity’s value.
One Keplerian element is missing in the TLE data: the length of the semi-

major axis (a). It must be computed from the mean motion (columns 53–63).
Data line 2 indicates that the Alpha Centaur rocket body’s mean motion at the
epoch was 14.71170973 revolutions per day, meaning that the Alpha Centaur
rocket body orbits Earth about 14.7 times per day. Let n be the mean motion
expressed in revolutions per second rather than per day. That is,

n= Mean Motion

86,400
, (9.4.4)

where the scaling factor 86,400 is the number of seconds in a day and is used
to convert the mean motion from orbits per day to orbits per second. Applying

7. It should be obvious why 57 was chosen as the demarcation point between the 1900s and 2000s.
The first object launched into space, Sputnik 1, was launched in 1957.
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equation 9.4.4 to the Alpha Centaur rocket body, we obtain n= 0.00017027
revolutions/second. The length of the semi-major axis is then given by

a= 3

√
μ

(2πn)2
, (9.4.5)

where μ is the standard gravitational parameter for the Earth (398,600.4418
km3/s2). Applying equation 9.4.5, the length of the Alpha Centaur rocket
body’s semi-major axis is a= 7035.46936588 km. This, then, gives us all 6
of the standard Keplerian elements.

It is sometimes useful to convert the length of the semi-major axis to its
equivalent mean motion, such as to encode an object’s Keplerian elements as
TLE data. This can be easily done by reversing the process for converting
mean motion to the length of an object’s semi-major axis. Equation 9.4.5 can
be rewritten as

n=
(

1

2πa

)√
μ

a
, (9.4.6)

which gives the mean motion in revolutions per second. This can be converted
to revolutions per day by the equation

Mean Motion = 86,400n. (9.4.7)

If we take the semi-major axis that we just computed for the Alpha Centaur
rocket body (7035.46936588 km), apply equation 9.4.6 and then equation
9.4.7, we get the expected result

Mean Motion = 14.71170973 rev/day.

The last piece of information we will consider from the TLE data is the
number of orbits as of the epoch, obtained from columns 64–68 of the second
line of TLE data. For the Alpha Centaur rocket body, the value given is 32,973.
This means that as of the epoch at which this TLE data is referenced, the Alpha
Centaur rocket body had orbited Earth 32,973 times since its launch in 1972!
While interesting, be aware that this TLE data field is not always kept up to
date and hence may be grossly inaccurate.

9.5 Categorizing Satellite Orbits

An interesting aspect of satellites is that we are free, at least theoretically, to
choose any orbit we want for a satellite and launch it into that orbit or maneu-
ver it into that orbit at some time after launch. Satellite orbits can be highly
elliptical, moderately elliptical, or even circular in nature, as appropriate for
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a satellite’s mission. Satellites can be placed at different heights above Earth,
and assuming that they have fuel on board, they can be maneuvered to change
their orbital characteristics. In fact, they are often placed in temporary parking
orbits from where they will be maneuvered into their final orbits. For example,
a spare satellite may be placed in a parking orbit so that it is readily avail-
able to replace a satellite that has failed or reached the end of its useful life.
There is even a “graveyard” orbit where expended satellites and other space
junk are intentionally placed so that they will not pose a danger to other objects
orbiting Earth. In this section we briefly mention some of the orbital regimes
into which satellites are placed. The characteristics of a particular orbital
regime directly impact what missions a satellite can or cannot perform, and
they are important factors in determining from where a satellite is launched.

The location from which a satellite is launched is important because it
directly relates to the orbital inclination that the satellite will achieve. The
launch site and desired orbital inclination also determine the amount of energy
required to achieve orbit, which of course determines the size of the rocket
required for the launch, the amount of fuel required, and consequently the cost.
A satellite’s orbital inclination determines the maximum and minimum latitude
that a satellite can reach with respect to the Earth. For example, if a satellite
is traveling eastward with an orbital inclination of 40◦, then that satellite will
never appear over the Earth at a latitude greater than 40◦ N or at a latitude
lower than 40◦ S. Along with a satellite’s altitude, this determines what areas
of the Earth the satellite can see as well as the locations on Earth that can see
the satellite. If a satellite is traveling in a westward direction (i.e., retrograde
orbit), the maximum/minimum latitude that the satellite can reach is 180◦ − ι.

The orbital inclination that a satellite will achieve is related to the latitude
of the launch site by the equation

ι= cos−1 (sinA cosφ) , (9.5.1)

where A is the azimuthal direction in which the satellite is launched and φ
is the latitude of the launch site. To illustrate, assume a satellite is launched
from Cape Canaveral with an azimuthal direction of 45◦. Table 9.3 shows that
the Cape Canaveral launch site is located at 28.46675◦ N latitude. Using these
values with equation 9.5.1, we find that the resulting orbital inclination for our
satellite will be

ι= cos−1 (sin 45◦ cos 28.46675◦)≈ 51.57◦.

Of course, a satellite’s inclination and other orbital characteristics can be chan-
ged once it is in orbit, but that takes fuel to accomplish.
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Table 9.3 US Launch Sites
This table gives the latitude of several launch sites in the United States.

Site Latitude

Pacific Missile Range, Hawaii 22.02278◦ N

Cape Canaveral, Florida 28.46675◦ N

Kennedy Space Center, Florida 28.60820◦ N

White Sands, New Mexico 32.56460◦ N

Vandenberg, California 34.77204◦ N

Wallops, Virginia 37.84621◦ N

Kodiak, Alaska 57.43533◦ N

Instead of launching at azimuth 45◦, suppose our satellite is launched at
azimuth 100◦ from Cape Canaveral. Then equation 9.5.1 indicates that the
new orbital inclination will be about 30.03◦. If the satellite were launched with
an azimuth greater than 180◦, it would be placed into a retrograde orbit.

Equation 9.5.1 can be rewritten in the form

A= sin−1
(

cos ι

cosφ

)
, (9.5.2)

which allows us to determine the azimuth required to achieve a specific orbital
inclination from a given launch site. Thus, to achieve an orbital inclination of
32◦ from Cape Canaveral requires launching with an azimuth of

A= sin−1
(

cos 32◦

cos 28.46675◦
)

≈ 74.73◦.

Equation 9.5.2 provides an important piece of information that must be kept
in mind when selecting a launch site. The equation tells us that the orbital
inclination must be greater than the launch latitude, or else the target orbital
inclination cannot be achieved without post-launch maneuvers once in orbit.
This is because if the orbital inclination is less than the launch latitude, the
term (cos ι)/(cosφ) in equation 9.5.2 will be greater than 1.0 or less than −1.0.
The inverse sine function is undefined for values outside the range ±1, so
equation 9.5.2 cannot be solved for such a combination of orbital inclination
and launch latitude.

Satellites are often launched in an easterly direction because that allows
them to take advantage of the “sling shot” effect of Earth’s rotational speed
to reduce the energy a rocket must supply to achieve a desired launch velocity.
The least amount of energy required is when the orbital inclination is equal to
the launch site’s latitude and the launch azimuth is 90◦. From the perspective
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of reducing the size of the rocket required, the optimum situation is to launch
from an equatorial site at a launch azimuth of 90◦. Here’s why. At the equator,
Earth rotates at 1669.81 km/hour, which means that any object launched due
east from the equator is already traveling at 1669.81 km/hour. Now Earth’s
rotational speed depends upon latitude, so the velocity obtained for “free” due
to Earth’s rotation at a given latitude is approximately

V = 1669.81 cosφ, (9.5.3)

where the result is in km/hour.
To illustrate, assume a satellite to be launched from Cape Canaveral needs

a velocity of 28,000 km/hour to achieve the desired orbit. Then applying
equation 9.5.3, the velocity we get for free is

V = 1669.81 cos 28.46675◦ ≈ 1468 km/hr.

This means that the launch rocket must supply enough energy to achieve

28,000 − 1468 = 26,532 km/hour.

If launched from the equator (φ= 0◦), the rocket must supply only an addi-
tional 26,330 km/hour. By contrast, if launched from Kodiak, Alaska, the
rocket must supply an additional 27,101 km/hour, or nearly all of the required
velocity to achieve orbit.

Satellite orbits are classified in multiple ways, the most common of which
is by their distance above the Earth. Orbital regimes based on distance above
the Earth are Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geosyn-
chronous Earth Orbit (GEO), and, although not based purely on height, Highly
Elliptical Orbit (HEO). One must carefully note how an author measures dis-
tance to a satellite: from the center of the Earth or from the surface of the
Earth.8 The difference is important!

In addition to height-based orbital regimes, satellite orbits are also classified
by their orbital eccentricity (circular, elliptical, highly elliptical) and inclina-
tion (equatorial, inclined, highly inclined, polar, retrograde). These various
methods for classifying orbits provide useful information about the orbital
characteristics of a particular satellite and what its limitations are. In this
section, we will primarily be interested in height-based classifications, starting
with GEO orbits.

8. A quick way to determine how an author is measuring distance is to look at the author’s def-
inition for LEO. If the author states that LEO extends up to 2,000 km, then clearly the author is
measuring distances from the surface of the Earth because the radius of the Earth (over 6,300 km)
is greater than 2,000 km. If the author were measuring distance from the center of the Earth, then
LEO orbits would be inside the Earth!
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In his calculations for placing spaceborne communications relays into orbit,
Arthur C. Clarke deduced that a satellite with a circular equatorial orbit (e= 0,
ι= 0◦) located 42,164 km above the center of the Earth would have an orbital
period equal to Earth’s rotational period. (We’ll see how he arrived at that
distance in subsection 9.9.1.) Such a satellite would appear to be motionless
from the perspective of Earth and would therefore be ideal as a spaceborne
communications relay.

Objects in a circular orbit at an altitude of 42,164 km above the center of
the Earth are in a GEO orbit, and they have an orbital period equal to Earth’s
rotational period (approximately 24 hours). If a GEO object is in the equatorial
plane (ι= 0◦), the orbit is also geostationary, which means that the object will
appear to remain in the same place in the sky relative to Earth. Geostationary
orbits are sometimes called Clarke orbits in honor of Arthur C. Clarke. Note
that while all geostationary orbits are GEO, not all GEOs are geostationary
because a circular orbit can be inclined with respect to the equatorial plane.
A GEO, non-geostationary orbit (ι > 0◦) means that the satellite will return
to exactly the same point relative to Earth each orbit, but it will not appear
stationary. The key things to remember are that GEO objects are in a circular
orbit, they have an orbital period equal to Earth’s rotational period, and they
are geostationary if their orbit is also equatorial.

Geostationary orbits are useful for communications satellites and weather
satellites because they are always over the same spot on Earth. From their great
height they can see from about 75◦ S latitude to about 75◦ N latitude, which
allows them to cover about a third of the Earth’s surface. GEO, and particularly
geostationary orbits, are ideal from the perspective of always viewing fixed
portions of the Earth. However, GEO orbits are so far above the Earth that it
is difficult to make sensors with sufficient resolution to provide highly detailed
information about the Earth’s surface.

With orbits less than 8,400 km above the center of the Earth, LEO satellites
are much closer to the Earth than they would be in a GEO orbit. Therefore,
LEO orbits are useful for remote sensing missions because they place space-
borne sensors closer to the Earth than higher orbits would. Because they are
closer to the Earth, LEO satellites require less power to transmit data to,
or receive commands from, Earth. However, a significant disadvantage of
LEO orbits is that they are affected by atmospheric drag and require periodic
station-keeping maneuvers to overcome those effects.

LEO objects, depending upon their exact height, will make 1 complete orbit
around Earth in about 90 minutes. Most human spaceflight missions, including
the space shuttle missions and the International Space Station, take place in
LEO orbits. If you refer back to the example problems in subsection 9.4.2, you
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will see that indeed STS-80 (at 6,732 km above the Earth) and the HST (at
6920 km above the Earth) were both in LEO obits.

MEO orbits are above LEO but lower than GEO (i.e., in the range 8,400–
42,164 km above the center of the Earth). The orbital period for MEO objects
varies considerably because there is such a wide range of heights in the MEO
orbital regime. At the lower end of orbital heights, MEO objects may have an
orbital period as short as 2 hours while at the higher end their orbital period
approaches 24 hours.

The greater the distance from Earth, the more of Earth a satellite can see,
which makes MEO orbits prime candidates for navigation and communica-
tions satellites. For example, Global Positioning System (GPS) satellites are
typically at a distance of about 26,600 km above the center of the Earth and
have an orbital period of 12 hours. The greater distances from Earth afforded
by MEO also mean that fewer satellites are required to provide worldwide
coverage than if the same satellites were positioned in LEO orbits.

LEO, MEO, and GEO orbits are typically circular or near-circular orbits,
which brings us to HEO orbits. Although some authors refer to HEO orbits as
High Earth Orbits and define them as orbits above GEO, the acronym usually
refers to an orbit’s eccentricity rather than its height above the Earth. We will
use HEO in that context and note that HEO orbits typically vary from about
7,400 km to about 45,000 km above the center of the Earth.

HEO orbits have multiple uses. They are used as a temporary parking orbit
for transferring satellites into a GEO orbit or as a parking orbit before sending
a space vehicle to the Moon, planets, or outer reaches of space. The higher a
satellite is above the Earth, the greater its field of view and the longer it can
view the Earth, particularly when at apogee. This makes HEO orbits partic-
ularly useful for applications, such as reconnaissance and surveillance, that
require extended periods of time over a place on the Earth.

9.6 Locating a Satellite

We now have all the preliminary information necessary to locate where a satel-
lite will appear for a given observer. The basic process can be summarized in
the following steps:

• Obtain the Keplerian orbital elements for the satellite of interest. The orbital
elements will typically be given as TLE data and should be referenced to an
epoch as close to the desired viewing date as possible.

• Using an appropriate propagation model, adjust the orbital elements from
the reference epoch to the desired viewing date and time.
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• Convert the propagated orbital elements to a state vector (subsection 9.4.2).
This gives the satellite’s location in the ECI coordinate system.

• Convert ECI coordinates to topocentric coordinates (section 9.3).

The propagation model mentioned in the second bullet refers to the pro-
cess of taking an object’s position at one instant in time and predicting where
that object will be at a future point in time according to some mathematical
model of the object’s orbit. In general, the shorter the difference between the
epoch and the desired future time, the more accurate propagation tends to be
because there is less time for various perturbations to affect an orbit. Moreover,
the shorter the time period, the less important the differences between under-
lying mathematical models tend to be. When dealing with orbital elements to
perform precise orbital calculations, it is important to know what propagation
model is being used. For one reason, comparing the future predicted posi-
tion of 2 satellites, such as to predict whether they will collide, is meaningful
only if the same propagation model is used to propagate the orbit for both
satellites.

To illustrate the process just summarized in the bulleted list, we will use
a very simple propagation model that adjusts the mean anomaly at the epoch
(M0) to the mean anomaly at the time we wish to observe the satellite (Mt ).
Let t0 be the epoch time obtained from the TLE data and let t be the time at
which we wish to observe the satellite. The difference between the 2 times is

�t = t − t0 (9.6.1)

and is expressed in days. The TLE data gives us a satellite’s mean motion,
which is how many times per day the satellite orbits Earth. If we multiply
mean motion by �t , that will tell us how many times the satellite has orbited
Earth between the epoch to which the TLE data is referenced and the time at
which we wish to observe the satellite.

Recall that the mean anomaly is how far an object has gone along a mean
orbit from some stated reference point. In the case of the planets, that reference
point is perihelion. In the case of a satellite, the reference point is perigee. So,
M0 is how far (measured in degrees) a satellite has gone around the Earth in a
perfectly circular orbit since the moment of perigee. Since there are 360◦ in a
circle, the distance the satellite traveled in time �t is

360◦ ∗�t ∗ (Mean Motion)

so that our propagated mean anomaly is

Mt =M0 + 360◦ ∗�t ∗ (Mean Motion). (9.6.2)
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Mt will likely need to be adjusted after applying this equation to ensure that it
is in the range [0◦, 360◦]. Once Mt has been obtained, we have the Keplerian
elements at the desired viewing time and must then convert the elements to top-
ocentric coordinates.

Let us now work through a complete example. Assume an observer at sea
level is located at 38◦ N latitude, 78◦ W longitude in the Eastern Standard
Time zone is on daylight saving time. What were the topocentric coordinates
for the International Space Station (ISS) for that observer on May 9, 2004, at
7h40m35s LCT? Use the first TLE data set for ISS from table 9.2 to obtain the
Keplerian orbital elements.

1. Extract the Keplerian elements and epoch date from the TLE data. The TLE
epoch date is t0 for equation 9.6.1.

(Ans: Epoch date is 5/9/2004 at 8h39m19.64s UT, ι= 51.6265◦,
e= 0.0010999, 	= 163.6249◦, ω= 114.4982◦, M0 = 338.6494◦,
Mean Motion = 15.69280476 rev/day.)

2. Convert mean motion to the length of the semi-major axis.
(Ans: a= 6739.09316404 km.)

3. Convert the given date and time to UT and LST times for the observer. The
UT time is t for equation 9.6.1.

(Ans: LCT = 7.676389h, UT = 11.676389h on the same day,
GST = 2.851474h, LST = 21.651474h.)

4. Compute the Julian day number for the epoch at which the Keplerian ele-
ments were captured in step 1.

(Ans: JDe = 2,453,134.86064.)

5. Compute the Julian day number for the desired date, using the Greenwich
date and UT from the prior step.

(Ans: JD = 2,453,134.98652.)

6. Compute total elapsed days, including fractional days, by subtracting JD
from JDe.

(Ans: �t = 0.12587217 days.)

7. Apply �t and equation 9.6.2 to get the propagated mean anomaly.
(Ans: Mt = 1049.75288141◦.)

8. Adjust Mt if necessary to place it in the range [0◦, 360◦].
(Ans: Mt = 329.75288141◦.)

9. Using the mean anomaly Mt in place of M0, convert the Keplerian orbital
elements to a state vector. Use the Newton/Raphson method to find the eccen-
tric anomaly.
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(Ans: 
R=[−1826.444 − 3797.174 5251.163], 
V =[7.213
− 2.621 0.608], velocity is 7.698 km/s, distance is 6732.692 km.)

10. Using the method explained in section 9.3, convert the positional vector
(i.e., Cartesian coordinates) to topocentric coordinates for the stated observer.

(Ans: htopo = -24◦58′56.42′′, Atopo = 131◦44′39.19′′.)

The desired observation time (May 9, 2004, at 7h40m35s LCT, which is
UT = 11.676389h) for this example, is essentially the epoch time for the TLE
data in table 9.2 immediately following the TLE data we used for this example.
This example was intentionally chosen so that the desired observation time
coincides with the next ISS TLE data. This allows us to gauge the accuracy
of our simple propagation model. If the propagation model is accurate, the
adjusted mean anomaly Mt should be very close to the mean anomaly at the
epoch in the second TLE data set.

The mean anomaly at the epoch for the second ISS TLE data is 329.2179◦,
which differs from our propagated mean anomaly (Mt = 329.75288141◦) by
about 0.5◦. For such a simple propagation model, the difference is relatively
small. However, the difference in time between the 2 TLE data sets was only
about 3 hours. The farther away the desired observation time is from the epoch
at which the orbital elements were captured, the less accurate this simple
propagation model will be.

If you compare the Keplerian elements from the first 2 sets of TLE data
for the ISS, you will notice that all the orbital elements, including the orbital
eccentricity, have changed over only about a span of 3 hours! Table 9.4 summa-
rizes the differences. The point is that since the Keplerian elements do not stay
constant over time, an accurate propagation model must adjust all the orbital
elements and not just the mean anomaly. The simple propagation model pre-
sented here that adjusts only the mean anomaly (equation 9.6.2) is not very
accurate, but it is sufficient for illustrating what a propagator does.

There are several reasons why a satellite’s orbital elements do not remain
constant over time. The most important factor is Earth’s gravity, which is
not uniform because the Earth is not a perfect sphere whose center of mass
is located precisely at the Earth’s center. This means that Earth’s gravita-
tional force acting upon a satellite changes depending on where the satellite is
located, the shape of the Earth underneath the satellite, and the precise location
of Earth’s center of mass. Besides Earth’s gravity, Earth’s atmosphere creates
drag that impacts a satellite’s velocity as it moves through the atmosphere.
The change in velocity directly affects all the satellite’s orbital elements. Of
less impact than drag but still important for highly accurate orbital predictions,
solar radiation and the gravitational effect of the Sun, Moon, and planets act
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Table 9.4 Effects of Orbital Perturbations
This table shows how orbital perturbations can affect a satellite’s orbital elements over a very short
period of time.

