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Preface 

Adaptive optics is the technology for correcting ran
dom optical wavefront distortions in real time. One 
of its major applications is to compensate for turbu
lence in Earth's atmosphere, freeing ground-based 
telescopes from the limitations imposed by the 
blurred atmospheric window and thereby enabling 
their full optical performance to be achieved. 
Although originally proposed for astronomical tele
scopes in 1953, adaptive optics did not become a 
reality until the 1970s, when it was developed for 
national defense applications, specifically laser 
beam compensation and satellite imaging. This 
work was sparsely reported in the literature, and 
the progress made on one of the key technologies, 
the generation of laser beacons high in the atmo
sphere, was not revealed until 1991. The astronomi
cal community now shows considerable interest in 
applying adaptive optics to the next generation of 
Earth-based astronomical telescopes, as well as in 
upgrading existing instruments. 

The purpose of this book is to provide a unified 
and accessible account of the principles and practice 
of adaptive optics as they apply to astronomical 
telescopes. It is intended to provide astronomers, 
scientists, and engineers with a convenient source 
of information on the basic technology, recent 
achievements, and future potential of this important 
new field. This book is based on 25 years of experi
ence in adaptive optics, which include the develop
ment of the first system capable of compensating a 
large astronomical telescope at visible wavelengths, 
as well as many other pioneering techniques and 
devices. During this period, adaptive optics has 

evolved from a highly specialized technology into 
one of the basic tools of ground-based astronomy. 
Several collections of technical papers that cover 
this period of intensive development in adaptive 
optics have recently been issued. While this material 
is a valuable resource for specialists in the field, it 
lacks the systematic approach and consistent treat
ment that is possible in a book. I hope that this 
book will fulfill the need for a comprehensive and 
up-to-date reference source on adaptive optics in 
astronomy. 

The development of adaptive optics is presented 
as a logical step in the long history of astronomical 
observations; for example, the techniques presently 
used for wavefront sensing have origins in optical 
sighting and testing devices that have been in use 
for centuries. A major goal of this book is to convey 
an understanding of the physical principles on which 
adaptive optics is based, in the hope that this will 
stimulate new ideas, new devices, and new applica
tions. Adaptive optics is an interdisciplinary activity 
that draws on many related sciences and technolo
gies, such as optical design, wave propagation, 
photon detectors, servo systems, lasers and computer 
technology, to name a few. Relevant results from 
these disciplines have been summarized in this 
book; the reader is referred to the specialized texts 
listed in the bibliography for more detailed develop
ment and information. 

Several people have assisted me in the preparation 
of this book. I am grateful to Horace Babcock for 
sharing the experiences that led to his original pro
posal for compensating astronomical telescopes. My 
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colleague Edward P. Wallner has generously contrib
uted many ideas and analyses on various aspects of 
adaptive optics, and also reviewed sections of the 
text. Mary Latham, librarian of  Optical 
Systems, provided valuable access to the technical 
literature contained in a large number of specialized 
publications. Peter Nisenson reviewed the manu

script and suggested several improvements. Finally, 
this book could not have been written without the 
support and encouragement of my wife, Ethel, who 
also prepared the bibliography and the subject index. 

Lexington, Massachusetts 
September, 1997 J.W.H 
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List of Symbols 

The symbols used in this book are based on those conventionally employed in the adaptive optics literature. 
Because of the large number of parameters involved, many symbols have more than one meaning. Symbols are 
generally defined in the sections in which they appear, and their meaning should always be clear from the 
context. Symbols printed in bold type represent multidimensional quantities, vectors, or matrices. 

ix 

Area; amplitude; baseline 
Complex amplitude 
Radius or side of an aperture; actuator 
spacing; amplitude; decay factor 
Fitting error coefficient of a deformable 
mirror 
Correlation or coherence function; transfer 
function 
Contrast; coupling coefficient; capacitance 
Contrast reduction ratio 
Structure parameter for refractive index 
variations 
Structure parameter for temperature 
variations 

 curvature 
System output function 
Velocity of light in vacuum, 
2.998 x  
Diameter of optical aperture 
Structure function 
Star density, stars per rad2 

Distance; subaperture diameter 
Diameter over which the phase error due to 
focal anisoplanatism is 1 rad2 

Diameter over which the conic tilt error is 1 
rad2 

Piezoelectric constant of order m,n 
Energy; error propagation factor; elastic 
(Young's) modulus 
Electromagnetic field 
Numerical constant, 2.718; read noise of a 
CCD array, electrons per pixel 
Multiplication or scaling factor 

Filter function; power spectrum 
Fourier transform 
Frequency; bandwidth 
Greenwood frequency 
Gain factor 
Gain or transfer function; frequency 
spectrum;  function 
Period of optical grating; gain factor; 
acceleration due to Earth's gravity 
Gradient function 
Gradient vector 
Height above sea level; magnetic field 
intensity 
Irradiance 
Spectral irradiance 
Height above telescope aperture; Planck's 
constant (energy per Hz of a photon), 
6.6256 x  s 
Mean turbulence height 
Beam clearance height 
Intensity; moment of inertia 
Intensity function 
Index number; complex operator,  
Bessel function of first kind and order n 
Index number 
Contrast reduction factor; mechanical 
stiffness 
Wave number,  index number 
Optical pathlength; baseline of an 
interferometer 
Laplace transform 
Outer scale of turbulence 
Length; scale size of turbulence eddies 



x List of Symbols 

Inner scale of turbulence 
Bending moment 
Modulation (transfer) function 
Electrostriction constant 
Number of elements or terms; azimuthal 
frequency of Zernike polynomial 
Visual magnitude (stellar) 
Mode number; number of elements; photon 
flux 
Spectral radiance 
Refractivity, (n — 1) x  at wavelength X 
Refractive index 
Number of elements or terms; number of 
photons; radial degree of Zernike 
polynomial 
Optical transfer function 
Pressure; power 
Point spread function 
Probability 
Quantum efficiency 
Radius of curvature; resistance, ohms 
Reynolds number 
Resolution or resolving power 
Radius; separation of points 
Turbulence coherence length (Fried's 
parameter) 
Position vector 
Strehl ratio 
Fractional sky coverage (of an adaptive 
optics system) 
Optical transfer function 
Signal-to-noise ratio 
Signal value; shear distance; wavefront 
slope; complex variable a  
Temperature; tension 
Optical transmission of the atmosphere 
Transmission of optical components 
Modulation transfer function 
Time interval; pulse length; thickness 
Turbulence change time 
Complex amplitude of an optical wave; 
system input function 
Coordinates of the spatial frequency 
(Fourier) plane 
Velocity in a turbulent flow; electrical 
potential (voltage) 
Characteristic velocity 
Velocity; wind speed 
Irradiance 
Wavefront function; intensity weighting 
function 
Weighting factor; wavefront value; effective 
radius of a Gaussian beam 
Position coordinates 
Position vectors 
Axial distance; lens focal distance 

Zernike expansion term or mode 
Z-transform 
Position coordinate; distance along optical 
path; optical range 
Range gate interval; change in position 
Angle of displacement (tilt); angle of 
arrival; coefficient of thermal expansion 
Field angle 
Attenuation factor; contrast (or 
modulation) of interference fringes 
Gamma function 
Displacement; incremental value 
Delta function or small angle 
Dirac delta function 
Rate of energy input 
Error function 
Zenith angle 
Efficiency 
Field angle; orientation angle; angular size 

 angle 
Effective isoplanatic angle 
Spatial  coefficient 
Wavelength 
Spectral bandwidth 
Full turbulence moment of order m 
Partial turbulence moment, above ( + ) or 
below (~) height  
Kinematic viscosity of fluid; Poisson's ratio 
Spatial dimension or vector; mass density 
Density of the earth's atmosphere at 
height h 
Standard deviation; stress; backscatter 
cross-section 
Standard deviation of wavefront phase 
error 
Standard deviation of angular tilt error 
Time constant; time delay 
Natural lifetime (of a sodium atom) 
Saturation time (of stimulated emission) 
Power spectrum of refractive index 
variations 
Power spectrum of temperature variations 
Spectral density 
Optical phase angle 
Phase function 
Log-amplitude 
Electromagnetic field 
Wavefront phase function 
Wavefront surface or slope function 
Angular frequency 
Product 
Two dimensional Laplacian 
=  +  

(superscript) Transpose of a matrix 
Trace of a matrix 
Generalized inverse of a matrix 
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The Short, Eventful History 
of Adaptive Optics 

A man that looks on glass, 
On it may stay his eye; 
Or if he pleaseth, through it pass, 
And then the heaven espy. 

George Herbert (1593-1633) 

 Introduction 

Earth's atmosphere is our window on the universe. 
This fragile, translucent shell of gases nurtures life on 
Earth, providing essential air and moisture, as well as 
giving protection from harmful radiation and the 
destructive impact of meteoric debris. Its transpar
ency allows us tantalizing glimpses of the cosmos 
from the security of our planet, but the atmosphere 
is in constant motion and is far from being a perfect 
window. Light rays that have traveled unchanged 
over vast distances, bringing information from the 
distant reaches of the universe, are distorted in the 
final moments of their long journey through space. 

Human curiosity about the mysterious objects 
seen through the atmospheric window gave birth to 
the science of astronomy. The opening quotation of 
this chapter was written shortly after Galileo made 
his discoveries with the newly invented telescope. For 
most of human history, however, astronomers relied 
on the unaided eye to view the sky and to keep track 
of its changing aspect. The Sun and Moon provided a 
daily and monthly calendar and marked religious cel
ebrations; the rising and setting of special stars 
guided seasonal activities, such as the planting of 
crops. The atmosphere was revealed by the colors 
of sunset and the twinkling of stars; these were nat
ural effects to be admired, adding to the enjoyment of 
a starry night. 

The present era of astronomy is dominated by 
huge Earth-based telescopes, probing the furthest 
reaches of the universe. The atmosphere, through 
its properties of absorption, dispersion, and turbu

lence, limits our ability to make scientific measure
ments with these instruments. Smaller instruments 
orbiting above Earth's atmosphere will play an 
important role in twenty-first century astronomy, 
but, because of the greater size and flexibility of 
Earth-bound instruments, it is likely that they will 
continue to be the main source of astronomical infor
mation for the foreseeable future. 

Great efforts have been made in the last half-cen
tury to devise means of compensating atmospheric 
effects. Spectral windows have been found at infrared 

 and radio frequencies that enable observations 
of the cosmos at wavelengths greatly different from 
the visible band. Radio waves will penetrate clouds 
and are little affected by turbulence, but their longer 
wavelength limits the angular resolution obtainable. 
At optical wavelengths, the systematic properties of 
the atmosphere, such as refraction and dispersion, 
are easily compensated, but the random variations 
produced by atmospheric turbulence have proved to 
be a difficult obstacle. The purpose of this book is to 
review the effects of turbulence on astronomical 
observations and to describe the technology that 
has been developed to overcome it. There are two 
aspects to this endeavor, foreshadowed in the open
ing quotation. We may look upon a telescope as an 
object in its own right, to be crafted and admired for 
its technology, but its true purpose is to reveal the 
truth about the universe. 

To place adaptive optics in historical perspective, 
the changing character of astronomical observations 
through the ages will be outlined briefly, starting with 
the ancient goal of determining the positions and 
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4 Adaptive Optics for Astronomical Telescopes 

motions of the heavenly bodies. The regularity of the 
motions was recognized in ancient times, and, for 
most of recorded history, astronomy has been 
regarded as a utilitarian activity with timekeeping 
as its main purpose. Early models of the universe 
were proposed to explain the motions of the heavenly 
bodies and not as a way of describing their true nat
ure. The invention of the telescope in the early seven
teenth century revealed the structure of the solar 
system, but it was not until the founding of astrophy
sics in the mid-nineteenth century that astronomy 
was broadened into an investigation of the character, 
composition, and history of the universe. 

The essence of adaptive optics is its ability to mea
sure, and ultimately to correct, the direction of light 
rays disturbed by atmospheric turbulence. In a sim
pler context, accurate measurement of the positions 
of heavenly bodies has been a vital part of astronomy 
since its earliest days. It is appropriate, therefore, to 
trace the development of astronomical position mea
surement through the ages as an introduction to the 
technology of adaptive optics. 

 Astronomy wi th the Unaided Eye 

The most noticeable features of the night sky are the 
patterns produced by the fixed stars, among which 
wander the planets. The stars can be differentiated 
by color and brightness, but they all appear to 
move as if they were attached to a shell that rotates 
consistently about Earth. Before 600  Babylonian 
astronomers, using simple sighting instruments to 
establish direction, kept records enabling them to 
determine the motions of the Sun, Moon, and planets 
with surprising accuracy. Great importance was 
attached to the prediction of eclipses. This informa
tion was passed on to the Greeks, among them Plato 
(427-347 B.C), who described a simple Earth-centered 
model of the universe based on concentric spheres. 
This model did not explain all the known phenom
ena, and indeed Plato's followers tended to disregard 
observational experience, proposing abstract and 
idealistic models of the universe. To better explain 
the observed erratic motions of the planets, 
Eudoxos (408-355  evolved a complex system 
of 27 geocentric spheres, four of which were assigned 
to each planet. It was recognized that this was a 
purely mathematical device. Pedersen [1974] notes 
that heavenly bodies were not regarded as permanent 
material objects until about 400  

Aristotle   a pupil of Plato, had a 
more objective view of nature. He valued mathe
matics, but considered it auxiliary to direct observa
tion, which he believed to be the only way to acquire 
knowledge of the physical world. He taught that 
"Mathematical relations are to be discovered in nat
ure, but not imposed upon it." According to King 
[1955], Aristotle extended the Eudoxoan system into 
a consistent physical model that pictured Earth as a 

tiny ball standing motionless at the center of 55 
transparent, rotating, crystalline spheres to which 
were attached the planets and stars. 

Around 300  a university and library were 
founded at Alexandria, which became the center of 
Greek astronomy, both theoretical and observa
tional. Aristarchos of    created 
a consistent heliocentric theory of the universe, but 
regarded this only as a mathemetical hypothesis and 
not as representing physical reality. 

The apex of Greek astronomy was reached with 
Hipparchos  B.C), who combined observa
tional and theoretical skills, compiling the first cata
log of the positions and magnitudes of the fixed stars. 
He used graduated measuring instruments, including 
armillary spheres. His discovery of the precession of 
the equinoxes, which causes stellar coordinates to 
shift less than 1 arc minute each year, indicates the 
accuracy with which measurements could be made at 
that time. Hipparchos' observations of planetary 
positions revealed the shortcomings of Eudoxoan 
theory, resulting in his adoption of a system of epi
cycles, first suggested by Apollonius. The careful and 
practical approach used by Hipparchos marks him as 
the first observational astronomer to display the 
modern spirit. 

The legacy of Hipparchos was summarized and 
expanded by Ptolemy (AD. 90-160) in his Almagest 
or "Great Composition," which remained the prime 
reference for astronomy for more than 1000 years. 
His Earth-centered universe was a geometric scheme 
that explained the motions of the heavenly bodies in 
terms of uniform, circular motions, enabling their 
positions to be predicted far into the future. 
Ptolemy also described observational instruments, 
including the quadrant and its simpler relative the 
triquetrum, in which zenith angles were measured 
in terms of chordal distances. This must have been 
the first instrument in which calibration "software" 
was used to support the optical hardware. 

During ancient times, there was probably little 
awareness of the optical properties of Earth's atmo
sphere. The phenomena of optical reflection and 
refraction were known in the fifth century  
through the use of burning mirrors and glasses that 
focused the Sun's rays, but the first quantitative 
description did not appear until the second century 
AD., in Ptolemy's  on optics. All the main fea
tures of planetary motion, including retrograde 
motion, were known in Plato's time, around 400 

 Such observations do not require instruments, 
so atmospheric effects were insignificant. 

The first astronomical instruments were used in 
Egypt and Mesopotamia around 1500 B.C, to mea
sure the daily and yearly motion of the Sun. They 
included the gnomon, a vertical stick, and the 
polos, a bowl that surrounds the gnomon and on 
which its shadow falls. Even with an instrument as 
simple as the gnomon, figure 1.1(a), many funda
mental measurements were made, including the 
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(a) Gnomon (b) Shadow Clock 

(c) Astrolabe 

Figure 1.1 Early astronomical  (a) The 
gnomon was used around 1500 B.C. to determine the 
position of the Sun, which is deduced from the length 
and angle of the shadow thrown by a vertical  
(b) The Egyptian shadow clock, used since 1000  
has a horizontal bar divided into six hours. It is 
reversed at noon to record the afternoon hours. 
From these instruments, the familiar sundial was 

 (c) The astrolabe dates from the third or 
fourth century AD. and combines two instruments. 
The alidade, shown above, measures the altitude 
angle of the Sun or a bright star. On the other side 
of the disk is a calculator that converts the measured 
angle into local time. 

local meridian and cardinal points, the dates of the 
solstices and equinoxes, and the length of the year in 
days. It is interesting to note that such astronomical 
observations preceded formal theories of the solar 
system by about 1000 years. The daylight hours 
were recorded by shadow clocks, such as that 
shown in figure 1.1(b). They were calibrated with 
six hours and reversed at noon to record the after
noon hours. 

By the fourth century B.C, the gnomon had been 
developed into a primitive sundial by dividing the 
polos into hours  1974]. For ordinary activ
ities, day and night were each divided into 12 hours. 
At the equinoxes, the hours were all equal, but at 
other times of the year they varied in length, the 
time hours being long in summer and short in winter. 
For astronomical measurements, hours of constant 
length were preferred. Short periods of time were 

measured by water clocks, in which water was 
released from a vessel through a small orifice. 
Accurate timekeeping remained a major problem in 
astronomy until the eighteenth century. 

Cleomedes (first century  is credited with the 
first reference to atmospheric refraction, in relation 
to a paradoxical eclipse during which both the Sun 
and the eclipsed Moon were visible. This should not 
occur if light rays travel in straight lines. Cleomedes 
explained the phenomenon correctly as being due to 
the bending of light rays in the atmosphere, so that 
both disks appear to be raised above the horizon 
[Cohen and Drabkin 1948]. Ptolemy also studied 
atmospheric refraction, concluding that one of its 
effects was to increase the apparent polar distance 
of stars. An account of the history of the measure
ment of astronomical refraction, with an extensive 
list of references, has been given by Mahan [1962]. 

After the disintegration of the Roman Empire and 
the burning of the library at Alexandria in A.D. 641, 
the Arabian cities of Baghdad, Cairo, and Damascus 
became centers of astronomy. Ptolemy's work was 
studied and his idea of using quadrants for measuring 
the altitudes of stars was put into practice on a large 
scale. In the eleventh and twelfth centuries, huge 
observational instruments that used visual sightlines 
were built in Europe, Arabia, and India. It was at this 
time that the great Arabian physicist   
(Alhazen, 965-1039) first described atmospheric 
effects on astronomical observations — the changing 
shape of the Sun and Moon as they approach the 
horizon and the need to account for atmospheric 
refraction in determining the positions of stars. 

Around this time, Arabian craftsmen perfected 
the astrolabe, a small instrument that enables time 
to be determined from the position of the Sun or 
stars, giving it great value for surveying and naviga
tion. The basic theory of the astrolabe had been 
worked out by Ptolemy. The flat Arab astrolabe, 
which probably originated in Egypt in the third or 
fourth century A.D., consists of a circular disk that is 
held in a vertical position by suspending it from a 
ring. On one side of the disk is the alidade, a pivoted 
arm equipped with two sights that enable it to be 
aimed at a bright star or the Sun, the altitude of 
which can be found by reading a scale calibrated in 
degrees, as shown in figure 1.1(c). The other side of 
the instrument consists of a calculator that converts 
the measured angle into the local time. A fixed circu
lar disk, the tympanon, is engraved with a stereo-
graphic projection of the heavenly spheres for the 
latitude at which the instrument is to be used. 
Superimposed on the tympanon is a perforated disk 
called the rete, which contains the projected positions 
of the ecliptic and a number of bright stars; the rete is 
cut away so that the tympanon is visible beneath it. 
To use the calculator, the rete is turned until the 
point marking the observed star is aligned with the 
altitude circle on the tympanon that corresponds to 
the measured altitude angle, whereupon the time cor-



6 Adaptive Optics for Astronomical Telescopes 

responding to the date is read off the outer scale. The 
astrolabe calculator (an early analog computer) 
solves problems of spherical geometry, making it gen
erally useful in astronomy and geodesy. The astro
labe probably had the longest useful life of any 
scientific instrument, remaining in use for more 
than 1000 years. Obsolescence was not a significant 
factor in those days. 

In the present context, the method of angular 
measurement used in the alidade is of primary inter
est. The accuracy of a simple angular measuring 
instrument of this type depends on two factors: 

 the precision with which the instrument can be 
pointed at the star or other object; 

2. the accuracy with which the scales are engraved 
on the instrument. 

The sighting precision depends both on the baseline 
(the separation between backsight and foresight) and 
on the design of the sighting devices themselves. 
Many sighting devices were devised for angular mea
surement with the naked eye; some of these are 
shown in figure 1.2. Astrolabes usually employed pin
hole sights at each end of the alidade. The problem 

Figure  Sighting systems used in early  (a) Arab astrolabes (ca. 
 A.D). (b)  Philippe Danfrie, 1597. (c) Alidade, Hans 

Christoph Schissler Jr, 1591. (d) Graphometer, Matteo and Giovanbattista Botti, 
 (e) Quadrant, Tobias Volckmer, Braunsweig, 1608. (0 Quadrant, Carlo 

Rinaldini, 1667. 
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with pinholes is that to obtain high angular accuracy 
they need to be very small, which makes stars difficult 
to see. Light is lost when the pinhole in the backsight 
is smaller than the pupil of the eye, which may be as 
large as 7 mm at night. Using a large pinhole 
increases visibility but reduces angular accuracy. In 
many astrolabes, two sets of holes were provided, as 
shown in figure  the small ones for use with the 
Sun and the large ones for stars. 

In other instruments, such as quadrants or graph-
ometers, which make angular measurements in a hor
izontal plane, two slots or a combination of slots and 
pinholes were often used, as depicted in figure  
In some cases, an aperture was cut away around the 
foresight, as shown in figure   provide a 
larger field for finding the star. The use of slots or 
pinholes of finite size inevitably introduces an error 
due to parallax, which can be reduced by using sight
ing devices consisting of a single edge. The sight 
shown in figure 1.2(d) is an early example of the 
use of single knife-edges for determining the angle 
of optical rays. 

The culmination of naked-eye astronomy came 
late in the sixteenth century, with Tycho Brahe's 
magnificent Uraniborg observatory in Denmark 
(established in 1576), which used large quadrants 
and  spheres to measure the positions of 
heavenly bodies. The accuracy of direct sighting 
instruments became an important issue at this time. 
It must be remembered that this was before the 
invention of the telescope and no optical aids to view
ing were in use for the observation of celestial bodies. 
The acuity of the human eye is about 1 minute of arc 
(1/60 degree) in daylight, when the pupil diameter is 
about 2.5 mm. At night,  the pupil may 
expand to 7 mm, the acuity is usually far worse. 
With sighting instruments, two additional factors 
must be taken into account: the precision achievable 
in lining up the pinholes or other sighting devices, 
and the accuracy with which the instrument itself is 
calibrated. Before Tycho Brahe, the overall accuracy 
of most astronomical measurements was no better 
than ±10 minutes of arc, and with the passage of 
time the tables of the positions of planets were in 
error by several days. 

By careful construction and calibration of his 
large instruments, Tycho was able to reduce the 

sighting errors to about 2 minutes of arc. He 
then devised an improved sighting system that 
eliminated the parallax errors encountered with 
conventional pinholes. The eyepiece consisted of 
four slits defining a square, as shown in figure 
1.3. At the object end of the instrument was placed 
an opaque square of exactly the same size. The 
instrument was adjusted so that the star just 
touched each side of the square when viewed 
through the corresponding slit. A variant of this 
method for single-axis measurements used an opa
que cylinder as the foresight. By this means, Tycho 
further reduced the error in his observations to less 
than 1/2 minute of arc. Even this angle is consider
ably greater than the  variations due 
to turbulence, so atmospheric effects are not appar
ent, although the angular measurements still have 
to be corrected for atmospheric refraction. To 
avoid wind buffeting, some of Tycho's instruments 
were placed in an underground observatory. The 
accuracy to which star positions could be measured 
was not improved until the telescopic sight was 
invented about 50 years later. 

Tycho's sighting scheme for establishing the direc
tion of a star may be regarded as a forerunner of the 
optical testing technique developed by Foucault in 
the 1850s. This test employs a knife-edge at the 
focus of an objective lens or mirror to determine 
the directions of the light rays emanating from each 
part of the objective. 

Copernicus (1473-1543) had meanwhile advanced 
the idea of a heliocentric system as a better model for 
determining the motions of the planets, but, even 
with the information available from his superior 
instruments, Tycho rejected this in favor of an 
Earth-centered universe. It is astonishing to realize 
that after 20 centuries of astronomy using the 
unaided eye, during which the positions and motions 
of heavenly bodies had been recorded in great detail, 
astronomers could not even agree on a physical 
model of the solar system, let alone the nature of 
the stars beyond it. Early in the seventeenth century, 
using Tycho's observations, Kepler formulated his 
laws of planetary motion and produced a working 
model of the solar system, but, even at this recent 
date in human history, the grand design of the uni
verse was not even suspected. 

Figure 1.3 Tycho Brahe's 
sighting system to eliminate 
parallax, used in the late 
sixteenth-century just 
before the invention of the 
telescope. The star was lined 
up simultaneously with four 
slits on all four sides of a 
square pinnule. 
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1.3 Telescopes and Atmospheric 
Turbulence 

It was the invention of the telescope that gave astron
omers the key to understanding the universe. Galileo 
heard of the existence of the new instrument in 1609, 
but did not know the prescriptions for the lenses. He 
quickly found a combination that worked, using a 
concave eyepiece with a convex objective, and con
firmed that it truly made distant objects appear clo
ser. Over the next few months, he made better 
instruments. On January 7, 1610, he pointed his 
fourth and best telescope at Jupiter and saw three 
stars near the planet. He thought, at first, that they 
were fixed stars, but the following night was amazed 
to find that they had changed their positions relative 
to the planet. Further observations revealed a fourth 
object. He soon realized that they were satellites 
orbiting the planet; his telescope had revealed the 
basic structure of the solar system. In the same 
year, he observed the changing size and phases of 
Venus, confirming that it must revolve around the 
Sun and not the Earth. The geocentric model of the 
universe, accepted for more than 2000 years, was 
demolished. The theories that Copernicus and 
Kepler had laboriously constructed were confirmed 
beyond doubt in a few nights' observation. 

Galileo's discoveries demonstrated the value of 
using new instruments to extend human knowledge 
of the natural world through scientific observation, 
rather than attempting to deduce the truth from arbi
trary assumptions, or by logical arguments, as the 
early Greek philosophers had attempted. A basic 
principle of science had been established. 

The telescope provides both a source of new infor
mation about the universe and a means of confirming 
theories that explain previous discoveries. This rela
tionship between instrumentation and theory is fun
damental to science. Observations produce 
information; analysis of the information suggests a 
new theory; new instruments are developed to con
firm the new theory; new facts are discovered; and so 
the process is repeated. Each step in the process 
increases the total store of knowledge and provides 
the foundation for the next. 

In the first centuries of astronomical telescopes, 
the instruments were simple. The problems to be 
overcome were basic technical limitations, such as 
the fabrication of lenses and mirrors, and mechanical 
tracking of the heavenly objects. Although determin
ing the positions of stars and planets was the prime 
objective of astronomy at this time, the telescope was 
not immediately applied to sighting instruments. The 
telescopic sight was invented around 1640 by William 
Gascoigne, who relates that an obliging spider spun a 
thread, which, when placed at the focus of a convex 
eyepiece, became superimposed on the telescopic 
image as a sharply defined line [King 1955]. The prin
ciple is shown in figure  In practice, crossed hairs 
were found to be more durable. Gascoigne went on 

Figure  William Gascoigne's telescopic sight 
(1640). Fine cross-hairs are located at the focus of 
the eyepiece, enabling the telescope to be accurately 
pointed at a star. 

to invent the eyepiece micrometer, in which the 
separation of two metal knife-edges located at the 
focal plane could be adjusted precisely by calibrated 
screws. This device enabled the diameters or separa
tions of objects to be measured with an accuracy 
limited only by the telescope optics and the atmo
sphere. Gascoigne's pioneering work on graduated 
instruments was cut short when he was killed at the 
age of 24 in the Civil War in England. 

Galileo's telescopes had a resolving power of only 
10-15 seconds of arc, on which the effect of atmo
spheric turbulence was scarcely visible. As the optical 
quality of telescopes improved, astronomers became 
more aware of the limitations imposed by the atmo
sphere, not just in bending the light rays to change 
the position of stars, but also in blurring the images 
of stars and planets. The first astronomer to appreci
ate the importance of atmospheric conditions on tele
scopic images was Christian Huygens, who, around 
1656, was using an aerial telescope of  focal 
length, the small objective of which was mounted on 
a high pole. He noted that stars twinkled and that the 
edges of the Moon and planets trembled in the tele
scope, even when the atmosphere appeared calm and 
serene. So frequent were nights of poor seeing that 
Huygens warned observers against too hastily blam
ing their telescopes. 

Isaac Newton, from his studies of optical prisms, 
was well aware of the chromatic problems of refrac
tive telescopes. His measurements suggested that all 
optical media had the same dispersive power, leading 
him to the erroneous conclusion that it was impossi
ble to correct the chromatic aberration of refractive 
telescopes. In his search for better instruments, 
Newton, in 1668, built a small telescope using a con
cave metal primary with a flat diagonal secondary to 
reflect the beam to an eyepiece at the side of the tube. 
Newton's main contributions to science are his laws 
of motion, his understanding of gravity, and his work 
on the nature of light. It is somewhat ironic that his 
telescope, conceived to avoid a problem that does not 
exist, has become one of the classic configurations for 
astronomical telescopes. 

Newton's instrument was not, in fact, the first 
reflecting telescope to be invented. In 1663, James 
Gregory had described an instrument consisting of 
a large primary paraboloid to collect the light, with 
a small concave secondary ellipsoid to produce the 
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final image. The center of the primary was perforated 
to allow the insertion of an eyepiece. Gregory was 
unable to obtain mirrors with the necessary aspheric 
surfaces and the design was not implemented until 
1674, by Robert Hooke. Meanwhile, in 1672, 
Cassegrain had invented a reflecting telescope using 
a paraboloidal primary and convex hyperboloidal 
secondary, the light being reflected back on its axis 
through a hole in the primary to the eyepiece. 
Although this design was derided by Newton, it has 
become the basis of most large modern astronomical 
instruments. 

Newton was familiar with the problems caused by 
atmospheric turbulence, and in the following passage 
from Opticks, published in 1704, he gave a vivid 
description of the effects of turbulence as well as 
some good advice on the siting of telescopes: 

If the Theory of making Telescopes could at 
length be fully brought into Practice, yet there 
would be certain Bounds beyond which 
Telescopes could not perform. For the Air 
through which we look upon the Stars, is in a 
perpetual Tremor; as may be seen by the tremu
lous Motion of Shadows cast from high Towers, 
and by the twinkling of the fix'd Stars. But these 
Stars do not twinkle when viewed through 
Telescopes which have large apertures. For the 
Rays of Light which pass through divers parts 
of the aperture, tremble each of them apart, and 
by means of their various and sometimes contrary 
Tremors, fall at one and the same time upon dif
ferent points in the bottom of the Eye, and their 
trembling Motions are too quick and confused to 
be perceived severally. And all these illuminated 
Points constitute one broad lucid Point, composed 
of those many trembling Points confusedly and 
insensibly mixed with one another by very short 
and swift Tremors, and thereby cause the Star to 
appear broader than it is, and without any trem
bling of the whole. Long Telescopes may cause 
Objects to appear brighter and larger than short 
ones can do, but they cannot be so formed as to 
take away that confusion of the Rays which arises 
from the Tremors of the Atmosphere. The only 
Remedy is a most serene and quiet Air, such as 
may perhaps be found on the tops of the highest 
Mountains above the grosser Clouds. 

The possibility of compensating atmospheric tur
bulence was not even dreamed of in Newton's time. 

At the end of the seventeenth century, the search 
for a reliable method of determining longitude 
obsessed the seafaring nations of Spain, France, 
and Britain, all of which offered substantial rewards 
for solving the problem. Galileo had suggested obser
vations of the Jovian satellites as a method of estab
lishing a standard time over the entire globe. This 
could be used on land, but observations were too 
difficult at sea, where it was most needed for naviga

tion. Observing the position of the Moon among the 
stars had been suggested by Johannes Werner in  
as a method of keeping time, but it required an 
immense catalog of star positions. In London, on 
John  advice, King Charles II established 
the Royal Observatory at Greenwich expressly to 
compile a star catalog for the determination of long
itude by the method of lunar distances. The 1714 
Longitude Act offered £20,000 for a method of find
ing longitude to a  degree, corresponding to 30 nau
tical miles at Earth's equator. Flamsteed's star 
catalog was completed in 1725, but, as it turned 
out, another technology eventually claimed the 
prize: timekeeping with a marine chronometer, the 
brainchild of John Harrison [Sobel  The lunar 
distance method continued to be used and tables 
were published until 1907. 

During the eighteenth century, the quality of 
astronomical telescopes gradually improved. The 
reflector reigned supreme, as there appeared to be 
no way to achromatize a refracting objective. 
Mirrors with diameters up to about 18 inches 
(0.46m) were cast and polished from speculum 
metal, composed of copper and tin. Although their 
reflectivity was poor, the shape of these mirrors was 
good enough to resolve stars as close as 1 arc second 
when atmospheric conditions permitted. In 1778, 
William Herschel polished "a most capital speculum" 
of only 6.2-inch  aperture with which he 
compiled a catalog of double stars and, about 2 
years later, discovered the planet Uranus. Herschel 
went on to make reflectors with apertures of 18.8 
inches (0.48  and, finally, 48 inches (1.2 m), the 
latter being by far the largest-aperture telescope 
that had been built up to that time. Herschel was 
well aware of the limiting effects of Earth's atmo
sphere, especially as the 48-inch instrument was set 
up next to his house in the damp and misty valley of 
the River Thames, near London. Although the 
weather was frequently severe, he found that high 
humidity did not preclude good seeing. He wrote: 

By enlarging the aperture of the telescope, we 
increase the evil that attends magnifying the 
object without magnifying the medium . . . 
However, in beautiful nights, when the outside 
of our telescope is dripping with moisture dis
charged from the atmosphere, there are now and 
then favourable hours in which it is hardly possi
ble to put a limit to magnifying power. But such 
valuable opportunities are extremely scarce; and, 
with large instruments, it will always be lost labor 
to observe at other times. 

This lesson went unheeded and had to be 
 several times before finally taking root at 

the end of the nineteenth century. 
It could be said that the huge reflectors built by 

Lord Rosse in Ireland in the 1840s were intended 
more as technology demonstrations than 
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 instruments. Rosse produced speculum metal 
mirrors of 36- and 72-inch apertures, successfully 
grinding and polishing them to a high degree of per
fection. The 72-inch mirror was capable of resolving 
0.5 seconds of arc, but could be used on few occa
sions because of the weather. In common with 
Herschel's large telescope, it employed a very crude 
mount in which pointing was achieved by ropes and 
pulleys. No major discoveries were made with this 
instrument, which served as a warning that large 
apertures are wasted under indifferent seeing condi
tions. 

William Lassell pioneered the use of equatorial 
mounts in large reflecting telescopes, and was also 
one of the first astronomers to move his telescope 
to a site having good seeing, rather than waiting for 
good seeing to come to him. Lassell built reflecting 
telescopes of 24-inch and 48-inch apertures, which he 
took to Malta in 1852 and 1862, respectively. He 
drew up a catalog of 600 new nebulae and commen
ted "I was never more struck with the conviction how 
necessary a pure tranquil sky is to the just perfor
mance of a very large telescope". 

Although John Dolland had discovered in 1757 
how to make achromatic lenses by combining ele
ments made of flint and crown glass (a feat that 
Newton had deemed impossible), these were only 
available in small sizes up to about 5-inch diameter 
because of the difficulty of casting flint glass disks of 
the required optical quality. It was not until the end 
of the century that large flint blanks were available, 
resulting in the production of many large refracting 
telescopes during the second half of the nineteenth 
century.  Clark made many objectives for 
these telescopes, including the 26-inch refracting tele
scope for the U.S. Naval Observatory in 
Washington, which was completed in  The ima
ging capabilities of these large telescopes were 
masked by the generally poor seeing at the observa
tories, most of which were at low altitudes, in or near 
cities. Most observations were still made visually, and 
the large apertures enabled considerable detail to be 
seen on the Moon and planets, as well as in the 
brighter star clusters. There are usually short periods 
of good seeing that enable a visual observer to catch 
details that are normally obscured, hence the use of 
drawings to record the observations. In the last dec
ades of the century, refractors of 30 inches and more 
were produced, culminating in the 36-inch refracting 
telescope at Lick Observatory in 1888 and the Yerkes 
Observatory 40-inch refracting telescope, dedicated 
in 1897. 

The technique of silvering glass substrates was 
developed by von Steinheil and by Foucault in 
1856. Glass mirrors were lighter and easier to work 
than metal mirrors. In England, a 36-inch glass mir
ror made by Calver was silvered and mounted in a 
Newtonian telescope by Common in 1879. With this 
instrument, he obtained excellent photographs of 
planets and nebulae, using exposures as long as 1 1/2 

hours. A similar 36-inch reflecting telescope was 
made by Common for Edward Crossley's private 
observatory in the north of England. This telescope 
has a long and varied history. Realizing that such a 
telescope deserved a site with better seeing, Crossley 
donated the telescope to Lick Observatory in 1895. 
After the mirror was refigured and the mount was 
strengthened, Keeler obtained a brilliant series of 
photographs showing vast numbers of extragalactic 
nebulae, although their identity was not realized at 
the time. The value of reflecting telescopes for photo
graphy had already been convincingly demonstrated 
in 1887 when Roberts obtained the first photograph 
showing the spiral structure of the Andromeda neb
ula, using a 20-inch mirror at prime focus. The suc
cess of the Crossley telescope reinforced the value of 
operating a large telescope at a site with excellent 
seeing, and provided the stimulus for the construc
tion of even larger reflecting instruments, which soon 
came to dominate the field. 

 The Emergence of Astrophysics 

In the middle of the nineteenth century, the direction 
of astronomy was changed forever by two inventions. 
The first of these was photography, which, with its 
ability to integrate the light from long exposures, 
could reveal faint stars and nebulae that were invisi
ble to the human eye. Photography was first used to 
record images of the Sun and Moon in the 1840s and 
came into general use when the dry-plate process was 
perfected in the 1880s. The second invention was the 
spectroscope, which enables chemical elements to be 
identified by examination of the wavelengths of light 
emitted at high temperatures. Between them, these 
new methods produced a revolution in astronomical 
instrumentation comparable to that of the telescope 
itself. Until that time, the main goal of astronomers 
had been to determine the positions, distances, and 
motions of the stars. Most of the telescopes in use 
were visual refractors, which were limited to aper
tures of less than 1 m. To obtain spectrograms of 
stars and galaxies, achromatic telescopes with large 
light-gathering power are required. 

The foundations of astrophysics were laid in the 
1860s by William Huggins, in his pioneering visual 
comparison of the spectra of the Sun and stars with 
those of earthly elements. In 1864, he discovered the 
composition of the "unresolved" nebulae that had 
puzzled astronomers for so long: they showed not a 
spectrum, but a single bright line. "The riddle of the 
nebulae was solved." he wrote, "The answer, which 
had come to us in the light itself, read: Not an aggre
gation of stars, but a luminous gas." 

The rapid development of astrophysics around the 
turn of the century was largely due to the efforts of 
George Ellery Hale, who shared Huggins' enthusiasm 
about spectroscopy. Hale's lifetime goal was to estab
lish the link between the Sun and the stars, which he 
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hoped could lead to the discovery of the underlying 
structure of the universe. He not only developed 
much of the instrumentation required for this task, 
including the spectroheliograph — which produces a 
photograph of the Sun's disk at a single wavelength 
of light, but he also succeeded in raising the funds for 
the largest telescopes built in the first half of the 
twentieth century. To extend the spectral study to 
stars and to reach further into the universe, it was 
necessary to collect more light and to concentrate it 
into the smallest possible spot on a photographic 
plate or spectrographic slit. The two essential require
ments were a large aperture and good seeing. 

The chosen site was Mount Wilson, at an altitude 
of 5886 feet, near Pasadena, California. In 1903, Hale 
obtained a grant from the Carnegie Institution to 
build the 60-inch reflecting telescope. The first obser
vations were made in 1908. An early result was the 
finding that the spectrum of Betelgeuse closely 
resembled those of sunspots, confirming its (low) 
temperature. Photographic tests produced perfectly 
round star images of about  diameter 
after an exposure of  h. Stars of twentieth magni
tude were recorded with 4-h exposures. Soon after, 
work started on the 100-inch reflector, which was put 
into regular use in 1918. This instrument brought 
enormous numbers of faint stars, star clusters, and 
nebulae within photometric and spectrographic 
range, providing a mass of information on the tem
peratures, composition, motions, intrinsic brightness, 
distribution, and distances of stars. The development 
of the Mount Wilson Observatory marks the begin
ning of the modern age of observational astronomy. 
Since that time, astronomical seeing conditions have 
assumed prime importance in the choice of sites for 
astronomical observations. 

In 1914, V. M. Slipher, using the 24-inch refractor 
at Lowell Observatory, discovered that the M31 
galaxy in Andromeda is receding from our own. By 
1925, he had determined the radial velocities of 41 
galaxies, establishing that the galaxies are moving 
apart. In the following years, using the 100-inch 
Mount Wilson telescope, Hubble determined the 
relation between the distance and velocity of nebulae, 
establishing the scale and the expansion of the uni
verse. For over 40 years, the 100-inch telescope was 
in the forefront of astronomical research, its produc
tivity aided by the excellent seeing conditions at 
Mount Wilson. It fell victim to light pollution from 
Los Angeles in the 1960s, limiting its use for deep-sky 
research, which is now carried out at more remote 
sites in the Chilean Andes and at Mauna Kea, 
Hawaii. The 100-inch telescope has recently been 
reconditioned and fitted with adaptive optics, giving 
this veteran instrument a new lease on life. 

This brief review of the prehistory of adaptive 
optics has tried to show how greatly our ability to 
fathom the nature of the physical world depends on 
having suitable instruments. Centuries of painstaking 
measurements made with the unaided eye could not 

equal a few minutes' observation with a small tele
scope in resolving the nature of the solar system. 
Photography revealed faint nebulae and other distant 
objects that were invisible to the human eye, while 
spectrography enabled the measurement of their 
composition and radial velocities, leading to the dis
covery of the expanding universe. New technology is 
the key to new discoveries. But, by 1980, astronom
ical telescope design had reached a plateau. 

Conventional methods of building astronomical 
telescopes (using passive components) reached the 
limit of their capability with the 5-m Mount 
Palomar instrument, dedicated in 1948. In recent 
years, the sensitivity of astronomical instruments 
has been increased 100-fold by the replacement of 
photographic film with photoelectric detectors, but 
even these are now near their limit, with efficiencies 
of over 90%. What is the next step in the design of 
astronomical telescopes? 

Observations made by space telescopes at 
violet  and x-ray wavelengths outside the atmo
spheric windows have produced new discoveries 
enlarging our knowledge of the universe. But, most 
astronomy is carried out with ground-based tele
scopes, and two improvements are necessary to main
tain the pace of discovery: larger primary mirrors to 
collect more light, and removal of the effects of atmo
spheric turbulence that restrict the angular resolu
tion. Both of these advances are now possible. 
Lightweight primary mirrors in which the surface 
figure is maintained by active control can be made 
with diameters of over 8  Atmospheric turbulence 
can be compensated by adaptive optics. These devel
opments should set the stage for another golden age 
of astronomy. 

 The Importance of Optical 
Wavefront Measurements 

An essential step in upgrading the performance of 
astronomical instruments is the ability to measure 
the optical quality of the components, especially the 
telescope objective, which is invariably the largest 
and most difficult component to manufacture. For 
the first 250 years of their existence, the quality of 
astronomical telescopes was assessed by their visual 
performance: for example, the ability to split double 
stars. In reality, this is as much a test of the atmo
spheric seeing and the observer's eyesight as the qual
ity of the telescope itself. 

Herschel studied the resolving power of the eye 
and of telescopes and was aware that there was a 
lower limit to the angular size of an object beyond 
which it could not be resolved. Objects smaller than 
this limit appeared as a spurious disk, the size of 
which varied inversely with the diameter of the tele
scope aperture. In 1831, the exact relationship was 
established mathematically by George B. Airy, who 
found that the diffraction of light spreads the image 



 Adaptive Optics for Astronomical Telescopes 

of a star formed by a circular aperture into a bright 
disk surrounded by a series of faint rings of rapidly 
diminishing brightness. For a perfect optical system, 
the angular radius of the Airy disk, as it is known, is 

 X\D where  is the wavelength of the light and D 
is the diameter of the objective. The effect of small 
random distortions (up to about 1/4 wave  is to 
reduce the peak intensity of the image, without sig
nificantly enlarging the disk. At that time, it was not 
known how to measure such small optical errors. 

William Dawes made a practical study of the 
visual resolving power of telescopes and, in 1867, 
he published a table showing the apertures required 
to resolve double stars of known separation. Tests 
using double stars do not indicate the location of 
the errors on the surface of a mirror or lens. 
Without this information, the final polishing of 
objectives is a  affair. 

A crucial step in optical measurement technology 
was Foucault's invention of the knife-edge test in 
1859. This technique not only reveals the location 
and magnitude of imperfections in the figure of a 
primary mirror, but it also allows random wavefront 
variations, such as those due to atmospheric turbu
lence, to be visualized. As will be shown, it played a 
role in the evolution of adaptive optics a century 
later. From this perspective, it can be seen that the 
concept of compensating atmospheric turbulence did 
not suddenly appear, but was the inevitable result of 
experiments and technical improvements made over a 
long period of time. 

The key to producing large reflecting mirrors is 
the ability to test the optical accuracy of their surfaces 
during the final polishing process. In the laboratory, 
the knife-edge test is made at the center of curvature 
of concave mirrors, using a small spot of light as the 
source. A knife-edge located at the reflected image 
converts small imperfections in the figure of the mir
ror into visible variations in brightness. In an operat
ing telescope, the same test can be performed by 
pointing the telescope at a bright star and placing 
the knife-edge at the focus. In this case, both the 
figure errors and the continually changing wavefront 
distortion due to the atmosphere can be seen, giving a 
good appreciation of the effects of turbulence in rela
tion to the optical quality of the telescope. 

The two sources of wavefront error can be sepa
rated by photography. Using short exposures of 1/20 
second or less, photographs of the primary mirror 
made with a knife-edge show the combination of 
the figure errors and atmospheric turbulence pat
terns. With long exposures of tens of seconds, the 
rapidly changing turbulence errors average out, 
revealing only the imperfections in the figure of the 
mirror. Photographs of the primary mirror of the 
200-inch telescope of the Palomar Observatory, 
made in this way by Ira S. Bowen in 1949, are 
shown in figure 1.5. 

Another method of testing large mirrors is the 
Hartmann test, first described in 1900, in which a 

mask perforated by precisely located holes is placed 
near the focus of the mirror. The light spots are 
recorded photographically and their positions are 
measured. The mirror aberrations can then be com
puted from the displacements of the spots from their 
expected positions. The Foucault and Hartmann 
techniques, originally used for testing large mirrors, 
are the direct forerunners of the wavefront sensing 
methods now used in adaptive optics. The shearing 
interferometer uses optical gratings rather than a 
knife-edge, but can be regarded as a modified 
Foucault test. The Shack-Hartmann sensor is based 
on the Hartmann test, modified to obtain high opti
cal efficiency. 

 Early Ideas on Wavefront 
Compensation 

The preceding sketch of the development of 
astronomical telescopes up to the middle of the twen
tieth century has attempted to provide the back
ground for the evolution of adaptive optics. In 
1953, Horace W. Babcock suggested a possible 
method of compensating atmospheric turbulence 
[Babcock 1953]. For various reasons, this idea was 
not put into practice at the time. Indeed, it was 
almost another 20 years before real-time turbulence 
compensation was actually achieved. 

The forerunners of adaptive optics technology 
were the automatic guiders used to maintain the 
image of a star on a spectrographic slit or photo
graphic plate during long exposures. These devices 
were first used in  when sensitive photodetector 
tubes using electron multiplication became available. 
Autoguiders compensate random changes in the 
position of an image, whether such changes are due 
to the atmosphere or to mechanical strain in the tele
scope. At that time, there does not appear to have 
been any thought of extending this idea to the correc
tion of defocus or higher order wavefront distur
bances. Even in those early days, the most 
important component in a wavefront sensing system 
was the photodetector. This is just as true in today's 
high-performance wavefront sensors as it was with 
autoguiders 60 years ago. 

Babcock [1990, 1992] relates that his interest in the 
problem of atmospheric seeing was stimulated by 
regular use of the Foucault (knife-edge) technique 
for precise focusing of reflecting telescopes. When 
using a bright star, this test conveys the reality of 
the turbulent elements in the atmosphere: their size, 
rate of change, and motion due to wind (see figure 
1.5). In this way, an observer becomes familiar with 
the source and character of imperfect seeing. In the 
late  while working on high-dispersion spectro
scopy at the Mount Wilson and Palomar observa
tories of the Carnegie Institution of Washington, 
Babcock built an automatic guider using a rotating 
knife-edge to guide the telescope during long expo-
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Turbulence 

Knife-edge at 
primary focus 

 of 
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Figure  Knife-edge photographs of the primary mirror of the 200-inch telescope at Palomar Observatory 
[Bowen 1950]. In (A) and (B), short exposures show random wavefront distortion due to atmospheric turbu
lence. In (C) and (D), the turbulence is averaged out using 80-s exposures to show two stages in the figuring of 
the mirror surface. The principle of the knife-edge test is shown in (E). 

sures. Although this operated at a low speed, making 
a correction every 3 s, it guided the 100-inch tele
scope well and eliminated a tedious job [Babcock 
1948]. A few years later, the benefits of eliminating 
atmospheric turbulence were demonstrated by a 
night of exceptional seeing at the 100-inch telescope 
at Mount Wilson, when, for several hours, the stellar 
seeing disk was no larger than 1/4 arc second and 
essentially motionless. At such times, which are extre
mely rare, the coherence length of the turbulence may 
attain the extraordinary value of 1 m, the changes 
occurring slowly, on a time scale of several seconds. 
This experience was a natural demonstration of the 
gains to be realised if ordinary seeing could be com
pensated. 

In 1952, Babcock saw an article on the Eidophor, 
an electronic device developed by Fischer in Europe 
for projection of television pictures in theaters, and 
realized that it could be used for correcting optical 
wavefronts distorted by atmospheric turbulence. He 
analyzed a possible design using a rotating knife-edge 
similar to that employed in the automatic guider, 

determining the size of the subapertures and the 
frame frequency for scanning. This led to an estimate 
of the magnitude of the reference star required. The 
size of the isoplanatic area was also determined. 

In October 1953, Babcock published a paper, 
"The possibility of compensating astronomical see
ing," which described a system combining a seeing 
sensor and wavefront corrector — the first account 
of what is now known as adaptive optics. The system 
that he proposed is shown in figure 1.6. Two active 
elements are employed: a fast guider using a tiltable 
parallel plate for correcting image motion and an 
Eidophor device for correction of wavefront distor
tion. The Eidophor employs a mirror covered with a 
thin film of oil in a vacuum enclosure, in which it is 
scanned by an electron beam. The beam is modulated 
to control the electric charge deposited on the  
film, which induces local slope changes that modify 
the wavefront reflected from the mirror. The field 
lens reimages the primary mirror of the telescope 
on the Eidophor. The control signals for the electron 
beam are obtained from an image tube located at the 
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far side of a rotating knife-edge centered on the 
image of the star. The knife-edge converts wavefront 
slope changes perpendicular to its edge into intensity 
variations that are detected by an image tube and 
processed with reference to the rotation angle. 
Signals correlated with the sine and cosine functions 
of the rotation frequency, corresponding to overall 
image displacement, are fed to the tip-tilt corrector, 
which keeps the reference star accurately centered on 
the rotating knife-edge. Higher frequency signals, 
corresponding to subaperture displacements, are 
used to modulate the electron beam, which controls 
the thickness of the oil film on the Eidophor, and 
produces the required correction to the wavefront. 

Babcock's description of a possible means for 
compensating atmospheric turbulence was the first 
recognition that astronomers no longer had to toler
ate atmospheric seeing; here was a possible way to 
correct it. He was also well aware of the two main 
limitations of seeing compensation: the need for a 
bright reference star and the small isoplanatic angle 
limiting the field of view — problems that are still not 
fully solved. The idea was not pursued because, at the 
time, the most important program for the Mount 
Wilson and  observatories was the extension 
of Hubble's velocity-distance relation for remote 
galaxies, for which distance estimation depended on 
precise measurement of magnitudes. The most press
ing need in instrumentation at that time was to 
improve photometric accuracy by developing 
electric image tubes, a program that took about 10 
years to complete. 

During the 1950s, the efforts of the astronomical 
community to improve seeing were restricted to cor
recting the most basic problem, image motion. The 
automatic guider developed in 1947 corrected the 
average pointing of the telescope every 3 s. In 1953, 
a much faster automatic guider was developed, also 
employing a rotating knife-edge, but with the tip-tilt 
correction implemented by a gimbal-mounted quartz 
plate driven by two low-inertia motors and inserted 
in the optical beam ahead of the image plane 
[Babcock et  1956]. The knife-edge consisted of a 
3-mm steel ball rotating within a nonmagnetic race 
whose radius was equal to the diameter of the ball. 
The ball was driven by a magnetic field to rotate at 60 
revolutions per second. A working bandwidth of 10 
Hz was achieved. This was the first "fast guiding" 
system in which the correction was made by a small 
tip-tilt corrector and not by moving the whole tele
scope. It was used successfully for spectroscopy at the 
coude focus of the 200-inch Hale telescope. 

Other methods of stabilization were also tested. 
An  operated tip-tilt mirror was 
used by Leighton [1956] for planetary photography 
on the 60-inch Mount Wilson telescope. A different 
approach to image stabilization, using an electronic 
image tube in which control signals were applied to 
the magnetic deflection coils, was described by 
DeWitt et al. [1957]. This " image tranquilizer, " as 

Figure  Seeing compensator proposed by Babcock 
 The wavefront received from a star is analyzed 

by a rotating knife-edge and an image orthicon 
detector tube. Correction signals are fed back in real 
time to change the optical thickness of an elec
tronically deformed oil film on the Eidophor mirror, 
thereby compensating the wavefront disturbances. 

it was called, successfully stabilized television pictures 
of Jupiter obtained with a 24-inch reflecting tele
scope. 

The idea of using a segmented correction mirror 
to compensate atmospheric turbulence was first 
proposed by V.P. Linnik of the Astronomical 
Observatory of the [then] U.S.S.R. Academy of 
Sciences in 1957 [Linnik 1993]. Linnik's idea is 
shown in figure 1.7. Piston motion of the segments 
would be electrically controlled using a white-light 
interferometer to measure the phase errors within 
20-cm2 segments of the aperture. No details were 
given of how this system would be implemented. 
Linnik concludes his paper by proposing the use of 
an artificial light beacon mounted on an airplane at 
8- to  altitude, its position being controlled by 
the observer to coincide with the observed object. 
This is almost certainly the first reference to the use 
of artificial guide stars, a technique that did not 
become a reality until the 1980s. 

The possible use of an electrostatically deformed 
membrane mirror in a feedback system for wavefront 
compensation was suggested by Babcock  The 
back of the mirror was covered with a mosaic of 
target elements on which charges could be deposited 
by an electron gun. This device is a forerunner of 
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modern membrane mirrors that use an array of elec
trodes to deform the mirror surface with electrostatic 
forces. 

The invention of the laser in 1960 provided a new 
arena for optical science, and for the next decade the 
technical development of adaptive optics was applied 
to laser systems. This effort is outlined in the next 
section. 

 The Development of Laser Beam 
Control Systems 

The first adaptive optics systems capable of compen
sating atmospheric turbulence in real time were 
developed in the late 1960s for laser beam control. 
Laser systems normally operate at relatively high 
power levels with coherent radiation, thus removing 
two of the major limitations that apply to astronom
ical adaptive optics: namely, the lack of photons 
from natural star reference sources and the need for 
operation over a wide spectral band. The use of 
coherent radiation allows wavefront compensation 
to be made on a modulo  basis, so the maximum 
phase correction is ±1/2 wave, independent of the 
actual path length error (provided it is within the 
coherence length of the source). Not only does this 
reduce the excursion required in deformable mirrors, 
but it also allows the use of electro-optical devices 
that generally have a limited phase-shifting capabil
ity. 

It is interesting to compare the development of 
laser adaptive optics with that of adaptive antennas 
in microwave radar. The adaptive antenna concept 
for microwave radiation, developed in the 1950s, is a 
forerunner of phase-conjugate adaptive optical sys
tems, using the same system concept, but with a dif

ference factor of about 10,000 in the electromagnetic 
wavelengths. The principle of beam tagging, which 
originated in adaptive antenna systems, has been 
applied to adaptive optics systems where it is 
known as  or "image-sharpening." 
Because of the need to separate the tagging signals, 
either in time or in frequency, this technique is lim
ited to relatively small optical apertures. 

The basic problem in laser propagation is being 
able to maximize the intensity of a laser beam pro
pagating through the turbulent atmosphere. Such 
systems are generally referred to as coherent optical 
adaptive techniques (COAT). The propagation of 
laser beams through the atmosphere originally had 
little in common with astronomy, but in recent 
years the development of laser-generated beacons 
has made this a subject of interest to astronomers. 
There are two main approaches: phase conjugation 
and multidither. The elements of a phase-conjugation 
system [Cathey et  1970, Hayes et  1977] are 
shown in figure 1.8. Phase conjugation employs the 
principle of optical reciprocity, in which the phase 
shift in the optical return path between a specular 
reflection (glint) in the target and the transmitter is 
measured in real time at multiple locations in the 
transmitting aperture. A compensating phase shift 
is then inserted at the corresponding locations in 
the aperture to make the transmitted laser wavefront 
match the wavefront received from the target glint. 
This process maximizes the power density in the vici
nity of the target glint. Because the phase measure
ments can be made in parallel, there is no intrinsic 
limit on the number of elements that can be compen
sated. 

Multidither systems employ the principle of mea
suring the intensity of the radiation returned from a 
target glint while making trial phase perturbations of 
the transmitting aperture, each section of which is 

Figure 1.7 Seeing compen
sator proposed by Linnik in 
1957 [Linnik 1993], using a 
segmented mirror for wave-
front correction. A white-
light interferometer mea
sures the wavefront error 
within each segment of the 
mirror. The errors are 
compensated by piston 
motion of the segments. 
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tagged with an identifiable signature.  this case, the 
atmospheric path is effectively measured by the out
going beam; the glint intensity may be monitored by 
a separate detector  1977]. A multidither 
COAT system of this type, shown in Figure 1.9, 
employed an  phase corrector [Pearson et 

 1976]. Each controlled element was identified by 
modulating or "dithering" the phase by about ±30° 
at a different temporal frequency within the range 8-
32 kHz. To ensure correct operation of the servo 
system, the lowest modulation frequency must be at 
least six times the control loop bandwidth, and the 
modulation frequencies must be spaced by at least 
twice the control loop bandwidth. These constraints 
typically limit the number of correction elements to 
less than 100, so that, in practice, this type of system 
is limited to relatively small apertures. Both of these 

systems were successful for compensating laser beams 
through turbulent paths, but they could not be 
directly applied to the imaging of incoherently radiat
ing, extended objects. 

 First Successes wi th Image 
Compensation 

In 1972, the Advanced Research Projects Agency 
(ARPA), whose mission was to develop new technol
ogy for the U.S. Department of Defense, was wres
tling with the problem of identifying newly launched 
Soviet satellites, preferably by obtaining high-resolu
tion photographs of them on their first or second 
orbit. At that time, the only method of space object 

error signal 

Target 

Turbulence 

Figure  Phase-conjugate Coherent Optical Adaptive Technique (COAT) for compensation of an outgoing 
 laser beam (1970). The optical aperture is divided into zones, each containing a Bragg cell that shifts the 

phase and frequency of the radiation passing through it. In each channel, the radiation returning from a glint 
on the target (modulated at frequency 2fn) is mixed in a nonlinear photodetector with a reference beam from 
the laser, modulated at frequency 2/r. The electrical difference signal at  —fr) is selected by a filter and 
compared in phase with a fixed modulation  fm.  turbulence in the atmospheric path disturbs the phase 
of the radiation returning from the target glint, an error signal appears at the output of the phase detector. 
The error signal shifts the frequency generated by the voltage-controlled oscillator VCR, thereby closing the 
loop by producing a phase shift in the Bragg cell that compensates the atmospheric phase. A system of this 
type operated successfully over a 7.9 km horizontal path at a wavelength of 10.6  
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Figure  Multidither Coherent Optical Adaptive Technique (COAT) for compensa
tion of an outgoing  laser beam (1976). The aperture is divided into zones, each of 
which is 'dithered' or tagged in phase at a different frequency. Optical phase errors are 
not measured directly, but are inferred from the intensity of the target glints collected 
by a single photodetector. The intensity signals from each channel are separated by 
synchronous detection. If the glint intensity varies in phase with the dither signal, this 
indicates that a positive phase correction is required, whereas an antiphase variation 
indicates a negative phase correction. Wavefront corrections are made by applying 
control signals of the appropriate polarity to the actuators in each channel. In some 
systems, the tagging and correction functions are performed by a single deformable 
mirror. 

surveillance from the ground was to obtain short-
exposure (1/100 s or less) images of the space objects 
using satellite-tracking telescopes of 1.2- to  
aperture, and then to process the somewhat fuzzy 
images digitally to bring up the desired detail. This 
"postdetection processing" technique did not give 
useful results, mainly because the desired information 
was obscured by noise on the films and videotapes. 
The signal-to-noise ratio was so low that no amount 
of computer processing could restore the image. The 
main reason for the low signal-to-noise ratio was the 
image degradation produced by atmospheric turbu
lence. 

At  Optical Systems in Lexington, 
Massachusetts, Program Development Manager J. 
Richard Vyce became aware of this problem and, in 
June 1972, I met with him to discuss possible solu
tions. For several years, Itek and other companies had 
been working on the problem of detecting satellites 
against a background of fixed stars, using methods 
for discriminating their motion relative to stars, 
over large areas of the sky. For that task, satellites 
can be considered as single points of light and 
atmospheric turbulence is relatively unimportant. 
However, to obtain sharp images of these tiny objects 

only a few arc seconds in extent, and to reveal some 
details of their configuration, it was essential to over
come the blurring due to the atmosphere. The tele
scopes themselves were capable of resolving angular 
detail of 1/10 arc second, but their resolving power 
was degraded by turbulence to between 1 and 2 arc 
seconds. A new approach was called for. 

It was decided that the best solution was to com
pensate the atmospheric distortion before the image 
was recorded. This process would enable high-resolu
tion information to be obtained even with relatively 
long exposures. Implementation of a system of this 
kind presented formidable problems. Babcock's 1953 
and 1958 proposals for compensating atmospheric 
seeing had never been put into practice and it was 
evident that the compensation of satellite images 
would be far more difficult than compensating 
stars, because of their rapid motion across the sky. 

As space objects traveling in low Earth orbits are 
tracked by a telescope, their high angular velocity 
causes the atmospheric turbulence structure to 
move across the beam at a high speed, resulting in 
the need for a compensation bandwidth of about 
1 kHz. To achieve this speed, the wavefront would 
have to be measured at a rate about 10 times faster. 
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In addition, for space surveillance, the adaptive 
optics would have to work under all seeing condi
tions; it is not possible to wait for the best conditions, 
as with scientific observations. At the AMOS (for
merly ARPA Maui Optical Site, now Air Force 
Maui Optical Site) Observatory in Maui, Hawaii, 
the seeing is usually between 1 and 2 arc seconds, 
requiring a subaperture size of about 10 cm. For 
real-time compensation of satellite images at visible 
wavelengths, a telescope of 1.6 m aperture would 
therefore require about 200 subapertures, sampled 
at a rate of 10 kHz. These requirements were far 
beyond the capability of any wavefront sensor or 
corrector known in 1972. Another critical problem 
was how to convert the measured wavefront slopes 
into suitable drive signals for a deformable mirror. 
The reconstruction process had been implemented 
for individual wavefronts  1974], but the 
data processing rate required for real-time compensa
tion in a telescope of reasonable size far exceeded the 
capability of any serial processor then available. 

Three key components were required: a wavefront 
corrector and a wavefront sensor, each with about 
200 subapertures, coupled together by a fast recon-
structor. At that time, the state of the art in deform
able mirrors was represented by piston-type 
segmented mirrors designed for  laser beam correc
tion at 10.6 mu  wavelength. For real-time compensa
tion at visible wavelengths of about 0.5 mu m, the 
precision of deformable mirrors would have to be 
improved by a factor of 20, the number of actuators 
would have to be multiplied by 10, and they would 
have to respond 100 times faster to input commands. 

Real-time wavefront sensors of the required pre
cision did not exist in 1972. The standard method of 
wavefront measurement was to photograph a laser 
interference pattern and scan it with a manually oper
ated coordinate densitometer. The data were then 
punched onto cards that were fed into a mainframe 
computer to reduce the data and produce a wave-
front map. With luck, the wavefront information 
was available in about 24 h. For real-time adaptive 
optics, it was needed in less than 1/1000 of a second. 
Furthermore, it was necessary to make the atmo
spheric wavefront measurements using the broad
band sunlight reflected from the satellites, rather 
than the monochromatic light employed in conven
tional  

Fortunately, some experiments were in progress at 
 on a new method of wavefront measurement 

using a shearing interferometer. In 1972, James 
Wyant invented a device that used a moving grating 
to convert wavefront gradients to electrical phase 
shifts that could be rapidly measured. Using a reci
procating drive, I devised a modification of this 
shearing interferometer that would measure the com
plete wavefront over an optical aperture 20 times per 
second. This wavefront sensor was improved by 
Chris  using a rotating radial grating, 
which greatly increased the sensor's measurement 

rate and allowed operation with broadband light. 
Later versions were capable of measuring the wave-
front over a full aperture at a rate of 10,000 frames 
per second, each measurement frame consisting of 
several hundred wavefront gradients, thereby fulfill
ing all the requirements for real-time compensation. 

Itek had also developed the Pockels Readout 
Optical Memory (PROM), which was an electro-
optic crystal configured to store optical images as 
an electrical charge pattern [Aldrich et   
The bismuth silicon oxide crystal stored the data as 
a pattern of optical phase shifts, and therefore was 
capable of correcting phase errors in an optical wave-
front, although its correction range was very limited. 
In spite of its many shortcomings, the PROM crystal 
was pressed into service as a wavefront compensator. 

The final link needed for the real-time atmospheric 
compensator was a rapid means of reconstructing the 
individual wavefront slope measurements made by 
the shearing interferometer into a continuous wave-
front map covering the optical aperture. The first 
idea was to use a digital computer, but the high 
data rate would have overwhelmed most of the 
machines then available. The solution that I devel
oped was an analog computer in which electric cur
rents representing the wavefront slopes were added in 
a two-dimensional resistor network having the same 
configuration as the subapertures in the wavefront 
corrector. The voltages appearing at the nodes of 
the network represented the reconstructed wavefront 
values, which were then applied to the wavefront 
corrector. This wavefront reconstructor was very 
fast, with a settling time on the order of 1  
Because of its parallel structure, it could be expanded 
to cover large apertures without sacrificing speed. 

I described these ideas in a technical proposal sub
mitted to the Strategic Technology Office of ARPA 
in November 1972; this resulted in a contract to 
develop a  feasibility model of the adap
tive optics system for laboratory tests. It soon 
became evident that a better wavefront corrector 
than the PROM crystal was needed, preferably a 
deformable mirror with several hundred controllable 
zones. Within a short time, the research team of 
Julius Feinlieb, Steven Lipson, and Peter Cone devel
oped the Monolithic Piezoelectric Mirror (MPM), a 
very successful device that was used extensively in 
adaptive optics systems for the next decade. 

A schematic diagram of the real-time atmospheric 
compensator  is shown in figure 1.10. There 
are fundamental differences between this instrument 
and  seeing compensator. The RTAC was a 
fully parallel system with multiple feedback loops, 
one for each wavefront compensation subaperture. 
It was the first adaptive optics system to use a wave-
front reconstructor, which restores the absolute 
phase values that are lost when local wavefront gra
dients are measured. The reconstruction process con
verts the two-dimensional array of measured 
wavefront gradients into a corresponding array of 
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drive signals for the deformable mirror, taking into 
account both the spatial and temporal characteristics 
of the turbulence-degraded wavefront; it is the key to 
maximizing the performance of all adaptive optics 
systems. This architecture provides all the basic cap
abilities needed to implement adaptive optics for the 
largest telescopes, in the most efficient way. 

The  using this new approach was ready for 
laboratory tests in December 1973. It employed a 21-

  with a wavefront sensor making 32 
simultaneous slope measurements. Assisting me in 
the design and testing of this system were electronics 
engineer Joseph Lefebvre and technician Steven 
Moody. Questions had been raised over the potential 
stability of so many interacting feedback loops. An 
error in the design or construction might have pro
duced large oscillations that could have destroyed 
our monolithic deformable mirror, the only one of 
its type in existence. It was with some trepidation that 
the 21 feedback loops were closed for the first time. 
We were elated to find that the compensation system 
was perfectly stable. When optical distortions were 
introduced into the beam, the RTAC produced 
well-corrected images, some of which are shown in 
figure  

This was the  test of an adaptive optics sys
tem using a wavefront sensor, reconstructor, and 
deformable mirror, similar to those in standard 
use today. The tests were the culmination of more 
than a year of intense development at  Optical 
Systems, yielding new approaches to wavefront sen
sing, parallel data processing, and deformable mir
rors. The ultimate application of this new 
technology was to obtain compensated images of 
extended sunlit objects (Earth satellites). One ques
tion remained to be answered: Could the extended 
object itself be used as a reference for the wavefront 
sensor, or did a separate point source have to be 
provided near the object? This question was 
answered by Wyant  who found that when 
an optical diffraction grating is used to produce 
the sheared wavefronts, interference fringes are gen
erated by an extended source such as a solar illumi
nated satellite. This important fact is still not widely 
appreciated; it is not necessary to use a monochro
matic point source to produce interference fringes, 
as will be explained in chapter 5. Laboratory tests 
on the RTAC in the spring of 1974 proved that 
"self-referencing" will work on extended objects 
such as low-earth-orbit satellites. This technique 
enables fine detail to be observed when using the 
whole object as the reference source for the wave-
front sensor. 

The RTAC underwent field tests at Rome Air 
Development Center's (RADC) optical test range at 
Verona, New York in the summer of  under the 
direction of Donald Hanson, the RADC program 
manager. The tests were made over a 300 m horizon
tal path near the ground, using a helium-neon laser 
as the light source. The collecting aperture was a 1 m 

telescope mounted in a vertical tower, with a 
stat for beam steering sitting at the top of the tower. 
During the day, the RTAC worked perfectly, produ
cing a good image of the laser source through the 
turbulent path. At dusk, it worked even better, 
when the daytime turbulence had subsided. Then, 
suddenly, the image disintegrated as strong turbu
lence overwhelmed the correction system. After 
some initial consternation, it was realized what had 
happened: at dusk, with a clear sky, the air near the 
ground cooled, while the telescope tower remained 
warm, causing a strong updraft that created consid
erable turbulence in the optical path. The tower was 
subsequently modified with doors and optical win
dows to prevent its functioning as a chimney. 

These field tests convinced ARPA and the Air 
Force RADC, who were administrating the Itek con
tract, that the principles employed in the RTAC were 
practical and could be scaled up for use on a much 
larger telescope. 

The first public description of the RTAC was 
given in July 1974 at a meeting of the Optical 
Society of America in Boulder, Colorado [Hardy et 

 1974]. United States patents covering the analog 
data processor used for wavefront reconstruction and 
the basic configuration of the real-time wavefront 
correction system were issued in November and 
December 1975, respectively [Hardy 1975a, 1975b]. 

 spite of the success of the RTAC, the investiga
tion of other methods for compensating turbulence-
degraded images continued. Variations of the "multi-
dither" system used for laser beam compensation 
were analyzed by a team from Hughes Research 
Laboratories [Miller et al. 1974]. The system known 
as image sharpening was investigated by Muller and 
Buffington [1974]. In this approach, wavefront errors 
are detected by their effects on the full-aperture 
image of the reference star, rather than by directly 
measuring wavefront slope in a number of  
zones as in the RTAC. Using an image sharpness 
criterion, which can be as simple as measuring the 
amount of light passing through a pinhole somewhat 
smaller than the diffraction-limited core of the image 
(the Airy disk), it can be shown that the criterion is 
maximized only when the input wavefront is error 
free. The image sharpness function does not, how
ever, identify uniquely the type of wavefront error, 
so it is necessary to make trial perturbations in the 
aperture to determine the correction required. A sim
ple system of this type using a linear array of six 
actuators was built and tested in 1976. Images of 
bright stars were successfully sharpened in one 
dimension. An image-sharpening system using a 
actuator deformable mirror was tested on a 36-cm 
telescope by McCall et al. [1977], and it succeeded 
in reducing the seeing disk of  from its uncor
rected size of several arc seconds to less than 1 arc 
second. 

As a technique for real-time turbulence compen
sation, image sharpening becomes increasingly diffi-
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Figure  Real-Time Atmospheric Compensator (RTAC). This pioneering adaptive optics system used a 
  mirror, a white-light shearing interferometer, and an analog wavefront reconstructor. 

It first operated in the laboratory in December 1973. 

cult to implement as the aperture size gets larger, 
because the number of trial perturbations that must 
be made in each operating cycle increases in propor
tion to the area of the aperture. Dyson [1975] com
pared the limiting magnitudes of RTAC-type 
adaptive optics systems (using parallel feedback 
paths) with those of image-sharpening systems 
(using the serial approach) and showed that parallel 
systems have a significant advantage for large aper
tures. The parallel approach, in which the wavefront 
is corrected simultaneously over the whole aperture, 

is now universally employed in adaptive optics sys
tems. 

 The Evolution of Large Adaptive 
Optics Systems 

The laboratory and field tests conducted on the 
Real Time Atmospheric Compensation System 
confirmed that the principles employed were sound 

(a) (b) (c) 

Figure  First compensated images obtained with RTAC (1973). These plots show the image intensity 
distribution from a point source for three cases: 
(a) no added distortion, deformable mirror flat, Strehl ratio 0.94; 
(b) 1.28 waves peak-to-peak distortion, no compensation, Strehl ratio reduced to 0.18; 
(c) same distortion, RTAC operating, Strehl ratio restored to 0.85. 
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and could be scaled up to much larger telescopes. 
The prime candidate for adaptive optics was the 

 satellite-tracking telescope at the AMOS 
Observatory on Mt Haleakala, then operated by 
ARPA. The function of this installation was to 
develop and evaluate new methods of obtaining 
data on orbiting space objects. Atmospheric turbu
lence imposed a limit on the angular resolution that 
could be obtained. Postdetection processing had not 
been successful due to the very low signal-to-noise 
ratios of the recorded data. Because  
satellites move at a high angular rate, their aspect 
angle is continually changing, making it difficult to 
apply multiple-frame addition techniques to 
improve the image quality. Real-time compensation 
of atmospheric turbulence appeared to be the ideal 
solution. 

Low-Earth-orbit satellites are, in many ways, 
ideal objects for real-time compensation: they are 
compact in angular size, usually a few arc seconds, 
so they are generally contained within a single iso-
planatic region. They are also bright enough to act as 
the reference source for wavefront sensing, with 
many having a visual magnitude between 4 and 8. 
There were, of course, many difficult problems still 
to be solved, such as increasing the number of actua
tors by a factor of almost 10, to match the larger 
aperture, and improving the efficiency of the wave-
front sensor so that individual photons could be 
counted. Mechanical packaging was also a challenge, 
as it was necessary to mount the entire optical system 
of the compensator on the telescope without restrict
ing its tracking ability. 

The Compensated Imaging System (CIS) suc
cessfully solved all of these problems (figure 1.12). 
First operating in 1982, it was a major technologi
cal breakthrough. It used a  mirror with 
168 actuators, with a separate two-axis mirror for 
tilt correction. The wavefront sensor was a shearing 
interferometer using arrays of end-on 

 tubes for photon detection. The control loop 
bandwidth was adjustable up to 1000 Hz. A photo
graph of the equipment mounted on the AMOS 
1.6-m telescope is shown in figure 1.13. The adap
tive optical components of the CIS were  con
tained in a rigid structure mounted at the 
Cassegrain focus. 

The CIS was equipped with an operator interface 
having full diagnostic and control capability. During 
operation, the following parameters were continu
ously monitored and displayed at the CIS control 
console: turbulence strength  wavefront sensor 
photon count, residual wavefront error, recon
structed wavefront values, and deformable mirror 
drive voltages. The residual error at the output of 
the wavefront sensor is the prime indicator of system 
performance. Controllable parameters, such as inte
gration time and shear values, can be modified 
quickly by the operator to optimize performance as 
conditions change. Operating parameters may be 

recorded on magnetic tape for postmission analysis 
and diagnostics. 

The Compensated Imaging System involved a 
considerable effort in mechanical, optical, electrical, 
and computer engineering. As technical director of 
the project at  Optical Systems, I was fortunate 
to have Richard A. Hutchin (formerly Hudgin) and 
Edward P. Wallner on the design team. Their analy
tical skills provided much-needed guidance in pre
viously uncharted areas of technology, such as 
wavefront sensing using the light from faint, rapidly 
moving satellites, the reconstruction and prediction 
of random wavefronts, and methods of optimizing 
the performance of adaptive optics systems. 

The Itek design team was supported by additional 
scientists with expertise in wave propagation pro
blems, including DARPA consultants David L. 
Fried and Marvin King, Ben McGlamery of 
Scripps Oceanographic Institute, and Darryl 
Greenwood of Lincoln Laboratory, Massachusetts 
Institute of Technology (MIT). Much of the analysis 
generated during the design of the CIS and successive 
systems is now a part of the standard technical litera
ture on adaptive optics. In the early 1980s, after 
development of the CIS, much of the effort in adap
tive optics was directed to the use of laser beacons, a 
subject which is covered in chapter 7. 

Some of the data obtained during tests on the CIS 
are shown in figures 1.14 and 1.15. The compensated 
image of a double star was obtained by Itek during 
acceptance tests in the summer of 1982. The image of 
the Hubble Space Telescope was made in 1992 by 
U.S. Air Force Phillips Laboratory, which now oper
ates AMOS. For full compensation at visible 
lengths, the limiting magnitude was found to be 
about mv = 7. Tilt correction (image stabilization) 
was obtained for dimmer objects. With double stars, 
it was found that some high-order wavefront com
pensation occurred, even when the separation was 
much larger than the expected isoplanatic angle, 
sometimes as much as 1 arc minute. This is believed 
to be due to a persistent layer of low-altitude turbu
lence at AMOS, compensation of which is effective 
over a large field of view. The isoplanatic angle due to 
high-altitude turbulence still limits the ultimate com
pensation possible when the guide star is separated 
from the object viewed by more than a few arc sec
onds. The images shown are taken from a videotape 
made with a television format  (Intensified 
Silicon Intensified Target) camera operating at 30 
frames per second. No postprocessing was employed. 
Average values of  during these tests were between 
5 and 8 cm, whereas the CIS was designed for an   

value of 10 cm. Analysis has shown that the perfor
mance of the CIS is limited mainly by the small 
stroke of the deformable mirror rather than by the 
number of actuators. 

For many years, the CIS was the largest adaptive 
optics system in existence. It was still producing 
useful data in 1994, making it the grandfather of 



Figure  Schematic diagram of the Compensated Imaging System (CIS). The CIS was the first adaptive optics system capable of fully compensating a 
large astronomical telescope. It operated at visible wavelengths and was installed on the AMOS 1.6-m telescope in 1982. 
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Uncompensated Compensated Uncompensated Compensated 

Figure  CIS Test data, 18 May 1982: Real-time 
compensation of a double star in the visible band. 
The separation of the components is 0.9 arc sec, 
and their visual magnitude is 5.2. 

Figure 1.15 CIS Test data, 24 July 1991: Real-time 
compensation of an Earth-orbiting satellite (Hubble 
Space Telescope). The spacecraft was at a slant range 
of  km, elevation angle 38 degrees. Its angular size 
is about 3 arc seconds. 

adaptive optics systems. The adaptive optics tech
nology developed for the CIS formed the basis for 
the Atmospheric Compensation Experiment (ACE), 
a program performed by the MIT Lincoln 
Laboratory between 1981 and 1985 [Greenwood 
and  1992]. The purpose of this work 
was to develop methods for compensating laser 
beams transmitted from the ground into space, 
through the turbulent atmosphere. The principle 
used is known as optical reciprocity: if the turbu
lence is measured in the downward direction using a 
beacon at the desired aim point of the laser and 
corrected by a deformable mirror near the ground, 
then the same corrections are valid for a laser beam 
propagating upward through the atmosphere to the 
aim point. 

The ACE employed a 69-actuator MPM and a 
shearing interferometer wavefront sensor similar to 
those used on CIS. The wavefront reconstructor 
was implemented digitally, using an array of multi
plier-accumulator processing elements. To visualize 
the corrections produced by the deformable mirror, 
Lincoln Laboratory built a "flying carpet" display, 
which provided a real-time image of the shape of the 
mirror faceplate with the excursions greatly magni
fied to make them visible. The ACE was installed on 
the 60-cm laser beam director at AMOS in  and, 
during the next few years, laser beam compensation 
experiments were made to aircraft flying over the site, 
to the space shuttle Discovery, and finally to rockets 
at altitudes of about 600 km. These tests were the 
first to demonstrate atmospheric compensation of a 
beam propagating from the ground to space. 

After 10 years as an adaptive optics workhorse for 
defense programs, the ACE was loaned to Mount 
Wilson Observatory to conduct astronomical obser
vations under various meteorological conditions 
[Shelton and Baliunas 1993]. It was mounted at the 
coude focus of the 60-inch telescope and achieved 
extraordinary results [Shelton et  1993], consider
ing the ripe old age of both the telescope (the mirror 

was cast in  and the adaptive optics, which first 
operated in 1980. After making some minor improve
ments to the adaptive optics, the compensated 60-
inch telescope was capable of producing long-expo
sure star images having a full-width at half maximum 
(FWHM) of about  arc seconds, for uncorrected 
seeing of 1.2 arc seconds or better. The improvement 
in Strehl ratio was about 10-fold. Some of the results 
obtained are shown in figure 1.16. The ACE 
employed photomultiplier detectors having relatively 
low quantum efficiency, giving a limiting magnitude 
for full compensation of about  = 6. An updated 
adaptive optics system has now been built for the 
Mount Wilson 100-inch telescope [Shelton et al. 
1995] using very-low-noise charge-coupled device 
(CCD) detectors which improve the limiting magni
tude to about  = 14. 

 The Next Generation of Adaptive 
Optics 

The events leading up to the development of adaptive 
optics have been reviewed, from  discov
ery almost 2000 years ago that Earth's atmosphere 
could bend light rays, to Newton's appreciation of 
how atmospheric turbulence limits the resolving 
power of astronomical telescopes, to Foucault's 
method for visualizing optical phase and the effects 
of turbulence, and finally to the development of the 
first generation of adaptive optics systems for large 
telescopes. Although the limitations due to Earth's 
atmosphere became apparent soon after the inven
tion of the telescope, 350 years passed before an 
astronomer realized for the first time, in 1953, that 
turbulence could be compensated directly by means 
of controlled deformation of optical components. 

Although adaptive optics has a short history, 
recent progress has been rapid. In the 1980s, laser 
beacons were developed by the defense community, 
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Figure  Compensation of natural stars using the ACE adaptive optics system with the 
60-inch telescope at Mount Wilson Observatory  et  1993). Uncompensated and 
compensated images are shown of the stars Regulus (Alpha Leo) and Altair (Alpha 
Aquilae). 

initially for the purpose of directing laser beams. This 
effort, carried out by the MIT Lincoln Laboratory 
and the U.S. Air Force Phillips Laboratory is sum
marized in chapter 7. This technology is now used to 
generate reference sources for observational astron
omy. 

Several scientific organizations started the devel
opment of astronomical adaptive optics in the mid-
1980s, including the National Optical Astronomy 
Observatory (NOAO), the European Southern 
Observatory (ESO), and Office National d'Etudes et 

de Recherches Aerospatiales (ONERA) in France. In 
1992, much of the adaptive optics development 
funded by the U.S. Government was made available 
to the scientific community and many observatories 
are now planning to incorporate adaptive optics into 
the latest generation of astronomical telescopes. 
These programs are summarized in chapter 10. 

Adaptive optics is now recognized as an essential 
component of ground-based astronomical telescopes. 
In the following chapters, the theory and practice of 
adaptive optics are explored in greater depth. 



Adaptive Optics in 
Astronomy 

"A good idea is worth more than a 
large telescope." 

R. O. Redman 

2.1 Introduction 

The purpose of this chapter is to provide an overall 
perspective on the application of adaptive optics to 
ground-based astronomy. It addresses questions such 
as: What is the function of adaptive optics? How does 
it improve astronomical observations? What effect 
does it have on the design of telescopes and instru
mentation? How is adaptive optics implemented and 
what are its limitations? By providing concise 
answers to these questions, I hope to establish a 
framework for the detailed discussion of techniques 
and system design that is contained in the following 
chapters. 

The function of adaptive optics in astronomy is 
to remove aberrations from the optical path 
between a celestial object and the imaging device. 
When this is achieved, the quality of the image is 
limited only by the size of the telescope aperture. 
For astronomical observations, the aberrations 
occur near the end of the optical path, in Earth's 
atmosphere, and in the telescope itself. If uncor
rected, the image of a star is spread into a "seeing 
disk", which may be 10-100 times larger than the 
diffraction limit of the telescope itself, degrading the 
angular resolution and greatly reducing the peak 
intensity. Most of the image degradation is caused 
by random phase variations due to turbulence 
within the beam path. An adaptive optics system 
measures these phase disturbances and compensates 
them in real time, restoring the image quality to a 
useful fraction of the diffraction-limited capability 
of the telescope. For astronomical applications, the 

required peak intensity of the image is typically 
between 0.1 and 0.8 times its diffraction-limited 
value, depending on the scientific task. In certain 
cases, such as detecting dim companions of stars, 
a much higher degree of compensation is required 
to reduce scattered light from the parent star. 

Adaptive optics is capable of improving the per
formance of most optical instruments used in 
astronomy, including spectrographs and interferom
eters as well as imaging devices. It is not limited to 
compensating atmospheric turbulence, although this 
is usually the most serious problem in ground-based 
observations. Adaptive control can be used to cor
rect figure errors in the primary mirror as well as 
optical errors arising from any random disturbance, 
ranging from slow variations in temperature and the 
gravity vector, which may have a time scale of 
hours, up to the rapidly moving turbulence eddies 
transported by high-velocity winds, producing a 
bandwidth that approaches 1000 Hz. 

The atmospheric disturbances that affect astro
nomical telescopes have characteristic frequencies 
above 1 Hz. Although, in principle, adaptive optics 
will work down to the lowest temporal frequencies, 
it has proved convenient, in practice, to compensate 
the lower frequency disturbances due to temperature 
and gravity by a separate control system known as 
"active optics." The primary mirror is potentially 
the largest source of low-frequency wavefront errors 
in astronomical telescopes; the main task of active 
optics is to control its optical figure, eliminating 
large, low-frequency phase errors. This allows the 
adaptive optics system to employ a small deformable 
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objects of a given brightness, or to improve its spatial 
and spectral resolution. 

Direct imaging benefits in two ways from adaptive 
wavefront compensation. Not only is the angular 
resolution of the telescope improved, but the peak 
intensity of the image is increased with respect to 
the sky background. This leads to a considerable 
improvement in the limiting magnitude for detection 
of faint objects. With multiple or extended objects, 
wavefront compensation increases the contrast of 
detail within the object. A particular case of interest 
is the direct detection of planetary systems around 
nearby stars, in which adaptive optics plays a critical 
role in reducing the scattered light from the parent 
star. 

In long-baseline interferometry, adaptive optics is 
used to point the telescopes accurately, to correct 
wavefront errors within the optical apertures, and 
to equalize the optical pathlengths of the connecting 
arms. The fringe contrast of interferometers is 
degraded seriously by wavefront errors in the inter
fering beams; adaptive optics has an important role 
in these instruments. Multiple-aperture interferome
try with large telescopes, which is becoming an 
important method of achieving high angular resolu
tion, would not be feasible without adaptive optics 
technology. 

Adaptive optics also has a role in space telescopes, 
to compensate for deformation of optical surfaces 
and structures due to thermal variations and attitude 
changes. It also provides correction for image motion 
(jitter) caused by vibration from attitude control or 
other equipment on board the spacecraft. 

Originally developed as an exotic solution for spe
cial-purpose imaging and laser weapons, adaptive 
optics has blossomed into a technology that is useful 
in astronomical telescopes of all sizes and purposes. 

2.2 Observing Through the Atmosphere 

2.2.1 Atmospheric Limitations 

The information obtained about celestial objects is 
carried by light waves that travel over vast distances 
in space for tens to millions of years until, in the last 
millisecond of their journey, the waves are distorted 
as they plunge through Earth's atmosphere. The 
atmosphere has three main characteristics that 
restrict astronomical observations: 

• opacity, due to the absorption of light at 
certain wavelengths; 

• luminosity, due to scattered light, broad
band radiation, and airglow emission; 

• turbulence, due to solar heating and winds. 

Atmospheric transparency is good at wavelengths 
between 0.3 and  covering the ultraviolet 

 visible, and near-infrared  bands. It is 

mirror to achieve the high temporal bandwidth 
necessary to compensate atmospheric turbulence. 
Another difference is that active optics systems 
usually employ a local reference (which may be 
optical or mechanical) to control the primary mirror, 
while adaptive optics systems must, of necessity, 
employ distant reference sources to measure the 
wavefront. Some active optics installations use a nat
ural star to calibrate the control system. 

The two important properties of an astronomical 
telescope are its collecting area and its angular 
resolution. A larger aperture D not only increases 
the amount of light collected, but also reduces the 
diameter of an image of an unresolved star so that 
ideally its peak intensity increases as D4, while the 
angular resolution improves as  (smaller is 
better). During the 400 years of the existence of 
astronomical telescopes, improving optical tech
nology has enabled their apertures to be steadily 
increased. Although great light-gathering power 
has been achieved (the two Keck telescopes have 
10-m apertures), the performance of large telescopes 
long ago reached the limit imposed by atmospheric 
turbulence. For apertures larger than the turbulence 
coherence length  which is generally between 0.1 
and 1 m depending on wavelength and atmospheric 
conditions, the angular resolution is limited to   

and the peak image intensity increases only as the 
square of the telescope aperture. These restrictions 
have been removed in the last decade by the use of 
active primary mirrors and adaptive optics, opening 
the way for a huge increase in the performance of 
ground-based telescopes. 

In principle, adaptive optics removes the atmo
spheric seeing limit, enabling ground-based tele
scopes to achieve their full performance. As will 
be shown, adaptive optics enables relatively small 
telescopes to equal or exceed the performance of 
much larger uncompensated instruments. This is 
not an argument for building smaller telescopes, 
but it suggests that adaptive optics has great poten
tial in upgrading the performance of existing smaller 
instruments. Observatories throughout the world 
possess many telescopes with apertures between 1 
and 3 m that could be upgraded by the addition of 
adaptive optics. Several "old" telescopes have 
already been rejuvenated in this way by installation 
of adaptive optics systems, including the 60- and 
100-inch telescopes at Mt Wilson [Shelton et  
1993, 1995] and the 3-m Shane Telescope at Lick 
Observatory [Olivier et al. 1995]. 

Spectroscopy is probably the most important 
observation technique in astronomy. Conventional 
spectrographs require the available light to be con
centrated into a narrow slit. By reducing optical aber
rations due to turbulence, adaptive optics increases 
the peak intensity of unresolved images, or increases 
the spatial resolution of extended objects. This 
improvement in efficiency can be used either to 
reduce the integration time of the spectrograph for 
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through this clear window that much of human 
knowledge of the universe has been obtained. 
Between about 1 and 10  atmospheric transmis
sion varies considerably due to absorption by water 

 and carbon dioxide (CO2) molecules, but there 
are good windows at  (J-band),  (Hi-
band),  (K-band), and  (L-band). These 

 windows are very important in the world of 
adaptive optics. The atmosphere is opaque to radia
tion at wavelengths below 0.3  and above 30  
but becomes transmissive to radio waves longer than 
about 1 mm. That, however, is another story. 

The energy absorbed by water vapor and carbon 
dioxide molecules in the atmosphere is emitted as 
blackbody radiation, mainly at wavelengths longer 
than 3  Measurements in the K-band and shorter 
wavelengths are little affected by thermal radiation 
from objects at ambient temperatures around 300 
K, but in the L-band and above, the situation is dif
ferent. Considerable care must be taken in the design 
of  telescopes and instruments to prevent local 
thermal radiation from entering the detector. 

Scattered sunlight is the largest source of sky 
radiation during the day and on moonlit nights, but 
on moonless nights most of the atmospheric radia
tion between 0.5 and  is due to airglow emis
sions from hydroxyl (OH) molecules. Background 
radiation from the sky sets a practical limit to the 
detection of faint objects from Earth's surface, 
because the exposure time is generally limited by 
Earth's rotation. Within this constraint, the limiting 
magnitude for a single exposure is determined by the 
contrast between the object and the background 
radiation, and also by the characteristics of the detec
tor. Adaptive optics concentrates the available light 
into the smallest spot, improving the limiting magni
tude of most instruments. 

Turbulence in Earth's atmosphere is caused by 
energy input from solar heating, which causes air 
masses of various sizes to move with different velo
cities and in different directions. The maximum tur
bulence usually occurs in the surface layer, especially 
during the day, producing thermal plumes that 
extend up to about 3 km. Above this altitude, turbu
lence tends to occur in layers, usually associated with 
wind shear. High wind velocities are encountered 
throughout the troposphere, especially in the region 
of the tropopause at altitudes between 10 and 15 km. 
The turbulence peak often present at these altitudes is 
due to wind shear. 

Atmospheric turbulence affects all astronomical 
observations made at wavelengths below about 

 The wavefront distortion caused by turbu
lence spreads the energy received from a point source 
into a diffuse disk, considerably reducing its peak 
intensity and making its characteristics more difficult 
to measure. The optical pathlength changes produced 
by turbulence are almost independent of wavelength, 
because the spectral dispersion of air is very small 
over the visible and  spectral bands used in 

ground-based astronomy. Most astronomical objects 
emit a broad spectrum from which a large amount of 
information can be deduced. Astronomical adaptive 
optics systems are therefore designed to operate over 
wide spectral bands, for which it is essential to com
pensate the optical pathlength, independent of wave-
length. Deformable mirrors do this in the most direct 
way by adjusting the pathlength mechanically. Phase-
shifting devices, such as liquid crystals, may be used 
over spectral bands in which they have low disper
sion. 

One result of the small value of atmospheric dis
persion is that the optical effects of turbulence 
decrease at longer wavelengths. A given change in 
optical pathlength represents a smaller phase error 
as the wavelength increases, and it is optical phase 
relationships that govern the structure of the image. 
While observations in the visible band at 0.5  are 
greatly impaired by turbulence, the effects at  
are negligible for all except the very largest apertures. 
Wavefront distortion is more easily compensated at 
near-IR wavelengths than in the visible, which is the 
main reason that astronomical adaptive optics has 
been most successful at wavelengths between 1 and 

 The potential improvement in angular reso
lution is much greater at visible wavelengths. 

2.2.2 Imaging Through Turbulence 

The optical effects of turbulence are due to local 
temperature variations that produce changes in the 
refractive index of air. The magnitude of the refrac
tive index  depends on the air density as 
well as on the range of the temperature variations. 
Air density is greatest at sea level and decays expo
nentially with height. Optical effects of turbulence 
therefore generally decrease with altitude, which is 
the reason for locating astronomical observatories 
on mountain peaks, well above the surface layer. At 
good sites, most of the turbulence tends to be con
centrated in several thin layers associated with wind 
gradients. It is fortunate for Earth-bound astrono
mers that the characteristics of light waves and of 
the atmosphere allow near-vertical beams to be com
pensated in a straightforward way. In most cases, 
geometric optics can be assumed: wavefront errors 
are summed along ray paths and diffraction effects 
can be ignored. If the strength of the turbulence was 
much higher (as it is in horizontal paths near the 
ground), then multiple scattering would make real-
time compensation using adaptive optics far more 
difficult, or even impossible. 

The effects of atmospheric turbulence on the 
image of a point source are depicted in figure 2.1. 
The radiation emitted by a stellar source may be 
represented as an initially spherical wavefront that 
is treated as a plane wave when it reaches Earth. 
The telescope collects part of the wavefront and 
changes its curvature to produce an image at the 
focal plane. In the absence of wavefront distortion, 
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Turbulence 

Figure 2.1 Effects of turbulence on the image of a star. 

the angular diameter of this image is determined by 
the diffraction of light and is proportional to lambda/D, 
where l is the mean wavelength of observation and 
D is the telescope aperture, as shown in figure 2.1(a). 
The fact that the angular resolving power of a tele
scope is limited, even under ideal conditions, may be 
explained by the fact that only a very small part of 
the total energy emitted by a celestial object is col
lected by the telescope aperture, so that our knowl
edge of the true nature of the source is very restricted. 
As the telescope aperture is increased, more informa
tion is gathered and the angular resolution improves. 

In the case of ground-based imaging, the incom
ing radiation is distorted by atmospheric turbulence, 
so that the converging wavefronts forming the image 
are no longer spherical. A useful way of quantizing 
the effects of wavefront distortion on optical images 
is to define a turbulence scale size in terms of the 
lateral distance over which the wavefront phase is 

highly correlated. A standard measure of the optical 
strength of turbulence is Fried's parameter  the 
diameter over which the optical phase distortion 
has a mean-square value of 1  at a wavelength 
of 0.5 mm. A phase error of 1 rad (l/2p waves) is 
the threshold above which the image quality deterio
rates rapidly. For an undistorted plane wave,  is 
infinity, while for atmospheric distortion it typically 
varies between 5 cm (poor seeing) and 20 cm (excel
lent seeing). Although sometimes regarded as a con
stant, r0 is a statistical parameter that varies 
considerably over short periods of time, sometimes 
changing by a factor of 2 within a few seconds. It is 
also a function of wavelength, as discussed later in 
this section. 

When r0, is less than the telescope aperture 
(usually the case for ground-based observations), 
the angular size of the image for long exposures, 
referred to as the seeing disk, is determined by the 
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The chart can be divided into three main regions, 
according to the value of  For very small aper
tures, when  is less than 1, atmospheric turbu
lence has little effect on the image size, which is 
determined by D. At  values between 1 and 10, 
image motion is significant and there is a notable 
difference between short-exposure and long-exposure 
images. This difference gradually disappears when  

 exceeds 10. Astronomical telescopes usually oper
ate at  values between 5 and 50. 

When  the wavefront distortion over the 
aperture is mainly overall tilt. There is little distortion 
within the aperture because of its small size, so the 
instantaneous image diameter is determined primar
ily by the aperture D. The effect of turbulence is to 
produce random displacements of the centroid of this 
image, but, for values of  even this effect 
becomes negligible. Adaptive optics has no role in 
this regime. 

When D >  conditions are entirely different. 
The uncompensated image size is now determined 
mainly by the turbulence coherence length r0 . The 
magnitude of the wavefront error due to overall tilt 
increases as  but on an angular basis it is pro
portional to   that is, image motion decreases as 
the aperture gets larger. As a result, the difference 
between (uncompensated) short-exposure and long-
exposure images becomes less significant as the aper
ture increases, both being asymptotic to  The 
potential improvement from the use of adaptive 
optics is shown by the difference between this value 
and the diffraction-limited curve on the chart. With a 
typical D/r0 value of 40 at visible wavelengths (4-m 
telescope,  turbulence), adaptive optics is cap
able of reducing the image diameter by a factor of 
about 30, increasing the peak intensity of a point 
source 900 times. 

The transition region, where D/r0 is between 1 and 
10, is the region in which a useful improvement in 
telescope performance can be obtained by compen
sating image motion. As shown in figure 2.2, the size 

Figure 2.2 Imaging through atmospheric turbulence: 
normalized image characteristics as a function of 

 

ratio  rather than  as depicted in figure 2.1(b). 
The result is that the angular resolution of even the 
largest uncompensated ground-based telescopes at 
visible wavelengths is about 1 arc second, and it is 
often 2 arc seconds or more. The median seeing disk 
at Mauna Kea, one of the best astronomical sites in 
the world, is about 0.5 arc second at visible wave-
lengths [Racine and Ellerbroek 1995]. To put these 
results in perspective, it is useful to recall that a dif
fraction-limited 4-m telescope is capable of produ
cing an image with a full-width at half-maximum 
(FWHM) of only 0.03 arc second in the visible 
band, more than 10 times better than even the best 
uncompensated image. The potential gain produced 
by adaptive optics is therefore considerable, even for 
modest-sized telescopes at the best sites. With or 
without adaptive optics, it is always an advantage 
to have the best possible seeing conditions, as this 
makes it easier to achieve a given level of perfor
mance. 

The size of the largest disturbances produced by 
atmospheric turbulence (the "outer scale") varies 
considerably, with reported values ranging from 1 m 
to over 1 km. Such disturbances produce a time-vary
ing overall wavefront tilt that causes fluctuations in 
the angle-of-arrival of the light from a star, randomly 
displacing the image. If the exposure time is very 
short (less than about 1/50 second), the blur due to 
image motion is negligible and the fine structure of 
the image becomes visible, as shown in figure 2.1(c). 
This structure, which varies with time, is due to high-
order wavefront distortions that occur within the 
aperture. The short-exposure image consists of a 
large number of speckles of diameter  produced 
by interference between rays separated by the tele
scope aperture D. The speckle pattern is the basis 
for a special imaging technique known as speckle 
interferometry. 

The effects of turbulence on the image produced 
by an uncompensated telescope depend both on its 
aperture D and on the coherence length of the turbu
lence r0. This relationship was investigated by Fried 
[1966a], and is described in section 3.4.4. The analysis 
is based on the standard Kolmogorov model of 
atmospheric turbulence. The results are illustrated 
neatly by plotting the normalized angular image 
size in  units against the normalized telescope 
aperture D/r0 as shown in figure 2.2. This chart iden
tifies the three components that determine the size of 
any turbulence-degraded image: 

1. the diffraction limit of the aperture, determined 
by  

2. the short-exposure image spread, determined 
by  

3. the image motion component, determined by 
both D and r0. 

The diameter of a long-exposure image is the sum 
of these three components. 
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of an uncompensated short-exposure image is mini
mized when  is equal to 3.8, at which its diameter 
is only half that of a long-exposure image. Image 
motion compensation is a simple form of adaptive 
optics that is particularly useful at IR wavelengths, 
where  values of 1 m or more are encountered, as 
explained in section 2.4.4. The improvement obtained 
by compensating the image motion due to turbulence 
is modest, a factor of two being the best that can be 
obtained. With large telescopes having  ratios of 

 or more, the theoretical improvement obtained by 
image stabilization alone is of marginal value. In 
practice, several other sources of image motion, 
such as wind buffeting and telescope tracking errors, 
may be reduced significantly by tilt compensation. 

It is apparent from the preceding discussion that 
the potential gain from full wavefront compensation 
far outweighs the limited improvement obtained by 
removing only the image motion. This is especially 
true with large apertures; for this reason, adaptive 
optics is now included in the design of most new 
astronomical telescopes. 

2.2.3 Wavefront Compensation 

Adaptive wavefront compensation is based on the 
use of a reference source or beacon, the light from 
which traverses the same optical path as that from 
the object being observed. The simplest case to con
sider is the compensation of a single point source, as 
shown in figure 2.3. For a point source at infinite 
distance, the wavefront reaching Earth's atmosphere 
is a plane wave that becomes distorted in its passage 
through the turbulent air. The optical pathlength dis
turbances in each part of the aperture are measured 
by comparing the received wavefront with a local 
reference (equivalent to a plane wave) in the wave-
front sensor, to produce the pathlength error  
where x is the position in the optical aperture. The 
original wavefront is then restored by inserting equal 
and opposite pathlength corrections C(x) in the opti

cal path, producing a compensated image of the 
source. 

Although a point source is, by definition, spatially 
coherent, there is no requirement for it to be tempo
rally coherent (monochromatic), providing that the 
wavefront sensor measures optical pathlength (rather 
than optical phase). As mentioned earlier, the disper
sion of air is very small over the spectral range 
employed in optical astronomy, and wavefront 
distortion may be measured in terms of optical 
pathlength variations, independent of wavelength. 

The point source model is valid for multiple layers 
or distributed turbulence, providing that the turbu
lence level is consistent with the use of geometrical 
optics. The optical path differences in each layer are 
summed along the ray paths from the object to the 
telescope aperture, and are compensated at a single 
location, making the appropriate adjustment in each 
zone of the aperture, as before. The practical result of 
compensating a point source (such as a star) is that 
the peak intensity of the image is improved by the 
factor of  which may be several hundred in 
the case of an astronomical telescope. Point sources 
contain spatial information (their positions), but of 
at least equal importance is the spectral information 
carried in their light. Wavefront compensation dra
matically improves the spatial resolution and signal-
to-noise ratio in spectrographic work, probably the 
most important tool in astronomy. 

The combination of turbulent layers, telescope 
optics, and adaptive optics may be considered as an 
extended imaging system, which converts a plane 
wavefront reaching the top of the atmosphere into 
a perfectly spherical beam that forms the image. 
The optical pathlength variations produced by atmo
spheric turbulence are a form of encoding applied to 
the received wavefront. The function of the wave-
front sensor is to find the key to this code, which is 
the distribution of wavefront distortion over the 
aperture. The wavefront corrector is then able to per
form the decoding operation, retrieving the original 
information. Adaptive optics system design includes 
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Figure 2.3 Principle of adaptive wavefront compensation. 
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consideration of the whole of this extended imaging 
system. 

2.2.4 Anisoplanatism 

The wavefront measured with a point reference 
source is strictly valid only for an object in exactly 
the same direction as the reference. If the turbulence 
is concentrated in a thin layer at the entrance pupil of 
the telescope, then the wavefront error can be com
pensated completely at all field angles by placing a 
corrector at a conjugate image of the pupil. In reality, 
turbulence is distributed along the propagation path 
through the atmosphere, with the result that the 
wavefront error becomes decorrelated as the field 
angle increases. This effect is known as angular ani
soplanatism and is one of the major limitations to 
astronomical adaptive optics. 

The basis of angular anisoplanatism is shown in 
figure 2.4. The simplest case is a single layer of tur
bulence at distance  from the entrance pupil of the 
telescope. The wavefront error varies as a function of 
the angle between two rays. If the coherence length of 
the turbulence is  the angle over which the wave-
front disturbance is well correlated must be a func
tion of  The isoplanatic angle  is defined as the 
angle at which the mean-square wavefront error, 
averaged over a large aperture, is 1 rad2. For a single 
layer of turbulence, this angle is found to be 

  0.31  The isoplanatic angle is extremely 
small, typically about 2 arc seconds at visible 
lengths, increasing to about 10 arc seconds in the 
near  

To make adaptive optics work, a bright reference 
source of about  = 10 is required within a few arc 
seconds of the object being observed. In some cases, 
the science object may include a bright star that can 
be used as a reference, but, in general, the small size 
of the isoplanatic angle severely limits the sky cover
age of adaptive optics systems. The solution is to 

create beacons high in the atmosphere, using the 
backscattered light or fluorescence from lasers 
located near the telescope. In this way, a reference 
source can be placed at any position in the sky, 
enabling the use of adaptive optics with the faintest 
objects. Even when using laser beacons, a natural 
guide star is still required to stabilize the position 
of the compensated image, but much dimmer stars 

   can be used for this purpose. Tilt is 
correlated over relatively large areas, so the sky cov
erage is greatly improved, although still not complete 
at visible wavelengths. The issues involved in the use 
of laser beacons are summarized in section 2.9, and 
the subject is treated in detail in chapter 7. 

2.3 The Role of Adaptive Optics 

2.3.1 Science Objectives 

Adaptive optics had little impact on astronomy until 
the  but it is clear that it will have a major role 
in the coming decades. There are many scientific 
areas in which the increased angular resolution and 
image contrast made possible by adaptive optics 
should greatly expand our knowledge of the universe. 
Specific fields of interest have been described by 

  and colleagues, Beckers [1993], Lena 
[1994], and  et  [1996]. Some general areas 
of interest are summarized in this section. They may 
be broadly divided into galactic and extragalactic 
astronomy. 

Galactic Astronomy 

Imaging of Small Extended Objects Improved angu
lar resolution will enable detailed images to be 
obtained of solar system objects, such as asteroids, 
comets, and satellites, leading to the determination of 
their shapes, rotation, and surface structure. It 
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Figure 2.4 Basis of angular anisoplanatism. 



should also provide better images of small areas of 
the Sun, the Moon, and the planets, within the iso-
planatic angle. Ultimately, it is expected that the 
development of wide-field (multiconjugate) compen
sation will enable high-resolution images to be 
obtained over large areas. Many of these objects 
are bright enough to function as their own reference 
sources for adaptive optics. 

Star and Planet Formation The processes that lead 
to the formation of stars and planetary systems are 
difficult to observe and consequently are not well 
understood. Young stars are embedded in dense 
dust and gas clouds, and the gaseous disks and jets 
associated with star and planet formation are best 
seen at  wavelengths. Large telescopes equipped 
with adaptive optics  provide the spatial and spec
tral resolution necessary to analyze these objects and 
their dynamics at various stages of their evolution. 
When used in conjunction with a coronagraph to 
suppress scattered light, adaptive optics provides 
the high angular resolution and image contrast 
needed to see the structure of protoplanetary disks 
and to obtain direct evidence of companion objects. 
With these objects also, a star bright enough to func
tion as the reference source is often present, eliminat
ing the need for a laser beacon. 

Detection of Faint Companions The ability to detect 
brown dwarfs and planetary systems around nearby 
stars is one of the biggest incentives for the use of 
adaptive optics. Brown dwarfs are cool objects about 
the same size as Jupiter (1/10 of the Sun's diameter) 
with a mass of less than 1/16 of the Sun. Such objects 
cannot sustain fusion and have a low surface tem
perature, requiring a search at  wavelengths. 
They are difficult to detect, but if found in large 
numbers they may explain the missing mass in the 
universe. The direct detection of extrasolar planets 
is a good application for adaptive optics because 
the parent star provides the reference source and 
the objects searched for are usually within the isopla-
natic angle [Angel 1994]. Adaptive optics can 
improve detection of faint companions in two ways: 
low-order compensation concentrates the energy of 
the objects into a smaller radius, while high-order 
compensation reduces the halo due to scattered 
light from the central star. Some objects have already 
been detected using a combination of adaptive optics 
and coronagraphic techniques [Nakajima 1994, 
Nakajima et   To make a survey of stars 
within 30 light years with the goal of detecting 
Jupiter-size planets at a separation of  arc second, 

 et al. [1995b] found that a very high-resolu
tion adaptive optics system is required. Using a 6.5-m 
telescope with an observation wavelength of 1  
about 10,000 correction elements are needed, with 
an update interval of 0.5 ms. Such a system appears 
to be within the state of the art. 
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Separation of Close-Packed Objects Adaptive op
tics will enable closely packed stars in the central 
regions of globular clusters to be resolved. A census 
of stellar types as a function of radius is needed to 
determine the dynamics of globular clusters. Another 
area of study is the structure of the galactic center, 
which, because of the high extinction due to interstel
lar dust, can be penetrated only at IR wavelengths. 
High spatial resolution is needed to separate indivi
dual objects and determine their spectra. 

High-Resolution Spectroscopy Adaptive optics is 
capable of improving the performance of spectro
graphs by concentrating the beam in slits as small 
as  arc second, increasing the spectral resolution 
to over 100,000. This high resolution will be of 
great value for research in stellar physics, specifically 
to measure magnetic fields and convective motions.  
has been suggested that the physical and chemical 
structure of dark interstellar clouds could be deter
mined using high-resolution IR absorption spectro
scopy of background stars. 

Extragalactic Astronomy 

It is not known how the universe evolved from its 
initial state to the large-scale lumpy structure con
taining the clusters of galaxies that are observed 
today. To find the answers it is necessary to trace 
the evolution of galaxies back to early epochs corre
sponding to large redshifts. These studies will require 
a significant increase in the light grasp of astronom
ical telescopes, using high-resolution imaging and 
spectroscopy at visible and IR wavelengths. The 
combination of large telescopes of the 8- to  
class augmented with adaptive optics is expected to 
bring significant discoveries in the following areas: 

• the formation of galaxies, with spectral ana
lysis of their composition and radial motion; 

• galaxy counts and morphology at high red-
shifts; 

• active galactic nuclei; 
• stellar populations in distant galaxies; 
• quasar environments and spectra. 

There are many specialized areas of astronomical 
research in which the huge increase in the measuring 
power of instruments brought about by adaptive 
optics will bring new discoveries about the universe. 
Reasenberg [1990] has reviewed the special science 
opportunities that are presented by long baseline 
interferometers. They include measurement of stellar 
diameters, plotting luminosity-temperature curves 
for Cepheid variables, and determination of the 
orbits of binary stars. The structure of protoplane
tary disks surrounding young stellar objects should 
be observable. It should also be possible to determine 
the diameter and shape of the luminous shells of 
novae as a function of time. Observations of giant 
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stars in the visible and the  spectral bands would 
enable the tracking of starspots and the measurement 
of rotational and magnetic distortions of their shape. 

2.3.2 Direct Imaging and Spectroscopy 

Astronomical instruments measure the intensity of 
radiation received from celestial objects in a three-
dimensional space, defined by two spatial (or angu
lar) coordinates, together  a third spectral dimen
sion. The two classic instruments used in astronomy 
are the imaging camera, which provides two spatial 
dimensions with a fixed spectral band determined by 
a whole-aperture filter, and the long-slit spectrograph 
in which one axis of the detector is used to record a 
continuous spectrum. By concentrating the light from 
each element of the object into a smaller core or slit, 
adaptive optics improves the resolution in all three 
dimensions. This capability vastly increases the data-
gathering capacity of observational instruments. To 
take full advantage of adaptive optics, the observa
tional instruments must be designed to accommodate 
the full diffraction-limited resolution of the telescope 
rather than the seeing-limited resolution. 

Contemporary astronomical instruments are var
iations on a single theme: photons collected by the 
telescope are routed through various optical path
ways that analyze the light, and the results are 
recorded on a two-dimensional detector array. The 
analyzing elements are often mounted on wheels for 
easy interchangeability: they include spectral filters, 

 slits, field stops, gratings, polarization optics, 
and reimaging optics. Instruments are still designed 
for specific telescopes and focal stations, but the 
modular approach provides flexibility for optimizing 
the measurements for the scientific task and imaging 
conditions. 

A single instrument may be capable of being con
figured as an  a long-slit spectro
graph, a  spectrograph, or a polarimeter, 
by suitable arrangement of internal components, 
using the same detector array in each case. 
Examples of this approach are the FORS and 
CONICA instruments designed for the European 
Southern Observatory Very Large Telescope (ESO 
VLT). The FORS  Reducer/low dispersion 
Spectrograph) is a multipurpose instrument capable 
of direct imaging, long-slit spectroscopy, multiobject 
spectroscopy, polarimetry, and medium-dispersion 
echelle spectroscopy [Appenzeller and Rupprecht 
1992, Seifert et  1994]. It has a spectral range of 

 using a 2048x2048 charge-coupled 
device (CCD) array. The CONICA is a high-resolu
tion  camera with capability for low-resolu
tion spectroscopy (at high spatial resolution) and 
moderate-precision polarimetry. The detector is a 
1024 x 1024  array with a spectral range of 1-

 This instrument has the capability of inserting 
coronagraphic masks in the focal plane, making 
it suitable for measurements near bright objects. 

Similar instruments are being designed for all of the 
new generation of 8- to 12-m telescopes. Their high 
precision and flexible design allows them to be opti
mized for use with adaptive optics. 

Because of their superior performance, CCD cam
eras and their equivalents at IR wavelengths are now 
used almost universally in astronomical instruments. 
The availability of large-area low-noise CCD arrays 
has revolutionized the design of these instruments. 
Because of the commonality of the detector arrays 
and supporting software, the instruments have 
tended to become multipurpose. They are now segre
gated by wavelength rather than purpose, because 
optical materials and sensors are different for visible, 
near-IR, and  bands. For example, mir
rors are efficient at wavelengths below about 

  but they contribute to the thermal back
ground and so are avoided in instruments operating 
at over 3  

Adaptive optics improves the spatial resolution of 
imaging devices by concentrating more light in the 
diffraction-limited core. To take full advantage of 
this, the pixel size of the CCD cameras now used 
universally for astronomical imaging must be compa
tible with the diffraction limit of the telescope, rather 
than with the seeing limit. The diffraction-limited 
image diameter (i.e., the FWHM) of a 4-m telescope 
at   (and of an 8-m telescope at 1  is 0.03 
arc second, requiring a pixel size of about 0.015 arc 
second. With a   array, the field of view is 
about  arc seconds, not all of which will be com
pensated fully at short wavelengths, due to anisopla-

 It is anticipated that the development of 
 compensation will enable larger fields 

to be corrected in future. 
In the case of the long-slit spectrograph, Beckers 

[1993] has noted that the resolution of seeing-limited 
instruments is coupled linearly to the telescope aper
ture, because of the practical limit on the size of 
diffraction gratings. As a result, the resolution of 
conventional spectrographs is limited to about 
100,000. This restriction is removed if the telescope 
delivers a diffraction-limited image, because the 
image size is no longer constant but becomes inver
sely proportional to the telescope aperture. The slit 
size can then be reduced and still capture most of the 
light, resulting in much higher spectral resolution. 
The smaller slit also allows physically smaller instru
ments. 

The data-gathering capacity of  
instruments can be improved by more efficient utili
zation of two-dimensional detectors. Multiple-object 
spectrographs employ optical fibers to capture the 
light simultaneously from several objects in the 
field. To use an area detector in the most efficient 
way, the fibers are assembled neatly to occupy one 
dimension while the spectrum is displayed in the 
other direction. Adaptive optics improves the cou
pling efficiency of the images to the fibers, as well 
as increasing the signal-to-background ratio. 
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Integral field spectroscopy is a method of optically 
integrating small extended fields to obtain their spec
tra. The use of adaptive optics improves the spatial 
resolution so that integral spectra may be obtained 
over smaller fields without overlap. 

2.3.3 Interferometers and Telescope 
Arrays 

Long-baseline interferometers and multitelescope 
arrays are playing an increasingly important role in 
ground-based astronomy. Interferometers operate 
with baselines far exceeding the diameter of the lar
gest filled-aperture telescopes, giving  
angular resolution that enables the diameters and 
other properties of stellar systems to be measured. 
Telescope arrays have great versatility: the instru
ments can be used individually, in pairs for 
Michelson interferometry, or in groups for interfero-

 imaging with large effective apertures. The full 
potential of these instruments can only be realized 
with adaptive optics. 

All optical imaging systems depend on interfer
ence to convert wavefront phase variations into mea
surable intensity variations in the image plane. The 
image of an incoherent source can be considered as 
the superimposition of interference fringes produced 
by pairs of rays collected by the optical aperture. In 
the case of a conventional circular aperture, interfer
ence occurs between pairs of rays at all orientations 
and spacings up to the full diameter D. The limiting 
angular resolution is then proportional to  where 
 is the wavelength of the light. Currently, the dia

meter of the largest filled-aperture optical telescopes 
(Keck I and II) is 10 m. Long-baseline interferom
eters and telescope arrays use two or more individual 
apertures, separated by distances of up to several 
hundred meters, to collect the light beams, which 
are then brought together to produce interference 
fringes. 

The imaging process can be modeled using the 
Fourier transform. As shown in section 4.2, the 
intensity distribution in the image plane is the 
squared Fourier transform of the complex amplitude 
of the received wavefront. An image may be consid
ered as the superposition of discrete Fourier compo
nents, each produced by a symmetrical pair of 
wavefront samples in the optical pupil, defined by 
the u,v plane. To obtain a fully detailed two-dimen
sional image, it is necessary to have complete cover
age of the u,v plane. This is automatically obtained 
(with considerable redundancy) when using a con
ventional filled aperture. 

The technique of interferometry is different from 
conventional imaging in that the Fourier components 
(or related quantities) are measured and recorded 
individually. The data may be used directly, or pro
cessed digitally to reconstruct an image. Techniques 
for image reconstruction from interferometer mea
surements were originally developed for radio astron

omy, which employs baselines that are necessarily 
much larger than the telescope apertures. The 
line length and orientation with respect to the sky 
define the u,v coordinates of each measurement. 
Coverage of the u,v plane is obtained by using multi
ple baselines, by moving the telescopes, and by using 
Earth's rotation. 

The basic theory of interferometry is treated in 
Thompson et  [1986]. The principles and practice 
of  imaging in optical astronomy are 
described by Roddier [1988b]. Recent advances in 
long-baseline optical interferometry are reviewed by 
Shao and Colavita [1992]. 

The potential advantages of long-baseline inter
ferometers have been known for more than a century, 
but the practical difficulties involved in their con
struction and operation have restricted their use in 
astronomy. Not until the late 1980s were they avail
able for regular observations. The two main pro
blems with ground-based optical interferometers are 
(1) atmospheric turbulence, and (2) instability of the 
optical paths between the collecting apertures and the 
detection device. Both of these cause uncertainty in 
the position or phase of the interference fringes. As a 
result, the quantity usually measured is the intensity 
(amplitude squared) of the fringes, as a function of 
the length and orientation of the baseline. If the 
structure of the object is known (e.g., a disk or binary 
star), then useful information, such as the diameter 
or angular separation, can be deduced from fringe 
intensity measurements alone. 

To obtain interference fringes in a long-baseline 
interferometer, three conditions must be satisfied: 

• The beams collected by the interferometer 
apertures must be superimposed and co-
aligned to within the diffraction limit of 
the individual apertures. 

• The optical pathlengths between the object 
and image plane must be equal to within the 
coherence length of the radiation,  In 
the case of visible white-light fringes, the 
coherence length is on the order of 1  

• To obtain fringes of good contrast, the (dif
ferential) wavefront errors within each of the 
interfering beams should not exceed about 1 
rad  

To meet these requirements, and to maximize the 
signal-to-noise ratio, a high degree of active control 
is required in ground-based interferometers. Fast-
tracking mirrors are used to superimpose the 
beams, eliminating the tilts produced by atmospheric 
turbulence. Optical pathlengths are equalized with 
delay lines, automatically driven by fringe-tracking 
systems. Larger telescope apertures improve the lim
iting magnitude of the interferometer (or fringe sig
nal-to-noise ratio), but the full benefit is obtained 
only when wavefront errors due to turbulence are 
compensated with adaptive optics. 
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Long-baseline interferometers can be used in sev
eral modes to exploit their inherently high angular 
resolution. The most important applications are: 

• astrometry, 
• parametric measurements, 
•  imaging. 

Astrometry requires an extremely stable, fixed 
line, which provides the reference for stellar angular 
position measurements. Using broadband light, the 
interferometer acquires each star in turn and mea
sures the delay line length required to bring the 
white-light fringe to a fixed position. Measurements 
made using two or more baselines at different orien
tations enable the two-dimensional position angle of 
the star to be determined. The Mark  Stellar 

 [Shao et  1986] was designed for 
astrometry, using two  baselines. It employs 
fringe-tracking with a servo bandwidth of  Hz. 
The apertures are 7.5 cm, smaller than the normal 
value   at the site (Mount Wilson), so no adaptive 
optics is used, other than guiding mirrors to align the 
beams. Shao and Colavita [1992] report that average 
position errors of 9.2 and 5.6  seconds were 
achieved on stars brighter than about visual magni
tude   6, significantly better than is obtained 
with conventional wide-angle astrometric instru
ments. 

Parametric measurements are made on simple 
objects, such as disks or binary stars, by measuring 
the fringe contrast or visibility function (ignoring 
phase) as the interferometer baseline is varied. The 
visibility drops to zero when the separation is 

 =  where  is the mean wavelength and B 
depends on the intensity distribution of the object. 
For two point sources of angular separation 6, B is 
equal to 0.5, while for a uniform circular disk of 
angular diameter 9, B is equal to 1.22. The first prac
tical success with this technique was achieved by 
Michelson [1890, 1891], who measured the angular 
diameter of Jupiter's Galilean satellites using the 
12-inch refractor at Lick Observatory. Michelson 
and Pease [1921] later extended this technique to 
baselines larger than the telescope aperture and 
were able to determine that the diameter of 
Betelgeuse was 0.047 arc second. When measure
ments are made with a good signal-to-noise ratio, it 
is not necessary to seek the null in the visibility func
tion, and the modern approach is to fit a series of 
visibility measurements to the appropriate visibility 
curve to determine the required parameter. This tech
nique enables measurement of the angular diameter, 
separation, and magnitude differences of single and 
multiple objects that are unresolvable by conven
tional telescopes. 

Interferometric imaging. True imaging is the most 
demanding of interferometric techniques as it 
requires the complex amplitude of the fringes to be 
determined at a number of different baselines and 

orientations. It is not necessary to obtain complete 
coverage of the u,v plane. Generally, the number of 
measurements should be comparable to the number 
of points required in the image. To build a two-
dimensional image, fringe phases must be determined 
with respect to a common reference, defined by a 
point on or near the object. In principle, a natural 
star within the same isoplanatic patch as the object 
could be used as a common phase reference for all 
interferometer baselines. Unfortunately, the prob
ability of finding a suitable star is extremely small. 
Laser beacons, even in the sodium layer at 90 km, are 
not useful for this purpose, because their positions 
cannot be controlled with sufficient accuracy. Even 
if a beacon could be accurately placed, parallax 
would limit its useful area to a few meters on the 
ground, totally insufficient to cover a telescope 
array. Because of the difficulty of making consistent 
optical phase measurements, it is not possible, with 
current technology, to form an image using an array 
of completely independent apertures. 

One solution to interferometric imaging is to use 
the closure phase technique, pioneered in radio inter-

 [Rogstad 1968, Pearson and Readhead 
1984]. The closure phase is the sum of phases 
around a closed loop of telescope baselines. The 
atmospheric and telescope errors then cancel, but 
object phases add. Because of the time-varying 
nature of atmospheric turbulence, all phases must 
be measured simultaneously. An array of A' tele
scopes produces N(N-\)/2 independent fringe 
phases, one on each baseline, and the number of 
independent closure phases is  The 
minimum value of N is 3, which yields only one 
closure phase. In this case, although phase informa
tion is lost because there are three baselines but only 
one measurement of closure phase, it can be 
combined with the three measurements of fringe 
intensity to resolve ambiguities, enabling the re
construction of simple images using iterative 
algorithms. The fraction of the object phases recov
ered by phase closure is  so that an array of 
10 telescopes would retrieve 80% of the object 
phase information. The closure phase technique is 
not without its drawbacks: because it is a differen
tial measurement, information on the position of the 
object is lost, and the method involves considerable 
data processing. Closure phase has been used at 
optical wavelengths to obtain a two-dimensional 
image, using the Cambridge Optical Aperture 
Synthesis Telescope (COAST) interferometer 
[Baldwin et al. 1996]. 

There are other possible methods of obtaining 
images from long-baseline interferometer measure
ments. Spectral dispersion of the fringes in a two-
telescope interferometer was suggested by Koechlin 
et al. [1979] as a method of obtaining two-dimen
sional information. Schloerb [1990] has shown by 
numerical simulation that this technique is capable 
of reconstructing two-dimensional images. 
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Another technique is to drive the delay line 
rapidly to scan the point of pathlength equality 
across the field of view, within the change time of 
the atmospheric turbulence [Dyck et  1995]. This 
"delay referencing" procedure generates fringes that 
are referenced to a common component, preserving 
the relative positional information within the isopla-
natic patch. The object brightness distribution in 
each scan direction is obtained using the CLEAN 
algorithm  1974, Clark 1980]. To obtain a 
two-dimensional image, it is necessary to make delay-
referenced measurements with at least two differently 
oriented baselines. Complex sources would require a 
more complete sampling in the  plane, using a 
tomographic approach with multiple baselines gener
ated by Earth's rotation. 

Telescope Arrays 

Multiple telescopes can be combined incoherently 
(the light bucket mode), which increases the light-
gathering power but not the angular resolution, or 
coherently (the phased mode), in which the angular 
resolution is determined by the overall dimensions of 
the array. Incoherent addition requires mutual align
ment and scaling of the beams and has been demon
strated with the Multiple Mirror Telescope (MMT), 
employing, most recently, FASTTRAC II, an active 
optical package that corrects the overall wavefront 
tilt over each of the six primary mirrors indepen
dently, using a natural star as the wavefront reference 
[Gray et al. 1995]. Coherent phasing of separated 
telescopes is complicated not only by mechanical 
considerations but also by the effects of atmospheric 
turbulence, necessitating active control of optical 
pathlengths to correct systematic and random distur
bances. Furthermore, the full gain of arrays using 
large telescopes is realized only when the individual 
apertures are compensated with adaptive optics. 

Two different approaches are being followed for 
multiple telescope arrays: 

1. To use a common mount for all elements, as in 
the MMT and Large Binocular Telescope 
(LBT). This arrangement simplifies the beam-
combining optics because the optical paths are 
fixed relative to each element, but the mechan
ical structure must be capable of carrying the 
entire array and active control is required to 
eliminate gravitational strains and small ran
dom errors. The LBT consists of two 8.4 m 
primary mirrors on a common altitude-azi
muth mount with a center-to-center separation 
of 14.4  One of the goals of this instrument is 
to achieve phase coherence across the full 
22.8 m aperture at  wavelengths. The length 
of the baseline is fixed and it rotates with 
respect to the sky as the object is tracked, giv
ing the u,v plane coverage necessary for two-
dimensional reconstruction of the image. 

2. To use a separate mount for each element, as 
in the ESO VLT. In this case, the beam path-
lengths and pupil geometry change with 
observing angle, requiring complex optical 
beam-combining systems that include continu
ously operating optical delay lines, pupil 
reimaging systems, and active beam stabiliza
tion [Merkle 1988]. 

In both cases, the individual telescopes are equipped 
with independent adaptive optical systems. 

Adaptive Optics Requirements 

When using adaptive optics with long baseline inter
ferometers or telescope arrays, the large physical size 
of the telescope array and its effect on  
with various types  reference sources must be con
sidered. Although the outer scale of turbulence may 
be comparable to the baselines used, most of the 
wavefront degradation occurring within separated 
apertures is uncorrelated. Each telescope in an 
array therefore requires an independent adaptive 
optics system. If the science object is bright enough 
to be used as a reference source, which generally 
requires a visual magnitude of < 10 at 0.7  and 
< 13 at 2.2  or a natural guide star of this mag
nitude is within the isoplanatic angle of the science 
object, then the same reference source can be used by 
all telescopes in the array. (The wavefronts measured 
by the individual telescopes will, of course, be differ
ent.) 

If no suitable natural star is available, then laser 
beacons may be used to measure the high-order 
wavefront errors (see section 2.9 and chapter 7). 
Each telescope in an array must have its own laser 
beacon, for the following reason. The highest altitude 
laser beacons are those generated in the sodium layer 
at about 90 km. The isoplanatic angle for average 
turbulence conditions is about 2 arc seconds at a 
wavelength of 0.5  increasing to about 10 arc sec
onds at 2.2  Because of parallax caused by its 
relatively low altitude, a sodium laser beacon will 
be within the isoplanatic angle over a radius on the 
ground of less than 1 m at   and of less than 
5 m at   These dimensions are much smaller 
than the area covered by interferometer arrays, so 
it is necessary for each telescope to have its own 
laser beacon. The natural guide star required to pro
vide the fixed reference for overall wavefront tilt cor
rection can be shared. 

Current Interferometer Projects 

The modern era of optical interferometry was 
initiated by Labeyrie [1975], who succeeded in obser
ving interference fringes produced by two indepen
dent telescopes of 25-cm aperture on a  
baseline, with the combining optics mounted on a 
moving table to equalize the pathlengths. The base-
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line was later extended to 67  [Koechlin and Rabbia 
1985]. This instrument, the I2T (Interferometre a 2 
Telescopes), has a limiting magnitude of about 

 = 4. A larger version, the GI2T, using  tele
scopes, has since been constructed at the 
Observatoire de Calern, France, and it is planned 
to add a third telescope to allow image reconstruc
tion. 

The development of highly efficient photoelectric 
sensors, precision tracking mechanisms, and laser 
metrology have now solved many of the technical 
problems encountered in implementing amplitude 
interferometers at shorter wavelengths. Several ver
sions of an interferometer dedicated to astrometry 
have been constructed at Mount Wilson 
Observatory [Shao and Staelin 1977, 1980]. The 
Mark III instrument has four baselines up to 20 m 
long with different orientations, and is also used for 
parametric measurements and the study of binary 
stars [Shao et  1986, Pan et  1994]. At the 
University of Sydney, a  interferom
eter with an  baseline was tested in 1985 [Davis 
and Tango 1985]. A much larger instrument, the 
Sydney University Stellar Interferometer  
using pairs of  apertures on baselines of up to 
640 m, is now in operation [Davis 1993]. 

Most interferometers today are planned as multi
ple-aperture instruments, capable of producing 
images using the phase-closure technique, men
tioned earlier. Measurement of closure phase at 
optical wavelengths was first achieved on a masked 
single-aperture telescope [Haniff et al. 1987], but has 
since been demonstrated with three elements of the 
COAST over a baseline of  [Baldwin et al. 
1996]. 

Many long-baseline optical interferometers are 
now being constructed. The Infrared-Optical 
Telescope Array (IOTA) is an imaging interferom
eter recently installed at the Smithsonian 
Astrophysical Observatory's F. L. Whipple 
Observatory at Mt Hopkins, Arizona [Carleton 
1988, Carleton et al. 1994]. It covers the spectral 
bands 0.45-0.8 and   using a channeled 
spectrum detector array, which breaks the spectrum 
into narrow bands. The coherence length of the 
interferometer is determined by the spectral width 
of individual channels rather than by the full 
band. The baseline is 38 m and two optical delay 
lines are employed for pathlength compensation. 
The first has a range of 60 m to correct for the 
fixed observation geometry and is stationary during 
observations. The second delay line has a range of 
4.8 m and is driven in real time to compensate for 
Earth's rotation; it will also be used for fringe track
ing. The IOTA will ultimately use three 45-cm tele
scopes, to provide the closure phase necessary for 
image reconstruction. 

The Navy Prototype Optical Interferometer 
 located at Lowell Observatory, Arizona, 

consists of two subarrays, a four-element 

Astrometric Interferometer  and a separate six-
element Big Optical Array (BOA) for imaging. The 

 employs a laser metrology system for monitoring 
the 20-m baselines [Hutter 1994]. The BOA imaging 
array has 250-m arms arranged in a Y and is intended 
for imaging stellar surfaces and close binary systems, 
as well as measuring stellar diameters and binary star 
orbits [Armstrong 1994]. 

The Astronomical Studies of Extrasolar Planetary 
Systems test-bed interferometer (ASEPS-0) at Mt 
Palomar is intended to measure star motions due to 
orbiting planets. It employs two 40-cm apertures, 
each of which simultaneously observes two stars. 
Fringes for both stars are detected at the same 
time, so atmospheric effects largely cancel when mea
suring the difference, enabling very small changes in 
their relative positions to be detected [Colavita et al. 
1994]. 

The Center for High Angular Resolution 
Astronomy  telescope array at Mount 
Wilson Observatory, built by Georgia State 
University, consists of five (eventually seven)  
apertures arranged in a Y-shaped configuration 
within a 400-m diameter circle. It operates at visible 
to  wavelengths and is expected to achieve a 
limiting resolution of 0.2  second in the visi
ble [Mcalister et al. 1994]. Its stated purpose is the 
measurement of the diameters, distances, masses, and 
luminosities of stars, as well as image features such as 
spots and flares on their surfaces. Other applications 
include detection of other planetary systems, and 
imaging of the black-hole-driven engines of quasars 
and active galaxies. 

Interferometric imaging is now an option in sev
eral large multiple telescope installations, enabling an 
angular resolution far greater than can be achieved 
with a single aperture. With adaptive optics, it is 
possible to compensate wavefront distortion over 
the largest telescope apertures, making the full aper
ture available for interferometric imaging and greatly 
increasing the limiting magnitude of the instruments. 
The  Keck I and II telescopes on Mauna Kea 
will have the capability of operating in the interfero
metric mode with a fixed baseline of 85  The main 
telescopes will be supplemented by six 1.5-m aper
tures separated by up to 100 m. 

The LBT, located on Mt Graham, Arizona, is a 
versatile instrument consisting of two 8.4-m  
mirrors on a common altitude-azimuth mount with a 
center-to-center separation of 14.4  When used in 
the phased combined mode, using interferometric 
imaging, the instrument has an effective aperture of 
23  It is designed to operate over a wide spectral 
band, from 0.3 to  

The most elaborate  installation is 
the ESO VLT, consisting of four fixed 8-m telescopes 
with different separations that can be used singly or 
in combination, together with eight movable  
telescopes. This instrument is described in more 
detail in chapter 10. 
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2.3.4 Active Control of Primary Mirrors 

The primary mirror of an astronomical telescope is 
required to maintain its optical figure during the 
attitude changes resulting from tracking an object 
across the sky and during changes in the ambient 
temperature. For most of the twentieth century, pri
mary mirrors have been made as stiff as possible, 
using a slab of low-expansion glass with a diameter-
to-thickness (aspect) ratio of between 6:1 and 8:1. 
This approach is feasible only for mirrors up to 
about 5-m diameter. The flexure of a slab mirror 
due to its own weight increases as the square of 
the aperture, even for the same aspect ratio. For 
mirrors larger than 5 m, the weight and sag become 
excessive. Mechanical distortion can be compen
sated to some extent by adjustment of supporting 
pads, but such massive mirrors have another pro
blem: thermal inertia. Although thermal distortion 
can be minimized by suitable choice of materials, it 
has been found that temperature differences of only 
1 K between the mirror and the ambient air produce 
significant turbulence near the surface, degrading 
the image quality. 

To make larger primary mirrors, it was necessary 
to solve both the structural problem and the thermal 
inertia problem. Three methods of fabrication have 
been developed to build mirrors of  diameter: 
segmented mirrors, lightweight honeycomb mirrors, 
and meniscus mirrors. Segmented mirrors are com
posed of a large number of separate panels that fit 
together to form an almost continuous surface. The 
two  primary mirrors of the Keck Observatory 
each consist of 36 hexagonal panels made of Zerodur, 
1.8 m across and 75 mm thick. These panels are light 
and stiff enough to maintain their shape with a pas
sive support, and their thermal inertia is relatively 
low. 

Honeycomb mirrors consist of a thin faceplate 
and backplate, connected by a hexagonal structure 
of thin ribs [Angel, Davison et  1990]. They are 
cast in one piece, using a rotating mold to give the 
faceplate an approximately parabolic shape, which is 
then optically finished to the final figure. To minimize 
thermal stresses and surface convection, these honey
comb mirrors are maintained at ambient temperature 
by an internal air-conditioning system, which takes 
advantage of the low thermal time-constant of the 
lightweight structure. The largest mirrors of this 
type are the 8.4-m primaries for the LBT, made at 
the University of Arizona Mirror Laboratory. 

Meniscus mirrors, as their name implies, are 
monolithic disks having a diameter-to-thickness 
ratio of about  They are supported by a large 
number of actuators, and rely entirely on active 
control to maintain their figure. The ESO 3.6-m 
telescope is of this type, serving as a prototype for 
the ESO VLT, which consists of four 8.2-m units 
that can be used separately or in combination. The 
VLT mirrors are cast of Zerodur, with a thickness 
of 175 mm. The active support system must accom

modate three types of disturbances: systematic 
changes in the gravity vector as the telescope tracks 
across the sky, slow changes in the supporting struc
ture due to temperature variations, and more rapid, 
random variations in loading due to wind buffeting. 
The meniscus is supported on passive axial and lat
eral hydraulic supports, together with a set of axial 
electromechanical actuators that provide the active 
control. The figure of the primary mirror is mea
sured using a star as the reference source, and the 
necessary corrections are applied through these 
actuators. 

The two Gemini 8-m telescopes use meniscus 
mirrors, made of Corning ULE™ (Ultra Low 
Expansion) quartz, with  central holes. These 
mirrors have a novel active support system [Stepp 
and Huang 1994]. Eighty percent of the mirror 
weight is supported by uniform air pressure. The 
remaining 20% is taken by 120 axial supports, 
which provide both passive and active control of 
the mirror figure and position. Lateral support is 
provided by 72 passive hydraulic supports arranged 
around the circumference of the mirror. Two per
ipheral wavefront sensors monitor the incoming 
wavefront using reference stars just outside the 
science field. The wavefront measurements are ana
lyzed to determine figure errors on the primary mir
ror and alignment errors between the primary and 
secondary mirrors. Corrections are made every few 
minutes. 

Thermal control of the Gemini primary mirrors is 
provided by two interlinked systems [Gillett and 
Mountain 1996]. The  mirror temperature is con
trolled by a radiation plate located between the 
meniscus and the mirror cell. The bulk mirror tem
perature is preconditioned during the day and can be 
controlled slowly at night. The surface temperature 
of the mirror is adjusted to follow variations in the 
ambient temperature by  heating of the reflec
tive coating [Greenhalgh et al. 1994]. 

The Gemini telescopes also have provision for 
correcting rapid image motion and focus changes 
that are due to atmospheric turbulence and telescope 
effects by using small tilts and piston motions of the 
articulated secondary mirror. 

2.3.5 Ground-Based versus Space 
Telescopes 

Adaptive optics removes some, but not all, of the 
limitations of the atmosphere from ground-based 
telescopes. It is therefore of interest to compare the 
capabilities of space telescopes with those of ground-
based telescopes equipped with adaptive optics. The 
two basic factors are cost and performance. 
Operation in space adds to the design requirements 
of a telescope in almost every category. 
Transportation into orbit produces constraints on 
the size, weight, and shock-resistance of the compo
nents. The space vehicle requires continuous attitude 



40 Adaptive Optics for Astronomical Telescopes 

control. Thermal control is more difficult than on 
Earth because of the more extreme environment, 
and because of the limit on power consumption. 
Human access to a space telescope for unexpected 
repairs or modifications is limited and expensive. 

There is no question that with the advent of adap
tive optics, ground-based telescopes of equivalent 
performance in the spectral bands accessible from 
Earth can be built and operated at lower cost, even 
including the laser beacons needed to obtain good 
sky coverage. They have better accessibility, and 
can be programmed or adapted quickly for special 
tasks or unexpected observations. The instrumenta
tion can also be maintained and updated more read
ily. It is likely that ground-based telescopes will 
always be larger than space-based instruments, giving 
them an edge at  wavelengths and in observations 
where the number of photons is important. 

Space telescopes will always be needed for obser
vations in spectral bands at which the atmosphere is 
opaque, mainly below 0.3  At visible and near-

 wavelengths, space telescopes are free of the 
atmospheric airglow emission from OH molecules 
between 0.5 and   A promising application 
for instruments in space is long-baseline interfero-

 where high angular resolution can be 
obtained with relatively small optical apertures. In 
general, it is expected that the inherently higher cost 
of space telescopes will limit their application to 
specialized observations that are not possible from 
the ground. 

The comparison can be summarized as follows: 

• Atmospheric transmission cuts off at 
  so that only space telescopes can 

work at shorter UV wavelengths. 
• At visible wavelengths, ground-based and 

space observations are complementary. The 
Hubble Space Telescope (HST) is able to 
provide 0.05-arc-second resolution over a 
field of 2.6 arc minutes, with high contrast. 
Ground-based telescopes with adaptive 
optics are capable of higher resolution 
(0.015 arc second), but only over a much 
smaller field of view (~ 5 arc seconds), 
because of anisoplanatism. For 
ited observations not requiring adaptive 
optics, the field of view for ground-based 
telescopes is on the order of 1°, giving 
them the capability for covering large areas 
of the sky. 

• In the near IR, large ground-based tele
scopes with adaptive optics have an advan
tage in both resolution and light-gathering 
power over the HST, with atmospheric 
radiation from water vapor being the only 
problem. The performance of ground-based 
telescopes at   and beyond is almost 
unaffected by the atmosphere. 

2.4 Performance Cain with Adaptive 
Optics 

The expected gain in performance of a ground-based 
telescope system equipped with adaptive optics will 
now be determined, and the parameters on which it 
depends will be identified. Two factors are of parti
cular interest: the improvement in angular resolution 
and the increase in signal-to-noise ratio for faint 
sources in the background-limited case. The first of 
these defines the gain in spatial resolution for direct 
imaging and the gain in spectroscopic resolution, 
while the second enables the benefits of adaptive 
optics to be expressed in terms of an increase in limit
ing magnitude or a reduction in exposure time. The 
effect of adaptive optics on image structure and reso
lution is summarized in section 2.4.1, and the 
improvement in image signal-to-noise ratio is ana
lyzed in section 2.4.2. Adaptive optics is also essential 
in long-baseline interferometers, especially those 
using large collecting apertures, to enable their full 
performance to be realized. The performance gains 
are reviewed in section 2.4.5. 

2.4.1 Image Characteristics 

Full compensation of atmospheric turbulence with 
adaptive optics should improve the angular resolu
tion of a telescope from its seeing-limited value deter
mined by the turbulence parameter  to its 
diffraction-limited value determined by the telescope 
aperture D. For astronomical applications, perfect 
image quality is not essential, and the amount of 
compensation is usually limited for economic rea
sons. Therefore, it is necessary to understand the 
effect of imperfect compensation on the structure of 
astronomical images. One might expect that the dia
meter of a compensated image would steadily 
decrease as the wavefront error is reduced. This is 
not the case: the shape of the image intensity distri
bution changes considerably as the turbulence is 
compensated. The following brief outline of optical 
image structure is based on the results of the detailed 
analysis given in chapter 4. 

The image of a point source produced by a circu
lar aperture consists of two basic components: a cen
tral core surrounded by a much larger halo. A perfect 
diffraction-limited system produces a central core of 
angular radius  containing 84% of the light, 
surrounded by a series of diffraction rings. At the 
other extreme, a turbulence-degraded image consists 
of a large number of rapidly moving speckles, spread 
over a "seeing disk" with a radius of about  Each 
speckle has a diameter comparable to that of the 
diffraction-limited core. For exposures of more 
than a fraction of a second, the speckles blend into 
a continuous blur of light in which no central core is 
normally visible. 

In the following discussion, it is assumed that the 
overall tilt component of atmospheric turbulence has 
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been compensated completely. A uniform wavefront 
tilt over the whole telescope aperture displaces the 
entire image. For very short exposures (less than 
about 1/50 s), it has little effect on image quality, 
but for long exposures, uncorrected random tilt 
excursions smear the image, with drastic effects on 
spatial resolution. Overall tilt is relatively easy to 
measure and correct with adaptive optics; the effects 
of residual tilt errors on image quality are treated in 
section 4.5.2. 

When turbulence is compensated by adaptive 
optics, energy is transferred from the seeing disk or 
halo to the central core of the image, which starts to 
appear when the residual phase error in the wave-
front has been reduced to about 2 rad  The pro
cess of wavefront compensation alters the relative 
intensities of core and halo, but does not significantly 
change their respective diameters. The peak intensity 
of the core, normalized to that of an unaberrated 
system, is known as the Strehl ratio. As shown in 
section 4.3.3, for random wavefront errors up to 
about 2 rad rms, the Strehl ratio is closely approxi
mated by S =  ), where  is the mean-square 
wavefront error. Figure 2.5(a) shows how the Strehl 
ratio and the contrast ratio between core and  
vary as the turbulence is progressively compensated. 
The contrast ratio is defined as  =  +  
where  is the normalized peak intensity of the halo. 

4 3 2  
Wavefront error in radians rms 

(a) Peak contrast and Strehl ratios of a turbulence-degraded 
point source as a function of the degree of compensation. 

There are three distinct zones of wavefront error: 

• Uncompensated turbulence—both the con
trast ratio  and the Strehl ratio 5 are 
near zero. The image is seeing-limited with 
no central core. 

• Partial  rises sharply to a 
value near unity. The image has a distinct 
central core, with diameter close to the dif
fraction limit, but  remains below 0.1. 

• Full  rises to near unity. 
The central diffraction-limited core is the 
dominant feature of the image. 

Typical image profiles associated with each of 
these zones are shown in figure 2.5(b). The core 
retains its diffraction-limited diameter even when its 
normalized peak intensity (Strehl ratio) is less than 
0.1, corresponding to a residual wavefront error of 
1.6 rad(l/4 wave) rms. 

Partial compensation of atmospheric turbulence 
can be achieved with much simpler (and lower cost) 
adaptive optics than is required for full compensa
tion. It increases the contrast to the level at which 
image-processing algorithms can be used to restore 
the spatial information content of the picture. In 
principle, partial compensation allows the full dif
fraction limit of the telescope system to be achieved 
with indirect imaging. The main limitation is the pre
sence of random noise in the data. Adaptive optics 
systems designed to provide full compensation at 
near-IR wavelengths usually give partial compensa
tion in the visible band. Partial compensation is dis
cussed further in sections 2.4.3 and 4.4.3. 

2.4.2 Signal-to-Noise Ratio 

The critical factor in detecting a faint star against the 
sky background is the signal-to-noise ratio, which 
depends on the number of photons received from 
the source and from the sky, within each measuring 
element of the detection system. The improvement in 
signal-to-noise ratio obtained by turbulence compen
sation depends on how this detector area is treated in 
the comparison. To simplify the analysis, wavelength 
effects and factors such as 1.22 and  are ignored, 
as they do not change the basic results. 

For a telescope of aperture D, the number of 
background photoelectrons detected within an angu
lar area  am time / is 

(2.1) 

where 

Figure 2.5 Effects of wavefront compensation on the 
peak contrast ratio, Strehl ratio, and intensity profile 
of the turbulence-degraded image of a star. 

  the sky radiance in photons per meter 
squared per second per steradian, 

D = the aperture, m 
a = the measuring element dimension in radians 

(the detector pixel size may be a  
 a) 

 = the exposure time, s 
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 = the overall detection efficiency of the tele
scope 

The number of detected signal photons in time t, 
from a point source of irradiance  photons per 
meter squared per second, is 

(2.2) 

In an uncompensated image, these photons are 
spread out into the "seeing disk" of angular diameter 

 while for a compensated image they are con
tained mostly within the core angular diameter of 2A/ 
D. The fraction of these photons detected within the 
 x a measuring element is defined as b. 

The signal is equal to  the number of detected 
photons from the star, and the noise is the fluctuation 
in the value of the signal plus background  +  
For large photon counts, the noise is equal to the 
square root of the signal plus background, giving 

 

(2.3) 

(2.4) 

(2.5) 
 +   

For a bright star,    so that 

   

while for a faint star,    giving 
  

The signal-to-noise ratio is proportional to  so 
that, in principle, a star of any magnitude may be 
detected against any background, given a sufficiently 
long integration time. A signal-to-noise ratio of 
about 5 is required to detect the presence of an object 
in random noise. In practice, exposure times are lim
ited and photon detectors have a finite storage capa
city, so there is a de facto "limiting magnitude" for 
each system. This is not a hard number; one way to 
increase it is to make multiple exposures and combine 
the data, taking advantage of the fact that the coher
ent (signal) information in the image will add, while 
the random noise fluctuations will tend to cancel. 

