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Preface for Students

You are probably about to begin your second exposure to linear algebra. Unlike
your first brush with the subject, which probably emphasized Euclidean spaces
and matrices, this encounter will focus on abstract vector spaces and linear maps.
These terms will be defined later, so don’t worry if you do not know what they
mean. This book starts from the beginning of the subject, assuming no knowledge
of linear algebra. The key point is that you are about to immerse yourself in
serious mathematics, with an emphasis on attaining a deep understanding of the
definitions, theorems, and proofs.

You cannot read mathematics the way you read a novel. If you zip through a
page in less than an hour, you are probably going too fast. When you encounter
the phrase ““as you should verify”, you should indeed do the verification, which
will usually require some writing on your part. When steps are left out, you need
to supply the missing pieces. You should ponder and internalize each definition.
For each theorem, you should seek examples to show why each hypothesis is
necessary. Discussions with other students should help.

As a visual aid, definitions are in yellow boxes and theorems are in blue boxes
(in color versions of the book). Each theorem has an infomal descriptive name.

Please check the website below for additional information about the book,
including a link to videos that are freely available to accompany the book.

Your suggestions, comments, and corrections are most welcome.

Best wishes for success and enjoyment in learning linear algebra!

Sheldon Axler
San Francisco State University

website: https://linear.axler.net
e-mail: linear@axler.net
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Preface for Instructors

You are about to teach a course that will probably give students their second
exposure to linear algebra. During their first brush with the subject, your students
probably worked with Euclidean spaces and matrices. In contrast, this course will
emphasize abstract vector spaces and linear maps.

The title of this book deserves an explanation. Most linear algebra textbooks
use determinants to prove that every linear operator on a finite-dimensional com-
plex vector space has an eigenvalue. Determinants are difficult, nonintuitive,
and often defined without motivation. To prove the theorem about existence of
eigenvalues on complex vector spaces, most books must define determinants,
prove that a linear operator is not invertible if and only if its determinant equals 0,
and then define the characteristic polynomial. This tortuous (torturous?) path
gives students little feeling for why eigenvalues exist.

In contrast, the simple determinant-free proofs presented here (for example,
see 5.19) offer more insight. Once determinants have been moved to the end of
the book, a new route opens to the main goal of linear algebra—understanding
the structure of linear operators.

This book starts at the beginning of the subject, with no prerequisites other
than the usual demand for suitable mathematical maturity. A few examples
and exercises involve calculus concepts such as continuity, differentiation, and
integration. You can easily skip those examples and exercises if your students
have not had calculus. If your students have had calculus, then those examples and
exercises can enrich their experience by showing connections between different
parts of mathematics.

Even if your students have already seen some of the material in the first few
chapters, they may be unaccustomed to working exercises of the type presented
here, most of which require an understanding of proofs.

Here is a chapter-by-chapter summary of the highlights of the book:

e Chapter 1: Vector spaces are defined in this chapter, and their basic properties
are developed.

e Chapter 2: Linear independence, span, basis, and dimension are defined in this
chapter, which presents the basic theory of finite-dimensional vector spaces.

e Chapter 3: This chapter introduces linear maps. The key result here is the
fundamental theorem of linear maps: if T is a linear map on V, then dim V =
dimnull T + dimrange T. Quotient spaces and duality are topics in this chapter
at a higher level of abstraction than most of the book; these topics can be

skipped (except that duality is needed for tensor products in Section 9D).
xiii



Xiv Preface for Instructors

e Chapter 4: The part of the theory of polynomials that will be needed to un-
derstand linear operators is presented in this chapter. This chapter contains no
linear algebra. It can be covered quickly, especially if your students are already
familiar with these results.

e Chapter 5: The idea of studying a linear operator by restricting it to small sub-
spaces leads to eigenvectors in the early part of this chapter. The highlight of this
chapter is a simple proof that on complex vector spaces, eigenvalues always ex-
ist. This result is then used to show that each linear operator on a complex vector
space has an upper-triangular matrix with respect to some basis. The minimal
polynomial plays an important role here and later in the book. For example, this
chapter gives a characterization of the diagonalizable operators in terms of the
minimal polynomial. Section SE can be skipped if you want to save some time.

e Chapter 6: Inner product spaces are defined in this chapter, and their basic
properties are developed along with tools such as orthonormal bases and the
Gram—Schmidt procedure. This chapter also shows how orthogonal projections
can be used to solve certain minimization problems. The pseudoinverse is then
introduced as a useful tool when the inverse does not exist. The material on
the pseudoinverse can be skipped if you want to save some time.

e Chapter 7: The spectral theorem, which characterizes the linear operators for
which there exists an orthonormal basis consisting of eigenvectors, is one of
the highlights of this book. The work in earlier chapters pays off here with espe-
cially simple proofs. This chapter also deals with positive operators, isometries,
unitary operators, matrix factorizations, and especially the singular value de-
composition, which leads to the polar decomposition and norms of linear maps.

e Chapter 8: This chapter shows that for each operator on a complex vector space,
there is a basis of the vector space consisting of generalized eigenvectors of the
operator. Then the generalized eigenspace decomposition describes a linear
operator on a complex vector space. The multiplicity of an eigenvalue is defined
as the dimension of the corresponding generalized eigenspace. These tools are
used to prove that every invertible linear operator on a complex vector space
has a square root. Then the chapter gives a proof that every linear operator on
a complex vector space can be put into Jordan form. The chapter concludes
with an investigation of the trace of operators.

e Chapter 9: This chapter begins by looking at bilinear forms and showing that the
vector space of bilinear forms is the direct sum of the subspaces of symmetric
bilinear forms and alternating bilinear forms. Then quadratic forms are diag-
onalized. Moving to multilinear forms, the chapter shows that the subspace of
alternating n-linear forms on an n-dimensional vector space has dimension one.
This result leads to a clean basis-free definition of the determinant of an opera-
tor. For complex vector spaces, the determinant turns out to equal the product of
the eigenvalues, with each eigenvalue included in the product as many times as
its multiplicity. The chapter concludes with an introduction to tensor products.



Preface for Instructors XV

This book usually develops linear algebra simultaneously for real and complex
vector spaces by letting F denote either the real or the complex numbers. If you and
your students prefer to think of F as an arbitrary field, then see the comments at the
end of Section 1A. I prefer avoiding arbitrary fields at this level because they intro-
duce extra abstraction without leading to any new linear algebra. Also, students are
more comfortable thinking of polynomials as functions instead of the more formal
objects needed for polynomials with coeflicients in finite fields. Finally, even if the
beginning part of the theory were developed with arbitrary fields, inner product
spaces would push consideration back to just real and complex vector spaces.

You probably cannot cover everything in this book in one semester. Going
through all the material in the first seven or eight chapters during a one-semester
course may require a rapid pace. If you must reach Chapter 9, then consider
skipping the material on quotient spaces in Section 3E, skipping Section 3F
on duality (unless you intend to cover tensor products in Section 9D), covering
Chapter 4 on polynomials in a half hour, skipping Section SE on commuting
operators, and skipping the subsection in Section 6C on the pseudoinverse.

A goal more important than teaching any particular theorem is to develop in
students the ability to understand and manipulate the objects of linear algebra.
Mathematics can be learned only by doing. Fortunately, linear algebra has many
good homework exercises. When teaching this course, during each class I usually
assign as homework several of the exercises, due the next class. Going over the
homework might take up significant time in a typical class.

Some of the exercises are intended to lead curious students into important
topics beyond what might usually be included in a basic second course in linear
algebra.

The author’s top ten

Listed below are the author’s ten favorite results in the book, in order of their
appearance in the book. Students who leave your course with a good understanding
of these crucial results will have an excellent foundation in linear algebra.

e any two bases of a vector space have the same length (2.34)

e fundamental theorem of linear maps (3.21)

e existence of eigenvalues if F = C (5.19)

e upper-triangular form always exists if F = C (5.47)

e Cauchy—-Schwarz inequality (6.14)

e Gram—Schmidt procedure (6.32)

e spectral theorem (7.29 and 7.31)

e singular value decomposition (7.70)

e generalized eigenspace decomposition theorem when F = C (8.22)

e dimension of alternating n-linear forms on Vis 1 if dim V = n (9.37)



xvi Preface for Instructors

Major improvements and additions for the fourth edition

Over 250 new exercises and over 70 new examples.

Increasing use of the minimal polynomial to provide cleaner proofs of multiple
results, including necessary and sufficient conditions for an operator to have an
upper-triangular matrix with respect to some basis (see Section 5C), necessary
and sufficient conditions for diagonalizability (see Section 5D), and the real
spectral theorem (see Section 7B).

New section on commuting operators (see Section SE).
New subsection on pseudoinverse (see Section 6C).
New subsections on QR factorization/Cholesky factorization (see Section 7D).

Singular value decomposition now done for linear maps from an inner product
space to another (possibly different) inner product space, rather than only deal-
ing with linear operators from an inner product space to itself (see Section 7E).

Polar decomposition now proved from singular value decomposition, rather than
in the opposite order; this has led to cleaner proofs of both the singular value
decomposition (see Section 7E) and the polar decomposition (see Section 7F).

New subsection on norms of linear maps on finite-dimensional inner prod-
uct spaces, using the singular value decomposition to avoid even mentioning
supremum in the definition of the norm of a linear map (see Section 7F).

New subsection on approximation by linear maps with lower-dimensional range
(see Section 7F).

New elementary proof of the important result that if T is an operator on a finite-
dimensional complex vector space V, then there exists a basis of V consisting
of generalized eigenvectors of T (see 8.9).

New Chapter 9 on multilinear algebra, including bilinear forms, quadratic
forms, multilinear forms, and tensor products. Determinants now are defined
using a basis-free approach via alternating multilinear forms.

New formatting to improve the student-friendly appearance of the book. For
example, the definition and result boxes now have rounded corners instead of
right-angle corners, for a gentler look. The main font size has been reduced
from 11 point to 10.5 point.

Please check the website below for additional links and information about the

book. Your suggestions, comments, and corrections are most welcome.
Best wishes for teaching a successful linear algebra class!

Sheldon Axler

Contact the author, or Springer if the
San Francisco State University

author is not available, for permission

website: https:/linear.axler.net Jor translations or other commercial
e-mail: linear@axler.net reuse of the contents of this book.
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Chapter 1 s

Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces.
Eventually we will learn what all these terms mean. In this chapter we will define
vector spaces and discuss their elementary properties.

In linear algebra, better theorems and more insight emerge if complex numbers
are investigated along with real numbers. Thus we will begin by introducing the
complex numbers and their basic properties.

We will generalize the examples of a plane and of ordinary space to R" and
C”, which we then will generalize to the notion of a vector space. As we will see,
a vector space is a set with operations of addition and scalar multiplication that
satisfy natural algebraic properties.

Then our next topic will be subspaces, which play a role for vector spaces
analogous to the role played by subsets for sets. Finally, we will look at sums
of subspaces (analogous to unions of subsets) and direct sums of subspaces
(analogous to unions of disjoint sets).

B1agsio S|IN ‘lusawn( siNoT ausld

René Descartes explaining his work to Queen Christina of Sweden.
Vector spaces are a generalization of the description of a plane
using two coordinates, as published by Descartes in 1637.
© Sheldon Axler 2024 1
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2 Chapter 1 Vector Spaces
IA R" and C"

Complex Numbers

You should already be familiar with basic properties of the set R of real numbers.
Complex numbers were invented so that we can take square roots of negative
numbers. The idea is to assume we have a square root of —1, denoted by i, that
obeys the usual rules of arithmetic. Here are the formal definitions.

(1.1 A

definition: complex numbers, C

e A complex number is an ordered pair (a,b), where a,b € R, but we will
write this as a + bi.

e The set of all complex numbers is denoted by C:
C={a+bi:abeR}.
e Addition and multiplication on C are defined by

(a+bi)+ (c+di)=(a+c)+ (b+d)i,
(a + bi)(c + di) = (ac — bd) + (ad + bc)i,

here a,b,c,d € R.

o J
If a € R, we identify a + 0i with the real number a. Thus we think of R as a

subset of C. We usually write 0 + bi as just bi, and we usually write 0 + 17 as just i.

To motivate the definition of complex 4, symbol i was first used to denote

multiplication given above, pretend that ,/—¢ by Leonhard Euler in 1777,
we knew that i> = —1 and then use the

usual rules of arithmetic to derive the formula above for the product of two
complex numbers. Then use that formula to verify that we indeed have

i?=-1.

Do not memorize the formula for the product of two complex numbers—you
can always rederive it by recalling that i> = —1 and then using the usual rules of
arithmetic (as given by 1.3). The next example illustrates this procedure.

1.2 example: complex arithmetic

The product (2 + 3i) (4 + 5i) can be evaluated by applying the distributive and
commutative properties from 1.3:
(2+3i)(4 +5i) =2 (4 +5i) + (3i)(4 + 5i)
=2-4+2-5i+3i-4+ (3i)(5)
=8+10i+12i — 15
= -7+ 22i.




Section 1A R"™ and C* 3

Our first result states that complex addition and complex multiplication have
the familiar properties that we expect.

/1 .3 properties of complex arithmetic )

commutativity
a+pB=p+wnandaf = Paforalla,p € C.

associativity

(@+pB)+A=a+ (f+A)and (af)A = a(BA) foralla,5,A € C.
identities

A+0=Aand A1 = Aforall A € C.

additive inverse
For every & € C, there exists a unique B € C such thata + B = 0.

multiplicative inverse
For every &« € C with a # 0, there exists a unique § € C such that a = 1.

distributive property
L Alw+ B) = Aa+ ABforall A,a, 8 € C.