Orbital TLE Set 1 TLE Set 2
Element (ISS) (ISS) �

t0 130.36044403 130.48651632 3.03h

ι 51.6265◦ 51.6262◦ 1.1′′
e 0.0010999 0.0011098 0.0000099

	 163.6249◦ 162.9814◦ 38′37′′
ω 114.4982◦ 115.5233◦ 1◦01′30′′
M0 338.6494◦ 329.2179◦ 9◦25′53′′
Mean Motion 15.69280476 15.69287238 0.00006762

Note: The data in this table is for the International Space Station and represents 2 snapshots that
are only 3.03h apart.

cumulatively over time to noticeably alter a satellite’s orbit. Even the effects of
relativity must be considered when extremely accurate orbital predictions are
required.

Because of these types of orbital perturbations, satellite professionals
require a far more comprehensive and accurate propagation model than the
simple technique presented here. A widely used model is the Simplified Gen-
eral Perturbation version 4 (SGP4) model, which uses state vectors and a
complex orbital model to propagate satellite orbits. SGP4 works well—unless
an object burns a thruster to alter its orbit, which then requires new observa-
tions to be made to determine the object’s new orbital characteristics. We will
not describe SGP4, but more information about the model, including source
code for its implementation, can be found through the references given in
section 10.7.

9.7 Satellite Rise and Set Times

It is natural to ask, When will a satellite be in view for a given location on
Earth? This is analogous to determining the rising and setting times for the
stars, planets, Sun, and Moon. Because the stars and planets are so far away,
we effectively considered them as stationary so that simple formulas could be
applied to approximate their rising and setting times. The situation for the Sun
and Moon is more complicated because they cannot be considered as station-
ary with respect to the stars over a 12h–24h period of time. Even so, in both
cases we employed a 3-step process. First, we calculated the position of the
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Sun or Moon at midnight on the date prior to the desired viewing time and
then calculated the object’s position 12h later (for the Moon) or 24h later (for
the Sun). Second, we used those 2 positions to compute 2 rising and setting
times. Finally, we interpolated the 2 sets of rising and setting times to obtain
an approximate time at which the Sun/Moon will rise and set.

Unfortunately, except for geostationary orbits, satellites orbit Earth in time
frames measured in minutes or hours and thus are far from stationary. There-
fore, an interpolation scheme as used for the Sun and Moon is impractical.
Deriving an accurate equation for predicting rise and set times for satellites is
very difficult because there are several complicating factors to consider.

For example, suppose a satellite orbits Earth every 90 minutes. Assuming
that the satellite always goes over the same location on Earth during each orbit,
a satellite with a 90-minute orbital period will rise and set over a given location
16 times during a 24-hour interval of time. However, because Earth is also
rotating on its axis as the satellite orbits, except for very specific types of orbits,
a satellite will not return to the exact same spot over the Earth at the end of its
next orbit. This means that where a satellite will rise and set relative to loca-
tions on Earth may change with every orbit.

Other complicating factors must be addressed if one desires to view an
object, such as the International Space Station, through a telescope. The object
must come into view when the glare of the Sun or Moon will not obscure the
object. Even if the Moon is ignored, limiting the search for rise and set times to
nighttime hours is not sufficient. The satellite must be in a position relative to
the Sun so that even though the Sun may not be visible, sunlight reflects off the
satellite so that the satellite is visible. Of course, if the intent is to see a satellite
with an antenna in order to communicate with it, daytime hours are also candi-
dates for rise and set times because the position of the Sun is likely irrelevant.
Another complication, for reasons discussed in section 9.6, is that an accurate
propagation model must be used to predict the position of a satellite at future
points in time.

Complicated algorithms for determining when a satellite will be visible
to an observer or ground station have been developed that address all these
complications. A good reference for such an algorithm is Vallado’s Fun-
damentals of Astrodynamics and Applications. The Heavens Above website
(http://heavens-above.com/), as well as a general Internet search for “satel-
lite visibility passes” or “satellite pass predictors,” may also yield useful
sources.

This chapter’s program can compute a rough approximation for when a
satellite might be visible. It takes as input a satellite’s Keplerian elements,
an observer’s location and LCT time, the number of hours over which to do

http://heavens-above.com/
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a rise/set time estimation, and a time increment. With the observer’s stated
LCT as a starting point, the program computes the topocentric coordinates for
where the satellite will be at that initial LCT time. Then the simple propaga-
tion model presented earlier is used to propagate the satellite’s location into
the future by the requested time increment, and the topocentric coordinates for
the newly propagated position are calculated. This iterative process of propa-
gating forward by a given time increment and computing the new topocentric
coordinates is continued until the number of hours requested for the estima-
tion has been completed. If the altitude between successive iterations changes
from being above or below the observer’s horizon, an interpolation is done to
estimate when that transition occurred.

A satellite may or may not be visible whenever the altitude computed by this
process is positive (i.e., the satellite is above the observer’s horizon) because
of all the previously discussed complications. Even so, the program for this
chapter should give a reasonable estimate of a time interval during which a
satellite will be above an observer’s horizon and a “ball park” approximation of
the LCT time, altitude, and azimuth at which the satellite will appear. Keep in
mind that to view a satellite with a telescope, the satellite must be illuminated
by the Sun and is therefore visible only when it is above the horizon and the
Sun is not too far below the horizon. This means that the best times to view a
satellite with a telescope are generally for a few hours after sundown or a few
hours before sunrise.

9.8 Satellite Distance

Determining the distance of a satellite from the center of the Earth is a sim-
ple calculation that can be accomplished in a variety of ways. One obvious
technique is to convert the satellite’s Keplerian elements to a state vector and
then apply equation 9.3.1 to determine its distance from the resulting posi-
tional vector. However, it is much easier to determine the distance directly from
the properties of an ellipse than going through all the calculations required to
convert Keplerian elements to a state vector.

In particular, equations 9.2.25 and 9.2.28 allow us to compute a satellite’s
apogee and perigee distances directly from its orbital eccentricity and semi-
major axis. For example, assume a satellite is circling Earth in an elliptical
orbit whose eccentricity is 0.5 and whose semi-major axis is 40,000 km in
length. The maximum distance the satellite will be from Earth (the apogee
radius from equation 9.2.25) is

ra = a(1 + e)= 40,000(1 + 0.5)= 60,000 km.
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Similarly, the minimum distance (perigee radius) as given by equation 9.2.28 is

rp = a(1 − e)= 40,000(1 − 0.5)= 20,000 km.

If we need to know a satellite’s distance at an arbitrary point in its orbit, that can
be obtained by applying equation 9.2.23 to the satellite’s orbital eccentricity,
semi-major axis, and true anomaly at the time in which we are interested. As
we have seen, the true anomaly can be obtained from the mean anomaly by
solving Kepler’s equation.

As an example, assume that the satellite for which we just determined the
minimum and maximum distance is at a point in its orbit at which the true
anomaly is 45◦. Then applying equation 9.2.23 yields

r = 40,000(1 − 0.52)

1 + 0.5 cos 45◦ ≈ 22,163.88 km.

This is the same problem we solved in subsection 4.5.1, which further demon-
strates that satellites obey the same laws of physics as any other object orbiting
another.

Recall from section 9.2 that the true anomaly for an orbit is 0◦ at perigee
and 180◦ at apogee. These values can be used with equation 9.2.23 to calcu-
late a satellite’s distance at rp and ra . In fact, since cos 0◦ = 1, equation 9.2.23
simplifies to equation 9.2.28. In like fashion, because cos 180◦ =−1, equa-
tion 9.2.3 simplifies to equation 9.2.25.

As we pointed out in the introduction to this section, the distance from the
center of the Earth to a satellite can be computed by converting the satellite’s
Keplerian elements to a state vector and then finding the length of the resulting
positional vector. That approach requires a significant amount of work. How-
ever, a close examination of the algorithm in subsection 9.4.2 shows that the
process can be greatly simplified so that only 3 of the 6 Keplerian elements
(eccentricity, semi-major axis, and mean anomaly) are required along with the
epoch date and mean motion.

To illustrate this streamlined approach, let us estimate the distance from the
center of the Earth to the Atlas Centaur rocket body whose TLE data lines are
given in table 9.2. Let us find the distance on 4/21/2016 at 10h LCT for an
observer at 40◦ N latitude, 80◦ W longitude in the Eastern Standard Time zone
who is not on daylight saving time. The required steps are:

1. Calculate the length of the semi-major axis from the mean motion.
(Ans: a= 7035.46936588 km.)

2. Convert the observer’s stated LCT to UT, GST, and LST times.
(Ans: LCT = 10h, UT = 15h, GST = 5.007567h, LST = 23.674234h,

date = 4/21/2016.)
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3. Compute the total number of elapsed days, including fractional days, since
the TLE data’s epoch (4/20/2016 at 21h22m43.95s UT).

(Ans: �t = 0.73421355 days.)

4. Use equation 9.6.2 to propagate the mean anomaly by �t .
(Ans: Mt = 4138.73898646◦.)

5. If necessary, adjust Mt to be in the range [0◦, 360◦].
(Ans: Mt = 178.73898646◦.)

6. Use the simple iteration method to solve Kepler’s equation to get the eccen-
tric anomaly from Mt .

(Ans: E= 249.98396744◦.)

7. Use equation 4.5.8 to compute the true anomaly from the eccentric anomaly.
(Ans: υ =−110.2177362◦.)

8. Use the true anomaly, eccentricity, length of the semi-major axis, and equa-
tion 9.2.23 to get the distance from the center of the Earth.

(Ans: r = 7044.49765652 km.)

All these steps are required to convert Keplerian elements to their equivalent
state vector, but eliminating those steps that are not required when all we want
is the distance significantly reduces the computations required.

9.9 Other Flight Dynamics

The preceding sections introduced various topics that are important for locat-
ing and observing satellites. We hope this short introduction has convincingly
demonstrated that what has been learned about the orbits of the planets and
other celestial objects applies equally well to the thousands of man-made
objects that now encircle our home planet. We will conclude this brief intro-
duction to satellites by examining 3 topics related to the flight dynamics of
orbiting satellites. These include determining a satellite’s orbital period, ways
to determine how fast a satellite is moving and how that relates to its orbit, and
how much of the Earth’s surface a satellite can see.

9.9.1 Orbital Period

The orbital period for any object is the time that it takes for the object to com-
plete 1 full revolution around whatever is at the orbit’s occupied focus. In the
case of the planets, the Sun lies at the occupied focus so a planet’s orbital
period is how long it takes for the planet to complete 1 trip around the Sun.
This length of time is typically expressed in years. By contrast, the orbital
period for a satellite is how long it takes to complete 1 trip around Earth, and
this length of time is typically expressed in minutes or hours.
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A satellite’s orbital period is a fundamental piece of information that helps
characterize its orbit. Among other things, a satellite’s orbital period tells a
mission planner how often a satellite will revisit a particular spot on Earth and
therefore how frequently sensors can provide information about that location.
For example, if a weather satellite’s orbital period is 10 hours, then weather
data for a given location on Earth can only be obtained from that satellite
every 10 hours.9 If updates are required every 30 minutes (perhaps to study
an impending storm), then a meteorologist has 3 choices: (a) use an appropri-
ately located geostationary satellite, (b) use a satellite whose orbital period is
30 minutes or less, or (c) obtain data from multiple satellites that in the aggre-
gate revisit a target area every 30 minutes. We will reconsider this problem at
the end of this subsection.

A satellite’s orbital period is given by the equation

τ = 2π

√
a3

μ
, (9.9.1)

where μ is the standard gravitational parameter for Earth. Since 2π/
√
μ is a

constant, it can be calculated and inserted into the equation to give

τ ≈ 0.00995201
√
a3,

which is the orbital period around Earth in seconds. Dividing by 60 gives the
period in minutes, which is the equation

τ ≈ 0.00016587
√
a3. (9.9.2)

Note that equation 9.9.1 is general and applies to any orbit; it only requires
that the correct standard gravitational parameter be used. In fact, you can
see that equation 9.9.2 is very similar to equation 8.12.11. The 2 equations
differ because the Sun’s standard gravitational parameter was used to derive
equation 8.12.11 for objects orbiting the Sun while Earth’s standard gravita-
tional parameter was used to derive equation 9.9.2 for objects orbiting Earth.
A second difference between the 2 equations is that the scaling factor applied
to equation 8.12.11 gives the orbital period in years, while the scaling factor
applied to equation 9.9.2 gives the orbital period in minutes.

For a couple of examples, suppose space shuttle STS-8 was in an orbit whose
semi-major axis was 6,675 km. Then the shuttle’s orbital period was

τ ≈ 0.00016587
√
(6,675)3 ≈ 90.5 minutes.

9. A real weather satellite would more likely be geostationary so that revisit times are not an issue.
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In subsection 9.4.3, we used TLE data to determine that the length of the semi-
major axis for the Alpha Centaur rocket body was a≈ 7035.469 km. What was
the rocket body’s orbital period? Again applying equation 9.9.2, we have

τ ≈ 0.00016587
√
(7035.469)3 ≈ 97.9 minutes.

After a moment’s thought, it should be clear that orbital period is funda-
mentally the same thing as mean motion. The only difference is that the orbital
period given by equation 9.9.2 is expressed in minutes whereas mean motion
is expressed in revolutions per day. So, orbital period and mean motion are
related by the simple equation

Mean Motion =[24/(τ/60)] = 1,440

τ
, (9.9.3)

where mean motion is in revolutions/day and τ is in minutes. If you perform
the necessary computations, you will find that the mean motion for the Alpha
Centaur rocket body given by this equation appears to be different from what is
captured in the TLE data in table 9.2. (Using an orbital period of 97.9 minutes
and equation 9.9.3 yields a mean motion of 14.70888662 versus 14.71170973
as captured in the TLE data.) The discrepancy is due to round-off errors intro-
duced in going from equation 9.9.1, which is exact, to equation 9.9.2, which is
an approximation.

A careful examination of equation 9.9.1 reveals how Arthur C. Clarke con-
cluded that a satellite with a circular orbit 42,164 km above the center of the
Earth would be geosynchronous. We start by noting that equation 9.9.1 can be
rewritten in the form

a= 3

√
μτ 2

4π2
,

where μ is the Earth’s standard gravitational parameter. Recognizing that
3
√
μ/(4π2) is a constant, this equation can be simplified to

a≈ 21.613545
3
√
τ 2,

where τ is in seconds and a is in kilometers. To allow τ to be expressed in
minutes, the scaling factor must be adjusted to

a≈ 331.253274
3
√
τ 2, (9.9.4)

For a satellite to be in a geosynchronous orbit, its orbital period must be the
same as the time it takes for Earth to rotate once on its axis with respect to
the stars. That is, a satellite must be at a distance so that its orbital period



318 Chapter 9

is precisely 1 sidereal day. A sidereal day for Earth is 23h56m04.1s, or
1436.0683333 minutes. Using this value as the desired orbital period and
applying equation 9.9.4, we arrive at a≈ 42,164.17 km, which is the same
conclusion that Clarke reached. A satellite in a circular orbit 42,164 km above
the center of the Earth will orbit Earth in the same time that it takes for Earth
to rotate once on its axis. If the satellite is also in an equatorial orbit, it will be
geostationary.

Let us apply this information to consider the weather example proposed at
the beginning of this subsection. Suppose we want to place a satellite in a
circular orbit such that it orbits Earth every 30 minutes gathering weather data.
How far above the center of the Earth must the orbit be? Using 30 minutes as
our desired orbital period, equation 9.9.4 yields

a≈ 331.253274 3
√
(30)2 ≈ 3198.215 km.

Unfortunately, Earth’s radius is 6378.135 km, so it is impossible for an unpow-
ered satellite to orbit Earth in 30 minutes because it would have to be orbiting
inside the Earth!

Let us consider an alternative approach. Assume that as a safety margin,
we require our satellite to be at least 100 km above sea level. What is the
fastest orbital period possible within that constraint? This time apply equa-
tion 9.9.2, where the desired length of the orbital semi-major axis is
a= 6378.135 + 100 = 6478.135 km. The result is

τ ≈ 0.00016587
√
(6478.135)3 ≈ 86.5 minutes.

The only way to achieve a 30-minute revisit rate is to utilize a geostationary
satellite that views the part of the Earth we are interested in, or use 3 satellites
properly spaced so that they are in orbits that are 86.5/3 ≈ 8.8 minutes apart.

9.9.2 Velocity

We have already seen that a satellite’s orbital velocity can be obtained from
the velocity vector component of the state vector. However, there are simpler
ways to determine velocity directly from the geometry of a satellite’s orbit,
just as we did in subsection 8.12.4 for the planets. If a satellite is in a circular
orbit, the velocity is very simple to calculate directly from the satellite’s orbital
period and distance from Earth. From the equation for the circumference of a
circle, the total distance around a circle of radius r is d = 2πr , where d is in
the same units (e.g., kilometers) as r . A satellite’s orbital period τ is the time
it takes the satellite to travel that distance, so the velocity for a circular orbit is

V = 2πr

τ
.
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Since we have been expressing a satellite’s period in minutes, this equation
will be in km/minute. It must be multiplied by 60 to convert it to km/hour, or
divided by 60 to convert it to km/s. We will choose the latter, so the equation
for the velocity of a satellite traveling in a circular orbit is

V = 2πr

60τ
= πr

30τ
, (9.9.5)

where r is in kilometers, τ is in minutes, and the resulting V is in km/s.
As an example, assume a space shuttle in a circular orbit is at an altitude

of 350 km above sea level. What is the shuttle’s orbital period and how fast
is it moving? Since the problem statement is given in terms of an altitude and
a circular orbit, we can apply equation 9.2.1 to determine how far the space
shuttle is above the center of the Earth. That is,

r = 6378.135 km + 350 km = 6728.135 km.

For a circular orbit, the semi-major axis is the same as the distance above the
center of the Earth (a= r) because the occupied focus and geometric center
(see figure 9.3) are the same point. Thus, equation 9.9.2 gives the shuttle’s
orbital period as

τ ≈ 0.00016587
√
(6728.135)3 ≈ 91.5 minutes.

Finally, equation 9.9.5 gives the velocity as

V = π(6728.135)

30(91.5)
≈ 7.70 km/s.

The equation for a noncircular orbit is only slightly more complicated. The
velocity in km/s is given by

V =
√
μ

(
2

r
− 1

a

)
, (9.9.6)

where μ is Earth’s standard gravitational parameter, and r and a are in kilome-
ters. This equation, called the vis-viva law, is derived directly from Kepler’s
third law and Newton’s law of universal gravitation. Since μ is a constant, the
vis-viva law can be simplified (for satellites orbiting Earth) by extracting

√
μ,

resulting in

V ≈ 631.348115

√(
2

r
− 1

a

)
. (9.9.7)

As noted earlier, a= r for a circular orbit, so the vis-viva law for a circular
orbit around Earth reduces to
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V ≈ 631.348115

√
1

r
. (9.9.8)

The vis-viva law relates a satellite’s velocity to its orbital parameters, specif-
ically the relationship between velocity, distance above the center of the Earth,
and the length of the orbital semi-major axis. This is important information for
determining how large a rocket is required to put a satellite into orbit and how
much fuel an orbiting vehicle must expend to change its orbit.

To illustrate, assume that the space shuttle from the previous example is
350 km above sea level, but it is in an elliptical orbit with e= 0.029849 and has
an orbital semi-major axis of 6,700.5 km. What is the space shuttle’s velocity?
The answer, which comes directly from equation 9.9.7, is

V = 631.348115

√(
2

6,728.135
− 1

6,700.5

)
≈ 7.68 km/s.

If we apply equations 9.2.25 and 9.2.28, we find that the shuttle’s apogee
distance is 6,900.5 km while its perigee distance is 6,500.5 km. Applying equa-
tion 9.9.7 to these 2 distances, we find that the shuttle’s apogee and perigee
speeds are

Vapogee = 7.49 km/s, Vperigee = 7.95 km/s.