Most astronomical measurements involve faint 
sources for which background radiation sets the 
limit of detection. The signal-to-noise ratio for this 
situation is given in equation (2.5). To compare the 
signal-to-noise ratios of uncompensated and compen
sated images it is necessary to specify the relevant 
values of  and b. In a properly optimized system, 
the dimension a will match the size of the object to be 
detected and b will be near unity. Three cases of 
interest are depicted in figure 2.6. 

In the first case, the size of the measuring element 
matches the uncompensated image and the same size 
is used for the compensated image, so that a =   

and b = 1 for both conditions. This would occur if 
instrumentation that is optimized for normal seeing is 
used without modification when the telescope is com

pensated. In this case, adaptive optics does not 
improve the signal-to-noise ratio because all signal 
photons are collected, whether or not the image is 
compensated, and the background remains constant. 
This is a trivial case, but it draws attention to the fact 
that when a telescope is compensated with adaptive 
optics, the instruments must be upgraded also to take 
full advantage of the improved performance. 

The second case represents a realistic situation in 
which the size of the measuring element is adjusted to 
match the image in each condition. For uncompen
sated operation, a =  and b =  Substituting 
these values in equation (2.5) gives 

(2.6) 

To detect the faintest sources with a given exposure 
time, D and  should be maximized and  mini
mized. This is the reason why astronomers use large 
telescopes situated on remote and arid mountain 
peaks, where they find good seeing (large  and 
dark skies (small  

For compensated operation, the value of  should 
match the diffraction-limited image diameter 2X/D. 
The use of a smaller detector area for the compen
sated image reduces the background noise. If com
pensation were perfect, all the received photons 
would fall within the  x a area, but in practical 
adaptive optics systems the normalized peak intensity 
of the image (the Strehl ratio, S) falls between  and 
0.8. The diameter of the core remains close to  
under these conditions, as shown in chapter 4. The 
value  b is then equal to the Strehl ratio 5, resulting 
in the following expression for compensated signal-
to-noise ratio: 

(2.7) 

The gain in signal-to-noise ratio due to adaptive 
optics for case 2 is then 

(2.8) 

This is an important result, the implications of which 
are discussed later. 

In the third case, the size of the detection element 
is made equal to the diffraction limit for both uncom
pensated and compensated operation, so that a = 2)./ 
D. The value of b is then equal to  for uncom
pensated operation, and is equal to S when the image 
is compensated. The ratio of the SNRs is then S(D/ 

 This factor is the same as the increase in peak 
intensity of a point source due to turbulence compen
sation. This quadratic ratio does not represent the 
true improvement in signal-to-noise ratios, because 
it does not compare systems that are optimized indi
vidually for uncompensated and compensated opera
tion. This is done in case 2, for which the correct ratio 

 is obtained. 
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Figure 2.6 Calculation of signal-to-noise ratios for the detection of a star in the 
background-limited case. In case 1, the detector matches the (uncompensated) seeing 
disk. If the detector area is not reduced for the compensated image, there is no 
improvement in signal-to-noise ratio. In case 2, the detector area is optimized to match 
the compensated image. The signal-to-noise is improved by a factor of  In case 3, 
the detector area is constant at its diffraction-limited value. The signal-to-noise ratio 
increases by a factor of  

The gain factor  =  is the key quantity in 
evaluating performance improvements due to adap
tive optics. For example, from equations (2.6) and 
(2.7) it is found that for the same signal-to-noise 
ratio, integration time, and background radiation, 
adaptive optics reduces the required star irradiance 

   stellar magnitude gain of 2.5   
The integration time required to achieve a given sig
nal-to-noise ratio with a star of the same magnitude 
is reduced by  

Another way of assessing the benefit of adaptive 
optics is to determine the aperture of a compensated 
telescope that equals the performance of a larger 
uncompensated instrument. From equations (2.6) 

and (2.7), it is found that for equal signal-to-noise 
ratios, 

(2.9) 

For example, if  = 0.2 m and S = 0.4, then a com
pensated telescope of 2 m aperture will give the same 
signal-to-noise ratio (and have the same limiting 
magnitude) as an uncompensated 8-m telescope. 
The angular resolution of the smaller compensated 
telescope will be 10 times better than that of the lar
ger uncompensated telescope (A/2 versus A/0.2). This 
is a convincing argument for the use of adaptive 
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optics in all ground-based astronomical telescopes, 
whether the aperture is large or small. 

This gain directly improves the detectability of 
faint objects, as expressed by the limiting magnitude. 
Using a  adaptive optics system on the 
ESO 3.5-m telescope, Peterson et  [1991] obtained 
images with a limiting magnitude of 29 in the blue 
spectral band. This capability enables galaxies to be 
detected and counted at distances that have not been 
reached previously by ground-based telescopes. 

2.4.3 Partial Compensation 

Astronomical adaptive optics systems can be 
designed to compensate wavefront distortion to any 
required degree. As noted above, small amounts of 
phase distortion (up to about 2 rad  reduce the 
Strehl ratio but have little effect on the spatial resolu
tion. The complexity of adaptive optics may be 
reduced by using partial compensation, in which 
the signal-to-noise ratio of the images is improved 
only to the level at which postdetection processing 
procedures, such as image deconvolution, can be 
used effectively. The advent of electronic imaging 
devices with a large dynamic range, together with 
digital processing, provides a great deal of flexibility 
in extracting the maximum amount of data from the 
raw image. Partial compensation is the result of using 
fewer subapertures than are normally employed, 
thereby reducing the number of wavefront sensor 
processing channels and  mirror actua
tors. 

The effect of various degrees of wavefront com
pensation is illustrated in figure 2.7, which shows the 
basic structure of the modulation transfer functions 
(MTFs) and the corresponding image-plane point 
spread functions (PSFs). Wavefront distortion 
spreads the light that would normally be contained 
within an angular radius of  the Airy disk, 
into a halo with radius on the order of   seeing 
disk. 

The effect of wavefront distortion on the MTF of 
an optical system is to reduce the magnitude of the 
diffraction-limited MTF, by a factor equal to the 
Strehl ratio, at all frequencies above  as shown 
in figure 2.7(a). If there is a residual response out to 
the cutoff of the full aperture,  then a core 
appears in the center of the image. The radius of 
this core is determined by the full telescope aperture. 

The effect of partial correction is to restore some 
of the scattered light to the central core of the image. 
In zonal systems, partial compensation occurs when 
the correction elements in the deformable mirror are 
appreciably larger than  as shown in figure 2.7(b). 
If d is the size of these elements, then the residual 
error after correction will be  =   
where the parameter  depends on the influence 
function of the deformable mirror. The residual 
wavefront error variance  is reduced from its ori
ginal uncorrected value, but is still significant. Again, 

the MTF consists of two parts, the low-frequency 
component cutting off at  and the high-frequency 
component extending out to the telescope cutoff fre
quency, except that the latter component now has a 
higher amplitude because of the higher Strehl ratio. 
The corresponding point spread function has a cen
tral core, the intensity of which is proportional to the 
new Strehl ratio 5, superimposed on a halo with peak 
intensity proportional to (1 — S). The result of partial 
compensation is to increase the intensity of the cen
tral core of the image in relation to that of the sur
rounding halo. 

 is shown in section 4.6.2 that when  
which is the usual case for astronomical telescopes, 
the contrast ratio  between the core and the halo 
can be expressed as 

   (2.10) 

This relation shows that large contrast ratios can be 
obtained even when the Strehl ratio of the image is 
low. For example, if  = 20 and the image is par
tially compensated to give a Strehl ratio of only 
S = 0.02, the contrast ratio obtained is  = 0.89. 
This contrast ratio will support considerable image 
enhancement, providing that the photon count is rea
sonably high (> 100). The image can be deconvolved 
using the response of a nearby (unresolved) star, or 
blind deconvolution can be used based on the calcu
lated system response. 

Partial compensation provides a useful improve
ment in image signal-to-noise ratio when isolated 
point sources are being observed. In the case of clo
sely spaced multiple objects, or extended objects, the 
haloes of adjacent image points may overlap, redu
cing the image contrast. Partial compensation is not 
appropriate for all astronomical instruments. In spec
trographs, it is necessary to optimize the power pas
sing through the slit, in which case a higher degree of 
wavefront compensation is required. 

2.4.4 Wavelength Scaling 

The observing wavelength has a profound effect on 
the image degradation produced by turbulence, and 
also on the design of the adaptive optics systems 
used to overcome it. The dispersion of air is very 
small, so the refractive-index changes produced by 
turbulence are almost independent of wavelength 
over the UV, visible, and  spectral bands between 
0.36 and   As a result, the disturbances in 
optical pathlength are also essentially constant 
with wavelength. Images are formed by the interfer
ence of light waves, which depends on their relative 
optical phase. A given optical pathlength error due 
to turbulence therefore produces smaller phase shifts 
at longer wavelengths, reducing its effect on optical 
images. 

Many optical effects of turbulence depend on the 
coherence length  which varies as the 6/5 power of 
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Figure 2.7 Partial wavefront compensation. This chart illustrates the effect of increasing 
the degree of wavefront compensation on the optical transfer function and point spread 
function of an astronomical telescope. Compensating the wavefront transfers energy 
from the halo (radius  to the core of the image (radius  changing the 
relative peak intensitites but having little effect on their radii. 

wavelength. The angular diameter of an uncompen
sated image is proportional to  independent of 
the size of the telescope, so its wavelength depen

image is proportional to  and therefore increases 
directly with X. The result of these scaling factors is 
shown in figure 2.8, which compares the angular dia
meter of turbulence-degraded images with that of 
diffraction-limited images produced by 4-m and 8-

 telescopes. At visible wavelengths, there is a large 
gap between uncompensated and compensated per

formance. At a wavelength of  a 4-m telescope 
gives diffraction-limited performance in average tur
bulence, without any compensation. The results are 
summarized as follows: to obtain the best angular 
resolution without compensation, the longest obser
ving wavelengths should be used. To obtain the best 
angular resolution with a perfectly compensated tele
scope, the shortest wavelengths should be used. 
Unfortunately, but not surprisingly, turbulence com
pensation is more difficult to implement at short 
wavelengths. 
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Figure 2.8 Wavelength scaling effects in optical images. This chart compares the 
image diameters of turbulence-degraded images with those produced by a 
diffraction-limited (compensated) aperture. The potential improvement due to 
adaptive optics is much greater at shorter wavelengths. At   even large 
uncompensated apertures are close to diffraction-limited. 

Considerable success has been obtained with 
adaptive optics of limited capability in the  
bands at 1.6 and 2.2  At these wavelengths, the 
turbulence is relatively benign, with  values of 
between 0.5 and 1 m. Compensation of a 4-m aper
ture can then be achieved with a corrector having 
only 16 actuators (degrees of freedom), which is rela
tively easy to implement. The angular resolution is 
improved by a factor of four to eight. At visible 
wavelengths, the potential improvement is far 

 factor of 20 to 40. 

2.4.5 Long-Baseline Interferometry 

The performance gain achieved using adaptive optics 
with long-baseline interferometers is discussed in this 
section. Roddier and Lena [1984a] derived expres
sions for the signal-to-noise ratio of the fringe con
trast in Michelson interferometers, operating at 
visible wavelengths (< 0.9  in two operating 
modes: (1) visual detection of fringes and (2) 
electric fringe-tracking. Their results also allow the 
performance to be evaluated in a third mode: (3) 
full wavefront compensation using adaptive optics. 

 This case represents the simplest type of inter
ferometer, in which the average optical pathlengths 
are adjusted for equality. Short-term fluctuations 

between the apertures, due to turbulence, are not 
compensated in real time, resulting in relatively 
large pathlength errors. To maintain fringe contrast, 
a narrow spectral bandwidth is necessary. This 
width is proportional to  where  is the 
mean observation wavelength,  is the coherence 
length of the turbulence, and L is the interferometer 
baseline. Without compensation of the collecting 
apertures, the resulting image is a speckle pattern, 
with interference fringes superimposed on each 
speckle. (The classic Michelson interferometer uses 
small apertures of size comparable to  which pro
duce an image containing a single "speckle".) The 
coherence area of the apertures is proportional to 

 For small photon fluxes, the signal-to-noise 
ratio of the fringe contrast is 

(2.11) 

The signal-to-noise ratio is extremely sensitive to the 
seeing conditions, varying almost as the fourth power 
of  In this mode, there is no advantage in using an 
aperture larger than  For the specific case of an 
interferometer with baseline L = 100 m, observing 
at a wavelength of  with  = 0.15 m, wind 
speed of v =  overall optical transmission of 
0.25, and a detector with quantum efficiency of 0.8, 
the limiting magnitude at which a signal-to-noise 
ratio of 5 can be achieved is about  = 4. 



Adaptive Optics in Astronomy 47 

2. When photoelectric fringe-tracking is used, the 
optical pathlength variations over the baseline are 
compensated in real time, so the relevant coherence 
length becomes the aperture diameter D. 
Consequently, a larger spectral band can be used. 
For small photon fluxes, the fringe signal-to-noise 
ratio in this case is 

 (2.12) 
v 

Fringe-tracking greatly improves the signal-to-noise 
ratio, making it independent of the baseline length. 
The signal-to-noise ratio still has a high dependence 
on  but is only weakly dependent on the aperture 
size D. The sensitivity of the interferometer is con
siderably improved. For the same conditions as the 
previous case, with D  1.5 m, the limiting magni
tude for a fringe signal-to-noise ratio of 5 is about 

 11, a gain of seven magnitudes. 

3. The third case considered is that of an interfe
rometer with fringe-tracking, in which the collecting 
apertures are fully compensated with adaptive optics. 
The spectral band is no longer limited by the coher
ence length of the turbulence, further improving the 
sensitivity. The signal-to-noise ratio for small photon 
fluxes is then 

 (2.13) 
v 

The factor  determines the exposure time, which 
must remain short in order to stabilize the fringes. 
For the standard set of conditions with D = 1.5 m 
and a signal-to-noise ratio of 5, the adaptive optics 
results in the limiting visual magnitude increasing to 
about 15, a gain of four magnitudes compared with 
an interferometer with fringe-tracking alone. The 
gains are even larger for bigger apertures. With inter
ferometer apertures of 8  the adaptive optics gain 
over pure fringe-tracking for the same conditions is 
about six magnitudes. 

2.4.6 Summary 

Compensating atmospheric turbulence with adaptive 
optics achieves the following performance gains. 

Direct Imaging 

• The diameter of an image of a point source 
is reduced to approximately the diffraction 
limit of the telescope, improving (reducing) 
the angular resolution by a factor of  

• The peak intensity of the image of a point 
source is increased by the factor  

• The signal-to-noise ratio of a point source 
with respect to the sky background is 
increased by the factor  compared 
with its uncompensated value, using an opti
mized detection system in each case. 

• The peak contrast ratio of the image core to 
the halo is increased from its uncompensated 
value of near zero to approximately 
S/[S +  

• Adaptive optics systems produce higher 
Strehl ratios at longer wavelengths, because 
the turbulence coherence length  increases 
as the 6/5 power of wavelength. 

• The potential improvement in performance 
compared with the diffraction limit is much 
larger at short wavelengths. 

Long-Baseline Interferometry 

• Fringe-tracking and automatic pathlength 
compensation allow longer integration 
times, increasing the measurement precision 
and/or limiting magnitude. The improve
ment over visual fringe detection is about 
seven magnitudes, weakly dependent on 
aperture size. 

• Wavefront compensation with adaptive 
optics allows apertures of any size to be 
used efficiently. With   apertures at visi
ble wavelengths, the combination of adap
tive optics and fringe-tracking improves the 
interferometer sensitivity by about  mag
nitudes over a basic visual  while for 
8 m apertures, the improvement is about  
magnitudes. 

• The signal-to-noise ratio of interferometric 
imaging is extremely sensitive to seeing con
ditions, which suggests that partial compen
sation may produce a useful improvement in 
the performance of optical interferometers. 

2.5 Optical Considerations 

In this section, some basic issues regarding the opti
cal systems employed in wavefront compensation are 
discussed. They include the validity of geometrical 
optics, the compensation of extended objects, the 
use of extended reference sources, and methods for 
compensating distributed turbulence. These topics 
have received scant treatment in the literature on 
adaptive optics, the last item being particularly 
neglected. 

 Validity of Geometric Optics 

Conventional adaptive optics is based on the assump
tions of geometrical optics, in which wavefront dis
turbances are summed along ray paths and 
diffraction effects are ignored. Only the optical path-
length disturbances (phase errors) are compensated. 
The geometric optics approach is generally valid 
when diffraction is insufficient to produce significant 
intensity changes or "scintillation" at the telescope, 
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which is often the case for the weak turbulence 
encountered at good astronomical sites. The condi
tions under which diffraction may be neglected can 
be derived in the following way. In figure 2.9(a), light 
incident on a region of turbulence is diffracted at an 
angle  equal to  where X is the mean wavelength 
of the light and p is the characteristic size of the 
turbulent eddies. Diffracted rays will interfere when 
they have traveled a distance comparable to 
  p/S =  If the propagation distance from a 

turbulent layer to the telescope is less than h, then 
interference effects may be neglected. Taking the spe
cific example of a turbulent layer at the tropopause at 

 altitude, with a scale size of 10 cm at a 
length of 0.5  the critical distance h is 20 km. This 
is much greater than the height of the layer above the 
telescope (especially for a mountain-top observa
tory), so the geometric optics approximation may 
safely be used. Under these conditions, the optical 
pathlength disturbances in light rays emanating 
from a single point source can be compensated by 
placing the wavefront corrector at any location in 
the ray path. 

If the turbulence becomes more severe and the 
scale size decreases to 5 cm, the distance h drops to 
5 km, in which case interference effects and scintilla
tion become apparent at the telescope aperture. 
Diffracted rays are displaced by a distance compar
able to p, producing wavefront phase and intensity 
variations that cannot be completely removed by 
inserting a simple corrector near the telescope aper
ture. The solution is to place the corrector at a con
jugate image of the turbulent layer, as shown in figure 
2.9(b). This arrangement restores the spatial relation
ship between the turbulence and the compensator, 
even when the turbulence is strong enough to pro
duce scintillation. In other words, conjugate imaging 
maintains the validity of geometric optics for wavefront 
compensation. This principle also applies to the com
pensation of multiple layers of turbulence, providing 
that each layer is conjugated independently. Merely 
placing the correctors in the same (or reverse) order 
in which they occur in the atmospheric path does not 
fulfill this requirement. Optical systems necessary to 
implement multiple-layer compensation are discussed 
in sections 2.5.4 and 2.5.5. 

Turbulent 
Layer 

Telescope 
Pupil 

(a) Diffracted rays interfere at the pupil when h > p/S =  
causing scintillation. 

Wavefront 
corrector 

(b) Diffracted rays are perfectly compensated when the wavefront 
corrector is located at a conjugate image of the turbulent layer. 

Figure 2.9 Condition for compensation of a single turbulent layer. Placing the 
corrector at a conjugate image of the layer compensates turbulence strong 
enough to produce scintillation at the pupil. 
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Conjugate imaging is also necessary when com
pensating extended objects, as discussed in the fol
lowing section. 

2.5.2 Compensation of Extended Objects 

It could be said that any object worth looking at 
must contain more than a single point, so the com
pensation of extended objects is fundamental to 
astronomical imaging. Although much information 
is obtained from  objects using photome
try and spectroscopy, the increased angular resolu
tion obtainable with large telescopes compensated 
with adaptive optics suggests that more and more 
celestial objects will become resolvable in the future. 
There are two main cases of interest: 

1. Compensation of an extended object using a 
reference source that is separable from the 
science object itself. In this case, the reference 
may be either a point or an extended source, 
and the science object plays no role in the 
wavefront measurement process. 

2. Compensation of an extended object using the 
radiation from the science object itself as the 
reference. In this case, the "wavefront" infor
mation must be separated from the "object" 
information. 

The first case is addressed in this section and the 
second case in section 2.5.3. 

The wavefront measured with a point reference 
source is valid only for an object in exactly the 
same direction as the reference. If the turbulence hap
pened to be concentrated in a thin layer at the 
entrance pupil of the telescope, then the wavefront 
error could be compensated completely at all field 
angles by placing a corrector at the pupil. In reality, 
turbulence is distributed along the propagation path 
through the atmosphere, with the result that the 

wavefront error becomes decorrelated as the field 
angle increases. A single corrector compensates the 
wavefront measured at one field angle, so that only a 
small area of an extended object is compensated 
properly. This effect is known as angular anisopla-

 and is one of the major limitations to astro
nomical adaptive optics. 

The wavefront error produced by angular aniso-
planatism at a field angle 0 is conveniently expressed 
as  =  where  is the isoplanatic angle, a 
property of the turbulence distribution. This relation 
implicitly assumes that the wavefront corrector is 
located at the entrance pupil of the telescope (or at 
a conjugate image plane), which may not be the case. 
The anisoplanatic wavefront error that actually 
occurs in an adaptive optics system depends not 
only on the atmosphere but also on the configuration 
of the adaptive optics, specifically the location of the 
wavefront  in relation to the turbulent 
layers in the atmosphere. The anisoplanatic error 
can be minimized by appropriate optical design. 

The geometry for compensation of a single layer 
of turbulence is shown in figure 2.10. Light from the 
reference source  passes through a turbulent layer 
T at distance  from the telescope entrance pupil P. 
Consider, first, a corrector  located at an arbitrary 
distance s from the pupil. To compensate the turbu
lence, the wavefront corrector inserts complementary 
pathlength corrections at each zone in the aperture. 
A ray from the reference source traversing the turbu
lent layer at J is compensated at zone  on the cor
rector. To compensate weak turbulence with a single 
source, the corrector may be placed at almost any 
location in the optical system, providing that it is 
properly scaled to the beam diameter.  cannot be 
placed near the prime focus (s  because in this 
position the scale size tends to zero and spatial cor
respondence with the pupil is lost. 

Now consider an off-axis ray passing through the 
same point J in the turbulent layer, where the off-axis 

Turbulent 
Layer,T 

Figure  Geometry for compensation of a single layer of turbulence. If the 
corrector is located at  the isoplanatic angle is small and intensity variations 
(scintillation) due to diffraction are not compensated. By placing the corrector at 
the conjugate image plane C2, the compensated field is greatly enlarged and 
intensity variations are suppressed. 
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angle  =     where y is the offset at the 
telescope pupil. The ray passes through the corrector 
at point L, which is offset by  from  The 
off-axis ray will therefore be improperly corrected 
because it, too, should pass through point  With 
the geometry shown, the position error of the ray at 
corrector  is 

The layer T is imaged at distance  =  
 the primary focal length. When the correc

tor is located at position C2, at the conjugate image 
plane of T, then s   and the offset between the 
rays disappears. The turbulence is then compensated 
perfectly over a large field angle  This condition is 
also shown in figure 2.10. 

It is useful to define an effective isoplanatic angle 
 that takes account of the configuration of the 

adaptive optics. As noted above, the canonical iso
planatic angle  which is a property of the turbu
lence, assumes that the corrector is located at the 
telescope pupil; that is, s  0. For a single turbulent 
layer, the value   approaches infinity when s =  
It is of interest to determine how the effective isopla
natic angle  varies with the corrector location; for 
instance, how accurately must the conjugate relation 
be satisfied in order to obtain a useful isoplanatic 
angle? 

The effect of varying the corrector location on the 
isoplanatic angle may be determined as follows. Two 
rays of angular separation fi passing through one 
element of the turbulent layer produce a displace
ment  y' at the wavefront corrector. This displace
ment varies linearly with  according to equation 

 The scale size of the wavefront corrector 
also changes with  but in a different way. The dia
meter of the corrector is nominally equal to the tele
scope beam size, which (for an object at infinity) 
comes to a focus at distance / Near focus, the geo
metrical relation between the ray positions in the 
pupil and the beam break down because of diffrac
tion, so this is not a suitable location for a wavefront 
corrector. The important point is that the diameter of 
the corrector varies linearly with its displacement 
from the prime focus, whereas the lateral displace
ment due to a ray separation of fi varies linearly 
with its displacement from the conjugate image 
The fractional displacement within the corrector is 
therefore a nonlinear function of s. 

The fractional displacement of two rays at angle 
 referred to the telescope pupil, is 

(2.15) 

(2.16) 

The effective isoplanatic angle  which takes into 
account the location of the wavefront corrector, is 
then 

When 5 = 0, the corrector is located in the telescope 
pupil and  =  as expected. 

If the normalized separation is defined as  =  
then the ratio of the isoplanatic angles may be 
expressed as 

(2.18) 

This ratio is plotted as a function of s' in figure  
for a layer height h = 3000 m and a primary focal 

 16 m. It is seen that the isoplanatic angle 
ratio drops to a sharp minimum when s' is near unity 
(at which value the corrector would be impossibly 
small) and rises to a sharp peak when 
s' =  —f). The latter value corresponds to the 
condition in which the turbulent layer at height h is 
imaged by the primary mirror onto the wavefront 
corrector, thereby fulfilling the conjugate imaging 
requirement. To take full advantage of this condi
tion, the layer height must be known accurately. If 
the corrector is set up for a layer at height h, but the 
true height is h', then the isoplanatic angle ratio is 

(2.19) 

The corresponding angle in object space is 

where S is the fractional error in determining the 
layer height. For example, to realize a ratio of 

  100, the error in determining layer height 
must not exceed ± 1 % . 

The isoplanatic angle ratio  is independent of 
 and wavelength, but the actual value of  is 

length dependent, as it depends on  A useful 
approximation to the isoplanatic angle for a single 
layer of turbulence is  = 0.31  (see section 
3.7.2). 

The above analysis shows that with a single tur
bulent layer, the effective isoplanatic angle  is cri
tically dependent on the placement of the corrector. 
This raises the question of whether the use of adap
tive secondary mirrors materially affects the size of 
the isoplanatic angle. The use of adaptive secondary 
mirrors is an attractive method of simplifying adap
tive optics for Cassegrain and Gregorian telescopes; 
the secondary mirror also functions as the wavefront 
corrector. The location of the corrector is therefore 
determined by the telescope configuration and is not 
a free parameter in the design of the adaptive optics. 
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Typical optical systems, unfolded for clarity, are 
shown in figure 2.12. In the generic Cassegrain con
figuration, figure 2.12(a), the secondary mirror is 
located inside the prime focus, with a diameter  
typically between 10% and 25% of the primary dia
meter D. The Gregorian layout, with the secondary 
mirror outside the prime focus, is shown in figure 
2.12(b). 

The isoplanatic angle resulting from the use of an 
adaptive secondary mirror is easily determined by 
reference to figure 2.11(a), in which lines are drawn 
at s' values of 0.85 and 1.15, corresponding, respec-

  vs Corrector Location 

0.5 1  

Corrector  from pupil, s/f 

C  secondary location 
G Gregorian secondary location 

Isoplanatic Angle vs Corrector Location 

0.98 1 1.02 

Corrector displacement from pupil,  

A Effective isoplanatic angle ratio 
B Corrector position for maximum isoplanatic angle 

Figure  Effective isoplanatic angle of a com
pensated telescope, as a function of the corrector 
position, for a single layer of turbulence. The 
effective isoplanatic angle is normalized to that 
obtained with the compensator located at the 
entrance pupil of the telescope. The isoplanatic 
angle drops to zero when the corrector is located at 
the primary focus (in which case, there is no 
compensation) and is maximized when the corrector 
is located at the conjugate image of the turbulent 
layer. The focal length of the primary mirror is  m 
and the turbulent layer is 3000 m above the telescope. 

tively, to typical primary-to-secondary separations 
for Cassegrain and Gregorian telescopes having pri
mary focal lengths of 16 m. It is seen that the 
Gregorian configuration gives a slightly larger isopla
natic angle, but in neither case is the ratio much 
different from unity. In a Gregorian telescope with 
primary focal length of 16 m and normalized separa
tion s' = 1.15, the secondary is conjugate to a plane 
located 123 m in front of the telescope, considerably 
nearer than the mean turbulence height. 

The conclusion is that the use of adaptive second
ary mirrors forces the isoplanatic angle to a value 
close to  which is usually very small. Because of 
the fixed locations of the secondary mirrors, the angle 

 cannot be expanded without the use of additional 
correction components, which, in this case, would be 
self-defeating. 

2.5.3 Extended Reference Sources 

While it is clear that the wavefront from an object 
known to be a single point source can be compen
sated, it is not immediately obvious that the same 
technique can be used to compensate extended 
objects of arbitrary shape that are observed through 
a medium with randomly varying optical pathlength. 
In astronomical adaptive optics, few suitable point 
sources are available and reference sources are either 
laser beacons, which are typically 1 or 2 arc seconds 
in diameter, or small sections of the science object 
itself. To measure the wavefront, it is necessary to 
separate the intrinsic properties of the object from 
those of the intervening disturbance. The feasibility 
of this process and the limitations involved will now 
be discussed. 

Astronomical objects, in general, may be modeled 
as arrays of incoherent point sources located at infi
nite distance from the telescope. The spatial informa
tion is contained in the two-dimensional intensity 
distribution of the object. The signal received from 
such objects consists of a number of superimposed, 
mutually incoherent wavefronts. In a perfect imaging 
system, each wavefront produces a point image; the 
intensities of these points add together to generate 
the two-dimensional image of the object. To form a 
faithful image of the source, the relative positions 
and intensities of each component must be preserved. 

The wavefront sensors used in adaptive optics are 
designed to detect small variations in wavefront slope 
while being insensitive to the nature of the source 
itself. Two principles are used to attain this goal. 
The first principle is that the subaperture sizes 
employed for slope sensing are comparable to the 
turbulence coherence length  for which the angular 
resolution  is about 1 arc second. Wavefront 
slope sensors are therefore blind to fine structure in 
the reference source. (Larger scale structure can influ
ence the slope measurement capability, especially in 
Hartmann-type sensors.) The second principle is that 
variations in the overall brightness and size of the 
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(a) Cassegrain configuration, with elements unfolded for clarity 
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(b) Gregorian configuration, also with elements unfolded 

Figure   compensation with adaptive secondary mirrors. In 
the Cassegrain configuration, the effective isoplanatic angle is slightly 
smaller than that obtained with the corrector located conjugate to the 
primary mirror, whereas with the Gregorian configuration it is slightly 
larger. Because of the fixed location of the secondary mirrors, the 
compensated field cannot be widened without additional correction 
components. 

reference source are minimized by "normalizing" the 
wavefront sensor output to eliminate offsets or bias. 
The effect of increasing the size or reducing the 
brightness of the reference source is mainly to 
increase the random noise on the wavefront measure
ments, rather than to produce systematic errors. 

The first object type to be considered is one whose 
angular size is smaller than the isoplanatic angle of 
the turbulence. The radiation received from such an 
object is an ensemble of incoherent plane waves that 
all experience the same distortion. The correction of 
this distortion over the telescope aperture does not 
change the relative tilt angles or intensities associated 
with the structure of the object, so it is clear that the 
compensation process will not corrupt the image. 

When the object size exceeds the isoplanatic angle, 
the situation is more complicated. This condition 
usually arises when turbulence is distributed along 

the propagation path, resulting in a small isoplanatic 
angle that cannot be expanded significantly with a 
single corrector. It is essential for the angular size 
of the reference source (or the area of the object 
used for reference) to be smaller than the isoplanatic 
angle, otherwise useful wavefront measurements can
not be made. This may require restricting the field of 
view of the wavefront sensor, especially with very 
large objects such as the Sun, the Moon or the pla
nets. Within this field, the source object must have 
sufficient detail and contrast to allow precise slope 
measurements. For example, with solar adaptive 
optics, pores and small spots have been used success
fully as lock points for the wavefront sensor [Acton 
and Smithson 1992]. 

A further requirement is that multiple reference 
sources are required to measure the wavefront errors 
over an object field greater than the isoplanatic angle, 



with one source for each isoplanatic solid angle. In 
principle, the three-dimensional structure of distrib
uted turbulence can be deduced from multiple source 
measurements, enabling multilayer wavefront correc
tion to be implemented. Such systems have not yet 
been realized in practice. 

A basic limitation arises with extended reference 
sources when a zonal wavefront slope sensor is used 
in high turbulence, in which case both the isoplanatic 
angle  and the turbulence coherence length  have 
small values. It is necessary for the wavefront sensor 
subapertures to resolve the anisoplanatic angle, 
otherwise the slope measurements are meaningless 
because they involve more than one isoplanatic 
area. This requirement sets a lower limit on the sub-
aperture size d, so that d >  On the other hand, 
accurate wavefront measurements require small sub-
apertures. The wavefront fitting error of a zonal cor
rector, such as a deformable mirror, is given by 

 =  where  is the  error coeffi
cient. Substituting for d, it is found that there is a 
minimum wavefront measurement error given by 
ffmin    This error is imposed by the 
turbulence conditions, independent of the specific 
slope sensor employed. Under the benign turbulence 
conditions prevalent at good sites at night, it should 
not be a problem, but for solar observations at visible 
wavelengths during periods of high daytime turbu
lence, the minimum error may be on the order of 1 
rad  

The general conditions for compensating an 
extended source may be summarized as follows: 

1. The object must consist of incoherently radiat
ing point sources. 

2. The optical pathlength disturbance from each 
correctable point in the object to each indepen
dent zone of the telescope aperture must be 
known. 

The first condition is satisfied by most of the 
objects observed in astronomy. The second condition 
appears to require a formidable number of optical 
path measurements, but, in practice, the number of 
independent measurements is drastically reduced by 
the following factors: (1) the finite size of the turbu
lence coherence length  limits the number of inde
pendent zones in the aperture that must be 
compensated to about  (2), the isoplanatic 
angle  limits the angular size of the object that 
can be compensated; (3) the angular resolution of 
the telescope  sets an upper limit to the number 
of resolvable points in the object. 

2.5.4 Distributed Turbulence 

The combination of an extended object with distrib
uted turbulence presents the most difficult compensa
tion problem in adaptive optics. With distributed 
turbulence, a single wavefront corrector provides 
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full compensation only over the isoplanatic angle 
 which may be only 2 or 3 arc seconds at visible 

wavelengths. To achieve full compensation over wide 
fields of view, it is necessary to employ three-dimen
sional wavefront compensation. In the following dis
cussion, it is assumed that the turbulence distribution 
is known exactly, the problem being how to compen
sate it. 

There are two approaches to wide-field compensa
tion of distributed turbulence. One method is to sepa
rate the field of view into isoplanatic areas, using a 
separate compensator for each area. This approach 
requires a separate wavefront sensor and reference 
source for each isoplanatic area. Apart from its com
plexity, the system has the drawback that relative tilt 
errors between the multiple reference sources may 
cause mutual displacements between sections of the 
image. Such errors may be minimized by using a 
common tilt reference for the whole image, taking 
advantage of the fact that the tilt component of tur
bulence has a larger isoplanatic angle than the high-
order components. 

Another approach is to divide the continuous dis
tribution of turbulence into slabs or layers, as shown 
in figure 2.13. If each layer could be compensated 
with a wavefront corrector in situ, as shown, then 
correction would be completely effective for any tur
bulence distribution and field angle. In practice, the 
turbulence can only be corrected after the light has 
been collected by the telescope. As a result, the light 
disturbed by layer 1 in figure 2.13 passes through 
layers 2 and 3 before it can be compensated. The 
sequence of correctors in the telescope optical path 
must therefore be 3, 2, 1. In addition, to achieve a 
useful compensated field of view, the conjugate 

Figure 2.13 Compensation of multiple layers or 
distributed turbulence. If the correctors could be 
physically colocated with each layer as shown, 
compensation would be perfect, even for off-axis 
rays. In practice, the correctors must be located in 
the telescope, where layer  is seen through the 
distortion of layers 2 and 3. It is therefore necessary 
to compensate the layers in the reverse order; that is, 
3, 2,  
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tion must be maintained between the correctors and 
the layers. 

Two separate requirements must therefore be 
satisfied to enlarge the compensated field of view 
using  adaptive optics: 

• Multiple layers must be corrected in an opti
cal sequence determined by their distance 
from the telescope objective, the nearest 
layers being corrected first. 

• Each corrector must be located at a conju
gate image of the corresponding turbulent 
layer. 

It might be expected that the required sequence of 
conjugate image planes would occur naturally in an 
optical imaging system, but, unfortunately, this is not 
the case. Optical images formed by a lens occur in the 
same order as the objects, which is the reverse of 
what is required. To satisfy all requirements, multi-
layer wavefront compensation consequently requires 
some ingenuity in the optical design. The payoff is 
that it can lead to a large increase in compensated 
field angle. Design principles for multiconjugate com
pensation systems are summarized in the following 
section. 

2.5.5 Optical Configurations for 
Turbulence Compensation 

In Earth's atmosphere, significant turbulence occurs 
at altitudes up to 20 km, often with large peaks in the 
vicinity of the tropopause, at around 10 km. This 
three-dimensional distribution of turbulence consid
erably restricts the angle over which adaptive com
pensation is effective. The angular extent of many 
objects of interest exceeds the isoplanatic angle, so 
the achievement of wide-field compensation is a 
major goal of astronomical adaptive optics. In this 
section, the optical configurations for multiple wave-
front correctors are reviewed. 

Because of the large aperture of most astronom
ical telescopes (2-10 m) and the relatively small size 
of practical wavefront compensators (0.01-0.3 m 
depending on the type), it is not feasible to place 
wavefront correctors in the telescope pupil; they 
must be located in a reduced beam, often near a 
conjugate image of the telescope entrance pupil. 
Most wavefront correctors consist of two parts: a 
two-axis tracking mirror to compensate overall tilt 
(image motion) and a device, such as a deformable 
mirror, to compensate the higher order distortions 
within the aperture. 

Atmospheric turbulence generally has a three-
dimensional distribution, although, at good sites, it 
may be confined to relatively few layers. Several 
workers have considered the possibility of using mul
tiple compensators, such as deformable mirrors, each 
imaged on a specific atmospheric layer [Fried 1977, 
Beckers 1988, Johnston and Welsh 1994]. Exactly 

Turbulent layers Compensators 

Figure 2.14 Symmetrical correction system for mul
tiple turbulent layers. Although the layers are 
corrected in the right sequence, they are not imaged 
on the appropriate correctors, so that only axial rays 
are properly compensated. As a result, the 
compensated field angle is smaller than  making 
this approach useless for adaptive optics. A single 
compensator near the pupil would give better results. 

how this would be done has not been described. In 
fact, it is not a trivial problem; the optical systems 
needed to implement multiconjugate compensation 
are complicated. 

The first matter to be discussed is the sequence of 
correction for multiple turbulent layers. Consider the 
arrangement shown in figure 2.14. Optical imaging is 
a symmetrical process in which a luminous object 
generates wavefronts that propagate in space, are 
collected by an aperture, and then have their curva
ture inverted by a lens or mirror to form an image of 
the source. The process is reciprocal in that the light 
follows the same path when propagating in either 
direction. Using a system of this type, the wavefront 
correctors C1, C2, and C3 could be located symme
trically with respect to the corresponding turbulent 
layers L1, L2, and L3, as shown. Each symmetrical 
group of layers, such as L3, P, and C3, would func
tion as a distortion-free subsystem. 

Because the phase disturbances are distributed 
randomly over the optical aperture, the correction 
is valid only with axial light. Off-axis rays are dis
placed in opposite directions on each side of the 
pupil, resulting in an isoplanatic angle smaller than 
the value   The reason for compensating multiple 
turbulence planes is to enlarge the field of view, so 
this arrangement is useless. Better results would be 
obtained by combining the correctors into a single 
location near the pupil. 

To enlarge the field of view with a single turbulent 
layer, the compensator must be placed at its conju
gate image plane, as explained in section 2.5.4. With 
multiple layers, a telescope objective forms a 
sequence of images in the same order as the objects, 
as shown in figure 2.15. This system is also unsuitable 
for multiple-plane compensation because distortion 
in the intermediate layers spoils the conjugate ima
ging. For example, L1 would be imaged perfectly on 
C1 if no other layers were present, but, in fact, layers 
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Figure 2.15 Location of images formed by a tele
scope objective. The conjugate images of turbulent 
layers naturally occur in the same order as the 
layers, which happens to be the wrong sequence for 
adaptive optics compensation. 

L2 and L3 are intervened between  and the tele
scope, which invalidates the conjugate relationship. 

How are these apparently conflicting requirements 
reconciled? The problem is resolved by separating the 
corrector planes with additional relay lenses, as 
shown in figure 2.16. In the first set of image planes, 
turbulent layer L3 (nearest to the telescope pupil) is 
imaged correctly and can be compensated directly by 
C3. Once this is done, the group L3, P, and C3, forms 
a perfect imaging system, enabling turbulent layer L2 
to be compensated by C2 in the next relay section, 
and so on. 

A further simplification is obtained from the fact 
that the reimaging requirements for turbulent layers 
are not very stringent and require only that the blur 
circle should be much smaller than the correlation 
distance  As the effective f-number and field angles 
are very small, an appreciable out-of-focus distance is 
allowable. This enables the corrector for the lowest 
layer to be placed between the telescope primary and 
the prime focus, simplifying the optical system, as 
shown in figure 2.17. 

When optical systems of this type are implemen
ted, it is found that the physical size of the compen
sation elements varies greatly, because some are 
located near image planes where the beam diameter 
is very small while others are located near pupils 
where the beams are much larger. As a practical mat
ter, it is desirable to use compensators of similar 

physical size. A. Walther [1974, private communica
tion] has suggested adjusting the diameter of these 
components optically, by means of additional relay 
lenses. An example of the complete optical system for 
two-level correction using same-size compensators is 
shown in figure 2.18. 

2.6 Implementation of Adaptive Optics 

2.6.7 Essential Functions 

Adaptive optics systems contain three essential func
tions: measurement of the wavefront error, computa
tion of the corrections to be applied, and 
compensation of the wavefront itself. These functions 
can be arranged and implemented in many different 
ways, according to the specific application and sys
tem requirements. Most adaptive optics systems are 
built up using separate subsystems for wavefront sen
sing, data processing, and wavefront correction; these 
subsystems are connected together optically and elec
trically to form the complete wavefront compensa
tion system. In addition to these basic functions, it 
is necessary to provide test and diagnostics capabil
ities for the adaptive optics, as well as an interface to 
communicate with the outside world. An efficient and 
user-friendly operating system is very desirable in 
such systems. 

The functions of an astronomical adaptive optics 
system are typically arranged as shown in figure 2.19. 
Light waves from a distant reference source, initially 
undistorted, pass through the turbulent atmosphere 
and are collected by the telescope. The distorted opti
cal beam is then reduced in diameter, passes through 
the wavefront corrector, and is sampled by a beam 
splitter, which sends a replica of the input wavefront 
to the wavefront sensor. The wavefront sensor mea
sures the departure of the wavefront from a plane 
wave, usually by determining the local wavefront 
slope over an array of subapertures, thus producing 
electrical outputs corresponding to the measured 
optical errors. The data processor converts these 
error signals into electrical commands that are fed 
back to the wavefront corrector, thus closing the con-

Figure 2.16 Optical reimaging system for compensation of multiple turbulent layers. This arrangement 
satisfies both the sequencing and the conjugate imaging requirements. Locations of intermediate images of 
layers L1 and L2 are shown as (1) and (2). Corrector locations are identified as C1, C2, and C3. 



56 Adaptive Optics for Astronomical Telescopes 

Partly compensated images 

Figure  Simplified three-layer compensation system. 

 loop. The wavefront corrector is driven in such a 
way as to minimize the electrical errors at the output 
of the wavefront sensor; this is equivalent to nulling 
the optical wavefront error at the sampling point, the 
beam splitter. The light passing through the beam 
splitter forms the compensated optical output, 
which is focused onto a camera or other instrument. 

The wavefront corrector usually consists of two 
components: a flat tracking mirror to remove image 
motion and a deformable mirror to compensate for 
defocus, astigmatism, and higher-order distortions. 
Tracking mirrors are usually several centimeters in 
diameter, with the capability of tilting in two ortho
gonal axes, at frequencies of up to about  Hz, 
using electromagnetic or piezoelectric actuators. 
Deformable mirrors employ a thin faceplate that 
ranges in size from about 5-cm diameter, for a 
small device with 21 actuators, up to about 40-cm 
diameter for the largest type with 2000 actuators. 
The actuators are arranged in a square or hexagonal 
array and are capable of displacing the mirror surface 
locally (within each zone) by a few micrometers up or 
down. 

Wavefront sensors for astronomical adaptive 
optics generally measure local wavefront tilts or gra
dients within an array of contiguous zones or suba-

pertures filling the telescope pupil. They operate with 
broadband light at visible or  wavelengths 
and will accommodate natural stars, extended 
objects, or laser beacons as reference sources. 
Because of the limited brightness of the reference 
sources and the short time available for wavefront 
measurement, the efficiency of wavefront sensors in 
using the available photon flux from the reference 
source is of critical importance. The photodetector 
is usually the dominant component in this respect 
and low-noise CCD arrays are currently favored. 

The computation required to convert the wave-
front gradient data delivered by the wavefront sen
sor into commands for the wavefront corrector is 
known as wavefront reconstruction. The reconstruc
tion process restores to each zone of the aperture 
the relative phase values that are lost when wave-
front gradients are measured. This is a vital step in 
the operation of an adaptive optics system, because 
phase errors over the aperture have a far greater 
effect on the image quality than do local wavefront 
slopes. Reconstruction is a global process; that is, a 
change in any single slope measurement involves 
recalculation of all of the drive signals. 

Wavefront gradient measurements are usually 
made simultaneously over the whole aperture and 

Primary 
focus Compensated 

image 

Low-altitude 
compensator Intermediate 

image of 
high-altitude 
compensator 

High-altitude 
compensator 

 To 
wavefront 
sensor 

Figure 2.18 Practical compensation system for two layers using same-size correction 
devices. The intermediate image of the high-altitude layer is located near the primary 
focus and is consequently very small. An additional relay lens is inserted to magnify the 
image of this layer to a size similar to that of the low-altitude corrector. 
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Figure 2.19 Components of an astronomical adaptive optics system. 

are reconstructed and applied to the correction mir
rors within a short time, termed the latency. The 
latency must be less than the change time of the 
wavefront being compensated; for atmospheric tur
bulence, this is usually only a few milliseconds. The 
amount of data that must be processed in each cycle 
of operation depends on the number of subapertures 
being compensated. In a zonal adaptive optics system 
with N correction channels, the number of multiply-
add operations per cycle is  which produces a 
heavy data-processing load. Parallel processors are 
generally employed to solve this problem. 

Atmospheric conditions are continually varying, 
resulting in changes in key parameters such as the 
turbulence coherence length  the turbulence change 
time  and the isoplanatic angle  Turbulence exhi
bits some fractal properties in that fluctuations occur 
at many different scale sizes, both in time and in 
amplitude. Adaptive optics systems are optimized 
to maximize performance for a set of specific operat
ing conditions, and the performance depends criti
cally on matching internal parameters, such as 
wavefront sensor integration time, to the external 
conditions. It is therefore important to design astro
nomical adaptive optics systems to accommodate 
these variations in turbulence characteristics, prefer
ably on an automatic basis using adaptively con
trolled parameters within the adaptive optics system 
itself. 

2.6.2 Parallel Operation 

Adaptive optics systems may be configured in several 
different ways, using serial or parallel operation in 
open-loop or closed-loop configurations, with zonal 
or modal processing. The most successful architec
ture is the parallel closed-loop system using zonal 
sensing and compensation, a block diagram of 
which is shown in figure 2.20. This configuration 
was first used in the real-time atmospheric compens-
tor (RTAC) system [Hardy et  1977]. The basic 

principle of whole-aperture wavefront measurement 
with multiple feedback paths to a zonal deformable 
mirror has stood the test of time and is used in most 
current systems. Parallel operation implies that the 
wavefront error over the whole pupil is measured 
during a single time interval, and that the wavefront 
correction is similarly updated over the whole aper
ture within a single interval. This mode of operation 
maximizes the time available for integration of light 
from the reference source, a vital factor in astronom
ical adaptive optics systems. Parallel operation can be 
employed with either zonal or modal sensing and 
compensation. The essence of parallel adaptive optics 
systems is the presence of multiple control paths 
between the wavefront sensor and the wavefront cor
rector. There is no limit to the number of parallel 
paths, so the largest telescopes can be compensated 
by adaptive optics without compromising the perfor
mance. 

Most electronic devices used in adaptive optics, 
such as CCD detectors and electronic data proces
sors, transfer data in the form of high-speed bit 
streams using pipelined operation. While this type 
of operation is not strictly speaking "parallel," its 
speed is such that the processing time for each data 
cycle is usually small compared with the time con
stant of the servo loop, so that the essence of parallel 
operation is maintained. In cases where the data pro
cessor is faster than the wavefront sensor due to the 
limited CCD pixel rate, the reconstructor can operate 
in the "delta" mode, in which the entire array of 
corrector drive signals is updated for each zonal mea
surement. 

2.6.3 Serial Operation 

The serial approach to adaptive optics is based on 
sequential measurement and correction of the wave-
front errors in each zone or mode of the aperture. 
Serial operation simplifies the hardware required, but 
unavoidably restricts the time available during each 
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Parallel 
Feedback 

Figure 2.20 Closed-loop adaptive optics system. The parallel feedback loops have a 
large gain, minimizing the wavefront error at the wavefront sensor input. The null point 
of the wavefront sensor must be accurately defined, but variations in the gain of the 
feedback loop are relatively unimportant. 

measurement for collecting photons from the refer
ence source. Each cycle of operation, comprising 
wavefront measurement, computation, and correc
tion over the whole telescope aperture, must be com
pleted on a time scale much shorter than the change 
time of the turbulence. As a result, serial systems do 
not perform well with the low-brightness reference 
sources that are encountered in astronomical work. 
The time-sharing problem gets worse as the telescope 
aperture increases. In contrast, the parallel approach 
allocates a dedicated processing channel for each 
wavefront zone or mode so that the time available 
for wavefront measurement is independent of the 
number of actuators or telescope size. 

Image sharpening is a type of serial operation that 
was used in the early days of adaptive optics. Its 
principle, shown in figure 2.21, is to divide the aper
ture into an array of zones, which are adjusted in 

sequence to minimize the overall wavefront error 
and thereby sharpen the image. An image-plane sen
sor is used, in which the reference source is focused 
onto a mask, which, in its simplest form, is a pinhole 
with a diameter of about half the Airy disk of the 
telescope imaging system. A photon detector located 
behind the mask measures the light flux passing 
through the pinhole, which is normalized to the 
total light received from the reference source. This 
flux is maximized when the wavefront is perfect. In 
operation, a small phase step is introduced sequen
tially into each zone of the aperture and its effect on 
the light flux is measured. If the flux increases, the 
phase step is retained; if not, it is removed and the 
system moves on to the next subaperture. The polar
ity of the trial steps is reversed for each cycle of 
operation. Three iterations are normally required to 
maintain diffraction-limited correction. This type of 

Figure 2.21 Image sharpening system. A small phase perturbation is applied 
sequentially to each zone of the deformable mirror. If the image intensity is 
improved, then the perturbation stays. If not, it is removed. A perturbation of 
opposite polarity is applied in the next cycle. 
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adaptive optics system requires a bright reference 
source and can support only a small number of sub-
apertures. 

The difference in performance between serial and 
parallel operation may be illustrated in the following 
way. For an adaptive optics system with N subaper-
tures and a specified latency of t seconds, the time 
available for each wavefront measurement in a serial 
(image-sharpening) system is t/3N seconds, allowing 
for three iterations per cycle. In a fully parallel sys
tem, approximately half of the latency is available for 
wavefront measurement, so the time available is t/2 
seconds. To obtain the same signal-to-noise ratio, the 
parallel system needs a reference source with only 2/ 
(3N) of the photon flux required by the image-shar
pening system. If A'' is 500, then the image-sharpening 
system would require a reference star about seven 
magnitudes brighter to achieve the same performance 
as a parallel adaptive optics system. This enormous 
difference in efficiency makes serial operation 
uncompetitive for astronomical adaptive optics. 

2.6.4 Open-Loop and Closed-Loop 
Systems 

Adaptive optics control systems may use either open-
loop or closed-loop operation. In the open-loop or 
feed-forward configuration, shown in figure 2.22, the 
received wavefront is first measured in its raw or 
uncorrected state. The required corrections are then 
computed and fed to the wavefront compensation 
device. The time required for the measurement and 
correction process (the latency) must be less than the 
change time of the wavefront. Effective open-loop 
compensation depends on accurate wavefront mea
surement and correction; the wavefront sensor and 
deformable mirror must be calibrated accurately 
over the whole dynamic range of the (uncorrected) 
wavefront. Any error in the response of these com
ponents shows up directly as a wavefront error in the 
optical output. For this reason, open-loop systems 

are only used when the alternative closed-loop con
figuration is not feasible. Open-loop adaptive optics 
systems can operate either in the continuous mode or 
in the "one-shot" mode where only a single (whole-
aperture) wavefront measurement can be made prior 
to wavefront compensation. This occurs, for exam
ple, in outgoing wave laser systems, where a point-
ahead wavefront measurement must be made. 
Another application of open-loop adaptive optics, 
relevant to astronomical systems, is in laser beacon 
systems employing a pulsed laser, where the time 
separation between pulses is comparable to (or 
longer than) the change time of the atmosphere. In 
such cases, the adaptive optics must operate on a 
single-shot basis, using what is known as a "go-to" 
servo system, which is nulled after each cycle. 

The closed-loop configuration, used in most adap
tive optics systems, is shown in figure 2.20. In this 
case, the first component in the optical system is the 
wavefront corrector, which compensates the wave-
front errors on the incoming beam before it is 
sampled and measured by the wavefront sensor. 
The wavefront sensor therefore sees only the residual 
error in the wavefront; that is, the difference between 
the current incoming wavefront and the last correc
tion applied to the wavefront corrector. This error is 
processed to update the control signals applied to the 
wavefront corrector. A parallel system of this type 
contains a large number of feedback loops, one for 
each correction zone in the aperture. Feedback loops, 
which are used extensively in all kinds of automatic 
control systems, have several characteristics that 
make them especially useful for adaptive optics. 
Gain in the feedback loop drives the deformable mir
ror so as to force the residual error at the wavefront 
sensor output to zero. Because the wavefront sensor 
is only required to measure residual errors, its 
dynamic range and linearity are relatively unimpor
tant; only the calibration of the null is  The 
wavefront sensor requirements for closed-loop adap
tive optics systems, are therefore less exacting than 

Figure 2.22 Open-loop adaptive optics system. The wavefront error must be measured 
exactly over its full range of variation. The accuracy of open-loop or "feed-forward" 
systems, such as this, depends on precise calibration of the correction loop. 
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for open-loop systems. In closed-loop systems, the 
residual error can be made arbitrarily small by 
increasing the loop gain. If the loop gain, a function 
of temporal frequency, is  then the errors 
detected by the wavefront sensor are reduced by the 
factor  However, as the loop gain is 
increased, the phase shift around the loop also 
increases. The loop gain must be reduced to less 
than unity before the phase shift reaches  rad, 
otherwise oscillation sets in. This sets a limit to the 
amount of loop gain that can be used. Adaptive 
optics systems usually employ first-order servo 
loops containing a single integration, with a low-fre
quency gain of about 100. A model of the feedback 
loop and typical gain-versus-frequency plot are 
shown in figure 2.23. 

The servo bandwidth, defined as the frequency at 
which the loop gain is reduced to unity, is typically 
on the order of 100 Hz for astronomical applications. 
To assure stability, a phase margin, typically 45°, is 
specified at the unity-gain bandwidth. The single inte
gration produces a phase shift of 90°, so, with this 
phase margin, the allowable phase shift from all 
other sources at the unity-gain bandwidth is only 
45°. To achieve stable operation, the temporal band-
width of individual components, such as deformable 
mirrors, is generally specified as at least 10 times the 
required closed-loop bandwidth. Note that these sta
bility considerations apply to any closed-loop control 
system. The actual values of gain and bandwidth 
required in an adaptive optics system depend on the 
specific performance requirements. This subject is 
discussed in detail in chapter 9. 

2.6.5 Zonal and Modal Operation 

There are two methods of specifying a random quan
tity such as wavefront error over a two-dimensional 
aperture: zonal and modal. In the zonal approach, 
the aperture is divided into an array of independent 

subapertures or zones. In each of these zones, the 
wavefront may be specified in terms of its optical 
pathlength (piston), its local gradient (tilt), or its 
local curvature. Most wavefront sensors and correc
tors used in adaptive optics work on a zonal basis, 
although modal algorithms may be used to compute 
the drive signals. 

Modal analysis treats wavefront distortion as the 
sum of systematic functions. The wavefront is repre
sented as a series of whole-aperture functions of 
increasing complexity. The most familiar modal func
tions in optics are the Zernike polynomials for a cir
cular aperture. The first few Zernike terms 
correspond to familiar optical aberrations, such as 
overall wavefront tilt, defocus, astigmatism, and 
coma. Atmospheric turbulence may be decomposed 
into Zernike components, as described in section 
3.5.1. The second and third modes correspond to 
overall tilt (angle of arrival fluctuations), which is 
usually compensated with a separate tip-tilt mirror. 
Each of these spatial components may have a char
acteristic temporal frequency associated with it, facil
itating the processing of modal wavefront data. 

While the Zernike modes form an orthogonal set 
for description of wavefront geometry, they are not 
statistically independent. To describe atmospheric 
wavefronts, a similar set of independent functions 
can be formed using the  functions. 

 turns out that the low-order components of both 
the Zernike and the Karhunen-Loeve series are clo
sely similar, so that little error is incurred in using the 
simpler Zernikes for the first  terms. 

In principle, a turbulence-degraded wavefront 
may be compensated completely using either the 
zonal or modal wavefront representation. In practice, 
there are significant differences between these two 
approaches. The most obvious difference is that a 
zonal system may readily be expanded to arbitrarily 
high spatial resolution simply by increasing the num
ber of subapertures, which are usually physically 

Figure 2.23 Feedback loop model and gain-versus-frequency plot for each 
channel of a closed-loop adaptive optics system. 
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identical. In contrast, while the first few  
terms represent easily implemented optical correc
tions, such as tilt and defocus, terms above   

(coma) become increasingly difficult to measure and 
correct directly. Low-order aberrations can generally 
be implemented more smoothly using whole-aperture 
modes than with zonal correctors, which are liable to 
have small irregularities at the zonal period. For 
example, small amounts of defocus may be compen
sated by changing the radius of curvature of a sphe
rical mirror; this can be done with a single actuator. 
A zonal  mirror requires six or more 
actuators to approximate defocus, and even then it 
produces an irregular shape. 

The most important application of modal analysis 
is in adaptive optics data processing. For practical 
reasons, wavefront sensors and correctors are gener
ally built using a zonal configuration, but the zonal 
data may be converted into modal form to perform 
the required computations. With atmospheric turbu
lence, there is a strong correlation between the spatial 
and temporal characteristics of the wavefront pertur
bations. The use of modal analysis enables adaptive 
optics performance to be maximized using optimal 

 in both the spatial and temporal domains. 

2.7 Wavefront Sensing 

2.7.1 Sensors for Adaptive Optics 

The requirements for adaptive optics wavefront sen
sors are quite different from those developed for opti
cal measurements in the laboratory, particularly in 
respect to the type of reference source and the 
speed of operation. Laboratory instruments used 
for testing precision optical components typically 
use laser interferometers to convert the optical 
phase information into intensity variations. The 
resulting interferograms are scanned to obtain the 
data from which the wavefront errors are computed. 
This process requires a local coherent reference, 
derived from the laser itself. Astronomical wavefront 
sensors, on the other hand, must operate with natural 
reference sources such as stars, as well as with laser-
generated beacons. Most natural sources emit wide
band thermal radiation that is temporally incoherent. 
In addition, stars that are potentially useful as refer
ence sources have a wide range of surface tempera
tures, with peak radiation at wavelengths between 
blue and infrared. Astronomical wavefront sensors 
are usually photon starved, so it is vital that the 
available light from the reference source is used effi
ciently. Because of the need to use broadband light, 
direct measurements of optical phase are not feasible 
in astronomical adaptive optics. 

The solution to the problem of wavefront sensing 
in astronomical adaptive optics is to measure the 
direction of propagation of the optical wavefront 
rather than its optical phase. This is done by measur

ing the wavefront gradients or curvature within an 
array of zones covering the telescope aperture. For a 
given value  turbulence strength  the variations 
in wavefront gradient or tilt angle are invariant with 
wavelength, so this measurement can be made with 
incoherent (white) light. 

Wavefront gradients are measured by producing 
an image of the reference source within each zone of 
the aperture and measuring the displacements of the 
spots from their mean position. Both the Hartmann 
sensor and the shearing interferometer are based on 
this principle, although their implementation is dif
ferent. This principle is similar to that of the 
Foucault knife-edge test, which has been used since 
the 1860s to visualize the optical figure of large mir
rors (see figure 1.5). A knife-edge was employed in 
the first image-stabilization devices developed for 
astronomy, described in chapter 1. Taking a larger 
perspective and stepping back further in time, one 
can see that the Foucault test is a brilliant elabora
tion of the basic process of establishing the direction 
of a distant object using a sighting device such as a 
pinhole and straight-edge. Such devices, depicted in 
figures 1.2 and 1.3, have been in use for  The 
wavefront sensors in use today therefore have a pedi
gree stretching back to the earliest days of astron
omy. 

2.7.2 Wavefront Slope Sensors 

The process of wavefront measurement using local 
gradients or slopes is shown in figure 2.24, which 
depicts the operation in one dimension. The wave-
front is divided into separate subapertures, over 
each of which the average slope is determined. In 
this process, the relative phase or piston component 
of each subaperture is lost. The relative phase over 
the aperture is the essential information required; it is 
retrieved by the process known as wavefront recon
struction. In the simplest reconstructors, the piston 
components are recovered by two-dimensional spa
tial integration, in which the individual slopes are 
fitted together to form a surface having the smallest 
sum of discontinuities between elements. This process 
is made possible by the two-dimensional nature of 
the wavefront, which allows numerous redundant 
paths between elements. Mathematically, it involves 
minimizing the sum of the mean-square errors 
between all elements. More elaborate reconstruction 
algorithms have been proposed, weighting the slope 
inputs according to their signal-to-noise ratio and 
using operational and statistical information on the 
wavefront distortion [Wallner 1982]. 

The importance of reconstruction in wavefront 
slope sensors is illustrated in figure 2.25. If the wave-
front slopes in each zone were measured and cor
rected without regard to their relative phase, the 
result would be an incoherent superimposition of 
the images formed by each zone. The result is 
shown as the upper curve in figure 2.25 (which is 



Figure 2.24 Wavefront measurement using zonal slope sensing. The wave-
front is divided into contiguous zones and the average wavefront slope is 
measured in each zone. The relative phase of each subaperture is lost in this 
process. Individual slopes are then reconstructed into a continuous surface 
that best fits the measured data, retrieving the relative phase over the full 
aperture. Wavefront reconstruction is actually a two-dimensional process, 
only one of which is shown. 

Figure 2.25 Performance improvement due to wavefront reconstruction. Recon
struction of the wavefront leads to a large gain in image quality compared with 
correction of local tilt only. The improvement factor is about  when the 
subaperture size d matches the turbulence parameter  
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the same as the short-exposure curve in figure 2.2). In 
the present context, tilt compensation removes the 
image motion. 

When the zones are phased correctly, the zonal 
images add coherently, resulting in vastly improved 
angular resolution. It can be seen that for  values 
around  the angular resolution with correct phasing 
is improved by a factor of  which is often more 
than 10 for astronomical telescopes. In fact, a piston-
type wavefront corrector that corrects the overall 
phase without correcting local tilt gives better com
pensation than that obtained by using zonal tilt cor
rection alone. Wavefront slope sensing is therefore 
seen as only the first step in the process of measuring 
a wavefront, the reconstructor being an equally 
important part of the system. 

The output of the reconstructor is a map of the 
original wavefront, at a sampling interval usually 
equal to the subaperture size. Wavefront variations 
at scales smaller than the subaperture size are lost in 
this process, the slope sensor acting as a low-pass 
filter. Obviously, the smaller the subapertures, the 
more accurately the wavefront will be measured. 
The error involved in wavefront slope measurements 
of this kind is known as fitting error and is always 
present in adaptive optics systems. 

The reference source plays a major role in the 
design of adaptive optics systems. At visible 
lengths, it is rare for the science object itself, or 
even a nearby star, to be bright enough for full com
pensation, so that artificial sources, such as laser bea
cons, must be provided. The situation is more 
favorable at  wavelengths, where compensation 
can be achieved with fainter reference stars. In all 
cases, the adaptive optics wavefront sensor must 
accommodate the peculiarities of whatever reference 
sources are planned for the system. Characteristics of 
reference sources used in astronomical adaptive 
optics systems are summarized in table 2.1. 

Although most natural stars are not resolved by 
present-day telescopes and can therefore be consid

ered as spatially coherent sources, the same is not 
true of laser beacons, which typically appear several 
arc seconds in diameter and may be spatially resolved 
by the telescope subapertures. It is therefore neces
sary for astronomical wavefront sensors to function 
with extended reference sources. 

Adaptive optics wavefront sensors are required to 
measure complete wavefronts on time scales of a few 
milliseconds, with each measurement consisting of a 
large number of wavefront samples. The spatial reso
lution is determined by the number of subapertures 
corrected by the deformable mirror and ranges from 
a 5 x 5 array in small systems up to about 50 x 50 for 
the largest telescopes. The rate at which independent 
subaperture gradient measurements must be made in 
an adaptive optics sensor is therefore very high, over 
106 per second for large systems. Each gradient or 
curvature measurement consists of at least two, and 
often four or more, pixel values (representing the 
number of detected photons), which must be read 
out of a CCD or similar detector array at megahertz 
rates. Noise added during the readout operation is 
minimized by using parallel output ports to reduce 
the temporal bandwidth. 

Two major types of wavefront gradient sensors 
have been developed: the  sensor 
and the shearing interferometer. The Shack-
Hartmann sensor is based on an optical test 
ally used for measuring the figure of large primary 
mirrors; in this test, a mask pierced with an array of 
holes is placed over the optical aperture, which is 
illuminated with light from a distant point source 
[Hartmann 1900]. Light reflected from the mirror 
through each subaperture produces a pattern of 
spots near the focal plane. Measurement of the dis
placement of the centroid of each spot from its 
expected position reveals the local gradient error in 
the mirror. In the late  Roland Shack of the 
University of Arizona was investigating methods of 
measuring wavefront distortion in order to enhance 
turbulence-degraded images. The small holes in con-

Table 2.1 Reference Sources for Astronomical Adaptive Optics 

Type of Reference Size (arc seconds) Wavelength  Brightness (magnitude) 

Visible stars (B-, V-, and R-bands) < 0.1   = -1 to +20 

Infrared stars (J-, H-, and  <  1.0-2.2   +18 

Small resolved disks 0.25-6 
(satellites) 

0.4-0.8 
(solar spectrum) 

 = + 5 to + 10 

Extended objects 1-1800 0.4-0.8  per arc second squared 
(solar or planetary surface) (solar spectrum) = -10 (Sun) to +9 

Laser beacons,  km 1-4 
(Rayleigh scattering) 

0.35-0.6  = 0 to +8 

Laser beacons, 90 km 1-4 
(Sodium layer fluorescence) 

0.589  = +5 to +12 
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ventional Hartmann masks used the available light 
very inefficiently, so Shack came up with the idea 
of replacing the holes with lenses, which could collect 
more light and produce an array of sharply focused 
spots. The centroids of the spots could then be mea
sured precisely at high speeds, using, for example, 
quadrant cells. The main problem was to fabricate 
a suitable lens array consisting of 50 x 50 elements, 
with  center-to-center spacing. As no devices of 
this type were available commercially, the mask was 
cast in plastic in the form of an array of crossed 
cylinder lenses [Shack and  1971]. The use of a 
lenslet array with contiguous subapertures, as shown 
in figure  enables essentially all of the light to be 
utilized and it produces a very compact design. 

Shack-Hartmann sensors have reached a high 
degree of sophistication. Binary optics enables the 
lenslet arrays to be fabricated with high precision 
and stability. The preferred photon sensor is a 
CCD array; these have high quantum efficiency and 
good mechanical stability. The ability to work with 
either pulsed or continuous reference sources is a 
major advantage that enables these sensors to be 
used with pulsed laser beacons as well as stars. 

The main disadvantage of Shack-Hartmann sen
sors is their inflexibility with respect to wavefront tilt 
sensitivity and dynamic range, which cannot be chan
ged during operation. Quadrant detectors are nor
mally employed for each subaperture, giving a truly 
linear range of only ±1/2 wave of tilt. When the local 
tilt approaches ±1 wave, which can occur randomly 
and suddenly, the output saturates. Quadrant detec
tors also have a nonlinear tilt response with extended 
reference sources. In spite of these drawbacks, the 

Shack-Hartmann sensor has become the standard 
wavefront sensor for adaptive optics systems. 

There are many different types of shearing inter
ferometer and only those capable of working with 
incoherent light are suitable for astronomical wave-
front sensing. The principle of shearing interferome-
try is to generate two replicas of the wavefront to be 
measured; these are displaced by a small distance and 
then recombined. For use with natural sources that 
radiate temporally and spatially incoherent light, two 
requirements must be met: (1) the optical pathlengths 
of the two replicas must be equal to within the coher
ence length of the radiation, and (2) the interference 
fringes must coincide over the spectral band in use. 
These requirements are both met by using a diffrac
tion grating to generate the two replicas. The shear or 
relative displacement of the two replicas depends on 
the diffraction angle, which is proportional to 
length, so the interference fringes coincide at all 
wavelengths. Also, when symmetrical positive and 
negative diffraction orders are interfered, the optical 
pathlengths are automatically equal, resulting in a 
sensor that works with white light. 

For wavefront sensing, lateral shear is most often 
used, resulting in an interference pattern having an 
intensity proportional to the wavefront gradient in 
the direction of shear. An array of photodetectors 
is used to measure the intensity of the fringe pattern, 
one detector for each subaperture. Two such sensors 
are required, with the shear directions at 90°, to mea
sure the wavefront gradients in two orthogonal axes. 
For continuous reference sources such as stars (laser 
beacons are usually pulsed), the interference fringes 
can be modulated by using a rotating radial grating, 
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Subaperture 
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Figure 2.26 Principle of the Shack-Hartmann wavefront sensor. 
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located at an image of the reference source, to gen
erate the sheared wavefronts. The operation of this 
type of shearing interferometer may be explained in 
terms of geometrical optics, as shown in figure 2.27. 
The detector array employs one pixel per axis to col
lect the light from each subaperture of the wavefront. 
With a plane wave input, the light from all subaper-
tures is focused to a common point on the grating, 
which rotates at a constant rate, chopping the light 
reaching the detectors. In this case, the signals from 
all detectors are in phase. 

Distortion of the input wavefront produces local 
tilts across individual subapertures. The images from 
these subapertures are consequently displaced at the 
detector plane, causing them to be chopped at an 
earlier or later time by the grating. The individual 
detector outputs are therefore phase shifted in time 
by amounts proportional to the wavefront gradients 
within each subaperture. Electrical phase shifts are 
easily measured, giving the required wavefront 

slopes. This version of the shearing interferometer 
has the advantage that no calibration is needed 
because the phase values in all subapertures are gen
erated by the same grating lines at a common focus, 
so any irregularities affect all channels equally and do 
not show up as measurement errors. While the prin
ciple of the shearing interferometer is not as obvious 
as that of the Hartmann sensor, the physical imple
mentation is simple and it is a very stable and reliable 
device. An advantage of this sensor is that its sensi
tivity and dynamic range may be adjusted in real time 
by changing the grating spacing at the focus; this is 
easily achieved by moving the rotation axis of the 
radial grating. 

2.7.3 Photon Detectors 

In real-time wavefront compensation systems, it is 
necessary to perform a complete wavefront measure
ment (including photon integration, detector read-
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(a) Plane wavefront:  detector outputs in phase. 
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(b) Distorted wavefront: output phase shift proportional to wavefront slope. 

Figure 2.27 Shearing interferometer wavefront sensor with temporal modu
lation. A moving grating at the focal plane chops the light at a constant 
frequency. The light from each zone of the aperture is displaced according to 
the local slope, producing an electrical phase shift in the detector output that is 
directly proportional to the wavefront slope. 



out, wavefront gradient estimation, and wavefront 
reconstruction) at several hundred locations in the 
telescope aperture, within a few milliseconds. To 
meet this requirement, wavefront sensors employ 
multielement photodetector arrays that cover the 
entire optical aperture, enabling all measurement 
zones to be sensed simultaneously. The overall per
formance of any type of wavefront sensor is deter
mined largely by the photodetector employed. 

Photon detectors suitable for wavefront sensing 
include photomultiplier arrays, intensified silicon 
diode arrays, silicon CCDs, and avalanche photo-
diodes (APDs). The two most important parameters 
are the quantum efficiency and the signal-to-noise 
ratio. The first wavefront sensors used for astronom
ical adaptive optics employed arrays of photomulti
plier tubes (PMTs) for photon detection. Photo-
multiplier tubes optimized for photon-counting add 
practically no noise in the detection process, so they 
can be regarded as "photon-limited". In this case, the 
signal-to-noise ratio is equal to the square root of the 
number of photons detected. The main drawback of 
PMTs and intensifiers is the relatively low quantum 
efficiency of photocathodes, which peaks at about 
20% at visible wavelengths, although Generation 3 
devices using infrared  photocathodes may have 
quantum efficiencies as high as 50%. In comparison, 
the quantum efficiency of silicon devices is 80% to 
90% at visible wavelengths. Another difficulty with 

 is that they are relatively bulky 
devices and cannot easily be assembled into large 
arrays. Multianode devices with up to 100 channels 
have been made, but larger arrays are impractical. 

Not only do CCD arrays have high quantum effi
ciency, but they can also be made in sizes compatible 
with wavefront sensors for astronomical adaptive 
optics: for example, 64 x 64 pixels. A major problem 
with CCDs has been the read noise added to the serial 
output when the charge packets are converted into 
electrical signals. The read noise is proportional to 
the pixel rate (bandwidth) of the serial output. 
Reading out a 64 x 64 array at 1000 frames per sec
ond produces a pixel rate of about 4 MHz. The read
out rate may be reduced by using multiple ports. 
Low-noise devices are now available in which the 
readout noise is less than five electrons per pixel. 
High quantum efficiency is obtained in these devices 
by thinning the silicon substrate and using back illu
mination to avoid the obstructions of the electrode 
structure. 

2.7.4 Image-Plane Sensing 

In the wavefront sensors described above, the pupil is 
divided into an array of zones in which independent 
measurements of wavefront slope are made simulta
neously. This is the preferred method, at least for 
adaptive optics systems containing a large number 
of sub-apertures. An alternative approach is to 
deduce the wavefront from measurements of the 

The output of a wavefront gradient sensor consists of 
an array of zonal measurements representing local 
wavefront gradients in two orthogonal axes. The 
necessity for reconstructing these measurements 
into a two-dimensional array that represents the opti
cal path errors over the whole optical aperture was 
discussed in section 2.7.2. The reconstruction process 
was illustrated in one dimension in figure 2.24. In this 
case, the measured gradients were simply fitted 
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reference source intensity distribution in the image 
plane. The basic problem with image-plane sensing 
is that light from all zones of the aperture is 
imposed at the image. There is a Fourier transform 
relationship between the distribution of light at the 
pupil and image planes, resulting in the loss of spatial 
information. Therefore, a change in intensity in the 
image cannot be associated directly with the wave-
front in a specific part of the pupil. Deconvolution 
has been shown to be possible in some cases, but the 
process is image dependent and requires intensive 
computation. There are also practical difficulties in 
measuring the large intensity range within the small 
area associated with optical images. 

Some of the problems of image-plane sensing can 
be overcome by making multiple intensity measure
ments near the focal plane. Even a small displace
ment from the focal plane allows the spatial 
relationship with the optical pupil to be established, 
eliminating the wavefront ambiguities that plague 
pure image-plane measurements. Wavefront distor
tion can be determined using phase diversity 
[Gonsalves 1982], in which two images are measured 
simultaneously, one in best focus and one with a 
known phase change, enabling image restoration 
with post-detection processing. In principle, it can 
also be used for real-time compensation, although 
considerable data processing is involved. 

Neural networks also use intensity information 
from two planes near the image. This approach to 
wavefront sensing has been successful in detecting 
low-order distortion at low signal-to-noise ratios. 
The network must first be trained by exposure to 
the functions that it is required to recognize. The 
application of neural networks to adaptive optics is 
discussed in section 5.8. 

Image sharpening, an adaptive optics technique in 
which all measurements are made in the image plane, 
has been described in section 2.6.3. Image sharpening 
may be regarded as a simplified version of the decon
volution process, in which a single intensity measure
ment is made at the image, usually at the central 
peak. To separate the contribution of each subaper-
ture, trial phase corrections are inserted sequentially 
in each zone and their effect on the intensity of the 
image is measured. As shown above, serial adaptive 
optics systems do not perform well in the photon-
starved environment of astronomy. 



together by matching the edges of adjoining pairs of 
subapertures to form the reconstructed wavefront 
profile. In the one-dimensional process, measurement 
errors or uncertainties due to noise on individual 
subapertures will propagate through the structure 
without attenuation, and will appear as accumulated 
errors in the output profile. 

Wavefront reconstruction as used in adaptive 
optics is a two-dimensional process that has more 
desirable properties. A typical arrangement is 
shown in figure 2.28. The wavefront gradients in 
the x and y axes are measured by an array of sensing 
zones and the wavefront is evaluated at a correspond
ing square array of nodes. The total number of gra
dient measurements is approximately twice the 
number of evaluation points, so that each pair of 
points is linked by multiple measurement paths. 
This redundancy in the measurements has the bene
ficial effect of smoothing random errors, which do 
not accumulate as they do in the one-dimensional 
case. 

It has been found that the noise propagation of 
two-dimensional reconstructors of this type varies 
as the logarithm of the number of nodes. For aper
tures containing on the order of 100 nodes, the noise 
propagation is approximately unity, so that the error 
at each point of the reconstructed wavefront is 
approximately the same as the average error on 
each input gradient measurement. 

The first real-time wavefront reconstructor, used 
in the  RTAC system [Hardy et  1977] 
was an analog device consisting of a two-dimensional 
electrical conductance network representing the 
wavefront nodes. Currents proportional to the mea
sured wavefront slopes were injected into the net-
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work nodes, which then settled at wavefront values 
that minimized the mean-square error in the input 
data. A similar analog reconstructor was used in 
the 1982 Compensated Imaging System (CIS), 
which employed 168 actuators. The computation 
(settling) time of the network was less than   

The current approach to wavefront reconstruction 
is to use parallel digital processing. Wavefront recon
struction involves a heavy data-processing load. For 
an aperture containing  zonal wavefront samples, 
there are approximately N  measurements 
and   measurements. To obtain each 
reconstructed point, all 2N gradient values are 
weighted and summed. The reconstruction process 
therefore involves a total  2N2  opera
tions, which must be performed in a small fraction of 
the turbulence change time, usually less than 1  
An adaptive optics system with 500 actuators pro
duces a reconstructor data-processing load of 
5 x 108 multiply-add operations per second. 
Wavefront reconstructors are usually implemented 
as a parallel array of multiplier-accumulator devices. 

2.8 Wavefront Correction 

2.8.7 Types of Wavefront Corrector 

The wavefront corrector is the key element in deter
mining the performance of all adaptive optics sys
tems; the output wavefront can be no better than 
the uncorrectable errors on these devices, so a con
siderable effort has been expended on their design 
and fabrication over the last 25 years or so. Some 

 4 
Reconstruction Nodes 

Figure 2.28 Two-dimensional wavefront reconstruction. In the case shown, 
the  and  slope measurements are centered between adjacent 
reconstruction nodes. In the reconstructor, pairs of nodes, such as A and 
B, are connected by many different parallel paths, reducing the error in 
estimating the wavefront from noisy slope measurements. 
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early wavefront correctors were based on refractive 
index changes in electro-optical crystals, but these 
devices had a very limited range and required high 
voltages. The advantages of reflective devices soon 
became apparent and almost all current correctors 
are of this type. Deformable mirrors are also referred 
to as inertial compensators because they employ 
mechanical displacement of a reflecting surface. The 
basic forms of wavefront corrector are shown in fig
ure 2.29. The main types in use, continuous facesheet 
deformable mirrors, bimorph mirrors, and segmen

ted mirrors, are briefly described in sections 2.8.2-
2.8.4. 

Membrane mirrors appear to be an economical 
method of implementing a large number of actuators, 
but they have not yet achieved success in adaptive 
optics systems. A membrane mirror is being consid
ered for this purpose in the Subaru Telescope of the 
National Astronomical Observatory of Japan 
[Takami and Iye 1994]. 

The only other promising technology for wave-
front compensation in astronomical adaptive optics 

Figure 2.29 Wavefront correction devices. 
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appears to be refractive devices using liquid crystals, 
which have a potential advantage in being solid-state 
(or at least "liquid-state") components. At the pre
sent time, liquid crystal correctors operate best at  
wavelengths, as the dispersion rises significantly at 
visible wavelengths. Special techniques have been 
developed to improve the operating speed of liquid 
crystals: rise and fall times in the millisecond range 
are now feasible [Bonaccini et al. 1991]. These devices 
produce relatively large optical pathlength changes 
and can be made into arrays containing a large num
ber of addressable pixels. A liquid crystal wavefront 
corrector, used in reflection, can be combined with a 
mechanical tip-tilt mirror as shown in figure 2.29. 

2.8.2 Deformable Mirrors 

The first successful deformable mirrors (developed at 
 in 1973) were of the monolithic piezoelectric 

type. They employed a thin aluminized glass face-
sheet bonded to a solid block of piezoelectric material 
on which an array of electrodes was mounted. 
Voltages applied between the electrodes and a com
mon ground plane produced local deformations of 
the piezoelectric block that were imprinted in the 
facesheet. These devices could be made with several 
hundred actuators and had the required precision 
and stability, but their correction range was only 

 restricting their application in large astro
nomical telescopes . 

The present generation of deformable mirrors 
employs a thin continuous faceplate supported by 
an array of actuators attached to a massive and 
stable baseplate, often made of the same material as 
the faceplate (for example, ultralow-expansion 
quartz) in order to eliminate thermal distortion. 
The actuators are typically multilayer piezoelectric 
or electrostrictive ceramics. Deformable mirrors of 
this type have good stability over time and tempera
ture changes, largely due to the use of a continuous 
faceplate, which requires the application of consider
able force to produce distortion. The deflection or 
stroke obtainable with this type of mirror is limited 
by the stress induced in the faceplate by the actuator 
motion. Actuator spacing is typically around 7 mm. 
The greatest stress is produced between adjacent 
actuators, limiting the differential stroke to about 

 
Continuous-plate deformable mirrors using low-

voltage PMN (lead magnesium niobate) electrostric
tive actuators were developed at Itek in the 1980s 
[Ealey and Washeba 1990], in sizes ranging from 69 
to about 2000 actuators. The mechanical stroke of 
these mirrors was  peak to peak with a drive 
voltage of  and the minimum surface ripple was 

  Low-cost deformable mirrors using 
replaceable PMN piezoelectric actuator cartridges 
have been developed by Xinetics [Ealey and 

 1994]. These mirrors have a stroke of 

 and are available in sizes of 37, 97, and 349 
actuators. 

Deformable stacked array mirrors (SAM) with 52, 
88, and 249 actuators are manufactured by Laserdot, 
France [Gaffard et al. 1994]. Piezoelectric actuators 
are used, giving a maximum mechanical stroke of 
±5  with a differential of ±2.5  between adja
cent actuators. The facesheets on these mirrors are 
single crystals of silicon. 

2.8.3 Bimorph Mirrors 

Bimorph mirrors also employ continuous faceplates, 
but these are supported and deformed in a totally 
different way from conventional deformable mirrors. 
The actuators in bimorph mirrors are flat disks of 
piezoelectric material that are bonded to the back 
of the faceplate. Voltages applied to the actuators 
cause their dimensions to change parallel to the 
plate, producing bending moments that curve the 
faceplate. Bimorph mirrors do not need a rigid base
plate because the bending forces are applied directly 
to the faceplate itself. Bimorph mirrors can be made 
at relatively low cost and are well suited to adaptive 
optics systems using curvature sensing and correc
tion. A  bimorph deformable mirror is 
being used for this purpose in the  adaptive optics 
system developed by the University of Hawaii 
[Roddier, Northcott, and Graves 1991]. Bimorph 
mirrors with 13 and 19 actuators have been made 
by Laserdot [Gaffard et al. 1994]. 

2.8.4 Segmented Mirrors 

Segmented mirrors consist of an array of triangular, 
square, or hexagonal elements, each supported on an 
actuator structure with three degrees of freedom, 
providing two axes of tilt plus piston motion. 
(Some large primary mirrors, such as those for the 

 Keck telescopes, also employ segmented con
struction as a means for achieving large apertures. 
The segments of these primary mirrors are not 
intended to compensate atmospheric turbulence; 
they have a more elaborate supporting structure, as 
befits their size.) The segments of high-speed adaptive 
mirrors intended for turbulence compensation are 
typically about  cm in size. They have been made 
with as many as 500 segments, employing  actua
tors [Hulburd and  1990]. Segmented mirrors 
have a good frequency response and large dynamic 
range because each element is unconstrained. The 
stroke obtainable with segmented mirrors is limited 
only by the capability of the actuators. They are also 
relatively easy to repair in case of actuator failure. 

Segmented mirrors have two drawbacks: (1) 
Because the segments are free to move independently, 
they need frequent calibration to keep all elements 
phased properly. (2) The gaps between segments, 
however small, inevitably diffract some of the inci
dent light, which shows up as a distinct pattern in the 
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image plane due to the periodicity of the segments. 
There are also abrupt changes in slope at the junc
tures between segments. These optical effects may 
not be important for some applications, but must 
be considered in low-scatter systems designed to 
work with very low contrast images. The gaps 
between segments could also be a problem with ther
mal  systems. 

The segments and actuators used in a segmented 
mirror are usually identical and can be mass-pro
duced; as a consequence, the cost of segmented mir
rors is often lower than that of continuous facesheet 
mirrors. Nevertheless, the need for a dedicated phas
ing sensor to keep the segments in proper alignment 
must be kept in mind; this adds to the cost of the 
adaptive optics system and complicates its opera
tional use. 

2.9 Laser Beacons 

2.9.1 Sky Coverage 

To maximize the value of image compensation in 
observational astronomy, adaptive optics must be 
usable over most (preferably all) of the sky. In reality, 
because of angular anisoplanatism, the area over 
which compensation is effective is restricted to a 
small radius surrounding the reference source. For 
full compensation at visible wavelengths, the isopla
natic angle is about 2 arc seconds for average condi
tions, and the required reference source magnitude is 
about  = 10. Using natural stars, the sky coverage 
is limited to about 1/100,000 of the hemisphere; this 
is of little value for deep-sky observations. The situa
tion improves at longer wavelengths due to the larger 
values of  and  To compensate images at 2.2  
a reference source of about  = 14 is required, and 
the isoplanatic angle increases to about 10 arc sec
onds, giving a sky coverage of about 1/1000. 

Although sky coverage is an important issue in 
adaptive optics for compensating very faint objects, 
much useful work can be done using natural sources 
in the self-referencing mode. Many objects of current 
interest in astronomy, such as protoplanetary nebu
lae, contain stars bright enough to function as refer
ence sources and are compact enough to lie within a 
single isoplanatic patch. For example, Roddier et al. 
[1995] have obtained compensated images of the 
bipolar nebula "Frosty Leo" with an angular resolu
tion of 0.1 arc second in the J- and H- bands (1.25-

 The wavefront sensor operated at  
Laser beacons provide a partial solution to the 

problem of sky coverage. The artificial stars gener
ated by laser backscatter within Earth's atmosphere 
provide reference sources for the measurement of 
most of the turbulence within the aperture of a tele
scope. The measurement is incomplete due to the 
proximity of the beacon to the telescope; this pro
duces a residual error known as focal anisoplanatism. 

There is an additional problem: a beacon projected 
from the ground cannot provide information on the 
absolute position of the object viewed. To make a 
long exposure of an astronomical object, its position 
must be stabilized to within a fraction of the spatial 
resolution required. Even when using a laser beacon, 
a fixed reference star outside Earth's atmosphere is 
still required to stabilize the image. The sky coverage 
obtained with adaptive optics is therefore limited by 
the availability of natural stars bright enough to be 
used for image stabilization. 

For the reasons discussed in section 2.9.4, tilt sta
bilization can be achieved with much fainter stars 
than are required for high-order wavefront compen
sation, thus resulting in useful coverage of the sky. 
For observations in the IR bands between 1.25 and 

  stars as faint as visual magnitude  16-18 
can be used for image stabilization. It is shown in 
section 9.6 that it is possible to obtain a tilt stabiliza
tion Strehl ratio of 0.5 over 10% of the sky at 

  and over 100% of the sky at  By 
compensating the natural guide star (as well as the 
science object), the limiting magnitude can be 
extended to about 20, resulting in almost 100% sky 
coverage even for observations at  Infrared 
guide stars may benefit directly from the primary 
adaptive optics because of the large isoplanatic 
angle, which eliminates the need for a separate com
pensation system. 

2.9.2 Rayleigh and Sodium Beacons 

The use of laser beacons for adaptive optics was pio
neered for defense purposes during the  and the 
technology was made public in 1992. Laser beacons 
consist of the backscattered light generated by 
ground-based laser beams passing through atmo
spheric constituents. There are two modes of scatter
ing: (1) Rayleigh scattering, which is produced by air 
molecules and is useful at altitudes up to about 15 
km; and (2) sodium resonance fluorescence, which 
occurs in a thin layer of sodium atoms deposited by 
meteors at an altitude of about 90 km. 

Rayleigh scattering is most efficient at  
lengths and is useful up to about 0.6  Many dif
ferent types of laser have been used, including 
excimer, copper vapor, doubled  -
yttrium aluminum garnet (Nd:YAG), and tunable 
dye lasers. The strength of the Rayleigh scatter return 
depends on the atmospheric density, which drops 
exponentially with altitude, so Rayleigh beacons are 
used mostly at altitudes between 5 and 10 km. For 
continuous adaptive correction, the laser power 
needed is on the order of  per beacon. The 
lasers are pulsed so that backscatter from low alti
tudes can be eliminated by range gating. The angular 
size of the spot is normally limited to 1 or 2 arc 
seconds by atmospheric turbulence. If the laser 
beam is launched through a telescope equipped 
with adaptive optics, the beam  be compensated 
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and a much smaller spot obtained.  beacons 
have proved effective for small telescope apertures 
up to 2 m, but their relatively low altitude produces 
inadequate sampling of atmospheric turbulence with 
larger instruments. In principle, multiple beacons 
may be used to provide better wavefront measure
ments, but this process makes an already compli
cated system even more complex. 

For large telescope apertures, sodium beacons 
offer improved sampling of atmospheric turbulence 
due to their much higher altitude. To excite the 
sodium resonance, the laser must be tuned accurately 
to the  line at 0.589  The process is much more 
efficient in generating backscattered light than is 
molecular scattering. The laser power required for 
each beacon is around  Tunable dye lasers 
have been used to generate the  radiation. 
The sodium wavelength is also produced as a sum-
frequency by mixing the 1.064 and  outputs 
of  lasers in a nonlinear crystal. 

In the process of resonance fluorescence, sodium 
atoms are pumped by the laser irradiation from the 
ground state into an excited state, from which their 
natural decay produces the desired backscattered 
radiation. If the population of excited atoms is 
large, then the incident light produces stimulated 
emission in the forward direction; such emission is 
lost to the telescope. This condition is known as 
saturation or bleaching and it limits the laser 
power that can be used efficiently. Saturation is 
controlled by limiting the peak pulse power of the 
laser and by tailoring its pulse width and repetition 
rate. 

2.9.3 Focal Anisoplanatism 

The artificial stars created by laser backscattering are 
necessarily within Earth's atmosphere and conse
quently they are relatively near to the telescope. 
These reference sources sample a cone-shaped 
volume of the turbulence in the optical path of the 
telescope, as shown in figure 2.30. Turbulence above 
the beacon is not measured, and that occurring below 
the beacon is only partially sampled. The resulting 
wavefront error is known as focal anisoplanatism or 
cone effect. It is characterized by the parameter  
the aperture diameter over which the mean-square 
wavefront error due to focal anisoplanatism is 1 
rad2. The larger the value of  the smaller the 
error. The value of  depends on the beacon height, 
the turbulence profile, and the observing wavelength. 
Because of the irregular nature of turbulence profiles, 

 is a nonlinear function of height; it is defined and 
calculated in section 7.3.3. 

Values of  for Rayleigh beacons at  alti
tude are typically about I m at a wavelength of 

  3 m at  and 5 m at   Most 
astronomical telescopes will therefore require arrays 
of such beacons. To provide compensation at visible 
wavelengths, a 4-m telescope would require at least a 

Laser Beacon  
Turbulent 

Layers 

Telescope Aperture 

Figure 2.30 Focal anisoplanatism or cone effect due 
to incomplete sampling of atmospheric turbulence 
with a laser beacon. 

 array of Rayleigh beacons, while an 8-m tele
scope operating at   would require a 3 x 3 
array. Laser beacon systems of this complexity have 
not been built. 

For large telescopes, sodium beacons have a con
siderable advantage due to their much larger values 
of  For a beacon at 90 km, the value of  at a 
wavelength of 0.5  is about 4 m, while at  
it is close to 10 m. Thus, at  wavelengths, even the 
largest telescopes would benefit from a single sodium 
beacon. Although the laser requirements for sodium 
are more stringent in terms of wavelength and pulse 
width (to avoid saturation), sodium beacons appear 
to be the preferred approach for astronomical adap
tive optics. 

2.9.4 Image Stabilization 

The reference source provided by a laser beacon is 
suitable for measuring the wavefront errors within an 
optical aperture, but it cannot be used to determine 
the overall tilt, which specifies the absolute direction 
of the object to be compensated. The reason is that 
the position of a beam projected from the ground is 
randomly perturbed by atmospheric turbulence. 
When projected and viewed through the same tele
scope, a laser beam will always appear to be on axis 
no matter  the telescope is pointing, because the 
outgoing and incoming beams are deflected by the 
turbulence in exactly the same way. To stabilize an 
image, it is necessary to use a separate reference 
source that is not perturbed by the atmosphere. 
Natural stars are the obvious choice. 

The sky coverage provided by natural stars is 
determined by two factors: (1) the star brightness 
required to provide a sufficient signal-to-noise ratio 
for overall tilt sensing; and (2) the isoplanatic angle 
over which tilt compensation is effective. Both of 
these factors become more favorable as the 
length increases. Overall tilt is the lowest order wave-
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front distortion component in single-aperture adap
tive optics. The whole telescope aperture is used to 
collect the light and the integration time is relatively 
long, so the photon flux required from the fixed guide 
star is considerably less than that for high-order com
pensation. In addition, the isoplanatic angle for over
all tilt is greater than that for high-order 
compensation. 

For these reasons, the sky coverage obtained with 
laser beacons stabilized by natural guide stars is 
much greater than that of adaptive optics using nat
ural stars alone. 

2.10 Error Sources in Adaptive Optics 

2.10.1 Fitting Error 

Optical wavefronts degraded by atmospheric turbu
lence contain components at spatial scales ranging 
from several meters (outer scale) to about 1 mm 
(inner scale). According to Kolmogorov's model, 
these components are always present in fully devel
oped turbulence. Exact compensation of such a 
wavefront would involve extremely high spatial fre
quencies, which are impractical to implement. The 
residual error due to the inability of the wavefront 
compensator to correct the wavefront exactly is 
known as fitting error. If the turbulent wavefront is 

 and the wavefront corrector function is  
then the mean-square fitting error is defined as 

 =    where x is the position vector 
and ( ) denotes ensemble average. 

For a wavefront with a Kolmogorov spectrum 
(power a  the fitting error of a zonal corrector 
may be expressed in the form  =  where 

 is a constant of proportionality dependent on the 
type of corrector. The fitting error is controlled by 
the ratio  and may be reduced by using a small 
value   that is, by using more actuators. To obtain 
a high degree of wavefront compensation, the value 
of  is usually between 1 and 1.5, but it may be 
larger with partially compensated systems. 

The turbulence parameter  is usually defined at a 
wavelength of 0.5  and varies as A6'5. For constant 
turbulence, the value of  increases with wavelength, 
and the fitting error is inversely proportional to 
wavelength. 

 Temporal Error 

The temporal fluctuations of turbulence are caused 
mainly by transportation of perturbed layers by 
winds, so the temporal spectrum has a similar form 
to its spatial spectrum, scaled by the wind velocity. 
The inevitable time delay between the measurement 
and correction of turbulence in an adaptive optics 
system results in the temporal error, defined as 

 =  0   + A/)]2), where At is the 

delay time. The mean-square temporal error has the 
same basic form as the fitting error, being propor
tional to  where  is the characteristic 
change time of the turbulence. 

2.10.3 Anisoplanatic Error 

When the reference source used for wavefront mea
surement is displaced angularly from the science 
object, the turbulence sampled by the wavefront sen
sor is different from that in the imaging path, as 
shown in figure  The wavefront error due to an 
angular separation A0 between the reference source 
and the science object is known as the anisoplanatic 
error and is defined as    0)-

 +  The mean-square wavefront error 
due to angular anisoplanatism is expressed conveni
ently in terms of the isoplanatic angle  which is 
defined as the angle at which the anisoplanatic 
error is equal to 1 rad2 at a wavelength of  
The anisoplanatic angle is determined by the vertical 
distribution of turbulence, with a weighting factor of 

 For average conditions at visible wavelengths, 
its value is in the region of 2 arc seconds. The mean-
square anisoplanatic error at an angle 6 is given by 

 —  . This anisoplanatic error is encoun
tered in adaptive optics systems using natural stars 
as the primary reference source. Its small value is the 
reason that the sky coverage with such systems is so 
small. The anisoplanatic error also varies as A6'5. 

When laser beacons are employed, the anisopla
natic errors have a different character, as described in 

Figure 2.31 Angular anisoplanatism. The wavefront 
measured within beam A is not valid for beam B 
because the beams traverse different regions of 
turbulence. The error is dependent on the ratio of 
the beam separation angle 0 to the isoplanatic angle 

 of the turbulence structure. 
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section 2.9. Wavefront compensation within the 
aperture is degraded by focal anisoplanatism or 
cone effect, due to the proximity of the beacon to 
the telescope. The need for a fixed guide star to sta
bilize the image invokes an additional error due to tilt 
anisoplanatism. These errors have more complex 
dependencies and are treated in chapter 7. 

2.10.4 Photon Error 

The photon error is produced by random noise in the 
wavefront sensor, consisting of shot noise from the 
reference source and background, together with 
amplifier noise produced during detection of the 
reference signal. The shot noise component is inver
sely proportional to the square root of the number of 
photons counted, and it is dominant for high photon 
fluxes. Because of the small amount of light available 
from both natural and laser sources, wavefront sen
sors usually operate under photon-starved condi
tions, so the photon error is typically a large 
component of the error budget. The photon error 
may be reduced by increasing the integration time, 
but this increases the temporal error, so a tradeoff 
must be made to determine the optimum value. 

 Performance Estimation 

The main sources of random error are summarized in 
figure 2.32, which shows their dependence on the 
external parameters of the atmosphere and on the 
parameters of the adaptive optics system. The overall 
performance of an adaptive optics system is esti
mated by summing the individual errors. If these 
sources are uncorrelated, the residual wavefront 
phase error is given by the sum of their variances: 

 =   

In practice, there are correlations between some 
errors, so a straightforward sum of the variances may 
lead to an overestimate of the total residual error. 
This is not necessarily a disadvantage in system 
design because it tends to compensate for unrecog
nized errors, and the resulting performance predic
tions are usually more realistic. 

Many of the parameters in adaptive optics sys
tems are interrelated, so it is necessary to perform 
tradeoffs in order to optimize the overall perfor
mance. An important factor is the integration time, 
which controls both the temporal error and the 
photon error. This relationship is shown in figure 
2.33. The optimum integration time minimizes the 
sum of the photon and temporal errors. The photon 
error varies with the reference source brightness and 
the turbulence strength, so it is necessary to update 
the integration time during operation as the obser
ving conditions change. 

From the total wavefront error variance, the 
 ratio representing the normalized peak inten

 Using Adaptive Optics 

 Integration with the Telescope 

Adaptive optics may be added to an astronomical 
telescope in two ways: the adaptive system can be 
integrated into the basic telescope design, or it can 
be installed as a separate unit, attached to a focal 
station. With existing telescopes, there is usually little 
choice other than to install the adaptive optics at one 
of the focal positions, or in the coude path, as shown 
in figure 2.34. In such cases, additional optical com
ponents are unavoidably included in the imaging 
path. 

As pointed out in section 2.4, adaptive optics 
enhances the performance of telescopes of all sizes, 
effectively giving them the capability of much larger 
instruments. For a telescope of aperture D operating 
in turbulence of coherence length  the increase in 
limiting magnitude is potentially 2.5  which 
for a 2-m telescope in average turbulence conditions 
of 0.1 m gives a magnitude gain of 3.25, equivalent to 
increasing the aperture to about 8 m. This suggests 
that a packaged adaptive optics unit, designed for use 
at the Cassegrain, Nasmyth, or coude foci, would be 
a valuable adjunct to most existing instruments. The 
package can be designed with the same input and 
output F-numbers, allowing the use of existing 
instrumentation, although the adaptive optics advan
tage is not realized unless the spatial resolution of the 
instruments is increased. 

The advantage of designing the adaptive optics 
into the telescope itself is that the number of addi-

sity of a compensated point source is computed from 
the relation 

The Strehl ratio is used conventionally as a perfor
mance criterion in adaptive optics systems. It does 
not represent the complete imaging capability of a 
system, for which the peak contrast ratio  may 
be more relevant. Images having Strehl ratios of  
or less still contain important scientific information. 
The choice of a suitable performance criterion is a 
critical factor in the design of astronomical adaptive 
optics because it allows compromises in the hardware 
and software that may considerably reduce the com
plexity and cost of the system. 

The issue of partial compensation was introduced 
in section 2.4.3. Partially compensated images consist 
of a diffraction-limited core surrounded by a much 
larger halo, the diameter of which is determined by 
the value of  at the observing wavelength. The peak 
contrast ratio between the core and the halo may be 
the critical factor for some imaging tasks. The subject 
of suitable criteria for the evaluation and optimiza
tion of adaptive optics systems is discussed in detail 
in chapter 4. 
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Figure 2.32 Main sources of wavefront error in adaptive optics. 

tional optical components can be minimized; how
ever, the resulting system may be less flexible and 
hardware modifications or upgrades more difficult 
and expensive. The use of an adaptive secondary mir
ror, as indicated in figure 2.35, is an elegant method 
of including adaptive optics into the design of 
Cassegrain or Gregorian telescopes. In some cases, 
it may be possible to replace an existing secondary 
with an adaptive component. This approach has the 
advantage of using an existing optical surface in the 
telescope, making it particularly attractive for  
operation. Adaptive secondary mirrors usually have 
the capability of compensating image motion, as well 
as higher order aberrations. A disadvantage of adap
tive secondaries is that they are not located at a con
jugate image of the turbulence, resulting in a small 
isoplanatic angle that cannot be enlarged without 
additional components. 

Figure 2.33 Optimization of integration time. The 
integration time of the adaptive optics control loop 
controls the photon (shot noise) error and the 
temporal (time delay) error, shown here on a log-
log plot. The total error is minimized when the 
temporal and photon errors are equal. 
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Figure 2.34 Adaptive optics installation at an existing focal station on an 
astronomical telescope. The adaptive optical unit contains the wavefront 
corrector, wavefront sensor, and interface optics. It is preferably mounted at 
the Cassegrain focus, but may also be placed at a Nasmyth or coude focus. The 
electronics unit and adaptive optics (AO) control station may be located some 
distance from the telescope. The laser beacon would be projected through a 
separate optical system. FSM = fast steering mirror; DM = deformable 
mirror. 
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Figure 2.35 Adaptive optics system using a deformable secondary mirror. If 
the secondary mirror also has fast guiding capability, then no additional optics 
are required in the telescope imaging path other than a beam splitter. The 
optical path to the wavefront sensor may be designed as an intrinsic part of 
the telescope optical system. 
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In all adaptive optics systems, the location of 
pupil planes must be controlled carefully. The 
basic requirement for pupil imaging is for the wave-
front corrector to be imaged at a plane conjugate to 
the layer having the largest turbulence moment, and 
for the wavefront sensor detectors to be imaged 
onto the wavefront corrector. This arrangement 
maximizes the isoplanatic angle and ensures inde
pendent measurement of the wavefront errors in 
each zone of the aperture. If a separate tilt corrector 
is employed, as is usually the case, it should be 
located at a conjugate image of the telescope 
entrance pupil, to eliminate vignetting due to 
angle-of-arrival variations. 

2.11.2 The Operator Interface 

It is recognized that the practical utility of adaptive 
optics depends greatly on the presence of a conve
nient and user-friendly interface with the telescope 
operator. The trend in design is to minimize the 

need for operator inputs by making the system 
autonomous. Setup and calibration procedures 
should be automatic, as should routine adjustments 
needed to optimize performance. The parameters 
most likely to vary during an observing session are 
the turbulence strength  the isoplanatic angle  
and the turbulence change time  These variations 
are accommodated in the adaptive optics by opti
mizing the integration time and the control loop 
gain. The latter function is implemented by chan
ging the coefficients or "weights" in the reconstruc
tion matrix. 

Although most parameters are optimized auto
matically, it is important for the operator to have 
a real-time presentation of all vital system para
meters, as well as the capability for overriding com
mands and establishing manual control if necessary. 
This is especially necessary during the initial test 
and evaluation period, while the data required to 
establish a multiparameter automatic control system 
are being accumulated. 



Optical Effects of 
Atmospheric Turbulence 

"Everything should be made as 
simple as possible, but not simpler." 

Albert Einstein 

3.1 Introduction 

The purpose of adaptive optics in astronomical tele
scopes is to improve the image quality by compensat
ing the wavefront distortion due to atmospheric 
turbulence. A basic understanding of the effects of 
turbulence on optical image formation is necessary 
for the design and evaluation of adaptive systems; 
it is also the key to the development of new concepts 
and techniques. The characteristics of atmospheric 
turbulence and its effect on the propagation of light 
through Earth's atmosphere are reviewed in this 
chapter. 

Adaptive optics systems designed to compensate 
atmospheric turbulence will also correct residual 
quasi-static aberrations in the optical components, 
which are usually dominated by figure errors in the 
primary mirror. Wavefront errors of this kind change 
slowly, on a time scale of greater than tens of sec
onds, compared with the millisecond time scale of 
atmospheric turbulence. Most modern telescopes 
with large apertures employ a separate low-band-
width "active optics" control system to maintain 
the figure of the primary mirror in the presence of 
temperature and gravitational changes. Active con
trol of the primary mirror is usually implemented 
separately from the adaptive optics, reducing the 
range of figure correction needed. 

The requirements for real-time compensation of 
atmospheric turbulence are far more demanding 
than those of active optics in terms of spatial and 
temporal bandwidth. To begin, it is useful to get an 
overall picture of the turbulent atmosphere and its 

interaction with optical waves. The structure of 
Earth's atmosphere and a profile of turbulence 
strength are shown diagrammatically in figure 3.1. 
The density of the atmosphere falls exponentially 
with altitude above sea level. The temperature var
iations that give rise to optical effects of turbulence 
are only significant in the troposphere, below about 
10 km. The vertical distribution of turbulence var
ies greatly with location and time. On average, 
turbulence is usually greatest near ground level 
and falls off exponentially with increasing altitude, 
except for a peak that often occurs at the tropo-
pause, due to wind shear. As a result of the expo
nential distribution, the effects of turbulence are 
much less severe in near-vertical paths than in hor
izontal propagation paths of comparable length, 
for which the turbulence strength is roughly con
stant. For near-vertical paths, the variations in 
refractive index amount to a few parts in a million. 
This is significant because, although astronomical 
images appear to be degraded considerably by tur
bulence, they are, in fact, much more easily com
pensated than those obtained over long horizontal 
or slant ranges. 

Analysis of the effects of turbulence on optical 
images is simplified by the large difference in scale, 
both spatial and temporal, between the turbulence 
and the radiation passing through it. A typical scale 
size for turbulence eddies at visible wavelengths is 10 
cm, which is a factor of 200,000 larger than the wave-
length of light. This means that diffraction angles due 
to turbulence are very small when looking up 
through the atmosphere, on the order of 5 x  

77 
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Figure 3.1 Structure of Earth's atmosphere and typical turbulence profile. 

rad or about 1 arc second. In many cases, an ade
quate description of wavefront phase distortion can 
be obtained by considering only the refractive varia
tions, which can be summed along straight ray paths 
in the atmosphere, using what is known as the geo
metrical approach. 

With regard to temporal variations, there is a dif
ference of about 12 orders of magnitude between the 
time period of one cycle of the optical radiation and 
the relatively slow changes in the structure of turbu
lence, which occur on a time scale of milliseconds. 
These large differences in scale facilitate analysis of 
optical effects, because not only can diffraction or 
scattering effects be neglected, at least in near-vertical 
paths, but the atmospheric structure can be consid
ered as frozen in time as far as the radiation is con
cerned. 

Light rays entering the atmosphere at angles away 
from the zenith are bent downward by the gradual 
change in refractivity, which is proportional to air 
density. This is a systematic effect that is well 
known to astronomers. The random effects of air 
turbulence are superimposed on this refraction. The 
dispersion of air over optical wavelengths is small but 
not negligible: its effect is to elongate broadband 
images of stars in the vertical direction. When high-
resolution imaging techniques are employed with 
broadband sources, and especially with adaptive 
optics, it is necessary to compensate the atmospheric 
dispersion with a correcting prism in the telescope. 

Atmospheric dispersion produces additional trou
blesome effects in multispectral adaptive optics in 
which the wavefront sensing and observing wave-
lengths are different. Dispersion effects are discussed 
in detail in section 8.6. 

The sections of this chapter are organized as fol
lows. In section 3.2, the model of mechanical turbu

lence proposed by Kolmogorov and the derived 
model of refractive index variations that produce 
the optical effects of atmospheric turbulence are 
described. The structure of Earth's atmosphere and 
its dynamics as a function of time and altitude are 
summarized in section 3.3. This section also includes 
a description of the analytical models for turbulence 
strength and wind velocity that have been developed 
for use in system analysis. 

Section 3.4 reviews the various approaches that 
have been used by Tatarski [1961], Hufnagel and 
Stanley [1964], Fried [1966a], and others to analyze 
the optical effects of turbulence. The parameters of 
importance to adaptive optical systems are derived 
using the phase-screen approach developed by Lee 
and Harp [1969]. The effects of turbulence on 
and short-exposure images are reviewed. 
Decomposition of turbulence-distorted images into 
systematic modes such as Zernike polynomials is 
described in section 3.5. 

A powerful method of analyzing the optical 
effects of turbulence using transverse spatial filters 
[Sasiela 1988] is introduced in section 3.6. This 
method is particularly useful in problems involving 
focal and tilt anisoplanatism, which are discussed 
further in chapter 7. In section 3.7, the important 
subject of isoplanatism and its dependence on the 
three-dimensional structure of the atmosphere is 
summarized. 

3.2 The Mechanics of Turbulence 

3.2.1 Kolmogorov Model 

To analyze a complex, random phenomenon, such as 
atmospheric turbulence, it is necessary to develop a 
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model of the basic physical processes involved. The 
mechanical structure of turbulence was investigated 
by Kolmogorov [1941], who proposed a model for 
the velocity of motion in a fluid medium. This simple 
model explains most of the observed phenomena and 
has achieved wide acceptance.  model 
assumes that energy is added to the fluid medium in 
the form of large-scale disturbances (the "outer 
scale"), which then break down into smaller and 
smaller structures. This process is characteristic of 
turbulent flow, which occurs when the Reynolds 
number exceeds a critical value that depends on the 
geometrical structure of the flow. The Reynolds num
ber is defined as Re =   where  is the 
characteristic velocity,    characteristic size 
of the flow, and  is the kinematic viscosity of the 
fluid. For air,  = 15 x  m2 s~'. In the case of a 
moderate-sized atmospheric disturbance, with a scale 
size of  m and velocity of 1 m  the Reynolds 
number is 1 x 106, which greatly exceeds the critical 
value. As a result, airflow in the atmosphere is nearly 
always turbulent. 

The ultimate source of energy in Earth's atmo
sphere is solar heating, which produces disturbances 
over a large range of scale sizes. During the day, the 
energy input occurs in the form of local convection 
cells generated directly by solar radiation on Earth's 
surface, while at night, the major energy source is the 
mixing of air masses of different temperatures and 
altitudes by the wind. As the turbulent flow breaks 
up, the kinetic energy is continually transferred to 
motions of smaller and smaller scale, forming an 
"energy cascade," until the Reynolds number drops 
below its critical value. At this stage, termed the 
"inner scale," the kinetic energy is dissipated into 
heat by molecular (viscous) friction and the turbu
lence dies away. 

For the process to continue in a stable state, the 
rate of viscous dissipation must equal the rate of 
input turbulent energy. This condition implies that 
at any physical scale within the inertial range, the 
velocity fluctuations V are governed only by the 
scale size  and the rate of energy input and dissipa
tion  Dimensional considerations then lead to the 
relation 

which implies that the nuctuational energy  pertur
bations of size  is proportional to  This is true 
for all scales within the inertial range. The size of the 
fluctuations depends only on the rate of energy input 
and dissipation  The relation between the inner 
scale  and the outer scale  is 

(3.2) 

Thus, the greater the velocity of the flow, the larger is 
the Reynolds number and the smaller the inner scale 
of the turbulence. 

3.2.2 Power Spectrum of Turbulence 

The power spectrum of turbulence may be deduced 
from equation (3.1). The spatial wave-number for an 
eddy of scale size  is defined as  =  If the 
spectral density of the fluctuations is  then the 
energy in an increment  is proportional to V2, or 

This relationship, which defines the Kolmogorov 
spectrum in one dimension, is valid within the inertial 
range; that is, for  >  >  

3.2.3 Structure Functions 

Structure functions were introduced by Kolmogorov 
in 1941 to describe non stationary random functions, 
such as those encountered in turbulence theory. The 
reasons for using these functions are discussed by 
Tatarski [1961] in his seminal book on wave propa
gation; they are summarized as follows. The mean 
values of many meteorological variables, such as 
temperature, pressure, and humidity, are continually 
changing over time scales of minutes to hours. These 
changes are relatively smooth but may represent 
large differences in the mean value of a variable. 
When these variables are analyzed, a problem arises 
in distinguishing changes in mean value from those 
changes due to slow fluctuations. 

To avoid this difficulty, in the case of a non 
stationary random function fit) where the mean 
value varies over time, the difference function 

  +   f(t) is used. Thus, slow changes in 
fit) do not affect the difference r, provided it is not 
too large, so that  may be considered a station
ary random function of time, even  fit) is not. 
The structure function is then defined as 

where ( ) represents the average value. The structure 
function  (r) is a measure of the intensity of the 
fluctuations in fit) over periods that are comparable 
to or smaller than r. 

Structure functions are more general than correla
tion functions and may also be used to describe 
ordinary stationary functions.  fit) is a stationary 
random function with zero mean value, and the cor
relation function  (r) is defined as  +  
it follows that 

where  (0) is the mean-square value of the function. 
For most functions, the correlation at large separa
tions is zero, so when r    =  Thus, 
for a random process with zero mean, such as atmo
spheric turbulence, the limiting value of the structure 
function at large separations is twice the mean-square 
value. This, of course, is just what would be expected, 
because the mean-square values of two independent 
quantities are being added. In these equations, the 



index fluctuations for vertical propagation are due 
mainly to temperature variations and can be be 
expressed as 

3.2.5 Limitations of Kolmogorov 
Turbulence Model 

The Kolmogorov turbulence model giving the "two-
thirds law" [equation (3.3)] assumes an incompres
sible medium and it is only valid within the inertial 
range between the inner and outer scales of the tur
bulence. Roddier (1981) states that the inner scale 
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arguments / and r can, of course, represent any phy
sical quantity for which the function has appropriate 
statistics. In turbulence theory, the structure function 
is mainly used to describe the spatial characteristics 
of the medium, where (> represents a spatial average. 

3.2.4 Temperature and Refractive Index 
Variations 

Using the relationship in equation (3.1) and assuming 
that the medium is locally homogeneous and isotro
pic, it is possible to define a structure function 
between two components of velocity separated by 
distance r, along a coordinate  

(3.6) 

where the velocity structure constant    para
meter that depends on the energy of the process. 

Kolmogorov's analysis describes the mechanical 
properties of turbulence. If the medium is in thermal 
equilibrium with no humidity variations, it is possible 
for physical turbulence to exist without producing 
any optical effects. These effects are produced only 
by variations in refractive index. In Earth's atmo
sphere, temperature and humidity vary with altitude. 
Mechanical turbulence produces mixing of air from 
different altitudes, causing variations in temperature 
and humidity of similar scale to the underlying tur
bulence.  [1949] and  [1949] showed 
that Kolmogorov's law also applies to additives in 
the turbulent medium, provided that they do not 
affect the dynamics or chemical composition of the 
medium. Such is the case with the mixing of air at 
different temperatures and the addition of water 
vapor, which consequently produce optical effects 
that have the same structure as mechanical turbu
lence. A temperature structure function based on 
Kolmogorov's law may therefore be defined as fol
lows 

(3.7) 

where  is the structure parameter for temperature 
variations. 

Temperature fluctuations affect the density of the 
air and therefore change its refractive index n. The 
refractive index of air depends on its temperature, its 
pressure, and the concentration of water vapor. 
Water vapor can be a significant factor in horizontal 
propagation, but has little effect on the refractive 
index in vertical propagation. The refractivity of air 
is closely approximated by 

(3.8) 

where 

P = pressure, millibars 
T = temperature, K 

Local pressure fluctuations are smoothed out at 
the speed of sound and are negligible compared with 
temperature fluctuations. Therefore, the refractive 

The structure function of refractive index variations 
is then 

(3.10) 

where 

(3.11) 

Atmospheric turbulence is often measured by using 
temperature probes that determine the value of  
In terms of this parameter, the refractive index struc
ture function is given by 

Equation (3.3) indicates that the one-dimensional 
power spectrum of temperature fluctuations has the 
form 

To analyze propagation through turbulence, the 
three-dimensional power spectrum is needed. 
Tatarski [1961] has shown that this power spectrum 
is given by 

Similarly, the three-dimensional power spectrum of 
refractive index variations can be expressed as 

The refractive index power spectrum of turbulence is 
shown in figure 3.2. Energy is input at the outer scale, 
where  is on the order of 10 m, and is dissipated at 
the inner scale  which is usually a few millimeters. 
The form of the spectrum outside these values is 
uncertain. At values of  above  =  
Tatarski assumes that the spectrum is modified by 
an additional term exp  producing the 
steep drop-off as shown. At values of  below 

 Strohbehn [1968] suggests a flattened spec
trum that drops off slowly with increasing values of 
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 Spectrum modified for inner and outer scales 

 Outer scale of 10 meters 
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Figure 3.2 Three-dimensional power spectrum of refractive index varia
tions. The vertical dotted lines represent spatial wave numbers  for 
an outer scale of 10 m and an inner scale of 2 mm. The drop-off above the 
inner scale is due to dissipation of the turbulent energy. The flattening of 
the spectrum below the outer scale is necessary to represent a finite energy 
input. 

varies from about 1 mm, near the ground, to about 
1 cm, near the tropopause. The size of the outer 
scale has been the subject of much debate. There 
is no doubt that it varies considerably; estimates 
range from about 1 m to more than 100 m. At the 
lower end of this range, the outer scale is therefore 
comparable to the apertures of astronomical tele
scopes. For adaptive optics, the size of the outer 
scale determines the magnitude of the overall tilt 
component of atmospheric turbulence. In calculat
ing overall tilt, it is usually assumed that   D. 
When this is not the case, the overall tilt is smaller 
than predicted. In the analysis of adaptive optics 
performance, a small outer scale may be modeled 
by using the von  spectrum, as described 
in section 3.6. 

Measurements made at several sites by Coulman 
et al. [1988] suggest that the outer scale varies 
strongly with altitude, reaching a maximum value 
of 5 m at an altitude of 7.5 km. Below 3 km, the 
outer scale observed was often less than 1  Based 
on their measurements at the European Southern 
Observatory at La  Chile, Coulman et al. sug
gest the following model for the outer scale of turbu
lence at good sites: 

(3.15) 

Beckers [1993] has suggested that the outer scale of 
turbulence is not a unique quantity. Turbulent 
energy, due to various sources such as solar heating, 
wind shear, and the local environment of the tele
scope, is fed into the atmosphere at many different 
scales, and the outer scale at any time may depend on 
the dominant source. 

A more fundamental issue concerns the validity of 
the basic mechanism by which atmospheric turbu
lence is generated. In the  model, 
changes in the strength of turbulence should occur 
smoothly, in response to variations in the energy 
input. In fact, there is evidence that turbulence is 
often intermittent, a condition in which small-scale 
structures of turbulence occur in bursts, with inter
vening quiescent periods. Kim and Jaggard [1988] 
have proposed a band-limited fractal model of atmo
spheric refractivity to account for intermittency. 
They show that the averaged spectrum of the one-
dimensional intermittent fluctuation function for the 
average fractal dimension of 5/3 approaches the 
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Kolmogorov spectrum over a large range of 
tency. It is surmised that the Kolmogorov spectrum 
is recovered as a special case of this model, for fractal 
dimensions that are the negative of the exponents in 
the Kolmogorov spectrum. For long paths and long 
averaging times, intermittency effects tend to average 

 
Intermittency is important in adaptive optics 

because turbulence strength is a key factor in 
time performance optimization. System parameters 
such as the servo bandwidth ideally should be 
adjusted continually in response to the observing 
conditions, to maximize the imaging performance. 
If sudden changes in turbulence level are ignored, 
then the adaptive optics performance will either 
drop drastically when the turbulence level rises sig
nificantly, or, if the system has been optimized for 
high turbulence, it will not deliver the best possible 
images during periods of good seeing. 

3.3 Modeling Earth's Atmosphere 

 Physical Structure 

Earth's atmosphere extends to an altitude of about 
300 km. Its pressure decreases smoothly from the 
sea-level value of about 1000 millibars, following 
an exponential law with an initial gradient of 
-12.1 millibars per 100 m. At 30 km, the pressure 
has fallen to 10 millibars and there is little turbu
lence above this altitude. At 90 km, the altitude of 
the sodium layer, the pressure is only 10~6 of that at 
sea level. Turbulence has a different profile, occur
ring mainly in thin layers where wind shear is pre
sent. Considerable variations in turbulence strength 
have been observed over height intervals as small as 
100  During the day, turbulence is usually stron
gest near the ground, in response to solar heating 
and the development of thermal currents. At night, 
especially at good observing sites, surface turbulence 
is low and most disturbances occur in layers at 
higher altitudes, especially at the tropopause, as a 
result of wind shear. 

The best observing sites are located on mountain 
peaks near the ocean, which has a moderating effect 
on temperature variations. The wind structure is gen
erally more consistent at latitudes within 35° of the 
equator, and isolated peaks on the windward side of 
a landmass avoid orographic disturbances. 

3.3.2 Refractivity 

The refractive index of the atmosphere is close to 
unity and it is convenient to describe it in terms of 
the refractivity, defined as the departure from unity 
in parts per million, N —  — \) x 106. The refractiv
ity of the atmosphere depends on its exact composi
tion, including the presence of carbon dioxide and 

water vapor. Formulas for computing the refractivity 
to an accuracy on the order of 1 x  have been 
given by Owens [1967]. At optical wavelengths, the 
refractivity may be approximated with sufficient 
accuracy for the analysis of optical imaging systems 
by the simple expression given in equation (3.8): 

where 

P = pressure, millibars 
T = temperature, K 

The value of N is about 280 at sea level, falling to 
about 95 at an altitude of 10 km. 

The refractivity of dry air as a function of 
length at standard temperature and pressure is given 
by the following formula  1966]: 

(3.16) 

(3.17) 

where  is the atmospheric density at altitude  
and  is the standard density of the atmosphere, 
equal to 0.001225 g cm . In the equilibrium state, 
the density is proportional to  The pressure P 
decreases exponentially with height, as shown in fig
ure 3.4. 

3.3.3 Atmospheric Turbulence Profile 

The turbulence profile of the atmosphere is a critical 
factor in the design of adaptive optics systems. The 
profile consists of three main regimes: 

(1) Surface layer The surface layer extends to about 
1 km above the ground and usually contributes most 
of the optical path fluctuations, except at mountain-
top sites where it may be insignificant at night. 

where  the wavelength in micrometers. The varia
tion of refractivity of air over the visible and  
regions is shown in figure 3.3. The slope of the refrac
tivity curve gives the spectral dispersion, which can 
produce errors in adaptive optics systems that use 
wideband or multispectral operation. At wavelengths 
above 1  the dispersion is negligible, but at visible 
wavelengths, especially below 0.5  it increases 
rapidly. The effects of dispersion are discussed in 
section 9.3, and they must be taken into account in 
adaptive optics systems in which either the wavefront 
sensor or the observation wavelength are in the visi
ble band. 

For an atmosphere with a fixed composition, such 
as Earth's troposphere, the refractivity depends on 
the density, which is a function of altitude: 
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Figure 3.3 Refractivity of dry air at standard temperature and pressure  1966]. 

Turbulence in this layer depends greatly on the local 
topography and climatic conditions. During the day, 
solar irradiation causes active convection, which  
produce a factor-of-ten increase in the value of  
near the ground. Wyngaard et  [1971] predicted 
that under these conditions the turbulence would fol
low an  law, which has been confirmed by obser
vations. Turbulence is lowest in this region just after 
sunrise and just after sunset, when the lower atmo

sphere is in thermal equilibrium. At night, radiative 
cooling of the ground often causes a small increase in 
turbulence. Turbulence near the ground is usually 
measured using high-speed thermal probes. 
Acoustic sounding has been used to measure the 
strength of turbulence up to about 1 km. In the sur
face layer, the average value of  drops from about 

 to   the ground to about   

 at 1 km. 

1 10 
Height in kilometers 

Figure 3.4 Variation of atmospheric pressure with altitude. 
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(2) Planetary boundary layer The planetary bound
ary layer occupies the region above the surface layer 
up to about 8 or 10 km above sea level, in which the 
average turbulence level drops to around  
Within this region, turbulence may occur in several 
thin layers, 100 to 200  thick, in which  increases 
locally by more than a factor of 10. Measurements in 
this region have been made by Barletti et  [1976] 
using balloon-borne thermal probes. 

(3) Tropopause At the tropopause, around 10 km, 
there is often a peak in turbulence due to wind shear. 
Above this level, there is a rapid decrease, and turbu
lence effects disappear at altitudes around 25 km. 

These three regimes of the turbulence profile 
affect the imaging properties of astronomical tele
scopes in different ways. All layers combine to pro
duce the total wavefront phase disturbance that is 
characterized by the seeing parameter  High-alti
tude turbulence layers are the dominant cause of 
intensity variations (scintillation) and are also the 
controlling influence on the isoplanatic angle that 
restricts the field of view over which adaptive optics 
compensation is possible. The integrated value of 
turbulence measured by the parameter  is therefore 
an incomplete description of atmospheric turbulence. 
The distribution of turbulence with height must be 
known or specified in order to determine the perfor
mance of adaptive optical systems. 

In addition to atmospheric turbulence, there are 
usually local sources of turbulence in and around the 
telescope enclosure. Observing sites having excellent 
seeing in their pristine state have often been degraded 
by the presence of man-made structures that create 
local turbulence and dissipate heat. To minimize 
these effects, such facilities are usually located 
wind from the telescope. 
Turbulence within the dome and telescope structure 
is caused by small temperature differentials, which 
can usually be reduced to acceptable levels by the 
use of passive and active thermal control. Radiation 
cooling can be controlled by the use of reflective sur
faces. The diurnal temperature cycle can be largely 
suppressed by refrigerating the dome, as implemen
ted in the Canada-France-Hawaii Telescope 
(CFHT) at   

3.3.4 Turbulence Models 

The optical effects of turbulence are produced by 
incomplete mixing of air at different temperatures. 
The key parameter is the refractive index structure 
constant  which varies with altitude and time. 
Turbulence is a random process and the refractive 
index structure constant can vary by an order of 
magnitude around its median value. To produce the 
models that are needed for the design and evaluation 
of adaptive optics systems, measurements must be 

made over extended periods of time. The  profiles 
seen in turbulence models represent data that are 
smoothed temporally and spatially; it must be kept 
in mind that the raw turbulence profiles are much 
more irregular. 

A survey of optical turbulence models has been 
made by Good et al. [1988]. One of the most useful 
models is that of Hufnagel [1974], who proposed a 
heuristic model of the  profile of the atmosphere 
for altitudes between 3 and 24 km, based on turbu
lence measurements made by many observers. 
Hufnagel found that stellar scintillation, which is 
due to high-altitude turbulence, is well correlated 
with the factor  given by 

20 km 

5 km 

where  is the wind speed in meters per second at 
altitude h above sea level. This implies that the wind 
velocity, through factor w2, controls the strength of 
the turbulence at high altitudes, as well as its tem
poral spectrum. The Hufnagel turbulence model has 
two components: (1) an exponentially decreasing 
value of  through the troposphere, with a  
scale height of 1500 m; and (2) a peak at the tropo
pause around 10 km, scaled by the  factor. The 
turbulence strength falls off rapidly at higher alti
tudes. The original model has the following form: 

   
The factor A models the fine structure of the turbu
lence as a function of height and time. It is defined as 
A =  t)], where r is a Gaussian random vari
able with zero mean,  is the height, and t is time. 
Atmospheric turbulence profiles measured directly by 
means of temperature probes show considerable local 
variations in turbulence strength, with a vertical scale 
size on the order of 100  Optical measurements of 
turbulence show variations over a time scale of min
utes. This fine structure is generally ignored in the 
models used for the design of adaptive optics sys
tems. The average turbulence profile is obtained by 
setting A — e  2.7. 

The Hufnagel model describes the turbulence 
structure above 3 km at mid-latitudes where tropo-
spheric winds are high. Below 3 km, there are large 
local and diurnal variations in turbulence, produced 
by convection from solar heating. To satisfy the 
needs of the defense community for the design of 
adaptive optics systems that must operate under 
any conditions, day or night, Valley [1980] suggested 
the addition of a term for surface layer turbulence, 
which can be strong, especially at desert sites during 
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the day. The resulting  (HV) tur
bulence model is given by 

 

(3.18) 

The HV model can be adjusted for different seeing 
conditions, covering both night and day operation. 
The coefficient  controls the high-level turbulence 
strength, while the coefficient B, controlling the 
"Valley term," is the scale factor for surface turbu
lence. 

Turbulence profiles measured by Ochs et  
[1976], Barletti et al. [1976], and Loos and Hogge 
[1979] generally confirm the basic structure of the 
Hufnagel model above 1 km. A comparison of 
these profiles with the Hufnagel model is shown in 
figure 3.5. Also shown is Barletti's "lucky observer" 
model, based on the lowest  values measured at 
each altitude. This represents hypothetically the best 
seeing conditions that can be expected. 

At high-altitude observing sites, such as Mauna 
Kea, Hawaii (4200 m), it has been found that the 
turbulence has a different character from that at 
lower elevations. There is little night-time turbulence 
in the surface layer, and turbulence in the tropo
sphere tends to be concentrated in one or two thin 
layers. Turbulence profiles above Mauna Kea were 
measured by Roddier et al. [1990] using the scintilla
tion detection and ranging (scidar) technique [Azouit 
and Vernin 1980] with the 2.2-m University of 
Hawaii telescope. The data consisted of 414 profiles 
representing 69 h of observing over 12 nights in 
November 1987 and 8 nights in June 1989. The pro
files cover the range of 1-20 km with a vertical reso
lution of 300-500 m. 

A Loos and Hogge average 
B Barletti et al. average 
C Barletti "Lucky Observer" 
D  model 

Figure 3.5 Comparison of measured turbulence profiles with Hufnagel model. 

These data were further analyzed by Racine and 
Ellerbroek [1995], who found that the typical night-
time turbulence profile consisted of an underlying 
background that had a  value of less than 
1 x  on which were superimposed one or two 
thin layers of turbulence. These layers are produced 
by wind shear in the troposphere. One layer was 
usually present between 2 and 4 km, while a second, 
associated with the jet stream, occurred at altitudes 
between 6 and 8 km, sometimes persisting for days. 
The best seeing occurred when only the background 
turbulence was present, giving stellar image dia
meters with full-width at half-maximum (FWHM) 
of about 0.3 arc seconds at  = 0.5  For 75% 
of the time, the seeing was dominated by strong 
layers. The seeing disk, as determined from the sci-
dar, had a median FWHM of 0.5 arc seconds under 
these conditions, growing to 0.9 arc seconds during 
periods of bad seeing. Low-level turbulence (< 1 km) 
had little effect on the image spread. 
The HV model can be generalized into the following 
form, capable of representing any  profile as the 
sum of exponential terms: 

In this expression, A is the coefficient for the surface 
(boundary layer) turbulence strength and  is the 
height for its  decay, B and  similarly define the 
turbulence in the troposphere (up to about 10 km), C 
and  define the turbulence peak at the tropopause, 
and D and  define one or more isolated layers of 
turbulence, with d being the layer thickness. 
Analytical models of this type can be adjusted to 
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Table  Constants for Turbulence Models 

Model A  B  C  D  FWHM r<)  
    (E-53) (m)   (arc 

seconds) 
 (arc 

seconds) 

Hufnagel 0 27 1500 5.94 1000 0 1.15 0.11 1.1 
 17 100 27  3.59 1000 0 2.5 0.05 1.4 

HV 10-10 4.5 100 9  2.0 1000 0 1.26 0.10 2.1 
HV 15-12 2.0 100 7 1500 1.54  0 0.84 0.15 2.5 
Mauna  (1) 0 1 3000 1.63 1000 0 0.36 0.34 2.4 
Mauna Kea (2) 0 1 3000 1.63 1000 1 6500 0.53 0.24 1.9 

FWHM and  are specified at  = 0.5  
Mauna Kea (1) models the background turbulence only (excellent seeing). 
Mauna Kea (2) includes a dominant layer of turbulence (median seeing). 

match measured  values at specific altitudes, and 
are easily integrated to give the image diameter and 
values of  and  Parameters used in typical turbu
lence models are listed in table 3.1. 

Figure 3.6 shows a model of the Mauna Kea tur
bulence, generated using three terms from equation 
(3.19). The background turbulence is represented by 
an exponential decay in the troposphere with 
B = 1 x  and   3000  added to a shallow 
peak at the tropopause with G= 1.63 x  and 

 = 1000 m.. There is no surface layer, so A = 0. 
The isolated turbulent layer is represented by a peak 
at   6500  with D = 1 x  and 
d — 300 m. The background turbulence alone has a 
coherence length of  = 0.34 m, which produces a 
seeing disk with FWHM of 0.36 arc second and iso
planatic angle of 2.4 arc seconds at  = 0.5  
Addition of the single layer reduces  to 0.24  

giving a seeing disk of 0.53 arc seconds and an iso
planatic angle of 1.9 arc second. 

The presence of a single dominant layer of turbu
lence is very favorable for the use of adaptive optics. 
As shown in section 2.4, if a single wavefront correc
tor is placed at the conjugate image of a turbulent 
layer, then not only is the isoplanatic angle maximized 
but also the diffraction effects that produce scintilla
tion are minimized. On the basis of the Mauna Kea 
data, Racine and Ellerbroek [1995] estimate that the 
effective isoplanatic angle can be increased by a factor 
of between 1.7 and 4.1, by conjugating a single cor
rector to the turbulent layer, rather than to the tele
scope pupil, with a median improvement factor of 2. 
Because the background turbulence is low, the 
(uncompensated) resolution achieved outside the iso
planatic angle is fairly good — about 0.3 arc second. 
In this case, a single adaptive corrector neutralizes the 

— Background turbulence 
 Turbulence due to wind shear 

Figure 3.6 Turbulence model for a high-altitude observing site, based on measurements made at Mauna Kea 
by Roddier et  [1990]. The background turbulence is always present, defining the seeing disk during the best 
periods in which the FWHM is about 0.3 arc seconds at A = 0.5  Thin turbulent layers caused by wind 
shear in the troposphere are present 75% of the time, degrading the seeing to 0.5-0.9 arc seconds. Ground-
level turbulence is very low. 
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turbulence produced in the dominant layer, maintain
ing the resolution due to background turbulence over 
a large field of view. 

3.3.5 Wind Profiles 

Wind has two effects on atmospheric turbulence: it 
controls both the intensity and the temporal fre
quency of the wavefront fluctuations. The intensity 
of the turbulence, measured by the refractive index 
structure parameter CN

2, depends on the energy of the 
process and therefore increases with the square of 
wind velocity, as indicated by the factor  in equa
tion (3.18). The temporal bandwidth of the wavefront 
fluctuations increases linearly with wind velocity. The 
strongest winds normally occur between 9 and 12 km, 
the wind shear often generating a layer of turbulence 
at the tropopause. Evidence of a multilayer structure 
of turbulence produced by wind shear at altitudes of 
5 and 10 km has been reported by Vernin and 
Roddier [1973]. The thickness of the turbulent layers 
was estimated to be on the order of 2.5 km. 

Bufton [1973] reports simultaneous measurements 
of  wind velocity, and temperature at altitudes up 
to 25 km, using balloon-borne instrumentation. The 
turbulence measurements made with microthermal 
wire sensors correlated reasonably well with optical 
measurements of stellar scintillation. The vertical 
resolution achieved was 50 m. Turbulence occurred 
in thin layers, correlated with temperature inversions 
and wind shear. The peak wind velocities occurred 
near the tropopause with an approximately Gaussian 
distribution. 

Greenwood [1977] suggested the use of a Gaussian 
model for the average wind profile transverse to the 
telescope. A general model for wind velocity is 

(3.20) 

Wind profiles for  = 5 and 8   and   15 
and 30 m  are shown in figure 3.7. 

The peak wind speed at the tropopause varies 
greatly with location and season. Wind profiles 
given in the Handbook of Geophysics and Space 
Environments [Valley 1961] indicate that the average 
(50% probability) wind speed at the tropopause in 
winter varies from 23   in the calmest area of the 
United States (Northeast) to 46   in the windiest 
area (Northwest). 

 Ground 8 m/s,  30 m/s 
* * Ground 5 m/s, tropopause  m/s 

Figure 3.7 Models for average atmospheric wind 
speed. 

The CN
2 profile and wind speed models are used to 

generate  turbulence parameters required for 
adaptive optics system design and optimization, as 
described in chapter 9. 

3.3.6 Turbulence Moments 

In calculating the optical effects of turbulence, the 
refractive index structure parameter  integrated 
over height, appears with several different weighting 
functions, depending on the particular error being 
evaluated. To simplify the calculations, these func
tions can be represented as full and partial turbulence 
moments, defined in the following way. 

The full turbulence moment of order m is 

The partial turbulence moments at height  are 

Upper moment 

Lower moment 

The turbulence-weighted velocity moment is 

These moments are defined at the zenith; that is, at 
 = 0. At other angles, they should be multiplied by 

= wind velocity at low altitude 
= wind velocity at tropopause 
= zenith angle of observation 
= height of tropopause 
= thickness of tropopause layer 
= wind direction relative to telescope azimuth 

where 
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 Turbulence moments define basic proper
ties of the atmosphere and are independent of 
length. The turbulence moments most frequently 
used are: 

• zero-order, m = 0, for calculating  
• five-thirds-order,  = 5/3, for calculating 

anisoplanatic and temporal errors; 
• second-order, m = 2, for calculating overall 

tilt errors. 
Higher order moments are used in the transverse fil
tering expressions (sections 3.6 and 7.3) to compute 
focal and tilt anisoplanatism. 

3.4 Optical Effects of Turbulence 

3.4.1 Analytical Approaches 

The analysis of optical propagation through turbu
lence has progressed in several stages, from the ear
liest geometrical optics approach, accounting only 
for refraction, to more rigorous methods involving 
Maxwell's wave equation. Chernov [1960] and 
Tatarski [1961] developed an approximate solution 
to the wave equation, valid for weak scattering. 
This solution employs the so-called Rytov approxi
mation, in which the amplitude of the wave is 
replaced by its logarithm. This approach was used 
subsequently by Fried [1965, 1966a] in his work on 
optical propagation, and it has more recently formed 
the basis of the transverse filtering technique devel
oped by Sasiela [1988]. Another way of solving the 

wave equation was described by Hufnagel and 
Stanley [1964]. In this method, valid for small pertur
bations, the characteristics of a propagating wave are 
represented in its two lateral dimensions only, 
enabling an expression for the modulation transfer 
function (MTF) of a turbulent path to be found. 

A different approach to solving optical propaga
tion problems has been used by Lee and Harp  
in which the atmosphere is modeled by a series of phase 
screens. At each phase screen, the incident light gen
erates two (first-order) diffracted beams that combine 
with the undiffracted light. In this way, single scatter
ing is accounted for in a simple physical model. All of 
the solutions cited above produce essentially the same 
results in describing the optical effects of weak scatter
ing at visible and  wavelengths. These results gen
erally agree with the observed properties of the 
atmosphere for near-vertical paths. 

In horizontal paths near Earth's surface, strong 
turbulence is encountered. When the strength of the 
diffracted light becomes comparable to that of the 
undiffracted light, it is necessary to account for mul
tiple scattering. These conditions have been treated 
by Uscinski [1977],  [1978], and Strohbehn 
[1978]. The most successful approach is the "Markov 
approximation" [Tatarski  which involves a 
parabolic approximation to the wave equation, fol
lowed by the use of delta functions to model the 
refractive-index fluctuations. These theories have 
been reviewed by Fante [1975]. 

The three main levels of complexity in calculat
ing the optical effects of atmospheric turbulence are 
depicted in figure 3.8. The geometric optics approx-

(a) Geometric optics (b) Single scattering (c) Multiple scattering 

Figure 3.8 Models for calculating the optical effects of turbulence. Using geometric 
optics (a), phase disturbances are summed along straight ray paths and scattering 
(diffraction) is ignored. This approach is valid for weak turbulence, such as that 
found at good astronomical sites. For moderate turbulence, the single-scattering 
approach (b) is appropriate. It accounts for scattering at each layer by the zero-
order ray, but secondary scattering is ignored because it is much weaker. Single 
scattering is consistent with the Rytov approximation. With strong turbulence, such 
as that occurring on horizontal paths near the ground, a large fraction of the light is 
scattered, so that multiple scattering must be accounted for, as shown in (c). This 
situation is modeled by the Markov approximation. 
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imation involves summing the variations in refrac
tive index along straight ray paths as shown in fig
ure 3.8(a). It is valid when the wavelength A is much 
smaller than the scale of the disturbances, but only 
for weak turbulence and/or short propagation 
paths. The limitations to the geometric optics 
approach may be deduced from the simple model 
shown in figure 3.9. A plane wave of light is incident 
on a region of turbulence containing refractive-
index variations. In the geometric optics approxima
tion, the plane wave is represented by a bundle of 
parallel rays. The rays are advanced or retarded in 
phase by passing through regions of different refrac-
tivity, producing distortions in the wavefront. 

In fact, some of the incident light will be diffracted 
(scattered) by the turbulence at an angle dependent 
on the characteristic size of the eddies t, which, in 
turn, depends on the turbulence strength. In weak 
turbulence,  is large (around 1 m), while in strong 
turbulence, it is small (around 5 cm). Incident light is 
diffracted at an angle 0 =  The diffracted rays 
will interfere when the pathlength L is comparable 
to £/6 =  producing intensity variations (scintil
lation). Note that  =  is the radius of the first 
Fresnel zone, which is also the correlation length of 
amplitude fluctuations. 

If the pathlength is much smaller than  then 
diffraction effects are negligible and the geometrical 
optics approach is valid. To take the specific case 
of a turbulent layer at the tropopause (altitude 10 
km), if the eddy size  is 20 cm and the optical 
wavelength is 0.5  then L = 80 km, so the 
geometrical optics approximation may be used. If 
severe turbulence occurs in this layer, resulting in  
being only 5 cm, then L would be reduced to 5 km, 
resulting in considerable intensity fluctuations at 
ground level. For the relatively benign turbulence 

conditions at good observing sites, especially at 1R 
wavelengths where the eddy size  may approach 1 

 the geometrical optics approximation is gener
ally valid. 

The next step in complexity is the single-scattering 
approximation, shown in figure 3.8(b). In this case, 
weak scattering of the main component of the wave-
front is accounted for at each region of turbulence, 
but secondary scattering is ignored. The only inter
ference effects accounted for are those between the 
zero-order (undiffracted) and first-order diffracted 
beams. It is assumed that the intensity of the zero-
order light is undiminished by scattering. 

Several methods of analysis are based on the sin
gle-scattering approximation. In the approach that 
Tatarski describes as the method of smooth varia
tions, based on Maxwell's wave equation, the 
assumption is made that the refractive-index varia
tions consist of small fluctuations superimposed on 
larger ones that vary smoothly. The Rytov approx
imation then allows the amplitude of the the electro
magnetic field to be replaced by its logarithm in the 
exponent, greatly simplifying the analysis. While it is 
generally valid for near-vertical propagation paths, it 
has been found experimentally [Gracheva et  1970] 
that the Rytov approximation is invalid for pro
pagation paths in which the parameter 

 =  is greater than 0.3, correspond
ing to horizontal pathlengths of about 1 km, because 
of the neglect of multiple scattering. 

This limitation led to the development of the third 
stage of complexity, addressing the case of strong 
turbulence in which a large fraction of the incident 
light is scattered. As indicated in figure 3.8(c), the 
scattered light is itself scattered by successive layers. 
This situation is modeled using the parabolic approx
imation to the wave equation, which is solved using 

Figure 3.9 Limitations on the geometrical optics approximation for evaluating 
the optical effects of turbulence. It is valid for propagation over distances  
where L <   At greater distances, diffracted rays can interfere and scatter
ing must be taken into account. 
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the Markov approximation as mentioned above. As 
this regime is rarely, if ever, encountered in astro
nomical adaptive optics, it is not discussed further. 
The reader is referred to the books cited above for 
more information. 

For astronomical observations involving near-
vertical propagation through Earth's atmosphere, 
analytical methods based on single scattering are ade
quate for the design and optimization of adaptive 
optics systems. In many cases, geometrical optics is 
sufficient. Only in special situations, such as observa
tions at short wavelengths or at large zenith angles, 
may the more rigorous approach be necessary. 

Even using simplified methods of analyzing atmo
spheric turbulence, the complexity of the mathema
tical models has usually necessitated the use of 
numerical solutions, which are inconvenient for per
forming the tradeoffs necessary to optimize a design. 
Sasiela [1988] has recently developed an analytical 
approach to solving the most difficult propagation 
problems involving anisoplanatism and multiple 
beams. This method, using transverse spatial filter
ing, allows wavefront errors to be expressed directly 
in terms of the basic parameters of the adaptive 
optics system. It is described in section 3.6. 

3.4.2 Effects of Turbulent Layers 

The following treatment is based on the approach of 
Roddier [1981]. The first step is to find the effect of a 
thin turbulent layer on an incident plane wave of unit 
magnitude, as shown in figure 3.10. The thickness of 
the layer Sh is large compared with the scale size of 
the turbulence cells, so that Gaussian statistics apply, 
but it is small enough for diffraction effects to be 
negligible. With a unit incident field, the scalar field 
emerging from the thin layer is 

(3.22) 

where the phase shift produced by the refractive 
index fluctuations is 

(3.23) 

and k is the wave number,  The coherence func
tion of the field at the output of the layer is 

(3.24) 

Because  has Gaussian statistics with zero mean, 
the coherence function can be expressed as 

(3.25) 

or in terms of the structure function  

(3.26) 

The next step is to find  in terms of the fluctua
tions in refractive index. The covariance of  is 

Figure 3.10 Thin turbulent layer model. 

(3.32) 

which is evaluated as 

(3.27) 

If    the three-dimensional covariance of the 
index fluctuations, then using equation (3.23) 

Because Sh is much larger than the index fluctuations, 
the integral may now be taken from  to + oo. 

The phase structure function is related to its cov
ariance by 

Similarly, 

Using equation (3.28), it follows that 

Using the expression for refractive-index structure 
function, equation (3.10), 

The integral term is 



The phase structure function at the output of a thin 
layer with  turbulence is then 

(3.34) 

The coherence function at the layer output in terms 
of the refractive-index variations may then be 
expressed as 

(3.35) 

For astronomical observations, the near-field 
approximation can be used, so that the coherence 
function at the ground is 

(3.36) 

In propagating from the layer output at height h to 
the ground, the complex field will generally produce 
fluctuations both in amplitude (producing scintilla
tion) and in phase. However, the amplitude fluctua
tions in the near field are small, so  is a good 
representation of the phase structure function. 

These results are extended readily to cover multi
ple layers and a continuous distribution of turbu
lence. For multiple layers, the contribution of each 
layer is   For a number of layers, the coher
ence function is therefore 

(3.37) 

For a continuous distribution of turbulence, this 
becomes 

The above expressions assume vertical propagation 
through the atmosphere. For observations at an 
angle of  from the zenith, the thickness of each 
layer is increased by the factor (sec  ), so the coher
ence function at the telescope aperture is 

(3.38) 

This expression is of fundamental importance in 
determining the effect of atmospheric turbulence on 
image structure. 

In his study of the effects of atmospheric turbulence 
on optical images, Fried  introduced the resol
ving power of a telescope  which is defined as the 
integral of the optical transfer function. For a tele
scope looking through turbulence, it follows from 
equation (3.39) that 

In the case of a small aperture, turbulence effects are 
negligible, so for a diffraction-limited telescope with 
a clear circular aperture of diameter d' 

For a large aperture, the resolving power   

depends only on the turbulence: 

Fried also defined the parameter  which is the dia
meter of a telescope (assumed to be diffraction lim
ited) which would have the same resolving power as 
the atmospheric transfer function; that is,  is the 
diameter of a perfect telescope having a transfer func
tion T(f), where 

This leads to the relation 

From equation (3.38), the atmospheric transfer func
tion may be written 

where  is a constant that describes the seeing con
ditions. Then, 

Equating equations (3.44) and (3.46) 

which gives 

Substituting in equation (3.45) gives 

or, equivalently, 

3.4.3 Imaging Through Turbulence 

The effect of the turbulence coherence function  
on the images produced by an astronomical telescope 
will now be considered. The optical transfer function 
for the whole imaging system (telescope plus atmo
sphere) for long exposures is 

(3.39) 

where 

 = atmospheric transfer function 
 = telescope transfer function 
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(3.50) 

By equating this to equation (3.38), the definition of 
 in terms of the integrated turbulence is obtained: 

 =  f)   (3.51) 
The phase structure function can then be expressed in 
terms of  as 

D(r) =   (3.52) 

This expression is valid over the inertial range of 
turbulence, that is, between the inner and outer 
scales. 

The parameter  is a convenient measure of the 
strength of turbulence, as it represents in a single 
number the integrated effect of the refractive-index 
fluctuations for the entire atmosphere. Small values 
of  correspond to strong turbulence and poor see
ing, while large values mean weak turbulence and 
good seeing. 