/

The properties above are proved using the familiar properties of real numbers
and the definitions of complex addition and multiplication. The next example
shows how commutativity of complex multiplication is proved. Proofs of the
other properties above are left as exercises.

1.4 example: commutativity of complex multiplication
To show that a8 = Ba for all a, § € C, suppose
a=a+bi and B=c+di,

where a,b,c,d € R. Then the definition of multiplication of complex numbers
shows that

aB = (a+ bi)(c + di)
= (ac — bd) + (ad + bc)i
and
Ba = (c +di)(a + bi)
= (ca — db) + (cb + da)i.

The equations above and the commutativity of multiplication and addition of real
numbers show that af = Ba.




4 Chapter 1 Vector Spaces

Next, we define the additive and multiplicative inverses of complex numbers,
and then use those inverses to define subtraction and division operations with
complex numbers.

~

/1.5 definition: —a, subtraction, 1/a, division

Suppose a, € C.

e Let —a denote the additive inverse of . Thus —a is the unique complex
number such that
o+ (—a) =0.

e Subtraction on C is defined by
B—a=p+(—u).

e Fora #0,let1/a and % denote the multiplicative inverse of . Thus 1/« is
the unique complex number such that

a(l/a) = 1.

e For o # 0, division by « is defined by
B/ = B(1/a).

o J

So that we can conveniently make definitions and prove theorems that apply
to both real and complex numbers, we adopt the following notation.

ﬂ .6 notation: F \

tl"hroughout this book, F stands for either R or C. )

Thus if we prove a theorem involving
F, we will know that it holds when F is
replaced with R and when F is replaced
with C.

Elements of F are called scalars. The word ““scalar” (which is just a fancy
word for “number”) is often used when we want to emphasize that an object is a
number, as opposed to a vector (vectors will be defined soon).

For « € F and m a positive integer, we define a” to denote the product of «
with itself m times:

The letter F is used because R and C
are examples of what are called fields.

a = weeen.
=
m times

This definition implies that
(™" =a™ and (aB)™ = a™p™

for all w, B € F and all positive integers m, n.



Section 1A R"™ and C* 5

Lists

Before defining R" and C”, we look at two important examples.

1.7 example: R? and R®

e The set R2 which you can think of as a plane, is the set of all ordered pairs of
real numbers:
R? = {(x,y) : x,y € R}.

e The set R3 which you can think of as ordinary space, is the set of all ordered
triples of real numbers:

R® = {(x,1,2) : x,y,z € R}.

To generalize R? and R® to higher dimensions, we first need to discuss the
concept of lists.

~

/1.8 definition: list, length

e Suppose 7 is a nonnegative integer. A list of length n is an ordered collec-
tion of n elements (which might be numbers, other lists, or more abstract
objects).

e Two lists are equal if and only if they have the same length and the same
\_ elements in the same order. )

Lists are often written as elements
separated by commas and surrounded by
parentheses. Thus a list of length two is
an ordered pair that might be written as (a,b). A list of length three is an ordered
triple that might be written as (x,y, z). A list of length n might look like this:

Many mathematicians call a list of
length n an n-tuple.

(215045 2y)-

Sometimes we will use the word list without specifying its length. Remember,
however, that by definition each list has a finite length that is a nonnegative integer.
Thus an object that looks like (xq, x5, ... ), which might be said to have infinite
length, is not a list.

A list of length 0 looks like this: (). We consider such an object to be a list
so that some of our theorems will not have trivial exceptions.

Lists differ from sets in two ways: in lists, order matters and repetitions have
meaning; in sets, order and repetitions are irrelevant.

1.9 example: lists versus sets |
e The lists (3,5) and (5, 3) are not equal, but the sets {3, 5} and {5, 3} are equal.

e The lists (4,4) and (4,4, 4) are not equal (they do not have the same length),
although the sets {4,4} and {4, 4,4} both equal the set {4}.




6 Chapter 1 Vector Spaces
Fn

To define the higher-dimensional analogues of R? and R3, we will simply replace
R with F (which equals R or C) and replace the 2 or 3 with an arbitrary positive
integer.

/1.10 notation: 7 h
Fix a positive integer n for the rest of this chapter. )
1.11 definition: F”, coordinate A

F”" is the set of all lists of length # of elements of F:
F' = {(x1,...,x,) tx, € Ffork =1,...,n}.

For (x,...,x,) € Fand k € {1, ...,n}, we say that x, is the k™ coordinate of
\(xl,...,xn). )

If F = R and n equals 2 or 3, then the definition above of F" agrees with our
previous notions of R? and R®.

1.12 example: C* |

C* is the set of all lists of four complex numbers:

C4 == {(21,22,23,24) : 21,22,23,24 e C}

If n > 4, we cannot visualize R” as
a physical object. Similarly, C! can be
thought of as a plane, but forn > 2,the 4, amusing account of how R® would
human brain cannot provide a full image  pe perceived by creatures living in R?
of C". However, even if n is large, we  This novel, published in 1884, may
can perform algebraic manipulations in  help you imagine a physical space of
F" as easily as in R? or R® For example,  four or more dimensions.
addition in F” is defined as follows.

Read Flatland: A Romance of Many
Dimensions, by Edwin A. Abbott, for

(1.13 definition: addition in F"

Addition in F" is defined by adding corresponding coordinates:

(X1 e X)) + WY1, oY) = (X7 Y, 00X, 1),

Often the mathematics of F” becomes cleaner if we use a single letter to denote
a list of n numbers, without explicitly writing the coordinates. For example, the
next result is stated with x and y in F” even though the proof requires the more
cumbersome notation of (xq,...,x,) and (yq, ..., ¥,,).
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(1.14 commutativity of addition in F"

N

Qfx,yeF”,thenx+y=y+x.

Proof  Suppose x = (xq,...,x,) € F*andy = (yy,...,y,,) € F" Then
X+Y = (X1,00X,) + YpseensVy)
= (X1 +Yq, -0 X, +Yy)
= (Y + X150 Yy + X))
= (Y15 eer Yi) + (X1, 0000 Xy)
=y+x,

where the second and fourth equalities above hold because of the definition of
addition in F” and the third equality holds because of the usual commutativity of
addition in F.

If a single letter is used to denote an 7y, symbol
element of F” then the same letter with
appropriate subscripts is often used when
coordinates must be displayed. For example, if x € F” then letting x equal
(x1,...,X,,) is good notation, as shown in the proof above. Even better, work with
just x and avoid explicit coordinates when possible.

means “end of proof .

(1 .15 notation: 0

Let 0 denote the list of length n whose coordinates are all O:

Here we are using the symbol 0 in two different ways—on the left side of the
equation above, the symbol 0 denotes a list of length 1, which is an element of F”,
whereas on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context should always make
clear which 0 is intended.

1.16 example: context determines which 0 is intended

Consider the statement that 0 is an additive identity for F":
x+0=x forallx € F.

Here the 0 above is the list defined in 1.15, not the number 0, because we have
not defined the sum of an element of F” (namely, x) and the number 0.
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A picture can aid our intuition. We will
draw pictures in R? because we can sketch (a,b)
this space on two-dimensional surfaces v
such as paper and computer screens. A
typical element of R? is a point v = (a,b).
Sometimes we think of v not as a point !
but as an arrow starting at the origin and ~ Elements of R? can be thought of
ending at (a, b), as shown here. When we as points or as vectors.
think of an element of R? as an arrow, we
refer to it as a vector.
When we think of vectors in R? as arrows, we >
can move an arrow parallel to itself (not changing /
its length or direction) and still think of it as the v
same vector. With that viewpoint, you will often
gain better understanding by dispensing with the
coordinate axes and the explicit coordinates and A vector.
just thinking of the vector, as shown in the figure here. The two arrows shown
here have the same length and same direction, so we think of them as the same
vector.

. . 2
Whenever we use pictures in R” or Mathematical models of the economy
use the somewhat vague language of can have thousands of variables, say
points and vectors, remember that these . x_ \which means that we must

are just aids to our understanding, not sub-  yyork in R5°%. Such a space cannot be
stitutes for the actual mathematics that  dealr with geometrically. However, the
we will develop. Although we cannot  algebraic approach works well. Thus
draw good pictures in high-dimensional  our subject is called linear algebra.
spaces, the elements of these spaces are

as rigorously defined as elements of R

For example, (2, 3,17, m, \/E) is an element of R> and we may casually
refer to it as a point in R® or a vector in R® without worrying about whether the
geometry of R® has any physical meaning.

Recall that we defined the sum of two elements of F” to be the element of F"
obtained by adding corresponding coordinates; see 1.13. As we will now see,
addition has a simple geometric interpretation in the special case of R2

Suppose we have two vectors u and v in R? x
that we want to add. Move the vector v parallel

to itself so that its initial point coincides with the "

end point of the vector u, as shown here. The o

sum u + v then equals the vector whose initial

point equals the initial point of u and whose end

point equals the end point of the vector v, as The sum of two vectors.

shown here.
In the next definition, the 0 on the right side of the displayed equation is the
list0 € F*.
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/1 .17 definition: additive inverse in F", —x A
For x € F", the additive inverse of x, denoted by —x, is the vector —x € F”
such that
x+ (=x) =0.
Thus if x = (x4, ...,x,), then —x = (—x1, ..., —X, ).
\ 1 n 1 n j

The additive inverse of a vector in R? is the
vector with the same length but pointing in the
opposite direction. The figure here illustrates
this way of thinking about the additive inverse
in R2 As you can see, the vector labeled —x has
the same length as the vector labeled x but points
in the opposite direction.

Having dealt with addition in F”, we now turn to multiplication. We could
define a multiplication in F” in a similar fashion, starting with two elements of
F" and getting another element of F* by multiplying corresponding coordinates.
Experience shows that this definition is not useful for our purposes. Another
type of multiplication, called scalar multiplication, will be central to our subject.
Specifically, we need to define what it means to multiply an element of F” by an
element of F.

/

1.18 definition: scalar multiplication in F"

A vector and its additive inverse.

~

The product of a number A and a vector in F” is computed by multiplying
each coordinate of the vector by A:

A(Xqy een X)) = (AXq,eeny AX);

here A € F and (x4, ...,x,,) € F"
\_ ! J

Scalar multiplication in F"* multiplies
together a scalar and a vector, getting
a vector. In contrast, the dot product in
R? or R® multiplies together two vec-

Scalar multiplication has a nice geo-
metric interpretation in R% If A > 0 and
x € R2 then Ax is the vector that points
in the same direction as x and whose

length is A times the length of x. In other
words, to get Ax, we shrink or stretch x
by a factor of A, depending on whether
A<lorA>1.

If A < 0and x € R? then Ax is the
vector that points in the direction opposite
to that of x and whose length is |A| times
the length of x, as shown here.

tors and gets a scalar. Generalizations
of the dot product will become impor-
tant in Chapter 6.

4
% 7/

Scalar multiplication.
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Digression on Fields

A field is a set containing at least two distinct elements called 0 and 1, along with
operations of addition and multiplication satisfying all properties listed in 1.3.
Thus R and C are fields, as is the set of rational numbers along with the usual
operations of addition and multiplication. Another example of a field is the set
{0, 1} with the usual operations of addition and multiplication except that 1 + 1 is
defined to equal O.

In this book we will not deal with fields other than R and C. However, many
of the definitions, theorems, and proofs in linear algebra that work for the fields
R and C also work without change for arbitrary fields. If you prefer to do so,
throughout much of this book (except for Chapters 6 and 7, which deal with inner
product spaces) you can think of F as denoting an arbitrary field instead of R
or C. For results (except in the inner product chapters) that have as a hypothesis
that F is C, you can probably replace that hypothesis with the hypothesis that F
is an algebraically closed field, which means that every nonconstant polynomial
with coefficients in F has a zero. A few results, such as Exercise 13 in Section
1C, require the hypothesis on F that 1 + 1 # 0.

Exercises 1A

1 Showthata +=p+aforalla,peC.

2 Showthat (e +B)+A=a+ (f+A)forala,f,A eC.
3 Show that (af)A = a(BA) foralla, B, A € C.
4 Show that A(a + B) = Aw + AB forall A,a, 8 € C.
5 Show that for every a € C, there exists a unique p € C such thata + g = 0.
6 Show that for every « € C with & # 0, there exists a unique € C such
that o = 1.
7 Show that
~1+3i
2

is a cube root of 1 (meaning that its cube equals 1).
8 Find two distinct square roots of i.
9 Find x € R* such that
(4,-3,1,7) + 2x = (5,9, -6, 8).
10 Explain why there does not exist A € C such that

A2 — 30,5+ 4i,—6 + 7i) = (12 — 5i,7 + 22i,—-32 — 9i).
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Show that (x +y) +z = x + (y + z) forall x,y,z € F".

Show that (ab)x = a(bx) forall x € F" and alla,b € F.

Show that 1x = x for all x € F".

Show that A(x +y) = Ax + Ay forall A € Fand all x,y € F"

Show that (a + b)x = ax + bx for alla,b € F and all x € F".

11

“Can you do addition?” the White Queen asked. “What’s one and one and one
and one and one and one and one and one and one and one?”
“I don’t know,” said Alice. “I lost count.”