A maneuver known as the Hohmann transfer orbit takes advantage of the vis-
viva law to determine the velocity increments required to transition a satellite
from a circular orbit of radius r1 to another circular orbit of radius r2 that is
at a greater height but is in the same orbital plane. The maneuver is shown in
figure 9.11. First, an elliptical transfer orbit, whose perigee distance is equal
to the radius r1 of the orbit that the satellite is currently in and whose apogee
distance is equal to the radius r2 of the desired new circular orbit, is designed.
When the satellite reaches perigee, a thruster is ignited to change the satellite’s
velocity by �V1. This places the satellite into the elliptical Hohmann transfer
orbit. When the satellite reaches apogee in this elliptical orbit, a thruster is
again ignited to change the satellite’s velocity by �V2. This then places the
satellite in the desired circular orbit.

To illustrate, assume a space probe is to be sent to Venus. The mission plan
initially places the probe into a circular LEO orbit at a height of 6,900 km.
After confirming that the probe is fully functional, it is to be placed into a
circular HEO orbit at a height of 40,000 km. At the appropriate point and time
in the HEO orbit, the probe will be “slingshotted” to travel to Venus. What are
the velocity changes required (�V1 and �V2) to transfer the space probe from
the circular LEO orbit to the circular HEO orbit?
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Figure 9.11 Hohmann Transfer Orbit
A Hohmann transfer orbit is a maneuver used to move an object from one circular orbit to another
higher circular orbit in the same orbital plane.

First, we need to design an elliptical transfer orbit. Since the perigee distance
needs to be the radius of the LEO orbit (r1) and the apogee distance needs to be
the radius of the HEO orbit (r2), equation 9.2.9 gives the length of the required
semi-major axis as

a= r1 + r2
2

= 6,900 + 40,000

2
= 23,450 km.

Next, we need to determine the orbital velocity for the current circular LEO
orbit, the desired circular HEO orbit, and the velocities at perigee and apogee
in the Hohmann transfer orbit. Since the LEO and HEO orbits are circular,
equation 9.9.8 gives their velocities:

V1 ≈ 631.348115

√
1

6,900
≈ 7.60 km/s,
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V2 ≈ 631.348115

√
1

40,000
≈ 3.16 km/s.

The Hohmann transfer orbit is an elliptical orbit, so equation 9.9.7 gives the
apogee and perigee velocities as

Vapogee ≈ 631.348115

√
2

40,000
− 1

23, 450
≈ 1.71 km/s,

Vperigee ≈ 631.348115

√
2

6,900
− 1

23, 450
≈ 9.93 km/s.

The last step is to compute �V1, which is the velocity change required to
transfer from the circular LEO orbit to the elliptical orbit at perigee, and �V2,
which is the velocity change required to transfer from the elliptical orbit at
apogee to the circular HEO orbit. Thus,

�V1 =Vperigee −V1 = 9.93 − 7.60 = 2.33 km/s,

�V2 =V2 −Vapogee = 3.16 − 1.71 = 1.45 km/s.

The total velocity change required to accomplish the Hohmann transfer orbit
maneuver is

�V =�V1 +�V2 = 3.78 km/s.

9.9.3 Ground Tracks and Footprint

In this last subsection we consider the problem of determining how much of
Earth a satellite can see. The higher a satellite is above Earth, the more of the
Earth’s surface it can see. Similarly, the higher a satellite is above Earth, the
greater the area on the Earth from which telescopes, antennas, and sensors can
view a passing satellite. To describe how much of Earth a satellite can see, or
conversely from how large an area on the Earth a satellite can be seen, imagine
drawing a line from the center of the satellite to the center of the Earth, as
shown in figure 9.12. The point at which the line intersects the Earth’s surface
is a projection of the satellite’s position onto the Earth. If an observer is located
at that projection point, then the satellite is at the observer’s zenith.

The circular area on the surface of the Earth that a satellite can see is called
the satellite’s footprint. The center of the footprint is always the projection
point of the satellite onto the surface of the Earth. Obviously, the location of the
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Point for which the satellite is at 
the zenith (satellite’s projec�on 

onto surface of the Earth)
Line from center of 

the satellite, 
through the zenith 
point, to the center 

Center of the Earth

point, to the center 
of the Earth

Satellite footprint

Figure 9.12 Satellite Footprint
A satellite’s footprint is how much of Earth’s surface the satellite can see. The center of the
footprint is the observation point for which the satellite is at the zenith.

footprint changes as the satellite orbits Earth and as Earth itself rotates. More-
over, the size of the footprint will also change if the distance from the satellite
to Earth changes as the satellite follows its orbit. The size of the footprint will
be constant only for truly circular orbits (i.e., e= 0).

If one plots the center of a satellite’s footprint as the satellite orbits Earth, the
result is a path that moves across the surface of the Earth. This path is called
the satellite’s ground track, an example of which is shown in figure 9.13. If
the Earth were not rotating, then as a satellite orbits Earth it would trace out a
great circle inclined with respect to the Earth at an angle equal to the satellite’s
orbital inclination. However, the Earth is rotating so a satellite will typically
trace out paths that are slightly offset each orbital pass that the satellite makes.
The precise pattern that a satellite’s ground track makes depends on the satel-
lite’s orbital characteristics. Some ground tracks form a figure-eight pattern,
some form a circle, some are periodic wave patterns as shown in figure 9.13,
and some may even exhibit retrograde motion.

Plotting a satellite ground track is not particularly difficult, but it does
require an accurate orbit propagator. The general process is to first convert
a satellite’s position to equatorial coordinates at some instant in time, such as
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Figure 9.13 Satellite Ground Tracks
The path a satellite traces as it orbits Earth is the satellite’s ground track.

the epoch at which the satellite’s orbital elements are referenced. The dec-
lination is the geocentric latitude for the satellite’s position at that epoch.
That is,

φ= δ. (9.9.9)

The satellite’s right ascension (expressed in degrees) is its longitude, but
adjusted for how much Earth has rotated since the Greenwich prime merid-
ian was aligned with the vernal equinox. This is simply the GST expressed as
degrees rather than units of time (multiply time by 15 to convert to degrees).
So,

ψ =α−GST, (9.9.10)

where both α and GST are expressed in degrees rather than time. Instead of
computing GST through the method given in section 3.10, one can instead use
the equation

GST = 280.4606◦ + 360.9856473◦d, (9.9.11)

where d is the number of days (including fractional days) since the epoch
J2000.

After converting position to latitude and longitude (equations 9.9.9 and
9.9.10), plot a point on a map at that location. Propagate the orbit by some
time increment, use the propagated orbital elements to compute the satellite’s
equatorial coordinates, and then convert them to latitude/longitude to plot a
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new point. Continue this process for at least 1 orbit to create the satellite’s
ground track.

Calculating the size of a satellite’s footprint is simpler than calculating its
ground track. The equation required is

rfp =
(πre

180

)
cos−1

( re
r

)
(9.9.12)

where re is the radius of the Earth, r is the distance from the center of the Earth
to the satellite, and rfp is the maximum radius of the satellite’s footprint.10 The
fraction of the Earth’s surface (expressed as a percentage) that equation 9.9.12
represents is

F = 50(r − re)
r

. (9.9.13)

For example, assume a satellite is 35,000 km above the center of the Earth.
Then the maximum radius of the satellite’s footprint is

rfp =
(

6378.135π

180

)
cos−1

(
6378.135

35,000

)
≈ 8850 km,

which is

F = 50(35,000 − 6378.135)

35,000
≈ 41%

of the Earth’s surface. If the satellite were only 10,000 km above the center of
the Earth, the results would be

rfp ≈ 5607 km, F ≈ 18%.

If a satellite’s velocity V is known in km/s, then the total time in minutes
that the satellite will be visible within a fixed footprint whose radius is rfp is

FPt = 2rfp
60V

= rfp

30V
. (9.9.14)

To illustrate, suppose the space shuttle was 350 km above sea level. What
was its footprint, and how long was it visible within that footprint? From
subsection 9.9.2 we calculated

r = 6728.135 km, V ≈ 7.70 km/s.

10. The factor π
180 is in the equation because we are assuming that the inverse cosine returns a

result in degrees.
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The shuttle’s footprint was therefore

rfp =
(

6378.135π

180

)
cos−1

(
6378.135

6728.135

)
≈ 2066 km,

and it remained within that footprint for

FPt = 2,066 km

30(7.70 km/s)
≈ 9.0 minutes.

Equation 9.9.14 is really suitable only for orbits, such as LEO, in which
Earth does not rotate very far during the time that the satellite makes a single
pass around Earth. Otherwise, the motion of the Earth must also be consid-
ered to obtain an accurate estimate. For instance, assume a satellite 35,000 km
above the center of the Earth is traveling at 1.25 km/s. Then equation 9.9.14
indicates that the satellite will remain in its footprint for about 236 minutes
(3.9 hours). During that time, Earth will have rotated by 58.5◦! This drastically
affects calculations for how long the satellite will remain in its footprint.

9.10 Program Notes

The program for this chapter allows orbital elements to be entered from the
keyboard or read from a data file. Two sample TLE data files are provided,
which can be viewed with a simple text editor to understand their format.
The data in table 9.2 is in the file TLE-Table9.dat while the data file
TLEs.dat contains more example satellite data that can be used with this
chapter’s program. As mentioned earlier, the name of the object to which
TLE data lines refer is not really part of the TLE data format. However,
both data files provided with this book include object names to make it eas-
ier to find an object of interest. You can download TLE data from publicly
available sources to create your own TLE data files. For data files that you
create, you may include or exclude object names as you see fit. The data
file Launch-Sites.dat has the launch site data from table 9.3. You can
modify this file to add your own launch sites, or create your own launch sites
data file for use with this chapter’s program.

The purpose of this chapter was to briefly introduce artificial satellites and
demonstrate that their orbits are governed by the same laws of physics that
govern all objects (Sun, Moon, planets) that orbit another. Because that is this
chapter’s primary focus, be forewarned that the calculations to locate a satellite
or to predict when a satellite may be visible will not be very accurate for more
than a short time after a TLE’s stated epoch. Use Keplerian elements with an
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epoch as close as possible to the time at which you wish to locate an object to
obtain the most accurate results.

Although this chapter’s program includes a simple propagator (section 9.6),
a more accurate propagator, such as SGP4, is required to obtain better results.
Source code for the SGP4 algorithm can be found in several of the resources
listed in section 10.7. You may wish to modify this chapter’s program to
include an SGP4 propagator because incorporating a more accurate propagator
is the most significant thing that can be done to improve results.

Unfortunately, even when Keplerian elements close to the desired time are
used and a better propagator is incorporated, the results may still prove disap-
pointing. This is because the accuracy and precision with which angles and
times are computed or entered have a significant effect when dealing with
objects that move through space as rapidly as those that orbit Earth. Even
the precision with which a programming language’s trigonometric and other
functions (e.g., square root) are computed greatly impacts the accuracy of the
resulting solution.

9.11 Exercises

1. If a satellite has Cartesian coordinates x= 23,300 km, y= –14,600 km,
z= 16,000 km, what are its spherical coordinates?

(Ans: r = 31,812.733 km, α= 327.92835339◦, ϕ= 59.80508327◦.)

2. If the spherical coordinates for an object are r = 34,106.451 km,
α= 58.12040315◦, ϕ= 121.85419091◦, what are the object’s Cartesian coor-
dinates?

(Ans: x= 15,300 km, y= 24,600 km, z= –18,000 km.)

3. Suppose the Cartesian coordinates in problem 1 were determined on
June 5, 2015, at 15h UT. If an observer at sea level in the Pacific Standard Time
zone at 40◦ N latitude, 120◦ W was on daylight saving time, what would the
horizon coordinates be for the observer? (Note: the LCT time for the observer
was 8h.)

(Ans: h= 63◦07′57.21′′, A= 258◦15′25.45′′.)
4. What would the topocentric coordinates for the previous problem be?

(Ans: htopo = 56◦50′9.38′′, Atopo = 78◦15′25.45′′.)
5. If the state vector for a satellite was


R=[−1880.723 2173.591 1473.570],

V =[−8.816 − 6.582 − 1.531],
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what were the object’s Keplerian elements? How far was the object above the
center of the Earth, and how fast was it moving?

(Ans: ι= 28.46631111◦, e= 0.0005148, a= 3229.58950374 km,
	= 21.8733225◦, ω= 1.82234382◦,M0 = 104.95712948◦,
distance 3230.019 km, speed 11.108 km/s.)

6. If the Keplerian elements for an object were ι= 30.11976874◦,
e= 0.10759411, a= 6078.35278389 km, 	= 356.95953889◦,
ω= 341.73698644◦,M0 = 179.21747378◦, what was the object’s state vec-
tor? How far was the object above the center of the Earth, and how fast was it
moving? Use the simple iteration method to solve Kepler’s equation.

(Ans: 
R=[−6260.434 2221.184 1094.144], 
V =[−2.675 −5.812 −3.449],
distance 6732.298 km, speed 7.269 km/s.)

7. If an object orbiting Earth has a mean motion of 2.5 revolutions per day,
what is the length of the object’s orbital semi-major axis?

(Ans: 22,931.995 km.)

8. If an object orbiting Earth has a semi-major axis length of 35,000 km, what
is its mean motion in revolutions per day?

(Ans: 1.326 rev/day.)

9. From table 9.2, what was the epoch at which the NOAA-18 TLE data was
obtained? What were the Keplerian elements for the NOAA-18 satellite at that
epoch?

(Ans: Epoch date was 4/14/2016 at 12h19m20.96s UT, ι= 99.1983◦,
e= 0.001412, a= 7229.721 km,	= 110.7876◦, ω= 189.316◦,
M0 = 170.7751◦.)

10. Convert the Keplerian elements from the previous problem to their equiva-
lent state vector. How far was the NOAA-18 above the center of the Earth, and
how fast was it traveling?

(Ans: 
R=[−2567.223 6769.330 14.593], 
V =[1.113 0.408 7.319], dis-
tance 7239.798 km, speed 7.415 km/s.)

11. A satellite was launched from Wallops, Virginia, with a launch azimuth of
88◦. What was the resulting orbital inclination for the satellite?

(Ans: ι= 37.89◦.)

12. What would the orbital inclination be if the satellite in the previous pro-
blem was launched from the Kennedy Space Center in Florida with the same
launch azimuth?

(Ans: ι= 28.67◦.)

13. A satellite is being planned that must achieve an orbital inclination of
38.45◦ and an orbital velocity of 18,500 km/hr. If launched from Wallops, Vir-
ginia, what will the launch azimuth need to be? How much additional velocity
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must the launch rocket provide?
(Ans: A= 82.64◦, �V = 17,181.42 km/hr, or 10,676.04 mph.)

14. If the launch site for the previous problem was the Pacific Missile Range in
Hawaii, what would the launch azimuth need to be, and how much additional
velocity must the launch rocket provide?

(Ans: A= 57.65◦, �V = 16,952.03 km/hr, or 10,533.50 mph.)

15. From table 9.2, the orbital inclination for the International Space Station at
the epoch was 51.6443◦. If a space shuttle was launched from Cape Canaveral
at that time to rendezvous with the Space Station, at what launch azimuth must
it be launched to achieve the same orbital inclination as the Space Station?

(Ans: ι= 44.90◦.)

16. Using the last set of TLE data from table 9.2 (STS-134), what were the
Keplerian elements at the epoch for the STS-134 mission? What were the
topocentric coordinates 3 hours after the epoch for an observer at sea level
at 45◦ N, 78.5◦ W in the Eastern Standard Time zone who is not on daylight
saving time? Use the simple iteration method to solve Kepler’s equation. (Hint:
the LCT time 3 hours later for the observer is 3h02m46.30s.)

(Ans: Epoch date was 6/1/2011 at 5h02m46.30s UT, ι= 51.6547◦,
e= 0.0003887, a= 6719.5040 km,	= 242.5934◦, ω= 349.9801◦,
M0 = 90.0149◦, htopo = 19◦32′1.60′′, Atopo = 248◦19′25.21′′.)
17. Assume that the Keplerian elements for a satellite were captured on
3/12/2016 at 19h UT and have the following values: ι= 30.9297◦, e= 0.
076012,	= 52.6400◦, ω= 284.2856◦,M0 = 119.1380◦, and a= 8200.05 km.
For a satellite ground station at sea level located at 28.5◦ N latitude, 74.2◦ W
longitude in the Eastern Standard Time zone that is not on daylight saving
time, at what time after 15h LCT is the estimated first opportunity for the
ground station’s antenna to see the satellite after the stated epoch? What are
the approximate topocentric coordinates at that time? (Hint: propagate forward
from the epoch for at least 2 hours with a time increment of 1 minute to get an
approximate rising time, then calculate the satellite’s topocentric coordinates
at the estimated rising time.)

(Ans: LCT = 15h41m30s, htopo = 0◦52′58.47′′, Atopo = 8◦45′42.46′′.)
18. A satellite in a circular LEO orbit is 8,000 km above the center of the
Earth. What is the satellite’s orbital period?

(Ans: τ = 118.6869 minutes, or 1.9781 hours.)

19. A satellite in a circular orbit has a period of 26h30m. How far above the
center of the Earth is the satellite? (Hint: be sure to convert the period to deci-
mal minutes!)

(Ans: a≈ 45,125.8 km.)



330 Chapter 9

20. If a satellite is in an orbit with e= 0.760122 and a= 27,169.5436 km,
what are the satellite’s perigee and apogee distances from the center of the
Earth?

(Ans: rp = 6517.3758 km, ra = 47,821.7114 km.)

21. For the previous problem, what is the satellite’s orbital period, speed at
perigee, and speed at apogee?

(Ans: τ = 742.8333 minutes, Vperigee = 10.38 km/s, Vapogee = 1.41 km/s.)

22. If a satellite is traveling at 10.25 km/s in a circular orbit 6517.5 km above
the center of the Earth, how much of the Earth can the satellite see? How large
is the satellite’s ground footprint?

(Ans: rfp = 1321.36 km, F = 1.1%, FPt = 4.29 minutes.)



10 Astronomical Aids

A major emphasis of this book has been to demonstrate the calculations needed
to predict the location of various objects. Such calculations are typically long
and tedious, but with the aid of a computer the tedium and potential for mis-
takes are greatly reduced. Even so, sometimes it is more convenient to use
published resources than to calculate things yourself. This is especially true
when great accuracy is required, or if you do not have the equations at hand
to calculate the desired information. This chapter describes some common
observational aids and resources that are both useful and time saving.

A number of observational aids are in the form of charts and tables to help
locate an object of interest. Some are published monthly or annually while
others are referenced to a standard epoch and cover a much longer period of
time. Most of these aids provide the location of an object, usually in equa-
torial coordinates, but they may also provide other information, such as an
object’s visual magnitude and distance from Earth. Unless great accuracy is
needed, you may find that data provided in monthly periodicals, such as Sky
& Telescope, or Astronomy, are exactly what you need. This is especially true
for general sightseeing when all you want is a basic idea of where to point
a telescope. Also, both Sky & Telescope and Astronomy contain regular fea-
ture articles that amateur astronomers and nonscientists may find to be quite
readable.

When using the various astronomical aids, you will find that they are
unlikely to be adjusted for your exact location or time zone. Some aids assume
a location in the middle of the United States, but more accurate ones typically
assume 0h UT at 0◦ latitude, 0◦ longitude. In any case, once the equatorial
coordinates of an object are determined, the methods presented in chapters 3
and 4 can be used to calculate an object’s horizon coordinates for your loca-
tion and time zone. Rising and setting times can be approximated by applying
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the methods from chapter 5 (for distant celestial objects), chapter 6 (the Sun),
chapter 7 (the Moon), or chapter 8 (the planets).

To avoid confusion before proceeding, some definitions are in order. The
terms “star chart” and “star map” refer to a pictorial representation of the rela-
tive position of celestial objects. The representation may be for the entire night
sky as seen from some vantage point, or it may only be an expanded view of a
small section of the sky. A star atlas is typically a bound collection of several
star charts. The key thing to remember is that star charts, maps, and atlases are
pictorial representations. Even though they are called star charts, such observa-
tional aids may include galaxies, nebulae, and even planets. A set of star charts
(such as Wil Tirion’s Sky Atlas 2000.0 or the Uranometria 2000.0 by Tirion,
Rappaport, and Remaklus) is a good addition to your observatory, and they
should be an early purchase because they are so useful for planning a night of
observations.