Equation (3.51) shows that  is wavelength 
dependent, varying as the 6/5 power of wavelength. 
It is usually specified at the visible wavelength of 0.5 

 Typical values for astronomical observations 
range from less than 5 cm in strong daytime turbu
lence to over 20 cm in good sites at night. Average 
values are generally in the range of 7-12 cm. Because 

 has the dimension of length, it is often regarded as 
defining the "cell size" of atmospheric turbulence. 
This idea is misleading, because well-developed tur
bulence contains the complete Kolmogorov spec
trum, ranging from an outer scale (several meters) 
to the inner scale (millimeters). The significance of 

 is that it defines an aperture size over which the 
mean-square wavefront error is 1 rad2. The "seeing 
angle" or image spread due to atmospheric turbu
lence for long exposures is given by  and varies 
as  . This shows that the seeing angle gradually 
improves (that is, it gets smaller) at longer 
lengths, up to the point where  becomes comparable 
with the aperture size. In other words, the angular 
resolving power of large ground-based telescopes 
improves as the observation wavelength increases. 
At a wavelength of 10   is typically between 3 
and 7 m, and atmospheric turbulence has little effect, 
even on the largest telescopes. It is also important to 
note that  is certainly not a "constant" and is con
tinually changing, often by a factor of 2, over periods 
of seconds to minutes. Measurements of  are 
usually averaged over periods of several seconds to 
minutes. 

Because of the very small dispersion of air, the 
optical disturbances produced by turbulence are 
practically independent of wavelength. This is an 
important fact for adaptive optics, because it means 
that turbulence is compensated at all wavelengths by 

a  mirror that corrects the optical path-
length directly. 

3.4.4 Long- and Short-Exposure Images 

The resolution of the imaging system  (the integral 
of the optical transfer function) corresponds to the 
performance of a telescope system averaged over 
long exposures. Long-exposure images are degraded 
by image motion caused by overall wavefront tilt 
variations across the telescope aperture, as well as 
by blurring of the image due to higher-order wave-
front distortions. The effects of image motion can be 
eliminated by using short exposures, or, in an adap
tive optics system, by using a tilt-compensating 
device such as a tracking mirror. It is of interest to 
determine the relative size of long- and short-expo
sure images as a function of the aperture diameter. 
These and similar questions were addressed by Fried 
[1965, 1966a]. 

From equations (3.39) and (3.49), the long-expo
sure MTF of the telescope and atmosphere is 

 

where 

 = transfer function of the telescope and 
f = spatial frequency in cycles per radian. 

Note that the exponent term is independent of tele
scope parameters, so it may be taken as the MTF of 
the atmosphere. 

To determine the MTF for short-exposure images, 
it is necessary to eliminate the effects of overall wave-
front tilt, which produces image motion. This is 
equivalent to eliminating the time-averaging of the 
atmospheric transfer function, which, in the case of 
long-exposure images, determines the average image 
position or phase. The phase terms are eliminated by 
setting them to zero and adding only the amplitudes 
of the Fourier components of the image. When this is 
done, Fried shows that the overall MTF for short 
exposure images has two forms, depending on 
whether the telescope is in the near field or far field 
of the atmospheric phase disturbances: 

D2 

For z   (near field) 

   

The difference between long and short exposures is 
seen in the last term of the exponential. With short 
exposures,   the cutoff frequency 
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the telescope aperture is  If the image 
motion due to  fluctuations is 
compensated actively, the maximum possible 
improvement in one-dimensional resolution is 
a factor of 2.054. In practice, small differences 
in these ratios are not significant because of the 
random variations in atmospheric parameters. 

3.4.5 Measures of Imaging Performance 

At this point, it is useful to discuss the relation 
between two different performance measures, 

   Strehl ratio, that are used in adaptive 
optics. The Strehl ratio is defined as the ratio of the 
actual peak intensity of the image of a point source to 
that produced by a perfect (diffraction-limited) tele
scope of the same aperture. It is shown in section 
4.3.3 that for wavefront errors up to about 2 rad 

 the Strehl ratio may be expressed as 

where  is the mean-square wavefront error in the 
imaging beam. For the large wavefront errors typical 
of an uncompensated image, the Strehl ratio is not a 
useful measure. 

A related measure of performance in the fre
quency domain is the resolving power  defined as 
the integral of the optical transfer function (OTF). 
The parameter  is analogous to the bandwidth of 
an electronic signal processing system. Although the 
resolution ratio  and the Strehl ratio are both 
derived from the integral of the OTF, they are nor
malized quite differently and represent totally differ
ent aspects of system performance. The Strehl ratio is 
normalized to an error-free OTF and is used to 
describe the performance of well-corrected optical 
imaging systems. The   is normalized to 
the uncompensated OTF, which has an extremely 
small Strehl ratio. The ratio between the normalizing 
factors in these two measures is approximately  

 which is on the order of 1000 for astronomical 
telescopes. 

Each of these performance measures has its uses 
in adaptive optics, depending on the application. For 
energy projection systems, in which the goal is to 
maximize the peak energy on a small target, the 
Strehl ratio is the appropriate performance measure 
because even small wavefront aberrations will reduce 
the peak intensity by a significant amount. This may 
be called the "top-down" approach, for which the 
goal is a perfect optical system, making it necessary 
to determine the effect of small imperfections. 

If the design is approached from the "bottom-up" 
direction, with the goal of improving the quality of 
turbulence-degraded images, then the normalized 
resolution  is appropriate because it measures 
the improvement over an uncompensated image. The 
Strehl ratio gives a pessimistic view of system perfor
mance, while the normalized resolution gives a (very) 
optimistic view. This is not a trivial matter, because 

of  the value of the negative exponent drops, so 
the short-exposure MTF is improved at high frequen
cies, especially in the near-field case. Note that the 
exponent depends on D and is therefore telescope 
dependent. The reason that the short-exposure 
MTF depends on the telescope aperture is simply 
that the amount of tilt removed depends on D. 

The effect of the telescope  D on the per
formance of turbulence-degraded imaging systems 
may be determined using the normalized resolution 

 The quantity  defined in equation 
(3.44), is the resolution that would be obtained 
through the atmosphere with an arbitrarily large tele
scope, the performance of which is limited entirely by 
turbulence. The turbulence strength is defined by  

The normalized values of resolution are then 

(3.56) 

(3.57) 

These integrals were evaluated by Fried [1966a] for a 
range of values of the parameter  giving the 
resolution in units of cycles squared per steradian 
field of view. 

The resolution may also be expressed as an angu
lar image size, as shown in figure 3.11, which plots 
the long-exposure and short-exposure image sizes in 

 units against the normalized telescope aperture 
 Also shown is the standard deviation of the 

image motion due to turbulence, and the resolution 
of a diffraction-limited aperture. These curves illus
trate several basic properties of imaging through the 
turbulent atmosphere in the absence of adaptive 
compensation: 

1. For long exposures, atmospheric turbulence 
sets a limit on the resolution achievable, no 
matter how long the exposure or how large 
the aperture. This resolution is given by equa
tion (3.44), in units of cycles squared per ster
adian field of view. In Figure 3.11, it 
corresponds to a normalized image size of 

  1.13. The resolution improves very lit
tle for values of  greater than 10. Because 
of the wavelength dependence of  the angu
lar size of an atmospherically-degraded image 
improves as the 1/5 power of wavelength. 

2. For short exposures in the near field (Z < < 
 the maximum angular resolution is 

obtained with an aperture of  For this 
condition, the ratio of short-exposure to long-
exposure resolutions   4.18, corre
sponding to an image size reduction of 2.045. 
As the aperture size increases, the short-expo
sure resolution becomes asymptotic to the lim
iting value for long exposures. 

3. The maximum ratio between short-exposure 
and long-exposure resolutions occurs when 
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A Long exposure C Image motion only 
B Short exposure 0 Diffraction limit 

Figure 3.11 Normalized image size as a function of  for an uncompensated 
telescope. 

the selection of performance criteria is a central issue 
in the design and optimization of adaptive optics 
systems. It is discussed further in chapter 4. 

3.4.6 Angle-of-Arrival Fluctuations 

Turbulence-degraded images of a star generally con
sist of a blurred disk that moves randomly from its 
mean position. The image motion is due to the over
all wavefront tilt component of the turbulence over 
the telescope aperture, which produces variations in 
the angle of arrival of the wavefront. Wavefront dis
tortion components of second and higher order, such 
as defocus, astigmatism, and coma, enlarge the seeing 
disk from its diffraction limited diameter. The rela
tive importance of the blurring of the disk and the 
motion of its centroid depends on the  ratio. For 
small apertures where  is on the order of unity, 
the short-exposure image is close to diffraction-lim
ited and almost all of the long-exposure degradation 
is caused by image motion. As the ratio   

increases, the image motion decreases and the dia
meter of the long-exposure image approaches that 
of the short-exposure image. 

The angle of arrival has a Gaussian distribution; 
its mean-square value in one axis has been deter
mined by Fried [1965] to be 

(3.59) 

Note that because  varies as  the value of  
for a given turbulence strength is independent of 
wavelength. This produces some interesting scaling 
effects, in comparison to the size of the image disk, 
as the aperture and wavelength are varied. The 
angular motion becomes a larger component of 
the uncompensated seeing disk as the wavelength 
increases, because the overall size of the seeing 
disk is proportional to  However, for a con
stant telescope aperture, the image motion becomes 
a smaller fraction of the Airy disk as the observing 
wavelength increases, because the diameter of the 
diffraction-limited disk is proportional to  At a 
constant wavelength, the image motion becomes a 
larger fraction of the Airy disk as the telescope 
aperture is increased. 

The effect of  variations on astro
nomical images may be eliminated either by using 
short exposures to freeze the turbulence or by using 
an image motion corrector, such as a tip-tilt mirror 
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driven by an image position sensor. The first type of 
adaptive optics system to be implemented was of this 
type, as described in chapter 1. 

The temporal power spectrum of angle-of-arrival 
variations depends on the telescope aperture, outer 
scale of turbulence, and the wind transport velocity, 
and is discussed further in section 9.2.5. 

3.5 Modal Representation and 
Correction of Turbulence 

3.5.1 Zernike Polynomials 

The Kolmogorov model of atmospheric turbulence 
generates smoothly varying optical wavefronts with 
spatial components spanning a frequency range of 
over 1000 to 1 from the inner to the outer scale. 
Functions of this kind can be represented by a series 
of orthogonal modes of ascending order. The Fourier 
series of harmonically related sine waves used for 
one-dimensional waveform analysis is a familiar 
example of this approach. In optical systems, the 
two-dimensional Zernike polynomials perform a 
similar role, enabling complex wavefront shapes to 
be decomposed into a set of basis functions of 
ascending order. The lowest order Zernike polyno
mials correspond to the familiar and physically con
trollable wavefront aberrations, such as wavefront 
tilt, defocus, and astigmatism. Zernike polynomials 
and a related set based on Karhunen-Loeve functions 
can* be used to represent the instantaneous shapes of 
wavefronts generated by atmospheric turbulence. For 
low-order distortions, they are able to represent the 

wavefront more accurately than does the zonal 
approach (an array of flat subapertures) with the 
same number of degrees of freedom. Hence, the 
incentive for using  polynomials is not just 
as a method for analyzing wavefronts, but also as a 
possible basis for compensating atmospheric turbu
lence effects. 

Zernike polynomials are defined in polar coordi
nates on a unit circle as functions of azimuthal fre
quency  and radial degree n, where  < n, and 
n — mis even. For statistical analysis, it is convenient 
to order the polynomials in a   in such a way 
that even values of  correspond to the symmetric 
modes in  while odd values  j correspond 
to the antisymmetric modes in  This set of 
polynomials is defined as: 

The normalization is such that each polynomial has a 
root mean-square value of 1 over the unit disk. The 
first 15 Zernike polynomials defined in this way are 
shown in table 3.2, together with the names of the 
classic optical aberrations associated with them. 

An arbitrary phase function   over a unit 
circular aperture can be expanded as 

Table 3.2 Zernike Polynomials 
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(3.62) 
covariance and that the covariance between sine and 
cosine terms is zero. 

where the amplitudes  of the Zernike components 
are given by 

(3.63) 

A wavefront distorted by  turbulence 
may be described by its structure function, defined 
in terms of the turbulence coherence length  as 

The Wiener spectrum  of the phase fluctuations 
is related to the structure function by 

(3.64) 

from which the Wiener spectrum is found to be 

(3.65) 

3.5.2 Orders of Modal Compensation 

A characteristic of Zernike or similar polynomials is 
that the modes are ordered according to their radial 
and azimuthal frequencies. Consequently, when they 
are used to represent turbulence-induced wavefronts, 
the amplitudes of the modes fall steadily as the mode 
number increases, due to the  shape of the 
Kolmogorov spectrum. When Zernike modes are 
used as the basis for compensating turbulence, the 
lowest modes, such as tilt, defocus, and astigmatism, 
are compensated  It is of interest to know how 
much distortion remains after each order has been 
applied. The answer is obtained readily with Zernike 
polynomials. If the first N modes are corrected, the 
phase correction, may be represented as 

(3.68) 

The mean-square residual error after compensation is 

(3.69) 

where <  > is the phase variance of the wavefront 
to be corrected. The first Zernike polynomial repre
sents constant phase and therefore has no effect on 
the wavefront in a single aperture. Noll [1976] has 
shown that the residual error may be expressed as 

(3.70) 

The first few values of the parameter  for a circular 
aperture are given in table 3.3. 
When N = 1, only the overall (piston) phase is 
corrected and there is no compensation within the 
aperture. In this case, the value of A  represents the 
error due to uncompensated turbulence. 
Compensation of overall tilt in two axes is 
represented by  When N >  the value of   

is closely approximated by 

(3.71) 

Table 3.3 Residual Error Coefficients for Compensation of Kolmogorov Turbulence Using Zernike 
Polynomials 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

1.030 0.582 0.134 0.111 0.088 0.065 0.059 0.053 0.046 0.040 

Note that only those polynomial terms having the 
same values of azimuthal frequency  have nonzero 

Noll [1976] showed that a Zernike representation of 
this spectrum may be obtained from equation (3.62) 
by evaluating the covariance of the expansion coeffi
cients. When used to represent an atmospherically 
distorted wavefront, the Zernike components can be 
considered as Gaussian random variables with zero 
mean. The covariance between two Zernike polyno
mials  and  having amplitudes  and  may be 
expressed in the form [Wang and Markey 1978]: 

where  depends on the frequency characteristics 
of  and  and is given by 

and  is the  delta function,  as 
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(3.75) 

(3.74) 

(3.72) 

(3.73) 

The plane-wave MTF of a system consisting of the 
atmosphere and a telescope may be written 

3.5.3 Modulation Transfer Function 

The plane-wave MTF for a compensated system 
using Zernike polynomials up to a specified order is 
calculated as follows. If  is the turbulence phase 
distribution as defined in (3.62) and  is the com
pensating phase distribution up to the Nth Zernike 
polynomial, then 

where  is the perturbation function at the aper
ture that is due to a point source, p is the separation 
between two points in the aperture, and  is the 
pupil function of the telescope: 

Following Wang and Markey [1978], the perturba
tion term after compensation of the phase errors 
can be expressed as 

(3.76) 

where  is the wave structure function, defined in 
equation (3.52), and  is the phase error due to tur
bulence. Evaluation of this expression gets prohibi
tively difficult for the higher order polynomials. To 
make the problem more tractable, Wang and Markey 
[1978] show that the exponent term in equation (3.75) 
may be expressed as 

This expression shows that  p) is the sum of three 
terms: the wave structure function, the autocorrela
tion of the compensating phase distribution, and the 
cross-correlations of the Zernike expansion coeffi
cients. The magnitude of these cross-correlations 
decreases rapidly as the difference in order n 
increases, enabling finite sums of these terms to be 
used without loss of accuracy. For example, when 
compensating with Zernike polynomials up to   

(zero curvature coma, or trifoil), the infinite summa
tion may be truncated a t / = 91. The advantage of 
this approach is that the MTF computation can be 
extended to arbitrarily high-order modal phase cor

rections without incurring a large computational bur
den. The MTF of the complete system comprising the 
turbulent atmosphere and telescope, with modal 
compensation through Zernike order  may then 
be expressed as 

The plane-wave MTF produced by correcting a 
wavefront distorted by Kolmogorov turbulence 
with Zernike polynomials  through  is shown 
for several values of  in figure 3.12. 

Zernike polynomials are not statistically indepen
dent, so wavefronts generated directly from the sum 
of Zernike coefficients do not have zero mean values 
over time. A similar set of orthonormal functions with 
completely uncorrelated elements may be generated 
using the  expansion. Fried [1978] 
has shown that for a given number of modal correc
tions, the Karhunen-Loeve expansion is optimal in 
that it gives a better fit to atmospherically distorted 
wavefronts than any other orthogonal set, in terms of 
minimizing the mean-square residual error. However, 
the difference in performance between Zernike and 
Karhunen-Loeve functions is not large, producing 
at most a 10% improvement in the peak value of 
normalized resolution when 21 correction terms are 
used [Wang and Markey 1978]. For low-order correc
tion of up to 10 terms (through coma), the Zernike 
polynomials are close to optimum. 

3.5.4 Partial Compensation with Zernike 
Modes 

The improvement in image quality produced by 
partial compensation with Zernike modes may be 
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Figure 3.12 Modal compensation of an astronomical 
telescope [Wang and  1978]. This chart shows 
the modulation transfer function  of a telescope 
with  = 6, plotted against normalized spatial fre
quency, for several orders of modal compensation. 
The solid curves represent compensation by Zernike 
polynomials and the dotted curves represent compen
sation by  functions. 

determined using the normalized resolution  
as shown in figure  The peak values of   

and the optimum values for  as determined by 
N. Roddier [1990], are shown in table 3.4 for Zernike 
corrections of up to 13 terms. 

For example, with the optimum aperture size, the 
correction of the first  Zernike terms (through 
spherical aberration) improves the ratio  by 
a factor of  equivalent to reducing the image 
diameter to 1/V20.4  0.22 of its uncompensated 
size. While this is a useful improvement, it only 
applies to apertures with a diameter of  the 
improvement drops very rapidly when  is larger. 
At visible wavelengths, the optimum aperture would 
be in the region of 1.5  and the improvement factor 
for a 4-m telescope would be marginal. At  
lengths, it is a different story, because of the much 
larger values of  At   or more, with moder
ately good seeing  = 15 cm at  = 0.5  the 
optimum aperture is over 4 m. 

It appears to be very difficult to implement high-
order Zernike corrections directly with a mechanical 
wavefront compensation device, such as a 

 mirror, so this approach is probably limited to 
low-order compensation with about 10 terms. 
However, it is possible that Zernike or Karhunen-
Loeve modes could be closely approximated in a 
high-resolution zonal compensation device such as 
a liquid crystal. 

3.6 Transverse Filtering Techniques 

3.6.1 Outline of Method 

Analysis of the optical effects of atmospheric turbu
lence generally involves two steps: (1) an integral 
expression for the quantity of interest is obtained; 
and (2) the integral is evaluated. Both of these steps 
involve simplifications and assumptions in order to 
make the process tractable. The wave equation can 
be simplified when the radiation wavelength is much 
smaller than the spatial wavelength of the refractive-
index variations, which is true at optical 
lengths. Fortunately, the turbulence levels encoun
tered in astronomical adaptive optics are relatively 
small, so the variance of the received field is much 
smaller than its mean value. These conditions justify 
the Rytov approximation, in which the normalized 
amplitude of the field is represented by its loga
rithm. The resulting theory gives accurate results 
for phase, the main concern in adaptive optics sys
tems, but leads to inaccuracies in predicting scintil
lation effects when the log-amplitude variance 
exceeds about 0.3. 

Even when these simplifications are made, evalua
tion of the resulting integrals is still extremely diffi
cult. The integrals involved are three dimensional, 
consisting of two dimensions of the spatial spectrum 
transverse to the optical beam, plus the axial dimen
sion in the direction of propagation. In the literature 
on optical propagation through turbulence, most 
problems have been solved individually. Because of 
the complexity of these calculations, especially those 
involving  the results were usually 
presented in  or graphic form for a specific 
set of parameters. 

The design and optimization of adaptive optics 
systems is facilitated greatly when analytic expres
sions are available for the error sources. A systema
tic approach that can be applied generally to the 
evaluation of optical propagation problems has 
great potential value. These desirable attributes 
have been realized in a method of analysis devel
oped by Sasiela [1988]. The approach leads to ana
lytic expressions for the effects of atmospheric 
turbulence on most situations involving astronomi
cal adaptive optics, using basic system parameters 
such as aperture size, beam convergence, turbulence 
moments, and wavelength. The method can handle 
multiple-beam problems that involve the differences 
between focused and collimated beams, such as 
focal anisoplanatism. 

The analysis is based on Tatarski's [1961] results 
for wave propagation, which have been expanded to 
obtain a general formula that contains the product 
of filter functions that operate on the transverse 
spatial components of the refractive-index spectrum. 
Filter functions for a large number of propagation 
problems have been derived. The formula contains a 
triple integral, with two covering the refractive index 
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Figure  Normalized Strehl resolution as a function of the degree of modal compensation [N. Roddier 
1990]. (A) Complete turbulence spectrum, no compensation; (B) overall tilt removed; (C) tilt and defocus 
removed; (D) tilt, defocus and astigmatism removed; (E) all terms through pure coma  removed; (F) all 
terms through trifoil  removed; (G) all terms through spherical aberration  removed; and (H)  
terms through fifth order astigmatism  removed. 

variations in the transverse plane and one for the 
axial variations. Two of these integrations are 
straightforward, but the third requires use of 
Mellin transforms [Sasiela and Shelton 1993b, 
Sasiela 1994]. In most cases, the results are obtained 
in the form of rapidly converging power series or 
asymptotic series involving relatively few terms. 

The basis and results of this method will now be 
outlined. A complete  is beyond the 
scope of this book; Sasiela's monograph should be 
consulted for more detailed information. The start
ing point of the analysis is the vector wave equation 
for the electric field in a medium of constant perme
ability: 

where 

(3.80) 

Table 3.4 Peak Values of Normalized Resolution versus Number of Zernike Modes Corrected 

Zernike Modes Corrected Optimal Value of  Peak Value of  

3 4.07 4.47 
4 4.47 5.62 
6 6.03 10.23 
8 6.76 13.18 

10 7.94 18.62 
II 8.32 20.42 
13 8.91 23.99 

The Rytov method represents the scalar field as 

If X   where  is the inner scale of turbulence, 
then the last term, which contains the interaction 
between orthogonal components of the field (depo
larizing effects), can be neglected. Either component 
of the field can then be represented as a scalar wave 
equation: 
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where A is the amplitude and S is the phase. If  is 
defined  +  where x   then the field can 
be expressed as 

(3.83) 

The wave equation may then be written in the form 

(3.84) 

This equation must be solved for the fluctuations in 
log amplitude and phase. In the Rytov method, the 
variations in the refractive index that are due to 
turbulence are assumed to be very small, so it may 
be represented as n = 1 +  The quantity  may 
be represented as a large steady part    small 
fluctuating part  so that 

(3.85) 

If it is assumed that |   |  |, and neglect
ing  in comparison with  then    
expressed in terms of the variations in refractive 
index  

This equation is solved using a perturbation 
approach. 

The refractive index may be written in the form of 
a random function with stationary increments as 

(3.87) 

(3.89) 

where   is the transverse spatial spectrum of 
the refractive-index variations. 

This transverse spectrum may be modified by 
multiplying it by a filter function  Z). The two-
dimensional transverse spatial Fourier transform of 
the phase is obtained from the imaginary part of 
equation (3.89) 

(3.90) 

Similarly, the Fourier transform of the log-amplitude 
variations (scintillation) is obtained from the real 
part of equation (3.89) 

(3.91) 

These equations are valid for the relatively low tur
bulence encountered in the atmospheric paths 
employed in astronomy. The last expression loses 
its validity when the log-amplitude variance exceeds 
0.3, which may occur for long horizontal paths. 

To obtain the mean-square values of phase and 
log-amplitude, these expressions are integrated over 

 space, multiplied by their complex conjugates, and 
ensemble averaged. The filter functions   can 
be a cascade of individual filters that are tailored to 
the specific propagation problem to be solved. Sasiela 
[1988] derives the following formulas: 

Phase and scintillation variance 

(3.86) 

(3.93) 

(3.94) 

where 

k = optical wave number, 
 ( Z ) = turbulence profile, 
 = transverse turbulence spectrum, 
 = wind velocity profile. 

The functions  and  specify the beam conver
gence; that is, whether it is collimated, focused at the 
source, or focused at the object. For a collimated 
beam (plane wave), the values of these functions are 

(3.95) 

For spectral density (equation 3.94) use K =  
in equation 3.95. 

Phase and log-amplitude structure function 

Temporal power spectral density 
where r is the transverse coordinate. The transverse 
structure of the turbulence is transformed into 
Fourier space so that it may be expressed as a spec
tral expansion in terms of the spatial wave number  
The field may be written in the same form, as 

When these equations are inserted into equation 
(3.86), an equation relating the phase and refractive 
index is obtained. Sasiela [1988] gives the solution of 
this equation for a wave propagating from 0 to z as 



Optical Effects of Atmospheric Turbulence 101 

The transverse turbulence spectrum  is basi
cally the normalized  spectrum, which 
is proportional to  in three-dimensional space, 
if the inner and outer scales are neglected. To take 
account of finite inner and outer scales, the inner 
scale may be modified by an exponential term 
[Strohbehn  and the outer scale may be accom
modated by using a von  spectrum, as fol
lows: 

(3.96) 

The turbulence scales are defined by  =  and 
 —  . where  is the outer scale and    

inner scale. The multiplying factor of 0.033 has been 
included in the initial coefficients of the main equa
tions. 

3.6.2 Transverse Filter Functions 

The final term   z) is the product of transverse 
spatial filters that are specified according to the pro
blem being solved. A comprehensive list of filter func
tions is given in Sasiela [1988]. A common 
requirement is to extract or subtract one or more of 
the Zernike modes, such as average phase or tilt, 
from the wavefront. Zernike polynomials are defined 
in polar coordinates by two parameters, azimuthal 
frequency  and radial degree n, as described in sec
tion 3.5.1. The necessary filter functions are derived 
from the spectral representation of Zernike polyno
mials given by Noll  The Fourier transforms of 
the Zernike modes are complex, and, for use as spec
tral filters, it is necessary to determine the square of 
the absolute value of each component. These are 
given by the general equation 

where 

= a Bessel function of the first kind 
= optical aperture diameter. 

For example, a filter to extract the average phase of 
the wavefront is produced by setting n = m = 0. The 
resulting filter function is then 

 
(3.98) 

(3.99) 

To obtain the two-axis tilt phase variance, the two 
components are summed. It is often useful to obtain 
the tilt components as angles rather than phase, 

thereby corresponding to the angle-of-arrival of a 
wavefront. This is done by multiplying the phase var
iance by  

In some cases, it is necessary to remove compo
nents such as average phase and tilt from a wave-
front. The filter function required to perform this 
task is 

3.6.3 Computation of Anisoplanatic 
Errors 

The real power of the transverse filtering approach is 
demonstrated when computing the phase differences 
between beams traveling along different paths in the 
atmosphere. The approach enables analytical expres
sions to be developed for most of the configurations 
encountered in optical propagation, including those 
using multiple beams, beams focused at different dis
tances, and extended reference sources. If the paths 
are completely separated, the individual wavefront 
variances are uncorrelated and the variances may 
be added. However, in most cases encountered in 
adaptive optics, two or more propagation paths par
tially overlap, resulting in partial correlation of their 
wavefront phases. This scenario, which has pre
viously required numerical solution, has now been 
solved analytically using transverse filters. 

The main application of this analysis in astronom
ical adaptive optics is to evaluate the errors asso
ciated with laser beacons, which is discussed further 
in chapter 7. 

3.7 Anisoplanatism 

 Anisoplanatism in Adaptive Optics 

The concept of isoplanatism was originally intro
duced into the design of optical systems in connec
tion with the imaging of extended objects; the 
isoplanatic region or isoplanatic patch refers to the 
angular field over which a well-corrected image is 
obtained. This concept has been generalized to 
cover the wavefront errors, between two beams, 
that are due to displacements of any type, including 
lateral displacements, focusing of the beams, and 
chromatic effects, in addition to angular separation. 
The forms of anisoplanatism of interest in adaptive 
optics are depicted in figure 3.14. The dependency of 
the beam separations on the displacement parameters 
for each of these cases is as follows: 

1. Aperture displacement,  = constant; 
2. Angular displacement,  =  
3. Time delay displacement,  =  dz  

The overall tilt components of the wavefront are 
found by setting m  n   giving the result 
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Focal 
(Cone effect) Chromatic 

Figure  Forms of anisoplanatism in adaptive optics. 

4. Focal displacement (axial), s{z, r) =  
where r = radius in aperture, and H = height 
of source; 

5. Spectral displacement (color), s(z, A) = 
J dzAn(z) tan  where An = refractive index 
difference between  and  and  = zenith 
angle. 

Angular anisoplanatism degrades the performance of 
all optical systems that have finite fields of view. In 
adaptive optics, it is caused primarily by the three-
dimensional distribution of atmospheric turbulence 
along the propagation path. Angular anisoplanatism 
is most sensitive to disturbances located at a distance 
from the receiving aperture, where they produce a 
wavefront error that varies with field angle. For 
ground-based telescopes, the isoplanatic angle is 
determined mainly by turbulent layers at higher alti
tudes. 

The Achilles heel of adaptive optics is the need for 
a distant reference source to probe the turbulent 
atmosphere so that wavefront distortion can be mea
sured and corrected. Available reference sources are 
rarely coincident with the science object, with the 
result that the optical path is not measured accu
rately. Even when the science object functions as 
the reference source, anisoplanatic errors may be pro
duced if its size exceeds the isoplanatic angle. Using a 
single wavefront corrector, it is not possible to get 
real-time compensated images of extended areas on 
the Moon, the planets, or the Sun. In principle, it 
should be possible to compensate turbulence over 
much wider fields of view by using multiple wave-

front correctors. The varieties of anisoplanatism of 
interest in astronomical adaptive optics are described 
below. 

Angular anisoplanatism is modeled by two beams 
that are coincident at the telescope pupil and then 
separate at an angle 9. The separation distance at 
range z is therefore r(z) = 6z. Setting z = h  
where h is the height of the beam above the telescope 
and  is the zenith angle, the mean-square anisopla-
natic error at angle 0 is 

(3.102) 

3.7.2 Angular Anisoplanatism 

Angular anisoplanatism is produced by the gradual 
separation of two optical paths in the atmosphere as 
a function of their distance from the telescope. The 
mean-square wavefront error between two points in 
the wavefront separated by a distance r is defined by 
the phase structure function  From equations 
(3.30) and (3.32), 
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(3.107) 

The mean turbulence height is defined as 

(3.108) 

which leads to the relation 

(3.109) 

When there is a single dominant layer of turbulence, 
h is the height of that layer. Otherwise h can be deter
mined from the  distribution or from the turbu
lence moments using equation (3.108). For example, 
if  = 0.16 m and the mean turbulence height  is 5 
km, then  = 2 arc seconds. 

3.7.3 Other Forms of Anisoplanatism 

Focal anisoplanatism and tilt anisoplanatism are of 
main concern in laser beacon systems and are dis
cussed in detail in sections 7.3 and 7.4, respectively. 
Chromatic anisoplanatism, the displacement of opti
cal beams by atmospheric dispersion, becomes signif
icant for multispectral adaptive optics systems in 
which the observation wavelength is different from 
that of the wavefront sensor. The effects of atmo
spheric dispersion are discussed in section 9.3. 

(3.106) 

and combining this with equation (3.105) gives 

where  is the five-thirds moment of the turbu
lence, as defined in section 3.3.6. 

It is often convenient to express the anisoplanatic 
angle in terms of derived parameters, such as the 
turbulence coherence length  and the mean turbu
lence height h. From equation (3.51), 

(3.105) 

The angle  is known as the "isoplanatic angle" and 
is a property of the turbulence distribution. It may 
also be stated in the form 

(3.104) 

then the anisoplanatic error for any angle 6 may be 
expressed as 

This equation is valid when D  which is generally 
the case with astronomical telescopes. If an angle  is 
defined such that 

(3.103) 
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4.1 Introduction 

4.1.1 Image Structure in Adaptive Optics 

The performance of an astronomical telescope is 
judged by its ability to concentrate the light from a 
distant star into the smallest possible radius. 
Laboratory tests reveal the intrinsic quality of the 
optical system, but when a telescope is operated in 
the dynamic environment of an observatory, external 
disturbances, such as atmospheric turbulence, 
become the limiting factor. The effect of atmospheric 
turbulence on telescope images is now well under
stood and many techniques are used to minimize its 
influence. 

Adaptive optics adds another dimension to the 
imaging process. The wavefront compensation pro
duced by adaptive optics is never perfect, so that 
compensated images have unusual structure. It is 
these images, formed at the focal plane of the tele
scope, that constitute the output of the system and by 
which the scientific results are judged. An awareness 
of the process of optical image formation, and of the 
effects of partial compensation on image structure, is 
essential for the design of adaptive optics systems for 
specific tasks. Conventional methods of specifying 
and evaluating image quality do not necessarily 
apply in such cases. 

In this chapter, the factors that control the struc
ture of compensated and partly compensated images 
are reviewed in order to determine the relation 
between the wavefront-correction performance of 
the adaptive optics and the quality of the resulting 

images. To establish performance criteria, it is neces
sary first to find the image characteristics required for 
specific scientific tasks in astronomy, and then to 
determine the type and degree of wavefront compen
sation necessary to produce those characteristics. In 
this way, the scientific objectives can be satisfied with 
minimum complications and expense. Without suita
ble performance criteria, arbitrary performance goals 
must be assumed, leading to the possibilities either 
that the overall performance will fall short of require
ments, or that the adaptive optics will be overde-
signed and consequently expensive to build and 
operate. For example, to ensure adequate image 
quality, it may be specified that the peak intensity 
of the image of a point source must be no less than 
0.8 times its ideal (diffraction-limited) value. To 
achieve this peak intensity (Strehl ratio), the random 
phase errors due to turbulence must be reduced to 
about 1/14 wave rms at the observing wavelength. 
Producing this performance in a large ground-based 
telescope, especially at visible wavelengths, is an 
expensive proposition requiring a high-performance 
adaptive optics system. 

For some imaging tasks, a high Strehl ratio may 
not be necessary. Useful scientific results have been 
obtained with simple adaptive optics that give much 
lower degrees of compensation. Even with a residual 
wavefront error of 1/4 wave rms, corresponding to a 
Strehl ratio of less than 0.1, the peak intensity of the 
core of a point image is more than 10 times greater 
than the halo of scattered light. For tasks involving 
the detection of point sources, the contrast ratio 
between the core and the halo is an acceptable 
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criterion. The important point is that each applica
tion of an astronomical telescope has its own set of 
requirements in regard to image quality. These image 
requirements, in turn, have a considerable impact on 
the design of the adaptive optics system. 

4.1.2 Turbulence Effects 

The wavefront distortion produced by atmospheric 
turbulence varies in both space and time. The char
acteristics of turbulence-degraded images are greatly 
different when examined over short rather than long 
periods of time. A short-exposure image is degraded 
by a single realization of the randomly varying wave-
front. For a point source such as a star, the short-
exposure image consists of a number of discrete 
speckles spread over an angular diameter of about 

 The speckles are produced by interference 
between  sections of the aperture, separated 
by distances up to the full diameter, so their size is 
determined by the diffraction limit  The number 
of speckles is on the order of (D/ro) . 

The speckle structure changes continuously as the 
turbulence evolves, with a time scale on the order of 
1/100 s. Long-exposure images are blurred by two 
effects: 

• The fine structure is averaged by turbulence 
within the aperture. 

• The entire image is displaced randomly by 
the overall tilt component of turbulence. 

Adaptive optics is capable of compensating both of 
these effects. Compensation of overall tilt removes 
the image motion that blurs the entire image, and is 
therefore mandatory in all adaptive optics systems. 
The fine speckle structure is only eliminated comple
tely with perfect compensation; that is, when the sys
tem is diffraction limited. Practical adaptive optics 
systems always have some residual errors, depending 
on the observing wavelength and turbulence strength. 

Atmospheric turbulence effects for short and long 
exposures have been described statistically in section 
3.4, in which modulation transfer functions (MTFs) 
were derived in terms of atmospheric and telescope 
parameters. It is important to note that the short-
exposure MTF, as well as the point spread function 
(PSF) derived from it, are statistical descriptions, 
representing the ensemble-average mean values of 
these functions; they do not represent the observable 
instantaneous image intensity distribution. For 
example, the short-exposure PSF of an uncompen
sated or partially compensated wavefront is repre
sented statistically as a symmetrical function with a 
central peak, whereas the observable image consists 
of a number of constantly moving speckles that pro
duce an instantaneous intensity profile which may be 
irregular and unsymmetrical. In the following discus
sion, the characteristics of turbulence-degraded 
images are described in statistical terms. For expo

sures of more than a few seconds, the averaging effect 
of turbulence should produce intensity profiles simi
lar to the ensemble-averaged values. Only for very 
short exposures (less than a second or so) should 
there be any appreciable irregularity. 

In the design of optical systems, it is customary to 
use normalized quantities to describe the properties 
of images. The peak image intensity (Strehl ratio) is 
usually normalized to that of a diffraction-limited 
system, while the angular diameter of images may 
be normalized either to the diffraction limit  or 
to the turbulence limit  Because of the large 
range of apertures employed in astronomical tele
scopes and the wide spectrum of wavelengths used 
in any one instrument, normalized expressions must 
be used with great care, especially when performing 
tradeoffs in the initial design of a system. The scaling 

 for atmospheric turbulence with regard to space, 
time, wavelength, and zenith angle are quite compli
cated and must be carefully accounted for. 

When evaluating the effects of turbulence on 
images, two points are particularly important: (1) 
Atmospheric turbulence produces optical pathlength 
errors that are almost independent of wavelength. (2) 
Wavefront sensors usually operate at a fixed wave-
length, independent of that used for the science 
observations. The consequence of these facts is that 
for a given set of input conditions, the residual wave-
front error produced by an adaptive optics system is 
essentially constant in terms of optical pathlength for 
all observations within the spectral range of the tele
scope. Image structure, on the other hand, is deter
mined by wavelength-dependent optical phase 
variations across the aperture. A given pathlength 
error therefore produces a different image structure 
at each observing wavelength. The structure of par
tially compensated images, in particular, varies 
greatly with wavelength and aperture size, because 
it depends on the turbulence parameters. When eval
uating and comparing the performance of adaptive 
optics systems in different spectral bands, it is prefer
able to specify wavefront errors in terms of optical 
pathlength rather than optical phase. For the same 
reason, the errors due to overall wavefront tilt are 
best handled in terms of angular tilt, which is also 
independent of wavelength. 

4.1.3 Summary 

In the following sections of this chapter, the basic 
theory of optical imaging is reviewed and the effects 
of wavefront error, image motion, and photon noise 
on the structure of the images produced by an astro
nomical telescope are analyzed. The process of opti
cal image formation is described from first principles, 
leading to a summary of the properties of aberration-
free images. Next, the effect of small optical aberra
tions on the image intensity distribution is described 
using the classic Fresnel-Kirchoff diffraction integral, 
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from which the concepts of modal (Zernike) decom
position and Strehl ratio are derived. 

To evaluate turbulence-degraded images, it is 
necessary to use statistical descriptions of the wave-
front, using phase structure functions to determine 
the optical transfer function, followed by Fourier 
transformation to recover the image. The effect of 
partial wavefront compensation is handled by using 
structure functions of the residual wavefront errors. 
To facilitate system optimization, a shortcut proce
dure is described in which the image structure can be 
modeled with sufficient accuracy for first-order 
design using only four parameters: the telescope 
aperture, operating wavelength, turbulence para
meter, and residual error. In the final section, ima
ging requirements for various astronomical tasks are 
reviewed and criteria for optimizing adaptive optics 
systems are developed. 

4.2 Optical Image Formation 

4.2.1 Huygens-Fresnel Principle 

Huygens was the first proponent of the wave theory 
of light, originating the idea that every point in an 
optical wavefront may be considered as giving rise to 
spherical wavelets that combine to produce a conti
nually expanding envelope. Fresnel later showed that 
interference between these wavelets explains the 
intensity variations that are apparent in diffraction 
patterns.  [1883] developed the concept 
mathematically to show that the Huygens-Fresnel 
principle may be regarded as an approximate solu
tion to the scalar wave equation. These ideas form 
the basis of the theory of diffraction, a classic 
account of which is given in chapter 8 of Born and 
Wolf [1975]. 

The relevant properties of most optical imaging 
systems, including astronomical telescopes, are read
ily derived using a simple physical model. Consider a 
monochromatic point source P' illuminating an aper
ture A as shown in figure  When the source is at a 
great distance, the curvature over a small area is 
much less than the wavelength of light, so the wave-
front reaching the aperture may be considered plane. 
Each point on the wave within an elemental area dS 
in the aperture gives rise to spherical wavelets. The 
size of dS is much smaller than the wavelength X, so 
these wavelets will be in phase when they reach point 
P, located a distance R from the aperture, and will 
combine constructively. If the strength of the plane 
wave has a constant value of  over the aperture A, 
then the optical disturbance at P at time r is given by 

where to is the temporal frequency of the radiation, 
k =  and z is the distance between dS and P. As 

dS moves over the aperture, z will change by many 
wavelengths. 

The total disturbance at P is found by integrating 
the contributions from each elemental area dS over 
the aperture. To do this, we must find the dependence 
of z on the positions of dS and P. Using a coordinate 
system with the origin at point  on the aperture, in 
which the coordinates of dS are  y, z = 0) and the 
coordinates of P are (X, Y, Z), the distance between 
dS and P is 

This is the general case that applies when the distance 
 is comparable to the aperture size, producing the 

near-field condition known as Fresnel diffraction. 
In the optical systems used in astronomical tele

scopes, the aperture is small compared with the dis
tance   equation (4.1) may be simplified by 
replacing z, in the amplitude term, with R. 
However, small variations in the distance z represent 
large phase changes at optical wavelengths, so z must 
be calculated more exactly in the exponent term. 
Expanding equation (4.2) and using 
R2 = X2 + Y2 + Z 2 , the expression for z becomes 

When the quadratic terms are dropped in this way, 
the expression reduces to the simplified case of 
Fraunhofer diffraction, which is valid for most prac
tical optical imaging systems. Using equations (4.1) 
and (4.4), the expression for the disturbance at P is 
then 

Equation (4.5) describes the optical disturbance pro
duced by a plane wave passing through an arbitrary 
aperture, at a point located at distance R from the 
aperture and displaced from the axis by a small dis
tance Y, X. The disturbance consists of a time-vary
ing component of amplitude  angular frequency 
co, and phase angle  multiplied by a term propor
tional to the area of the aperture and the sum of the 
interferences between the spherical wavelets from 
each part of the aperture. 

Again, if the aperture is small compared with the 
distance R, then  +  may be neglected, redu
cing the right-hand side to two terms. Using the first 
two terms of the binomial expansion, the final 
approximation is obtained 
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P' 

Figure  Notation for 
diffraction calculations. 

4.2.2 Circular Aperture 

The expression for  is considerably simplified 
when it is evaluated for  aperture shapes. 
For the circular apertures used in most imaging 
systems, it is appropriate to use polar coordinates 
in the aperture and observation planes, as indicated 
in figure 4.2. The following quantities are defined 

Because of the circular symmetry, the value of  is 
independent of the angle  The integral terms are 
considerably simplified by the use of Bessel functions. 
Using the definition 

where a is the radius of the circular aperture. 
For imaging purposes, the observable property 

of the light is its intensity, which is the time average 
of the energy falling on the unit area in unit time. 
The intensity at point P is equal to  giving the 
result 

Figure 4.2 Model and 
notation for diffraction by a 
circular aperture. 

and the relation 

equation (4.8) may be expressed as 

The elemental area in the aperture is then 

Substituting in equation (4.5), 
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where A is the area of the circular aperture. The 
irradiance at the center, where r = 0, is 

The fraction of energy within the first, second, and 
third dark rings is  and 0.938, respectively. 
It should be noted that for a constant irradiance at 
the aperture, the peak intensity from equation  
is proportional to  For a constant focal length, 
the peak image intensity is proportional to D  which 
is explained by the fact that a larger aperture not only 
increases the amount of energy collected, but also 
reduces the size of the Airy disk. 

The logarithmic plot shows the structure of the 
diffraction rings, which are inconspicuous in the lin
ear plot. For visual use, the diffraction rings are rela
tively unimportant, but for astronomical imaging, 
especially when using charge-coupled device (CCD) 
detectors with a large dynamic range, the ring struc
ture produced by an aperture with a sharp cutoff can 
be a serious limitation. This subject is discussed 
further in section 4.3.3. 

Equation (4.18) is recognized as the Fourier 
transform relationship. In other words, the field dis-

The image of a point source is always of finite 
size, which implies that there is an uncertainty in the 
exact position of the source. This uncertainty is due 
to the fact that only a part (in the case  distant 
objects, such as stars, an extremely small part) of 
the radiation from the object is used to form the 
image. As the collecting aperture gets smaller, the 
fraction of radiation collected decreases, enlarging 
the image and increasing the uncertainty in the posi
tion of the source. In the limit of an infinitely small 
aperture, the diffraction pattern expands to form a 
spherical wave centered on the aperture, from which 
no information on the position of the original 
source can be obtained. Diffraction theory provides 
a consistent and intuitively satisfying explanation of 
these effects. 

For a given photon flux (signal-to-noise ratio), 
the aperture size sets an absolute limit on the spa
tial information that can be obtained about the 
object. In practice, this limit is further reduced by 
disturbances in the optical path and the telescope 
system. The function of adaptive optics is to 
remove the effects of these disturbances and to 
restore the full spatial resolution determined by 
the aperture size. 

4.2.3 Fourier Transforms 

In general, both amplitude and phase variations will 
exist in the wavefront at an optical aperture. In equa
tion (4.5), the amplitude term before the integral can 
be regarded as a single complex quantity 

where 

amplitude variation across the pupil 
point-by-point phase variations 

Equation (4.5) may then be rewritten as 

If spatial frequencies  and  are now introduced, 
defined as 

the diffracted field may be written as 

The irradiance of the image in terms of the field 
angle  is found by setting sin  = r/R and assuming 
that R is constant over the pattern, the intensity is 

This expression, first derived by Airy [1835], describes 
the diffraction pattern formed at a large distance 
from a clear circular aperture. When a perfect lens 
(larger than the aperture, so as not to obstruct it) is 
placed close to the aperture, then the plane wave 
passing through the aperture is converted to a sphe
rical wave converging to a point in the focal plane of 
the lens. The diffraction pattern is unaltered by this 
process, and its angular size remains the same, being 
a function only of k, a, and  

Using both linear and logarithmic intensity scales, 
the profile of the Airy diffraction pattern is shown in 
figure 4.3 for an aperture of 4 m at wavelengths of 
0.55 and 2.2  The linear plot is dominated by the 
central peak, known as the Airy disk. The minima of 
the intensity function occur when  = 0, except 
when x = 0. The first minimum gives a value of ka 

 =  so that the angular radius of the first 
dark ring is 

The secondary maxima occur when   = 0; that is 
when ka sin  equals 5.14,   and so on. The 
corresponding peak values of the first three rings are 
0.0175, 0.0042, and 0.0016, normalized to the central 
peak of unity. 

The fraction of the total incident energy contained 
within a circle of radius  centered on the peak, is 
given by 
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Figure 4.3 Intensity profiles of the image produced by a diffraction-limited circular aper
ture, shown with logarithmic and linear scales. The diameter is 4 m and the observing 
wavelengths are 550 and 2200 nm. 

tribution  in the image plane is the spatial 
frequency spectrum of the aperture function 
ri{y, x). The intensity distribution in the image 
plane for a given pupil function  is given 

  
The normalized optical transfer function of the 

imaging system may be expressed as 

This equation relates the spatial frequency response 
of the imaging system directly to the wavefront 
deformation in the pupil. 

For a perfect imaging system with a circular 
aperture, the optical transfer function for incoherent 
illumination is 
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where p/2a is the normalized aperture radius. The 
resulting image intensity distribution or point spread 
function for a plane wave input is the Airy diffraction 
pattern given in equation (4.12). 

4.2.4 Gaussian Beams 

A circular aperture with a sharp cutoff produces the 
Airy diffraction pattern characterized by extensive 
diffraction rings, which contain about 16% of the 
total energy. If the transmission at the edge of the 
aperture is tapered off gradually, diffraction effects 
are considerably reduced. The Gaussian profile ful
fills this requirement. The Fourier transform of a 
Gaussian function is also Gaussian, so that a 
Gaussian irradiance distribution with uniform 
phase in the aperture produces a Gaussian diffraction 
pattern, which decays smoothly with no sidelobes. 
The process of suppressing the subsidiary maxima 
surrounding the main response is known as apodiza-
tion (literally "taking away the feet") and has been 
applied to astronomical telescopes. It is achieved by 
modifying the aperture function, which always 
involves a  of energy, as well as an increase in 
the width of the image core [Jacquinot and Roizen-
Dossier 1964]. 

A Gaussian distribution of energy in the focal 
plane may also be produced by random image 
motion during a time exposure, because of imperfect 
compensation of wavefront tilt. In this case, the 
Gaussian distribution is superimposed on the diffrac
tion pattern because of higher order wavefront aber
rations. Gaussian profiles have the form 

 =  (4.21) 

where  is the peak value and  is the standard 
deviation. The peak of a Gaussian profile has a simi
lar shape to that of the Airy function, and by suitable 
choice of the parameter  the width of these func
tions can be made to match at any desired intensity. 
For example, to match the two functions at half of 
their peak values, the standard deviation of the 
Gaussian profile, as defined above, is  =  

The Airy and Gaussian diffraction patterns are 
compared in figure 4.4, for peak amplitudes of 
unity, with  =  The peaks of these two 
curves match very closely at values above half-max
imum, but on the linear scale the Gaussian appears to 
have a wider base. It is apparent from the logarithmic 
plot that the Gaussian drops more rapidly at larger 
radii, due to the absence of sidelobes. 

Many lasers generate a Gaussian irradiance pro
file. The  cavity mode produces a plane wave-
front with Gaussian intensity distribution. A 
Gaussian beam must necessarily be truncated at 
some radius, and it is conventional to use the radius 

 at which the intensity is reduced to  The irra
diance distribution of a Gaussian  beam of 
total power P is then 

In the absence of aberrations, the irradiance profile 
of a Gaussian beam remains intact as the beam pro
pagates, irrespective of whether it is expanded or 
concentrated. This behavior is quite different from 
a beam of initially uniform intensity defined by a 
hard aperture; in this case, the profile changes con
siderably during propagation, as shown in section 
4.2.2. 

In accordance with the Huygens-Fresnel principle, 
a laser beam with Gaussian intensity distribution and 
initially flat phase will expand due to diffraction as it 
propagates. After travelling a distance z, the beam 
radius at the  contour is given by 

  
where  is the beam "waist"; that is, the radius of 
the \/e2 contour at which the wavefront was flat. 
Further information on laser beam optics may be 
found in Siegman [1971]. 

4.2.5 Separability of Point Sources 

The separation of closely spaced point sources, such 
as stars, has long been a measure of telescope perfor
mance. The ability to separate two images depends 
not only on the quality of the optical system (includ
ing the atmosphere) but also on the characteristics of 
the detector. The number of photons detected and 
the dynamic range of the detector determine the 
minimum intensity change that can be discerned, set
ting an ultimate limit to the spatial resolution of an 
optical imaging system. The well-known Rayleigh 
criterion was originally proposed as a means of com
paring the resolution of spectroscopes having a 

 intensity distribution. It has since been 
adopted as a standard measure of the spatial resolu
tion of optical imaging systems. The "Rayleigh reso
lution" is achieved with two point (or line) sources of 
equal brightness when each peak coincides with the 
first dark line or ring in the diffraction pattern of the 
other source. For a circular aperture, this occurs 
when the angle between the peaks is  radians. 
This condition is shown in figure 4.5(a). Between the 
peaks, the intensity dips to 74% of the peak value. 

The Rayleigh criterion does not represent a fun
damental limit to resolving power. Around 1850, 
Dawes conducted experiments to separate double 
stars, finding that sixth-magnitude white stars as 
close as 0.8 arc second could be separated visually 
with a telescope of 150 mm aperture. This implies 
an angular separation of  rad at a mean 
wavelength of  The dip in this case is 3%, 
which is close to the minimum contrast that can be 
distinguished by the eye. The Dawes limit is depicted 
in figure 4.5(b). 
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Figure 4.4 Comparison of Airy and Gaussian profiles. The angular 
scale is for a 4-m aperture at a wavelength of  

The advent of photographic and, more recently, 
photoelectric detectors with a large dynamic range 
has dramatically improved the ability to distinguish 
small differences in brightness. Sparrow [1916] pro
posed a resolution limit corresponding to the distance 
between two point source images when the second 
derivative of the resulting envelope vanishes at the 
center of the pattern. The Sparrow criterion for two 
sources of equal intensity, which occurs at a separa
tion of  is shown in figure 4.5(c). With two 
stars, the resulting intensity pattern is significantly 
elongated in the direction of separation, making 
recognition more certain. 

At closer separations, the peaks merge into a 
smooth  as shown in figure 4.5(d), which 
depicts a separation of  In principle, the pre
sence of multiple stars can still be detected by com

paring the measured profile with the known profile of 
a single point. The overall width of the combined 
profile and the elongation of brightness contours pro
vide the critical information. 

With two stars of unequal brightness, the com
bined response becomes asymmetric, making discri
mination more difficult for close separations. The 
main criteria outlined above are recognizable for 
small magnitude differences up to about 2.5, corre
sponding to an intensity ratio of 10:1. For larger 
magnitude differences, the presence of a faint compa
nion is revealed by the elongation of intensity con
tours, until it becomes submerged in the diffraction 
rings or image halo. 

The ultimate limit of detection is set by the signal-
to-noise ratio of the measuring system. With perfect 
measurements, arbitrarily small differences in inten-
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Figure 4.5 Separability of two point sources of equal intensity in a diffraction-limited optical 
imaging system. 

sity can be detected, so there is no limit to the resol
ving power if the shape of the response is known. To 
quantify the effect of noise in optical images, Fried 
[1979] introduced the concept of "resolution scale" 
80, which is a basic property of an imaging system, 
defined as 

where  is the optical transfer function of the sys
tem. The precision with which the location of a single 
point source can be measured is S6/SNR, where SNR 
is the signal-to-noise ratio of the measuring device. 
The resolution scale is optimized (that is, minimized) 
in two ways: (1) by making  as large as possible, 
which requires minimizing the wavefront aberrations; 

and (2) by maximizing the signal-to-noise ratio. Even 
small errors reduce (7(0), implying that adaptive 
optics potentially has a role even in optical systems 
that are close to diffraction limited. 

4.3 Wavefront Distortion 

4.3.1 Fresnel-Kirchhoff Diffraction Integral 

Attention will now be turned to the effects of wave-
front distortion on the structure of optical images. 
The starting point for this analysis is the Fresnel-
Kirchhoff diffraction integral. The derivation of 
this formula is described in chapter 8 of Born and 
Wolf [1975] and will not be repeated here. The phy-
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 model and notation are shown in figure 4.6. A 
point source P' generates spherical waves that reach 
an opaque screen having an aperture that allows a 
section of the wavefront W to pass through. The 
resulting field is observed at a point P on the far 
side of the screen. The following boundary condi
tions were assumed by Kirchhoff: (1) The field dis
tribution and its derivative within the aperture are 
unaffected by the presence of the screen. (2) The 
field and its derivative in the geometrical shadow of 
the screen are zero. These assumptions are not 
strictly true because they ignore diffraction at the 
edges of the aperture. However, in practical cases, 
where the dimensions of the aperture are large com
pared with the wavelength of the light, but small 
compared with the distances r and s of the points 
P' and P, respectively, the results agree closely with 
experiment. The disturbance at P may be expressed 
as 

where dS is an elemental area of the wavefront at 
position Q, as shown in figure 4.6. 

This equation is a somewhat more general form of 
equation (4.5). The term (1 + cos x) is the inclination 
factor,  being the angle between the propagation 
directions P'Q and QP. If the aperture is much smal
ler than the distances r and  or a lens is used in the 
aperture to reimage P' on P, then (1 + cos  may be 
replaced by 2 cos 8, where S is the angle between the 
direction P'P and the normal to the aperture. When 
P' and P are close to the optical axis, as is usually the 
case in astronomical optics, then the simplification 
may be taken a step further by setting  equal 
to 1. In that case, the diffraction integral reduces to 

This equation enables the three-dimensional image 
structure in the vicinity of P to be determined. The 
values of r and  depend on the positions of Q and P. 

To investigate the effects of wavefront aberrations 
on the image structure, it is convenient to rearrange 
the geometry as shown in figure 4.7. A spherical 

Figure 4.6 Geometry and notation for Fresnel-
 diffraction integral. 

reference wavefront of radius R is convergent on 
the point  in the image plane, which is the origin 
of the polar coordinate system. The wavefront is 
observed at point P, located at polar coordinates 

  The pupil radius is a. The normally spherical 
wavefront is deformed by small variations  6) in 
its radius, where (p, 6) are the polar coordinates in 
the pupil. The distance between P and an elemental 
area dS at point Q on the pupil is s. At points close to 
the axis, the distance s is approximately equal to  
so that s may be replaced with R in the amplitude 
term. Using equation (4.25), the resulting disturbance 
at  

Geometrical considerations show that (s — R) is given 
by 

(4.27) 

where z is the axial displacement of P from the image 
plane. Using 

it follows that 

The area of the element dS in the pupil is 

dS   (4.30) 

The disturbance at P may then be expressed as 

The intensity at P is 

There is no explicit solution to this equation, as 
there is for the diffraction-limited case that produced 
the Airy pattern, as treated in section 4.2.2. The aber
ration function  8) can be handled in two ways. 
The first method is to expand the aberration function 
and find separately the diffraction pattern associated 
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Figure 4.7 Geometry for diffraction integral with aberrations. 

with each term. The aberration is then expressed as a 
sum of whole-aperture modes, as described in section 
4.3.2. 

The second method is to assume that the wave-
front error is random, so that its effects can be deter
mined statistically, in terms of a mean-square 
wavefront error. This approach may be used to deter
mine the performance of adaptive optics systems, in 
which the errors are primarily random, and it is 
developed further in section 4.3.3. However, such 
an analysis is valid only for small errors. 

4.3.2 Zernike Polynomials 

The Zernike polynomials, which are orthogonal over 
a unit circle, are a useful basis for expanding the 
aberration function, because the terms represent the 
basic aberrations of conventional optical systems, 
such as defocus, astigmatism, and coma. This 
method is used in the design of "static" optical sys
tems for balancing the various aberrations in order to 
obtain the best image. 

Zernike polynomials may also be used to repre
sent (and to compensate) atmospheric turbulence, as 
described in section 3.5. Zernike polynomials are not 
strictly orthogonal for compensating turbulence 
because they are not statistically independent. A 
more general set, using Karhunen-Loeve functions, 
has been configured for this application, although 
the difference is small for the low-order terms 
[Wang and Markey, 1978]. 

For small values of  the modal approach to 
wavefront compensation has the advantage that effi
cient compensation is obtained with a smaller num
ber of degrees of freedom than with zonal 
compensation. 

4.3.3 Strehl Ratio 

It is to be expected that wavefront errors will diffract 
light away from the center of the image and thereby 
reduce the peak intensity. To quantize this reduction 
in peak intensity, the intensity /* obtained at the 
Gaussian image point is first computed with no aber
rations present. Setting <p = 0, u — 0, and v = 0 in 
equation (4.32), then 

2 

The ratio of the actual peak intensity  to /* is a 
useful measure of the performance of an optical sys
tem. When this ratio is evaluated at a specific plane of 
observation (normally the Gaussian image plane), it 
is known as the Strehl ratio, after K. Strehl [1895, 
1902], who first described the concept. For an optical 
system with aberration function  9), the Strehl 
ratio is given by 
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To evaluate the Strehl ratio using equation (4.34), it is 
necessary to know the aberration function  explicitly 
in terms of the pupil coordinates (p, 0). This is rarely 
the case in adaptive optics, where the random errors 
due to turbulence are usually described statistically. 

Several expressions have been developed to allow 
the Strehl ratio to be determined directly from the 
mean-square wavefront error. These approximations 
have limited applicability and must be used with care. 
Born and Wolf [1975] derive an expression by first 
expanding the phase term in equation (4.34) to obtain 
a series representation of the Strehl ratio: 

The next step is to define "aperture average" values 
of the wavefront errors over the pupil, with respect to 
a reference sphere centered at the focal point P. 
These average wavefront errors are given by 

(4.36) 

Neglecting third and higher order terms in equation 
(4.35), the Strehl ratio can then be expressed as 

(4.37) 

The mean-square wavefront error is defined as 
 =  —  Setting the standard deviation 

of the phase as  =  the Strehl ratio is 
approximated as 

(4.38) 

For small values of  up to about 0.5 rad  this 
gives essentially the same result as equation (4.38). It 
falls to zero when  = 1.41 rad rms.  sug
gested as a criterion, that an optical system should be 

considered well corrected when S" equals or exceeds 
0.8, corresponding to a wavefront error of  or 
less. This is an acceptable criterion for fixed optical 
components, such as lenses or mirrors, but is unne
cessarily restrictive as a system specification for adap
tive optics systems. 

Equation 4.38 represents the first two terms in the 
exponential expansion, leading to an alternative 
approximation for the Strehl ratio: 

S   (4.40) 

This equation appears to be valid over a somewhat 
larger range of phase errors than the other two; that 
is, up to about 2 rad rms. It is sometimes called the 
"extended Marechal approximation" and it is the 
most commonly used expression for the Strehl ratio 
in the field of adaptive optics. Unless otherwise sta
ted, this is the definition of the Strehl ratio  used in 
this book. 

Larger wavefront errors, such as those caused by 
uncorrected atmospheric turbulence, produce more 
radical changes in the image structure and must be 
treated in a different way, as outlined in the next 
section. 

4.4 Turbulence-Degraded Images 

4.4.1 Optical Transfer Function and 
Image Intensity Distribution 

Although the total residual error provides a measure 
of the performance of a compensated telescope, 
enabling the Strehl ratio to be determined, far more 
information can be obtained from the Optical 
Transfer Function (OTF), which describes the com
plex amplitude of the received wavefront as a func
tion of spatial frequency in the optical aperture. The 
corresponding image intensity distribution or Point 
Spread Function (PSF) is derived from the OTF by a 
Fourier transformation. 

The optical transfer function (OTF) can be com
puted from the phase structure function of the com
pensated wavefront. The structure function may 
represent any random process that can be modeled 
with Gaussian statistics and zero mean value, which 
includes most of the errors that occur in adaptive 
optics systems. It is possible to determine the struc
ture of images with any degree of compensation, ran
ging from images produced by uncorrected 
turbulence to those that are diffraction-limited.. 

For an aperture of area A, having an incident 
wavefront given by  =    the optical transfer 
function from equation (4.19) is 

This expression is useful only for very small phase 
errors, up to about 0.6 rad (1/10 wave) rms. It falls 
to zero at 1 rad of phase error, which is clearly unrea
listic. Simulations of turbulence-degraded wavefronts 
show that well-defined diffraction-limited image 
cores with normalized peak values of at least 0.2 
are obtained with random wavefront phase errors 
of 1 rad rms. 

Marechal [1947] derived a similar expression for 
the normalized intensity at the diffraction focus in 
the presence of small aberrations: 
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where x is the position in the aperture,   x + p, 
and p is the displacement in the aperture. The corre
sponding spatial frequency in the image plane, in the 
axis of displacement, is  = p/XF, where X is the 
mean wavelength and F is the focal distance to the 
image plane. 

If  —  is an unbiased Gaussian random 
variable, then the time-averaged (long-exposure) 
OTF may be expressed as 

(4.43) 

The long-exposure OTF is equal to the product of 
the atmospheric OTF and that of the telescope, 
T(p). The time-averaged intensity distribution in 
the focal plane is found by taking the Fourier trans
form of the OTF: 

4.4.2 Structure Functions 

The rationale for using structure functions in turbu
lence theory has been discussed in chapter 3, which 
also contained a summary of their properties. 
Adaptive optics systems generally operate with 
imperfect compensation, in which the partially cor
rected wavefronts contain the sum of individual 
errors from various parts of the system. If these 
errors are random and uncorrelated, their individual 
structure functions may be summed to obtain the 
overall structure function  which is the key to 
determining basic performance parameters such as 
the Modulation Transfer Function (MTF), and the 
Point Spread Function (PSF) of the image. 

For uncompensated atmospheric turbulence, the 
phase structure function from equation (3.52) is 

(4.45) 

where 
p = displacement in the optical aperture 

 — turbulence coherence length 
The structure function is zero when p = 0 and rises 
to a saturation value of  when p is greater than 

the outer scale of the turbulence, where 
 =   for plane waves. When an opti

cal wavefront is compensated, a correction device is 
placed in the optical path to reduce the value of  
When the correction is perfect,  is zero for all 
values of p and the optical transfer function of the 
system becomes that of the telescope alone, T(p). 

4.4.3 Partial Compensation 

Practical adaptive optics systems operate somewhere 
between the two extremes of zero and perfect com
pensation. The main factor that decides the level of 
compensation is the number of degrees of freedom 
in the wavefront compensator, which is one of the 
most important design decisions to be made in an 
adaptive optics system. In the case of a zonal com
pensation system, this is equivalent to fixing the 
ratio  which determines the number and size 
of the subapertures. It is instructive to review the 
effect of varying the subaperture size, or more gen
erally the ratio  on the shapes of the transfer 
function and point spread function. To illustrate the 
results clearly, only the fitting error will be consid
ered at this time. 

In zonal compensation systems, the wavefront is 
corrected by an array of subapertures that match the 
local gradient and/or phase errors, relative to the 
aperture-averaged values. Segmented mirrors have 
independent elements with either piston-only correc
tion, using one actuator per element, or piston and 
tilt correction, using 3 degrees of freedom per ele
ment. Deformable mirrors employ arrays of actua
tors with influence functions that may extend into 
the adjacent zones. It has been found by computer 
simulation that such devices are accurately modeled 
by a piston and tilt mirror, in which the segment size 
is  times the actuator spacing in the deformable 
mirror. 

The first step in determining the effect of fitting 
errors on the performance of a zonal compensation 
system is to find the structure function of a turbu
lence-degraded wavefront partially corrected over an 
array  The phase structure function as stated 
by Tatarski [1971] is 

where  is the two-dimensional spatial spectrum of 
the phase variations. To determine the structure 
function of a partially compensated wavefront, 
Greenwood [1979] shows that these spectra may be 
expressed in terms of high-pass filter functions that 
depend on the type of correction: 

In section 3.2, the phase structure function is  
as 

where y is the spatial dimension in the focal plane. 
This procedure enables the image structure to be 

found for any wavefront for which a phase structure 
function D(p) can be defined. 
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where  is the filter for piston correction only, and 
 is the filter for piston and  These filter func

tions are given by 

The turbulence spectrum in the simplest case (infinite 
outer scale, zero inner scale, no amplitude effects) is 
defined by 

(4.49) 

When amplitude effects are taken into account, the 
spectrum is given by 

(4.50) 

where  is the correlation length of the amplitude 
 (see figure 3.9). The phase structure func

tions for zonal compensation are then found by sub
stituting equations (4.48) and (4.49) or (4.50) in 
equation (4.46), to obtain 

with several different ratios of  The MTFs are 
plotted on a linear scale, while a logarithmic intensity 
scale has been used for the PSFs in order to show the 
structure of the halo more clearly. The three pairs of 
charts depict a 1-m aperture with  ratios of 1.0, 
2.0, and 3.0, producing Strehl ratios of 0.79,  
and 0.24, respectively. 

The compensated MTF curves clearly show two 
components: (1) a low-frequency core, which drops 
steeply from its initial value of unity toward an inter
cept on the horizontal axis at a value of about  
and (2) a mantle consisting of a reduced version of 
the diffraction-limited MTF with a maximum value 
equal to the Strehl ratio. This general shape is typical 

 partly compensated random wavefronts. Also 
shown on the charts, for comparison purposes, are 
the diffraction-limited MTF and the uncorrected tur
bulence-degraded MTFs for short exposures and 
long exposures. 

The corresponding PSF curves at the right have 
normalized peak intensities equal to the Strehl ratio. 
The diffraction rings typical of the Airy pattern are 
evident only in the first two plots. This diffraction 
pattern, which forms the halo around the central 
disk, is produced by the energy within the core of 
the MTF. As the  ratio increases, the halo 
becomes more prominent. The central disk of the 
image is formed by the high frequencies in the outer 
mantle of the MTF, which extends out to the diffrac
tion limit. These charts show clearly that while incom
plete or partial compensation of the wavefront 
reduces the central intensity of the image, it has little 
effect on the radius of the image disk, which remains 
close to  

Another factor to consider is the ratio of the 
intensities of the image core and the surrounding 
halo. Even with a  ratio of 3, which produces a 
Strehl ratio of 0.24, the peak intensity of the core is 
more than 10 times greater than that of the halo. A 
large ratio is maintained even when the Strehl ratio 
has decreased to 0.1, providing adequate signal-to-
noise ratio for the detection of individual point 
sources against a dark background. The contrast is 
reduced with extended objects because the  
overlap and their intensities add. The contrast 
between the image core and the halo is discussed 
further in Ssection 4.6.2. 

To summarize, images with partial zonal compen
sation have the following properties: 

• The overall size of the aperture (or, more 
strictly, the ratio  determines the radius 
of the image core, but not the shape of its 
intensity profile, which depends on the   

ratio. 
• The radius of the image core stays close to 

its diffraction-limited size even when the 
Strehl ratio is reduced to 0.1. 

• The image shape is determined by the   

ratio. 

where 

(4.51) 

The structure functions for zonal compensation 
are dominated by two asymptotes. For  
the structure function is given by  
=  while for  » 1 the value of 
D(x) saturates at 2a2, where  =  for 
piston-only correction, and  =  for 
piston and tilt correction. These asymptotes also 
control the structure of the corresponding MTFs 
and PSFs, as can be seen from figures 4.8 and 4.9. 

To illustrate the effect of atmospheric turbulence 
on optical images, figure 4.8 shows three-dimensional 
plots of the MTF and PSF for diffraction-limited, 
partially compensated, and uncompensated telescope 
systems. The images are depicted with constant linear 
intensity scales. The basic conditions are D = 4 m 
and X =  with   0.15 m at the reference 
wavelength of  Even under these relatively 
benign conditions, the uncompensated image has a 
peak intensity of less than 1/20 of the diffraction-
limited response. Assuming that the overall tilt is 
perfectly corrected, a wavefront compensator with 
only six elements will raise the Strehl ratio to over 
0.5 at this wavelength, assuming that the total error is 
about twice the fitting error. 

Figure 4.9 shows the transfer functions and corre
sponding PSFs for a partially compensated telescope 
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Figure 4.8 Three-dimensional plots of modulation transfer functions and 
image structure for diffraction-limited, partially compensated, and turbu
lence-degraded (uncompensated) images. The basic conditions are aperture 
4 m, wavelength  and turbulence parameter 0.15 m (at  = 0.55  
The partially compensated image is obtained with only 6 degrees of freedom. 
The functions depicted are time-averaged with overall tilt removed. 

4.4.4 Modeling Turbulence-Degraded 
Image Profiles 

The effect of wavefront distortion on an optical 
image is to remove energy from the central peak, 
distributing it into a surrounding halo. This halo 
has a different origin from the diffraction ring struc
ture produced by a hard-edged optical aperture and 
is superimposed upon it. The halo is absent for a 

perfect wavefront, but dominates the image structure 
in the presence of wavefront distortion typical of 
uncompensated turbulence. From equation (4.14), 
we know that in a diffraction-limited image, 84% 
of the light is contained within the first dark ring. 
When the distortion is small, the result is mainly to 
reduce the peak intensity, with little change in the 
basic image structure. As the wavefront error 
increases, more of this light is redistributed until, 



Figure 4.9 Modulation transfer functions and point spread functions for a compensated telescope at 
three values of  
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For the case of no turbulence,  is equal to infinity 
and F becomes unity as expected. 

The general model for a turbulence-degraded 
image (valid also for partially compensated images) 
consists of two components, a core and a halo, as 
depicted in figure 4.10. The dimensions for a short-
exposure image, with no tilt error are: 

Core diameter [full-width at half-maximum 
 

Figure  Model for partially compensated turbu
lence-degraded images. The image consists of two 
components: a diffraction-limited core, the diameter 
of which depends on the  telescope aperture, 
superimposed on a halo with a diameter dependent 
on the turbulence parameter  As the degree of cor
rection increases, a greater proportion of the light is 
concentrated in the central core. 

Core peak intensity 

Halo diameter (FWHM) 

Halo peak intensity 

The total peak intensity is the sum of the core and the 
halo: 

Total peak intensity 

The total peak intensity  (which is always less than 
unity) may be regarded as a composite Strehl ratio, 
defining the normalized peak value of the core plus 
halo. 

when the distortion reaches about 2 rad  the peak 
disappears. Where does this light go and what hap
pens with larger wavefront errors? 

An answer may be found by considering the struc
ture of turbulence within an optical aperture. Such a 
wavefront has two key spatial parameters: the aper
ture diameter D and the coherence length of the tur
bulence  No matter how strong the turbulence, we 
can consider the telescope aperture D to be filled with 
a random array of ro-sized subapertures, over each of 
which the wavefront error is 1 rad rms. The image 
structure must also be determined by D and  The 
telescope aperture of diameter D produces an image 
core of full diameter  at the first dark ring. 
The subapertures of size  produce a halo that can be 
considered as a multiplicity of superimposed disks of 
diameter  The value of  is typically in the 
range of 0.1-0.2 m at a wavelength of 0.5  It 
grows as the 6/5 power of wavelength, with the result 
that  may be as large as 1 m at infrared 
lengths. 

To complete this model of the structure of a tur
bulence-degraded image, the relative intensities of the 
core and halo must be established. It was shown in 
the previous section that the normalized intensity of 
the core (the Strehl ratio, S) can be expressed statis
tically as  where  is the mean-square 
wavefront error. The Strehl ratio is also a good mea
sure of the fraction of the total energy in the core, 
because its diameter changes very little with wave-
front error. The fraction of energy in the halo is 
therefore (1 — S). The expression for Strehl ratio is 
valid up to mean-square errors of about 4 rad2, at 
which point the Strehl ratio has dropped to less than 
0.02 and 98% of the energy is in the halo. This repre
sents the upper limit of residual error for an optical 
image; beyond this point it is essentially uncompen
sated. 

To determine the relative intensity of the halo, a 
useful approach has been suggested by Yura [1973]. 
The reduction in the on-axis irradiance of a turbu
lence-degraded image, compared with its value with 
no turbulence, can be expressed as the Factor F, 
where 

where 

= aperture diameter 
= coherence length of the turbulence 

(4.52) 

The coherence length has different values for long 
and short exposures. For long exposures,   
approximately equal to  For short exposures, 
which eliminate the image motion caused by overall 
tilt, it is approximated by 
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4.5 Image Motion 

 Sources of Image Motion 

The main sources of image motion in astronomical 
telescopes are atmospheric turbulence and wind buf
feting, which can induce vibration of the telescope 
structure. Adaptive optics will ideally remove these 
disturbances, but residual errors remain because of 
imperfections in the compensation system. A major 
source of error is the tilt isoplanatism produced when 
the reference star is angularly separated from the 
science object. 

Image motion is produced by the overall tilt com
ponent of atmospheric turbulence, generated by dis
turbances of size greater than the telescope aperture. 
There is some debate concerning the magnitude of 
the outer scale of atmospheric turbulence and 
whether, in fact, it exceeds the aperture of the largest 
telescopes now in use (10 m). Assuming an outer scale 
larger than the telescope aperture, the single-axis 
mean-square angular tilt, in units of radians squared, 
is 

    

Because  is proportional to  the angular tilt is, 
in fact, independent of wavelength and its mean-
square value varies as  The effect of wavefront 
tilt on the image structure depends on the tilt angle 
relative to the angular resolution X\D, giving the rela
tion 

The image motion due to atmospheric turbulence, 
relative to the Airy disk, is therefore inversely pro
portional to wavelength. The reason is simply that 
the image size increases linearly with wavelength, 
while the angular motion is independent of 
length. 

4.5.2 Modeling Image Motion 

The effect of a random tilt error of    is to 
spread each point of the image into a Gaussian pro
file with standard deviation  This process reduces 
the angular resolution and diminishes the peak inten
sity. In some cases, image motion may be different in 
the x and y axes. When the difference is not large, the 
effective mean-square tilt error may be represented 

4.5.3 Criteria for Image Motion 

Equations (4.61) through (4.64) enable the effects of 
random image motion to be related directly to the 
basic properties of the image of a point source, 
such as normalized peak intensity (Strehl ratio), 
core diameter, or peak contrast ratio of the core 
and the halo. In the case of images that are well-
corrected except for image motion, the peak reduc
tion factor  due to image motion can be cascaded 
with the Strehl ratios due to other errors in the sys
tem. The overall peak intensity  given by equation 
(4.64), defines the relation between  and  

If the tilt is expressed as a fraction of the Airy disk 
radius by dividing by  the relation between 
tilt and phase errors may be expressed in dimension-
less form as 

by Computation of the resulting 

 ratio is facilitated if the diffraction image pro
file is also modeled as a Gaussian curve. It was seen 
in section 4.2.4 that a Gaussian profile with standard 
deviation of  =  has the same width at 
half-maximum as an Airy function. 

The volume of a circular Gaussian profile of peak 
amplitude  and standard deviation  is equal to 

 Tilt errors redistribute the energy into a 
Gaussian profile with variance  +  but do not 
change the total energy in the image. The peak inten
sity is therefore reduced in the ratio 

The diameter of the core is increased in the ratio 
 

Similar calculations for the halo show that the 
peak intensity reduction ratio is 

When  = 0, these expressions reduce to equations 
(4.54) and (4.55), so they may be used in the general 
case to replace these equations. 

Core peak intensity 

Substituting for  —  the intensity reduc
tion of the core due to tilt error is 

The halo diameter is then increased in the ratio   
When D >  (which is usually the case in astronom
ical imaging, otherwise adaptive optics would not be 
needed), the effect of angular tilt errors  is rela
tively much smaller on the halo than on the core, 
so  is close to unity and the dimensions in equa
tions (4.56) and (4.57) may be used. 

The core dimensions for a long-exposure image, 
including the tilt error, are therefore: 

Core diameter  
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(4.65) 

which defines the tradeoff between tilt and phase 
errors for a given value of core peak intensity 
(Strehl ratio)  For example, to obtain a Strehl 
ratio of 0.8 from angular tilt only  = 0), the  
angular tilt error must not exceed  times the Airy 
disk radius of the telescope at the observation 
length. 

In the case of partially compensated images where 
the structure contains both core and halo, the peak 
intensity is the sum of the core and halo intensities 
with random tilt errors: 

where  is the Strehl ratio resulting from the total 
wavefront phase error  of the adaptive optics sys
tem (excluding tilt), and  is the final Strehl ratio 
including tilt. 

The peak contrast ratio  between core and halo 
is also reduced by image motion. This subject is pur
sued further in the next section. 

4.6 Image Evaluation 

4.6.7 Image Profiles 

The equations developed earlier, defining the peak 
intensities and diameters of the image core and 
halo, enable the basic image structure to be deter
mined for any set of conditions, ranging from 
uncompensated turbulence to a perfect wavefront. 
The gross effects are illustrated in figures  and 
4.12, which show image profiles for several degrees 
of compensation. The effect of changing the obser
ving wavelength is shown in figure 4.11, with the 
telescope aperture fixed at 2 m and with  (specified 
at  constant at 0.15 m. The effective values of 

 at the observing wavelengths are 0.22, 0.45, and 
0.89 m at 0.7, 1.25, and   respectively. 

Figure 4.12 compares the normalized image pro
files produced by apertures of 2, 4, and 8 m, at a fixed 
wavelength of 2.2  with  constant at  m at a 
wavelength of  

These profiles clearly show the halo produced by 
uncompensated turbulence, as well as the effect of 
compensation in transferring energy from the halo 
to the core. In figure  each profile is normalized 
to unity for the specific aperture used. It is worth 
noting that if these profiles were compared on an 
absolute basis, corresponding to the light collected 
from a star of given magnitude, then the peak inten
sities of the 4-m and 8-m profiles would be higher by 

factors of 16 and 256, respectively, compared with 
the peak of the 2-m aperture. 

4.6.2 Evaluation of Partially 
Compensated Images 

The partly compensated image profiles shown in fig
ures  and 4.12 have two distinct components of 
different radii. The effect of changing the degree of 
compensation is to change the intensity ratio of these 
components, but not their radii. When evaluating the 
imaging performance of an optical imaging system, 
the critical parameter is the size of the point spread 
function that convolves the source intensity distribu
tion. It may be asked whether there is an equivalent 
image size for partial compensation. Alternatively, is 
there some other property of the image suitable as a 
criterion for evaluating partly compensated images? 

A composite system resolution has been postu
lated by Parenti and Sasiela [1994], based on the 
weighted average of the relative intensities and dia
meters of the core and halo, as defined above: 

(4.67) 

Parenti and Sasiela report that simulations of par
tially compensated short-exposure images have 
shown good agreement with the above expression. 
With a 4-m aperture and  equal to 0.16 m, the 
threshold of wavefront distortion at which the reso
lution started to depart from the diffraction limit of 
the aperture was found to be about 2 rad  

As astronomical telescopes get larger, the ratio of 
the halo and core diameters also increases: for an 8-m 
telescope at a good site, it may be as high as 40 or 50. 
Such large differences between the halo and core dia
meters bring into question the meaning and validity 
of composite resolution as defined in equation (4.67). 
An alternative approach, suitable for large apertures, 
is to consider the core and the halo separable, on the 
basis of their greatly different intensities. The justifi
cation for this idea is that the photoelectric detectors 
now used in astronomy have a very large dynamic 
range, and when images are digitized it is relatively 
easy to select data within a certain range of intensi
ties. Given an image structure similar to the partially 
compensated cases shown in figures  and 4.12, 
the ability to discriminate between the diffraction-
limited core and the halo depends on their relative 
intensities. 

For long exposures, the high-resolution informa
tion in the image is contained in the core, the normal
ized intensity of which is  The total intensity is 

 +  The peak image contrast ratio is defined as 

(4.68) 

where  and  are defined in equations (4.64) and 
(4.57), respectively. The contrast ratio has a value 
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Figure   intensity profiles for various degrees of turbulence compensation, as a function of the 
observing wavelength. The peak image intensity (Strehl ratio) for each case is shown. The solid figure is the 
intensity profile with a linear intensity scale. The dotted line shows the shape of this profile, normalized to 
unity. The dashed curve is the intensity plotted on a logarithmic scale. The horizontal scale is ±0.5 arc 
seconds. Conditions: aperture = 2.0 m;  = 0.15 m;  = 0.7, 1.25, and 2.2  
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Figure  Image intensity profiles for various degrees of turbulence compensation, as a function of the 
aperture size. The solid figure on each chart is the intensity profile on a linear intensity scale, with the 
corresponding Strehl ratio. The dotted line shows each profile normalized to unity. The dashed curve 
shows the intensity profile on a four-decade log scale. Horizontal scale is ±0.5 arc seconds,  = 0.15 m, 

 =  urn. 
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between 0 and  When    it is closely 
approximated by 

    (4.69) 
 +  

The variation of  and  with optical path-
length error is depicted in figure  for wavelengths 
of 0.55, 1.25, and   Figure 4.14 compares the 
peak contrast ratio  with the composite Strehl 
ratio  for identical conditions. As the wavefront 
error increases, the contrast ratio initially remains 
near unity, while the Strehl ratio drops steadily. 
The contrast ratio remains high even when the 
Strehl ratio has fallen below 0.1. This region of low 

 and high  defines the regime of partial compen
sation, in which postdetection  
techniques can often restore the full diffraction-lim
ited quality to the image. 

The peak contrast ratio  may be used as a mea
sure of image quality for situations in which imaging 
sensors with a large dynamic range are employed. 
The ability to discriminate between different intensity 
levels ultimately depends on the signal-to-noise ratio 
of the image. As the contrast between core and halo 
decreases, a larger photon count is required to main
tain the image signal-to-noise ratio, as discussed in 
section 4.7 below. 

A core, 550  
B halo,  nm 
C core, 1250 nm 
D halo,  nm 
E core, 2200 nm 
F halo,  nm 

Figure 4.13 Peak intensities of the image core and 
halo as a function of optical pathlength error for 
wavelengths of 550, 1250, and 2200 nm. The telescope 
aperture is 4 m and the turbulence parameter  is 
0.15m. 

4.6.3 Effects of Image Motion 

The effect of random image motion due to residual 
tilt errors on an otherwise well-corrected long-expo
sure image is to reduce the peak intensity of the core 
by the factor  and to increase the core diameter by 
the factor  where  is defined in equation 

 If the angular resolution of an imaging system 
is defined as the number of resolvable points per ster-
adian of field angle, then it follows that the reduction 
in angular resolution due to tilt errors, compared 
with that of a diffraction-limited system, is given by 
the factor  

The angular resolution is plotted against angular 
tilt error in figure 4.15 for a 4-m aperture at obser
ving wavelengths of 0.7 and 2.2  Also shown are 
the peak intensity curves for images with wavefront 
errors giving Strehl ratios of 0.5 and 0.2. (The angu
lar resolution curve is the same as the peak intensity 
curve for an initial Strehl ratio of  

The effect of image motion on the peak contrast 
ratio is found by multiplying the peak intensity of the 
core by  and multiplying the peak intensity of the 
halo by  where  and  are defined in equations 
(4.61) and (4.62), respectively. The peak contrast 
ratio with image motion is then given by 

4.7 Quantum Noise Effects 

4.7.1 Photon Noise Limitations 

It has been implicitly assumed, up to now, that the 
image is formed by a large number of photons, so 
that quantum noise effects may be neglected. In prac
tice, astronomical images are usually photon starved 
because of the faintness of the sources. The influence 
of photon noise on images is different from any of 
the wavefront effects discussed earlier. With the 
advent of adaptive optics using laser beacons, it is 
now possible for celestial objects at the limits of 
detectability to be well compensated. 

The most basic problem is the detection of an 
object buried in background noise, typically because 
of radiation from the sky. Consider an array  m + 1 
cells with a mean background photon count of  in 
each cell, as shown in figure 4.16. The object to be 
detected produces an additional mean count of   

photons within a single cell. It is assumed that the 

(4.70) 

Values of the peak contrast ratio  for wavefront 
Strehl ratios of 0.5 and 0.2 are also shown in figure 
4.15. Overall tilt errors have a much smaller effect on 
the peak contrast ratio than on the angular resolu
tion, which drops very sharply as tilt error is intro
duced, especially at short wavelengths. 



A composite Strehl ratio, 550 nm 
B peak contrast ratio,  nm 
C composite Strehl ratio, 2200 nm 
D peak contrast ratio, 2200 nm 

Figure 4.14 Comparison of peak contrast ratio  with composite 
Strehl ratio  at wavelengths of 550 and  nm. The aperture is 
4 m and  is 0.15 m. 

A angular resolution factor  

B peak intensity, initial Strehl = 0.5 D peak contrast ratio, Strehl = 0.5 
C peak  initial Strehl = 0.2  peak contrast ratio, Strehl = 0.2 

Figure  Effects of random tilt errors on the structure of compensated long-exposure point images for an 
aperture of 4 m with  = 0.15 m and zenith angle 30°, at observation wavelengths of 700 and  nm. These 
curves show the result of residual image motion on the angular resolution, peak intensity, and contrast ratio. 
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Object to be detected Matched Filter 

Figure 4.16 Detection of a source in a noisy back
ground. 

photon arrival times are random and independent so 
that Poisson statistics apply. 

The signal  is the difference between the count in 
the cell containing the object and the average of the 
counts in the background cells. For a typical sample, 

where 

 = additional count from the object to be 
detected 

  background count in the object cell 
 = background count in  m 

The mean value of the signal is 

Since  of the terms in equation (4.71) are indepen
dent, the variance of the signal is equal to the sum of 
the variances with the weights squared: 

For Poisson variables, the variances are equal to the 
mean values, so the variance of the signal is given by 

    

The signal-to-rms-noise ratio is then 

For faint objects, the photon arrival rates are low, 
so the signal and background consist of discrete 
events with random arrival times. The exposure 
time necessary to achieve a given signal-to-noise 
ratio depends on the average photon rates of the 
signal and background. If the average signal and 
background rates are a and b detected photons per 
second, respectively, then the signal-to-noise ratio 
after t seconds is 

In principle, any source emitting photons can be 
detected, irrespective of the background noise, simply 
by accumulating the counts over a sufficiently long 
period of time. In practice, exposure times for 
ground-based astronomy are generally limited by 
saturation of the photon detector. This problem 
can be overcome by combining several separate expo
sures. 

4.7.2 Contrast Ratios Required for 
Detection and Recognition 

The preceding analysis can be broadened to include 
the detection of detail in extended objects. Work by 
Rose [1948] and  and Anderson [1960] estab
lished that the capability of a human observer 
approximates that of an ideal matched filter for 
detecting visual signals buried in noise. They found 
that a minimum signal-to-noise ratio of about 5:1 is 
necessary to recognize simple shapes in a noisy envir
onment. This information enables determination of 
the density of detected photons in the image plane 
required to detect or recognize simple objects. The 
required photon density depends on the contrast 
between the object and the background, which, in 
turn, depends on the degree of compensation. 
Consequently, there is a tradeoff between the photon 
density required to recognize an object and the 
amount of compensation applied to the image. The 
better the compensation, the smaller the photon den
sity (or exposure time) required. 

The contrast relevant to the detection of detail in 
an extended object consists of several components: 

 the contrast of the source,  
2. the contrast reduction due to background 

radiation from the sky; 
3. the contrast reduction due to imperfect com

pensation of atmospheric turbulence,  

The simplest type of detail to be detected in an 
extended object may be modeled as a single spot on 
a pedestal, using two brightness levels. If the mean 
photon count of the spot is  and the mean photon 

(4.75) 

where k =  +  When  is large, the average 
background count can be estimated accurately and 
the value of k approaches unity. In this case, the 
signal-to-noise ratio is 
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There is a further contrast reduction in the tele
scope if the compensation is not perfect. This is due 
to the halo surrounding the image of a point source, 
as discussed in section 4.6.2. For a single point 
source, the contrast reduction is given by equation 
(4.69): 

(4.80) 

The overall image contrast is then C =   which 
can be written in the form 

(4.81) 

where 

(4.82) 

Using equation (4.81), the photon count in the 
extended image required to achieve a given SNR 
with overall contrast C is then 

Equation (4.83) defines the tradeoff between contrast 
and photon count to achieve a specified signal-to-
noise ratio for the detection of a single spot against 
a bright background. A minimum signal-to-noise 
ratio of 5:1 is required to discriminate a small spot 
from the background. For a contrast ratio of 0.5, the 
average background photon count per cell required 
to achieve this signal-to-noise ratio is 100. If the con
trast drops to 0.2, the required photon count rises to 
625. 

A similar process can be used to determine the 
probable shape or orientation of an object. Figure 
4.17 shows a matched filter for discriminating a 

short horizontal bar from a vertical one. Photons 
detected in the horizontal arms are weighted +1/2 
and photons detected in the vertical arms are 
weighted —1/2. After a number of counts have accu
mulated, a positive output signifies a horizontal bar 
and a negative output signifies a vertical bar. If there 
is no background noise, then the signal-to-noise ratio 
is simply the square root of the number of detected 
photons. 

In general, photons will be detected in all cells and 
the task is to determine whether the object is hori
zontal or vertical.  the mean number of counts in a 
detector cell due to the presence of the object is   

and the mean number of background counts in every 
cell is Nt, the mean signal with a horizontal bar will 
be 

As above, the variance of the signal is the square 
weighted sum of the variances of the counts: 

(4.85) 

This expression  the average number of 
detected background photons required per image 
element to discriminate between two simple objects 
having a contrast ratio of C. The required photon 
density, expressed as the average number of detected 
background events per unit solid angle, is 

(4.88) 

where  is the angular size of the image elements. 
In the context of image compensation, equation 

(4.87) can be used to determine the improvement, 
due to adaptive optics, in the detectability of 
photon-starved images. Image compensation con
centrates more light into the core of each image 
element, improving the contrast C. This provides a 
better signal-to-noise ratio, or enables smaller detail 
to be discriminated. The approach is easily extended 
to more complex discrimination tasks by modeling 
the appropriate matched filters. 

 = effective photon count of the signal 
to be detected (the spot) 

    photon count of the back
ground image (the pedestal) 

From equation (4.76), the image signal-to-noise ratio 
can be expressed as 

(4.78) 

(4.79) 

count of the pedestal is  then the contrast of the 
source is 

The sky background adds photons to all detector 
cells. If the mean background count is  then the 
contrast of the signal reaching the telescope is 

For low contrast objects,    and the mean 
number of background photon counts required to 
achieve a given signal-to-noise ratio is 

The  ratio is then 
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Figure  Recognition of an object in a noisy background. 

4.7.3 Photon Noise in Partially 
Compensated Images 

The partially compensated image of a point source 
is characterized by a bright halo that limits the con
trast between the core and its surrounding area. The 
relative intensities of the core and halo are deter
mined by the degree of compensation in the adap
tive optics system. Large residual wavefront errors 
reduce the contrast between core and halo, necessi
tating an increased photon count to maintain the 
signal-to-noise ratio. For each level of wavefront 
compensation  by the Strehl ratio), there is 
a minimum image photon count that maintains the 
SNR above the threshold required to detect faint 
sources. 

If  is the photon count in the diffraction-limited 
core of the image of a point source, then the number 
of photons in the partially compensated core is  
and the number  photons in core-sized areas of the 
halo is  where  and  are the intensities of 
the core and halo, as  in equations (4.55) and 
(4.57), respectively. The signal-to-noise ratio between 
core and halo is 

Using equation (4.57), 

   1, which is usually the case in astronom
ical telescopes, then the expression simplifies to 

(4.91) 

 +  
Finally, if    which is true except for very 
small values of  then 

  

The number of photons in the image needed to main
tain a given signal-to-noise ratio for partial compen
sation is therefore inversely proportional to the 
Strehl ratio  For example, if SNR = 6 and 

 = 0.1, the minimum photon count required from 
a single point source is 360. 

4.7.4 Detection of Other Planetary 
Systems 

A subject of increasing interest in astronomy is the 
detection of planetary systems in nearby stars [Burke 
1992, Angel 1994]. The main problem in planetary 
detection is the great difference in brightness between 
the two objects. Using the Sun-Jupiter system as a 
model, the light received from the planet is a factor of 

 less than that from the star. For a planetary sys
tem at a distance of 10 parsecs (pc), the angular 
separation is 0.5 arc seconds. This situation is 
depicted in figure 4.18, for the case of a 4-m telescope 
at a wavelength of 0.7  It is seen that the objects 
are easily separated angularly by a diffraction-limited 
telescope of this size, but the Airy diffraction rings of 
the star are a factor of about 2 x 104 brighter than 
the planet. The flux received from the planet is about 
2 photons per second, while the background light 
from the rings is 4 x 104 photons per second. Even 
with a diffraction-limited optical system, exceedingly 
long integration times would be required to achieve a 
useful contrast between the planet and the back
ground. In addition to the presence of diffracted 
light, small irregularities in the optical components 
scatter light from the bright parent star. 

The classic solution to this problem is the Lyot 
coronagraph, [Lyot 1930, 1931], which employs an 
occulting mask at the image plane to suppress the 
light from the central star, together with a Lyot 
field stop, smaller than the telescope pupil, to reduce 
diffracted light. The use of a coronagraph combined 
with adaptive optics has been proposed by Malbet et 

 [1994] for planetary detection using the Hubble 
Space Telescope (HST). In this case, the function of 
the adaptive optics is to correct for small figure errors 
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Telescope aperture 4 m at 700  

Figure 4.18 Detecting the planets of other suns. The chart shows the relative intensity distributions of 
a planetary system similar to that of the Sun and Jupiter, as seen at a distance of 10 pc by a diffraction-
limited telescope of 4 m aperture at a wavelength of   

on the primary mirror that would otherwise produce 
a background light level that is  times brighter 
than the planet. Simulations of the coronagraph 
using a Lyot stop with a transmission of 21% show 
that the background light is reduced by a factor of 
about 104. This enables the HST to achieve the sig
nal-to-noise ratio of 5 that is required for reliable 
detection of a planet, in a reasonable integration 
time of about 1 h. 

For ground-based astronomical telescopes, the 
detection of extrasolar planets is made more difficult 
by two factors: atmospheric turbulence and sky 
radiation. Planetary detection is probably the most 
difficult task for adaptive optics, because it involves a 
much higher degree of correction than is necessary 
just to improve the angular resolution: it is necessary 
also to reduce the light, scattered by turbulence, from 
the parent star. Diffracted light can be suppressed 

using coronagraphic techniques [Nakajima 1994], 
but partially corrected atmospheric turbulence acts 
like a random phase grating in front of the telescope 
to scatter light into a halo surrounding the central 
core of the image. In principle, scattered light can 
be suppressed if the wavefront corrector is conju
gated to the source of the turbulence, but this strat
egy is difficult to implement in practice. 

Angel [1994] has pointed out that the reduction of 
the stellar halo requires attention to both the spatial 
and the temporal aspects of adaptive optics. In addi
tion to reducing the gross phase errors that control 
the peak intensity and shape of the image core, it is 
necessary to measure and correct the fine-grained 
phase errors that control the structure of the  
This requires a large number of actuators and a fast 
control loop to ensure that the halo averages to a 
small value. 
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To make a planet detectable within a reasonable 
observation time, scattered light must be eliminated 
within a radius of about 1 arc second from the parent 
star. The spatial frequency of residual phase varia
tions must therefore be high enough to diffract light 
at an angle greater than 1 arc second, or about 

 The diffraction angle produced by a periodic 
structure of spatial  per meter at a 
wavelength of A meters is  —  radians. For an 
observation wavelength of  and angle of 
5/xrad, the minimum frequency required is 5/ 
0.7 = 7 cycles per meter. Assuming two actuators 
per cycle, the actuator density at the telescope pupil 
must be at least 14 per meter. A 4-m telescope would 
therefore need 56 actuators across the diameter, for a 
total of about 2300, while an 8-m telescope would 
need over 9000 actuators. 

One way of implementing such a dense wavefront 
corrector is to split it into two or more stages, as 
suggested by   and Angel [1995]. At 
good observing sites, the value of  is about  m 
at 0.5  equivalent to 0.22 m at 0.7  The overall 
tilt and wavefront errors due to turbulence are com
pensated in the usual way, using a deformable mirror 
with actuator spacing of about 1.5 times the turbu
lence coherence length  giving an actuator spacing 
of about 0.3 m. This results in a halo extending out
ward from an angular radius of about 1  The 
halo can be pushed out to the required angle of 
5/xrad by using an additional high-spatial-frequency 
corrector, which requires an actuator spacing of 
0.07 m, but only a small stroke. The wavefront 
must be measured at this spatial resolution at high 
precision, necessitating a relatively large photon flux. 
Bright reference sources will therefore be required to 
implement systems of this type. A laser beacon can be 
used if the parent star is too dim. The diffraction 
rings produced by the telescope pupil are suppressed 
in the usual way by means of a central mask and Lyot 
stop, following the adaptive optics correction. 

4.8 Performance Criteria 

 Performance Specification for 
Adaptive Optics 

The quality of conventional optical systems is usually 
specified as a maximum wavefront error for a given 
set of input conditions. The design process consists of 
modeling the errors generated by each component 
and then making the necessary trade-offs and com
promises to achieve the required overall perfor
mance. In the case of astronomical telescopes, 
optical performance is often specified in terms of 
"power in the bucket"; that is, a specific fraction of 
the incident photons from an infinitely distant point 
source must fall within a given image radius, over the 
required angular field of view. This is a static speci

fication, which can be verified by laboratory tests 
under controlled conditions. 

In optical imaging systems, the shape (intensity 
distribution) of the image can be controlled, to 
some extent, by using apodization, in which an 
attenuation function is inserted in the optical pupil 
[Jacquinot and Roizen-Dossier 1964]. Apodization 
can improve certain properties of an image at the 
expense of others that may be of less importance 
for a particular application. For example, it can be 
used to reduce the diffraction rings surrounding the 
Airy disk, but in doing so it enlarges the diameter of 
the core. Apodization is only effective with real aper
ture functions and consequently always involves a 
loss of energy. 

Performance specifications for adaptive optics sys
tems have the added complication that they must 
include both the spatial and temporal effects of tur
bulence. A long-exposure image is degraded by over
all wavefront tilt (image motion) as well as high-
order distortion (figure errors). As these effects are 
usually sensed and corrected by separate compo
nents, it is necessary to determine specific values of 
the wavefront and tilt errors that will satisfy the per
formance objectives of the system, as well as the con
ditions under which it must be achieved. 

How are the allowable wavefront and tilt errors 
determined? What performance criteria should be 
used? To answer these questions, it is necessary to 
review the basic requirements for scientific imaging 
tasks in astronomy. The Strehl ratio or the mean-
square wavefront error on which it depends are com
monly used as merit factors when evaluating the per
formance of imaging systems. There is no question 
that the Strehl ratio is the appropriate performance 
measure for power transfer in energy projection sys
tems, where the concern is to maximize the peak 
energy on a target. It is also relevant in spectroscopy, 
where the maximum energy must be passed through a 
slit. However, there are several reasons for looking 
beyond the Strehl ratio as the primary merit factor 
for astronomical adaptive optics. 

The first reason is that the Strehl ratio is not a 
linear measure of the usefulness or information con
tent of an image. Although most, if not all, measures 
of imaging performance are maximized when the 
Strehl ratio is unity, a ratio of 0.5 does not mean 
that image quality has dropped to 50%. The analysis 
in section 4.4 shows that as the wavefront distortion 
increases, the diameter of the image core remains 
close to its diffraction-limited size, until the Strehl 
ratio has dropped to less than  The spatial resolu
tion remains high until a critical wavefront error 
threshold is reached. The main effect of small ran
dom wavefront errors is to reduce the image contrast, 
not the resolution. 

Another reason for not using the Strehl ratio as a 
sole criterion is that in astronomical imaging, the 
exposure time is not highly constrained; a sufficient 
number of photons may be collected to offset a 
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reduction in contrast caused by wavefront error. The 
availability of CCD detector arrays with a large 
dynamic range enables a large amount of informa
tion to be extracted from low-contrast images. 
Exposure times for ground-based telescopes are, of 
course, limited by sky brightness, but, within certain 
limits, the integration time is a useful parameter that 
can be traded off against wavefront error. 

Each basic imaging task has an allowable thresh
old of wavefront error, which can be used to advan
tage in producing an economic design for the 
adaptive optics system, using partial rather than 
full wavefront compensation where appropriate. A 
hierarchy of basic tasks is considered in the next sec
tion. 

4.8.2 Imaging Tasks 

There are many basic imaging tasks in astronomy, 
each with its own special requirements and criteria. 
Some of these are listed below, in roughly increasing 
order of difficulty: 

1. Detecting the presence of a point source. 
2. Determining the position of a point source. 
3. Detecting the presence of multiple sources. 
4. Measuring the separation of two or more point 

sources. 
5. Determining the centroid of a disk. 
6. Measuring the size of a disk. 
7. Determining the structure of low-contrast 

detail with a dark background (nebula or 
halo). 

8. Determining the structure of low contrast 
detail on an extended bright object (solar gran
ulation or planetary surfaces). 

9. Detecting a dim object very close to a much 
brighter one (planet and star). 

These tasks are concerned only with imaging and not 
with other tasks, such as spectroscopy, nor with 
operational issues concerning the adaptive optics, 
such as obtaining a suitable reference source. 

These basic tasks fall into two categories: detec
tion and measurement. In the first case, we are inter
ested in the probability of detection, and in the 
second case, the precision of the measurement. In 
both cases, the critical factor is the signal-to-noise 
ratio of the image, which depends on many factors, 
such as the brightness, contrast, and spatial fre
quency content of the object; the sky brightness; the 
transfer functions of the atmosphere and telescope; 
and the characteristics of the image detector. 

4.8.3 Measures of Imaging Performance 

The performance of adaptive optics systems may be 
evaluated using formal criteria that have been pro
posed for optimizing the performance of optical ima
ging systems. Images of extended objects must be 

evaluated on a statistical basis, and Linfoot [1956] 
suggested the following quality factors: 

(a) Relative structural content or sharpness of the 
image, compared with the object: 

(4.93) 

where 0(x,y) and I(x,y) are the intensity distribu
tions of the object and image, respectively. This 
figure of merit assesses the information content of 
an image, and is related to the equivalent 
width in a communication channel. If the image 
contains a similar amount of detail to the object, 
then the value of T will be near unity. However, 
the comparison is made statistically, so that T is 
insensitive to morphological distortions of the 
image; that is, the image does not have to look 
like the object. For detecting the presence of 
objects, this may not be important, but T appears 
to be an incomplete criterion for most astronom
ical imaging tasks. 

(b) Correlation quality: 

This factor is sensitive to the alignment or match
ing of details in the image and the object, penaliz
ing small distortions in the image more than it 
does unsharpness. Therefore, it represents a com
pletely different aspect of image quality from the 
factor T. A blurred image having good geometri
cal fidelity would give a high value of Q and a low 
value of T. Correlation quality appears to be rele
vant to astronomical imaging, but one objective of 
adaptive optics is to improve sharpness, to which 
this measure is somewhat insensitive. 

(c) Image fidelity, which depends on the mean-
square difference between image and object: 

This factor seems to be nearer the mark, as it 
appears to measure, in the image plane, a quantity 
similar to that minimized by an adaptive optics 
system in the pupil, the mean-square wavefront 
error. In fact, F contains elements of both T and 
Q, as can be seen from the expansion of the term 

 -  which produces both /  and  terms. 
These three quality factors are related by the 
expression F — 2Q — T. This suggests that image 
fidelity F may be the most general criterion for 
image evaluation. 

It is often more convenient to evaluate the per
formance of optical systems in frequency space 
rather than in image space. O'Neill [1963] showed 
that for the general case of an object composed of 
white Gaussian noise, these quality factors, nor-
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malized to those of an ideal instrument, can be 
expressed in the form 

where  =  The quality factors  q, a n d / 
are easily computed from a knowledge of the 
(degraded) system transfer function  and the 
ideal system transfer function  expressions 
for which are developed in section 4.4. 

It can be seen that the factor q is the same as the 
Strehl ratio S, which measures the peak intensity 
of the image of a point source normalized to that 
produced by a perfect optical system. In the pre
sence of a small amount of random wavefront 
distortion, the Strehl ratio may be approximated 
by 5 =  Maximizing the Strehl ratio is 
equivalent to minimizing the mean-square wave-
front error  

It would be of interest to relate the factor  to 
specific types of image degradation, using models 
of the transfer functions and structure functions, 
in order to find the most important characteris
tics, which could then be used as optimization 
criterion.  is also of interest to include the effects 
of the signal-to-noise ratio on these criteria. 

(d) A possible measure of image quality for par
tially compensated images is the peak image con
trast ratio Cp, discussed in section 4.6.2, which is 
the ratio of the intensity of the central peak to that 
of the surrounding halo. In general, the image 
produced by an optical system with residual wave-
front errors, when   I, consists of a central 
diffraction-limited spike of radius  sur
rounded by a halo or pedestal of radius  that 
is produced by uncompensated turbulence. The 
value of  depends not only on the residual 
wavefront error, but also depends directly on the 
telescope aperture, wavelength, and turbulence 
parameter  It is therefore a more comprehensive 
performance measure than the Strehl ratio, in 
which these factors only appear indirectly through 
their effect on the residual wavefront error. 

4.8.4 Criteria for Image Quality 

An appropriate quality factor can be assigned to 
optimize each of the basic imaging tasks listed in 
the preceding text. For tasks involving the detection 
of isolated detail against a dark background, such as 
tasks (1), (2), and (7), the signal-to-noise ratio is the 
governing factor, for which the peak image contrast 

ratio Cp is an appropriate measure. As noted above, 
Cp has useful values for partially compensated 
images when the Strehl ratio is low. 

For the remaining tasks involving multiple or 
extended objects, in which there is considerable over
lapping of adjacent point spread functions, the Strehl 
ratio, or factor  is the relevant criterion. The Strehl 
ratio of the image determines the minimum intensity 
modulation that can be discerned in the object. 
Maximizing the Strehl ratio optimizes the intensity 
ratio between the central disk and the surrounding 
diffraction rings or halo. This is the condition 
required for optimal imaging of extended objects 
containing low contrast detail, or for separating clo
sely spaced point sources. 

4.8.5 Information Content of a Partially 
Compensated Image 

Continuing the more formal investigation of the 
quality of optical images, an expression is now 
derived for the information content of a partially 
compensated image, in the hope that it may shed 
some light on image-quality criteria, as well as sug
gest some parametric tradeoffs that may be of use in 
optimizing an adaptive optics system. 

Consider an optical imaging system with pupil 
diameter D at wavelength  producing an array of 
resolution elements in the image plane.  the number 
of resolution cells is  then the information content 
of a typical image can be expressed as 

 =   bits per image (4.99) 

where SNR is the average signal-to-noise ratio per 
element. The quantity  may be used as a general 
image-quality criterion. 

Each resolution element is the core of the image of 
a point source. When the wavefront errors are smal
ler than about 2 rad  the core diameter is essen
tially constant. In this case, the angular diameter of 

 resolution element is  and the total number 
of elements per steradian field of view is M —  
The signal-to-noise ratio depends on the number of 
photons detected per element  which is given by 

where 

irradiance at telescope aperture, photons 
 

exposure time, s 
photon detection efficiency of telescope and 
detector 
Strehl ratio 

Note that  does not depend on D, because the 
number of elements is proportional to D2, so the 
photon flux per element is independent of the tele
scope diameter. 

The signal-to-noise ratio is then 
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For small wavefront errors  the Strehl ratio may 
be expressed as 

The image information content per unit angle is then 

To maximize the information content, this equation 
specifies that the Strehl ratio should be maximized or 
the wavefront error minimized, which is entirely as 
expected. What is of more interest is the way in which 

 varies with wavefront error, and also the relation 
between D and  For example, given the number of 
correction subapertures V and the integration time t, 
is there an optimum value of D that maximizes the 
information content of the image? 

If we assume that the fitting error of the wavefront 
correction device dominates the adaptive optics error 
budget, the wavefront error is 

where d is subaperture size. Assuming a circular 
aperture filled with square subapertures, then 

V =  For a fixed number of subaper
tures, the wavefront error is 

5/3 

Defining the quantities 

the following expression for information content is 
obtained 

This relationship also defines the optimum subaper
ture size, which is given by 

 =  (4.108) 

It should be noted that the detected photon den
sity and wavelength in this expression refer to the 
image and not to the wavefront sensor. In partially 
compensated images, the fitting error is dominant, so 
the photon error of the wavefront sensor may be 
ignored. 

The optimum value of aperture D is then 
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5.1 Sensors for Astronomical Adaptive 
Optics 

5.1.1 Background 

The development of adaptive optics has fostered a 
new generation of wavefront sensors, instruments 
with speeds and sensitivities that are orders of mag
nitude greater than anything known before 1970. 
Compensation for atmospheric turbulence requires 
the measurement of randomly distorted wavefronts 
in real time, using only a faint star as the reference 
source. A totally new approach to optical wavefront 
measurement was needed to solve this problem. The 
wavefront sensors used in adaptive optics are differ
ent in almost all respects from the optical interferom
eters used to measure lenses and mirrors in the 
laboratory. 

In the laboratory environment, lasers provide 
abundant coherent illumination and measurement 
times are not critical, so the optical efficiency of 
the instruments is irrelevant. The adaptive optics 
environment is the exact opposite, with very low 
photon flux available and measurement times 
counted in milliseconds. Together, these require
ments dictate the need for high optical efficiency. 
In addition, adaptive optics wavefront sensors are 
required to operate with incoherent light and 
extended reference sources. On the other hand, the 
spatial resolution and accuracy requirements for 
adaptive optics are modest compared with those 
for laboratory instruments. 

The special requirements for real-time wavefront 
sensing in the context of astronomical adaptive optics 
were reviewed in chapter 2. The operating principles 
and implementation of specific wavefront sensors are 
described in detail in this chapter, together with an 
evaluation of their performance. Some perspective on 
the characteristics of astronomical adaptive optics 
wavefront sensors for different tasks is provided in 
table 5.1. Typical characteristics of laboratory wave-
front sensors used for testing optical components are 
included for comparison. 

5.1.2 Wavefront Sensor Efficiency 

The performance of astronomical wavefront sensors 
depends critically on their optical efficiency. The fun
damental limit to the precision of all optical sensors 
is set by the quantum nature of light. In the case of 
wavefront sensors, the phase measurement error is 
inversely proportional to the signal-to-noise ratio of 
the detected radiation from the reference source, a 
star or laser beacon. In the photon-counting regime 
of astronomical wavefront sensors, the signal-to-
noise ratio, SNR, is basically proportional to the 
square root of the number of photons counted, N. 
This relation may be expressed by 

Increasing the number of photons counted by a fac
tor of 2 should therefore halve the error variance of 
the measurement. 

135 
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Table 5.1 Wavefront sensor characteristics 

Laboratory Infrared Visible Laser Beacon 
Requirement Measurement AO AO AO 

Spatial resolution, 
samples per meter 
(at primary mirror) 10-50 2-5 5-20 5-20 

Measurement time,  » 1 0 0  2-10 2-10 

Accuracy, waves  0.01-0.05 0.05-0.1 0.05-0.1 0.05-0.1 

Photon count, » 1000  100 100 
per sample: 

Reference source: 
Type: Point Extended Extended Extended 

Spectral bandwidth: Monochromatic Wideband Wideband Monochromatic 

AO, adaptive optics. 

Ideally, the detection of 10 photons should enable 
the phase to be measured to a precision of 1/V10 
radians, or about 1/20 wave. Using a subaperture 
area of 1  and an integration time of 0.02 s, with 

 detection efficiency, the photon flux required is 
about 500 photons  which is provided in the 
visible band by a star of  = 20. Current adaptive 
optics systems are capable of compensating images at 

 wavelengths using reference stars of 
 =  While this is a significant achievement, 

there remains a potential improvement of about 5 
stellar magnitudes (a factor of 100 in the number of 
photons) to be achieved in the performance of astro
nomical wavefront sensors. 

The measurement efficiency of wavefront sensors 
is determined by three main factors: 

1. The optical efficiency, including the optical 
phase-to-intensity conversion process and the 
fraction of the incident light that reaches the 
photon detectors; 

2. The detector characteristics, such as quantum 
efficiency and  noise ratio; 

3. The effectiveness of the subsequent data pro
cessing, specifically the amount of wavefront 
information extracted from each detected 
photon. 

The efficiency of the phase-to-intensity conversion 
process depends entirely on the optical configuration 
of the sensor; it is probably the most important factor 
and the least appreciated. Practical implementation 
of wavefront sensors has become focused on three 
closely related types: Shack-Hartmann, lateral shear
ing interferometer, and curvature sensor. The relative 
performance of these sensors depends a great deal on 
the specific optical configurations employed. Most 
performance comparisons are made on a fundamen
tal basis that ignores engineering issues, which can, in 
fact, be the dominant factor in performance. For 

example, maximization of optical efficiency requires 
the avoidance of components with partial transmis
sion, such as gratings, masks, and beam splitters. 

With reference to detector characteristics, the 
availability of low-noise silicon charge-coupled 
devices (CCDs) with their high quantum efficiency 
(> 0.8) and low readout noise (<  per pixel) 
has been of great value for wavefront sensors operat
ing at visible wavelengths. At longer wavelengths, the 
highest quantum efficiencies are presently obtainable 
with doped silicon and gallium arsenide detectors. 
The effects of turbulence at these longer wavelengths 
are smaller than at visible wavelengths, so that fewer 
subapertures and longer integration times are possi
ble, resulting in a marked improvement in the perfor
mance of adaptive optics systems. 

The significance of the efficiency of the data-pro
cessing algorithm in converting the number of 
detected photons into an estimate of wavefront 
error has been appreciated for many years. 
Wavefront reconstruction algorithms differ in their 
complexity according to the type of wavefront sen
sor, the optimization criterion used, and the degree to 
which collateral information, such as turbulence 
strength and signal-to-noise ratio, is taken into 
account. The principles of efficient wavefront estima
tion are well understood (see section 8.6), but these 
ideas have not yet been fully integrated into operat
ing hardware. 

5.7.3 Wavefront Measurement Speed 

In astronomical wavefront sensors, the design of the 
detector and data-processing functions is dominated 
by the requirement for measurements of complete 
wavefronts at millisecond intervals. As a result, spe
cialized detectors and data-processing systems have 
been developed for use in adaptive optics wavefront 
sensors. Even for a detector with relatively low spa-
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 resolution, such as 32 x 32, the detector pixel 
readout rate and the resulting data-processing rate 
are in the megahertz range. The detector readout 
noise is proportional to the pixel readout rate, so 
there is considerable incentive to reduce this rate to 
the absolute minimum. The use of CCDs with multi
ple readout ports is one solution to this problem. 

In general, one wavefront measurement must be 
made per correction cycle for each degree of freedom 
in the adaptive system and at least two intensity sam
ples are needed to generate each measurement. 
Wavefront slope sensors having two measurements 

 and y  per subaperture therefore require at 
least four detector samples per subaperture per com
plete wavefront. Shack-Hartmann sensors employ a 
spatial array of at least four pixels (a quad cell) per 
subaperture, and a larger array is necessary if the 
dynamic range is greater than ±1 wave. Shearing 
interferometers using alternating current (AC) mod
ulation use three or four samples of the modulated 
signal for each measurement, and only one detector 
pixel is required for each subaperture. Curvature sen
sors need only one measurement per subaperture, 
together with gradient sensing at the edges of the 
full aperture. 

The availability of low-noise 64 x 64 multiport 
CCD arrays has solved the adaptive optics wavefront 
sensor detector problem for telescope apertures up to 
about 2.5 m in the visible band, and for apertures up 
to about 10 m in the infrared  at  It is 
expected that even larger CCD arrays with parallel 
readouts will soon become available, and these will 
have pixel readout rates suitable for compensating 
even the largest telecopes at visible wavelengths. 

The need for fast wavefront measurement in adap
tive optics makes it preferable to use a deterministic 
technique for wavefront sensing, rather than an itera
tive process. The deterministic, or direct, approach 
has the advantage that a single set of measured 
data leads to an unambiguous realization of the 
wavefront. Wavefront sensors that make simulta
neous measurements of wavefront properties in the 
telescope pupil (or at a reduced image of the pupil) 
are of this type, including all of the commonly used 
sensors. Iterative sensing schemes (also known as 
indirect wavefront sensors), employing image-shar
pening and other "hill-climbing" algorithms, have 
been tested in adaptive optics systems using a small 
number of subapertures. Iterative wavefront sensors 
employ a simple photodetector, often only a single 
element located behind a mask at the optical focus, to 
sense image quality. The data processing is also rela
tively simple. Unfortunately, such systems are not 
competitive with direct wavefront sensing because 
the time required to make and evaluate trial wave-
front corrections in each subaperture becomes an 
increasing burden with large apertures. Also, the 
uniqueness of the solution is often in question 
because it is not unknown for iterative sensors to 
converge on the wrong peak. 

5.1.4 Reference Sources 

To accommodate both natural and artificial reference 
sources, astronomical wavefront sensors must be 
capable of operating with spatially and temporally 
incoherent radiation. The radiation from most nat
ural objects is of thermal origin, producing a broad 
spectrum. A broadband sensor is therefore needed to 
make the most efficient use of the radiation from 
such sources. Beacons produced by ground-based 
lasers are monochromatic, but the upgoing beams 
have less than perfect beam quality and are spread 
by atmospheric turbulence to produce spots with 
angular diameters of several arc seconds. These arti
ficial "stars" are not point sources; they are small 
extended objects. Because of the  nature of 
these reference sources, astronomical wavefront sen
sors do not measure optical phase, which has no 
meaning for incoherent radiation, but instead mea
sure wavefront slope, from which optical pathlength 
variations are computed. 

The reference source provides the direction from 
which the wavefront slope sensor determines the tilt 
angle of each zone of the wavefront. The simplest 
case to consider is that of an unresolved star. Slope 
sensors determine the center of intensity of the star's 
image produced by each subaperture. This measure
ment is valid over a radius equal to the isoplanatic 
angle of the atmospheric transmission path. It is not 
essential for the reference to be a point object, only 
that its angular size is smaller than the isoplanatic 
patch. Practical wavefront sensors must be capable 
of accommodating such objects. But, there are some 
even larger astronomical objects, such as the Sun, 
Moon, and the planets, the angular size of which 
considerably exceeds the isoplanatic angle, and the 
surfaces of which consist of low-contrast detail. For 
example, the solar granulation has a contrast (in the 
white-light continuum) of about 3%, with a charac
teristic cell size of 2-3 arc seconds. Provided that 
such surface detail has spatial variations within the 
isoplanatic angle, it can be used as a reference source. 

To handle large extended objects, a fixed field stop 
with radius less than the isoplanatic angle is required 
to define the reference area. In this case, the angular 
tilt of the wavefront is determined by cross-correla
tion of the low-contrast image detail with a transmis
sion function containing the same spatial frequency 
components as the image. The mask used for cross-
correlation could be based on the image detail itself, 
with some means for configuring the mask function 
in real time. A system employing optical cross-corre
lation using a liquid crystal screen has been proposed 
by von der  [1988]. It is also possible to use 
electrical cross-correlation employing a two-dimen
sional detector array; for example, using a CCD. 
One of the problems associated with the use of 
extended fields for wavefront sensing occurs when 
specific details in the random field straddle the 
edges of the field stop, causing transients in the wave-
front sensor output. These effects can be minimized 
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by grading the edges of the field stop to make a soft 
transition. 

5.2 Wavefront Sensing Techniques 

5.2.1 Types of Wavefront Sensor 

Requirements discussed above for wavefront sensing 
in astronomical adaptive optics eliminate most of the 
conventional methods of wavefront measurement 
used in the production and testing of optical compo
nents and systems. The techniques used in adaptive 
optics fall into two main classes: 

 Direct wavefront measurement, in which speci
fic properties of the wavefront are measured, 
using zonal or modal decomposition of the 
pupil. 

2. Indirect measurement, in which the wavefront 
properties are deduced from whole-aperture 
intensity measurements made at or near the 
image plane. 

The wavefront sensors in each of these classes that 
have potential application to adaptive optics are 
listed in table 5.2. The relationship between these 
various approaches and their main characteristics 
will be discussed next. 

 Direct Wavefront Sensing 

Direct wavefront sensors are those which determine 
the wavefront shape in the optical pupil, using either 
zonal or modal measurements. With zonal sensing, 
illustrated in figure 5.1(a), the wavefront slope, a vec
tor, is measured within a number of contiguous zones 
in the pupil. The principle is to decompose a complex 
wavefront into simple elements that can be easily 
sensed. The measurements in each zone are indepen
dent and simultaneous. The zones are sized so that 

Table 5.2 Wavefront-Sensing Techniques 

Direct Measurements in Optical Pupil 

Zonal 
Wavefront slope sensing 

Shack-Hartmann sensor 
Lateral shear interferometer 

Wavefront curvature sensing 
Curvature sensor 

Modal 
Overall tilt sensing 
Focus sensing 

the dominant distortion within each zone is the aver
age wavefront tilt. Large apertures are handled by 
replicating the same elements, the spatial resolution 
being determined entirely by the size and number of 
elements used. Direct sensing requires the light from 
each zone to be brought to a focus at which specific 
intensity measurements are made. This does not vio
late its status as a "direct" wavefront measurement 
because each zone is measured independently. 

The principle of modal sensing is depicted in fig
ure 5.1(b). The objective in this case is to decompose 
the wavefront into a number of distinct surface 
shapes or modes, each covering the whole aperture. 
These modes are also measured independently and 
simultaneously. In principle, modal sensing systems 
are capable of the same performance as zonal sys
tems, but their implementation is difficult, except 
for the very lowest modes. Overall tilt and defocus 
can easily be detected, but beyond these first few 
orders the modal functions required to describe a 
turbulence-degraded wavefront become increasingly 
complex and difficult to distinguish. It is possible to 
convert zonal data to modal data and vice versa, so 
that a zonal wavefront sensor may be used with a 
modal wavefront corrector. There are advantages in 
using modal compensation when the wavefront 
errors are predominantly of low order (which can 
occur at  wavelengths) because the local irregula
rities that are often present in zonal devices are 
avoided. 

5.2.3 Indirect Wavefront Sensing 

Indirect wavefront sensors are those in which the 
wavefront errors are deduced from their effect on a 
related parameter, usually the intensity distribution 
at or near the image plane. The wavefront at the 
pupil is not divided before measurement, so each 
measurement contains information averaged over 
the whole aperture. Wavefront sensors of this type 
are shown in figure 5.2. When the measurement is 
made at the image plane, as shown in figure 5.2(a), 

 Measurements at Image Plane 

Aperture tagging 
Sequential (time division) 

Image sharpening 

Frequency division 
Multidither systems 

Wavefront deconvolution 
Phase diversity 

Specific wavefront sensors described in this chapter are underlined. 
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Wtvefront 

Local 
wavefront 
slope is 
measured in 
each zone. 

(a) Zonal wavefront sensing. 

Astigmatism 

Wavefront 

Overall 
Tilt 

(b) Modal wavefront sensing. 

Figure 5.1 Direct wavefront sensing techniques. 
These methods measure the wavefront in the optical 

 (a) In zonal sensing, the wavefront is divided 
into an array of equal size zones, in each of which the 
wavefront slope is  (b) In modal sensing, 
the wavefront is decomposed into whole-aperture 
modes, such as overall tilt, defocus, and astigmatism. 

sequence; the corresponding changes in image inten
sity are measured. Another technique, used in laser 
beam compensation systems, is known as multi-
dither, in which small perturbations at different tem
poral frequencies are applied simultaneously to all 
zones of the optical aperture, using either the 

 mirror itself or an auxiliary device. Indirect 
wavefront-sensing techniques using aperture tagging 
have been shown to be useful for small apertures, but 
become increasingly  to apply to large aper
tures; they also suffer from a signal-to-noise disad
vantage compared with direct wavefront-sensing 
methods. With sequential image-plane sensing, the 
available time for each wavefront measurement 
must be shared between all the zones in the aperture, 
as pointed out by Dyson [1975]. As a consequence, 
the signal-to-noise ratio varies inversely with the 
number of zones. But, with direct sensing in the 
pupil plane, whether zonal or modal, the zonal 

Wavefront to be 
measured 

Objective Lens 
Image 
plane 

(a) Deconvolution from image intensity 

the intensity distribution is related to the wavefront 
through a Fourier transform. The process of dedu
cing the wavefront from measurements at the image 
plane is known as deconvolution. 

Optical image formation is a nonlinear process, 
which causes several difficulties with deconvolution, 
among them the fact that the process does not work 
well when the aberrations are large; other problems 
concern the uniqueness of the solution and the fact 
that the process is computation-intensive. The main 
difficulties stem from the spatial invariance produced 
by the Fourier transform; intensity variations in the 
image plane are not directly related to  loca
tions in the optical aperture. 

Several methods have been devised to overcome 
the invariance problem. One approach is the use of a 
second out-of-focus detector array that restores the 
spatial data missing at the focal plane. Another 
approach is aperture tagging, shown schematically 
in figure 5.2(b), in which modulation is applied to 
specific zones or modes in the aperture to connect 
them with image-plane measurements. In one method 
known as image sharpening, small perturbations are 
applied to each actuator of the  mirror in 

Wavefront to be 
measured 

Aperture 
tagging 
device 

Objective Lens 

(b) Aperture tagging system 

Figure 5.2 Indirect wavefront sensing techniques. 
These methods deduce the shape of the wavefront 
from the intensity distribution of the image of the 
reference  (a) The deconvolution method is 
optically simple, but involves considerable data pro
cessing. This technique is more robust when augmen
ted by an additional set of measurements displaced 
from the image  (b) The aperture-tagging sys
tem provides a means of relating the measured inten
sity variations in the image plane to the appropriate 
zones or modes of the disturbance in the pupil. 

Defocus 
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 are independent and are made in parallel. 
The signal-to-noise ratio for direct sensing is there
fore independent of the size of the telescope aperture. 

5.2.4  of Wavefront Slope 
Sensing 

Because the reference sources used in astronomical 
adaptive optics emit incoherent radiation, it is not 
possible to make absolute measurements of optical 
phase.  wavefront slope sensors measure the 
local wavefront gradient by sensing the direction of 
propagation of optical rays, which are perpendicular 
to the wavefront. Even if coherent reference sources 
were available, there are reasons for preferring gra
dient measurements to phase measurements, because 
gradient sensors are very robust and less susceptible 
to errors caused by temperature changes and vibra
tion. In addition, the dynamic range of shearing 
interferometer sensors can be adjusted to match the 
expected wavefront excursions. This is particularly 
useful for measuring turbulence that produces large 
phase excursions of several wavelengths of light. 
Direct measurement of optical phase, even if it were 
feasible, would require tracking fringes through sev
eral rotations of the phase vector, involving much 
additional data processing. 

The principle of wavefront slope sensing is to con
vert angular deviations of rays into intensity varia
tions that can be sensed by a photodetector. The 
process is shown in figure 5.3. An optical wave, initi
ally plane, propagates in direction z,and it is desired 
to find the wavefront surface  after it has 
passed through a region of varying refractive index. 
Wavefront distortion produces local variations in the 
gradient of the wavefront, and this causes interfer
ence after propagation for some distance. Intensity 
variations due to the interference are detected by 
measuring the intensity distributions at two planes, 

 and  These intensity variations reveal the shape 
of the wavefront surface. 

The process of converting wavefront gradients 
into measurable intensity variations is formally trea
ted using the irradiance transport equation, as 
described by Teague [1982]. This approach gives con
siderable insight into the relation between various 

where V = d/dx 4- d/dy is a gradient operator in the 
x, y plane. 

The first term V/ •  the prism term, represents 
the irradiance variation caused by transverse shift of 
the beam due to local tilt of the wavefront. The sec
ond term / V2  the lens term, can be interpreted as 
the irradiance variation caused by convergence or 
divergence of the beam, whose local curvature is pro
portional to V2  These terms combine to give the 
variation in beam irradiance as it propagates along 
the z axis. The transport equation represents the law 
of light energy conservation. Although originally 
derived for coherent light, the transport equation 
has been shown to be valid for incoherent (extended) 
light sources when the source is uniform and symme
trical [Streibl  

For wavefront sensing, the local wavefront slope 
VW or the local curvature  must be found. In 
general, this is done by measuring the distribution of 
intensity at two planes, z\ and Z2, as shown in figure 
5.3. For small wavefront excursions such as those 
encountered in astronomical adaptive optics, the dis
tance between z\ and  would need to be very large 
to produce measurable intensity variations. 

Fortunately, the intensity changes produced by 
small wavefront gradients can be greatly enhanced 
by placing a mask with a known transmission func
tion at  and then measuring the resulting intensity 
distribution at plane  The mask is made to match 
the known characteristics of the wavefront. For 
example, its spatial resolution (and that of the inten
sity detector) should match the coherence length of 
the wavefront to be measured. In wavefront slope 

Figure 5.3 Principle of 
wavefront slope sensing. 

wavefront slope measuring techniques. The irradi
ance transport equation describes the intensity varia
tions in a beam with irradiance I(x,y,z) as it 
propagates along the z axis of an optical system. 
Using the paraxial approximation, the complex 
amplitude is given by 

(5.1) 

where  is the wavefront surface at distance z 
from the origin. The change in irradiance along the 
propagation path is then 

(5.2) 
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sensors, the zones are sized so that the error involved 
in assuming a uniform gradient over each zone is 
small compared with the required measurement accu
racy. The shape of the wavefront is then found by 
spatially integrating the individual zonal gradients 
over the whole aperture; this is the process known 
as wavefront reconstruction. 

S.2.S Pupil-Plane Wavefront Sensors 

Wavefront disturbances due to atmospheric turbu
lence are distributed over a considerable distance in 
the propagation path, causing two effects: (1), it 
restricts the isoplanatic region over which the wave-
front is spatially correlated; and (2), it can produce 
intensity variations (due to scintillation) across the 
telescope pupil. These effects complicate the mea
surement of wavefront excursions. In this section, 
only a single isoplanatic region is considered. 

Intensity variations in the telescope pupil, caused 
by scintillation, may be significant with unresolved 
reference sources, such as stars, but are negligible 
with laser beacons and other extended sources. In 
any case, pupil intensity variations have a small effect 
on the quality of the image, provided that the phase 
is correctly compensated. However, the presence of 
these input intensity variations may affect the accu
racy of the wavefront phase measurement, because 
they will be superimposed on the intensity variations 
generated in the wavefront sensor to measure the 
phase. This situation is handled by encoding the 
wavefront phase information in a form that can be 
distinguished from input intensity variations. For 
example, wavefront gradients can be made to control 
the positions of spots or edges, which can be accu
rately measured over a wide range of intensities, or 
differential intensity measurements can be made that 
reject the input intensity variations. 

In the case of a single isoplanatic region, and 
assuming that intensity variations due to scintillation 
are taken care of, the wavefront disturbances to be 
compensated can be considered as localized at the 
telescope aperture or entrance pupil. Using adaptive 
optics, the wavefront corrections are made at a plane 

conjugate to the telescope pupil. Therefore, it is logi
cal to make the wavefront measurements at the same 
plane, because direct measurements of this kind 
avoid the need for transform operations on the 
data, which would be necessary if the measurements 
were made near the focal plane. This is the justifica
tion for preferring direct wavefront measurement at 
the pupil plane in adaptive optics systems. 

The basic arrangement of figure 5.3 is the proto
type for most wavefront sensors used in adaptive 
optics. It has been pointed out by F. Roddier 
[1990a] that many apparently different types of wave-
front sensor can be modeled by placing an appropri
ate mask near the optical pupil. The canonical 
arrangement is shown in figure 5.4. The telescope 
pupil containing the wavefront disturbance to be 
measured is reimaged at reduced diameter at plane 
P, which is assumed to be uniformly illuminated. The 
detector array is at plane D, which is conjugate to P. 
In the absence of wavefront distortion and any other 
components in the optical path, the detector will also 
be uniformly illuminated, because it is imaged at 
plane P. 

To convert wavefront phase deviations into inten
sity changes that can be measured by the detector 
array, a mask or modulation device  is inserted in 
the  beam near P. As the light travels from 
M to D, the interaction of the wavefront disturbance 
with the mask produces variations in the intensity, 
according to equation (5.2). These variations are 
measured by the detector, allowing the wavefront 
to be estimated. For example, if  is a periodic pat
tern consisting of equal-width clear and opaque bars, 
and is displaced from plane P by distance Az, then 
the image produced at the detector plane D becomes 
distorted by wavefront slopes perpendicular to the 
bars. This is known as the Ronchi test. From equa
tion (5.2), it can be seen that the displacement of the 
bars in the direction of slope is 

(5.3) 

When viewed as a diffraction grating, the system 
operates as a spatial carrier shearing interferometer, 
as described by Horwitz [1990]. In this case, it is easy 

Figure 5.4 Canonical 
wavefront sensor. 
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to show that the diffraction fringes are displaced by 
an amount exactly proportional to the product of the 
wavefront slope and  distance Az, independent of 
wavelength; this is the same result as equation (5.3). 

If a crossed grating is used, as shown in figure 5.5, 
then wavefront slopes can be detected in two dimen
sions simultaneously by measuring fringe displace
ments along the x and y axes. Carrying the process 
further, the mask can consist of a phase grating in the 
form of two sets of crossed cylinder lenses, as shown 
in figure 5.6, giving a high optical throughput. The 
lenses produce an array of spots, the displacement of 
which is proportional to wavefront slope. This 
arrangement is identical to Shack's modification of 
the Hartmann sensor, which uses an array of contig
uous lenses in the aperture to concentrate the light in 
discrete spots at the image plane. The Shack-
Hartmann sensor is probably the most-used wave-
front sensor in adaptive optics and is described in 
detail in section 5.3. 

Further configurations are possible by placing a 
modulation device at the focal plane F, at which the 
intensity distribution is the Fourier transform of the 
function at plane P. If a knife-edge is placed at  
excluding half of the frequency plane, then it pro
duces the well-known Schlieren system for making 
phase objects visible. If the central order at plane F 
is retarded by 1/4 wave, then  
method for viewing phase objects, used in micro
scopy, is obtained. 

A grating located at plane F makes the optical 
system function as an achromatic shearing interferom
eter; this has different characteristics from those 
described above, where the grating was placed near 
the optical pupil. When located at the focal plane, the 

grating generates sheared replicas of the pupil at the 
detector plane  as shown in figure 5.7. With no 
aberrations in the pupil, a fringe-free field is pro
duced. Wavefront gradients in the pupil, in the direc
tion of shear, produce intensity changes proportional 
to the gradient. The shear distance is proportional to 
the spatial frequency of the grating. When the grating 
is moved at velocity v in the focal plane, in a direction 
normal to the grating lines, the illumination at the 
detector plane is modulated at a temporal frequency 

 where a is the grating period. The phase of the 
modulated signal at any point in the aperture is a 
measure of the wavefront gradient at that point. 
This device is the prototype for the alternating-cur
rent shearing interferometer, one of the basic wave-
front sensors used in adaptive optics, which will be 
described in detail in section 5.4. 

Another variety of wavefront sensor is created 
when a variable convergence device (such as a vari
able curvature mirror) is placed at the focal plane F, 
as shown in figure 5.8. The variable curvature mirror 
(VCM) produces longitudinal modulation, displacing 
the conjugate image of the detector away from its 
normal location at plane P. Intensity changes pro
duced by wavefront slopes will therefore be scanned 
across the detector plane. Suppose, for example, that 
a Hartmann mask is placed at P and the VCM is 
driven with a sine wave deflection.  there are no 
aberrations in the system, then all rays are axial 
and the spots of light at the image plane will be sta
tionary. 

If aberrations are present in the pupil, then the ray 
directions will be deviated, causing the light spots to 
move cyclically at the detector plane, as shown in 
figure 5.9, and indicating the direction of the wave-

Fringe Patterns 

Crossed Grating 
Modulation Function 

Figure 5.5 Crossed grating 
modulation function and 
resulting fringe patterns. 

This type of grating is used 
in shearing interferometer 

slope sensors. 
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Figure 5.6 Phase grating in the form of two sets of 
cylinder lenses. This is functionally similar to the 
array of lenslets used in  sensors. 

front slope. There are two advantages in using AC 
modulation of this type: (1) the position of the holes 
in the mask is noncritical, because it is the changes 
that are measured; and (2) the sensitivity of the device 
to wavefront slope can be varied by changing the 
amplitude of the modulation, which is a very useful 
capability in dealing with the wide variations in the 
strength of atmospheric turbulence. 

A device of this kind can also be used to detect 
wavefront curvature directly [Roddier 1988a]. In this 
case, the mask defines the optical pupil, which has a 
sharp intensity gradient at its edges. Changes in 
wavefront curvature produce convergence or diver
gence of the normally parallel beam, resulting in 
changes in the beam size. These produce radial dis
placements in the edges of the beam and also changes 
in the average intensity of the beam, both of which 
can easily be measured. The simplest form of curva
ture sensor consists of two detector planes, one on 
each side of the focal plane. Local changes in wave-
front curvature produce intensity changes of opposite 
polarity at the two planes, so that the ratio of the 
intensities in corresponding zones is a measure of 

the wavefront curvature. Methods of curvature sen
sing are described in more detail in section 5.5. 

5.3 Shack-Hartmann Sensor 

5.3.1 Principle of Operation 

The principle of the Shack-Hartmann gradient sensor 
is extremely simple and intuitively appealing, which 
may explain its great popularity. An array of identi
cal positive lenslets is placed in the pupil of the opti
cal beam to be measured; one such lenslet is shown in 
figure 5.10. To obtain maximum efficiency, the 
lets are contiguous and cover the entire optical aper
ture. The single reference source, ideally an 
unresolved point, is brought to a separate focus by 
each lenslet, thus producing an array of spots in the 
focal plane. With a plane-wave input, each spot is 
located on the optical axis of its corresponding 
let. Distortion of the input wavefront produces a 
local gradient  over each lenslet, displacing 
each spot by a distance s(x, y) =  y)Z, where Z 
is the lenslet focal length. The lenslet array therefore 
converts wavefront gradients into measurable spot 
displacements. 

In the usual case of square subapertures, the 
intensity distribution of each image is 

where 

 =  
d = subaperture size, 

 = mean wavelength 

The first minimum of the diffraction pattern occurs 
at x'= y'= ±kz/d. A spot displacement of this 
value corresponds to a wavefront tilt of one 
length over the subaperture. The distance between 
the minima, defining the effective width of each 
spot, is 

Figure 5.7 Shearing inter
ferometer with temporal 
modulation using a moving 
grating. The diffraction 
grating at the focus of the 
reference source generates 
overlapping (sheared) repli
cas of the wavefront. As the 
grating moves at a constant 
velocity, the intensity pat
tern produced by the inter
fering orders is sinusoidally 
modulated, greatly simpli
fying the detection process. 
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Figure 5.8 Wavefront sensor using a variable curva
ture mirror. 

(5.5) 

The spot displacements, being vector quantities, 
are sensed by a two-dimensional detector array. 
The simplest arrangement is to use a quadrant detec
tor, consisting of two orthogonal bicells, for each 
subaperture. To obtain better linearity and dynamic 
range, a larger array consisting  4 x 4 pixels may be 
employed. The performance and constraints on the 

 sensor are different in these two cases, so 
they will be analyzed separately. 

range of each subaperture of a Shack-Hartmann 
wavefront sensor using a bicell is limited to 

(5.6) 

No matter what the subaperture size or the detector 
size, the linear range of tilt measurement is restricted 
to about ±0.5 wavelength. 

The question then arises as to what effect this 
limitation has on the measurement of atmospheric 
turbulence. When an adaptive optics control loop is 
initially closed, the full uncorrected wavefront errors 
due to turbulence are present and must be measured 
unambiguously in order to converge or "lock on." 
Once convergence has been achieved, then the resi
dual errors appearing at the wavefront sensor (in a 
closed-loop system) are small. To answer this ques
tion, the wavefront tilt angle due to uncompensated 
turbulence is determined as a function of the suba
perture size over which it is measured. 

As shown in section 3.4.6, the mean-square tilt 
angle due to to atmospheric turbulence, over an aper
ture of size  is 

(5.7) 

If the turbulence strength is specified as  at 
length A, then the value of  at any other 
length  is    The standard deviation 
of the tilt angle due to turbulence may then be 
written 

Bicell Detector 

When using a bicell detector, the linear range of a 
Hartmann sensor is determined mainly by the width 
of the diffraction image. Transfer functions of a 
Shack-Hartmann sensor using a bicell detector are 
shown in figure  With a single point reference 
source focused to a diffraction-limited spot, figure 

 the linear range is limited to about 0.5 
waves of tilt over each subaperture. One wave of 
subaperture tilt displaces the central core of the 
spot entirely into one cell of the detector array, so 
further motion produces no significant increase in 
electrical output. In terms of the tilt angle, the linear 

(5.8) 

If this atmospheric tilt angle is matched to the linear 
range of a bicell Shack-Hartmann sensor (that is, 

 =  =  then 

(5.9) 

where d' is the subaperture size (in object space) over 
which the uncorrected rms wavefront tilt is equal to 
0.5 wavelength at the reference wavelength. 

In astronomical adaptive optics, the reference 
source wavelength  is usually fixed by system con
siderations, such as the use of a sodium beacon at 

No aberrations X tilt error Y tilt error Focus error 

Figure 5.9 Effect of focus modulation on the spots produced by a Shack-
Hartmann sensor. 
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Lenslet Bicell detector Spot 
intensity 

4x4 Pixel Detector 

Figure 5.10 Geometry of one subaperture of a Shack-Hartmann slope sensor. 

  while the turbulence   is 
usually specified at a wavelength of  =   
giving the relation d' =  Typical values of   

range from 0.1 to 0.2 m, so that d' generally falls 
between 0.15 and 0.3 m. If the subapertures used in 
the adaptive optics are smaller than  the use of a 
bicell Shack-Hartmann sensor with limited linear 
range should not cause problems with initial conver
gence of the adaptive optics. Peak wavefront excur
sions with values of  or more will occur 
occasionally, but even if the linear range were 
exceeded and the bicell saturated, it would continue 
to give the correct polarity of control signal to the 
feedback loop, providing that the bicell size is large 
enough to accept the full tilt range. Once the control 
loops have locked on, the residual error is reduced to 
a small value and the dynamic range is not usually an 
issue. There are two scenarios in which the limited 
range of a Shack-Hartmann sensor using a bicell 
detector could cause problems. The first of these is 
when a short-wavelength reference source is used, 
such as a Rayleigh beacon using an excimer laser. 
The second occurs with partially compensated adap
tive optics employing large subapertures. 

Shack-Hartmann sensors using bicell (quadrant) 
detectors are very sensitive to the shape of the refer
ence source, especially those containing multiple 
points. Double stars, for example, may produce a 
dead band in the response, as indicated in figure 

 
One way of improving the dynamic range is to 

enlarge the spots by defocusing, but this increases 
the measurement error due to the drop in sensitivity. 
A better way to improve the dynamic range is to use 

more detector elements for each subaperture. This 
may be done with CCD detectors by partitioning 
the array into 4 x 4 or larger sections for each sub
aperture, as described later. 

The factors that determine the detector cell size 
and focal length of a Shack-Hartmann sensor using 
a bicell (quadrant) detector will now be considered. 
As explained previously, neither of these parameters 
changes the linear range of the sensor. The detector 
cell spacing usually matches the subaperture size d. 
For a fixed cell size, the focal length determines the 
total (saturated) tilt range of each subaperture of 
the sensor, and also the crosstalk threshold, which 
occurs when the image produced by one subaperture 
crosses over into an adjacent detector cell. This is 
most likely to happen during initial convergence, 
before the turbulence has been corrected by the 
system. 

The maximum focal length is determined by the 
condition in which the diffraction image between the 
first nulls is entirely contained within one bicell. 
Assuming the width of each bicell is  this condi
tion can be stated as 

(5.10) 

In a typical case, with d = 1 mm and X — 0.589  
the maximum focal length of the lenticular array is 

 = 420 mm. 
The crosstalk threshold is then ±1 wave of tilt 

across each subaperture. The threshold may be 
made arbitrarily large, for a fixed subaperture size, 
by using a smaller focal length. A practical limit is set 
by the inevitable gap between the bicell components, 



(a) Bicell Response, Single Point Source 
  

 

 

Tilt  waves per subaperture 

(b) Bicell Response, Two Point Sources 
1  

   per subaperture 
A Single Point C Angular  = "kid 
B Angular separation =  D Angular separation = 27Jd 

Figure 5.11 Transfer functions of a Shack-Hartmann sensor using a 
bicell detector with (a) a single point source, (b) two point sources of 
varying separation. 
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which increases the measurement error and conse
quently should be much smaller than the image core. 

Multicell Detector Arrays 

The design considerations for  sen
sors using multicell detector arrays, consisting of 
4 x 4 or more elements, are considerably different 
from those using  detectors. With multicell 
detector arrays, the linear range of tilt measurement 
is determined by the geometry of the detector array 
and is no longer dependent on wavelength, as it was 
with a bicell detector. A 4 x 4 array has considerably 
greater flexibility than the simple bicell detector and 
provides a good compromise between performance 
and complexity. Because there are 16 pixels rather 
than 4, the electronic processing hardware is much 
more complex than for a quad cell. The discussion 
will be focused on 4 x 4 arrays as it is doubtful 
whether arrays larger than  can be justified. 

The main parameters involved in the design of 
multicell Shack-Hartmann sensors are the number 
of subapertures Ns, the number of pixels per channel 
in the photon detector  , and the ratio of pixel size 
to spot width, p. The overall system design usually 
dictates the number of subapertures and the dynamic 
range over which slope measurements are required. 
The linearity depends on the number and weighting 
of the pixels, as well as on the ratio p. 

The transfer function of a Shack-Hartmann sen
sor is easily calculated from a knowledge of the inten
sity distribution, as defined in equation (5.4), and the 
ratio of pixel size to spot width, p. The intensity 
within each pixel is computed as the optical axis is 
translated across the pixel array. As the responses are 
identical in the x and y directions, the pixels are 
summed across the array in the direction orthogonal 
to the scan to obtain the "four-bin" elements   

through  for each axis. The basic four-bin slope-
detection algorithm has the form 

The effect of varying the weighting factors is 
shown in figure 5.13. The pixel size in all cases is 
0.67 times the spot width. For comparison, the first 
case shows the equivalent of a  using weights 
of  1,  1, +1 , +1 . It is seen that increasing the 
weight of the outer elements increases both the out
put signal and the dynamic range. There is some 
degradation in linearity at large displacements, but 
all the responses have the same normalized slope in 
the region of the null, the normal operating point for 
closed-loop adaptive optics systems. It appears that 
weighting factors of   represent a 
good compromise between dynamic range and line
arity. 

Figure 5.14 shows the effect of interference or 
"crosstalk" from adjacent channels on the response 
of a Shack-Hartmann sensor. The conditions are 
p = 0.67, with weighting factors of - 3 , - 1 , +1 , +3. 
Curves are shown for an interfering spot located 2 
pixels and 3 pixels from the center of the measured 
channel. Crosstalk displaces the null of the sensor by 
as much as 1 wave, which seriously compromises the 
performance. This is most likely to happen during 
initial convergence, before the wavefront errors 
have been compensated. Crosstalk is minimal when 
the adjacent spot is 3 pixels or more from the center 
of the measured channel, indicating that a guard 
band of 1 pixel between each  subaperture 
array should give sufficient protection. 

5.3.2 Measurement Errors 

There are two types of wavefront measurement error 
in a Shack-Hartmann sensor: 

1. Random errors in determining the positions of 
the spots; these errors, caused by photon noise 
and electrical noise in the detectors, are una
voidable and determine the precision with 
which the wavefront can be measured. 

2. Bias errors due to misalignment of the optics 
and variations in the responsivity of the detec
tors; these errors, which determine the accu
racy of the measurements, can be reduced to 
acceptable levels by careful design and the use 
of calibration procedures. 

The displacement signals from a quadrant detec
tor are obtained in the form of two bi-cell measure
ments. If the outputs of the four quadrants are  b, c, 
and  as shown in figure 5.10, then 

where  ...  are scalar weighting functions applied 
to the outputs of the detector elements  . . .  

The effects of varying the parameters of a four-bin 
slope-detection system are shown graphically in fig
ures  through 5.14. The results are summarized in 
table 5.3. The influence of pixel size on the dynamic 
range and linearity of the transfer function is shown 
in figure  Small pixels  = 0.5) give good linear
ity over a range of about ±1.5 waves per subaperture. 
The dynamic range may be increased by using larger 
pixels, but at the expense of linearity. For closed-loop 
adaptive optics systems operating near the null, a 
pixel size of about 0.67 times the spot width is a 
good compromise, giving a dynamic range of about 
±2 waves per subaperture. These results are obtained 
with weighting factors     equal to 
- 3 , - 1 ,  +3. 

The random measurement errors depend on the  
of the spots, which are images of the reference source 
produced by the subaperture lenslets. The spot size is 
determined by four factors: the subaperture 



Response of 4-pixel detector 
 

 in waves per  

Pixel size A = 0.5 spot width 
B = 0.67 spot width 
C= 1.0 spo  

Figure  Effect of vary
ing the pixel size on the 

linearity and dynamic range 
of a Shack-Hartmann 

sensor using  pixel 
detectors. 