—Through the Looking Glass, Lewis Carroll
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1B Definition of Vector Space

The motivation for the definition of a vector space comes from properties of
addition and scalar multiplication in F*: Addition is commutative, associative,
and has an identity. Every element has an additive inverse. Scalar multiplication
is associative. Scalar multiplication by 1 acts as expected. Addition and scalar
multiplication are connected by distributive properties.

We will define a vector space to be a set V with an addition and a scalar
multiplication on V that satisfy the properties in the paragraph above.

/1.19 definition: addition, scalar multiplication w

e An addition on a set V is a function that assigns an elementu + v € V
to each pair of elements u,v € V.

o A scalar multiplication on a set V is a function that assigns an element
N Av e Vtoeach A € Fandeachov € V.

Now we are ready to give the formal definition of a vector space.

(1 N

.20 definition: vector space

A vector space is a set V along with an addition on V and a scalar multiplication
on V such that the following properties hold.

commutativity
u+v=v+uforallu,v e V.

associativity
(H+v)+w=u+ (v+w) and (ab)v = a(bv) for all u, v, w € V and for all
a,b eF.

additive identity
There exists an element 0 € Vsuchthatv + 0 =vforallv € V.

additive inverse
For every v € V, there exists w € V such that v + w = 0.

multiplicative identity
lv=vforallv e V.

distributive properties
L a(u+v) =au+avand (a+b)v =av +bvforalla,b € Fandall u,v € V.

\C

The following geometric language sometimes aids our intuition.

F.21 definition: vector, point

@lements of a vector space are called vectors or points. J
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The scalar multiplication in a vector space depends on F. Thus when we need
to be precise, we will say that V is a vector space over F instead of saying simply
that V is a vector space. For example, R" is a vector space over R, and C" is a
vector space over C.

(1.22 definition: real vector space, complex vector space W

e A vector space over R is called a real vector space.

e A vector space over C is called a complex vector space.

Usually the choice of F is either clear from the context or irrelevant. Thus we
often assume that F is lurking in the background without specifically mentioning it.
With the usual operations of addition
and scalar multiplication, F” is a vector
space over F, as you should verify. The
example of F" motivated our definition of vector space.

The simplest vector space is {0}, which
contains only one point.

1.23 example: F~

F* is defined to be the set of all sequences of elements of F:
F® = {(x1,%,,...) tx, €Ffork =1,2,...}.
Addition and scalar multiplication on F* are defined as expected:

(x1,x2,...) + (yl,yz,...) = (x1 +y1,.X2 +y2,... ),
A(xl,xZ, ...) = (Axl,AxZ, “ee ).

With these definitions, F* becomes a vector space over F, as you should verify.
The additive identity in this vector space is the sequence of all 0’s.

Our next example of a vector space involves a set of functions.

~
1.24 notation: F°

e If S is a set, then F° denotes the set of functions from S to F.
e For f,¢ € F° the sum f+ ¢ € F° is the function defined by
(f+9)(x) = f(x) +gx)
for all x € S.

e For A € Fand f € F®, the product Af € F® is the function defined by
(Af)(x) = Af(x)

N for all x € S. )
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As an example of the notation above, if S is the interval [0, 1] and F = R, then
R[%1 ig the set of real-valued functions on the interval [0, 1].
You should verify all three bullet points in the next example.

1.25 example: F° is a vector space

e If S is a nonempty set, then F® (with the operations of addition and scalar
multiplication as defined above) is a vector space over F.

e The additive identity of F° is the function 0 : S — F defined by
0(x) =0

forall x € S.
e For f € F°, the additive inverse of fis the function —f: S — F defined by

(=HHx) =—f(x)

forall x € S.

The vector space F” is a special case
of the vector space F° because each
(x1,...,x,) € F" can be thought of as lists. In general, a vector space is an
a function x from the set {1,2,...,n} to F abstract entity whose elements might
by writing x(k) instead of x; for the k" 5, lists, functions, or weird objects.
coordinate of (x4, ..., x,). In other words,
we can think of F* as F:2-~"), Similarly, we can think of F* as F{!»2:},

Soon we will see further examples of vector spaces, but first we need to develop
some of the elementary properties of vector spaces.

The definition of a vector space requires it to have an additive identity. The
next result states that this identity is unique.

The elements of the vector space RI%1]
are real-valued functions on [0, 1], not

(1 .26 unique additive identity w

kA vector space has a unique additive identity. J

Proof Suppose 0 and 0" are both additive identities for some vector space V.
Then
0=0+0=0+0" =0,

where the first equality holds because 0 is an additive identity, the second equality
comes from commutativity, and the third equality holds because 0’ is an additive
identity. Thus 0’ = 0, proving that V has only one additive identity.

Each element v in a vector space has an additive inverse, an element w in the
vector space such that v + w = 0. The next result shows that each element in a
vector space has only one additive inverse.
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(1 .27 unique additive inverse w

kEvery element in a vector space has a unique additive inverse. J

Proof Suppose V is a vector space. Let v € V. Suppose w and w" are additive
inverses of v. Then

w=w+0=w+ @+w)=wW+v)+w =0+w =w.

Thus w = w’, as desired.

Because additive inverses are unique, the following notation now makes sense.

ﬁ.28 notation: —v, w — v

Letv,w € V. Then

e —v denotes the additive inverse of v;

e w — v is defined to be w + (—v).

Almost all results in this book involve some vector space. To avoid having to
restate frequently that V is a vector space, we now make the necessary declaration
once and for all.

6.29 notation: V' \

KFor the rest of this book, V denotes a vector space over F. j

In the next result, O denotes a scalar (the number 0 € F) on the left side of the
equation and a vector (the additive identity of V) on the right side of the equation.

ﬁ .30 the number 0 times a vector W

LOU =0 foreveryv € V. j

Proof For v € V, we have

The result in 1.30 involves the additive
identity of V and scalar multiplication.
The only part of the definition of a vec-

Adding the additive inverse of 0v to both  for space that connects vector addition

sides of the equation above gives 0 = 0v, and scalar multiplication is the dis-
as desired. tributive property. Thus the distribu-

tive property must be used in the proof
of 1.30.

0v = (0 + 0)o = 0v + 0o.

In the next result, 0 denotes the addi-
tive identity of V. Although their proofs
are similar, 1.30 and 1.31 are not identical. More precisely, 1.30 states that the
product of the scalar 0 and any vector equals the vector 0, whereas 1.31 states that
the product of any scalar and the vector 0 equals the vector 0.
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(1 .31 a number times the vector 0

NN

QO = 0 for everya € F.

Proof Fora € F, we have
a0 = a0+ 0) = a0 + a0.

Adding the additive inverse of a0 to both sides of the equation above gives 0 = a0,
as desired.

Now we show that if an element of V is multiplied by the scalar —1, then the
result is the additive inverse of the element of V.

(1 .32 the number —1 times a vector w

u_l)v = —vforeveryv € V. J

Proof For v € V, we have

v+ (-Do=1v+ (o= (1+ (-1))v =00 =0.

This equation says that (—1)v, when added to v, gives 0. Thus (—1)v is the
additive inverse of v, as desired.

Exercises 1B

1 Prove that —(—v) = v foreveryv € V.
2 Supposea € F,v € V, and av = 0. Prove thata = 0 or v = 0.

3 Suppose v,w € V. Explain why there exists a unique x € V such that
v+ 3x =w.

4 The empty set is not a vector space. The empty set fails to satisfy only one
of the requirements listed in the definition of a vector space (1.20). Which
one?

5 Show that in the definition of a vector space (1.20), the additive inverse
condition can be replaced with the condition that

Qv=0forallv e V.
Here the 0 on the left side is the number 0, and the 0 on the right side is the
additive identity of V.

The phrase a “condition can be replaced” in a definition means that the
collection of objects satisfying the definition is unchanged if the original
condition is replaced with the new condition.
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Let co and —oo denote two distinct objects, neither of which is in R. Define
an addition and scalar multiplication on R U {oco, —o0} as you could guess
from the notation. Specifically, the sum and product of two real numbers is
as usual, and for t € R define

—oco ift <0, oo ift <0,
too =<0 ift=0, t(—o0) =40 ift=0,
oo ift >0, —oo ift >0,

and

t+o00o =00+t =00+ 00 = o0,
E+ (—00) = (—00) + 1 = (—00) + (—0) = —o0,
00 + (—o0) = (—o0) + o0 = 0.

With these operations of addition and scalar multiplication, is R U {oco, —c0}
a vector space over R? Explain.

Suppose S is a nonempty set. Let V° denote the set of functions from S to V.
Define a natural addition and scalar multiplication on V5, and show that V°
is a vector space with these definitions.

Suppose V is a real vector space.

e The complexification of V, denoted by V-, equals Vx V. An element of
Vc is an ordered pair (1, v), where u, v € V, but we write this as u + iv.

e Addition on V. is defined by
(g +107) + (Uy +10y) = (Uq + Uy) + (0] +0y)
for all uy,vq,u,,0, € V.
e Complex scalar multiplication on V. is defined by
(a + bi)(u + iv) = (au — bo) + i(av + bu)
foralla,b e Rand all u,v € V.

Prove that with the definitions of addition and scalar multiplication as above,
V¢ is a complex vector space.
Think of V as a subset of V- by identifying u € V with u+i0. The construc-

tion of Vi from V can then be thought of as generalizing the construction
of C" from R"
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1C Subspaces

By considering subspaces, we can greatly expand our examples of vector spaces.

(1.33 definition: subspace w

A subset U of V is called a subspace of V if U is also a vector space with the
same additive identity, addition, and scalar multiplication as on V.

The next result gives the easiest way ¢, people use the terminology
to check whether a subset of a vector  ppear subspace, which means the

space is a subspace. same as subspace.

~

/1.34 conditions for a subspace

A subset U of V is a subspace of V if and only if U satisfies the following
three conditions.

additive identity
0el

closed under addition
u,w € Uimplies u + w € U.

closed under scalar multiplication

9 a € F and u € U implies au € U. )
Proof If U is a subspace of V, then U The additive identity condition above
satisfies the three conditions above by the  .,,.17 pe replaced with the condition
definition of vector space. that U is nonempty (because then tak-

Conversely, suppose U satisfies the  jng y € U and multiplying it by 0
three conditions above. The first condi-  would imply that 0 € U). However,
tion ensures that the additive identity of  if a subset U of V is indeed a sub-
Vis in U. The second condition ensures  space, then usually the quickest way
that addition makes sense on U. The third  fo show that U is nonempty is to show
condition ensures that scalar multiplica- that 0 € U.
tion makes sense on U.

If u € U, then —u [which equals (—1)u by 1.32] is also in U by the third
condition above. Hence every element of U has an additive inverse in U.

The other parts of the definition of a vector space, such as associativity and
commutativity, are automatically satisfied for U because they hold on the larger
space V. Thus U is a vector space and hence is a subspace of V.

The three conditions in the result above usually enable us to determine quickly
whether a given subset of V is a subspace of V. You should verify all assertions
in the next example.
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| 1.35 example: subspaces

(a) If b € F, then
{(Xl,xz,X3,x4) e F4 : x3 = SX4 + b}

is a subspace of F* if and only if b = 0.

(b) The set of continuous real-valued functions on the interval [0, 1] is a subspace
of RIO-1]

(c) The set of differentiable real-valued functions on R is a subspace of RR,

(d) The set of differentiable real-valued functions f on the interval (0, 3) such
that f'(2) = b is a subspace of R(>:® if and only if b = 0.

(e) The set of all sequences of complex numbers with limit 0 is a subspace of C*.

Verifying some of the items ab(_)ve The set {0} is the smallest subspace of
shows the linear structure underlying v ;4 v itself is the largest subspace

parts of calculus. For example, (b) above o v The empty set is not a subspace
requires the result that the sum of tWo  of V because a subspace must be a

continuous functions is continuous. As vector space and hence must contain at
another example, (d) above requires the  least one element, namely, an additive
result that for a constant c, the derivative  identity.

of cfequals ¢ times the derivative of f.

The subspaces of R? are precisely {0}, all lines in R? containing the origin,
and R? The subspaces of R are precisely {0}, all lines in R® containing the origin,
all planes in R® containing the origin, and R To prove that all these objects are
indeed subspaces is straightforward—the hard part is to show that they are the
only subspaces of R? and R® That task will be easier after we introduce some
additional tools in the next chapter.

Sums of Subspaces

When dealing with vector spaces, we are 7y, 0. of subspaces is rarely a sub-

usually interested only in subspaces, as space (see Exercise 12), which is why

opposed to arbitrary subsets. The notion 0 ysually work with sums rather than
of the sum of subspaces will be useful. unions.

e N

1.36 definition: sum of subspaces

Suppose Vi, ..., V,, are subspaces of V. The sum of V,,...,V,,, denoted by
Vi + - +V,, is the set of all possible sums of elements of V;, ..., V,,. More
precisely,

Vite+V, ={v;+-+v,:0€V,..,0,eV,}

o J
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Let’s look at some examples of sums of subspaces.

1.37 example: a sum of subspaces of F°

Suppose U is the set of all elements of F? whose second and third coordinates
equal 0, and W is the set of all elements of F? whose first and third coordinates
equal 0:

U={(x0,0€FP:xeF} and W ={(0,y,0) eF®:yecF}.

Then
U+ W ={(x,y,0) € F:xy€F},

as you should verify.

| 1.38 example: a sum of subspaces of F* |
Suppose
U={xxyy) eF:x,yeF} and W= {(x,x,x,y) € F*:x,y € F}.