The terms “star catalogs,” “star atlases,” “ephemerides,” “astronomical
tables,” and “almanacs” are often used interchangeably. The main feature of
these aids is that they provide tables giving the coordinates of celestial objects.
A star catalog will often include only objects that lie outside our Solar Sys-
tem. An ephemeris (a book containing ephemerides), astronomical table, or
almanac generally lists celestial objects that lie within our Solar System. More-
over, these aids typically give the position of an object for several instants
during the year, perhaps even an object’s daily position. The main point is that
aids such as star catalogs and ephemerides give numeric coordinates for objects
rather than providing only a pictorial representation of relative locations.

10.1 Recommended Authors

There are many good astronomy books written by both professionals and
amateurs. Of special note in the area of computational astronomy are the clas-
sic works Astronomical Formulae for Calculators1 by Meeus and Practical
Astronomy with Your Calculator by Duffett-Smith.2 These books were sig-
nificant resources for many of the algorithms presented in this book, and they
contain additional algorithms that may be of interest to an amateur astronomer.

1. Meeus’s most recent edition is Astronomical Algorithms. He has also authored Mathematical
Astronomy Morsels, a 5-volume set that is a treasure trove of formulas, explanations, and diagrams
of various phenomena.

2. The most recent edition of Duffett-Smith’s book, Practical Astronomy with Your Calculator or
Spreadsheet, has been updated to include spreadsheets that implement the various algorithms he
presents.
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The algorithms in both books are suitable for implementation on a personal
computer. Duffett-Smith’s book is easier to read than the one by Meeus, but
Meeus’s book is an excellent value and contains a more rigorous mathematical
development of the topics than Duffett-Smith’s book.

For the mathematically inclined, van Brummelen’s Heavenly Mathematics
is an excellent treatise on the rarely taught topic of spherical trigonometry,
which is the foundational area of mathematics required to understand coor-
dinate systems and their conversions. Fundamentals of Astrodynamics by
Bate, Mueller, and White is also a recommended classic for studying celes-
tial motion, but be aware that it requires a substantial level of mathematical
expertise. In that same vein, Vallado’s Fundamentals of Astrodynamics and
Applications is an outstanding reference that covers a wide range of topics
related to orbits, particularly for satellites. However, be forewarned that his
work is also highly technical in nature and requires a considerable amount of
mathematical expertise, particularly in calculus and vector spaces.

Fairman’s 3D Astronomy with Java is a good choice for those whose pri-
mary interest is implementing satellite algorithms. Boulet’s Methods of Orbit
Determination for the Micro Computer strikes a reasonable balance between
presenting the mathematics required for determining orbits and the details nec-
essary to implement various algorithms on a computer. As with Vallado’s
book, Boulet’s book requires a significant degree of mathematical expertise
to understand the subject matter.

10.2 Star Charts

While some star charts are more detailed than others, their essential idea is to
graphically represent what the night sky looks like from some particular view-
point. Star charts published monthly in popular astronomy periodicals may
already be adjusted to account for precession, but the resolution of star charts
in such periodicals is generally such that it makes little practical difference
whether precession has been accounted for or not.

To use a star chart, align the chart’s north direction (typically the top) with
magnetic north. When looking at a star chart, carefully note the location of
east and west. On terrestrial maps depicting roadways and cities, we are accus-
tomed to west being on the left of the map and east on the right. However, star
charts are frequently reversed so that the star chart presents a view of the sky as
if you were lying on your back and looking up into the night sky. After noting
the compass directions and aligning the star chart with magnetic north, select
an easily recognizable constellation on the chart, such as the Big Dipper, as
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a reference point, and then try to find that constellation in the night sky. The
chart’s publisher may have drawn lines on the chart to connect the stars in a
constellation to make recognizing them easier. Star charts will often give a
relative indication of a star’s magnitude by drawing brighter stars larger than
fainter ones, which also aids in locating specific stars in the night sky.

You may not be able to see all the stars shown on a star chart. Charts printed
on a monthly basis will often include horizon circles as a guide for determining
what stars you will be able to see. For example, if your latitude is greater than
30◦, you will not be able to see any stars that lie outside a 30◦ horizon cir-
cle printed on the chart. Besides providing horizon circles, star charts will
often have a grid to provide a rough indication of the equatorial coordinates
of objects within the grid. The sides of such grids will usually provide right
ascension and declination. Right ascension may be expressed as an hour angle
since most equatorial-mount telescopes have hour circles as aids for pointing
the telescope.

Star charts, such as those from Sky Atlas 2000.0, are far more detailed than
those that have been described so far. At first you may find that the added
detail makes the charts more difficult to use, but they are worth the effort
because they provide more information than the less detailed charts found in
most periodicals.

A star atlas will be referenced to a standard epoch. This may be of little
practical importance since coordinates read off from a start chart may be accu-
rate to only within a few arcminutes, depending upon the grid spacing used to
measure the equatorial coordinates. You will need to apply the methods from
chapter 4 to determine where a section of interest from a star chart will appear
for your location. That is, pick a sample equatorial coordinate from the chart,
calculate the corresponding horizon coordinates for your location, and then
you will be able to tell where in the sky to look for objects on that section
of the star chart. Moreover, you will need to apply the results of chapter 5 to
determine if that section of the sky will even be visible for your location at the
time you choose for observation.

Star charts are useful for locating objects other than stars. For example,
suppose you know Saturn will be in the constellation Libra at some particular
time. By using a star chart as a guide, you can locate the constellation of Libra
and probably spot Saturn very easily. Saturn will be the bright “star” that does
not appear on your star chart.

Periodicals such as Astronomy and Sky & Telescope include monthly star
charts similar to the one shown in figure 10.1. Besides constellations and
bright stars, such star charts may include the location of the Moon and planets.
Additionally, there are free resources that you can use to create your own
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Figure 10.1 A Monthly Star Chart
This star chart shows the November sky at 23h LMT for observers at 42◦ N latitude. Star charts are
useful for finding constellations and other objects in the sky. (Image courtesy of Roberto Mura)

customized star chart for any desired time and location. Stellarium is a free
software “planetarium” that can create a star chart for the night sky. Its users
can select from objects such as galaxies, nebulae, and other deep sky objects
for inclusion in a customized star chart.

Instead of downloading and installing software, the Astronomy magazine
publishers provide a resource accessible from an Internet browser (http://www.
astronomy.com/stardome.aspx) that can create star charts. Another online
resource that offers similar functionality is John Walker’s Your Sky website
(http://www.fourmilab.ch/yoursky). Finally, the Sky & Telescope publishers
provide an article showing how to create a star wheel (http://www.
skyandtelescope.com/observing/make-a-star-wheel/), which is a round star

http://www.astronomy.com/stardome.aspx
http://www.astronomy.com/stardome.aspx
http://www.fourmilab.ch/yoursky
http://www.skyandtelescope.com/observing/make-a-star-wheel/
http://www.skyandtelescope.com/observing/make-a-star-wheel/
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chart that can be rotated to account for the seasons as well as the time
of day.

10.3 Star Catalogs

If you need arcsecond accuracy for the location of an object outside the Solar
System, a star catalog is probably your best bet. Besides providing equato-
rial coordinates, star catalogs often contain other useful information, such as
a star’s magnitude, distance, and classification (red giant, white dwarf, etc.).
Unfortunately, to use a star catalog you must already know the name of the
object you are looking for, which is not necessarily as easy as it sounds.
Perhaps the best way to determine an object’s name is first to find it on a
star chart. A star chart may in fact have multiple names for an object. For
example, if you look at figure 10.2 and find the bright star in the lower right
corner of the constellation Orion, you will see that the star is called both
Rigel and β. However, if you look at the neighboring constellation of Tau-
rus shown in figure 10.3, you will see that the star Elnath is also called β.
Even more perplexing, if you refer back to figure 10.2, you will see that the
6 stars in the constellation of Orion that form Orion’s shield are all named
π ! This may seem confusing because multiple stars can have the same name
whether they are in different constellations, or even within the same constel-
lation. Alas, it also turns out that besides using Greek letters to name stars,
there are several different ways to use our usual Arabic numbers (1, 2, 3,
etc.) to name stars and other deep space objects! Let’s look at some of the
more common methods for naming celestial objects that you are likely to
encounter.

The key to finding a star is to first determine what constellation it is in.
Roughly speaking (and there are exceptions), the brightest star in a constella-
tion is labeled α, the first lowercase letter in the Greek alphabet. The second
brightest is labeled β, the second lowercase letter in the Greek alphabet, and so
on. Some of the brighter stars in a constellation may also have a proper name,
such as the star Rigel already mentioned. Thus, because Rigel is labeled β,
it is the second brightest star in the Orion constellation. The brightest star in
the Orion constellation is Betelgeuse, and hence it is labeled α in addition to
being called Betelgeuse. To find Betelgeuse in a star catalog, go to the section
in the catalog that lists the stars for Orion and you will find it designated as
both Betelgeuse and α.

The first person to use Greek letters to systematically name the stars in this
fashion was the German astronomer Johann Bayer, who listed 1564 stars in
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Figure 10.2 Naming Stars in the Orion Constellation
Using Bayer’s method for naming stars, the brightest star in a constellation is α, the second bright-
est is β, etc. For Orion, Betelgeuse is also called α Orionis (or abbreviated as α Ori) while Rigel is
also called β Orionis (or β Ori). (Image courtesy of the IAU and Sky & Telescope, Roger Sinnott &
Rick Fienberg, released under CC BY 3.0, see http://creativecommons.org/licenses/by/3.0/)

http://creativecommons.org/licenses/by/3.0/
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Figure 10.3 The Taurus Constellation
The brightest star in the constellation of Taurus is Aldebaran (α Tau) while the second brightest is
Elnath (β Tau). (Image courtesy of the IAU and Sky & Telescope, Roger Sinnott & Rick Fienberg,
released under CC BY 3.0, see http://creativecommons.org/licenses/by/3.0/)

the star atlas Uranometria Omnium Asterismorum (usually referenced as just
Uranometria) published in 1603.3 Bayer named a star with a lower case Greek
letter indicating the star’s brightness relative to the other stars in the constella-
tion followed by the Latin name of the constellation the star is in. So, he listed
Betelgeuse in his atlas as α Orionis and Rigel as β Orionis. Similarly, since
Sirius is the brightest star in the constellation Canis Major, Bayer listed it in
his atlas as α Canis Majoris. Because Bayer’s method for naming stars always

3. Uranometry is the science of measuring the position or distance of celestial objects. A
uranographer is a celestial cartographer—that is, one who produces charts of the heavens.

http://creativecommons.org/licenses/by/3.0/
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Figure 10.4 Rigel in the Orion Constellation
The author used the Stellarium program to create this snapshot of the Orion constellation to
demonstrate that stars have multiple “names.” In this case, the star Rigel (located at the bottom
of the Orion constellation) has the following designations: β Ori (Bayer’s designation), 19 Ori
(Flamsteed’s number), HIP 24436 (Hipparcus main catalog entry), SAO 131907 (Smithsonian
Astrophysical Observatory star catalog entry), and HD 34085 (Henry Draper star catalog entry).

includes a Greek letter and the name of the constellation in which it falls, Rigel
(β Ori) and Elnath (β Tau) are uniquely named and will not be confused.

In modern star charts and catalogs, 2 stars in the same constellation may
be labeled with the same Greek letter but differentiated by a superscript. For
example, look just above and to the right of Betelgeuse in figure 10.2. You will
find 2 stars, one labeled φ1 and the other φ2. As astronomers more systemati-
cally cataloged the sky, many “new” stars were discovered. Some were so close
in location to “old” already lettered stars and of about the same magnitude that
the expedient of superscripts was adopted to avoid confusion.

So far so good, but what happens when a constellation contains more stars
than there are letters in the Greek alphabet? The Greek alphabet has 24 letters
in it, and every constellation has many more stars than that! When Bayer ran
out of Greek letters, he used a sequence of uppercase and lowercase Roman
letters, which was adequate for the relatively few stars contained in his atlas.
Although still used today, the so-called Bayer designation is far from adequate
for handling the millions of stars that have been named, even when the stars
are grouped by constellation and brightness.
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The quest to catalog more stars and celestial objects soon required a more
advanced method for labeling celestial objects. Using a French edition of John
Flamsteed’s Atlas Coelestis, Joseph Jerome de Lalande took up the task of
labeling the stars. His Flamsteed numbers are simply integers assigned to each
star by constellation in order of right ascension. For Rigel, the Flamsteed num-
ber is 19. Thus, the star Rigel might be listed in a catalog in several different
ways: as Rigel, as β Ori, and as 19 Ori!

The situation becomes even more discouraging when identifying nonstel-
lar and deep-sky objects. These objects are labeled with a number that
depends upon which catalog you are using! Six commonly encountered cat-
alogs are the New General Catalog (NGC), the Index Catalog I and II (IC),
the Messier Catalog (M), the Hipparcus catalog (HIP), the Smithsonian Astro-
physical Observatory catalog (SAO), and the Henry Draper catalog (HD). In
Wil Tirion’s Sky Atlas 2000.0, numbers without a letter prefix preceding them
are NGC designations, those with the prefix “M” are Messier catalog designa-
tions, and those with an “I” prefix are IC designations. Proper names may also
exist for an object, as in the case of the Great Orion Nebula. The Great Orion
Nebula appears in the Sky Atlas 2000.0 as 1972-M42, indicating that its NGC
catalog designation is 1972 while its Messier catalog designation is 42. Many
star charts label the Great Orion Nebula as NGC-1972 to make it clear which
catalog numbering system is being used.

10.4 Ephemerides and Almanacs

An ephemeris or astronomical almanac contains tables giving the location of
Solar System objects over some period of time, which may be a month, a
week, or even for various times throughout the day. In addition to location, an
ephemeris will often give other useful information, such as rising and setting
times, times for eclipses, times of the equinoxes and solstices, and times for
perihelion and aphelion. Equatorial coordinates must be referenced to a partic-
ular date and time, with the time most often being 0h UT. Data such as rise and
set times provided in an ephemeris must also be given for a specific location,
which is usually 0◦ latitude (the equator), 0◦ longitude (the Greenwich Prime
Meridian). In some almanacs the tables may be calculated for several latitudes
in addition to the equator. The time conversions in chapter 3 can be used to
convert whatever an almanac or ephemeris provides to your particular LCT.

Using an ephemeris to locate a planet is more complicated than using a star
catalog to locate a star. The reason is that because of the rapid motion of Solar
System objects with respect to Earth, frequent corrections (monthly, daily,
hourly, etc., depending on the object and accuracy required) must be made to
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Table 10.1 Lunar Polynomial Coefficients
This table gives the polynomial coefficients for computing the Moon’s equatorial coordinates on
June 5, 2015.

Coefficient Right Ascension Declination

a0 283.8189020 −17.7747834

a1 14.3661042 1.1912985

a2 0.0013541 0.5299011

a3 −0.0340516 −0.0082501

a4 0.0019849 −0.0039707

a5 0.0003718 0.0001560

Note: Data taken from the US Naval Observatory’s website for The Astronomical Almanac Online.

the equatorial coordinates. We will describe 2 methods frequently used to make
such corrections. Both methods are based on evaluating a polynomial, but the
polynomial to evaluate will differ depending on the exact resource referenced,
the method used, and the celestial object under consideration.

For example, the technique used in The Astronomical Almanac to compute
a highly accurate position for the Moon is to evaluate a pair of polynomial
functions that take time as input and produce the Moon’s equatorial coordinates
as output. The Astronomical Almanac provides one function for calculating the
Moon’s right ascension and another function for calculating the declination.
Both polynomial functions are of the form

f (p)= a0 + a1p+ a2p
2 + a3p

3 + a4p
4 + a5p

5, (10.4.1)

where p is the desired UT expressed as a fractional part of a day.4 Coefficients
a0 through a5 in equation 10.4.1 differ for right ascension and declination, and
differ for each day of the year.

To illustrate, calculate the Moon’s equatorial coordinates for June 5, 2015, at
22h33m UT. Table 10.1 gives the polynomial coefficients for June 5, 2015, for
both right ascension and declination. The following steps are required:

1. Convert the time of day to decimal format.
(Ans: 22.55).

2. Convert the time of day to a fractional part of a day by dividing the results
of step 1 by 24.

(Ans: p= 0.93958333.)

4. The Astronomical Almanac polynomials require that Universal Time 1 (UT1) be converted
to Terrestrial Time (TT). For this section we will assume that UT 1 = T T =UT and ignore
converting UT1 to TT.
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3. Use the coefficients in the second column of table 10.1 to form the polyno-
mial shown in equation 10.4.1, and evaluate for the value of p calculated in
step 2. This gives the Moon’s right ascension in degrees.

(Ans: αdeg = 297.2918236◦.)

4. Convert the result from step 3 from degrees to hours by dividing by 15.
(Ans: α= 19.81945491h.)

5. Use the coefficients in the third column of table 10.1 to form the polynomial
shown in equation 10.4.1, and evaluate for the value of p calculated in step 2.
This gives the Moon’s declination in degrees.

(Ans: δ=−16.19747725◦.)

6. If desired, convert α to HMS format and δ to DMS format.
(Ans: α= 19h49m10.04s, δ=−16◦11′50.92′′.)

Although the polynomials provided in The Astronomical Almanac provide
highly accurate equatorial coordinates (within ±0.003s for the Moon’s right
ascension and ±0.003′′ for declination) for Solar System objects, they have a
significant disadvantage. The pair of polynomials to be evaluated are differ-
ent for every object, for every day of the year, and for every year. A software
program based on such techniques must contain a database of polynomial coef-
ficients so that multiple dates can be evaluated, and it must be periodically
updated as coefficients are developed for new dates.

A simpler but significantly less accurate method can be used with the
ephemerides from popular periodicals such as Sky & Telescope and Astron-
omy. The main idea behind this simpler method is that if positions are given
for an object at 2 different times, an interpolation can be done to determine
where the object is at other times within that time interval. That is, suppose
an object’s position is A at day Da and position B at day Db. Let d be the
date of interest, noting that d must lie between Da and Db. Armed with
this information, we first calculate the number of days from Da to d via the
equation

t = d −Da. (10.4.2)

Then we evaluate the polynomial

f (t)= t (B −A)
Db −Da +A. (10.4.3)

As an example, calculate the equatorial coordinates for Mercury on
January 15, 2016, at 0h UT. Table 10.2 shows the equatorial coordinates for
Mercury at selected times, as published by Sky & Telescope. The date we are
interested in (January 15) falls between the table entries for January 11 and
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Table 10.2 Equatorial Coordinates for Mercury
This table gives equatorial coordinates for Mercury at 0h UT for epoch J2000.

January Right Ascension Declination

1 20h05.5m -21◦06′

11 19h58.4m -18◦29′

21 19h09.6m -19◦03′

31 19h09.4m -20◦31′

Note: This data was extracted from the January 2016 issue of Sky & Telescope.

January 21. Using the data from those 2 rows of table 10.2, the following steps
are required:

1. Obtain Da and Db from the table and d from the problem statement.
(Ans: Da = 11,Db = 21, d = 15.)

2. Use equation 10.4.2 to compute t .
(Ans: t = 4.)

3. Use the table to determine the positions A and B, and convert the positions
to decimal format. Note that the positions A and B consist of 2 coordinates, 1
for the right ascension and 1 for the declination.

(Ans: Aα = 19h58.4m = 19.973333h, Aδ =−18◦29′ =−18.483333◦,
Bα = 19h09.6m = 19.160000h, Bδ =−19◦03′ =−19.050000◦.)

4. Using the dates from step 1, the value of t from step 2, and the decimal
values from step 3, apply equation 10.4.3 to compute the right ascension. That
is, compute

f (t)= t (Bα −Aα)
Db −Da +Aα.

(Ans: α= f (4)= 19.648000 = 19h38m53s.)

5. Similarly, use the appropriate declination values from step 3 and apply equa-
tion 10.4.3 to compute the declination.

(Ans: δ=−18.710000◦ =−18◦42′36′′.)