Four-pixel Slope Detection Algorithms 
 

Tilt in waves per subaperture 

Algorithm A= -1,-1,+1,+1 (equivalent to bicell) 
B = -2 , - l ,+ l ,+2 
C= -3, - l ,+l ,+3 
D= -4,-1,+1, +4 

Figure 5.13 Comparison of 
four-pixel slope-detection 

algorithms for Shack-
Hartmann wavefront sen
sors. The pixel size in all 

cases is 0.67 times the spot 
width. The number refers to 
the weighting of each of the 

four pixels. The first case, 
with uniform weighting, is 

identical to the bicell detec
tor.  the weight

ing of the outer pixels 
extends the dynamic range, 
at the expense of degraded 
linearity. The - 3 ,  +1, 

+3 algorithm is a good 
compromise. 
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Shack-Hartmann with 4-pixel detector 
 

Tilt in waves per subaperture 

A adjacent spot 2 pixels from center 
B adjacent spot 3 pixels from center 
C no crosstalk 

Figure  Effect of crosstalk on the response of a Shack-Hartmann sensor. 
Each channel has a 4 x 4 detector array using the —3,  +1 , +3 algorithm. 
The pixel size is 0.67 times the spot width. Crosstalk is negligible when the 
adjacent spot is 3 or more pixels from the center of the measured channel, 
indicating that a guard band of 1 pixel between the 4 x 4 element detector 
arrays should be sufficient. Note that the effect of crosstalk is to displace the 
null of the sensor, in this case by as much as 1 wave; this seriously compro
mises the performance. 

dimension d, the angular diameter of the source 9, the 
turbulence strength  and the sensor wavelength X. 

It is assumed initially that the reference is a point 
source and that the wavefront is essentially flat over 
each subaperture; that is  > d. For these condi
tions, the angular size of the spot is determined by 
the subaperture diameter and is given by  It is 
shown in appendix A that the standard deviation of 
the angular position error caused by random noise in 

where  is the signal-to-noise voltage ratio of the 
detected signal (all quadrants). The same result was 
obtained by Tyler and Fried [1982], using a different 
approach. 

Table 5.3 Effect of Pixel Size on Dynamic Range and Linearity of Shack-Hartmann Wavefront Slope Sensors 

Detector Size per Ratio of Pixel Size Useful tilt range, Departure from 
Subaperture to Spot Size, p ± waves Linearity, waves  

2 x 2 1.0-1.5 0.5 0.024 
2 x 2 1.0a 0.13a 

4 x 4 0.5 1.5 0.019 
4 x 4 0.67 2.0 0.085 
4 x 4 1.0 2.5 0.19 

"Nonlinear response. 

one axis, when using a quadrant detector with a point 
source, is 
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In the case of a large reference source, where 
9   the angular position error is determined 
mainly by the source size, and the single-axis error 
in this case is 

(5.14) 

These equations may be combined to give a general 
expression for the angular position measurement 
error for a plane tilted wavefront: 

(5.15) 

When the turbulence parameter  is smaller than d, 
the image size for an unresolved source is determined 
by the atmospheric  rather than by the subaperture 
size, d. This is accommodated in equation (5.15) by 
replacing d with  

The measurement error of practical sensors will be 
somewhat greater than that indicated by equation 
(5.15); this is because of the presence of spaces 
between the segments of the quadrant detector. The 
effect of segment gaps on the wavefront error of 
Shack-Hartmann sensors is evaluated in appendix 
A, section  The additional error produced is a 
minimum at the null and increases as the spot is dis
placed, as shown in figure  It is modeled in the 
error equations by a factor  representing the 
increase in error at the null, with typical values 
between 1.2 and 1.5. 

To evaluate the performance of adaptive optics 
systems, it is convenient to express the wavefront 
sensor error in terms of the phase difference over 
the subaperture. To convert the angular error to 
phase difference in radians, the angle must be multi
plied by  The resulting expressions for the 
standard deviation of the one-axis measurement 
error in Shack-Hartmann sensors, in radians  
of phase difference per subaperture, are then 

(5.16) 

For random perturbations, the total (two-axis) error 
is  times this value. 

The signal-to-noise ratio of the detector is deter
mined by the photon (shot) noise associated with the 
detection of discrete events, together with any back
ground or electrical noise added before the events are 
counted. In the case of a CCD array, the major addi
tional source of noise consists of the electrons added 
to the charge of each pixel during transfer to the on-
chip amplifier. If an intensifier is used before the 
detector, this noise is diluted by the gain of the inten

where 
 = number of detected photoelectrons per 

subaperture (sum of all pixels) 
 = number of detector pixels per subaperture 

 = number of detected background electrons 
per pixel 

e = read noise in electrons per pixel 
G =  gain ( = 1 for a straight CCD) 

There are two approaches to obtaining a high detec
tor signal-to-noise ratio. The first is to use a photo-
multiplier or image intensifier with a large gain  
which may be 1000 or more. The detector noise is 
then negligible in comparison with the photon 
noise, resulting in a signal-to-noise ratio proportional 
to  This assumes that the gain itself has no var
iance; when using a  it is equivalent 
to assuming that the pulse height distribution is very 
narrow, which is approximately true with pulse-
counting detectors. The second approach is to use a 
nonintensified detector (G — 1) with high quantum 
efficiency and minimum read noise. At low photon 
counts and high readout rates, such detectors are 
usually limited by read noise, in which case the sig
nal-to-noise ratio becomes approximately equal to 

 Both types of detector have been used 
successfully in wavefront sensors. Characteristics of 
detectors for wavefront sensing are described in sec
tion 5.7. 

5.3.3 Aperture Division 

There are several different methods of subdividing 
the aperture in Shack-Hartmann sensors. For exam
ple, the aperture may be divided by an array of plates 
or prisms that diverge the light in each subaperture 
away from the optical axis; a single lens then focuses 
all subapertures at the image plane, where they form 
an array of spots. It is essential for the aperture divi
sion components to be optically stable and immune 
from temperature variations. To engineer even a 
modest-sized device with  elements, using dis
crete components, is a formidable and expensive task. 
Consequently, most successful Shack-Hartmann sen
sors employ simple lens arrays, as shown in figure 
5.15(a), which are fabricated as monolithic devices. 
The element sizes are typically 0.4-1 mm2, with focal 
lengths of 70-100 mm. Using this method of con
struction, there are only two basic components, the 
lens array and the detector, for which the mechanical 
tolerances for alignment and stability are at the 
micrometer level. The success of the Shack-
Hartmann sensor is largely due to the availability 
of stable, inexpensive, monolithic arrays for these 
two critical components. 

 The signal-to-noise ratio for a generic detector 
is given by 

(5.17) 
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CCD 

(a) Basic lenslet array 

(b) Microlens array 
integrated with 
CCD chip 

Lenslet 
focal plane 

(c) Lenslet array with  

Basic lens Fresnel lens 
equivalent 

Binary equivalent 
on substrate 

(d) Binary optics 

Figure  Lens arrays for  sensors. 

The  and plasma etching techni
ques developed for integrated circuit fabrication can 
also be used for producing microlens arrays. The 
focal length of the lenslets is proportional to the 
square of the pixel size, leading to some very tiny 
devices when the pixels are only 25  Roland et 

 [1994] describe a microminiature Shack-
Hartmann sensor with  only  in dia
meter, etched into the cover plate of the CCD array, 
as shown in figure  

When using a lenticular array, it is not necessary 
for the lens spacing to match the pixel spacing of the 
detector. A reimaging lens may be used, following the 
lenticular array to reduce the spacing and size of the 

Hartmann spots to values appropriate for a small 
CCD detector array, as indicated in figure 5.15 (c). 

The first microlens arrays were made of plastic, 
using a replication process from a master mold 
formed by stamping with a steel ball. More recently, 
Artzner [1992] has described microlithographic tech
niques for making microlens arrays in photoresist 
coatings on glass substrates. Binary optics technol
ogy has been used at Massachusetts  of 
Technology (MIT), Lincoln Laboratory to fabricate 

 lens arrays for Shack-Hartmann sensors 
[Barclay et al. 1992]. Binary optics employs plasma 
etching methods to approximate a Fresnel lens using 
a relatively small number of optical steps, as shown 
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in figure 5.15(d). Plasma etching was originally devel
oped for Very Large Scale Integration (VLSI) inte
grated circuit fabrication [Veldkamp and Swanson 
1983]. The maximum optical path difference required 
for a Fresnel lens is 1 wavelength of light. This was 

 with five binary masks, producing 
2  32 steps, yielding a theoretical diffraction effi
ciency of 99.7%. The individual lens elements were 
0.4 x 0.4 mm square, having a 100% fill factor, with 
focal lengths of 72.5 mm. These devices were made to 
operate with a laser beacon operating at 512  

Binary optics enables the fabrication of complex 
phase masks that could not be generated by conven
tional techniques [Neal et al. 1995]. This capability 
may be used to make multitiered Hartmann masks 
that contain several superimposed focusing elements 
covering the aperture at different scales. Neal et al. 
[1994] describe a hierarchical wavefront sensor of this 
type, for use in adaptive optics, using up to four tiers. 
The smallest elements function in the same way as a 
conventional Hartmann sensor, providing the slope 
information for individual subapertures or segments. 
Larger elements cover  subarrays, producing 
separate spots that provide the information needed 
to reconstruct the wavefronts over the smaller ele
ments. The largest element, covering the whole aper
ture, provides the lowest order information, the 
overall tilt data. Typical parameters for Shack-
Hartmann sensors using CCD detector arrays at visi
ble wavelengths are listed in table 5.4. 

5.3.4 Photon Sensing 

Charge-coupled device imaging arrays are the ideal 
complement to microlens arrays in Shack-Hartmann 
sensors, as they are solid-state devices that are fabri
cated on a similar physical scale. Silicon CCDs have 
a useful spectral range between about 400 and 900 
nm, and some achieve a quantum efficiency of over 
90% at wavelengths of  nm. The devices used 
in wavefront sensors have different characteristics 

from those employed in imaging. The main differ
ences are a relatively small number of pixels 
(64 x 64 is a commonly used size), a high readout 
rate of several thousand frames per second, and 
extremely low readout noise. Dark current is not 
important in CCDs used for wavefront sensing 
because of the very short exposure times. To achieve 
high pixel readout rates, multiple (parallel) output 
ports are employed. By using an on-chip summing 
process called "binning," in which several pixels can 
be added together before readout without incurring 
additional noise, spatial resolution can be traded-off 
to increase the frame rate. A CCD camera developed 
at MIT Lincoln Laboratory for use in wavefront 
sensors can operate at a readout rate of 7000 frames 
per second with 16 x 64 resolution and readout noise 
of only 10 electrons per pixel. Characteristics of 
photon detectors currently being developed for wave-
front sensing are summarized in section 5.7 

5.3.5 Sensor Calibration 

An essential element of all adaptive optics systems is 
a built-in optical calibration capability to ensure that 
the wavefront sensor and corrector maintain proper 
alignment. Calibration is particularly important with 
Shack-Hartmann sensors because of their extreme 
sensitivity to physical misalignment. There are two 
basic requirements: (1) calibration of the null point 
of each sensor subaperture with a plane-wave input; 
(2) alignment of each sensor subaperture to the cor
responding actuators of the wavefront corrector. 
With the millimeter-sized subapertures now used in 
Shack-Hartmann sensors, alignment accuracies on 
the order of 1  are required. The alignment system 
should be designed as an integral part of the sensor 
hardware and software, and automated as far as 
practicable. 

The key element of the alignment system is a built-
in reference source that takes the place of the external 
reference. It is injected into the optical train ahead of 

Table 5.4 Shack-Hartmann Sensor Characteristics 

SWAT Visible Band  

Characteristic Sensor Sensors Sensor 

Pixel size,  27 25 25 25 
Wavelength,  0.5 0.5 0.75 2.0 
Pixels per spot size 1.8 2 1 2 
Tilt range, waves per subaperture 1.1 1 1 1 
Pixels per subaperture 4 x 4 4 x 4 2 x 2  
Lenslet f-number  50 16.7 12.5 
Lenslet dimension,  400 100 50 100 
Lenslet focal length, mm 72.5* 5 0.83  

"SWAT, Short Wavelength Adaptive Techniques. 
 reduced by a factor of 3.7. 
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the deformable mirror, as shown in figure 5.16. The 
built-in source provides a plane wavefront, enabling 
the null position of each Hartmann spot on the detec
tor array to be established. Within the sensor itself, 
the source allows radiometric calibration of the 
detectors. Dark frame calibration is included in the 
case of CCDs. Using the adaptive optics tip-tilt mir
ror, the tilt transfer function of each subaperture may 
also be determined. These data may be saved and 
used to make individual channel corrections in the 
electronic processor. 

Two levels of calibration are generally required in 
a Shack-Hartmann sensor. Small random offsets in 
the nulls of each subaperture, caused by mechanical 
or optical irregularities, may be compensated numeri
cally during the wavefront computation. Larger sys
tematic errors appearing as defocus, lateral 
displacements, or rotation, must be removed by phy
sical adjustment of the detector if they impose a 
restriction on the dynamic range of the sensor. 

The relative alignment of the wavefront sensor 
and corrector is usually verified by "poking" indivi
dual actuators and measuring the response at the 
sensor. The presence of a physical misalignment, 
such as translation or rotation between the compo
nents, is shown by a systematic pattern of offsets. 
The provision of automated test and diagnostic cap
abilities to carry out such tests ensures that the per
formance of the sensor is maintained at a high level. 

5.3.6 Wavefront Slope Computation 

The output from a wavefront sensor detector consists 
of a serial stream of digitized pixel values that is sent 
to the wavefront processor, where it is converted into 
x- and  slope data. In the case of a 64 x 64 
CCD array operating at a frame rate of 2 kHz, the 
data rate is between 8 and  megabytes per second. 
The wavefront processor performs three basic opera
tions to convert the pixel data into wavefront slope 

measurements that are sent to the wavefront recon-
structor: 

1. radiometric calibration, 
2. raw slope computation, 
3. wavefront slope calibration. 

These operations are shown in figure  Wavefront 
processors of this type usually employ the "pipeline" 
architecture that involves a minimum of buffer sto
rage. 

The radiometric calibration consists of removing 
the fixed pattern noise on the detector by subtraction 
of a stored "dark frame," followed by normalization 
of the quantum efficiency of each pixel by means of a 
gain correction. These are standard operations on 
detector arrays such as CCDs, but in this case they 
must be performed at a high data rate. 

Calculation of the centroid for each subaperture is 
performed using equation (5.12) for a quadrant 
detector. A similar algorithm, equation  is 
used with larger detector arrays, but in this case 
there is more flexibility in weighting the individual 
pixel outputs. The total light received in each suba
perture is computed by summing the outputs from all 
pixels in order to normalize the raw slope measure
ments, and also to provide a 'low-light flag' that pro
vides warning when the photon count drops below a 
predetermined level. This flag may be used to set the 
slope output of any subaperture to zero if the signal-
to-noise ratio becomes unacceptable. 

The final step in processing the wavefront is the 
slope calibration, in which the gain or scale factor of 
the slope outputs is adjusted, and offsets are intro
duced to account for fixed aberrations in the optical 
system that are not part of the common path shared 
with the imaging sensor. The scale factor controls the 
loop gain of the servo-system driving the wavefront 
corrector and may, for example, be adjusted to opti
mize performance with different turbulence condi
tions. Fixed offsets in the gradients may be required 

Figure  Adaptive opti
cal system using a Shack-
Hartman wavefront sensor. 
To calibrate the system, a 
local reference source is 
injected into the optical 
path by means of a retract
able mirror. Two calibra
tion procedures are 
required: (1) optical align
ment of the wavefront sen
sor lenslet array to match 
the subapertures on the 
deformable mirror; (2) 
photometric calibration of 
each pixel of the detector 
array in the Shack-
Hartmann sensor. 
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Figure 5.1 7 Block diagram of  wavefront slope processor. The main signal path is 
shown with heavy lines. A/D, analog to digital convertor. 

to account for any differences in the optical paths to 
the wavefront sensor and imaging sensor, following 
the beam splitter, as shown in figure  These data-
processing operations have been shown as examples 
and may not all be required in any particular adap
tive optics system. 

5.4 Shearing Interferometers 

 Principle of Operation 

Shearing  is a technique for measuring 
phase differences in optical wavefronts. The basic 
principle is to combine the original wavefront with 
a displaced or "sheared" replica, so that the optical 
waves interfere. In this way, optical phase differences 
are converted into intensity variations that can be 
sensed with a photoelectric detector. Shearing inter
ferometry eliminates the need for the coherent plane-
wave reference source that is required by conven
tional interferometers; with shearing interferometers, 
each point on the wavefront interferes with a copy of 
itself. In fact, common-path shearing interferometers 
will work with light sources that are temporally inco
herent and of finite size. When the shear distance is 
small compared with the scale of the disturbances in 
the wavefront, an achromatic shearing interferometer 
effectively measures the gradient of the wavefront, 
independent of the wavelength of the light. 

Wavefronts may be sheared in several different 
ways. Most commonly used is lateral shear, in 
which the wavefront is displaced linearly and at the 
same scale, by a distance s. The principle of a lateral 
shear interferometer is illustrated in figure 5.18. The 
wavefront to be measured is described by  

with amplitude distribution  The complex 
amplitude is then 

U(x, y) = A(x,   (5.18) 

Two copies of the wavefront are generated, displaced 
by the shear distance  in the x axis: 

(5.19) 

The intensity produced by the interference between 
these wavefronts is 

 

U2(x,y) 

I(x,y) 

Figure 5.18 Principle of lateral shearing interfero
metry. 
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The intensity of the interference pattern is propor
tional to the cosine of the wavefront slope multiplied 
by the shear distance. The sensitivity of a shearing 
interferometer may therefore be varied by adjusting 
the shear distance. By measuring the intensity of the 
interference pattern and knowing the shear distance, 
the wavefront slope in the shear direction at any 
point (x,y) may be determined. Wavefront slope is 
a vector quantity, so it is necessary to make two 
lateral shear measurements, in the x and y directions, 
in order to characterize a two-dimensional wave-
front. 

The simplest lateral shear interferometer consists 
of a tilted, plane parallel plate. Light reflected from 
the front and back surfaces is displaced (sheared) by 
a distance proportional to the tilt angle of the plate. 
In this case, the shear distance is approximately con
stant with wavelength (small variations can occur 
because of dispersion in the plate), so that for a 
given wavefront slope the optical phase angle 
between the interfering wavefronts varies as 
k —  This means that an interferometer with 
fixed shear is not achromatic. To achieve achromati-
city, the shear must vary linearly with wavelength. 
One method of implementing this relationship is to 
use a diffraction grating to generate the shear, as 
discussed in section 5.4.2. 

Radial shear is obtained by magnifying or demag-
nifying the replica and combining it with the original. 
Radial shear is useful for measuring rotationally 
symmetric aberrations, such as defocus and spherical 
aberration [Peters et al., 1974]. It is also employed in 
an extreme form in the point diffraction interferom
eter, in which a small section of wavefront, usually at 
the center, is magnified up to the full aperture and 
interfered with the original wavefront. Phase varia
tions over the magnified wavefront are very small, 
causing the wavefront to act effectively as a constant 
phase reference, producing an interferogram refer-

enced to the center of the aperture. Unfortunately, 
this technique is optically inefficient, and for that 
reason it is unsuitable for astronomical wavefront 
sensors. 

Rotational shear is orthogonal to radial shear, 
and measures the tangential component of wavefront 
slope. An interferometer with 180° of rotational 
shear contains all possible shear distances within 
the aperture, from zero in the center to the full dia
meter at the edges. This feature has been used to 
measure the Fourier components of radiant objects 
[Roddier 1979]. 

Lateral shearing interferometers using diffraction 
gratings to shear the wavefront have achromatic 
characteristics and are therefore well suited for wave-
front sensing in adaptive optics systems. They have 
high optical efficiency and will operate with broad
band, extended sources. The theory and practice of 
this type will be considered in some detail in the fol
lowing sections. Even within this category, there are 
numerous variations, including devices with temporal 
modulation, spatial modulation, and variable shear. 
Shearing interferometers with multiplexed outputs 
have recently been developed to reduce the number 
of detector elements required. 

5.4.2 Alternating Current Shearing 
Interferometer 

A shearing interferometer using a moving grating to 
provide temporal modulation is depicted in figure 
5.19. A wavefront function  is located at the 
system pupil, which is defined by the pupil function 

 The complex amplitude following the pupil is 

(5.22) 

Lens  generates the Fourier transform of  at 
its focal plane, where it falls on a grating with ampli
tude transmittance  The amplitude distribu
tion after the grating is then 

(5.23) 

where  is the Fourier transform of  
The second lens L2 produces an image of the pupil 

Wavefront 

W(x,y) 

Photon 
Detector 

Figure 5.19 Shearing interferometer using a moving optical grating to generate 
temporal modulation. 

When the shear distance is small compared with the 
spatial period of  this can be expressed as 
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containing the wavefront disturbance at the detector 
plane D. The intensity at the detector plane is 

l{x,y,t)   (5.24) 

where U'{x,  t) is the convolution of  with 
the Fourier transform of  t) . 

In the general case, the grating function can be 
expressed as 

where 

g = grating period in the x direction 
v = grating velocity in the direction normal to 

the lines 
 = Fourier coefficients of the periodic grating 

amplitude transmittance. 

Interference occurs between each pair of diffracted 
orders n  which have a fixed phase difference 

 The shear distance between adjacent orders at 
the detector plane is  = kZ/g and the fundamental 
temporal modulation frequency produced by grating 
motion is  =  

The intensity at the detector plane may then be 
written as 

(5.26) 
In this general case, the intensity distribution at the 
detector plane is composed of a number of overlap
ping shear patterns, each modulated at a multiple 

 — n) of the modulation frequency  The wave-
front data appear as temporal phase shifts propor
tional to the wavefront pathlength differences over 
the effective shear distances,  - n)s. For small dis
placements, this temporal phase shift can be regarded 
as proportional to the wavefront slope. 

The desired shear pattern may be extracted by 
spectral filtering of the temporally modulated detec
tor outputs. But, in the general case, many different 
shear patterns will be modulated at the same fre
quency. To ensure that the desired shear pattern is 
represented by a unique frequency, it is necessary to 
use specific grating configurations that restrict or 
control the diffraction orders n  Two useful 
types of grating are the sine-wave amplitude grating 
and the Ronchi grating. 

The sine-wave amplitude grating produces a 
 given by 

(5.27) 

(5.28) 

Measurement of the electrical phase  at detector 
location x, y therefore gives the wavefront difference 
between points x + s and x — s. For small values  s, 
this is equivalent to the wavefront slope. 

Sine-wave amplitude gratings contain both inten
sity and phase components, with a phase reversal 
each half cycle. As a result, they are difficult to 
make. An alternative and more easily manufactured 
type is the Ronchi grating, which has a square-wave 
transmission function: 

(5.30) 

The diffraction orders produced by this type of grat
ing are shown in figure 5.20. Even orders are sup
pressed, leaving only the zero-order and the odd-
order terms. The fundamental modulation frequency 

 can be produced only by interference between the 
zero-order and the first-order terms. This frequency 
is selected by temporal filtering. The remaining inter
ference products at frequencies of 3a),  and so on, 
are rejected. 

Koliopoulos [1980] has shown that the signal pro
duced by a moving Ronchi grating can be written as 

(5.31) 

+1 +3 +5 

The resulting intensity at the detector plane is then 

Zero order 
Figure 5.20 Diffraction orders produced by a Ronchi 
grating. 

In this case, there is only one shear pattern, produced 
by the interference of the +1 and —1 diffraction 
orders from the grating, with a shear value of 2s. 
The phase difference between the interfering beams, 
which appears as the phase shift at the modulation 
frequency  is 

(5.29) 
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The detector output signal at frequency  has a phase 
shift ks  proportional to the product 
of the shear distance s and the wavefront slope. 
Measurement of the electrical phase of this signal 
therefore gives the wavefront slope. The modulation 
of the detected signal, ideally unity, is reduced by the 
contrast reduction terms,   and  These 
terms do not directly produce errors in the wavefront 
measurement, but they reduce the signal-to-noise 
ratio of the wavefront sensor output, which may 
increase random errors at low photon counts. 

The first contrast reduction term is due to the fact 
that a Ronchi grating generates two first-order shear 
components, produced by interference between the 0 
and  orders and the 0 and — 1 orders, respectively. 
These shear components are displaced by the shear 
distance, resulting in a phase difference that is pro
portional to the second derivative of the wavefront. 
Then, 

With severe wavefront disturbances, the second deri
vative of the wavefront may become large, so that 
this term departs significantly from unity. In such 
cases, the shear can be adjusted to optimize the mod
ulation. The displacement between the sheared inter-
ferograms may produce small errors in the measured 
slope when high-order wavefront distortions are pre
sent, but these errors are negligible in most practical 
cases. 

The second contrast reduction term is due to the 
spectral bandwidth, if high-order distortions are pre
sent within the measurement subaperture. Although 
a lateral shearing interferometer using a diffraction 
grating to produce the shear is achromatic in making 
wavefront slope measurements, the presence of third-
and higher order wavefront distortions produces 
local differences in the optical pathlengths between 
the interfering beams, reducing the fringe contrast. 
For a source of spectral bandwidth  at mean 
length  the modulation is reduced by the factor 

(5.33) 

The third contrast reduction term takes the refer
ence source characteristics into account. In a shearing 
interferometer, the signal modulation depends on the 
degree of coherence between points on the wavefront 
separated by the shear distance. The coherence func
tion is given by the Fourier transform of the intensity 
distribution of the source. For a uniformly illumi
nated source of angular size 0 in the direction of 
shear, the contrast reduction factor is 

Circular source 

(5.34a) 

(5.34b) 

The factor  is maximized when the source size is 
zero (a point source); it falls to zero when the source 
size is about equal to the grating period and has local 
maxima for higher values of shear. When using 
extended objects as reference sources, it is necessary 
to adjust the shear (grating period) to maximize the 
product of shear and  as will be explained in the 
following section. The condition for zero contrast 
can be used to suppress the modulation caused by 
an interfering background such as the sky or a bright 
surface. In this case, a field stop having a width 
exactly equal to the grating period is placed close to 
the grating. This technique enables a shearing inter
ferometer to make wavefront measurements using a 
bright star in full daylight, or using solar pores on the 
surface of the Sun to compensate solar observations. 

5.4.3 Measurement Error 

The output signal from an AC shearing interferom
eter has the form 

(5.35) 

where 

  -  - overall modulation or fringe 
contrast 

 = modulation frequency 

 = electrical phase shift, 
proportional to the wavefront 
slope being measured. 

The output is generally contaminated with shot noise 
due to the detection of discrete photoelectron events 
and random noise in the signal amplifiers. The output 
signal is demodulated with respect to a fixed phase 
reference at frequency  The added noise causes 
perturbations in the electrical phase that translate 
into wavefront measurement errors. The magnitude 
of these errors will now be determined. 

From basic considerations, it can be deduced that 
the error in determining the phase  is proportional 
to  where SNR is the signal-to-noise ratio. 
In an AC shearing interferometer, the phase of the 
modulation signal represents the average wavefront 
slope over the shear distance  The measurement 
error over one subaperture of dimension d is there
fore 

(5.36) 

Rectangular source 

The value of the parameter A is ideally 1; its actual 
value will be greater than  depending on the method 
used to extract the phase information from the signal. 
One method of phase determination is to correlate 
the photon events with sine and cosine reference sig
nals at frequency  The correlated values of the sine 
and cosine are accumulated over the integration time 

(5.32) 
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T, and the phase angle is computed from the inverse 
tangent. If the arrival time of the  photon event is 

 the sine and cosine sums can be expressed as 

The phase angle is then 

(5.38) 

To implement this scheme, the reference signals sin 
cot and cos  must be sampled at the exact time at 
which each photon is detected, to obtain the correct 
sine and cosine sums. Errors in establishing the arri
val times result in phase estimation errors. As the 
arrival times are random, the detectors must be 
sampled at a high rate so that time errors are much 
smaller than the integration time T. The sampling 
problem may be eliminated by using a parallel detec
tor array in which the output of each element is con
tinuously monitored. An array of photomultiplier 
tubes has been employed for this purpose in the 
radial grating interferometer described in section 
5.4.5. 

An alternative scheme for measuring the phase of 
the modulation frequency, which is proportional to 
the slope of the wavefront, is to divide the period of 
the sine wave into three or more sectors or "bins" 
and to accumulate the detected events in each bin. In 
this case, the detector array needs to be sampled only 
three or four times per cycle of the modulation fre
quency. A four-bin algorithm of this type, described 
by Wyant [1975], is a robust method of phase deter
mination. The sine-wave period  is divided into four 
bins, B\,   and  in each of which the photon 
counts  are accumulated during the integration 
time: 

(5.40) 

The phase angle is then 

Using the four-bin algorithm, the wavefront mea
surement error of an AC interferometer, excluding 
the wavefront reconstruction process, is given by 

radians of phase, rms (5.42) 

Although the error is greater than with sine/cosine 
correlation, the difference is not significant in prac
tice, and the four-bin phase detection algorithm is 
widely used for phase detection in both temporal 
and spatial modulation systems. 

In the three-bin phase-detection algorithm, each 
period is divided into three 120° sectors and the 
phase angle is computed from the relation 

(5.43) 

where 

5.4.4 Optimization of Shear 

It is evident from the foregoing analysis that three 
factors must be maximized in order to optimize the 
performance of a shearing interferometer: (1) the sig
nal-to-noise ratio  (2) the ratio of shear to sub-
aperture size,  and (3) the modulation K. These 
factors are interrelated; the conditions for minimizing 
the wavefront measurement error will now be consid
ered in more detail. 

The signal-to-noise ratio relevant to a wavefront 
sensor is given by equation (5.17). In the following 
analysis, it is assumed that the detector noise is small 
compared with the photon shot noise, in which case 
the signal-to-noise ratio is given by the square root of 
the number of photons counted; that is, SNR =  
For a circular extended source of uniform brightness, 
the photon count in a subaperture of size d x d is 
given by 

(5.44) 

where 

 = source radiance, watts  
h = Planck's constant 
c = velocity of light, m s~ 
 = integration time, s 

q = detector quantum efficiency 
To = optical transmission to wavefront sensor 
6 = angular subtense of reference source, rad. 

The signal-to-noise ratio may then be expressed as 

 =  (5.45) 

where F =   
From equation (5.39), the wavefront error of a 

shearing interferometer using the sine/cosine detec
tion system is 

(5.41) 

Using this detection scheme, the wavefront measure
ment error is 

radians of phase, rms (5.39) 
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The effect of varying the shear distance on the 
shear-modulation product is shown in figure 5.21 
for two different types of reference object. The wave-
front error is inversely proportional to this product. 
The first chart represents a reference object illumi
nated by reflected radiation, such as a solar-illumi
nated satellite. In this case, the received power is 
proportional to the angular size of the object, and 
the shear can be optimized to maintain a constant 
wavefront measurement error irrespective of object 
size. Note that the curves for 0.5, 1, and 2 arc second 
sources all have the same peak amplitude, although 
the peaks occur at different shear values. In effect, 
the additional photon flux from a large object can be 
made to compensate for the drop in modulation due 
to its larger angular size. 

The second chart covers an object such as a laser 
beacon, in which the received power remains con
stant even though the apparent size of the object 
may vary because of changes in the scattering 
cross-section, which are due to turbulence in the opti
cal path. In this case, an increase in the angular size 
of the reference source inevitably reduces the shear-
modulation product (increases the error), although 
there is still an optimum value of shear in each 
case. These charts show the necessity for optimizing 
the shear in shearing interferometers. 

To find the minimum wavefront error, we substitute 
for  and  in equation (5.39) to obtain 

focal plane to generate the shear, this optimal shear 
corresponds to a grating period equal to exactly twice 
the size of the reference image.  other words, the 
optimal condition is for the image of the reference 
source to be exactly one half cycle of the grating, 
which is also evident from physical reasoning. 

It is of great importance to avoid the minima of 
the periodic functions that determine the value of  
as at these points the signal modulation falls to zero 
and the wavefront error becomes infinitely large. 
With a rectangular source, this condition occurs 
when the image of the source is exactly one cycle of 
the grating. When using a field stop with large 
extended sources, modulation due to the field stop 
itself is eliminated by adjusting it to cover an integral 
number of grating cycles. 

In the case of a point reference source, different 
considerations apply. The modulation factor  is 
then unity, independent of the shear. The maximum 
value of shear that can be used depends on the resi
dual wavefront error: as the shear is increased, the 
correlation between the interfered wavefronts 
decreases, reducing the modulation factor  
When the adaptive optics loop is first closed, the 
wavefront errors are large, and a small value of sjd 
is appropriate. After convergence, when the residual 
wavefront errors are small, a larger value of sjd may 
be used. For point sources, the maximum shear is 
normally equal to the subaperture size; that is, 

 =  Methods of adjusting the shear are dis
cussed in the following sections. 

5.4.5 Variable Shear Interferometer 

The AC shearing interferometer is realized in practice 
using rotating radial gratings, which allow the shear 
distance to be varied by adjusting the radius at which 
the optical beams intersect the grating. Two gratings 
are normally used, for x and y shear, with the grating 
lines oriented in orthogonal directions. One axis of 
the shearing interferometer used in the Compensated 

 System (CIS) is depicted in figure 5.22. The 
reference frequency used for measuring phase is 
obtained from an auxiliary light source passing 
directly through the grating. To utilize all of the inci
dent light, each radial grating was made with reflect
ing lines, forming a second  in which 
the modulation is  out of phase with that formed 
by the transmitted light. Outputs from the two sets of 
detectors on each axis were combined coherently. 

The gratings used in the CIS were 10 cm in dia
meter with 480 radial lines, rotating at   to 
give a modulation frequency of 40 kHz. The shear 
was variable over a range of about 5 to 1, with a 
maximum shear of 1/14 of the aperture, equivalent 
to  cm at the telescope's  primary mirror. 
The maximum shear corresponds to the size of the 
wavefront sensing zones. 

The photon detectors used in the CIS were end-on 
 arrays, one for each gradient-sensing 

The minimum wavefront measurement errors   

occur at the maxima of  that is, when 
 = 1.84, 5.33, and so on. The smallest optimal 

value of shear for a circular source of angular sub
tense 0 is therefore 

(5.47) 

(5.46) 

For a rectangular source, the optimal value of shear 
 = 0.500 X/0. When a Ronchi grating is used at the 

The wavefront error is minimized by maximizing the 
product of modulation and shear,  However, K 
and s are related by the characteristics of the reference 
source: as the shear distance is increased, the modula
tion produced by a source of finite size decreases. This 
relationship is analyzed using the Van 
Zernike theorem [Born and Wolf 1975, Ch. 10], 
which shows that the degree of coherence between 
two points separated by distance  and equidistant 
from a quasi-monochromatic source is equal to the 
absolute value of the normalized Fourier transform 
of the source. For a uniform circular source of angu
lar subtense 9, the coherence or modulation factor is 



0.2 0.3 

Shear distance in meters 

A point source 
B source diameter 0.5 arc second 
C source diameter 1.0 arc second 
D source diameter 2 arc seconds 

Figure 5.21 Variation of shear-modulation product with shear distance for two 
types of reference source. The wavefront error is inversely proportional to this 
product. The first chart represents a reflecting object such as a solar-illuminated 
satellite. The received power is proportional to the angular size of the object, and 
the shear can be optimized to maintain a constant error irrespective of object size. 
The second chart covers an object such as a laser beacon, from which the received 
power remains constant even if its angular size varies due to turbulence in the 
optical path. In this case, an increase in the angular size of the reference source 
inevitably increases the error. 
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Figure 5.22 Variable-shear interferometer used in the Compensated Imaging System. 

zone of the aperture. Each of the four arrays com
prised 152 detectors, for a total count of 608. To 
provide complete coverage of the aperture, it was 
divided up using crossed arrays of cylinder lenses, 
the net result being a close-packed square array of 
spherical lenses with the photomultiplier tubes at 
their focus. The detectors operated in the pulse-
counting mode at rates of up to 20 MHz. The 
phase measurement process consisted of reading the 
sine and cosine values of the reference signal (gener
ated directly from the grating) at the instant that each 
signal photon was detected. These values were accu
mulated over the integration time of  and then 
passed to a look-up table that contained the phase 
values corresponding to the accumulated sine and 
cosine functions. 

Good features of the radial grating AC shearing 
interferometer are its wide spectral band, excellent 
tolerance of scintillation, the availability of variable 

shear (which enables the dynamic range of the slope 
measurement to be adjusted in real time to accom
modate changes in the turbulence strength), and the 
ability to operate with extended reference sources. 
Another useful feature is the capability for rejecting 
background light by using a field stop. By adjusting 
the width of the field stop to an exact multiple of the 
grating period, modulation from a bright back
ground can be reduced to an arbitrarily small value. 
This feature has been employed in a solar telescope 
using detail on the solar surface as the wavefront 
sensor reference; it also allows the use of adaptive 
optics on bright stars during daytime. The AC shear
ing interferometers are best suited for use with con
tinuous light sources. With pulsed reference sources, 
complications arise because of conflicts between the 
pulse rate and the temporal modulation frequency. In 
such cases, a version of the shearing interferometer 
using spatial modulation can be used. 
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5.4.6 Spatial Carrier Shearing 
Interferometry 

Although the AC shearing interferometer has several 
desirable features, it has the drawbacks of using 
mechanically rotating gratings and of not being sui
table for pulsed reference sources. In wavefront sen
sors for astronomical adaptive optics, some method 
of modulating the intensity is desirable because it 
greatly facilitates the detection process, easing the 
requirements on detector calibration and giving the 
sensor some immunity to scintillation. Spatial carrier 
shearing interferometry was developed to provide 
these capabilities in an efficient and economical 
way. The technique employs a mask or modulation 
device located near the pupil plane, the basic princi
ple of which has already been explained in section 5.2 
above. In this section, matters relating to the type of 
gratings and detection schemes used in practical sys
tems are considered. 

When an optical grating is placed in a beam of 
light, it produces multiple diffraction orders at angles 
that are dependent on the wavelength of the light. 
Special gratings having a sine-wave amplitude func
tion produce only two diffraction orders, but these 
are very difficult to make. It is much easier to make 
gratings or masks that have hard edges, but the 
abrupt transitions of amplitude and phase generate 
high-order diffraction components that interfere with 
the desired low-order components. In the AC inter
ferometer, temporal filtering was used to get rid of 
unwanted modulation frequencies. When spatial 
modulation is employed, the same goal can be 
achieved with spatial filtering. 

The canonical arrangement of a spatial carrier 
shearing interferometer is shown in figure 5.23. The 
grating is placed in a  beam near a conju
gate image of the pupil at which the wavefront dis
turbance is located. The afocal optical system of two 
lenses (or mirrors)  the pupil at the detector 
plane. At the intermediate focal plane, the Fourier 
transform of the pupil plane is formed. At this 
plane, the spatial frequency spectra of the wavefront 
disturbance and the grating are present, enabling 
unwanted diffraction orders to be eliminated by spa
tial filtering. A suitable grating for this instrument is 
a half-wave phase Ronchi, consisting of equispaced 
bars with phase shift alternating between 0 and 1/2 
wave. This type of grating produces no zero order 
and no even orders. A simple spatial filter, consisting 
of a rectangular aperture at the Fourier plane, cuts 
out the third- and higher order sidebands, leaving 
just the two first-order components that interfere to 
produce the shearing interferogram at the detector 
plane. The shear is given by s =  where  
is the displacement of the grating from the pupil 
plane. When Az = 0, the shear is zero and the grating 
is imaged directly onto the detector. A set of parallel 
interference fringes is produced because of the tilt 
between the interfering wavefronts. The detector ele

ments are arranged to sample the positions of the 
fringes, using three or four pixels per fringe period. 
For a one-dimensional grating, the intensity at the 
detector is 

(5.48) 

where 
 -  is the spatial frequency of the grating, 

 =  
 = modulation factor 

Wavefront disturbances in the pupil displace the 
fringes by an amount proportional to the product 
of the shear and the wavefront slope, as indicated 
by equation (5.48). These displacements are sensed 
by the detector pixels, and the phase is computed 
using the three- or four-bin algorithms described in 
section 5.4.3. It is convenient to locate the grating 
in the collimated beam because this allows the 
shear to be varied without changing the basic 
fringe spacing. 

5.4.7 Multiplexing Techniques 

Wavefront slope is a vector quantity, so slope sensors 
must make two sets of measurements to determine its 
magnitude and direction. To facilitate computation, 
slope measurements are usually made in two ortho
gonal axes, normally requiring two sets of gratings 
and detectors. By using multiplexing techniques, the 
two sets of measurements can be obtained from a 
single grating and a single detector array. This sim
plifies the hardware and eliminates the need for opti
cal beam splitters with their attendant transmission 
loss. 

Multiplexing is a simple matter with spatially 
modulated sensors, because the gratings and detec
tors themselves are two-dimensional. A spatial car
rier shearing interferometer, such as that described in 
section 5.4.6, is easily converted to two dimensions 
by using a grating with two sets of crossed lines. 
When two orthogonal half-wave phase Ronchi grat
ings are added together, they create a three-level grat
ing, but, as zero- and one-wave delays are essentially 
the same, the grating degenerates into a half-wave 
checkerboard pattern. The intensity at the detector 
is then 

(5.49) 

The interference fringes are now displaced in both the 
x and y directions according to the wavefront slope, 
as shown in figure 5.24. These displacements are 
sensed by a two-dimensional detector array using 

 pixels per fringe element. The pixels are 
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Figure 5.23 Spatial carrier shearing interferometer. 

assembled into two four-element bins in x and  with 
the pixel values averaged in the orthogonal direc
tions. 

Multiplexing temporally modulated shearing 
interferometers is more complicated, because of 
the one-dimensional nature of the variable, time. 
The two channels must be separated by using dif
ferent temporal modulation frequencies. A grating 
pattern is needed that diffracts light simultaneously 
in two orthogonal directions, and, at the same 
time, modulates the two beams at different tem
poral frequencies that can be separated by electrical 
filters. The solution, described by Horwitz [1990], is 
to use two logarithmic spirals, of opposite sense, as 
shown in figure 5.25. A grating composed of 
families of these curves has properties similar to a 
radial grating, but in two dimensions. These prop
erties include the following: (1) the period varies 
linearly with radius; (2) the line orientation remains 
constant with radius; and (3) each spiral has a 
constant number of lines. But, the number of 
lines is different in the two spirals, so, at a given 
rotation speed, two different temporal frequencies 
are generated. A grating of this type consists of a 
checkerboard pattern with each "square" being 
defined by one of the family of spirals. An AC 
shearing interferometer using a log spiral grating 
has been used successfully for astronomical wave-
front sensing [Horwitz 1991, Wild et  1993, Wild, 

 Fang Shi et al. 1994]. 

5.4.8 Large-Shear Interferometers 

The shearing interferometers described previously 
employ relatively small shear values in order to mea
sure wavefront slope, which is averaged over the 
shear distance. To operate in this mode, the wave-
front slope must be reasonably constant over the 
shear distance, otherwise the fringe contrast falls 
and measurement accuracy is compromised. 
Shearing interferometers can also be used with large 
shear values to measure differences in phase or opti
cal pathlength. One useful application is the phasing 
of individual elements of a segmented mirror. In this 
case, the wavefront slope is nearly zero over large 
areas. A pure slope sensor, such as the 
Hartmann sensor, is insensitive to phase differences 
between its subapertures and cannot be used for this 
purpose. 

Figure 5.26 shows how a lateral shearing interfe
rometer is used for phasing two panels of a segmen
ted mirror. In this case, the shear distance is adjusted 
to produce interference between the light reflected 
from two panels, which need not be contiguous. A 
rotating radial grating, located at the focus of the 
mirror, may be used to produce the shear and also 
to generate AC modulation. Phase ambiguities are 
eliminated by the use of white light or 

 illumination. The resulting intensity variations 
are measured at two locations at the detector plane 
D. The normalized signal is given by 

1 



 fringe pattern Turbulence-distorted pattern 

 < 
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subaperture 
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Figure 5.24 Fringe patterns produced in a spatially multiplexed shearing 
interferometer. Wavefront slope variations displace the interference fringes 
in two dimensions, enabling simultaneous, x and y slope measurements to 
be made in each subaperture. 

Grating 

Figure 5.25 Temporally multiplexed shearing interferometer using a logarith
mic spiral grating [Horwitz 1990]. The grating has a checkerboard pattern that 
generates overlapping (sheared) diffraction images of the optical pupil at 
angles of ±45°, as shown in the transform pattern. These patterns are modu
lated at different temporal frequencies, allowing them to be separated by 
filtering. 
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Figure 5.26 Large-shear interferometer for phasing panels of a segmented 
mirror. 

(5.50) 

where 

K = modulation factor 
 = electrical phase angle due to interference 

between the two beams. 

In subaperture  both beams are reflected from seg
ment A, so the phase angle  = 0. In subaperture 
2, the beams are reflected from different segments, 
resulting in a phase angle  =  where 
k =  and Az is the displacement between the 
segments. The shear distance must be at least equal 
to the subaperture size, but its actual value is irrele
vant, provided that the panels are not tilted. 

The value of Az is found by measuring the differ
ence between the phase shifts in subapertures 1 and 2. 
The phase shifts at different wavelengths are simulta
neously nulled only when the displacement Az is 
zero. The modulation factor K depends on the resi
dual wavefront errors in the interfered beams. In 
order to measure the displacement accurately, higher 
order errors, such as wavefront tilt and defocus, must 
first be removed. 

5.5 Curvature Sensing 

S.5.1 Curvature from Slope 
Measurements 

The zonal approach to optical wavefront sensing 
consists of dividing the wavefront into subapertures, 
within each of which some property, such as displa
cement, slope, or curvature, is measured. Zonal slope 
sensing, which involves measurement of the first-

order derivatives  + dz/dy), has proved to be 
very successful in adaptive optics. From a single 
snapshot of the wavefront slopes over the optical 
pupil, the entire wavefront can be reconstructed, up 
to the cutoff frequency of the sampling interval. The 
slope data require reconstruction to obtain the wave-
front surface values, but the additional errors 
incurred are small. 

Wavefront curvature can be determined from 
measurements made with a slope sensor in four adja
cent subapertures, as shown in figure 5.27. Two 
orthogonal slope measurements are made in each 
subaperture, giving 

(5.51) 

where c is a constant of proportionality. The  and 
 terms represent cylindrical curvatures in the  and 

y directions, respectively. The wavefront curvature 
defined in this way is centered at the origin of four 
slope-sensing subapertures as shown. From the same 
set of eight slope measurements, the following addi
tional wavefront functions can be determined: 

(5.52) 

The  and  terms are the overall wavefront 
slopes in the x and y axes, while  and  repre
sent cylindrical curvature about the +45° and —45° 
axes, respectively. The four curvature components 
may be combined to form the more familiar optical 
aberrations as follows: 



166 Adaptive Optics for Astronomical Telescopes 

Figure 5.27 Derivation of wavefront curvature from 
wavefront slopes. 

(5.53) 

The set of eight slope measurements made in four 
subapertures therefore yields five orthogonal wave-
front aberrations. This process employs wavefront 
slope measurements to derive curved surfaces. The 
question then arises as to whether wavefront curva
ture may be measured directly, without first measur
ing slope. 

Curvature sensing uses the second derivative of 
the wavefront as the basis for measuring randomly 
distorted wavefronts, instead of the first derivative as 
in slope sensing. Wavefront curvature exists in two 
dimensions, and if the wavefront surface is z(.v, y), 
then the local curvature can be expressed as 

(5.54) 

Although wavefront curvature is generally different 
in x and >', the term "curvature sensing" usually 
implies direct measurement of spherical curvature 
over contiguous zones of the wavefront. When 
restricted in this way, curvature is a scalar quantity 
that can be measured directly, rather than being 
derived from conventional slope measurements. Not 
all wavefront shapes can be described in terms of 
spherical curvature; astigmatism, for example, con
sists of equal and opposite cylindrical curvatures in 
two orthogonal axes. 

5.5.2 Direct Curvature Sensing 

Curvature sensing as described by Roddier [1988a] is 
based on direct measurement of spherical curvature, 
a rotationally symmetrical scalar quantity that is 
relatively easy to measure and correct. Curvature 
sensing is most useful when used in conjunction 
with a bimorph mirror that produces a variable cur
vature deformation in response to a control signal.  
may seem surprising that a rotationally symmetrical 
scalar element can be used to measure (and repro
duce) randomly distorted wavefronts. In fact, some 
additional data are required, specifically the radial 
gradients at the edges of the aperture. A knowledge 

of these gradients is essential to correct nonspherical 
distortions such as astigmatism and coma. 

A simple curvature sensor employs two detector 
arrays located at the near and far sides of the detector 
plane. Local wavefront curvature causes differences 
in the intensity at corresponding detector locations, 
producing error signals proportional to the curva
ture. At the edges of the aperture, the intensity differ
ences correspond to the edge gradients required to set 
up the boundary conditions; in the case of a circular 
aperture, these are radial tilts. 

The method of measuring wavefront curvature is 
shown in figure 5.28. An incoming wavefront W, 
nominally a plane wave, is focused by the telescope 
objective  of focal length Z, on to the focal plane F. 
The distribution of intensity is measured at two 
planes  and  symmetrically displaced from 
plane F by distance p. Let the incoming wavefront 
have local curvature  = 1  where  is the local 
radius of curvature of the wavefront over a small 
area  The curved wavefront will come to a focus 
at a distance  given by 

 =  (5.55) 

The focal shift is then 

(5.56) 

Z +  

For a beam area of  at the objective, the corre
sponding areas that will be illuminated at planes   

and  are 
2 

(5.57) 

If H is the irradiance in watts per meter squared at 
the aperture, over area    irradiances at 
planes  and  are 

, 2 

(5.58) 

Figure 5.28 Curvature sensor using displaced focal 
planes. 
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Defining the signal A/ as the normalized difference in 
irradiance at planes  and  we obtain 

(5.59) 

The value of Az is given in equation (5.56). As the 
wavefront curvatures being measured are extremely 
small compared with that produced by the telescope 
objective (that is,   Z), then we may use the 
approximation Az   Also, p2  Az , 
enabling A/ to be expressed as 

(5.60) 

The signal A/ is therefore directly proportional to the 
local curvature  of the input wavefront, and is 
independent of the absolute value of the irradiance 
at the input aperture. 

This analysis is based on geometrical optics, and 
certain conditions must be fulfilled to assure its valid
ity. The irradiance distribution at planes P\ and  is 
a blurred replica of the pupil, the blur size being 
determined by the diffraction caused by turbulence 
at the input aperture. If the scale size of the turbu
lence is  then the diffraction angle is  and the 
blur size at plane  is  -  It is necessary for 
this blur to be small compared with the areas over 
which the curvature is to be measured; that is  
These requirements lead to the condition 

(5.61) 

This condition is easily satisfied in astronomical tele
scopes, with the minimum value of the displacement 
p being typically in the range of 1-20cm. At optical 
wavelengths, r0

2   so the condition may be sim
plified, in practice, to p >   

Low-order distortions of the incoming wavefront, 
such as defocus or astigmatism, produce large differ
ences in irradiance at the edges of the images at 
planes P\ and  because of their difference in size. 
These edge signals are proportional to the radial gra
dients at the boundary of the wavefront and are used 
to control the tilt at the edges of the wavefront cor
rector. 

5.5.3 Focus Modulation 

The implementation of a curvature sensor with two 
separate detector planes is clumsy and inefficient 
because of the need for a beam splitter. It also 
requires calibration of the two detector arrays. An 
elegant and efficient alternative [F. Roddier 1990a] 
is to use a single detector array with optical modula
tion of the focus between the two planes. This is 
achieved by using a variable curvature mirror located 
at the nominal focus, as shown previously in figure 

5.8. When this mirror is flat, the detector is reimaged 
at the telescope pupil. When the mirror is activated, 
its curvature is sinusoidally modulated by a small 
amount in positive and negative directions at a con
stant frequency, causing the focus to shift between 
planes P, and  Since the variable curvature mirror 
is close to the focal plane, its aberrations are unim
portant with small fields of view. A simple and con
venient implementation is to use a reflective 
membrane attached to a moving-coil loudspeaker. 
The use of focus modulation not only eliminates 
the need for precise detector calibration, but also 
allows the amount of modulation to be varied in 
real time, to accommodate changes in turbulence 
strength. A sensor of this type with 13 subapertures, 
using photon-counting avalanche diode detectors, is 
described by Graves et al. [1994]. 

5.5.4 Performance of Curvature Sensors 

Curvature sensors provide a scalar output that repre
sents the two-dimensional wavefront curvature over 
each subaperture. The standard deviation of a single 
curvature measurement due to photon noise when 
using a point reference source is shown by Roddier 
et al. [1988] to be 

(5.62) 

where  is the photon count. It is assumed that the 
photon detector averages the light from the reference 
source over  areas. Using the minimum value 

 p >  from equation (5.61), the measurement 
error is 

(5.63) 

A single curvature measurement is equivalent to 
four adjacent wavefront tilt measurements, two in the 
x direction and two in the y direction. When compar
ing the performance of a curvature sensor with that 
of a conventional slope sensor, it is necessary to 
include the reconstruction process. The photon 
error in a single subaperture of a curvature sensor 
is similar in magnitude to that of an equivalent 
Hartmann-Shack tilt sensor, but the error propaga
tion in the reconstruction process is much greater for 
curvature measurements than for tilt measurements. 
Roddier et al. [1988] found that the error coefficient 
for curvature sensing increases as the square of the 
array size, whereas for wavefront tilt sensing it 
increases logarithmically. The reason for this differ
ence is that wavefront curvature due to atmospheric 
turbulence tends to be statistically independent in 
adjacent areas, so the error variances simply add up 
over the aperture in the reconstruction process. This 
is the price paid for the simplicity of the approach. 
Wavefront slope, on the other hand, is correlated 
over larger areas and the redundancy in the measure
ments is put to good use in the reconstruction process 
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by using multiple paths to connect the evaluation 
grid. 

Because the reconstruction errors grow with aper
ture size, curvature sensing is competitive in perfor
mance with slope sensing only for small arrays of up 
to about 50 elements. This is sufficient to provide 
compensation at  wavelengths for apertures up 
to about 6 m under good seeing conditions. An 
experimental wavefront curvature system built at 
the University of Hawaii Institute for Astronomy 
[Roddier et  1994] employs a curvature sensor 
with 13 photon-counting avalanche diodes to mea
sure seven curvature terms and six edge slopes. The 
illumination at two planes displaced from focus is 
compared by modulating the focus of the sensor at 
a rate of 1 kHz, by means of a vibrating membrane 
mirror. The data are processed by a 13 x 13 matrix 
multiplier and then fed via a high-voltage amplifier to 
a  bimorph mirror. A closed-loop 
width of 100 Hz is achieved. The performance of 
this system is described in chapter 10. 

5.6 Wavefront Sensing with Extended 
Sources 

5.6. J Reference Source Characteristics 

What characteristics are needed in a reference source 
for adaptive optics? One tends to think of small, 
bright spots of light, and, indeed, an unresolved 
star is the ideal reference source for a wavefront sen
sor. But much of the visible structure of the universe 
consists of extended matter with low-contrast details. 
Even nearby objects, such as the Sun, the Moon and 
the planets, have very low surface contrast. The solar 
granulation, for example, has a contrast (A/ / / ) of 
less than 5% when observed through average turbu
lence. The question may be asked whether such low-
contrast extended objects can be used for wavefront 
sensing in the "self-referencing" mode, or whether it 
is necessary, in such cases, to use laser beacons as the 
reference sources. 

The answer is very simple: if an  subaper-
ture can resolve sufficient detail in the reference 
object to measure the angular fluctuations produced 
by the atmosphere, then the wavefront errors over 
the whole telescope aperture can be measured and 
corrected. The proposition may be stated more pre
cisely in the following terms: if the angular motion of 
the reference object can be tracked to a precision of a 
times the diffraction limit in each subaperture of a 
zonal compensation system, then, in principle, it 
should be possible to compensate the angular resolu
tion of the whole aperture to  times its diffraction 
limit, excluding other sources of error. 

Theoretically, it is irrelevant whether the detail 
being tracked is a bright spot on a dark background 
(reference star or laser beacon) or a dark spot on a 
bright background (solar granulation or pore).  

practice, wavefront sensors differ greatly in their abil
ity to use different kinds of reference objects.  is 
well known that Shack-Hartmann sensors using 
quadrant detectors are easily confused by multiple 
objects.  general, it is much easier to use conven
tional bright spots as reference sources because there 
is no background light to confuse the measurement. 
Negative reference sources are best handled with AC-
modulated wavefront sensors (such as the AC shear
ing interferometer) because of the difficulty in cali
brating detectors over a large intensity range. 

It is useful to distinguish between two different 
kinds of extended reference objects: (1) compact 
sources, which are resolvable, but whose angular sub
tense is less than the isoplanatic angle; and (2) 
extended sources, which exceed the isoplanatic 
angle. With compact sources, which include laser 
beacons, conventional wavefront sensors can gener
ally be used, making minor adjustments to accommo
date the finite size of the reference object. For large 
extended sources, which are generally of low con
trast, special wavefront sensor configurations are 
necessary to restrict the field of view and to handle 
the low modulation levels. 

5.6.2 Wavefront Sensing with Compact 
Reference Sources 

Shack-Hartmann sensors generally will operate with 
compact reference sources without modification. 
Sources smaller than the isoplanatic angle are, by 
definition, only a few arc seconds in diameter, and 
therefore not much larger than the diffraction limit of 
the Hartmann subapertures. The result of using a 
reference source of finite size is to increase the wave-
front error in proportion to the source size, as shown 
in equation (5.16). 

With shearing interferometers, it is necessary to 
optimize the shear in order to get the best perfor
mance with extended sources. The quantity to be 
maximized is the product of shear and modulation. 
As shown in section 5.4.4, the optimum shear dis
tance for a circular reference source is  
and that for a rectangular source is  where  
is the angular size of the source. In shearing interfe
rometers employing a Ronchi grating to generate the 
shear, this occurs when the image of a rectangular 
source spans exactly one half-period of the grating. 

The operation of curvature sensors with extended 
sources has been confirmed by Roddier et al. [1994], 
who report successful operation using a nebula of 
about 1 arc second diameter as the reference source. 

For solar adaptive optics, there are two 
approaches to wavefront sensing, depending on the 
application. Pores and small spots of a few arc sec
onds diameter have relatively high contrast and have 
been used successfully as reference objects with a 
Hartmann sensor employing a quadrant detector. 

 the system described by Acton and Smithson 
[1992], the sensor had a zoom capability to vary the 
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effective field of view on the solar surface. They 
found that compensation was effective only with 
reference spots (lock points) smaller than 5 arc sec
onds. The degree of correction decreased with radial 
distance from the lock point, as expected. Good com
pensation was obtained only in the immediate vici
nity of isolated features of relatively high contrast, 
although some improvement was usually visible 
across the entire recorded field of 30 arc seconds. 

The second approach to solar wavefront sensing is 
to use correlation of low-contrast image detail as the 
basis for wavefront tilt determination. This has more 
general application, as it is independent of the image 
structure within the wavefront sensor field of view, 
provided  that some structure exists in the direc
tions in which wavefront tilt is to be sensed. Sensors of 
this type are described in the following section: they 
may, in principle, be used with any extended source. 

5.6.3 Wavefront Sensing with Large 
Extended Sources 

The use of shearing interferometers with large 
extended sources goes back to the early days of adap
tive optics, when the CIS was built to obtain high-
resolution images of  satellites. The 
size of these objects often exceeded the isoplanatic 
angle, and field stops were incorporated into the 
wavefront sensor design to exclude extraneous light. 
Similar wavefront sensors have been used for solar 
compensation [Hardy  and for daylight imaging 
of bright stars using the 60-inch telescope at Mount 
Wilson Observatory  et al. 1993]. 

In the AC lateral shear interferometer, a rotating 
radial Ronchi grating is used at the image plane to 
produce the sheared beams. When using an extended 
source, an arbitrary field stop inserted at this location 
would normally produce large AC modulation, over
whelming that due to the reference object. This mod
ulation is eliminated by adjusting the shear distance 
(or the width of the field stop) so that it corresponds 
to a null in the  function, as described in section 
5.4.4 and shown in figure 5.21. The null condition 
occurs when the field stop spans exactly one period 
of the grating, which is equivalent to the condition 
e =  s. 

The maximum signal modulation occurs when the 
dominant spatial frequency in the reference object is 
equal to that of the grating. The process can be 
regarded as a cross-correlation of the grating with 
the reference object. As the reference object moves 
randomly within the field stop, because of atmo
spheric turbulence, the grating position or phase giv
ing maximum correlation is determined, enabling the 
wavefront tilt angle of the reference to be measured. 

 this case, the correlation is performed using only 
one spatial frequency at a time, although this fre
quency can be varied. 

A more general approach to wavefront sensing 
with extended sources has been described by von 

where 

x = two-dimensional spatial 
coordinate, 

A = two-dimensional image 
displacement or spatial lag, 

 and  = forward and inverse Fourier 
transforms 

* = complex conjugation 

The cross-covariance is maximized when the images 
match, giving a lag of  from which the displace
ment of the live image is determined. The value of 

 is independent of the structure of the image. 
Computation of the cross-covariance function is 
implemented by a special-purpose digital computer 
using fast Fourier transforms. The displacement 
error is then conditioned and applied to a steering 
mirror that recenters the live image on the matrix 
detector. The reference image is updated periodically 
to accommodate any structural changes. 

The performance of this correlation tracker on 
solar telescopes has been described by Rimmele et 

 [1991]. It is used to stabilize the image motion of 
small areas of about 5 x 5 arc seconds anywhere on 
the Sun, using a small two-axis agile mirror. Residual 
image motion is reduced from about O.S arc second 

 to 0.05 arc second  The imaging matrix is a 
32 x 32 Reticon diode array operating at 976 frames 
per second, of which a   is actually 
processed. The processing delay is 3.4  which lim
its the closed-loop bandwidth to  Hz. The perfor
mance of the system is adequate for a meter-class 
solar telescope. 

This technique could, in principle, be extended to 
the sensing of higher order wavefront aberrations by 
using a correlation tracker of this type in each sub-
aperture of a  sensor. For example, 
a 128 x 128 detector array could be partitioned into 

 subapertures, each containing a 16 x 16 ima
ging field. The major practical problem to be over
come in implementing such a system is the huge 
data-processing load. Using a  CCD operat
ing at 1 MHz per port, the data could be read out in 
1 ms, but a massive parallel processor would be 
required to perform the cross-correlation in compar
able time. 

One method of reducing the computational load is 
to use optical correlation. A single transmitting mask 

der Luhe et al. [1989]. The system has been used 
for tracking and motion stabilization of the solar 
granulation. The same principle could be extended 
to measurement of higher order wavefront aberra
tions. The method consists of generating a reference 
image  of the area of interest and comparing it 
with live images  obtained with a fast matrix 
detector. Their cross-covariance is given by 
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in the focal plane, as shown in figure 5.29, performs 
a two-dimensional cross-correlation in  sub-
apertures simultaneously, greatly simplifying the 
entire process. 

A wavefront measurement technique for extended 
incoherent light sources using this approach has been 
proposed by von der Liihe [1988]. The transmitting 
mask contains a reference pattern that converts dis
placements of the live image into intensity changes 
that are sensed by a detector array.  the intensity 
distribution at the image plane is /(x), a suitable mask 
transmittance is 

(5.65) 

where 

A and B = constants limiting the transmission of 
the mask between 0 and 1, 

A = image displacement comparable to 
the correlation scale of the intensity 
distribution 

The intensity distribution produced by this function 
is effectively the derivative of the reference image in 
the direction of the displacement A. Displacement of 
the live image in the positive direction caused by a 
wavefront tilt in a subaperture increases the trans
mitted intensity measured at the detector plane in 
the corresponding subaperture, and vice versa. 

A possible method of implementing this wave-
front sensor is shown in figure 5.30. A liquid crystal 
is used as the transmission mask, enabling the refer
ence image to be updated frequently. The image data 
required for the mask are obtained from a video 
camera. To eliminate effects of intensity variations, 
the mask is switched between two states, positive and 
negative, by modulating the plane of polarization at a 
high rate by means of the electro-optic modulator. 
This results in two alternating intensity values at 
the detector; these values are synchronously demodu
lated. Displacements of the live image in the positive 
or negative directions with respect to the reference 
image then result in positive or negative outputs 
from the demodulator. When the images match, the 
output is nulled, independent of the absolute inten
sity. 

5.7 Photon Detectors for Wavefront 
Sensing 

5.7.7 Requirements 

One of the most pressing needs in astronomical adap
tive optics is to improve the sensitivity of wavefront-
measuring systems, so that objects of lower bright
ness can be used as reference sources. The limiting 
magnitude of an adaptive optics system depends on 
many factors, including the turbulence conditions, 
subaperture size, and integration time, as well as 
the transmission of the optical components and the 
efficiency of the wavefront sensor. Maximization of 
wavefront sensor efficiency is a worthwhile goal for 
both natural-star and laser-beacon adaptive optics. 
For systems using natural reference stars, improving 
the detector sensitivity, especially at  wavelengths, 
increases the potential sky coverage. Laser beacons 
operate at visible and ultraviolet  wavelengths, 
so, in this case, improving the performance of short-
wavelength detectors will reduce the beacon laser 
power requirements. 

The efficiency of all wavefront sensors is governed 
by the signal-to-noise ratio produced by the photon 
detector. In section 5.3.2, it was shown that the sig
nal-to-noise ratio is determined by the photon (shot) 
noise of the detected signal, the photon gain of the 
intensifier (if any), and the amplifier noise. An ideal 
detector would have 100% quantum efficiency, with 
either infinite photon gain or zero amplifier noise. 
For adaptive optics, it should also be capable of 
handling relatively high photon-counting rates. An 
aperture of 20 x 20 cm, for example, collects a flux 
of about 100,000 photons per second from a star of 

 as 10, which can cause problems with some 
photon-counting detectors. Because of the short inte
gration times used for wavefront sensing (typically 
several milliseconds), the actual number of photons 
counted per measurement is on the order of 100 per 
subaperture. 

Needless to say, there are no perfect detectors. 
Practical detectors have either low quantum effi
ciency with virtually no noise (such as 

Figure 5.29 Wavefront slope sensing system using optical correlation. 
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Figure 5.30 Proposed wavefront sensor using optical correlation with a liquid crystal. The liquid 
crystal is located in the Fourier plane and contains the reference image, which is updated in real 
time [von der Liihe, 1988]. 

pliers, intensified devices, and avalanche diodes) or 
high quantum efficiency with amplifier noise (such as 
CCDs). A comparison of the signal-to-noise ratios of 
intensified detectors, avalanche photodiodes, and sili
con CCDs versus input flux is shown in figure 5.31. 
At very low input levels, intensified detectors and 
avalanche photodiodes have better performance 
because of the absence of noise, but, for higher, 
inputs, straight silicon devices are superior because 
of their better quantum efficiency. The crossover 
point depends mainly on the read noise of the 
CCD; as this noise is reduced to a few electrons per 
pixel, directly illuminated CCDs become competitive, 
even at the lowest input levels. The application of 
these photon detectors to wavefront sensing is briefly 
reviewed in the following sections. 

5.7.2 CCD Detectors 

The high quantum efficiency and stable geometry of 
CCDs makes them particularly well suited for use in 
wavefront sensors. At low photon counts, the signal-
to-noise ratio is dominated by amplifier noise, which 
in the case of CCD detectors is the "read" noise 
produced in converting the charge packets into vol
tages at each output port. The CCD read noise is 
proportional to the clock rate of the output ports 
and so can be minimized by using multiple ports, 
with parallel readout. 

Low-noise CCDs having two or four output 
ports, with readout noise of  electrons per 
pixel, frame rate of 2 kHz, and quantum efficiency 
of over 80%, have already been developed, as men
tioned in section 5.3.4. The next generation of CCDs 
for wavefront sensing has the goal of reducing the 
readout noise to about 1 electron rms at frame 
rates of  Hz. Devices are being developed 
with special pixel configurations to suit specific sen
sors: for example, a radial pattern for compatibility 
with curvature sensors. 

There are two distinct areas of technology devel
opment, the CCD chip itself and the camera, the 

latter containing the supporting electronics, cooling, 
data transfer, and control functions. Several organi
zations are developing high-frame-rate, low-noise 
CCD chips suitable for wavefront sensors. The 

 device, developed at MIT Lincoln 
Laboratory and described by Beletic et  [1993], is 
a 64 x 64 pixel, backside-illuminated CCD with 80-
90% quantum efficiency at    operates 
at a maximum frame rate of 3 kHz with four output 
ports. The read noise is 6 electrons rms at 1 MHz,  
electrons at  MHz, and 25 electrons at  MHz. The 
pixel size is 24 x   and the response is uniform 
over the array to within a few percent. 

The approach at Jet Propulsion Laboratory 
(JPL)/Caltech [Levine et al. 1994] is to read out 
each column of a 32 x 64 pixel array separately, 
using a skipper amplifier, which is capable of multiple 
nondestructive readout of the charge packets. The 
CCD is a three-phase frame-transfer device with 32 
output ports and a frame rate of 1500 Hz. 
Experimental devices achieved read noise of 8 elec
trons; it is hoped to reduce this to about 2.5 electrons 
after 10 reads of the skipper amplifier on subsequent 
designs. 

Geary  describes two CCD designs using  
ports, with 64 x 64 and 128 x 128 arrays of  
pixels. The 64 x 64 device has a 5-kHz frame rate 
with a 2.5-MHz maximum pixel rate, while the 

 x 128 device is designed to run at  frame 
rate with 1-MHz output rate per port. 

A radical departure in CCD design has been 
described by Geary and Luppino [1994], using a 
circular rather than a rectilinear pixel array. The 
application is curvature sensing, for which circular 
symmetry is appropriate. Low readout noise is 
achieved by using the minimum number of pixels, 
together with multiple ports to keep the pixel rate 
down to about 100 kHz, at which a readout noise of 
2 electrons rms should be possible. The CCD has 24 
angular sectors with 12 radial zones, divided into 
four quadrants. The radial pitch is  and the 
azimuthal pitch varies from  at the inner edge 
to  at the outer edge of the active area. An 
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Comparison of Detector S/N ratios 

  to too 

Incident photons  subap. per measure. 

A CCD, QE = 0.85, read noise = 8 e per pixel (4 pixels) 
B CCD, QE = 0.85, read noise = 1 e per pixel (4 pixels) 
C avalanche photodiode, QE = 0.9, detection threshold 0.6 
D avalanche photodiode, QE = 0.9, detection threshold 0.95 
E photomultiplier, QE =  

Figure 5.31 Signal-to-noise ratio comparison of detectors used in wave-
front sensors. The comparison is based on four detector readouts per mea
surement. The given number of incident photons per subaperture per 
measurement is divided into four bins, to each of which the read noise (if 
any) is added. The signal and noise of the four bins are then combined to 
get the overall signal-to-noise ratios. 

additional ring of 12 zones serves as the frame-sto
rage area. The serial register is wrapped around the 
storage area. 

A camera design to support high-frame-rate 
CCD chips has been described by Beletic et al. 
[1993]. The camera head contains a thermoelectric 
cooler and the electronics necessary to run the CCD 
and extract the data. A high-speed fiber optic data 
link is employed to transfer the data to the sequence 
controller and user's station, which can be several 
kilometers distant. The user has complete control of 
the CCD through the fiber optic link, allowing the 
frame rate and operating mode (binning) to be 
changed as required. 

5.7.3 Avalanche Photodiodes 

Avalanche photodiodes employ the large and noise
less gain in photocurrent obtained when hole-elec

tron pairs created by absorbed photons collide with 
ions to create additional hole-electron pairs. The ava
lanche effect occurs when the reverse bias voltage on 
the device nears breakdown level. In the Geiger mode 
[Brown et al. 1986], the bias is adjusted so that indi
vidual photons can be counted. In principle, the bias 
can be adjusted to give a detection probability of near 
unity, but thermal carriers cause spontaneous break
down. The high intrinsic quantum efficiency of sili
con is therefore tempered by the need to reduce the 
detection probability to about 0.6 in order to avoid 
spontaneous breakdown; this results in an effective 
quantum efficiency of about 50%. The maximum 
counting rate is determined by the time required to 
quench the avalanche effect. Using passive quench
ing, the minimum quenching time is about 500 ns, 
limiting the count rate to about 1.5 MHz. 

The breakdown voltage of avalanche diodes also 
varies with counting rate, because of heating of the 
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photodiode junction. Active cooling is necessary to 
keep the junction temperature below   in order 
to minimize dark current. The use of arrays at low 
light levels is complicated by the fact that the ava
lanche process generates a small amount of light 
that can trigger breakdown in adjacent elements, 
so these devices are packaged as separate modules, 
coupled to the optical system through fibers. 

In spite of these problems, avalanche diodes have 
been used successfully for signal detection and tele
scope guidance [Nightingale 1991]. Avalanche diode 
modules produced by EG&G Optoelectronics 
Canada are used in the curvature sensing system 
developed at the University of Hawaii [Graves et  
1994], and have been used for fast guiding at the 
Phillips Laboratory  Optical Range [Fugate 
et al. 1993]. 

Avalanche diodes with characteristics specially 
tailored to adaptive optics are now being developed 
at EG&G [Dautet et al. 1993]. The effective quan
tum efficiency has been increased to over 85% at 

 and the use of active quenching allows 
photon-counting rates of 20 MHz. These devices 
have several advantages over CCDs, including zero 
read noise and the fact that they can be electroni
cally gated, which is significant when using laser 
beacons. The data can also be read out in parallel, 
eliminating the time required for frame transfer and 
readout in CCD arrays. 

S.7.4 Photomultiplier Arrays 

Photomultiplier arrays were used in the first large-
scale adaptive optics system, the Compensated 
Imaging System (1982), which employed four 
photon-counting arrays, each consisting of 152 
end-on  [Hardy 1993]. This detector 
is described in section 5.4.5. A similar detector using 
arrays of 60 photomultipliers was used in the 
Atmospheric Compensation Experiment (ACE); 
the detector was built in the early 1980s and later 
tested on the 60-inch telescope at Mount Wilson 
Observatory [Shelton et al. 1993]. At the time 
these systems were designed, the photomultiplier 
was the only viable method of photon counting at 
the relatively high rates required for adaptive optics. 
The resulting detector was bulky and expensive, and 
the photocathodes limited its quantum efficiency to 
about 10% in the visible band. 

Compact end-on photomultipliers and 
node devices are currently available, but their quan
tum efficiency is still much lower than that of silicon 
detectors, and they require relatively high voltages 
for the dynode structure. With the availability of 
silicon devices that have quantum efficiencies of 

 at visible wavelengths, there appears to be 
little incentive to consider the use of photo
multipliers for future adaptive optics systems. 

5.7.5 Intensified Devices 

One of the first steps in the development of high-
sensitivity detectors was to combine an image inten-
sifier with a silicon photodetector array, using a fiber 
optic faceplate to couple the light from the target 
phosphor into the array. The gain in these devices 
was sufficient to eliminate amplifier or readout 
noise in the detector arrays, but the quantum effi
ciency was limited by the photocathode. These inten
sified arrays had many practical problems, not least 
of which was obtaining good optical transmission 
between the two separate devices involved. The pre
sence of even the smallest air gap between the fiber 
optic faceplate and the detector window caused a 
large loss of light. 

A more successful development has been the elec
tron-bombarded CCD, which consists of a photo-
cathode and electron accelerator front-end 
integrated with a silicon detector array [Richard et 
al. 1990]. The electrons emitted by the photocathode 
are accelerated and focused directly on the CCD 
itself. The energy gain of the electrons, G, can be as 
high as 2000, which reduces the effect of readout 
noise on the CCD to negligible proportions. 
Unfortunately, the price paid for this reduction is a 
heavy one, because the quantum efficiency of photo-
cathodes at visible wavelengths is generally much 
lower than that of silicon, the former being typically 
about 10% compared with over 80% for CCDs with 
direct illumination. The high-energy electrons are 
liable to damage the CCD structure, although special 
types have been developed to work in this mode. A 
detector of this type is used in the Come-On Plus 
adaptive optics system [Rousset et al. 1994]. 

5.7.6 Infrared Detectors 

While most adaptive optics systems employ wave-
front sensors operating at visible wavelengths, there 
is an incentive for wavefront sensing in the  bands, 
because there are many bright sources in the 1.25, 
1.62, and 2.2  bands that have no visible counter
parts. Several IR cameras have been built for astro
nomical imaging at wavelengths between 1 and  
but these are mostly unsuitable for use in wavefront 
sensors. Imaging cameras generally have a large 
number of pixels and are designed for long exposures 
with relatively slow readout rates. Frame rates of 
over  Hz are required for adaptive optics, result
ing in high readout noise. 

Solid-state arrays using indium antimonide  
and mercury-cadmium-telluride (HgCdTe) have 
been developed for astronomical imaging. A 
64 x 58 pixel, InSb focal plane array built by Santa 
Barbara Research Center (SBRC) has been described 
by Orias et al. [1986]. This device operates in the 1-

 spectral band, with a maximum quantum effi
ciency of 80% at 2  The readout noise is about 
300 electrons per pixel. The design and performance 
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of cameras using this focal plane array have been 
described by Fowler et  [1987] and McCarthy et 

 [1990]. 
A hybrid  camera has been used in a 

 wavefront sensor in the Come-On Plus 
program [Gendron et al.  This camera employs 
a 64 x 64 HgCdTe diode array mounted on a silicon 
CCD. The quantum efficiency at 2.2  is reported 
to be greater than 50%, with readout noise of 30 
electrons at 100-Hz frame rate. Rockwell 
International of Anaheim, CA have developed 
256 x 256 pixel HgCdTe arrays operating in the 1-

 spectral band. They are used in the NICMOS 
(Near Infrared Camera/Multi-Object Spectrometer) 
installed on the Hubble Space Telescope in 1997. 

5.8 Neural Networks 

 Introduction 

A neural network is a general form of information 
processor, used in cases where a logical measurement 
process or control scheme is difficult to define. 
Neural networks may be "trained" to perform speci
fic tasks by presenting them with a large number of 
practical cases and adjusting their parameters until a 
useful relation is obtained between the input and out
put. This approach is radically different from the 
conventional method of designing control schemes, 
in which specific characteristics of a process are 
selected a priori and exploited to obtain the required 
result.  adaptive optics, for example, wavefront 
errors are usually measured by spatially subdividing 
the beam and determining local properties of the 
wavefront, such as gradient or curvature. This 
method requires the zones to be contiguous, or at 
least separated by less than the coherence distance 
of the wavefront. 

Arrays of large telescopes offer the potential for a 
huge leap in angular resolution if the problem of 
combining optical data from isolated apertures can 
be overcome. Conventional adaptive optics cannot be 
used because the wavefronts from each aperture may 
be uncorrelated, resulting in significant absolute 
phase (piston) and overall tilt errors. Recovery of 
piston errors is possible using pairs of in-focus and 
out-of-focus images with phase-retrieval techniques 
[Gonsalves 1982,  and Fienup 1988], but 
higher order aberrations are difficult to measure 
because of the nonlinear nature of the optical ima
ging process. Angel, Wizinowich et  [1990] have 
shown that a neural network can be trained to recog
nize wavefront aberrations from the intensity distri
butions of the image pairs. In principle, a network of 
this type can provide outputs corresponding to either 
a zonal or modal representation of the wavefront, 
thus functioning as a combined wavefront sensor 
and reconstructor. 

5.8.2 Principle of The Perceptron 

The perceptron is a type of neural network that con
sists of a parallel processor with three layers, as 
shown in figure 5.32(a). The input data, which in 
this case are the intensities from each pixel of the 
in-focus and out-of-focus detector arrays, are applied 
to the input nodes /,. The input nodes are connected 
through a weighting network to an array of "hidden" 
nodes  The weights  are linear transmission 
factors determined during the training process; they 
comprise the first layer of the processor. The inputs 
to the second layer are 

(5.66) 

where  is the threshold for n o d e / The value of this 
threshold is determined during the training process. 
The outputs of the second layer are then 

(5.69) 

The externally supervised training process employs a 
back-propagation algorithm that repeatedly presents 
input training patterns and adjusts the parameters of 
the network,   and  to minimize the error 
signal (the difference between the network output 
and the known wavefront). This process involves a 
large number of trials, typically 105 to 106. 

5.8.3 Application to Adaptive Optics 

The use of a neural network to control the wavefront 
corrector in an adaptive optics system is shown in 
figure 5.32(b). In practice, two separate detector 
arrays may not be necessary. Barrett et al. [1992] 
have proposed a system for time-sharing a single 
detector array using a variable focus device with a 
birefringent lens. Using simulations and 
time experiments, they found that using two  
detector arrays with 32 input nodes and 32 hidden 
nodes, the system was capable of estimating the first 
12 Zernike modes. 

The following are some of the advantages of 
neural networks: 

• The architecture is parallel, so the processor 
operates at high speed. 

The second or "hidden" layer implements the non
linear sigmoid function that acts as a threshold or 
switch, controlling the transmission between the 
input side  and the output side  This function is 

These signals pass through another set of weighting 
functions  determined in the training process, to 
the output nodes  The output at node k is 
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• The optical system is simple. 
• The neural network operates on the point 

spread function of the imaging system, so 
it includes all the optics. 

The algorithm and hardware are easily 
adaptable to changing conditions. 

(a) Principle of Neural Network (Perceptron) 

(b) Implementation for Adaptive Optics 

Figure 5.32 Principle of the perceptron type of neural network and its application to 
controlling a wavefront corrector in adaptive optics. 



Wavefront Correctors 

6.1 Introduction 

Since the invention of the telescope in the early seven-
tenth century, the need for lenses and mirrors of high 
accuracy and stability has been a major challenge to 
scientists and engineers. While the size of telescope 
optics has steadily increased, the surface accuracy 
that must be achieved remains constant at a small 
fraction of the wavelength of light. The classic solu
tion to maintaining the surface figure of large tele
scope mirrors against the onslaught of gravitational 
and temperature changes has been to use the most 
rigid and stable materials available: glass, quartz, and 
ceramics. 

A revolution has recently occurred in the devel
opment of telescope optics. Large primary mirrors 
now employ flexible faceplates that are actively con
trolled to maintain their figures. In addition, small 
high-speed deformable mirrors are included in the 
optical train to compensate atmospheric turbulence 
in real time. To perform these tasks, wavefront cor
rectors must combine the high degree of mechanical 
stability essential for optical components with the 
additional capability of making precisely controlled 
adjustments to an optical wavefront. These require
ments have led to the development of a totally new 
class of optical device, the evolution of which 
started in the late 1960s and is still in progress. 
The most successful wavefront correctors combine 
specially developed materials and processes into a 
single integrated structure. The absence of suitable 
wavefront correctors was one of the main reasons 

for the long hiatus between Babcock's initial con
cept of adaptive optics in 1953 and its first flowering 
in the early 1970s. 

Wavefront correctors are of two basic types: (1) 
inertial components in which an optical surface is 
mechanically moved to change the optical pathlength 
of a beam of light; and (2) refractive components in 
which the index of an optically transmitting material 
is changed to modify the velocity of propagation — 
again, changing the optical pathlength. The most 
common inertial components are deformable mir
rors, which have high optical efficiency, wide spectral 
bandwidth, and a large dynamic range. Because of 
these desirable features, they are used almost univer
sally in adaptive optics systems today. There are 
three main families: discrete actuator mirrors using 
a continuous faceplate, bimorph mirrors in which the 
actuator is combined with the faceplate, and segmen
ted mirrors. The disadvantages of inertial compo
nents result from their mechanical nature, such as 
limited spatial resolution and temporal frequency 
response, although these are sufficient for most adap
tive optics applications. 

The main advantages of refractive devices stem 
from their solid-state nature; there are no inertial 
restrictions and their intrinsic resolution is deter
mined by molecular structure. Such devices are 
usually electrically controlled; using microelectronics 
technology, spatial resolutions in the micrometer 
range are achievable. Liquid crystals appear to be 
the most promising refractive devices for astronom
ical adaptive optics. They are best suited for opera
tion in the infrared (IR) band, because of the 
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relatively large dispersion at visible wavelengths. 
Their slow response time, which was initially a 
major impediment, can be improved by using dual-
frequency operation. Because of the potential advan
tages of refractive devices, their development is con
tinuing, and they may, in future, challenge 
deformable mirrors as the preferred wavefront cor
rector for astronomical adaptive optics at longer 
wavelengths. 

The spatial characteristics of various types of 
wavefront corrector are compared in figure 6.1, 
which shows the range of zone spacings, degrees 
of freedom, and optical apertures for the main 
technologies employed. The large active mirrors 
used as telescope primaries may be several meters 
in diameter, with actuator spacings of 100 mm or 
more. Conventional deformable mirrors for 
time turbulence compensation are typically 50-200 
mm in diameter and use discrete actuators with 
spacings of 7-10 mm. The largest practical number 
of discrete actuators is in the region of 104. 
Deformable mirrors can be made as monolithic 
devices, using a pattern of integrated addressing 
electrodes. By this means, the actuator spacing 
can be reduced to about 1 mm; however, the stroke 
of such devices is limited by the stress produced in 
bending the faceplate. To achieve even higher spa
tial resolution and more correction zones, it is 
necessary to use refractive devices, such as liquid 
crystals, in which the spatial resolution is deter
mined by the addressing electrodes, for which 
scale sizes in the micrometer range are possible 
using microcircuit technology. 

6.2 Wavefront Correctors for Astronomy 

6.2.1 Requirements 

The requirements for wavefront correctors used in 
astronomical adaptive optics are generally specified 
in the following terms: (1) the number of actuators, 
or degrees of freedom, and their spatial arrangement; 
(2) the dynamic range of the wavefront correction; (3) 
the spectral range; (4) the temporal frequency 
response of the corrector and its driving electronics; 
and (5) the surface flatness or lowest residual error 
obtainable. In addition to these first-order require
ments, several additional items are usually specified, 
including: (6) the influence function of the actuators; 
(7) the hysteresis; and (8) the power dissipation in the 
corrector and drivers. There may also be require
ments on the reliability and repairability of the wave-
front corrector, which is often the most expensive 
component in an adaptive optics system. The signifi
cance of these wavefront corrector specifications will 
now be discussed briefly. 

Number and Spatial Arrangement of 
Actuators 

The number of actuators or degrees of freedom 
within the active area is the basic descriptor of all 
wavefront correctors, as it determines the order of 
compensation that the corrector can produce. In 
zonal correction devices, a square array of actuators 
is usually employed, as this is compatible with the 

Figure 6.1 Wavefront corrector characteristics. This chart depicts the spatial 
characteristics of generic types of wavefront corrector, ranging from devices 
such as liquid crystals that function on a molecular scale, to large active 
mirrors having dimensions of several meters. 
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pattern of sensing zones in photon detectors, such as 
CCDs. Square arrays do not fit neatly into circular 
apertures; hexagonal arrays produce more uniform 
actuator spacing and are preferable if a suitable 
wavefront sensor is available. When related to the 
size of the telescope pupil, the actuator spacing d in 
relation to the value of  (the coherence length of the 
wavefront disturbance), determines the "fitting 
error" of the corrector and is consequently an impor
tant parameter of the adaptive system. Full wave-
front compensation with zonal compensation 
requires an effective actuator spacing of   

Dynamic Range of the Wavefront 
Correction 

The dynamic range or stroke must be sufficient to 
compensate the peak to valley excursions of the 
wavefront, which is usually specified as ±2.5 times 
the standard deviation, giving a .994 probability 
that wavefront excursions will be corrected. The 
wavefront excursions to be corrected are propor
tional to  where D is the optical aperture 
and the turbulence coherence length  is specified 
at 0.5  When specified in terms of optical path-
length (meters), the wavefront excursion due to tur
bulence is independent of wavelength. The stroke 
required is greatly reduced by compensating overall 
tilt with a separate fast-steering mirror. The stroke of 
zonal deformable mirrors for astronomical adaptive 
optics is typically ±2  giving a peak-to-valley 
wavefront correction of 8  This is sufficient to 
compensate an 8-m aperture with moderate turbu
lence  = 0.07 m), assuming a separate tip-tilt cor
rector. 

Spectral Range of the Corrector 

Wavefront sensing is usually performed in the visible 
band at   while the science observations 
may use  bands between 1 and 4  The optical 
pathlength corrections must be constant over the 
entire spectral range. Efficient operation over wide 
spectral bands is readily accomplished with reflective 
devices such as deformable mirrors, but is more dif
ficult with refractive correctors because of dispersion. 

Temporal Frequency Response of the 
Corrector 

The temporal spectrum of turbulence is determined 
by the wind velocity profile in the atmosphere and, in 
common with other atmospheric parameters, it can 
vary widely within short periods of time. The tem
poral response of a wavefront corrector may be lim
ited by the device itself, such as the response time of a 
liquid crystal, or it may be caused by limitations in 
the driver electronics, such as the current sourcing 
capacity of drivers for piezoelectric actuators. It is 

important therefore to specify the frequency response 
of the whole correction subsystem, which is designed 
as part of the adaptive optics servo loop. Small 
deformable mirrors have a bandwidth in the region 
of 1 kHz. 

Minimum Residual Error of the 
Wavefront Corrector 

The minimum error may be specified under passive or 
active conditions. If the telescope is to be used while 
the adaptive optics system is inoperative, and if the 
corrector cannot be optically bypassed, it is necessary 
for its passive wavefront quality (no drive signals) to 
be very good, or at least compatible with that of the 
main optical system. On the other hand, if the relia
bility of the correction device is not at issue, and 
there is sufficient dynamic range to accommodate 
the expected optical errors, then the optical quality 
can be specified with active flattening. In this case, 
wavefront errors in the correction device are removed 
dynamically by a calibration process. 

Influence Function of the Actuators 

In zonal deformable mirrors, the influence function 
defines the response of each actuator. The shape of 
the influence function determines how well the 
deformable mirror is able to compensate wavefront 
errors. It defines the minimum error after compensa
tion, usually a ripple with a period equal to the actua
tor spacing. Influence functions should mesh together 
with the minimum of ripple to produce a smooth 
combined response. The shape of the influence func
tion is controlled mainly by the relative stiffness of 
the faceplate and actuators, and by the design of the 
attachment points. There is typically a 10% response 
at the adjoining actuator. 

Hysteresis 

Most of the actuators used for deformable mirrors 
are made from ferroelectric and ferromagnetic mate
rials, which all show some degree of hysteresis. 
Piezoelectric ceramics such as PZT (lead zirconate 
titanate) typically have 10-20% hysteresis, while for 
the electrostrictive material PMN (lead magnesium 
niobate) it is much smaller, usually 1-3%. In 
closed-loop adaptive optics systems, a moderate 
amount of hysteresis is relatively unimportant, as it 
is overcome by the large gain of the feedback loop. 
But in open-loop systems, which rely on accurate 
calibration of the wavefront sensor, hysteresis is det
rimental to system performance. Hysteresis can be 
reduced considerably by driving the actuators with 
charge amplifiers, in which the input voltage controls 
the amount of electric charge transferred to or from 
the actuator. 
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Power Dissipation in the Corrector 
and Drivers 

Power dissipation in the actuators can produce 
unwanted heating in a wavefront corrector. The fer-
roic actuators used in most  mirrors have 
relatively low power dissipation, because they act 
electrically as capacitors. Power losses are due mainly 
to dissipation in the dielectric. At the other extreme, 
electromagnetic force actuators, such as the solenoid 
"voice coils" used on large active mirrors, have rela
tively high power dissipation due to  heating of 
the coil. A constant current is required to maintain 
the force. Linear driver amplifiers may dissipate more 
heat than the actuators themselves, but as the drivers 
can be located remotely, the telescope environment is 
not compromised. 

Typical requirements for three different types of 
wavefront corrector used in astronomical adaptive 
optics are summarized in table 6.1. The three appli
cations are: 

1. turbulence compensation in the B, V, and R 
visible bands   

2. turbulence compensation in the J, H,  and L 
infrared bands   and 

3. wideband adaptive secondary mirror. 

The optical pathlength variations produced by turbu
lence are independent of wavelength, so the require
ment for surface deformation is the same in the 
visible and IR bands. 

6.2.2 Types of Wavefront Corrector 

The main types of wavefront corrector used in adap
tive optics are listed in table 6.2. Most wavefront 

correctors used today are zonal deformable mirrors 
employing an array of actuators to deform a contin
uous faceplate. Deformable mirrors have been made 
in sizes up to 2000 actuators. Segmented (zonal) mir
rors have been made with up to 500 segments, com
prising  degrees of freedom. Modal mirrors have 
been developed for specific purposes, such as com
pensating systematic distortion in laser wavefronts, 
but they are generally restricted to low-order correc
tion up to  mode 6 (astigmatism), for which 
the optimal  ratio is 6. For astronomical adap
tive optics, they would therefore be usable with aper
tures only up to about 1 m at visible wavelengths, but 
with much larger apertures at IR wavelengths. Zonal 
deformable mirrors are normally used with conven
tional wavefront tilt sensors. Bimorph mirrors 
employing local curvature control are compatible 
with adaptive optics systems employing curvature 
sensing. 

6.3 Actuators 

6.3.1 Actuator Types 

Actuators are conveniently divided into two cate
gories: force actuators exert a controllable force 
that is ideally independent of their displacement, 
while displacement actuators produce a controllable 
displacement that is ideally independent of the reac
tion. These categories represent the two extremes of 
mechanical stiffness, with force actuators having very 

 (ideally zero) stiffness, while displacement actua
tors possess very high (ideally infinite) stiffness. 
Practical actuators fall somewhere in between. The 
important factor is the actuator stiffness in relation 

Table 6.1 Wavefront Corrector Requirements for Astronomical Adaptive Optics 

Adaptive Secondary 
Requirement Visible IR Mirror 

Spectral band,    0.4-35 
Number of actuators  6-200 100 + (zonal) 
Diameter, cm 10-30 5-20 20-100 
Control mode Zonal Modal or zonal 
Interactuator spacing, cm  
Actuator array pattern 
Surface deformation: 

overall,  peak ±2 ±2 
interactuator,  peak ±1.5  

 coupling, % 5-10 5-10 
Bandwidth, Hz  drivers) 1000 300 
Actuator hysteresis, % 1-3 1-3 
Surface figure accuracy: 

passive,   0.05-0.02 
active,  rms 0.03-0.01 

Optical efficiency, % > 90 >95 >90 
Surface smoothness, angstroms  
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Table 6.2 Wavefront Correctors Used in Adaptive Optics 

Segmented mirrors 
Piston only 
Piston plus tilt 

Monolithic piezoelectric mirrors 

Thin-plate  mirrors 

Bimorph mirrors 

Modal mirrors 

Adaptive secondary mirrors 

Membrane mirrors 

Integrated wavefront correctors 

Dirigible optics 

Electro-optical correctors 

Square or hexagonal array; one actuator per segment 
Square or hexagonal array using three dedicated actuators per 

segment 
Triangular or hexagonal array using three shared actuators 

per segment 

Thin glass faceplate bonded to PZT block with integral 
electrodes 

Glass or quartz faceplate 
Discrete axial actuators, using bonded multilayer stacks of 

piezoelectric or electrostrictive material 

Local curvature produced by piezoelectric actuators bonded 
directly to the back of a thin faceplate 

Bending moments applied overall to a continuous faceplate to 
produce low-order (Zernike) corrections 

Employed in Cassegrain and Gregorian telescopes 
Combines  chopping capability with tip-tilt and higher 

order corrections. Relatively large size 

Metal or plastic reflecting membrane 
Deflected by electrostatic force or air pressure 

Single-crystal silicon facesheet with monolithic  
actuator structure,  spacing,  

Actively controlled rigid lenses and mirrors 
Wavefront corrections are produced by directed 

displacements and tilts 

Nematic liquid crystals 

" PLZT, lanthanum-modified lead   

to that of the object being controlled, such as the 
faceplate of a deformable mirror. 

Hydraulic and electromagnetic actuators are good 
examples of force actuators. Hydraulic actuators 
employ a fluid, the pressure of which can be con
trolled, and use a piston to transfer the force to the 
object, while electromagnetic actuators employ an 
electric current to generate a magnetic field that 
reacts against a permanent magnet to produce the 
force. Electromagnetic actuators are built in both 
linear (voice coil) and rotational (stepper motor) con
figurations. When a motor is  in conjunction 
with a screw mechanism, its effective stiffness is 
greatly increased by the mechanical advantage of 
the screw, converting it into a displacement actuator 
in which the position of the nut is precisely controlled 
by rotation of the screw. The stiffness of a screw is 
determined by its cross-sectional area, its length, and 
the elastic modulus of the materials. The stiffness can 
be reduced by placing a spring in series with the 
actuator. Electromechanical actuators of this kind 
are used for active control of the surfaces of large 
primary mirrors. Ferroic devices, in which strain is 

generated in the bulk material by an applied electric 
or magnetic field, are the most commonly used type 
of displacement actuator for deformable mirrors. 
Piezoelectric, electrostrictive, and magnetostrictive 
actuators are examples of this category. 

Thermal actuators have been developed for spe
cial purposes where the power dissipation and rela
tively slow response are unimportant. Available 
devices include: 

1. bimetal alloy thermal actuators, which are 
made in both strips and coils, that produce 
linear or rotational motion; 

2. shape-memory alloy thermal actuators, which 
employ nickel-titanium alloys that change 
their shape with temperature due to a crystal
line phase change; 

3. high-output paraffin (HOP) thermal actuators, 
which employ a phase change in paraffin wax 
to produce a linear motion. 

These devices are all simple and reliable, with long 
cycle lives, making them potentially useful for control 
of large active mirrors, providing that the thermal 
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energy is contained. In their present form, they are 
unsuitable for use as actuators in the small, high-
bandwidth deformable mirrors used for turbulence 
compensation. This situation could change with 
further development to reduce their size and thermal 
inertia. 

Either force or displacement actuators can be used 
to control a deformable mirror. Force actuators have 
the advantage that small axial displacements of the 
actuator itself do not significantly change the applied 
force. This is important in large active mirrors as it 
relaxes the stiffness requirements for the supporting 
structure. The main disadvantage of force actuators 
is that the surface displacement depends on the stiff
ness of the faceplate, which may not be known pre
cisely. For this reason, force actuators require 
feedback or calibration devices to ensure accurate 
operation. 

Displacement actuators are used primarily in seg
mented and deformable mirrors less than about 50 
cm in diameter. A rigid and dimensionally stable 
reference surface or baseplate is essential with these 
actuators, because any deflections due to thermal, 
structural, or gravitational changes are transmitted 
through the actuators to the faceplate. Ferroic 
devices are well suited for use as displacement actua
tors in deformable mirrors because of their small size, 
excellent stability, and high stiffness. Characteristics 

of these devices are listed in table 6.3 and are dis
cussed in the following sections. 

6.3.2 Piezoelectric Actuators 

The direct piezoelectric effect is the creation of an 
electric charge in a material under an applied stress. 
The inverse piezoelectric effect is the production of 
strain-inducing stress as the result of an applied elec
tric field. These effects were originally observed in 
quartz crystals. The material used for deformable 
mirror actuators is lead zirconate titanate, 

 commonly known as PZT. It has a 
strong piezoelectric effect, with a maximum strain, 
A///, more than 0.001. The PZT is made in the 
form of a ceramic that is initially isotropic with ran
domly oriented  To produce piezoelectric 
effects, it must be poled, which is accomplished at a 
temperature of about  by applying a direct cur
rent (DC) electric field to align the dipoles parallel to 
the field. After poling, the piezoelectric deformation 
is linear and bipolar, with hysteresis typically 
between 10% and 20%. 

The key parameter in determining performance is 
the piezoelectric constant  which relates the 
mechanical strain to the applied electric field. The 
strain for an unloaded piezoelectric element is given by 

Table 6.3 Characteristics of Ferroic Actuators 

Material Property Piezoelectric Electrostrictive  

PZT PMN  

Composition      
Maximum strain x 10 -6 1000 1000 2000 
Strain coefficient  = 5x    = 3 x     = 5 x  

Hysteresis, % 10-20 < 1 10-20 
Thermal expansion 

coefficient x  per  2-5 2  
Elastic modulus, x  N  5 12 3 
Density,  kg  7.5 7.3 9.2 
Tensile strength, I06 N  76 
Curie temperature,  200-350 0 370 
Temperature range, °C   - 1 0 to >  

r =  
Dissipation factor, % 3 8 

Typical actuator 
Active element length, mm 20 20 50 

diameter, mm 6 6 6 
Number of layers 130 130 N/A 
Layer thickness,    N/A 
Sensitivity 100   100 nm  25   

Max. drive 150 V 150 V  A 
Typical capacitance,  1 4 N/A 
Force for 10% strain reduction, N 450 700 

N/A, not applicable 
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A/ = length of element x  x electric field 

  (6.1) 

  

where 

/ = length of the element 
V - applied voltage 

To increase the stroke for the same applied voltage, 
the PZT is made in the form of disks of thickness t, 
stacked with alternating polarity as shown in figure 
6.2. The disks are in series mechanically, but are con
nected in parallel electrically so that the same voltage 
is applied across each disk. In this case, the stroke of 
the complete stack of N disks of total length  is 

A typical value of  is 2 x 106 V  which gives 
Az/z = 0.001; that is, the maximum strain for PZT is 
about 1000 parts per million. 

A ceramic material, PZT is made in many shapes 
and sizes, such as slabs, disks, rods, and tubes. A 
disadvantage of PZT is the large voltage required 
to obtain a useful stroke, which for deformable mir
ror actuators is about 4  By using multilayer 
stacks of thin disks with intervening electrodes, as 
mentioned above, the required field can be achieved 
with relatively low voltages. The first actuators made 
in this way employed springs to preload the stack of 
disks, so they were always under compression. This 
arrangement caused gradual dimensional changes or 
"creep." The next step in the development of PZT 

Figure 6.2 Linear actuator using stacked electrodis-
tortive ceramic disks. The disks are in series mechani
cally, but are connected in parallel electrically so that 
the full voltage is applied to each disk. 

actuators was to bond together a number of thin 
disks to form a solid block several centimeters in 
diameter, which was then diced vertically to produce 
an array of separate multilayer actuators. This pro
cedure was a major advance, because the actuators 
could both push and pull the mirror faceplate and 
were under no stress in the null position. In addition, 
the actuators had identical ancestry, because they 
were all formed from the same original set of disks, 
producing good uniformity in terms of sensitivity, 
thermal expansion, and aging. The final step in 
PZT actuator development has been to produce com
pletely monolithic stacks, formed of 100 or more 
layers with integral electrodes, each layer about 150 

 thick, which are fired as a single unit. Typical 
devices are 20 mm long and 6 mm in diameter, pro
ducing a stroke of 15  (unloaded) for an applied 
voltage of 150. 

The response of a PZT actuator is shown in figure 
6.3. A good feature of PZT is its ability to operate 
over a wide temperature range of —25 to +100°C. 
Disadvantages include its relatively high hysteresis 
and the fact that, because it is a poled material, it 
tends to lose sensitivity over time. 

6.3.3 Electrostrictive Actuators 

Electrostriction is a property of all dielectrics, but it 
can only be observed in non-piezoelectric materials. 
It is a second-order effect in which the strain is pro
portional to the square of the applied electric field. 
The electrostriction constant  relates the mechan
ical strain to the applied electric field. The strain for 
an unloaded electrostrictive element of length / is 
given by 

A/ = length of element x m x (electric field)2 

=  

=  (6.4) 

For a multilayer device consisting of  disks of thick
ness  the stroke is 

   (6.5) 

The electrostrictive material lead magnesium niobate, 
 commonly known as  is a 

ferroelectric material in which the large electrostric
tive strain is due to a huge dielectric constant rather 
than to the electrostrictive coupling constant itself. 
The strain response closely tracks the dielectric con
stant as a function of temperature. The Curie tem
perature of PMN is near  At the optimal working 
temperature of around  the material has a sen
sitivity of 375  strain at  maximum 
strain of about 0.1%, hysteresis of less than 1%, and 
thermal expansion of less than 1 ppm per  which 
closely matches that of low expansion glasses. No 
electric poling is necessary, as is the case with PZT, 
making the material inherently stable. These charac-

The value of rf33 is typically in the region of 
5 x  m  The stroke of a piezoelectric actua
tor can be made arbitrarily large by increasing N. 
However, the minimum disk thickness is limited by 
the maximum electric field that can be applied to 
PZT before breakdown occurs. If this field is 

 =  then the maximum strain achievable is 

(6.3) 

(6.2) 
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Figure 6.3 Response of typical PZT 
actuator. 

teristics make PMN almost ideal for deformable mir
ror actuators. 

Multilayer PMN actuators using thin layers that 
are diffusion bonded during the final sintering pro
cess were developed during the 1980s by Litton  
Optical Systems [Ealey and Davis  These actua
tors were used successfully in a series of high-perfor
mance deformable mirrors ranging in size up to 2000 
actuators [Ealey and Washeba 1990]. The actuators 
were built in cylindrical sections about 10 mm in 
length and 4 mm in diameter, each containing 
about 40 layers. A typical longitudinal response func
tion is shown in figure 6.4. The transverse strain is 
about half of the longitudinal value. 

The PMN actuators have two main drawbacks: 
nonlinear response and temperature sensitivity. The 
quadratic relation between strain and applied voltage 
is not a serious problem, especially in closed-loop 
feedback systems, where it affects the loop gain but 
not the null. It is usually handled by biasing the 
operating point to half of the peak input voltage, 
allowing bipolar control signals. The temperature 
sensitivity is a far more serious limitation, as the 
characteristics of PMN change markedly as the oper
ating temperature drops toward the Curie tempera
ture [Blackwood et  1991]. The sensitivity increases 
to a maximum around — 10°C, with a value of about 
twice that at 25°C, and the hysteresis rises to about 
15%. With high-capacitance actuators such as PMN, 
the hysteresis can be minimized by using a charge 
amplifier as a driver. It has been found that placing 
a capacitor in series with the actuator also minimizes 
hysteresis. 

6.3.4  Actuators 

Magnetostriction is the generation of strain in ferro
magnetic materials in response to an applied 
magnetic field; it is the magnetic analog of electro-
striction in dielectric materials. Magnetostriction was 
discovered as a property of nickel in the 1840s and 
magnetostrictive nickel alloys were subsequently used 

Figure 6.4 Typical response of PMN 
actuator. 

as sonar transducers. However, the strain produced 
in these materials is much smaller than that available 
in piezoelectric devices. The discovery of rare earth 
alloys with giant magnetostrictive properties [Clark 
and Belson 1972] has resulted in the development of 
linear actuators with properties suitable for deform
able mirrors. The largest magnetostrictive strains, on 
the order of 1 x 10~2 are produced at cryogenic tem
peratures. Present interest centers on alloys of ter
bium (Tb), dysprosium (Dy), and iron (Fe), known 
as  which produce magnetostrains 
exceeding 1 x  at room temperature, comparable 
with current piezoelectric and electrostrictive devices. 
The unloaded strain, proportional to the square of 
the magnetic field, is given by 

(6.6) 

where 

/ 
 

H 

N 

I 

 

= active length, m 
= magnetostrictive coefficient,  

= magnetic field intensity, oersteds 
= number of turns on field coil 
= current, A 
= linkage distance of coil winding, m 

Prestressing the Terfenol-D with an axial load 
increases the strain. 

The composition of Terfenol-D may be varied to 
obtain different properties. The generic composition 
is  where x is approximately 0.3 and 
y < 2. The behavior of Terfenol-D at room tempera
ture changes when a compressive stress greater than 5 
MPa is applied [Clark et al.  Magnetostriction 
characteristics of Terfenol-D at three compressive 
stresses are shown in figure 6.5 [Clark 1991]. Under 
compression, there are three distinct regions: 

1. At low fields, the levels of magnetization and 
magnetostriction are very small. 

2. As the the field increases, the magnetic moment 
jumps to a region having much higher magne
tostriction, resulting in an abrupt increase in 
the strain. 
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Figure 6.5 Magnetostriction of  at  C at three compressive loads 
[Clark 1991]. 

3. At high fields, the strain becomes quasi-linear. 

As the compressive stress increases, a higher field is 
required to produce a given strain. The highly non
linear characteristics of Terfenol-D in region 2 may 
be used to trigger a large change in strain with a small 
increment of magnetic field. 

Commercial Terfenol-D drive elements are made 
under license by Edge Technologies, Inc., using two 
patented processes. The free-stand zone melt (FSZM) 
technique produces twinned single crystal rods of 3-7 
mm diameter. Grain-oriented rods of 8-50 mm dia
meter are produced by the modified Bridgman 
method. In both processes, the  
growth axis is aligned with the transducer rod axis. 

The construction of a magnetostrictive actuator is 
shown in figure 6.6; typical response curves are 
shown in figure 6.7 [Goodfriend and Shoop 1991]. 
To achieve quasi-linear operation with AC inputs, 
the operating point can be magnetically biased as 
shown, by including permanent magnets in the flux 
return path. 

Terfenol-D actuators have a high energy density 
and produce large forces. The clamped force may be 
estimated from 

(6.7) 

where 

E = elastic modulus (2.5-3.5 x  N  for 
Terfenol-D) 

A = the area of the transducer rod 

Prestressing the actuator with a compression spring 
increases the strain as mentioned above. 

Terfenol-D will operate over a large temperature 
range, from about 0 to 100°C. The magnetostrictive 
constant peaks at about 0°C, dropping off rapidly at 
lower temperatures. It remains fairly constant at tem
peratures up to about  then gradually falls to 
zero at about  The hysteresis of magnetostric
tive devices using Terfenol-D is relatively high, 
around 20%. The temporal frequency response of 
magnetostrictive actuators is limited mainly by the 
resonant frequency of the structure containing the 
magnetic circuit. Typical actuators have a frequency 
response of 0 to 3000 Hz. 

Several types of magneostrictive actuators 
using Terfenol-D are available commercially from 
ETREMA Products, Inc., a subsidiary of Edge 
Technologies, Inc., Ames, Iowa. 

6.3.5 PLZT Actuators 

To achieve the stroke of several micrometers 
needed for compensation of atmospheric turbulence, 
the piezoelectric and electrostrictive actuators 
described above require multiple layers. Multilayer 
actuators are not only difficult to manufacture, but 
also present problems in making reliable electrical 
connections to the electrodes in each stack. The 
space required for these electrical connections in 
deformable mirrors using discrete actuators puts a 
lower limit of about 5 mm on the center-to-center 
distance between multilayer stacks. 
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End caps 

Magnetostrictive rod 

Coil 

Magnetic return path 

Figure 6.6 Construction of a magnetostrictive actua
tor. There are two modes of operation, depending on 
the type of magnetic return path. Magnetostriction is 
a quadratic function, and, with a nonpolarized mag
netic path, the strain is unipolar. The addition of a 
magnetic bias in the return path produces a bipolar 
response. 

It is possible that  mirrors with as 
many as 2500 actuators may be required, in future, 
for adaptive compensation of 8- or  telescopes at 
visible wavelengths. With 5-mm actuator spacing, 
discrete-actuator mirrors of this size would be at 

least 250 mm in diameter and would be extremely 
expensive to assemble and to finish optically. 
Production costs of deformable mirrors could be 
reduced dramatically if microcircuit fabrication tech
niques employing a thin sheet of electrodistortive 
material were used to form the actuators and electro
des. High-density adaptive mirrors with interactuator 
spacings of less than 1 mm should be possible. 

Some preliminary work on an integrated wave-
front corrector device of this type was performed at 

 Optical Systems in the late 1980s, with United 
States Air Force (USAF) funding. It was reported by 

 and Wheeler  The key to high-density 
mirrors is the development of a single-layer actuator 
that can operate at low voltage, preferably less than 
100 V. The material investigated was PLZT, lantha
num-modified lead zirconate titanate. This can be 
tailored to produce many different properties, includ
ing electro-optic, photo-refractive, photostrictive, 
electrostrictive, and piezoelectric, depending on its 
composition and method of processing. Of prime 
interest is the electrostrictive mode in which huge 
strains, on the order of 1%, are achievable. This 
large strain capability is accompanied by large hys
teresis, which approximates a square loop. One way 
of looking at a square hysteresis loop is to consider it 
as an analog memory: the strain stays where it is set 
after the drive voltage is removed until the device is 
charged or discharged by the application of a differ
ent voltage. Thus, in principle, even very large 

a 
a. Non-biased 

actuator 

+2.5 
Current input 

+30 

-30 

Magnetically 
biased actuator 

+2.5 
Current input 

Figure 6.7 Response curves of magnetostrictive actuators. 
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amounts of hysteresis can be handled by an appro
priate electronic driving system. 

The material properties and transfer function for 
one type of PLZT are shown in figure 6.8. The experi
mental integrated wavefront corrector device, 
employing a 10 x 10 array of actuators with a nom
inal layer thickness of 200  achieved a stroke of 3 

 with 300 V applied. Special techniques were 
developed to fabricate this integrated wavefront cor
rector, using a single layer of PLZT material. The 
individual actuators, spaced at 1 mm, were formed 
by cutting a square pattern of microgrooves in the 
layer. The PLZT layer was mounted on a glass inter
connect module containing a two-dimensional array 
of connecting electrodes, which served also as a rigid 
baseplate. A silicon mirror faceplate bonded to the 
top of the PLZT provided the common electrode. 
This fabrication technique is scalable to produce 
large arrays. 

6.4 Discrete-Actuator Deformable 
Mirrors 

6.4.1 Mechanical Design 

The structure of a typical zonal deformable mirror 
using a continuous faceplate is shown in figure 6.9. 
The actuators are mounted on a massive baseplate, 
which is much stiffer than the mirror faceplate. The 
integrity of the baseplate must be maintained over 
the full range of environmental conditions to which 
the deformable mirror is exposed. The actuators are 
usually multilayer stacks  piezoelectric or electro-
strictive ceramic material; these are diffusion-bonded 

Figure 6.9 Construction of a zonal deformable mirror with discrete actua
tors and continuous faceplate. The baseplate is often made of the same 
material as the faceplate to eliminate differential thermal expansion. 
Thrust pads may be machined into the faceplate to control the shape of 
the influence function produced by each actuator. 

-50 0 
Electric Field,  

Figure 6.8 Transfer function of PLZT. 

with  electrodes to which the control vol
tage is applied. Actuators of this type have been 
described in section 6.3. At the top of each actuator 
is a coupling that forms the interface between the 
actuator and the faceplate. The couplings act as flex
ures to accommodate local tilts in the faceplate; the 
contact areas with the faceplate are carefully sized to 
control the influence function of the actuators. In 
some cases, these couplings may be integral with 
the faceplate. 

The faceplate itself is normally made from a 
stable, low-expansion material, such as quartz or 
Corning   The same material is often used 
for both the faceplate and the baseplate, in order to 
match their thermal properties. The faceplate should 
have a high yield strength to minimize creep, and also 
a high tolerance to fatigue to maximize its operating 
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life. Properties of typical faceplate materials are 
shown in table 6.4. 

The mechanical design of a deformable mirror 
involves compromises among many conflicting fac
tors. For example, the facesheet stiffness should be 
high to maintain its shape during polishing, but suffi
ciently low to deflect when pushed or pulled by the 
actuators. The bending stiffness  the actuators 
should be high to keep mechanical resonances well 
above the working bandwidth, but at the same time 
the faceplate must be allowed to tilt smoothly to 
interpolate between adjacent actuators. To resolve 
these  requirements, it is appropriate to 
perform the design process in two steps. To start 
with, analytical models of each component are used 
to establish a first-order design of the deformable 
mirror, and to make the tradeoffs necessary to 
achieve the specified performance. The relation 
between basic physical parameters is immediately 
obvious in analytic expressions, especially when pre
sented graphically, making the process of optimiza
tion direct and intuitive. When the first-order design 
is satisfactory, then a more rigorous analysis can be 
made, using a finite element model, to verify the 
design and perform the fine tuning. The first-order 
design process gives considerable insight into the fac
tors that influence the performance of deformable 
mirrors and will now be outlined. 

The axial stiffness of an actuator is given by 

(6.8) 

where 

A = cross-sectional area of actuator,   

  elastic (Young's) modulus, N m~2 

/ = length of actuator, m 

where  is the moment of inertia of the cross-section, 
which is  for a square actuator and  for a 
round actuator, d being the width or diameter. The 
bending stiffness constrains tilting of the faceplate 
and therefore affects the shape of the influence func
tion of adjoining actuators.  also modifies the lat
eral resonant frequency of the faceplate. 

The deflection of thin plates has been treated in 
the literature and formulas have been derived for 
many cases  and Woinowsky-Krieger 
1959]. Unfortunately, these formulas involve many 
parameters and are cumbersome to use. For first-
order design of deformable mirrors, it has been 
found more convenient to estimate the faceplate stiff
ness and deflection from beam theory, in which the 
effects of the main parameters are more clearly 
expressed. While this is obviously only an approxi
mation, it has been found to yield good correlation 
with results from finite element analysis and actual 
measurements  and Wellman, 1989]. 

The actuator structure can be modeled using two 
cases, as shown in figures  and  which repre
sent the two extreme cases of actuator bending stiff
ness. In figure 6.10, the actuator bending stiffness is 
very large compared with that of the faceplate, which 
is effectively clamped at both of the adjoining actua
tors. The faceplate stiffness in this case is 

Table 6.4 Properties of Faceplate Materials 

Material Elastic Thermal Thermal 
Modulus Density Expansion Conductivity Poisson's 
(N  x  (kg  (x  per°C) (W  per  Ratio 

Aluminum 7.1 2,700 23  0.35 
Beryllium 30    0.05 
Cer-Vit" 9.2 2,490  1.7 0.25 
Copper  8,940  391 0.37 
Glass (Pyrex) 7060 6 2,320 5 0.24 
Molybdenum 32 10,100 5 145 0.32 
Nickel  8,900  5.7 0.34 
Quartz 2,200 0.6 
Silicon 12.4  2.5 150 0.26 
Silicon carbide 33 2,960  105 0.13 
ULE™* 6.8 2,210 0.031  0.17 

 9 2,520  1.6 0.24 

"Cer-Vit, low expansion ceramic/glass. 
 TM 

ULE ultra low expansion fused  Corning  New York, USA. 
'Zerodur, low expansion  Schott Glaswerke, Mainz, Germany. 

(6.10) 

(6.9) 

Maximizing the axial stiffness of the actuators mini
mizes the interactuator coupling and maximizes the 
lateral resonant frequency of the structure. 

The bending stiffness of an actuator clamped at 
one end is given by 



Model 

Figure 6.10 Mirror structure with high transmission 
of actuator stiffness to the faceplate. 

Figure  Mirror structure with low transmission 
of actuator stiffness to the faceplate. 

where 

a = actuator spacing 
E = elastic modulus of faceplate 
/ = moment of inertia of faceplate beam section 

If a force F is applied by the center actuator as 
shown, then the resulting deflection for the clamped 
case is 

where x is the distance measured from the center 
actuator. 

Figure  represents the condition in which the 
actuator bending stiffness is very small compared 
with that of the faceplate; this occurs when flexures 
are used to connect the actuators to the faceplate. 
The condition is modeled by a simply supported 

 beam, for which the stiffness is 

(6.12) 

The influence functions produced in these two cases 
are shown in figure 6.12. Note that in the freely sup
ported case, the deflection goes negative beyond the 
adjoining actuator. It should also be noted that the 
modulus of elasticity and the thickness of the 
plate (represented by the parameters E and / in the 
above equations) affect the magnitude of the deflec
tion, but not its shape. The main factors controlling 
the shape of the influence function are the actuator 
bending stiffness and, to a lesser extent, the size and 
shape of the pusher pad that transfers the actuator 
force to the faceplate. 

In practical  mirrors, the actual shape 
of the faceplate deflection falls in between these two 
models. It is convenient to define a parameter fi to 
specify the ratio of the actuator bending stiffness to 
that of the faceplate. When fi = 1 the actuator bend
ing stiffness is much greater than that of the 

plate, corresponding to the clamped case of figure 
6.10. At the other extreme, the condition fi — 0 cor
responds to zero actuator stiffness, as in figure  
The actual faceplate deflection is then 

(6.14) 

Note that the cubic term is independent of fi. 
Influence functions for several values of fi are 
shown in figure 6.12. 

To determine the stroke capability and the inter-
actuator coupling of the deformable mirror, it is 
necessary to model a section of the faceplate contain
ing the adjacent actuators. A typical case for a square 
array is shown in figure 6.13, which takes into 
account the four nearest neighbors. The stiffness of 
the faceplate  as a function of fi can be determined 
from equation (6.14) by evaluating it for x = 0: 

(6.15) 

The actuator coupling  is defined as the ratio of 
the faceplate deflection at an adjacent actuator,  to 
that of the peak deflection due to the energized actua
tor,  

(6.16) 

The presence of coupling between actuators often 
improves the accuracy with which a random wave-
front can be compensated by a deformable mirror. If 
significant coupling (more than a few percent) exists, 
it must be taken into account in the design of the 
wavefront reconstructor, because it is a potential 
source of instability in the adaptive optics feedback 
loop. 

The peak deflection of the faceplate will always be 
less than the free stroke of the actuators, because of 
the stiffness of the faceplate. The faceplate itself is 

(6.11) 

The resulting deflection for the  case is 

(6.13) 
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Figure  Influence functions of a zonal  mirror with a continuous 
faceplate and discrete actuators. The shape of the influence function depends on 
the parameter p, the ratio of the actuator bending stiffness (as modified by the 
flexure coupling the actuator to the mirror) to the stiffness of the faceplate. The 
faceplate thickness determines the stroke of the mirror, but not the shape of the 
influence function. 

Figure  Faceplate 
deflection model: actuator 
with four nearest neighbors. 

Actuator 
coupling 

Baseplate Actuator Faceplate  Baseplate 
stiffness stiffness  
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supported by the other actuators, the stiffness of 
which must also be taken into account. If the peak 
deflection of the faceplate is  and the equivalent 
stiffness of the faceplate is  then it is necessary for 
the free stroke of the actuators to be 

where 

(6.17) 

(6.18) 

The procedure outlined above enables the prelimin
ary design of a  mirror to be carried out 
and the major parameters established. Before pro
ceeding to the detailed design, it is advisable to verify 
the structural integrity of the design, including the 
stability of the actuators under compressive loading, 
the stresses in the actuators and faceplate, and the 
effect of temperature variations. It is also necessary 
to verify the dynamic properties of the deformable 
mirror, especially the resonant frequency produced 
by lateral bending of the actuators. 

The maximum stress in a beam occurs at the sec
tions having the maximum bending moment and is 
given by 

(6.19) 

where 

M = bending moment 
t = thickness 
/ = moment of inertia of the section 

In a deformable mirror faceplate, the maximum 
bending moment occurs at the actuator locations. 
Modeling the deformable mirror faceplate in one 
dimension as a beam, the maximum bending moment 
for case 1 (clamped) is Fa/4, while for case 2 it is 
Fa/2. Using the factor  the bending moment may 
be expressed in the form 

(6.20) 

(6.21) 

Substituting for M in equation (6.19), and using 
equation (6.15), an expression for the maximum 
stress in the faceplate is obtained: 

(6.22) 

The faceplate stress is therefore directly proportional 
to the faceplate thickness t, for given values of peak 
deflection  and actuator spacing a. The faceplate 
stress is lower for case 2 {fi = 0, actuators with low 
bending stiffness), because of the smaller force 
required to achieve a given deflection. 

The bending moment transferred from the 
plate to the actuators depends directly on the value of 
fi, as can be seen from figures 6.10 through 6.12. 
When ft =  all of the faceplate bending moment is 
transferred. The actuator bending stress is therefore 

(6.23) 

where  is the thickness of the actuator in the plane 
of bending, and the maximum faceplate bending 
moment  is given in equation (6.21). 

The axial stress in the actuators of cross-sectional 
area A is 

(6.24) 

As a final check on the mechanical integrity of the 
actuators, their margin of safety against buckling 
under compressive force should be evaluated. Using 
the  formulas, the safe load depends on the end 
conditions. In a deformable mirror, it is reasonable to 
assume that the lower end of the actuator is fixed and 
the top end is constrained laterally but free to tilt. 
For these conditions, the maximum compressive 
force that the activator will withstand is 

The factor of safety is then 

(6.25) 

(6.26) 

6.4.2 Thermal Considerations 

Temperature variations can produce two kinds of 
problems in deformable mirrors: surface irregularities 
in the faceplate and bending stresses in the actuators. 
The faceplate is usually supported entirely by the 
actuators, so gross thermal expansion of the actua
tors displaces the faceplate as a whole without caus
ing stresses. However, mismatches in the coefficients 
of thermal expansion of individual actuators may 
cause irregularities in the faceplate as a function of 
temperature. These are of concern only if the operat
ing temperature of the deformable mirror varies sig
nificantly from the temperature at which it was 
polished and tested. If this temperature difference is 
AT, and the standard deviation of the actuator tem
perature coefficients is  then the faceplate surface 
irregularity is 

(6.27) meter  

where  is the mean coefficient of thermal expan
sion of the actuators. It is of interest to find the value 
of  necessary to keep the wavefront errors due to 
mirror temperature variations below a specified 
value. In the case of piezoelectric actuators with 

 = 2 x  per °C, / = 20 mm, and AT  10°C, 
the value   = 0.025 is required to achieve a wave-
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front error of 1/25 wave  at ). = 0.5  In other 
words, the temperature coefficients of the actuators 
must be matched to within 2.5% rms. 

A more serious thermal problem in deformable 
mirrors is caused by differences in the coefficients 
of thermal expansion of the baseplate and faceplate, 
which produce bending stresses in the actuators. In 
this case, the relevant temperature range covers not 
only the operating temperature of the mirror, but 
also the temperature cycles used in fabrication and 
coating operations. The relative displacement pro
duced by mismatch of the temperature coefficients is 

AL   ~  (6.28) 

where L is the longest span between actuators. The 
displacement of each of the outermost actuators will 
be AL/2. The maximum stress in these actuators 
caused by temperature will be 

where the bending moment M is given by 

(6.29) 

(6.30) 

Substituting for AL and  the maximum stress is 

(6.31) 

6.4.3 Dynamical Considerations 

The operating bandwidth for deformable mirrors 
used in adaptive optics systems for turbulence com
pensation at visible wavelengths extends up to about 
500 Hz; at  wavelengths, it may be only 100 Hz. 
Servo-system design and implementation are simpli
fied by keeping the natural resonances of mechanical 
devices, such as deformable mirrors and two-axis 
tracking mirrors, much higher than the operating 
bandwidth, a factor of 10 being a desirable goal. To 
keep natural resonances above 1 kHz, the mechanical 
structure of these mirrors must be small and stiff. 

Three vibration modes are of primary interest: 

 The first bending mode of the substrate. The 
stiffness and resonant frequency of the sub
strate are both proportional to its thickness. 
Thick substrates are necessary to provide the 
required stiffness, so there is usually no pro
blem in keeping the natural resonance well 
above the operating frequency. 

2. Interactuator bending modes of the faceplate. 
The natural frequency of the interactuator 
bending mode depends on the interactuator 
spacing, typically about 1 cm, and on the 
plate thickness, typically about 3 mm. These 
values produce resonant frequencies  over 
1 kHz. 

3. The first bending mode of the actuators. This is 
generally the lowest natural resonance in a 

(6.33) 

where p is the mass density of the material. The fun
damental resonant frequency (Hz) of a thin plate is 
given by 

(6.34) 

where 

t - thickness, m 
a = diameter or side of the plate, m 
p = mass density, kg  

E = elastic modulus, N  

v = Poisson's ratio 
B = a constant depending on the plate shape 

and method of support 

Approximate values for the resonant frequencies 
of the baseplate and the faceplate, which are useful in 
the first-order design of a deformable mirror, can be 
determined using equations  In the case 
of the faceplate, the interactuator area can be defined 
as a square of side a (equal to the actuator spacing), 
or as a circle of diameter  The method of sup
port will vary with the location of the area on the 
mirror; near the center it will tend to be clamped at 
all edges, while at the periphery it will be free at one 
or two edges. The lowest resonant frequencies are 
likely to occur in interactuator areas that are partially 
free at the edge. As with all other parameters of the 
deformable mirror, the resonant frequencies pre
dicted by this method should be verified by finite 
element analysis in the final design. 

6.4.4 Optimization of Continuous-Plate 
Deformable Mirrors 

With the large number of parameters and interrela
tionships described above, even the first-order design 
of a continuous-plate deformable mirror appears to 
be a formidable task. The design process is facilitated 
by using tradeoff charts that allow the range of pos
sible values of critical parameters to be established 
quickly. The process of optimization has been out
lined by  and  [1989]. 

The facesheet thickness is one of the most impor
tant design parameters to be established. Starting 

(6.32) 

deformable mirror and consequently drives 
the design.  depends on the actuator stiffness 
and spacing, as well as on the faceplate stiffness 
and geometry. 

The natural resonant frequencies of an actuator in 
the axial and bending modes are given by the follow
ing expressions: 
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with a set of actuator characteristics, a fixed actuator 
spacing, and the material properties of the facesheet, 
a tradeoff chart relating facesheet thickness to other 

 mirror properties may be constructed, as 
shown in figure 6.14. The constrained parameters, in 
this case, are facesheet ripple, facesheet stress, and 
actuator coupling. The facesheet ripple R is the sur
face deformation produced during the final polishing 
operation, by force on the polishing lap. The surface 
deflection produced by a given force may be deter
mined from equation (6.14) and plotted against face-
sheet thickness. Similarly, the facesheet stress 5 for a 
given actuator stroke may be calculated using equa
tion (6.22) and also plotted against facesheet thick
ness. The coupling between adjacent actuators, C, 
depends on the bending stiffness ratio  of the actua
tors to the facesheet. For a given actuator design and 
spacing, it may be determined from equation (6.16) 
and also plotted against facesheet thickness. 

Setting a maximum value  for the facesheet 
ripple establishes a lower limit to the facesheet thick
ness, as shown in figure 6.14. For a given deflection, 
the facesheet stress varies directly with thickness, so 
the allowable stress  establishes an upper limit to 
faceplate thickness. If this value is not at least equal 
to the minimum required to satisfy the ripple speci
fication, then the actuator design or spacing will 
require modification. The final choice of faceplate 
thickness, between these limits, may be based on 
the required actuator coupling C. In practice, several 
iterations of the tradeoff may be required to obtain a 
set of parameters that satisfy all requirements. 

mirror is shown in figure  and a photograph of the 
finished device is shown in figure  

The mirror facesheet is supported entirely by 97 
actuators, spaced at 7 mm, that form an  
square array with the corners removed. The outer 
ring of actuators is used to control the edges of the 
faceplate and is outside the useful aperture of 63 mm 
diameter. The facesheet is of ultralow-expansion 
quartz, with a silver coating. Integral pusher pads 
are machined into the back of the faceplate to pro
vide coupling to the actuators. These pads are care
fully dimensioned to provide the required stiffness for 
control of the influence function. 

The electrostrictive actuators are cylindrical PMN 
ceramic multilayer stacks that are fired to form 
monolithic structures. The actuators are not 
pressively stressed and are bonded to both the base
plate and facesheet, on which they exert a bipolar 
force. The useful actuator stroke is ±2  The base
plate is made of the same material as the faceplate to 
eliminate differential thermal expansion; it is extre
mely stiff to provide the required stability. Actuator 
connections are made with printed circuit cards that 
slide into slots in the baseplate. 

The electrical drivers are an integral part of the 
deformable mirror system. The PMN actuators have 
a quadratic response and are operated with a bias of 
85 V to bring the operating point into the linear 
region of the response. To obtain the required stroke 
of ±2  the actuators are driven with ±35 V, 
which is produced by a driver input of  V. 
Characteristics of the complete wavefront corrector 
are summarized in table 6.5 

6.4.5 Deformable Mirror Performance 

The design procedure outlined in the preceding text 
has been applied to many continuous-facesheet 
deformable mirrors using discrete actuators. An exam
ple is the 97-actuator deformable mirror described by 

 and Kaplan  The construction of this 

6.5 Segmented Mirrors 

 Types of Segmented Mirror 

Segmented mirrors were the first kind of wavefront 
correctors to be developed. The simplest type are 

Actuator 
coupling 

Figure  Optimization of facesheet thickness for a given actuator spacing 
and actuator stroke. 



Actuators 

  

Aperture Mask 

Bezel 

Printed circuit 
cards for 
actuator 
connections 

Housing 

ULE Base 

Electrical 
connector 

Figure  Construction of a discrete actuator deformable mirror [Thorburn 
and Kaplan 1991]. This cross-section shows the relative thicknesses of the face-
sheet and baseplate, and the method of making a large number of connections to 
the actuators, using printed circuit boards (PCBs), which are partially slotted into 
the baseplate between the rows of actuators. 

Figure  Photograph of a 97-actuator deformable mirror [Thorburn and Kaplan 1991]. At the left is the 
optical alignment mask, pierced with 97 holes exactly centered on the actuators. 
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Table 6.5 Characteristics of 97-Actuator Deformable Mirror 

Working aperture 
Actuator spacing 
Stroke (total) 

(adjacent actuators) 
Response uniformity 
Hysteresis 
Interactuator coupling 
Surface figure accuracy 
Surface smoothness 
Reflectivity, 0.5-1.5  
Overall size of mirror package 
Actuator capacitance 
Maximum slew rate 
Small signal bandwidth 
Input voltage range 

63 mm 
7 mm 
4.0  
2.8  
±7% of full stroke 
1.5% of full stroke 

 to nearest neighbor 
   

16 angstrom, rms 
> 0.95 

 cm diameter x 15 cm long 
1  
 V  

>  kHz (complete system) 
±10 V 

known as piston-only correctors, employing one 
actuator per segment to correct the average optical 
phase over each zone. As the wavefront distortions 
due to atmospheric turbulence are smoothly varying 
functions, piston-only correctors inevitably produce 
wavefront discontinuities at the edges of each seg
ment. Because of their crude correction capabilities, 
piston-only segmented mirrors are rarely used in 
adaptive optics today. 

The next step in the development of segmented 
mirrors was to give each segment 3 degrees of free
dom by supporting it on three independent actuators. 
In this way, the segments could be adjusted in tip and 
tilt, as well as absolute phase, resulting in much bet
ter fitting of the wavefront. Step discontinuities at the 
edges are greatly reduced by this means. 

Segmented mirrors were used originally for single-
wavelength applications, primarily in laser systems. 
For this type of operation, in which the coherence 
length of the radiation is many wavelengths, it is 
possible to make phase corrections modulo one 
wavelength, so that a phase error of say, 1.5 waves, 
is compensated with a phase shift of 0.5 wave. This 
strategy reduces the dynamic range required by the 
segmented mirror to ±0.5 wave, irrespective of the 
actual pathlength error, provided that the coherence 
length of the radiation,  is not exceeded. 
Segmented mirrors of this type, for use in monochro
matic light at visible and  wavelengths, 
employ actuators that have a stroke of only 1 or 2 

 

If a deformable mirror of this type is used with 
broadband light, the effect of truncating the stroke is 
to produce a wavefront error proportional to the 
product of the spectral bandwidth and the dynamic 
range of the wavefront. For a wavefront having an 
excursion of n waves rms, the mean-square error due 
to truncation is 

(6.35) 

where 

AX = spectral bandwidth 
X = mean wavelength 

For astronomical imaging, it is essential to com
pensate the full optical pathlength error so that light 
of all wavelengths can be brought to a common 
focus. The peak-to-valley wavefront excursion due 
to atmospheric turbulence is between 4 and 8  
depending on the ratio of  and requires a mirror 
stroke of up to 4  peak to peak. Segmented mir
rors with long-stroke actuators suitable for white-
light compensation have been built, using three 
degrees of freedom per segment. Hulburd et  

 describe a mirror with  square segments 
that uses tubular piezoelectric actuators, each of 
which is split into three independently controlled sec
tions. The mirror, shown in figure  is assembled 
from modules, each containing 4 x 4 or more actua
tors. These modules are removable for repair or 
replacement. An auxiliary figure sensor is required 
to monitor the mirror segments for offsets and drifts, 
which must be removed to achieve a  sur
face. For white-light operation, the figure sensor 
must be capable of measuring the piston errors 
unambiguously, which necessitates a large dynamic 
range. This is achieved by using a two-wavelength 
interferometer, which, in effect, synthesizes a much 
longer wavelength. Because the mirror segments are 
freely supported, the full force of each actuator is 
available to move each segment. The temporal 
response of segmented mirrors is consequently very 
good, the response time of the  mirror to 
a step function being about   

A different type of segmented mirror, developed 
for use in solar adaptive optics, has been described by 
Acton and Smithson [1991]. This mirror, shown in 
figure  employs 19 hexagonal segments, each 
2.8 cm across. Each segment is controlled by three 
piezoelectric actuators, referred to as a triad, 
mounted in a common Invar case. These actuators, 
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Figure 6.17 Photograph of a   mirror [Hulburd 
et  1991]. Each segment is supported on a piezoelectric actuator with 
3 degrees of freedom, giving tip, tilt, and piston adjustments. The overall 
diameter of the mirror is 22 cm. 

made by  Instrumente, Germany, are stabi
lized by strain gauges, giving them a linear response 
with no measurable hysteresis. The temporal 
pass of each segment is 300 Hz at the half-power 
point. The surface of the adaptive mirror is moni
tored with a Michelson white-light interferometer. 
Color fringes occur when  phase errors are present 

on individual segments, enabling phase ambiguities 
to be resolved. 

In the mirrors described in the preceding text, 
each segment is driven by dedicated actuators, 
using three actuators or degrees of freedom per seg
ment. In principle, it is possible to share the actuators 
between several segments, using the triangular or 

Figure  Adaptive mirror with 19 hexagonal segments. This device 
was used in a solar image compensation system [Acton and  
1992]. 
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hexagonal geometry shown in figure 6.19. Each seg
ment is still controlled by three actuators. Using the 
triangular geometry, the number of segments is twice 
the number of interior actuators, while in the hexa
gonal case the number of segments equals the num
ber of interior actuators. In each case, additional 
actuators are required at the periphery  the mirror. 
The wavefront fitting errors are different for each 
configuration. These shared-actuator configurations 
are unsuitable for small wavefront correctors 
because, once the mirror has been assembled, there 
is no way to accommodate variations in segment 
thickness at the actuator locations. 

 Segmented Mirror Characteristics 

Segmented mirrors have two characteristics that are 
different from other wavefront correction devices: 

• The number of actuators (degrees of free
dom) is not necessarily the same as the num
ber of subapertures or zones; consequently, 
wavefront fitting errors depend on the spe
cific segment geometries and methods of 
control. 

• The segments are separated by small gaps. 

Figure  Segment patterns with shared actuators. 
The triangular geometry has twice as many segments 
as interior actuators, while for hexagonal segments 
the number of interior actuators and segments is 
equal. A major problem with shared actuators is 
the difficulty of accommodating variations in seg
ment thickness at the actuator locations. 

where 

 = constant depending on the segment 
geometry and control mode 

d  characteristic size of the segment 

Values of  for some common segmented mirror 
configurations are given in table 6.6. 

Care must be taken when comparing the fitting 
errors of segmented and continuous-plate mirrors. 
The complexity of an adaptive optics system is mea
sured by the number of degrees of freedom (or actua
tors) that have to be controlled. The number of 
segments required to achieve a given fitting error 
may be smaller than the number of actuators 
required to achieve the same performance with a con
tinuous-plate mirror. But if the total number of 
degrees of freedom is compared, continuous-plate 
mirrors are generally more economical. This subject 
is discussed further in section 9.4.5. 

Gaps in a segmented mirror are inevitable. They 
have two effects on the imaging capabilities of the 
system: (1) a direct loss of energy through the gap; 
and (2) a reduction in Strehl ratio due to scattering of 
light by the edges of the segments. When the gap area 
is small compared with the full aperture, there is no 
significant broadening of the central core. The dif
fracted light appears in the form of streaks radiating 
from the core of the image in a geometrical pattern 
corresponding to the segment geometry. The energy 
distribution of the diffraction pattern in the direction 
normal to the length of the crack has the form 

6.5.3 Large Segmented Mirrors 

The comments above relate to small segmented 
mirrors used for adaptive wavefront control. Much 
larger segmented mirrors have been developed for use 
as primary mirrors in astronomical telescopes and 
laser beam directors. Because of the large difference 
in size and mass, the construction and control of 
these large segmented mirrors is markedly different 
from those used in high-speed adaptive mirrors. The 

 Keck telescopes are currently the largest in exis
tence, employing an electromechanical position-
sensing and feedback system to maintain the relative 

(6.37) 

where 

a and b = width and length of the crack, 
respectively 

A = full aperture area 
 =  

For  turbulence, the wavefront fitting 
error variance is given by 

(6.36) 
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Table 6.6 Segmented Mirror Fitting Error 

Configuration Coefficient  rad2 
Actuators per Segment 

Piston only (square segments) 
Piston only (circular segments) 
Piston plus tilt (square segments) 
Piston plus tilt (circular segments) 
Shared actuators (triangular segments) 
Shared actuators (hexagonal segments) 
(Continuous deformable mirror) 

1.26 
1.07 
0.18 
0.14 

0.28 

1 
1 
3 
3 
0.5 
1 
1 

alignment of the 36 segments. The 4-m Large Active 
Mirror Program (LAMP) mirror [Plante, 1991] 
employs seven segments, each of which is mounted 
on a hexapod support structure with fully controlla
ble actuators. In addition, the faceplate of each seg
ment is actively controlled using 50 electromagnetic 
actuators. The purpose of active control on mirrors 
of this size is to maintain the surface figure and not to 
compensate external wavefront errors. 

6.6 Bimorph Mirrors 

 Principle of Operation 

Bimorphs are combinations of two materials, the 
relative sizes of which can be varied with a stimulus 
such as temperature or applied voltage. A distinction 
is made between bimorph actuators and bimorph 
mirrors. Bimorph actuators employ two piezoelectric 
layers, or one piezoelectric and one inert layer, to 
produce a controllable force or large linear displace
ment. They are discrete devices, capable of being used 
in the continuous-plate and segmented mirrors 
described previously. 

Bimorph mirrors are devices in which the mirror 
faceplate itself is a continuous bimorph structure 
consisting of two dissimilar layers, the shapes of 
which can be locally controlled. When piezoelectric 

material is used for one or both of the layers, the 
application of a voltage causes the areas under the 
electrodes to change in size, resulting in spherical 
bending of the faceplate. The deformation is pro
duced by forces within the plate itself, which needs 
only to be simply supported. There is no reaction 
structure and the actuators do not need individual 
adjustment. The construction of bimorph mirrors is 
therefore much simpler than that of discrete-actuator 
mirrors. Individual actuators are formed by a pattern 
of electrodes on the surface of the bimorph. It must 
be kept in mind that bimorph structures are sensitive 
to dimensional changes from all causes, including 
temperature variations and aging. The bimorph 
plate itself must be fabricated with great care to avoid 
such problems. Also, it should be noted that bimorph 
structures cannot assume the shapes of all Zernike 
polynomials without the application of edge gradi
ents. 

The analysis and design of bimorph mirrors is 
complicated by the fact that bimorph structures pro
duce thickness changes in addition to bending, these 
effects being of opposite polarity. The operation of a 
discrete-actuator mirror is compared with that of a 
bimorph structure in figure 6.20. When using 
distortive materials such as PZT or PMN, volume is 
conserved so that dimensional changes in the axial 
(poling) direction are accompanied by compensating 
changes in the lateral directions. With discrete actua
tors, only the axial motion is coupled to the mirror 

Discrete actuators: Only the axial 
deflection is coupled to the facesheet. 

Bimorph structure: Bending and thickness 
changes both deflect the facesheet, but in 
opposite directions. 

Figure 6.20 Comparison of discrete-actuator and bimorph structures. 
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faceplate. The lateral force is transmitted to the base
plate, but, as this is deliberately made very thick, the 
bending is negligible. 

In bimorph mirrors, both the axial and lateral 
strains are coupled to the faceplate. The primary 
deflection mechanism is bending due to differences 
in the lateral strains. In the case shown in figure 
6.20, the top layer has expanded laterally and the 
bottom layer has contracted laterally, resulting in 
the top mirror surface taking convex curvature. 
But, the thickness of the top layer has decreased, so 
that the net change in the position of the mirror sur
face depends on the relative magnitude of the two 
effects. A dominant bending effect can be achieved 
by making the size of the controlling zones (electro
des) much larger than the thickness of the bimorph. 
The spatial resolution is consequently limited, with 
the result that practical bimorph mirrors are 
restricted to fewer than 100 actuators. The spatial 
frequency limitation of bimorph mirrors is discussed 
further in section 6.6.3. 

There are several possible bimorph configurations, 
three of which are shown in figure 6.21. In each case, 
an array of controlling voltages is applied to a pattern 
of electrodes deposited on one of the bimorph ele
ments, using a continuous electrode as the common 
element. The use of two piezoelectric layers has the 
advantage of doubling the sensitivity when they are 
oppositely poled; it also minimizes thermal distor

tions due to a mismatch in the coefficients of thermal 
expansion. Piezoelectric ceramic materials are hard 
and reasonably stable, so they can be optically figured 
and polished in the same way as conventional optical 
materials. In configuration (a) of figure 6.21, the 
piezoelectric elements are oppositely poled and the 
control voltage is applied across both elements in ser
ies. The addressing electrodes are easily accessible at 
the back of the bimorph structure. When a voltage is 
applied, the transverse piezoelectric effect causes one 
layer to expand and the other to contract, producing 
spherical deformation of the plate. 

The applied voltage necessary to achieve a speci
fied deformation can be reduced by using the parallel 
connection shown in configuration (b), in which the 
poling directions are the same for both elements. In 
this case, the addressing electrodes are buried 
between the layers, which may cause problems with 
addressing leads, especially with a large number of 
electrodes. Configuration (c) uses a single piezoelec
tric layer in combination with a passive substrate, 
which can be of the same material in order to mini
mize differences due to temperature and aging. This 
arrangement is sometimes referred to as a unimorph, 
although the second inert layer is essential to its 
operation. A variation of this scheme employs an 
array of separate piezoelectric disks bonded to the 
back of the faceplate in the form of a mosaic. A 
thin continuous conducting film between the sub-

Reflecting coating 
and common electrode 

Two piezo layers, 
oppositely poled 

Addressing electrodes 
on lower surface 

V0 

— Reflecting coating 
and common electrode 

Two piezo layers, 
similarly poled. 

_ Addressing electrodes 
on middle surface 

Common electrode 
on lower surface 

Reflecting coating 

Inert facesheet 

Common electrode 

Piezo elements 

(c) Unimorph 

Figure  Bimorph mirror configurations 

Addressing electrodes 
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strate and the piezoelectric disks acts as a common 
electrode. 

6.6.2  Mirror Characteristics 

The equations describing the electromechanical 
behavior of piezoelectric material [Mason 1950] 
may be stated as 

(6.38) 

(6.39) 

where  and  are the stress and strain tensors, and 
the variables  and D„ are the components of the 
electric field and the electric displacement field, 
respectively. The constants in these equations are 
the mechanical coefficients of elasticity  the piezo
electric constants  and the inverse dielectric per
mittivities,  „, which are all known properties of 
the material. The indices ;' and j run from 1 to 6, 
while the indices m and n represent the three spatial 
directions: 1 being the x direction, 2 the y direction, 
and 3 the z direction. The bimorph is oriented with its 
surfaces in the x,y plane, with z representing the 
direction parallel to the optical axis in which the dis
placements are required. The origin of the z axis 
(z  0) is defined by the boundary surface between 
the two elements of the bimorph. 

The matrix equations (6.38) and (6.39) represent 
nine algebraic equations with  unknowns, so addi
tional relationships are needed to obtain a determi
nate set. The analysis is considerably simplified by 
assuming that the material is mechanically homoge
neous and isotropic in the x,y plane, that the inverse 
dielectric permittivity matrix is diagonal, and that the 
piezoelectric constants are all zero except rfjj,  and 

 with  =  These properties are typical of 
most piezoelectric materials. The first assumption 
implies that most of the elastic constants  are 
zero and that the remaining terms are not indepen
dent of each other. A further simplification is made 
by assuming that the tensile stress in the z direction 

 is zero, because the top and bottom surfaces of 
the bimorph are unconstrained. 

When a voltage is applied to the bimorph in the 
direction of poling, the first element expands in the 
x.y plane and contracts in the z direction, while the 
second element contracts in the x,y plane and 
expands in the z direction. The changes in the x,y 
plane produce bending about the center line of the 
bimorph, while the z-axis changes cause thickness 
variations in the elements. The surface deflection of 
a bimorph mirror is the sum of these two effects, 
which are of opposite polarities. For voltages applied 
over areas with dimensions much greater than the 
thickness of the bimorph, the deflection due to bend
ing is the dominant effect; this is the result intuitively 
expected from a bimorph. But, in the case of voltages 
that are applied over small areas, the change in thick
ness can be the larger effect. Because these effects are 

of opposite polarity, there is obviously an electrode 
size at which the two effects cancel out, setting an 
upper limit to the spatial frequencies that can be 
compensated. 

If the displacement of a point on the middle sur
face of the bimorph caused by bending is  and 
the displacement of a point due to thickness change is 

 then the total displacement can be 
expressed as 

(6.41) 

(6.42) 

Using the piezoelectric equations (6.38) and (6.39), 
Kokorowski [1979] showed that the displacements 
of a bimorph mirror for an applied voltage  are 

Bending effect 

Thickness change 

(6.43) 

(6.44) 

where  is the total thickness of bimorph. 
At the reflecting surface, when z = //2, the thick

ness change becomes 

(6.45) 

In these equations,   a piezoelectric constant given 
by the identity 

(6.46) 

and tf| is a dimensionless constant given by 

where 

b =  

The solution to equation (6.43) may be obtained 
analytically, or numerically using finite element ana
lysis. The analytic expression for surface displace
ment is 

(6.48) 

(6.47) 
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(6.49) 

(6.51) 

The deflection of a piezoelectric  mirror for 
different values of actuator radius is shown in figure 
6.22. 

Bimorph mirrors are able to achieve relatively 
large strokes with low applied voltages, the stroke 
being inversely proportional to the square of the 
thickness. They are also compatible with wavefront 

curvature sensors, because error voltages represent
ing wavefront curvature can be applied to a bimorph 
mirror with a minimum of processing; the basic 
wavefront reconstruction required is performed by 
the bimorph elements themselves. 

However, there are boundary conditions that 
must be satisfied in order to compensate some wave-
front shapes. Low-order aberrations, such as astig
matism (cylindrical curvature) and spherical 
aberration, require the application of edge gradients 
to the bimorph. This can be achieved by making the 
active diameter of the bimorph larger than the optical 
aperture, with additional electrodes to produce the 
edge gradients. Schwartz et  [1994] have pointed 
out that additional computation is required to deter
mine the edge corrections when discrete actuators are 
employed. 

6.6.3 Spatial Frequency Response 

It is of interest to determine the maximum number of 
zones or degrees of freedom that a bimorph mirror 
will support. Because  are continuous struc
tures, it might be thought that the spatial resolution 
is limited only by the number of addressing electrodes 

Radius in millimeters 

' Actuator electrode radius 1 mm 
" " Actuator electrode radius 2 mm 
~ Actuator electrode radius 3 mm 

Figure 6.22 Deflection of a piezoelectric bimorph using circular electro
des. The material is PZT type 1, the total thickness of the two layers is 
1 mm, and the support ring radius is 10 mm. 

For a rotationally symmetrical bimorph system using 
a circular actuator (electrode) of radius  in which   
is the radius of the supporting ring and  is the 
radius of the mirror, the mirror deflection at any 
radius r, caused by bending, is given by 

The mirror deflection due to thickness change is 
(6.50) 
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where  is the Fourier transform of the voltage 
distribution on the mirror electrodes and k =  
where A is the spatial wavelength. Equation (6.52) 
gives the amplitude of the deformation of the mirror 
surface due to a sinusoidal distribution of applied 
voltage. The first term in the expression is associated 
with  bending and is proportional to the 
square of the spatial wavelength. The  term 
is due to thickness changes and is independent of 
spatial wavelength. 