Using words rather than symbols, we could say that U is the set of elements
of F* whose first two coordinates equal each other and whose third and fourth
coordinates equal each other. Similarly, W is the set of elements of F* whose first
three coordinates equal each other.

To find a description of U + W, consider a typical element (a, a, b, b) of U and
a typical element (c, c,c,d) of W, where a, b, c,d € F. We have

(a,a,b,b) + (¢c,c,c,d) = (a+c,a+c,b+c,b+4d),

which shows that every element of U + W has its first two coordinates equal to
each other. Thus

1.39 U+ WC{(x,xy,z) €F:xy,z€F}.
To prove the inclusion in the other direction, suppose x,y,z € F. Then
(x3 X, y»z) = (x9 X, y’ y) + (03 0’ O,Z - y)3

where the first vector on the right is in U and the second vector on the right is
in W. Thus (x,x,y,z) € U+ W, showing that the inclusion 1.39 also holds in the
opposite direction. Hence

U+W = {(x,x,y,z) € F*: x,y,z € F},

which shows that U + W is the set of elements of F* whose first two coordinates
equal each other.

The next result states that the sum of subspaces is a subspace, and is in fact the
smallest subspace containing all the summands (which means that every subspace
containing all the summands also contains the sum).
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(1 40 sum of subspaces is the smallest containing subspace W

Suppose Vi, ..., V,, are subspaces of V. Then V| + --- + V,, is the smallest
subspace of V containing V;, ..., V,,.

Proof The reader can verify that V; + --- + V,, contains the additive identity 0
and is closed under addition and scalar multiplication. Thus 1.34 implies that
Vi + -+ V, is asubspace of V.

) Th? subspaces Vi, ..., V;, ?_re all C.On' Sums of subspaces in the theory of vec-
tained in V; +---+V,,, (to see this, consider . spaces are analogous to unions of

sums vy + -+ + v, where all except one  gypsers in set theory. Given two sub-
of the v,’s are 0). Conversely, every sub-  spaces of a vector space, the smallest
space of V containing V7, ..., V,, contains  subspace containing them is their sum.
Vi + -+ + V,, (because subspaces must  Analogously, given two subsets of a set,
contain all finite sums of their elements).  the smallest subset containing them is
Thus V; +---+V,,, is the smallest subspace  their union.

of V containing V;, ..., V..

Direct Sums

Suppose V;, ..., V,, are subspaces of V. Every element of V| + --- + V,, can be
written in the form

Vg + e+ Ty
where each v, € V. Of special interest are cases in which each vector in
V, + .- +V,, can be represented in the form above in only one way. This situation
is so important that it gets a special name (direct sum) and a special symbol ().

‘ D

1.41 definition: direct sum, @

Suppose V4, ..., V,, are subspaces of V.

e The sum V; +--- +V, is called a direct sum if each element of V; +--- +V,,
can be written in only one way as a sum v; + --- + v,,, where each v, € V,.

o If V; + ... +V, isadirect sum, then V; & --- ® V,, denotes V; + --- + V,,
with the @ notation serving as an indication that this is a direct sum. )

1.42 example: a direct sum of two subspaces |

Suppose U is the subspace of F? of those vectors whose last coordinate equals 0,
and W is the subspace of F of those vectors whose first two coordinates equal 0:

U={(xy0 eFP:x,ycF} and W =/{(0,0,z) eF®:z€cF}.
Then F® = U @ W, as you should verify.
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1.43 example: a direct sum of multiple subspaces |

Suppose V; is the subspace of F”* of
those vectors whose coordinates are all
0, except possibly in the k' slot; for example, V, = {(0,x,0,...,0) € F* : x € F}.
Then

To produce & in TgX, type \oplus.

FF=V,eo-oV,

as you should verify.

Sometimes nonexamples add to our understanding as much as examples.

1.44 example: a sum that is not a direct sum

Suppose
V; = {(x,y,0) € F* : x,y € F},
V, ={(0,0,z) € F* : z € F},
Vs ={(0.y.y) EF’ 1y EF}.
Then F? = Vi + V, + V; because every vector (x,y,z) € F3 can be written as
(x,v,2) = (x,v,0) + (0,0,2) + (0,0,0),

where the first vector on the right side is in V;, the second vector is in V,, and the
third vector is in V;.

However, F3 does not equal the direct sum of Vi, V,, Vi, because the vector
(0,0,0) can be written in more than one way as a sum v; + v, + v3, with each
v, € V. Specifically, we have

(0,0,0) = (0,1,0) + (0,0,1) + (0,-1,-1)

and, of course,
(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0),

where the first vector on the right side of each equation above is in V;, the second
vector is in V,, and the third vector is in V5. Thus the sum V; + V, + V5 is not a
direct sum.

The definition of direct sum requires 7y, symbol ®, which is a plus sign
every vector in the sum to have a unique ;,qide 4 circle, reminds us that we are
representation as an appropriate SUM.  dealing with a special type of sum of
The next result shows that when deciding subspaces—each element in the direct
whether a sum of subspaces is a direct  sum can be represented in only one way
sum, we only need to consider whether 0 as a sum of elements from the specified
can be uniquely written as an appropriate  subspaces.
sum.
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(1 .45 condition for a direct sum W

Suppose Vi, ..., V,, are subspaces of V. Then V; + --- + V,, is a direct sum if
and only if the only way to write 0 as a sum v; + --- + v,,, where each v, € V,
is by taking each v equal to 0.

Proof  First suppose V; + --- + V,,, is a direct sum. Then the definition of direct
sum implies that the only way to write 0 as a sum v, +---+7v,,,, where each v, € V|,
is by taking each v, equal to 0.

Now suppose that the only way to write 0 as a sum v; + --- + v,,,, where each
v, € V,, is by taking each v equal to 0. To show that V; + --- + V, is a direct
sum, letv € V; + --- + V,,. We can write

V=0, + -+ 0,

for some v; € V,,...,v,, € V,,. To show that this representation is unique,
suppose we also have
V=Up+ e+ Uy,

where u; € V4, ...,u,, € V,,. Subtracting these two equations, we have
0= (v —uy) + -+ (v, —u,).
Because v; —u; € V3, ...,v,, — u,, € V,,, the equation above implies that each

v, — u; equals 0. Thus v; = uq,...,v,, = u,,, as desired.

. 'The next r.esult gives a simple con- 4y, symbol — used below means
dition for testing whether a sum of two “if and only if " this symbol could also

subspaces is a direct sum. be read to mean “is equivalent to”.

(1 .46 direct sum of two subspaces

Suppose U and W are subspaces of V. Then

U+ Wisadirect sum < UnNW = {0}.

Proof  First suppose that U+ W is a direct sum. If v € UNW, then 0 = v+ (—v),
where v € U and —v € W. By the unique representation of 0 as the sum of a
vector in U and a vector in W, we have v = 0. Thus U N W = {0}, completing
the proof in one direction.

To prove the other direction, now suppose U N W = {0}. To prove that U + W
is a direct sum, suppose u € U, w € W, and

0=u+w.

To complete the proof, we only need to show that u = w = 0 (by 1.45). The
equation above implies that u = —w € W. Thus u € UN W. Hence u = 0, which
by the equation above implies that w = 0, completing the proof.
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The result above deals only with
the case of two subspaces. When ask-

Chapter 1 Vector Spaces

Sums of subspaces are analogous to
unions of subsets. Similarly, direct

ing about a possible direct sum with ;¢ of subspaces are analogous to
more than two subspaces, it is nOt  disjoint unions of subsets. No two sub-
enough to test that each pair of the  spacesofavectorspace can be disjoint,
subspaces intersect only at 0. To see  because both contain 0. So disjoint-
this, consider Example 1.44. 1In that ness is replaced, at least in the case
nonexample of a direct sum, we have  of two subspaces, with the requirement
VinV,=V,NnV,=V,NV; ={0}. that the intersection equal {0}.

Exercises 1C

10

For each of the following subsets of F3, determine whether it is a subspace
of F3.

(@) {(x1,%0,%3) € F3 1 x; +2x, + 3x3 = 0}

(b) {(x1,%0,x3) € F3 1 xy +2x, +3x3 = 4}

(©) {(x1,%5,x3) € F® 1 xyxx5 = 0}

(d) {(x1,xp,%3) € F 1 x; = 5x3}

Verify all assertions about subspaces in Example 1.35.

Show that the set of differentiable real-valued functions f on the interval
(—4,4) such that f'(=1) = 3f(2) is a subspace of R(=*%,

Suppose b € R. Show that the set of continuous real-valued functions f on
the interval [0,1] such that f; f = b is a subspace of RI®! if and only if
b=0.

Is R? a subspace of the complex vector space C?

(@) Is {(a,b,c) € R3: a® = b®} a subspace of R>?
(b) Is {(a,b,c) € C?: a® = b®} a subspace of C3?

Prove or give a counterexample: If U is a nonempty subset of R? such that
U is closed under addition and under taking additive inverses (meaning
—u € U whenever u € U), then U is a subspace of R2

Give an example of a nonempty subset U of R? such that U is closed under
scalar multiplication, but U is not a subspace of R?

A function f: R — R is called periodic if there exists a positive number p
such that f(x) = f(x + p) for all x € R. Is the set of periodic functions
from R to R a subspace of RR? Explain.

Suppose V; and V, are subspaces of V. Prove that the intersection V; NV,
is a subspace of V.
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Prove that the intersection of every collection of subspaces of V is a subspace
of V.

Prove that the union of two subspaces of V is a subspace of V' if and only if
one of the subspaces is contained in the other.

Prove that the union of three subspaces of V is a subspace of V if and only
if one of the subspaces contains the other two.

This exercise is surprisingly harder than Exercise 12, possibly because this
exercise is not true if we replace F with a field containing only two elements.

Suppose
U={(x—-x2x)eFP:xeF} and W = {(x,x,2x) € F°:x € F}.

Describe U + W using symbols, and also give a description of U + W that
uses no symbols.

Suppose U is a subspace of V. What is U + U?

Is the operation of addition on the subspaces of V commutative? In other
words, if U and W are subspaces of V,is U+ W = W + U?

Is the operation of addition on the subspaces of V associative? In other
words, if V;, V,, V; are subspaces of V is

Does the operation of addition on the subspaces of V have an additive
identity? Which subspaces have additive inverses?

Prove or give a counterexample: If V;, V,, U are subspaces of V such that
Vi+u="V,+1U,
then V; = V.
Suppose
U={xxyy) € F*:x,y € F}.
Find a subspace W of F* such that F* = U @ W.

Suppose
U={(xyx+yx—y2x) € F:xyeF}.

Find a subspace W of F° such that F° = U @ W.

Suppose
U={(xyx+y,x—y2x) € FP:x,yecF}

Find three subspaces W, W,, W, of F°, none of which equals {0}, such that
FP=UsW, oeW,®oW,.
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Prove or give a counterexample: If V;, V,, U are subspaces of V such that
V=VielU and V=V,el,

then Vl = Vz.
Hint: When trying to discover whether a conjecture in linear algebra is true
or false, it is often useful to start by experimenting in F%

A function f: R — R is called even if
f(=x) = f(x)

for all x € R. A function f: R — R is called odd if
f(=x) =—fx)

for all x € R. Let V, denote the set of real-valued even functions on R
and let V, denote the set of real-valued odd functions on R. Show that
RR=V, @V,
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Chapter 2 ey
Finite-Dimensional Vector Spaces

In the last chapter we learned about vector spaces. Linear algebra focuses not
on arbitrary vector spaces, but on finite-dimensional vector spaces, which we
introduce in this chapter.

We begin this chapter by considering linear combinations of lists of vectors.
This leads us to the crucial concept of linear independence. The linear dependence
lemma will become one of our most useful tools.

A list of vectors in a vector space that is small enough to be linearly independent
and big enough so the linear combinations of the list fill up the vector space is
called a basis of the vector space. We will see that every basis of a vector space
has the same length, which will allow us to define the dimension of a vector space.

This chapter ends with a formula for the dimension of the sum of two subspaces.

( standing assumptions for this chapter w

e F denotes R or C.
e V denotes a vector space over F.

The main building of the Institute for Advanced Study, in Princeton, New Jersey.
Paul Halmos (1916-2006) wrote the first modern linear algebra book in this building.
Halmos’s linear algebra book was published in 1942 (second edition published in 1958).
The title of Halmos’s book was the same as the title of this chapter.

© Sheldon Axler 2024 27
S. Axler, Linear Algebra Done Right, Undergraduate Texts in Mathematics,
https://doi.org/10.1007/978-3-031-41026-0_2
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2A  Span and Linear Independence

We have been writing lists of numbers surrounded by parentheses, and we will
continue to do so for elements of F"; for example, (2, —7,8) € F°. However, now
we need to consider lists of vectors (which may be elements of F” or of other
vector spaces). To avoid confusion, we will usually write lists of vectors without
surrounding parentheses. For example, (4,1,6), (9,5,7) is a list of length two of
vectors in R,

(2.1 notation: list of vectors W

LWe will usually write lists of vectors without surrounding parentheses. )

Linear Combinations and Span

A sum of scalar multiples of the vectors in a list is called a linear combination of
the list. Here is the formal definition.

(2.2 definition: linear combination

A linear combination of a list v, ..., v,, of vectors in V is a vector of the form
{IllUl + -+ lZmUm,

where a4, ...,a,, € F.