Because table 10.2 provides only a precision of minutes for right ascension and
arcminutes for declination, the results in steps 4 and 5 should also be limited
to a precision of minutes and arcminutes. The additional precision given in
the previous steps is merely to serve as an aid for readers to check their math
against this worked-out example. The Astronomical Almanac gives Mercury’s
equatorial coordinates for this example as

α= 19h38m18.785s, δ=−18◦22′08.93′′.
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Instead of using the dates in table 10.2 closest to our desired date of Jan-
uary 15, we could have used the first and last rows of the table (i.e., January 1
and January 31). However, accuracy is better in general when the interval
in which the desired date falls is as small as possible. Had we used Jan-
uary 1 and January 31 in our calculations, we would have estimated Mercury’s
coordinates to be

α= 19h39m19s, δ=−20◦49′40′′,

which is clearly a less accurate approximation of Mercury’s position.
This interpolation technique is easier than the method used in The Astronom-

ical Almanac, but a penalty is paid in terms of accuracy. Still, for manually
pointing a backyard telescope, the accuracy obtained from doing a simple
interpolation may be sufficient.

10.5 Astronomical Calendars

If one is willing to sacrifice some accuracy, a useful aid is an astronomical
calendar. One such calendar, the Skygazer’s Almanac, is published annually
in Sky & Telescope. Their calendar is readily available and is representative
of how astronomical calendars are organized. Besides being easy to use, an
astronomical calendar graphically depicts the comings and goings of celestial
bodies throughout the year to give a better feel for the rhythmic motions of
the Sun, Moon, and planets. An astronomical calendar makes it possible to
estimate at a glance events such as the following (among many others):

• Times for sunrise and sunset

• Times for moonrise and moonset

• Phase of the Moon

• Times when planets rise and set

• When planets are in conjunction or opposition

• Transit times for major stars such as Vega

• When meteor showers are most likely to occur

Besides estimating the times for various astronomical events, some calendars
provide a quick way to calculate Julian day numbers, sidereal time, and the
equation of time.

The Skygazer’s Almanac lists dates along its vertical axis and time on its
horizontal axis. Dates along the vertical axis are 1 week apart while a grid of
dots extending vertically from top to bottom represents individual days within
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a week. Similarly, dots extending left to right each represent 5 minutes of
time. The vertical lines formed by the dots are spaced half an hour apart while
the horizontal lines are 1 week apart. The intersection of these vertical and
horizontal dotted lines with various “event lines” allows the times for events to
be estimated with relatively high accuracy, more than might be imagined for
such a simple graphical device. An event line indicates that some astronomical
event, such as the rising or setting of a planet, is to occur. Events depicted on
an astronomical calendar are relative to a specific latitude (40◦ N is commonly
used in the Skygazer’s Almanac), which means that time corrections must be
applied to adjust them for a particular observer’s location. Instructions for how
to do so are usually included with an astronomical calendar.

Reading an astronomical calendar is simple. Using the Skygazer’s Almanac
as an example, locate the desired date along the vertical axis of the chart, and
read across the chart until an event line is reached. Having reached an event
line, the LCT time at which the event will occur is found by looking directly
above (or below as convenient) the event line to the time marked along the
chart’s horizontal axis. You must then make the necessary corrections to adjust
the LCT time obtained from the chart for your specific location.

10.6 Online Resources

The Internet is an indispensable tool that places at our disposal an unbelievably
vast amount of information about virtually any topic. In this section we present
a small sampling of available online resources that are relevant to astronomy
and satellites. The URLs presented here were accurate at the time this section
was written, but because the Internet is highly dynamic and constantly chang-
ing, you may encounter a URL that is no longer correct. In such a case, you can
do a Google search to find where the resource has moved, or find a more recent
version of the resource. At the time this section was written, all the resources
described here were free of charge.

NASA and JPL maintain multiple websites with up-to-date information
about the Earth, Solar System, stars and galaxies, and various NASA and JPL
space exploration missions. The HORIZONS system is accessible online and
can be used to generate ephemerides for various objects within our Solar Sys-
tem, including planets, asteroids, and comets. The NASA and JPL websites
also contain tools for finding the orbital elements for Solar System objects as
well as for date/time conversions. The main URLs are:

• http://www.nasa.gov/ website for following NASA projects and obtaining
information about upcoming launches.

http://www.nasa.gov/
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• http://www.jpl.nasa.gov/ website for information about JPL missions,
including photographs and data from missions such as the Mars Rover
mission.

• http://ssd.jpl.nasa.gov/ website for information about our Solar System
and a variety of astronomical tools relevant to exploring the Solar Sys-
tem. Of particular note, the HORIZONS application can be accessed from
this URL.

The United States Naval Observatory (USNO) website provides a wealth of
invaluable online resources for navigation and astronomy. In cooperation with
Her Majesty’s Nautical Almanac Office in the United Kingdom, the USNO
annually publishes The Astronomical Almanac. Key URLs for the USNO
website are:

• http://www.usno.navy.mil/USNO (the main portal for accessing the USNO
online resources)

• http://asa.usno.navy.mil/ (the URL for directly accessing The Astronomical
Almanac Online)

• http://asa.usno.navy.mil/SecE/Section_E.html (a handy URL for getting the
geocentric equatorial coordinates for some of the planets on any given
date)

The Astronomy and Sky & Telescope publishers both maintain websites pro-
viding a wealth of information about astronomy, tools such as telescopes and
cameras, and shops where one can search for and purchase books, astronom-
ical calendars, and maps. Besides informative articles, both publishers also
provide access to photographs and videos about celestial objects. The main
URLs are:

• http://www.astronomy.com/

• http://www.skyandtelescope.com/

In addition to these online Astronomy and Sky & Telescope resources, there
are a number of websites that provide free star charts, atlases, and astronomical
calendars. Notable examples include:

• http://www.midnightkite.com/

• http://oneminuteastronomer.com/free-star-charts/

• http://eyesonthesky.com/StarCharts.aspx

• http://astroclub.tau.ac.il/skymaps/monthly

http://www.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
http://www.usno.navy.mil/USNO
http://asa.usno.navy.mil/
http://asa.usno.navy.mil/SecE/Section_E.html
http://www.astronomy.com/
http://www.skyandtelescope.com/
http://www.midnightkite.com/
http://oneminuteastronomer.com/free-star-charts/
http://eyesonthesky.com/StarCharts.aspx
http://astroclub.tau.ac.il/skymaps/monthly
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• http://www.skymaponline.net/

• http://www.fourmilab.ch/yoursky/

Several websites provide free software to turn a computer into your own per-
sonal planetarium. With these programs you can enter your latitude/longitude
and generate displays for what the night sky will look like at your location.
Many of the programs also provide detailed photographs of planets, galaxies,
nebulae, and other deep-space objects. These programs are generally available
for Microsoft Windows, Mac OS X, and various flavors of Linux. Examples
include:

• http://www.google.com/earth/ (This free program from Google allows you
to browse Earth as well as the heavens.)

• http://www.stellarium.org/ (This site includes source code.)

• http://www.shatters.net/celestia/

• http://www.ap-i.net/skychart/en/start

• http://www.astrosurf.com/c2a/english/ (currently available for Microsoft
Windows computers only)

• http://www.worldwidetelescope.org/

Several resources are available for those wishing to explore the satellites
and other man-made objects that encircle Earth. Of these resources, CelesTrak
is perhaps the most useful, as it provides a reasonably up-to-date cat-
alog with the position of numerous satellites and other objects such as
the International Space Station. Additionally, the Home Planet URL is a
website that provides a free satellite tracking program for Microsoft Windows
computers.

• http://celestrak.com/

• http://www.fourmilab.ch/homeplanet/

It is often necessary when dealing with satellites to convert between state
vectors and Keplerian elements. The following websites are useful for under-
standing the mathematics behind the process. The first URL is an online cal-
culator that will perform the conversions. The remaining URLs are resources
for understanding the mathematics involved.

• http://orbitsimulator.com/formulas/OrbitalElements.html

• http://www.navipedia.net/index.php/Osculating_Elements

http://www.skymaponline.net/
http://www.fourmilab.ch/yoursky/
http://www.google.com/earth/
http://www.stellarium.org/
http://www.shatters.net/celestia/
http://www.ap-i.net/skychart/en/start
http://www.astrosurf.com/c2a/english/
http://www.worldwidetelescope.org/
http://celestrak.com/
http://www.fourmilab.ch/homeplanet/
http://orbitsimulator.com/formulas/OrbitalElements.html
http://www.navipedia.net/index.php/Osculating_Elements
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• https://en.wikibooks.org/wiki/Astrodynamics/Classical_Orbit_Elements

• http://www.orbitessera.com/html/state_vectors.html

A good reference for the TLE format can be found at the following
CelesTrak URL:

• http://www.celestrak.com/NORAD/documentation/tle-fmt.asp

10.7 High-Accuracy Resources

The algorithms and methods presented in this book, and many of the resources
listed in the preceding sections, produce results that are accurate only to a few
minutes of time or a few minutes of arc. This should be sufficient to meet the
needs of most amateur astronomers because few amateurs are likely to have
clocks synchronized to standardized atomic clocks, devices capable of making
accurate measurements in tenths of an arcsecond, or telescopes that can be
precisely positioned down to an arcsecond. Even so, there are times when it is
useful to have much more accurate positional data.

Obtaining more accurate results requires a significantly higher level of math-
ematical expertise and a much greater knowledge of astrophysics than has been
assumed for this book. Those who have the necessary background or wish to
delve more deeply into these topics can do an Internet search for information
on 2 different theoretical models, VSOP87 and DE405, which are widely used
within the community of professional astronomers to analyze orbits. The goal
of both models is to provide highly accurate data suitable for space navigation
and astronomy. We will only briefly touch on these 2 models here.

The VSOP (Variations Séculaires des Orbites Planétaires) model is an
analytical model developed and maintained by scientists at the Bureau des
Longitudes in Paris, France. The number 87 in “VSOP87” indicates that one is
referencing the 1987 version, which is the most current version, of the VSOP
model. VSOP87 allows computing highly accurate positions and orbital ele-
ments for celestial objects within the Solar System to an accuracy of at least 1′′
for 2,000 years before and after the year 2000 AD for all the planets, and for a
longer time period for certain planets. VSOP87 is widely used in professional
astronomy circles and in readily available programs such as Celestia.

The following websites are a good place to start for a deeper understand-
ing of the VSOP model. The first website listed is of special note because
it includes a code generator that will generate source code to implement the
VSOP87 model in a variety of programming languages.

https://en.wikibooks.org/wiki/Astrodynamics/Classical_Orbit_Elements
http://www.orbitessera.com/html/state_vectors.html
http://www.celestrak.com/NORAD/documentation/tle-fmt.asp
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• http://www.neoprogrammics.com/vsop87

• http://www.caglow.com/info/compute/vsop87

• https://en.wikipedia.org/wiki/VSOP_(planets)

Instead of developing a new analytic model of the Solar System, JPL used
various mathematical methods (including interpolation, least squares estima-
tion, and so on) to analyze decades of astronomical observations to develop
highly accurate models of the Solar System. The models they created include
classical Newtonian gravitational calculations as well as corrections for effects
predicted by Einstein’s theory of relativity. All their models are highly accu-
rate and are used to support navigation for both robotic and manned spacecraft
missions.

The JPL models are designated as DE#, where DE is an acronym for Devel-
opment Ephemeris, and the # is merely a sequential number; it is not a
reference to the year in which the model was created. JPL released DE405
in 1998, and it was used to compute the highly accurate ephemerides in The
Astronomical Almanac produced for the years 2003–2014. DE405 is also
the basis for the software provided with the Multiyear Interactive Computer
Almanac, 1800–2050 (otherwise known as MICA). Released in 2013, DE430
covers the years 1550–2650 AD and is used as the basis for The Astronomical
Almanac ephemerides from 2015 to the present. The JPL HORIZONS system
mentioned earlier is based on DE431.

The following websites are good places to start for more information about
the JPL models. The first URL listed includes source code for implementing
the DE43x models.

• http://www.projectpluto.com/jpl_eph.htm

• https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory_Development_
Ephemeris

• http://www.cv.nrao.edu/~rfisher/Ephemerides/ephem_descr.html

To obtain the most accurate results possible, it is important to distinguish
between various timekeeping systems. For example, the difference between
TT and UT varies by over a minute depending on the specific date under
consideration. The USNO maintains highly accurate time and can be con-
sulted to find the precise difference between TT and UT for times in the past,
and predictions of what the difference will be in the future. The applicable
URL is

http://www.neoprogrammics.com/vsop87
http://www.caglow.com/info/compute/vsop87
https://en.wikipedia.org/wiki/VSOP_(planets)
http://www.projectpluto.com/jpl_eph.htm
https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory_Development_Ephemeris
https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory_Development_Ephemeris
http://www.cv.nrao.edu/~rfisher/Ephemerides/ephem_descr.html
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• http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term/
long-term

SGP4 is a widely used model for propagating satellite orbits. The following
websites describe the model in some detail; some provide source code for the
model in a variety of programming languages.

• https://en.wikipedia.org/wiki/Simplified_perturbations_models

• https://pypi.python.org/pypi/sgp4

• https://sourceforge.net/projects/sgp4-j/

• http://celestrak.com/NORAD/documentation/spacetrk.pdf

• http://celestrak.com/software/tskelso-sw.asp

Coordinate system conversions are a critical component of astronomy, and
Heavenly Mathematics by van Brummelen is an excellent description of the
mathematics behind coordinate system conversions. In the context of satellites,
Vallado’s Fundamentals of Astrodynamics and Applications and Bate, Mueller,
and White’s Fundamentals of Astrodynamics also provide useful methods for
a variety of coordinate system transformations. Those who want a more imme-
diate “how to” can easily find a number of coordinate system conversion
algorithms through a simple Internet search.

The following URLs are of special note. They are articles written by T.
S. Kelso for Satellite Times on a variety of topics relevant to satellites. The
first URL is an index of all of Kelso’s articles while the next two are the first
part of a series of articles that deal with orbit propagation and orbital coor-
dinate systems. The last URL is a website that steps through the process of
taking a satellite’s orbital elements, propagating them via the SGP4 model,
and computing the satellite’s topocentric location.

• http://celestrak.com/columns/

• http://celestrak.com/columns/v01n01/

• http://celestrak.com/columns/v02n01/

• http://www.castor2.ca/04_Propagation/index.html

http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term/long-term
http://www.usno.navy.mil/USNO/earth-orientation/eo-products/long-term/long-term
https://en.wikipedia.org/wiki/Simplified_perturbations_models
https://pypi.python.org/pypi/sgp4
https://sourceforge.net/projects/sgp4-j/
http://celestrak.com/NORAD/documentation/spacetrk.pdf
http://celestrak.com/software/tskelso-sw.asp
http://celestrak.com/columns/
http://celestrak.com/columns/v01n01/
http://celestrak.com/columns/v02n01/
http://www.castor2.ca/04_Propagation/index.html
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Absolute Magnitude How bright an object would appear to be if it were 10 parsecs away from
the viewer. See also visual magnitude, apparent magnitude, and magnitude.

Altitude In the horizon coordinate system, how far above or below an object is from an
observer’s horizon.

Angle of Inclination The angle formed by a reference plane (e.g., ecliptic plane) and the orbital
plane of an object (e.g., planet).

Annular Eclipse A solar eclipse in which the Moon’s umbra does not reach Earth. The effect is
as if a smaller disk were placed in front of a larger disk.

Anomalistic Month A month measured from when the Moon is at perigee until it returns to
perigee. It is 27.5546 days in length.

Anomalistic Year A year measured from the time that Earth is at perihelion until it is at
perihelion again. It is 365.2596 mean solar days in length.

Anomaly The angle formed by an orbiting body, its orbital focus, and the orbital major axis. See
also eccentric anomaly, mean anomaly, and true anomaly.

Aphelion The point in a Solar System object’s orbit at which it is farthest away from the Sun.

Apogee The point in an orbit about Earth at which an object is farthest away from Earth.

Apparent Magnitude How bright an object appears to be. See also visual magnitude.

Apparent Sidereal Time Sidereal time that has not been corrected for irregularities in Earth’s
rotation (e.g., nutation). For the purposes of this book, apparent sidereal time and mean sidereal
time can be considered to be equal, although they are not. See also sidereal time and mean sidereal
time.

Apparent Solar Day A day reckoned by the apparent motion of the Sun as compared to a mean
solar day, which is reckoned by the motion of the mean Sun. The qualifier “apparent” is often
omitted unless it will be confused with a mean solar day. See also solar day.

Apparent Time Time as measured by the apparent motion of the Sun. Apparent time is not
uniform in length since it is based on a solar day.

Ascending Node The point in an orbit at which an object rises above a reference plane. For the
Solar System, the ecliptic plane is the reference plane.
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Asteroid A large rocky object orbiting our Sun that is too small to be classified as a planet or
a dwarf planet. Asteroids are sometimes called minor planets or, when large enough, planetoids.
See also meteoroid.

Asteroid Belt A debris field of asteroids orbiting the Sun in the region of space between Mars
and Jupiter. See also Kuiper Belt and asteroid.

Astronomical Almanac A publication containing the location of various celestial objects and
astronomical events of interest such as sunrise and sunset. Do not confuse with the annually
produced The Astronomical Almanac, which is only one example of an almanac.

Astronomical Unit (AU) The length of the semi-major axis of Earth’s orbit. AUs are typically
used to measure distances within the Solar System. One AU is about 9.29 × 107 miles.

Autumnal Equinox The descending node for the Sun’s orbit, assuming the plane of the celestial
equator as a reference plane. The Sun’s right ascension at the autumnal equinox is 12h. This occurs
at about September 22.

Auxiliary Circle A circle superimposed on an elliptical orbit whose center is the geometric
center of the elliptical orbit and whose diameter is the same as the elliptical orbit’s major axis. An
auxiliary circle is used to represent a fictitious circular orbit for an object in which the object’s
orbital speed is not constant throughout its orbit. See also mean orbit and eccentric anomaly.

Azimuth The coordinate in the horizon coordinate system that describes how far around an
object is from the north. This angle is measured clockwise from north.

Barycenter The center of mass of a system, such as the Solar System, around which the objects
in the system revolve.

Barycentric Coordinates Coordinates that specify the location of an object with respect to the
center of mass of the Solar System. See also geocentric, heliocentric, and topocentric coordinates.

Besselian Year A year measured in the same way as the tropical year except that the starting
reference point is when the right ascension of the mean Sun is 280◦. This makes the Besselian
year more closely correspond to the civil year. A Besselian year is about 365.2422 mean solar
days in length.

Celestial Equator The great circle formed by the intersection of the plane of Earth’s equator
and the celestial sphere.

Celestial Sphere An imaginary sphere of infinite size to which the stars and planets are consid-
ered to be affixed. Earth is normally considered to be the center of the celestial sphere. See also
celestial equator.

Centaur A small Solar System body whose orbit around the Sun is between Jupiter and Neptune,
and whose unstable orbit causes it to periodically cross the orbits of one or more of the Gas Giants.

Central Meridian The meridian, usually at the longitudinal center of a time zone, chosen as the
reference point for establishing the local time for that time zone.

Civil Month Any of the 12 months (January, February, etc.) into which a civil year is subdivided.

Civil Time An international timekeeping system in which the Earth is divided into time zones
that are synchronized with the mean time at Greenwich, England. Civil time is based on a mean
solar day, which begins at midnight and is exactly 24 hours in length. See also mean solar day and
mean time.

Civil Year A year defined to be either exactly 365 or (in the case of a leap year) 366 days in
length.
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Conjunction The moment when 2 celestial objects have a common coordinate, such as ecliptic
longitude, with the same value as viewed from a particular place, such as Earth. For example, the
Moon is in conjunction with the Sun at the time of the New Moon. See also opposition.

Coordinated Universal Time (UTC) A timekeeping standard used as the basis for synchroniz-
ing civil time around the world. The UTC standard is not adjusted for daylight saving time and
is coordinated to always be within about 1 second of mean solar time at 0◦ longitude. For the
purposes of this book, UTC, UT, and GMT are considered to be synonymous.

Crescent The phases of the Moon in which the Moon is illuminated, but it is less than half
illuminated as seen from Earth. See also gibbous.