The spatial frequency response of a piezoelectric 
bimorph using type 1 ceramic material is shown in 
figure 6.23. In the first chart, the two terms are 
plotted separately. Note that the bending sensitivity 
depends on both the bimorph thickness and the 
spatial frequency, whereas the thickness sensitivity 
is constant for a given material. As these effects 
are of opposite polarity, the frequency response 
drops to zero when they are equal, as shown in 
the second chart in figure 6.23. For a  
bimorph using the specified material, the two effects 
are equal at a spatial frequency of about 0.5 cycles 
per millimeter, equivalent to a periodic actuator 
spacing of 1.1 mm. To make efficient use of the 
bending effect, it should be at least 10 times greater 
than the thickness variations, suggesting a minimum 
actuator spacing of 1.1  = 3.5 mm. 

The second factor limiting the total number of 
actuators is the aspect ratio of the faceplate. 
Faceplates having a large aspect ratio are difficult 
to polish flat and also have gravity sag problems. 
An aspect ratio of 40 is about the practical limit. 
For a 1-mm-thick faceplate, the number of actua
tors across the diameter is then 40/3.5  giving a 
total for a circular aperture of about 100. 

Bimorph devices, by their very nature, are sensi
tive to differences in the thermal expansion of the 
constituent layers. Ideally, the coefficients of thermal 
expansion of the two layers should either be zero, or 
precisely matched, to eliminate temperature effects. 
The simplest way to meet this goal  to use identical 
materials from the same production batch for the two 
layers. 

6.6.4 Bimorph Mirrors in Practice. 

Bimorph adaptive mirrors with 19 and 37 elements, 
for use in astronomical adaptive optics systems, have 
been built and tested at the National Optical 
Astronomy Observatories, Tucson, Arizona [Forbes 
1989]. The  mirror employs a PZT 
bimorph 23 mm in diameter and 1.0 mm thick, 
with a hexagonal electrode array. The electrodes are 
photodeposited on the PZT using microcircuit tech
nology. The first resonance of the device is at  
kHz, enabling a working bandwidth of 2 kHz. 

Bimorph mirrors for adaptive optics, using  and 
19 actuators, have been developed at Laserdot 
[Gaffard et  1994]. 

6.7 Adaptive Secondary Mirrors 

6.7.1 General Considerations 

Wavefront compensation may be implemented in an 
astronomical telescope by means of an adaptive sec
ondary mirror. An adaptive secondary mirror 
replaces the original fixed secondary mirror, with 
the following benefits: 

 An existing mirror surface is used for the adap
tive corrector, eliminating some of the losses 
associated with the extra components required 
for adaptive optics. 

2. Adaptive secondaries can include a chopping 
capability for background suppression in  
observations. 

3. The secondary mirror is common to all the 
telescope imaging paths, such as Nasmyth, 
Cassegrain, and coude, with the exception of 
prime focus, and therefore makes adaptive 
optics available for most observations. 

4. Adaptive secondary mirrors are an effective 
method of upgrading older instruments with
out major changes to the telescope structure 
and optics. 

There are some disadvantages, including the 
greater weight of an adaptive mirror and the heat 
dissipation of the actuators, which are located, unfor
tunately, in the center of the entrance pupil. This area 
is very sensitive to turbulence, making an effective 
thermal control system essential. A more fundamen
tal disadvantage is that the location of the secondary 
mirror in Cassegrain telescopes is far from a conju
gate image of atmospheric turbulence, resulting in a 
smaller isoplanatic angle than if the corrector were 
placed at an image of the entrance pupil. While this 
reduction is small in most cases, its significance is 
that it denies the possibility of increasing the isopla
natic angle by the use of multiconjugate compensa
tion. 

Adaptive secondary mirrors are usually larger 
than conventional deformable mirrors and present 

that can be applied to the surface. Unfortunately, this 
is not the case with piezoelectric bimorphs. As the 
electrode spacing is reduced, the surface deflection 
due to bending decreases until it becomes comparable 
to that due to thickness changes in the layers, which 
is independent of electrode spacing. As these deflec
tions are of opposite polarity with respect to the 
applied voltage, a point is reached at which the net 
response is zero. 

To determine the spatial frequency properties of a 
bimorph mirror, the Fourier transform of equation 
(6.48) can be found.  [1979] shows that 
this can be expressed as 

(6.52) 



A thickness 0.5  
B thickness 1.0 mm 
C thickness  mm 
D thickness 2.0 mm 

Figure 6.23 Spatial response of bimorph mirrors. The first chart com
pares the bending sensitivity, which increases with spatial period (twice 
actuator spacing), with the thickness change, which remains constant. 
When these are equal, the net sensitivity drops to zero, as shown in the 
second chart. Thin bimorphs have the best spatial frequency response, 
but become increasingly fragile as their aspect ratio increases. 
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 unique design problems. Secondary mirrors 
generally have a diameter of 300-1000 mm, com
pared with the  mm typical of conventional 
deformable mirrors. The interactuator spacing is 
therefore large, leading to problems with ripple in 
faceplate fabrication, as well as a low frequency of 
natural resonance. Also, secondary mirrors have a 
curved faceplate, which can complicate fabrication 
and adjustment. 

Another major difference between adaptive sec
ondaries and conventional deformable mirrors is 
the large overall tilt requirement of the secondary 
mirror for  chopping, which is typically ±10 or 
more arc seconds on the sky, about four times greater 
than that required for turbulence compensation. The 
chopping motion can be implemented by using all of 
the actuators to tilt the faceplate, in which case the 
outer actuators require a stroke of about ±100  
which is very large for piezoelectric and electrostric-
tive actuators. 

Adaptive secondary mirrors must be packaged 
very compactly, with the entire support structure 
and actuator array inside the mirror  
With on-axis telescope designs, the space surround
ing the active area of the secondary mirror must be 
kept clear so as not to obstruct the primary mirror, 
leaving no space for the peripheral actuators nor
mally used for edge control. A possible solution is 
to increase the actuator density toward the edge of 
the mirror. Because of the large amplitude of the 
chopping motion, secondary mirrors require dynamic 
balancing, which necessitates a second set of actua
tors with dummy loads, moving antiphase to the pri
mary actuators. 

6.7.2 Optical Considerations 

There are two conditions for the optical imaging of 
the wavefront corrector in an adaptive optics system. 
The first condition is that the wavefront corrector 
must be imaged onto the wavefront sensor to estab
lish the spatial relationship between the actuators 
and the measurement zones. This is easy to imple
ment, because the optical components involved are 
all fixed within the system. The second condition is 
that the wavefront corrector should be located at a 
plane conjugate to the center of turbulence, in order 
to maximize the isoplanatic angle. If all turbulence 
were concentrated in a single layer conjugate to the 
deformable mirror, then the isoplanatic angle would 
be unlimited. In such a case, it would be an enormous 
advantage to have the wavefront compensator at the 
correct location. In practice, turbulence is distributed 
throughout the propagation path and a compromise 
is necessary when using a single corrector. 

Conventionally, the wavefront corrector is located 
near or at a conjugate image of the entrance pupil of 
the telescope, which is usually the primary mirror. 
This is the optimum location if most of the turbu
lence occurs at low levels. The definition of isoplana

tic angle  (section 3.7) implicitly assumes that the 
wavefront corrector is located at the telescope aper
ture, or at a plane conjugate to it. 

The effect of varying the position of the wavefront 
corrector on the isoplanatic angle was addressed in 
section 2.5.2, in which the effective isoplanatic angle 

 was determined as a function of the displacement 
of the corrector from the pupil. This relation is 
shown in figure  For a Cassegrain telescope, 
the effective isoplanatic angle  is slightly less than 

 while for a Gregorian telescope it is slightly more. 
The use of an adaptive secondary mirror does 
not significantly change the isoplanatic angle from 
its basic value  but neither does it allow the large 
increase that is possible by optimal conjugate 
imaging. 

6.7.3 Current Designs 

Adaptive secondary mirrors are being studied for 
possible use in new 8-m telescopes, such as the 
Large Binocular Telescope (LBT) and the Gemini 
Telescopes. In addition, active secondary mirrors 
with fast-steering (tip-tilt) capability are planned for 
upgrading the performance of the United Kingdom 
Infrared Telescope   and the 
University of Hawaii (UH) 2.2-m telescopes. 

The adaptive secondary mirror for the LBT 
[Salinari et  1993] will have active, adaptive, and 
chopping capabilities. A Gregorian configuration 
has been studied, with a secondary-mirror diameter 
of about 800 mm. The adaptive mirror structure is 
attached to the secondary mounting flange by a 
hexapod support. A substrate of low-thermal-expan
sion material provides the basic shape reference, to 
which the thin meniscus faceplate is attached, using 
about 400 actuators in a triangular pattern. The 
faceplate thickness is only 2  and it is laterally 
stabilized to the substrate by means of a flexure in 
the center. The actuators are electromagnetic voice 
coils, each having a capacitive position sensor. The 
mirror can be used in the active mode (without the 
real-time wavefront sensor) to compensate static 
aberrations in the optical path of the telescope. 
The fitting error of this mirror in the adaptive 
mode has been modeled with simulated wavefronts 
corresponding to  = 13 cm at A =  The 
average residual error of 74  for the mirror 
alone corresponds to Strehl ratios of 0.64 at 
 = 0.7  and 0.95 at  = 2.2  Dynamical ana

lysis showed that faceplate resonances were above 1 
kHz, with the lowest mode occurring between adja
cent actuators (the "quilting" mode), which have 
the relatively large spacing of 38 mm. 

A study performed for the Gemini Telescopes 
[Bigelow et al. 1993] adopted a different approach 
for the  secondary mirror, combining 
adaptive wavefront compensation at IR wavelengths 
with a vibration-balanced chopping capability. The 
proposed mirror employs a thicker faceplate (10 mm) 
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with magnetostrictive  actuators, which 
combine a long stroke capability with high mechan
ical stiffness. In both the LBT and Gemini designs, 
chopping motion is implemented using the adaptive 
actuators to rotate a thin faceplate as a rigid body 
about its center of gravity. 

Real-time compensation of wavefront tilt 
 variations) and defocus can be accom

plished with only three actuators, which can also 
serve as the chopping drivers in a secondary mirror. 
This approach has been taken in new secondary mir
rors designed for the UKIRT 3.8-m and UH 2.2-m 
telescopes. For this application, the faceplate is inher
ently stiff and is driven by three piezoelectric actua
tors with an operating  of about 250 Hz. 
Compensation for the angular momentum of the mir
ror, which is particularly important in the chopping 
mode because of its large amplitude, is performed by 
a second set of three actuators driving a balance mass 
in the opposite direction. The larger and slower 
motions in 5 degrees of freedom required for collima-
tion and focus are implemented by a hexapod sup
port. 

6.8 Membrane Mirrors 

6.8.1 Basic Principles 

Membrane mirrors represent an extreme case of 
deformable thin plate mirrors; the membrane itself 
has no inherent stiffness, so that tension must be 
applied to maintain a flat surface. Very small forces 
are required to displace a membrane, and deflection 
is usually achieved without physical contact, using 
electrostatic actuators. All membrane devices require 
rigid support at their periphery. Membrane mirrors 
developed for adaptive optics employ one large mem
brane spanning the full aperture, supported only at 
the edge in the same way as a pellicle. Their purpose 
and characteristics are different from those of mem
brane light modulators, which are used to control the 
spatial distribution of light on a pixel-by-pixel basis. 
Modulation devices have a rigid substrate that is phy
sically divided into discrete cells or pixels, which are 
individually deflected. There is purposely no overlap 
between individual cells, so that smooth overall 

 cannot be produced. A large-amplitude 
ripple at the pixel spacing is always present because 
the mirror surface is pinned between actuators. The 
maximum deflection achievable is limited to that of a 
single cell. 

These limitations are not encountered in all mod
ulation devices. A solid-state deformable mirror 
device (DMD) has been developed by Texas 
Instruments. Tiny silicon mirror elements less than 
100  are deflected electrostatically by integrated 
electronic circuits. In some respects, the DMD is a 
miniature segmented mirror, and could possibly be 

These equations enable the shape of the mem
brane to be determined for circularly symmetrical 
cases. Note that these equations are similar to those 
for a bimorph mirror. 

Two basic electrode configurations used in elec
trostatically driven membrane mirrors are depicted 
in  6.24. The simplest arrangement, shown in 
figure 6.24(a), employs an array of fixed electrodes in 
close proximity to the membrane. A fixed bias, 
usually several hundred volts, is maintained between 
the membrane and the mean voltage on the electro-

used for correction of high-order wavefront errors, in 
conjunction with a separate, low-order corrector. 

In contrast to optical modulation devices, the full-
aperture membrane mirrors used in adaptive optics 
wavefront correctors can be deformed into very 
smooth shapes with large amplitudes, and are there
fore well suited to compensate the low-order compo
nents of wavefronts distorted by atmospheric 
turbulence. 

The equation of motion of an ideal membrane 
with no viscous damping, when an external stress 
F(r, t) is applied, is [Yellin 1976, Grosso and Yellin 
1977] 

(6.53) 

where 

z = displacement normal to membrane, m 
 = time, s 

 = membrane linear tension (stress x 
thickness), N   

B = membrane mass per unit area (density x 
thickness), kg   

  two-dimensional Laplacian operator 
P = pressure, N  (Pa) 

At a temporal frequency  the equation of motion 
may be written in the form 

(6.54) 

(6.55) 

The steady state deflection  = 0) is 

This relation defines the basic property of a mem
brane: to produce a given deflection, z, the pressure 
applied must be proportional to the Laplacian of the 
deflection. 

For a membrane of radius  the deflection at 
radius r produced by the pressure F applied by a 
central actuator of radius  is given by 

(6.56) 

(6.57) 
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Figure 6.24 Membrane mirror electrode configurations. 

des. The most convenient way to achieve this is to 
make the mean electrode voltage zero and to apply 
the bias to the membrane. Bipolar control voltages 
applied to the electrodes produce local changes in the 
electric field that change the pressure exerted on the 
membrane. 

The pressure produced by an electric field between 
two flat electrodes is 

(6.58) 

where 

 = permittivity, 8.85 x  F  , 
V = applied voltage 
d = separation of the electrodes 

In the arrangement of figure 6.24(a), there is a con
stant force on the membrane because of the bias vol
tage, resulting in a parabolic mirror surface. When a 
signal voltage  is applied to an electrode, the local 
pressure on the membrane changes by an amount AP 
given by 

(6.59) 

The pressure on the membrane, and therefore its 
deflection, is directly proportional to the product of 
the bias voltage  and the signal voltage  so the 
sensitivity of the device can be increased by using a 
large bias voltage. The limit is set by the incidence of 

ionization in the gap, which causes corona, and ulti
mately electrical breakdown. Bias voltages of 250-
500 have been used in prototype units. The deflection 
of the membrane for a given signal voltage  can 
then be determined by substituting  for P in equa
tions (6.56) and (6.57). 

The second electrode configuration, shown in 
figure 6.24(b), is the balanced field system in 
which a transparent layer that functions as a bias 
electrode is located above the reflecting membrane. 
The membrane is normally grounded and a bias 
potential  (usually several hundred volts) is 
applied to both the window and the actuator elec
trodes. When the control signals are zero, the 
forces on each side of the membrane are equal, 
resulting in a flat mirror surface. To deflect the 
mirror, control voltages are superimposed on the 
bias on each actuator, resulting in  actuator 
voltages of  The electrostatic forces on 
the membrane are therefore locally unbalanced 
and it moves to restore equilibrium. 

For this configuration, the net pressure exerted by 
an actuator on the membrane is 

(6.60) 

where  and  are the electrode spacings. When 
     =  this expression reduces to 

equation (6.59). 
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It is necessary to keep membrane resonant frequen
cies well above the operating bandwidth, which, for 
some adaptive optics systems, can extend up to 1 
kHz. Apart from using as small a diameter as possi
ble, it is necessary for membrane materials to have 
high tensile strength and low density, in order to 
maximize the value of  Although the mem
brane thickness does not explicitly appear in equa
tion (6.61), it is desirable to keep it as small as 
possible to minimize the tension that must be applied 
to the membrane. 

Membranes suitable for use in deformable mirrors 
have been fabricated from many different materials, 
including titanium, titanium alloys, nickel, beryllium, 
molybdenum, and silicon. Non-metallic membranes 
have been made using nitrocellulose and Mylar™. 
Metal membranes are produced by evaporating the 
material onto a polished flat substrate in a vacuum 
chamber and subsequently floating it off, as 
described by Yellin [1976]. The thickness of metal 
membranes is typically about 1  and for nitrocel
lulose it is about 5  In most cases, a high-effi
ciency reflective coating is added. 

6.8.3 Practical Considerations 

Many experimental membrane mirrors have been 
built in the last 25 years, but they have yet to be 
accepted for use in astronomical adaptive optics. 
There are several reasons for this, the most obvious 
being the fragile nature of the membranes and the 
difficulty of damping out unwanted vibrations. 
Damping is accomplished by adjusting the air pres
sure (density) surrounding the membrane. This 
requires a sealed mirror cavity with a window, adding 
two more optical surfaces. At atmospheric pressure, 
membranes are sluggish. Critical damping requires 
pressures of only about 20 mm Hg. 

While metal membranes can achieve high reso
nance frequencies of several kilohertz because of 
their high strength, they are expensive to make. 
Nitrocellulose and plastic membranes are much 
cheaper, but have much lower resonant frequencies. 

A prototype membrane mirror designed for the 
Subaru 8-m Telescope has been described by 

 and  [1994]. It uses the biased field con
figuration shown in figure 6.24(a). The membrane is 

 nitrocellulose, 50 mm in diameter. The 
working area is 25 mm2 with a 5 x 5 array of actua
tors. A bias voltage of 500 is used, which curves the 

membrane. The optical curvature is compensated by 
using a plano-convex lens as the window. The control 
voltages are ±200. With the membrane cavity evac
uated, strong resonances occur at 1.6 and 3.8 kHz. 
These resonances are suppressed by introducing  
torr of air pressure, resulting in a flat frequency 
response up to 3.3 kHz. 

A membrane deformable mirror has been devel
oped at Johns Hopkins University as part of their 
adaptive optics program [Clampin et  1991]. This 
device has an active diameter of 37 mm, with 61 
central and 30 boundary actuators. The operating 
voltage is 200 ± 100V, giving a stroke of ±3  
with 1 KHz bandwidth. 

6.9 Refractive Wavefront Correctors 

 Types of Refractive Corrector 

Refractive wavefront correctors are devices in which 
the refractive index or optical retardation can be var
ied in response to a stimulus, such as applied voltage. 
Refractive devices in which the optical pathlength is 
controlled by rigid body motions are covered in sec
tion 6.10. 

Several materials, both crystalline and liquid, 
exhibit birefringence as a result of their molecular 
structure. When light passes through such materials, 
it is split into two orthogonally polarized compo
nents, known as the ordinary and extraordinary 
rays, which have different indices of refraction. 
Electro-optic materials have the capability of chan
ging their index of refraction by the application of an 
electric field. Such devices, including bismuth silicon 
oxide crystals and liquid crystals, are used as light 
valves or image display devices by sandwiching 
them between crossed polarizers so that, normally, 
the light is blocked. Application of a voltage across 
the crystal changes the extraordinary refractive 
index, which rotates the plane of polarization in the 
crystal, allowing light to pass through. The change in 
the refractive index generates optical pathlength 
changes that can be used to compensate for atmo
spheric turbulence. 

6.9.2 Liquid Crystal Correctors 

Liquid crystals are materials that have an intermedi
ate phase between crystalline and liquid, retaining 
some of the ordered characteristics of the crystalline 
state, while having the flow properties of a liquid. In 
liquid crystals, the ordering occurs in one or two 
dimensions, rather than the three-dimensional order
ing that is characteristic of solid crystals. This inter
mediate state is known as the  and occurs 
because the liquid crystal molecules, which are 
like with a length-to-width ratio of more than 3:1, are 
polarized in such a way that the intermolecular forces 

(6.61) 

6.8.2 Membrane Characteristics 

Membranes for deformable mirrors must be optically 
flat, be capable of taking a high reflectivity coating, 
and have a high resonant frequency. The lowest reso
nant frequency (the drumhead mode) for a circular 
membrane of diameter D is given by 
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keep them aligned in one direction, called the direc
tor. At high temperatures, liquid crystals lose all 
order and become ordinary liquids. 

Liquid crystals are classified as nematic,  
or  Nematic crystals have molecules that 
line up in one dimension but are randomly ordered in 
the other two. Smectic crystals have molecules that 
line up in a single direction, in well-defined rows. 
Cholesteric crystals are made up of layers, each con
sisting of parallel molecules, with successive layers 
rotated so that the molecules have a spiral configura
tion. A key property of liquid crystals is that the 
molecular structure in the mesophase is changed 
when an electric field is applied, producing a change 
in the index of refraction. In nematic crystals, the 
index in the direction of the extraordinary ray can 
be varied between the ordinary value,  and the 
extraordinary value,  The difference between 
these values is the birefringence, An. 

Certain types of nematic liquid crystals exhibit 
large changes in refractive index for quite low applied 
voltages, with typical values of An being between 0.1 
and 0.2 [Wu 1987]. With a cell thickness of 100  
this produces an optical path change of   
peak to peak, which is sufficient to compensate atmo
spheric turbulence in telescopes of the 8-m class, 
assuming that the overall tilt component is removed 
separately. Liquid crystals have many desirable fea
tures, such as small size (1-5 cm), high spatial resolu
tion (electrode size can be as small as 10  low-
voltage operation (25 V), no moving parts, and low 

 
The construction of a typical liquid crystal cell is 

shown in figure 6.25(a). When used for wavefront 
compensation, the correction zones are defined by 
an array of transparent electrodes deposited on the 
windows of the cell. Each correction zone produces a 
local change in optical pathlength, acting as a piston 
corrector. Liquid crystals are not well suited to pro
duce overall wavefront tilts, but may be combined 
with a tip-tilt mirror to form a complete compensa
tion system. This can be accomplished by mounting 
the liquid crystal directly on the mirror surface so 
that it operates in the double-pass mode. 

The refractive index change is obtained for only 
one axis of polarization, that of the extraordinary 
ray. The initial orientation of nematic liquid crystals 
(which determines the polarization axis) is controlled 
by surface treatment of the sides of the cell. 
Microscopic grooves in the surface cause the mole
cules to line up in the direction of the grooves. There 
are two methods of operating with unpolarized light: 
either using two liquid crystal cells in series, oriented 
with their extraordinary axes at 90°, or using a single 
cell with a flat mirror in double-pass configuration, as 
shown in figure 6.25(b). For double-pass operation, a 
1/4 wave plate is inserted between the cell and the 
mirror to rotate the plane of polarization of the 
reflected beam by 90° [Love 1993]. Each polarization 
then experiences one passage through the cell. 

While liquid crystals appear to have great poten
tial for wavefront correction, two technical issues 
must be addressed before they can be seriously con
sidered for use in astronomical adaptive optics. The 
first issue concerns the spectral transmission and dis
persion of liquid crystals, which determine the spec
tral bands over which they may be used. The second 
issue concerns the response time, specifically whether 
liquid crystals can be made to operate fast enough for 
real-time wavefront compensation. These aspects 
have been studied by a group at the Osservatorio 
Astrofisico di Arcentri, Firenze, Italy [Bonaccini et 

  Esposito et  1993], with encouraging 
results that will be briefly summarized. 

6.9.3 Properties of Liquid Crystals 

For any wavefront correction device in adaptive 
optics, the essential properties to be established are 
the dynamic range, the spectral range, and the tem
poral response. The basic property of liquid crystals 
is the birefringence, An =  —  the difference 
between the refractive index of the extraordinary 
and ordinary rays. In the visible and  regions, 
Wu [1987] has determined that the birefringence at 
wavelength X may be expressed as 

(6.62) 

where 

G = parameter dependent on the properties of 
the liquid crystal 

T = temperature 
 = mean resonance wavelength (which is in the 

ultraviolet region) 

At visible wavelengths, when X >  the above 
expression reduces to Cauchy's formula: 

(6.63) 

g = a constant independent of the liquid crystal 
material 

N = number of molecules per volume 
Z = average number of active electrons per 

liquid crystal molecule 
S = order parameter of the liquid crystal 

 = differential oscillator strength 
at the mean resonance 
wavelength  (which is 
usually around 300  

The value of Z is linearly proportional to the electric 
field. The values of G and  can be determined 
experimentally by measuring the birefringence at 
two or more specific visible wavelengths. With this 

(6.64) 
where 

The parameter G, which is temperature-dependent, is 
given by 
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Figure 6.25 Liquid crystal (LC) wavefront compensators. 

information, the value of An can then be calculated 
at other wavelengths using equation (6.62). At 1R 
wavelengths, when X >>  the birefringence An is 
given by  and is essentially independent of/.. The 
birefringence of several liquid crystals is shown as a 
function of wavelength in figure 6.26. It is seen that 
the birefringence is almost constant above 2  but 
that considerable dispersion is present at wavelengths 
below about 1  

The value of An is not necessarily constant along 
the ray path through a liquid crystal cell, as the mole

cules become aligned parallel to the windows at the 
two boundaries. The molecule tilt distribution across 
the cell can be calculated as a function of position 
and applied voltage, and, from this, the function 
An(z) is calculated. The dynamic range or effective 
stroke of the cell is then given by 

(6.65) 
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Figure 6.26 Birefringence of three  liquid crystals, as a function of wavelength. 

where L is the thickness of the cell. An approximate 
value for S is given by L An. For the liquid crystal ZLI 

 at a wavelength of 1.25  the value of An is 
0.127. Using a  cell in double pass, the 
effective stroke is approximately 13  peak to 
peak, which is more than adequate to compensate an 
8-m telescope. Equation (6.62) indicates that An 
increases at shorter wavelengths, leading to the hope 
that liquid crystals could be used for adaptive optics at 
visible wavelengths. Unfortunately, this is only possi
ble over narrow spectral bands, because of dispersion. 

The spectral bandwidth over which liquid crys
tals are useful for wavefront compensation is deter
mined by the variations of the refractive indices   

and  with wavelength. First, it is necessary to 
specify the center wavelength  and the maximum 
wavefront correction error that can be tolerated at 
the edges of the spectral band. If this error is, say, 
±0.1 wave, then the maximum  error is 

  and the corresponding change in refractive 
index is   The spectral range enclosing this 
allowable dispersion can then be read off the curve. 
For the liquid crystal material Merck ZLI 2772, 
Bonaccini et  [1990] report that a center 
length of 2.3  provides a correction capability 
over the range   The slope of the refrac
tive index curves becomes steeper at shorter 
lengths, showing that the spectral ranges for a given 
dispersion error get narrower as the visible band is 
approached. 

The spectral transmission of a liquid crystal cell 
depends on the window and electrode materials, as 

well as on the liquid crystal itself. In general, cell 
thicknesses are less than 0.1 mm and the nematic 
liquid crystal compounds are highly transparent in 
the visible and  as far as 25  However, each 
material has specific absorption bands because of 
molecular resonances. For the electrodes, indium 
tin oxide conductive coatings of about  
thickness have good transparency over the visible 
and  bands. The resistance of 2000 ohms 
per square is satisfactory, given the very low current 
required. 

The response time of liquid crystals is the para
meter that needs the most attention, especially the 
decay time, which is normally three to four times 
longer than the rise time. Bonaccini et al. [1990] 
derive the following expressions for the rise time   

and fall time  

(6.66) 

(6.67) 

= viscosity 
= cell thickness 
= dielectric anisotropy at frequency  of the 

applied electric field 
= applied voltage 
= splay elastic coefficient 

where 
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The rise and fall (decay) times are both dependent on 
the cell thickness d and the elastic coefficient   and 
are damped by the viscosity  The rise time has an 
additional term in the denominator proportional to 
the applied voltage, which must overcome the elastic 
force to turn the cell on. This driving term is several 
times larger than the elastic term, resulting in a rise 
time of a few milliseconds. But the fall time has only 
the elastic coefficient in the denominator, resulting in 
a much slower decay. 

Equations (6.66) and (6.67) appear to be convey
ing bad news. The rise and fall times  and  both 
depend directly on cell thickness  the stroke also 
depends on d, so it does not seem possible to get 
both a fast response and a large stroke from a liquid 
crystal. Fortunately, there is a method of driving 
liquid crystals that will circumvent this problem. 

The decay time problem can be solved using the 
dual-frequency effect, which exploits the fact that in 
some nematic liquid crystal mixtures, the dielectric 
anisotropy Ae reverses its sign above a threshold fre
quency,  which is usually around 10 kHz. This sign 
reversal causes the electric field to align the molecules 
orthogonally to its direction, so that it acts as a restor
ing force. This technique is implemented, in practice, 
by driving the cell with two sinusoids, at frequencies 
above and below the threshold frequency  The 
amplitude ratio of the sinusoids then determines the 
actual tilt angle  of the molecules, which controls the 
phase shift of the device. Equal rise and fall times have 
been obtained using this approach, with a slew rate of 
about 20   [Bonaccini et  1991]. 

The temporal response of liquid crystal wavefront 
correctors may be further improved by using a 
closed-loop servo with capacitive feedback to drive 
the individual zones. The capacitance of each zone is 
directly proportional to the optical path difference 
produced in the cell. A high-gain local feedback 
loop using this capacitance as a sensing element can 
therefore be used to improve the response time of the 
device. 

Although much work remains to be done on 
developing liquid crystals for use as wavefront cor
rectors, the results so far are positive. In view of the 
potential advantages of such devices in terms of high 
spatial resolution and low cost, it is hoped that prac
tical devices will become available in the near future. 

 Tracking Mirrors 

 Requirements 

Compensation of overall wavefront tilt, or the angle 
of arrival, is the simplest type of adaptive optics, and 
it has been used in astronomical telescopes since the 
1950s. One of the first tilt correctors employed a 

 quartz plate, tilted on two axes by small 
servomotors, to maintain the image of a star on the 
jaws of a spectrograph slit [Babcock et al. 1956]. Most 

tilt correctors in use today use flat mirrors that are 
mechanically tilted by electromagnetic or piezoelec
tric actuators. The temporal bandwidth required to 
compensate wavefront tilt is on the order of 100 Hz, 
but the mechanical resonances must be much higher, 
so the physical size of these devices is relatively small, 
the aperture usually being less than 10 cm. 

The main performance requirements to be speci
fied for astronomical tracking mirrors are: 

 maximum tilt or travel, 
2. servo bandwidth or slew rate, 
3. optical quality, 
4. positioning accuracy (open loop), 
5. angular resolution (precision), 
6. tracking accuracy (closed loop), 
7. jitter or noise level, 
8. mechanical envelope, 
9. external reaction forces. 

The angular tilt error due to atmospheric turbu
lence is determined by the  ratio of the telescope. 
The single-axis mean-square angular tilt in radians 
squared, over an aperture of diameter D, is given by 

where  is the turbulence coherence length at 
length  The tilt angle is actually independent of 
wavelength, because  varies as  . When an optical 
beam is reduced in diameter, the pathlength errors 
are unchanged, with the result that tilt angles are 
magnified by the ratio  where d is the diameter 
of the tilt correction mirror. 

The peak angular excursion of the wavefront may 
be estimated using 2.5 standard deviations, which is 
exceeded only 0.5% of the time with Gaussian statis
tics. The peak-to-peak mechanical tilt requirement 
for the tracking mirror is half of this value, being 
equal to 

In the case of a 4-m telescope with  equal to 0.1 
 at X — 0.5  the overall tilt angle at the primary 

mirror has a standard deviation of 0.24 arc seconds 
 The peak-to-peak correction capability required 

for a tracking mirror of 0.1 m diameter is then ±12 
arc seconds. 

 Types of Tracking Mirror 

Typical drive systems for two-axis mirrors are shown 
schematically in figure 6.27. In each case, the sub
strate is supported by three flexures that constrain 
it mechanically, while allowing small angles of tilt. 
The stiffness of the flexures is much less than that 
of the substrate, to avoid distorting the structure. 
The faceplate support must be designed carefully to 
avoid transmitting any strain from the substrate to 
the mirror surface. 

(6.69) 

(6.68) 
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Actuators and flexures 

(a) Fixed pivot with two peripheral actuators. 

(b) Three equispaced actuators 

Figure 6.27 Drive systems for two-axis mirrors. 

It is usually necessary to eliminate axial displace
ment of the mirror surface caused by tilt. In the first 
scheme, this requirement is achieved by placing a 
fixed pivot flexure at the center of the aperture, 
with two actuators located 90° apart. This arrange
ment is easy to implement, but it is mechanically 
unsymmetrical and it produces undesirable coupling 
between the actuators. The second scheme employs 
three identical actuators, symmetrically located at 
120° spacing. It is more stable mechanically than 
the first scheme. All three actuators are driven, 
requiring a coordinate transformation of orthogonal 
tilt-correction signals. In some cases, it is necessary to 
eliminate the angular momentum produced by a 
tracking mirror. This is done by adding a counter
balance mass which is driven antiphase to the mirror, 
as shown in figure 6.28. 

Tracking mirrors usually employ linear actuators, 
which may be electromagnetic, piezoelectric, or 

netostrictive. These devices have been described in 
section 6.3. The largest strokes are obtained with 
electromagnetic and magnetostrictive actuators, but 
current must be supplied to maintain the deflection, 
leading to heat dissipation in the coil windings. 
Piezoelectric and electrostrictive actuators are capa-
citive devices, with small internal losses. Although a 
large electric current may be required to change the 
voltage across the actuators, the power dissipation 
within electrodistortive devices is usually small at 
the frequencies used for wavefront tilt correction. 
An alternative drive system employs a  
which, for the small angles required, may also be 
implemented with flexures. 

Magnetic suspension has some potential advan
tages in mirrors for astronomical applications. By 
eliminating mechanical flexures, such mirrors are 
given the freedom to move in three dimensions, a 
useful capability for telescope secondaries. The 
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Figure 6.28 Tip-tilt mirror with compensation for angular momentum. 

servo systems required for magnetic suspension are 
considerably more complex than those employed in 
mechanically constrained mirrors [Medbury and 
Gupta,  

One of the main problems in designing fast track
ing mirrors is to get the natural resonance of the 
structure well above the operating bandwidth, prefer
ably greater than 1 kHz. This requires minimizing the 
moving mass and using a stiff support system. In 
general, higher bandwidth devices consume more 
power. Position sensors are often required to provide 
real-time monitoring of the mirror angle and also to 
provide dynamic feedback to the servo. Eddy current 
sensors are suitable for this purpose. 

Several types of piezoelectric tracking mirrors sui
table for astronomical adaptive optics have been 
described by Marth et  [1991]. 

6.11 Dirigible Optics 

 General Description 

Dirigible optics are rigid optical components that are 
steered or moved in real time to compensate wave-
front distortions. Their wavefront correction capabil
ity is generally limited to low-order modes, such as 
tilt, defocus, astigmatism, and coma. A tip-tilt mirror 
may be considered an elementary device of this type, 
but the term is intended to describe powered compo
nents, both lenses and mirrors, that may be physi
cally moved in  of their six possible degrees of 
freedom. Components with optical power, such as 
curved mirrors and lenses, are moved laterally to 
compensate wavefront tilt, and displaced axially to 
correct defocus. Higher order corrections can be 
obtained by tilting these components with respect 

to the optical axis, as described by Hardy and 
Wallner [1994]. 

There are several advantages in using rigid com
ponents to compensate low-order aberrations. The 
optical elements employed are small (typically less 
than 100 mm in diameter), intrinsically stable, and 
they are routinely manufactured to a high degree of 
perfection. In many cases, inexpensive off-the-shelf 
components can be used. Each component spans 
the entire beam collected by the telescope (at a 
reduced pupil diameter), so that wavefront phase cor
rections are implemented in a smooth and predictable 
way over the whole aperture. This approach comple
tely eliminates the local irregularities that can occur 
in zonal wavefront compensation devices, such as the 
actuator footprints that are found in some 

 mirrors and the gaps that scatter light in segmen
ted mirrors. Another practical advantage of dirigible 
optics is that the wavefront changes produced by 
displacing the elements are differential rather than 
absolute, so the stability requirements are less strin
gent than with deformable mirrors. The physical 
motions are larger, being measured in millimeters 
and degrees rather than micrometers and arc sec
onds, thereby making the elements easy to control. 

 Single Active Lens 

Overall wavefront tilt produces image motion; it is 
normally compensated with a two-axis tracking mir
ror. An alternative method of compensating overall 
tilt is to decenter a lens in the imaging path. The 
motions required to compensate the tilt component 
of atmospheric turbulence are small, and no 
unwanted aberrations are introduced because the 
lens remains on-axis to the displaced image.  fact, 
it can be argued that using an existing lens in the 
optical path to compensate for overall tilt produces 
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less overall image degradation than adding a separate 
tip-tilt mirror. 

A suitable location for the tilt correction function 
is the relay lens, following the prime focus of the 
telescope primary, as shown in figure 6.29. The field 
lens located at the prime image plane  the 
telescope pupil at the active lens. This lens  
the beam at a small diameter, typically a few centi
meters, and relays it to the camera objective. Tilt 
correction involves moving the active lens in its x, y 
plane to restore the direction of the  beam 
parallel to the optical axis. For input wavefront tilts 

   in star space, the image displacements at the 
prime focus are Ax =  and Ay =  where F is 
the telescope focal length. To restore the collimated 
beam parallel to the optical axis, it is evident that the 
lens must also be moved by the amount Ax, Ay. Note 
that the lens itself is operating on-axis as far as the 
image is concerned; the displacement produces a 
small increase in its cone angle. 

Overall defocus of the wavefront is easily compen
sated in the conventional way by moving the active 
lens in its z axis. For a peak defocus   waves, the 
axial displacement required (for paraxial conditions) 

(6.70) 

where 

  wavelength 
N = f-number of the active element 

Tilting a rigid lens produces the classic off-axis 
aberrations of astigmatism and coma, which can be 
used to compensate for distortions of the incoming 
wavefront. The field angles used in compensated ima
ging for astronomical telescopes are extremely small, 
so that lens aberrations dependent on field angle 
(such as astigmatism and coma) are effectively pro
duced only by the deliberate tilt angle of the lens. 
When a lens is tilted, its focal length is shortened in 
the plane of tilt, perpendicular to the tilt axis. For a 
lens tilt angle of  the change in focal length is pro

portional to  F while the coma is proportional to 
 It is evident that independent values of astig

matism and coma cannot be realized with a single 
tilted lens. Furthermore, a single lens has only two 
independent tilt axes, while astigmatism and third-
order coma together have four independent para
meters. It is therefore necessary to use two active 
lenses in order to provide independent compensation 
of astigmatism and coma. 

 Two-Lens Active Corrector 

The use of multiple active lenses for wavefront com
pensation has been investigated by Hardy and 
Wallner [1994]. A two-lens active corrector and its 
slope vector diagram are shown in figure 6.30. Each 
lens has five degrees of freedom: x, y, and z displace
ments, plus tilts about two orthogonal axes, a and  
The lenses are tilted at orientations  and fc by 
amounts equal to M\ and  where 
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(6.71) 
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Figure 6.29 Wavefront tilt correction using an active lens. 

The resulting wavefront distortions are: 



Figure 6.30 Two-lens active corrector and slope vector diagram. Independent 
control of astigmatism and coma is obtained by tilting the two lenses indepen

 with tilt magnitudes  and  at orientation angles  and  These 
tilts are produced by orthogonal rotations a and  on each lens as shown. The 
lenses may also be displaced by A.x, Ay, and Az to compensate image motion 
and defocus. 
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To obtain coma at any angle  without astigmatism, 
the lenses are tilted at ±45° to the direction of the 
desired coma, which causes the astigmatism to cancel 
out. Then 

To produce astigmatism at any angle  without 
coma, the two lenses are tilted equally in opposite 
directions, so that 

(6.73) 

The resulting wavefront distortions are 

(6.74) 

The coefficients     and  depend on the 
focal length and focal ratio of the lenses. 

It is necessary to control these functions indepen
dently in order to compensate random wavefronts, 
such as those produced by atmospheric turbulence. 
Overall wavefront tilt (image motion) is compen
sated by moving one or both active elements later
ally in their x and y axes, as described above. 
Defocus is compensated by moving one or both 
elements in the z axis. Spherical aberration is cor
rected by equal and opposite displacements of the 
active lenses, maintaining the overall focus constant. 
The lens displacements required to make these 
wavefront corrections are orthogonal and the 
wavefront corrections produced are essentially 
independent. 

 

 

Spherical 

(6.72) 
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Table 6.7 Two-Lens Active Wavefront Compensator 

In this case, although the astigmatic terms are zero, 
an overall  component of magnitude 

 =  is produced. This is compensated by 
shifting both lenses in their z axes. 

The magnitude of the higher order residual aber
rations produced by lens tilt has been investigated by 
optical ray tracing. Residual aberrations are defined 
as those remaining after subtraction of astigmatism 
and coma (the desired corrections), and after nullify
ing the low-order aberrations produced by lens tilt 
(wavefront tilt, defocus, and spherical aberration), 
which are removed by x, y, and z displacements. 

The required corrections are proportional to the tilt 
angles and are therefore predictable and easily imple
mented. The residual wavefront error produced by a 
lens tilt of 5° was 0.005  or about 1/100 wave at 
visible wavelengths. The residual aberrations pro
duced by lens tilts of this magnitude are therefore 
negligible. 

The active lens motions required to compensate 
the basic wavefront aberrations produced by atmo
spheric turbulence with a Kolmogorov spectrum are 
summarized in table 6.7. The peak values  are 
those encountered in a 4-m telescope  focal 
ratio, for a turbulence strength of  = 10 cm, at a 
wavelength of 0.55  The peak excursions are seen 
to be small and easily implemented, even for a rela
tively large telescope. 

Wang and Markey  analyzed the effective
ness of modal compensation of atmospheric turbu
lence. Their results show that correction of low-order 
wavefront modes through Zernike term  (third-
order coma) produce the best resolution when the 
aperture size was  giving a resolution improve
ment of about 13 times compared with a large 
uncompensated aperture. For good seeing condi
tions,    cm at  = 0.5  the two-lens 
active corrector should therefore compensate an 
aperture of 1-1.4 m at visible wavelengths, while in 
the  at 2.2  it should compensate apertures of 

  

(6.75) 

so that 

(6.76) 

Aberration Lens displacements Peak values for 4-m aperture 

 L2  = 10 cm at X - 0.55  
x tilt + x +x 0.20 mm 
y tilt +y  0.20 mm 
Defocus + z +z 5.10 mm 
Astigmatism, 0° +  —a  
Astigmatism, 45° +  +   +  14.5° 
x coma +  +  +  6.9° 
y coma +  +   6.9° 
Spherical + Z  



Laser Beacons 

7.1 Introduction 

7.1.1 The Need for Reference Beacons 

All adaptive optics systems require a means for mea
suring the propagation path to provide the data to 
drive the wavefront compensator. Conventionally, 
this is achieved with a distant source of radiation 
that traverses the turbulent medium, bringing to the 
wavefront sensor a record of the wavefront distortion 
encountered during its journey. In the case of orbit
ing satellites, for which the first image compensation 
systems were designed, the solar-illuminated space
craft themselves functioned as the reference source. 
By chance, these objects fulfill the two main require
ments for adaptive optics reference sources: they are 
bright, and their size and orbit are such that they are 
usually contained within a single isoplanatic patch. 

In astronomy, there are relatively few objects of 
scientific interest that combine these special charac
teristics of size and brightness: the Galilean satellites 
of Jupiter are rare examples. Most objects of current 
interest in astronomy are dim extended sources, such 
as gaseous clouds, protoplanetary disks, star clusters, 
and nebulae, with no nearby reference source. To 
make adaptive optics available for the majority of 
astronomical observing tasks it is therefore necessary 
for the user to provide a suitable reference source. 
Many different terms have been coined for such 
sources, including artificial stars, synthetic beacons, 
and laser guide stars. As they are not stars, and do 
not, in fact, perform the function of guiding (for 
which natural stars are required), the man-made 

reference sources will be described in this book as 
laser beacons. 

Laser beacons were originally developed for a 
purpose quite remote from astronomy, specifically 
for the direction of high-energy laser beams to tar
gets in or above Earth's atmosphere. To obtain a 
useful concentration of energy, the wavefront degra
dation suffered by the beam in propagating through 
the atmosphere must be very small, much less than 
can be tolerated for imaging. A wavefront error of 
1/10 wave rms, for example, reduces the peak inten
sity of a focused beam to 67% of its unaberrated 
value, although the size of the spot is almost 
unchanged. It is therefore essential, for efficient 
power transfer through the atmosphere, to have a 
means of compensating laser beams for turbulence. 
Using the principle of optical reciprocity, if the pro
pagation path is measured and corrected for a beam 
traveling from a distant target to the telescope, then 
the same correction applied to an outgoing beam 
will cause the beam to be focused at the target. In 
the case of orbiting objects traveling at high veloci
ties, the measurement of the appropriate propaga
tion path presents some difficulties. If the turbulence 
is measured using a beacon on or near the target, 
then by the time the light has made a round trip 
from the beacon to the ground and back again, the 
target will have moved to a new position, probably 
outside the isoplanatic patch of the measured wave-
front. To take account of the finite velocity of light, 
the upgoing laser beam must be pointed ahead of 
the apparent target position and the wavefront must 
be measured in this direction. 
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The geometry is shown in figure 7.1. The point-
ahead angle is  = 2  where V is the velocity of the 
target and c is the speed of light. For  
satellites,  is typically about 10 arc seconds, which 
considerably exceeds the isoplanatic angle at visible 
wavelengths. A reference beacon is required at the 
location that the object will occupy when the laser 
beam arrives. With a cooperative target, it is possible 
to attach the beacon to the target itself; this was done 
for some of the ground-to-space laser propagation 
experiments using rockets. For the more general 
case of uncooperative targets, a beacon must be cre
ated in the desired location ahead of the target. 

The use of a beacon approximating a point source 
is appropriate for transmitting laser beams to a tar
get, but it produces inadequate sampling of the tur
bulence for the very distant objects observed in 
astronomy. The basic function to be performed is 
measurement of the turbulent propagation path and 
there are other ways to achieve this. For example, a 
probe beam transmitted through the telescope aper
ture may be configured so that wavefront measure
ments can be made with scattered light during the 
upward path of the beam toward the object. This 
approach offers two important advantages over the 
use of focused beacons: 

1. The measurement is made over the whole 
cylindrical aperture, so that all turbulence in 
the path is measured and not just that in a 
conical area below the beacon. 

2. The three-dimensional structure of the turbu
lence may be resolved by range gating, leading 
to more efficient wavefront correction and the 
possible use of distributed (multiconjugate) 
compensation to increase the field angle. 

The probe beam approach was one of the first meth
ods to be proposed for laser wavefront measurement 
[Hutchin 1991] and it is described in the following 
section. 

7.1.2 A Brief History of Laser Beacons 

In common with conventional adaptive optics, the 
development of laser beacons for wavefront measure
ment went through a period of experimentation in 
which numerous approaches were tried before a prac
tical direction emerged. 

In the late 1970s, it became evident that the 
potential applications of adaptive optics, both for 
imaging and for laser energy transfer, were severely 
limited by the lack of suitable reference sources. The 
basic problem was to measure the wavefront distur
bance due to turbulence in any desired direction 
through the atmosphere. For compensated imaging, 
the measured path must be in the same isoplanatic 
patch as the observed object. For directed laser sys
tems with rapidly moving objects, the measured path 

Figure  Point-ahead geometry for moving targets. 

must be pointed ahead of the target, as explained 
above. 

Studies of methods that did not rely on natural 
sources for measuring atmospheric distortion were 
encouraged by the Strategic Technology Office of 
the Advanced Research Projects Agency (ARPA). 
The first idea, devised at  in 1978 by R. A. 
Hutchin, was called the "ray method" and is illu
strated in figure 7.2. Laser pulses are fired from mul
tiple subapertures of the telescope, tracing out the 
beam path through the atmosphere. The rays are 
deviated by the turbulence, and their positions, 
made visible by molecular scattering, are tracked 
from two sides. The effects of atmospheric turbulence 
in the viewing path are minimized by measuring the 
differential displacements of the rays. This approach 
is more basic than using a distant reference source 
because it allows a three-dimensional model of the 
turbulence to be reconstructed. Potentially, this 
would enable multiconjugate compensation of turbu
lence over a significant field angle, eliminating the 
anisoplanatic problem. 

Experiments based on this concept, sponsored by 
ARPA, were performed by Itek at the Rome Air 
Development Center's (RADC) test range at 
Verona, New York, in 1980. These tests showed 
that implementation of the ray method would be 
extremely difficult. While it might be useful at 
red  wavelengths, using a small number of probes 
and a slow frame rate, it did not appear to be feasible 
at visible and shorter wavelengths where a much lar
ger number of probes would be required. The search 
for other approaches was therefore continued. 
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Telescope 

Separate 
laser rays 
OT beamlets 

Ray deviations 
tracked from 
two directions Figure 7.2 Ray method of 

probing atmospheric 
turbulence. 

 1981, the idea of creating an artificial star in the 
atmosphere using the Rayleigh (molecular) scattering 
from a focused laser beam was independently pro
posed by J. Feinlieb of Adaptive Optics Associates 
(AOA) and Hutchin of  A similar idea was also 
proposed by R. Hunter et  of Western Research 
Corporation [Benedict et al. 1994]. This method, 
which originally was called the "Astral" or A-

 is depicted in figure 7.3. To achieve a reason
able scattering cross-section, the beacon must be 
located at an altitude where air density is still appre
ciable, typically between 10 and 20 km. It was rea
lized from the start that using a single low-altitude 
beacon within the atmosphere was inefficient, 
because turbulence below the beacon is sampled 
only in a cone-shaped volume, and turbulence 
above the beacon is not sampled at all. Sampling 
efficiency can be improved somewhat by using multi
ple beacons within the beam, but the best solution is 
to use a near-parallel beam. 

Because of the sampling problem with Rayleigh 
beacons, Hutchin continued the search for improved 
methods of measuring atmospheric turbulence with a 
laser. In the summer of  he conceived the "shear 
method" or S-method, shown in figure 7.4, in which 
full-aperture pulsed laser beams are transmitted from 
the telescope along the optical path to be measured. 
Each laser pulse consists of two coherent components 
mutually tilted at a small angle, giving rise to a set of 
(initially) equally spaced interference fringes normal 
to the direction of tilt. As the beams propagate 
through the atmosphere, the wavefront distortion 
they encounter is encoded in the form of displace
ments in the fringe positions. The fringes are made 
visible by Rayleigh scattering. Snapshots of the 
"interferograms" produced can be obtained at any 
altitude by a range-gated camera looking through 
the telescope aperture. The pulses would normally 
be fired in pairs, producing two sets of orthogonal 
fringes. The fringe displacements measured from 

each pair, at a given altitude, represent the accumu
lated wavefront slopes in two orthogonal directions 
and may be reconstructed to give the complete wave-
front phase at any altitude, using algorithms similar 
to those used in shearing interferometers. 

The shear method produces a three-dimensional 
representation of the turbulence in the whole optical 
path, allowing wide-field compensation with multiple 
correctors. Analysis of this approach showed that 
best results would be obtained using "bootstrap
ping"; that is, compensating the lower layers first 
and gradually working up through the beam. The 
principle of the shear method was verified by simula
tions and laboratory experiments. It was found that 
the system was not as robust as simpler methods that 
use focused beacons, the wavefront measurements 
being sensitive to small imperfections in operation. 

In spite of the drawbacks of the A-method using 
Rayleigh scattering, it has many advantages, in
cluding the fact that it is compatible with conven
tional wavefront sensors and may be used over a 
wide range of wavelengths for which lasers are read
ily available. In 1982, D. L. Fried calculated the 
effects of the  due to a conical beam, 
for which the term "focal  had been 
coined by T. R.  Based on the recommen
dations of the scientists working on the project, R. 
Benedict at ARPA decided to proceed with the devel
opment of a Rayleigh backscatter system using a 
pulsed laser. 

To reduce the measurement error due to focal 
anisoplanatism, which becomes a major problem 
with large apertures, the use of multiple beacons 
was investigated. The main challenges here were, 
first, to find a method of measuring the wavefront 
from each beacon separately within the allowable 
time, and then to combine the data into an overall 
wavefront error signal that would be sent to the 
deformable mirror or other correction device. Two 
methods were investigated: "stitching" and 
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Artificial star 
(laser beacon) 

Turbulent layers 

Figure 7.3 Turbulence measurement with a single beacon (A-method). 

ging." The stitching method measures the wavefront 
over sections of the main aperture immediately below 
each beacon and then determines the best way to 
combine the measurements. The merging technique 
measures the wavefront over the entire telescope 
aperture for every beacon and computes the best 
overall estimate. Theoretically, merging gives a 
slightly better correction than stitching, but the com
putational load is heavier. 

In June  a major advance in the development 
of laser beacons ocurred when W. Happer, a member 

of the Jasons, a group of university research scientists 
that works on problems of interest to the Department 
of Defense, suggested that laser beacons created in 
the mesospheric sodium layer at 90 km altitude might 
be used for atmospheric turbulence compensation. A 
revised version of the Jason reports on this subject 
written in 1982 and 1984 has recently been published 
[Happer et  1994]. The main advantage of using 
such high-altitude laser beacons is the reduction in 
focal anisoplanatism compared to that encountered 
with low-altitude Rayleigh beacons. 

(2) Tilted beams 
pass through 
displaced (sheared, 
areas of turbulence 

(1) Two tilted laser 
beams are projected 
through the telescope 
aperture. 

(3) Interference fringes, 
initially straight, are 
distorted by turbulence. 

(4) Intensity variations of 
fringe pattern are scattered 
back to telescope, where their 
displacements are measured. 

Telescope 

Figure 7.4 Shear method of turbulence measurement (S-method). 
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With the establishment of two possible methods 
of generating laser beacons, the next step was to con
firm that reliable wavefront measurements could be 
made using this new idea. The first confirmation 
came in August of 1983 when R. Fugate's team at 
the Air Force Weapons Laboratory (now Phillips 
Laboratory) compared the wavefront measurements 
made with a Rayleigh beacon at 10 km altitude with 
those from a natural star. The laser used was a 
doubled neodymium-yttrium aluminum garnet 
(Nd:YAG) operating at 532  The wavefront 
slope measurements were made with a Hartmann 
sensor equipped with 18 subapertures. The measure
ments were consistent with theoretical predictions 
made by Fried. This milestone was followed in 
September 1984 with the first measurements made 
with a sodium layer beacon at an altitude of 90 km. 
This experiment was conducted by R. Humphreys 
and C. Primmerman of the Massachusetts Institute 
of Technology (MIT) Lincoln Laboratory at the 
White Sands Missile Range. A pulsed dye laser 
tuned to the sodium D2 line was used to create the 
beacon. Wavefront tilt measurements made in two 
adjacent subapertures were compared with similar 
measurements made with a natural star. Again, 
good agreement was obtained with theory. 

The final step in this investigation was to incorpo
rate the laser beacons into closed-loop adaptive 
optics systems. In the mid-1980s, a flashlamp-

 pulsed dye laser operating at   was 
installed by MIT Lincoln Laboratory at the Air 
Force Maui Optical Site (AMOS) for Rayleigh bea
con experiments [Zollars 1992]. The usable energy 
was about 3 joules per pulse, at a repetition rate of 
5 Hz. This laser was used with the Short Wavelength 
Adaptive Techniques (SWAT) adaptive optics system 
[Barclay et  1992] to perform the first turbulence 
compensation experiments with a laser beacon. The 
SWAT system employed a telescope of 0.6-m aper
ture with a  deformable mirror and a 

 Hartmann wavefront sensor. 
Because the laser pulse rate was much lower than 
the rate at which atmospheric distortion changes, 
the compensation was performed on a pulse-by-
pulse basis; that is, without using information from 
previous pulses, as is usually the case in closed-loop 
control systems. 

In August 1988, the first compensated stellar 
images were obtained with the SWAT system, using 
a Rayleigh beacon. Later tests with a single laser 
beacon at an altitude of 6 km produced images hav
ing Strehl ratios of approximately 0.4, close to the 
predicted performance. Subsequent experiments 
were made with two laser beacons, and it was 
shown that the images obtained were better, by a 
small margin, than those obtained with a single bea
con, thus establishing the feasibility of multiple-bea
con operation. 

Closed-loop compensation using a laser beacon 
with a high pulse rate was demonstrated in 1989 by 

Fugate's team at Phillips Laboratory, using the  
telescope at Starfire Optical Range. A copper vapor 
laser was employed, operating at 5000 pulses per sec
ond with an average power of  W. Laser 
lengths were 0.5106 and  and the beacon 
altitude was 10 km. The closed-loop control 
width of this "Generation  compensation system 
was  Hz. In these experiments, the Strehl ratios 
achieved with the laser beacon were compared with 
those using a natural guide star. The average Strehl 
ratios obtained were  using the laser beacon and 
0.200 using the natural guide star. These compare 
with theoretical predictions of 0.122 and 0.33, respec
tively. In later experiments (in 1992) with the 
"Generation 2" system using increased laser power 
and improved adaptive optics, Strehl ratios of  
0.5 were obtained with a single laser beacon, produ
cing star images with a full-width at half-maximum 
(FWHM) of 0.13 arc seconds. 

Experiments using single and multiple Rayleigh 
beacons have also been conducted by Thermo 
Electron Corporation employing short-wavelength 
excimer lasers. To eliminate focal anisoplanatism, 

 [1992a] has proposed using an array of 20 
beacons, using the concept of periodic interfero-

 weighting, also known as the "D-method." 
This system has so far been tested only in the labora
tory. 

The existence of the U.S. Government-sponsored 
work on laser beacons described above was not 
revealed publicly until 1991. In the meantime, similar 
ideas had been published in the open literature, nota
bly by Foy and Labeyrie [1985]. Their paper pre
sented the concept of using the backscatter from 
pulsed laser beams, focused high in the atmosphere, 
to measure wavefront distortion in adaptive optics 
systems. Both Rayleigh scatter and resonant scatter 
from the sodium layer were considered. 

Based on this suggestion, Thompson and Gardner 
[1987] conducted an experiment at the Mauna Kea 
Observatory, in which a laser beacon was produced 
in the mesospheric sodium layer by using a pulsed 
dye laser tuned to 589 nm. Following this achieve
ment, Gardner, Thompson, and Welsh published sev
eral papers covering the theory and practice of laser 
beacons using both the Rayleigh and sodium reso
nance scattering modes. They investigated the char
acteristics of the sodium layer, analyzed methods of 
implementing adaptive optics using laser beacons for 
astronomical telescopes, and calculated the expected 
performance. 

The experiments and analyses conducted since 
 have established, beyond any doubt, the poten

tial value of laser beacons for implementing adaptive 
optics in astronomy. Because of the cost and com
plexity of such systems, the initial research on laser 
beacon systems was conducted at government-
funded laboratories. 

Several research groups are now pursuing 
the development of laser beacons, including the 
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University of Chicago, the University of Illinois, 
Lawrence  National Laboratory, and the 
Steward Observatory of the University of Arizona. 
The general objective is to develop reliable low-cost 
laser beacon systems for implementing adaptive 
optics at good observing sites. For astronomy, the 
major problem is to obtain sufficient sky coverage, 
because natural guide stars are still needed for abso
lute pointing, even when laser beacons are used to 
compensate the wavefront within the telescope aper
ture. The use of laser beacons has, in effect, enlarged 
the isoplanatic patch for adaptive optics from a few 
arc seconds to several arc minutes, but this restriction 
has not yet been entirely removed. 

7.1.3 Outline of Approaches and 
Problems 

The adaptive optics components and system config
urations used with laser beacons are basically similar 
to those employed with natural reference sources; 
such systems are usually designed to operate in either 
mode. There are additional sources of error that must 
be taken into account with laser beacons, however, 
and these produce differences in the system design 
and optimization procedures. 

When using laser beacons with adaptive optics, 
the following factors must be considered: 

• The beacons are formed within Earth's 
atmosphere, where they are optically near 
to the telescope aperture. Consequently, 
they do not sample the full telescopic beam 
when it is focused on a distant object, nor 
any turbulence above the beacon. This con
dition is known as the cone effect, and the 
resulting error in wavefront measurement is 
called focal anisoplanatism. 

• Even when using laser beacons, a fixed (nat
ural) reference source is required to compen
sate image motion. The reason is that the 
position of a laser beacon projected from a 
ground-based telescope is randomly dis
placed by atmospheric turbulence, and can
not be pointed accurately at an object 
outside the atmosphere without the aid of 
a reference, also outside the atmosphere. If 
it is bright enough, the science object itself 
may be used, but this is rarely the case. For 
long exposures, a significant part of the total 
wavefront error is contained in overall tilt, 
which must be compensated with great accu
racy. For tilt compensation, it is therefore 
necessary to use a fixed reference source 
within the same (tilt) isoplanatic patch as 
the science object. 

• The lasers used for generating adaptive 
optics beacons have special requirements. 
The pulse repetition rate of the laser is the 
controlling factor in the design of the adap

tive optics feedback loop. To provide con
tinuous wavefront correction, the laser must 
have a pulse rate approximately 10 times 
higher than the compensation bandwidth, 
requiring a rate of several kilohertz. In addi
tion, lasers generating sodium beacons must 
be accurately tuned to the sodium  line 

  with specific pulse shapes and 
spectral content. 

• The use of laser beacons complicates the 
telescope optical system more than does con
ventional adaptive optics, because addi
tional optical components are required for 
beam sharing with the laser. Unwanted scat
tered light, as well as light from the beacon 
itself, must be rejected by the science ima
ging path. 

7.2 Physical Principles of Laser 
Scattering 

7.2.1 Types of Scattering 

Scattering at the atomic level occurs when a photon 
of the incident radiation field is annihilated while a 
photon of scattered radiation is created. If the scat
tered frequency is the same as the incident frequency, 
then the scattering is termed elastic. If the quantum 
state of the atom is changed in the process, then the 
radiation is changed in frequency and the scattering 
is said to be inelastic. Scattering from larger particles 
in the atmosphere is basically a reflection of the inci
dent radiation, with no change in frequency. 

Four different modes of scattering of radiation by 
gaseous media are recognized: 

1. Rayleigh scattering, in which radiation is scat
tered from atoms or molecules, with no change 
in frequency; 

2. Raman scattering, in which radiation is scat
tered by atoms or molecules, with a change in 
frequency; 

3. Mie scattering, in which radiation is scattered 
from small particles or aerosols of size compar
able to the wavelength of the incident radia
tion, with no change in frequency; 

4. Resonance scattering, in which radiation 
matched in frequency to a specific atomic tran
sition is scattered, with no change in frequency. 

A related process is fluorescence, in which radiation 
matched to a specific atomic transition is absorbed 
and emitted at a lower frequency. 

The processes of interest for adaptive optics bea
cons are molecular Rayleigh scattering within the 
atmosphere and resonance scattering in the 
spheric sodium layer at 90 km. The presence of 
dust, fog, haze, and clouds causes Mie scattering, 
which occurs mostly in the lower atmosphere 
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(below 35 km) and varies unpredictably. The  
scattering cross-section can have a large value, pro
ducing backscatter that competes with the desired 
returns. 

= expected number of photons detected in 
range interval Az 

 laser pulse energy, J 
= optical wavelength, m 
= Planck's constant, 6.626 x  Js 
= velocity of light, 3 x   

= effective backscatter cross-section,   

= number density of scatterers at range z, 
  

= receiver range gate length,  
= area of receiving aperture,   

= range at center of range gate, m 
= transmission of optical components in 

transmit and receive paths 
 one-way transmission of atmosphere 

between telescope and beacon 
= quantum efficiency of photon detector at 

wavelength X 
= number of background and noise 

photoelectrons 

in the case of laser beacons, which are generated by a 
focused beam, using a range gate in the detector opti
cal system to select a small region around the focus. 
In the case of sodium beacons, there may be signifi
cant layering within the focal volume, which is 
accommodated by using an average value of  
The resonance fluorescence process in sodium is 
easily saturated, so care must be taken to use an 
appropriate value of  Note that all factors relating 
to optical efficiency have been grouped into a single 
multiplication term. 

The two factors «(z) and  in equation (7.1) are 
specific to the type of scattering employed and are 
discussed in the following sections. 

7.2.3  Scattering 

The efficiency of a scattering process is characterized 
by its scattering cross-section. Rayleigh scattering is 
not isotropic and the cross-section depends on the 
polarization of the incident radiation, as shown in 
figure 7.5. In the forward and backward directions 
(scattering angles 0 and n), the parallel and perpen
dicular components add, while in the plane perpendi
cular to the direction of propagation (scattering angle 
7r/2), only the perpendicular component is scattered. 
This is the reason that sunlight scattered from the sky 
at right angles to the Sun is polarized. 

When using laser beacons, the backscattering 
cross-section is of primary interest. The backscatter
ing cross-section for Rayleigh scatter is given by 

(7.2) 

where 

n = refractive index of the medium 
N = atom density of the medium 
X = wavelength 

For the mixture of gases that characterize the atmo
sphere below 100 km, Measures [1984, p. 42] gives the 
Rayleigh backscattering cross-section as 

(7.3) 

The  dependence indicates that Rayleigh scatter
ing is much more effective at shorter wavelengths, 
which is the reason that the sky is blue. 

The product of the Rayleigh backscatter cross-
section and atmospheric density is given by 
Gardner et  [1986] as 

(7.4) 

where 

P(z) = atmospheric pressure at range z, millibars 
T(z) = atmospheric temperature at range z, K 

(7.1) 

7.2.2 The Lidar Equation 

The process of using a light beam to probe a medium 
using the backscattered energy as a function of range 
is known as lidar (light detection and ranging). 
Lasers have been used for remote sensing of the 
atmosphere since the early 1960s. The use of lasers 
to create beacons for adaptive optics is directly 
related to the technology of remote sensing. 

The lidar equation defines the energy detected at 
the receiver because of the scattering process as a 
light beam propagates through a medium. The 
basic form of the equation is: 

Number of photons detected = number of trans
mitted photons 

x probability that a photon is scattered 

x probability that a scattered photon is collected 

x probability that a collected photon is detected 

+ background photons 

With certain simplifying assumptions, described 
below, the lidar equation may be expressed symboli
cally in the form 

The assumptions made in equation (7.1) are that 
the range gate Az is small compared with z, so that 

 and  may be assumed to be constant over the 
distance Az, and that the scattering process is linear 
so that  is constant. The first assumption is justified 

where 
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Figure 7.5 Rayleigh scattering cross-section. 

The brightness of a Rayleigh beacon, for a given 
pulse energy, is proportional to the air density in 
the illuminated volume, which decreases exponen
tially with altitude. For this reason, Rayleigh beacons 
are limited to moderate altitudes in the atmosphere, 
generally in the range of 8-12 km. 

The geometry of a Rayleigh beacon is shown in 
figure 7.6. The angular size of a beacon formed at the 
focus of a converging beam is determined by the 
depth of the beam path covered by the range gate 
in the receiver. To minimize the energy requirements, 
it is necessary to maximize the probability that inci
dent photons will be scattered, which means that the 
greatest possible scattering depth should be used. 
However, the size of the beacon should not exceed 
the diffraction limit of the wavefront sensor subaper-
tures, otherwise there is a penalty in the signal-to-
noise ratio of the wavefront sensor. 

From the geometry of  7.6, it can be shown 
that the maximum depth is 

(7.5) 

where  is the angular size of the beacon and  is 
the diameter of the laser projection aperture, which is 
not necessarily the same as the telescope aperture. 

The optimum angular size of the beacon is deter
mined by the subaperture size of the wavefront sen
sor, or by the value of  whichever is smaller. This 
condition is expressed as 

(7.6) 

When  is limited by turbulence, the maximum 
value of Az may be approximated as 

(7.7) 

7.2.4 Sodium Resonance Fluorescence 

The existence of a layer in the mesosphere that con
tains the alkali metals sodium, lithium, potassium, 
and calcium has been known since the 1920s. The 
layer is located at altitudes between 80 and  km, 
with a peak near the mesopause at around 92 km. 
This region of Earth's atmosphere is generally inac
cessible to direct measurements, being too high for 
balloons and too low for spacecraft. The structure of 
the layer has been revealed by observations made 
with rocket-borne instrumentation and also with 
laser remote sensing from the ground. The first 
laser measurements of sodium were made by 

Figure 7.6 Geometry of Rayleigh beacon. 
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Bowman et  [1969] using a laser tuned to 0.589 /urn. 
The metallic sodium is believed to be of meteoric 
origin. The peak density varies between 103 and 104 

 Because of the relatively high density and large 
backscatter cross-section of sodium atoms, laser 
probing has proved to be a very effective method of 
measurement. These characteristics, together with the 
high altitude of the layer, also make sodium useful 
for generating laser beacons for adaptive optics. 

The scattering profile measured by a laser tuned to 
the sodium line is modeled as a function of height in 
figure 7.7. The return for altitudes up to 75 km is 
dominated by Rayleigh scattering, which is propor
tional to atmospheric density. Below about 35 km, 
there is also Mie scattering from dust and aerosols, 
which enhances the return and causes local irregula
rities in the profile. Because of the exponential 
decrease in air density, it becomes increasingly diffi
cult to make Rayleigh measurements at higher alti
tudes. The strong peak at around 92 km caused by 
resonance fluorescence in the sodium layer, indicates 
that this is a much more efficient process than 
Rayleigh scattering. 

Lidar measurements of the seasonal variations in 
the sodium column abundance and centroid height 
have been made over a period of several years by 
Gardner et al. [1986]. The column abundance, mea

sured at mid-latitudes in the Northern Hemisphere, 
shows a winter maximum of about  m~2 and a 
summer minimum of about 3 x  The cen
troid height varies between 90 and 94 km, with a 
mean of 92 km; there is no consistent annual varia
tion. The sodium density profile has been measured 
by Beatty et al. [1988] and has the distribution 
depicted in figure 7.8. The average thickness 
(FWHM) of the layer is about 10 km. Properties of 
atomic sodium and the atmospheric sodium layer are 
summarized in table  

Although other metals present in the mesosphere 
show resonant backscatter at visible and 
violet  wavelengths, their densities and/or 
backscatter cross-sections are much lower than those 
of sodium, so they are of less interest for generating 
laser beacons. 

Resonance scattering differs from Rayleigh scat
tering in two ways: (1) the incident laser radiation is 
tuned in frequency to match the absorption spectrum 
of the atomic transitions, resulting in a greatly 
enhanced scattering cross-section (higher efficiency); 
and (2) saturation can occur when the energy density 
within the sodium layer becomes large enough to 
change the population densities of the atomic states. 
The transitions that are induced in sodium atoms by 
incident radiation are shown in figure 7.9, using a 

Conditions: 
Zenith angle 0 
Pulse length  km  us) 
Aperture size 0.25m sq. 
Optical  0.25 
Quantum  0.8 
Na sigma-s 4 E  m 2 
Column density 5 E 13 m -2 
No saturation 

120 

Height, kilometers 

Laser wavelength 589  
~ Laser wavelength 350 nm 

Figure 7.7 Rayleigh and sodium scattering model. The chart shows the expected signal from a laser pulse of 
length 1 km (3.3  as a function of the mean height selected by the range gate. At a wavelength of  nm, 
returns are received from both Rayleigh scattering and from sodium resonance fluorescence, and the sodium 
layer produces a sharp peak at about 90 km. At other wavelengths, only the return from Rayleigh scattering is 
received. 
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Figure 7.8   sodium 
layer [Gardner et at. 1986, Beatty et  1988]. 

 two-state model. The real sodium atom is 
far more complex and will be described later in con
nection with the design of sodium beacon lasers. 
However, its non-linear behavior with regard to 
absorption may be explained using the simplified 
model. 

The metal atoms are normally in their lower, 
unexcited state at a low temperature, around 200  
When a pulse of laser energy passes through the med
ium, some atoms absorb a photon and are excited to 
the upper state. Atoms in the upper state may de-
excite back to the lower state by either spontaneous 
decay or stimulated emission. With spontaneous 
decay, a photon of the same energy (wavelength) is 

emitted incoherently and isotropically. The compo
nent of this radiation in the direction of the laser 
source is the desired resonant backscatter. The nat
ural lifetime of excited sodium atoms is 16 ns. At low 
levels of incident radiation, the mean time for an 
atom in the excited state to absorb a photon is 
much longer than  ns, so most of the population 
remains in the lower state. In this regime, the back-
scatter is proportional to the laser energy. 

Higher levels of radiation create a larger popula
tion in the excited state, allowing stimulated emission 
to become a competing process. In this process, 
atoms in the excited state absorb photons, which 
are re-emitted coherently; that is, with the same fre
quency, phase, and direction as the original photon. 
Stimulated emission does not produce backscattered 
photons. As the incident energy increases, a greater 
proportion of excited atoms absorb a photon and 
produce stimulated emission before they decay natu
rally. The net result is that as the population in the 
excited state increases, the proportion of atoms avail
able to produce backscatter decreases; in other 
words, the medium saturates. 

The real sodium atom has two hyperfine levels in 
the ground state and four hyperfine levels in the 
upper state, as depicted in figure 7.10, splitting the 

 line into six components. The only significant 
energy difference exists between the two levels of 
the ground state. As a consequence, the six lines 
appear in two groups, producing a double peak, 
with the main components separated by  
The spectral lines are broadened by two mechanisms: 
(1) the lifetime of the atoms in the excited state, 
whether because of natural decay (homogeneous 
broadening) or collisions; and (2) Doppler shifts 
due to a velocity component along the line of sight 
(inhomogeneous broadening). 

The finite lifetime of the excited atoms produces 
homogeneous line broadening with the characteristic 
Lorentzian profile as a function of angular frequency 

 given by 

(7.8) 

Table 7.1 Properties of the Atmospheric Sodium Layer 

Parameter Symbol Value 

Atomic sodium 
 line wavelength    

Natural lifetime r„ 16.2 ns 
Degeneracy correction factor   0.67 

Atmospheric sodium layer 
Mean altitude  92 km 
Depth  AZ 10 km 
Column density N 5 x   

Emission cross-section    
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Figure 7.9 Absorption and emission in sodium (sim
plified two-level model). Atoms in the lower state are 
raised to a higher state when a photon is absorbed. 
Spontaneous decay produces resonant  
mostly in the desired direction. If an excited atom 
absorbs an incident photon, then stimulated emission 
is produced in the forward direction, which is lost to 
the receiver. 

where  is the atomic resonance angular frequency 
and  is the natural lifetime of the atom in the 
excited state. The half-width at half-maximum 
(HWHM) of this profile is 

The natural line width is given by 

(7.9) 

(7.10) 

For the sodium  line,  is  
equivalent to a temporal bandwidth of  MHz. 
The natural lifetime of excited sodium atoms is 
much shorter than the mean time between collisions 
in the sodium layer (about  so that the line 
broadening due to collision-induced transitions is 
negligible. 

The spectral line broadening due to Doppler shifts 
depends on the velocity of the atoms, which is a func
tion of the temperature of the medium. The observed 
frequency due to a velocity component v along the 
line of sight is 

(7.11) 

where  is the frequency when at rest. Measures 
[1984, p. 98] shows that for thermal motion with 
Maxwellian distribution, the probability that a 
photon will be observed with an angular frequency 
in the interval   +  is given by the Gaussian 
distribution 

(7.12) 

(7.13) 

k = Boltzmann's constant,  
T = temperature,  

 = rest frequency of atom,  

 = mass of electron 
c = velocity of light, ms~' 

The Doppler-broadened spectral line has a 
HWHM given by 

(7.14) 

where 

For a sodium atom at 200  the Doppler-broadened 
spectral linewidth is about 1 x 10  about 100 
times greater than the homogeneous broadening 
due to natural decay time. Doppler broadening is 
therefore the dominant factor in determining the line-
width. 

The structure of the Doppler-broadened sodium 
 absorption line is shown in figure  for tem

peratures of  200, and 250  The areas of the 
two components of the split line have a 3:5 ratio, due 
to the fact that the F' = 1 and F' = 2 ground states 
have, respectively, three and five momentum levels, 
as shown in figure 7.10. Atoms spontaneously decay
ing from the excited states therefore have 3/8 and 5/8 
probabilities of decaying to the F' = 1 and F' = 2 
levels. The Doppler broadening of the lines increases 
with temperature, which can vary from   in 
the summer to   in the winter [Gardner et 

 1986]. This sensitivity to temperature is, in fact, 
the method used to determine the temperature of the 
sodium layer, by  the absorption cross-sec
tions at two frequencies corresponding to the peak 
and valley of the response. 

7.2.5 Saturation Effects in the Sodium 
Layer 

Nonlinear effects in the Doppler-broadened absorp
tion line of sodium have been analyzed by Welsh and 
Gardner [1989b]. The analysis is greatly simplified if 
the laser pulse can be modeled as separable in time, 
space, and frequency. This is generally the case for 
most lasers in which the bandwidth is greater than 
the reciprocal of the pulse width. However, this sim
plification may not apply to narrow-band lasers that 
have  outputs consisting of trains of very 
short pulses. The special considerations for such 
devices are treated in section 7.2.6. 

Assuming separability, the total photon flux den
sity produced by the laser pulse may be expressed as a 
function of the temporal pulse shape, beam cross-
section, and frequency profile: 

where 

(7.15) 
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B. Circular Polarization 

Figure  Energy levels of the  line of sodium showing the optical transitions 
induced by linearly and circularly polarized light. The frequencies between adjacent 
hyperfine sublevels are shown at the right. 

 = total number of incident photons per 
unit time,  

I(p)  distribution of photon flux per unit area, 
  

 = distribution of photon flux per unit 
angular frequency, rad~' s 

An effective absorption cross-section  which 
depends on the Doppler-broadened spectrum of 
sodium atoms, weighted by the spectrum of the 
laser pulse may then be defined as: 

(7.16) 

where 

 —  = Doppler broadened absorption 
cross-section of Na, m2 (shown in 
figure  

The changes in the population of upper-state 
atoms caused by the laser pulse may then be 
expressed as: 

Loss from spontaneous emission = 

Loss from stimulated emission = 

 = Doppler angular frequency shift, 
rad  

(7.17) 

(7.18) 

(7.19) 

  total density of Na atoms per unit 
Doppler angular frequency shift, 

  s 

where 

Gain from absorption = 
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Relative frequency in GHz 

Temperature 150 K 
 Temperature 200 K 

 Temperature 250 K 

Figure  Absorption  of sodium  line for temperatures of 150, 200, 
and 250 K. The center wavelength is   and the separation between the peaks 
is 1772 MHz. 

 p,  = density of upper-state atoms per 
unit Doppler angular frequency 
shift,   s 

 = ratio of the degeneracies for the 
lower and upper states 

The  energy is proportional to the num
ber of lower-state atoms that absorb photons. 
Equation  shows that as the population of the 
upper state increases, the density of atoms in the 
lower state is depleted, reducing the backscattering. 

To optimize the efficiency of the scattering pro
cess, it is necessary to control three critical factors: 
the laser energy, the laser linewidth, and the pulse 
length. Referring to the  equation (7.1), in 
order to minimize the laser energy required to achieve 
a given photon count, the backscatter cross-section 

 must be maximized. For a given laser energy, the 
parameters to be optimized are the laser spectral line-
width and the pulse length. 

The total scattering cross-section for the case of 
negligible saturation is 

(7.20) 

where 

  is the total integrated density of Na atoms, 
 and  the effective scattering 

cross-section, is defined in equation (7.16). 

Saturation effects can be quantized by the satura
tion time  defined by  et  [1977], which is a 
measure of the characteristic time of stimulated emis
sion. The level of saturation within the sodium layer 
is indicated by the ratio  When the saturation 
time is larger than the natural decay time  the rate 
of stimulated emission is small compared with the 
rate of natural decay, so that saturation effects are 
negligible, as shown by the lower curve in figure 7.12. 
When the saturation time is much shorter than the 
natural decay time, the rate of stimulated emission 
overwhelms the natural decay rate, resulting in sig
nificant saturation effects, as shown by the upper 
curve in figure 7.12. 

The saturation time is defined as 

(7.21) 

where 

  root-mean-square duration of laser pulse, s 
 = total effective absorption cross-section of 

atoms,   

W = average photon flux density from laser, 
photons rcT2  

a = root-mean-square radius of laser beam,  
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Figure 7.12 Saturation of 
sodium layer. 

Using the saturation time defined above, Welsh 
and Gardner [1989b] derived expressions for the 
reduction in backscattered energy due to saturation 
for three different combinations of laser beam cross-
section and pulse shape: 

1. Uniform beam cross-section and rectangular 
temporal pulse shape; 

2. Gaussian beam cross-section and rectangular 
pulse shape; 

3. Gaussian beam cross-section and exponential 
pulse shape. 

These results can be used to define a new backscatter-
ing cross-section,  which includes the effects of 
saturation and which can be used in the  equa
tion. 

For the usual case of a Gaussian beam and rec
tangular laser pulse, the backscattering cross-section 
is 

(7.22) 

The design process can be simplified by choosing a 
value for the ratio  Equation (7.21) shows that 
for a given pulse energy, the value of  can be 
increased (that is, saturation can be reduced) by 
increasing the pulse duration. Welsh and Gardner 
found that the laser pulse energy required to achieve 
a given number of photon counts at the wavefront 
sensor decreases  as the value of   

is increased from 1 to 10. However, long pulses are 
difficult to generate with most lasers, and a good 
compromise appears to be a  ratio of 2 corre
sponding to a pulse length of 32 ns. The optimum 
laser linewidth is somewhat less than the Doppler-
broadened sodium spectral line, with a value of 

 MHz FWHM being near optimum. Specific 
values will depend on the parameters of the adaptive 
optics system. 

7.2.6 Sodium Beacons Using Short Pulses 

As mentioned above, special considerations apply to 
the generation of sodium beacons with narrow-band, 
short-pulse lasers. To obtain the highest scattering 
cross-section, the maximum number of sodium 
atoms must be excited by each laser pulse. To achieve 
this goal, the laser energy should be effectively dis
tributed over the Doppler-broadened sodium absorp
tion line, which has an FWHM bandwidth of about 
2GHz. 

With many types of lasers, the spectral bandwidth 
is determined independently of the pulse length. For 
a single rectangular pulse, the frequency spectrum 
has the form 

(7.23) 

where 

A = pulse area 
 = pulse length 

/ = temporal frequency 

The first null of this function occurs at a frequency of 
/o   For lasers with pulse lengths exceeding 
about 10 ns, the corresponding pulse bandwidth of 
up to  MHz is much smaller than the spectral 
linewidth, so the pulse width has little effect on the 
spectral distribution of the laser output. 

Certain types of laser, such as free-electron lasers 
(FELs) and mode-locking lasers, produce their out
put in the form of macropulses, or trains of very 
short micropulses. Mode locking is a process in 
which multiple modes, existing in the laser cavity 
and normally having random phases, are forced to 
have the same phase. The output then consists of a 
train of narrow micropulses, less than 1 ns in dura
tion. The mode frequency spacing produced by a 
cavity of length / is  where c is the velocity of 
light. If there are N modes, each producing intensity 
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/, then the output for incoherent addition will be  
When the modes are locked, the coherent addition 
produces a peak intensity of  that is, N times 
higher than for  modes. 

The  duration in this case is  = 2l/Nc 
and the micropulse spacing is T = 2l/c. The overall 
spectral width is  =  which is the same as 
that of the conventional system with random 
modes. The difference is that instead of a long 
pulse of constant intensity, the energy is now concen
trated in a train of micropulses that have \/N of the 
duration and A' times the intensity. The higher peak 
intensity increases the efficiency of nonlinear opera
tions, such as mixing. 

Because the frequency spectrum of the laser pulse 
is not continuous, but is concentrated in N narrow 
lines, only a fraction of the pulse energy is available 
to excite the sodium atoms, whose absorption spec
trum is distributed continuously over the Doppler-
broadened range. To increase the absorption effi
ciency, Humphreys et  [1992] have suggested 
phase modulating the positions of the micropulses 
to produce a more continuous distribution. 

7.3  Measurement with 
Atmospheric Beacons 

 Beacon Geometry 

The process of measuring a turbulence-degraded 
wavefront by means of laser beacons generated 
within Earth's atmosphere will now be considered. 
Because beacons are relatively close to the telescope, 
the light rays used to measure the turbulence travel 
along different paths from those traveled by the 
object being observed, producing a measurement 
error called focal anisoplanatism. Several additional 
errors are also encountered when using laser beacons, 
including the overall tilt (image motion) caused by 
the use of a separate guide star, as well as the wave-
front measurement errors caused by the limited 
brightness and finite size of the laser beacons them
selves. These errors are discussed in detail in section 
7.4. They must be combined with the basic errors 
common to all adaptive optics systems in order to 
optimize the overall design and performance of com
pensated telescopes using laser beacons. 

The basic geometry of a laser beacon is depicted in 
figure 7.13. Light rays from the distant object are 
normal to the telescope aperture D. The beacon B 
is at height  and is assumed to be on the optical 
axis in the same direction as the distant object. The 
angle between the beacon and the object, as seen 
from a point on the telescope aperture at radius p, 
is 6 =   At the center of the aperture, the 
angle is zero, and it reaches a maximum at the outer 
edge of the aperture, where p  D/2. 

There are two significant differences between the 
focal anisoplanatism produced by this geometry and 

the angular anisoplanatism between two distant 
objects outside the atmosphere: (1) With a beacon, 
the offset angle 9 is proportional to the aperture 
radius, whereas with two distant objects it is constant 
over the telescope aperture; and (2) turbulence above 
the beacon is not measured. The error due to focal 
anisoplanatism can be assessed in the following way. 
From section 3.7, it is known that the mean-square 
wavefront error due to anisoplanatism is propor
tional to the five-thirds power of the angular separa
tion, multiplied by the five-thirds moment of the 
turbulence distribution: 

This expression shows the basic dependencies of 
focal anisoplanatism. The full expression, derived 
later, contains additional terms accounting for turbu
lence above the beacon and removal of overall piston 
and tilt components. The mean-square wavefront 
error due to focal anisoplanatism depends on the 
ratio  whereas with angular anisoplanatism it 
depends on the offset angle 6. Clearly, focal anisopla
natism penalizes large telescopes more than small 
ones, but the error for any size of telescope is mini
mized by placing the beacon at the maximum possi
ble height. 

7.3.2 Average Phase and Tilt Removal 

 evaluating the wavefront errors produced by focal 
anisoplanatism with laser beacons, it is necessary to 
remove the average phase (piston) and the overall tilt 
components. The average value of the optical phase 
has no significance for incoherent imaging systems 

Telescope aperture 

Figure  Focal anisoplanatism. 

Substituting for 0 and using  for the five-
thirds turbulence moment up to the beacon height 

 the following relation is obtained 
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using a single aperture, and may therefore be 
ignored. The reason for excluding overall tilt is that 
a laser beacon projected from the ground cannot 
function as a reference source for measurement of 
overall tilt or image position, because its position is 
randomly displaced by atmospheric turbulence. This 
displacement cannot be sensed by measuring the 
position of a beacon projected through the same 
aperture. The principle of optical reciprocity states 
that light will trace the same path in either direction 
in a static medium. Consequently, if a laser beam is 
projected on-axis through a telescope aperture, the 
backscattered light will always appear to be on-axis 
when viewed through the same aperture, irrespective 
of any wavefront distortion, assuming that the wave-
front does not change within the propagation time, 
which is generally true for atmospheric beacons. The 
result is that no overall tilt error would be recorded 
by a sensor using the same aperture. If a separate 
aperture were employed to project the beacon, then, 
again, its random motion due to turbulence would 
add to that of the sensing telescope, preventing any 
meaningful measurement of the position of the 
science object. 

In order to project a beam from the ground in the 
same direction as an exo-atmospheric object, it is 
necessary to have a reference source in the same 
frame  reference as the object; that is, beyond the 
atmosphere. A laser beacon can only serve as a refer
ence source for wavefront aberrations ocurring 
within the telescope aperture itself, starting with the 
defocus error. Such higher order wavefront errors are 
all measured with reference to the mean tilt across the 
aperture and are therefore independent of the abso
lute position of the reference source. This subject is of 
great importance in adaptive optics and is discussed 
further in section 7.4. 

An additional complication arises when multiple 
beacons are employed. In this case, unmeasured tilt 
differences between the beacons are reconstructed 
into higher order wavefront errors across the aper
ture. These errors are described in section 7.3.5 and 
must be taken into account when determining the 
performance of multiple-beacon systems. 

7.3.3 Computation of Error Due to Focal 
Anisoplanatism 

Exact calculation of the focal anisoplanatism error 
produced by laser beacons has proved to be a difficult 
task. The classic analytical approach using wavefront 
structure functions that depend only on differences in 
position within the telescope aperture becomes 
unwieldy because the beacon beam converges to 

 a point, while the telescope beam is 
 One of the first investigations was that of 
 and Fried [1984], in which it was shown 

that the mean-square wavefront error due to focal 
anisoplanatism, in radians squared of phase, can be 
expressed as 

where D is the telescope aperture and the value of   

depends on the operating wavelength, zenith angle, 
beacon altitude, and vertical distribution of turbu
lence. The quantity rf0   considered as the dia
meter of the aperture over which the wavefront error 
due to focal anisoplanatism is 1 rad2. The expression 
for  derived by Belsher and Fried, scales as 

  where  is the zenith angle. 
Computed values of  as a function of beacon 

altitude for three different atmospheric turbulence 
profiles at a wavelength of  are given in a 
reissue of the original paper [Fried and Belsher 
1994]. For each turbulence profile, the value of  
increases almost linearly with beacon height. The 
slope of the curves appears to be very sensitive to 
high-altitude turbulence; that is, it depends on higher 
order turbulence moments. Wavefront errors due to 
focal anisoplanatism have also been estimated by 
Gardner et  [1990] and Welsh and Gardner 
[1991] for specific adaptive optics system configura
tions, using results based on conventional anisopla
natism. 

When designing adaptive optics systems, it is 
more useful to employ an analytic approach, in 
which the results are expressed directly in terms of 
the aperture diameter, turbulence moments, beacon 
height, zenith angle, and operating wavelength. With 
such a tool, the influence of each parameter on the 
system performance is directly apparent and optimi
zation can be carried out more readily. 

A powerful method of analyzing the optical 
effects of turbulence using transverse filtering has 
been described by Sasiela [1988]. An outline of this 
method has been given in chapter 3. It is particularly 
useful in cases involving two beams propagating in 
different directions, which is the case with anisopla-
natic errors. In this approach, wavefront phase errors 
are expressed in the form 

(7.24) 

(7.25) 

where 

k =    is the temporal wave number of the 
propagating wave 

 = turbulence strength as a function of 
range, z 

K = is the spatial wave number transverse to 
the z direction, 

 - two-dimensional turbulence spectrum, 
which is normally assumed to be the 

 spectrum  =  

The essence of this approach is the use of filter func
tions in the spatial domain that depend on the spe
cific geometry of the beam paths. The filter function 
is generalized in equation (7.25) as g(y,   where y 
is a propagation parameter and  is the transverse 
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Telescope beam 

Unsampled 
turbulence 
above beacon 

Incompletely 
sampled 
turbulence 
below beacon 

Figure 7.14 Laser beacon measurement errors. 

wave number. Three integrations must be performed: 
the z integration over the axial range, and a double 
integral in  over the transverse spatial variables. 

The beam paths associated with a laser beacon 
within the atmosphere are depicted in figure 7.14. 
The path traversed by the light from the science 
object to the telescope is only partially sampled by 
the beacon. Turbulence above the beacon is totally 
unmeasured. Below the beacon, the rays reaching any 
point on the aperture, from the object and the bea
con, pass through the turbulence at different angles. 
The measurement error of a single beacon therefore 
consists of two components: the unmeasured wave-
front error above the beacon and the anisoplanatic 
wavefront error below the beacon. Because the laser 
beacon is not used to measure overall piston or tilt, 
these components (the first three terms in the Zernike 
expansion) are subtracted from the calculated error. 

The specific wavefront errors involved are defined 
as follows: 

 = Total unmeasured wavefront error 
variance above the beacon, 

 = Piston component of wavefront error 
above the beacon, 

  Overall tilt component of wavefront error 
above the beacon, 

CTL  Total anisoplanatic wavefront error 
variance below the beacon, 

  Piston component of anisoplanatic error 
below the beacon, 

CTLI  Overall tilt component of anisoplanatic 
error below the beacon. 

The net mean-square wavefront measurement error 
using a single beacon is then 

(7.26) 

The overall tilt error encountered when using laser 
beacons will be called conic tilt error to distinguish it 
from the overall tilt component of angular anisopla-

 This error is significant when multiple bea
cons are used. The conic tilt error includes 
contributions from above and below the beacon 
and is defined as 

(7.26a) 

(7.28) 

where 

(7.27) 

The mean-square value of the anisoplanatic error 
below the beacon can be computed using equation 
(7.25). Sasiela [1994] has derived the filter functions 
required to determine the total error, as well as the 
unwanted piston and tilt components that must be 
subtracted. Assuming operation in the near field, 
the mean-square value of the anisoplanatic error 
below the beacon is given by 

Computation of the wavefront error above the 
beacon is straightforward. The piston- and tilt-
removed wavefront error corresponding to the first 
three terms in equation (7.26) may be determined 
directly from the relation 
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(7.29) 

and where 
  beacon diameter 

b = beacon offset from telescope axis 
D = diameter of telescope aperture 
L = beacon range 

 = beam weighting factor,  —   

If the beacon is assumed to be a point source in the 
same direction as the science object, then a = 0 and 
b = 0, and the filter function simplifies to 

(7.30) 

This function includes the uniform phase (piston) 
and tilt components. 

The filter functions for extracting the overall pis
ton and tilt components from the focal anisoplanatic 
error below the beacon are given by 

(Tilt) 

(7.31) 

The corresponding wavefront errors may then be 
evaluated by substituting expressions (7.30) and 
(7.31) in equation (7.28). The integration is per
formed using Mellin transform techniques [Sasiela 
and Shelton 1993a,b]. The solution is expanded in a 
power series in the parameter  allowing the 
answer to be expressed in terms of turbulence 
moments. Definitions of the full and partial turbu
lence moments were given in chapter 3 and are 
repeated here for convenience: 

The full turbulence moment is 

The partial turbulence moments at height H are 

Upper moment 

Lower moment 

These moments are defined at the zenith; that is, at 
  0. At other angles, they should be multiplied by 

 
Sasiela [1994] finds that a good approximation to 

the focal  below the beacon for typical 

turbulence distributions is obtained using only the 
first terms of each series. On this basis, the error 
components are 

Piston 

Tilt (two-axis) 

(7.32) 

(7.33) 

(7.34) 

The turbulence above the beacon [equation (7.27)] 
may be expressed in terms of the zero-order moment 
of the turbulence above the beacon: 

Combining these equations, the final expression is 
obtained for the focal anisoplanatic error, which is 
the total wavefront error due to a beacon at height  
with piston and tilt removed: 

(7.35) 

This wavefront error is scaled by the factor   
independent of the beacon altitude and turbulence 
profile. It may therefore be expressed as a function 
of  as mentioned previously [equation 
(7.24)]. The value of  implied by equation (7.35) 
is then 

(7.36) 

This equation gives results that agree with the 
numerically evaluated  values of Belsher and 
Fried to within 1%, which would appear to confirm 
the validity of both methods. The advantage of the 
analytical method is that it enables  to be deter
mined directly from the turbulence moments defined 
in section 3.3.6. Values of the parameter  for sev
eral turbulence models and observation wavelengths 
are given in table 7.2. 

7.3.4 Evaluation of Beacon Sampling 
Errors 

The wavefront error incurred by the use of a single 
laser beacon as the reference source, combining the 
effects of  the turbulence both above 

(Piston) 

Total 
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Table 7.2 Values of Focal  Parameter  

Turbulence Zenith Angle Beacon height  @    @    @   @  
Model (degrees) (km)     

Hufnagel 0 10 0.56 0.84 2.35 3.32 
92 2.00 3.00 8.40  

45 10 0.46 0.68 1.91 2.70 
92 1.63 2.44 6.82 9.64 

  0 10 1.33 2.00 5.58 7.89 
background 92 4.43 6.63 18.55 26.20 

45 10 1.08 1.62 4.54 6.41 
92 3.60 5.39 15.07 21.28 

Mauna Kea 0 10 0.87 1.30 3.64 5.14 
average 92 3.34 5.00 14.00 19.78 

45 10 0.71 1.06 2.96 4.17 
92 2.72 4.07 11.38 16.07 

and below the beacon, is conveniently described as 
beacon sampling error and sets certain inescapable 
limits to the design and performance of adaptive 
optics systems. The beacon sampling error depends 
on beacon altitude, telescope aperture, zenith angle, 
wavelength, and turbulence distribution, as shown in 
equation (7.35). To gain some perspective on the uti
lity of laser beacons in astronomy, the effects of these 
parameters on the beacon sampling error is reviewed 
in this section. This is only one component of the 
total wavefront error of an astronomical adaptive 
optics system; its actual value in any specific system 
will be determined in the overall design optimization 
process, which is covered in chapter 9. 

Even if the sampling error were the largest com
ponent in the error budget, it is unlikely that it could 
be allowed to exceed about 1 rad2, (corresponding to 
a Strehl ratio of 0.37). This value can be used as a 
guide in evaluating the performance and configura
tion of laser beacon systems. Beacon altitudes of 8-
12 km are appropriate for Rayleigh scattering, while 
altitudes of  km are used for sodium resonance 
scattering. 

Figures 7.15 through 7.18 show beacon sampling 
errors and the corresponding Strehl ratios plotted 
against beacon altitude at wavelengths of 0.7 and 

  for turbulence models representing good 
and average seeing at a high-altitude site. Each figure 
shows wavefront sampling errors above and below 
the beacon, as well as the corresponding Strehl ratios 
for telescope apertures of 1, 2, 4, and 8 m. The shape 
of the sampling error curves is interesting. Between 
about 8 and 20 km, the error below the beacon actu
ally gets worse as its altitude increases, although the 
total error continues to decrease monotonically. This 
is explained by the presence of high-level turbulence 
that is not well sampled when the beacon is located 
close to it. Although the error below the beacon 
increases in this region, the error above it drops 
more rapidly, resulting in a lower overall error. It is 

also seen that the upper component of turbulence 
(above the beacon) essentially disappears at an alti
tude of about 20 km, leading to a rapid decrease in 
sampling error at higher altitudes. These effects favor 
the use of high-altitude sodium beacons. 

Figures 7.15 and 7.16 show results for 
lengths of 0.7 and   with very good seeing, 
using the Mauna Kea background turbulence 
model described in section 3.3.4. This model repre
sents the best conditions at a high-altitude site, giv
ing   0.34 m and  = 2.4 arc seconds. The 
horizontal line is drawn at a Strehl ratio of 0.37, 
corresponding to 1 rad2 of phase error. The inter
section of this line with the curve for each aperture 
size gives the minimum height at which a single 
beacon can provide a sampling error of 1 rad2. 
This aperture size is also the value of  for the 
corresponding beacon height. 

Figure 7.15 shows that to achieve a Strehl ratio 
of 0.4 at an observation wavelength of   a 
single Rayleigh beacon covers an aperture of 
about 1.5 m, while a sodium beacon covers about 
5  For these conditions, a 4-m telescope requires 
at least seven Rayleigh beacons, but only a single 
sodium beacon. An 8-m telescope may need as 
many as 30 Rayleigh beacons, but only four sodium 
beacons. The feasibility of multiple beacons is dis
cussed in section 7.3.5. 

At longer wavelengths, the situation improves 
considerably. In the H-band at  figure 7.16 
shows that a 4-m telescope is on the borderline with 
one Rayleigh beacon, while one sodium beacon 
should suffice, even for an 8-m telescope. 

High-level turbulence is usually present, even at 
the best sites; beacon errors for the Mauna Kea 
average turbulence conditions are shown in figures 
7.17 and 7.18. At an observation wavelength of 

  the value of  for a beacon height of 
10 km is close to 1 m, necessitating large arrays of 
Rayleigh beacons. A 4-m aperture would be consid-
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 Ratios for 
 2m, 4m and 8m 

Telescopes  a 
single beacon. 
Turbulence sampling 
error only. 

Figure  Beacon sampling errors and Strehl ratios for the Mauna  background (low turbu
lence) profile at X  0.70  as a function of beacon height, for apertures of 1, 2, 4 and 8 m. The 
horizontal line represents 1 rad of phase error. 

erably improved with one sodium beacon, while an 
8-m telescope would require four. Again, there is 
considerable improvement at longer wavelengths, 
as shown in figure 7.18. For observations at 

 the value of  for a beacon altitude of 
10 km is about 3 m, so a Rayleigh array of two or 
three beacons may suffice for a 4 m telescope, 
whereas for sodium a single beacon should satisfy 
even an 8-m telescope. 

The impact of focal anisoplanatism on adaptive 
optics systems is shown effectively by plotting   

against beacon altitude. Figure 7.19 shows such a 
plot with observing wavelength as the parameter, 
using the Mauna  average turbulence model. 

The relationship is approximately linear, with a 
ratio of about  between the  values for beacons 
at 90 km and 10 km. 

A direct comparison between single Rayleigh and 
sodium beacons for average turbulence is shown in 
figure 7.20, in which the Strehl ratio due to beacon 
sampling is plotted against aperture size. The advan
tage of using sodium beacons is clear. 

7.3.5 Multiple Beacons 

The results obtained above show that while a single 
sodium beacon may suffice for a  aperture at  
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Figure  Beacon sampling errors and Strehl ratios for the   background (low turbu
lence) profile at A =  as a function of beacon height, for apertures of 1, 2, 4 and 8 m. The 
horizontal line represents 1 rad of phase error. 

wavelengths in the best seeing conditions, multiple 
beacons will be necessary to implement adaptive 
optics compensation at visible wavelengths, espe
cially if Rayleigh scattering is used. This is not a 
welcome prospect, because multiple beacons intro
duce a host of technical problems, as well as being 
additional sources of wavefront error. The simplest 
concept for implementing multiple beacons is to use 
an array of point sources within the telescope beam, 
as shown in figure  Each section of the telescope 
aperture, of size  has a corresponding beacon. 
The beacons are generated by projecting laser 
beams from the ground, either through the telescope 

itself or through a closely related aperture. By using 
multiple beacons, the aperture area serviced by each 
beacon is reduced to a dimension comparable to  
minimizing the wavefront measurement error due to 
focal anisoplanatism. The wavefront measurements 
made with each beacon must then be combined or 
"stitched" together to obtain the best estimate of the 
overall wavefront. This is not a trivial process, as will 
become apparent. 

Although the model depicted in figure 7.21 is con
venient to analyze, it is not necessarily the best way to 
implement multiple beacons. To optimize the stitch
ing process, the wavefront from each beacon should 
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10 

Beacon Height, kilometers 

Figure  Beacon sampling errors and Strehl ratios for the Mauna Kea average turbulence profile 
at A = 0.70  as a function of beacon height, for apertures of 1, 2, 4 and 8  The horizontal line 
represents 1 rad of phase error. 

ideally be measured over the whole telescope aper
ture, maximizing the overlap. The wavefront estimate 
at each location in the aperture is then the weighted 
sum of the measurements from all beacons. In the 
following treatment, the model of figure 7.21 is 
assumed. 

Wavefront Measurement with 
Multiple Beacons 

The major difference between wavefront measure
ments with one beacon and measurements with mul

tiple beacons is that with a single beacon covering the 
whole aperture, the overall tilt component is dis
carded, because the image position must be stabilized 
by an external fiducial source. Overall tilt measure
ment errors associated with a single beacon are there
fore irrelevant. This is not the case when multiple 
beacons are used, because the tilts belonging to 
each subsection of the aperture are an essential part 
of the wavefront measurement. These subsection tilts 
represent higher order wavefront components across 
the whole aperture, and therefore must be determined 
and corrected accurately. To minimize random posi
tion errors, multiple beacons should be projected by, 
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Figure  Beacon sampling erorrs and Strehl ratios for the   average turbulence profile 
at  =   as a function of beacon height, for apertures of  2, 4, and 8 m. The horizontal line 
represents 1 rad of phase error. 

or at least measured by, a common aperture, which 
should be as large as possible. The worst possible 
scheme would be to project and measure the position 
of each beacon through the same elements of an 
array of small subapertures, because each uplink 
and downlink beam would then traverse the same 
path through the atmosphere. Subaperture tilts 
would be unmeasured and no useful information on 
the overall wavefront would be obtained. 

There are two sources of error in measuring the 
subsection tilts associated with each beacon. The first 
of these is conic tilt error, defined in equation (7.26a), 
which is the overall tilt component of focal anisopla-

natism, including unsampled tilt errors above the 
beacon. The second error is due to uncertainty in 
the positions of the beacons. Even though the entire 
beacon array may be projected and measured by the 
same optical aperture, the beams must be separated 
near their foci in order to form the individual spots. 
Consequently, they suffer independent, random dis
placements due to atmospheric turbulence. 

When the wavefronts measured by multiple bea
cons are combined or "stitched" together, these indi
vidual tilt and position errors are added to the other 
measurement errors. The overall result of using mul
tiple beacons is to reduce the error due to focal 
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Figure  Dependence of 
 on beacon altitude for 

the Mauna  average 
turbulence model at  
zenith angle, for observa
tion wavelengths of 0.50, 
0.70, 1.65, and  urn. 

 but, at the same time, to add errors 
due to conic tilt and uncertainty in the beacon posi
tion. To estimate the overall improvement in perfor
mance obtained with multiple beacons, it is necessary 
to determine these errors. 

If the wavefront error variance due to focal ani
soplanatism for a single beacon over an aperture  
with piston and tilt removed, is defined as  the 
conic tilt error over the same aperture, expressed as a 
phase variance, is  and the beacon position 
uncertainty error, expressed as a phase variance, is 
ffp(Z)B,  then the measurement error due to the use 
of multiple beacons can be expressed as 

Conic Tilt Error 

The conic tilt a2, [equation (7.26a)], contains contri
butions from below and above the beacon. The lower 
component is computed from equation (7.34) and the 
upper component is given by [Sasiela 1988] 

(7.38) 

Values of  and  are shown as a function of 
beacon height in figure 7.22, for separations of 1, 
1.33, and 2 m. These separations represent the sec
tions of the telescope aperture that would be serviced 
by each beacon in a multiple-beacon system. At bea
con heights below about 8 km (the realm of Rayleigh 
beacons), most of the error comes from unmeasured 
tilt above the beacon. For the conditions shown, a 
Rayleigh beacon separation of less than 1 m is neces
sary to reduce the error to 1 rad2 at a wavelength of 
1.25  Sodium beacons fare much better, as the 
error above the beacon becomes negligible and the 
conic tilt error drops to less than one-tenth of a 
radian squared. 

To facilitate the calculation of conic tilt errors, it 
is convenient to define the parameter  as the aper
ture diameter over which the tilt error produced by a 
single beacon is 1 rad2. The conic tilt error over an 
aperture of diameter  expressed as mean-square 
phase error, is then 

(7.39) 

where 

(7.40) 

(7.37) 

where 

E = error propagation factor that depends on 
the correlation between the anisoplanatic 
tilts 

D = full aperture 

The corresponding measurement error with a single 
beacon is  The total number of beacons is 
N x N. 

The wavefront phase error due to focal anisopla
natism with piston and tilt removed,  has been 
given in equation (7.35). The mean-square error is 
proportional to the 5/3 power of the aperture asso
ciated with each beacon, so that with multiple bea
cons, the error due to focal anisoplanatism is 
proportional to  Figures  to 7.18 illustrate 
the dependence of  on aperture size, beacon height, 
turbulence profile, and wavelength. 
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Turbulence model: 
Mauna Kea average, 

 = 45 degrees, 
 = 0.24 m, 

 1.9 arc sec. 

Single beacons, 
 at 10 km, 

sodium at 92 km. 

Figure 7.20 Comparison of Strehl ratios for Rayleigh and sodium beacons for Mauna Kea (MK) 
average turbulence conditions, for observation wavelengths of 0.70 and   The horizontal line 
represents 1 rad error. 

These expressions are analogous to those for focal 
 equations (7.24) and (7.36). Values 

of d\ for various operating conditions are given in 
table 7.3. 

Beacon Position Error 

The error due to beacon position uncertainty  will 
now be evaluated. The geometry is shown in figure 
7.23. The beacons are at range L and height  
where L =   The beacon separation perpen
dicular to the telescope line of sight is b, and the full 
telescope aperture is D. The beacons are generated by 
laser beams launched from the telescope itself or a 
related aperture. The precision with which the posi
tion of each beacon is known depends on the size of 

the aperture used to launch or measure it, whichever 
is larger. The problem is to find the tilt component of 
the anisoplanatic error between two focused beams 
with separation b. The propagation paths between 
the telescope and each beacon overlap, producing 
correlation between the position variations due to 
turbulence. This is beneficial, as it is only the differ
ences in position that are of interest; common mode 
position variations are equivalent to overall tilt, 
which is measured separately. 

Figure 7.23 shows that the propagation path is 
divided into two sections that are separated by the 
beam clearance height  given by 

(7.41) 



Wavefront error 
above beacons 
is not measured 

Beacon position 
uncertainty 

Tilt component of 
focal  
is different for each 
beacon. 

Figure 7.21 Error sources with multiple beacons. Even if the position of each beacon was known exactly, the 
turbulence above each section of the aperture is not measured exactly. The tilt components of the beacon 
measurement errors produce random higher order errors. 

Tilt errors of multiple beacons 

Beacon altitude, kilometers 

A Error above beacons, for separations of  and 2.0  
B Error below beacons, for separations of  and 2.0  

Figure 7.22 Wavefront errors produced by the tilt components of focal ani
soplanatism. Conditions: Turbulence model Mauna  Average; observation 
wavelength  zenith angle 45 degrees. When multiple beacons are 
employed, tilt errors of this type are reconstructed into higher-order errors 
over the telescope aperture. They are of most concern with Rayleigh beacons, 
necessitating the beacons to be spaced less than 1 m apart. With sodium bea
cons the errors are negligible, even with a beacon spacing of 2 m. 
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Table 7.3 Values of Conic Tilt Error Parameter  

Turbulence Zenith Angle Beacon Height rf, @   @    @    @  
Model (degrees) (km)   (m)  

Hufnagel 0 10 0.23 0.34 0.68 1.33 
92 2.57 3.84 7.71 15.2 

45 10 0.18 0.27 0.55  
92 2.08 3.12 6.26 12.34 

Mauna  0 10 0.49 0.73 1.47 2.90 
 92 5.56 8.33 16.7 32.9 

45 10 0.40 0.60 1.20 2.36 
92 4.52 6.76 13.56 26.73 

Mauna Kea 0  0.36 0.54 1.09 2.15 
average 92 4.46 6.68 13.4 264 

45 10 0.29 0.44 0.88 1.74 
92 3.63 5.43 10.88 21.45 

Figure 7.23 Geometry and notation for beacon posi
tion errors. 

Below  the beams overlap by an amount that 
increases to 100% at the telescope aperture. The 
weighting factor for differential tilt error is therefore 
zero at the telescope and rises to a maximum at  
Above  the beams are separated and the weighting 
factor decays to zero at the beacon height. 

Analytical expressions for the anisoplanatic tilt 
errors between two beacons with separation b at 
height  when viewed by a common aperture of 
diameter D, have been developed by Sasiela  
using transverse filtering techniques. The angular 
errors depend on  and are converted into 
equivalent wavefront phase errors over the sub-aper
tures associated with each beacon, by multiplying by 

 where  = b = D/N. The error compo
nent below the beam separation height, in radians 
squared of phase, is then 

(7.42) 

where 

(7.44) 

(7.45) 

This function is plotted against the measurement 
aperture diameter D in figure 7.24, for various bea
con heights and separations. The chart shows clearly 
the advantage of using a large aperture for measuring 
the beacon position. For Rayleigh beacons at heights 
around 10 km, the beacon position error  is much 
smaller than  and may usually be neglected, even 
when the measurement aperture is as small as 1  
For sodium beacons at 92 km, the position error  is 
between one-tenth and one-third the size of of. 

The error component above the beam separation 
height, in radians squared of phase, is 

(7.43) 

where 

(7.46) 

The total beacon position error variance, in radians 
squared of phase, is then 
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The dependence of the position error on the number 
of beacons is shown in figure 7.25. 

Combining Multiple-Beacon Data 

The wavefront measurements made with each bea
con must be combined or stitched together to recon
struct the phase over the whole aperture. To 
illustrate this process, a system with four beacons 
is shown in figure 7.26. In the simplest case, each 
beacon is centered over the corresponding section of 
the full aperture. Each section has a dimension  
comparable in size to the characteristic dimension 

 Within each  section is an array of 
n x n subapertures, the size of each subaperture 
being commensurate with the turbulence coherence 
length  If the wavefront within each  area 
is measured exactly with respect to the full aperture, 
then the individual wavefront slopes of the subaper
tures will match those of the adjoining sections so 
that they may all be fitted or "stitched" together 
without any error, thereby defining the wavefront 
across the whole aperture. 

In practice, the wavefronts are not measured 
exactly by the beacons because of the cone effect; in 
addition, their positions are not precisely known 

because of random displacements due to turbulence. 
The mean-square value of each of these errors has 
been calculated earlier, in terms of basic system para
meters such as beacon height, aperture size, 
length, and turbulence profile. The effect of these 
statistical errors on the overall reconstructed wave-
front must now be determined. 

The conic tilt error  is calculated over wave-
front areas of diameter  as shown in equation 
(7.39). The contribution of these tilts to the total 
wavefront error is determined with respect to the 
average tilt across the telescope aperture D. The 
overall wavefront error produced by the conic tilts 
therefore depends on the correlation between them. 
For example, if the conic tilts were perfectly corre
lated, they would combine to produce pure tilt 
across the full aperture, equivalent to zero wave-
front error. On the other hand, if the conic tilts 
were completely uncorrelated, their mean-square 
values would add to produce a significant error in 
the reconstructed (stitched) phase values. The corre
lation is conveniently specified as an error propaga
tion constant E, multiplying the beacon tilt errors as 
shown in equation (7.37). For perfect correlation 
between the beacon tilts (or when there is only a 
single beacon), E is zero. 

Beacon Position Error 

Measurement aperture, meters 

A beacon height 10 km, separation 2  
B beacon height 92 km, separation 2 m 
C beacon height  km, separation 1 m 
D beacon height 92 km, separation 1 m 

Turbulence profile HV 20/20, X = 0.55 urn,  = 45 degrees 

Figure 7.24 Wavefront errors produced by uncertainty in the position of multiple beacons, as 
a function of the size of the aperture used to measure the beacon positions. The relative tilt 
error between two beacons separated by the specified distance is converted to the equivalent 
wavefront error variance over aperture sizes equal to the beacon spacing. HV, Hufnagel-
Valley. 
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A beacon height   aperture 4  
B beacon height 92 km, aperture 4  
C beacon height 10 km, aperture 8 m 
D beacon height 92 km, aperture 8 m 

Turbulence profile HV 20/20, X = 0.55 urn,  = 45 degrees 

Figure 7.25 Wavefront errors produced by uncertainty in the position of multiple beacons, as 
a function of the number of beacons for Rayleigh (10 km) and sodium (92 km) beacons. 
Telescope apertures of 4 and 8 m are used to measure the beacon positions. The relative tilt 
error between two adjacent beacons is converted to the equivalent wavefront error variance 
over aperture sizes equal to the beacon spacing, HV,  

Figure 7.26 Four-beacon stitching model. 

The correlation between turbulence-induced tilts 
in two apertures depends on the spatial power spec
trum of the turbulence, the ratio of displacement to 
aperture size  and the direction of displacement 

relative to the tilt axis. The tilt correlation functions 
do not depend on the vertical distribution or strength 
of the turbulence, nor on the wavelength. Correlation 
drops to zero only for orthogonal tilts when the 
beams are displaced in the direction of one of the 
tilt axes. If the beam displacement has a component 
in both orthogonal tilt axes, then the tilts become 
correlated. Correlation values for parallel, diagonal 
and orthogonal displacements in a square array are 
shown in figure 7.27. Sasiela [1994] has found that to 
a close approximation, the correlation functions for 
focal anisoplanatic tilt in a conical beam are the same 
as those for pure tilt in a collimated beam. Using 
these tilt correlation values, the correlation matrix 

 is easily constructed; the matrix for a 2 x 2 beacon 
array is shown in figure 7.28. 

With a knowledge of the tilt correlation functions 
and the geometrical layout of the beacons with 
respect to the telescope aperture, the errors due to 
beacon position uncertainties can now be deter
mined. For the simple  beacon system, if the 
phase values at the corners of each section of the 
wavefront are represented by the vector  and the 
random tilts in each section are represented by the 
vector n, then the measured wavefront gradients are 
given by the vector g, where 
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Parallel tilts Orthogonal tilts 

Figure 7.27 Tilt correlation factors  a square array. 

(7.47) 

The reconstruction matrix A, relating the phase 
values to the gradients, is easily determined by 
inspection of figure 7.26 and is shown in figure 
7.29. Each gradient is defined by the phases at the 
four points surrounding it. For example, in this array 

The phase values giving the best (least-squares) fit 
to the measured gradients are given by the vector  
defined as 

(7.48) 

where T indicates the transpose of the matrix, and © 
indicates the generalized inverse, which is necessary 

when the matrix has singular values. The error in the 
estimated phase values is 

(7.49) 

A more useful parameter is the error propagator E 
that expresses the fraction of the beacon tilt error 
that shows up in the estimated wavefront when multi
ple beacons are used. The error propagator is given 
by 

(7.50) 

where Tr indicates the trace (the sum of diagonal 
elements). This value of E is then inserted in equation 
(7.37) to find the wavefront error due to multiple 
beacons. Values of E for beacon arrays up to 4 x 4 
have been calculated by Sasiela [1994] and are given 
in table 7.4 . 

7.3.6 Laser Projection Geometry 

Laser beacons may be launched using many different 
optical configurations. The methods may be differen
tiated by how closely they are integrated with the 
optical and mechanical functions of the telescope. 
The most complete integration is achieved by com
bining the outgoing laser beam with the optical sys
tem of the telescope and projecting it through the 
main aperture, using a part or the whole of the pri
mary mirror. The next step is to separate the laser 
beam optically from the telescope, while continuing 
to share the mount. In this case, the laser beam may 

a =0.558 

b =0.778 

 =0.594 

d =0.109 

Figure 7.28 Tilt correlation matrix for 2 x 2 beacon array. The tilt correlation 
values depend on the geometrical relationship of the subapertures, as shown in 
figure 7.27. 

Parallel tilts, displaced 1  in direction of  

Parallel  displaced 1 unit perpendicular to tilt. 

Parallel tilts, displaced  units at 45 degrees to tilt. 

Orthogonal tilts, displaced 1.414 units at 45 degrees. 
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A = 

1 1 0 -1 1 0 0 0 0 

0 -1 1 0 -1 1 0 0 0 

0 0 0 -1 1 0 • 1 1 0 

0 0 0 0 -1 1 0 -1 1 

1 -1 0 1 1 0 0 0 0 

0 -1 -1 0 1 1 0 0 0 

0 0 0 -1 1 0 1 1 0 

0 0 0 0 -1 -1 0 1 1 

*0.5 

Reconstruction matrix for 2 x 2 beacon array 
4 x-tilts + 4 y-tilts = 8 rows, 
3x3 phase points = 9 columns. 

Figure 7.29 Tilt reconstruction matrix for 2 x 2 beacon array. This matrix  the weighting or correla
tion between the x and y tilts and the phase points. 

Table 7.4 Beacon Tilt Error Propagator 

Beacon Array Error Propagator, E 

2 x 2 
3 x 3 
4 x 4 

0.426 
0.465 
0.957 

be projected coaxially using separate optics mounted 
within the central area normally obscured in a 
Cassegrain telescope, or the laser optics may be 
attached to the side of the telescope tube, clear of 
the main aperture. Lastly, a bistatic arrangement 
may be used in which the laser projector is separated 
optically and structurally from the telescope. 
Whichever system is employed, it is evident that the 
laser beacon must be boresighted accurately to the 
science object being observed. Each method of pro
jection has its advantages and disadvantages; these 
will be briefly reviewed in this section. 

The advantage of using the full telescope aperture 
for projecting multiple beacons was pointed out by 
Foy and Labeyrie [1985]: by employing a common 
aperture, differences in tilt that could displace indivi
dual beacons are minimized. Indeed, as seen through 
the telescope (that is, with respect to the image 
plane), an array of spots projected and viewed 
through the same aperture will appear to be station
ary, by virtue of the principle of optical reciprocity. 
In fact, the array of beacons will be displaced by 
turbulence, and a fixed reference star is required to 
point the telescope along a fixed line of sight, as dis
cussed in section 7.4. Some differential motion is 
bound to occur because the individual beams must 
separate to form the individual images, but this is 
minimized by the use of a common aperture. 

The use of a separate aperture to project the laser 
beam has both good and bad effects. The main 
advantage of employing a separate projection aper
ture is that it eliminates high-intensity laser light 

from the astronomical telescope. The laser projection 
optics and the telescope optics are both simplified 
and each can be optimized for its specific task. 
When the laser beam is physically separated, much 
of the Rayleigh scattering is outside the field of view 
of the telescope, so that a continuous-wave laser may 
be employed. Bistatic operation also has the potential 
of allowing a single laser installation to service sev
eral telescopes at one site. 

There are two disadvantages in using a separate 
aperture to launch the laser beacon: 

 Tilt  produced by the separation 
of the telescope and laser projector causes a 
random displacement between the beacon and 
the telescope axis, even when a fixed guide star 
is used to point the telescope. This effect could 
be eliminated by using a fixed star to point the 
laser beam as well as the telescope. 

2. The angle between the axes of the telescope and 
the laser projection optics causes the beacon to 
be elongated. The elongation may be consider
able with bistatic operation, but it also occurs 
even when the laser is mounted coaxially with 
the telescope, in front of the secondary mirror. 
In this case, wavefront sensor subapertures 
within the telescope aperture are off-axis by 
an amount equal to their radius from the center 
of the primary mirror. 

The basic geometry for bistatic operation is shown 
in figure 7.30. For simplicity, it is assumed that the 
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telescope T is pointed at the zenith. The laser beacon 
projector P is located a distance y from the telescope. 
The beacon is formed at mean height z, within a 
depth Az centered on the optical axis of the telescope. 
This depth corresponds either to the thickness of the 
scattering layer or to the receiver range gate, which
ever is smaller. The beacon-pointing offset angle is 
 =  

The angular separation of the laser beam from the 
telescope axis at any height  is 

(7.51) 

In the case of a sodium beacon at 92 km, Rayleigh 
scattering produced by the laser beam at altitudes up 
to about 25 km will be off-axis by  (6 arc 
seconds) for each meter that the laser projector is 
displaced. A displacement of just a few meters is 
therefore sufficient to keep low-altitude Rayleigh 
scatter out of the compensated field of view, eliminat
ing the need for range gating and allowing the use of 
lasers with a very high pulse rate or even continuous 
outputs. 

Even when a laser beacon is projected coaxially 
with the telescope, the laser beam is still effectively 
off-axis to the annular primary mirror. The geometry 
for this configuration is shown in figure 7.31. The 
radius of the projection aperture is  and the laser 
beam is assumed to have negligible divergence. The 
off-axis angle of the edge of the laser beam at any 
height h, as seen from a point on the primary mirror 
at radius  is then 

Telescope pupil 

Figure  Geometry for coaxial projection of a 
sodium beacon. 

Angular elongation of a laser beacon may be a 
problem with either Rayleigh or sodium beacons. 
Because of the thickness of the sodium layer and 
the need for relatively long pulses to minimize satura
tion, a sodium beacon actually consists of a bundle of 
glowing filaments, about 1 m in diameter and 10 km 
in length. Even when viewed from a few meters off-
axis, beacons of this length have significant radial 
elongation. Beacon elongation has several undesir
able effects: it increases the wavefront sensor errors 
for both Shack-Hartmann and shearing interferom
eters and may also produce errors because of angular 
anisoplanatism. 

The angular elongation of the beacon in the direc
tion of laser offset is 

(7.53) 

For a sodium beacon, the mean altitude z is about 
92 km and the layer thickness Az approximately 
10 km. The beacon elongation is therefore 

 where y is the offset distance of the laser 
projector. To limit the elongation to   corre
sponding to the angular size of a  sodium spot, 
the maximum laser displacement on the ground is 
9 m. For larger displacements, it may be necessary 
to compensate for the elongation. The length of the 
return pulse received at the telescope is equal to twice 
the transit time of the light  the layer, plus the 
laser pulse length: 

(7.54) 

where 

Figure 7.30 Geometry for biastic operation. 

 = laser pulse length 
c = speed of light 

For a sodium beacon, the transit time is about 33  
and the pulse length observed from the ground is 

(7.52> 

   0.25 m and h = 25 km, then the off-axis angle 
as seen from a mirror location at a radius of 2  is 

 or 14.4 arc seconds. If the science object and 
fixed guide star are within this radius, then a field 
stop will exclude the low-altitude Rayleigh scattering. 
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 +  Because of the short pulse length, it is 
difficult to compensate optomechanically for pulse 
elongation. Beckers [1992] has suggested compensat
ing the angular displacement of a laser beacon by 
adjusting the clock rate in the charge-coupled device 
(CCD) detectors used in the wavefront sensor to 
match the motion of the laser beacon. The charges 
would be moved along the columns of the CCD in 
the direction that the beacon pulse is traveling. 
Compensation of beacon elongation is only effective 
if the pulse length is short compared with the transit 
time through the layer; that is, when    With 
long pulses, the spatial extent of the pulse becomes 
comparable to the layer thickness, and it can only be 
shortened by gating the receiver. 

Elongation of the laser beacon may also degrade 
the wavefront measurement due to anisoplanatism. 
The isoplanatic angle is approximated as 

7.4 Image Stabilization 

7.4.1 Position Reference Requirements 

A laser beacon projected from the ground is ran
domly displaced by atmospheric turbulence and 
cannot be used as an absolute position reference 

to stabilize an image. This may not be important 
for very short exposures of less than 1/100 second 
or so, but for the much longer exposures typical of 
deep-space astronomy, the presence of even a small 
amount of image motion can offset any gain in 
resolution produced by adaptive optics. As the 
allowable image motion is usually specified as a 
fraction of the diffraction-limited resolution of the 
telescope aperture, X/D, the requirement for image 
stabilization becomes more critical as the aperture 
size increases. 

To stabilize the position of an image, a fiducial 
source in the same frame of reference as the object 
is required. For astronomical objects, an 
spheric source is necessary. Ideally, a star included 
in the science object itself should be used; the source 
brightness required for precise tilt tracking (typically 
around  = 16) is much less than that for high-
order compensation. However, many objects of 
interest are of greater magnitude, or are diffused 
and otherwise unsuitable for use as reference 
sources. It is clear that for general observational 
astronomy, an independent and reliable method of 
image stabilization is essential. 

It is instructive to review the image stabilization 
problem using the telescope's image plane as the 
reference frame, because that is where the image is 
recorded and where its quality is evaluated. The con
ditions relating to image stabilization are depicted in 
relation to the telescope field of view in figure 7.32. 

The situation before the adaptive optics is ener
gized is shown in figure 7.32(a). It is assumed that the 
beacon is launched coaxially with the main telescope 
aperture, either sharing the optical beam path, or 
using a projection aperture in close proximity to it. 
With a common atmospheric path, the beacon will 
always appear to be near the center of the field of 
view, because backscattered light follows exactly the 
same path as the outgoing light through the atmo
sphere. On the other hand, light from the science 
object and a nearby reference star passes through 
the atmosphere in only one direction, with the result 
that these objects move randomly within an envelope 
determined by the amplitude of the tilt component of 
the turbulence. If they are within the same isoplanatic 
patch for overall tilt, their motion will be highly cor
related. 

The situation when a fixed guide star(FGS) is used 
to correct overall image motion is shown in figure 
7.32(b). The FGS is the reference source for the tilt 
sensor that controls the fast-tracking (tip-tilt) mirror 
in the adaptive optics system. The position of the 
FGS with respect to the optical axis can be offset 
as indicated. Surrounding the FGS is an area of 
radius  this is the isoplanatic area within which 
image motion is highly correlated with that of the 
FGS. The science object S must be within this area. 
Surrounding the beacon (B) is the high-order isopla
natic region of radius  which must also include the 
science object. This circle defines the highly compen-

Taking average values of  =  m, and h = 5 km, 
the maximum value of y for visible observations is 
about 10m, while for  observations at  it is 
37 m. 

These figures are rough estimates of the laser 
separations that are possible in bistatic systems. 
When designing a specific adaptive optics system, 
the wavefront errors due to laser projector offset 
must be calculated and included in the error budget. 
Even with bistatic operation, it is still highly advan
tageous to project all beacons in an array through the 
same aperture. The worst possible strategy would be 
to use separate projection apertures for each beacon 
in an array, because, in that case, the angular 
motions would be uncorrelated, and if the subaper-
tures were small, the angular errors would be large. 

(7.55) 

where 

 = turbulence coherence length at wavelength 

h = mean turbulence height 
  observation wavelength 

Using the criterion that the beacon elongation half-
angle should not exceed  we obtain the relation 

 <  expressed in  The limitation on the 
laser offset distance is therefore 
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(A) Laser beacon projected through telescope, with no overall tilt correction. 
The beacon location is fixed, but both the science object and the fixed guide 
star move randomly due to the overall tilt component of the turbulence. 

Science object 
within highly 
corrected  

 Overall image motion corrected using the fixed guide star FGS. 
The science object must be within the high-order  angle 
of the laser beacon B, as well as the tilt isoplanatic angle  FGS 

(C) If the laser beacon is projected through a different aperture from the imaging 
system, it moves in relation to the telescope axis. This is acceptable so long as the 
laser beacon remains within the isoplanatic angle around the science object. 

Figure 7.32 Image stabilization conditions. 

sated field of the telescope. The long-exposure image 
quality is maximized by making B and FGS as close 
as possible to S. 

In the case of bistatic operation, when the laser 
beacon is projected through an aperture that is not 
congruent with that of the telescope, the situation is 
modified as shown in figure 7.32(c). Because the out
going and return paths of the beacon are no longer 
identical, the position of B will move randomly in 
relation to the telescope axis, even when the science 
object is stabilized by the adaptive optics. The isopla
natic area surrounding the beacon will consequently 

be randomly displaced, with the possibility that it may 
not include the science object. With a bistatic laser 
projection system, the wavefront tilts are uncorrelated 
and may lead to considerable offsets, especially with a 
small laser aperture. In this case, a separate tilt-cor
rection loop may be employed to stabilize the beacon 
position in the telescope field of view, driving a fast-
tracking mirror in the laser projection path. A further 
problem with bistatic operation is that it causes angu
lar elongation of the beacon, which may produce 
wavefront measurement errors. This subject has 
been discussed in section 7.3.6. 



250 Adaptive Optics for Astronomical Telescopes 

For long exposures, the precision of the tilt com
pensation provided by the fixed reference star is a 
critical issue. The wavefront error due to anisopla-

 increases  with angular distance 
from the reference star and is inversely proportional 
to its brightness. When several fixed guide stars are 
available, a tradeoff may be necessary to select the 
best one. It is also possible to use multiple FGSs to 
provide some averaging of random errors, although 
this will increase the complexity of the tilt wavefront 
sensor. 

When operating at visible wavelengths, as indi
cated in figure 7.32, the high-order isoplanatic 
patch of the laser beacon is usually much smaller 
than the tilt isoplanatic patch surrounding the 
FGS. It is unlikely therefore that the FGS will receive 
any high-order compensation at visible 

 fact, it is better not to compensate than 
to apply the wrong correction as this can double the 
mean-square error. The optical path to the FGS sen
sor should therefore be separated before the 

 mirror, as indicated in figure 7.33. However, the 
situation is quite different when an  star is used as 
the FGS; in this case, the compensated isoplanatic 
patch surrounding the beacon is much larger, result
ing in a greatly improved image of the FGS. The 
advantages of using an  guide star have been 
described by   et  [1994]. The 
improvement in sky coverage is dramatic. 

7.4.2 Tilt  

The discussion above has indicated the great impor
tance of tilt anisoplanatism in evaluating the perfor
mance of adaptive optics systems using laser beacons. 

In this section, a method of determining the errors 
due to tilt anisoplanatism is described, using analytic 
expressions that are directly related to the basic para
meters of adaptive optics systems. The geometry for 
tilt anisoplanatism is shown in figure 7.34. The angle 
between the science object and the fixed guide star is 
9. This angle is on the order of 10"4 rads. The aper
ture of the telescope is D and the objects being 
observed are at a zenith angle of  The height at 
which the two beams no longer overlap is an impor
tant parameter and is designated as the beam-clear
ance height  —  The z coordinate 
measures distance along the telescope axis. Initially, 
it is assumed that the three-dimensional turbulence 
spectrum follows the basic  power law, with 
infinite outer scale. 

Using Sasiela's method of transverse filter func
tions, outlined in chapter 3, the two-axis phase var
iance due to tilt between two objects at infinite range, 
separated by an angle 6, is 

After performing the angular integration in the trans
verse filter plane and converting to angular tilt by 
multiplying by  we obtain 

Figure 7.33 Block diagram 
of telescope pointing system 

using a fixed guide star 
(FGS). 

(7.57) 

(7.56) 
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Beam clearance 
height 

Telescope 

Figure 7.34 Geometry for tilt  be
tween two objects at infinity. FGS, fixed guide star; 
SO, science object. 

The integral in  is evaluated using Mellin 
transform techniques [Sasiela and Shelton  
with the result being expressed as a power series in 
9/D. Separate solutions are obtained for  <   

and  >  Above the beam clearance height 
 the turbulence encountered by the two beams 

becomes  when the separation exceeds 
the outer scale of turbulence,  The variance 
between the beams is then twice the variance of a 
single beam. Below  the tilt variances become 
more highly correlated as z goes to zero. The value 
of  is usually between 20 and 100 km, so, in prac
tice, there is little  above the beam clear
ance height. 

The anisoplanatic angular tilt error variances 
(Zernike tilt) produced by turbulence below and 
above  are given by 

(7.58) 

(7.59) 

The partial turbulence moments  and  
have been previously defined. Note that  itself is 
also a function of 0. 

 is seen that the tilt variances caused by turbu
lence below  are considerably different in the x and 

y directions, x being the axis of beam displacement. 
Average values for the single-axis mean-square dis
placements are given by  +  The average 
mean-square values of the main components of tilt 
anisoplanatism are shown as a function of field angle 
9 in figure 7.35. The total error obtained by sum
ming these components is also shown. The chart is 
drawn for good seeing conditions, using a 4-m aper
ture. The results are independent of wavelength. Use 
of a different aperture size changes the scale of the 
abscissa but not the relationship between the various 
error terms. The atmospheric turbulence profile gen
erally has a consistent shape as a function of alti
tude, with an overall scaling for turbulence strength. 
The dependence of the anisoplanatic tilt error terms 
on the angle 6 is determined by the turbulence 
moments, which also have a consistent shape, with 
scaling for turbulence strength. These effects consid
erably simplify the analysis of anisoplanatic  
errors and allow figure 7.35 to be used as a general 
model. 

7.4.3 Small Angle Approximations for Tilt 
Anisoplanatism 

For small field angles, the beam clearance height  is 
very large and turbulence below the beam crossing 
height is dominant. For angles up to about 100  
(0/40,000) between the science object and the tilt 
reference, the first term alone of equation (7.58) is a 
good approximation and the full turbulence moment 

 may be used in place of the partial moment. In 
this region, the total anisoplanatic angular  error 
variance may be approximated as 

where 

(7.62) 

It should be kept in mind that this approximation is 
valid only for field angles up to about  
When observing at  wavelengths, a larger offset 
angle can be used between the reference star and 
the science object, so this simple relationship may 
no longer hold. 

(7.61) 

The average single-axis mean-square angular tilt (in 
radians squared) is half this value. 

A characteristic angle  been defined by Sasiela 
and Shelton  as the angle between two beams 
at which the wavefront phase error due to to tilt 
anisoplanatism is 1 rad, so that for a small angle 

 the mean-square wavefront phase error is given 
by 

(7.60) 
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First upper term 

Total errror 

First lower term 
Third lower term 
Fourth lower term 
Fifth lower term 

Second lower term 

Second upper term 

Field angle,  

Conditions: Turbulence model HV 20/20, D = 4 m,  = 45 degrees 

Figure 7.35 Main error components of tilt  The first three components due 
to turbulence below the beacon (lower terms) are given in equation (7.58), and those due to 
turbulence above the beacon (upper terms) are given in equation (7.59). HV, Hufnagel-
Valley. 

7.4.4 Tilt Anisoplanatism at Large Angles 

Figure 7.35 shows that higher order terms tend to 
occur in pairs of similar magnitude but opposite 
polarity, so care must be taken in truncating the ser
ies. For angles greater than  both the sec
ond and third terms in equation (7.58) must be 
included. 

At larger angles, the beam clearance height  is 
reduced to the extent that significant turbulence 
occurs above the altitude at which the beams are 
separated. The upper error terms now become impor
tant, with the lower contribution gradually diminish
ing. For values of 0 greater than  it is 
necessary to include the upper terms. Again, note 
that the first and second upper terms are comparable 
in magnitude and opposite in polarity, so both must 
be included. The anisoplanatic tilt errors above and 
below  become equal at an angle of about  
15,000. 

Some insight into the relative importance of ani
soplanatic tilt errors can be gained by comparing 
them with the diffraction-limited resolution of the 
optical aperture. This ratio shows the increase in 

long-exposure image size due to tilt anisoplanatism. 
Figures 7.36 and 7.37 show the angular tilt errors 
normalized to the radius of the Airy disk, as a func
tion of isoplanatic angle 9. Conditions for good see
ing with a 4-m aperture in the visible band are 
depicted in figure  the solid curve representing 
the error computed using the five terms defined in 
equations (7.58) and (7.59). This curve is not percept
ibly changed by the inclusion of additional terms. 
For these parameters, the normalized angular tilt 
due to anisoplanatism has a value of unity at an off
set angle of  

The linear approximation of equation (7.60) con
siderably overestimates the errors due to tilt aniso
planatism at angles greater than  The use of 
the first lower term in equation (7.59) is not much 
better. However, as the allowable normalized error 
due to tilt anisoplanatism is unlikely to be much lar
ger than 1, the single-term approximations are allow
able for use at wavelengths in the visible band. 

The situation is quite different at longer 
lengths because the Airy disk is larger.  that case, 
larger values of 8 can be used and single-term 
approximations greatly overestimate the error due 



Field angle,  

A total error, (eight terms) 
B linear approximation, equation (7.60) 
C five lower terms 
D three upper terms 
E first lower term only 
F three lower terms only 

Conditions: Turbulence model HV 20/ 20, D = 4   = 0.55 urn 

Figure 7.36 Angular anisoplanatic tilt errors normalized to radius of Airy disk for a wavelength 
of 0.55  The components are plotted on two charts for clarity. HV,  
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Field angle, microradians 

A total error, (eight terms) 
B linear approximation, equation (7.60) 
C five lower terms 
D three upper terms 
E first lower term only 
F three lower terms only 

Conditions: Turbulence model  20/ 20, D = 4   = 125  

Figure 7.37 Angular anisoplanatic tilt errors normalized to radius of Airy disk for a wavelength of 
 The components are plotted on two charts for clarity. HV, Hufnagel-Valley. 
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to tilt  Figure 7.37 depicts the same 
conditions as in the previous case except that the 
wavelength is now  It is seen that the nor
malized anisoplanatic tilt error remains less than 1, 
even for large offset angles. Neither of the single-
term approximations gives useful results at this 
wavelength, leading to gross over- and underesti
mates of the error. For systems that must work 
over a large range of observation wavelengths, it is 
necessary to use the full expression to determine the 
maximum value of 9. As the anisoplanatic tilt error 
is the main factor in determining sky coverage, it is 
essential to use a realistic error model. 

7.4.5 Dependence of Tilt Anisoplanatism 
on Telescope Aperture 

Another question of interest is the dependence of tilt 
anisoplanatism on the size of the telescope aperture. 
The aperture size is not usually considered as a free 
parameter; in most observing situations, the maxi
mum available aperture is routinely used. However, 
it is instructive to see its influence on tilt anisoplanat
ism, which ultimately determines the sky coverage. 
The  value of the anisoplanatic angular tilt 
error is plotted as a function of field angle 9 for 
aperture sizes of 2, 4, 6, and 8 m in figure 7.38. It is 
seen that at all values  9, the anisoplanatic tilt error 
is inversely dependent on aperture size, varying as 

 The reason is quite clear: for a given field 
angle, the beam clearance height  is directly propor
tional to D, and a larger value of  means that a 
greater part of the atmosphere is common to the 
two beams. Hence, the smaller anisoplanatic tilt 
error. 

But, when the anisoplanatic tilt error is normal
ized to  as shown in figure 7.39, the net result is 
that it increases as  because the Airy disk radius 
is proportional to  Thus, the error due to tilt 
anisoplanatism becomes a larger factor in the error 
budget with large apertures. 

7.4.6 Effects of the Outer Scale of 
Turbulence 

It has been assumed, up to now, that the turbulence 
spectrum has an infinite outer scale. It was shown in 
section 2.4 that when the turbulence spectrum has a 
finite outer scale, the single-aperture overall tilt com
ponent is significantly reduced. Using a von Kantian 
spectrum with an outer scale of  the variance of 
the single-aperture Zernike angular tilt component is 
approximately 

(7.63) 

For example, if the outer scale is 10 times larger than 
the telescope aperture, then the rms value of the over
all tilt is only about 60% of that produced with an 
infinite outer scale. 

In the case of tilt anisoplanatism, we are dealing 
with the difference between two closely spaced 
beams. Large-scale tilt components have a common 
effect on these beams, so the outer scale dimension 
has less influence on the result. Sasiela and Shelton 
[1993a] show that for small displacement angles, the 

Turbulence model: 
HV 20/20 

  45 degrees 

   

100 200 300 400 500 

 angle,  

Figure 7.38 Anisoplanatic tilt angular error for apertures of 2, 4, 6, and 8 m. HV, Hufnagel Valley. 
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Turbulence model: 
HV 20/20 

 = 45 degrees 

X = 0.55  

100 200 300 

Field angle,  

Figure 7.39 Anisoplanatic tilt error, normalized to the Airy disk radius, for apertures of 2, 4, 6, and 
8  HV,  

anisoplanatic angular tilt variance with finite outer 
scale is given by 

(7.64) 

In this case, for the same 10:1 ratio of outer scale to 
aperture, the  value of the anisoplanatic tilt is 
96% of that produced with a infinite outer scale. 
These results show that outer scale effects are gener
ally negligible for tilt anisoplanatism, except when 
the outer scale becomes comparable to the size of 
the aperture. 

7.5  Beacon Lasers 

7.5.1 Requirements 

The process of molecular scattering is not critically 
dependent on the characteristics of the incident 
radiation, so the laser requirements are not restrictive 
and a wide variety of lasers may be used for this 
application. The dependence of the received signal 
on the laser parameters can be found from equations 
(7.1) and (7.2). The number of photons  received 
from a range interval Az may be expressed in terms 
of the following variables 

(7.65) 

E = laser pulse energy, J 
 = optical wavelength, m 

 = effective backsca t te r cross-section, m2 

 = number density of scatterers at range z, 
 

Az = receiver range gate length,  
z - range at center of range gate, m 

The backscatter cross-section  is proportional to 
 and the density of scatterers  is propor

tional to  If the receiver range gate is 
adjusted to cover a range interval at the focus that 
has an angular diameter of Act, then using equation 
(7.2), we have 

(7.66) 

Substituting for  n(z), and Az/z in equation 
(7.65) and normalizing the received photons to the 
pulse energy, we obtain an expression for the effi
ciency of Rayleigh scattering as a function of beacon 
height and wavelength: 

(7.67) 

where 

The wavelength dependence is reduced to X~ 
because we are counting photons whose energy 
depends on  

7.5.2 Lasers for Rayleigh Beacons 

Rayleigh (molecular) scattering is most efficient at 
 and visible wavelengths between about 0.35 

and 0.6  as shown in section 7.2.3. Many different 
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Table 7.5 Rayleigh Beacon Lasers 

Reference Zollars 1992 Fugate et  1994  1992b Fugate et al. 1994  1992b 
Organization  PL/SOR TTC PL-SOR TTC 
Name SWAT Gen I MACE I Gen II MACE II 
First operated 1988  1990 1992 
Type Dye Cu vapor Excimer Cu vapor YAG 
Pump  
Wavelength, nm  512  353  578 532 
Average power, W 30-50 75 —  
Pulse energy, J 6  5-10 0.036 2 
Repetition rate, Hz 5-10 5000 Single 5000 10(540?) 
Pulse width,  2 0.05 0.05 
Beam quality > 20 x DL    x D L 

MIT/LL, Massachusetts  of Technology, Lincoln Laboratory; PL/SOR, United States Air Force Phillips Laboratory,  
Optical range; TTC,  Technologies Corporation [now  Corporation (1997)]; SWAT,  
Adaptive Techniques; Gen  Generation  
DL, diffraction limit. 

types of laser can be used to generate Rayleigh bea
cons. General requirements include a power output 
on the order of 100 W, pulse rate of 1000 Hz or more 
(for continuous closed-loop operation), and good 
beam quality to produce a small beacon diameter. 
Some of the lasers that have been used in recent 
experiments with adaptive optics are listed in table 
7.5. 

The copper vapor laser has useful characteristics, 
both for direct use in generating Rayleigh beacons 
and also as a pump laser for sodium lasers. 
Characteristics of commercially available copper 
vapor lasers are listed in table 7.6. 

7.6 Sodium Beacon Lasers 

by saturation effects in the sodium layer, as discussed 
in section 7.2.5. To obtain the most efficient utiliza
tion of laser energy, the spectral content of the radia
tion must closely match the absorption spectrum of 
sodium. The design of lasers to generate sodium reso
nance fluorescence therefore requires a detailed 
knowledge of the physics of the sodium atom. 

Considering,  the  format for 
sodium beacon lasers, it is found that the pulse 
energy, pulse width, and repetition rate are deter
mined by two factors: 

 the vertical distribution of scattering species in 
the atmosphere; 

2. the saturation characteristics of the sodium 
layer. 

7.6.1 Requirements 

Lasers for generating sodium beacons have more 
stringent requirements than those for generating 
Rayleigh beacons; the requirements involve both 
the temporal and spectral characteristics of the radia
tion. Gross limitations on pulse length and repetition 
rate are easily deduced from the physics and geome
try of the scattering layers. The peak power is limited 

The laser pulse dimensions associated with these fac
tors are depicted in figure 7.40. 

The geometrical factors are easily deduced by 
reference to the scattering profile shown in figure 
7.7. A laser beam tuned to the sodium resonance at 
589 nm produces Rayleigh scattering at altitudes up 
to about 40 km. When using a coaxially projected 
laser beam with a sodium beacon, the sodium reso
nance return must be separated from the Rayleigh 

Table 7.6 Characteristics of Commercially Available Copper Vapor  

Wavelengths 
Single unit average power 
Single aperture average power 
Peak pulse power 
Pulse duration 
Pulse repetition rate 
Beam quality 
Timing jitter 

 and 578 nm 
 
 

 kW 
 

 kHz 
<  diffraction limited 
< 1 ns  

"Reference: Lewis et al.  (Data refer to lasers made by Oxford Lasers Ltd, Abingdon Science Park, Abingdon  3YR, U.K.) 
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Figure 7.40 Pulse shape constraints for sodium bea
con lasers. 

scattering that is produced as pulses travel through 
the atmosphere. This is done primarily by range gat
ing, together with a suitably tailored laser pulse for
mat. The pulse repetition rate is limited by the 
requirement that scattered light from a pulse at the 
top of the sodium layer, at about 100 km altitude, 
should be received at the telescope before the next 
pulse is transmitted. The spacing between macro-
pulses,  must therefore be sufficient for light to 
make a round trip of 200 km, which requires a period 
of 667  The maximum pulse length is governed by 
the physical gap between the Rayleigh and sodium 
scattering modes. Rayleigh scattering drops to a low 
level at about 40 km, while the lowest altitude of the 
sodium layer is about 80 km. To avoid overlap 
between the Rayleigh and sodium returns, the spatial 
extent of the laser pulse must not exceed the physical 
distance between them, which is about 40 km, corre
sponding to a maximum pulse length of   These 

Table 7.7 Sodium Beacon Lasers 

results show that in order to separate the sodium 
return in a coaxial projection system, the maximum 
pulse repetition rate must not exceed  Hz and the 
pulse duty cycle must not exceed 20%. 

The minimum pulse width, which may, in prac
tice, be much smaller than  is determined by 
the ratio of peak-to-average power in the laser pulses. 
The peak power is limited by saturation, which 
occurs when the peak power level exceeds about 

 The average power is determined by the 
signal-to-noise ratio required by the wavefront sen
sor, and is typically  W. These figures give a duty 
cycle of about 0.03%, corresponding to a minimum 
macropulse width of 0.2  Lasers specially designed 
for generation of sodium beacons (table 7.7) fall 
within these guidelines, having macropulse repetition 
rates of about 1 kHz and pulse lengths between 0.5 
and  

With bistatic operation, the sodium and Rayleigh 
backscatter returns are angularly separated, as dis
cussed in section 7.3.6. Spatial discrimination in the 
focal plane eliminates the pulse overlap problem, 
allowing much higher pulse repetition rates with no 
limitation on the maximum duty cycle. Bistatic 
operation is therefore suitable for sodium lasers 
pumped by copper vapor lasers, which have repeti
tion rates of 5 kHz or more. Bistatic operation also 
allows a continuous-wave laser to be used for gener
ating sodium beacons. 

A third method of laser projection, falling some
where between the coaxial and bistatic modes, is to 
place the launching aperture in front of the secondary 
mirror of the telescope. The backscatter from low 
altitudes is then considerably off-axis at the beacon 
focal plane, allowing it to be rejected by a field stop. 

Reference Humphreys et  
1991 

Jeys et al.  Jeys  Max et al. 1992 

Organization   NSF,  
U.S. Army 

MIT/LL, PL/SOR LLNL, DOE 

Year operated 1984 1992 1992 1992 
Type Dye Nd:YAG sum 

frequency 
Nd:YAG sum 

frequency 
Dye 

Pump Flashlamp Flashlamp Flashlamp Cu vapor laser 
(AVL1S) 

Average power, W 2.4 5   
Repetition rate, Hz 20 10 840 26,000 
Pulse energy,  120 500 12-24 38 
Macropulse width,  4 80 65 0.032" 
Micropulse width,  — 0.6 0.35 32 
Spectral width, GHz 3 1.7 3.0 0.05 
Beam quality    1.54  

"Without  
MIT/LL, Massachusetts  of Technology, Lincoln Laboratory; NSF, National Science Foundation; UCh, University of Chicago; PL/ 
SOR, Phillips Laboratory,  Optical Range; LLNL, Lawrence  National Laboratory; DOE, U.S. Department of Energy; 
AVL1S, Atomic Vapor Laser Isotope Separation Program. 
DL, diffraction limit. 
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This situation has been analyzed in section 7.3.6. The 
intensity of the unwanted Rayleigh return decreases 
rapidly toward the center of the image plane, so that 
the interference is minimal over a small field of view. 
A variation of this method is to attach the laser 
launching tube to the side of the main telescope struc
ture. 

Considering, now, the laser spectral requirements, 
the sodium  absorption line has a double-peaked 
shape, as shown in figure  caused by the presence 
of two ground states. The peaks are separated by a 
frequency of  GHz and the entire 
dened, hyperfine structure of the  transition 
extends over a bandwidth of about  GHz. 