2.3 example: linear combinations in R®

e (17,—4,2) is a linear combination of (2,1, —3), (1, —2,4), which is a list of
length two of vectors in R3, because

(17,-4,2) = 6(2,1,-3) + 5(1,-2,4).

e (17,—4,5) is not a linear combination of (2,1, —3), (1, —2,4), which is a list
of length two of vectors in R because there do not exist numbers a,,a, € F
such that

(17,-4,5) = a,(2,1,-3) +a,(1,-2,4).

In other words, the system of equations

17 = 24, + a,

5= —-3ay +4a,

has no solutions (as you should verify).
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/

2.4 definition: span

~

The set of all linear combinations of a list of vectors v, ...,v,, in V is called
the span of v4, ..., v,,, denoted by span(vy, ...,v,,). In other words,

span(vy, ..., 0,,) = {4101 + -+ +4a,0,, * a,,...,4,, € F}.

\The span of the empty list () is defined to be {0}.

2.5 example: span |
The previous example shows that in F°,

o (17,—4,2) € span((2,1,-3), (1,-2,4));

e (17,—4,5) & span((2,1,-3), (1,-2,4)).

Some mathematicians use the term linear span, which means the same as
span.

(2.6 span is the smallest containing subspace W

The span of a list of vectors in V is the smallest subspace of V containing all
vectors in the list.

Proof Suppose vy, ..., v, is a list of vectors in V.
First we show that span(v, ...,v,,) is a subspace of V. The additive identity is
in span(vy, ..., v,,) because

0=0v; + -+ 00,
Also, span(vy, ...,v,,) is closed under addition because
(a,01 + -+ +a,,0,,) + (101 + - +¢,0,,) = (a7 + ¢1)V1 + - + (4, +C,,)0,,.
Furthermore, span(vy, ...,v,,) is closed under scalar multiplication because
AMayoq + -+ +a,,0,,) = Aagoq + -+ + Aa,,v,,.

Thus span(vy, ..., v,,) is a subspace of V (by 1.34).

Each v, is a linear combination of vy, ..., v,, (to show this, set 4, = 1 and let
the other 4’s in 2.2 equal 0). Thus span(vy, ...,v,,) contains each v,. Conversely,
because subspaces are closed under scalar multiplication and addition, every sub-
space of V that contains each v, contains span(vy, ..., v,,). Thus span(vy, ...,v,,)
is the smallest subspace of V containing all the vectors vy, ..., v,,.

(2.7 definition: spans w

Llf span(vy, ..., v,,) equals V, we say that the list vy, ..., v,, spans V. j
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2.8 example: a list that spans F"

Suppose 7 is a positive integer. We want to show that
a,o,...,0),(0,1,0,...,0),...,(0,...,0,1)

spans F". Here the k' vector in the list above has 1 in the k" slot and 0 in all other
slots.
Suppose (xq, ..., x,,) € F". Then

(X150 x,) = x1(1,0,...,0) + x,(0,1,0,...,0) + -+ + x,,(0, ..., 0, 1).
Thus (x4, ..., x,) € span((1,0,...,0),(0,1,0,...,0),..., (0, ...,0,1)), as desired.

Now we can make one of the key definitions in linear algebra.

(2.9 definition: finite-dimensional vector space w

A vector space is called finite-dimensional if some list of vectors in it spans
the space.

Example 2.8 above shows that F" is a Recall that by definition every list has
finite-dimensional vector space for every finite length.

positive integer n.
The definition of a polynomial is no doubt already familiar to you.

-~

2.10 definition: polynomial, P(F) h

e A function p: F — F is called a polynomial with coefficients in F if there
exist ag, ..., a,, € F such that

p(z) = ag + 4,z + a,2% + -+ + a,,z"

forall z € F.

e P(F) is the set of all polynomials with coefficients in F. )

With the usual operations of addition and scalar multiplication, (F) is a
vector space over F, as you should verify. Hence P(F) is a subspace of F¥, the
vector space of functions from F to F.

If a polynomial (thought of as a function from F to F) is represented by two
sets of coefficients, then subtracting one representation of the polynomial from
the other produces a polynomial that is identically zero as a function on F and
hence has all zero coefficients (if you are unfamiliar with this fact, just believe
it for now; we will prove it later—see 4.8). Conclusion: the coefficients of a
polynomial are uniquely determined by the polynomial. Thus the next definition
uniquely defines the degree of a polynomial.
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/

2.11 definition: degree of a polynomial, degp h

e A polynomial p € P(F) is said to have degree m if there exist scalars
ag, a4, ...,a,, € F with a,, # 0 such that for every z € F, we have

p(z) =ay+az+ - +a,z"

e The polynomial that is identically O is said to have degree —oo.

\o The degree of a polynomial p is denoted by degp. )

In the next definition, we use the convention that —oo < m, which means that
the polynomial 0 is in ,,,(F).

(2.12 notation: %, (F) W

LFor m a nonnegative integer, P, (F) denotes the set of all polynomials withJ

coeflicients in F and degree at most 1.

If m is a nonnegative integer, then ,,(F) = span(1,z, ...,z™) [here we slightly
abuse notation by letting z* denote a function]. Thus ,,(F) is a finite-dimensional
vector space for each nonnegative integer m.

(2.13 definition: infinite-dimensional vector space W

LA vector space is called infinite-dimensional if it is not finite-dimensional. J

| 2.14 example: P (F) is infinite-dimensional. |

Consider any list of elements of P (F). Let m denote the highest degree of the
polynomials in this list. Then every polynomial in the span of this list has degree
at most m. Thus z”*! is not in the span of our list. Hence no list spans 2 (F).
Thus P (F) is infinite-dimensional.

Linear Independence
Suppose vy, ...,v,, € Vand v € span(vy, ...,7v,,). By the definition of span, there
exist a4, ...,a,, € F such that

0 = 11101 + .+ amvm.
Consider the question of whether the choice of scalars in the equation above is
unique. Suppose cy, ..., ¢, is another set of scalars such that

0 = Clvl + e+ CmUm.
Subtracting the last two equations, we have

0=(a; —c)og + -+ (A, — )0,
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Thus we have written 0 as a linear combination of (v, ...,v,,). If the only way
to do this is by using O for all the scalars in the linear combination, then each
a; — ¢, equals 0, which means that each a;, equals ¢, (and thus the choice of
scalars was indeed unique). This situation is so important that we give it a special
name—Ilinear independence—which we now define.

/2.15 definition: linearly independent

~

e Alistvy,...,v,, of vectors in V is called linearly independent if the only
choice of a4, ...,a,, € F that makes

61101 + e+ aml)m == 0

isay = =a, =0.

\o The empty list () is also declared to be linearly independent.

/

The reasoning above shows that vy, ..., v,, is linearly independent if and only if
each vector in span(v,, ..., v,,,) has only one representation as a linear combination
of vy,...,0,,.

| 2.16 example: linearly independent lists

(a) To see that the list (1,0,0,0), (0,1,0,0), (0,0, 1,0) is linearly independent in
F* suppose a;,4,,a; € F and
a,(1,0,0,0) +a,(0,1,0,0) +a5(0,0,1,0) = (0,0,0,0).
Thus
(ala ﬂz, a39 O) = (07 09 07 0)

Hence a; = a, = a5 = 0. Thus the list (1,0,0,0), (0,1,0,0), (0,0,1,0) is
linearly independent in F*

(b) Suppose m is a nonnegative integer. To see that the list 1, z, ..., 2" is linearly
independent in P (F), suppose 4,4y, ...,4,, € F and

ag+az+ - +a,z2" =0,
where we think of both sides as elements of P (F). Then
ag+a.z+ - +a,z" =0

for all z € F. As discussed earlier (and as follows from 4.8), this implies
thatay = a; = --- = a,, = 0. Thus 1, z, ...,z is a linearly independent list in
P(F).

(c) A list of length one in a vector space is linearly independent if and only if the
vector in the list is not 0.

(d) A list of length two in a vector space is linearly independent if and only if
neither of the two vectors in the list is a scalar multiple of the other.
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If some vectors are removed from a linearly independent list, the remaining
list is also linearly independent, as you should verify.

/2.17 definition: linearly dependent

~

e A list of vectors in V is called linearly dependent if it is not linearly inde-
pendent.

e In other words, a list v, ..., v,, of vectors in V is linearly dependent if there
exist ay, ...,a,, € F, not all 0, such that a,v; + --- +4,,0,, = 0. )

2.18 example: linearly dependent lists |

e (2,3,1),(1,-1,2),(7,3,8) is linearly dependent in F° because

e The list (2,3,1), (1,—1,2), (7,3, ¢) is linearly dependent in F® if and only if
¢ = 8, as you should verify.

e If some vector in a list of vectors in V is a linear combination of the other
vectors, then the list is linearly dependent. (Proof: After writing one vector in

the list as equal to a linear combination of the other vectors, move that vector
to the other side of the equation, where it will be multiplied by —1.)

e Every list of vectors in V containing the 0 vector is linearly dependent. (This is
a special case of the previous bullet point.)

The next lemma is a terrific tool. It states that given a linearly dependent list
of vectors, one of the vectors is in the span of the previous ones. Furthermore, we
can throw out that vector without changing the span of the original list.

/

2.19 linear dependence lemma

~

Suppose vy, ...,v,, is a linearly dependent list in V. Then there exists
k € {1,2,...,m} such that

U € span(vq, ...,V _1)-

Furthermore, if k satisfies the condition above and the k™ term is removed
from vy, ..., v,,, then the span of the remaining list equals span(vy, ..., v,,). )

Proof Because the list vy,...,v,, is linearly dependent, there exist numbers
a,...,a,, € F,not all 0, such that

4,01 + - +a,0,, =0.
Let k be the largest element of {1, ..., m} such that a; # 0. Then
ay A _1

which proves that v, € span(vy, ..., Ux_1), as desired.
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Now suppose k is any element of {1, ..., m} such that v, € span(vy, ..., Ux_1).
Letby,...,b;_; € F be such that

220 Z)k = blvl + e+ bk_lvk_l.
Suppose u € span(vy, ...,v,,). Then there exist ¢y, ...,c,, € F such that
u = 6101 + e+ Cmvm.

In the equation above, we can replace v, with the right side of 2.20, which shows
that u is in the span of the list obtained by removing the k™ term from vy, ..., v,,,.
Thus removing the k™ term of the list vy, ..., v,, does not change the span of the
list.

If k = 1 in the linear dependence lemma, then v, € span(vy, ..., U;_1) means
that v; = 0, because span( ) = {0}. Note also that parts of the proof of the linear
dependence lemma need to be modified if k = 1. In general, the proofs in the
rest of the book will not call attention to special cases that must be considered
involving lists of length 0, the subspace {0}, or other trivial cases for which the
result is true but needs a slightly different proof. Be sure to check these special
cases yourself.

2.21 example: smallest k in linear dependence lemma
Consider the list
(1,2,3), (6,5,4), (15,16,17), (8,9,7)

in R3 This list of length four is linearly dependent, as we will soon see. Thus the
linear dependence lemma implies that there exists k € {1, 2, 3,4} such that the kth
vector in this list is a linear combination of the previous vectors in the list. Let’s
see how to find the smallest value of k that works.

Taking k = 1 in the linear dependence lemma works if and only if the first
vector in the list equals 0. Because (1,2, 3) is not the 0 vector, we cannot take
k =1 for this list.

Taking k = 2 in the linear dependence lemma works if and only if the second
vector in the list is a scalar multiple of the first vector. However, there does not
exist ¢ € R such that (6,5,4) = ¢(1,2,3). Thus we cannot take k = 2 for this list.

Taking k = 3 in the linear dependence lemma works if and only if the third
vector in the list is a linear combination of the first two vectors. Thus for the list
in this example, we want to know whether there exist 4,b € R such that

(15,16,17) = a(1,2,3) + b(6,5,4).

The equation above is equivalent to a system of three linear equations in the two
unknowns a, b. Using Gaussian elimination or appropriate software, we find that
a = 3, b = 2 is a solution of the equation above, as you can verify. Thus for the
list in this example, taking k = 3 is the smallest value of k that works in the linear
dependence lemma.
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Now we come to a key result. It says that no linearly independent list in V' is
longer than a spanning list in V.

(2.22 length of linearly independent list < length of spanning list

In a finite-dimensional vector space, the length of every linearly independent
list of vectors is less than or equal to the length of every spanning list of
vectors.

Proof Suppose that u., ..., u,, is linearly independent in V. Suppose also that
wq, ..., w, spans V. We need to prove that m < n. We do so through the process
described below with m steps; note that in each step we add one of the u’s and
remove one of the w’s.

Step 1
Let B be the list wy, ..., w,,, which spans V. Adjoining u, at the beginning of
this list produces a linearly dependent list (because 1, can be written as a linear
combination of w4, ..., w,,). In other words, the list

Uy, Wy, eeey Wy,

is linearly dependent.

Thus by the linear dependence lemma (2.19), one of the vectors in the list above
is a linear combination of the previous vectors in the list. We know that u; # 0
because the list uq, ..., u,, is linearly independent. Thus u; is not in the span
of the previous vectors in the list above (because u; is not in {0}, which is the
span of the empty list). Hence the linear dependence lemma implies that we
can remove one of the w’s so that the new list B (of length #) consisting of u;
and the remaining w’s spans V.