Culminate In astronomy, same as transit.

Dawn The period of semidarkness just before sunrise. At dawn the Sun is less than 18◦ below
the horizon. See also twilight.

Day The time interval between 2 successive transits of a celestial object across an observer’s
meridian. This period of time is about 24 hours, but it depends upon how it is measured and what
celestial object is used as a reference. See also mean solar day, solar day, sidereal day, and mean
sidereal day.

Day Number The number of elapsed days since the beginning of the year. Referred to in this
book as days into the year. Do not confuse with Julian day number.

Daylight Saving Time (DST) A practice, primarily limited to the Western world, in which an
hour is added to the local civil time during the spring and summer months. The adjustment is
removed during the fall and winter months.

DE405/DExx See Development Ephemeris.

Decimal Format A format for expressing time or angles as a single real number (e.g., 12.567h,
355.134◦). See also DMS format and HMS format.

Declination In the equatorial coordinate system, the angular distance that an object lies away
from the celestial equator. Declination is in the range [-90◦, 90◦]. Positive angles are north of
the celestial equator whereas negative angles are south of the celestial equator. Declination is
analogous to the concept of terrestrial latitude. See also right ascension.

Delta T (�T ) The difference between TT and UT1 (i.e.,�T = T T −UT 1). Since UT1 is based
on the motion of the Earth, its value is determined by historical observations for the past but can
only be approximated for the future. See also Terrestrial Time and Universal Time 1.

Descending Node The point in an orbit at which an object descends below a reference plane.
For the Solar System, the ecliptic plane is the reference plane.

Development Ephemeris (DE) Any of a series of Solar System models developed by JPL for
very accurate space navigation and astronomy. See also VSOP87.

DMS Degrees, Minutes, Seconds.

DMS Format A format in which an angle is expressed in an integer number of degrees, an
integer number of minutes, and a fractional number of seconds (e.g., 36◦40′39.2′′). See also
decimal format.

Draconic Month A month measured by using the Moon’s ascending node as the reference point.
This month is 27.2122 days in length.

DST Daylight saving time.
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Dwarf Planet A Solar System object that (a) is not a moon orbiting some other body, (b) is
massive enough to have become spherical in shape due to gravitational pressures, and (c) has not
cleared the neighborhood around its orbit. This classification was introduced by the IAU in 2006
in part to resolve whether Pluto, Eris, and Ceres should be considered as planets. See also planet.

Earth Centered Inertial (ECI) A fixed (with respect to the stars) geocentric coordinate system
whose origin is the center of the Earth, whose x-axis lies in the equatorial plane and points toward
the First Point of Aries, whose y-axis lies in the equatorial plane and points east, and whose z-axis
goes northward through the Earth’s North Pole.

Eccentric Anomaly The angle formed by projecting an object’s true position onto an auxiliary
circle, the geometric center of the object’s orbit, and the periapsis for the object’s orbit. See also
true anomaly, mean anomaly, and Kepler’s equation.

Eccentricity A measure of the “flatness” of an ellipse. Mathematically, eccentricity is the ratio
of the distance of the focus from the center to the length of the semi-major axis.

Eclipse The total or partial obscuring of one body by another caused by one body passing into
the shadow of, or in front of, another. For the Sun and Moon these are called solar and lunar
eclipses. See also occultation.

Ecliptic The plane containing the Earth’s orbit around the Sun.

Ecliptic Coordinate System The coordinate system in which a celestial object’s location is
stated with respect to the plane of the ecliptic. The ecliptic coordinate system is typically used to
locate objects within our Solar System. Ecliptic longitude is measured in degrees from the First
Point of Aries (vernal equinox) whereas ecliptic latitude is measured north or south of the ecliptic
plane.

Ecliptic Latitude In the ecliptic coordinate system, the angular distance in degrees that a celes-
tial object lies north or south of the ecliptic plane.

Ecliptic Longitude In the ecliptic coordinate system, the angular distance in degrees that a celes-
tial object lies from the First Point of Aries.

Ellipse The collection of all points such that the sum of the distance of each point from the 2
foci is constant. This geometric figure is oval in shape when the 2 foci are distinct points, but is a
perfect circle if the 2 foci are the same point. See also eccentricity.

Elongation The angle formed by the Sun, Earth, and the celestial body in question.

Ephemeris A table or publication that provides the coordinates of Solar System objects.

Epoch An instant in time used as a standard reference from which time is measured. Typically,
an epoch is stated as a reference point for measuring equatorial coordinates.

Equation of the Center (Ec) The numerical difference between the true anomaly (υ) and the
mean anomaly (M), that is, Ec = υ −M . The equation of the center is typically approximated by
a truncated infinite series or by some numerical method. See also Kepler’s equation.

Equation of Time The difference between mean solar time and apparent solar time.

Equatorial Coordinate System A coordinate system based on the plane of the celestial equator.
See also right ascension and declination.

Equinox Either of 2 points at which the Sun crosses the celestial equator. These 2 points are the
ascending and descending nodes for the Sun’s orbit with respect to the celestial equator. During
the equinoxes, the length of day and the length of night are very close to the same. See also vernal
equinox and autumnal equinox.

Exoplanet A planet that orbits a star other than our Sun. See also planet.
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Fall The three-month period of time that begins at the instant of the autumnal equinox.

Fall Equinox See autumnal equinox.

First Point of Aries The First Point of Aries is the location of the vernal equinox. It is used as a
reference point in the ecliptic and equatorial coordinate systems. See also vernal equinox.

Galactic Coordinate System A coordinate system for locating objects within the Milky Way
Galaxy. This coordinate system is defined with respect to a plane containing the Sun and the
center of the Milky Way Galaxy.

Galaxy A large-scale collection of stars and other objects that appears to form more or less a
cluster or group with a visible structure. A typical galaxy contains an average of 100 billion stars
and measures 1,500 to 300,000 light years across.

Gas Giant A giant planet composed almost entirely of gaseous materials rather than rock or
other solid matter. A Gas Giant may have a rocky or metallic core, but it does not have a well-
defined surface as terrestrial planets do. Gas Giants are not confined to our Solar System. See also
outer planet, Jovian planet, and terrestrial planet.

Geocentric Centered with respect to the Earth. A geocentric universe assumes Earth as the
center of the universe. See also heliocentric.

Geocentric Coordinates Coordinates that specify the location of an object with respect to the
center of the Earth; they may be expressed as Cartesian or spherical coordinates. See also Earth
Centric Inertial, heliocentric, topocentric, and barycentric coordinates.

Gibbous The phases of the Moon in which the Moon is more than half illuminated but less than
fully illuminated as seen from Earth. See also crescent.

GMT Greenwich Mean Time.

Great Circle A circle of greatest possible diameter formed by intersecting a plane with a sphere.

Greenwich Mean Time (GMT) Historically, the LMT for Greenwich, England. GMT has
been superseded by UT. For the purposes of this book, UT, GMT, and UTC are considered to
be synonymous.

Gregorian Calendar The calendar system introduced by Pope Gregory in 1582 to reduce the
errors in the Julian calendar system. This is the most widely used calendar system today.

Habitable Zone A region around a star in which orbiting objects large enough to be planets can
hold an atmosphere and support liquid water on their surface. See also planet and exoplanet.

Heliocentric Centered with respect to the Sun. A heliocentric Solar System assumes the Sun as
the center of the Solar System. See also geocentric.

Heliocentric Coordinates Coordinates that specify the location of an object with respect to the
center of the Sun. See also geocentric, topocentric, and barycentric coordinates.

HMS Hours, Minutes, Seconds.

HMS Format A format in which time is expressed as an integer number of hours, an integer
number of minutes, and a fractional number of seconds (e.g., 12h13m15.1s).

Horizon Coordinate System A coordinate system based on the horizon as seen by an observer.
See also azimuth and altitude.

Hour Angle The difference between the local sidereal time (LST) and the right ascension (α) of
a celestial body. In equation form, H =LST −α.



356 Glossary

IAU International Astronomical Union.

Inclination See angle of inclination.

Inertia The tendency of a body to remain at rest or resist a change in velocity.

Inferior Planet A planet whose orbit lies between Earth and the Sun (i.e., Mercury or Venus).
The phrase “inferior planet” should not be confused with “inner planet.” See also inner planet,
superior planet, and outer planet.

Inner Planet Any of the 4 planets (Mercury, Venus, Earth, and Mars) closest to the Sun. The
phrase “inner planet” should not be confused with “inferior planet” because “inferior” refers to
a planet’s orbit relative to Earth, whereas “inner” refers to the region of space in which a planet
lies. Mars is an inner planet but not an inferior planet. All of the inner planets are also terrestrial
planets. See also inferior planet, superior planet, outer planet, and terrestrial planet.

JD Julian Day number.

Jovian Planet Any of the planets Jupiter, Saturn, Uranus, and Neptune. See also outer planet
and gas giant.

Julian Calendar A calendar system introduced by Julius Caesar that divides the year into peri-
ods of 365 days except for every fourth year, which contains 366 days. See also the Gregorian
calendar.

Julian Century A period of 36525 days reckoned from January 0.0.

Julian Date A date in the Julian calendar system. Some authors use Julian date and Julian day
number interchangeably. To avoid confusion, this book does not do so because Julian day numbers
are unrelated to the calendar system named after Julius Caesar.

Julian Day Number (JD) The number of days that have elapsed since noon UT on Jan-
uary 1, 4713 BC. Do not confuse with Julian date.

Julian Year A year defined to be exactly 365.25 days in length, which is the average length of a
year in the Julian calendar system.

KBO Kuiper Belt Object.

Keplerian Elements Named in honor of Johannes Kepler, the 6 attributes that precisely define
an object’s orbit; specifically an orbit’s inclination, eccentricity, length of the semi-major axis,
longitude of the ascending node, argument of perigee/perihelion, and mean anomaly at the epoch.

Kepler’s Equation An equation expressing the mathematical relationship between an object’s
eccentric anomaly (E) and its mean anomaly (M). Kepler’s equation is given by

M =E− e sinE,

whereM is expressed in radians, E is expressed in radians, and e is the object’s orbital eccentricity.
Solving Kepler’s equation to find E when givenM is usually accomplished by iterative numerical
methods. See also equation of the center.

Kuiper Belt A debris field in the region of space beyond Neptune to about 50 AUs from the
Sun. See also Asteroid Belt and Scattered Disc.

Kuiper Belt Object (KBO) A celestial object that lies within the Kuiper Belt region of space.
Some astronomers consider the Scattered Disc region to be part of the Kuiper Belt. An object
within the Kuiper Belt may also be called a KBO. See also TNO.

Lagrange Points Any of the 5 places in an orbit (for the 3-body problem) at which the
gravitational and centripetal forces acting upon an orbiting object are in balance. See also trojan.
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Latitude (ecliptic) See ecliptic latitude.

Latitude (terrestrial) The distance, measured as an angle, that an object lies from Earth’s
equator.

LCT Local Civil Time.

Leap Year In the Julian calendar system, any year divisible by 4. In the Gregorian calendar
system, any year divisible by 4 except for century years, which must also be divisible by 400.

Light Year The distance that light travels in 1 year. One light year is about 5.87 × 1012 miles.

LMT Local Mean Time.

Local Civil Time (LCT) The civil time within a specific time zone. Some authors may refer to
this as local mean time or Standard Time. For the purposes of this book, LCT, LMT, and Standard
Time are considered to be synonymous. See also civil time.

Local Mean Time (LMT) Time measured with respect to the mean Sun transiting the central
meridian for an observer. This term has been superseded by local civil time. For the purposes of
this book, LCT, LMT, and Standard Time are considered to be synonymous.

Local Sidereal Time (LST) The sidereal time for an observer, taking into account the observer’s
location on Earth. LST is similar in concept to LCT except that LCT is based on solar time,
whereas LST is based upon sidereal time. (Sidereal time can only be local, but LST is used here
to distinguish it from GST.)

Local Time Same as local civil time.

Longitude (ecliptic) See ecliptic longitude.

Longitude (terrestrial) The distance, measured as an angle, that an object lies from the
Greenwich prime meridian.

Longitude of Ascending Node The ecliptic longitude of the ascending node for an object within
the Solar System. See also ascending node and ecliptic coordinate system.

Longitude of Perihelion The ecliptic longitude of the point of perihelion for an object within
the Solar System.

LST Local Sidereal Time.

Lunar Eclipse An eclipse of the Moon caused by the Moon passing into Earth’s shadow. See
also penumbra and umbra.

Lunar Libration A slow oscillation in the Moon’s orbit around its axis of rotation.

Lunar Month A synodic month in which a specific phase of the Moon (e.g., Full Moon) is
chosen as the reference point.

Magnitude A measurement, based on a logarithmic scale, of the brightness of a celestial object.
The word “magnitude” by itself is ambiguous because it could refer to apparent or absolute
magnitude. See also visual magnitude, apparent magnitude, and absolute magnitude.

Mean Anomaly The angle formed by an orbiting body, the center of an assumed constant-speed
circular orbit, and the orbital major axis. See also true anomaly, eccentric anomaly, equation of
the center, and Kepler’s equation.

Mean Orbit A fictitious orbit in which an object’s orbit is assumed to be a perfect circle and
whose orbital speed is constant throughout the orbit. See also auxiliary circle and mean anomaly.
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Mean Orbital Elements The 6 Keplerian elements, referenced to a stated epoch, in which the
orbital elements are averaged out over the entire orbit to represent an ideal elliptical orbit. See also
orbital elements, Keplerian elements, and osculating orbital elements.

Mean Sidereal Time Sidereal time that has been corrected for irregularities in Earth’s rotation
(e.g., nutation). For the purposes of this book, mean sidereal time and apparent sidereal time can
be assumed to be equal. See also apparent sidereal time.

Mean Solar Day A day as measured by the motion of a mean Sun. It is the time interval between
2 successive transits of the mean Sun across an observer’s meridian.

Mean Sun A fictitious Sun moving in a fictitious circular orbit rather than its true elliptical orbit.
The motion of the mean Sun is uniform throughout its entire orbit, which allows a mean solar day
to be defined that is uniform in length regardless of the time of year or where the Sun is in its mean
orbit.

Mean Time Time as measured by the motion of the mean Sun. Mean time is uniform in length
because it is based on the motion of a mean Sun. See also apparent time and mean solar day.

Meridian A semicircle that passes through both poles of a sphere.

Meteor A meteoroid that enters Earth’s atmosphere. Meteors are often called shooting stars. See
also meteorite and meteoroid.

Meteorite A meteor that survives vaporization in the Earth’s atmosphere and strikes the Earth’s
surface. See also meteor and meteoroid.

Meteoroid A small rocky object in space thought to be a fragment from an asteroid, comet, or
other debris ejected from larger celestial bodies. Meteoroids are generally considered to be the
same as asteroids except that they are much smaller in size and mass. See also asteroid, meteor,
and meteorite.

Micromoon A Full Moon or New Moon that occurs when the Moon is at apogee. See also
supermoon.

Modified Julian Day Number (MJD) The number of Julian days that have passed since
November 17.0, 1858. See also Julian day number and Julian date.

Month The time interval required for the Moon to complete 1 orbit from 1 reference point
to another. The length of a month depends on the reference point used to measure it. See also
anomalistic, draconic, nodal, sidereal, and synodic months.

mV Visual magnitude.

Nadir The point on the celestial sphere directly beneath an observer. Nadir is the opposite of
zenith.

Nebula A diffuse cloud of interstellar gas or dust that is visible as a luminous patch of dark and
light areas.

Nodal Month See draconic month.

Node Either of 2 points at which an object goes above or below some reference plane. See also
ascending and descending node.

Nutation A small periodic wobble in Earth’s axis of rotation.

Obliquity of the Ecliptic The angle of inclination (about 23◦26′) that the ecliptic plane makes
with respect to the plane containing the celestial equator.
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Observer’s Meridian The meridian that passes through an observer’s zenith and Earth’s North
and South Poles.

Occultation An astronomical event in which 1 celestial object is hidden by another object that
passes between it and an observer. For example, the Moon occults a planet when the Moon is in
the line of sight between an Earthbound observer and the planet. See also eclipse.

Oort Cloud A theorized region of space located 2,000–5,000 AUs from the Sun and extending
50,000–200,000 AUs from the Sun. The Oort Cloud marks the outermost boundary of our Solar
System and is thought to be the source of the long-period comets in our Solar System. See also
Kuiper Belt and Scattered Disc.

Opposition The moment when 2 celestial objects are on opposite sides of the Earth and their
ecliptic longitudes are 180◦ apart. For example, the Moon is in opposition to the Sun when it is a
Full Moon. See also conjunction.

Orbital Elements The attributes of an orbit in 3-dimensional space (such as inclination, eccen-
tricity, argument of periapsis) that are used to describe the position of an orbiting object. See also
Keplerian elements, mean orbital elements, and osculating orbital elements.

Osculating Orbital Elements The instantaneous values for the 6 Keplerian elements at a stated
epoch. See also orbital elements, Keplerian elements, and mean orbital elements.

Outer Planet Any of the planets (Jupiter, Saturn, Uranus, and Neptune) whose orbits are farther
away from the Sun than the Asteroid Belt. The phrase “outer planet” should not be confused with
“superior planet” because “superior” refers to a planet’s orbit relative to the Earth whereas “outer”
refers to the region of space in which a planet lies. Mars is a superior planet but not an outer planet.
See also inferior planet, superior planet, Jovian planet, and gas giant.

Parallax The amount by which the apparent position of an object changes as the location of an
observer changes.

Parsec A unit of measurement based on the distance from Earth at which the stellar parallax is
1 second of arc. One parsec is about 3.26 light years.

Penumbra The lighter portion of a shadow in which not all light is blocked out. See also eclipse
and umbra.

Perigee The point in an orbit around Earth at which an object is closest to Earth. See also apogee.

Perihelion The point in an orbit around the Sun at which an object is closest to the Sun. See also
aphelion.

Phase Angle The angle between an incident ray striking an object and the light ray reflected
back from the object.

Planet (modern definition) A celestial body that orbits the Sun, has sufficient mass and gravity
so that the object is nearly round in shape, and has cleared the neighborhood around its orbit. See
also dwarf planet.

Planet (old definition) A celestial body, other than a comet or a meteoroid, in orbit around a
star. Pluto was a planet under this definition. See also dwarf planet.

Precession A motion of Earth’s axis similar to the motion of the axis of a rapidly spinning top.

Prime Meridian The meridian that passes through Greenwich, England.

Propagation The process of using an object’s orbital elements and epoch to predict the position
of the object at some future point in time.
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Pulsar A rotating star that emits a beam of electromagnetic energy. Much like a lighthouse, the
emitted beam can be detected only when it is pointing in the same direction as the Earth. See also
quasar.

Quadrature The moment when the angle formed by Earth, a celestial object, and a reference
point is 90◦. For example, the Moon is in quadrature during First Quarter Moon and Last Quarter
Moon.

Quasar A distant galaxy that emits waves of electromagnetic energy. See also pulsar.

RAAN Right Ascension of the Ascending Node.

Refraction A bending of light rays caused by a change in medium. For example, light rays are
bent as they travel from space through Earth’s atmosphere, or when passing from the air through
water.

Right Ascension In the equatorial coordinate system, the distance that an object lies away from
the First Point of Aries. Right ascension is measured in units of time and is in the range [0h, 24h].
Right ascension is analogous to the concept of terrestrial longitude. See also declination and hour
angle.

Right Ascension of the Ascending Node (RAAN) The longitude of the point in a satellite’s
orbit at which the satellite goes above the equatorial plane. The RAAN is measured from the
vernal equinox (First Point of Aries) to the ascending node.

Roche Limit The distance at which an orbiting body will disintegrate due to the overpowering
tidal forces of the body around which it orbits.

Saros Cycle A period of approximately 18 years after which the cycle of lunar and solar eclipses
tend to repeat.

Scattered Disc A sparsely populated region of space that lies between the Kuiper Belt and Oort
Cloud regions of space. See also Kuiper Belt and Oort Cloud.

Scattered Disc Object (SDO) A celestial object whose orbit lies in the Scattered Disc region of
space. See also KBO and TNO.

Sidereal Day A day as measured by 2 successive transits of a fixed star across an observer’s
meridian. A sidereal day is approximately 23h56m in length.