To obtain the most efficient use of laser energy, its 
linewidth must be broadened to cover this absorption 
spectrum, necessitating some form of temporal mod
ulation. For example, if the laser output consists of a 
train of  each of width  then the cor
responding spectrum is spread over a bandwidth of 1/ 

 Such an output, depicted in figure 7.41 is obtained 
by mode locking the laser.  this process, the reso
nant modes in the laser cavity, which normally have 
random phases, are forced to have the same phase. If 
the number of cavity modes is N and the intensity of 
each mode is  then the total radiance for random 
phases is  When the modes are locked, the elec
tric fields add coherently, producing a peak radiance 
of N2  The output then takes the form of a train of 
micropulses of width  and spacing  where / 
is the length of the cavity. The value of N may be 
1000 or more, so micropulse widths measured in 
picoseconds are obtainable. The  gener
ated by the laser may contain several thousand 
micro-pulses. 

For excitation of sodium, Bradley [1992] has 
found that the optimum micropulse width  is in 
the  ns range, producing a transform-limited 
bandwidth of  GHz, which is less than the full 
Doppler-broadened spectrum of the  line. The 
optimum time between pulses is about 2/3 the mean 
lifetime of the excited state, which for sodium is 16 
ns, giving a micropulse rate of  MHz.  the pulse 
rate were constant, then the envelope of the fre
quency spectrum would contain A' fixed frequency 
components, each with a very narrow bandwidth 
determined by the macropulse repetition rate, which 

does not normally exceed about 1 kHz. Only a small 
area of the Doppler-broadened absorption spectrum 
is therefore covered. 

To obtain a better match to the atomic absorption 
spectrum, the pulse output may be phase modulated. 
The multiline structure of a mode-locked laser can be 
broadened by using relatively weak modulation, at a 
fixed frequency, to fill in the gaps between the spec
tral lines. For the 100-MHz micropulse rate consid
ered by Bradley, the optimum phase-modulation 
frequency was  MHz, with a repetition time of 10 
pulse intervals; that is, 100 ns. 

In the case of a laser emitting a train of intermedi
ate-duration pulses, such as a copper vapor laser, the 
pulse spectrum is intrinsically much narrower than 
the Doppler-broadened sodium  line spectrum. 
For example, a laser generating pulses of 32 ns 
width at a repetition rate of 26 kHz produces a spec
trum with a width of 30 MHz, densely filled with lines 
spaced at 26 kHz. The requirement in this case is to 
broaden the entire spectrum rather than to fill it in, 
because the lines are already closely spaced. For this 
purpose, wideband frequency modulation can be 
used to obtain a better match to the absorption spec
trum of the sodium atom. 

The interaction of light with sodium atoms 
depends greatly on the polarization of the incident 
radiation. The effect of polarization on the optical 
transitions in sodium is illustrated in the energy-
level diagrams shown in figure 7.10. With linear 
polarization, figure 7.10(A), optical pumping causes 
a problem when a practical (moderately saturating) 
level of illumination with a narrow spectrum is used 
[Morris 1994]. For example, if the laser is tuned to 
the higher absorption peak, corresponding to the 
F' = 2 ground state, then only atoms in this state 
will be excited. Excited atoms decay in 16 ns to 
both ground states in the ratio 3:5, as described in 
section 7.2.4. As a result, the population of atoms is 
rapidly pumped to the F' = 1 state, where they 
remain inaccessible until a collision occurs. This 
state has been referred to as a "black hole" by 

  et  [1994]. In the atmo
spheric sodium layer, the mean time between atomic 
collisions is about  which also happens to be 
the longest pulse length that can be used, so atoms 
pumped to the F' = 1 state will not, on average, be 

Figure 7.41 Mode-locked 
laser pulse characteristics. 
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re-excited during the same laser pulse. Merely length
ening the pulse produces little additional  
When using linear polarization, it is therefore essen
tial to avoid optical pumping by broadening the laser 
spectrum to cover both of the sodium ground states, 
which thus requires a spectral width of about 3 GHz. 

The situation is quite different when the incident 
radiation has circular polarization. In this case, when 
an atom absorbs a photon, it gains one unit of of 
angular momentum, as indicated in figure 7.10(B). 
During a long pulse (longer than the spontaneous 
emission time of 16 ns), the ground-level population 
shifts toward states having higher  values, until it 
is mostly concentrated in ground state 2,2, marked as 
"a" in figure 7.10(B). The only permitted optical 
transition is then to the excited state 3,3, marked as 
"b ." Optical pumping, in this case, is beneficial, as 
the spontaneous emission from 3,3 to 2,2 is a dipole 
radiation pattern peaked in the backscatter direction. 
The "a" to " b " transition is therefore highly efficient. 
To obtain the most rapid pumping, a wideband pulse 
is required to cover all Doppler-shifted transition fre
quencies. Morris [1994] shows that when using the 
appropriate wideband frequency modulation, circu
lar polarization of the laser produces up to 30% more 
emission than does linear polarization, with the max
imum enhancement ocurring at an irradiance of near 
20   

7.6.2 Lasers for Sodium Beacons 

Two types of laser have been used to generate sodium 
beacons at 589  (1) tunable dye lasers and (2) 
solid-state sum-frequency lasers using Nd:YAG. 
Dye lasers may be pumped by flashlamps or by 
other lasers, such as copper vapor, argon ion, or 

 Sum-frequency Nd:YAG lasers may also 
be pumped by flashlamps, but higher efficiency is 
obtained using diode lasers. The macropulse charac
teristics of each type is determined by the pump laser. 

Dye lasers pumped by copper vapor lasers pro
duce short pulses  at pulse rates of several 
kilohertz. To obtain an output suitable for the exci
tation of sodium beacons, these pulses must be 
stretched in time and broadened in bandwidth. 
Continuous-wave operation is obtained using 
argon-ion pump lasers. Solid-state lasers, such as 
Nd:YAG, have the advantage that by using mode-
locking techniques, they can be made to produce 
their output as a train of very short  
with a spectral distribution matching that of the 
Doppler-broadened sodium atom. 

Characteristics of lasers that have been used or are 
planned for sodium beacon generation are listed in 
tables 7.7 and 7.8. The operating principles of the 
main types will now be described briefly. 

7.6.3 Continuous-Wave Dye Lasers 

Continuous-wave (CW) lasers may be used for the 
excitation of sodium beacons in the bistatic config
uration, using spatial discrimination to reject the 
Rayleigh scattering. Because of saturation, the useful 
CW illumination intensity is limited to about 

 [Jeys 1991]. Under good seeing conditions, 
the laser may be focused to produce a spot as small as 
0.25 m in diameter. Allowing for atmospheric trans
mission of  the maximum CW laser power 
that can be used is therefore  W. 

A commercial laser, the Coherent Ring Dye 
Laser, Model 899-21, is capable of producing about 
3 W of power at 589 nm when pumped by a 25-VV 

Table 7.8 Sodium Beacon Lasers 

Reference  et   Jacobsen et al. 1994 Friedman et al. 1994  
 et 

al. 1994 
Organization CAAO,  CAAO, MMT LLNL, Lick 

Observatory 
  

(ChAOS) 
Year operated 1993 1994 
Type Coherent ring dye Standing-wave dye Dye Nd:YAG sum-

frequency 
Pump Argon ion laser,  W Argon ion laser,  W Doubled  Diode laser 
Average power, W 2.7 1.7 30 10 
Repetition rate, Hz   10,000 400 
Pulse energy,  — — 3 25 
Macropulse width,   — 0.15 
Micropulse width, ns — — — 0.5 
Spectral width, GHz 0.01 0.15 2.0 2 

MMT,  Mirror Telecope (MT Hopkins, AZ); LLNL, Lawrence  National Laboratory; MIT/LL, Massachusetts  of 
Technology, Lincoln Laboratory; UCh (CHAOS), University of Chicago, Chicago Adaptive Optics System. 
CW, continuous wave: CAAO, Center for Astronomical Adaptive Optics, University of Arizona. 
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Figure 7.42 Schematic of copper vapor pumped dye laser (at Lawrence  
National Laboratory). 

Coherent Model  argon ion laser [Jacobsen et  
1994]. The power consumption of argon ion lasers of 
this size is on the order of   The dye used is 

 6G in a solution of ethylene glycol. 

7.6.4 Copper Vapor Pumped Dye Lasers 

This method of pumping has been developed at 
Lawrence Livermore National Laboratory, where a 
high-power  copper vapor laser was built 
for the Atomic Vapor Laser Isotope Separation 

 program. This laser is a fixed installation 
and can be used only at the Livermore site. A sche
matic diagram of the system is shown in figure 7.42. 
It has been used for experiments to determine the 
behavior of the sodium layer at high power levels 
[Avicola et al. 1994]. 

The copper vapor laser is not well suited as a 
pump for astronomical sodium beacons because of 
its high pulse rate of 26 kHz and its very short 
pulse width of 32 ns. To avoid saturation of the 
sodium layer and to make more efficient use of the 
laser power, the pulse must be stretched by a factor of 
16 and the spectral bandwidth increased by wideband 
phase modulation, as described in section 7.6.1. 

7.6.5  Pumped Dye Laser 

This type of laser  been specially designed for use 
on astronomical telescopes [Friedman et al. 1994, 
1995] and operates at power levels up to  W. 
The initial application was to generate a sodium 
beacon for adaptive optics on the 3-m Shane 
Telescope at Lick Observatory. There are several 
interesting features in the design, which is shown 
schematically in figure 7.43. The dye laser is similar 
to that developed for the copper vapor pump. Solid-
state lasers are more suitable for the power levels 
needed for astronomical sodium beacons, and, in 
this case, two 70-W, Q-switched,  
lasers are employed to pump the dye. Each laser 
dissipates about  which is removed by water 
cooling. The YAG lasers are themselves pumped 
with CW flashlamps. 

The pulse repetition rate is 10 kHz, with a pulse 
width of 150 ns. The pulse width is a compromise 
between the requirement for sodium excitation, 
which favors a longer pulse to avoid saturation, 
and the need for efficient conversion in the dye, for 
which shorter pulses are optimum. Each pump laser 
head has three fiber outputs, one for the dye master 
oscillator (DMO), which is located in the equipment 

Figure 7.43 Schematic of 
Nd:YAG pumped dye laser 

with fiber optic coupling. 
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room, and one each for the dye preamplifier and 
power amplifier, which are mounted on the telescope. 
The DMO consists of the dye laser cavity, single-
mode control, frequency control, and phase-modula
tion functions. Its coherent output is carried on a 
single-mode fiber, at a power level of a few milliwatts, 
to the dye amplifiers on the telescope. The pump 
power is carried on  fibers, which are 
about 70 m in length. 

The installation on the telescope consists of three 
optical tables as shown in figure 7.44. The laser table 
containing the dye preamplifier, power amplifier, and 
beam cleanup components is mounted at the lower 
end of the telescope, adjacent to the primary mirror. 
A high-speed tip-tilt mirror, driven from the adaptive 
optics system, stabilizes the laser beam in the optical 
field of view, compensating for jitter in the outgoing 
beam plus the residual anisoplanatic wavefront tilt 
errors due to physical separation between the tele
scope aperture and the laser projector. The apparent 
position of the sodium beacon conveys no useful 
information on where the telescope is pointed, but 
it is desirable to keep it near the optical axis of the 
telescope to facilitate measurement of high-order 
wavefront distortion. There is also provision for a 
deformable mirror and wavefront sensor on the 
laser table to allow the laser beam quality to be cor
rected before projection. 

The diagnostics table, containing the beam-
pointing and -centering functions and the fast shut
ter, is mounted about 7 m up the telescope tube. 
Pointing and centering of the beam is accomplished 
using two adjustable mirrors in a dogleg configura
tion. Sensing of the beam position is implemented 
with two CCD cameras. The status of the laser 
beam is transmitted to the control computer in the 
equipment room, where it is visually monitered by 

the operator. This table also contains the first (nega
tive) component of the afocal laser beam expander 
and a last shutter to cut off the laser beam in an 
emergency. 

The objective component of the laser projector is 
mounted near the top of the telescope tube. For the 
Lick 3 m telescope, the projection aperture is 20 cm, 
equivalent to about twice the average  value at the 
site. The entire beacon laser system is controlled and 
monitored by a Mac Quadra computer using 
Labview software. 

7.6.6 Sum-Frequency  Laser 

This type of laser is made possible by a fortunate 
coincidence of nature. The sum frequency of the 
two  lines of 1.064 and  produce 
a wavelength of  which is exactly the 
sodium  line. A schematic is shown in figure 
7.45. The outputs of two Nd:YAG master oscillators 
tuned to 1.064 and  are amplified and then 
superimposed with a dichroic mirror. The beams are 
then applied to a nonlinear crystal (lithium triborate) 
which produces the sum frequency corresponding to 
0.589  

The solid-state sum-frequency laser is well suited 
to the task of generating sodium beacons. A duty 
cycle of  can be achieved, which is near opti
mum for this application, allowing macropulse 
lengths of  at a repetition rate of 

 Hz. By mode locking the master oscillators, 
the output is obtained as a train of sub-nanosecond 
micropulses with a spectral width of  GHz, 
matching the Doppler-broadened  line of sodium. 
These short pulses also produce efficient conversion 
in the nonlinear crystal. 

Figure 7.44 Schematic of laser beam control and diagnostic system. 
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Figure 7.45 Schematic of  sum-frequency laser. 

The first laser of this type was built at the MIT 
Lincoln Laboratory [Jeys et   It was pumped 
by flashlamp, giving an average power of 5 W at 10-
Hz repetition rate, and was employed for sodium 
layer measurements. A more powerful version, also 
using flashlamps, producing  20 W average power 
at 840-Hz repetition rate, was built for Phillips 
Laboratory Starfire Optical Range [Jeys 1992, 

 et al. 1992]. 
For average laser powers of more than  W, 

diode lasers are more attractive than flashlamps for 
pumping. Diode lasers are efficient, compact, and 
produce little electrical noise. They also produce 
their output at  wavelengths for which 
YAG lasers have strong absorption bands. 

  et al. [1994] have described 
a  diode-pumped sum-frequency Nd.YAG laser 
being built by the MIT Lincoln Laboratory for the 
University of Chicago Adaptive Optics System 
(ChAOS) program. At the time of writing (1997), 
diode lasers are expensive and have limited lifetime. 
However, the reliability of these devices is expected to 
improve over the next few years. 

To summarize the current developments in lasers 
for sodium beacons, there are two main approaches: 
(1) dye lasers using solid-state laser pumps; (2) sum-
frequency Nd:YAG lasers using diode laser pumps. 
The trend is to reduce the quantity of hardware that 
must be mounted on the telescope to the absolute 
minimum, and to locate power-dissipating compo
nents away from the dome. Sum-frequency lasers 
are well-suited for this application as they are physi
cally compact and have relatively high power effi
ciency. 

7.7 Sodium Beacon Measurements 

The characteristics of the mesospheric sodium layer 
have been explored with  techniques since the 
late 1960s and observations have been made from 
locations in most parts of the globe. The basic com
position and structure of the sodium layer is now well 
known. When the sodium layer is used to generate 
laser beacons for astronomy, specific requirements 
are called upon; these need to be verified in the con
text of adaptive optics. Wavefront sensors require 

compact reference sources that emit a large photon 
flux, to enable measurements to be made at rates of 
at least several hundred hertz. The laser beacons 
must have small angular size and good stability. 
The behavior of the sodium population under strong 
incident illumination from short laser pulses with 
high peak power must be verified. Methods must be 
found to maximize the sodium resonance fluores
cence return for a given laser power. An important 
part of the development of lasers for generating 
adaptive optics beacons is therefore to verify the 
expected behavior of the sodium layer. This can, 
and should, be done before the adaptive optics design 
is finalized. 

Several experimental programs have been con
ducted over the last few years, specifically to obtain 
this information and to compile a data base on the 
properties of the sodium layer that are of particular 
relevance to adaptive optics. In table 7.9, data from 
three sources are presented: (1) sodium layer mea
surements made with the Cedar lidar at the 
University of Illinois during the 1980s [Gardner et 
al. 1986, Gardner et al. 1990]; (2) Sodium measure
ments made with a medium-power (10-W) laser at 
Phillips Laboratory Starfire Optical Range [Jelonek 
et al. 1992]; and (3) high-power sodium measure
ments made with a  laser at Lawrence 
Livermore National Laboratory [Avicola et al. 
1994]. 

7.8 Optical Configurations for Beam 
Sharing 

Special care must be taken with the optical train 
when a laser beacon is projected through an astro
nomical telescope. The alternative approaches of 
bistatic and central projection have been discussed 
in section 7.3.6. The main problem with beam shar
ing is the very large ratio between the power level of 
the transmitted laser beam and the radiation received 
from the reference sources and science object, a ratio 
that can exceed  The peak and average power 
levels of the lasers used for adaptive optics are gen
erally not high enough to cause damage to coatings 
of transmissive components, but high-level radiation 
must be prevented from reaching sensitive elements, 



Table 7.9 Sodium Layer Measurements 

Reference Gardner et  1990 Jelonek et al.   et al. 1994 
Organization  PL/SOR LLNL 
Date of measurements 1980-86 Jun.  1992 Aug. 27, 1992 
Sodium layer 

Height, km  ± 3 95.5 ± 3 
Thickness, km (FWHM) 10 16 
Temperature,  summer 130-150 — 

winter 210-230 — 
Laser system 

Average power, W 5  1100 
Pulse energy,  25 12 40 
Repetition rate, Hz 200 840 26,000 

Pulse width, ns 25 6500/0.35 32 
Line width, MHz 1200 3000 2700 
Projection aperture, m 0.05 diameter 0.04 x 0.08 
Beam divergence,  1 
Peak power, kW 1000 
Polarization Linear and circular 

Measurements 
Atmospheric transmission 0.6 
Coherence length  m 0.11 
Spot angular size,  36 22 
Spot times  3.0 1.5 
Spot physical size, m 3.25 2.0 
Column abundance, m~   2 - 3 x 10" 4.1 x  

Circular/linear ratio  

 University of Illinois; PL/SOR, Phillips Laboratory, Starfire Optical Range; LLNL, Lawrence  National Laboratory. 

High-altitude aircraft 

Low-flying aircraft 

Laser beam 

Narrow-angle radar 

Wide-angle video 

Figure 7.46 Laser beacon safety precautions. The narrow-angle radar detects high-
altitude aircraft. A wide-angle video monitor is used to detect low-flying aircraft. 
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such as detector focal planes, which are easily 
blinded. 

The measures required involve temporal gating 
with mechanical and electronic shutters, together 
with spectral  The on/off ratio of solid-
state shutters, such as  cells, may be insuffi
cient to prevent light leakage, in which case mechan
ical back-up is required. When relying on temporal 
shuttering, care must be taken to eliminate fluores
cence in optical components and coatings, as this 
may persist for some time after a laser pulse. 

7.9 Laser Safety Considerations 

The lasers required to produce adaptive optics bea
cons generally launch a beam that exceeds eye safety 
levels. When using laser beacons, it is necessary to 
employ a fail-safe method of turning off the laser 
beam before an aircraft can pass through it. 
Because of the large range of flight altitudes, it has 
been found effective to use two detection systems, 
one for high-altitude aircraft, mostly commercial 
flights, and one for low-altitude aircraft, mostly pri
vately operated. 

A narrow-angle radar aligned with the laser beam 

has been found to be an effective method for detect
ing high-altitude aircraft, with the warning system 
linked to air traffic control. Low-level aircraft are 
more of a problem because of their high angular 
velocity and more random flight patterns, necessitat
ing a wide field of view. Human spotters have been 
employed for this purpose, but their work is expen
sive and not entirely reliable. The use of a low-light-
level, wide-angle television system for aircraft detec
tion has been studied at the University of Chicago 

 Wild et  1994]. This system is sensi
tive enough to detect the lights on all legally equipped 
aircraft. Fail-safe operation is assured by continu
ously monitoring stars down to a given magnitude. 
If a fault occurs and stars are not detected, then the 
laser system is automatically shut down. The ele
ments of a two-level safety system are depicted in 
figure 7.46. 

An automated optical aircraft spotter to detect 
aircraft lights at night has been described by 
Cheselka and Angel [1996]. 

In addition to real-time safety precautions, an addi
tional constraint may be imposed on the maximum 
angle at which the laser beam may be pointed away 
from the zenith. The Federal Aviation Administration 
(FAA) currently limits this angle to 30°. 



Wavefront Reconstruction 
and Control Systems 

8.1 Introduction 

8.1.1 Closing the Loop 

The control system is the vital link between the wave-
front sensor and the wavefront corrector in all adap
tive optics systems. Its function is to convert the 
wavefront measurements made by the sensor into a 
set of commands that are applied to the wavefront 
corrector to satisfy a suitable performance criterion, 
such as minimizing the residual wavefront error. The 
main functions in a typical adaptive optics control 
loop are shown in figure 8.1. The wavefront sensor 
generates an array of wavefront slope or curvature 
measurements that are first reconstructed spatially 
into a continuous two-dimensional representation 
of the wavefront error. The wavefront predictor 
minimizes temporal noise by smoothing the data in 
time and makes the best estimate of the wavefront 
error for the next correction cycle. The commands to 
be applied to the wavefront corrector are then com
puted, taking into account the spatial and temporal 
characteristics of the wavefront disturbances and the 
correction system. 

The practical approach to the design of adaptive 
optics has generally been to divide the system into 
individual functions that are analyzed and optimized 
independently. This approach was justified in the 
early days of adaptive optics when technology was 
rudimentary. The real-time atmospheric compensa
tor (RTAC) and Compensating Imaging System 
(CIS), built in the 1970s, employed zonal wavefront 
sensors and deformable mirrors in which there was a 

one-to-one relationship between the sensor subaper-
tures and the corrector actuators, enabling the sim
plest type of wavefront reconstructor to be used. The 
gain and temporal bandwidths of all control channels 
were uniform. The only method of real-time optimi
zation available was to adjust the common 
width of the feedback loop to minimize the mean-
square error in response to variations in the intensity 
of the reference source and turbulence strength. A 
simplified model of the reconstruction function, in 
which the wavefront was represented as an array of 
points or nodes, connected by linear gradients, was 
used. 

A major advance was made by Wallner [1983], 
who described the concept of optimal wavefront cor
rection, in which adaptive optics systems are opti
mized as a whole, taking into account not only all 
the hardware components, but also the characteristics 
of the reference source and the wavefront distur
bances. Only in this way is it possible to realize the 
full potential of the technology. Wallner's approach 
has been expanded by Welsh [1991] to include tem
poral factors, and by Johnston and Welsh [1994] to 
include multiconjugate compensation. While fully 
optimized systems have not yet been realized in prac
tice, a knowledge of the ultimate performance that 
can be achieved provides a yardstick against which 
real adaptive optics systems can be judged. The prac
tical goal is to devise hardware and software that 
approach the performance of ideal systems, but with 
minimum cost and complexity. 

The dominant function in most adaptive optics 
control systems is wavefront reconstruction, which 
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(a) Block diagram 

(b) Multivariate control system model 

Figure 8.1 Main functions in an adaptive optics control loop. The basic building blocks are shown in (a). 
These functions are modeled by the multivariate control system shown in (b). 

involves a large amount of data processing that 
must be executed in real time. This section contains 
an overview of the requirements and evolution of 
wavefront reconstruction and the methods 
employed to implement it. The principles and prac
tice of wavefront reconstruction are described in 
more detail in sections 8.2 and 8.3. Methods of 
wavefront prediction are discussed in section 8.4. 
Design considerations for the closed-loop control 
systems used in adaptive optics are outlined in sec
tion 8.5. To conclude this chapter, the principles of 
optimal wavefront correction are described in sec
tion 8.6. 

8.1.2 Why Is Reconstruction Needed? 

Wavefront reconstruction is the process of restoring 
the absolute phase values that are lost when local 
wavefront slope or curvature is measured. Most 
wavefront sensors make their measurements within 
an array of independent zones covering the optical 
pupil. If only the local wavefront slope is corrected, 
the images from each zone would add incoherently. 
The angular resolution obtainable in that case would 
be no better than that of a single subaperture, or Xjd. 
Wavefront reconstruction restores the overall phase 
relationship between the zones that is essential to 
obtain the full angular resolution of the aperture, 
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equal to  The reconstruction process assembles 
the individual slope measurements into a continuous 
three-dimensional representation of the wavefront, 
each element having the correct absolute phase. 
When the zones are correctly sized and phased, adap
tive optics is capable of producing a potential 
improvement of  in angular resolution. 

Many other useful data-processing functions and 
manipulations can be combined with the basic func
tion of phase restoration. The tasks performed by an 
adaptive optics wavefront reconstructor are summar
ized as follows: 

 estimation of the overall wavefront values that 
best fit the measured wavefront data, using 
either zonal or modal components; 

2. removal of unnecessary components, such as 
piston, from the reconstructed wavefront; 

3. estimation of low-order wavefront modes, such 
as the overall tilt and defocus components, 
which can be compensated separately; 

4. removal of cross-coupling effects caused by 
actuator influence functions, which would 
otherwise cause instability in the feedback 
loop; 

5. improvement of the noise performance by 
using the statistics of the wavefront being cor
rected in the reconstruction process; 

6. minimization of the error in the reconstructed 
wavefront by accounting for the signal-to-noise 
ratio of each gradient input; 

7. accommodation of different actuator geome
tries for the gradient sensor and the corrector. 

 Evolution of Real-Time 
Reconstruction 

The wavefront reconstruction function is a potential 
bottleneck in large adaptive optics systems using 
zonal wavefront measurement. Wavefront variations 
over optical apertures covering several square meters 
are measured and corrected at high speed using an 
array of parallel optical channels. At the output of 
the wavefront sensor, these data are converted to 
electrical signals that must be processed in real 
time. The number of arithmetic operations required 
to perform the reconstruction in each time interval is 
proportional to the square of the number of indepen
dent correction channels. An adaptive optics system 
with 300 actuators operating at a sampling rate of 

 Hz requires a reconstructor operating at a 
data rate of about 100 megaflops. Adaptive optics 
systems of even modest size consequently require a 
considerable data-processing capability. 

Great efforts were made in the  to improve 
the speed and capability of reconstructors, but little 
of this work has been published and no comprehen
sive review has appeared in the literature. This over
view is intended to provide a concise summary of the 
main developments in wavefront reconstruction as 

they apply to astronomical adaptive optics. 1 hope 
that it will serve as an introduction to the material 
in this chapter, enabling the various approaches to be 
assessed and placed in perspective. 

A two-dimensional wavefront may be recon
structed by summing the gradients over an integra
tion path that includes all subapertures in the array. 
If there were no noise on the gradient measurements, 
then all integration paths would give the same result 
and wavefront reconstruction would be a trivial pro
cess. However, the gradient measurements inevitably 
include shot noise due to finite photon counts, as well 
as electron noise added in the detection process. If 
there are more gradient measurements than evalua
tion points or "nodes" in the network, as is usually 
the case, then it is possible to use the redundant infor
mation to reduce the noise on the estimated wave-
front. The criterion normally used is to minimize the 
mean-square error between the reconstructed wave-
front and the measured gradients; that is, to find the 
wavefront that best fits the measurements in the least-
squares sense. Mathematically, this is achieved by 
solving a set of simultaneous equations, or, equiva

 by inverting the matrix describing the relation 
between the wavefront gradients and the wavefront 
nodes. The reconstruction process therefore reduces 
to a matrix multiplication. 

The development of wavefront reconstructors for 
adaptive optics has always been dominated by the 
need to process large quantities of data in real time. 
The input data (wavefront slopes) and the output 
data (actuator drive commands) are both analog 
quantities, so it is logical to use analog processing. 
The first real-time wavefront reconstructors, used in 
adaptive optics systems designed in the 1970s, used 
parallel analog processors to perform the calcula
tions. The reconstruction problem was reduced to 
manageable proportions by using simple reconstruc
tion networks that could be defined by sparse 
matrices, enabling the use of iterative processing. 
Digital computation was primitive at that time. 

A major breakthrough in reconstruction technol
ogy occurred in the 1980s when fast and inexpensive 
digital multiplier-accumulator chips became avail
able, leading to the development of "brute force" 
reconstructors that used parallel data processors to 
perform the matrix multiplication operation. Since 
then, the technology of wavefront reconstruction 
has improved in two ways: (1) the speed of digital 
processors has increased to the point where multipli
cation of large matrices, corresponding to apertures 
containing about 250 subapertures, can be accom
plished in less than 100 ms; and (2) the reconstruction 
process itself has been optimized to include charac
teristics of the adaptive optics system and of the 
atmospheric turbulence, improving the accuracy of 
compensation. 

Although "brute force" wavefront reconstruction 
using parallel digital processors is feasible, it is still a 
very expensive solution, especially in systems that 
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have a large number of subapertures for which the 
reconstructor can be a major item in the budget. 
There is still a need for "economical" reconstructors 
that provide the flexibility and performance of full 
matrix multiplication, without the current high cost. 
It is possible that the continuing increase in speed 
(clock rate) of digital processors will gradually reduce 
the cost and complexity of parallel processors. There 
are, however, other useful approaches to wavefront 
reconstruction, including iterative and hybrid proces
sors. Most adaptive optics systems require digital-to-
analog conversion to drive the wavefront corrector, 
so hybrid processors (using both digital and analog 
components) may be an economical solution in some 
systems. 

8.1.4 Aspects of Wavefront 
Reconstruction 

To get a clearer picture of the various issues and 
approaches that are involved in wavefront recon
struction, it is useful to consider three different 
aspects of the technology: 

 the functional models employed, which define 
the operating principle and overall capabilities 
of the reconstructor; 

2. the methods of calculation, which define the 
mathematical operations involved; 

3. the practical realizations that have been 
employed in adaptive optical systems. 

The main ideas that have been used during the devel
opment of wavefront reconstruction for adaptive 
optics are summarized in table 8.1. 

 Basic Models 

The wavefront reconstruction process was initially 
formulated to reduce data from static shearing inter-
ferograms, using a simple network in which the wave-

front is evaluated at a rectangular array of single 
points or nodes that are connected by gradient vec
tors  1974]. The gradients were obtained by 
scanning laser interferograms manually. An iterative 
(relaxation) method was used to calculate the wave-
front. The first real-time wavefront reconstructor 
[Hardy et  1974,  employed a similar recon
struction model, using analog processing to achieve 
the necessary speed. The adaptive optics system used 
a shearing interferometer in which the wavefront 
slope measurements were averaged over finite areas 
of the pupil, together with a deformable mirror that 
had an influence function also extending over a finite 
area.  spite of these approximations, the simple 
reconstruction model (shown as network 1 in figure 
8.2), using an array of nodes connected by slope vec
tors, gave satisfactory results. In this model, the x-
axis and  gradients are measured in two sepa
rate sets of subapertures, displaced from each other. 

With the development of the  
sensor, a different sensor geometry was needed 
because the  and  gradients are measured 
in the same subapertures. This geometry is shown as 
network 2 in figure 8.2. The gradient measurements 
can be resolved into two 45° components, connecting 
diagonal nodes. It is seen that this leads to two sepa
rate, interlaced networks. Zonal slope measurements 
do not provide the data to connect these networks, so 
the data must be inferred from a priori information. 

In network 3, also shown in figure 8.2, the mea
surement subapertures are centered on the nodes 
rather than being displaced between them, as in the 
other two networks. This arrangement is not often 
used. It makes an adaptive optics system more diffi
cult to calibrate, because deflecting or "poking" one 
node (actuator) produces no gradient in the corre
sponding sensor subaperture. 

None of the above networks provides an optimal 
solution to the reconstruction problem. Parameters 
such as the structure function of the turbulence-
degraded wavefront, the noise statistics of the gradi
ent measurements, and the response functions of the 

Table  Overview of Real-Time Wavefront Reconstruction Techniques 

Reconstruction Models Methods of Calculation Practical Realizations 

 Simplified network models 
Nos 1, 2, and 3 

(figure 8.2) 

Partially optimized reconstructors 

 Optimal reconstructor 

 Iterative methods 
Jacobi 
 
SOR" 

Exponential 

Matrix inversion 

• Iterative techniques 
Analog 
Digital 
Hybrid 

• Serial computation 

• Parallel processor (multiplier 
accumulator) 

" SOR, successive  
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(1) (2) (3) 

Figure 8.2 Three models for the reconstruction of wavefront points from gradi
ent measurements. 

wavefront corrector can all be used to improve the 
estimate of the wavefront. The advantages of optimal 
wavefront estimation were first pointed out by 
Wallner  1983]. The optimal reconstruction 
process may be defined as a matrix relating every 
point in the wavefront to every measurement made 
by the wavefront sensor. This is the most general type 
of wavefront reconstructor and is the preferred 
approach, even though not  of the collateral func
tions may be implemented. Quantities, such as the 
wavefront coherence length and noise covariances, 
change with time, making it desirable to update the 
reconstruction matrix in real time according to oper
ating conditions. Adaptive reconstruction systems 
using dynamic optimization represent the state of 
the art in this technology. 

8.1.6 Methods of Calculation 

Iterative methods are useful for solving sparse arrays. 
A local algorithm is applied sequentially to each node 
of the array, the process being repeated until the 
solution settles to within the required tolerance. 
The Jacobi and  methods are similar, 
the latter converging more rapidly because the solu
tion is updated after each application. The successive 
overrelaxation (SOR) method is more optimal 
because its rate of convergence can be adjusted by 
a relaxation parameter. The exponential reconstruc
tor (section 8.2.3) is a completely different iterative 
approach, consisting of two steps. First, the overall 
structure of the array is determined by combining the 
gradient measurements to enlarge the subapertures 
by powers of two, after which the details are recon
structed by halving the dimensions at each step. The 
main advantage of iterative methods is that a solu
tion can usually be obtained with fewer arithmetical 
operations than by an equivalent matrix multiplica
tion. A disadvantage of iterative methods is their lack 
of flexibility in tailoring the algorithm to accommo
date different conditions. 

Matrix inversion is the most rigorous method of 
wavefront reconstruction, in which a least-squares 
(or other) solution is obtained by direct calculation. 

The matrix relates the measured gradients to the 
wavefront nodes. To determine the nodal values, 
the matrix must be inverted. This is not a trivial 
operation, as it usually involves extraction of the 
overall phase (piston) and tilt components, as 
described in section 8.2.2. To obtain an optimal solu
tion, the matrix may also include additional factors, 
such as wavefront and noise covariances, as well as 
the influence function of the actuators on the wave-
front corrector. The inverted matrix is stored for use, 
as required, to reconstruct the measured gradients. 
Several matrices covering different conditions may 
be inverted and stored, it being relatively easy to 
switch between them in the data-processing opera
tion. 

 Practical Realizations 

As mentioned above, the first real-time wavefront 
reconstructor used in adaptive optics employed an 
analog processor, implementing an algorithm similar 
to the Jacobi method. Using an electrical network, 
the rate of iteration was extremely high, resulting in a 
settling time of a few microseconds. This type of 
reconstructor employs local algorithms, which have 
a limited capability for optimization, although it is 
possible to include functions covering a moderate 
area around each node, such as the influence function 
of the wavefront corrector. 

All of the iterative methods may be implemented 
digitally, offering somewhat greater flexibility than 
that with analog implementation. The saving in 
data-processing operations is most apparent with 
simple reconstruction algorithms, such as those of 
networks 1, 2, and 3. While it is possible to use 
iteration to solve matrices of any complexity, there 
is no practical advantage in doing so when the algo
rithm involves a large number of nodes, correspond
ing to a dense matrix, as occurs with optimal 
reconstructors. 

Hybrid reconstructors combine the best features 
of analog and digital techniques and may be applic
able where digital-to-analog conversion is necessary 
in any case; for example, in the drive circuits for a 
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wavefront compensator. In such cases, the data For
matting and multiplication functions are best per
formed digitally, while the summation at each node 
is accomplished analogically. 

With the availability of high-speed parallel pro
cessors, it has become possible to multiply the dense 
matrices, typical of optimal reconstruction, in real 
time. The standard approach is to use a parallel 
array of multiplier-accumulators, which are avail
able as special-purpose integrated circuits. These 
devices operate at clock rates as high as 30 MHz. 
The inverted matrix elements that define the 
"weights" to be used in the multiplication process 
are stored in a random-access memory (RAM). To 
implement the adaptive feature of modern recon-
structors, several different (inverted) matrices may 
be computed in advance and stored ready for 
use, to be accessed as required in the reconstruction 
process. 

8.1.8 Reconstruction Errors 

The wavefront reconstructor is only one element in 
the chain of operations that determines the wave-
front error of an adaptive optics system. The opti
mization process involves the performance of the 
entire system, so, with a fully optimized system, 
errors are normally contributed by several compo
nents. Wavefront reconstruction does not normally 
produce wavefront errors directly, but contributes 
indirectly in two ways: (1) the wavefront error due 
to noise on the gradient measurements is modified 
by the reconstruction process; and (2) the time 
required to perform the reconstruction contributes 
to the time delay error in the system. The recon
struction time can usually be made a small part of 
the total delay time or latency in the system. 
However, the measurement noise is usually a 
major contributor to the total error budget, so the 
noise factor or error propagation of wavefront 
reconstructors is of considerable interest. 

The error propagation of a reconstructor can be 
determined only when it is modeled realistically in a 
system context. Using simple stand-alone reconstruc
tion models, such as networks 1, 2, and 3, it is found 
that the noise propagation depends not only on the 
size of the network, as expected, but also appears to 
depend on the exact configuration used, being greater 
than unity for network 2 and less than unity for the 
others. Wallner [1982, 1983] showed that this appar
ent difference disappears when the reconstruction 
process is realistically modeled. It has been shown 
from basic principles and by simulation that the 
error propagation factor varies as \n{N2), where N2 

is the total number of nodes in the array. For the 
array sizes used in astronomical adaptive optics (up 
to 1000 actators), the error propagation for slope 
sensing systems is less than unity. 

8.2 Principles of Wavefront 
Reconstruction 

 Simplified Network Models 

Wavefront reconstruction is basically a spatial inte
gration process that converts an array of independent 
slope or gradient measurements into a smoothly 
varying three-dimensional surface defining the wave-
front errors to be corrected. Wavefront gradient mea
surements are inevitably perturbed by random noise, 
because of the quantum nature of light and the addi
tion of electrons in the detection process. Because 
there are multiple gradient paths between any two 
points on the wavefront, there is no unique wavefront 
that satisfies all the measured gradients exactly, so a 
statistical solution is employed. The usual criterion is 
to minimize the mean-square error between the 
reconstructed wavefront and the individual gradient 
measurements. 

Wavefront reconstruction is required in all 
adaptive optics systems in which the wavefront sen
sor makes zonal measurements. The geometrical 
configuration of the reconstructor (that is, the rela
tion between the nodes at which the wavefront is 
evaluated and the measurement zones) depends on 
the type of sensor used. Gradient sensors such as 
the shearing interferometer and the Shack-
Hartmann sensor use different detector configura
tions. Reconstructor configurations for these sen
sors, showing the relation between the 
subapertures and the measured slopes, are shown 
in figures 8.3-8.5. 

In network 1, the  and  gradients are 
displaced from each other, enabling all nodes to be 
interconnected into a single network. The  
and  gradient measurements are usually 
made with two sets of contiguous zones, requiring 
two detector arrays, as shown in figure 8.3. The 
performance of this reconstructor was analyzed by 
Hudgin [1977a]. Network 1 is compatible with both 
the shearing interferometer and the Shack-
Hartmann sensor. It has been used in the 
Compensated Imaging System (CIS), the 
Atmospheric Compensation Experiment (ACE), 
and  Wavefront Control Experiment (WCE), 
all of which used shearing interferometers and 
which have been tested on astronomical telescopes 
(see chapter 10). It was also used in the 
Massachusetts Institute of Technology  
Lincoln Laboratory's Short Wavelength Adaptive 
Techniques (SWAT) system, which employed a 
Shack-Hartmann sensor [Barclay et  1992]. 

The second configuration, network 2, shown in 
figure 8.4, is used primarily with Shack-Hartmann 
sensors in which the  and  gradients are 
measured in identical subapertures. This recon
structor has been analyzed by Fried [1977]. 
Although it operates with a single detector array, 
this configuration is composed of two independent 
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Figure 8.3 Reconstruction network 1 using displaced 
subapertures for x- and  measurements. 

grids [Herrmann 1980], as can be seen when the 
measured gradients are resolved into 45° compo
nents, connecting diagonal nodes. The presence of 
two separate grids necessitates some means of 
establishing the relation between them.  a displa
cement exists between the two grids, a checkerboard 
wavefront pattern is produced, to which the wave-
front sensor is insensitive. This is not a trivial 
matter and the error produced can be difficult to 
eliminate. 

In the third configuration, network 3, figure 8.5, 
 and y-axis gradients are, again, measured in 

the same subapertures, but, in this case, the suba
pertures are centered on the nodes rather than 
located between them [Southwell 1980]. In network 
3, the gradient connecting two nodes is the average 
of the two gradients measured in the zones centered 

 those nodes. Thus, all nodes are connected by 
gradients into a single network. This arrangement 
can be considered a modification of that shown in 
figure 8.3, with the subapertures displaced by half 
the zone spacing so that x and y subapertures coin
cide. There is no record of this configuration having 
been used in practice, although it appears to be 
suitable for Shack-Hartmann sensors. It allows the 
use of a single detector array without producing the 
unsensed checkerboard mode. 

8.2.2 Matrix Representation 

The process of wavefront reconstruction and the 
derivation of the methods used to implement it are 
most easily explained using a simplified model, as 
shown in figure 8.6. The wavefront is represented as 
an array of discrete points or nodes on a uniform 
grid, and the measured gradients are assumed to 
define the differences between these nodes in the x 
and y axes. This model does not account for the fact 
that, in practical adaptive optics systems, the wave-
front measurements are made over discrete contigu
ous zones in the optical aperture, or the fact that the 
corrections are likewise made using actuators with 
influence functions extending over finite areas of the 
aperture. In addition, the simplified model does not 
account for the statistics of the wavefront distur
bance, such as its spatial frequency spectrum. A 
more comprehensive approach to the wavefront 
reconstruction function is described in section 8.6. 
In the present section, the simplified reconstruction 
model is analyzed, keeping in mind its limitations. 

In figure 8.6 the nodes at which the wavefront is 
evaluated are labeled  where i =  • • •  is the 
index for the x axis and /'   2 • •• A' is the index for 
the  axis. A square array is assumed, having a total 
of N2 nodes. The measured wavefront slopes in the x 
axis are labeled  and those in the y axis are labeled 

 where the indexes refer to the node immediately to 
the left of, or below, the slope. In the square array, 
there are N(N — 1) x slopes and  — 1) y slopes. 
Use of the term   in the 
context of,   the 

 terms of  dif-
 
that are measured independently of wavelength. 

From figure 8.6, it is seen that the relation 
between the wavefront slopes and node values is 

(8.1) 

  -     

 =  -   =  -  

     =    

  

Grid A 
nodes 

 
nodes 

Figure 8.4 Reconstruction network 2, using common subapertures for x- and y-
gradient measurements. This results in two unconnected nodal grids. 
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Figure 8.5 Reconstruction network 3, using 
common subapertures for gradient sensing, 
centered on the actuators. 

This is a set  - 1) equations for N2 unknowns 
(the wavefront node values). The number of equa
tions exceeds the number of unknowns so the solu
tion is overdetermined. 

A set of simultaneous linear equations can be 
expressed compactly in matrix form. Representing 
the gradient or slope measurements as the vector s 
and the wavefront as the vector  the relation 
becomes 

s   + n (8.2) 

where 

A  matrix that depends on the geometry of the 
nodes and gradients, 

n = noise added in the measurement process 

Figure 8.6 Simplified reconstruction model and 
nomenclature. 

The "hat" or circumflex indicates estimated or mea
sured values. 

For a square wavefront array using network 1, 
using the head-to-tail configuration of measured 
slopes (figure 8.3), the total number of nodes is 

 N2. The number of x gradients,  is  — 1) 
and the number of y gradients,  is also  - l)N, 
for a total of B_ =  — 1) The number of gradi
ents, B, is greater than the number of nodes, A, for all 
values of  greater than 2. The matrix A is rectan
gular with dimensions A x B and the matrix values 
are [Herrmann 1980] 

 q +  = -l 

 +  -  - 1), 1 +q +  \)N] = 1 

for p = 1 . . . N, q = 1 . . . N - 1 
(8.3), 

A[r +  r]=-\ 

\[r + B/2,  1 (8.4) 

for r =  B/2 

All remaining elements have a value of zero. 
For a square wavefront array of A = N2 nodes, 

using network 2 (figure 8.4), the number of x gradi
ents,  and y gradients,  is each  —  for a 
total of B = 2(N   Here, B is greater than A for 
values of  greater  3. For this configuration, the 
dimensions of the matrix A are A x B and the matrix 
values are 

  
 l , n ) = - 1 

 n + B] = 1 

 +  

 « + NB] =  

\[m+  +  1 

 n+  B]=\ 

 + NB+B]=\ 

(8.5) 

 

where 

 +   -X) 
n  [q +  

(8.6) 

for 

p=  

  1 

and all remaining elements of the array have a value 
of zero. 

Given A and s, it is required to find the wavefront 
vector  that minimizes the mean-square error 

 It is assumed that the noise is random, 
uncorrelated, and equal on all slope measurements. 
The classic Gauss solution for a nonsingular matrix is 
found by multiplying each side of equation (8.2) by 
the transpose of matrix A and then inverting the 
resulting square matrix A A, giving 
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The mean-square error of this solution is 

(8.7) 

(8.8) 

where 

mean-square noise on each slope 
measurement 

Tr = trace of the matrix 

In the present case, the matrix A is singular 
because the slope measurements s cannot detect the 
piston component of  which is consequently unde
termined. Alternative solutions must therefore be 
found. One method is to use the generalized inverse 
of A, designated A®, giving the solution 

(8.9) 

Another approach, described by Herrmann [1980], is 
to use a minimum-norm solution in which the wave-
front is forced to have a mean value of zero. This can 
be achieved by adding an extra row of  to A to 
form the extended matrix  and adding an extra 
element (zero) to the vector s. The absolute phase of a 
wavefront is irrelevant in adaptive optics and, in any 
case, the minimum-norm solution is desirable since it 
minimizes the excursion of the wavefront corrector. 
Using the extended matrix, the solution giving the 
least-squares error is 

(8.10) 

The mean-square wavefront error is given by 

(8.11) 

where 

 = mean-square error on the slope 
measurements 

 = squares of all elements of the B matrix 

Practical methods of implementing the wavefront 
reconstruction process outlined above are described 
in section 8.3. 

A similar process can be used to reconstruct the 
modal components of a wavefront, such as overall 
tilt, defocus, or astigmatism. These signals can then 
be used to control appropriate devices to null the 
error. Modal reconstruction is described in section 
8.2.6. 

When using zonal reconstruction, it is usually 
necessary to extract modal components, such as over
all x and y tilt, from the wavefront and to reconstruct 
a tilt-removed wavefront. The tilt components may 
be extracted directly from the gradient array before 
reconstruction, by averaging the  and  mea
surements, or may be found from the reconstructed 
wavefront, using a matrix that weights each wave-

front value according to its distance from the x 
and y axes. For a square aperture, the overall x-
and  angular tilts are 

(8.12) 

where 

d = node spacing 
p, q = node indices in the x and y axes, 

respectively 

A matrix can be constructed that will produce the 
tilt-removed wavefront  to be applied to the 
deformable mirror directly, and will simultaneously 
produce the x- and  signals to be applied to the 
fast-steering mirror [Sasiela and Mooney 1985]. This 
matrix is constructed as follows. First, a matrix E is 
defined with dimensions 2 x  which extracts the 
overall x and y tilts,  and  from the recon
structed wavefront. These tilts may be combined 
into a single matrix, T: 

(8.13) 

Next, the D matrix, which produces the tilt-removed 
wavefront and extracts the tilt signals from the  
reconstructed wavefront, is specified: 

(8.14) 

The full reconstructed wavefront  and the overall 
tilts T are obtained from the gradients in the usual 
way: 

The matrices are then combined to give 

(8.15) 

(8.16) 

In this way, a single matrix multiplication of the 
measured gradients by H yields the required tilt-
removed array  as well as the x- and  com
ponents T. 

The reconstruction problem in adaptive optics is 
usually more complicated than that shown in the 
simple model of figure 8.6. For example, the noise 
on the gradients may vary and have statistical corre
lations. Also, the wavefront structure function and 
coherence length are often known. If the noise statis
tics are represented by the noise covariance matrix 

 then the wavefront may be found using the 
Gauss-Markov estimate: 
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Iterative solutions have been implemented using both 
digital and analog computers. The analog approach 
using a resistor network is described in section 8.3.1. 

A totally different type of recursive algorithm is 
the exponential reconstructor, developed by D. Ehn 
at  Optical Systems in the 1980s. It provides an 
approximate least-squares solution to the slope 
reconstruction problem for network 1, requiring 
many fewer arithmetic operations than a full matrix 
inversion of the same-size array. The number of 

 operations in the exponential algorithm is 
proportional to the number of nodes in the array, 
whereas with full matrix inversion the number of 

 is proportional to the square of the 
number of nodes. The price paid for this large 
increase in efficiency is that the exponential recon
structor has a slightly higher noise propagation. 

The exponential reconstructor algorithm operates 
on a square grid of nodes that covers the optical 
aperture, which may be of arbitrary shape. The 
underlying idea of the algorithm is first to simplify 
the network by eliminating nodes in successive steps 
until it is easily solved by explicit calculation, and 
then to build the network back to full resolution 

 using the measured slope data to fill in 
the nodes that were eliminated. The first operation 
is called decimation and consists of weighting and 
combining the input data along several paths to pro
duce estimates of the phase differences at twice the 
nodal spacing in both axes, thereby reducing the 
number of nodes by a factor of four at each iteration. 
The decimation operation is halted when a simple 

(8.17) 

If the spatial structure of the wavefront is represented 
by covariance matrix Cw, then the best solution is the 
Wiener estimate, given by 

(8.18) 

This matrix can be reduced to a single matrix to 
implement the reconstruction. The mean-square 
error in the reconstruction process is found from 

(8.19; 

8.2.3 Iterative Solutions 

Wavefront reconstruction involves a large amount of 
computation, and real-time reconstruction requires 
very high data-processing rates. The first practical 
real-time reconstructors, devised in the 1970s, were 
based on iterative algorithms, implemented either 
analogically or digitally. Iterative methods generally 
involve less computation than direct solutions using 
matrix equations, but are limited to solving the sim
plified reconstruction problems described above and 
do not always converge to an exact solution. Digital 
processors are now capable of performing large 
matrix multiplications using arrays of multiplier-
accumulators (the "brute force" approach), allowing 
much greater flexibility in the control algorithms used 
in adaptive optics. To make the coverage of wave-
front reconstruction techniques as complete as possi
ble, a brief account of iterative methods is offered 
here. Further information on iterative solutions 
may be found in Young [1972]. 

The iterative approach to wavefront reconstruc
tion applies a local algorithm to each node of the 
network in turn, iterating this process until the wave-
front values settle to within a given tolerance. The 
basic algorithm for network 1 may be stated as fol
lows 

(8.20) 

where 
  wavefront value at node j, k 

  = number of neighboring wavefront values 
(2, 3, or 4) 

 = sum of the  nearest wavefront values 

 = sum of the   connecting slope values 

Each iteration consists of N2 calculations (one for 
each node). 

There are three ways to implement the iteration 
process.  the first method, the   values are held 
until all  nodes have been calculated, whereupon 
they are all updated simultaneously. This procedure 
is known as the Jacobi method; it converges at a slow 
rate. To improve the rate of convergence, the  

values may be updated immediately and used in 
each succeeding calculation. This is known as the 

 method. For both of these methods, 
the wavefront value at node j, k at the  l)th 
iteration is given by 

(8.21) 

In equation (8.21), the value of  is recalcu
lated for each iteration and its previous value is only 
used to establish the sum of the neighboring nodes. 
The rate of convergence may be improved further if 
the value of the wavefront at each node in the pre
vious iteration is taken directly into account. In 
effect, calculated wavefront values are "remem
bered" from one iteration to the next. The decay 
factor is established by the relaxation parameter  
This technique is known as successive overrelaxation 
(SOR) and is described by the equation 

(8.22) 

The rate of convergence depends on  When  =  
this equation reduces to equation  The optimal 
value of  for this type  matrix is given by 

(8.23) 
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array with a nontrivial solution emerges, such as 
 or 4 x 4. Such an array is readily solved by 

direct calculation, establishing the overall shape of 
the wavefront. The build operation then estimates 
the wavefront values at intermediate nodes by 
weighting and averaging the input slope data, 
increasing the number of nodes by a factor of four 
at each iteration until the array is, again, fully popu
lated. 

Using this method, the number of  
operations required to reconstruct a 9 x 9 array is 
reduced from 12,000 (for full matrix multiplication) 
to 5000, while for a 17 x 17 array the corresponding 
reduction is from  to 18,000. The noise pro
pagation for the exponential reconstructor is about 
10-15% higher than that for full matrix multiplica
tion. 

8.2.4 Error Propagation of Simple 
Networks 

Two performance factors are of interest in wavefront 
reconstruction. The first of these is the accuracy of 
reconstruction; that is, how closely the original wave-
front can be recovered from an array of noise-free 
gradients. The second factor is the error propagation, 
which is the ratio of the error in the reconstructed 
wavefront to the errors in the input gradients, 
assumed to be random and independent. Using the 
simplified reconstruction model, in which the wave-
front is sampled at discrete nodes and the gradients 
are measured between those nodes, the basic equa
tions developed above are all exact solutions. The 
error propagation for the simplified reconstructor 
models does appear to vary considerably, although 
these differences tend to disappear when all factors 
are taken into account, as explained later. It should 
be noted that the adaptive  fitting error, which 
depends on the wavefront sampling density (node 
spacing), is independent of the reconstructor config
uration and is evaluated separately. 

The error propagation of network 1 has been ana
lyzed by Hudgin [1977a], that of network 2 by Fried 

[1977], and that of network 3 by Southwell [1980]. 
Performance comparisons of these configurations 
have been made by Herrmann [1980], Southwell 
[1980], and Wallner [1983]. 

If the noise on all gradient inputs is  
with a mean-square value of  then, using equation 

 the error in the reconstructed wavefront may 
be expressed as 

(8.24) 

The error propagation factor E is the ratio of the 
mean-square error of the reconstructed wavefront 
to that of the input gradients. It depends on the geo
metry of the reconstructor and is typically on the 
order of unity. Using the simplified reconstructor 
model, in which the wavefront is defined at an 
array of points or nodes, Herrmann [1980] has calcu
lated the error propagation of networks 1 and 2 for 
various array sizes, as shown in table 8.2. 

The error propagation of network 2 is about twice 
that of network 1, but of more interest is the fact that 
the error propagation of both networks is only 
weakly dependent on the number of wavefront 
nodes. For large arrays, Noll [1978] found that this 
dependence has the form 

E = a + b\n(N2) (8.25) 

where a and b depend on the geometry of the array 
and N  is the total number of nodes. 

The reason for the large apparent difference in 
error propagation between the network configura
tions has been examined by Wallner [1982, 1983]. 
He found that when a realistic adaptive optics system 
model is used, the differences in performance 
between these configurations disappear. Wallner ana
lyzed a general model in which the wavefront slope is 
measured and corrected over finite subapertures, 
using an optimal reconstructor and control law 
based on a knowledge of the structure function of 
the wavefront. In this general case, the residual 

Table 8.2 Error Propagation of Wavefront Reconstructors Using Gradient Inputs (Simplified Model) 

Array Size Error Propagation 

Network  Network 2 

2 x 2 0.31 0.50 
 0.43 0.99 

4 x 4 0.50 1.15 
5 x 5 0.55 1.23 
6 x 6 0.58  
7 x 7 0.62 1.33 
9 x 9 0.66 1.39 

 x 12 0.69  



Wavefront Reconstruction and Control Systems 277 

error depended on the total number of gradient mea
surements made over the aperture, as expected, but 
not on their geometry. The difference in error propa
gation between networks 1 and 2 only appears when 
using simplified reconstruction models, in which the 
wavefront is determined at arrays of single points 
(nodes) that are connected by linear phase differ
ences. 

8.2.5 Applications of the Curl Operator 

The configuration of network 1 allows the closure 
gradients to be estimated around each group of 
four nodes, as shown in figure 8.7. These closure 
gradients or "curls" can be extracted from the 
array of gradient measurements by means of a dis
crete curl operator in the form of a matrix, leading to 
some interesting possibilities. To start with, a knowl
edge of the curl components enables the noise on the 
gradient measurements to be determined irrespective 
of the wavefront being measured. If the curl matrix is 
Q and the gradient array is g, then, assuming the 
noise on each gradient is statistically independent, 
the curl values are given by 

q  Qg (8.26) 

The matrix Q has been defined by Herrmann [1980] 
as follows 

 +   -\ 

   

(8.27) 

 +   + q +  =  
Q[q +   - 1), 1    q +  -  = 1 

 l...(N~ 1), q=  1) 

(8.28) 

The size of this matrix is  -  x  (curls x 
gradients), where N2 is the number of nodes and 
M =  — 1 is the number of gradients. 

The relation between the noise variances of the 
curl and the gradients is 

(8.29) 

Thus, by obtaining several samples of curl, either 
from a single array or from successive frames, or 
both, the mean-square noise on the measured gradi
ents may be found. 

If the gradient measurements were noise free, the 
curl would be zero. In this case, a least-squares solu
tion to the wavefront reconstruction problem would 
be unnecessary. The gradient vectors could be added 
directly over a single integration path, considerably 
simplifying the computation. Herrmann [1980] has 
suggested that this result could also be achieved by 
subtracting the closure or  error, deter
mined by the curl operation, from the gradient 

 =  +  

Figure 8.7 Definition of curl in a reconstruction net
work. 

 He shows that the curl-free gradients are 
given by 

 =     

The reconstructed wavefront is then obtained from 
the curl-free gradients by making N2 - 1 additions 
(one for each node, with one node set to zero). The 
total number of arithmetic operations in this process 
is therefore [(curls) x (gradients)] + [nodes], or 
[{N -  x  - 1)] + [N2 - 1] When N is large, 
the number of operations tends to increase as 
which is the same as that for a conventional matrix 
inversion process. The curl-free reconstructor does 
not therefore appear to reduce the amount of data 
to be processed. 

8.2.6 Modal Estimation 

Zonal wavefront gradient data may be reconstructed 
into a modal estimate of the wavefront, for use in 
adaptive optics systems using modal control or cor
rection. Modal operation is appropriate for low-
order compensation because whole-aperture func
tions, such as tilt, defocus, and astigmatism, can be 
implemented more smoothly than with zonal correc
tion. The principles of modal estimation have been 
described by Cubalchini [1979] and Southwell [1980, 
1982]. 

A wavefront may be generally defined in modal 
terms, using a set of whole-aperture basis functions 
or modes, as 

(8.32) 

(8.31) 

where values of  are the coefficients of the basis 
functions  The set of modes is assumed to 
be linearly independent; that is, the value of each 
coefficient  is independent of all the others. The 
wavefront gradients measured in the x and y axes are 
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In zonal  sensors, the gradient measure
ments are made over discrete areas and therefore 
represent a finite set of gradient samples. The gradi
ents at location i =   may then be expressed as 

(8.33) 

This equation models the relation between the mea
sured gradients  and the modal coefficients  The 
modal estimation process requires each of the M 
expansion coefficients  to be determined from the 
gradient measurements. 

Equation (8.33) may be written in matrix form, 
relating the gradient vector g to the mode coefficient 
vector a, as follows 

g  Da (8.34) 

where D is a matrix containing the derivatives of the 
basis functions in equation (8.33) and g contains both 
x- and  measurements. It is desired to find 
the values of the coefficients a, which define the mag
nitudes of the modal components. This is done in the 
usual way by finding the inverse of matrix D and 
multiplying it by the gradient vector g. The result is 

(8.35) 

In the case of most interest, when the basis functions 
 axe Zernike polynomials, the required derivatives 

can be found explicitly. An interesting insight into 
this operation was provided by Southwell [1982], 
who noted that since the derivative operation reduces 
the order of a polynomial, each scalar component of 
the gradient of a Zernike polynomial can be 
expanded as the sum of lower order Zernike polyno
mials, as shown in table 8.3. The matrix B is con

structed in this way, containing both x and y 
derivatives. 

The number of modes,  is usually determined 
by the residual error requirement. With a knowledge 
of the wavefront statistics and the basis functions  
the fitting error can be determined as a function of 
M. Residual errors for Kolmogorov wavefronts cor
rected with Zernike polynomials are given in section 
3.5. In practical cases, the number of modes 
employed may be much smaller than the number 
required for good correction. For example, wave-
front correction may be limited to the first six 
Zernike modes, including x and y tilts, defocus, and 
astigmatism, but excluding coma, trifoil, and spheri
cal aberration. In this case, Southwell [1982] has 
shown that it is possible to design a matrix in 
which lower order modes partly compensate for 
higher order aberrations. This is a standard techni
que in optical design, known as "aberration balan
cing." In the context of adaptive optics, it implies a 
solution that minimizes the mean-square wavefront 
error for a given number of correction modes, rather 
than merely correcting specific modal components. 

The coefficients of the Zernike modes are deter
mined from equation (8.35), which may be expressed 
in terms of the x and y gradients as follows 

(8.36) 

Using the aberration-balancing approach for  
Zernike terms, the rows of the  and  matrices 
are given by the factors  and  in table 8.4. The 
columns correspond to the x and y gradients in each 
zone of the aperture; these are stacked end to end as 
indicated in figure 8.8. Each element of the matrix, 

 is obtained from the expression in the table by 
evaluating  Using this approach, the overall 
tilt correctors remove the tilt component of coma, 
and the focus corrector partly compensates for sphe
rical aberration. From the narrow viewpoint of con
trol system design, this cross-coupling of modes may 
appear detrimental, but in the wider context of 

 8.3 Zernike Polynomials and their Gradients 

   =     

1 Piston 1 
2 x Tilt 2.v  
3 y Tilt   
4 Defocus  - 1)   
5 0° Astigmatism   -V6Z3 
6 45° Astigmatism    

7  Coma  - 2)*  +  +   
8 y Coma V8(3r2 -    +  -  

9 x Trifoil  -    

 y Trifoil  -    

 Spherical aberraration  
where r =  +  < 1 

 +     
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Table 8.4 Components of The Matrices  and  for Optimal Zernike Mode Extraction Using  Modes 

 Mode   (divide each term   (divide each term by rr) 

I Piston 1 
2 x Tilt 2x    
3 y Tilt    +  
4 Defocus   -   -  
5 0° Astigmatism   - Z , / 2 V 6 
6 45° Astigmatism    
7 x Coma V8(3r2 - 2)x     
8 y Coma  - 2)y   -  
9  Trifoil  -    
 y Trifoil    
 Spherical aberration    

imizing image quality, it is recognized to be benefi
cial. 

A different approach to modal wavefront recon
struction, using Fourier transforms, has been 
described by Freischlad and   
This process is equivalent to a filtering operation in 
the spatial frequency domain, following which zonal 
actuator commands may be retrieved. If the basis 
functions are defined as a set of complex exponentials 

 where 

(8.37) 

then the expansion of the wavefront in these basis 
functions is identical to the inverse discrete Fourier 
transform of the coefficients  that is, 

expansion coefficients, the gradients measured by 
the wavefront sensor are, first, Fourier transformed 
into the spatial frequency domain, and then multi
plied by a filter function corresponding to the least-
squares fit. The wavefront is then retrieved using the 
inverse discrete Fourier transform, equation (8.38). 
The error propagation of this process is comparable 
to that of zonal reconstructors, except that most of 
the error occurs in sharp peaks at the edges and cor
ners of the aperture. This is because of the fact that 
there are only  - \)N x-gradients and  - 1) y -
gradients in an array of N x N nodes, so that missing 
data must be synthesized. An advantage of this 
approach is that the number of arithmetic operations 
is approximately proportional to N2, the number of 
nodes, whereas matrix multiplication requires   

operations. 

8.2.7 Optimal Wavefront Reconstruction 

The approach to wavefront reconstruction outlined 
above has been used in the design of most existing 
adaptive optics systems. While it has given service-

Figure 8.8 Zernike mode 
extraction matrix. 

Gradient sensor 
Mode index k  1. . .  
Gradient index   1. . . N 

(8.38) 

The goal of the reconstruction process is to find 
the expansion coefficients  that correspond to the 
measured wavefront gradients  To find the 
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able results, it is based on a simplified reconstruction 
model that does not account for many characteristics 
of actual systems. In particular, it has the following 
limitations: 

 Wavefront measurements are treated as point-
to-point differences rather than averages over 
finite subaperture areas. 

2. Estimates of the reconstructed wavefront are 
obtained as an array of points, with no gui
dance on how to interpolate between them. 

3. The statistics of the wavefront being estimated 
are not used. 

Wallner (1983) has suggested a more comprehen
sive approach, in which the wavefront reconstructor 
is generalized into an optimum estimator that takes 
into account the characteristics of the wavefront sen
sor and the wavefront corrector, as well as the spatial 
and temporal statistics of the turbulence. The recon
struction process is considered to be an intrinsic part 
of the overall control law, rather than an inconveni
ent operation made necessary by the use of wavefront 
slope sensors. The control law takes into account all 
the relevant parameters of the adaptive optics system, 
both external and internal, and can be optimized to 
maximize any desired performance criterion. 

The system model used in this enlightened 
approach to the design of adaptive optics systems is 
described briefly as follows. The wavefront sensor 
produces an array of wavefront measurements  
that are unavoidably contaminated with noise. The 
measurement array is multiplied by a control matrix 

 to produce an array of actuator commands  
that are applied to the wavefront corrector. The pro
cess may be optimized in a number of ways. Two 
results of interest are: (1) Given the actuator response 
functions  it is possible to find the optimal 
matrix  that will minimize the error criterion 
(for example, least-mean-square error) for a given 
number of degrees of freedom. (2) Given only the 
number of degrees of freedom, it is possible to find 
the optimal actuator response function  that will 
minimize the error criterion. The principles of opti
mal wavefront correction are summarized in section 
8.6. 

8.3 Practical  

8.3.1 Analog Network 

The analog reconstructor using a resistor network 
was the first practical solution to the problem of 
real-time wavefront reconstruction [Hardy et  
1977]. The network determines the wavefront values 
at an array of nodes, using the differences between 
these nodes as the input data. The geometry is shown 
in figure 8.9. The wavefront is represented by a rec
tangular array of nodes  which are connected by 

This algorithm was derived heuristically for wave-
front reconstruction in adaptive optics [Hardy 
1975a]. It has been proved to give the least-mean-
square solution in the case of noisy gradient inputs 
[Hudgin 1977a]. 

The equation is implemented in the analog recon
structor as shown in figure 8.10. The nodes are con
nected by a network of equal resistors that produce 
the average value of the four adjacent W values. A 
current proportional to the algebraic sum of the four 
surrounding gradients is injected into each node. At 
the edges and corners of the array, where there are 
only three or two adjacent nodes, the proportional 
constant is modified accordingly. One node is nor
mally grounded (clamped to zero) to serve as a refer
ence. If  and  are wavefront gradients in the x 
and y directions (meters per subaperture) and  is 
the scale factor (volts per meter) then the currents 
corresponding to each gradient measurement are 

wavefront slopes or gradients   and  The ana
log network is based on the proposition that in any 
group of five nodes, the wavefront value at the center 
node,  is equal to the average value of the four 
adjacent nodes, plus the average of the four connect
ing gradients. The relation is formally stated as 

(8.39) 

The net current into each node is the resultant of four 
gradients 

(8.40) 

(8.41) 

The current associated with any subaperture gra
dient measurement must flow only through the single 
resistor corresponding to that subaperture. This is 
accomplished by injecting the current into one node 
and extracting it from the opposite end of the appro
priate resistor. With a given set of input currents 
containing random uncorrelated noise, the node vol
tages settle at values satisfying equation (8.39), mini
mizing the mean-square value of the noise over the 
array. A change in any input current propagates 
through the network, which settles at a new value 
satisfying the equation at all nodes. The settling 
time of the network depends on the time constant 
defined by the network resistance R between nodes 
and the shunt capacitance C of each node to ground. 
The performance of analog reconstruction networks 
is analyzed in the following section. 
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Optical 
aperture 

Center nodes (4 slope inputs) 

Edge nodes (3 slope inputs) 

Corner nodes (2 slope inputs) 

Figure 8.9  reconstruction algorithm for network 1. 

Analog reconstructors of this type were used suc
cessfully in the  RTAC system, built in 
1973, and in the  CIS, first operated in 
1982. The advantages of analog reconstructors are 
that they are extremely fast (the settling time for a 
32 x 32 array is typically less than  and the 
hardware is relatively simple, the number of compo
nents being directly proportional to the number of 
nodes. The perceived problem with these devices is 
the basic limitation of all analog computers: 
restricted dynamic range and accuracy. Analog 
devices are typically limited by noise to a dynamic 
range of   dB) and are susceptible to 
offsets due to temperature and other environmental 
changes. These problems can be overcome by suitable 
design; for example using a self-calibration system to 
eliminate offsets. Studies have shown that it is feasi
ble to design analog networks with adequate perfor-

Figure  Analog implementation of iterative 
reconstruction algorithm. 

 for adaptive optics systems as large as 10,000 
actuators. 

A block diagram of the hardware required to 
implement an analog reconstructor is shown in figure 

 The input consists of serially multiplexed  
and  gradient data from the wavefront sensor, 
which has been conditioned to eliminate offsets and 
to provide the correct scaling, as described in section 
5.3.6. Each frame of conditioned slope data is stored 
in a RAM, where it can be accessed by the recon
structor, which requires algebraic summation of gra
dients in groups of four. Two memory banks are 
normally used, one being updated while the other is 
accessed by the reconstructor. The memory may be 
organized and updated in sections, corresponding to 
multiple readout ports in the wavefront sensor. The 
wavefront data are weighted and added in groups of 
four (two  gradients and two  gradients) using a 
multiplier-accumulator (MAC). In the iterative algo
rithm used by the analog reconstructor, each node 
requires only four  compared with 
N2 in the case of matrix multiplication. The MACs 
can therefore be multiplexed to serve several nodes, a 
convenient arrangement being to have one adder per 
row or column of the network. The number of  
required for the analog reconstructor is therefore 
much smaller than that necessary for  matrix mul
tiplication. 

The digital outputs of the MACs, comprising the 
four-element slope sums, are then converted to ana
log and distributed to the current drivers. Each node 
has a dedicated current driver, which is basically an 
operational amplifier configured to operate as a high-
impedance source. The outputs of the current drivers 
are connected to the nodes of the resistor matrix. The 
reconstructed wavefront value is represented by the 
voltage at each node of the network. 
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8.3.2 Hybrid Reconstructors 

Analog reconstructors are not restricted to the sim
plified configuration described in the preceding text. 
In principle, reconstructors of any complexity may be 
realized using analog or a combination of analog and 
digital (hybrid) techniques. This possibility has 
received little or no attention in the literature, so a 
brief discussion is presented here. 

The basic elements of all wavefront reconstructors 
using zonal slope measurements are: 

1. an array of nodes representing the actuators of 
the correction device, which may have any con
figuration, not necessarily regular or symmetri
cal; 

2. a means of weighting and distributing the zonal 
slope measurements to the nodes; 

3. a means of summing the signals at each node. 

These elements describe the process defined in the 
basic linear reconstruction equation (8.31). In the 
analog reconstructor, items 1 and 3 are implemented 
by a passive network interconnecting all nodes 
according to their geometry. Item 2 is implemented 
by active devices that inject a current into each node 
proportional to the wavefront difference between 
that node and its neighbors. 

In the simplified network using localized slopes 
and zones,  the four nearest neighbors are used 
for item 2. This is not a basic restriction and there is 
no limit to the nodal distribution of each measured 
slope. In this way, factors such as the actuator influ
ence functions, noise covariances, and wavefront sta
tistics can be accommodated in the analog 
reconstruction process by weighting and combining 
the slope measurements, as is done in the general 
matrix equation. The advantage of the analog system 
is that the basic process of adding the subaperture 
gradients over the two-dimensional array is accom
plished by the passive network. This eliminates a 
considerable part of the data processing that is 
required in matrix multiplication systems, especially 
for large arrays. 

A major concern about the use of analog recon
structors is whether analog (A) devices can be justi
fied in otherwise exclusively digital (D) processors. 
The need for D/A and A/D data conversion would 
appear to outweigh any possible advantages. 
However, a suitable location does exist. The output 
devices used in adaptive optics, typically deformable 
mirrors, are driven analogically, requiring D/A con
version of the actuator drive signals. This suggests 
that a suitable (and economical) location for an ana
log wavefront reconstructor would be in combination 
with the wavefront correction driver system. 

 practice, the reconstructor system would be 
hybrid, using both digital and analog components. 
A possible scheme is shown in figure  
Wavefront slope data are downloaded from the bus 
and held in a register, where they are accessed by the 

multiplier-accumulator and weighted using the con
stants stored in the RAM. These functions are similar 
to those in an all-digital matrix multiplication recon
structor. The difference is that the number of multi-
ply-add operations required in the hybrid system is 
typically much smaller than for an all-digital system. 
The node signals are converted from D to A and held 
in  circuits at the input to the current 
amplifier serving each node. The MACs and D-to-A 
converters may be multiplexed to serve a number of 
current amplifiers, depending on the data rates 
involved. The current amplifiers inject current into 
the summing network, producing the required vol
tages at each node; these voltages are fed directly to 
the wavefront corrector drivers. 

It is of interest to compare the data-processing 
requirements of a hybrid reconstructor of this type 
with that of an all-digital matrix multiplication sys
tem. For an N x N array, full matrix multiplication 
requires a total of 2N(N — \) x   
operations, irrespective of the number of additional 
covariance functions involved. (These functions 
change the matrix elements, especially those off-diag
onal, but do not change the size of the matrix.) In the 
case of analog reconstruction, the number of multi-
ply-adds required is M x N , where M is the number 
of slopes input to each node. The minimum value of 
M for a simple reconstructor is 4. The additional 
number required depends on the area covered by 
the covariance functions, in units of actuator spacing, 
d. For example, the reconstructor may be designed to 
account for the actuator influence functions. These 
usually have significant value over a radius of 2d, 
which amounts to an area covering 20 nodes. In 
this case, M will have a value of 20. If the reconstruc
tor weights slope measurements according to their 
signal-to-noise ratio, this will only affect individual 
inputs, with no influence on M. For array sizes of 
practical interest (5 x 5 or over), the analog recon
structor will, in most cases, require many fewer multi
ply-add operations than a matrix multiplication 
reconstructor of similar performance. Only when 
the additional covariance functions cover a large 
area (that is, when  approaches the value of  
will the analog reconstructor require as much hard
ware as a matrix multiplier. 

8.3.3 Performance of Analog 
Reconstructors 

The performance factor of prime interest in all recon
structors is the error propagation (that is, the ratio of 
mean-square error on the output wavefront to that 
on the input gradients), and  it varies with the 
size of the wavefront array. Analysis of the basic 
reconstruction process (section 8.2.4) has shown 
that the error propagation factor is ideally about 
0.4 for small arrays, and it increases as the logarithm 
of the number of nodes. This performance is achieved 
with a full matrix inversion, which requires approxi-
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Figure  Block diagram of hybrid reconstructor combined with actuator drivers. RAM, 
random-access memory; D/A, digital-to-analog converter; S/H,  circuit; 
A, actuator; DM,  mirror. 

  arithmetic operations for  array 
of nodes. In the case of a digital processor, the com
putation speed is set by the clock rate and the number 
of parallel processors available. To achieve high data 
rates, a considerable amount of hardware may be 
necessary. 

In the case of analog devices, there is usually a 
more flexible tradeoff between speed and perfor
mance, with the performance degrading gradually 
with bandwidth. It is of some interest to see how 
analog reconstructors compare with digital proces
sors in this regard. An incentive for this investigation 
is the possible use of solid-state or liquid crystal 
wavefront correctors that may employ 104 or more 
actuators, for which digital processing would be very 
expensive. As mentioned above, an economical solu
tion in this case would be to combine an analog 
reconstructor with the correction device. 

An ideal analog processor (using network 1) 
solves the simplified reconstruction problem exactly, 
producing an output wavefront that minimizes the 
mean-square error between the wavefront and the 
measured gradients [Hudgin 1977a]. An ideal proces
sor consists of a pure conductance network with no 
parasitic reactances, and a linear current driver with 
no offset. 

Practical analog reconstructors are susceptible to 
two errors: (1) temporal error due to shunt capaci
tance from each node to ground, which causes the 
network to require a finite time to settle to the final 
solution; and (2) offsets due to leakage currents in 
each node, which distort the reconstructed wave-
front. 

The temporal errors in analog wavefront recon
structors using the resistor network were analyzed by 
Menikoff [1987]. Assuming that the wavefront data 
have a  spectrum, he showed that the 
convergence error, defined as the difference between 
the reconstructed wavefront at time t and the final 
value at  =  is given by 

(8.42) 

where 

 = convergence error at time t, in waves  at 
wavelength  

t = time after inputs are applied, s 
R = resistance between nodes, Si 
C = capacitance of each node to ground, F 
 — subaperture dimension, m 
 = turbulence parameter, meters at wavelength 

 
N = number of nodes per side (N  N network) 

Convergence errors for reconstructor arrays of 
 32 x 32, and 100 x 100 are shown in figure 

8.12, using network parameters of  =  
C = 20 pF, with  =  It is seen that even with 
these conservative parameters, the convergence time 
for a  array is less than 10  The tem
poral error is therefore negligible in analog recon
structors employed in astronomical adaptive optics. 

The error due to offsets in the current injected into 
the nodes of the network may be estimated as fol
lows. If the gradients are all zero, then the input 
currents should likewise all be zero and the network 
will settle to a null (flat) condition. The currents are 
generated by operational amplifiers, which are liable 
to offsets due mainly to temperature variations. The 
offsets are therefore likely to be correlated, which will 
produce the largest error on the reconstructed wave-
front. If the current injected into each node is /, then 
the voltage at node j, k is 
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Convergence  Reconstructor 

Elapsed time, microseconds 

— Array size 10 x 10 
" * Array size 32 x 32 

 Array size  x 100 

Figure  Convergence errors for an iterative reconstructor. These curves show 
the error versus settling time for a high-speed analog reconstructor using a resis
tance network, as a function of the array size. The internode resistance is 

 ohms and the shunt capacitance is  pF per node. The input wavefront 
has a Kolmogorov spectrum and is constant during reconstruction. The value 

 is 1. 

The system can be modeled as continuous Laplacian. 
For a circularly symmetrical aperture, it is convenient 
to use polar coordinates. The surface profile pro
duced by a constant current per unit area may be 
defined in terms of the radius r by 

(8.44) 

To determine the value  A, the condition is imposed 
that no current flows across the boundary of the 
aperture; that is, 

(8.45) 

This condition implies that A  - 1 / 2 . There is a sin
gularity at the origin, so, to determine the B term, it is 
necessary to specify a minimum radius  which 
will serve as the reference for measuring U. The 
inner ring of radius r can be considered to be con
nected to ground, draining all of the current injected 
into the nodes. Then, 

(8.46) 

Substituting A and B in equation (8.44), the current 
profile is 

If there are N nodes across the diameter, then the 
voltage as a function of radius is given by 

(8.48) 

This function is plotted against radius in figure 8.13 
  — 0.05. It shows the shape of wavefront dis

tortion produced by equal offset currents of / 
(amperes) in each node. The maximum voltage excur
sion at the outer edge is  =  

If necessary, the current drivers may be calibrated 
to trim their offset current to zero. This can be done 
automatically using a regular cycle of operations. 
The procedure is very simple: (1) All gradient inputs 
are set to zero. (2) The node voltages are compared to 
zero using comparator devices. (3) The binary output 
of the comparator is used to increment or decrement 
a digitally controlled calibration current into the 
node, updating at each clock pulse until the offset 
is within the resolution of the comparator. (4) After 
a predetermined number of cycles, the final calibra
tion word is saved and the current is maintained until 
the next calibration cycle. Normal operation then 
resumes. 

Calibration of an analog reconstructor normally 
takes place when the equipment is first switched on, 
and at subsequent intervals, depending on the opera
tional environment. A study of this technique at  

(8.47) 



Figure  Voltage profile 
produced by uniform offset 
currents in an analog 
reconstructor. To obtain the 
actual offset voltage, the 
normalized scale should be 
multiplied by  
where N is the number of 
nodes across the diameter, 
R is the internode resis
tance, and / is the offset 
current;   0.05. 
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Optical Systems in 1987 showed that sparse calibra
tion of one node in each  block is an effective 
and economical procedure. 

8.3.4 Matrix Multiplication 

Matrix multiplication is the most direct and flexible 
method of wavefront reconstruction in adaptive 
optics. This method implements the process defined 
in equation (8.10), in which the required wavefront 
values are obtained by weighting and summing the 
measured gradients. The operation is formally 
described as 

(8.49) 

where 

 

 

 

= elements of the wavefront array W, which 
is of order A 

= elements of the gradient array S, which is 
of order B 

= elements of the matrix B, which is of order 
 

Implementation of this equation requires  
tipiy-add operations. 

This is evidently a general solution because the 
wavefront value at every node contains a contribu
tion from every measured gradient. As there are no 
restrictions on the weights that can be used, equation 
(8.49) must include every possible linear solution, 
including those using optimal reconstruction, as 
described in section 8.6. The process is applicable 
to zonal or modal systems, using any criterion for 
minimizing the wavefront error. Computation is per

formed digitally so there is no limit to the precision 
that can be achieved. 

The major difference between matrix multiplica
tion and iterative solutions is in the complexity of the 
algorithms used. Iterative solutions employ simple 
algorithms that require many repetitions to converge 
to a solution, whereas the matrix solution employs a 
complex algorithm in return for a single iteration. 
There is a continuum of tradeoffs between these 
two extremes, but only the two limiting cases have 
any practical value. Simple algorithms for which 
iterative solutions are most useful are found in con
trol matrices with diagonal structure, representing 
reconstruction schemes in which there is little cou
pling between nodes. The other extreme is repre
sented by dense control matrices with many off-
diagonal elements, typical of optimal reconstruction 
algorithms, for which matrix multiplication is best 
suited. 

The required weighting functions are held in the 
control matrix B, which is computed a priori and 
stored in memory. It is also possible to change the 
parameters of the control law in real time by updat
ing the elements of B in response to changes in the 
reference source brightness or turbulence conditions. 

The main problem in implementing wavefront 
reconstructors using matrix multiplication is the 
large amount of data to be handled in a limited 
time. In a system with N x N actuators, the dimen
sion A has a value of N2 and B is approximately 

 —  so the matrix multiplication involves 
 ~ \)2  operations. For a 

 wavefront array, this requires  multi-
ply-adds, which typically must be completed in less 
than  This task is usually accomplished using 
special-purpose parallel processors. 
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The standard approach is to use a parallel array 
of multiplier-accumulator circuits (MAC) as 
described by Sasiela and Mooney [1985]. The opera
tion is shown schematically in figure 8.14. The 
matrix B has A rows corresponding to the wave-
front elements  and B columns corresponding to 
the gradients  The wavefront values  are obtained 
by multiplying each gradient s by the corresponding 
element of B and accumulating the result. The sim
plest scheme is to assign one MAC to each wave-
front node, as shown. In this case, each MAC 
performs B operations for each set of gradient mea
surements, multiplying each value of s by the corre
sponding element in its assigned row of B, and 
summing the result. 

 general, the number of MACs required 
depends on their clock speed C, the required recon
struction time  and the number of nodes N. For a 
wavefront reconstruction system with N x N nodes, 
the minimum number of MACs required is 

(8.50) 

The reconstruction time must allow for overhead 
operations, such as unloading data from the output 
registers. Currently available multiplier-accumulator 
devices operate at clock rates of about 30 MHz. For a 
net reconstruction time of  x  seconds, 
using one 30-MHz MAC per node, the maximum 
array size is N = 39 nodes and the number of 
MACs required would be N2 =  With smaller 
arrays, the MACs may be shared between nodes. 
For example, a 16 x 16 array would require only 43 
MACs, with each servicing six nodes. 

In a "brute force" reconstructor of this type, the 
number of  operations is proportional 
to the square of the number of nodes in the array, 
or  For large arrays, a considerable amount of 
hardware is required. Consequently, there is a strong 
incentive to find methods of simplifying the opera-

 
Output 

(b) Block diagram 

Figure  Wavefront 
reconstruction using matrix 

multiplication. 
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 basically, this involves reducing the power-law 
dependence of the number of  opera
tions. One approach, the exponential reconstruction 
algorithm, is described in section 8.2.3. Another 
approach is to use the wavefront statistics (structure 
function) to reduce the influence of gradients far 
from the node being computed. Small values can 
then be truncated with minimal loss of accuracy. 
The use of wavefront statistics is one of the elements 
of optimal wavefront reconstruction described in sec
tion 8.6. 

8.3.5 Calibration of Actuator Response 
Functions 

An advantage of the matrix multiplication approach 
to wavefront reconstruction is its flexibility in mod
ifying the control law to accommodate variations in 
operating conditions and hardware status. A useful 
procedure is to self-calibrate the actuator response 
functions, which allows the actual influence function 
of each actuator (rather than an estimate or aver
age) to be used in the reconstruction process. 
Calibration is implemented by driving or "poking" 
each actuator, in turn, when the adaptive optics 
system is operating with a clean input wavefront, 
usually generated by an internal (self-test) reference 
source. The wavefront sensor responses for each 
actuator are then separable and can be saved. 
The resulting data are then used to establish the 
elements of the reconstruction matrix. 

8.4 Wavefront Prediction 

 Strategies for Wavefront Prediction 

Time delays are inevitable in adaptive optics systems, 
partly because of the finite integration time required 
by the wavefront sensor to collect photons from the 
reference source, to which must be added pure (non-
integrating) time delays, such as those due to reading 
out a charge-coupled device (CCD) detector, proces
sing the wavefront data, and setting the wavefront 
corrector. Time delays between the measurement 
and correction of a wavefront produce a temporal 
or prediction error, the magnitude of which depends 
on the dynamics of the turbulence. The contributing 
factors include transportation of turbulent layers by 
winds, the wind vectors often being different for 
layers at different heights, together with the motion 
or evolution of the turbulence itself. The correlation 
of atmospherically distorted wavefronts decays with 
time, the time constant being typically between 1 and 
10 ms, depending on the turbulence strength, wind 
speed, and wavelength. 

In principle, the effects of time delays can be com
pensated by using a prediction scheme to anticipate 
the corrections that will be required in the next cycle. 

Wavefront prediction may be based on data mea
sured in previous sampling periods and on data 
from surrounding subapertures, as well as data 
from the subaperture in question. There are three 
main prediction strategies: 

1. Zero-order prediction, in which the current 
value of the wavefront is used as the best esti
mate for the next period. This is the optimum 
strategy for the random walk scenario. 

2. First-order or linear prediction, based on 
extrapolation from recent samples. This is the 
optimum strategy for a signal contaminated 
with white noise; for adaptive optics, the pre
dicted wavefront may be a function of both 
time and position. 

3. Nonlinear prediction, as implemented by a 
neural network, which is appropriate for a 
chaotic process. 

Most closed-loop adaptive optics systems use the 
zero-order prediction strategy, generally implemen
ted in the form of an integrator that holds the current 
correction, usually with a decay factor, until the next 
measurement is available. This method requires the 
wavefront sampling interval to be considerably 
shorter than the decay time of the turbulence. 

Two methods of wavefront prediction beyond 
simple integration or time smoothing have been 
investigated for use in adaptive optics. The first of 
these is linear prediction, using measurement of the 
wind vector that transports turbulence across the 
telescope aperture. A "traveling wave predictor," 
designed to propagate wavefront measurements 
across the aperture with the correct speed and direc
tion, is described in the following section. Linear pre
diction is appropriate for processes that can be 
modeled as band-limited white noise, of which 

 turbulence is an example. It could be 
of considerable value at good astronomical sites, 
where the turbulence occurs mostly in well-defined 
layers in the vicinity of the tropopause. 

Nonlinear prediction for adaptive optics has been 
investigated in the form  neural networks. 
Jorgenson and Aitken [1992, 1993] state that there 
is evidence that atmospheric turbulence sometimes 
behaves like a chaotic process, in which case a non
linear predictor, such as a neural network, would be 
the appropriate choice. They found, however, that 
with severe turbulence, the largest gain was obtained 
in going from a conventional zero-order predictor to 
a first-order (linear) predictor, with only a small 
further gain for the neural network. With low turbu
lence, there was little difference between the three 
methods. 

8.4.2 Traveling Wave Predictor 

A linear predictor of this type was proposed for use 
in the Compensated Imaging System in 1978. The 
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CIS employed a  optical telescope and was 
designed for imaging of  satellites, 
which  have angular velocities of 10-25 

 when viewed from Earth's surface. The 
large slew rate required high sampling rates, with a 
compensation bandwidth approaching 1 kHz. 
Because of the high slew rate, the turbulence struc
ture appears to move across the telescope aperture 
with consistent speed and direction. The traveling 
wave predictor was designed to propagate wavefront 
measurements across the aperture at a given speed 
and direction, with a decay factor to take account 
of the decorrelation with time. Further measurements 
were added to the traveling wave in its journey across 
the aperture to improve its precision so that the aver
age compensation was enhanced. Analysis predicted 
a modest improvement in image resolution, but this 
could not be  because the traveling wave pre
dictor was never reduced to practice. 

There is experimental evidence that atmospheric 
turbulence occurs in well-defined layers traveling 
with consistent speed and direction. For example, 
data obtained by Vernin and Roddier [1973] shows 
two layers of turbulence at 5 km and 10 km, traveling 
at velocities of 7 and  respectively. The struc
ture and motion of turbulence may be visualized 
directly by looking at a star through a telescope 
(even a small one), using a knife-edge at the focus, 
as described by Babcock (see chapter 1). When the 
turbulence structure persists for a significant fraction 
of its journey across the telescope aperture, it 
becomes possible to use spatiotemporal wavefront 
reconstruction, in which wavefront measurements 
are propagated across the aperture to make a better 
estimate of the wavefront. 

The principle of the traveling wave predictor is 
shown in figure  Wavefront disturbances traver
sing the telescope aperture pass across the subaper-
tures of the wavefront sensor with a velocity vector 
determined by the wind speed and direction.  nor
mal operation, each wavefront measurement is inde
pendent, using whatever photons are collected during 
the detector integration time. When the wind velocity 
is high, the integration time must be kept short to 
minimize the measurement error due to motion of 
the turbulence. If the turbulence structure remains 
"frozen" while it traverses the aperture, then many 
additional samples may be obtained by combining 
previous measurements, with the appropriate spatial 
shift. This process increases the effective exposure 
time and consequently improves the signal-to-noise 
ratio of the wavefront measurement. 

Subapertures on the lee side of the telescope 
aperture, A, have the most favorable location, 
because the turbulence can be tracked across the 
full diameter, producing a large increase in the effec
tive exposure time. At the least favorable location 
B, on the windward edge of the aperture, the travel
ing wave predictor produces no improvement. The 
average distance of all points within an aperture, 

(1) Turbulence motion across the telescope aperture 

(2) Wavefront profiles along the motion vector 

Figure  Principle of the traveling wave predic
tor. Wavefront measurements made along the motion 
vector at times T — /, T  2t, etc. are shifted by A, 
2A, etc., and included in the current measurement. 

measured from one edge in one direction, is  
for a square aperture and  =  for a cir
cular aperture, so in either case a significant increase 
in the average signal-to-noise ratio is obtained, 
resulting in lower wavefront measurement errors. 
To implement a system of this kind, it is necessary 
to have a priori knowledge of the wind vector. In 
practice, a decay or weighting factor is used to take 
account of the decorrelation of the wavefront struc
ture with time, reducing the contribution of earlier 
measurements. 

The wavefront estimate  made at location x 
and time T, using a traveling wave predictor, is for
mally described as 

(8.51) 
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where 

a = decay factor 
  measured wavefront at location x and time 

T 
 = measurement interval 

A = spatial wavefront shift between 
measurements = vt 

v = effective wind velocity 
m = number of measurements used for estimate 

The improvement in effective exposure time, 
brought about by the use of traveling wave predic
tion, is easily estimated for the ideal case of frozen 
turbulence, when there is essentially no change in the 
structure as it traverses the telescope aperture. If  is 
the subaperture dimension at the primary mirror, 
then the time required for the turbulence to traverse 
one subaperture is d/v seconds. It is easily shown that 
the average distance of points within a circle of dia
meter D from the edge (in one axis) is    
For a system with  subapertures across the dia
meter, the wavefront can therefore be measured 
over an average distance of  subapertures. 
The effective exposure time  is therefore 

 = average number of subapertures used 

x time to traverse one subaperture (8.52) 

The maximum exposure time without a traveling 
wave propagator is approximately equal to the mea
surement interval t, so the improvement factor  
is given by 

(8.53) 

For a typical case with N -   
v=  and t = 0.002s,  has a value of 
39. The corresponding improvement in wavefront 
sensor signal-to-noise ratio is  Under realistic 
conditions, the actual improvement would be less 
than this, but the example shows the potential of 
this prediction technique. 

8.5 Adaptive Optics Control Systems 

 Introduction 

The control system is the vital link between the wave-
front sensor and the wavefront corrector in an adap
tive optics system. There are several ways in which 
this control function can be implemented. The most 
common is a negative feedback loop in which the 
incoming wavefront is first compensated by the wave-
front corrector. The residual error after compensa
tion is then measured and a proportional signal is 
fed back to the wavefront corrector, with the correct 
polarity to reduce the error. With this arrangement, 

the wavefront sensor need only detect small devia
tions away from the  Another arrangement is 
to use an open-loop or feed-forward configuration 
in which the wavefront is measured before it is cor
rected; this requires precise measurement capability 
over a large dynamic range. Each of these systems 
has its advantages and disadvantages. Closed-loop 
control systems do not require precise calibration 
(except to establish the null), but their temporal fre
quency response is limited by the need to avoid oscil
lation in the feedback loop. Open-loop control 
systems are free of this limitation, but, in this case, 
it is necessary for the sensor and corrector to have a 
linear response over the entire dynamic range of the 
signal to be compensated, a requirement that is diffi
cult to achieve in practice. 

Adaptive optics control systems can be based on 
either zonal or modal wavefront compensation; the 
standard approach is to use modal compensation for 
low-order errors, such as overall tilt, and zonal com
pensation for the higher order wavefront errors. The 
control algorithms  in adaptive optics 
usually have some capability for updating their para
meters in real time, to accommodate changes in oper
ating conditions. While most control systems employ 
linear operation, some experiments have been made 
with neural networks, which employ nonlinear algo
rithms. These alternative approaches are discussed 
briefly later in this section. 

The theory of automatic control is well estab
lished and standard design procedures are adequate 
for the design of adaptive optics systems. From the 
control system viewpoint, adaptive optics wavefront 
compensation systems may be treated as linear, time-
invariant feedback systems. To provide the context 
for this section, the basic equations used in the ana
lysis of linear control systems will be reviewed briefly. 
Their application to adaptive optics control systems 
will then be described. 

When the data are continuous with time, they may 
be analyzed in the time (or frequency) domain using 
Laplace transforms. The Laplace transform of a 
function of   is given by 

where the complex variable s = a  . The Laplace 
transform  is a continuous function of time, mak
ing it suitable for use with analog systems. The trans
fer function of a system may be defined as 

where  = C(s) is the system output produced 
by the input  =  The value of the Laplace 
transform is that it enables the response of systems 
composed of a number of interconnected subsystems 
to be determined readily. For example, if a number 
of subsystems with transfer functions G|(s), 
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These transforms enable the performance of sin
gle-loop control systems to be determined from a 
knowledge of the transfer functions of the compo
nents in the feedback  

Most adaptive optics systems employ a closed-
loop control system to minimize the wavefront 
error. An adaptive optics control loop may be 
represented as shown in figure 8.16(a). The quantity 
being controlled is the shape of the output wave-
front. This is usually a vector quantity, but for the 
present purpose we consider it to be a single scalar 
value. The basic function of the system is to control 
the shape of the output wavefront  in sympathy 
with the reference signal  in the presence of 
wavefront disturbances  In the adaptive optics 
context, the transfer function  represents the 
wavefront sensor, the output of which is compared 
with the reference signal  to produce the error 
signal  The error is multiplied by the transfer 
function G(s), which, includes the wavefront proces

sor, reconstructor, predictor, and wavefront correc
tor, to produce a signal B(s) that is added to the 
input wavefront. Ideally, B(s) should be exactly 
equal and opposite to the shape of the input wave-
front  so the output C(s) will exactly follow the 
value of the reference  If this is not the case, an 
error signal E(s) is generated, driving B(s) until it 
again neutralizes W{s). 

In adaptive optics systems, the objective is to 
maintain a flat wavefront at the output, so that the 
controlled values of C{s) and the reference R(s) are 
both zero. The control loop can then be considerably 
simplified, as shown in figure  All of the com
ponents in the feedback loop are now included in the 
transfer function  which is designed to make  
follow the input wavefront disturbances  as clo
sely as possible. Adaptive optics systems usually con
sist of many parallel feedback loops of this type. 

 each loop will be considered to operate inde
pendently. The effect of coupling between the loops is 
considered later. 

The performance of the system in figure  is 
completely specified by G(s), which contains the cas
caded transfer functions of all elements in the loop. 
The relation between the input and output is 

(8.55) 

Thus, to minimize the wavefront error, the transfer 
function  should be as large as possible. 

Feedback systems are classified broadly into three 
categories, depending on the dominant temporal 
response in the loop. If G is independent of time 
(that is, constant with temporal frequency), the 
servo is type 0, in which the error is 

 =  The error is minimized by 
using a large value of G, but there is always a finite 

Figure  
Conventional represen

tation of adaptive optics 
control system. 

Figure  Simplified 
adaptive optics control 

loop. 

  are connected in series, then the output 
 is given by the product of the input  and the 

individual transfer functions: 

For subsystems connected in parallel, the individual 
transfer functions are added. 

When the data are sampled in time, which is the 
usual case for digital processing, control system ana
lysis is facilitated by using the Z-transform, which is 
a generalized version of the  The vari
able z is defined as z =  where T is the sampling 
period, and the Z-transform of a time-sampled func
tion  is given by 
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error, proportional to the wavefront  even with 
a steady-state input. 

To eliminate the steady-state error, a single inte
gration may be included in the loop, producing a 

 servo. A constant error then produces a con
stant rate of change of the correction function  
With a constant input, B(s) will increase or decrease 
until it is equal to  at which point the error is 
reduced to zero and the integration stops, maintain
ing B(s) at the required value. If  changes, then it 
is obvious that the ability of B(s) to follow these 
changes depends on the time constant of the integra
tor, which therefore dominates the temporal response 
of the adaptive optics system. Closed-loop adaptive 
optics systems normally use  servos. 

If two integrations are included in the loop, the 
system is known as a type-2 servo. In this case, a con
stant error produces a constant acceleration in the cor
rection B{s). The error is then reduced to zero, even 
when the input wavefront changes at a constant rate. 
Type-2 servos are difficult to implement because of the 
stability problem. Each integration can produce a 
phase shift of up to 90°, and if the gain in the loop is 
greater than unity when the phase shift reaches 180° 
then oscillation will result. The components in the 
feedback path of adaptive optics systems contribute 
additional phase shifts that make the application of 
type-2 servos questionable for this application. 

Adaptive optics systems employ a number of par
allel feedback loops, typically two modal (whole-
aperture) paths for compensating x and  tilt, plus 
a large number of identical paths for zonal compen
sation of the wavefront. Strictly speaking, such sys
tems cannot be represented completely using 
transform theory because of interactions between 
the loops. However, if the multiple loops are made 
to operate independently, the design of control sys
tems for adaptive optics is considerably simplified. In 
this case, the design problem boils down to two 
loops: one for overall tilt control and one for control 
of the wavefront zones. 

For complete parametric control of factors vary
ing in real time, the state variable approach is appro
priate. The state of a system is defined as the minimal 
amount of information required to determine the 
future response from a given input. This information 
takes the form of a vector x having  variables, where 
n is the number of initial conditions defining the state 

at time   of considering only one indepen
dent variable, as in the case of transform theory, the 
state variable approach considers n variables. To 
characterize such a system, the transfer function is 
replaced by n simultaneous first-order differential 
equations, relating the input, output, and state vari
ables. The rate of change (denoted by the overdot) of 
the state vector x may be expressed in matrix form as 

x  Ax +  (8.56) 

where u is an  vector representing the 
inputs to the system, A is an n x n matrix and B is an 
n x  matrix. If x represents the initial value of the 
state vector, and u represents the controls applied to 
the system over a time period, then equation (8.56) 
defines the trajectory of x in the state space as a 
function of time. 

8.5.2 Closed-Loop Control Systems 

The specific characteristics of the feedback paths 
employed in adaptive optics systems will now be 
examined in more detail. The implications of using 
a wavefront sensor that produces output data at dis
crete time intervals is considered first. Periodic sam
pling of the detector output at time intervals   

generates multiple sidebands at frequencies   

where  = 2n/tr, as shown in figure 8.17. To avoid 
overlap, the spectrum of the signal to be controlled 
should not exceed  The sidebands produce 
unwanted high-frequency interference on the control 
signal, so it is necessary to remove them by spectral 
filtering. In analog systems, this is done with a low-
pass filter. The digital equivalent is a "hold" circuit, 
which reconstructs an approximation to the 
smoothed turbulence spectrum. Zero-order hold cir
cuits, which simply maintain each value of the signal 
until the next sample arrives, are commonly used for 
this purpose. The transfer function of a zero-order 
hold circuit with sampling interval T is 

(8.57) 

The operation of a  circuit is 
depicted in figure 8.18. For sT  1 (that is, when 
the sampling time T is much smaller than the period 
of the signal), a zero-order hold may be approxi-

Turbulence 
spectrum 

Figure  7 Frequency 
spectrum produced by sam
pling. 

First-order 
sideband Second-order 

sideband 



292 Adaptive Optics for Astronomical Telescopes 

Zero-order 
 

output 

Figure  Operation of a zero-order  circuit. 

mated as a simple RC low-pass filter with T - RC, 
producing a phase shift of  —   

The effects of sampling on the control signal are 
diminished when the sampling frequency is much 
higher than the control bandwidth. In this case, the 
control  can be evaluated as a continuous pro
cess rather than as a discretely sampled process, pro
viding that all phase shifts produced in filtering out 
the sampling frequency are properly accounted for. 
This approach greatly  the control system 
analysis and is used in the following discussion. 

The functions in a typical adaptive optics system 
are depicted in figure 8.19. The feedback loop 
includes both optical and electronic functions. 
Although there may be several components in the 

optical path, they can be grouped into two categories: 
those before the beam splitter and those after. 
Components before the beam splitter are common 
to both the control path and the imaging path. 
"Common path" errors in these components are 
detected by the wavefront sensor and are conse
quently corrected by the feedback loop. This cate
gory includes optical aberrations in the overall tilt 
corrector (fast-steering mirror) and the wavefront 
corrector (deformable mirror). However, optical 
aberrations occurring in or after the beam splitter, 
whether in the control loop or the imaging path, pro
duce differences between the sensor and image and 
therefore appear as errors in the optical output. In 
most cases, it is possible to calibrate the wavefront 

Figure  Components of an adaptive optics control loop. 
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sensor to eliminate its internal optical and alignment 
errors. Uncorrectable errors include not only those 
outside the loop, but also wavefront errors within the 
loop that are of higher spatial frequency than the 
actuator spacing cutoff. Such errors are not covered 
by the following analysis, but must be included in the 
overall error budget when the system performance is 
evaluated (see chapter 9). 

Most adaptive optics systems employ separate 
modal correction of  variations, 
using a two-axis fast-steering mirror. The drive sig
nals for this corrector are separated out in the recon
struction process, as indicated in figure 8.19. The 
wavefront correction loop actually consists of a num
ber of parallel channels (several hundred in large 
systems), one for each actuator in the wavefront cor
rector. The control functions in each loop may be 
modeled as shown in figure 8.20. The transfer func
tion of each component will now be described. 

Parameters of the wavefront sensor are defined as 
follows: 

Transducer gain, g\, volts per meter 

Exposure time,  seconds 

Readout time,  seconds 

Frame (sampling) period,  seconds 

Wavefront processing time,  seconds 

From the control system viewpoint, wavefront 
sensors consist of three main components: an optical 
"front end" that determines the transducer gain, a 
photon detector that determines the temporal 
response, and a digital processor that contributes a 
time delay. The transducer gain is specified as the 
voltage produced by a gradient of 1 meter per sub-
aperture. (The actual gradients only amount to 

micrometers per subaperture.) In the case of a 
 sensor, an output of V volts per 

radian is equivalent to a transducer gain of 
 =  volts per meter, where d (meters) is the 

subaperture size. The time line for a frame-transfer 
CCD is shown in figure 8.21. The whole CCD is 
exposed for the time  required to collect the neces
sary number of photons from the reference source. 
At the end of this period, the accumulated charges 
are transferred rapidly to a shielded readout array, 
from which they are scanned out in sequence, con
verted to digital form, and held in memory. 

The time  required to read each frame of CCD 
data determines the maximum sampling rate of the 
wavefront sensor. The frame (sampling) period  
must equal or exceed the greater of the read time 

 or the exposure time   if  >  the 
read time should be increased to match the exposure 
time, in order to minimize the read noise.) The 
exposure time  is a true integration for the whole 
array, but the readout time  is a pure time delay, 
because the data are unchanged during the readout 
process. 

The CCD data are then transferred to the wave-
front processor, which computes the gradients corre
sponding to the intensity data. In principle, some of 
the time delay could be saved if pipeline processing 
was used to compute the gradients as they are read 
out from the CCD array. However, in 
type sensors, the data required to compute the gra
dients in each subaperture are spread over at least 
two lines of the scan, so the  func
tion is not eliminated entirely. Using batch proces
sing with a wavefront computation time of  as 
shown in figure 8.21, the wavefront sensor model 
for each channel consists of a transducer gain of  

Figure 8.20 Transfer functions of an adaptive optics control loop. 
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CCD expose 

CCD read 

Sample and hold 

Compute gradients 

Figure 8.21 Time line for wavefront sensing using a frame-transfer CCD. 

an integration over time  a  of 
period  and a computation time delay of  The 
transfer function of the wavefront sensor is then 

(8.58) 

The reconstructor is usually a massively parallel 
processor that accepts two vectors from the wave-
front sensor representing the x- and  gradients. 
Its output is a vector representing the estimated 
wavefront, together with the overall x- and  
wavefront tilts. It is simply modeled with a gain of 

 for each wavefront correction channel and a gain 
  for each tilt correction channel. The delay times 

are  and  respectively. The reconstructor transfer 
functions are 

Wavefront correction: 

 =  (8.59) 

Tilt correction: 

 =  (8.60) 

Most adaptive optics systems employ zero-order 
prediction, implemented as a "leaky" integrator, with 
time constant  for wavefront correction and  for 
tilt correction. These time constants are generally the 
largest in the control loops and dominate their tem
poral response. The predictor gains  and  likewise 
dominate the gains in the control loops. The predic
tor transfer functions are 

(8.61) 

(8.62) 

The wavefront correctors themselves are at the 
end of the chain, converting the electrical signals 

provided by the control loop into a physical or 
optical pathlength change. Each actuator-driver 
combination is modeled as a subsystem with three 
basic parameters: the transducer gain  or  the 
temporal bandwidth  or  and the hysteresis 
phase angle fa. The relation between the 3-dB 
width (the frequency at which power is reduced to 
half, equivalent to a voltage reduction of  and 
the time constant is  =  

Hysteresis is present in many types of actuator, 
especially piezoelectric, and can have a significant 
effect on performance. It affects both the modulus 
and the phase of the response. Hysteresis may be 
modeled as a phase shift that is independent of 
frequency. A typical hysteresis loop is similar to 
the Lissajous figure produced by plotting two cyclic 
waveforms on orthogonal axes. When the two func
tions are in phase, the resulting plot is a straight line 
at an angle of 45°, corresponding to zero hysteresis. 
If a phase shift exists between the functions, the line 
splits into a loop in which the horizontal (or verti
cal) separation at the center is proportional to the 
sine of the phase angle, as shown in figure 8.22. 
When the two functions are at 90°, the figure 
becomes a circle. Using this approach, hysteresis 
may be approximately modeled as a phase delay 
equal to fa =  where a is the horizontal 
separation of the hysteresis loop and b is the peak-
to-peak amplitude. The transfer function of the 
wavefront corrector is modeled as 

Wavefront correction: 

Tilt correction: 

(8.63) 

(8.64) 

Wavefront correction: 

Tilt correction: 
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Figure 8.22 Estimation of 
phase shift due to hyster
esis. 

In addition to these parameters, nonlinearity of the 
wavefront corrector response can be corrected using 
a lookup table. 

To obtain the overall transfer function of the 
adaptive optics control loop, the individual functions 
are cascaded. The overall transfer functions of the 
wavefront correction and tilt correction loops are 
then 

(8.65) 

If  servos are used, the dominant integra
tions in the loops are those of the predictor, the time 
constants of which  and  are usually adaptively 
controlled to optimize performance. In the context of 
adaptive optics, this integration may be regarded as a 
zero-order predictor, in which the current value of 
the wavefront correction is the best estimate for the 
next correction. Methods of prediction have been 
described in section 8.4. 

In the design of adaptive optics systems, two 
main characteristics of the control loop are of inter
est: (1) the gain as a function of frequency; and (2) 
the stability of the system. In each case it is necessary 
to determine the frequency response, which is found 
by evaluating the transfer function  along  
axis. The reduction in wavefront error due to the 
adaptive optics control loop is then determined 
using equation (8.55). This is just one of the many 
factors determining the overall residual error in 
adaptive optics systems. Optimization of system per
formance is covered in chapter 9. The stability of 
closed-loop control systems is discussed in the follow
ing section. 

8.5.3 Stability Criteria 

The evaluation of control system stability is a vital 
part of the design process. Adaptive optics systems 
are multiple-input multiple-output  systems 
with coupling between the channels. Although such 
systems have been studied [Maciejowski 1989], reli

able stability criteria have yet to be developed. For 
adaptive optics applications that contain many iden
tical parallel feedback loops, it has been found effec
tive to base the design on a single feedback channel, 
which is replicated as necessary. The justification for 
this approach is that in a properly designed adaptive 
optics system, the zones or modes operate indepen
dently; in any case, the simpler approach works well 
in practice. It is necessary, however, to guard against 
unwanted coupling between channels, caused by mis
alignment between the sensor and corrector subaper-
tures. Significant alignment errors may invalidate the 
control system design. Subaperture alignment toler
ances and methods of verification are discussed in 
section 8.5.4. 

Several methods have been devised to verify the 
stability of single feedback loops, including the 
Nyquist  the Bode plot, and the log-magni
tude versus phase-angle plot, from which the Nichols 
chart is derived. All of these methods require knowl
edge of the frequency response of the control system, 
which is obtained from the transfer function  by 
evaluating it on the  axis. The output of a system 
with transfer function  for an input of unit 
amplitude and frequency  is 

(8.67) 

The frequency response of a real system may be mea
sured directly and compared with the values pre
dicted from the design in equation (8.67), allowing 
the performance and stability of the control system 
to be verified experimentally. 

The Nyquist criterion is evaluated from the open-
loop response  of a system by plotting the real 
part versus the imaginary part of  for values of 
the parameter  in the range 0 <  < oo. The system 
is closed-loop stable if its Nyquist plot does not pass 
through or encircle the   JO point in the G plane. 
The Nyquist criterion is illustrated in figure 8.23. The 
semicircle represents a gain of 1 at phase angles 
between +90° and -90°. The response curve shown 
crosses the negative real axis (where the phase shift is 

 at a value of a, and crosses the unity-gain envel
ope at an angle of  The system represented by this 

(8.66) 



296 Adaptive Optics for Astronomical Telescopes 

 
G  plane +90' 

 

180 

 

(a) Stable system (b) Unstable system 

Figure 8.23 Nyquist plots for stable and unstable feedback systems. The criterion for 
stability is that the plot of  in the complex plane must not enclose the point  1, 
0). The stable system in (a) has a gain margin of \/a and a phase margin of  The 
system in (b) is unstable because the gain a is greater than unity at the frequency at 
which the phase shift is 180°, resulting in positive feedback. 

compensation needed to modify the gain and phase 
margins. 

The Bode plot is a graphical method of designing 
closed-loop systems without resorting to extensive 
calculations. There is a direct relation between the 
plotted values of magnitude and phase and the com
ponents in the feedback loop. It consists of compa
nion plots of   and  Because of 
the logarithmic scale, the magnitude values of each 
component are added, making the contribution of 
each element apparent. A Bode plot of the function 
1/(1  is shown in figure 8.24. There is a "cor
ner frequency" at  —  equivalent to the pole in 
the corresponding expression for G(s) in equation 
(8.62). Above this frequency, the gain falls at an 
asymptotic rate of  dB per decade; that is, as  
corresponding to a single "lag" or RC time constant. 
At the corner frequency, the gain has dropped exactly 

 and the phase shift is —45°. 
The Bode plot for the inverse function 

(1  corresponding to a zero in  is simi
lar in form but is inverted about the zero-gain and 
zero-phase angle axes; that is, the gain increases at 

 per decade and the phase shift is +45°. The 
effect of additional terms on the frequency response 
is therefore easy to plot on the chart, using the 
corner frequencies and adding or subtracting slopes 
of  per decade and phase shifts as required. 
The plot is also generated easily by exact calculation 
on a digital computer. 

The closed-loop stability of a system is readily 
assessed from a Bode plot of the open-loop transfer 
function. The Bode plot of a stable feedback system 
is shown in figure 8.25, and the stability criterion is 
depicted in figure 8.26. Two critical points are deter
mined: (1) the frequency  at which the gain plot 
passes through OdB (unity gain); and (2) the fre-

curve is therefore stable because it is well inside the 
— 1,  point. The gain margin is defined as the addi
tional gain, at a frequency  where the curve crosses 
the negative real axis, required to make the gain 
unity; that is, \ja. The phase margin is the additional 
(negative) phase shift required to make the phase 
angle 180° at the frequency where the gain is unity; 
that is  These parameters represent the stability 
margin built into the system; typical values are a 
gain margin of 6 dB  = 0.5) and a phase margin 
of 30°. 

The criterion for stability can be expressed in 
other terms that are more directly related to measur
able quantities. For example, the transfer function of 
any first-order system can be factored into the form 

(8.68) 

The zeros of this function are at s =   
and so on, and the poles are s =  l/T\, —  and 
so on. Higher order systems have additional complex 
poles, but the expression is similar in form. The log 
magnitude of the frequency response is 

(8.69) 

and the phase angle is 

(8.70) 

These functions can be used to determine the stability 
of a feedback control system and also to indicate the 
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Figure 8.24 Bode plots (log magnitude and phase) of the function 1/(1  
At the corner frequency   1/7*, the magnitude is  and phase angle is 
-45°. For this function, with a single time constant, the gain falls off asympto
tically at 20 dB per decade and the phase approaches —90°. 

quency  at which the phase-angle plot passes 
through -180°. If  <  then the phase lag must 
be less than 180° at the point of unity gain, so the 
system is stable. However, if  >  the gain is 
greater than unity at the point where the phase lag 
is 180°, so the system is unstable. The gain margin is 
the absolute value of the gain at  and the phase 
margin is 180° less the phase angle at  

A different type of chart is obtained when the log 
magnitude of  is plotted directly against the 
phase angle  In this case, there is no separate 
frequency axis; each point on the curve describes the 
magnitude and phase of  at a specific fre
quency. A log-magnitude versus phase-angle plot of 
this type is shown in figure 8.27. The chart is centered 
on the point OdB gain and —180° phase shift. A 

Figure 8.25 Typical Bode plot of a stable feedback system. 
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Phase margin 

(a) Stable system (b) Unstable system 

Figure 8.26 Stability criterion for the Bode plot. 

typical system trajectory is shown, with the gain fall
ing and the phase angle increasing as the frequency 
goes from zero to infinity. For stability, the plot must 
pass to the right of the  -180° point, as indi
cated in the diagram. The gain and phase margins are 
the intercepts on the two axes. If the system trajec
tory passes through or to the left of the  —180° 
point, then the system will be unstable in closed-loop 
operation. 

The Nichols chart is a modification of the log-
magnitude phase-angle plot, having an additional 
set of axes called the closed-loop axes. For a point 
x in the log-magnitude phase-angle plot, the Nichols 
chart provides a set  nonrectangular coordinates 

giving the values of  and  Thus, 

if an open-loop frequency response is plotted using 
the rectangular coordinates (the same curve as that 
described in the previous paragraph), the new coor
dinates enable the values of the closed-loop response 

          

closed-loop axes. 
In the adaptive optics control model, the transfer 

function  is considered to be in the feedback 
path and not in the forward path, as is assumed in 
the Nichols chart (see figures 8.16(a) and (b)). The 
"closed-loop response" on the Nichols chart is actu
ally the ratio of the correction function  to the 
wavefront disturbance  in the adaptive optics 
system. Ideally, this ratio should be near unity, cor
responding to a ratio  of near zero. 
These considerations have no effect on the criterion 
for closed-loop stability, which is based on the rec
tangular coordinates on the chart. 

8.5.4  Alignment 

In zonal adaptive optics systems, it is essential for the 
subapertures in the sensor and corrector to be aligned 
accurately. The wavefront sensor and deformable 
mirror (or other compensation device) are usually 
separated by an optical path that may be several 
meters in length. Optical misalignment between cor
responding subapertures of the sensor and corrector 
is caused by physical displacement of optical or struc-

Figure 8.27 Plot of log magnitude versus phase angle 
in the   plane for a system that is stable when the 
loop is closed. If the  function passed to the left 
of the (OdB, -180°) point, the system would be 
unstable closed-loop. 

 components caused by temperature or attitude 
variations. Misalignment inevitably produces cross-
coupling between the control channels, reducing per
formance and ultimately causing instability in the 
feedback loop. 

Two main steps can be taken to ensure correct 
alignment: (1) the optomechanical design must take 
into account the full operating environment of the 
adaptive optics system; and (2) provision should be 
made to check the optical alignment before, or even 
during, operation, preferably with an automated rou
tine that intrudes as little as possible on normal 
observations. 

In the previous section, it was pointed out that 
the conventional tests for the stability of feedback 
systems, based on the Nyquist plot, were formulated 
for single feedback loops. These stability tests are 
valid for the  control systems employed in 
adaptive optics, only when the optical path is per
fectly aligned. It is therefore of considerable interest 
to determine the amount of misalignment that can 
be tolerated before significant performance degrada
tion or instability results. For design purposes, an 
approximate value is sufficient; for example, it is 
usually sufficient to know whether the allowable 
misregistration is 1%, 10%, or 50% of the subaper
ture size. 

The answer can be obtained by modeling a single 
actuator channel in one dimension, as depicted in 
figure 8.28. Two slope-sensing subapertures of 
width d are located symmetrically on each side of 
the actuator center, using the arrangement of net
work  The actuator is assumed to have a triangular 
profile with base  height a. The slope signals   

and  are proportional to the difference in actuator 
deflection across each subaperture. When the system 
is in perfect alignment, the slope signals are 
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(a) Perfect alignment 

(b) Misregistration x 

Figure 8.28 Sensor and 
actuator alignment model. 

Actuator 
response 

(8.71) 

where  is a constant of proportionality. The 
back path corresponding to this model is shown in 
figure 8.29. The sensor outputs are combined and 
inverted in polarity to provide negative feedback, so 
that any deflection of the actuator is countered by a 
restoring signal. The actuator deflection is then 

A = -6(5, -  (8.72) 

where b is the actuator sensitivity. 
If the actuator is now misaligned laterally by dis

tance x, the slope signals become 

(8.73) 

which falls to zero when x =  that is, when the 
misalignment is two-thirds of the subaperture spa
cing. At larger values of  the feedback becomes 
positive and the system will be unstable. Although 
the control loop is modeled crudely in this example, 

Figure 8.29 Feedback path for alignment model. 

the result is similar to that reported by Merritt et  
[1992], who found that a realistic computer model of 
an adaptive optics control loop became unstable 
when the misregistration was 0.62 subapertures. 

Of course, one would not want an operational 
adaptive optics system to get anywhere near the 
point of instability; the performance would be 
degraded long before that state was reached. The 
main effect of small misalignments is to produce 
cross-coupling between correction channels, which 
reduces the feedback loop gain and degrades the tem
poral response. Equation (8.74) shows that a misre
gistration of 1/10 subaperture reduces the gain of the 
feedback loop to about 85% of its maximum value, 
while a misregistration of 1/5 subaperture reduces the 
gain to 70%. An alignment tolerance of 1/10 suba
perture appears to be a reasonable and conservative 
design goal for practical systems. 

When a  sensor is used, the sub
aperture alignment referred to in the preceding para
graph relates the lenslet array of the sensor to the 
actuator locations on the deformable mirror. 
Lenslet sizes typically range between 50 and 

 so the required alignment precision can be 
as small as 5  referred to the wavefront sensor. In 
addition, the detector array in the sensor must be 
aligned accurately to the lenslets. Because of the 
small size of the pixels used in CCD cameras, typi
cally about 25 x 25  the alignment requirement in 
this case is on the order of 1  

The next question to be addressed is how to verify 
that the subapertures are properly aligned.  et 
al. [1992] investigated several tests that could be 
made on the feedback loop transfer function to 
warn of misalignment and impending instability. 
They found that in the case of  control sys
tems, tests based on the transfer function were not 
reliable indicators of system misalignment and that 
instability could suddenly appear without warning. 
These results indicate that the best approach is to 
measure the subaperture alignment directly, which 
can be done in a straightforward way, rather than 

The restoring signal is then 

(8.74) 
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to rely on secondary indicators such as the loop 
transfer function. 

The question of alignment is closely related to the 
actuator calibration, discussed in section 8.3.5. In 
principle, the relative alignment of sensor and correc
tor can be accommodated by a calibration procedure 
in which each actuator is "poked," in turn, and the 
corresponding wavefront sensor response is recorded. 
This procedure determines the elements of the matrix 
A, as shown in section 8.2.2. The control matrix 
required for the adaptive optics control loop is the 
inverse of A, which must be computed and stored in 
memory for use in the reconstruction process. If this 
process was implemented each time the system was 
calibrated, then no mechanical adjustment would be 
necessary, providing that the alignment errors were 
within certain gross limits. Small alignment errors 
would be accommodated simply by changing all the 
elements in the reconstruction matrix. This approach 
would be suitable for a system that could be relied 
upon to maintain its alignment during normal obser
vation periods, the matrix being updated just before 
each session. 

In cases where the subaperture alignment is 
implemented mechanically, it is only necessary to 
take sufficient data to establish the overall align
ment of the sensor and corrector. Assuming that 
the misalignment consists only of rigid-body 
motions, there are four degrees of freedom: lateral 
x and y shifts, rotation angle 6, and radial shift or 
magnification m. These elements can be measured 
by "poking" only two actuators, although more 
accuracy can be obtained by measuring several 
pairs and averaging the results. The alignment 
process is illustrated in figure 8.30. The relative 
displacement of the corrector and sensor are 
measured at two diametrically opposite locations a 
and b on the corrector, at radius r, corresponding to 
two actuator positions. If these displacements are 
xa, ya, xb, and yb, then the four elements of 
misalignment are 

(8.75) 

The displacements xa, ya, and so on, are obtained 
from the outputs   and so on, of the slope-
sensor subapertures adjoining the poked actuator, as 
shown in figure 8.30: 

Network 1 

(8.76) 

Measurements in 
Optical Aperture 

Misalignment 
Components 

Figure 8.30 Optical alignment of wavefront sensor 
and corrector using measurements from poked actua
tors. 

(8.77) 

To eliminate any errors due to the wavefront sensor 
calibration (factor  the process can be made itera
tive, driving the alignment errors to zero by using 
successively smaller adjustment steps. 

8.5.5 Modal Control Systems 

The control system may be implemented quite inde
pendently of the type of wavefront sensor and cor
rector being used in the adaptive optics system. For 
practical reasons, most wavefront sensors and correc
tors are zonal devices consisting of two-dimensional 
arrays of subapertures, usually with uniform spacing. 
The wavefront is therefore sampled and corrected at 
a fixed spatial frequency. However, this does not con
strain the data processing that takes place between 
the sensor and corrector, which may be organized in 
any convenient way. Modal processing has some 
compatibility with the wavefront structure produced 
by atmospheric turbulence, making a near-optimum 
control system relatively easy to implement. 

The phase variations produced by atmospheric 
turbulence contain spatial frequencies distributed 
over a wide interval from the inner to the outer 
scales, a range of over 1000 to 1. The outer scale of 
turbulence is comparable to the apertures of large 
astronomical telescopes. Atmospheric turbulence 
therefore produces spatial wavefront modes varying 
from less than 1 cycle across the aperture (piston and 
tilt) to about 1000 cycles. 
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In the control system connecting the sensor to 
the corrector, this wavefront may be represented 
as uniformly spaced samples (zonal processing), or 
as a series of modes of ascending order, such as the 

 polynomials, or the related 
Loeve modes. A randomly distorted wavefront 
may be equally well represented in either zonal or 
modal form. The difference between zonal and 
modal representations appears when the dynamics 
of the wavefront are taken into account. The two-
dimensional spatial frequency power spectrum due 
to Kolmogorov turbulence has a   

dependency. When frozen turbulence is transported 
at a fixed velocity by wind, the temporal power 
spectrum has the same shape. The lower order (spa
tial) components of the wavefront are therefore 
associated with lower temporal frequencies. 
Random noise is always present in the wavefront 
sensor output, especially with faint astronomical 
sources. In a modal control system, in which the 
spatial modes are separated, it is therefore possible 
to optimize the bandwidth of each mode indepen
dently. 

The optimization procedure for each mode is basi
cally the same as that for a zonal system, in which the 
sum of the mean-square errors due to photon noise 
and to temporal bandwidth (servo lag) is minimized 
by adjustment of the servo bandwidth: 

where 

and 

(8.78) 

(8.79) 

i = mode number 

Gaffard and Ledanois [1991] and Gendron [1993] 
have analyzed optimal modal control systems based 
on Zernike or  modes in which the 
temporal bandwidth of each mode is adjusted 

according to the signal-to-noise ratio of the wave-
front sensor, to minimize the mean-square error. 
Implicit in this approach is the need to stop driving 
a mode, by reducing the bandwidth to zero, when it 
no longer makes a useful contribution to the wave-
front correction. A block diagram of a multiple-
bandwidth modal control system is shown in figure 

 A control system of this type has been employed 
successfully in the "Come-On Plus" adaptive optics 
system developed by a team headed by Office 
National d'Etudes et de Recherches Aerospatiales 
(ONERA), France and the European Southern 
Observatory (ESO). 

The use of multiple control bandwidths in 
modal control systems for adaptive optics has 
been investigated by Ellerbroek et  [1994]. They 
modeled a system in which the basis of the modes 
was optimized, as well as the bandwidth of each 
mode. The performance of a  control 
system, in which the bandwidth of each mode 
was optimized for maximum signal-to-noise ratio, 
was compared with that of a control system 
employing just two fixed bandwidths, one of 
which was zero. The latter can be regarded as a 
"reduced range" single-bandwidth system in which 
higher order modes are successively dropped as the 
sensor noise increases, as shown in figure 8.32. The 
performance of a conventional single-bandwidth 
system was used as a reference. 

As expected, the multiple-bandwidth modal sys
tem had appreciably better performance than a con
ventional single-bandwidth system, especially at low 
signal-to-noise ratios. But, it was found, somewhat 
surprisingly, that the performance of the 
width reduced-range modal control system was very 
close to that of the full multiple-bandwidth system. 
The control system shown in figure 8.32 using a single 
optimized bandwidth  is far simpler to implement 
than the system of figure  which employs multiple 
bandwidths, each of which must be optimized in real 
time. 

Figure 8.31 Principle of 
multiple-bandwidth modal 
compensation. Orthogonal 
modes are extracted by the 
matrices Ml , M2 etc. The 
bandwidth of each mode is 
optimized individually in 
real time by adjusting/1, 

 etc., to minimize the 
error in that mode. 
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Figure 8.32 Reduced-
range, single-bandwidth 

modal compensation. All 
modes use the same opti

mized bandwidth. Higher-
order correction modes are 

simply set to zero if they are 
unable to reduce the resi

dual error because of poor 
signal-to-noise ratio. 

8.5.6 Open-Loop Operation 

It is not always possible to implement closed-loop 
control of adaptive optics systems. The main excep
tion occurs in the case of a pulsed reference source 
(laser beacon), when the pulse rate of the laser is 
comparable to, or longer than, the change time of 
the atmospheric turbulence. The bandwidth of a 
closed-loop control system would then be much 
lower than that of the turbulence, and compensation 
would be ineffective. The solution is to use an open-
loop or "feed-forward" control system, also known 
as a "go-to" servo system, in which each wavefront 
measurement is applied directly to the corrector with 
the minimum delay. When the measurement interval 
is much longer than the atmospheric change time, the 
corrections are uncorrelated; each measurement and 
correction cycle is a separate operation and no infor
mation can be obtained from past history. 

Open-loop operation has both advantages and 
disadvantages compared with closed-loop operation. 
Its main advantage is that the latency or time delay 
between measurement and correction is usually less 
than that of a closed-loop system because there are 
no constraints due to feedback loop instability. The 
main disadvantage of open-loop operation is that it is 
necessary to measure the uncorrected wavefront over 
its full dynamic range, and the combined accuracy of 
the sensor and corrector (including any latency) must 
equal the specified error requirement over this range. 
One may recall that in closed-loop operation, the 
wavefront sensor is required only to measure residual 
wavefront errors (that is, changes that occur over 
short measurement intervals) over a small dynamic 
range, and that, in this case, the accuracy of compen
sation is determined mainly by the stability of the 
"null" of the wavefront sensor. 

To achieve similar performance, open-loop opera
tion places more stringent requirements on both the 
wavefront sensor and the corrector than does closed-
loop operation. 

The main requirements for open-loop operation 
are: 

 The wavefront sensor must be capable of mea
suring the full wavefront excursion to be cor
rected by the adaptive optics system. 

2. The wavefront correction produced by the 
deformable mirror or other compensator 
must follow the input wavefront accurately. 
This can be achieved by calibrating the 
response; for example, by using a lookup table. 

The wavefront correction range required by an 
open-loop adaptive optics system may be calculated 
as follows. Overall tilt is usually measured and cor
rected separately, so it must be subtracted from the 
local tilts measured in each subaperture by the wave-
front sensor. The tilt error due to turbulence is given 
in section 3.4.6, equation (3.59). The  angular 
error in one axis over a subaperture of diameter  
when the overall tilt is corrected over an aperture 
D, is 

(8.80) 

To determine the peak value of the tilt, a value of 
2.5a may be used, corresponding to a probability of 
.995 that it will not be exceeded. For the typical con
ditions of  = 0.2m,   0.18m at X   
(sodium beacon), and D = 4m, the peak wavefront 
slope over each subaperture is  = ±0.93 
waves per subaperture. 

Reference to Section 5.3 and figure  shows 
that the linear response of a  sensor 
using a bicell in each axis is limited to about ±0.5 
waves per subaperture (at the sensor wavelength). 
When using reference sources at visible wavelengths, 
the simple form of a Shack-Hartmann sensor there
fore has insufficient dynamic range for use with open-
loop adaptive optics systems. To obtain the necessary 
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linear range, a detector array with  pixels per 
subaperture would be required, as described in sec
tion 5.3.1. When using a shearing interferometer (sec
tion 5.4), a large linear measurement range can be 
obtained by reducing the shear distance. 

8.6 Optimal Wavefront Correction 

8.6.1 Introduction 

Up to this point, each component of an adaptive 
optics system has been considered as a separate 
entity, with its parameters being optimized individu
ally without regard to the operation of the system as 
a whole. To maximize its performance over the 
expected range of operating conditions, an adaptive 
optics system must be considered in its entirety, from 
the distant reference source to the focal plane instru
mentation that collects the scientific data. The analy
tical models derived for each major function not  
must represent their individual performance accu
rately, but also must be combined so that all interac
tions are accounted for. Only by treating wavefront 
estimation and correction as a unified process can the 
performance of the whole system be maximized. 

A major step in this direction was made by 
Wallner [1982, 1983], who, by using realistic models 
of the wavefront sensor and wavefront corrector, 
developed an approach to optimal wavefront correc
tion that could be applied to any type of adaptive 
optics system. This analysis enables a control matrix 
to be defined for any given set of components, in 
order to optimize a given criterion, such as mean-
square wavefront error, in the presence of an input 
wavefront specified by any structure function. The 
formalism used by Wallner has been extended by 
Welsh and Gardner [1989a, 1991] to include addi
tional parameters, such as time delays, anisoplanat-

 and multiple turbulent layers. 
In addition to its value for optimizing system 

design, this analysis fulfills another very important 
function: it predicts the "best possible" performance 
that can be achieved with adaptive optics for any 
given set of conditions. The basic performance curves 
are easily scaled for any aperture size, turbulence 
strength, and photon flux, providing a standard 
against which the performance of practical systems 
may be judged. The derivation of the optimal control 
law for adaptive optics is outlined in the following 
section. 

8.6.2 System Model 

The adaptive optics system model being considered 
consists of the basic elements shown in figure 8.33. 
The optical aperture is described by weighting func
tion  proportional to the intensity of the light 
entering the system, where x is a two-dimensional 

where the integration is over the entire aperture 
plane. The wavefront sensor and the wavefront cor
rector are located at conjugate images of the aper
ture, so that positions in these planes are also 
described by the vector x. 

The phase or optical path difference of the incom
ing wavefront is specified as  /), a random pro
cess of position x and time t. The use of the term 
"phase" in this context is purely for convenience, 
because the wavefront is actually measured and cor
rected in terms of its optical path differences (meters), 
independent of wavelength, and not in terms of phase 
angle. The absolute optical phase is of no interest 
when imaging with a single aperture, so the phase 

 t) is defined with the aperture average removed: 

position vector in the aperture plane. It is convenient 
to normalize this weighting function so that 

(8.81) 

The wavefront sensor measures the weighted aver
age of the wavefront slope  () over an array of 
subapertures, adding random noise in the process. 
The output of the nth sensor at time  is 

(8.82) 

(8.83) 

where 

  subaperture weighting function for the 
nth slope sensor 

 I) — average slope of the wavefront in the 
measurement direction of the nth slope 
sensor 

 = slope measurement error for the nth 
sensor at time t, independent of 
tf (x, 

The sensor output signal can be expressed in terms of 
the wavefront phase by integrating the first term of 
equation (8.83) by parts: 

(8.84) 

where  is the derivative of  in the mea
surement direction of the nth sensor. 

The control law generates a command for each 
actuator of the wavefront corrector, based on all of 
the sensor outputs. Using a linear control law, the 
command to the  actuator is 

(8.85) 

where  is the weighting of the nth sensor in they'th 
actuator command. 
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Figure 8.33 Model for optimal wavefront correction. 

The total wavefront correction, assuming linear 
superposition of the actuator responses (and no 
time delay in the corrector itself), is then 

 is the matrix involving the product of two actua
tor response functions: 

(8.86) 

where  is the response of the  actuator to a 
unit command. 

where T is the time delay between wavefront sensing 
and correction. If  t) and  are random pro
cesses that are stationary in time over the observation 
periods, then the residual error can be written as a 
function of the time delay only: 

(8.88) 

(8.89) 

where  is the matrix involving the product of two 
sensor functions: 

(8.91) 

To optimize system performance, it is necessary to 
choose a set of weights in the control matrix  that 
will minimize the mean-square error. This is achieved 
by differentiating equation (8.89) with respect to   

and equating the result to zero. The resulting optimal 
control matrix  is given by Wallner [1983] as 

    
Because of the need to invert the R and S matrices, 
the question of their singularity arises. Wallner states 
that the R matrix will not be singular unless there are 
redundant actuators that allow the same correction 
to be made with different commands. This problem 
may be solved either by eliminating the redundant 
functions, or by using the generalized inverse of the 
matrix. The S matrix will not be singular, even with 
redundant sensors, if the noise is independent on 
each measurement, which is always the case in real 
systems. 

The average mean-square residual error of the 
optimized system is found by substituting equation 
(8.94) in equation (8.89): 

8.6.3 Evaluation of Residual Error 

Using equations (8.85) and (8.86), the residual wave-
front error after correction may be expressed as 

(8.87) 

The average mean-square error is then 

(8.90) (8.95) 

 is the matrix involving products of the sensor 
and actuator response functions: 

The average mean-square uncorrected error is 

(8.92) 

(8.93) 
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8.6.4 Optical Transfer Function 

The mean-square error enables the Strehl ratio of the 
optimized adaptive optics system to be determined, 
providing that the phase error is less than about 2 rad 

 (see section 4.3.3). As discussed in chapter 4, to 
obtain a more complete understanding of the effect 
of wavefront correction on the structure of images, it 
is necessary to obtain the optical transfer function 
(OTF) of the system. Welsh and Gardner [1989a] 
have derived an expression for the OTF of a compen
sated system in terms of the parameters defined 
above. Starting with the complex-amplitude field 

 in the optical aperture, produced by a far-field 
point source, the OTF can be  as the convolu
tion of  with its complex conjugate  

(8.98) 

(8.99) 

8.6.5 Wavefront Structure Function 

The expressions in equations (8.95) and (8.98) enable 
the optimal performance of an arbitrary system with 
arbitrary wavefront statistics to be determined. In the 
case of atmospheric turbulence, the statistics of the 
input wavefront can be represented by a wavefront 
structure function: 

(8.100) 

8.6.6 Measurement Noise 

The limiting performance of most astronomical 
adaptive optics systems is determined by the shot 
noise resulting from relatively small photon counts 
in the wavefront sensor. The shot noise produces 
random, zero-mean errors in the wavefront slope 
measurements, modeled as the function  in the 

(8.105) 

where x and p are two-dimensional position vectors 
in the aperture plane. If the optical aperture is in the 
near field of the turbulence, which is usually the case 
for astronomical adaptive optics, then amplitude var
iations due to interference may be ignored and the 
absolute magnitude of the field  may be set to 
unity. The ensemble average OTF (S(p)) may then be 
written in terms of the wavefront phase error 

 /, T), assuming it to be a Gaussian, zero-mean, 
random process: 

(8.96) 

(8.97) 

Substituting for the wavefront phase error e(x, /, r) 
equation (8.97) can be expanded to give the OTF of 
the system after correction 

where 

The phase correlations required to compute S, A, and 
(el) can be found using this equation. Following 
Wallner [1983], the expressions are 

(8.101) 

(8.102) 

(8.103) 

where 

(8.104) 

The corresponding expression for the OTF in 
terms of the wavefront structure function, as derived 
by Welsh and Gardner [1989a], is 
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above equations, for subaperture  These noise 
errors are spatially and temporally uncorrelated. 
Orthogonal wavefront measurements made simulta
neously in the same subaperture (as in a Hartmann 
sensor) also have uncorrelated noise errors [Wallner 
1983]. For a white-noise spectrum, the noise correla
tion function may be written 

(8.106) 

where 

 = mean-square slope error in sensor 
subaperture n 

 =  
6 - angle between the slope measurement 

directions of the nth and n'th sensors 
 = 1  the nth and  subapertures 

coincide, 0 otherwise 
 = Dirac delta function 

The value of  depends on the photon flux 
received from the reference source and on the config
uration of the wavefront sensor. 

8.6.7 Optimal Performance Calculation 

The theory outlined above establishes the optimal 
performance of adaptive optics systems. The results 
are presented conveniently in the form of charts plot
ting the normalized residual error against the nor
malized density of photons received from the 
reference source. The normalization accounts for fac
tors such as subaperture size d, turbulence parameter 

 and wavefront sensor efficiency  The results are 
then scaled easily to adaptive optics systems of any 
size. These ideal performance curves provide a stan
dard against which the performance of real systems 
can be judged. 

Residual wavefront error for an optimized system 
is calculated using equation (8.95). The elements 
required to make this computation will now be sum
marized. The structure function of turbulence-
degraded wavefronts following  law is 
defined as 

(8.107) 

where  is the coherence length of the turbulence. 
The mean-square uncorrected wavefront error pro
duced by this turbulence over a square aperture of 
dimensions A x A (section 3.3) is 

rad2 (8.108) 

The mean-square angular excursion of the wavefront 
in one axis due to atmospheric turbulence over a 
square aperture of d x d meters at a wavelength of 
X meters, from equation (3.59), is 

To convert this angle into radians squared of phase 
per meter squared at wavelength X, the expression is 
multiplied by  to obtain 

 =         

(8.109) 

With  wavefront sensors, the mean-square slope 
error due to photon noise is inversely proportional 
to the number of detected photons used in the mea
surement. For the ideal case of a point source refer
ence and the subaperture size matched to the 
atmospheric coherence length  the photon noise 
error may be expressed in the form 

rad" of angle 

where 
 = a constant depending on the wavefront 

sensor characteristics, rad2 m~2 

 = irradiance from the reference source, 
photoelectrons per meter squared per 
second 

 = exposure time, 
d  subaperture dimension, m 

The response functions of most zonal deformable 
mirrors using continuous faceplates are approxi
mately Gaussian in form, enabling a simple model 
to be used: 

(8.111) 

These equations, together with equation (8.95), 
enable the residual mean-square error to be plotted 
against the photoelectron density,  for systems 
using an optimal control law to connect the wave-
front sensor and corrector. Wallner [1982, 1983] 
found that when optimal control is used, the geome
trical arrangement of the sensors and actuators has a 
negligible effect on the system performance, reinfor
cing the fact that this is truly a fundamental 
approach to the design of adaptive optics systems. 

8.6.8 Normalized Adaptive Optics 
Performance 

Normalized performance curves for adaptive optics 
systems with actuator arrays of 2 x 2 through  
are shown in figure 8.34. This chart plots the normal
ized mean-square error  in radians 
squared of wavefront phase, against the normalized 
photoelectron density  where A is 

(8.110) 

where 
x, y = coordinates in the plane of the mirror, 

 = a constant defining  actuator 
sensitivity, 

  = specification of the actuator locations 
/•„, = radius at which the response is \/e 
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Normalized photoelectron density, events per square meter 

Figure 8.34 Normalized performance of optimized adaptive optics systems 
 1983]. At low photon densities there is  information for 

the optimal control law to make an estimate of the wavefront, so the system 
error approaches that of the wavefront itself. At high photon densities, the 
fitting error is dominant and the performance is determined mainly by the 
number of actuators, N x N. Practical adaptive optics systems normally 
operate between these two extremes. 

the side of the full aperture (square in this case) and 
 is the turbulence coherence length. The photoelec

tron density is directly related to the brightness of the 
reference source. 

Figure 8.34 shows three main regimes of opera
tion: 

 At low photon densities, the errors due to mea
surement noise become comparable to the 
phase excursions of the uncorrected wavefront. 
The optimal control law then reduces its esti
mate to near zero, resulting in no correction, so 
the wavefront error of the system approaches 
that of the uncorrected wavefront. Under these 
conditions, the number of actuators becomes 
irrelevant because they are not utilized. 

2. At very high photon densities, the slope mea
surement error becomes negligible. In the sys
tem modeled, the wavefront fitting error 
becomes dominant, with the result that the per
formance is limited mainly by the number of 
actuators. 

3. Adaptive optics systems usually operate in the 
intermediate regime, where the overall perfor
mance is determined by many factors, includ
ing measurement noise, fitting errors, time 
delays, and anisoplanatism. In this operating 
environment, the balancing of errors to achieve 
optimal performance requires a detailed 
knowledge of all facets of adaptive optics sys
tems, involving both fundamental limitations 
and practical issues, as well as the all-impor
tant turbulence environment. 

In the design of real adaptive optics systems, 
many compromises have to be made and the actual 
performance usually falls short of the ideal. 
Multidimensional tradeoffs must be made between 
system parameters in order to maximize performance 
over the operating envelope. A systematic approach 
to the design and optimization of adaptive optics 
systems is described in chapter 9. 



Adaptive Optics Performance 
Analysis and Optimization 

9.1 Introduction 

9.1.1 Objectives 

The literature on adaptive optics contains many dif
ferent approaches to the design of wavefront com
pensation systems. This situation is typical of a 
rapidly evolving technology. Each new idea is tested 
and evaluated over a period of time; eventually, the 
technology matures and crystallizes into well-defined 
components and system configurations. Adaptive 
optics is far from reaching that state of maturity. 
New ideas on wavefront sensing, wavefront correc
tion, and control systems are being formulated and 
tested. However, all systems are constrained by the 
same basic principles, and a systematic design proce
dure may be followed, whatever the state of the tech
nology. 

The objective of this chapter is to provide the 
tools needed to analyze the performance of adaptive 
optics systems using both natural stars and laser bea
cons, and to optimize their major parameters. 
Because there are many different philosophies and 
applications of astronomical adaptive optics, it is 
not intended to derive specific designs, but rather to 
illustrate a general procedure that should be widely 
applicable. 

9.1.2 The Design Process 

The process of design and optimization involves a 
large number of parameters, covering both the adap

tive optics system itself and the external environmen
tal conditions. The quantities  and  that 
describe the spatial and temporal characteristics of 
the turbulence, optimistically referred to as "con
stants," usually change during extended observing 
periods. To maintain optimal performance, an adap
tive optics system not only must compensate random 
wavefront errors, but also must be capable of adjust
ing its parameters to accommodate varying condi
tions. For any adaptive optics system to deliver its 
peak performance, it must be kept well tuned to the 
current atmospheric conditions. 

The design of an adaptive optics system should 
start with a set of technical requirements that specify 
the scientific purpose and overall performance objec
tives of the complete compensated telescope. These 
specifications should include at least the following 
items: 

• the seeing qualities of the observing site, 
including statistical data over extended 
time periods; 

• the characteristics of the telescope, including 
any constraints on locating the adaptive 
optics; 

• the scientific goals of the installation, includ
ing the type of object and field of view to be 
observed, and the information to be gath
ered; 

• the scientific devices used for capturing data 
(imaging camera, spectrograph, etc.); 

• the spectral band(s) of the observations; 
• the sky coverage required; 
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• the availability and  of refer
ence sources; 

• the overall performance required in terms of 
angular resolution, image contrast, or Strehl 
ratio. 

The  objectives are usually tempered by a 
cost budget that must not be exceeded. 

Ideally, the basic system architecture and major 
components should be selected purely on technical 
merit or on a combination of performance and 
cost. In the real world, the situation is usually far 
more complex. Specific hardware items, such as 
wavefront sensors, deformable mirrors, or lasers, 
may be available or be specified in advance, placing 
restrictions on the system configuration. Scientific 
tasks cannot be foreseen years in advance and the 
hardware should therefore include the flexibility 
needed to try out new ideas and to exploit special 
opportunities. The budget may be inadequate to 
satisfy all of the technical requirements. Making the 
compromises necessary to allow the project to pro
ceed can be the most challenging task in the design of 
an adaptive optics system. 

In adaptive optics systems, it is particularly 
important to avoid "peak designs," which offer 
high performance over a narrow range of conditions, 
but are unduly sensitive to variations in external con
ditions or the physical alignment of the hardware. 
With so many uncontrolled variables, it is essential 
to use robust optimizations that are tolerant to a 
wide range of conditions. To achieve a durable 
design, it is necessary to explore the effect of changes 
in many parameters, for which a graphical approach 
is highly efficient. The optimization procedure out
lined in sections 9.5 and 9.6 therefore employs multi
ple tradeoff charts that give a synoptic view of 
performance, rather than the conventional approach 
of finding the peak of a single comprehensive analytic 
function. 

The desire to maximize performance should be 
tempered by the realization that because so many 
factors influence the performance of a compensated 
telescope, including purely practical housekeeping 

 as the cleanliness and alignment of the 
optics, there is a threshold below which small perfor
mance differences become lost in the noise. 

9.1.3 Operating Modes for Adaptive 
Optics 

One of the first decisions to be made in the design of 
an adaptive optics system is to select the operating 
mode(s) that will be used for astronomical observa
tions. These operating modes are distinguished by the 
type and arrangement of the reference source in rela
tion to the science object. A natural guide star is 
always required, but the compensation strategy 
depends on the angular offset between the star and 

the science object. There are three basic modes of 
operation: 

1. Natural reference sources. 
2. Laser beacon(s) with uncompensated natural 

guide star. 
3. Laser beacon(s) with compensated natural 

guide star. 

The arrangement of the reference source(s) in rela
tion to the science object, in the telescope field of 
view, is depicted in figure 9.1 for each mode of opera
tion. 

1. Natural Reference Sources 

This mode may be divided into (a) self-referencing 
operation, in which the science object itself functions 
as the reference source, and (b) offset referencing, in 
which a nearby (natural) star provides the reference. 
A single reference source is used to compensate both 
the wavefront and the image motion. 

The self-referencing mode may be used when the 
science object is brighter than 10th to 14th magni
tude, depending on the observing  Low-
order compensation at  wavelengths has been 
obtained with natural stars down to  visual mag
nitude, as reported by Roddier et   The com
pensated area has a radius of only 2 or 3 arc seconds 
at visible wavelengths, but grows as the 6/5 power of 
the observing wavelength. Self-referencing is a suita
ble mode for adaptive optics in the search for dim 
companions, in which the parent star acts as the 
reference. 

When the science object is too faint for self-refer
encing, offset referencing may be used if a suitable 
guide star occurs within the isoplanatic area. The sky 
coverage can be maximized by using  
operation, observing at IR wavelengths with an offset 
visible or IR reference star. Although this mode of 
operation offers larger sky coverage than self-refer
encing, it is still less than 1%. 

2. Laser Beacon with 
Uncompensated Guide Star 

The use of a laser beacon as the reference source 
enables faint objects to be compensated by adaptive 
optics, at the expense of greater hardware complex
ity. The laser beacon must be directed within the 
isoplanatic angle of the science object at the observa
tion wavelength but can provide only short-exposure 
(wavefront) correction. A fixed (natural) guide star is 
required to stabilize the image during long exposures, 
so that sky coverage, again, depends on the distribu
tion of stars. For tilt sensing, stars of  = 16 to 20 
can be used, greatly improving the sky coverage com
pared with mode  The precision of overall tilt cor
rection depends not only on the brightness of the 
star, but also on its apparent size. The angular size 
of an uncompensated guide star is enlarged by 
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Modes la Self-referencing 

lb Offset Referencing 

(a)  

Mode 2 Laser Beacon with 
Uncompensated 
Guide Star 

Mode 3(a) Laser Beacon with 
 Guide Star 

(Shared Compensation) 

Mode 3(b) Laser Beacon with 
Separately Compensated 

Natural Guide Star ,' 

Figure 9.1 Operating modes for adaptive optics using natural guide stars and laser bea
cons. This figure shows the geometrical relation of the reference sources and the iosplanatic 
angles, which are designated as follows: SO, science object;  and B2, laser beacons; NGS, 
natural guide star;  isoplanatic angle for wavefront compensation at observation 
wavelength;  isoplanatic angle for tilt compensation at observation wavelength; 

 isoplanatic angle for wavefront compensation at tilt sensor wavelength. 

spheric turbulence, necessitating a larger photon 
count to achieve a given tilt accuracy than if it were 
diffraction limited. This requirement limits the sky 
coverage in this mode to about 1% in the visible 
and 10% at  (This limitation is removed in 
mode 3 by compensating the natural guide star.) 