Stepk,fork=2,...,m
The list B (of length n) from step k — 1 spans V. In particular, u, is in the span of
the list B. Thus the list of length (n + 1) obtained by adjoining u, to B, placing
it just after uy, ..., u; _1, is linearly dependent. By the linear dependence lemma
(2.19), one of the vectors in this list is in the span of the previous ones, and
because u4, ..., 4; is linearly independent, this vector cannot be one of the u’s.

Hence there still must be at least one remaining w at this step. We can remove
from our new list (after adjoining 1, in the proper place) a w that is a linear
combination of the previous vectors in the list, so that the new list B (of length
n) consisting of u4, ..., ;. and the remaining w’s spans V.

After step m, we have added all the u’s and the process stops. At each step
as we add a u to B, the linear dependence lemma implies that there is some w to
remove. Thus there are at least as many w’s as u’s.
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The next two examples show how the result above can be used to show, without
any computations, that certain lists are not linearly independent and that certain
lists do not span a given vector space.

2.23 example: no list of length 4 is linearly independent in R3

The list (1,0, 0), (0,1,0), (0,0, 1), which has length three, spans R® Thus no
list of length larger than three is linearly independent in R

For example, we now know that (1,2, 3), (4,5, 8), (9,6,7), (—3,2,8), which
is a list of length four, is not linearly independent in R

2.24 example: no list of length 3 spans R*

The list (1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0,0, 1), which has length four, is
linearly independent in R* Thus no list of length less than four spans R*%

For example, we now know that (1, 2, 3, —5), (4,5, 8, 3), (9,6,7, —1), which
is a list of length three, does not span R*

Our intuition suggests that every subspace of a finite-dimensional vector space
should also be finite-dimensional. We now prove that this intuition is correct.

(2.25 finite-dimensional subspaces W

LEvery subspace of a finite-dimensional vector space is finite-dimensional. )

Proof Suppose V is finite-dimensional and U is a subspace of V. We need to
prove that U is finite-dimensional. We do this through the following multistep
construction.

Step 1
If U = {0}, then U is finite-dimensional and we are done. If U # {0}, then
choose a nonzero vector u; € U.

Step k
If U = span(uyq, ..., u;_1), then U is finite-dimensional and we are done. If
U # span(uq, ..., 4;_1), then choose a vector u;, € U such that

Uy & span(iq, ..., Uy _1).

After each step, as long as the process continues, we have constructed a list
of vectors such that no vector in this list is in the span of the previous vectors.
Thus after each step we have constructed a linearly independent list, by the linear
dependence lemma (2.19). This linearly independent list cannot be longer than
any spanning list of V (by 2.22). Thus the process eventually terminates, which
means that U is finite-dimensional.
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Exercises 2A

1 Find a list of four distinct vectors in F> whose span equals
{(x,y,2) EFP : x+y +2z=0}.
2 Prove or give a counterexample: If v,,v,,v5,v, spans V, then the list
V) — Uy, Uy — U, U3 — Uy, Uy

also spans V.

3 Suppose vy, ...,v,, is a list of vectors in V. For k € {1, ...,m}, let
W =0V + - + U
Show that span(vy, ...,v,,) = span(wy, ..., W,,).

4 (a) Show that a list of length one in a vector space is linearly independent
if and only if the vector in the list is not 0.
(b) Show that a list of length two in a vector space is linearly independent
if and only if neither of the two vectors in the list is a scalar multiple of
the other.

5 Find a number ¢ such that
(39 19 4)’ (29 _39 5)3 (59 99 t)
is not linearly independent in R

6 Show that the list (2,3,1), (1,—-1,2), (7,3, ¢) is linearly dependent in P if
and only if c = 8.

7 (a) Show that if we think of C as a vector space over R, then the list
1+1i,1 —iis linearly independent.
(b) Show that if we think of C as a vector space over C, then the list
1+ 14,1 —iis linearly dependent.

8 Suppose vy, v,,v3,v, is linearly independent in V. Prove that the list
Ul - 02, 02 - ’03, ’03 - 04, 04
is also linearly independent.

9 Prove or give a counterexample: If v;, v,, ..., v, is a linearly independent
list of vectors in V, then

501 — 405,05, 03, ..., Uy

is linearly independent.
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Prove or give a counterexample: If v;,v,,...,v,, is a linearly independent
list of vectors in V and A € F with A # 0, then Avy, Av,, ..., Av,, is linearly
independent.

Prove or give a counterexample: If vy,...,v,, and wy,...,w,, are linearly
independent lists of vectors in V, then the list v; + w, ..., v,, + w,, is linearly
independent.

Suppose vy, ...,v,, is linearly independent in V and w € V. Prove that if
v, + W, ..., v, + wis linearly dependent, then w € span(vy, ..., v,,).

Suppose v, ..., v, is linearly independent in V and w € V. Show that
U1, ..., Uy, W is linearly independent < w ¢ span(vy, ...,0,,).
Suppose v, ..., v,, is a list of vectors in V. For k € {1, ...,m}, let
W =0 + - + Vg

Show that the list v, ..., v,, is linearly independent if and only if the list
wy, ..., W, is linearly independent.

Explain why there does not exist a list of six polynomials that is linearly
independent in 7, (F).

Explain why no list of four polynomials spans 7, (F).

Prove that V is infinite-dimensional if and only if there is a sequence v, v,, ...
of vectors in V such that v4, ..., v,, is linearly independent for every positive
integer m.

Prove that F* is infinite-dimensional.

Prove that the real vector space of all continuous real-valued functions on
the interval [0, 1] is infinite-dimensional.

Suppose py, p1, ---» P, are polynomials in P, (F) such that p;(2) = 0 for each
k € {0, ...,m}. Prove that py, p;, ..., p,, i8 not linearly independent in 7, (F).
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2B Bases

In the previous section, we discussed linearly independent lists and we also
discussed spanning lists. Now we bring these concepts together by considering
lists that have both properties.

(2.26 definition: basis W

kA basis of V is a list of vectors in V that is linearly independent and spans VJ

| 2.27 example: bases |
(a) The list (1,0,...,0),(0,1,0,...,0), ..., (0,...,0,1) is a basis of F" called the
standard basis of F".

(b) The list (1,2), (3,5) is a basis of F% Note that this list has length two, which
is the same as the length of the standard basis of F2 In the next section, we
will see that this is not a coincidence.

(c) The list (1,2,—4), (7, -5, 6) is linearly independent in F° but is not a basis
of F3 because it does not span F>

(d) The list (1,2), (3,5), (4,13) spans F? but is not a basis of F? because it is not
linearly independent.

(e) The list (1,1,0), (0,0, 1) is a basis of {(x,x,y) € F*: x,y € F}.
(f) The list (1,-1,0), (1,0, —1) is a basis of

{(x,y,2) EF: x+y +z =0}.

(g) Thelist1,z,...,z™ is a basis of P, (F), called the standard basis of P,,(F).

In addition to the standard basis, F” has many other bases. For example,
(795)’ (_4,9) and (192)a (395)

are both bases of F2
The next result helps explain why bases are useful. Recall that “uniquely’
means “in only one way”

bl

>

/2.28 criterion for basis

A list vy, ..., v, of vectors in V is a basis of V if and only if every v € V can
be written uniquely in the form

2.29 U =0ay0q + - +a,v,,

where a,, ...,a,, € F.
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Proof  First suppose that vy, ..., v, is a This proof is essentially a repetition of

basis of V. Letv € V. Because v1,...,v,, e ideas that led us to the definition of
spans V, there exist a,,...,a, € F such  jineqr independence.

that 2.29 holds. To show that the repre-
sentation in 2.29 is unique, suppose cy, ..., ¢, are scalars such that we also have

U= Clvl + e+ Cnvn.
Subtracting the last equation from 2.29, we get
0=(ay —cpvy + -+ (a, —c,)v,.

This implies that each 4, — ¢, equals 0 (because vy, ..., v,, is linearly independent).
Hencea; = ¢y, ...,a,, = c¢,. We have the desired uniqueness, completing the proof
in one direction.

For the other direction, suppose every v € V can be written uniquely in the
form given by 2.29. This implies that the list v, ..., v,, spans V. To show that
vy, ..., U, is linearly independent, suppose a4, ...,a,, € F are such that

0=a,0 4+ +a,0,.

The uniqueness of the representation 2.29 (taking v = 0) now implies that
a; = - =a, =0. Thus vy,...,v, is linearly independent and hence is a basis
of V.

A spanning list in a vector space may not be a basis because it is not linearly
independent. Our next result says that given any spanning list, some (possibly
none) of the vectors in it can be discarded so that the remaining list is linearly
independent and still spans the vector space.

As an example in the vector space F? if the procedure in the proof below is
applied to the list (1,2), (3,6), (4,7), (5,9), then the second and fourth vectors
will be removed. This leaves (1, 2), (4,7), which is a basis of F>

(2.30 every spanning list contains a basis W

Every spanning list in a vector space can be reduced to a basis of the vector
space.

Proof  Suppose vy, ..., v, spans V. We want to remove some of the vectors from
01, ..., U, sO that the remaining vectors form a basis of V. We do this through the
multistep process described below.

Start with B equal to the list vy, ..., v,,.

Step 1
If v; = 0, then delete v; from B. If v; # 0, then leave B unchanged.

Step k
If v, is in span(vy, ..., v, _1), then delete v, from the list B. If v, is not in
span(vy, ..., Ux_1), then leave B unchanged.
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Stop the process after step n, getting a list B. This list B spans V because
our original list spanned V and we have discarded only vectors that were already
in the span of the previous vectors. The process ensures that no vector in B is
in the span of the previous ones. Thus B is linearly independent, by the linear
dependence lemma (2.19). Hence B is a basis of V.

We now come to an important corollary of the previous result.

(2.31 basis of finite-dimensional vector space W

kEvery finite-dimensional vector space has a basis. J

Proof By definition, a finite-dimensional vector space has a spanning list. The
previous result tells us that each spanning list can be reduced to a basis.

Our next result is in some sense a dual of 2.30, which said that every spanning
list can be reduced to a basis. Now we show that given any linearly independent list,
we can adjoin some additional vectors (this includes the possibility of adjoining
no additional vectors) so that the extended list is still linearly independent but
also spans the space.

(2.32 every linearly independent list extends to a basis W

Every linearly independent list of vectors in a finite-dimensional vector space
can be extended to a basis of the vector space.

Proof  Suppose uq, ..., 4, is linearly independent in a finite-dimensional vector
space V. Let wy, ..., w,, be a list of vectors in V that spans V. Thus the list

Uy wens Upyyy Wy eeny Wy

spans V. Applying the procedure of the proof of 2.30 to reduce this list to a
basis of V produces a basis consisting of the vectors u, ..., u,, and some of the
w’s (none of the u’s get deleted in this procedure because u4, ..., u,, is linearly
independent).

As an example in F3, suppose we start with the linearly independent list
(2,3,4), (9, 6,8). If we take wy, w,, w5 to be the standard basis of F3, then applying
the procedure in the proof above produces the list

(27 37 4)3 (97 69 8)7 (O’ 13 0)7

which is a basis of F°

As an application of the result above, Using the same ideas but more ad-
we now show that every subspace of a ;g tools, the next result can be
finite-dimensional vector space can be  ,roved without the hypothesis that V is
paired with another subspace to form a  finite-dimensional.
direct sum of the whole space.
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(2.33 every subspace of V is part of a direct sum equal to V w

Suppose V is finite-dimensional and U is a subspace of V. Then there is a
subspace W of V such that V = U & W.

Proof Because V is finite-dimensional, so is U (see 2.25). Thus there is a basis
Uy, ...,u,, of U (by 2.31). Of course uq, ..., u,, is a linearly independent list of
vectors in V. Hence this list can be extended to a basis u, ..., u,,, wq, ...,w, of V
(by 2.32). Let W = span(wy, ..., w,,).

To prove that V = U & W, by 1.46 we only need to show that

V=U+W and UNW = {0}

To prove the first equation above, suppose v € V. Then, because the list
Uy ..., Uy, We, ..., W, spans V, there exist a4, ...,q,,, by, ..., b, € F such that

v =aquq + - +a,u, +byw; + - +b,w,.

u w

We have v = u + w, where u € U and w € W are defined as above. Thus
v € U+ W, completing the proof that V = U + W.

To show that U N W = {0}, suppose v € U N W. Then there exist scalars
Ay .ees by, ..., b, € F such that

v =ayuq + - +a,u, =bjw, + - +b,w

n-n-

Thus
ayuq + - +a,u, —byw, — - —b,w, =0.

Because uy, ..., u,,, wy, ..., w,, is linearly independent, this implies that
ty=-=a,=b = =b, =0

Thus v = 0, completing the proof that U N W = {0}.

Exercises 2B

1 Find all vector spaces that have exactly one basis.
2 Verify all assertions in Example 2.27.
3 (a) Let U be the subspace of R® defined by
U = {(xq, %, X3,%4,X5) € R® : x; = 3x, and x5 = 7x4}.

Find a basis of U.
(b) Extend the basis in (a) to a basis of R>
(c) Find a subspace W of R® such that R®> = U & W.
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(a) Let U be the subspace of C° defined by
U = {(24,2,23, 24, 25) € C° : 621 = 2z, and z5 + 2z, + 3z5 = 0}.

Find a basis of U.
(b) Extend the basis in (a) to a basis of C°.
(c) Find a subspace W of C° such that C> = U @ W.

Suppose V is finite-dimensional and U, W are subspaces of V such that
V = U + W. Prove that there exists a basis of V consisting of vectors in
uuw.