Sidereal Month A month as measured by using a star as a fixed reference point. A sidereal
month is 27.3217 mean solar days in length.

Sidereal Time Time measured by Earth’s rotation relative to fixed stars instead of the mean Sun.

Sidereal Year A year measured as the time it takes for Earth to return to the same position with
respect to the stars. A sidereal year is 365.2564 mean solar days in length.

Solar Day The time interval between 2 successive transits of the Sun across an observer’s merid-
ian. A solar day is not uniform in length. See also apparent solar day, apparent time, and mean
solar day.

Solar Eclipse An eclipse of the Sun caused by Earth passing into the Moon’s shadow. See also
annular eclipse.

Solar Time Time measured by the apparent position of the Sun. A sundial measures solar time
and is uneven in length.

Solstice Either of the 2 points at which the Sun is farthest away from the plane containing the
celestial equator. At the solstices, the Sun has no apparent northward or southward motion. The
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longest day of the year occurs at the summer solstice whereas the shortest day of the year occurs
at the winter solstice. See also solstice and winter solstice.

Spring The 3-month period of time that begins at the instant of the vernal equinox.

Spring Equinox See vernal equinox.

Standard Time Time at the central meridian for a given time zone. For the purposes of this
book, LCT, LMT, and Standard Time are considered to be synonymous.

Star Atlas A book containing a collection of star maps.

Star Catalog A book containing the coordinate locations, usually in the equatorial coordinate
system, of stars and other deep sky objects for some stated epoch. A catalog may also contain
other related data, such as a star’s magnitude.

Star Chart A graphical depiction of the position of the stars with respect to each other.

Star Map See star chart.

Star Time An informal way of referring to sidereal time.

State Vector The position of an orbiting object described in terms of the object’s Cartesian
coordinates and velocity along each of the Cartesian axes at the stated epoch. See also Keplerian
elements and osculating orbital elements.

Station Keeping Periodic orbital maneuvers performed to keep a satellite in its assigned orbit.

Summer The 3-month period of time that begins at the instant of the summer solstice.

Summer Solstice The point at which the Sun is farthest north of the plane containing the celes-
tial equator. This occurs on about June 22; it is the longest day of the year in the Northern
Hemisphere.

Superior Planet A planet whose orbit lies beyond Earth. The phrase “superior planet” should
not be confused with “outer planet.” See also inner planet, inferior planet, and outer planet.

Supermoon A Full Moon or New Moon that occurs when the Moon is at perigee. See also
micromoon.

Synodic Month A month based on the average interval between 2 successive occurrences of the
same lunar phase: New Moon to New Moon, Full Moon to Full Moon, etc. The synodic month is
29.5306 mean solar days in length.

Terrestrial Planet A planet that is “Earthlike” in terms of its composition and structure. A
terrestrial planet has a solid rocky surface, a molten metallic core, and surface features similar to
what is found on Earth (mountains, volcanoes, canyons, etc.). Terrestrial planets are not confined
to our Solar System. See also inner planet and gas giant.

Terrestrial Time (TT) A uniform time system defined to account for irregularities in Earth’s
rotation. TT is based on the International Atomic Time (TAI) and is given by the equation
T T = TAI + 32.184s. See also Universal Time 1 and Delta T.

Time Zone A geographic region in which there is an agreed-upon time standard so that all
observers within the region can synchronize with the time standard and thereby agree on the
same local time for all observers in the region. A time zone’s boundary is typically irregular to
account for man-made boundaries, and is typically established with respect to the prime meridian
at Greenwich, England.

TLE See Two-Line Element.
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TNO Trans-Neptunian Object.

Topocentric Coordinates Coordinates that specify the location of an object with respect to
the surface of the Earth; they may be expressed as Cartesian or spherical coordinates. See also
geocentric, heliocentric, and barycentric coordinates.

Trans-Neptunian Object (TNO) A celestial object within the Solar System whose orbit lies
farther away from the Sun than Neptune. See also KBO.

Transit In astronomy, the moment at which an object crosses an observer’s meridian, or the
motion of 1 celestial body across another. Also called culminate.

Trojan An object that shares the same orbit as a planet or a larger moon, and that is in a stable
orbit in which it remains in the same position relative to that larger object. Trojans oscillate around
Lagrange point L4 (ahead of the object with which it shares its orbit by 60◦) or Lagrange point L5
(behind the object with which it shares its orbit by 60◦). See also Lagrange points.

Tropical Year A year measured by using the vernal equinox as the reference point. A tropical
year is the time interval between 2 successive crossings by the Sun of the plane of Earth’s equator
at the point of the vernal equinox. A tropical year is 365.242191 mean solar days in length.

True Anomaly The angle formed by an orbiting body (e.g., planet), the body around which
it orbits (e.g., the Sun), and the orbital major axis. See also eccentric anomaly, mean anomaly,
equation of the center, and Kepler’s equation.

True Orbit The actual elliptical orbit of an object. See also mean orbit and auxiliary circle.

TT Terrestrial Time.

Twilight The period of semidarkness just after sunset. At twilight the Sun is less than 18◦ below
the horizon. See also dawn.

Two-Line Element (TLE) A standard format originally defined by the North American
Aerospace Defense Command (NORAD) for encoding an object’s Keplerian elements, the epoch,
and other items related to a satellite’s orbit. See also Keplerian elements.

Umbra The darkest portion of a shadow in which all light is blocked out. See also penumbra.

Universal Time (UT) The local civil time for the Greenwich time zone (i.e., longitude 0◦). UT
supersedes the historical term Greenwich Mean Time. For the purposes of this book, UT, GMT,
UT1, and UTC are considered to be synonymous.

Universal Time 1 (UT1) A timekeeping system that is based on the rotation of Earth, and is
therefore irregular. UT1 is related to TT by the equation UT 1 = T T −�T , where �T is deter-
mined by astronomical observations. The value of �T is currently about 65s. �T for the past is
determined by recorded astronomical observations, but it can only be approximated for the future.
See also Terrestrial Time and Delta T.

UTC An abbreviation for Coordinated Universal Time, which in French is Temps Universel
Coordonné. The acronym UTC is a compromise between English-speaking (for whom the
acronym would have been CUT) and French-speaking (for whom the acronym would have been
TUC) peoples. See also coordinated universal time.

Vernal Equinox The ascending node for the Sun’s orbit assuming the plane of the celestial
equator as a reference plane. The vernal equinox is also known as the First Point of Aries. The
Sun’s right ascension at the vernal equinox is 0h, which occurs at about March 21. See also
equinox.

Visual Magnitude (mV) An object’s apparent brightness as measured by considering only
wavelengths of light that are in the visible spectrum. Visual magnitude is also called apparent
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magnitude and indicates how bright an object appears to be to a viewer. See also magnitude and
absolute magnitude.

VSOP87 (Variations Séculaires des Orbites Planétaires 1987) An analytic theoretical model of
the Solar System developed in 1987 by scientists at the Bureau des Longitudes in Paris, France.
VSOP87 is used to compute highly accurate positions and orbital elements for objects within the
Solar System. See also JPL’s Development Ephemeris.

Vulcan A hypothesized planet in orbit between the Sun and Mercury that was proposed as a way
to explain perturbations in Mercury’s orbit. All attempts to find Vulcan have been unsuccessful
while Einstein’s Theory of General Relativity can explain Mercury’s perturbations. This leads
most astronomers to doubt that Vulcan exists. See also vulcanoid.

Vulcanoid An asteroid from the hypothesized group of asteroids that some believe may exist
in a stable orbit between the Sun and Mercury. Named after the hypothetical planet Vulcan, no
vulcanoids have yet been discovered. See also Vulcan.

Waning The phases of the Moon in which the amount of illumination is decreasing from Full
Moon to New Moon.

Waxing The phases of the Moon in which the amount of illumination is increasing from New
Moon to Full Moon.

Winter The 3-month period of time that begins at the instant of the winter solstice.

Winter Solstice The point at which the Sun’s position is farthest south of the plane containing
the celestial equator. This occurs on about December 22; it is the shortest day of the year in the
Northern Hemisphere.

Year The time interval between 2 successive passages of the Earth or Sun past some reference
point. The length of a year varies depending on the reference point used.

Zenith The point on the celestial sphere directly overhead an observer. See also nadir.

Zulu Time Same as GMT and UT.
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ABS, 7
absolute magnitude, 252
Adams, John C., 217
age of the Moon, 173, 175
Aitken Basin, 157, 158
Aldrin, Edwin, 159
Almagest, The, 214
Alpha Centauri, 131
altitude, 88, 112
Amor subgroup, 228
angle of inclination, 83, 284
angular diameter, 145
angular size, see angular diameter
annular solar eclipse, 182
anomalistic year, 27
Anthe, 213
aphelion, 68, 71, 74, 145, 249
Aphrodite Terra, 198
apoapsis, 68, 250

distance from focus, 250
apogee, 68, 250

height, 274
radius, 275

Apollo program, 155, 159
Apollo subgroup, 228
apparent sidereal time, 36
apparent size, see angular diameter
apsides, 250
apsis, 66
Arandas Crater, 201
argument of latitude, 285, 288
argument of perihelion, 83
Argyre Planitia, 201
Armstrong, Neil, 159
Arsia Mons, 201
ascending node, 83, 97, 165
Ascraeus Mons, 202
Asteroid Belt, 3, 187, 223, 226, 229
asteroids, 227

25143 Itokawa, 228
433 Eros, 228

Amor subgroup, 228
Apollo subgroup, 228
Aten subgroup, 228
Ceres, 3, 223, 226
Chariklo, 226
Hayabusa, 228
Juno, 226
naming scheme, 227
near Earth, 226
NEAR Shoemaker, 228
Pallas, 226
spectral reflectivity, 228
Vesta, 188, 226

Astronomical Algorithms, 138, 143
Astronomical Almanac, 138
astronomical almanac, 332, 340
astronomical calendar, 344, 345
Astronomical Formulae

for Calculators, 142
astronomical unit, see AU
Aten subgroup, 228
atmospheric refraction, 101
AU, 14
autumnal equinox, 26, 141
auxiliary circle, 76
average orbital velocity, 260
azimuth, 88, 91, 112
azimuthal angle, 119

Bamberg Crater, 201
barycenter, 130
Batygin, Konstantin, 191
Bayer, Johann, 336
Bell, Jocelyn, 192
BepiColombo mission, 195, 198
Besselian year, 27
Betelgeuse, 115, 336, 338
binary star system, 131
binary system, 131
Brown, Michael, 191, 225
Burney, Venetia, 220



366 Index

Cabeus crater, 158
calendar, 38

astronomical, 344
Gregorian, 39
Julian, 38, 40

Callisto, 207, 208
Caloris Basin, 195
Calypso, 213
Canis Major, 129, 338
Canopus, 131
Cartesian coordinate system, 277
Cartesian coordinates, 119
Cassini, Domenico, 210
Cassini-Huygens, 207, 210, 211, 214
Caucasian Mountains, 158
celestial prime meridian, 62
celestial sphere, 62, 64, 97, 111
CelesTrak, 347
centaur, 188

Chariklo, 189
Chiron, 189
Kuiper Belt, 188
Phoebe, 189
Pholus, 189

Centaurus, 131
central meridian, 30
Central Standard Time zone, see CST
Ceres, 3, 187, 188, 223, 226

Dawn space probe, 224
distance from the Sun, 223
Herschel Space Observatory, 224
mass, 223
Occator crater, 224
orbital period, 223
Piazzi, Giuseppe, 223
rotational period, 223
trojans, 188

Cernan, Eugene, 159
Chariklo, 189, 226

rings, 189
Charon, 131, 222

Christy, James, 222
Harrington, Robert, 222

Chelyabinsk asteroid, 228
Chiron, 189
Christy, James, 222
civil time, 31
civil year, 26
Clarke orbits, 306
Clarke, Arthur C., 265, 318
Clementine, 160
Collins, Michael, 159
comets

Hale-Bopp, 231
Halley, 230
Hyakutake, 231
Shoemaker, Carolyn, 230
Shoemaker-Levy 9, 208

conjunction, 178
constellations, 2

Canis Major, 129, 338
Centaurus, 131
Cygnus, 130, 192
Orion, 115, 336
Pegasus, 192
Scutum, 130
Virgo, 192

coordinate systems
Cartesian, 277
ecliptic, 91
equatorial, 54, 84, 92, 94
galactic, 54, 84, 96
horizon, 54, 84, 88, 90
latitude-longitude, 53
spherical, 279
topocentric, 281

Coordinated Universal Time,
see UTC

Copernicus crater, 157
corona, 129
crescent Moon, 177
CST, 33
culminate, 64
Curiosity Rover, 201
Cygnus, 130, 192

dawn, 140
Dawn space probe, 219, 224, 225
day, 22, 64

mean solar, 24, 64
sidereal, 24, 28, 36, 64
solar, 22

day number, see days into the year
daylight saving time, see DST
days into the year, 44
DE, 348, 349
December solstice, 143
declination, 85, 88, 90, 92
DefaultObsLoc.dat, 123
Deimos, 200
Development Ephemeris, see DE
Dimidium, 192
Dione, 188, 213
DMS format, 15–17
draconic year, 27
Dragon Storm, 211
DST, 33
Duffett-Smith, Peter, 135, 332
dwarf planet, 3, 219

Ceres, 3, 187, 188, 223
Dysnomia, 3
Eris, 3, 188, 219, 225
Haumea, 3, 224
Makemake, 3, 224
Pluto, 189, 219, 220

Dysnomia, 3, 225
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Earth, 189
escape velocity, 128
orbital eccentricity, 67
orbital speed, 126
radius, 272
trojans, 188

Earth Centered Inertial, see ECI
Eastern Standard Time zone, see EST
eccentric anomaly, 69, 70, 75–80
eccentricity, 66, 273
ECI, 278
eclipse, 181

annular, 182
conjunction, 183
lunar, 181
opposition, 183
penumbra, 181
Saros cycle, 183
solar, 181
total lunar, 181
total solar, 182
umbra, 181

ecliptic coordinate system, 91
latitude, 91
longitude, 91

ecliptic plane, 82, 83, 132
ellipse, 65

apoapsis, 68
apsis, 66
eccentricity, 66, 273
focus, 65
linear eccentricity, 272, 274
major axis, 65
minor axis, 65
occupied focus, 67
periapsis, 68
semi-latus rectum, 68, 72, 272, 274
semi-major axis, 65, 272, 273
semi-minor axis, 65, 260, 272, 274

elongation, 177, 251
Enceladus, 213
ephemerides, see ephemeris
ephemeris, 332, 340, 342
Epimetheus, 213
epoch, 92
equation of the center, 69, 70, 74, 75,

79, 134
equation of time, 24, 147, 148
equatorial coordinate system, 54, 84, 92, 94,

112
equinox, 26, 140, 145

autumnal, 26, 141
fall, 141
March, 142
September, 142
spring, 141
vernal, 1, 26, 83, 141

Eris, 3, 188, 219, 225
Brown, Michael, 225
diameter, 225
distance from the Sun, 225
Dysnomia, 225
mass, 225
orbital period, 225
rotational period, 225

EST, 33
Europa, 207, 209
Europa Multiple-Flyby Mission, 209
Evening Star, 194, 196
exoplanet, 192
Dimidium, 192
J2126-8140, 193
Kepler-186f, 192

fall, 142
fall equinox, 141
First Point of Aries, 62, 83, 84, 91
Hipparchus, 62

First Quarter Moon, 176
FIX, 6
Flamsteed numbers, 340
Flamsteed, John, 214, 340
focus, 65
FRAC, 7
Full Moon, 26, 174, 176, 183
lunar eclipse, 183

functions
ABS, 7
FIX, 6
FRAC, 7
INT, 6
MOD, 7
ROUND, 8

galactic coordinate system, 54, 84, 96
latitude, 97
longitude, 97

Galactic North Pole, 97
galactic year, 27
Galileo, 207, 209
Neptune, 217
Saturn’s rings, 209

Galileo space probe, 198, 205, 207
Galle Crater, 201
Galle, Johann, 217
Ganymede, 207, 208
Gas Giants, 203
GEO, 305, 306
geocentric, 8
geocentric coordinate system, 278
geostationary orbits, 306
Geosynchronous Earth Orbit, see GEO
gibbous Moon, 177
GMT, 34
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great circle, 57, 60
Great Dark Spot, 218
Great Orion Nebula, 340
Great Red Spot, 206
Great White Spot, 212
Greenwich Mean Time, see GMT
Greenwich Sidereal Time, see GST
Gregorian calendar, 39
GST, 36, 112, 113
Guinan, Edward, 218

habitable zone, 192
Hale-Bopp Comet, 231
Halley’s Comet, 230
Happy Face Crater, 201
Harrington, Robert, 222
Haumea, 3, 187, 224

diameter, 224
distance from the Sun, 224
mass, 224
orbital period, 224
rotational period, 224
visual magnitude, 224

Helene, 213
heliocentric, 8
Hellas Planitia, 201
HEO, 305, 307
Herschel Space Observatory, 224
Herschel, Sir William, 214
Hewish, Antony, 192
Highly Elliptical Orbit, see HEO
Hipparchus, 214
HMS format, 15, 16, 86
Hohmann transfer orbit, 320
horizon coordinate system, 54, 84, 88, 90, 112
HORIZONS system, 345, 349
hour angle, 86, 87, 89, 112
HST, 207, 216, 218, 294, 307

catalog number, 300
Hubble Space Telescope, see HST
Huygens, Christiaan, 209
Hyakutake Comet, 231
Hydra, 222

Iapetus, 213
IAU, 3, 35
IJK, see ECI
inner planet, 187, 193
INT, 6
Intelsat I, 265
International Astronomical Union, see IAU
International Space Station, see ISS
Io, 207, 209
Ishtar Terra, 198
ISS, 297, 306

catalog number, 300
Ithaca Chasma, 213

J2000, 93
J2126-8140, 193
Janus, 213
Jovian planets, 203
JPL

DE, 349
HORIZONS system, 345, 349

JUICE, 209
Julian calendar, 38, 40
Julian date, 40
Julian day number, 40–42, 44, 45, 109,

111–113
modified, 44

Julian year, 27
June solstice, 142
Juno, 209, 226
Jupiter, 189, 204

atmosphere, 204
Callisto, 207, 208
Cassini, 207
diameter, 204
distance from the Sun, 204
Europa, 207, 209
Europa Multiple-Flyby Mission, 209
Galileo, 207
Galileo space probe, 205, 207
Ganymede, 207
Great Red Spot, 206
Io, 207, 209
JUICE, 209
Juno, 209
mass, 204
Mayr, Simon, 207
New Horizons, 207
orbital period, 204
Pioneer, 206, 207
rotational period, 204
surface temperature, 204
trojans, 188
Ulysses, 207
visual magnitude, 204
Voyager, 207

KBO, 229
Kepler Space Telescope, 192, 194
Kepler’s equation, 69, 70, 75, 79, 82,

134, 137
Newton/Raphson method, 81

Kepler’s laws, 22
first, 71
second, 68, 258
third, 257

Kepler-186f, 192
Keplerian elements, 286, 287, 347

convert to state vector, 294
TLE data, 301

Kerberos, 222
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Kuiper Belt, 2, 187, 219, 229
centaurs, 188
Eris, 3
Haumea, 187
Makemake, 187
New Horizons, 219
Pluto, 187

Kuiper Belt object, see KBO

Large Magellanic Cloud, 130
Larissa, 218
Last Quarter Moon, 176
latitude, 53, 59, 60, 84
latitude-longitude system, 53, 56
Law of Universal Gravitation, 69, 253, 262
LCROSS, 158, 160
LCT, 31, 33, 36, 112, 113
Le Verrier, Urbain, 191, 217

Vulcan, 191
leap year, 26, 38, 39
Leibnitz Mountains, 158
LEO, 305, 306
Lescarbault, Edmond Modeste, 191

Vulcan, 191
light year, 15
linear eccentricity, 274
LMT, 33
local celestial meridian, 64
local civil time, see LCT
Local Mean Time, see LMT
Local Sidereal Time, see LST
local time, see LCT
longitude, 30, 53, 60, 84
longitude of the ascending node, 83
look angle, 283
Low Earth Orbit, see LEO
Lowell, Percival, 221
LRO, 153, 160
LST, 36, 49, 86
Luna, 155, 159, 161
Lunar Crater Observation and Sensing