There are several options for implementing the 
laser beacons. To start with, there is the choice 

between beacons generated by Rayleigh scattering 
within the atmosphere, or beacons generated in the 
sodium layer above the atmosphere. In each case, 
there are several methods of launching the laser 
beam: (a) through the telescope optical system; (b) 
through separate optics on the same mount as the 
telescope; or (c) through a separate launching system 
(bistatic operation). 
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3. Laser Beacon with Compensated 
Guide Star 

Mode 3 includes the same laser beacon options as 
mode 2, with the additional capability of compensat
ing the natural guide star to increase sky coverage. 
There are two methods of achieving this compensa
tion. The first method, known as "shared compensa
tion," uses a natural IR guide star that is within the 
large isoplanatic angle of the primary laser beacon at 

 wavelengths, while the second method employs a 
separate adaptive optics system to compensate the 
natural star. In both cases, the compensation concen
trates the light from a fixed reference star into a 
smaller and brighter image that enables fainter stars 
to be used, thereby increasing the sky coverage. 

  et  [1994] have suggested that 
many science objects may contain IR stars bright 
enough to function as the tilt reference source. 

The ultimate tilt stabilization system employs 
separate compensation of the natural guide star, 
using dual adaptive optics, as suggested by Rigaut 
and Gendron [1992]. in addition to the primary 
laser beacon system that compensates the wavefront 
of the science object, a secondary laser beacon system 
is employed to compensate the natural star's disk, so 
that the centroids of even dim stars can be measured 
with precision. This approach gives more flexibility in 
the choice of natural guide stars than does mode 2; it 
maximizes the capabilities of adaptive optics systems 
for astronomy, at the expense of additional complex
ity. 

Each of these operating modes requires a different 
error model and a different procedure for optimizing 
the performance. The error components associated 
with each mode of operation are summarized in 
table 9.1 

Once the overall performance requirements and 
basic configuration have been decided, the detailed 
design process may proceed. This phase is the main 
subject of this chapter. The objective is to establish 
an adaptive optics design that satisfies the technical 
requirements defined above in the most economical 
way, using a process of system modeling and optimi
zation. The design process can be clarified by separ
ating the system parameters into four main categories 
as follows: 

1. Fixed parameters of the installation. These 
include (a) environmental conditions at the 
observing site, such as the expected ranges of 

 and  wind velocities, and ambient tem
perature range; (b) characteristics of the tele
scope, the optical path, and the scientific 
sensors; and (c) availability of reference 
sources, whether natural stars or laser beacons 
using Rayleigh scatter or sodium resonance. 

2. Performance goals of the observing system, 
such as sky coverage, spectral bands, compen
sated field of view, and the degree of compen
sation (or residual error) required. These goals 

may have to be modified during the design pro
cess, for technical or economic reasons. 

3. Adaptive optics characteristics to be deter
mined by the optimization procedure, which 
would normally include the number of degrees 
of freedom, the types of wavefront sensor and 
corrector to be used, the wavefront sampling 
rate, the servo bandwidth, and the beacon laser 
requirements (power, beam quality, and pulse 
rate). 

4. Adjustable parameters of the adaptive optics 
that can be optimized in real time, while obser
ving, to maximize performance under varying 
environmental conditions. Such parameters 
include the photon integration time of the 
wavefront sensor, the reconstructor weights, 
and the servo bandwidth of the correction sys
tem. 

The criteria for optimization are important fac
tors in overall system design. Factors involving 
image quality and their relation to residual wavefront 
and tilt errors have been discussed in chapter 4. A 
true end-to-end optimization procedure must include 
the science instrumentation, taking into account its 
spatial resolution and detector noise characteristics. 

9.7.4  Estimation 

The performance of adaptive optical systems is deter
mined using analytical models that define the wave-
front errors produced by each component or function 
of the system. The effects of atmospheric turbulence 
are described using the statistical models developed 
in chapter 3. Analytical models defining the errors in 
the wavefront sensor and wavefront correctors have 
been developed in chapters 5 and 6. These analytical 
models are summarized and put into a convenient 
form for system analysis in sections 9.2, 9.3, and 
9.4. Using this approach, the external conditions 
and the adaptive optics characteristics are defined 
in terms of a relatively small number of parameters, 
whose effect on system performance is readily appar
ent, allowing the design to be optimized in a 
forward way. It should be kept in mind that this gives 
a somewhat idealized view of system operation. In 

 the parameters employed are approximations 
and the statistics may not be stationary, so the prac
tical results will sometimes vary from the predictions. 
However, experience with several operating adaptive 
optics systems has shown that relatively simple ana
lytical models are sufficient to allow these systems to 
be optimized and their average performance to be 
predicted. 

The major sources of error in adaptive optics sys
tems are summarized in figure 9.2. Error sources are 
conveniently divided into two main groups: (1) 
External factors, which include the structure and 
dynamics of the atmosphere, and the characteristics 
of the star or beacon used as the wavefront sensor 
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•, Primary error source; o, secondary error source. 
" Overall tilt errors due to photon noise and time delays should be much smaller than the corresponding wavefront errors, if the same 
reference source is used. 
 This error will be small when the laser beacon is within the isoplanatic angle of the science object. 
' Dispersion errors occur if the spectral bandwidths or mean wavelengths of the 
reference and observations are different, as in multispectrai operation. 

reference; and (2) Instrumental factors or limitations 
of the adaptive optics system itself. Figure 9.2 shows, 
in broad outline, the relation between these factors 
and the errors that they generate. 

The normal procedure in performance evaluation 
is to define a set of input conditions that include the 
reference source characteristics, the atmospheric tur
bulence parameters, and the major specifications of 
the adaptive optics system, such as the telescope 
aperture, subaperture size, wavefront sensor charac
teristics, type of deformable mirror, and observing 
wavelength. Using each set of input data, the wave-
front error variances from each component of the 
adaptive optics system are computed. 

If the individual error sources are random and 
uncorrelated, the residual wavefront phase error is 
given by the sum of their variances: 

 (9.1) 

In practice, there are correlations between some 
errors, so the straightforward sum of the variances 
may lead to an overestimate of the total residual 
error. This is not necessarily a disadvantage in system 
design, because it tends to compensate for unrecog
nized errors; the resulting performance predictions 
are often more realistic. Note that equation (9.1) cov
ers only the random errors in the system; systematic 
errors, such as those due to offsets in the wavefront 
sensor, will normally be removed by calibration. 

Although astronomical imaging systems operate 
with incoherent light, the wavefront errors are 
usually expressed in terms of phase errors at a 
given mean wavelength. Most astronomical adaptive 
optics systems are designed to measure and correct 
optical path differences, allowing wideband opera
tion. However, because image formation is basically 
an interferometric process, the phase relationships at 
each wavelength are of prime concern, hence the use 
of optical phase in the analytical expressions. 

From the total wavefront error variance, the 
Strehl ratio representing the normalized peak inten
sity of a compensated point source is computed from 
the relation 

(9.2) 

While the Strehl ratio is a useful measure of per
formance for some applications of adaptive optics, 
such as laser beam compensation, it does not com
pletely represent the performance of imaging systems, 
for which the signal-to-background ratio is more 
important. The structure of compensated images is 
discussed in chapter 4, where it is shown that par
tially compensated images consist of a diffraction-
limited core surrounded by a much larger halo. The 
peak contrast ratio between the core and the halo 
may be the critical factor for some imaging tasks. 
The subject of suitable criteria for the evaluation 

Table 9.1 Basic Operating Modes for Adaptive Optics 

Self Referencing Offset Referencing Laser Beacon 
Mode 1(a) Mode 1(b) Modes 2 and 3 

Tilt reference  Science object Natural star Natural star 
Wavefront Reference  Science object Natural star Laser beacon 

Error sources 
Overall tilt: 

Photon error   • 
Temporal error  0* • 
Offset (aniso) error — • • 

Wavefront: 
Photon error • • • 
Temporal error • • • 
Fitting error • • « 
Offset (aniso) error — •  
Cone (aniso) error — — • 
Atmospheric dispersion error    



External 
Factors 

Instrument 
Factor 

Bottom Line: 

Tilt 
temporal 

error 

Tilt 
  
 error 

Actuator spacing 

Actuator influence function 

Data processor 
delay time 
Wavefront corrector 
response time 

• Servo bandwidth 

Detector efficiency 

Detector read noise 

Number of beacons 

Telescope aperture 

Tilt detector efficiency 

Tilt detector read noise 

Tilt servo 
bandwidth 

Figure 9.2 Main sources of wavefront error in adaptive optics. 
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and optimization of adaptive optics systems is also 
treated in chapter 4. 

The image structure may also be analyzed in terms 
of the optical transfer function (OTF) of the compen
sated telescope. The OTF is obtained from the struc
ture functions of the errors defined in the preceding 
text. The transfer function of the compensated sys
tem is 

where 
 = transfer function of the compensated 

wavefront 
 = telescope transfer function 
 = structure function of the compensated 

wavefront, which is equal to the sum of 
the structure functions of the individual 
components: 

   +  +  +  (9.4) 

The point spread function is obtained by the inverse 
Fourier transform of the transfer function  

9.1.5 The Optimization Process 

If a performance criterion, such as the total wave-
front error, can be expressed analytically in terms 
of the system parameters, then the optimum value 
of each parameter may be found using the standard 
approach of differentiating the performance function 
with respect to that parameter and setting the deri
vative to zero. To maximize the overall performance, 
all discretionary parameters must be optimized 
simultaneously. This is achieved conventionally by 
establishing the relation between individual para
meters in order to reduce the analytical expression 
that defines system performance, until it is a function 
of a single variable, from which all other parameters 
are then derived. 

In using these mathematical procedures, it is 
important to keep track of the sensitivity of the solu
tion to variations in individual parameters. Robust 
adaptive optics systems must accommodate naturally 
occurring changes in the external (atmospheric) con
ditions, as well as parameter shifts due to tempera
ture, gravity, and so on, within the instrument itself. 
A flat peak to the optimization function is desirable, 
indicating an ability to accommodate large parameter 
variations that could  to simplifications in the 
system design. On the other hand, if the optimization 

function has a sharp peak, indicating excessive sensi
tivity, then the design should be reviewed to ensure 
that the tolerances on the parameter involved can be 
met under practical conditions. If not, it may be 
necessary to provide local adaptive control to reduce 
this sensitivity. 

An example of this procedure is the optimization 
of integration time in adaptive optics systems, which 
depends on the brightness of the reference source and 
on the temporal bandwidth of the turbulence, driven 
by the notoriously capricious atmospheric wind pro
file. Increasing the integration time allows more 
photons to be collected from the reference source, 
thereby reducing the wavefront error due to random 
noise. However, the resulting increase in time delay 
between the measurement and correction of wave-
fronts produces a larger temporal error. The opti
mum exposure time required to minimize the sum 
of these errors depends on the wind velocity, which 
may vary considerably over short periods. One solu
tion is to use an auxiliary control loop that optimizes 
the integration time continuously, based on measure
ments of the reference source brightness and effective 
wind velocity. Such adaptive parameter control sys
tems are discussed in section 9.7. 

The overall error of an adaptive optics system is 
determined by a large number of interacting para
meters, so the optimization process must be global. 

The availability of fast desktop computers greatly 
facilitates this approach. It is no longer necessary to 
reduce the performance of complex multivariate sys
tems, such as adaptive optics, to a single analytical 
model, a process that usually involves approxima
tions and omissions in order to make the process 
tractable. Using current software, it is easy to set 
up individual performance models that include all 
the relevant factors, to produce numerical solutions 
that are displayed graphically. In this way, families of 
curves can be produced interactively, enabling the 
effect of parameter changes to be assessed rapidly. 
This process gives much-needed visibility to the sen
sitivity of overall performance to individual para
meters. Single-model optimization is useful to 
obtain first-order results, but a comprehensive opti
mization procedure should include a review of the 
behavior of all relevant parameters; this is now read
ily accomplished with numerical methods. The pro
cess of system optimization is outlined in sections 9.5 
and 9.6. Examples of the broad approach to the opti
mization of integration time and subaperture size are 
shown in figures 9.24 and 9.26.. 

9.2 Atmospheric Turbulence Summary 

 Turbulence Parameters Used in 
Adaptive Optics 

To facilitate the design of adaptive optics systems, 
the atmospheric characteristics derived in chapter 3 

(9.3) 

In the following sections, the wavefront error models 
and other computations required to calculate the per
formance of adaptive optics systems using natural 
stars and laser beacons are described. 

(9.5) 



Adaptive Optics Performance Analysis and Optimization  

are expressed as a compact set of equations defining 
the disturbances to be compensated in the optical 
path. Integration of the  profile yields the 
zero-order turbulence  from which is 
computed the coherence length  usually specified 
at a standard wavelength of 0.5  The five-thirds 
moment of the turbulence distribution,  yields 
the angular correlation of the turbulence structure, 
expressed as the isoplanatic angle  The  pro
file and the wind profile  together yield the velo
city moment  from which the temporal power 
spectrum of the turbulence is computed, yielding 
the temporal   or equivalently, the turbu
lence time constant,    In a similar way, the 
second-order wind velocity moment   used to 
determine the overall tilt  of the turbu
lence. 

From these basic descriptors of the atmospheric 
turbulence, the following key parameters of an adap
tive optics system are derived: 

1. The coherence length  determines the number 
of degrees of freedom (or number of subaper-
tures) required for the wavefront corrector, this 
number being proportional to  where D 
is the telescope aperture. The error in correct
ing the wavefront is proportional to  
where d is the subaperture size. 

2. The  variations and the wave-
front phase excursions over the telescope aper
ture are also computed from the ratio  
thereby determining the angular dynamic 
range requirement for the fast-tracking mirror 
and the drive distances for the wavefront cor
rector. 

3. The vertical structure of the turbulence pro
vides information for the optimum location 
of the wavefront corrector, while the angle   

determines the anisoplanatic errors. 
4. The turbulence   and the time con

stant  control the time-dependent errors in an 
adaptive optics system and therefore determine 
the temporal bandwidth of the wavefront cor
rection loop and the allowable time delays in 
the compensation system. 

5. The tilt   similarly determines the 
bandwidth of the tilt correction loop. 

The derivation of these descriptors from atmospheric 
data and their use in computing wavefront errors will 
now be reviewed. 

9.2.2 Turbulence Coherence Length  

The value of the turbulence parameter  produced 
by any  profile may be found from equation 

 restated here for convenience: 

9.2.3 Angle of Arrival 

The wavefront tilt due to atmospheric turbulence is 
also determined by  The angle-of-arrival variance, 
specified as the mean-square value over a circular 
aperture of diameter D for each axis, is given by 
Greenwood and Fried [1976] as 

 = 0.184  rad2 (9.8) 

For a Gaussian distribution, the probability is 
99.4% that the value will be within ±2.5 standard 
deviations. The peak excursion of the angle of arrival 
for this probability is 

(9.9) 

(9.6) 

When using a tip-tilt mirror for compensation the 
required lilt angle is half of this value. Note that 
because  is proportional to  the angle-of-arrival 
variations are independent of the observing 
length. 

9.2.4 Peak Wavefront Excursion and 
Drive Distances 

The single-point wavefront excursion with respect to 
the average phase over a circular aperture of dia
meter D, expressed as the average mean-square 
phase at wavelength  is given by 

(9.7) 

The integral of the refractive index structure function 
 is found either from direct measurements made at 

the observing site, or from a model of the turbulence 
structure such as those described in section 3.3.4. The 
parameter  is usually specified as the value at the 
zenith at a wavelength of 0.5  it is often given as a 
range of values in terms of the probability of occur
rence. 

In general, the wavelength at which the science 
observations are made is different from the 
length at which the turbulence is measured, and 
neither of them is centered at  the 
length at which the turbulence parameter  is nor
mally specified. The turbulence parameter also 
depends on the zenith angle of observation. The 
effective value of the turbulence parameter  at the 
sensor wavelength  micrometers is given by 

where  is the zenith angle. 
Taking into account the turbulence conditions at 

the site, the operating wavelengths, and the zenith 
angles for the adaptive optics, a working value for 

 can be established, at which the adaptive optics 
system must deliver a specified image quality. The 
value of  at the sensor wavelength controls the 
number of degrees of freedom required in the wave-
front corrector. 
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 (overall tilt included) 

(9.10) 

rad2 (overall tilt removed) 

(9.11) 

When averaged over finite subapertures, the wave-
front excursion is reduced slightly, so that using the 
single-point values gives a conservative estimate of 
the correction range required. These equations 
show that the excursion required by the wavefront 
corrector is reduced by a factor of 
7(1.075/0.141) = 2.76 when the overall tilt 

 component is removed with a separate 
tilt compensator. The peak wavefront excursions 
are obtained by multiplying the standard deviation 
by the appropriate factor. For 99.4% probability, the 
deviation is  giving the following expression 
for peak wavefront excursion, in meters, assuming 
overall tilt removal: 

meters (9.12) 

When using a deformable mirror for correction, the 
mirror excursions will be half of this value. In this 
equation,  is the wavelength at which  is specified, 
normally 0.5  Because of the negligible dispersion 
of the atmosphere over the wavelengths of interest, 
the wavefront excursion is essentially independent of 
the observing wavelength. 

9.2.5 Power Spectrum of Turbulence 

The temporal power spectrum of atmospheric turbu
lence is controlled by wind velocities. The atmo
sphere is modeled as a series of thin lavers, each 
characterized by a turbulence strength  and 
wind vector v. It is assumed that the turbulence struc
ture does not change over time scales of  than a 
few seconds, so that temporal effects are entirely due 
to transport by the wind. Taking advantage of the 
fact that the  values add linearly, the total turbu
lence and the resulting power spectral density is 
found by summing the contributions from each 
layer. At locations such as mountain-top observa
tories, the turbulent layers may be well separated 
and few in number, and so may be treated indepen
dently. In general, the atmospheric turbulence and 
wind profiles are modeled analytically and integrated 
over the optical path. 

For adaptive optics system design, the basic tur
bulence spectra required are: 

• wavefront phase averaged over a subaper-
ture d, with respect to the mean phase over 
the full aperture of diameter  

• wavefront phase averaged over a subaper-
ture d, with overall tilt and mean phase 
removed over the full aperture of diameter 

 
• wavefront tilt, defined as the average gradi

ent over an aperture of diameter D. 

It has been found that these spectra can be modeled, 
with analytic expressions using relatively simple 
power laws, over the whole frequency range of atmo
spheric turbulence. 

Turbulence may be described using the 
 phase structure function (see section 3.2.3) 

given by 

(9.13) 

where x and r are the spatial coordinates, and t and  
represent time. When T = 0, this reduces to the famil
iar spatial phase structure function. The phase-differ
ence power spectrum  is the Fourier 
transform of  r) . For plane-wave propagation 
with a circular aperture of diameter D, the phase-
difference power spectrum is 

(9.16) 

where  and  are transfer functions that 
define the exact conditions for the required spectra, 
specifically whether the wavefront phase is referenced 
to average phase or average tilt. These transfer func
tions consist of overlap integrals in the optical aper
ture and subaperture, and account for the auto- and 
cross-covariances of the wavefront phase and tilt, for 
the full aperture D and a subaperture d, located any
where within D. 

The total power in each spectrum, which gives the 
variance of the phase or tilt angle, is given by 

(9.17) 

 is a characteristic frequency equal to v/nD , 
and v is the turbulence-weighted wind velocity over 
the optical path, defined by 

(9.14) 

(9.15) 

In their classic paper on turbulence power spectra, 
Greenwood and Fried [1976] show that the required 
turbulence power spectra for phase and tilt can be 
expressed as 
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These integrals were evaluated numerically by 
Greenwood and Fried, yielding results that will 
now be summarized. 

For wavefront phase, the power spectrum con
tains three basic power laws, which are depicted in 
figure 9.3 using a representative frequency scale with 
arbitrary units on the ordinate. The first power law, 

 is the two-dimensional Kolmogorov phase 
spectrum, representing the absolute phase at a single 
point. This spectrum forms a high-frequency asymp
tote, defined as follows, in units of radians squared of 
phase per hertz: 

(9.18) 

In optical imaging systems, the absolute phase is irre
levant and the wavefront is referenced to the mean 
phase over the aperture. This is equivalent to remov
ing the piston component of the wavefront and it 
results in a spectrum having a —2/3 power law at 
low frequencies. This section of the total spectrum 
is defined by 

 =  (9.19) 

In this case, with overall tilt included, the spectral 
power depends on the position of the sampling 
point within the full aperture, specified by the ratio 

 It is highest at the edge of the aperture 
 = 0.5), because here the tilt excursions are lar

gest. At the center of the aperture, there is no phase 
excursion due to tilt, so the spectrum for this location 

Figure 9.3 Power-law dependencies of the spectrum 
of wavefront phase variations due to atmospheric 
turbulence. At low frequencies, the phase is domi
nated by tilt and varies as the —2/3 power of fre
quency. If overall tilt is removed, the phase 
spectrum at low frequencies follows a 4/3 power 
law. At middle frequencies, the basic two-dimen
sional Kolmogorov phase spectrum is dominant, pro
ducing a —8/3 power law. At high frequencies, the 
phase spectrum is cut off by subaperture averaging 
and drops rapidly. 

where v is the turbulence-weighted wind velocity 
defined in equation (9.15). 

The combination of these three power laws pro
duces a sharply peaked power spectrum for wave-
front phase. The steep cutoff is a favorable factor 
in the design of adaptive optics systems, limiting 
the bandwidth requirement of the servo system. 
When wavefront phase is averaged over a finite aper
ture, spatial averaging causes the power spectrum to 
roll off at a faster rate at high frequencies. The larger 
the aperture, the lower the frequency at which the 
roll-off occurs. The rolloff is modeled by multiplying 
the spectrum by an attenuation factor of the form 

(9.22) 

where 
a and b = constants, 
d = subaperture diameter 
v = weighted wind velocity and 
f = temporal frequency 

The values given by Greenwood and Fried for the 
phase spectrum  are a = 1.26 and b = 2.24. 

The power spectrum of wavefront tilt has been 
investigated by Tyler [1994a]. The tilt over a given 
aperture may be defined in different ways, such as 
the average wavefront gradient, which is called G-

 or as the normal to the plane that minimizes 
the wavefront distortion, which is known as  
because it is is equivalent to the two tilt terms in 
the Zernike polynomial expansion (see section 3.5). 
For imaging purposes, we are usually concerned with 
stabilizing the center of intensity of an image, which 
is equivalent to minimizing the  The standard 
method of wavefront measurement, using either a 

 or shearing interferometer sensor, 
is also based on detecting the center of intensity of 
the reference source image, so this is a consistent 
approach. 

The power laws governing the frequency spectrum 
of wavefront tilt are shown in figure 9.4. At low fre
quencies, the power spectral density, expressed in 
radians squared of single-axis tilt per hertz, is 

becomes the same as that for a tilt-removed wave-
front. 

If the overall tilt is removed over the aperture D, 
the power spectrum of the wavefront phase follows 
a n / 4 ' 3 law at low frequencies, considerably reducing 
the wavefront excursion. This power law, in radians 
squared of phase per hertz, is given by 

(9.20) 

The large drop in the spectrum at low frequencies 
produces a commensurate decrease in the required 
stroke of the deformable mirror, which, of course, 
is the main reason for using a separate corrector 
for overall tilt. The transition frequency  between 
the 4/3 and —8/3 power laws is 

(9.21) 
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Figure 9.4 Power-law dependencies of the spectrum 
of wavefront tilt. At low frequencies, the tilt spec
trum is proportional to the —2/3 power of frequency, 
which becomes an inverse-square dependency at 
intermediate frequencies. When tilt is averaged over 
an aperture, the overall tilt spectrum is cut off at a 
frequency determined by the diameter of the full 
aperture and the wind velocity. For gradient tilt, 
the spectrum falls off as the —11/3 power of fre
quency. 

This has the same/  dependency as  with the 
difference  the angular tilt spectrum is indepen
dent of wavelength and aperture diameter. At inter
mediate frequencies, the spectrum falls off at a higher 

 . There is little difference between the two 
definitions of tilt in these ranges. However, at a fre
quency of approximately/ = v/D, where v is the tur
bulence-weighted wind velocity, spatial averaging 
over the aperture causes a further break in the 
power law, and from here the two types of tilt fall 
off at different  in the case of  and 

   At this point, the spectral density is 
so low that the difference has little practical signifi
cance. 

Turbulence power spectra for specific atmospheric 
conditions are shown in figures 9.5 and 9.6, using 
both logarithmic and linear plots. The effect of vary
ing wind velocity and turbulence strength at a con
stant wavelength is shown in figure 9.5, using 
turbulence-weighted wind velocities of 10, 15, 20, 
and 25  Turbulence strength normally increases 
with wind velocity and this is modeled in the figure. 
The spectra are sharply peaked at frequencies 
between about  and  Hz, the cutoff frequency 
increasing with wind velocity as expected. The high 
frequency response is inversely proportional to the 
size of the subapertures, so that for a given wind 
velocity v, the frequency response is reduced for lar
ger subapertures. The power and bandwidth of the 
spectrum both decrease considerably at  
lengths. 

The power spectrum of tilt, shown in figure 9.6 for 
the same conditions as figure 9.5, behaves in a differ
ent way. To start with, the tilt angle is independent of 
wavelength. At low frequencies, the power spectral 
density is inversely proportional to the 2/3 power of 
frequency. The high frequency cutoff is governed by 
the telescope aperture and wind velocity. The larger 
the aperture, the lower the overall tilt bandwidth. For 
the relatively benign conditions at good observing 
sites, the tilt spectrum drops very rapidly between 
about 1 and  Hz, frequencies at which the phase 
spectrum has its peak response. 

The use of logarithmic scales for these power spec
tra clearly shows the underlying power laws on which 
they are based, but it distorts the spectral power dis
tribution. To show the spectral power correctly, in 
proportion to the area under the curve, linear scales 
are necessary. These linear plots reveal the true char
acteristics of the wavefront phase and tilt spectra, 
suggesting that the models may be further simplified 
by using only a single dominant power law. 
Temporal errors caused by finite servo bandwidth 
may then be determined directly by comparing the 
bandwidth of the turbulence with that of the adaptive 
optics servo. This approach was first suggested by 
Greenwood [1977] and is discussed further in section 
9.4.3. 

9.3 External Sources of Wavefront Error 

9.3.1 Angular Anisoplanatism 

The isoplanatic angle is an extremely important para
meter in adaptive optics, as it governs the field of 
view over which wavefront compensation is possible 
using a single corrector. Wavefront measurements 
made in a specific direction through distributed tur
bulence lose their validity as the angle between the 
measurement and the observation increases. The iso
planatic angle  is defined as the angle at which the 
ensemble average mean-square error between the 
measured and observed wavefronts is 1 rad2. The 
isoplanatic angle depends on the vertical structure 
of the turbulence, as given by the  profile, 
weighted by the 5/3 power of the range from the 
telescope. It is computed from the following relation, 
derived in section 3.7, valid when D   

The weighted turbulence  known as 
the five-thirds  turbulence moment, has been 
defined in section 3.3.6. Typical profiles are shown 
in figure 9.7. As a result of this weighting, the isopla
natic angle is determined mainly by high-altitude tur
bulence, especially that occurring at the tropopause. 
Turbulence near the ground, even when severe, has 
little effect on the isoplanatic angle. 

(9.23) 

(9.24) 



Power Spectrum of Phase (Log Plot) 

A wind velocity  m/s,  - 0.2  at  = 0.5  

B wind velocity  m/s,  —  m 

C wind velocity 20 ra/s,  =  m 

D wind velocity 25   = 0.08 m 

Figure 9.5 Power spectra of wavefront (phase) error due to atmospheric turbu
lence, as a function of wind speed and  The conditions are: aperture 4m, 
wavelength   zenith angle 45°, subaperture size 0.25 m. 



A wind velocity 10 m/s,  = 0.2  at  = 0.5  
B wind velocity 15 m/s,  =  m 
C wind velocity 20   =  m 
D wind velocity 25   = 0.08 m 

Figure 9.6 Power spectrum of single-axis overall tilt due to atmospheric turbu
lence, as a function of turbulence-weighted wind speed and  (measured at the 
zenith). The aperture is 4 m and the zenith angle is 45°. This power spectrum is 
independent of wavelength. 
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Hufnagel model 
 " Mauna Kea background model 

 Mauna Kea average model 

Figure 9.7 Turbulence profiles weighted for angular anisoplanatism. To show the 
relative contribution of turbulence at each height to the anisoplanatic error, values 
of  are weighted by the 5/3 power of the height. The dominant contributions come 
from turbulence in the region of 10 km. 

As discussed in section 3.7, it is often convenient 
to define the isoplanatic angle in terms of  and the 
mean turbulence height  using the expression 

(9.25) 

where  the zenith angle and the mean turbulence 
height h is defined as 

(9.26) 

Typical values  are  m for daytime turbulence 
and 3000 m for night-time operation. 

Even with a fixed value of A, the isoplanatic angle 
varies with both wavelength and zenith angle. The 
turbulence parameter  is normally specified at 

  0.5  for vertical propagation, but its actual 
value varies as  The isoplanatic angle at 
wavelength  and zenith angle  is then 

(9.27) 

The mean-square error due to anisoplanatism at any 
angle 8 may be expressed as 

9.3.2 Focal Anisoplanatism 

The use of laser beacons in adaptive optics systems 
produces the following types of wavefront error: 

 Beacon geometry. The physical location of laser 
beacons within the atmosphere means that 
atmospheric turbulence is sampled only par
tially by the beacon light. The errors due to 
focal anisoplanatism with single and multiple 
beacons are addressed in this section. 

2. Image stabilization error. Laser beacons do not 
allow the measurement of the absolute position 
of a source, for which a fixed reference (such as 
a natural star) is required. Due to the scarcity 
of suitable stars, the angular separation 
between the science object and the fixed refer
ence may be considerable, resulting in tilt ani
soplanatic errors. These errors are addressed in 
section 9.4.6. 

(9.28) 
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The wavefront measurement errors produced by the 
geometry of laser beacons have been analyzed in sec
tion 7.3. These errors are now put into a suitable 
form for use in the adaptive optics performance 
model. In the general case of multiple laser beacons, 
the wavefront errors associated with the beacon geo
metry are: 

• focal anisoplanatism,  
• conic tilt (the tilt component of focal aniso

planatism),  
• beacon position uncertainty, CT£ . 

The total wavefront error due to beacon geome
try, from equation (7.37), is 

where E is an error propagation factor dependent on 
the correlation between the tilt components of multi
ple beacons. Values of E have been given in table 7.4. 
For a single beacon, E is zero, while for  sizes of 
interest, E may be approximated as  . It was 
shown in section 7.3.5 that the error due to uncer
tainty in the beacon position  is about one-tenth of 
the conic tilt error CTCT   beacons, and 
between one-tenth and one-third of the conic tilt 
error for sodium beacons. On this basis, the beacon 
position error may be neglected for first-order analy
sis. Using equations (7.24), (7.39), and (9.35), the 
wavefront error due to multiple beacons may then 
be expressed in terms of system parameters as 

(9.30) 

where 
D = telescope aperture 

 = number of beacons in one dimension 
 = focal anisoplanatism parameter defined by 

equation (7.36), values of which are given in 
table 7.2 

 = tilt anisoplanatism parameter defined by 
equation (7.40), values of which are given in 
table 7.3 

9.3.3 Effects of Atmospheric Dispersion 

In section 3.3, it was shown that the refractivity of 
Earth's atmosphere varies significantly with altitude 
and wavelength. The refractivity, expressed in parts 
per million, has a value of close to 280 at sea level for 
X = 0.5  decreasing to about 95 at an altitude of 
10 km. The exponential decrease in refractivity with 
altitude causes incoming light rays, at angles away 
from the zenith, to follow a curved path through 
the atmosphere, changing the apparent direction of 
celestial objects. This effect, in itself, has no signifi

cance for adaptive optics. It is only the dispersive 
component of the refractivity that causes errors. 
The dispersion causes rays at different wavelengths 
to traverse different paths through the atmosphere, 
producing four distinct effects, which are identified as 
follows: 

1. angular dispersion, 
2. chromatic path-length error, 
3. dispersion displacement error, 
4. multispectral error. 

The wavefront errors produced by these effects 
will now be described. 

Angular Dispersion 

Angular dispersion is the result of the average refrac
tion of light as it passes through the atmosphere, 
producing an effect found in all ground-based tele
scopes, whether compensated or not. Incoming rays 
from a distant object are bent by atmospheric refrac
tion through an angle depending on the zenith angle 
of observation. At the telescope focal plane, the 
image is dispersed in a vertical plane by an amount 
proportional to the spectral bandwidth and the 
zenith angle. For high-resolution imaging over 
broad spectral bands, it is essential to compensate 
the angular dispersion, using prisms specially 
designed for the purpose. 

The angular deviation of a ray passing through 
Earth's atmosphere is given by 

(9.31) 

where 

 = refractivity of the atmosphere at standard 
temperature and pressure at wavelength  
an expression for which is given in equa
tion (3.16) 

 = zenith angle of observation 
 = density of the atmosphere at height h 

 = standard density of the atmosphere 

The effect of angular dispersion as a function of 
zenith angle and wavelength is illustrated in figure 
9.8, showing the image spread over a wavelength 
range of   To provide a reference for com
parison, the Airy disk of a 1 m aperture telescope is 
shown to scale at each wavelength. It can be seen that 
dispersive effects are negligible at wavelengths longer 
than   except at zenith angles of 60° or more. 
However, at visible wavelengths, angular dispersion 
exceeds the Airy disk diameter even at small zenith 
angles, making correction essential for high-resolu
tion observations through the atmosphere. 

In adaptive optics systems, it is necessary not only 
to correct the imaging path for angular dispersion, 
but also to correct the wavefront measurement path, 
if a broadband reference source, such as a natural 

(9.29) 
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Figure 9.8 Angular dispersion of a star image, caused by the density profile of the 
atmosphere. The wavelength range shown is   The Airy disk of a  
aperture telescope is shown to scale at each wavelength. At wavelengths longer 
than   dispersion effects are small compared with the Airy disk, except at 
very large zenith angles. At visible wavelengths, however, angular dispersion 
exceeds the Airy disk diameter, even at small zenith angles, necessitating prismatic 
correction for white light. 

star, is used. If this were not done, the performance 
of the wavefront sensor would be compromised by 
the angular spread of the reference image, reducing 
the signal-to-noise ratio of the wavefront measure
ment. 

Angular dispersion may be corrected using a 
Risley prism, which consists of two rotating prisms 
located between the deformable mirror and the wave-
front sensor. In the null position, the prism axes are 
oriented at 180°, so their effects cancel. The magni
tude of the correction is controlled by differential 
rotation, while the orientation of the correction is 
controlled by the common rotation of the prisms. 
By suitable choice of glasses, these devices can be 
made to operate over a wide spectral band [Wallner 
and Wetherall 1980]. 

Chromatic Error 

Rays of different wavelengths traversing the same 
atmospheric path travel at different velocities, 
depending on the refractivity of air at each 
length. The optical path length then appears to be 
different at each wavelength, causing chromatic 
errors. When a deformable mirror is used to compen
sate turbulence, it makes the same path length cor
rection at all wavelengths, so the chromatic error is 
not compensated. Note that the chromatic error 

applies to a single atmospheric path: if the dispersion 
causes the rays to traverse different regions of the 
atmosphere, then an additional error due to disper
sion displacement (defined later in this section) is 
incurred. The chromatic error has been analyzed by 
Wallner [1977], who expressed it in the form 

(9.32) 

where 

and 

 = uncorrected wavefront error due to 
turbulence 

=  waves squared 

 = chromatic error coefficient 

(9.33) 

where 

 = effective intensity distribution of the 
source, 

 = refractivity at wavelength  and 
 = mean wavelength. 

For operation at visible wavelengths, the value   
is approximately 1.0 x  The chromatic error for 
a 4-m compensated telescope is then about 1/30 
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wave, with an  value of 0.1  At longer 
lengths, the error will be even less.  most cases, 
an error of this magnitude can be ignored. 

Dispersion Displacement Error 

Dispersion error is another result of the bending of 
incoming light rays by atmospheric refraction. The 
angular dispersion causes rays of different 
lengths that were coincident at the top of the atmo
sphere to be displaced, so that they enter the 
telescope aperture at different locations. Spectral dis
persion produces errors in adaptive optics systems in 
two different ways: (1) errors are caused by using a 
finite bandwidth for either the reference source or the 
science observations, even if they are centered at the 
same wavelength; and (2) errors are produced by 
using different center wavelengths for the reference 
and science observations, even when each is mono
chromatic. The second situation is known as multi-
spectral operation and the errors incurred are 
discussed in section 9.3.4. 

The dispersion displacement error with finite spec
tral bandwidth is due to the fact that each location on 
the telescope aperture receives rays that arrived from 
the same source but which traversed different atmo
spheric paths. The correlation between the path-
length errors decreases as the spectral bandwidth 
increases, making exact compensation impossible. 
The error due to this effect has also been analyzed 
by Wallner [1977]. Figure 9.9 shows the relevant geo
metry. The vertical displacement of a ray due to 
atmospheric dispersion can be expressed as 

Figure 9.9 Geometry of ray displacement due to 
atmospheric refraction. 

and 

 = spectral intensity distribution of the 
observed object 

  spectral intensity distribution of the 
reference source 

 = mean reference wavelength 
 = refractive index structure parameter, 

 

The derivation of equation (9.35) assumes that the 
aperture is larger than than the ray separations due 
to dispersion, which is generally true for astronom
ical telescopes with apertures over about 1 m. When 

 and  are both centered in the visible band 
at wavelengths between 0.4 and   using a 
5500° blackbody source distribution through 1 atmo
sphere, and with detectors having an S-20 photo-
cathode response, the spectral integral  has the 
value of 4.19 x  The height integral  
depends mainly on the atmospheric turbulence pro
file specified by  An exponential turbulence 
distribution with a scale height of 3200 m, corre
sponding to an  value of 0.1 m, gives  = 1 . 3 
waves squared  a reference wavelength of 

  When the low-altitude turbulence is reduced 
by half and a tropopause layer having equal strength 
is added at 15 km, for the same value of  then 

 = 3.95 waves squared  

The dispersion error for these two atmospheric 
turbulence profiles is plotted in figure 9.10 as a func
tion of zenith angle. For zenith angles up to about 
30°, the wavefront error is below 1/20 wave and 
therefore tolerable, but it grows rapidly at larger 

(9.36) 

(9.37) 

(9.34) 

where 

 and  = refractivities at wavelengths 
A and X'', respectively 

 = true zenith angle of the ray, 
  atmospheric pressure at the telescope, 

g = acceleration of gravity 
Ps = density of air for standard conditions 

The term    interpreted as the effective 
depth of the atmosphere at the telescope site. Under 
standard conditions at sea level, it has a value of 
8432 m. 

If the adaptive optical system makes the best 
achromatic correction to rays of all colors, then 
there will remain a residual mean-square error 
given by 

(9.35) 

where 
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A wavefront error, no  layer 
B wavefront error with tropopause layer 
C  ratio, no tropopause layer 
D Strehl ratio with tropopause layer 

Figure 9.10 Wavefront error caused by spectral dispersion when using a 
wideband reference source, such as a natural star. Rays at different 
lengths traverse separate paths through the atmosphere, resulting in a mea
surement error that depends on the turbulence structure and bandwidth. This 
chart is drawn for moderate turbulence, using a spectral band of 

 similar to solar radiation. 

angles, especially when a tropopause layer is present. 
Because this error is produced over a long atmo
spheric path, it is not possible to compensate it com
pletely with a single dispersion correction device. 
Wallner  has shown that a lateral dispersion 
corrector, which must be located before the wave-
front compensation device, is capable of reducing 
the dispersion error to about one-third. 

9.3.4  Error 

This error is encountered when the wavefront sensor 
operates at a different wavelength from the science 
observations, often the case in astronomical adap
tive optics. The rationale for using multispectral 
operation is that atmospheric turbulence degrades 
observations much less in the  windows between 
1 and  than at visible wavelengths, enabling 
simpler adaptive optics to be used, while the most 
efficient, low-noise detectors for wavefront sensing 
operate at wavelengths below 1  Adaptive optics 
systems used for observations at  wavelengths 

consequently employ wavefront sensors operating 
at shorter wavelengths. This is true for systems 
using either natural stars or laser beacons as refer
ence sources. With laser beacons, Rayleigh scatter is 
produced at all wavelengths, but is most efficient at 
ultraviolet (UV) wavelengths, while the alternative 
approach using sodium resonance fluorescence pro
duces yellow light at a fixed wavelength of 

 
To make multispectral operation work, it is neces

sary for the adaptive optics to measure and correct 
the turbulence over exactly the same atmospheric 
path as that taken by the science observations. If 
the dispersion of air was zero (that is, the refractivity 
was constant with wavelength), then the optical paths 
would be identical at all wavelengths and multispec
tral operation would incur no additional errors. In 
fact, dispersion causes rays at different wavelengths 
to become separated by distances comparable with  
resulting in large errors; great care is therefore neces
sary in the design and operation of adaptive optics 
systems using multispectral operation. 
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The ray separation at the telescope aperture in the 
vertical plane, caused by dispersion, is easily com
puted using equation (9.34). For example, using 
wavelengths of 0.5 and 2.2  at a zenith angle of 
45°, the sensing and observing beams would be dis
placed by 0.066 m. The effect of this ray separation 
on the wavefront error has been analyzed by Wallner 
[1984]. The random optical path difference (OPD) 
caused by turbulence between two rays at 
lengths  and  depends on their separation, but 
not on their absolute positions. Rays from an object 
at height H travel through the atmosphere to the 
telescope aperture, arriving at points separated by 
vector y. Each ray is displaced in the vertical plane 
by dispersion, according to equation (9.34). The 
resulting wavefront error can be expressed in terms 
of the structure functions of the optical path differ
ences between the two rays as follows: 

(9.42) 

where  -    vertical separation due 
to dispersion, and  and  are the atmospheric 
pressures at heights  and  respectively. 

For astronomical objects, H is set to a height at 
which the atmospheric pressure  is effectively 
zero. The effect    operation on tele
scope performance is best illustrated by converting 
the OPD error given by equation (9.41) into the 
Strehl ratio at the observing wavelength. 

Figure  shows the multispectral Strehl ratio 
at fixed sensor wavelengths of 0.4, 0.589, and 
1.25  as a function of observation wavelength 
for zenith angles of 45 and 60°. The Hufnagel-
Valley (HV) turbulence model is used to compute 
the wavefront error, with an  value of  m, 
defined at a wavelength of  and at sea level. 
These charts illustrate the useful range of observa
tion wavelengths obtained for each sensor or beacon 
wavelength. For zenith angles less than 45°, the loss 
due to dispersion is relatively small, except at 
lengths below   However, at 60° zenith angle, 
dispersion can produce significant losses, especially 
with sensor wavelengths below 0.5  The narrow
ness of the peaks for short sensing wavelengths are 
striking. For observation wavelengths in the visible 
spectrum, it is clear that the sensor wavelength 
should be as close as possible to the observation 
wavelength. For observing at  wavelengths, con
siderably greater latitude is allowed in the choice of 
sensor wavelength, although, again, the use of sen
sor wavelengths below   should be avoided. 
The rise in Strehl ratio at longer wavelengths is 
due to the fact that a fixed OPD error becomes a 
smaller phase error as the wavelength increases. 

The main conclusions to be drawn from this ana
lysis of multispectral operation are: 

1. The best compensation of observation 
lengths over 0.5  is obtained by using a sen
sor wavelength greater than 0.5  

2. Multispectral operation with either sensor 
or observation wavelengths below 0.5  
is of questionable value at large zenith 
angles because of the rapid increase in 
dispersion. 

The ray separation is the sum of two components: (1) 
the geometrical separation of rays traveling in a 
straight line between the object and the telescope 
aperture; and (2) the separation due to atmospheric 
dispersion. The total separation is then 

(9.41) 

(9.39) 

(9.38) 

(9.40) 

where     is the separation at height  in the 
atmosphere, of rays of wavelength X\ and  origi
nating from an object at height H and reaching coor
dinate v at the telescope aperture. Substituting 
equation (9.40) in equation (9.38), the following 
expression for the mean-square error in terms of 
the separation of the rays is obtained: 

where A(y) is a weighting function equal to the over
lap area of two circular apertures of radius a dis
placed by y = |y|: 

For  turbulence, the structure functions 
are given by 



Sensor  400  

0.5 1 1.5 2 2.5 

Observation Wavelength, micrometers 

Sensor wavelength 589 nm 

0.5 1 1.5 2 2.5 3 

 Wavelength, micrometers 

Sensor Wavelength 1250 nm 

Observation Wavelength, micrometers 

Zenith angle 45 degrees 
" " Zenith angle 60 degrees 

Figure  Effect of atmospheric dispersion in multispectral opera
tion. These charts show the reduction in Strehl ratio caused by opti
cal path separation in the atmosphere when different wavelengths are 
used for wavefront sensing  observation. The telescope has an 
aperture of 4 m and is situated at an altitude of 3000 m. The HV 
turbulence model is used, with  = 0.1  at  = 0.5  at sea level. 
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9.4 Instrumental Error Sources 

The main errors contributed by the components 
within an adaptive optics system are the measure
ment error of the wavefront sensor, the error propa
gation of the reconstruction process, temporal errors 
due to time delays and the limited bandwidth of the 
feedback loop, and the wavefront fitting error asso
ciated with the  mirror or other correction 
device. The analytical models required to compute 
the instrumental errors are summarized in the follow
ing sections. 

 Wavefront Measurement Errors 

The measurement error of all wavefront sensors 
depends largely on two characteristics of the refer
ence source: its brightness, which determines the sig
nal-to-noise ratio of the detected signal, and its 
angular size. A third factor is the density of sampling 
points on the wavefront, which determines the wave-
front fitting error. The fitting error is usually 
accounted for in the wavefront corrector, on the 
assumption that the wavefront sensor has at least 
as many degrees of freedom as the corrector, which 
is true in most cases. 

The sensor signal-to-noise ratio is calculated from 
the photon counts produced by the reference source 
and sky background, together with the electron noise 
contributed by the photon detector. In the perfor
mance models, it is convenient to separate the natural 
parameters and constants from the discretionary 
parameters that will be optimized. It is also necessary 
to specify the available photon  at the entrance to 
the wavefront sensor, rather than at the photon 
detector, because the optical efficiency of wavefront 
sensors varies greatly (see section 9.4.2) and the deci
sion on which configuration to use is part of the 
optimization process. 

 Sensor 

Expressions for the measurement errors of the Shack-
Hartmann sensor and shearing interferometer were 
developed in sections 5.3 and 5.4. For a Shack-
Hartmann sensor using a quadrant detector, the sin
gle-axis mean-square error in radians squared of 
phase per subaperture, from equation (5.16), is 

(9.43) 

where 

 = turbulence parameter at sensor wavelength 
0 = angular subtense of reference source, rad 

At large photon counts, the signal-to-noise ratio 
SNR is proportional to  The wavefront measure
ment error increases significantly when an extended 
reference source is used; for the same photon count, a 

 source has an error  times larger than that 
for a point source. 

Shearing interferometer 

The wavefront measurement error for a lateral shear
ing interferometer using a near-optimum detection 
system with sine/cosine weighting, as described in 
section 5.4, is given by 

(9.44) 

where 

 = single-axis mean-square phase error in 
radians squared per subaperture 

y - fringe contrast (modulation) 
d = subaperture size 
 = shear, expressed as units of length in the 

aperture. 
When a four-bin detection system is used with a 

shearing interferometer having either temporal or 
spatial modulation, the factor of 2 in the numerator 
is replaced by  The measurement error is inver
sely proportional to the shear, so that, in general, the 
largest possible value of shear should be used. 
However, there are two limitations: (1) when the 
shear distance becomes comparable to the turbulence 
coherence length at the sensing wavelength, the cor
relation between the sheared wavefronts decreases, 
resulting in a smaller value of  and (2) if the 
shear distance is sufficient to resolve the reference 
source (that is, if the reference is no longer effectively 
a point source), then, again, the value of y decreases. 
In the second case, y is equal to the coherence func
tion of the source. It is therefore necessary to find the 
optimum value of shear that maximizes the shear-
gamma product sy. For a point source, the shear   

should initially be equal to the smaller of either the 
subaperture size d or the value of  With extended 
sources, the optimum value of shear is approximated 
by 

(9.45) 

 - loss factor due to the gap between quadrant 
detector elements ( = 1.3-1.5) 

where 9 is the angular subtense of the reference 
source, assumed to be a uniform disk. 

It is then necessary to determine the value of y. If 
the wavefront slope were constant over areas equal to 
the subaperture size plus the shear distance, then the 
phase difference due to shear would be uniform in 
each subaperture and the fringe contrast, y, would be 
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(9.47) 

Substituting equation (9.47) into the expansion of 
equation (9.46) gives 

(9.48) 

For  turbulence, the structure function is 
given by 

The value of y2 has been evaluated numerically by 
Wallner (private communication), who developed the 
following empirical expression that fits the data to 
about 5%. The expression includes the effects of 
averaging the wavefront over the sensor subapertures 

 term) and also the decorrelation of the wave-
front with shear  term): 

(9.49) 

The wavefront measurement error for a lateral 
shear interferometer is inversely proportional to the 
shear. Using a point reference source, the shear dis
tance can approach the subaperture size (d/s  1), 
giving optimal performance. With an extended refer
ence source, such as a laser beacon, the shear must be 
reduced according to equation (5.47), resulting in a 
larger error. 

9.4.2 Comparison of Wavefront Slope 
Sensors 

The relative merits of the shearing interferometer (SI) 
and  (SH) wavefront slope sensors 
have been hotly debated ever since they were first 
developed in the early 1970s. In this section, it is 
shown that the performance of all wavefront sensors 
is dominated by the efficiency of the photon detection 

system. Practical considerations, such as using an 
optical system with high transmission and a detector 
with high quantum efficiency, are far more important 
than the theoretical differences between sensors. 

The first shearing interferometers used for adap
tive optics employed diffraction gratings to generate 
orthogonally sheared replicas of the input beam. The 
interference patterns representing x and y wavefront 
gradients were modulated by rotating the gratings, 
producing sinusoidal intensity signals of constant fre
quency, the phase of which is proportional to the 
wavefront gradient in each subaperture. This 
arrangement has several desirable features: 

1. The wavefront slope in each subaperture is a 
linear function of the temporal phase of the 
detected signal, which is easily measured. 

2. The shear is proportional to wavelength, mak
ing the sensor almost achromatic. 

3. The shear is easily changed by operating at a 
different radius on the grating disk. 

4. All subapertures share a common optical sys
tem, eliminating the need for precise optical 
calibration. 

5. Temporal modulation allows the phase of the 
detected signals to be measured accurately, 
without the need for individual detector cali
bration, even in the presence of spatial inten
sity variations over the pupil. 

An additional advantage of the SI is that field 
stops can be added at the focal planes to reduce the 
field of view to a small area, enabling the sensor to 
operate with bright backgrounds or with extended 
sources, such as the Sun. 

Variable shear is a useful feature of shearing inter
ferometers that does not show up directly in perfor
mance comparisons. With this capability, the 
sensitivity and dynamic range of an SI can be 
adjusted rapidly to accommodate large wavefront 
errors that would normally saturate the wavefront 
sensor during initial convergence of the adaptive 
optics system. When the adaptive optics has con
verged and the residual wavefront error is small, 
the shear may be increased to improve the measure
ment precision. By controlling the shear value in real 
time so that it is inversely proportional to the residual 
wavefront error, the sensitivity of an SI can be main
tained at its optimum value through a wide range of 
operating conditions, especially in the presence of 
large changes in the strength of turbulence. In com
parison, changing the dynamic range of an SH sensor 
is much more difficult, requiring additional detector 
pixels and/or defocusing the spots. 

The temporally modulated SI has two significant 
disadvantages. While giving optimum performance 
for continuous, point reference sources, it is less 
cient with extended sources because of the need to 
reduce the shear to maintain fringe visibility; this 
leads inevitably to a loss of precision. It is also incap-

unity.  of wavefront phase over each sub
aperture of area A =  will reduce the value of y.  
the wavefront at position x is represented by a 
Gaussian random variable  and the shear is s, 
then the square of the contrast y may be expressed as 

(9.46) 

The variance of the wavefront phase distribution is 
described by a structure function 



330 Adaptive Optics for Astronomical Telescopes 

able of handling pulsed reference sources (except at 
frequencies much higher than the modulation fre
quency) and so is not suitable for use with most 
laser beacons. 

Later versions of the SI, described in section 5.4, 
employ spatial modulation and are therefore compa
tible with pulsed beacons. An SI employing a single 
two-dimensional transmission grating, from which 
both x- and  slopes are obtained, looks 
very much like an SH sensor. The optical grating in 
the spatially modulated version of the SI performs a 
similar function to the lenslet array in the SH sensor, 
but has the advantage that the shear, or sensitivity, is 
easily varied. As pointed out in section 5.2, both of 
these sensors use similar optical principles, the differ
ences being mostly in the details of the  
Practical considerations often dictate the final choice. 

The SH sensors have no moving parts and do not 
usually employ temporal modulation, so they are sui
table for either pulsed or continuous reference 
sources. Because the aperture is subdivided into a 
large number of separate imaging channels, SH sen
sors require calibration of the optics and detectors. 
There is no practical method of controlling the 
dynamic range of a SH sensor to accommodate chan
ging operating conditions, as there is with a variable-
shear interferometer. In fact, as described in section 
5.3.1, the dynamic range of slope measurement in SH 
sensors is fixed by the number of pixels in each sub-
aperture, which is determined by the detector hard
ware and is not easily changed. Using larger detector 
arrays to increase the dynamic range is expensive and 
requires tradeoffs involving readout speed and detec
tor noise. The dynamic range of shearing interferom
eters, on the other hand, is easily controlled by 
varying the shear, without any effect on the size of 
the detector arrays. 

But, the most important factor in determining the 
performance of wavefront sensors has not yet been 
discussed: intrinsic differences between the SI and the 
SH sensors are small compared with the great varia
tions encountered in the photon detectors on which 
they depend. The performance of any wavefront sensor 
is dominated totally by the characteristics of its photon 
detector, and the associated optical path. 

The most important properties of the detectors 
used in wavefront sensors for astronomy are (1) the 
photon detection probability at the sensing 
length (quantum efficiency); and (2) the noise added 
in the readout process. Three basic types of detector 
are used in astronomical adaptive optics: 

• Photocathodes followed by electron multi
plication, for which quantum efficiency is 
relatively low (10%) at visible wavelengths, 
but for which readout noise is negligible; 

• Silicon charge-coupled device (CCD) arrays, 
having high quantum efficiency (80-90%) at 
visible and  wavelengths, but with 

significant readout noise (2-10 electrons 
per pixel) at normal scanning rates; 

• Avalanche photodiodes (APDs) operating in 
the Geiger mode, which have detection effi
ciencies (quantum efficiency x detection 
probability) approaching 70% in the visible 
band, but which are difficult to assemble in 
arrays because of crosstalk and uniformity 
problems; cooling reduces dark noise to neg-

 proportions. 

Wavefront sensors with more than about 20 subaper-
tures usually employ scanned arrays, such as CCDs. 
The available size of such arrays is a fundamental 
consideration in the system design, because it deter
mines the number of pixels available per subaperture 
and the pixel readout rate required to obtain a given 
wavefront sampling frequency, which, in turn, deter
mines the noise added to each pixel in the readout 
process. 

With noise-free detectors, better sensor perfor
mance can usually be obtained by using more pixels 
per subaperture, but when readout or amplifier noise 
is present (and it is exceedingly difficult to avoid), 
there is a penalty for using each additional pixel, 
which may outweigh any advantage gained. It is 
therefore vitally important to understand how speci
fic detector configurations influence the performance 
of each type of wavefront sensor. The key parameter 
in comparing wavefront sensor performance is the 
signal-to-noise ratio. The number of counted photo-
electrons,  , is equal to  where  is the 
average number of photons available to the wave-
front sensor per subaperture measurement, b is the 
fraction of light used in making wavefront tilt mea
surements on each axis,  is the quantum efficiency of 
the detectors, and  is the probability of detection. 
To standardize the comparison between different 
wavefront sensor configurations, it is assumed that 
CCD detectors are used throughout, so that  is 
constant. The signal-to-noise ratio for each tilt mea
surement axis is then 

where n = available photon count per subaperture 
=  The fraction of light,  used in each mea
surement may be due to intensity division using a 
beam splitter, to spatial division using a fixed grating, 
or to time division using a chopper. Similarly, the 
detector pixel readouts, m, in each measurement 
may occur in either space or time. The effects of 
detector noise are best conveyed through specific 
examples. The performance of four types of shearing 
interferometer will be compared to four types of 

 sensor, using realistic models and 
taking care to account properly for every photon. 

Four detector configurations used in shearing 
interferometers are shown in figure 9.12. The first 
two employ temporal modulation. The optical 

(9.50) 
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(a) Configuration  
temporal modulation 

2 detector arrays 
(may be combined) 

2 cells per subaperture, 
4 (serial) samples per 
cell per measurement. 

(b) Configuration  
temporal modulation 

4 detector arrays 
(may be combined) 

4 cells per subaperture, 
4 (serial) samples per 
cell per measurement. 

(c) Configuration  
spatial modulation 

2 detector arrays with binning 

8 cells per subaperture, 
1 sample per cell per 
measurement. 

(d) Configuration  
spatial modulation 

 cells per subaperture 
 sample per cell per 

measurement 

Figure  Shearing interferometer detector configurations. The shaded areas 
represent one subaperture of the wavefront sensor. 

beam is split into two paths by the beam splitter BS. 
Rotating gratings Gx and Gy in the  and y-

 paths produce modulated, sheared signals that 
are detected by arrays Dx and Dy that contain one 
detector pixel for each subaperture. In configuration 

 only the light transmitted by the gratings is 
measured. When using a Ronchi grating, the average 
light reaching each detector is therefore 
1/2 x 1/2 = 1/4 of the input intensity. To measure 
the phase of the temporal modulation produced by 

grating rotation, at least three, and conventionally 
four, samples are required per cycle. For the present 
comparison, it is assumed that phase is computed 
using a four-bin algorithm (see section 5.4.3), requir
ing the single detector to be read out four times in 
sequence for each measurement. For this configura
tion, therefore, b = 1/4 and m = 4 in equation (9.50). 

The second shearing interferometer configuration, 
SI-2, is similar, except that the radial gratings have 
reflecting lines and a second set of detectors is used, 
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so that none of the incident light is lost. In this case, 
half of the incident light is used for slope measure
ment on each axis, so b = 1/2, and because there are 
now two pixels per subaperture, the number of read
outs per measurement  = 8. 

The third and fourth shearing interferometer con
figurations depict spatially modulated sensors, in 
which the gratings are stationary. The configuration 
shown in  splits the beam into separate x and y 
paths, each  a 4 x 4 pixel detector array. Using 
phase gratings with a transmission of near unity, half 
the light reaches each detector, so b  1/2. The wave-
front phase is measured using a four-bin algorithm 
requiring four pixels per subaperture,  m = 4. The 
pixels in the direction orthogonal to the shear are 
summed on the CCD chips before readout, in a pro
cess known as "binning," to eliminate any additional 
noise. 

In configuration  a single two-dimensional 
(crossed) phase grating and a single detector array 
is used. All of the light reaches the detector array, 
so b =  Although each wavefront slope measure
ment requires only four samples, the full  
array of pixels must be read out each time because 
the detector is shared between the x and y channels, 
so it is not possible to perform on-chip binning. The 
value of m in this case is 16. These signal-to-noise 
ratio factors are summarized in table 9.2, along 
with similar data for four types of  
sensor. 

Detector configurations for Shack-Hartmann sen
sors are shown in figure  The simplest of these, 

 employs a quad cell with  pixels for each 
subaperture, giving b = 1 and  = 4. To improve 
dynamic range (see section 5.3.1), the configuration 
SH-2 employs a 4 x 4 array in each subaperture, 
resulting in b = 1 and m = 16. As with the corre
sponding shearing interferometer configuration, on-
chip binning is not possible because the detector 
array is shared between the x and y channels: the 
one-dimensional summing necessary to compute the 
x and y slopes must therefore be performed after all 

pixels are read out. As a consequence of the large 
value of  the performance of the 4 x 4 configura
tion is extremely sensitive to pixel readout noise. 

The last two Shack-Hartmann configurations split 
the optical path into two sections, with separate x 
and y detector arrays. The reason for using this con
figuration, as will become apparent, is that better 
performance can be obtained with noisy detectors, 
by using on-chip binning. The configuration shown 
in SH-3 employs two-element arrays  in each 
x and y subaperture, with on-chip binning, giving 
6 = 1 / 2 and  = 2. To obtain a larger dynamic 
range, configuration SH-4 employs four-element sub
aperture arrays, also with on-chip binning, giving 
b = 1/2 and m = 4. 

Performance factors of these eight different wave-
front sensor configurations, computed using equa
tions (9.43) through (9.50), are compared in figures 
9.14 through 9.16. The shear used in the shearing 
interferometers has been adjusted to the optimum 
value. In each case, the wavefront measurement 
error due to photon and detector noise is expressed 
as a Strehl ratio using the relation 5 =  

The conditions are: 

Wavelength 
Turbulence parameter 
Subaperture size 
Detector readout noise 

Reference source size 
Available photon count 

 =  
  0.15 m 

d   
e = 2 electrons per 
pixel 
6 =   
N' = 10-500 
counts per subaper
ture 

In figure 9.14, the Strehl ratio for each type of 
sensor is shown as a function of available photon 
count per subaperture,  for two reference source 
sizes, 0 and  In figure 9.15, Strehl ratios are 
plotted against the reference source angular diameter, 
6, for two values of available photon count, 100 and 

Table 9.2 Wavefront Sensor Detector Configurations 

Intensity Ratio b to Subaperture Array Readouts per Detector Noise 
Sensor Type x or y Detector Size (pixels) Measurement Factor, m 

Shearing interferometers 
 temporal, 2 arrays 0.25 1 4 4 
 temporal, 4 arrays 0.5 2 4 8 
 spatial, 2 arrays 0.5 1 x 4 1 4 
 spatial, 1 array 1.0 4 x 4 1 16 

 sensors 
 one array,  1.0 2 x 2 1 4 

SH-2 one array,   4 x 4 1 16 
SH-3 two arrays, 1 x 2 0.5 1 x 2 1 2 
SH-4 two arrays, 1 x 4 0.5 1 x 4 1 4 
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(a) Configuration  
quad cell detector 1 detector array 

total: 4 cells 
per subaperture 

(b) Configuration SH-2 
 detector 

1 detector array 
total: 16 cells 
per subaperture 

(c) Configuration SH-3 
two detector arrays 
with  binning 

2 detector arrays 

total: 4 cells 
per subaperture 

(d) Configuration SH-4 
two detector arrays 
with  binning 

 

2 detector arrays 

total: 8 cells 
per subaperture 

Figure  Shack-Hartmann sensor detector configurations. The shaded areas re
present one subaperture of the wavefront sensor. HS,  screen. 

500. These charts show that the performance differ
ences due to detector configuration within each type 
of sensor are far greater than any intrinsic difference 
between the shearing interferometer and the Shack-
Hartmann sensors themselves. 

The best-performing shearing interferometer for 
the specified detector readout noise of two electrons 
per pixel is  a spatially modulated configuration 
using a single detector array. The best-performing 
Shack-Hartmann sensor for the same conditions is 
the simplest configuration,  which uses a single 

array of quad cells. This sensor has a linear tilt-mea
surement range of less than ± 1 wave per subaperture. 
A larger dynamic range is obtained with SH-2, which 
employs  pixels per subaperture. Shack-
Hartmann configurations SH-3 and SH-4 are useful 
when the detector and background noise is high, over 
20 electrons  per pixel; this can occur when high 
readout rates are employed. 

Figure  shows a direct comparison of the two 
"best" sensors of each type when the available 
photon count and reference size are varied. There is 



Shearing Interferometer, Point Source 

Available Photons per  

Shearing Interferon!., Beacon   

Available Photons per  

 Point Source 

Available Photons per Subaperture Available Photons per Subaperture 

Conditions: sensor wavelength  = 0.55  turbulence parameter  =  m 
subaperture size d =  detector read noise = 2 e per pixel. 

Figure  Wavefront sensor performance comparison 1: photon count. Measurement error (Strehl ratio) as 
a function of the available photon count per subaperture at the entrance of the wavefront sensor, for reference 
source diameters of 0 and  These charts take into account the specific optical and detector config
urations used in each type of sensor. 



Shearing Interferometer, n = 500 

5 10 15 

  microradians 

5 10 15 

Beacon diameter, microradians 

5 10 15 

Beacon diameter, microradians Beacon diameter, microradians 

Conditions: sensor wavelength  = 0.55  turbulence parameter  =  m 
subaperture size d = 0.2 m, detector read noise = 2 e per pixel. 

Figure  Wavefront sensor performance comparison 2: beacon size. Effect of beacon angular size on 
measurement error (Strehl ratio), for available photon counts of 100 and 500 per subaperture per measure
ment. 



SI & S-H  Point Source SI & S-H, Beacon size   

Available Photons   

SI &  Comparison, n =  

Beacon  microradians 

Conditions: sensor wavelength X = 0.55  turbulence parameter  =   
subaperture size d = 0.2 m, detector read noise = 2 e per pixel. 

Figure  Wavefront sensor performance comparison 3: SI and SH. Direct comparison of shearing inter
ferometer and  sensors under identical operating conditions. 

Available Photons per Subaperture 

SI & S-H Comparison, n = 500 
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little difference at large photon counts. For photon-
starved conditions (N' < 100), the shearing interfe
rometer gives slightly better performance with unre
solved reference sources, but when the source size 
exceeds about  the  has a 
smaller random measurement error. The perfor
mance of the SI is degraded with large reference 
sources because the shear must be reduced to main
tain contrast. Optimizing the shear-gamma product, 
as outlined earlier, is not sufficient to compensate this 
loss of performance. Adaptive optics systems 
employing laser beacons must be capable of operat
ing with reference source diameters in the range of 5-

 For these relatively small sources, either 
type of wavefront sensor is suitable. 

The importance of CCD read noise on the perfor
mance of Shack-Hartmann sensors is brought into 
sharp focus in figure 9.17, which shows the Strehl 
ratio of three SH configurations as a function of 
available photon count per subaperture, with detec
tor read noise levels of 0, 5, and 10 electrons  per 
pixel. The difference in performance, especially at 
photon counts below 500, is startling. These curves 
show, beyond any doubt, that detector efficiency is 
the most important factor in wavefront sensor per
formance, far outweighing any differences between 
the types of sensor. 

9.4.3 Temporal Errors 

Temporal errors are caused by the inability of adap
tive optics systems to respond instantly to changes in 
the wavefront. Any time delay between the measure
ment and correction of a wavefront disturbance 
results in a temporal error. The amount of error 
depends on the relation between the dynamics of 
the turbulence and the response time of the adaptive 
optics system. The contributing factors include trans
portation of turbulent layers by winds (the wind vec
tors usually vary with height), together with the 
motion or evolution of the turbulence itself. In adap
tive compensation systems, the main time delay is 
usually the integration time of the servo control 
loop, during which the wavefront sensor collects 
photons from the reference source. To this must be 
added pure time delays, such as those due to reading 
out a CCD detector and processing the wavefront 
data. 

In principle, the effects of time delays can be com
pensated by predicting what the wavefront structure 
will be at the time it is compensated. The correlation 
of atmospherically distorted wavefronts decays with 
time, the time constant typically being between 1 and 
10 ms, depending on the turbulence strength, wind 
speed, and wavelength. The simplest method of pre
diction is simply to use the current value of the wave-
front, with a decay factor, as the best estimate of the 
next sample. This is the method generally employed 
in adaptive optics systems, using a (temporal) inte
grator or low-pass filter. It implies a wavefront sam

pling rate considerably higher than the integration 
time, in order to ensure the stability of the feedback 
loop. 

Power spectra for the wavefront phase and overall 
tilt errors due to atmospheric turbulence have been 
developed in section 9.2.5. To reduce these wavefront 
disturbances to a negligible level, the temporal 
response of the compensation system must be com
parable to the turbulence spectrum. The frequency 
response of a closed-loop adaptive optics system is 
limited primarily by the sampling rate of the wave-
front sensor, which is typically between 1 and 10 
kHz, being usually determined by the frame rate of 
the photon detector. To ensure the stability of the 
feedback loop, the closed-loop bandwidth cannot 
exceed about 1/6 of the sampling rate and is more 
often about 1/10. The servo bandwidth determines 
the effective integration time during which photons 
are collected from the reference source. The optimum 
integration time (minimizing the total error) is found 
by trading off the measurement error, due to the 
collection of a finite number of photons, against the 
temporal error, due to a finite bandwidth. Most 
astronomical adaptive optics systems are photon 
starved, so their optimal temporal bandwidth is 
usually lower than that of the wavefront distur
bances, resulting in significant errors.  addition, 
there are always fixed delays in the feedback loop 
caused by data transfer and processing times. In 
order to optimize the integration time, it is necessary 
to determine the  errors caused by (1) finite 
correction bandwidth and (2) pure time delays. 

Errors Due to Correction Bandwidth 

Greenwood [1977] solved the first problem by finding 
the residual wavefront error in terms of the ratio of 
the effective bandwidth of the turbulence to that of 
the correction servo. If the servo response is defined 
by the complex function  then the power 
rejected by the filter may be expressed as the response 

 —  For an input with power spectrum  
the rejected or uncorrected power is 

For a servo with a single time constant   RC, 
where R is the resistance in ohms and C is the capa
citance in farads, the response function is 

(9.51) 

(9.52) 

 = l/2nRC. 
Using the asymptotic turbulence power spectrum, 

equation (9.18), for  and performing the inte
gration of equation (9.51), the wavefront temporal 
error may be expressed in the form 
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Conditions: 

Sensor       5 
 ence   ro =  

Subaperture size, m d = 0.2 
Beacon diameter,  8 = 10 

Available Photons per Measurement 

CCD read noise zero 
-  CCD read noise 5 electrons  per  

 CCD read noise 10 electrons rms per pixel 

Figure 9.1 7 Effect of detector read noise on the performance of three configurations of the  
wavefront sensor, as a function of the available photon count per subaperture at the input of the sensor. The 
performance is based on the wavefront slope measurement error per axis, converted to Strehl ratio. 
Configuration  employs  detector arrays for each subaperture, SH-2 employs  detector arrays, 
and SH-4 employs two 1 x 4 arrys with binning, as shown in figure 9.13. With no photon noise, SH-1 and SH-
2 have similar performance, but the additional pixels in SH-2 degrade its performance when read noise is 
present. The SH-4 has worse performance, in all cases, because the available photon flux is shared between 
two detector arrays. 

  the servo bandwidth of the system. In the 
case of a simple  network with the bandwidth 
defined at the half-power point, the value of  is  
At the other extreme, a servo bandwidth having an 
infinitely sharp cutoff at  produces a  of 

 
The   is a characteristic frequency of 

the atmospheric turbulence, known as the 
Greenwood frequency, and is given by 

(9.54) 

The value   is determined from the turbulence 
and wind profiles of the atmosphere, enabling the 
error induced by any servo bandwidth to be calcu
lated. In the special case of a single turbulent layer 
with wind velocity v, the Greenwood frequency may 
be expressed as 

(9.55) 
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Several simplifying assumptions have been made 
in deriving these equations. The temporal frequency 
spectrum is assumed to have a constant —8/3 power 
law, ignoring the low-frequency breaks due to the 
removal of average phase and tilt. This is justified 
on the basis that these breaks occur at frequencies 
much lower than those used for controlling the sub-
apertures. The expression for temporal wavefront 
error using the Greenwood frequency [equation 
(9.53)] does not account for time delays in the 
back loop, nor for the averaging effects of finite sub-
aperture size. In other words, it assumes that the 
wavefront is measured at a single instant of time, in 
subapertures comparable in size to  The wavefront 
error caused by time delays can be estimated sepa
rately and added to the bandwidth error, as discussed 
later. The effect of using subapertures significantly 
larger than  is to reduce the temporal component 
of the error and to increase the fitting error. 

Equation (9.53) therefore tends to overestimate 
the temporal error when  >  

Errors Due to Pure Time Delay 

Pure time delays produce different effects from those 
of an integrator or low-pass filter; the phase shift is 
linear with frequency and the spectral content is 
unchanged by the delay. Such propagation delays 
occur when data are temporarily stored during con
version from one format to another (analog to digital 
or parallel to serial), or during processing in a serial 
computer. In an adaptive optics system, a fixed time 
delay in the correction signal produces a phase shift 
that increases with frequency, progressively degrad
ing the compensation of high-frequency wavefront 
errors. Errors due to time delays in the feedback 
loop must be added to those produced by the 
width limitation previously discussed. 

Fried [1990] and Karr [1991] independently ana
lyzed the effect of pure time delays in an adaptive 
optics feedback  They considered the case of a 
turbulence-degraded wavefront with  
statistics, measured at some instant of time and cor
rected after a delay of  the correction being held 
until the next update. They showed that the error can 
be expressed as 

(9.56) 

where  is a time constant related to the Greenwood 
frequency by  =  . The wavefront error due 
to a time delay  is then 

(9.57) 

Welsh [1991] and Harrington and Welsh [1994] 
have developed a frequency-domain analysis that 
predicts the performance of an adaptive optical sys
tem that has an arbitrary temporal response. This 
analysis takes into account the removal of aperture-
averaged phase and tilt, as well as the spatial and 

temporal averaging due to subaperture size and the 
finite integration time of the wavefront sensor. They 
use a von  spectrum for the index of refrac
tion fluctuations, rather than the Kolmogorov spec
trum used by Greenwood and Fried. The main 
difference between these spectra occurs at low fre
quencies, where the von Karman spectrum flattens 
out, generally reducing the temporal errors in com
parison with the Kolmogorov spectrum, which con
tinues to rise as the frequency is reduced. Use of the 
von Karman spectrum in the model reduces the pre
dicted errors for delay times normally encountered in 
adaptive optics systems by about 30%. Harrington 
and Welsh found that accounting for overall piston 
and tilt removal has no significant effect at delay 
times of   which is the case for most 
adaptive optics systems. 

As the time delay between measurement and cor
rection increases, the measured wavefront data 
becomes less descriptive of the actual wavefront, 
especially at high frequencies. Under these condi
tions, the best correction is therefore obtained by 
discarding the high frequencies. This is exactly the 
effect of finite integration time in the wavefront sen
sor, which acts as a low-pass temporal filter, remov
ing some of the high-frequency power in the 
turbulence spectrum. 

Time Lines for Adaptive Optics 

The time lines of adaptive optics compensation are 
determined largely by the system architecture, and, in 
particular, by whether serial or parallel data proces
sing is employed. The first large-aperture adaptive 
optics system (the CIS) employed parallel analog 
processing to achieve the required bandwidth. 
Current systems employ digital processing exclu
sively, using a combination of serial and parallel 
operations to minimize the processing time. The 
longest time delays usually occur during photon 
detection and wavefront reconstruction. 

Time lines are shown in figures 9.18-9.20 for three 
types of adaptive optics system. Figure 9.18 shows 
the time line for a wavefront sensor using an array 
of photon-counting detectors, the outputs of which 
are read out in parallel. A sensor of this type using 

 was employed in Itek's CIS [Hardy 
1993]. Avalanche photodiodes are now preferred for 
photon counting in wavefront sensors because of 
their higher quantum efficiency and similar freedom 
from noise [Graves et  1994, Roddier et at. 1994]. 
Photon-counting detectors such as APDs have the 
advantage that that there is no readout noise penalty, 
as there is with CCDs, so the counts may be accumu
lated over periods of any length. This gives photon-
counting detectors great flexibility, as they are suita
ble for continuous reference sources (which necessi
tate high readout rate) and also for pulsed sources, 
such as laser beacons, in which the readout is gated 
and synchronized to the pulse rate. 



Photon integration 

Parallel readouts 

 computation 

Wavefront reconstruction 

CCD expose 

Frame transfer 

CCD read 

Sample and hold 

Compute gradients 
and Reconstruct 

Figure  Time line for 
wavefront sensing with a 

natural star, using a parallel 
detector, such as an APD. 

Figure  Time line for 
wavefront sensing with a 

natural star, using a frame-
transfer CCD. In this 

example, the time delay 
between the average expo
sure and the availability of 

the reconstructed wavefront 
is about 2 frame periods. 

Range gate 

Frame transfer 

CCD read 

Sample and hold 

Compute gradients 
and Reconstruct 

Figure 9.20 Time line for 
wavefront sensing with a 

pulsed laser beacon, using a 
frame-transfer CCD, which 

is read out for each pulse. 
The delay between the arri

val of each pulse and the 
availability of the recon

structed wavefront is about 
2 pulse intervals. The max

imum pulse rate in this case 
is equal to the frame  
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The  slope computation and wavefront 
reconstruction are usually implemented with digital 
processors in which the propagation delays are in the 
microsecond range. With parallel detectors and data-
processing architecture, the delay time between the 
sensing of a wavefront error and the application of 
the correction signal to the servo system driving the 
wavefront corrector can be as small as  
enabling a very fast correction loop (and small time 
delay errors). For astronomical adaptive optics, the 
integration time of the control system is usually in the 
range of about   to optimize the performance 
with available reference sources. 

Figure 9.19 illustrates the timing relationships in 
an adaptive optics system employing a frame-transfer 
CCD detector and a digital processor, when a con
tinuous reference source is used. The key parameter 
in this type of system is the frame time, t(, which 
determines the measurement rate of the wavefront 
sensor. The frame time is basically the number of 
pixels per port divided by the pixel readout rate per 
port. High-frame-rate CCD detectors have been 
developed for wavefront sensing using multiple out
put ports to minimize the frame time. In any case, the 
time required to read out the CCD, typically 0.5-
1 ms, is the largest part of the frame time. The 
CCD exposure time  and the time required to trans
fer the charge packets from the exposure area to the 
storage area for readout must both fit within the 
basic frame time. The transfer time is usually on 
the order of   and can often be neglected. 

Calibration of the detector outputs and the com
putation of wavefront slopes are implemented with a 
pipeline processor that has a small propagation 
delay. Wavefront reconstruction is usually performed 
using a parallel processor. The delay between the 
average exposure and the availability of the recon
structed wavefront is typically about 2 frame periods. 
The average time delay between sensing a wavefront 
error with a CCD detector and applying the correc
tion to the servo system is therefore in the region of 

 ms, depending on the frame rate. 
It should be recalled that when a CCD detector is 

used with a natural (continuous) reference source, the 
detector collects photons continuously (except for the 
small frame transfer time), independently of its read
out rate. The integration time relevant to the photon 
count and signal-to-noise ratio is determined by the 
bandwidth of the filter in the control loop, as 
described in section 9.4.2, and not by the CCD 
frame rate. The frame rate (or its reciprocal, the 
frame time) is one component of the total time delay. 

The time line for the third type of system, shown 
in figure 9.20, is similar to the previous one, modified 
to show operation with pulsed reference sources. The 
pulse rates used to generate laser beacons in adaptive 
optics vary over a wide range, from a few hertz with 
dye lasers up to more than 30 kHz with copper vapor 
lasers. To achieve continuous closed-loop compensa
tion a pulse rate of 1 kHz or more is required. 

Another requirement is the capability to separate 
successive pulses by range gating, especially for 
sodium beacons, where the return must be separated 
from Rayleigh scatter. To achieve this requirement, 
lower pulse rates (less than a few kilohertz) are pre
ferred. A good compromise for these conflicting 
requirements is a pulse rate of about 1 kHz, especially 
as this happens to be an achievable frame rate in 
CCD sensors. Higher pulse rates can be handled in 
the same way as continuous reference sources, as far 
as the detector is concerned. 

In figure 9.20, the pulse rate is equal to the CCD 
frame rate, with the range gate occurring just before 
the frame transfer, although, in fact, it can occur 
anywhere in the frame time. The detector frame 
rate is assumed to satisfy the requirement for contin
uous closed-loop operation. A higher pulse rate can 
be accommodated by integrating more pulses on the 
CCD, maintaining the same frame rate. The accumu
lated pulses are read out once per frame. From this 
point on, operation is similar to that shown in the 
previous figure. The average time delay in the wave-
front sensor using pulsed operation is seen to be very 
similar to that using continuous operation, nominally 
around 2 frame times of the CCD camera, amounting 
to 1 or 2 ms. Again, the photon integration time is 
determined by the characteristics of the low-pass fil
ter in the control loop. The number of photoelectrons 
collected per measurement is the average number of 
events per pulse multiplied by the number of pulses 
per integration time. 

9.4.4 Wavefront Reconstruction Errors 

Error Propagation 

Wavefront sensors making zonal measurements 
require a wavefront reconstruction process to convert 
the individual measurements into a spatially contin
uous representation of the wavefront. The error pro
pagation of this process is defined as the ratio of the 
mean-square error of the reconstructed array to that 
of the mean-square error of the measured slope vec
tors. When wavefront reconstruction is modeled sim
ply as determining the values of a two-dimensional 
array of points connected by linear slope vectors, 
then the value of the error propagator is found to 
depend on the exact geometrical relation between 
the slope vectors and the points. As discussed in sec
tion 8.2, a reconstructor using displaced x and y slope 
vectors (network 1) appears to have significantly 
smaller error propagation than one using superim
posed vectors (network 2). This difference was 
resolved in section 8.6, where it was shown that 
when the reconstruction process is correctly modeled, 
by estimating the slopes and wavefront over the full 
area of the aperture, the dependence on slope vector 
geometry vanishes. In other words, the differences in 
error propagation are in the simplified reconstruction 
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models, rather than in the systems they are supposed 
to represent. 

The error propagator for the reconstruction of 
wavefront slope measurements has a value on the 
order of unity and increases as the logarithm of the 
number of subapertures in the array. As shown in 
section 8.2.4, it can be expressed in the form 

(9.58) 

where  

 = mean-square error of reconstructed 
wavefront 

ffp = mean-square error of measured 
subaperture tilts in one dimension 

N2 = number of measurement subapertures 
  = constants 

In the case of curvature sensors, the error propagator 
is proportional to the square of the number of ele
ments, producing significant errors in large arrays. 

Checkerboard Error 

A different type of error occurs in wavefront sensors 
in which  and  slope measurements are made 
in congruent subapertures (network 2). Shack-

 sensors usually (but not necessarily) 
employ this geometry. In the reconstruction process, 
this scheme results in two separate networks of inter
connected points, which may have different piston 
components [Herrmann 1980]. The problem is that 
turbulence-degraded wavefronts really do contain a 
checkerboard component, which, in this case, is not 
sensed and therefore cannot be extracted from the 
slope data. In principle, the checkerboard component 
could be determined from a knowledge of the wave-
front statistics, as suggested by Wallner [1983]. 

Differences in the relative phase of the two net
works show up as a "waffle" pattern in the recon
structed wavefront [Wild, Kibblewhite. Fang Shi, et 

 1994; Wild, Kibblewhite, and Scor 1994]. The 
problem may be avoided completely by making the 
x and y slope measurements in displaced subaper
tures (network 1), resulting in a single network of 
connected points. If this is not possible, the best 
approach is simply to set the average values of the 
two networks to zero. The error introduced by doing 
this is usually negligible. Wallner [1985] has shown 
that for wavefronts with a Kolmogorov spatial spec
trum, the mean-square error due to the checkerboard 
component has the same  dependence as the 
fitting error, but with a much smaller coefficient. If 
the average wavefront values of the two networks are 
set to zero, the resulting mean-square error is given 
by 

(9.59) 

The coefficient  depends on the overall size of the 
reconstruction array. For a 3 x 3 array, it has a value 
of 0.3 rad2. For arrays larger than  when edge 
effects are less important,  varies inversely with the 
total number of subapertures and is closely approxi
mated by 

(9.60) 

where n is the number of reconstructed points across 
the array. In the case of a 10 x 10 array, the value of 

 is 0.020 rad2. In comparison, the wavefront fitting 
error coefficient for most  mirrors has a 
value of about  = 0.3 rad2. Therefore, with normal 
turbulence, the checkerboard problem can be solved, 
for all practical purposes, by setting the piston values 
of the two networks to zero. 

9.4.5 Wavefront Fitting Error 

The wavefront fitting error has a special role in adap
tive optics, as it sets a fundamental limit to system 
performance. No matter how bright the reference 
source, how efficient the wavefront sensor, or how 
small the time delays, the image quality is determined 
ultimately by the ability of the correction device to 
flatten the wavefront. The fitting error is inversely 
proportional to the number of degrees of freedom 
in the wavefront compensator; in most cases, the 
number of correction zones or modes is built into 
the hardware design and is not easily changed. The 
complexity of an adaptive optics system is roughly 
proportional to the number of actuators or degrees 
of freedom, given by  = (D/d) . As a conse
quence, the choice of  or of subaperture size d, 
is one of the most critical decisions to be made in the 
design of an adaptive optics system, a choice that 
governs both its performance and its total cost. 

Fitting errors for several types of zonal wavefront 
correctors were derived by Hudgin [1977a]. For cor
rection of Kolmogorov turbulence, the general form 
of the mean-square fitting error is 

(9.61) 

where 

d = subaperture size 
  turbulence coherence length 
 = fitting error coefficient, dependent on the 

influence function of the corrector 

It is noted that  increases as the 6/5 power of 
wavelength, so that the fitting error for a fixed sub
aperture size decreases at longer wavelengths. 

Values of  for various types of wavefront cor
rector are shown in table 9.3. The piston-only func
tion is the simplest type of correction and, not 
surprisingly, has the largest value of  showing 
that it is very inefficient on a  basis. 
With correction devices such as liquid crystals, this 
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Table 9.3 Wavefront Fitting Error Coefficients 

inefficiency is compensated by the fact that it is eco
nomically feasible to use a large number of segments. 
To equalize the fitting errors for different types of 
actuator, equation (9.61) shows that the number of 
zones required must be in the ratio 

 =  To obtain the same error as 
that of a device with a Gaussian influence function, a 
piston-only corrector therefore requires   

or 7.3 times the number of zones. 
Segmented mirrors usually employ piston + tilt 

functions, having 3 degrees of freedom (three actua
tors) per segment. The fitting error coefficient, based 
on segment size, is much smaller than that of a con
tinuous-plate mirror. However, it turns out that a 
piston + tilt segmented mirror requires a larger 
total number of actuators to obtain the same residual 
wavefront error. The ratio of the number of subaper-
tures required is     

= 0.435. Multiplying this by three actuators per sub-
aperture, a factor of 1.3 is obtained. A segmented 
mirror therefore requires 30% more actuators than 
a continuous-plate mirror to obtain the same fitting 
error. 

The influence functions of continuous-plate mir
rors can be controlled by changing the relative stiff
ness of the faceplate and the actuators, as explained 
in section 6.4. When the actuator stiffness is higher 
than that of the faceplate, the influence function 
tends to be "super-Gaussian" (that is, having an 
exponent greater than 2), leading to a compact 
shape in which the response is near zero at the adja
cent actuator. This shape minimizes the cross-cou
pling between adjacent zones, simplifying the 
control algorithm. However, as can be seen from 
table 9.3, the fitting error coefficient tends to be 
greater than that for a strictly Gaussian function. 

When the actuator stiffness is less than that of the 
faceplate, the influence function gets broader and 
assumes a Gaussian (or even a sub-Gaussian) 
shape, having a somewhat lower fitting error coeffi
cient. While this can lead to a more efficient 

 mirror in terms of correcting wavefront error, it 
requires a  actuator control matrix in which all 
overlapping influence functions are taken into 
account. 

Fitting errors have been evaluated earlier in terms 
of the mean-square wavefront error. The effect of 
small errors (less than A/10) is to reduce the normal

ized peak intensity (Strehl ratio) of the image. The 
effects of larger wavefront errors, such as would be 
encountered in an adaptive optics system using par
tial compensation, were investigated in section 4.4. 
The parameter varied was the ratio of the subaper-
ture size,  to the turbulence parameter  To sum
marize these results for images with partial zonal 
compensation, it was shown that: 

• The image structure and Strehl ratio are 
determined entirely by the  ratio. 

• The radius of the image core stays close to 
its diffraction-limited size, even when the 
Strehl ratio is reduced to 0.1, corresponding 
to  = 3.4. At this level of error, there is 
still a large ratio between the peak of the 
image core and the surrounding halo. 

• When  reaches 3.8, the peak contrast 
drops rapidly, and for larger values the 
core is buried in the halo, the diameter of 
which is determined by  

9.4.6 Tracking Errors 

When laser beacons are used as wavefront reference 
sources, a fixed guide star is necessary to stabilize the 
angular position of the image. The stabilization is 
imperfect because of random fluctuations due to the 
angular offset between the science object and the 
fixed guide star. The tilt component of angular ani-
soplanatism has been analyzed in section 7.4, in 
which it was shown that the position error from 
this source varies monotonically with isoplanatic 
angle 6 and is independent of wavelength, although 
it depends on the atmospheric turbulence structure 
and telescope diameter in a complicated way. Image 
stabilization is necessary for all astronomical obser
vations, except for those requiring very short expo
sures of less than about  The need for fixed 
guide stars is the main factor determining the sky 
coverage of adaptive optics systems. 

The basic expressions for anisoplanatic tilt error 
developed by Sasiela [1988] using the transverse filter
ing approach are given in equations (7.53) and (7.54). 
These equations involve a series of terms in ascending 
powers of 9 and D. It is shown in section 7.4 that at 
least five terms are needed to obtain reliable predic-

Subaperture Influence Function Actuators per Subaperture Constant  (rad2) 

Piston only 1 1.26 
Piston + tilt 3 0.14 
Continuous-plate (super-Gaussian) 1 0.28-0.34 
Pyramid 1 0.28 
Gaussian 1 0.24 
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tion of tilt errors over the range of parameters used in 
astronomical adaptive optics, especially for observa
tions at  wavelengths. 

Although the anisoplanatic tilt error produced by 
a given atmospheric turbulence profile is independent 
of wavelength, its effect on the observed image must 
be assessed in relation to the Airy disk, the radius of 
which is directly proportional to wavelength. It was 
shown in section 4.5.3 (equation 4.66) that there is a 
direct relation between the tilt error normalized to 
the radius of the Airy disk and the resulting reduction 
in peak intensity. For example, an  angular tilt 
error of 0.18 Airy radius reduces the peak intensity 
by a factor of 0.8. As the wavelength increases, the 
allowable tilt error and, consequently, the isoplanatic 
angle 0 also increase. Each guide star therefore serves 
a larger area of sky at longer observing wavelengths 
(even if the star position sensor operates in the visible 
spectrum), resulting in better sky coverage for IR 
observations. As a separate matter, it should be 
noted that tracking the guide star at IR wavelengths 
is  advantageous, because of the high radiation of 
many IR stars and also because the star may be 
within the large isoplanatic patch of the laser beacon 
at IR wavelengths. 

The overall tilt component of turbulence is usually 
corrected separately from the higher order wavefront 
errors, using a two-axis tracking mirror to eliminate 
image motion. Errors in tracking limit the angular 
resolution of long-exposure images. The exposure 
times of astronomical images are typically much 
longer than the characteristic time scale of atmo
spheric turbulence, so precise image stabilization is 
of vital importance. 

When self-referencing or offset referencing is 
employed, in which the science object itself or a 
nearby star functions as the reference, the overall 
tilt information to drive the tracking mirror is nor
mally extracted from the wavefront sensor (or from 
the reconstructor), so a separate tracking sensor is 
not necessary. A reference source that is bright 
enough to allow measurement of zonal gradients pro
vides adequate signal-to-noise ratio for whole-aper
ture tracking, and the isoplanatic angle for  tilt 
is always larger than that for higher order wavefront 
errors, so for self- and offset-referencing a separate 
tracking sensor is not required. 

In the case of laser beacon systems, a separate 
tracking sensor using a natural star is essential, 
because a beacon launched from the ground cannot 
function as an absolute position reference. Although 
laser beacons can be placed in almost any position in 
the sky, natural stars of sufficient brightness have a 
relatively thin distribution, and so the sky coverage 
of compensated telescopes using laser beacons is 
determined solely by the availability of stars suitable 
for image stabilization. 

The basic errors involved in compensating the 
angular position of an object by tracking an offset 
guide star are: 

 the measurement error of the tracking sensor 
itself, dependent on the signal-to-noise ratio of 
the detector output, the nature of the reference 
source, and the turbulence strength; 

2. the temporal error due to the response time or 
bandwidth of the tilt compensation servo sys
tem; 

3. tilt anisoplanatism, which depends on the angle 
between the science object and the reference 
star, the atmospheric turbulence structure, 
and the observation wavelength. 

Tilt Measurement Errors 

Tracking sensors normally employ a quadrant detec
tor to sense the position of the reference object, simi
lar to one channel of a  sensor. For 
a point reference source, the single-axis mean-square 
angular measurement error in radians squared, from 
equation (5.13), is 

(9.62) 

where 

 = loss factor due to gap between quadrant 
detector elements ( = 1.3-1.5) 

 = signal-to-noise ratio, dependent on 
photon count and detector noise 

 = reference source wavelength, m, 
D = Aperture of tilt sensor, m, 

  effective turbulence parameter at 
reference wavelength, m (can be large if 
reference source is within isoplanatic 
angle) 

The tilt error depends greatly on the diffraction-
limited aperture size, for which two conditions are 
stated. When  > D, the turbulence coherence length 
is larger than the aperture, so the full aperture is near 
diffraction-limited and D appears in the denomina
tor. This is the most favorable condition and obtains 
when the reference star is compensated by the adap
tive optics. This occurs either when dual adaptive 
optics is used, or when an IR guide star is used, in 
which case it may also be compensated by the pri
mary adaptive optics because of the large isoplanatic 
angle at  wavelengths. When  <  which is 
usually the case when the tilt reference source is not 
compensated, the diffraction-limited aperture is lim
ited in size to approximately  which then appears 
in the denominator, resulting in a larger tracking 
error. 



Adaptive Optics Performance Analysis and Optimization 345 

Temporal Error 

The temporal error of the tilt servo depends on the 
bandwidth of the atmospheric tilt fluctuations in rela
tion to that of the tilt correction system. Tyler [1994a] 
has defined a fundamental tracking frequency  
(analogous to the Greenwood   described 
in section 9.4.3), which characterizes the dynamics of 
wavefront tilt. When the tilt is corrected with a first-
order servo having a 3-dB bandwidth   
single-axis mean-square angular error, in radians 
squared, can be expressed as 

The tracking frequency  is normalized so that 
when    one-axis  jitter is equal to 

 

Anisoplanatic Error 

The tilt anisoplanatic error  has been analyzed in 
section 7.4, where it was shown that for field angles 
up to about  where D is the telescope aper
ture in meters, the single-axis error variance (in 
radians squared) due to angular anisoplanatism is 

Total Tracking Error 

The total mean-square tracking error is given by the 
sum of the individual variances 

      

Tracking error may be expressed either as an 
angular tilt error  (radians of angle), or as the 
equivalent wavefront error  over an aperture D 
(radians of phase). The relationship is 

9.5 Performance of Adaptive Optics 
Systems Using Natural Stars 

 Error Model 

The mean-square wavefront (phase) error of an 
adaptive optics system may be expressed as the sum 
of individual error variances in the form 

  ffM     +    +  (9.71) 

where 

CTM = wavefront sensor measurement error, 
equation (9.43) or (9.44) 

 = temporal error, equations (9.53) and (9.57) 
 = wavefront fitting error, equation (9.61) 
 = angular anisoplanatic error, equation (9.44) 
 = atmospheric dispersion (multispectral) 

error, equation (9.41) 
CTTR  phase error due to residual overall tilt. 

This formulation assumes that the error components 
are completely independent, which may not be 
strictly true. Straightforward addition of the error 
variances tends to overestimate the total wavefront 
error, which is justified in the design of adaptive 
optics systems because it tends to compensate for 
small errors that are neglected. The wavefront recon
struction errors, equations (9.58) and (9.59), have 
been omitted deliberately as they are negligible with 
wavefront slope reconstructors of practical size. 

In adaptive optics systems, wavefront errors are 
compensated by applying negative feedback to null 
the residual errors. Implicit in equation (9.71) is the 
assumption that the feedback loop performs per
fectly, leaving only these residual errors. In the 
first-order feedback loops used in most adaptive 
optics systems, each loop has a large, but not infinite, 
gain at zero frequency, so steady-state errors are not 
reduced to zero. This has no importance for compen
sating turbulence, which has zero mean value, but it 
implies that optical alignment errors such as defocus 
are not completely eliminated by the feedback. 

In the case of adaptive optics systems using nat
ural stars, the same reference star is normally used to 
measure both the wavefront and the overall tilt. The 
photons used to measure the x and y tilt errors are 
collected using the whole telescope aperture, which is 
usually several meters in diameter. The signal-to-
noise ratio of the tilt sensor is consequently much 

where  =  

(9.70) 

where 

 =   (9.64) 
 = tracking frequency constant 

= 0.331 for average gradient tilt 
D = tracking aperture, m, 
'/. = tracking reference wavelength, m 
 = zenith angle 
 = second-order wind velocity moment 

=    (9.65) 

v = turbulence weighted wind velocity 

(9.63) 

where 

where 

 - second-order turbulence moment 
6 — angular separation 

For a small separation angle 6, the mean-square 
wavefront phase error may be approximated as 

(9.66) 

(9.67) 

(9.68) 
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greater than that of the wavefront sensor, which col
lects photons over much smaller subapertures that 
typically span less than half a meter. In this case, 
the overall tilt errors are negligible compared with 
the wavefront errors. 

It is shown in section 9.5.4 that to maximize per
formance with faint reference stars, the subaperture 
size should be at least  m, and that good perfor
mance is obtained over the wide range of operating 
conditions typical of astronomical adaptive optics, 
using subapertures between 0.2 and 0.4 m. In the fol
lowing performance calculations, a subaperture size 
of 0.2 m is employed. The importance of optimizing 
the photon integration time is discussed in section 
9.5.3. The optimal integration time is the value that 
minimizes the total time-sensitive error  +  
for each star magnitude. 

where 

 = spectral irradiance from star outside the 
atmosphere at wavelength   

 = mean sensor wavelength,  
 = spectral bandwidth of wavefront sensor,  

h = Planck's constant, 6.626 x 10~34 J s 
c = velocity of light, 3 x 108  

 = atmospheric transmission at mean sensor 
wavelength 

d = subaperture dimension at the entrance 
pupil, m 

 = optical transmittance from primary mirror 
to wavefront sensor input 

The spectral irradiance from a G-type star of visual 
magnitude zero outside Earth's atmosphere at 
 = 0.55  is  = 3.9 x  W  per  [Wolfe 

and Zissis 1985]. The photon flux in each subaperture 
at a mean wavelength of 0.55  may be expressed in 
terms of visual magnitude  as 

(9.73) 

One channel of a wavefront sensor detector using 
a frame-transfer CCD with a continuous reference 
source is modeled in figure 9.21. The photon flux 
reaching each subaperture is  photons per second 
and the optical transmission within the wavefront 
sensor to each detector is  This optical transmis
sion depends on the exact configuration of the sensor, 
and includes the attenuation of the optical compo
nents and shutter, together with the beam-division 
factor if multiple detector arrays are used. The 
advantages of using multiple detector arrays have 
been discussed in section 9.4.2. 

The photoelectron count from the reference 
source is given by 

(9.74) 

where 
 = number of events counted 
 = effective integration time of the system 
 = quantum efficiency of the photon detector 

The CCD detector array is read out at a frame rate 
 =  which is the basic sampling frequency in 

the system. To ensure stability of the feedback   

must be six to 10 times higher than the servo 
width,  as discussed in section 8.5. The time and 
frequency relationships in the detection process are 
depicted in figure 9.22. The frame time  includes 
the transfer of the charges accumulated on detector 
pixels during the exposure time  into the storage 

Signal 
 

Noise 
Ratio 

Figure  Model for photon detection in one subaperture using a continuous reference 
source such as a natural star, showing the factors that determine the signal to noise ratio of 
the wavefront   Quantum efficiency (of detector); LP, Low pass. 

  Ratio Using Natural 
Stars 

The signal-to-noise ratio of the wavefront sensor 
depends primarily on the number of photons from 
the reference source that are detected and counted. 
Noise sources include the shot noise of the signal and 
background light, together with noise electrons 
added in the detection process. 

The photon flux,  in photons per second, 
received from a star in each subaperture at the 
input of the wavefront sensor is given by 

(9.72) 



Adaptive Optics Performance Analysis and Optimization 347 

Figure 9.22 Time and fre
quency relationships in a 

 sensor using a 
CCD detector. The detector 
frame  =  is the 
basic sampling frequency in 
the system and is usually six 
to 10 times higher than the 
servo  =  
to ensure stability of the 
control loop. The effective 
photon integration time is 
determined by  The spec
trum of the raw turbulence 
(gradients) is  which is 
band-limited by the detector 
exposure time to approxi
mately half of the frame 
frequency. 

Time 

Unwanted components 
at frame frequency, 
rejected by filter 

Frequency 

register on the CCD chip, followed by the readout 
itself. While one frame is being read out, the next 
frame is being exposed. The maximum exposure 
time is always somewhat less than the frame time 
because of the need for charge transfer. 

The frequency spectrum of the wavefront gradi
ents in each subaperture,  is band-limited by 
spatial averaging over the subapertures. It is further 
limited by temporal averaging over the exposure time 
of the CCD array, and by the frame (sampling) rate 
to give the spectrum  corresponding to a 
width of  The time-sampled CCD output 
consists of frequency components at multiples of the 
frame  each modulated with sidebands extend
ing over  The low-pass filtering is beneficial in 
that it reduces or eliminates aliasing due to the over
lap of the first-order sideband centered  with the 
baseband spectrum. The low-pass filter in the servo 
loop cuts off at   which is normally about 
1/10  further reducing the disturbance spectrum 
to  

One result of limiting the servo bandwidth is that 
turbulence components at frequencies higher than 

 are not corrected by the adaptive optics. 
However, the reduced bandwidth also has the effect 
of increasing the integration time  during which the 
photon counts are accumulated for each wavefront 
measurement, thereby increasing the signal-to-noise 
ratio of the wavefront sensor. The integration time is 
an important parameter in adaptive optics systems 
because it controls two major error components: 
the signal-to-noise ratio (and therefore the wavefront 
measurement error) and the temporal error. The 
wavefront measurement error varies approximately 
as  while the temporal error varies as 

 Consequently, there is an optimum value of 
 that minimizes the sum of these errors. 

Optimization of the integration time is covered in 
section 9.5.3. 

The effective integration time over which refer
ence source photons are accumulated depends on 
the characteristics of the low-pass filter in the servo 
loop; it is calculated as follows. The required integra
tion time extends from  to  and the tem
poral response, normalized to give unit area, is 

 =  The equivalent filter response is the 
Fourier transform of  

(9.75) 

The photon pulses to be counted are modeled as 
impulses with a white-noise spectrum. If  is the 
power spectral density in units squared per hertz, 
then the noise power passed by a filter  response 

  

(9.77) 

If the noise bandwidth in hertz is defined as 
 =  then the basic relation between the 

noise bandwidth and the integration time is 

(9.78) 

(9.76) 

For uniform integration over time  the value of 
 from equation (9.75) is substituted to obtain 
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If the band-limiting filter is a first-order filter with 
time constant r, the filter response is 

This is the photon integration time assuming that the 
detector is continuously exposed. It must be reduced 
by the ratio  to give the  integration time. The 
time required to shift the charges to the storage reg
ister on a CCD is on the order of 10  whereas 
frame times are typically 500  or more, so, in prac
tice, the maximum value of  is close to unity. 
Even though the transfer time is short, some smear
ing of the CCD image occurs if it is exposed to light 
continuously, so a shutter is often used to control the 
actual exposure  

Detector Read Noise 

During the readout of each pixel, noise is added by 
the charge-to-voltage conversion amplifier on the 
CCD chip. The root-mean-square value of this 
noise is specified as e electrons per pixel at a given 
pixel- or frame-rate.  is the number of pixels per 
measurement (four in the case of a  
sensor using quadrant detectors), then the mean-
square read noise per measurement is me2. 

Background Noise 

The main source of background noise at visible and 
 wavelengths is radiation from the sky adja

cent to the reference source. Sky background noise is 
minimized by using the smallest practical field of view 
in the wavefront sensor, which may be implemented 
by a variable field stop in the reference detector path. 
To allow for initial acquisition of the reference 
source, the field of view must encompass the source 
size plus the uncorrected seeing angle. Obviously, the 
signal-to-noise ratio under these conditions must be 
sufficient to allow the adaptive optics loop to con
verge. The background noise therefore determines 
the minimum reference source brightness necessary 
to initiate closed-loop operation. Once the system 
has locked on to the reference and the wavefront 
excursions are diminished, the field of view may be 

reduced to increase the signal-to-noise ratio, improv
ing the precision of the compensation. 

The importance of sky radiation depends on the 
function of the wavefront sensor, especially the 
length and type of reference source. With adaptive 
optics systems using natural stars, both the wavefront 
and the overall tilt correction are obtained from the 
same reference source, and relatively bright stars 

 ~ 10) must be used. At visible wavelengths, the 
sky radiation is relatively  and the exposure times 
required for wavefront measurement are so short 
(milliseconds) that background radiation may usually 
be neglected. To take an extreme example, daylight 
operation of adaptive optics has been achieved with 
bright stars, using a shearing interferometer sensor 
with a 5 arc-second field stop [Shelton et  1993]. 
The opposite extreme is represented by overall tilt 
sensing using stars as dim as 20th magnitude, for 
which sky radiation becomes the limiting factor. 

Taking into account all noise sources, the expres
sion for wavefront sensor signal-to-noise ratio, from 
equation (5.17), is 

9.5.3 Optimization of Integration Time 

The integration time is one of the few parameters in 
an adaptive optics system that are really "free" in the 
sense that there are no physical constraints. The inte
gration time has a large effect on performance with 
little, if any, cost impact (other than to make it vari
able), so it makes sense to optimize it for each set of 
operating conditions. The measurement error pro
duced by a Shack-Hartmann wavefront sensor [equa
tion (5.16)], and the temporal error [equations (9.53) 
and (9.57)] are plotted as a function of integration 
time in figure 9.23. The photon count and signal-to-
noise ratio improve as the integration time increases 
resulting in a smaller measurement error, which is 
shown for two values of  On the other hand, a 

The noise bandwidth for this filter is 

(9.79) 

(9.80) 

The effective integration time for a first-order filter is 
therefore  = 2T (two time-constants). If the 
half-power (3-dB) frequency of the filter is 

 =  then the effective integration time is 
expressed conveniently as 

(9.81) 

where 

 = number of photons from the reference 
source counted in the sensor integration 
time 

e = read noise per pixel in electrons  
 = number of detected background electrons 

per pixel 
m = number of pixels per subaperture 
G = gain of the intensifier. 

For an unintensified detector, such as a bare CCD, 
the gain ( 7 = 1 . For night-time observations with nat
ural star systems,  is usually negligible and the sig
nal-to-noise ratio using a CCD detector reduces to 

(9.83) 

(9.82) 
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Integration Time, milliseconds 

A sensor error,  =  m at  = 0.5  

B sensor error,    

C temporal error, Greenwood frequency  = 39 Hz 

D temporal error, Greenwood frequency  26 Hz 

Conditions: sensor wavelength = 0.7  zenith angle = 30 degrees, atmospheric trans
mission = 0.8, reference source visual magnitude = 10, overall quantum efficiency = 0.4, 
sub aperture size = 0.25 m, pixels per measurement = 4, read noise per pixel = 5 electrons. 

Figure 9.23 Integration time tradeoff. As the integration time is increased, the wavefront 
sensor error falls because more photons are collected and the signal-to-noise ratio 
improves, but the temporal error rises because of the longer lime delay. The optimal 
integration time also depends on the reference source size and brightness, and on the 
subaperture size in relation to the turbulence parameter  

longer integration time increases the temporal error. 
So for each set of operating conditions, there is an 
optimum integration time  at which the sum of the 
time-dependent errors is minimized. 

The Strehl ratio produced by the time-dependent 
errors is shown for a range of conditions in figure 
9.24. Charts are plotted for observation wavelengths 
of 0.7,  and 2.2  with reference source visual 
magnitudes of 8, 10, and 12. In each case, the Strehl 
ratio is shown for  values of 0.1, 0.15, and 0.2m 
(at A =  with the integration time varied 
from 0 to 10 ms. The optimum integration time is 
independent of the observation wavelength, which 
merely scales the wavefront error (for a fixed sub-
aperture size). As expected, the reference source 
magnitude has the dominant effect, with  being 
roughly proportional to  where  is the num
ber of photons counted. The optimum integration 
time is weakly dependent on  with an increase in 
turbulence strength requiring a somewhat longer 
integration time. The curves drop sharply for inte
gration times less than the optimum, indicating that 
it is better to err on the side of generosity if in 

doubt. These results suggest that the integration 
time may be optimized, in practice, by adjusting it 
to maintain a predetermined photon count, which is 
relatively easy to implement with a real-time control 
loop. This subject is discussed in section 9.7. 

9.5.4  of Number of 
Actuators 

If the number of actuators or degrees of freedom in 
an adaptive optics system is increased, the fitting 
error improves, but (for a constant reference source 
magnitude) the number of photons collected per 
degree of freedom decreases so the measurement pre
cision falls. Consequently, for each set of operating 
conditions, there is an optimum number of degrees of 
freedom that minimizes the total error. 

The basic expression for the angular error of a 
bicell tilt sensor using a point source, from equation 
(5.13) is 
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Conditions: 
Sensor wavelength,  
Zenith angle, degrees 

 transmission 
Sensor spectral band,  

- ro =  =  
 ro =  =  
 ro = 0.2  fg = 26 Hz 

 =0.7 Overall quantum efficiency n =0.4 
z = 30 Subaperture size, meters d = 0.25 

Ta = 0.8 Read noise per pixel e = 5 
8  0.3 Pixels per measurement N =4 

Figure 9.24 Optimization of integration time. The chart plots the combined Strehl ratio of sensor and 
temporal errors against t, for a range of operating conditions. 

where 

 = mean operating wavelength 
d  subaperture size 
SNR = voltage signal-to-noise ratio of the 

detected signal. 

The angular error is proportional to the diffraction-
limited spot diameter X/d, divided by the signal-to-

noise ratio SNR. To find the wavefront phase error 
per subaperture, the angle must be multiplied by 

 The signal-to-noise ratio is proportional to 
the square root of the number of photons counted, 
which for a given source brightness may be stated as 
SNR    d For the usual case in which d   
the dependency of the wavefront measurement error 
on subaperture size is therefore 



For a given telescope aperture, as the number of 
actuators increases, the subaperture size d decreases, 
resulting in a larger wavefront measurement error. If 
d is larger than the turbulence coherence length  
the spot diameter is determined by the ratio  and 
the phase error per subaperture is proportional to 
1  that is, independent of d. 

The subaperture size also controls the fitting 
error, which, from equation (9.61), is 

These errors are shown as a function of subaperture 
size d in figure 9.25, for two values of  The change 
in the slope of the sensor error when d >  is clearly 
seen. When the mean-square values of these errors 
are added in quadrature and expressed as a Strehl 
ratio, the optimal subaperture size is defined by the 
peak of the curve. The function is highly asymmetric, 
dropping very steeply for subaperture sizes below the 
optimum. 

The optimization of subaperture size is explored 
over a wider range of parameters in figures 9.26 and 
9.27. These charts give a comprehensive view of the 
influence of subaperture size on overall performance, 
which is a more informed approach than seeking the 
peak of a single analytical function. The figures show, 
surprisingly, that the optimum value of d does not 
depend on either the observation wavelength or the 
sensor wavelength, although the peak tends to be 
sharper at short observation wavelengths. The main 
factor determining the optimum value of d is the 
photon flux from the reference source. 

Wavefront sensor errors are dominant over the 
fitting errors so far as the optimization of subaper
ture size is concerned. When d >  the wavefront 
sensor error depends on the value of  at the sensor 
wavelength, as shown in figure 9.25, and not on d. 
This is the reason that the optimum subaperture size 
does not increase at longer observation wavelengths, 
as might be expected from consideration of the fitting 
error only. The read noise of the wavefront sensor 
(CCD) detector also has an influence on the optimum 
subaperture size, because the addition of noise elec
trons requires a larger signal flux to achieve the same 
signal-to-noise ratio. At low photon fluxes, the effect 
of large read noise is to increase the optimum sub
aperture size. 

The net result of all of these factors is that the 
optimal value of d occurs between 0.15 and 0.25 m 
for a wide range of operating conditions. 
Furthermore, the penalty for using subapertures as 
large  0.4 m tends to be less than that for using 
smaller sizes, suggesting that larger subapertures are 
a more robust solution. Reducing the number of 
actuators has a favorable effect on the hardware 
complexity and cost. Small subapertures are not a 
good choice for astronomical adaptive optics 

because, although they may give good performance 
with bright stars, the steep drop at lower photon 
rates kills the performance and limits the general uti
lity of the instrument. 

9.5.5 Performance and Sky Coverage 

The overall performance of adaptive optics systems 
using natural stars can now be calculated using the 
error models summarized in the previous sections. 
The performance criterion of most general interest 
is the Strehl ratio of the compensated image, and 
this is determined as a function of the reference star 
magnitude and the atmospheric conditions, specified 
by the turbulence models described in section 9.2. 
For each condition, the integration time is optimized. 
As shown in section 9.5.4, the subaperture size is not 
critical and a value of d = 0.2 m is used in the follow
ing examples. The performance chart shown in figure 
9.28 contains four plots: 

1. on-axis Strehl ratio versus reference star mag
nitude at observation wavelengths of 0.7, 1.25, 
1.62, and  

2. optimized integration time for each star mag
nitude; 

3. limiting magnitude of the reference star as a 
function of Strehl ratio at each observation 
wavelength; 

4. field angle within which a given Strehl ratio is 
obtained, at each observation wavelength. 

Natural-star adaptive optics systems perform best at 
 wavelengths, particularly in the H- and  

where operation is possible with stars of  = 14 
over small fields of view. In the V- and R-bands, 
stars brighter than  = 10 are required to obtain 
a useful Strehl ratio and the compensated field is 
only a few arc seconds, as shown in figure 9.29. 

The sky coverage of adaptive optics systems using 
natural stars may be obtained in the following way. 
Data on star distribution versus visual magnitude are 
found in The  Handbook [Wolfe and Zissis 
1985]. For use in performance calculations, it is con
venient to model the star densities analytically, as 
described by Parenti and Sasiela [1994]. The models 
are 

Galactic equator 

 as 3.97 x  stars per radian squared 

Galactic pole 

 = 1.27 x  

The average density of stars brighter than a given 
magnitude  may be modeled as 

  3 x  stars per radian squared 

These star densities are plotted in figure 9.30. 
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Subaperture Size Tradeoff 

  meters 

A fitting error,  =  C sensor error,  -   
B fitting error,   0.2  D sensor error,  = 0.2  

Strehl Ratio versus Subaperture Size 

 Dimension, meters 

Figure 9.25 Subaperture size tradeoff. As the subaperture size is 
increased, the wavefront sensor error falls because more photons 
are collected, improving the signal-to-noise ratio, but the  
error increases. Note that the wavefront sensor error curve flattens 
out when the subaperture size exceeds  because the angular resolu
tion of the sensor is then determined by the turbulence scale and not 
by the subaperture diameter. The combined sensor and fitting errors 
produce a clearly defined maximum in the Strehl ratio. 



Conditions: 

  =   at 500  
" " r-zero =   at 500 nm 

r-zero = 0.2  at 500 nm 

Sensor wavelength,  
Zenith angle, degrees 

 transmission 
Sensor spectral band,  

  0.7 Overall quantum efficiency  = 0.4 
z = 30 Exposure time: optimized 

Ta = 0.8 Read noise per pixel e = 5 
5 = 0.3 Pixels per measurement N = 4 

Figure 9.26 Optimization of subaperture size. The chart plots the combined Strehl ratio of sensor and fitting 
errors against  for a range of operating conditions. The subaperture size is controlled mainly by the bright
ness of the reference source. 



Conditions: 

  =   at 500  
" " r-zero =   at 500 nm 

r-zero =   

 wvlngth,   = 1.25 Overall quantum efficiency  
Zenith angle, degrees z = 30 Exposure time: optimized 

 trans. 0.6 - 0.8 Read noise per pixel e = 5 
Sensor spectral band,  5 = 0.3 Pixels per measurement N =4 

Figure 9.27 Effect of sensor wavelength on optimum subaperture size. The Strehl ratio due to sensor and 
fitting errors is shown for sensor wavelengths of 0.4, 0.6, and 0.8  The exposure time is optimized for each 
reference source magnitude. 
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Conditions: subaperture size d = 0.2  
turbulence parameter  =   
zenith angle  = 30 degrees 
isoplanatic angle    radians 
Greenwood frequency^ =  Hz 
CCD read noise = 5 electrons per pixel 

A observation wavelength 0.70  
B observation wavelength 1.25  
C observation wavelength 1.62  
D observation wavelength 2.20  

Figure 9.28 Performance of an adaptive optics system using a natural star as the reference source for 
both  and tilt compensation. The  sensor operates in the visible band centered at 
0.55  and data are plotted at observing wavelengths of 0.7, 1.25, 1.62, and   The servo loop 
integration time is optimized for each reference star magnitude. 

The sky coverage for a given overall Strehl ratio is 
found as follows. First, the total wavefront error cor
responding to the given Strehl ratio is determined: 

(9.84) 

The total error has three constituents: the errors pro
portional to star magnitude,  +  the isoplana
tic error  and other fixed errors  The allowable 
anisoplanatic error may then be determined as a 
function of star magnitude: 

(9.85) 

The angular radius  (around the reference star) at 
which the anisoplanatic error equals the allowed 
threshold for each star magnitude is then calculated, 
using 

(9.86) 



Visual Magnitude of  Star 

A observation wavelength 0.70  
B observation wavelength  
C observation wavelength  
D observation wavelength 2.20  

Figure 9.29 Compensated 
field angles achievable at 
various observation 
lengths for a Strehl ratio of 
0.5, using a natural star as 
the reference source. The 
wavefront sensor operates 
at 0.55  and the integra
tion time is optimized at 
each magnitude. 

Visual Magnitude 

A average star density model 
8 galactic pole model 
C galactic equator model 

Figure 9.30 Density of 
stars brighter than a given 
visual magnitude. Models 
for the galactic pole and 
equator are based on data 
from The  
Handbook (Wolfe and Zissis 
1985). 
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Using the average star density  as a function of 
magnitude, the fractional sky coverage is given by 

(9.87) 

The fractional sky coverage for adaptive optics 
using natural stars is shown in figure 9.31 for  
ratios of  at observation wavelengths of 0.7, 
1.25, 1.62, and 2.2  Other conditions are specified 
in the figure. Even in the K-band at   only 
about 1/1000 of the sky is accessible using this 
mode of operation. 

The utility of natural-star operation should not be 
judged solely on sky coverage. Rather, it should be 
regarded as an economical and efficient method of 
implementing adaptive optics in those special cases 
in which a suitable field star is proximate to the 
science object. 

true, leading to a small  of the error. 
The wavefront reconstruction errors, equations 
(9.58) and (9.59), have been omitted deliberately as 
they are negligible with wavefront slope reconstruc-
tors of practical size. 

For the operating conditions typical of astronom
ical adaptive optics, it was shown in section 9.5.4 that 
the subaperture size is not a critical factor and that 
good performance is obtained with subapertures 
between 0.15 and 0.4 m. In the following perfor
mance calculations, a subaperture size of 0.2 m is 
used. The photon integration time is optimized by 
calculating the total time-sensitive error  +  
for each value of laser power and determining the 
integration time that minimizes it. 

The mean-square angular tilt error produced by 
tracking a fixed guide star may be expressed as 

(9.89) 

9.6 Performance of Laser Beacon 
Systems 

9.6.7 Error Model 

Adaptive optics systems using laser beacons employ 
separate compensators for wavefront correction and 
overall tilt correction. The total error is composed of 
two parts: 

1. the phase error of the wavefront compensator, 
using one or more laser beacons as the refer
ence source; 

2. the angular error of the overall tilt compensa
tor, using a natural guide star. 

These errors will be determined and analyzed 
separately before being combined into an overall per
formance model. 

The mean-square wavefront (phase) error of a 
laser beacon system may be expressed as the sum of 
the individual error variances in the form 

where 

ffBM  

(9.88) 

beacon measurement error, equations 
(9.43) or (9.44) 

CT|T  temporal error, equations (9.53) and 
(9.57) 

CTF = wavefront fitting error, equation (9.61) 
CTFA = cone or focal anisoplanatic error, equa

tion (7.35) 
  error due to stitching multiple beacons, 

equation (9.30) 
CTQ = atmospheric dispersion (multispectral) 

error, equation (9.41) 

This formulation assumes that all the error compo
nents are uncorrelated, which may not be strictly 

where 

   measurement error, using a quadrant 
detector with a natural star as the refer
ence source, equation (9.62) 

 = temporal error due to the bandwidth of 
the tilt correction loop (pure time delays 
should be negligible in this case), equation 
(9.63) 

CTTA  error due to tilt anisoplanatism, depen
dent on the angular separation of the 
natural star from the science object, 
equation (9.66) 

The tilt sensor is assumed to use the full aperture 
of the telescope and, again, the optimum tilt integra
tion time is computed by minimizing the value of 

 +   determine overall performance, the 
angular error  produced by tracking the fixed guide 
star must be combined with the wavefront phase 
error  due to the beacon wavefront compensator. 
Image motion due to angular tilt is modeled by using 
Gaussian image profiles as discussed in sections 4.5 
and 4.6. The structure of the image is modified in two 
ways: 

• Random angular tilt errors reduce the inten
sity of long-exposure images. The intensity 
reduction factor  due to an angular tilt 
variance of  for an aperture of D and 
observation wavelength  from equation 
(4.61), is 

When the laser beacon system produces a well-
defined image core (as it should), the peak 
intensity of the image (Strehl ratio) is therefore 
reduced by this factor. 
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Conditions: subaperture size d - 0.2 m, 
 = 0.15  at 0.5  

 radians (2.5 arc seconds) 

actual zenith angle  — 30 degrees 
Greenwood frequency   Hz 
CCD read noise = 5 electrons per pixel. 

A sky coverage for Strehl ratio =  
B sky coverage for Strehl ratio = 0.2 
C sky coverage for Strehl ratio = 0.3 
D sky coverage for Strehl ratio = 0.4 
E sky coverage for Strehl ratio =  
(Strehl ratios at observation wavelengths) 

Figure  Sky coverage of adaptive optics using natural stars. The wavefront sensor operates in 
the visible band, centered at 0.55  The integration time is optimized for each star magnitude. Sky 
coverage is based on the global average distribution of stars. 

• Angular tilt errors increase the radius of 
long-exposure images. The factor by which 
the image core radius is increased is  as 
given in equation (4.63). 

It was shown in section 4.5.3 that if the angular tilt 
error is expressed in Airy disk units of  then 
the relation between the wavefront error  the tilt 
error  and the resulting Strehl ratio  is indepen
dent of wavelength and aperture size. The relation is 
given by 

(9.90) 

where CTA is the tilt error in Airy disk units. This 
expression gives the tradeoff between  and  for 
given values of  and is shown in figure 9.32. For 
example, to achieve an overall Strehl ratio of 0.6 with 
a wavefront phase error of 0.5 rad  the allowable 
tilt error is 0.2 of the Airy radius  

The sky coverage of a laser beacon system is 
determined entirely by the availability of natural 
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A    0.2 
B Strehl ratio = 0.4 

C    0.6 
D Strehl ratio  0.8 

Figure 9.32 Strehl ratios due to combined  and tilt errors. The 
units are chosen to make this chart independent of wavelength and tele
scope aperture. 

guide stars for the tilt sensor. Because of the much 
fainter stars that can be used for tilt referencing, 
compared with those required for wavefront referen
cing, sky background radiation plays an important 
role in determining the sky coverage, especially when 

 stars are used. This becomes an important con
sideration when the natural star used as the tilt refer
ence shares the wavefront compensation provided by 
the beacon. 

The first step in calculating the performance of 
adaptive optics systems using laser beacons is to com
pute the signal-to-noise ratios produced by the bea
con and the natural guide star. 

9.6.2 Laser Beacon  Ratio 

The number of photons received from a laser beacon, 
within each subaperture at the input to the wavefront 
sensor, from equation (7.1), is 

 = expected number of photons per pulse 
E = laser pulse energy, J 
 = beacon wavelength, m 
 = Planck's constant, 6.626 x  J s 

c  velocity of light, 3 x  

 = one-way transmission of atmosphere 
between telescope and beacon 

 = effective backscatter cross-section,   

 = number density of scatterers at range 
z,   

Az = receiver range gate length, m 
z = range to center of range gate, m 
d = subaperture size at telescope entrance 

pupil, m 
 = transmission of laser path to projection 

aperture 
 = transmission of optical path from primary 

mirror to wavefront sensor 

The values of most of these parameters depend on 
the type of laser beacon; that is, whether it employs 
Rayleigh scattering or sodium resonance fluores
cence. For Rayleigh systems, the backscatter para
meter  may be calculated using equation 
(7.4). Typical values are given in table 9.4. The values 
for  are included to allow the Rayleigh where 

(9.91) 
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Table 9.4 Calculated Values of Rayleigh Backscatter Parameter 

Beacon    nm  nm  nm  nm  nm  nm  nm 
Height (km)         

8 34.3 22.5 14.0 9.2 6.3 4.8 4.4 2.4 
 27.2 17.8  7.3 5.0 3.8 3.5 1.9 

12 21.6 14.2 8.8 5.8 3.9 3.0 2.8 1.5 
  9.6 6.0 3.9 2.7 2.0 1.9 1.0 

20 7.1 4.7 2.9 1.9  0.99 0.92 0.49 
25 3.4 2.3 1.4 0.92 0.63 0.48 0.44 0.24 

30 1.7 1.1 0.68 0.45 0.31 0.23 0.22 0.12 
50 0.092 0.060 0.038 0.025 0.017  0.012 0.006 

Units of  are photons per million meters. 

scatter generated by sodium beacon lasers to be eval
uated. The length of the range gate Az for Rayleigh 
scattering is typically 1 km. 

Values for one-way atmospheric transmission, 
derived from data in chapter 7 of the Handbook of 
Geophysics and Space Environments [Valley 1965], are 
given in table 9.5. 

The  equation can be expressed in the follow
ing form for use in system optimization: 

(9.92) 

where  is the beacon efficiency factor linking the 
number of photons received per laser pulse,  to the 
discretionary parameters that will be optimized in the 
system design: the transmitted pulse energy  
the optical transmission 7b, and the area of the 
receiving subaperture d2. The units of  are photons 
per joule per meter squared. 

In the case of Rayleigh beacons, the wavelength 
and beacon height are not fixed, so the value  will 
depend on these parameters. It also depends on the 
zenith angle. Values of  for Rayleigh beacons at 
wavelengths between 0.360 and   based on 
the data in tables 9.4 and 9.5, are given in table 9.6. 

For sodium beacons, the mean height and 
length are fixed by the characteristics of the sodium 
layer. The mean height is 92 km and its depth at half 
maximum is about 10 km. Because the depth of the 
sodium layer is limited naturally, its atom density is 
usually quoted as a column density, equivalent to 

 , which varies from about 3 x  in 
the summer to about 1 x   in the winter (see 
figure 7.8). It is reasonable to use an average 
value of 5 x   for design purposes. The 
emission cross-section  for sodium depends on 
the degree of saturation, as described in section 
7.2.5. When the saturation time  is longer than 

the natural decay time  saturation is negligible 
and the emission cross-section   4 x  

Values of  for unsaturated sodium beacons at 
zenith angles  0°, 30°, and 45° are given in table 9.7. 

The detection model for pulsed laser beacons is 
shown in figure 9.33. The main difference between 
this mode and continuous operation is that the 
photons are received in brief packets, the timing 
and duration of which are determined by the laser 
and range gate. For Rayleigh beacons, the range 
interval Az is usually about 1 km, so that with a 
short laser pulse (< 1  the duration of each 
photon packet is about    In the case 
of sodium beacons, the average depth of the sodium 
layer is about 10 km, so the full duration of the 
return is about   In both cases, the photon 
packets are much shorter than the (millisecond) 
readout times of typical wavefront sensor  
The number of photons received from the beacon 
per pulse is computed using equation (9.92). 

To achieve continuous compensation of atmo
spheric turbulence at visible wavelengths, the laser 
pulse rate required is at least 1 kHz, which is compa
tible with the frame rate of CCD cameras. Detector 
readouts are synchronized to the laser pulses, with an 
appropriate time delay, depending on the range of 
the beacon. Operation is then very similar to that 
with a continuous reference source, using a servo 
bandwidth of about 1/10 of the pulse rate. The num
ber of photons per measurement for a pulsed source 
is 

(9.93) 

where 

"P  

 = 

number of photons received from the 
beacon per subaperture per pulse 
number of laser pulses received within the 
integration time  
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Table 9.5 One-Way Atmospheric Transmission for Clear Standard Atmosphere 

Beacon Zenith 
Height Angle    nm  nm  nm  nm  nm  nm  nm 
(km) (degrees)   

      

8 0  0.61 0.69 0.74 0.77 0.78 0.79 0.82 
30 0.46 0.57 0.65 0.70 0.74 0.75 0.76 0.80 
45 0.39 0.50 0.59 0.65 0.69 0.71 0.71 0.76 

10 0 0.49 0.59 0.67 0.73 0.76 0.78 0.78 0.82 
30 0.43 0.55 0.63 0.69 0.73 0.75 0.75 0.80 

45 0.36 0.48 0.57 0.64 0.68 0.70 0.71 0.76 

 0 0.47 0.58 0.66 0.72 0.75 0.77 0.78 0.82 
30 0.42 0.53 0.62 0.68 0.72 0.74 0.75 0.79 
45 0.34 0.46 0.56 0.63 0.67 0.69 0.70 0.75 

15 0 0.45 0.56 0.65  0.75 0.77 0.77 0.81 
30 0.40 0.52  0.67  0.74 0.74 0.79 
45 0.32 0.44 0.55 0.62 0.66 0.69 0.69 0.75 

20 0 0.43 0.55 0.64 0.70 0.74 0.76 0.76 0.81 
30 0.38 0.50 0.60 0.66 0.70 0.73 0.73 0.79 
45 0.30 0.43 0.54  0.65 0.67 0.68 0.74 

25 0 0.42 0.54 0.64 0.70 0.73 0.75 0.75  
30 0.37 0.49 0.60 0.66 0.69 0.71 0.72 0.78 
45 0.30 0.42 0.53 0.60 0.64 0.66 0.67 0.74 

30 0 0.42 0.54 0.64 0.69 0.72 0.74 0.74 0.81 
30 0.37 0.49 0.59 0.66 0.69 0.70 0.71 0.78 
45 0.29 0.42 0.53 0.60 0.63 0.65 0.66 0.74 

50 0 0.42 0.54 0.64 0.69 0.72 0.73 0.74 0.81 
30 0.37 0.49 0.59 0.65 0.68 0.70 0.70 0.78 
45 0.29 0.42 0.53 0.59 0.63 0.64 0.65 0.74 

Detector Read Noise 

During the readout of each pixel, noise is added by 
the charge-to-voltage conversion amplifier on the 
CCD chip. The root-mean-square value of this 
noise is specified as e electrons per pixel at a given 
pixel- or frame-rate. If m is the number of pixels per 
measurement (four in the case of a  
sensor using a quadrant detector), then the mean-
square read noise per measurement is me2. 

Background Noise 

Background noise is added by radiation from the 
sky adjacent to the beacon. Laser beacons typically 
subtend an angle of about 2 arc seconds, requiring a 
relatively large field stop; but, at the UV and visible 
wavelengths used for Rayleigh and sodium beacons, 
the sky radiation is relatively low and the range 
gates are so short (milliseconds) that background 
noise is usually negligible. The effect of background 
noise on overall tilt sensing with field stars is much 
more serious, as discussed in section 9.6.3. 

Taking into account all noise sources, the signal-
to-noise ratio of the beacon sensor is 

where 

 — number of photons per measurement, from 
equation (9.93) 

e = read noise per pixel in electrons  
 = number of detected background electrons 

per pixel 
 = number of pixels per subaperture 

G = the gain of the intensifier 

For an unintensified detector, such as a bare 
CCD, the gain G = 1. When  is negligible, the 
signal-to-noise ratio using a CCD detector reduces to 
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Table 9.6 Efficiency Factors for Rayleigh Beacons 

Beacon Zenith 
height, angle    nm  nm  nm  nm  nm  nm  nm 
km degrees         

8 0 20.2  18.7 15.6 12.7 10.8 10.3 7.1 
30 12.3 13.6 12.5 10.6 8.8 7.5 7.2 5.0 
45 5.8 7.0 6.9 6.0 5.1 4.4 4.2 3.0 

 0 9.3 10.0 9.1 7.7 6.3 5.4 5.2 3.6 
30 5.6 6.4 6.0 5.2 4.3 37 3.6 2.5 
45 2.5 3.3 3.3 2.9 2.5 2.2  1.5 

12 0 4.7 5.3 4.9 4.2 3.4 2.9 2.8 2.0 
30 2.8 3.3 3.2 2.8 2.4 2.0 2.0  
45 1.3 1.7 1.7  1.4 1.2 1.1 0.82 

 0  2.2 2.1  1.5  1.2 0.84 
30 1.1 1.4  1.2 1.0 0.87 0.83 0.59 
45 0.49 0.67 0.72 0.66 0.57 0.50 0.48 0.35 

20 0 0.48 0.69 0.54 0.47 0.39 0.33 0.32 0.23 
30 0.28 0.44 0.35 0.32 0.27 0.23 0.22 0.16 
45 0.12 0.23 0.19 0.18 0.15 0.13 0.13 0.096 

25 0 0.14 0.17 0.17 0.14 0.12 0.10 0.096 0.070 
30 0.082 0.11 0.11 0.096 0.080 0.068 0.066 0.049 
45 0.035 0.052 0.057 0.053 0.045 0.039 0.038 0.029 

Units of  arc millions of photons per joule and meter squared. 

9.6.3 Adaptive Optics Performance with a 
Sodium Beacon 

Using the error model equations outlined in sections 
9.6.1 and 9.6.2, the performance of an adaptive optics 
system using a single sodium beacon for wavefront 
compensation has been calculated as a function of 
laser power. The results are summarized in figure 
9.34. The parameters of this system, listed fully in 
table 9.8, are believed to be typical of current tech
nology, so the performance is representative of 
achievable systems. The atmospheric turbulence 
model used is the HV 15-12, as defined in table 3.1. 

The top chart in figure 9.34 shows the wavefront 
compensation Strehl ratio as a function of the aver
age laser power.  is assumed that the pulse rate 
remains constant at 1 kHz and that the pulse energy 
varies between 2 and 50  The advantage of obser
ving at  wavelengths is clearly apparent. At these 
wavelengths, reasonable performance is obtained 

with 10W of laser power and little advantage is 
gained by using more than  W. At  it is a 
different story, the maximum Strehl ratio being lim
ited to about 0.2, even at high laser powers. This 
limitation is not caused by any single error source. 

The error components at a laser power of  W 
are shown in table 9.9. No single error source is 
dominant, indicating that the system is well opti
mized. The largest error contribution at both 0.7 
and   is the beacon measurement. 

The optimum integration time and photon count 
per subaperture are shown in the lower charts in fig
ure 9.34. The integration time also varies with atmo
spheric conditions, so that, although the laser power 
is fixed, it is still advantageous to optimize the inte
gration time adaptively during operation of the sys
tem. The optimum photon count varies between 
about 100 and 300 per subaperture per measurement, 
with a value of 150 for a  W laser under the con
ditions shown. 

Table 9.7 Efficiency Factors for Unsaturated Sodium Beacons 

Zenith angle (degrees) Atmospheric Transmission  (photons J  m ) 

0 
30 
45 

0.73 
0.70 
0.63 

2.97 x   

2.36 x 105 

 x 105 
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Time 

Figure 9.33 Photon detection model for a pulsed laser beacon. The detector frame 
rate/r =  is the basic sampling frequency in the system and is usually equal to the 
pulse rate. The number of pulses integrated for each wavefront correction is deter
mined by the servo bandwidth. 

9.6.4  Ratio of Tilt Sensor 
Using a Natural Star 

The photon flux,  in photons per second, received 
from a star at the input of the tilt sensor is given by 

where 

(9.94) 

= spectral irradiance from star outside the 
atmosphere at wavelength  

 

 = mean sensor wavelength, m 

 = spectral bandwidth of tilt sensor,  
h = Planck's constant, 6.626 x   
c = velocity of light, 3 x  ras" 

 = atmospheric transmission at mean tilt 
sensor wavelength 

D = telescope aperture diameter at the 
entrance pupil,  

 = optical  from primary mir
ror to tilt sensor input 

Using equation (9.73), the photon flux from a G-type 
star may be expressed in terms of visual magnitude 

 a s 

Table 9.8 Parameters of Adaptive Optics System Using a Sodium Beacon 

Telescope aperture, m 4 Atmospheric transmission (one way) 0.7 
Subaperture size,  0.2 Telescope optical transmission 0.5 
Turbulence parameter, m  Wavefront sensor transmission 0.8 
Greenwood frequency, Hz 31.4 Laser power, W 2-50 
Zenith angle, degrees 30 Pulse rate, Hz 1000 
Height of sodium layer, km 92 Laser path transmission 0.5 
Wavelength,  0.589 Detector quantum efficiency 0.8 
Backscatter cross-section,  4   Read noise per pixel,  5 
Sodium column density, m - 2 5 x 10" Pixels per measurement 4 
Beacon angular size,  10 Focal anisoplanatism,  5.02 



Performance with One Sodium  
      

0.6 

I 
0.2 

D 

-  

 30 40 

 Laser  watts 

A observation wavelength 0.70  
B observation wavelength 1.25  
C observation wavelength   
D observation wavelength  20  

50 

Optimum Integration Time Photon Count per Subaperture 

  

10 20 30 40 

Average Laser   

50 10 20 30 40 

Average Laser Power, watts 

Conditions: telescope aperture D = 4 m, subaperture size d = 0.2 m, 
turbulence parameter  -     = 0.5  zenith 
angle  =  degrees, Greenwood frequency  =  Hz, 

laser pulse rate = 1000  beacon angular size =10  
CCD read noise = 5 electrons per pixel. 

Figure 9.34 Performance of adaptive optics using a single sodium beacon, as a function of 
the average laser power. The integration time (number of laser pulses) per measurement is 
optimized at each power level. 

Table 9.9 Wavefront Error Components of an Adaptive Optics System Using a Single Sodium Beacon 

Obs.  observing wavelength. 

Error source Obs. Wvl. 0.7  Obs. Wvl. 1.62  

Error Strehl Error Strehl 

Beacon measurement error  1.10 0.33 0.21  
Temporal error  1.06 0.35 0.20 0.82 
Wavefront fitting error  0.27 0.77 0.05 0.95 
Cone error  0.48 0.62 0.09 0.91 
Multiple beacon error  0 1.00 0 1.00 
Dispersion error  0 0 0.01 0.99 
Totals 2.91 0.054 0.56 0.57 
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The photoelectron count  from a continuous 
source is given by 

where 

 = effective integration time of the tilt servo 
 = optical transmission in the sensor to the 

quadrant detector 
 = quantum efficiency of the photon detector 

When a first-order filter with half-power (3-dB) 
bandwidth  is used in the tilt servo loop, it 
was shown in section 9.5.2 that the effective integra
tion time is 

(9.97) 

When a quadrant detector is used for sensing  the 
readout time is negligible. 

Background (Sky) Noise 

Background noise can be a significant factor in tilt 
sensing because of the longer integration times and 
dim stars that are employed. To obtain good sky 
coverage, stars of 16th to 20th magnitude must be 
used, making it essential to limit the background 
noise to the absolute minimum. When using  
stars in the H-band  sky radiation becomes 
the major limitation to the signal-to-noise ratio. 

In a conventional tracking sensor using a quad
rant detector in the image plane, the four pixels form
ing the quadrant define the field of view, with each 
pixel receiving radiation from the reference source 
and the sky. The overall size of the detector array 
must be sufficient to acquire the star with uncor
rected image motion, which is considerably larger 
than the (short-exposure) spot size.  section 5.3.1, 
it was shown that for a quadrant (2 x 2) detector, the 
minimum pixel size is approximately equal to the 
spot size, but with a 4 x 4 array of the same overall 
size, the pixels are proportionally smaller. This sug
gests the possibility of using a 4 x 4 array for initial 
acquisition of the reference source, subsequently 
using only the central  elements for normal 
operation. Of course, the signal-to-noise ratio with 

the full array must be sufficient to allow the tracking 
loop initially to acquire the star. 

If the sky spectral radiance is  photons    

arc   then the detected background 
photon flux is 

events per second 

(9.98) 

where 

A/ = spectral bandwidth of the tilt sensor,  
D = telescope aperture, m 

 = angular size of a detector pixel, arc seconds, 
 = optical transmission from the primary 

mirror to the tilt detector 
 = quantum efficiency of the tilt detector to 

background radiation 

The value of  depends on the mean wavelength; 
typical values are given in table 9.10. The number of 
background noise electrons is then  =  where 

 is the tilt sensor integration time. 
The read noise of the tilt sensing array depends on 

the type of array. With an avalanche photodiode 
array operating in the pulse-counting mode, the 
noise should be negligible. A silicon quad cell used 
at visible wavelengths should also have low noise 
because of the small number of cells and the rela
tively long integration time. Infrared arrays generally 
have a higher noise level than those operating at visi
ble wavelengths. The tilt sensor signal-to-noise ratio, 
taking into account all these noise sources, is found 
using equation (9.82). 

9.6.5 Performance and Sky Coverage of 
Laser Beacon Systems 

As discussed in section  there are several ways 
to achieve image stabilization with a natural guide 
star. The performance of three methods is determined 
in this section: 

• uncompensated guide star; 
• guide star compensated by a second beacon 

 adaptive optics); 
• guide star compensated by the primary bea

con (shared compensation). 

The main issue when using natural guide stars is 
obtaining the maximum sky coverage; with a given 

Table 9.10 Typical Values of Sky Radiance 

Mean Wavelength  Sky Radiance  

0.7 
 

1.62 

360 
4000 
9000 

(9.96) 

(9.95) 
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population of stars, this requires maximizing the sen
sitivity of the tilt sensor. The angular precision of a 
tilt sensor such as a quad cell depends on the angular 
size of the reference source, which is normally 
enlarged by atmospheric turbulence. A considerable 
improvement in sky coverage is therefore obtained by 
compensating the image of the guide star. Natural 
guide stars used for tilt referencing are too faint to 
use in the self-referencing mode, so the most general 
solution is to use a separate beacon. This method, 
known as dual adaptive optics, further complicates 
what is already a complex system. 

Shared compensation takes advantage of the fact 
that the isoplanatic angle grows as  so the com
pensated area surrounding the primary beacon is 
large at  wavelengths. Isoplanatic errors, 
expressed as Strehl ratios for convenience, are 
shown as a function of field angle in figure 9.35. 
At a wavelength of   the isoplanatic angle 

for a Strehl ratio of 0.4 is  arc seconds and useful 
compensation is obtained out to about 15 arc sec
onds. Within this radius from the primary beacon, 
much fainter  stars can be used than would be 
possible without compensation. The sky coverage 
for all three of these adaptive optics operating 
modes is determined in this section. 

Parameters of the basic tilt correction system are 
listed in table  

The performance of an overall tilt correction sys
tem using uncompensated natural stars is shown in 
figures 9.36 and 9.37 for observation wavelengths of 
0.7, 1.25, and 2.2  For uncompensated stars, the 
effective angular diameter of the reference source is 
determined by the ratio of the sensor wavelength to 
the turbulence parameter,  For the conditions 
in table 9.11 and for a sensor wavelength of 

 = 0.7  the reference source diameter is 0.7 
arc second. The method of calculating the sky cover-

Field Angle, arc seconds 

A wavefront error,   
B wavefront error, 1.25  
C wavefront error, 1.62  
D wavefront error,  

E overall tilt error,  
F overall tilt error, 1.25  
G overall tilt error, 1.62  
H overall tilt error, 2.20  

Figure  Anisoplanatic errors for wavefront and tilt expressed as Strehl ratios, as a 
function of field angle at four observation wavelengths. The turbulence model is 
Mauna   average, for which  = 0.24 m and  — 1.9 arc seconds at 

 =   The zenith angle is 30°. The anisoplanatic tilt error is weakly dependent 
on the telescope aperture, which is 4 m in this example. 
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Table  Parameters of Tilt Compensation System Using Natural Stars 

Turbulence model:    average (with turbulence peak) 

age has been described in section 9.5.5, using an aver
age star distribution model. 

The sky coverage of this tilt compensation system 
depends on both the observation wavelength and the 
required Strehl ratio. Figure 9.36 shows that for an 
observation wavelength of   stars of about 

 = 16 are required to achieve a tilt stabilization 
Strehl ratio of 0.5, limiting the coverage to about 
1%, while at an observation wavelength of 2.2  
the same Strehl ratio can be achieved with stars of 
about  = 18, increasing the coverage to nearly 
100%. The allowable field angles over which the 
required tilt compensation can be obtained are 
shown in figure 9.37. The sharp cutoff in field angle 
occurs at the star magnitude for which the tilt detec
tion errors become equivalent to the specified Strehl 
ratio, reducing the allowable isoplanatic error to 
zero. It is this critical star magnitude that determines 
the sky coverage. 

If the wavefront received from the tilt reference 
star is compensated (for example, by using a second 
laser beacon), then the effective angular size of the 
reference source shrinks to its diffraction-limited size 
of approximately  As explained in section 4.4, 
the core of the image retains this size even with a 
mean-square residual wavefront error as large as 2 
rad2. Therefore, it may be sufficient to compensate 
the tilt reference source only partially, although this 
needs careful evaluation as the presence of the halo in 
a partially compensated image reduces its contrast, 
and therefore decreases the signal-to-noise ratio of 
the wavefront sensor. 

The performance of a tilt sensor operating at 
 with a compensated source is shown in fig

ure 9.38. Wavefront compensation enables the tilt 
sensor to operate with much fainter sources, consid
erably improving the sky coverage. At an observa
tion wavelength of   the limiting magnitude 
for a tilt stabilization Strehl ratio of 0.5 is 

 =  giving about 30% sky coverage. For 
the same Strehl ratio, the sky coverage grows to 
50% at   and is complete at wavelengths 

over  Full compensation of the tilt reference 
star increases the sky coverage by a factor of about 
30, compared with an uncompensated reference. 
The allowable field angles obtained for various 
(tilt) Strehl ratios are shown as a function of star 
magnitude in figure 9.39. The effect of compensa
tion is to increase the limiting magnitudes for each 
field angle; the field angles themselves are not 
increased because they are determined by the aniso-
planatic errors. 

The sky coverage obtained with the third mode of 
tilt referencing, employing an  star that is compen
sated by the primary beacon, is shown in figure 9.40. 
The use of an IR wavefront sensor reduces perfor
mance in two ways'. 

• The detector noise is usually greater than at 
visible wavelengths, reducing the signal-to-
noise ratio. 

• Sky background radiation is much higher, 
making it necessary to use the smallest pos
sible pixels. 

The second factor is probably the most critical. The 
size of the (diffraction-limited) image core in this 
case is about 0.01 arc second. The sky coverage 
chart in figure 9.40 assumes a tilt sensor pixel size 
of 0.1 arc second, which, on paper, gives an ade
quate dynamic range once the tilt loop is closed. 
However, in order to "capture" the tilt reference 
star with pixels of this size, the telescope must be 
pointed to within ±0.1 arc second of its true posi
tion. This operation would be facilitated by using a 
larger number of detector pixels for initial acquisi
tion and discarding them once the tracker has 
locked on to the target, in order to reduce detector 
and background noise. The allowable field angles 
for this mode of operation are shown in figure 
9.41. The performance using shared compensation 
appears to fall in between that of the other two, 
giving a useful increase in sky coverage with mini
mal increase in cost and complexity. 

Telescope aperture,  4 Atmospheric transmission 0.7 
Turbulence parameter, m @ 0.5 0.24 Telescope optical transmission 0.5 
Tyler frequency, Hz @ 0.5 3.8 Wavefront sensor transmission 0.8 
Zenith angle, degrees 30 Detector quantum efficiency 0.8 
Sensor wavelengths,  0.70 

 
Read noise per pixel,  @ 0.7 

@  
2 
5 

Sensor bandwidth,  0.3 Pixels per measurement 4 
Sky photons,    m~2  0.7 360 

@  9000 



Obs.  700  NGS Uncompensated 

Visual Magnitude of Reference Star 

Obs. Wvl. 1250 nm, NGS Uncompensated 
Conditions: 

Telescope aperture = 4  
Turbulence model =  average 
Turbulence  = 0.24  
Tyler frequency = 3.8 Hz 
Zenith angle = 30 degrees 
Sensor wavelength = 0.7  
Sensor spectral band = 0.3  
Sky spectral radiance 

= 360 photons   arcsec"2   

Effective optical aperture = 0.33  
Pixel angular size — 1 arcsec 
Detector quantum efficiency = 0.8 
Read noise per pixel = 2 electrons 

A Strehl ratio =  
B Strehl ratio = 0.3 
C Strehl ratio = 0.5 
D Strehl ratio = 0.7 
E Strehl ratio = 0.9 

Figure 9.36 Sky coverage for tilt referencing with uncompensated natural stars, at observa
tion wavelengths of 0.7, 1.25, and   The integration time is optimized for each star 
magnitude. The Strehl ratio is the contribution of tilt stabilization only. Fit 

er 
 
0. 
th 
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22 

A  ratio = 0.1 
B Strehl  = 0.3 
C Strehl ratio = 0.5 

D Strehl  = 0.7 
E Strehl ratio = 0.9 

Figure 9.37 Allowable field angles for the tilt refer
ence conditions shown in figure 9.36, using an uncom
pensated natural star at a tilt sensor wavelength of 

  The sharp cutoff in field angle occurs when 
the tilt detector errors become equal to the specified 
Strehl ratio, with the result that the allowable aniso-
planatic error drops to zero. 

9.7 Adaptive Parameter Control 

 The Environment of Adaptive Optics 

Adaptive optics systems operate in a complex envir
onment dominated by natural phenomena whose 
characteristics cannot be controlled. The basic design 
of these systems can be optimized for statistically 
average observing conditions and requirements, but 
the inevitable variations in these statistics have a 
large effect on system performance, often within 
short time periods. Changes in the structure and 
strength of atmospheric turbulence, defined by the 
refractive index structure parameter  and 
changes in the wind profile  combine to produce 
random variations in the normalized parameters  

 and  Other factors that may vary during an 
observing session are the atmospheric transmission 

 and the brightness and apparent size of the refer
ence source, especially if it is a laser beacon. 

The effect of these short-term variations can be 
minimized by adjusting the parameters of an adap
tive optics system in real time, without interrupting 
its operation. Some possible approaches are outlined 
in the following sections. 

9.7.2 Parameters To Be Controlled 

Adaptive optics parameters that may be optimized 
during operation include: 

• photon integration time  or control loop 
bandwidth  

• wavefront sensor sensitivity or dynamic 
range; 

• reconstruction matrix weights. 