Prove or give a counterexample: If py, p;, p,, p3 is a list in 3 (F) such that
none of the polynomials p, p;, p,, p3 has degree 2, then py, py, p, p3 is not
a basis of P (F).

Suppose vy, U,, U3, U, is a basis of V. Prove that
Ul + 02, 02 + 03, 03 + 04, 04
is also a basis of V.

Prove or give a counterexample: If v;,v,,v5,v, is a basis of V and U is a
subspace of V such that v;,v, € U and v3 ¢ U and v, & U, then v;,v, isa
basis of U.

Suppose v, ..., v, is a list of vectors in V. For k € {1, ...,m}, let
wk = Z)l + e+ Uk.
Show that vy, ..., v,, is a basis of V if and only if w,, ..., w,, is a basis of V.

Suppose U and W are subspaces of V such that V = U & W. Suppose also
that uy, ..., u,, is a basis of U and wy, ..., w,, is a basis of W. Prove that

Uy eees Uy Wiy eees Wy,
is a basis of V.

Suppose V is a real vector space. Show that if v, ..., v,, is a basis of V (as a
real vector space), then vy, ..., v,, is also a basis of the complexification V-
(as a complex vector space).

See Exercise 8 in Section 1B for the definition of the complexification V.
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2C Dimension

Although we have been discussing finite-dimensional vector spaces, we have not
yet defined the dimension of such an object. How should dimension be defined?
A reasonable definition should force the dimension of F” to equal n. Notice that
the standard basis

1,0,...,0),(0,1,0,...,0),..,(0,...,0,1)

of F" has length n. Thus we are tempted to define the dimension as the length of
a basis. However, a finite-dimensional vector space in general has many different
bases, and our attempted definition makes sense only if all bases in a given vector
space have the same length. Fortunately that turns out to be the case, as we now
show.

(2.34 basis length does not depend on basis W

kAny two bases of a finite-dimensional vector space have the same length. j

Proof Suppose V is finite-dimensional. Let B, and B, be two bases of V. Then
B, is linearly independent in V and B, spans V, so the length of B is at most the
length of B, (by 2.22). Interchanging the roles of B; and B,, we also see that the
length of B, is at most the length of B;. Thus the length of B, equals the length
of B,, as desired.

Now that we know that any two bases of a finite-dimensional vector space
have the same length, we can formally define the dimension of such spaces.

(2.35 definition: dimension, dim V

e The dimension of a finite-dimensional vector space is the length of any
basis of the vector space.

e The dimension of a finite-dimensional vector space V is denoted by dim V.

2.36 example: dimensions

e dim F" = n because the standard basis of F” has length .

e dim?,,(F) = m + 1 because the standard basis 1, z, ..., 2" of P, (F) has length
m+ 1.

o IfU ={(x,x,y) € F3: x,y € F}, then dim U = 2 because (1,1,0), (0,0,1) is
a basis of U.

o If U = {(x,y,2) € FP: x + y + z = 0}, then dimU = 2 because the list
(1,-1,0), (1,0, —1) is a basis of U.
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Every subspace of a finite-dimensional vector space is finite-dimensional
(by 2.25) and so has a dimension. The next result gives the expected inequality
about the dimension of a subspace.

(2.37 dimension of a subspace w

klf V is finite-dimensional and U is a subspace of V, then dim U < dim V. J

Proof  Suppose V is finite-dimensional and U is a subspace of V. Think of a basis
of U as a linearly independent list in V, and think of a basis of V' as a spanning
list in V. Now use 2.22 to conclude that dim U < dim V.

To check that a list of vectors in V
is a basis of V, we must, according to sion two; the complex vector space C
the definition, show that the list in ques- ;g0 o0 A s, 118 @
tion satisfies two properties: it must be 4, identified with C (and addition is
linearly independent and it must span V. the same on both spaces, as is scalar
The next two results show that if the list  puiriplication by real numbers). Thus
in question has the right length, then we  when we talk about the dimension of
only need to check that it satisfies one  a vector space, the role played by the
of the two required properties. First we  choice of F cannot be neglected.
prove that every linearly independent list
of the right length is a basis.

The real vector space R? has dimen-

(2.38 linearly independent list of the right length is a basis w

Suppose V is finite-dimensional. Then every linearly independent list of
vectors in V of length dim V' is a basis of V.

Proof Suppose dimV = n and v4, ..., v, is linearly independent in V. The list
vy, ..., U, can be extended to a basis of V (by 2.32). However, every basis of V has
length 7, so in this case the extension is the trivial one, meaning that no elements
are adjoined to v4, ...,v,,. Thus v, ..., v,, is a basis of V, as desired.

The next result is a useful consequence of the previous result.

(2.39 subspace of full dimension equals the whole space W

Suppose that V is finite-dimensional and U is a subspace of V such that
dimU =dimV. Then U = V.

Proof Let uy,...,u, be a basis of U. Thus n = dim U, and by hypothesis we
also have n = dim V. Thus uq, ..., u,, is a linearly independent list of vectors in V
(because it is a basis of U) of length dim V. From 2.38, we see that u4, ..., u,, is
a basis of V. In particular every vector in V is a linear combination of u, ..., u,,.
Thus U = V.



46 Chapter 2  Finite-Dimensional Vector Spaces

2.40 example: a basis of F> |

Consider the list (5,7), (4, 3) of vectors in F2 This list of length two is linearly
independent in F? (because neither vector is a scalar multiple of the other). Note
that F2 has dimension two. Thus 2.38 implies that the linearly independent list
(5,7), (4,3) of length two is a basis of F? (we do not need to bother checking that
it spans F?).

2.41 example: a basis of a subspace of P5(R)
Let U be the subspace of 7;(R) defined by

U={peP;R):p'(5) =0}

To find a basis of U, first note that each of the polynomials 1, (x — 5)2 and (x —5)3
isin U.
Suppose a,b,c € R and

a+b(x=52%2+c(x=53=0

for every x € R. Without explicitly expanding the left side of the equation above,
we can see that the left side has a cx® term. Because the right side has no x>
term, this implies that ¢ = 0. Because ¢ = 0, we see that the left side has a bx?
term, which implies that b = 0. Because b = ¢ = 0, we can also conclude that
a = 0. Thus the equation above implies thata = b = ¢ = 0. Hence the list
1, (x = 5)2 (x — 5)3 is linearly independent in U. Thus 3 < dim U. Hence

3 < dimU < dim 2;(R) = 4,

where we have used 2.37.

The polynomial x is not in U because its derivative is the constant function 1.
Thus U # P5(R). Hence dim U +# 4 (by 2.39). The inequality above now implies
that dim U = 3. Thus the linearly independent list 1, (x — 5)2 (x — 5)3 in U has
length dim U and hence is a basis of U (by 2.38).

Now we prove that a spanning list of the right length is a basis.

(2.42 spanning list of the right length is a basis w

Suppose V is finite-dimensional. Then every spanning list of vectors in V of
length dim V is a basis of V.

Proof Suppose dimV = n and v4,...,v, spans V. The list v4,...,v, can be
reduced to a basis of V (by 2.30). However, every basis of V has length 7, so in
this case the reduction is the trivial one, meaning that no elements are deleted
from vy, ...,v,,. Thus vy, ...,v,, is a basis of V, as desired.
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The next result gives a formula for the dimension of the sum of two subspaces
of a finite-dimensional vector space. This formula is analogous to a familiar
counting formula: the number of elements in the union of two finite sets equals
the number of elements in the first set, plus the number of elements in the second
set, minus the number of elements in the intersection of the two sets.

(2.43 dimension of a sum

If V, and V,, are subspaces of a finite-dimensional vector space, then

Proof Letvy,...,v,, be a basis of V; N V,; thus dim(V; N V,) = m. Because

vy,...,0,, is a basis of V; N V5, it is linearly independent in V;. Hence this list can

be extended to a basis vy, ..., V,,, Uy, ..., u; of V; (by 2.32). ThusdimV; = m +j.

Also extend vy, ..., v,, to a basis v, ..., 0,,,, Wy, ..., Wy of V5; thus dim V, = m + k.
We will show that

2.44 UL vees Oy Uy ooy Uy W5 ooy Wi
is a basis of V; + V5. This will complete the proof, because then we will have
dim(V; +V,) =m+j+k
(m+j)+(m+k)—m
The list 2.44 is contained in V; U V, and thus is contained in V; + V,. The
span of this list contains V; and contains V, and hence is equal to V; + V,. Thus
to show that 2.44 is a basis of V; + V, we only need to show that it is linearly

independent.
To prove that 2.44 is linearly independent, suppose

a0 + -+ a,,0,, + byug + - + bjuj + cqwy + - + qwy, =0,

where all the a’s, b’s, and ¢’s are scalars. We need to prove that all the a’s, b’s,
and c’s equal 0. The equation above can be rewritten as

2.45 CLWy + 0 + Wy = —Aq01 — =+ — 0y, — byuty — - = bjuy,

which shows that c;w; + - + c,w, € V;. All the w’s are in V,, so this implies
that c;w, + -+ + cuwy € V3 N'V,. Because vy, ..., v,, is a basis of V; N V,, we have

QW + -+ + W = dyvy + - +d,, v,

for some scalars d4, ...,d,,. Butv,,...,v,,, wy, ..., wy is linearly independent, so
the last equation implies that all the ¢’s (and d’s) equal 0. Thus 2.45 becomes the
equation

A101 + -+ + 4y, Uy + byuty + - + bju; = 0.
Because the list v4, ..., 0,,,, U1, ..., u; is linearly independent, this equation implies
that all the a’s and b’s are 0, completing the proof.
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For S a finite set, let #S denote the number of elements of S. The table below
compares finite sets with finite-dimensional vector spaces, showing the analogy
between #S (for sets) and dim V (for vector spaces), as well as the analogy between
unions of subsets (in the context of sets) and sums of subspaces (in the context of
vector spaces).

sets

vector spaces

S is a finite set

V is a finite-dimensional vector space

#S

dimV

for subsets S;, S, of S, the union S; U S,
is the smallest subset of S containing S;
and S,

for subspaces V;, V, of V, the sum V; +V,
is the smallest subspace of V containing
V, and V,

#(S, US,)
=#S, +#S, —#(5, N S,)

dim(V; + V,)
=dimV; +dimV, — dim(V; N V,)

#(S, USy) = #S, + #S,
—~ 51 052 = @

dim(V; + V,) =dim V] + dimV,
— Vl N V2 = {O}

S; U - US§S,, is a disjoint union <
#(S;U--US,,) =#S; + - +#S,,

Vi+ - +7V,is adirect sum <<
dim(V; + - + V)

=dimV; + - +dimV,

The last row above focuses on the analogy between disjoint unions (for sets)
and direct sums (for vector spaces). The proof of the result in the last box above
will be given in 3.94.

You should be able to find results about sets that correspond, via analogy, to
the results about vector spaces in Exercises 12 through 18.

Exercises 2C

1 Show that the subspaces of R? are precisely {0}, all lines in R? containing
the origin, and R?

2 Show that the subspaces of R? are precisely {0}, all lines in R® containing
the origin, all planes in R® containing the origin, and R3

3 (a) LetU = {p € P4(F) : p(6) = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of P,(F) such that P,(F) = U & W.

4 (a) LetU = {p € P,(R) : p"(6) = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of 7, (R).
(c) Find a subspace W of 7, (R) such that 7,(R) = U & W.

5 (a) LetU = {p € Py(F) : p(2) = p(5)}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of 7, (F) such that 7, (F) = U & W.
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(@) LetU = {p € P,(F) : p(2) = p(5) = p(6)}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of 7, (F) such that P, (F) = U & W.

(a) LetU = {p € P4(R) ¢ f_ll p= 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of 7, (R).
(c) Find a subspace W of 7, (R) such that 7,(R) = U & W.

Suppose v, ..., v, is linearly independent in V and w € V. Prove that
dimspan(v; + w, ...,v,, + w) > m — 1.

Suppose m is a positive integer and p, p1, ..., p,, € P (F) are such that each
P has degree k. Prove that py, py, ..., p,, is a basis of P, (F).

Suppose m is a positive integer. For 0 < k < m, let
pr(x) = x5 (1 — x)m-k,

Show that py, ..., p,, is a basis of P, (F).
The basis in this exercise leads to what are called Bernstein polynomials.
You can do a web search to learn how Bernstein polynomials are used to
approximate continuous functions on [0, 1].

Suppose U and W are both four-dimensional subspaces of C° Prove that
there exist two vectors in U N W such that neither of these vectors is a scalar
multiple of the other.

Suppose that U and W are subspaces of R® such that dim U = 3, dim W = 5,
and U+ W = R& Prove that R® = U @ W.

Suppose U and W are both five-dimensional subspaces of R°. Prove that
Unw + {0}.

Suppose V is a ten-dimensional vector space and V;, V,, V, are subspaces
of V withdimV; =dimV, = dimV; = 7. Prove that V; NV, N V5 # {0}.

Suppose V is finite-dimensional and V;, V,, V5 are subspaces of V with
dim V; + dim V, + dim V; > 2dim V. Prove that V; N V, N V; # {0}.

Suppose V is finite-dimensional and U is a subspace of V with U # V. Let
n = dimV and m = dim U. Prove that there exist n — m subspaces of V,
each of dimension n — 1, whose intersection equals U.

Suppose that Vi, ..., V,, are finite-dimensional subspaces of V. Prove that
Vi + -+ + V,, is finite-dimensional and

dim(V; + -+ V,,) <dimV; + .- +dim V.