Satellite, see LCROSS
lunar eclipse, 181
lunar libration, 155
Lunar Prospector, 160
Lunar Reconnaissance Orbiter, see LRO
LuxSpace, 161

Magellan space probe, 198
major axis, 65
Makemake, 3, 187, 224

distance from the Sun, 225
orbital period, 225
rotational period, 225
visual magnitude, 225

March equinox, 142
maria, 155

Mariner, 195, 198, 199
Mars, 189, 199
2001 Mars Odyssey, 201
Arandas Crater, 201
Argyre Planitia, 201
Arsia Mons, 201
Ascraeus Mons, 202
atmosphere, 199
atmospheric pressure, 199
Bamberg Crater, 201
caves, 201
Curiosity Rover, 201
Cydonia region, 201
Deimos, 200
diameter, 199
distance from the Sun, 199
Face on Mars, 201
Galle Crater, 201
Happy Face Crater, 201
Hellas Planitia, 201
Mariner, 199
Mars Express, 201
Mars Orbiter Mission, 201
mass, 199
MAVEN, 201
MRO, 201
Olympus Mons, 202
Opportunity Rover, 201
orbital period, 199
Pavonis Mons, 201
Phobos, 200
polar caps, 199
rift valley, see Valles Marieneris
rotational period, 199
Schiaparelli, Giovanni, 199
seasons, 199
Spirit Rover, 201
surface temperature, 199
Tharsis region, 201
trojans, 188
Valles Marieneris, 202
Vastitas Borealis basin, 201
Viking, 199

Mars Express, 201
Mars Odyssey, 201
Mars Orbiter Mission, 201
Mars Reconnaissance Orbiter, see MRO
MAVEN, 201
Maxwell Montes, 198
Mayr, Simon, 207
mean anomaly, 24, 69, 70, 72–79
mean orbit, 72
mean orbital elements, 287
mean sidereal time, 25, 36
mean solar day, 24, 25, 64, 86
mean solar time, 25, 35, 36
mean Sun, 24, 64
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Medium Earth Orbit, see MEO
Meeus, Jean, 79, 138, 142, 143, 332
MEO, 305, 307
Mercury, 189, 194

atmosphere, 195
BepiColombo mission, 195
Caloris Basin, 195
diameter, 195
distance from the Sun, 195
Evening Star, 194
Mariner, 195
mass, 195
MESSENGER, 195
Morning Star, 194
orbital period, 195
rotational period, 195
temperature, 195
visual magnitude, 197
water, 195

meridian, 57, 86
celestial prime, 62
central, 30
local celestial, 64
observer’s, 64

MESSENGER, 195
Messier Catalog, 340
Methone, 213
micromoon, 172
Milky Way Galaxy, 97

center, 97
Mimas, 213, 214

Herschel, 213, 214
minor axis, 65
MOD, 7
modified Julian day number, 44
modulo, see MOD
month, 25, 151

sidereal, 25
Moon

age, 173, 175
age in days, 175
Aitken Basin, 157, 158
Alps, 158
angular diameter, 172
annual equation correction, 163, 165
apogee distance, 250
apogee velocity, 260
atmosphere, 153
Cabeus crater, 158
Caucasian Mountains, 158
Chandrayaan-1, 158, 161
Chang’e 3, 161
Chang’e 5, 161
Clementine, 160
conjunction, 178
Copernicus crater, 157
craters, 156

crescent, 177
distance, 152, 172
ecliptic longitude, 165
ecliptic longitude of perigee, 165
elongation, 177
equation of the center, 165
evection correction, 163, 165
first quarter, 176
full, 174, 176
gibbous, 177
Google lunar prize, 161
last quarter, 176
LCROSS, 158, 160
Leibnitz Mountains, 158
longitude of the ascending node, 165
LRO, 153, 160
Luna, 155, 159, 161
Lunar Prospector, 160
LuxSpace flyby, 161
maria, 155
mass, 152
mean anomaly, 165
mean anomaly correction, 163,
165, 170

micromoon, 172
new, 174–176
opposition, 177
percent illumination, 173, 178
perigee distance, 250
perigee velocity, 260
phase angle, 178
phases, 151, 173, 176
quadrature, 178
radio transmission delays, 257
Ranger, 159
rise, 169
SELENE, 161
set, 169
SMART-1, 160
supermoon, 172
Surveyor, 159
temperature, 153
terrae, 155
tides, 153
total eclipse, 181
true ecliptic longitude, 166, 170
Tycho crater, 157
variation correction, 163, 165
visual magnitude, 127
waning, 176
water, 158, 159
waxing, 176
weight on, 254

moonrise, 169
moonset, 169
Morning Star, 194, 196
Mountain Standard Time zone, see MST
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MRO, 201
MST, 33

nadir, 64
near Earth asteroids, 226
NEAR Shoemaker, 228
Neptune, 189, 216

Adams, John C., 217
atmosphere, 218
diameter, 218
distance from the Sun, 218
Galileo, 217
Galle, Johann, 217
Great Dark Spot, 218
Hubble Space Telescope, 218
Larissa, 218
Le Verrier, Urbain, 217
mass, 218
orbital period, 218
rings, 218
rotational period, 218
Scooter, 218
Small Dark Spot, 218
temperature, 218
Triton, 219
trojans, 188
Voyager, 218
wind speeds, 218
Wizard’s Eye, 218

New General Catalog, see NGC
New Horizons, 207, 219, 220
New Moon, 26, 174–176, 183

solar eclipse, 183
Newton, Sir Isaac, 126, 265

Law of Universal Gravitation, 69
Newton/Raphson method , 81
NGC, 214, 340
Nix, 222
North Celestial Pole, 62, 64
North Star, 62
Northern Electrostatic Disturbance, 211
nutation, 101, 102, 112

Oberth, Hermann, 265
obliquity of the ecliptic, 92–94,

144, 148
observer’s meridian, 64
Occator crater, 224
occultation, 181
occupied focus, 67
Olbers, Wilhelm, 227
Olympus Mons, 202
Oort Cloud, 188, 230

Hale-Bopp Comet, 231
Hyakutake Comet, 231
Oort, Jan, 231
Öpik, Ernst, 230

Oort, Jan, 231
Öpik, Ernst, 230
Opportunity Rover, 201
opposition, 177
orbital elements, 68, 284, 287
angle of inclination, 83
argument of perihelion, 83
ascending node, 83
ecliptic plane, 82
First Point of Aries, 83
longitude of the ascending node, 83
orbital plane, 82

orbital period, 72, 73
orbital plane, 83
orbital propagation, 308
orbital velocity, 261
Orion, 115, 336
osculating orbital elements, 287
outer planet, 187, 203

Pacific Standard Time zone, see PST
Pallas, 226
Olbers, Wilhelm, 227

Pallene, 213
Pan, 213
Pandora, 213
parallax, 101, 112
parsec, 15
Pavonis Mons, 201
Payne-Gaposchkin, Cecilia, 126
Pegasus, 192
penumbra, 181
periapsis, 68, 71, 250
distance from focus, 250

perifocal coordinate system, 293
perigee, 68, 71, 250
height, 274
radius, 275

perihelion, 68, 71, 74, 83, 145, 249
phase angle, 178, 251
phases of the Moon, 173, 176
Phobos, 200
Phoebe, 189, 213
Pholus, 189
Piazzi, Giuseppe, 223
Pioneer, 128, 206, 207
planet
angular diameter, 245, 246
aphelion distance, 249
aphelion velocity, 259
average velocity, 260
distance from Earth, 245
Earth, 189
elongation, 251
equation of the center, 232
escape velocity, 262
geocentric ecliptic latitude, 236



372 Index

planet (cont.)
geocentric ecliptic longitude, 236
heliocentric ecliptic latitude, 232, 235
heliocentric ecliptic longitude, 232, 235
inferior, 231, 236
inferior planet, 236
Jupiter, 189, 204
length of year, 257
locating, 231
Mars, 189, 199
mean anomaly, 232
Mercury, 189, 194
Neptune, 189, 216
orbital period, 258
orbital plane, 82
orbital velocity, 261
perihelion distance, 249
perihelion velocity, 259
phase angle, 251
phases, 250
Planet 9, 192
radio transmission delays, 255
radius vector length, 235
rise, 244
Saturn, 189, 209
semi-major axis, 258
set, 244
superior, 231, 236
superior planet, 241
true anomaly, 235
Uranus, 189, 214
Venus, 189, 196
visual magnitude, 251
Vulcan, 191
weight on, 253

Planet 9, 192
Batygin, Konstantin, 191
Brown, Michael, 191

Pluto, 131, 187, 189, 219, 220
Charon, 131, 222
Christy, James, 222
diameter, 221
distance from the Sun, 221
Harrington, Robert, 222
Hydra, 222
Kerberos, 222
Lowell, Percival, 221
mass, 221
New Horizons, 220
Nix, 222
orbital period, 221
rotational period, 221
Sputnik Planum, 221
Styx, 222
surface temperature, 221
Tartarus Dorsa, 222
Tombaugh Regio, 221
Tombaugh, Clyde, 220

polar angle, 119
Polaris, 62, 115, 118

visual magnitude, 197
Pole Star, see Polaris
Polydeuces, 213
Practical Astronomy with your Calculator

or Spreadsheet, 135
precession, 92, 102, 103, 112
prime meridian, 57, 62
Prometheus, 213
propagation, 308
Proxima Centauri, 131
PST, 33
Ptolemy, 214

quadrature, 178
quasars, 34

R136a1, 130
RAAN, 285
radio transmission delays, 255
radius to the satellite, 274
Ranger, 159
README.TXT, 9, 123, 263
refraction, 101, 112
retrograde orbit, 285
Rhea, 213
Rigel, 336, 340

Flamsteed number, 340
right ascension, 85, 87, 89, 92, 112
right ascension of the ascending node,

see RAAN
Roche Limit, 219
ROUND, 8

Sagittarius, 97
Saros cycle, 183
satellite catalog, 297
satellites

altitude, 273
apogee, 72
apogee distance, 313
apogee height, 274
apogee radius, 272, 275
argument of latitude, 288
Clarke orbits, 306
converting between state vector and
Keplerian elements, 347

distance from center of the Earth,
278

distance from Earth, 72, 313
eccentricity, 273
footprint, 322
GEO, 305, 306
geostationary orbits, 306
ground track, 323
HEO, 305, 307
Hohmann transfer orbit, 320
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Intelsat I, 265
Keplerian elements, 286, 287, 347
LEO, 305, 306
linear eccentricity, 272, 274
look angle, 283
maximum latitude, 303
mean orbital elements, 287
MEO, 305, 307
orbit propagation, 308
orbital decay, 268
orbital elements, 284–285, 287
orbital period, 315
orbital velocity, 318
osculating orbital elements, 287
parking orbit, 303, 307
perigee, 72
perigee distance, 314
perigee height, 272, 274
perigee radius, 272, 275
radius to the satellite, 272, 274
rising and setting times, 311
semi-latus rectum, 272, 274
semi-major axis, 272, 273
semi-minor axis, 272, 274
Sputnik, 265
state vector, 288, 347
station keeping, 268
TLE, 288
true anomaly, 271, 275
true longitude at the epoch, 288
true longitude of perigee, 288
velocity for circular orbit, 319
velocity for elliptical orbit, 319
vis-viva law
circular orbits, 319
elliptical orbits, 319

Saturn, 189, 209
Anthe, 213
atmosphere, 211
atmospheric pressure, 211
Calypso, 213
Cassini Division, 210
Cassini-Huygens, 210, 211, 214
Christiaan Huygens, 209
density, 211
diameter, 211
Dione, 213
distance from Sun, 211
Domenico Cassini, 210
Dragon Storm, 211
Enceladus, 213
Epimetheus, 213
Galileo, 209
Great White Spot, 212
Helene, 213
Iapetus, 213
Janus, 213

mass, 211
Methone, 213
Mimas, 213
moons

Dione, 188
Phoebe, 189
Tethys, 188

Northern Electrostatic Disturbance, 211
orbital period, 211
Pallene, 213
Pan, 213
Pandora, 213
Phoebe, 213
Polydeuces, 213
Prometheus, 213
Rhea, 213
rings, 209
rotational period, 211
storms, 211
Telesto, 213
temperature, 211
Tethys, 213
Titan, 212
Voyager, 210, 211

Scattered Disc, 188, 229
Eris, 188
Halley’s Comet, 230
Sedna, 230

Scattered Disc Object, see SDO
Schiaparelli, Giovanni, 199
Schmitt, Harrison, 159
scientific notation, 12–14
Scooter, 218
Scutum, 130
SDO, 229
seasons, 144
Sedna, 230
semi-latus rectum, 68, 72, 274
semi-major axis, 65, 273
semi-minor axis, 65, 274
September equinox, 142
SGP4, 311, 350
Shoemaker, Carolyn, 208, 230
Shoemaker-Levy 9 comet, 208
sidereal day, 24, 25, 28, 36, 64, 86
sidereal month, 25
sidereal time, 24, 36
sidereal year, 27
Simplified General Perturbation, see SGP4
Sirius, 131, 338
visual magnitude, 197

Small Dark Spot, 218
Small Missions for Advanced Research in

Technology-1, see SMART-1
Smart, W. M., 148
SMART-1, 160
solar day, 24, 25
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solar eclipse, 129, 181
maximum time, 184

solar flares, 128
Solar Probe Plus, 129, 198
Solar System

barycenter, 130
binary system, 131

solar time, 22
solstice, 140, 142, 145

December, 143
June, 142
summer, 142
winter, 142

South Celestial Pole, 62
space probes

2001 Mars Odyssey, 201
Cassini, 207
Cassini-Huygens, 210, 211, 214
Chandrayaan-1, 158, 161
Chang’e 3, 161
Chang’e 5, 161
Clementine, 160
Curiosity Rover, 201
Dawn, 219, 224, 225
Europa Multiple-Flyby Mission, 209
Galileo, 198, 205, 207
Hayabusa, 228
JUICE, 209
Juno, 209
LCROSS, 158
LRO, 153, 160
Luna, 155, 159, 161
Luna 9, 159
Lunar Prospector, 160
Magellan, 198
Mariner, 195, 198, 199
Mars Express, 201
Mars Orbiter Mission, 201
MAVEN, 201
MESSENGER, 195
MRO, 201
NEAR Shoemaker, 228
New Horizons, 207, 219, 220
Opportunity Rover, 201
Pioneer, 128, 206, 207
Ranger, 159
SELENE, 161
SMART-1, 160
Solar Probe Plus, 129, 198
Spirit Rover, 201
STEREO, 128, 191
Surveyor, 159
Ulysses, 207
Venera, 198
Venera-D, 198
Viking, 199
Voyager, 207, 211, 216, 218

space shuttle, 306
speed of light, 256
spherical coordinate system, 279

converting to Cartesian coordinates, 279
spherical coordinates, 119
Spirit Rover, 201
spring, 142
spring equinox, 141
Sputnik, 265
Sputnik Planum, 221
standard epoch, 92, 111
standard gravitational parameter, 259
Standard Time, 31, 33
star

azimuth at rising, 118
azimuth at setting, 118
Bayer letters, 338
Betelgeuse, 115, 336, 338
culminate, 64
Flamsteed numbers, 340
Greek alphabet numbering, 336, 338, 339
North Star, 62
Polaris, 62, 115, 118
Pole Star, 62, 115
Rigel, 336, 340
rising time, 115
setting time, 115
Sirius, 338
transit, 64, 86

star catalog, 84, 92, 332, 336
star chart, 119, 123, 332–334, 336
star map, 332
state vector, 288, 347

convert to Keplerian elements, 289
station keeping, 268
STEREO, 128
Styx, 222
summer, 142, 145
summer solstice, 142
Sun, 71

angular diameter, 144, 146
corona, 129
density, 127
diameter, 126
distance, 126, 144
ecliptic latitude, 132, 135
ecliptic longitude, 135
equation of the center, 135
escape velocity, 128
locating, 131
mass, 126
mean anomaly, 133, 134
mean orbit, 132
orbital elements, 132
Pioneer, 128
rise, 138
rotational speed, 125
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set, 138
solar eclipse, 129
solar flares, 128
Solar Probe Plus, 129
STEREO, 128
sunspots, 128
temperature, 127
tides, 153
total eclipse, 182
true anomaly, 134, 135
visual magnitude, 127

sunrise, 138
sunset, 138
sunspots, 128

temperature, 128
supermoon, 172
Surveyor, 159
synodic month, 26

Tarantula Nebula, 130
Tartarus Dorsa, 222
Telesto, 213
terrae, 155
terrestrial planets, 193
Terrestrial Time, see TT, 35
Tethys, 188, 213

Ithaca Chasma, 213
Textbook on Spherical Astronomy, 148
tides, 153
time

apparent sidereal, 36
civil, 31
DST, 33
equation of time, 24, 147
GMT, 34
GST, 36, 47, 48, 50
LCT, 36, 46
LMT, 33
local civil, see LCT
LST, 36, 49, 50
mean sidereal, 25, 36
mean solar, 25, 35, 36
standard, 31
UT, 36, 40, 46–48

time zone, 29, 33, 36
adjustment, 36
boundaries, 31, 33

Titan, 212
TLE, 288, 297

data format, 297, 348
Keplerian elements, 301
mean motion, 301
mean motion to semi-major
axis, 301

TNO, 229
Tombaugh Regio, 221
Tombaugh, Clyde, 220

topocentric coordinate system, 281
total lunar eclipse, 181
total solar eclipse, 182
transit, 64, 86
star, 86

Triton, 219
trojan, 188
2010 TK7, 188
Ceres, 188
Jupiter, 188
Mars, 188
Neptune, 188
Uranus, 188
Venus, 188
Vesta, 188

tropical year, 26
true anomaly, 24, 69–72, 74, 77, 78, 83,

271, 275
true longitude at the epoch, 285, 288
true longitude of perigee, 285, 288
TT, 166
twilight, 140
Two-Line Elements, see TLE
Tycho crater, 157

Ulysses, 207
umbra, 181
Universal Time, see UT, 34
uranographer, 338
Uranometria Omnium Asterismorum, 338
uranometry, 338
Uranus, 189, 214
Almagest, The, 214
atmosphere, 216
diameter, 216
distance from Sun, 216
Flamsteed, John, 214
Herschel, Sir William, 214
Hipparchus, 214
orbital period, 216
orbital plane, 216
Ptolemy, 214
rings, 216
rotational period, 216
temperature, 216
trojans, 188
Voyager, 216

UT, 34, 36, 40, 112, 113
UTC, 34
UY Scuti, 130

Valles Marieneris, 202
Vastitas Borealis basin, 201
vector
length, 269
magnitude, 269
norm, 269
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velocity at aphelion, 259
velocity at perihelion, 259
Venera, 198
Venera-D, 198
Venus, 189, 196

Aphrodite Terra, 198
atmosphere, 197
atmospheric pressure, 197
BepiColombo mission, 198
diameter, 197
distance from the Sun, 197
Galileo space probe, 198
Ishtar Terra, 198
Magellan space probe, 198
Mariner, 198
mass, 197
Maxwell Montes, 198
Mayas, 1
Morning Star, 196
orbital period, 197
rotational period, 197
Solar Probe Plus, 198
surface temperature, 197
trojans, 188
Venera, 198
Venera-D, 198
visual magnitude, 197

vernal equinox, 1, 26, 83, 133, 141
Vesta, 226

Olbers, Wilhelm, 227
trojans, 188

Viking, 199
Virgo, 192
vis-viva law, 319
visual magnitude

comparing magnitudes, 252
von Braun, Wernher, 265
Voyager, 207, 210, 211, 216, 218
VSOP, 348
Vulcan, 191
VY Canis Majoris, 129

WGS84, 268
winter, 142, 145
winter solstice, 142
Wizard’s Eye, 218

year
anomalistic, 27
Besselian, 27
civil, 26
draconic, 27
galactic, 27
Julian, 27
leap, 26, 38, 39

sidereal, 27
tropical, 26

yellow dwarf star, 125

zenith, 64, 101
zodiac, 39
Zulu Time, see UT, 34
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