The photon integration time is the most important of 
these and its effect on overall performance has been 
discussed in section 9.5.3. It is simple enough to cal
culate the optimum integration time when modeling 
system performance, but a different approach is 
needed to optimize a working system in real time. 
As adaptive optics systems generally have separate 
control loops for high-order wavefront correction 
and overall tilt correction, the time constant of each 
loop must be optimized. 

 practical wavefront sensors, there is a tradeoff 
between sensitivity and dynamic range. In the case of 
a slope sensor, the sensitivity or transfer function is 
defined in terms of volts per radian of wavefront 
slope; the maximum output voltage is always limited, 
so, as the sensitivity is increased, the dynamic range 
inevitably decreases. In the case of  sen
sors, the sensitivity is not easily changed because it 
is built into the hardware. With shearing interferom
eters, the sensitivity may be controlled over a large 
range by changing the shear, which can be done in 
real time without interrupting operation. The sensi-



Conditions: 

Telescope aperture = 4  
Turbulence model =  average 
Turbulence   0.24  
Tyler  = 3.8 Hz 
Zenith angle = 30 degrees 
Sensor wavelength = 0.7  
Sensor spectral band = 0.3  
Sky spectral radiance 

=  photons   arcsec"2  
Effective optical aperture = 4  
Pixel angular size = 1 arcsec 
Detector  efficiency = 0.8 
Read noise per pixel = 2 electrons 

A Strehl ratio =  
B Strehl ratio = 0.3 
C Strehl ratio = 0.5 
D Strehl   0.7 
E Strehl ratio = 0.9 

Figure 9.38 Sky coverage for tilt referencing with compensated natural stars, at observation 
wavelengths of 0.7, 1.25, and 2.2  The integration time is optimized for each star magni
tude. The Strehl ratio is the contribution of tilt stabilization only. 
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A  ratio = 0.1 
B Strehl ratio = 0.3 
C Strehl ratio = 0.5 

D Strehl   0.7 
E Strehl ratio = 0.9 

Figure 9.39 Allowable field angles for the tilt refer
ence conditions shown in  9.38, using a com
pensated natural star at a  sensor wavelength of 

  The sharp cutoff in field angle occurs when 
the tilt detector errors become equal to the specified 
Strehl ratio, with the result that the allowable aniso-
planatic error drops to zero. 

 range tradeoff becomes an issue in 
two operational situations: 

1. During initial acquisition, when the residual 
wavefront error is large. Convergence of the 
control loop is facilitated when the initially 
large error is within the linear range of the 
wavefront sensor. Once the system has con
verged and the residual error is small, the sen
sitivity of the wavefront sensor may be 
increased to improve the precision of the cor
rection. 

2. When a dropout occurs because of a sudden 
increase in turbulence, causing the system to 
lose track of the reference source. To regain 
control, it is necessary to repeat the acquisition 
procedure, which is facilitated by increasing the 
dynamic range. 

It should be noted that the sensitivity/dynamic range 
tradeoff is determined by the design of the wavefront 
sensor itself and is not equivalent to changing the 
gain of the feedback loop. 

Optimization of the reconstruction matrix weights 
takes account of many variable factors in an adaptive 
optics system.  the optimal wavefront correction 
approach to system design, described in section 8.6, 
the reconstruction matrix contains essentially all of 
the parameters required to optimize the system; that 
is, it defines the adaptive feedback loop. When the 
reconstructor is viewed as one element of the control 
system, with a more limited function, it can still have 
a considerable effect on system performance. In par
ticular, the contributions of individual subapertures 
to the overall wavefront measurement can be 
adjusted according to their individual signal-to-
noise ratios. Possible methods of implementing 
these controls are discussed in the following section. 

 Control Methods and Algorithms 

Adaptive parameter control may be considered as a 
high-level control loop superimposed on the basic 
wavefront correction system. The function of this 
high-level control is to compensate for changes in 
the statistics of the turbulence. Although a real-time 
response is required, the time scale of these statistical 
variations is two or three orders of magnitude longer 
than that of the wavefront correction itself. Statistical 
changes occur over periods of seconds, rather than 
milliseconds, so the functions of the loops are easily 
separated. Viewed in this light, adaptive parameter 
control may be implemented as a closed-loop control 
system, in which case it is necessary to find measur
able parameters that are sensitive to the quality of the 
compensated image. 

Performance measures that may be used to moni
tor the operation of an adaptive optics system and to 
maximize its performance in real time include: 

residual wavefront error, 



Conditions: 

Telescope aperture  4 m 
Turbulence model = MK average 
Turbulence  = 0.24  
Tyler frequency = 3.8 Hz 
Zenith angle = 30 degrees 
Sensor wavelength = 1.6  
Sensor spectral band = 1  
Sky spectral radiance 

= 9000 ph.  m"2 arcsec"2 /an"1 

Effective optical aperture = 4  
Pixel angular size =  arcsec 
Detector quantum  — 0.8 
Read noise per pixel = 5 electrons 

A  ratio =  
B  ratio  0.3 
C Strehl ratio = 0.5 
D Strehl ratio = 0.7 
E Strehl ratio = 0.9 

Figure 9.40 Sky coverage for tilt referencing with a fully compensated  star at  The 
compensation may be produced by laser beacon adaptive optics if the star is within its iso-
planatic angle at  The integration time is optimized for each star magnitude. The Strehl 
ratio is the contribution of tilt stabilization only. 
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A   = 0.1 
B Strehl  = 0.2 
C Strehl ratio = 0.3 

D Strehl ratio = 0.7 
E Strehl ratio = 0.9 

Figure  Allowable field angles for the tilt 
reference conditions shown in figure 9.40, 
using a compensated  star at a tilt sensor 
wavelength of  The sharp cutoff in 
field angle occurs when the tilt detector errors 
become equal to the specified Strehl ratio, with 
the result that the allowable anisoplanatic 
error drops to zero. 

• signal-to-noise ratio in feedback control 
loops, 

• frequency spectrum of wavefront sensor out
put, 

• Strehl ratio of compensated image, 
• wavefront corrector (actuator) drive vol

tages. 

Closed-loop implementation involves monitoring one 
or more of these parameters and computing the 
required correction to be applied to the integration 
time, wavefront sensor sensitivity, or reconstruction 
weights. A variation of this approach is to use trial 
and error, systematically changing the controlled 
quantity by a small amount and observing its effect 
on the residual error. If the performance improves, 
the change is kept; if not, a change of the opposite 
polarity is applied. Obviously, it is preferable to look 
for the cause rather than the effect of performance 
changes, by measuring the most fundamental para
meters. In the case of photon integration time, this is 
straightforward. 

The optimum integration time is determined by 
minimizing the sum of the wavefront measurement 
error  and the temporal error  By using simpli
fied expressions for these errors, it is possible to find 
the explicit dependence of the integration time  on 
the photon flux and atmospheric parameters. If other 
noise sources are ignored, the signal-to-noise ratio of 
the wavefront sensor is equal to the square root of 
the number of photons counted, or SNR   , 
where  is the photon counting rate per subaperture 
(events per second) and  is the integration time. In 
astronomical adaptive optics, the subaperture size d 
is usually greater than the turbulence parameter  
using equation (9.43), the mean-square wavefront 
measurement error for an unresolved reference 
source may be expressed as 

(9.99) 

where  is the Greenwood frequency of the turbu
lence  = \/nt is the servo bandwidth. The sum 
of these errors is 

The value of / that minimizes the error is found by 
differentiating e with respect to t and setting the 
result to zero: 

(9.102) 

The optimum integration time is then 

The mean-square temporal error [using equation 
(9.53)] is given by 

(9.100) 

(9.101) 
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where  is a system constant. The photon counting 
rate  is easily obtained from the detector outputs, 
and the value of the turbulence   may be 
deduced from the temporal frequency spectrum of 
the wavefront tilt measurements produced by the 
wavefront sensor. The turbulence parameter  may 
be found by monitoring the mean-square value of the 
drive signals to the wavefront corrector. In this way, 
the integration time can be updated in real time to 
optimize the system performance. 

A similar process may be used to optimize the 
wavefront sensor sensitivity. Using equation (9.44), 
the wavefront error of a shearing interferometer may 
be expressed as 

The maximum value of  is obtained when the 
shear s   . In other words, the optimal shear 
distance of the wavefront sensor depends on  as 
expected. The control algorithm to optimize shear 
is therefore to monitor  by measuring the mean-
square value of the drive signals to the wavefront 
corrector and to make adjustments proportional to 
''o • 

9.8  Compensation 

9.8.7 Introduction 

A wavefront corrector such as a deformable mirror 
provides optical pathlength correction at a single 
plane, whereas atmospheric turbulence is a three-
dimensional phenomenon involving a continuous dis
tribution on which several thin layers of high turbu
lence may be superimposed. When a single corrector 
is employed, the total turbulence in the direct path 
between the reference source and the telescope is 
compensated perfectly, but the field angle over 
which this correction is effective is limited by aniso-

 and is consequently extremely small, typi
cally a few arc seconds, especially when strong 
turbulence is present at high altitudes. The corrected 
field of view may be extended by using multiconju
gate compensation, in which multiple wavefront cor
rectors are optically conjugated to turbulent layers in 
the atmosphere. It is of considerable interest to find 
the relation between the number of correctors and 
the compensated field angle; this relation depends 
on the strength and distribution of the turbulence, 
as well as the observing wavelength. 

Two separate problems are encountered when 
implementing multiconjugate compensation: 

• measurement of the turbulence in three 
dimensions; 

• optimal placement and control of a limited 
number of wavefront correctors. 

The first problem can be solved, in principle, by using 
multiple reference sources to probe the turbulence 
distribution over the required field of view. A pro
posed method of measuring multiple turbulent layers 
using an array of laser beacons is described in section 
9.8.2. Even when the turbulence distribution is 
known, there remains the problem of optimally locat
ing the correctors in the optical path, as well as com
puting the drive signals for each actuator. An 
approach to determining the optimal corrector loca
tions is summarized in section 9.8.3. 

Wide-field compensation remains one of the 
unsolved problems in adaptive optics. A practical 
goal would be to achieve good compensation of 
low-contrast detail at visible wavelengths over a 
field of 1 minute of arc, which would encompass 
the entire disks of the planets Jupiter or Saturn. 

9.8.2 Multiconjugate Wavefront 
Measurement 

The measurement of distributed turbulence and 
methods of controlling multiple correctors are diffi
cult problems that have received little attention in 
the literature. Dicke [1975] suggested the idea of 
separating high- and low-level turbulence on the 
basis of frequency spectra due to wind speed. 
More recently, Johnston and Welsh [1994] have 
described a method of measuring two widely sepa
rated turbulent layers using an array of four laser 
beacons and a natural guide star. (Their analysis 
ignores the conjugate image sequencing problem 
noted in section 2.5.) Johnston and Welsh find 
that with a model atmosphere in which 90% of 
the turbulence is at 1 % of the laser beacon altitude, 
and the remaining 10% of the turbulence is at 10% 
of the beacon altitude, a two-level correction system 
enlarges the corrected field angle by a factor of 
about 3 compared with a single-corrector system, 
for the same isoplanatic error. They also find that 
with the assumed turbulence distribution, in which 
there is a large separation between the two layers, 

(9.103) 

(9.104) 

where 

y - fringe contrast (modulation) 
s = shear distance 

The  controlled by changing the shear 
distance, which is normally a fraction of the subaper-
ture size d. However, changing the shear distance also 
changes y, so to minimize the measurement error, the 
product ys must be maximized. The relation between 
y and s is given in equation (9.49), which for d  s 
may be approximated as 

(9.105) 
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the anisoplanatic angle is not sensitive to the loca
tion of a single corrector. The only case in which the 
position of a single corrector can increase the iso-
planatic angle materially is when all turbulence is 
concentrated into a single layer. 

These results are consistent with the analysis of 
Wallner [1994], described in section  in which 
little improvement in isoplanatic angle was obtained 
with a typical distributed turbulence model by mov
ing the corrector from the telescope pupil up to the 
mean turbulence height. To obtain a  gain 
in isoplanatic angle, at least two correctors are neces
sary; this requires multiple reference sources to pro
vide the wavefront measurements. 

9.8.3 Optimal Corrector Locations 

The  compensation system is modeled 
as a number of discrete wavefront correctors, each 
optically conjugate to a specific height  as shown 
in  9.42(a). Each corrector compensates the 
turbulence within a discrete interval of the optical 
path, between heights  and  . The problem to 
be solved may be stated as follows: Given an atmo
spheric turbulence distribution  and a total 
number of correctors  where should the correctors 
be placed and what is the resulting isoplanatic 
error? 

It will be assumed that each corrector is capable of 
providing perfect compensation for its assigned layer 
and that the beam path is near vertical. 

The model for a single corrector is depicted in 
figure 9.42(b). The optical path difference measured 
along vertical ray paths such as AB, between layer 
boundaries   is complemented by an equal 
and opposite path difference in the corrector located 
at height  A ray at an angle 0 to the vertical is 
displaced at the corrector location by a distance Oh-,. 
The anisoplanatic error for this section is the differ
ence in optical path lengths between the vertical ray 
paths AB and CD, where the latter is displaced by 
Oh,. The "vertical" path AB, in this case, is simply 
the path measured by the multiconjugate wavefront 
sensor, assuming perfect measurement and imple
mentation of the turbulence in each layer, while 
the path CD is equivalent to that followed by the 
ray at angle 0. 

Wallner [1994] has shown that, for  layers, the 
optical path error for a ray at position x in the aper
ture may be expressed as 

(a) Multilayer Mode) 

(b) One Layer 

Figure 9.42 Model for multiconjugate compensation. 

mean-square anisoplanatic error is then 

(9.107) 

The conditions that minimize the mean-square error 
are found by setting the appropriate derivatives to 
zero. The condition for optimum corrector heights 

 is 

(9.108) 
where n(x,  is the index of refraction at position x, 
height h. Assuming  turbulence, the The solution to this equation depends on the turbu-
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— 1st corrector optimal scale height 
 2nd corrector 
 3rd corrector 

 4th corrector 
 5th corrector 

Figure 9.43 Multiconjugate compensation: improve
ment in isoplanatic angle and optimal corrector scale 
heights for the HV 5-7 turbulence model, as a function 
of the number of correctors employed [Wallner 1994]. 

(9.109) 

For uniform turbulence from zero to distance  
such as that encountered in a horizontal path, the 
optimal corrector locations are 

 

The section boundaries are therefore midway 
between the corrector locations. 

which specifies uniform spacing of correctors, the 
expected result. For the Hufnagel-Valley turbulence 
profile, defined in equation (3.18), the optimal cor
rector heights  and the resulting isoplanatic angles 

 are shown in figure 9.43 as a function of the num
ber of correctors. In this chart,  = 0 represents a 
single corrector at the telescope aperture, while 
m = 1 represents a single corrector at the optimal 
height. The HV 5-7 turbulence model gives 

 = 0.05 m and  = 1  it contains both low-
level and high-level turbulence. With this profile, pla
cing a single corrector at the optimum height makes 
little difference, but two correctors improve the iso
planatic angle by a factor of 2.58. Beyond this point, 
the isoplanatic angle improves in direct proportion to 
the number of correctors, up to at least 20. The area 
of sky over which compensation is effective therefore 
increases approximately as the square of the number 
of correctors. Even two correctors, optimally located, 
produce a worthwhile improvement of over six times 
in the compensated area. 

Some of the practical issues involved in the use of 
multiple compensators have been discussed in section 
2.5.5, where it  pointed out that the conjugate 
images produced by an optical relay do not naturally 
occur in the correct sequence for wavefront compen
sation. Optical images are formed in the same 
sequence as the objects, so that the conjugate image 
of the nearest layer is furthest from the telescope 
objective. For multiconjugate compensation, it is 
necessary to correct the layers in reverse order, start
ing with the layer nearest to the telescope, thereby 
requiring that its corrector also be nearest to the tele
scope. An optical relay system is required to rear
range the conjugate images of the layers in the 
correct sequence. Another problem is that the planes 
conjugate to high-altitude layers are close to the 
reference image plane, where the beam diameter is 
much smaller than that of conventional deformable 
mirrors. Optical configurations for three- and two-
level correction that solve these problems have been 
shown in figures 2.17 and 2.18, respectively. To 
extend the compensated field of view therefore 
requires not only multiple correctors and their drive 
systems, but also involves the addition of several 
optical elements in the telescope imaging path to con
trol the positions of the conjugate images. 

 distribution  . The condition for optimum 
section heights  is 



Astronomical Adaptive Optics 
Programs 

10.1 Introduction 

This chapter contains a capsule summary of the orga
nization, goals, and achievements of the major 
research programs in astronomical adaptive optics 
around the world, as they existed at the end of 1997. 
Most of these efforts are associated with specific tele
scopes. The technology and applications of adaptive 
optics are rapidly changing, so the summaries pre
sented here should be regarded as a starting point for 
further investigation. Most organizations have sites on 
the World Wide Web, from which the latest informa
tion may be obtained. In the final sections  this chap
ter, current trends in adaptive optics are summarized 
and prospects for the future are discussed. 

Some perspective on the current activity in adap
tive optics can be obtained by considering its relation 
to the present boom in telescope building, which is 
certainly the biggest in history. This activity comes 
after a long period of stagnation, from about 1950 to 
1980, in which telescope technology reached a pla
teau, with maximum apertures of about 5  This 
is the largest practical diameter for conventional 

 mirrors made of glass, which have a dia
meter-to-thickness ratio of between 6:1 and 8:1. 
Above this size, the weight increases so rapidly that 
the sag due to gravity becomes unacceptable. During 
this period, the main advances came from better 
detectors: notably solid-state detectors, such as 
charge-coupled devices (CCDs), with high efficiency 
and broad spectral range. 

The quantum efficiency of detectors at visible 
wavelengths is now approaching 100% and that of 

infrared  detectors, although lower, is rapidly 
improving. Furthermore, the development of adap
tive optics to compensate atmospheric turbulence has 
enabled diffraction-limited performance to be 
obtained from large ground-based telescopes at 

 wavelengths; it is expected that this capabil
ity will gradually be extended down to visible 
lengths. 

With these advances in detector technology, the 
only way of further improving the information-gath
ering power of astronomical telescopes is to increase 
the collecting area and/or the overall size of the aper
ture, using large telescopes or arrays of telescopes. To 
meet this need, three new approaches to the fabrica
tion of primary mirrors have been developed. These 
are all represented in the current group of large tele
scopes for which adaptive optics is planned. 

The new methods of primary-mirror fabrication 
are: 

 Segmented mirrors, in which a number of sepa
rately fabricated panels, usually hexagonal, are 
assembled into a phase-continuous surface. 
The Keck I and II primary mirrors are exam
ples of this method, each being composed of 36 
independently supported panels, spanning a 
diameter of 10  

2. Meniscus mirrors, which are thin slabs of 
quartz or ceramic, with a diameter-to-thickness 
ratio of about 40:1. They are supported by 
several hundred actuators using active control 
to maintain the optical figure. The four 8.2-m 
European Southern  large 
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Telescope (ESO VLT) mirrors are of this type, 
as are the two Gemini 8-m mirrors and the 8.2-
m primary mirror for the Subaru telescope of 
the National Astonomical Observatory of 
Japan (NAOJ). 

3. Honeycomb sandwich mirrors, which are cast 
using borosilicate glass, a material similar to 
Pyrex, with a low melting point. This process 
was developed at the Steward Observatory of 
the University of Arizona [Angel, Davison et 

 1990]. These mirrors have approximately 
the same stiffness as a solid piece of glass but 
are only one-quarter of the weight. Because of 
their thin structure, they quickly come into 
thermal equilibrium with the ambient air. 
Honeycomb mirrors are used in the 6.5-m 

 Mirror Telescope  conversion at 
Mt Hopkins and the 6.5-m Magellan Telescope 
at Las Campagnas, Chile. Two 8.4 m mirrors 
of this type are used in the Large Binocular 
Telescope (LBT). 

Two factors determine the information-gathering 
capability of an astronomical telescope system: its 
photon sensitivity and its angular resolution. For a 
given detector quantum efficiency, the photon sensi
tivity is proportional to the area of the aperture. 
Given diffraction-limited operation, the angular reso
lution is determined by the maximum dimension of 
the aperture and the wavelength. In a conventional 
telescope with a circular aperture, the diameter and 
area have a fixed relationship, so the sensitivity and 
resolution are not independent. 

However, by combining the beams from two or 
more separate but otherwise identical telescopes, it is 
possible to improve the angular resolution without 
increasing the basic telescope size. Interferometric 
imaging appears to be the most economical way of 
increasing the information-gathering power of large 
telescopes without incurring the enormous cost of 
making even bigger primary mirrors. This approach 
has, in fact, been taken with three of the largest 
instruments: the ESO VLT (consisting of four 8.2-
m units), the Keck telescopes (two  units), and 
the LBT (two 8.4-m mirrors on a common mount). It 
is planned to use all of these telescopes in the inter
ferometric imaging mode, for which adaptive optics 
is essential. 

 Adaptive Optics Programs 

 reviewing the development of adaptive optics, it is 
important to keep in mind the vast disparity in moti
vation and goals between military and scientific pro
grams; this disparity shows up as a large difference in 
the scale and complexity of the equipment developed. 
Equipment for military applications must work reli
ably under the worst conditions, and must produce a 
specified level of performance. For example, Military 
adaptive optics systems are required to work at short 

wavelengths in locations where turbulence levels may 
be high. Satisfying such requirements usually requires 
advancing the state of the art, an expensive proposi
tion. Astronomers, on the other hand, usually work 
in good seeing conditions and are able to exploit 
small improvements in technology that allow more 
information to be extracted from their observations. 
For example, the use of partial adaptive optics at 

 wavelengths, producing a modest improve
ment in angular resolution, has led to significant 
scientific results [Lena 1994, Roddier et al. 1994]. 
There is also a considerable difference in the instru
ments used in the military and astronomical commu
nities: in the former, imaging is of prime importance, 
with high angular resolving power being the major 
goal. Multispectral imaging bands used in military 
and earth resources analysis are relatively broad 
and can be separated with interference filters. In con
trast, much of the information obtained on the uni
verse is contained in the spectra of faint objects, so 
the spectrographs used in astronomy must measure 
every photon with exquisite spectral resolution. 

The difference between the objectives of the 
national defense and astronomical communities is 
one reason for the long delay in applying adaptive 
optics technology to astronomical telescopes. 
Although the idea of adaptive optics was first sug
gested by an astronomer, the basic technology and 
first operating systems were developed under govern
ment-sponsored defense programs. The defense com
munity must continually push the limits of 
technology to keep ahead of assumed adversaries; it 
usually takes some time for the value of new technol
ogy to be appreciated and to be applied to scientific 
work. 

The first adaptive optics system to compensate a 
large telescope was installed in 1982 on the  
satellite-tracking telescope at the Air force MAUI 
Optical Station (AMOS) on Mt Haleakala, Maui, 
Hawaii (now operated by the U.S. Air Force 
Phillips Laboratory). This system was designed for 
the specific purpose of imaging  satel
lites at visible wavelengths. Since then, many experi
mental adaptive optics systems have been tested on 
astronomical telescopes throughout the world. These 
pioneering systems are of many different designs and 
have a variety of purposes, ranging from low-cost 
instruments with as few as 6 degrees of freedom, 
intended for operation in the  spectrum, up to a 
940-actuator system capable of compensating a 3.6-m 
telescope at visible wavelengths. The purpose of these 
systems has been to evaluate the utility of adaptive 
optics for space surveillance and astronomy, and to 
obtain practical experience in their design and opera
tion. With a few notable exceptions, the early systems 
employed natural stars as reference sources. 

Adaptive optics, as developed for military appli
cations, acquired the reputation of being complex 
and expensive. In fact, much of the complexity and 
expense can be avoided by observing at longer wave-
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lengths that are favorable to both astronomy and 
adaptive optics. Credit must be given to the astron
omers who realized that even minimal adaptive optics 
systems, using fewer than 20 subapertures, could sig
nificantly improve imaging in the  with large 
telescopes, producing useful astronomical results. 
This approach was pioneered by two groups: the 
ESO/France collaboration and The Institute for 
Astronomy led by F. Roddier at the University of 
Hawaii. This trend continues in adaptive optics sys
tems now being designed for the new generation of 8-
m telescopes, which are optimized for  observa
tions. 

The need for bright reference sources has impeded 
the acceptance of adaptive optics in astronomy. The 
development of laser beacons in the 1980s was a 
major advance in adaptive optics technology and it 
has vastly improved the potential of adaptive optics 
for ground-based astronomy. As a result, there has 
been an explosion of interest in adaptive optics in the 
astronomical community and most of the new gen
eration of 6- to  astronomical telescopes have 
included it in their basic design. These systems are 
usually designed to operate with both natural stars 
and sodium layer beacons. 

The major adaptive optics development programs 
in progress in 1997 are identified in Table 10.1. 
Capsule summaries of the activity of each develop
ment group or program are given in section 10.3. 
These should be considered as snapshots of a rapidly 
changing field of endeavor. 

 Program Descriptions 

 United States Air Force Phillips 
Laboratory, Kirtland Air Force Base, New 
Mexico 

The USAF Phillips Laboratory operates the Starfire 
Optical Range (SOR), located near Albuquerque, 
New Mexico. It was here that the feasibility of 
using laser-generated beacons to measure the wave-
front distortion produced by atmospheric turbulence 
was demonstrated in 1983 [Fugate et  1991]. Since 
then, many adaptive optics experiments using both 
natural stars and laser beacons have been conducted 
using the  aperture telescope at SOR [Fugate et 
al. 1994]. This telescope has an  parabolic pri
mary mirror and a hyperbolic secondary mirror, pro
ducing a  diameter output beam that feeds the 
adaptive optics through a coude path. The alt-azi
muth telescope is mounted on a hollow concrete 
pier with its elevation axis about 12  above the 
ground. The adaptive optics components are 
mounted on an optical bench in a temperature-con
trolled room below the telescope. All the electronics 
equipment is located in a separate room above the 

optics area to remove heat sources from the optical 
path. 

The laser is located in a separate building and is of 
the copper-vapor type, with outputs at 0.5106 and 
0.5782  The pulse rate is 5000 per second, with 
a pulse width of 50 ns. The laser produces Rayleigh 
scattering and is focused at an altitude of 10 km, with 
a range gate of 2.4 km. The imaging performance of 
the system is measured with a high-resolution CCD 
camera operating at 0.88 ±0.05  A comprehen
sive diagnostics capability was built into the system 
to permit real-time sampling, display, and recording 
of data. 

The Generation I adaptive optics system,  
operated in 1989 [Fugate et al. 1994], employed a 
continuous-facesheet  mirror with 149 
independent actuators, plus 52 slaves around the per
iphery for edge control. A  wave-
front sensor was used with an intensified, range-
gated Reticon detector array. The reconstructor 
employed digital matrix-multiplication and the max
imum closed-loop bandwidth was 65 Hz. The laser 
power was 75 W average. In tests conducted in 
November  with  between 0.14 and 0.19 m 
and a Greenwood frequency of 30 to 35 Hz at X — 
0.88  the uncompensated image diameter was 
between 1.5 and 2.5 arc seconds. The adaptive optics 
improved the Full-width half-maximum (FWHM) to 
0.16 arc second with an average Strehl ratio of 0.2 
when using a natural guide star (self-referencing), 
while the FWHM was 0.18 arc sec and the average 
Strehl ratio was 0.13 when using the Rayleigh bea
con. The theoretical diffraction-limited FWHM was 
0.12 arc second. 

The upgraded Generation II system (1992) 
employed a  copper vapor laser, an improved 
wavefront sensor using an intensified CCD array, 
and a deformable mirror with 241 independent actua
tors plus 64 slaves. The closed-loop bandwidth of the 
control system was increased to 143 Hz. Range gat
ing was performed by pulsing the image intensifiers. 
The average Strehl ratio achieved was about 0.51 
when using a bright natural star  = 0) as the 
reference source, and 0.32 when using the Rayleigh 
laser beacon. The reduction in the Strehl ratio with 
the laser beacon was caused by focal anisoplanatism, 
which was due to the relatively low altitude (10 km) 
of the Rayleigh beacon. 

The adaptive optics system was further upgraded 
in 1993 with an improved Shack-Hartmann sensor 
that used a 64 x 64 low-noise (nonintensified) CCD 
array, together with a 4 x 4 array of avalanche 
photodiodes for overall tilt tracking with a natural 
guide star. Range gating was accomplished with a 
mechanical chopper (Fugate et al. 1993, Pennington 
et al. 1995). The overall tracking performance was 
reported by Fugate [1994]. The system should have 
a tracking error of about 20   for 
a guide star of  =  but it was not possible to 
operate with guide stars fainter than 9th or 10th mag-
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Key Program 
Sponsor 

Telescope 
and Location 

AO System 
Characteristics 

WFS 
source 

Technical 
Reference 

1 USAF 
Phillips 
Laboratory 

 AMOS, 
Mt Haleakala, 
Maui, HI 

 CIS, 168 Actuators, 
visible observations 

LEOS, 
NS 

Goldberg et 
 1992, 

Hardy 1993 

 
Albuquerque, NM 

USAF, 241 actuators, 
visible and  observations 

NS, RB, SB, Fugate et al. 
1993, 1994 

3.5-m SOR, 
Albuquerque, NM 

NS, RB, SB 

3.67-m AEOS, 
Mt Haleakala, 
Maui, HI 

HDOS, 940 actuators, 
32 x 32 sensor, 200 Hz 
bandwidth, 0.7 to 5  
observations 

NS, RB, SB HDOS 
Report 
PA4764A, 
1995 

2 ESO/France 3.6-m ESO, 
La  Chile 

Come-On, 19 actuators, 
NIR observations 

NS Rigaut et al. 
1991 

3.6-m ESO, 
La Silla, Chile 

Come-On plus, 52 actuators, 
NIR observations 

NS Rousset et al. 
1994 

3.6-m ESO, 
La Silla, Chile 

ADONIS, 64 actuators, 
 observations 

Hubin et al. 
1993, Beuzit 
et al. 1994 

3 ESO VLT 4 x 8.2-m VLT, 
Cerro Parana), Chile 

Nasmyth AO System, 
250 actuators, visible and 

 sensors, NIR observations 

NS Hubin et at. 
1994 

4 Steward 
Observatory, 
University of 
Arizona 

  
Mt Hopkins, AZ 

Coalign six segments, 
NIR observations 

NS Gray et al. 
1995 

Smithsonian 
Astrophysical 
Observatory 

6.5-m SMT 
Mt Hopkins, AZ 

Adaptive secondary with 
300 actuators, 

 observations 

SB  
Lloyd-Hart 
et al. 1995 

5 University of 
Hawaii 
and CFHT 

3.6-m CFHT, 
Mauna Kea, HI 

Curvature sensing and 
correction, 13 actuators and 
APDs,  observations 

NS Roddier 
et  

 1995 

6 CFHT and 
Dominion 
Astrophysical 
Observatory 

3.6-m CFHT, 
Mauna Kea, HI 

PUEO AO Bonnette, 
Curvature sensing and 
correction, 19 actuators, 
visible and NIR observations 

NS Arsenault 
et al. 1994 

7 NSF, 
 Wilson 

Observatory 

 (coude) 
Mt Wilson, CA 

ACE, 69 actuators, shearing 
interferometer sensor, 
visible observations 

NS Shelton et al. 
1993 

100-inch 
(Cassegrain), 
Mt Wilson, CA 

241 actuators, Hartmann 
wavefront sensor, 
visible observations. 

NS Shelton et al. 
1995 

8 National Science 
Foundation and 
University of Illinois 

 (coude), 
Mt Wilson, CA 

 169 segment, 
visible and NIR 
observations 

RB 0.35  Thompson 
1994 
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Key Program 
Sponsor 

Telescope 
and Location 

AO System 
Characteristics 

WFS 
source 

Technical 
Reference 

9 University of Chicago  Yerkes 
Observatory,  

WCE, 69 actuators, 
visible observations 

NS  
Kibblewhite, 
Fang Shi et 

 1994 

3.5-m ARC, 
Apache Pt, NM 

ChAOS, 97 actuators, 
visible and  
observations 

NS Kibblewhite, 
Wild et al. 
1994 

3.5-m ARC 
Apache Pt, NM 

ChAOS, 249 actuators, 
visible and NIR 
observations 

NS, SB 

10 Lawrence  
National Laboratory 

3-m Shane, 
Lick Observatory 

36 active actuators, 
NIR observations 

 Olivier et al. 
1995 

11 U.K. Adaptive Optics 
Programme 
(Particle Physics and 
Astronomy Research 
Council) 

4.2-m Herschel, 
La  
Canary Islands 

MARTINI, 6 segment, 
ELECTRA, 76 segment, 
NAOMI, 76 segment, 
all NIR observations 

NS Myers et al. 
  

et al.  

12 Johns Hopkins 
University 

Adaptive Optics 
Coronagraph 

Curvature sensor,  
actuators, membrane 
mirror   

NS  
et al. 1991 

13 Keck Observatory 2 x  Keck 
Telescopes, 
Mauna Kea, HI 

 Nasmyth focus 
228 active actuators, 
0.8-5.0  observations 

NS, SB Gleckler and 
Wizinowich 
1995 

14 Gemini Project 
(U.S.A., U.K., 
Canada, Chile, 
Argentina, and 
Brazil) 

8-m North, 
Mauna Kea, HI 

8-m South, 
Cerroo Pachon, 
Chile 

Active primary,  
actuators. Secondary 
corrects tip-tilt and 
focus. AO @  for 
NIR observations at 
0.85-2.5  

NS 
(LB 
later) 

Gillett and 
Mountain 
1996 

 Max-Planck Institute 
for Astronomy, and 
Max-Planck  
for Extra-terrestrial 
Physics 

3.5-m  
 Alto, Spain 

ALFA, 97-actuator 
deformable mirror, 
Shack-Hartmann sensor, 
sodium layer beacon 

SB 

16 University of 
California and 
Jet Propulsion 
Laboratory 

5-m Hale telescope, 
Mt  CA 

241 active actuators, 
visual WF sensor, 500 
Hz bandwidth, NIR 
observations,   

NS 

17 Australian Research 
Council and 
University of Sydney 

3.9-m Anglo-
Australian 
Telescope, 
Siding spring 
NSW 

19 actuator bimorph 
mirror, curvature sensor, 

 observations 

NS O'Byrne 
1995 

18 National 
Astronomical 
Observatory of Japan 

 Subaru, 
Mauna Kea, HI 

Active meniscus primary. 
Cassegrain Adaptive 
Optics for NIR, 36-
actuator bimorph mirror, 
curvature sensor 

NS  1996 

(continued) 
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ACE, Atmospheric Compensation Experiment; ADONIS, Adaptive Optics Near Infrared System; AEOS, Advanced Electro-Optical System; 
ALFA, Adaptive optics with Laser For Astronomy; AMOS, Air Force Maui Optical Station; AO, Adaptive Optics; APD, Avalanche Photo-
Diode; ARC, Astronomical Research Consortium; CFHT, Canada-France-Hawaii Telescope; ChAOS, Chicago Adaptive Optics System; 
CIS, Compensated Imaging System; ELECTRA, Enhanced Light Efficiency Co-phasing Telescope Resolution Actuator; ESO VLT, 
European Southern Observatory Very Large Telescope; HDOS, Hughes Danbury Optical Systems; LB, Laser Beacon;  Low 
Earth-Orbit Satellite; MARTINI, Multi-Aperture Real Time  Normalization   Mauna  MMT, Multi-Mirror 
Telescope;  Max-Planck Institute for Astronomy, Heidelberg; NAOMI, Natural guide star Adaptive Optics system for Multi-purpose 

 N1R, Near  usually 0.9 to 3.4  (I, J, H,  and L bands); NS, Natural Star; NSF, National Science Foundation; 
 Probing the Universe with Enhanced Optics (also the name of an Hawaiian owl); RB, Rayleigh (laser) Beacon (7-20 km); SAO. 

Smithonian Astrophysical Observatory; SB, Sodium (laser) Beacon (90 km); SMT, Single Mirror Telescope; SOR, Starfire Optical Range; 
UnlSIS, University of Illinois Seeing  System; USAF, United Stales Air Force; WCE, Wavefront Control Experiment; WFS, 
Wave-Front  

nitude because of phosphorescence produced by the 
laser pulse in the common optical path. Although the 
wavefront sensor is shuttered mechanically during 
the laser pulse itself, thereby eliminating fluorescence, 
phosphorescence persists between the pulses. 

A compensated 3.5-m telescope is now being built 
at the Starfire Optical Range, primarily for defense-
oriented research. 

A major project of the Phillips Laboratory is the 
Advanced Electro-Optical System (AEOS), which 
employs a 3.67-m telescope installed at Mt 
Haleakala, Maui, Hawaii [Miller   1993]. This 
state-of-the-art instrument is intended for a diverse 
group of researchers and operators, and will be used 
for space surveillance by the Department of Defense, 
as well as by the astronomical and atmospheric 
science communities. To accommodate multiple 
users, the AEOS facility has seven experimental 
laboratories, which are arranged radially and 
accessed by a single turning flat in the central coude 
room. The adaptive optics is installed in the common 
path  the turning fiat and the telescope, 
allowing each laboratory the option of a compen
sated wavefront. 

The adaptive optics system is being built by 
Hughes Danbury Optical Systems (HDOS), under 
contract to the Phillips Laboratory. The telescope 
system has a spectral bandwidth of 0.7-5.0  and 
is capable of sunup operation. The adaptive optics 
has 941 correction channels with a bandwidth of 
200 Hz. It is capable of compensating turbulence 
with  values of 5 cm, using natural stars or laser 
beacons of visual magnitude between 1 and 8. The 

wavefront sensor is of the Shack-Hartmann type, 
using 32 x 32 subapertures. The detector is a 
128 x 128 full-frame-transfer back-illuminated low-
noise CCD array with  output ports; it was made 
by the Massachusetts Institute of Technology (MIT) 
Lincoln Laboratory. The read noise goal is <  elec
trons per pixel when cooled. The sensor wavelength 
range is 0.5-0.7  and its dynamic range is ±2 
waves. Temporal sampling rates are 2500 and 5000 
Hz. The real-time reconstructor performs the matrix 
multiplication using an array of multiplier-accumula
tors. The latency (last input to last output) is less 
than 25  Data are transmitted over fiber optic 
links. 

The deformable mirror, supplied by Xinetics Inc., 
has 941 actuators in a square array at 9-mm spacing. 
The surface quality of the mirror is  and the 
maximum displacement of adjacent actuators is 
±2  The bandwidth of the deformable mirror is 
1000 Hz. The fast-tracking system has a control 
bandwidth of 300 Hz and operates with target mag
nitudes up to  =  The tilt control mirror has an 
angular excursion of 10  The control interface 
is designed to allow operation by one person. 

 European Southern Observatory/ 
France Collaboration 

The ESO/France collaboration includes the 
European Southern Observatory,  de 
Paris (Meudon), Observatoire de Grenoble, and 
Observatoire de Lyon. Members of this group pio-
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 the application of adaptive optics to IR obser
vations, where the technical requirements for wave-
front compensation are less stringent than at visible 
wavelengths. A prototype system known as Come-
On was first tested on the  telescope of 
Haute Provence Observatory in October 1989 
[Rousset, Fontanella, Kern, Lena et  1990, 
Rousset, Fontanella, Kern, Gigan et al. 1990]. This 
system was based on zonal wavefront sensing and 
correction, with a digital data processor for comput
ing the corrections. The deformable mirror, made by 
Laserdot, consisted of a thin silicon facesheet con
trolled by 19 piezoelectric actuators. The wavefront 
analyzer operated in the visible band using a bright 
natural star as the reference source. It was of the 

 type with 20 subapertures, using a 
100 x  intensified Reticon detector. The control 
system had a sampling rate of 100 Hz, which allowed 
a closed-loop bandwidth of only 9 Hz. The IR ima
ging camera, designed at Meudon, employed a 
32 x 32  array with a 0.1- or 0.05-arc-second 
pixel scale on the sky, and it operated in the J, H, 
K, L, and M spectral bands between 1.2 and 5  

The Come-On system was tested at the Cassegrain 
focus of the ESO 3.6-m telescope at La  Chile in 
1990 and 1991 [Merkle et al. 1991]. The later obser
vations used an electron-bombarded CCD camera in 
the wavefront sensor, which allowed full correction 
at 3.8  using a reference star of    In the 
L-band (3.4   ratios of over 0.6 were 
achieved, while in the K-band (2.2  the Strehl 
ratio was about 0.2. These results were very encoura
ging, so the system was upgraded in 1992 to improve 
its spatial and temporal resolution. 

The upgraded Come-On Plus system [Rousset et 
al. 1993, 1994] employs a 52-actuator deformable 
mirror (DM) that has a stroke of ±5  Overall 
tilt is corrected by a separate two-axis mirror driven 
by four piezoelectric actuators, with a range of 70 arc 
seconds. The Shack-Hartmann wavefront sensor has 
32 subapertures and is equipped with two detectors. 
The "high-flux" detector array is an intensified 
Reticon, similar to that employed in the original sys
tem. This detector is readout-noise limited and is 
therefore used with bright reference sources of visual 
magnitude between 6 and 10. The "low-flux" detec
tor is an electron-bombarded CCD camera developed 
by LEP, which, because of the large gain achieved in 
the accelerator (~2000), is always photon-noise lim
ited. The peak efficiency of the photocathode is 10% 
at 550  This detector is only used with reference 
sources of  = 10-15, because its life would be 
shortened by the damage to the CCD caused by ener
getic  at higher fluxes. 

The control system consists of two sections: a 
hard-wired computer to calculate the wavefront 
slopes from the video outputs of the wavefront sen
sor, and a matrix multiplier to compute the tilt and 
deformable mirror (DM) corrections, using a digital 
signal processor (DSP) board running at 13 x 106 

operations per second, giving an update rate of 400 
Hz. Additional flexibility is given by using two con
trol algorithms. With bright stars and low turbu
lence, the standard zonal control algorithm is used, 
in which each actuator is controlled independently. 
For more stringent conditions, a modal control algo
rithm is available, in which the maximum number of 
modes is determined by the number of degrees of 
freedom on the deformable mirror. For each set of 
operating conditions (reference signal-to-noise ratio, 
turbulence strength, and temporal frequency), the 
optimal bandwidth for each mode is calculated and 
implemented by adjusting the loop gain in the data 
processor. 

The Come-On Plus adaptive optics system was set 
up and tested on the ESO 3.6-m telescope at La Silla, 
Chile in December 1992 and April 1993 [Rousset et 
al. 1994]; it is now used for routine astronomical 
observations [Lena 1994]. With reference stars 
brighter than     best angular resolution 
of 0.1 arc second is obtained in the J-Y and H-bands 
(1.25 and 1.6  respectively. The average Strehl 
ratio is about 0.13 at 1.25  and 0.65 at 2.2  
With reference stars dimmer than  =  the per
formance degrades rapidly (even with modal con
trol), mostly due to the low quantum efficiency of 
the wavefront sensor detectors, and the Strehl ratios 
are then generally less than 0.1. 

The latest version of Come-On Plus has been 
given the acronym ADONIS (Adaptive Optics 

 System) and is intended as a com
mon-user instrument for the astronomical commu
nity at the ESO 3.6-m telescope at La Silla where it 
has been in operation since 1993 [Hubin et al. 1993, 
Beuzit et al. 1994]. A further objective is to develop 
operational procedures and to test technical concepts 
that can be applied to adaptive optics for the ESO 
VLT. The control system and operator interface have 
been redesigned to make the adaptive optics more 
user friendly. Many system parameters that have to 
be set according to astronomical and atmospheric 
conditions are now optimized using an artificial intel
ligence system [Demailly et   This involves 
both internal and external sensors, as well as opera
tor inputs. ADONIS can be used by astronomers 
without any specialized knowledge of adaptive 
optics. 

 European Southern Observatory/ 
Very Large Telescope 

The ESO VLT consists of four 8-m telescopes that 
may be used independently or in concert. The obser
vatory is located at Cerro Paranal, Chile. To exploit 
the full capability of this system for high-resolution 
imaging, spectroscopy, and interferometry, adaptive 
optics has been included in the design from the start. 
The original plan to install adaptive optics in the 
coude path of each telescope has been postponed, 
and the current goal  is to implement a 
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first-generation system at the  focus of 
Telescope Unit 1. The proposed implementation 
has been described by Hubin et  [1994]. 

The ESO has sponsored a long-term develop
ment program in adaptive optics, including the pro
totype systems Come-On and Come-On Plus, 
described above. The system has been upgraded 
with a comprehensive and user-friendly control 
interface and is now known as ADONIS. The soft
ware developed for ADONIS will also be used in 
the VLT adaptive optics. The VLT is intended for 
observations over a large spectral band, from the 
visible up to 10  Experience with the Come-
On system showed that adaptive optics is both effec
tive and economical at  wavelengths. 
Consequently, the VLT Nasmyth Adaptive Optics 
System (NAOS) is designed to operate over the 1-
5  spectral band. In the nonthermal domain ( 1 -
2.5  using a visible wavefront sensor, the objec
tives are: (1) to achieve a minimum Strehl ratio of 
0.7 at 2.2  for median seeing conditions, when a 
suitable reference star is available; (2) to obtain the 
maximum sky coverage compatible with an image 
resolution of 0.2 arc second  at 2.2  
The second objective requires the use of off-line 
data processing to reconstruct the point spread 
function from the adaptive optics data, in order to 
derive deconvolved images. 

For work in the thermal domain (3-5  an 
additional near-IR wavefront sensor, operating in 
the 1-25  band, will be used to increase the sky 
coverage. NAOS is scheduled to be installed on Unit 
1 of the VLT in the year 2000. 

The ESO, with its associate the Max Planck 
Institut fur Extraterrestrische Physik Garching, is 
studying the implementation of a laser beacon system 
for adaptive optics on the 3.6-m ESO telescope. The 
use of laser beacons with the 4 x 8-m VLT is also 
being considered. 

 Center for Astronomical Adaptive 
Optics, Steward Observatory, University 
of Arizona, Tucson, Arizona. 

The  Mirror Telescope (MMT) at Mt Hopkins, 
Arizona is a joint facility of the University of Arizona 
and the Smithsonian Astrophysical Observatory. It 
originally consisted of six  telescopes on a com
mon alt-azimuth mount, the beams of which were 
combined into a single image. [Beckers et al. 1982]. 
The primary mirrors were not optically phased, so 
the angular resolution was that of a single  
aperture. To improve the superposition of the 
images, a low-order adaptive optics system, the 
FASTTRAC II, was built and tested on the MMT. 
This system was the successor to the FASTTRAC 1 
[Close et al. 1994], which implements a tip-tilt sec
ondary mirror on the 1.5- and 2.3-m telescopes at 
Steward Observatory. The FASTTRAC II [Gray et 
al. 1995] corrected tip-tilt errors over each of the 

MMT's six primary mirrors. Phase errors between 
the mirrors were not corrected. 

Experiments were conducted with FASTTRAC 
II in 1995 and 1996 using a sodium laser beacon 
[Lloyd-Hart et al. 1995,  A 4-W ring dye 
laser at 589  was employed, with a sodium 
vapor Faraday cell to lock the laser to the correct 
wavelength. On the MMT, the laser beam was pro
jected axially through a 48-cm diameter launch tele
scope, producing a beacon of brightness comparable 
to a star of of magnitude  = 10. The first astro
nomical images sharpened by a sodium beacon were 
obtained in May 1996 [Lloyd-Hart et al. 1997]. 
Images of stars in the core of  showed an 
improvement in resolution from 0.74 to 0.53 arc 
second in the  using a fixed guide star at 
41 arc seconds from the center of the science camera 
field. No  was detected across the 24-
arc-second field of view. The results suggest that 
global tilt across the 7-m aperture of the instrument 
is highly correlated over larger field angles than the 
standard turbulence model predicts. This is good 
news for astronomers concerned with the sky cover
age obtainable with adaptive optics on large tele
scopes of the 8-m class. 

The experience obtained by the Center for 
Astronomical Adaptive Optics with the 
FASTTRAC II system is being applied to the 
design of the adaptive optics system for the 6.5-m 
single-mirror conversion of the MMT [Martin et al. 
1997, Lloyd-Hart et al. 1997]. The change is 
planned for late 1997. The adaptive optics system 
is expected to provide diffraction-limited images 
from 1.6 to 5  with nearly complete sky cover
age  Lloyd-Hart et al. 1995], using a 
sodium laser beacon projected from behind the sec
ondary mirror. A major feature of the new 6.5-m 
instrument is the adaptive secondary mirror, which 
eliminates additional optical elements in the ima
ging path, thereby minimizing the background ther
mal radiation, an important factor in  
observations. The adaptive secondary mirror is 
being fabricated by the Steward Observatory 
Mirror Laboratory [Bruns et al. 1995, Martin and 
Anderson 1995, Modisett and Martin 1995]. It 
employs a highly aspheric hyperboloidal faceplate, 
2 mm thick and 64 cm in diameter. The surface is 
controlled by 324 voice-coil actuators with asso
ciated capacitor position sensors. A two-tier servo 
system is employed, using local servo loops with 

 bandwidth closed around the capacitors in 
order to maintain the surface in the commanded 
position, while the adaptive optics loop is closed 
around the wavefront sensor with a bandwidth of 
about 1 kHz. The wavefront sensor is of the 

 type with 150 subapertures using 
a 4-port CCD operating at 250 kHz per port. 
Overall tilt sensing with a natural star is accom
plished in the 1.2-2.3  band, in order to get 
shared compensation from the sodium beacon. 



Astronomical Adaptive Optics Programs 385 

70.3.5 University of Hawaii, Institute for 
Astronomy 

Development of a low-order adaptive optics system 
for near  observations started at the University of 
Hawaii  in 1990 [Roddier, Graves et  1991]. 
The objective was to build the simplest possible com
pensation system for astronomical images, using only 
natural stars as reference sources. The UH system is 
based on curvature sensing and correction [Roddier 
1988a]. Most adaptive optics systems employ wave-
front slope sensing, in which x and y slopes measured 
within an array of zones in the telescope aperture are 
reconstructed to obtain a two-dimensional map of 
the wavefront. This error map defines the drive sig
nals that are applied to a zonal deformable mirror. In 
curvature sensing, the average wavefront curvature is 
measured in each zone of the aperture and this (sca
lar) quantity is used to drive an actuator that pro
duces the compensating curvature directly in the 
corresponding zone of the correction device, usually 
a bimorph mirror. This approach simplifies (but does 
not eliminate) the reconstruction function. 
Wavefront curvature is easily measured, requiring 
only one photon detector per subaperture; it allows 
a relatively simple implementation of adaptive optics. 
It is, however, only suitable for low-order correction, 
as reconstruction errors accumulate with a large 
number of zones (see section 5.5). The IR observa
tions meet this requirement, because the turbulence 
coherence length is usually on the order of 1 m at a 
wavelength of 2.2  

The UH adaptive optics system employs 13 sub-
apertures. The wavefront sensor uses a vibrating 
membrane mirror that defocuses the wavefront in 
each subaperture in opposite directions. The resulting 
changes in illumination are detected by an array of 

 avalanche photodiodes, which 
have peak quantum efficiency of about 40% at 0.7 

 A perfect wavefront results in equal deviations 
of intensity for each half-cycle of mirror excursion; 
defocus errors are detected by comparing the photon 
counts accumulated in the odd and even half-cycles. 
The sensor outputs are converted into control signals 
for the deformable mirror by means of a digital pro
cessor. The wavefront corrector is a  
bimorph mirror made by Laserdot. The advantage 
of using a bimorph mirror is that the electrode con
figuration can be made to match the sensor subaper-
tures for maximum compensation efficiency. The 
sampling frequency of the control loop is 1 kHz, 
allowing a closed-loop bandwidth of about 100 Hz. 
The loop gain and the vibration amplitude of the 
modulation mirror are adjusted to optimize perfor
mance with different reference star magnitudes and 
seeing conditions. 

The original experimental UH system had to use 
the Canada-France-Hawaii Telescope (CFHT) 
coude path, which attenuated the light by two stellar 
magnitudes and also introduced chromatic errors. In 

spite of these problems,  images with 
second resolution of the  nebulae 
"Frosty Leo" and the "Red Rectangle" were 
obtained [Roddier et al. 1994, 1995]. An important 
characteristic of the UH system is its ability to work 
with faint reference sources. Roddier et al. report 
that in the H-band (1.6  at the CFHT 
Cassegrain focus, a Strehl ratio of about 0.4 can be 
obtained with a reference source of magnitude  
in the R-band (0.7  equivalent to visual magni
tude 12.5, and that a Strehl of 0.2 is possible with 

 = 15. 
The adaptive optics hardware was reconfigured in 

1994 for use at the Cassegrain f/36 focus of the 3.6-m 
CFHT telescope. Two cameras can be used simulta
neously: a 1024 x 1024 pixel CCD camera and a 
1024 x 1024 pixel IR camera using a Rockwell 
HgCdTe array with sensitivity in the 1-2.5  
range. The image scales are 0.024 and 0.035 arc sec
ond per pixel, giving fields of view of 25 x 25 and 
36 x 36 arc seconds, respectively. The compensated 
images are first preprocessed (background subtrac
tion, bad pixel elimination, intensity normalization, 
frame recentering and averaging) and are then decon
volved using point spread functions (PSFs) obtained 
from similarly processed images of nearby stars. The 
Lucy-Richardson algorithm was found to be most 
suitable for images with a large dynamic range. The 
UH adaptive optics system has been used recently to 
obtain high-resolution images revealing the structure 
of T Tauri stars [Roddier et al. 1996]. 

 Canada-France-Hawaii Telescope 
Corporation 

The CFHT group pioneered the use of image stabi
lization to improve the resolution of astronomical 
images, using the High-Resolution Camera (HR 
Cam) [McClure et al. 1989, Racine and McClure 
1989]. In conjunction with the excellent seeing at 
the site and the thermal control of the CFHT 
dome, this camera has obtained outstanding images 
at near-IR wavelengths. The CFHT group has devel
oped an Adaptive Optics Bonnette (AOB), that is 
installed at the f/8 Cassegrain focus of the 3.6-m tele
scope, forming an interface between the telescope and 
the instrumentation. [Arsenault et al. 1994]. This 
instrument is also known as "PUEO," after a 
Hawaiian owl that sees particularly well at night. 
Physically, the bonnette is an aluminum casting 1.1 
m in diameter and 28 cm thick, containing the adap
tive optics components. It is a facility instrument 
with backup capability to ensure reliability, provid
ing access to either the  compensated beam or 
the direct f/8 telescope beam. 

The adaptive optics employs a  
bimorph deformable mirror and a  
wavefront curvature sensor, based on the 
University of Hawaii system described in section 
10.3.5. Image motion is corrected by a separate tip-
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 mirror. Wavefront sensing employs either the 
science object or a nearby star as the reference 
source. The wavefront sensor has an instantaneous 
field of view of only 3 arc second, but is mounted on 
an x-y-z stage so it can be placed anywhere within 
the 90-arc sec field of view of the bonnette. The con
trol system provides a 90-Hz servo bandwidth using 
modal control. The performance of this adaptive 
optics system has been determined by computer 
simulation [Rigaut et  1994]. 

The user interface has been carefully designed to 
allow nonspecialists in adaptive optics to operate the 
instrument in an optimal fashion. The AOB has been 
used for scientific observations since 1996. 

The instrumentation used with the CFHT adap
tive optics bonnette includes visible imaging,  ima
ging, and high spatial resolution spectroscopy. An 
integral-field spectrograph optimized for observa
tions with the AOB has been developed by a team 
from the Observatoire de Lyons, France. The visible 
imager is a 2000 x 2000 CCD, which gives a scale of 
0.045 arc second per  pixel. The field of view is 

 arc minutes, but is likely to be limited by isopla-
 most of the time. The University of Montreal 

 Camera (MONICA) narrow-field camera, 
employing a NICMOS (near infrared camera/multi-
object spectrometer) 256 x 256 chip, is now in opera
tion. 

 National Science Foundation/ 
Mount Wilson Observatory 

The 100-inch reflecting telescope at Mount Wilson 
Observatory, which contributed so much to astron
omy in the first half of the twentieth century, is now 
revitalized with adaptive optics. In many ways, it is 
an ideal vehicle for upgrading, because of the excel
lent quality of its optics and the exceptional seeing 
conditions at the site. In addition, its modest aperture 
allows a high degree of correction to be achieved at 
visible wavelengths with available technology. 

The first experiments with adaptive optics at Mt 
Wilson [Shelton et al. 1993] were performed on the 
60-inch telescope using the Atmospheric 
Compensation Experiment (ACE) hardware, which 
was described briefly in section 1.9. The ACE was 
built by MIT Lincoln Laboratory and  
Corporation, with U.S. Department of Defense spon
sorship, and it was first operated in the early 1980s. It 
employs a 69-actuator  mirror and a 
shearing interferometer wavefront sensor. The ACE 
was intended mainly to compensate laser beams pro
pagating through the atmosphere, but it is also cap
able of correcting wideband images. When this 
equipment was installed at the coude focus of the 
60-inch telescope, images of first-magnitude stars 
were obtained with FWHM of 0.12 arc seconds at 
visible wavelengths. The peak intensities were 6-10 
times higher than those of uncompensated images. 

The limiting magnitude of this system was about 
 = 6. 
Using this experience, Shelton et al. [1995] have 

built an improved adaptive optics system for the 100-
inch telescope. The system works at visible 
lengths using natural reference stars and is auto
mated for one-person operation. It employs a 241-
actuator continuous-plate deformable mirror and a 
16 x 16  wavefront sensor. The pri
mary goal is to maximize the correction efficiency 
with faint reference sources, which is achieved as fol
lows: 

1. The adaptive optics system is installed at the 
Cassegrain focus to eliminate long optical 
paths and additional optical surfaces. 

2. Available light is split between the wavefront 
sensor and the science camera, according to the 
task. If the reference star is not of scientific 
interest, the field is split with a mirror near 
the image plane; almost 100% of the reference 
light passes through a hole in the mirror to the 
wavefront sensor, while almost 100% of the 
science object light is reflected to the camera. 
The mirror contains several holes with dia
meters between 0.4 and 6 arc seconds, which 
act as a selectable field stop for the wavefront 
sensor. If the reference object is part of the 
science field, then a beam splitter is inserted 
in the pupil plane to divide the light between 
the wavefront sensor and the science camera. 

3. A modal control system is used in which the 
number of modes actively corrected depends 
on the brightness of the reference source. 

4. A specially designed low-noise, high-frame-rate 
CCD chip is used in the Shack-Hartmann 
wavefront sensor [Levine et al. 1994]. 
Improved CCD chips, such as the ADAPT II, 
will be used as they become available. 

Communication between the optical unit and the 
electronics is handled by fiber optics links. The host 
computer provides the user interface, as well as hand
ling the command and control functions. The wave-
front processor is based on commercial DSPs. Modal 
control is implemented by using the appropriate con
trol matrix, which can be recalculated and loaded in 
real time. The frame rate of the system, currently 200 
Hz, is limited mainly by the data processing capabil
ity, but it is hoped to improve this by speeding up 
critical operations and data transfer. 

The science camera employs a  x  CCD, 
which can be operated at a relatively high frame rate 
(2 Hz) for diagnostics and alignment. The field of 
view is normally 22.8 arc seconds at 0.022 arc second 
per pixel. The 100-inch telescope with adaptive optics 
is being used for several imaging and spectroscopic 
applications. A compensated image can be sent, using 
single-mode fibers, to existing spectrographs at Mt 
Wilson. For high-resolution spectroscopy, the higher 
Strehl ratios achievable with adaptive optics improve 
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the signal-to-noise ratio per exposure time and allow 
fainter stars to be observed; the higher stability of the 
PSF also improves the Doppler precision. In the 

 mode, in which the bright reference 
star is excluded from the science camera, it may be 
possible to achieve direct imaging of  
structures or even faint companions. 

 University of Illinois Seeing 
Improvement System 

A 5-year program, started in 1993, is being con
ducted by the Astronomy Department of the 
University of Illinois, with the aim of providing the 
means for testing new concepts in adaptive optics. In 
this project, an adaptive optics system known as 

 (University of Illinois Seeing Improvement 
System) will be installed at the coude focus of the 
2.5-m telescope at Mount Wilson Observatory 
[Thompson 1994]. Laser beacons will be incorpo
rated into the system from the start.  an 
excimer laser operating at 351  will be used to 
generate Rayleigh beacons at altitudes up to 18 km. 
This laser has previously been used at Mount Laguna 
Observatory [Thompson et  1991, Thompson and 
Castle 1992]. 

The configuration of the adaptive optics, as ori
ginally planned, is as follows: The wavefront com
pensator is a   x 13 square) 
deformable mirror made by ThermoTrex 
Corporation (TTC). This type of mirror has 3 degrees 
of freedom (tip, tilt, and piston) per segment, giving a 
total of about 400 actuators within the inscribed cir
cular pupil. A second segmented mirror may be 
added later, to test  adaptive optics. 
Wavefront measurements are made using the laser 
beacon and a natural guide star, combined in the 
most efficient way. This is different from the custom
ary approach in which the natural star is used only to 
measure overall tilt. In the UnlSIS system, the nat
ural guide star sensor is a neural network camera. 
The neural network is trained to recognize overall 
tip, tilt, and other low-order Zernike modes. Only 
when the error measured in each mode with the nat
ural star (including the effects of both signal-to-noise 
ratio and isoplanatism) is greater than that of the 
laser beacon sensor will the latter take precedence. 
The neural network sensor is based on a 64 x 64 
low-noise CCD made by MIT Lincoln Laboratory, 
using small sections of the array (between  and 

 for the two out-of-focus images. The laser bea
con sensor is of the Shack-Hartmann type, using 18 
subapertures across the diameter, corresponding to a 
sampling interval of 13.9 cm at the telescope pupil. 
With multiple guide stars, a shearing interferometer 
with periodic interferometric weighting  
1992] may be employed. The spectral range of the 
optical system is   The image sensors 
will include a CCD camera and a  camera 
using a  array. 

The excimer laser produces a beam power of 
about 50 W at a pulse rate of 333 Hz, corresponding 
to 150  per pulse. The beam is launched through 
the main telescope to reduce divergence. A rotating 
shutter using an ultraviolet (UV)-grade fused silica 
substrate with small reflecting spots is employed to 
insert the laser beam into the optical train and to 
block the Rayleigh return from low altitudes. The 
laser was installed at the telescope in 1995, and 
plans have been made to conduct tests with three 
Rayleigh beacons [Thompson and Yao-Heng 1995]. 

70.3.9 University of Chicago, Department 
of Astronomy and Astrophysics 

The objective of the University of Chicago adap
tive optics program is to develop an instrument that 
can be installed as a facility in astronomical observa
tories, at an affordable cost. The instrument is known 
as ChAOS (Chicago Adaptive Optics System). The 
approach is to develop, from the start, a high-order 
compensation system that uses a sodium laser bea
con, which can be upgraded in the future with mini
mal modifications. This is a different approach from 
that of other groups which start with low-order 
systems using natural stars. The techniques used in 
such systems may not be applicable to higher order 
systems. 

The ChAOS program started in 1989, based on a 
proposal for a laser beacon adaptive optics system 
for use at  wavelengths on the 3.5-m telescope at 
Apache Point, New Mexico [Kibblewhite, Wild et al. 
1994]. The performance goal is to produce a  
ratio of 0.6 at a wavelength of 2.3  in  sec
ond seeing. Several versions of ChAOS have been 
built: an 87-actuator system, optimized for use with 
a sodium beacon, was first operated in 1995, and a 

 mirror has since been built  et 
al. 1996]. 

ChAOS uses a  wavefront sensor 
with  subapertures; the camera employs a 
64 x 64 CCD detector made by MIT Lincoln 
Laboratory with a readout rate of 2000 frames per 
second and read noise of  electrons per pixel. The 
deformable mirror consists of a quartz faceplate  
mm in diameter and 1 mm thick, supported by an 
array of piezoelectric actuators that are mounted on 
an Invar baseplate. The uncorrected surface is flat to 
about 1/2 wave. The actuator stroke is 4  for a 
drive voltage of 400. The high-voltage drivers are 
multiplexed, each one driving 16 actuators. Update 
time for the whole mirror is 300   the power 
required to drive the mirror is less than 0.1 W per 
actuator. The optics package includes calibration and 
diagnostic facilities. 

The data processor consists of two sections, a digi
tal signal processor (DSP) that computes the wave-
front slopes, and a reconstructor that estimates the 
wavefront errors over the aperture; the error signals 
are then sent back to the DSP to compute the drive 
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signals to the actuators. The data processor employs 
16 DSP chips and 16  chips 
(MACs). It takes 2  to compute the control signals 
for a 250-actuator system. The data processor uses 
parallel architecture, and performance can be 
improved by adding more cards. Several different 
estimating algorithms are available, selectable by 
the operator to match the current turbulence condi
tions. The operator interface is a Macintosh compu
ter that controls the system using an interactive 
software package. A major effort has been made to 
develop user-friendly software for the ChAOS pro
ject. Prior to closing the adaptive optics loop, the 
software runs checkout and calibration procoedures 
on the system. During operation, real-time displays 
of photon counts, wavefront errors, atmospheric time 
constants, and other parameters are provided to 
enable the performance to be assessed. Two controls 
are accessible to the operator to optimize perfor
mance: one varies the amount of spatial  
across the  mirror, while the other varies 
the servo bandwidth. 

The sodium beacon laser is a  diode-pumped 
sum-frequency laser developed at MIT Lincoln 
Laboratory [Kibblewhite,  et  1994]. 
It is launched from a 0.3-m diameter mirror located 
behind the secondary of the 3.5-m telescope. 

The science instrument package is attached to the 
adaptive optics unit by a large precision bearing, to 
accommodate field rotation. The  camera (ChAOS 
CAM) employs a Rockwell 256 x 256 HgCdTe array 
sensitive from 0.8 to 2.5  ChAOS first operated 
on the 3.5-m telescope using natural stars in May 
1995 and the laser beacon system was installed in 
December 1995. Using bright stars, the system 
achieved an angular resolution of 0.14 arc second 

 at 0.9  improving the peak intensity by 
a factor of 14. Using the IR camera at 1.6  the 
angular resolution achieved was 0.2 arc second, with 
a peak intensity improvement of 8 times. 

 Lawrence  National 
Laboratory 

A research and development program on laser 
beacons for astronomy started at Lawrence 
Livermore National Laboratory (LLNL) in 1990, 
with the goal of demonstrating the feasibility of 
closed-loop adaptive optics using laser beacons gen
erated in the sodium layer [Max et al. 1994]. The laser 
source used for the initial experiments was a high-
average-power tunable dye laser, developed for the 
U.S. Department of Energy's Atomic Vapor Laser 
Isotope Separation  Program. The dye 
laser, pumped by a copper vapor laser, produces an 
average power of 1.1 kW at a pulse rate of 26 kHz, 
and an average power of 400 W at 13 kHz. The laser 
line width is broadened to 3 GHz to match the   

absorption line of sodium. The pulse length is 32 ns, 

and requires stretching to avoid saturation of the 
sodium layer. 

The initial phase of the program involved mea
surements of the characteristics of laser beacons 
and was completed in 1993 [Avicola et al. 1994]. At 
this point, the AVLIS laser was shut down and the 
focus of the program shifted to development of an 
adaptive optics package and sodium laser for instal
lation at Lick Observatory. The goal was to attain a 
full observational capability on the Shane 120-inch 
telescope by the end of  

The first step was to build a prototype adaptive 
optics package for field tests [Brase et al. 1994]. This 
system employed a 69-actuator deformable mirror 
and used a natural star for wavefront sensing, at 
wavelengths below 0.65  while observations 
were made in the 0.7 to 1  band. The package 
was tested in 1994 at the Lick Observatory, using 
the  telescope [Olivier et al. 1994], and also with 
the 3-m Shane telescope [Olivier et al. 1995]. Results 
were consistent with expectations, the Strehl ratio of 
a bright star being increased by a factor of about  
at an observation wavelength of 1  

The current adaptive optics system operates on 
the 3-m Shane telescope, with a sodium beacon as 
the reference source. It employs a  mir
ror made by LLNL, using PMN actuators in a trian
gular pattern. Sixty-one of the actuators are actively 
controlled. The wavefront sensor is a Shack-
Hartmann with 37 subapertures, using a CCD cam
era package built by Adaptive Optics Associates 
(AOA). The CCD itself is a 64 x 64 pixel device, 
made by MIT Lincoln Laboratory, with a read 
noise of 7 electrons per pixel at a read rate of 1200 
frames per second. The tip-tilt sensor used with a 
natural guide star uses four photon-counting ava
lanche diodes arranged as a quad cell. The wavefront 
control computer is a 160  Mercury VME sys
tem, capable of operating at sample rates up to 500 
Hz. The control bandwidth of the adaptive optics 
system is 30 Hz. 

The design of the sodium laser has been described 
by Friedman et al. [1994] and is summarized in sec
tion 7.6. It employs state-of-the-art solid-state pump 
lasers with a tunable dye laser as the conversion ele
ment. The pump laser and dye master oscillator are 
located in a separate room, and are connected via 
quartz fibers to the final dye amplifier, which is 
mounted on the telescope itself. The beam is 
launched by a refractive telescope of 30-cm aperture, 
attached off-axis to the main telescope structure. The 
laser has an average power output of  W at a pulse 
rate of  kHz; the pulse duration is 100 ns. The 
apparent size of the beacon is 1.8 arc seconds for a 

 exposure. The return signal from the laser bea
con was measured in September and November 1996 
and found to be comparable with that of a natural 
star of  = 7.0. 

In September 1996, the Lick Observatory adaptive 
optics system produced the first significant image 
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improvement obtained with a high-order adaptive 
optics system, using a sodium beacon. 
Measurements made at 2.2  on a star of 

 = 9 . 1 , using an 80-s exposure, showed that the 
FWHM decreased by a factor of 2.4 (from 0.75 to 
0.31 arc second) and the peak intensity increasd by a 
factor of 3.3, compared with the uncompensated 
image. 

 United Kingdom Adaptive Optics 
Programme 

The U.K. Adaptive Optics Programme is funded by 
the U.K. Particle Physics and Astronomy Research 
Council (PPARC). The participants in this program 
include the University of Durham, The Royal 
Greenwich Observatory, The Royal Observatory 
Edinburgh, The University of Edinburgh, the 
University of Oxford, Imperial College London, 
and the Cavendish Laboratory, Cambridge. The pri
mary purpose of this program is to equip two major 
telescopes with common-user adaptive optics sys
tems: the 4.2-m William Herschel Telescope (WHT) 
located at the Observatorio del Roque de las 
Muchachos on La  Canary Islands, and the 
3.8-m United Kingdom Infrared Telescope 

 on Mauna Kea, Hawaii. The program 
also supports developments in several related fields, 
such as site evaluation.  instrumentation, adaptivie 
secondary mirrors, partial adaptivie optics, and laser 
beacons. The goal is to implement adaptive optics 
systems that have wide astronomical applications. 
The main elements of this program were reviewed 
in a paper by Myers et  [1995], on which the fol
lowing summary is based. 

Common-User Adaptive Optics 
Systems 

The adaptive optics for the WHT and UKIRT will 
initially use natural stars as reference sources and will 
be optimized for observations in the  around 
2.2  They will be capable of feeding a number of 
instruments that will be locally supported and avail
able to visiting astronomers, without a special opera
tions team. The initial concept for the WHT adaptive 
optics system was described by Gentles et al. [1995]. 
It operates at the  focus, which allows it to 
be mounted on a fixed optical bench. The deformable 
mirror can be conjugated either at the entrance pupil 
or at a turbulent layer in the atmosphere. The archi
tecture of the adaptive opticis system is designed to 
accommodate sodium laser beacons at a later phase 
of the program. The UKIRT is an equatorial tele
scope and the adaptive optics will be implemented 
somewhat differently, probably using an adaptive 
secondary mirror. 

The common-user adaptive optics system for the 
WHT has been given the acronym NAOMI (Natural 

guide-star Adaptive Optics system for Multi-purpose 
Instrumentation). A technical description is con
tained in the document  
dated 30 July 1997. NAOMI is a "no frills" adaptive 
optics system, for observations at near-IR 
lengths. It will operate initially using natural stars 
as reference sources, with minimal automatic control. 
The instrument and its operating software are based 
on experience with the ELECTRA system, described 
later. The current design employs a 76-segment mir
ror with 10 segments across the diameter, the WHT 
pupil diameter covering 7.3 segments. The wavefront 
sensor is of the  type, with inter
changeable lenslet arrays to adjust the spatial resolu
tion. Larger subapertures are used when the photon 
counts from the reference source are low. Two low-
noise CCD arrays are used in the binned mode for 
sensing x and y wavefront gradients. The control 
system uses zonal processing at high light levels, 
with modal control available for faint reference 
sources. Performance of the adaptive optics is opti
mized manually, using real-time visual displays of 
wavefront distortion. Upgrade paths are provided 
for fully automated calibration and system optimiza
tion, and the eventual use of laser beacons. 

Infrared Imager for the William 
Herschel Telescope 

The WH  Camera (WHIRCAM) is a near-IR 
imager using a 256 x 256  detector operating in 
the 1-5  range. It was commissioned in 1995. 

Site Evaluation and Modeling 

The goal of this program is to conduct a comprehen
sive evaluation of the turbulence environment at the 
sites of both U.K. telescopes. The data will be used in 
conjunction with theoretical modeling [Wilson and 
Jenkins 1996] to optimize the design of adaptive 
optics systems and science instrumentation. 

Near-Term Adaptive Optics Systems 

The University of Durham adaptive Optics group 
have built a new IR version of MARTINI (Multi-
Aperture Real time Image Normalization 
Instrument). The instrument is designed to operate 
at the Nasmyth focus of the William Herschel 
Telescope [Myers et al. 1994,  et al. 1996]. This 
version, known as  is a low-order 
adaptive optics system using a correction mirror 
with six segments, each of which is controlled in 
tip, tilt, and piston by three piezoelectric actuators. 
It is a multispectral system in which the wavefront 
disturbances are sensed at visible wavelengths using a 
natural star, while the science observations are made 
with the WHIRCAM at infra-red wavelengths. 
MARTINI-III was commissioned in 1995 and 
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enhancements are continuing. The maximum frame 
rate of the system is 345 Hz and the limiting reference 
star magnitude is  =  to 14. 

The University of Durham has also developed a 
higher-order adaptive optics system know as 
ELECTRA (Enhanced Light Efficiency Co-phasing 
Telescope Resolution Actuator), which is also 
intended for use on the  focus of the 
WHT. ELECTRA employs a 76-segment  
mirror, each segment driven by three piezoelectric 
actuators which are corrected for hysteresis using 
strain gauges, giving a total of 228 degrees of free
dom. Overall tilt is corrected by a separate steering 
mirror. The wavefront sensor is of the Shack-
Hartmann type. The ELECTRA control console 
includes a real time three-dimensional display of the 
uncorrected and corrected wavefronts. 

Development Programs 

These efforts include a study of adaptive correction 
using a secondary mirror [Bigelow et  1993, 1994], 
and development of a sodium laser beacon. Future 
activities include the development of a higher order 
AO system for operation at visible wavelengths, and 
research on the use of AO for long baseline interfe
rometers. 

  Hopkins University, Center 
for Astrophysical Sciences. 

The Johns Hopkins University (JHU) Adaptive 
Optics Coronagraph (AOC) has been developed for 
use with telescopes of the  class to allow the 
investigation of faint objects in close proximity to 
bright stars [Clampin et al. 1991]. These objects 
include  disks, brown dwarfs, and galac
tic nuclei. Such objects are, in many ways, ideal for 
adaptive optics because they include a bright refer
ence source suitable for wavefront sensing and their 
angular extent is typically a few arc seconds (within 
the isoplanatic angle). The use of a coronagraphic 
imaging system (similar to the Lyot solar corona-
graph) facilitates measurement of dim objects by 
reducing the scattered light from the parent star. 

In its original form, the AOC compensated image 
motion only, achieving a factor of 2 increase in image 
resolution, as theoretically predicted. It now employs 
a membrane mirror with 61 actuators within the 
active pupil, together with 30 actuators along the 
boundary. The mirror stroke is ±3  and the 
width is 1 kHz. A wavefront curvature sensor with 
two displaced image planes is employed; the output 
signal is proportional to the Laplacian of the wave-
front, which is the function required to drive a mem
brane mirror [Roddier 1988a]. The coronagraph is 
located in the compensated beam, following an 
occulting mask positioned in the image plane, 
which directs all the light from the central (reference) 

star to the wavefront sensor. The circumstellar field is 
then apodized and imaged on to a CCD camera. 

The AOC has been used by researchers at JHU 
and Caltech to search for brown dwarfs, which are 
notoriously difficult to find because of their low 
brightness and proximity to a brighter companion. 
Using the Palomar  telescope in October 1994 
and the Hale 5-m telescope nearly a year later, a dim 
object of 14th magnitude at 2.2  probably a 
brown dwarf, has been identified near the 8th magni
tude  dwarf Gliese 229 [Nakajima 1995]. 

 W.  Keck Observatory 

The AO system for the W.  Keck Observatory 
is intended to provide near diffraction-limited images 
over the wavelength range 1.1-2.3  with some 
correction capability over the range 0.8-5.0  
The first stage of this program is to install the adap
tive optics on the Nasmyth platform of the Keck  

 telescope. The reference sources will be natural 
stars up to about  magnitude, or a single sodium 
laser beacon of about 10th magnitude with a natural 
guide star of up to 19th magnitude. The National 
Aeronautical and Space Administration (NASA) is 
planning to fund an interferometer using the two 
Keck telescopes; this will require a second AO system 
for Keck I. 

The Keck II adaptive optics facility consists of 
four main subsystems [Gleckler and Wizinowich 
1995, Wizinowich et al. 1996]: 

• user interface and supervisory control; 
• optics bench and system enclosure; 
• wavefront controller; 
• laser and beam projection optics. 

The first two items are being built at the W. M. Keck 
Observatory and the second two at Lawrence 
Livermore National Laboratory. 

The user interface and supervisory control subsys
tem [Stomski et al. 1996] provides a graphical user 
interface with overall control of the adaptive optics 
facility, using an EPICS (Experimental Physics and 
Industrial Control System) environment to handle 
the distributed processing needs. Its functions include 
control of AO subsystems during all phases of obser
ving, communication with other observatory systems 
and science instruments, and implementation of test 
procedures and system diagnostics. The entire adap
tive optics system is controlled from a single work
station. 

The optics bench, physically mounted on the 
Nasmyth platform, contains  the optical compo
nents of the AO system and provides an output 
beam (to the science instrumentation) that has the 
same f-number and pupil location as that of the tele
scope itself; that is,  with the pupil at 19.96  
[Gregory et al. 1996]. The main components in the 
imaging path are the image rotator, the fast tip-tilt 
mirror, an off-axis paraboloid (OAP) to collimate the 



beam and  the telescope pupil on the 
 mirror, a second OAP to produce the  out

put beam, a dichroic beam-splitter that transmits the 
 imaging wavelengths, and an atmospheric disper

sion corrector for the  band. The IR beam then 
enters the imaging camera. Visible wavelengths 
reflected from the dichroic beam-splitter pass 
through a dispersion corrector for the visible band 
and are then split between the tilt/focus sensor and 
the wavefront sensor. The beam can also be switched 
to the acquisition camera. The optical system is 
designed with the science instruments centered on 
the optical axis, which means that the wavefront 
and tip-tilt sensors must be steerable to different 
field positions without disturbing the alignment of 
the wavefront sensor to the DM actuators. This is 
achieved with two field selection mirrors located in 
front of the wavefront sensor. In addition, the entire 
wavefront sensor is moved axially to accommodate 
the difference in focal distance between natural stars 
and sodium beacons. The tilt/focus sensor, required 
to stabilize the image when using a laser beacon, is 
mounted on a precision x-y-z translation stage so 
that it can acquire a natural star anywhere within 
the 2-arc minute field of view. The optics bench 
also includes components for alignment, calibration, 

 diagnostics. The electronics associated with the 
AO system are mounted in cabinets at the side of the 
Nasmyth platform. 

The wavefront controller subsystem consists of 
the components in the two closed loops: the tip-tilt 
sensor driving the fast-steering mirror, and the high-
order wavefront sensor driving the deformable mir
ror. The tip-tilt sensor uses four EG&G 
Optoelectronics Canada photon-counting avalanche 
diodes; astigmatism is introduced into the beam to 
enable defocus to be measured [Cohen et  1984]. A 

 wavefront sensor with 16 subaper-
tures across a 9-m inscribed aperture is used. The 
detector is a 64 x 64 pixel CCD made by MIT 
Lincoln Laboratory, with read noise of  electrons 
at 2-kHz frame rate. It is planned to use a 349-actua-
tor deformable mirror made by Xinetics Inc. The 
temperature in the dome is maintained near 0° C, 
at which temperature the properties of PMN material 
normally used for precision deformable mirrors is 
less than ideal. A  mirror is currently 
being evaluated in this environment. The wavefront 
processor performs the standard tasks of computing 
the wavefront gradients from the pixel data and then 
reconstructing the wavefront using matrix multiplica
tion. The processing rate is compatible with a closed 
loop bandwidth of 100 Hz. 

The laser is of similar design to that developed by 
LLNL for Lick Observatory. It is a 

 aluminium garnet (Nd:YAG)-pumped, 
three-stage dye laser, giving an output of 20 W at a 
pulse rate of 30 kHz. The bandwidth is broadened by 
phase modulation to match the absorption profile of 
sodium. The pump lasers and dye master oscillator 
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are located in a room in the dome; they are connected 
by optical fibers to the preamplifier and power ampli
fier stages of the dye laser, which are mounted on the 
Keck telescope. Also mounted on the telescope are an 
alignment and diagnostics table and the 0.5-m pro
jection telescope. 

Two science instruments are planned for use with 
the Keck II adaptive optics system:  a near-

 camera, and NIRSPEC, a  echelle spectro
graph. The camera, built at CalTech, employs a 
1024 x 1024  array with a scale of 0.02 arc sec
ond per pixel. The spectrograph is being built at the 
University of California, Los Angeles (UCLA) and 
will employ slit sizes as small as 0.1 arc second. The 
adaptive optics system using natural guide stars is 
scheduled for installation on the Keck II telescope 
in 1998 and is expected to be in operation at the 
end of the year. The laser facility is planned for 
installation in 1999. 

 Gemini 8-m Telescopes Project 

The Gemini Project consists of two 8-m tele
scopes, Gemini North at Mauna Kea, for which 
first light is expected in 1998, and Gemini South at 
Cerro Pachon, Chile, with first light expected in the 
year 2000. An adaptive optics module using natural 
guide stars is planned for Gemini North, with possi
ble future upgrade to laser beacons. It is expected 
that adaptive optics using laser beacons will even
tually be installed at Gemini South. [Simons and 
Gillett, 1996]. 

The Gemini telescopes are equipped with fast tip-
 secondary mirrors that can correct the low

est order atmospheric aberrations, as well as wind 
shake, over a wide field of view. The primary mirrors 
are of the meniscus type, their figures being con
trolled with active optics that remove most low-
order aberrations. The remaining optical errors, to 
be corrected by the adaptive optics, are therefore of 
relatively high order. The adaptive optics require
ments have been carefully evaluated in relation to 
the science objectives of the Gemini program 
[Morris et al. 1996]. The baseline parameters are: 

• operation with natural guide stars; 
• Shack-Hartmann wavefront sensor, 12 x 12 

subapertures; 
• wavefront sensor CCD detector read noise 

of 3 electrons per pixel; 
• deformable mirror optically conjugated to 

turbulence altitude; 
• Strehl ratio goal of 0.1-0.8 over the 0.85-2.5 

 spectral range; 
• compensated field of 20-30 arc second dia

meter with a Strehl ratio of at least 0.5 in the 
K-band (2.2  

The adaptive optics package will be mounted on 
the Cassegrain instrument support structure of the 
Gemini North telescope, where the corrected beam 
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can be fed to any of the instrument ports by means of 
a fold mirror. The initial science instrumentation 
planned for Phase I is as follows [Gillett and 
Mountain 1996]: 

•  camera, spectral range 1-5  
using a 1024 x 1024  array, with plate 
scales of 0.02, 0.05, and 0.12 arc second per 
pixel, giving fields of view between 20 and 
120 arc seconds. This instrument will have a 
very low internal background, consistent 
with the low emissivity of the telescope, 
and will be used with and without the adap
tive optics, at Mauna  

• Near-IR spectrograph, 1-5  also using a 
1024 x 1024  array, with spectral reso
lutions of 2000 and 8000. The plate scales 
will be 0.05 and 0.15 arc second per pixel, 
giving fields of view between 50 and  arc 
seconds. An integral field module is an 
option. This instrument is for use at 
Mauna Kea. 

• Two multi-object spectrographs, operating 
over the spectral range   each 
employing three 2k x 4k CCD arrays, with 
an image scale of 0.08 arc second per pixel 
and a field of view of 5 arc minutes. The 
spectral resolution is up to 10,000. These 
instruments are also equipped with integral 
field modules. The Mauna Kea spectrograph 
will have coatings optimized for the red 
spectrum, while the Cerro Pachon instru
ment will be optimized for the blue spec
trum. 

•  R Imager, spectral range 8-30  
using a 256 x 256 SiAs array with a pixel 
scale of  arc second per pixel. This 
instrument will be used initially on Gemini 
North, but will be available to Gemini 
South. 

• High-resolution optical spectrograph, 
designed for use at the Cassegrain focus of 
Gemini South, will have high throughput at 

 wavelengths. It will use two 2k x 4k 
CCD arrays and will have resolutions of 
50,000 and 120,000. 

Development and upgrading of science instru
ments will continue during Phase II of the program. 

  fur  

The Max-Planck-lnstitute fur Astronomie  in 
Heidelberg, together with the  
fur Extraterrestriche Physik, Garching, has devel
oped an adaptive optics system for the MPIA 3.5-m 
telescope at   Spain. The system is 
designed for use with a sodium laser beacon and is 
known as ALFA (Adaptive optics with Laser For 
Astronomy). It employs a  wave-
front sensor using a low-noise CCD detector, 

together with a 97-actuator, continuous-faceplate 
 mirror. A separate steering mirror is 

used for image stabilization. The sodium beacon is 
generated by a dye laser, pumped by a continuously 
operating argon-ion laser. The ALFA system first 
operated in closed-loop mode in July 1997, using 
fixed guide stars of magnitude  = 9.7. 

  Adaptive Optics System 

A 5-year program was started in November 1994 to 
provide a facility adaptive optics system for the 5-m 
Hale telescope at Mount Palomar Observatory. The 
adaptive optics is being built by the Jet Propulsion 
Laboratory in return for 25% of the Hale telescope 
observing time. The instrument is mounted at the 
Cassegrain focus and will initially use natural stars 
for wavefront sensing, although it  also be capable 
of operation with a sodium beacon. The wavefront 
corrector is a continuous facesheet deformable mir
ror made by Xinetics, with a total of 349 actuators, of 
which 241 are active within the 5-m telescope aper
ture. The wavefront sensor operates at visible 
lengths, employing a phase-shifting interferometer 
with a 64 x 64 CCD camera operating at a frame 
rate of 500 Hz, using "skipper" technology to mini
mize the read noise. The  science camera is 
mounted on the optical axis, with a dichroic 
splitter to separate the light from the off-axis refer
ence star. The optical system is optimized for obser
vations in the K band around 2.2  it is also 
usable in the J and L bands (1.2-3.5  The first 
"lock" of the adaptive optics instrument is scheduled 
for early 1998, with delivery of the operational sys
tem later the same year. 

 Anglo-Australia Telescope 

The  Anglo-Australian Telescope (AAT) at 
Siding Spring, New South Wales, has been in 
operation since  and is one of the prime instru
ments in the southern hemisphere. The adaptive 
optics program, sponsored by the Australian 
Research Council, is being performed by a consor
tium of Australian Universities and the Anglo-
Australian Observatory. The objectives are to 
prove the effectiveness of adaptive optics at the 
AAT site, and to implement a system that will 
provide a scientifically valuable gain in the reso
lution and efficiency of the telescope. The first 
stage of the project was a fast tip-tilt correction 
system, installed in the west coude room of the 
AAT in 1995. A low-order adaptive optics system 
based on a  bimorph mirror and a cur
vature sensor is now being implemented  
1995]. This system will produce the largest gain in 
image quality at infrared wavelengths and will be 
used primarily with the IR camera/spectrograph. 
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 National Astronomical 
Observatory of  

The National Astronomical Observatory (NAO) of 
Japan is the sponsor of the Subaru Telescope at 
Mauna  Hawaii. The primary mirror of this tele
scope is an 8.3-m diameter meniscus, with a thickness 
of only 20 cm. The surface figure of the mirror is 
controlled by an active supporting structure employ
ing a total of 264 actuators, which apply forces 
to counteract the effects of gravity, temperature 
variations, and wind pressure. The sensors employed 
in this active control system are mechanical. To 
compensate rapidly changing wavefront errors 
due to atmospheric turbulence, the Subaru 
Instrumentation Program  1996] includes a 
Cassegrain adaptive optics system, optimized for 
observations in the near infrared. The objective of 
the system is to achieve diffraction-limited resolution 
of 0.067 arc second for observations at 2.2  with 
useful performance over the spectral range of 1 to 
5  The adaptive optics is based on curvature sen
sing and correction, using 36 controlled elements. 
The curvature sensor employs 36 avalanche photo-
diodes, which control a 60-mm diameter bimorph 
deformable mirror with 36 electrodes. The control 
system makes 2000 corrections per second. The field 
of view for full correction at 2.2  is 60 arc sec
onds, with image motion corrected over 120 arc sec
onds. The Subaru adaptive optics system will be used 
with the InfraRed Camera and Spectrograph  
at wavelengths between  and 5.4  and also 
with the Coronagraphic Imager with Adaptive 
Optics  a diffraction-limited coronagraph 
for observations between 0.9 and 3.8  First 
light for the Subaru telescope is planned for the sum
mer of 1998, with full operations expected in 2000. 

 Large Binocular Telescope Project 

The Large Binocular Telescope (LBT) is a collabora
tion between the University of Arizona, the Arcetri 
Astrophysical Observatory in Florence (representing 
the Italian astronomical community), Ohio State 
University, a consortium of German astronomical 
research institutions, and the Research Corporation 
in Tucson. It will be located at Mt Graham (3200 m) 
in the Sonora desert of Arizona. The LBT consists of 
two 8.4-m  with center-to-center separation 
of 14.4  on a common elevation-over-azimuth 
mount. The two primary mirrors have a combined 
collecting area equivalent ot that of an  circu
lar aperture, spanning a dimension of 22.8 m. The 
telescope structure is very compact and stiff, due to 
the small f-number of the primaries,  Because 
the mirrors are on a common mount, the optical 
pathlengths remain constant as celestial objects are 
tracked, eliminating the need for optical delay lines. 

Two sets of secondary mirrors are provided, to 
implement the three focal stations: 

• Cassegrain focus, f/3.8, field of view 60 arc 
seconds; 

• Gregorian (1R) focus,  field of view 4 
arc minutes; 

• Phased combined focus (using tertiary flats), 
 field of view 8 x 4 arc minutes. 

The facility instruments initially planned for the LBT 
include visible and  cameras, a faint-object 
spectrograph, and a medium-resolution  spectro
graph. Long-term plans include an interferometric 
imager (taking advantage of the full baseline), 
together with an imager and spectrograph for the 
thermal  

Adaptive optics is included in the LBT design to 
enable the  benefit of interferometric imaging to 
be obtained. When used in the interferometric ima
ging mode, the binocular design of the telescope 
allows sampling of all spatial frequencies produced 
by baselines of up to 22.8 m. Interferograms can be 
obtained with the full baseline at any position in the 
sky. By observing an object at different sky rotation 
angles, two-dimensional images can be reconstructed 
with the full resolution of the telescope. 

 Current Trends 

It is evident from reviewing the projects listed above 
that adaptive optics is now considered to be an essen
tial component in the new generation of large astro
nomical telescopes. In most cases, adaptive optics is 
intended (at least initially) to provide good correction 
at near-IR wavelengths between 1.25 and 3.4 /urn, 
with partial correction at shorter wavelengths. As 
ground-based telescopes get larger, they depend 
more and more on adaptive optics to achieve their 
full imaging diffraction-limited resolution. An effi
cient way to incorporate adaptive optics into an 
astronomical telescope is to use an adaptive second
ary mirror. This approach is used in the 6.5-m MMT 
conversion [Bruns et  1995] and is also being con
sidered for the Gemini telescopes [Bigelow et al. 1993, 
1994] and the LBT [Salinari et al. 1993]. The main 
disadvantage of this approach is that it precludes any 
significant enlargement of the compensated field of 
view. 

Another trend is also evident: adaptive optics is 
being retrofitted to older telescopes with apertures of 
up to 4 m, to make them competitive with the new 
generation of astronomical giants. As shown in chap
ter 4, the peak image intensity delivered by a fully 
compensated telescope is proportional to D4, while in 
an uncompensated telescope it is  A compen
sated telescope with an aperture of about 1.5 m will 
therefore give the same peak image intensity as an 
uncompensated 8-m-aperture instrument in the best 
seeing conditions. A large number of telescopes in the 
1.5-2.5  class exist in observatories around the 
world; these instruments can benefit greatly by 
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upgrading with adaptive optics. A relatively simple 
AO system can be very effective at  
lengths and there is potentially a large market for 
reliable and low-cost systems of this type. For retro
fitting existing telescopes, a self-contained adaptive 
optics package that can be attached to the 
Cassegrain, Nasmyth, or coude focus is a good solu
tion. The adaptive optics bonnette designed for the 
CFHT  et  1994] is an example of this 
approach. The unit provides a compensated beam 
with the same f-number as that of the input, and 
the compensating optics can be switched in or out 
as required. 

Obtaining good sky coverage at shorter 
lengths remains the major problem with astronomical 
adaptive optics. Laser beacons generated in the 
sodium layer are clearly the preferred reference 
sources, because of their high efficiency and smaller 
measurement errors due to the high altitude. The use 
of laser beacons increases the cost of observing time, 
but may enhance its value by a larger factor. Most 
AO systems retain the capability of using natural 
stars when they are available, and it makes sense to 
keep this option open. Useful science can be carried 
out with adaptive optics using natural reference 
sources, as shown by Roddier et al [1994] and Lena 
[1994]. 

 Future Prospects 

Adaptive optics is no longer in its infancy, but it still 
has a long way to go before it can be considered a 
mature technology. Major improvements are 
required to expand the compensated field of view, 
to improve compensation at short wavelengths, and 
to increase the sky coverage. It is possible that these 
problems will be solved in an unexpected way: the 
opportunities for new ideas and approaches are 
immense. 

From the present perspective, several avenues of 
investigation can be seen. The following topics 
appear to be rewarding areas for further development 
in adaptive optics: 

• Compensation devices with high spatial and 
temporal resolution, possibly using liquid 
crystal or solid-state technology. With a 
high actuator density, piston-only correction 
of phase is adequate, providing that there is 
minimum dead space between elements. 

• Multiconjugate compensation to enlarge the 
field of view. Developments are required in 
three areas: widefield wavefront measure
ment, multiple wavefront correction devices, 
and multiconjugate processing algorithms. 

• Optimal algorithms for real-time control, 
using the best combination of reference 
sources (laser beacons and natural stars), 
together with adjustment of spatial and tem
poral bandwidths, to optimize the compen
sation efficiency for current turbulence 
conditions. 

• Optimal postprocessing  to 
improve compensated image quality by 
using measured data on residual wavefront 
errors. One approach is to use partial 
time) compensation to raise the signal-to-
noise ratio of the image data only to the 
extent that deconvolution algorithms are 
effective. Diffraction-limited images are 
then retrieved using the measured residual 
wavefront errors. 

• Simplified operator interface with the adap
tive optics, the goal being to make the opera
tions mostly automatic. The functions 
should include routine preobservation and 
postobservation procedures, such as readi
ness tests, diagnostics, selection of reference 
stars, and data recording, as well as real-time 
optimization during the observing session, 
including control of the beacon laser. 

The ultimate goal of adaptive optics in astronom
ical telescopes is to make Earth's atmospheric win
dow transparent to the observer, who will be aware 
only of the superb performance of the telescope and 
its instrumentation. 



Appendix A 
Estimating the Position of an Image 

 Introduction 

The discussion of wavefront sensing techniques 
(chapter 5) has shown that the process of wavefront 
slope measurement reduces to estimating the position 
of a spot in the case of a Hartmann sensor, or to 
estimating the position of a fringe pattern in the 
case of a shearing interferometer. In each case, the 
error in the wavefront measurement is directly related 
to the accuracy with which the position of the spot or 
fringe is determined. This is limited ultimately by the 
quantum nature of light and it is also limited by the 
spatial resolution of the image sensor employed. In 
this appendix, based on an analysis by Wallner 
[1985], the error produced by an arbitrary position 
estimator is derived for both continuous and discrete 
sensors. The optimum estimator is then found. The 
analysis enables the performance of any type of 
wavefront slope sensor to be determined and com
pared with the optimum. The results are particularly 
useful in the design of adaptive optics systems, 
because they enable a realistic tradeoff to be made 
between wavefront sensor error and hardware com
plexity. It is found, in general, that relatively simple 
position detection systems can be used in wavefront 
slope sensors without significant loss of performance. 

A.2 General Position Estimator 

The distribution of photoelectrons in an image is a 
random function with a mean or expected value 

described by the intensity distribution, which is deter
mined by the characteristics of the source of radia
tion and the optical configuration of the wavefront 
sensor. In the case of an unresolved point source and 
an aberration-free imaging system, the intensity dis
tribution is simply the diffraction-limited response of 
the system. It is assumed that the shape of this func
tion is known and only its position is uncertain. 

Photons arrive and are detected randomly. At 
each point in the image, the expected value of the 
photoelectron density is given by the intensity func
tion  If the image is displaced by Ax, Ay, the 
expected electron density will be 
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where 

 = charge density in the image, in elec
trons per radian squared 

(*) = expected value 
 = nominal image intensity 

Ax, Ay = displacement from nominal position 

The displacement of the image on each axis is esti
mated by weighting the electron distribution with an 
estimating function g(x,y) and integrating over the 
image plane. The measure of displacement in the x 
axis obtained in this way is 

 

(A.2) 

The expected value of this measure is simply the 
weighted integral of the expected value of the elec
tron distribution: 
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(A.3) 

For small displacements, the expected value of the 
electron distribution may be expanded about its 
nominal position 

(A.4) 

  =  and so on. Substituting 
in equation (A.3), we obtain 

(A.5) 

The value of  may be adjusted to zero when 
Ax = Ay = 0 by adding a constant term to  y). 
If this is done, 

(A.6) 

The equations for  are similarly functions of the y-
axis estimating function  

In general, the one-dimensional measures of 
image displacement  and  depend on both Ax 
and Ay, and two equations must be solved simulta
neously to get the desired values. The subsequent 
analysis is considerably simplified by confining the 
displacement to a single axis. If the intensity distribu
tion  is continuous, axes may always be chosen 
to eliminate the Ay term from equation (A.5). In 
particular, if  is symmetrical about the x and 
y axes and  is symmetrical about the y axis, 
conditions that are easily arranged in practice, then 
the offending term will disappear. 

Under these conditions, the estimated deviation in 
position in the x axis is given by 

(A.7) 

The variance of the measure  can be shown to be 

(A.9) 

Substituting this value in equation  gives the 
mean-square error in estimated position, for small 
excursions around the null: 

 10) 

This equation can be used to evaluate the perfor
mance of any estimating function  For exam
ple, substituting the weighting function  = x in 
equation  10) gives the mean-square error on one 
axis using the image centroid as the estimate of posi
tion. 

A.3 Position Sensing with Discrete 
Detector Arrays 

The weighting function  in the previous section 
was assumed to be a continuous function of position. 
A possible method of implementation would be to 
use variable attenuation optical filters that have the 
desired transmission function, with four separate 
detectors to handle the positive and negative weights 
in x and y. Such a system would require image inten
sification to ensure that quantum noise was still 
dominant after the attenuation in each path. An 
alternative approach would be to use a detector 
array that has very high spatial resolution. Neither 
of these methods is attractive from a practical view
point. A more useful approach is to use a detector 
array that has a relatively small number of elements, 
the outputs of which are weighted and combined. 
This is equivalent to a weighting function that is con
stant over each detector area. Using square pixels 
with side p, such a weighting function is defined as 

 y) =   < x <  + p),  <y < iy, + p) 

 

where 

 = weight applied to rth pixel 
 ,  = location of lower left corner of pixel 

Substituting this relation in equation  10) gives the 
mean-square error using a quantized measure: 

where 

 12) 

 13) 

 14) 

These equations enable the error in determining the 
position of a spot or fringe to be evaluated as a func-

The variance of the estimated position (that is, the 
mean-square deviation from its average value) is then 

(A.8) 
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 of the number of photoelectrons counted, for 
any detector configuration and set of weights. 

A.4 Optimum Weighting Functions 

The optimum set of weights that minimizes the mean-
square position error when using a discrete detector 
array is found by differentiating equation  12) with 
respect to  and equating to zero. The result is 

= 0 

This reduces to 

 15) 

which has the solution 

(A.17) 

The expression for the optimum gain or weight for 
each pixel is intuitively satisfying. The factor  is 
proportional to the derivative of the intensity func
tion, so the gain is maximized at pixel locations with 
large slope and is zero when the slope is zero. The 
factor  is proportional to the image intensity; pixel 
locations having low intensity and, consequently, low 
quantum noise have a higher weighting because a 
change in value is more likely to be due to a shift 
in position than to quantum fluctuations. 

Substituting these weights back into equation 
 12) gives the optimized variance for the measure

ment error in a single axis using a discrete detector: 

 18) 

Note that these weights are optimized only for small 
excursions around the null. It will be shown later that 
other weighting functions may give better overall per
formance for larger excursions. 

The optimum weighting function for the continu
ous case can be found as the limit of equation (A.17) 
as the pixel size approaches zero. For small pixels, 
the integrands in equations  and  will not 
vary significantly over the area of integration, so 

 19) 

(A.20) 

The variance of the optimized estimate for a contin
uous detector is 

(A.21) 

A.5 Performance of  Sensors 

These results may now be applied to evaluate the 
performance of Hartmann sensors in which the 
error in determining the wavefront slope is directly 
related to the error in estimating the position of the 
spot. Hartmann sensors generally employ square sub-
apertures. The intensity function is then 

where 

and 

(A.22) 

(A.23) 

The optimum gain for the continuous case is then 

f{x,y) = image intensity in photoelectrons per 
steradian 

 = field angle, rad 
 = image intensity on axis in photoelectrons 

per steradian 
d = dimension of square subaperture 

 = mean wavelength 
 = number of signal photoelectrons 

  = background intensity in image plane, in 
photoelectrons per steradian 

The measurement errors for optimized pixel weight
ing are then computed using equation  18) for a 
discrete detector and equation (A.21) for a continu
ous detector. In the discrete case, the error depends 
on the position of the image center in relation to the 
pixel array. The most favorable image location is at 
the junction of four pixels. Limiting cases of the  
position error for circular and square apertures, with 
and without background radiation, for small and 
large pixel sizes are listed in table A.  

For a circular aperture with a quad cell detector 
and no background radiation, the rms error is 

 ), which is the same as that derived 
by Tyler and Fried [1982]. The present analysis 
enables the error to be derived for any intensity func
tion, detector size, pixel weighting, and background. 
For zero background, it is seen that a continuous 
detector produces  about half the error of a 

 16) 
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Table A.  Errors in Estimating the Position of a Diffraction-Limited Spot 

Position error  in radians  using optimum pixel weights 

1. Circular aperture, spot width  =  
Background intensity 
Pixel size p   (continuous detector) 
Pixel size p   (quad cell) 

2. Square aperture, spot width r, = k/d 
Background intensity 
Pixel size   (continuous detector) 

Pixel size p  r, (quad cell) 

quad cell. The error coefficients for circular apertures 
in table  are smaller than those for square aper
tures for the same photon count. However, square 
apertures collect more light than circular ones of 
the same width, and, when this is taken into account, 
the square apertures normally used in Shack-
Hartmann sensors give a better performance. 

In the design of  sensors, the 
design parameters of interest are: 

1. The size of the detector pixels in relation to 
that of the optical image; 

2. The number of pixels required per subaperture: 
for example,   and so on; 

3. The optimum weighting or gain of each pixel; 
4. The dynamic range (wavefront tilt excursion) 

of each subaperture; 
5. The effect of a gap between the pixels. 

These parameters are readily determined using the 
above analysis, enabling the design to be optimized 
for any set of conditions. 

The relationship between pixel size and the image 
intensity distribution is shown in figures  and  
The images are produced by diffraction-limited 
square subapertures. Figure A.l represents a quad 
cell, for which the (angular) pixel size is usually larger 
than the diffraction image. With a displacement of 
±1/2 wave in x and y, the image is mostly within one 
quadrant, resulting in a small linear range. The use of 
a 4 x 4 detector array, with a pixel size of 1.33 x  
as shown in figure  greatly increases the dynamic 
range. The linearity of the response to image displa
cement can be controlled by weighting the pixels, as 
shown in section 5.3. 

Normalized position measurement errors for 
small excursions around the null are shown in figure 
A3, as a function of the pixel size. The pixel size is 
specified in units of k/d, where k is the mean 
length of the wavefront sensor and d is the diameter 
of a circular subaperture or the side of a square sub
aperture. A pixel size of 0.1 units approaches the 
performance of a continuous detector, while a pixel 
size of  units is equivalent to a quad cell. Curves (a) 

and (b) show the normalized rms position errors for 
an unlimited number of detector elements, using cir
cular and square apertures, respectively, and using 
the optimum pixel weighting as defined in equation 

 17). It is seen that the error grows steadily as the 
pixel size increases, with a steep increase between 

 and 1  above which it remains constant. 
The chart shows that the error in determining the 

position of a spot is minimized by using small pixels, 
providing that the array covers the area of the spot 
plus the dynamic range required, which may require a 
large number of pixels per subaperture.The error 
saturates at about twice the minimum value when 
the pixel size reaches  remaining constant even 
for the large pixels used in a quad cell. Therefore, 
considering only the error around the null, a large 
increase in the number of pixels is required to improve 
on the performance of a simple quad cell detector. 

This picture changes when the transfer function of 
the position sensor is considered. Figure A.4 shows 
the normalized error and the output voltage of the 
position sensor as a function of the spot displace
ment. The curves are plotted for a 4 x 4 array with 
two different weightings and also for a 2 x 2 array 
(quad cell). The pixel size is fixed at 1.33 x  The 
dotted curve shows a 4 x 4 pixel array with the opti
mized weights (equation  17) of —0.625, —1, 
+ 1, +0.625, giving minimum error in the presence 
of photon noise at the null position. These weights 
remain fixed as the spot is displaced. The solid curve 
shows a 4 x 4 array with weights of —3, —   +3. 
The dashed curve shows a quad cell with weights of 
— 1, + 1 . For small spot displacements up to about 
0.67 x k/d, the performance of all three systems is 
similar, the optimized weights giving only a very 
slight advantage. 

For large displacements, the three systems behave 
quite differently. The system with optimized weights 
has a poor dynamic range, worse than a quad cell, 
with the output signal actually dropping as the dis
placement increases. The system shown by the solid 
curve has by far the best overall performance, giving 
maximum output and minimum error over the 
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Figure  Intensity of a diffraction-limited spot produced by a square aperture, showing its relation to a 
quadrant (2 x 2) detector array for displacements of 0, 0.5, 1.0, and 1.5 waves. 
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Figure A.2 Intensity of a diffraction-limited spot produced by a square aperture, showing its relation to a 
 detector array for displacement of 0, 0.5, 1.0, and 1.5 waves. 
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Figure A.3 Effect of the detector pixel size on the error in determining the 
position of a spot. The spots are produced by diffraction-limited circular and 
square apertures and are centered at the junction of four contiguous cells. It is 
assumed that the spot excursions are small compared with the spot size, which is 
usually the case in closed-loop tracking systems. Background light is zero. The 
left-hand side of the  corresponds to very small pixels, approaching a 
continuous detector plane. The right-hand side corresponds to large pixels, 
equivalent to a quad cell. Changing the pixel size from very small to very 
large increases the error at the null by a factor of less than 2. Most of this 
change occurs at pixel sizes between 0.5 and 1.0  

gest dynamic range. The system using a quad cell has 
significantly greater error than either of the others at 
moderate spot displacements, but performs well 
around the null. These results indicate that it is essen
tial to explore the performance of position sensing 
systems over their entire dynamic range and not 
just around the null, where the conditions may be 
optimized. 

The effect of a gap between pixels on the output 

signal and normalized error of position sensors is 
shown in figure  Curves are shown for gaps of 
zero, 10%, 20%, and 30% of the pixel size. The pre
sence of a gap always reduces the output signal and 
increases the error, although the latter effect is small 
for displacements of less than  These effects 
become serious for gaps that exceed about 10% of 
the pixel size and are in addition to those produced 
by loss of light in the gaps. 



Error versus Spot Displacement 

Spot displacement in  units 

Output versus Spot Displacement 

" "  array, optimized weights,  0.625 
'  array, fixed weights, -3, -1,   

 Quad cell, weights -1,1 

Figure A.4 Performance of position sensors as a function of the spot 
displacement. The spot is formed by a square subaperture of dimension 
d. The null position of the spot is at the center of the array, at the junction 
of four detector cells. The pixel size in the 4 x 4 array is 1.33  angular 
units. The optimized weights are those giving minimum error in the pre
sence of photon noise at the null position. These weights remain fixed as 
the spot is moved. For displacement up to about 0.67  (half the cell 
size), the performance of all three systems is similar. For excursions 
greater than 0.67  a 4 x 4 array with weighting of —3,  +1 , +3 
has superior performance, having a smaller error and larger dynamic 
range. 



Quad cell, Error vs. Displacement  Array, Error vs. Displacement 

Spot displacement 

Quad cell, Output vs. Displacement 

Spot displacement 

 Array, Output vs. Displacement 

Spot displacement Spot displacement 

No gap between cells 
  Gap  of cell size 

—     size 
— Gap 30% of cell size 

Figure A.5 Effect of a gap between detector cells on the performance of 2 x 2 (quadrant) and  
position sensor arrays. A gap between adjacent detector cells always increases the error in measuring 
the position of a spot. The presence of a gap also reduces detector output and produces nonlinearity. 



Appendix B 
Active Control for Long-Baseline 
Interferometers 

B.I Introduction 

In this appendix, the effects of atmospheric turbu
lence on the image structure of a ground-based 
Michelson interferometer are analyzed and a method 
of improving the performance using a combination 
of adaptive optics and automatic fringe tracking is 
described. Matched filters in multiple spectral bands 
are used to determine the optical pathlength errors 
and to estimate the mutual coherence function of the 
source. A practical implementation of the system is 
described and estimates of its performance are given. 

B.2 System Model 

The basic interferometer model is shown in figure 
 The two collecting apertures are separated by a 

variable baseline A. The two beams are brought to a 
fixed separation D and focused by lens L onto the 
image plane P, where they overlap and interfere. The 
effective focal length of the system is F. 

 Ideal System 

We first analyze an ideal system with no wave-
front perturbations. The spectral intensity at the 
focal plane for a single rectangular aperture with an 
unresolved circular source is 

where  is the peak spectral intensity in photons per 
meter squared per micrometer, given by 

(B.2) 

and 

The fringe pattern is generated in the direction of the 
baseline, which is defined as the  axis. If the detec
tors are assumed to extend over the entire pattern in 

 axis, then equation  may be integrated over 
y, reducing it to the following function of x only 

where 

(B.3) 

(B.4) 

(B.5) 
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(B.l) 

If two such apertures, separated by distance D, are 
focused at the same point and there are no phase 
disturbances, the spectral intensity becomes 

 = spectral radiance of source, photons 
    

a = angular radius of source, rad 
r = exposure time, s 
 = half-width of aperture, m 

b = half-length of aperture, m 
k = wave number,  =  
F = focal length of aperture, m 
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Figure B.2 Interferometer image structure, showing the effects of optical path differences (OPDs) and 
finite spectral bandwidths. The units for OPD and bandwidth are micrometers and the center wavelength 
is 0.7  

phase, resulting in the unique "white-light" fringe. 
But measurement of the fringe phase away from the 
null is best achieved in narrow spectral bands, using a 
dispersed or "channeled" spectrum. 

The condition for zero fringe contrast, which for a 
circular source occurs when  = 0 in equation (B.6), 
is only satisfied at one wavelength for each value of 
A. Fringe modulation still occurs at higher and lower 
wavelengths, suggesting  measurement of fringe 

modulation is best accomplished with a spectrally 
separated image. 

 Effects of Atmospheric Turbulence 

Atmospheric turbulence produces three distinct 
effects on the interference image in a multiaperture 
interferometer. These effects are: 
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1. differences in the absolute optical  
from the object to the image, in the arms of the 
interferometer; 

2. independent (overall) tilt of the apertures, 
resulting in displacement of the centroids, 
reducing the overlap area where the fringes 
are generated; 

3. wavefront distortion within each of the aper
tures, which spreads the images over a larger 
area and reduces their intensity. 

In the central portion of the image, these effects 
may be accounted for by rewriting the expression for 
focal plane intensity distribution [equation (B.8)], in 
the following form: 

 

The function of the adaptive control system is to 
optimize the values of  and  in real time. 

The magnitude and temporal characteristics of the 
turbulence effects will now be summarized. 
Atmospheric turbulence may be characterized by a 

 spectrum within the inertial subrange 
defined by the inner and outer scales. The outer 
scale is limited by the height of the collecting aper
tures above the ground, which is usually much less 
than the baselines of ground-based interferometers 
(tens or hundreds of meters). Thus, the optical path 
variations in the two apertures may be considered 
statistically independent. To determine the temporal 
variation of optical path differences, the atmosphere 
can be treated as a series of frozen layers with varying 
wind velocities. In the present analysis, to obtain the 
basic results in the simplest way, a single layer of 
turbulence is used. 

The appearance of spectrally dispersed fringes 
under various conditions is shown in figure B.3. 
Under ideal conditions, with exactly equal optical 
pathlengths and with the object unresolved by the 
aperture spacing, the fringes appear as shown in fig
ure B.3(a). The fringe spacing is directly proportional 
to wavelength. At the center of the image, the fringes 
are coincident at all wavelengths, producing the 
unique white-light fringe. Under normal seeing con
ditions, the fringes are in constant motion and at one 
instant of time may appear as shown in figure B.3(b). 
Even at path equality (R = L), the fringes are ran

domly displaced in phase by atmospheric turbulence. 
The effect of a constant pathlength difference is to 
displace the central fringe toward the longer arm of 
the interferometer. Because of the spectral dispersion, 
a pathlength error makes the fringe pattern appear to 
rotate, as shown in the figure, with the direction of 
rotation revealing the polarity of the error. 

The appearance of the dispersed fringes at path 
equality near the first null is shown in figure B.3(c). 
The first null  = 0) occurs when the aperture spa
cing (baseline) is A — BX/6, where  is the observa
tion wavelength, B = 0.5 if the object consists of two 
point sources of angular separation 6, and B = 1.22 if 
the object is a uniform circular disk of angular dia
meter 6. As the interferometer aperture spacing A is 
increased, the  first appears at the blue end of the 
spectrum and progresses through to the red end. The 
contrast  at the edges of a band covering a 2:1 
range of wavelengths spanning the null is about 
40% at the red end and 15% at the blue end. It is 
therefore possible to maintain adaptive control over 
the interferometer pathlength, even in the vicinity of 
the null. Note that the presence of a null is made 
evident by the phase reversal of the fringes. 

B.2.4 Fringe Detection Performance. 

Successful operation of the interferometer depends 
on the ability to evaluate the term  by measuring 
the fringe contrast in spite of the changes in fringe 
phase and the presence of the contrast degradation 
factors   and  caused by atmospheric and 
instrumental perturbations. 

Two outputs are required from the fringe detec
tor: 

1. a pathlength error signal to feed back to the 
pathlength compensator to minimize AP; 

2. an estimate of the fringe contrast  of the 
object observed. 

The fringes may be detected by integrating the 
intensity after multiplying  in equation  by 
orthogonal "matched filter" functions. The resulting 
signals are 

 

These spatial filters can be implemented either 
optically before detection, or electronically after 
detection. The latter more easily allows amplification 
of the signal before it is applied to the filters, leading 
to lower quantum noise. 

For the narrow spectral band considered, the 
fringe frequency terms may be averaged over one 
cycle giving 

where 
 = fringe contrast factor due to spectral 

width and cross product of bandwidth and 
mean pathlength error AP 

(B.12) 

 = fringe contrast factor due to  varying 
pathlength error AP 

 = fringe contrast factor due to aperture wave-
front error 



408 Adaptive Optics for Astronomical Telescopes 

(a) Ideal  

(b) Normal 
conditions 

(c) Near 
null 

Figure B.3 Fringe patterns with spectral dispersion. 

 

 

N = total photons collected by both  
tures in band Ak, 

 = YA Yk Y?  

 

 

 

The fringe phase can now be estimated from the two 
filter outputs: 

(B.20) 

The variance of this estimate can be expressed as 

(B.21) 

(B.22) 

The  fir) is plotted in figure B.4. The number 
of photons collected is proportional to Ak, which, in 
turn, is proportional to r, so that the signal-to-noise 
ratio of the phase estimate is proportional to rfir), 
which is also plotted on figure B.4. Increasing the 
bandwidth reduces the variance of the fringe phase 
angle estimate linearly up to r =  and little there
after. To avoid ambiguous phase measurements, the 
mean-square fringe error should be limited to 

(B.23) 

To reduce the pathlength error variance, the esti
mates from n equal wavenumber bands may be com
bined, giving 

(B.25) 

Here,  is the total number of photons detected in all 
spectral bands. To minimize the pathlength error for 
a fixed spectral bandwidth 2nAk, it is necessary to 
minimize r. But, if r is too small, the photon error 
increases, violating the limit of equation (B.23). A 
good compromise is to choose r  1, so that equation 
(B.25) becomes 

The pathlength error is given by 

(B.24) 
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Figure B.4 Normalized 
performace of a fringe 
detection system. 

(B.26) 

The next step is to make an estimate of the fringe 
contrast, which is carried out using the cosine and 
sine functions defined in equation (B.14): 

(B.27) 

where  is the total number of photons collected. 
The required value of  may then be found using 
equation  The actual values of   and   

can then be found from the residual errors of the 
active compensation system, which are discussed in 
the next section. 

The  error in the estimate of the fringe contrast 
 can be shown to be 

B.3 Active Control System 

The practical implementation of a compensated opti
cal interferometer will now be described. The com
pensation system consists of three active control 
loops, as shown in figure B.5. These subsystems are: 

• baseline control; 
• wavefront compensation; 
• fringe tracking. 

The purpose and implementation of each of these 
subsystems will now be described. 

 Baseline Control 

The purpose of the first control loop is to main
tain approximate equality of the mean optical path-
lengths in the two arms of the interferometer, while 
tracking the science object, and also while varying the 
baseline. Corrections for the observation geometry 
and systematic changes in optical pathlength due to 
Earth's rotation are calculated from a knowledge of 
the physical length of the baseline and the object 
angle in the plane of the baseline. The optical path-
length between each telescope and the image plane at 
which the interference fringes are obtained is then 
adjusted by the use of optical delay lines ("trom
bones"), or by moving the fringe measuring station. 
The mean pathlength error  between the two arms 
of the interferometer must be minimized in order to 
optimize the fringe contrast factor  as shown in 
equation  The required bandwidth of this sys
tem is about 10 Hz, with a precision on the order of 

 This baseline control system is also used to 
scan the optical path difference during initial acquisi
tion of the object, in order to locate the central white-
light fringe, which is detected by the fringe signal 
processor. Precise correction of optical path differ
ences is performed by the fringe tracking system 
described in section  

A suitable measurement technique for baseline 
control is two-wavelength interferometry, which 
enables the optical pathlengths to each of the tele
scopes to be measured independently. Two axial 
beams are transmitted through the beam splitters 

This error is inversely proportional to  and can 
therefore be minimized by integrating the photon 
count over an extended period of time. 

(B.28) 
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BS1 and BS2, traversing the baseline optics to the 
secondaries of the two collecting apertures  and 
T2, where they are retroreflected back through the 
system to the fringe counter in the baseline control 
system. Corrections to the mean optical pathlength 
are made with the optical delay line  which has a 
large correction range but relatively low bandwidth 

 10 Hz). 

B.3.2 Wavefront Compensation 

The second active control system is an adaptive 
optics seeing compensator, which provides both 
precise angle-tracking of the science object and 
correction of the wavefront distortion due to atmo
spheric turbulence. The purpose of this system is to 
maximize the fringe contrast factor  due to wave-
front errors over the interfering apertures. The basic 
requirement is to eliminate wavefront differences 
between the two apertures. In general, there is little 
correlation between the high-order wavefront distor
tions in two separated apertures, so that, in practice, 
each aperture is compensated independently to 
achieve a flat wavefront. The adaptive optics systems 
used for this purpose have been described in the main 
section of this book and will only be outlined here. 

The light beams collected by the two apertures of 
the interferometer pass through the coarse and fine 
pathlength correctors  and P2, and are then 
reflected by deformable mirrors DM1 and DM2, 
and the fixed mirror M3, to enter the wavefront sen
sor as shown in Figure B.5. The optical wavefront 
corrections for each aperture are computed in real 
time and fed back to the appropriate deformable 
mirror to compensate the distortion. 

The residual mean-square wavefront error of such 
a system, when using a natural star as the reference 
source, has four main components: 

(B.29) 

where 

 total mean-square wavefront error 
= wavefront measurement error, equation 

(9.43) or (9.44) 
= temporal error, equations (9.53) and 

(9.56) 
= wavefront fitting error, equation (9.61), 
= anisoplanatic error, equation (9.28). 

For values of CT2, less than about 4 rad2, the fringe 
contrast factor may be found from the relation for 
Strehl ratio [equation 4.40)]: 

(B.30) 

Performance calculations for adaptive optics systems 
using natural stars are described in section 9.5 and 
performance charts are shown in figures 9.28 and 
9.29. When laser beacons are used, additional error 
sources are involved. The performance calculations 
for laser beacon systems are described in section 9.6 
and performance charts are given in figures 9.34 
through 9.41. 

B.3.3 Fringe Tracking 

The fringe tracker compensates rapid fluctuations in 
the optical path difference between the two interfe
rometer apertures, caused by atmospheric turbu
lence, thus maintaining the mean phase of the 
fringes within ±1/2 wavelength. This is an essential 
function in long-baseline interferometers because, 
without real-time compensation, the spectral 
width would have  be extremely small to obtain 
the required coherence length, in the presence of 
the large pathlength errors due to turbulence. 
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The essential components of the fringe tracking 
system are the fringe detector FD, the fringe signal 
processor, and the fast-acting optical delay line P2, as 
shown in figure B.5. The fringe detection system 
includes a prism that forms a spectrally dispersed 
image on the detector array. Spectral dispersion of 
the image produces a tilt in the interference fringes if 
the pathlengths are unequal in the two arms of the 
interferometer, as shown in figure B.3. The configura
tion of the fringe detector array is shown in figure 
B.6. Each row of elements corresponds to one of the 
n spectral bands; in the figure, n = 5. The detector 

geometry matches the fringe spacing, which is 
directly proportional to the wavelength. The fringes 
are sampled by four detector elements per cycle. The 
number of fringes in the baseline direction is approxi
mately  so the total number of detector elements 
is  

A block diagram of the signal processing 
required to obtain the estimates of fringe phase 
and contrast is shown in figure B.7. The first opera
tion is to correlate the image samples  with the 
matched filter functions  cos  and  
sin  defined in equation (B.I4), summing them 

n spectral 
bands 

Figure B.6 Detector array 
for spectrally dispersed 
image. 

Figure B.7 Fringe detector signal processor. 
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over the x dimension of the image to form the out-
guts C and S, from which the fringe phase estimates 

 are made for each spectral band. These estimates 
are then averaged and multiplied by \/k to give the 
path length error AP, which is fed back to the 
speed pathlength corrector P2 to close the fringe 
tracking loop. 

B.3.4 Fringe Contrast Estimation 

The overall fringe contrast  is found using equation 
(B.27). The functions C and  have already been 
formed. The intensities of all detector outputs in 
the row are summed to obtain  from which the 
functions  and  are formed. The 
estimates of   then computed for each spectral 
band, and time averaged. The final step is to compute 
the required output of the system, which is the object 
mutual coherence function  using equation  
With active control of path length, AP will be small 
and  will be close to unity. The values of  and  

are obtained from the measured wavefront error   

and pathlength error  using equations (B.30) and 
(B.26). 

B.4 Summary 

The performance of long-baseline optical interferom
eters is significantly improved by the use of active 
control, which includes the use of fringe tracking to 
compensate for random pathlength errors between 
the apertures, together with adaptive optics to 
remove wavefront errors within each aperture. An 
efficient method of estimating the phase and the con
trast of the fringes, using a channeled spectrum detec
tor with matched filters, has been described. The use 
of active and adaptive control improves the perfor
mance of long-baseline interferometers at visible 
wavelengths by about 10 magnitudes with  aper
tures, to as much as  magnitudes with  aper
tures. 
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Adaptive optics programs 

comparison of scientific and military goals, 
378-379 

list of current efforts, 380-382 
technical summaries, 379-393 

Adaptive optics systems. See also Control systems 
basic configurations, 57-61 
error sources, 73-74,   
integration with the telescope, 73-76 
operating modes, 309-312 
performance with laser beacons, 357-373 
performance with natural stars, 345-357 

Adaptive parameter control, 369-374 
Adaptive secondary mirrors 

advantages and disadvantages, 201 
current designs, 203-204, 384, 390, 393 

optical considerations, 50-51, 203 
ADONIS (ADaptive Optics Near-Infrared System), 

383 
AEOS (Advanced Electro-Optical System), 382 
Airy disk,  108 
ALFA (Adaptive optics with Laser For Astronomy), 

392 
Alhazen, 5 
AMOS (Air Force Maui Optical Station), 18, 21, 24, 

220, 378 
Angle of arrival, 94-95, 315 
Anglo-Australian Telescope (AAT), 392 
Angular resolution of a telescope, 92-93, 107-112, 

122-125 
Anisoplanatic errors. See also Error sources in 

adaptive optics 
angular, 32, 49, 102-103, 318, 321 
focal (cone effect), 71, 230-239, 321-322 
tilt (due to offset guide star), 250-256, 365-369 

AOC (Adaptive Optics Coronagraph), 390 
Apache Point Observatory, 387 
APD (Avalanche photodiode), 172-173, 385, 391, 

393 
Aperture function,  
Aperture tagging. See Wavefront sensors 
Apodization, 131 
Arcetri Astrophysical Observatory, 393 
Aristarchos, 4 
Aristotle, 4 
ASEPS (Astronomical Studies of Extrasolar 

Planetary Systems) interferometer, 38 
Astigmatism. See Zernike polynomials 
Astrolabe, 5 
Astrometry, 36 

431 
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Astronomical instruments 
ancient,  
contemporary, 34-35 

Astronomical science objectives, 32-34 
Atmospheric density, 82 
Atmospheric dispersion, 92, 322-327. See also Error 

sources in adaptive optics 
Atmospheric limitations to astronomical 

observations, 27-31 
Atmospheric pressure, 82-83 
Atmospheric refraction, 5 
Atmospheric transmission, 360-361 
Atmospheric turbulence 

coherence length, 29, 89, 91-92 
distributed, 53-54 
fractal structure, 81 
Greenwood frequency, 338 
inner scale,  100-101 
measurements, 83-85, 216-220 
models, 84-86 
moments, definition of, 87-88 
optical effects, 28-31, 88-95, 314-318 
outer scale, 30, 81, 100-101, 253, 256 
power spectrum, 79-81,  
profile, 82-84 
structure functions, 79-80 
wavefront excursions,  

Atmospheric windows, 27-28 
Avalanche photodiodes. See Detectors 

Babcock, H. W.,  
Beam clearance height, 240, 242 
Bicell detector 

dynamic range,  
errors, 147-150 

Bimorph mirrors, 68-69, 385 
configurations, 198 
deflection, 199-200 
maximum size, 201 
operating principle, 197 
spatial frequency response, 200-202 

Binary optics, 151-152 
Bistatic operation with laser beacons, 245-249, 258 
Bode plot, 296-297 
Bowen, I. S., 12 

CAAO (Center for Astronomical Adaptive Optics), 
384 

Calver, G., 10 
Cameras 

for infrared imaging, 383, 385, 386, 388-389, 
391-392 

for visible imaging, 385-386, 392 
Cassegrain, 9 
Cavendish Laboratory, Cambridge, 389 
CCD (Charge-Coupled Device) arrays 

for imaging, 34, 385-386, 391-392 
read noise, 66, 171-172 

using skipper amplifiers, 171, 392 
for wavefront sensing, 66, 171-172, 382, 387, 388, 

391, 392 
Cerro Pachon (Gemini South 8-m Telescope),  
Cerro Paranal (European Southern Observatory), 

383-384 
CFHT (Canada-France-Hawaii Telescope 

Corporation),  394 
ChAOS (Chicago Adaptive Optics System), 263, 

387-388 
CHARA (Center for High Angular Resolution 

Astronomy) telescope array, 38 
Checkerboard error in wavefront sensing, 271-272, 

342 
Circular aperture 

diffraction pattern, 108-109, 130 
image intensity profile, 107-108 

Clark, A., 10 
Cleomedes, 5 
Closure phase, 36 
COAST (Cambridge Optical Aperture Synthesis 

Telescope), 36, 38 
COAT (Coherent Optical Adaptive Techniques), 15 
Coherence length. See Atmospheric turbulence 
Coma. See Zernike polynomials 
Come-On, and Come-On Plus adaptive optics 

systems, 383 
Common, A. A., 10 
Common path errors. See Control systems 
Compensated Imaging System, 21-24 
Cone effect (focal anisoplanatism), 230-233. See also 

Anisoplanatic errors 
Conic tilt error, 232, 239-240, 242-243 
Conjugate image, 48, 54, 86 
Control systems. See also Adaptive optics systems 

basic types,  
block diagrams, 290, 292 
common-path errors, 292-293 
effects of hysteresis, 294-295 
Laplace transform, 289-290 
modal, 300-302 
multiple-input multiple-output  295 
open-loop, 302 

 function, 291-292 
stability criteria, 295-300 
subaperture alignment, 298-300 
time lines, 293-294 
transfer functions, 293-295 
Z-transform, 290 

Copernicus, 7 
Copper vapor lasers, 257-258, 261, 388 
Crossley telescope, 10 
Curvature sensing, 165-168. See also Wavefront 

sensors 

Dawes, W. R„ 12 
Dawes limit,   
Deconvolution, 139 
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Deformable mirrors, 56, 68-69. See also Actuators, 
Adaptive secondary mirrors,  
mirrors, Membrane mirrors, Segmented 
mirrors, Wavefront correctors 

characteristics of 97-actuator device, 192-194 
construction, 186, 193 
deflection, 188 
faceplate materials, 186-187 
faceplate stress, 190 
frequency response,  
influence functions, 188-189 
mechanical design, 186-192 
MPM (monolithic piezoelectric mirror), 69 
optimization, 191-192 
thermal considerations, 190-191 

Detection of sources in background noise, 41-43, 
125, 127-129 

Detectors 
avalanche diodes, 66, 172-173, 385, 391 
charge-coupled devices (CCDs), 34, 66, 171-172, 

382, 385-388, 391-392 
infrared, 173-174 
intensified diode arrays, 66, 173 
noise sources,  361, 365 

 tubes (PMTs), 66,  161, 173 
quantum efficiency of, 170-172 
read noise in CCDs, 171-172, 361 
Reticon (photodiode array), 383 

DeWitt, J. H., 14 
Diffraction 

Fraunhofer, 106 
Fresnel, 106 
pattern of circular aperture, 107-109,   

Dirigible optics,  
Dispersion of air, 92 
Dolland, J., 10 

EG&G Optoelectronics Canada, 173, 391 
Eidophor, 13 
Error sources in adaptive optics systems, 72-73, 

311-313 
anisoplanatic errors 

angular, 32, 49, 102-103,  321 
focal (cone effect), 71, 230-239, 321-322 
tilt (due to offset guide star), 250-256, 365-369 

atmospheric dispersion errors, 322-327 
multiple beacon (stitching) errors, 235-246 
temporal (latency) errors, 337-341 
tracking (overall tilt) errors, 343-345 
wavefront fitting errors, 196-197, 342-343 
wavefront measurement (photon) errors, 73, 

147-150, 157-158, 328-337 
wavefront reconstruction errors, 282-285, 341-342 

ESO (European Southern Observatory), 25, 34 
ESO/France collaboration,  
instruments for VLT, 34 
NAOS  Adaptive Optics System), 384 
NTT (New Technology Telescope, 3.6 m), 383 
VLT (Very Large Telescope), 34, 37, 383-384 

Eudoxos, 4 

Excimer lasers, 220, 257, 387 
Extended objects, compensation of, 49-51, 374-376 
Extended reference sources, 51-53, 150, 157-160, 

168-171, 328 

Fitting error of wavefront corrector, 196-197, 
342-343. See also Error sources in adaptive 
optics systems 

Fixed guide stars. See also Laser beacons 
 for, 71,248-250 

required magnitude, 365-373 
tilt errors, 250-251 

 J., 9 
Focal  (cone effect), 71, 230-239, 

321-322. See also Error sources in adaptive 
optics systems 

Focus modulation, 142-144 
Foucault, J. B.  
Foucault test, 7, 12, 61 
Fourier transform, 35, 108-109, 279 
Fraunhofer diffraction, 106 
Fresnel diffraction, 106 

 diffraction integral,  
Fried's parameter   

definition of, 91-92 
measurement of, 315 
scaling with wavelength and zenith angle, 315 

Fringes. See Interference fringes 

Gain margin, 296-298 
Galileo, 8 
Gascoigne, W., 8 

 iteration method, 275 
Gaussian beams,  
Gemini 8-m Telescopes Project, 391-392 
Geometric optics, validity of, 47-48, 88-89 
Gnomon, 4 
Go-to servo, 59 
Greenwood frequency, 337-339 
Gregorian telescope, 51-52 
Gregory, J., 8 
Guide stars. See Image stabilization, Laser beacons 

Hale, G. E., 10 
Hale telescope,  392 
Harrison, J., 9 
Hartmann sensor. See Wavefront sensors, 

 
Hartmann test, 12, 63 
HDOS (Hughes Danbury Optical Systems), 382 
Herschel, W., 9,  
Hipparchos, 4 
Hooke, R., 9 
HST (Hubble Space Telescope), 40 
Hubble, E.,  
Huggins, W., 10 
Huygens, C, 8, 106 
Huygens-Fresnel principle, 106 
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Hysteresis 
in actuators, 181-185 
modeling of, 294-295 

Image contrast ratio. See Peak image contrast ratio 
Image motion compensation,  343-345 
Image-plane sensing.  Wavefront sensors 
Image quality criteria, 132-133 
Image reconstruction, 35-36 
Image sharpening, 19, 58, 66 
Image stabilization, 71-72, 248-250, 365-367. See 

also Laser beacons 
Image structure, 40-44 

due to aberrated beam,  
of circular aperture, 106-110 
due to image motion, 121, 125-126 
of Gaussian beam,  
due to partial compensation, 44,  122-124 

Imaging tasks listed in order of difficulty, 132 
Imaging through turbulence, 91-95,  
Imperial College, London, 389 
Influence function 

bimorph mirror, 199-200 
continuous-plate mirror, 188-189 
membrane mirror, 204 

Information content of a partially compensated 
image, 133-134 

Infrared 
detectors,  
observations, 33-34, 37-38, 44-46, 379, 383-386, 

388-393 
wavefront sensors, 63,  367, 384 

Inner scale of turbulence,  100-101 
Integrated wavefront corrector, 185-186 
Interference fringes 

conditions for producing, 35 
contrast (visibility), 36 
spectral dispersion, 36 

Interferometers 
imaging, 36-37 
long-baseline, 35-36, 37,  

 35, 46 
shearing,   

Intermittent turbulence, 81 
IOTA (Infrared-Optical Telescope Array), 38 
Irradiance transport equation, 140. See also 

Wavefront sensors 
Isoplanatic angle, 32, 49, 102-103, 318, 321 

definition, 103 
increase due to conjugation of correctors, 50-51 

 Optical Systems, 17, 275, 386 
I2T  a 2 Telescopes), 37-38 

Jacobi method of iteration, 269-270, 275 
Johns Hopkins University, Center for Astrophysical 

Sciences, 390 
JPL (Jet Propulsion Laboratory), 392 

 functions, 95,  
Keck, W. M., Observatory 

adaptive optics, 390-391 
laser system, 391 
science instruments, 391 

Keeler, J. E., 10 
Kepler, J., 7 

 spectrum,  100,  

La  (European Southern Observatory), 383 
Laplace transform, 289-290 
Laser beacons, 32, 37,  

beam sharing (on telescope), 264-265 
bistatic operation, 245-249, 258 
brief history, 217-221 
comparison of Rayleigh and sodium backscatter, 

224 
energy detected, 222, 360 
focal anisoplanatism error, 231-239, 321-322 
generation, 256-263 
geometry 

of multiple beacon arrays, 242 
of Rayleigh beacons, 223 
of single beacon, 230 

image stabilization requirements, 248-250 
measurements of sodium layer, 263-264 
multiple beacon arrays, 235-245 
position error, 239-243 
projection geometry, 245-248 
Rayleigh beacons,  239-240, 244, 247 
Rayleigh scattering, 222-223, 247, 360 
scattering processes, 221 
shear method of wavefront measurement,  
sky coverage of adaptive optics, 70, 359, 365-372 
sodium beacons 

 spectrum, 228, 229 
energy levels, 227 
saturation effects, 226-229 
sodium resonance fluorescence, 223-226 
using short pulses, 229-230 

tilt anisoplanatic errors, 250-256, 365-369 
Laser beam profile,  
Laser guide stars. See Laser beacons 
Laser safety considerations,  
Laserdot, 383, 385 
Lasers 

beam quality, 257-258 
continuous-wave dye, 260-261 
copper vapor, 257-258, 261, 388 

 pumped dye, 261 
 pumped dye, 261-262 

 220, 257, 387 
for Rayleigh beacons, 256-257 
for sodium beacons, 257-263 

pulse shape requirements, 257-258 
spectral requirements, 259-260 

sum-frequency Nd:YAG, 262-263 
Lassell, W., 10 
Latency, 57. See also Error sources in adaptive optics 

systems 
Lawrence  National Laboratory (LLNL), 

261, 388-389, 390, 391 
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Lawrence  National Laboratory  
 (Atomic Vapor Laser Isotope Separation) 

Program, 261, 388 
laser system for Keck Observatory, 391 
Lick Observatory adaptive optics system, 27, 

261-263, 388-389 
LBT (Large Binocular Telescope) Project, 37, 393 
Leighton, R. B., 14 
LEO (Low Earth Orbit) satellites, 21 
Lick Observatory, 10, 388-389, 391 
Lidar equation, 222, 360 
Linnik, V. P., 14 
Liquid crystals 

construction, 207-208 
correction range (effective stroke), 208-209 
frequency response, 209-210 
for optical correlation, 170-171 
performance, 207-210 
for wavefront correction,  206-207 

Lyot coronagraph, 129 

Marechal approximation,  
Mark III interferometer, 38 
Markov approximation, 88, 90 
MARTINI (Multi-Aperture Real Time Image 

Normalization Instrument), 389 
Massachusetts Institute of Technology, Lincoln 

Laboratory 
ACE (Atmospheric Compensation Experiment), 

24, 386 
binary optics, 151-152 
CCD devices, 171, 382, 387, 388, 391 
sodium beacon lasers, 263, 388 
SWAT  Adaptive Techniques), 

220 
Matrix reconstructor, 272-275, 277-280, 285-287 
Mauna  85-86, 389, 391-392, 393 

 fur Astronomie, Heidelberg 
 392 

Max-Planck-Institut fur Extraterrestrische Physik, 
Garching, 384 

Maxwell's wave equations, 88, 89, 99 
Membrane mirrors, 14, 68. See also Deformable 

mirrors 
configurations, 205 
deflection,  
frequency response, 206 
materials, 206 
performance, 206 

Michelson, A. A., 36 
Michelson stellar interferometer. See Interferometers 
MMT (Multiple Mirror Telescope), 384 
Modal control systems, 300-302 
Modal operation of adaptive optics, 60-61 
Modal reconstruction of wavefront data, 277-279 
Modal representation of atmospheric turbulence, 

95-96 
Modulation Transfer Function 

diffraction-limited system,  
partially compensated system,  

uncompensated system, long exposure, 92,  
uncompensated system, short exposure, 92-93 

MONICA (University of MONtreal  
 386 

Mount Graham, 393 
Mount Hopkins, 384 
Mount Laguna Observatory, 387 
Mount Palomar Observatory,  38, 392 
Mount Wilson Observatory,  27, 36, 38, 386-387 
MPM (Monolithic Piezoelectric Mirror), 18, 69 
Multiconjugate compensation,  374-376 
Multidither adaptive optics, 15-16, 19, 139 
Multiplexing techniques for wavefront sensing, 

162-163 
Multispectral operation of adaptive optics, 325-327 

NAOMI (Natural guide-star Adaptive Optics system 
for Multi-purpose Instrumentation), 389 

NASA (National Aeronautics and Space 
Administration), 390 

National Astronomical Observatory of Japan, 393 
Neural networks, 66, 174-175, 387 
Newton, I., 8, 9 

 (Navy Prototype Optical  38 
NSF (National Science Foundation), 386 
Nyquist criterion, 295-296 

Observatoire de Grenoble, 382 
Observatoire de Haute-Provence, 383 
Observatoire de Lyons, 382, 386 
Observatoire de Paris, Meudon, 382 
Ohio State University, 393 
Open-loop operation of adaptive optics, 59-60, 

302-303 
Optical correlation, 137, 169-170 
Optical path length, used in preference to optical 

phase, 44, 272 
Optical propagation, 88-91 

geometrical approximation, 88-89 
Markov approximation, 88, 90 
phase screen model, 88, 90-91 
Rytov approximation, 88-89 
scattering models, 89-90 
transverse filtering, 88, 90 

Optimal wavefront correction, 266, 303-307 
evaluation of residual error, 304 
system model, 303-304 
system performance, 306-307 
transfer function, 305 

OTF (Optical Transfer Function), 45,   
Outer scale of turbulence, 30, 81,  255-256 
Outgoing wave compensation, 15-16 
Oxford Lasers Ltd., 258 

Palomar Adaptive Optics System, 392 
Partial compensation,  97-98,   
Peak image contrast ratio 

comparison with Strehl ratio, 41,  
definition, 122, 125 
image motion effects,  
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Peak image contrast ratio  
reasons for using, 122, 133 
required value,  

Pease, F. G., 36 
Perceptron,  
Performance criteria for adaptive optics, 93-94, 104, 

131-133 
Performance evaluation 

of laser beacon systems, 357-373 
Rayleigh, 359-362 
sodium, 362-364 

of natural star systems, 345-357 
Performance gain using adaptive optics,  
Performance optimization,  348-354 

integration time, 348-350 
subaperture size, 349-354 

Phase conjugation, 15 
Phase excursion due to turbulence,  
Phase margin, 296-298 
Phase retrieval, 66 
Phase structure function, 90-91 

for partially compensated turbulence,  
for uncompensated turbulence,  
for zonal compensation,  

Phillips Laboratory (U.S. Air Force), 21, 220, 
378-382 

Photon error. See Error sources in adaptive optics 
systems 

Photon flux from star, 346, 363, 365 
Piezoelectric ceramics, 181-182 
Piston (phase) error, importance of minimizing, 56, 

61-63 
Planetary systems, detection of, 33, 129-131 
Plato, 4 
Point-ahead compensation,  
Point sources, 31, 108 

separability of,  
Power-in-the-bucket, 131 
PPARC (United Kingdom Particle Physics and 

Astronomy Research Council), 389 
Primary mirrors, 39, 377-378 
PROM (Pockels Readout Optical Memory), 18 
PSD (Power Spectral Density) of turbulence, 79-81, 

316-320 
PSF (Point Spread Function),  
Ptolemy, 4, 5 
Pupil functions,  113-114 

Quadrant cell. See Bicell detector 
Quantum noise effects, 125-129 

Radial grating, 64-65, 159, 161 
Rayleigh beacons. See Laser beacons 
Rayleigh criterion,  
Rayleigh scattering, 70, 221-224, 360-362 
Reconstruction. See Wavefront reconstruction 
Reference sources for wavefront sensing, 31 

characteristics, 63, 137 
extended sources, 19, 137, 168-171 

Refractivity of air, 82-83 

Research Corporation, Tucson, 393 
Resolution scale,  
Resolving power, 91-93 
Reynolds number, 79 
Risley prism, 323 
Roberts, I., 10 
Ronchi test, 141,  
Rosse, Lord, 9 
Royal Greenwich Observatory, 9, 389 
Royal Observatory, Edinburgh, 389 
RTAC (Real Time Atmospheric Compensator), 

 
Rytov approximation, 88-89 

Saturation (of sodium atoms),  
Science objectives in astronomy, 32-34 
Scintillation,  89 
Seeing disk, 29-30, 92 
Segmented mirrors, 14, 69-70 

actuator configurations, 196 
effects of gaps, 196 
fitting errors, 196-197 
large-diameter, 196-197 
types of, 192, 194-196 

Serial operation of adaptive optics, 57-59 
Servosystems for adaptive optics, 289-302 
Shack, R., 63 
Shack-Hartmann sensor. See Wavefront sensors, 

 
Shadow clock, 5 
Shane telescope (Lick Observatory), 388 
Shared compensation of laser beacons,  

365-366, 372-373 
Shear method of turbulence measurement,  
Shearing interferometer. See Wavefront sensors, 

shearing interferometer 
Sidebands in sampled signal, 291 
Sighting devices used in early optical instruments, 

 
Signal-to-noise ratio 

of the image of a star, 41-44,  
improvement due to adaptive optics, 42 
of partially compensated images, 129 
of a photon detector,  

Singular value decomposition of matrices, 274, 304 
Sky background radiation, 27-28, 361, 365 
Sky coverage of adaptive optics, 70-72 

using laser beacons, 359, 365-372 
using natural stars, 351, 355-357 

Slipher, V. M., 11 
Slope sensors. See Wavefront sensors 
Sodium beacon. See Laser beacons 
Sodium layer characteristics, 223-225, 264 
Sodium resonance fluorescence, 71, 223-226. See also 

Laser beacons 
Solar adaptive optics, 52, 168-169 
SOR (Starfire Optical Range), 220, 263, 379, 382 
Space telescopes, comparison with ground-based, 

39-40 
Sparrow criterion,  
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Spatial filter, deformable mirror as, 279 
Spatial light modulators, 169-170 
Speckle pattern, 30 
Spectrographs, 34, 391-393 

integral field, 35, 386 
multiple object, 34, 392 

Spherical aberration. See Zernike polynomials 
Steward Observatory (University of Arizona), 

383-384 
Stitching of multiple beacon measurements, 236-246 
Strain (in deformable mirrors), 188 
Strehl ratio 

approximations to,  
definition of,  

Stress (in deformable mirrors), 190 
Stroke (of actuators), 188-190 
Structure functions, 79, 91-92,  305 
Structure parameters of atmospheric turbulence, 80 
Subaperture size, optimization of, 349-354 
Subaru telescope, 393 
SWAT experiment, 220 
Sydney University Stellar Interferometer  38 

Telescope arrays, 37 
Temperature structure parameter, 80 
Temporal errors. See Error sources in adaptive optics 

systems 
Thermal radiation, 28 

 (formerly ThermoElectron) 
Corporation, 220, 387 

Tilt anisoplanatism. See Error sources in adaptive 
optics systems 

Tracking mirrors, 56 
requirements, 210 
types, 210-212 

Transverse spatial filtering 
applications, 101 
filter functions, 101 
outline of method, 98-101 

Traveling wave predictor, 287-289 
Tropopause, 78, 84 
Turbulence. See Atmospheric turbulence 
Tycho Brahe, 7 
Tyler frequency, 345, 367 

 (United Kingdom  Telescope), 389 
Uncommon path errors, 292-293 

 (University of Illinois Seeing Improvement 
System), 221, 387 

United Kingdom Adaptive Optics Programme, 
389-390 

University of Arizona, Steward Observatory, 221 
University of Chicago, Department of Astronomy 

and Astrophysics, 221, 263, 387-388 
University of Durham Adaptive Optics Group, 

389-390 
University of Hawaii, Institute for Astronomy, 385 
University of Oxford, 389 
U.S. Naval Observatory, 10 

Variable shear interferometer, 64-65, 159-161 
Visibility. See Interference fringes 
VLT (Very Large Telescope). See ESO (European 

Southern Observatory) 
von  spectrum, 81, 101 
von Steinheil, 10 

Wavefront correctors. See also Adaptive secondary 
mirrors, Bimorph mirrors, Deformable 
mirrors, Membrane mirrors, Segmented 
mirrors 

basic types, 67-70,  
general requirements, 177-179 
liquid crystals, 68-69, 176-177, 206-210 
optimal location, 49-50 
refractive, 206 
spatial characteristics, 177 

Wavefront prediction, 287-289 
spatiotemporal reconstruction, 288 
strategies for, 287 
traveling wave predictor, 287-289 

Wavefront reconstruction, 56, 61-63, 67, 267-271 
curl operator, 277 
error sources,  276-277, 341-342 
exponential method, 275-276 
iterative solutions, 275-276 
matrix solutions, 272-275 

for extraction of modal components, 274, 
277-279 

for extraction of Zernike modes, 278-279 
for Gauss-Markov estimate, 274—275 
mean-square errors in, 274-275 
for minimum-norm solution, 274 
for Wiener estimate, 275 

modal estimation, 277-279 
models, 269-270 
networks, 271-273 
noise propagation, 67, 276-277 
optimal, 279-280. See also Optimal wavefront 

correction 
Wavefront reconstructors 

analog, 18, 67, 280-285 
digital, 67, 271,285-287 
evolution of, 268 
hybrid, 282 
iterative, 270 
tasks performed by, 267-268 
using matrix multiplication, 271, 285-287 

Wavefront sensors, 61-66, 138-143 
aperture tagging, 16-17, 139 
characteristics required for various tasks,  
comparison of performance, 332-336 
comparison of techniques, 138-143 
efficiency, 136, 170, 329-337 
photon detectors, 170-174 
principle of slope sensing, 140 
signal-to-noise ratio, 346-348 
time lines, 339-341 
using curvature measurements, 165-168, 385 
using extended reference sources, 168-171 
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Wavefront sensors  
using image-plane measurements, 66, 138-139 
using neural networks, 174-175 
using optical correlation, 137, 169-170 
using phase diversity, 66, 174 
using slope measurements, 51, 56, 61-65,  
using a variable curvature mirror, 142-144 

Wavefront sensors,  63-64, 
143-154 

block diagram,  
calibration, 152-154 
characteristics, 152 
detector configurations, 332-333 
effect of gaps between detector elements,  
effect of pixel size, 148-149 
error sources,  328 
interference between subapertures, 147, 149 
lens arrays, 150-152 
operating principle, 143-147 
performance compared with shearing 

interferometer, 332-336 
photon detectors, 152, 170-174 
transfer functions,  148-149 
using bicell detectors, 144-146 
using 4x4 detectors, 147-149 

Wavefront sensors, shearing interferometer, 64-65 
detector configurations, 330-332 
errors,  328-329 
multiplexing techniques, 162-164 
operating principle, 154-155 

optimization of shear value,  
performance compared with Shack-Hartmann 

sensor, 332-336 
using large shear, 163, 165 
using spatial modulation, 162-164 
using temporal modulation, 155-157, 163-164 
using variable shear, 159-161 

Wavefront tilt 
compensation,  
difference between  and  317-318 
frequency spectrum,  320 

Wavelength scaling of optical images, 44—46,  
Werner, J., 9 
Wide-field compensation, 53-56,  
Wiener spectrum, 96 
William Herschel Telescope (WHT), 389, 390 
Wind profiles, 87 

Xinetics, Inc., 382, 391, 392 

Yerkes Observatory, 381 

Zenith angle, 87-88, 91 
Zernike polynomials 

in aberration functions,  
definition of, 95-96 
used in modal compensation, 60-61, 96-98, 

277-279,  
Zonal versus modal compensation, 60-61 