The inequality above is an equality if and only if V; + --- + V,, is a direct
sum, as will be shown in 3.94.
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18 Suppose V is finite-dimensional, with dim V = n > 1. Prove that there exist
one-dimensional subspaces V;, ..., V,, of V such that

V=V, @-oV,

19 Explain why you might guess, motivated by analogy with the formula for
the number of elements in the union of three finite sets, that if V;, V,, V5 are
subspaces of a finite-dimensional vector space, then

dim(V; + V, + V3)
=dimV; +dimV, + dim V;
— dim(V, N Vy) —dim(V; N V3) — dim(V, N V3)
+dim(V; NV, N V3).

Then either prove the formula above or give a counterexample.

20 Prove that if V;,V,, and V; are subspaces of a finite-dimensional vector
space, then

dim(V; + V, + V)

dim(V; N V;) +dim(V; N V3) +dim(V, N V3)
3
dim((V;+V,)NnV3) + dim((V;+V3)NV,) + dim((V, +V3)NV;)
3 .

The formula above may seem strange because the right side does not look
like an integer.

I at once gave up my former occupations, set down natural history and all its
progeny as a deformed and abortive creation, and entertained the greatest disdain
for a would-be science which could never even step within the threshold of real
knowledge. In this mood I betook myself to the mathematics and the branches of
study appertaining to that science as being built upon secure foundations, and so
worthy of my consideration.

—Frankenstein, Mary Wollstonecraft Shelley
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Chapter 3
Linear Maps

So far our attention has focused on vector spaces. No one gets excited about
vector spaces. The interesting part of linear algebra is the subject to which we
now turn—Ilinear maps.

We will frequently use the powerful fundamental theorem of linear maps,
which states that the dimension of the domain of a linear map equals the dimension
of the subspace that gets sent to 0 plus the dimension of the range. This will imply
the striking result that a linear map from a finite-dimensional vector space to itself
is one-to-one if and only if its range is the whole space.

A major concept that we will introduce in this chapter is the matrix associated
with a linear map and with a basis of the domain space and a basis of the target
space. This correspondence between linear maps and matrices provides much
insight into key aspects of linear algebra.

This chapter concludes by introducing product, quotient, and dual spaces.

In this chapter we will need additional vector spaces, which we call U and W,
in addition to V. Thus our standing assumptions are now as follows.

( standing assumptions for this chapter w

e F denotes R or C.
e U, V,and W denote vector spaces over F.

VS-A8 DD JOJeU0S Uejels

The twelfth-century Dankwarderode Castle in Brunswick (Braunschweig), where Carl
Friedrich Gauss (1777-1855) was born and grew up. In 1809 Gauss published a method
for solving systems of linear equations. This method, now called Gaussian elimination,

was used in a Chinese book written over 1600 years earlier.
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3A Vector Space of Linear Maps

Definition and Examples of Linear Maps

Now we are ready for one of the key definitions in linear algebra.

\

/3.1 definition: linear map

A linear map from V to W is a function T: V — W with the following
properties.
additivity

Tu+v)=Tu+ Toforallu,v € V.

homogeneity
Y T(Av) = A(Tv) forall A € Fand allv € V.

J

Note that. for linear maps we often Some mathematicians use the phrase
use the notation Tv as well as the usual  jineqr transformation, which means
function notation T (v). the same as linear map.

@.2 notation: L(V, W), £(V)

e The set of linear maps from V to W is denoted by £(V, W).

e The set of linear maps from V to V is denoted by £ (V). In other words,
L) =LV, V).

Let’s look at some examples of linear maps. Make sure you verify that each
of the functions defined in the next example is indeed a linear map:

3.3 example: linear maps

Zero
In addition to its other uses, we let the symbol 0 denote the linear map that takes
every element of some vector space to the additive identity of another (or possibly
the same) vector space. To be specific, 0 € £(V, W) is defined by

Ov =0.

The 0 on the left side of the equation above is a function from V to W, whereas
the 0 on the right side is the additive identity in W. As usual, the context should
allow you to distinguish between the many uses of the symbol 0.

identity operator
The identity operator, denoted by I, is the linear map on some vector space that
takes each element to itself. To be specific, I € £(V) is defined by

Iv =v.
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differentiation
Define D € £(P(R)) by

Dp =yp.
The assertion that this function is a linear map is another way of stating a basic
result about differentiation: (f+¢)" = f' +¢" and (Af)" = Af’ whenever f, g are
differentiable and A is a constant.

integration
Define T € £(P(R),R) by

1
=] p
p 0 P
The assertion that this function is linear is another way of stating a basic result
about integration: the integral of the sum of two functions equals the sum of the

integrals, and the integral of a constant times a function equals the constant times
the integral of the function.

multiplication by x2
Define a linear map T € £(P(R)) by

(Tp)(x) = x*p(x)
for each x € R.

backward shift
Recall that F* denotes the vector space of all sequences of elements of F. Define
alinear map T € £(F*) by

T(x1,%0,X3,...) = (Xp,X3,...).
from R® to R?
Define a linear map T € £(R3 R?) by
T(x,y,z) = 2x —y + 3z,7x + 5y — 62).
from F" to F™
To generalize the previous example, let m and n be positive integers, let A; ; € F

foreachj =1,...,m and each k = 1, ...,n, and define a linear map T € £(F", F")
by

T(xl, ey xn) = (Al’lxl + -+ Al,]’l xn, ...,Am’lxl + -+ Am,n xn).
Actually every linear map from F” to F" is of this form.

composition
Fix a polynomial 4 € P(R). Define a linear map T € £(P(R)) by

(Tp) (x) = p(q(x)).

The existence part of the next result means that we can find a linear map that
takes on whatever values we wish on the vectors in a basis. The uniqueness part
of the next result means that a linear map is completely determined by its values
on a basis.
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/

3.4 linear map lemma

N

Suppose vy, ..., v, is a basis of V and w,,...,w,, € W. Then there exists a
unique linear map T: V — W such that

T'Uk = Wy

\for eachk =1, ...,n. )

Proof First we show the existence of a linear map T with the desired property.
Define T: V — W by

T(cqvq + = +¢,0,) = Cqwy + +++ + C,,W,,,

where ¢y, ..., ¢, are arbitrary elements of F. The list vy, ..., v,, is a basis of V. Thus
the equation above does indeed define a function T from V to W (because each
element of V can be uniquely written in the form c¢;v, + --- + ¢,,0,)).

For each k, taking ¢, = 1 and the other c’s equal to 0 in the equation above
shows that Ty, = wy.

Ifu,o e Vwithu =ay9; + - +4a,v,and v = c;v; + -+ + ¢,,v,,, then

Tw+v) =T{ay +¢)vy + - + (a, +¢,)0,,)
= (a; +c)wy + -+ (a, +c,)w,
= (wy + - +a,w,) + (cqwy + - +c,w,)
=Tu+ To.
Similarly, if A € F and v = ¢;v4 + -+ + ¢, v,,, then
T(Av) = T(Acyvq + -+ + Ac,0,,)
= Acyw; + -+ + Ac,,w,,
= Alcgwy + -+ + c,w,,)
= ATv.

Thus T is a linear map from V to W.

To prove uniqueness, now suppose that T € £(V, W) and that Tv, = w, for
eachk = 1,...,n. Letcq,...,c, € F. Then the homogeneity of T implies that
T (c,vy) = cywy for each k = 1, ..., n. The additivity of T now implies that

T(Clvl + e+ Cn?)n) = Clwl + -+ ann.

Thus T is uniquely determined on span(vy, ..., v,,) by the equation above. Because
04, ...,0,, is a basis of V, this implies that T is uniquely determined on V, as
desired.
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Algebraic Operations on £L(V, W)
We begin by defining addition and scalar multiplication on £(V, W).

~

/3.5 definition: addition and scalar multiplication on £(V, W)

Suppose S, T € £(V,W) and A € F. The sum S + T and the product AT are
the linear maps from V to W defined by

S+ T)(w)=Sv+Tv and (AT)(v) = A(Tv)

\for allv e V. )

You should verify that S + T and AT
as defined above are indeed linear maps. . smemarics. However, they are not as
In other words, if S,T € £(V,W) and ubiquitous as imagined by people who
A€F, thenS+T e L(V,W)and AT €  seem 1o think cos is a linear map from
L(V,W). R to R when they incorrectly write that

Because we took the trouble to de-  cos(x+y) equals cos x +cos y and that
fine addition and scalar multiplication on  cos 2x equals 2 cos x.

L (V, W), the next result should not be a
surprise.

Linear maps are pervasive throughout

(3.6 L(V, W) is a vector space W

With the operations of addition and scalar multiplication as defined above,
L(V,W) is a vector space.

The routine proof of the result above is left to the reader. Note that the additive
identity of £(V, W) is the zero linear map defined in Example 3.3.

Usually it makes no sense to multiply together two elements of a vector space,
but for some pairs of linear maps a useful product exists, as in the next definition.

~

/3.7 definition: product of linear maps

T e £(U,V)and S € £(V, W), then the product ST € £(U, W) is defined
by
(ST)(u) = S(Tu)

\for allu e U. )

Thus ST is just the usual composition S o T of two functions, but when both
functions are linear, we usually write ST instead of S o T. The product notation
ST helps make the distributive properties (see next result) seem natural.

Note that ST is defined only when T maps into the domain of S. You should
verify that ST is indeed a linear map from U to W whenever T € £(U, V) and
Se L(V,W).
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/

3.8 algebraic properties of products of linear maps

associativity
(T, T,)T; = T,(I,T5) whenever T;, T,, and T; are linear maps such that
the products make sense (meaning T; maps into the domain of T,, and T,
maps into the domain of T7).

identity
TI = IT = Twhenever T € £(V, W); here the first I is the identity operator
on V, and the second [ is the identity operator on W.

distributive properties
T,1:,T, € £(U,V)and S, 5,5, € L(V, V). )

o

The routine proof of the result above is left to the reader.
Multiplication of linear maps is not commutative. In other words, it is not
necessarily true that ST = TS, even if both sides of the equation make sense.

3.9 example: two noncommuting linear maps from P (R) to P (R)

Suppose D € £(P(R)) is the differentiation map defined in Example 3.3
and T € £(P(R)) is the multiplication by x> map defined earlier in this section.
Then

((TD)p) (x) = x*p'(x) but  ((DT)p)(x) = x?p'(x) + 2xp(x).

Thus TD # DT—differentiating and then multiplying by x? is not the same as
multiplying by x? and then differentiating.

(3.1 0 linear maps take 0 to 0 W

kSuppose T is a linear map from V to W. Then T(0) = 0. J

Proof By additivity, we have
T0)=T(@O+0)=T(0) + T(0).

Add the additive inverse of T (0) to each side of the equation above to conclude
that T(0) = 0.

Suppose m,b € R. The function f: R — R defined by
f(x)y=mx+D

is a linear map if and only if b = 0 (use 3.10). Thus the linear functions of high
school algebra are not the same as linear maps in the context of linear algebra.
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Exercises 3A

57

1 Suppose b,c € R. Define T: R® - R? by

T(x,y,z) = 2x — 4y + 3z + b, 6x + cxyz).
Show that T is linear if and only if b = ¢ = 0.
Suppose b,c € R. Define T: P(R) — R? by

2
Tp = (3p(4) +5p'(6) + bp(l)p(Z),f ) x3p(x) dx + csinp(O)).
Show that T is linear if and only if b = ¢ = 0.

Suppose that T € £(F", F"). Show that there exist scalars A; ; € F for
j=1,..,mandk =1, ...,n such that

T(xp, e Xy) = (Ap 12 + oo+ Ag X ees Ay 1 X + 0 + Ay )

for every (xy,...,x,) € F
This exercise shows that the linear map T has the form promised in the
second to last item of Example 3.3.

Suppose T € £(V,W) and v4,...,9v,, is a list of vectors in V such that
Tvy,...,Tv,, is a linearly independent list in W. Prove that vy, ...,v,, is
linearly independent.

Prove that £(V, W) is a vector space, as was asserted in 3.6.

Prove that multiplication of linear maps has the associative, identity, and
distributive properties asserted in 3.8.

Show that every linear map from a one-dimensional vector space to itself is
multiplication by some scalar. More precisely, prove that if dim V' = 1 and
T € £(V), then there exists A € F such that Tv = Avforallv € V.

Give an example of a function ¢ : R?> — R such that
p(av) = ap(v)

for alla € R and all v € R? but ¢ is not linear.

This exercise and the next exercise show that neither homogeneity nor
additivity alone is enough to imply that a function is a linear map.

Give an example of a function ¢ : C — C such that

pw +z) = g(w) + ¢(z)
for all w, z € C but ¢ is not linear. (Here C is thought of as a complex vector
space.)
There also exists a function ¢ R — R such that ¢ satisfies the additivity

condition above but ¢ is not linear. However, showing the existence of such
a function involves considerably more advanced tools.
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10 Prove or give a counterexample: If g € P(R) and T: P(R) — P(R) is
defined by Tp = g o p, then T is a linear map.

The function T defined here differs from the function T defined in the last
bullet point of 3.3 by the order of the functions in the compositions.

11  Suppose V is finite-dimensional and T € £(V). Prove that T is a scalar
multiple of the identity if and only if ST = TS for every S € £(V).

12 Suppose U is a subspace of V with U # V. Suppose S € £(U, W) and
S # 0 (which means that Su # 0 for some u € U). Define T: V — W by

T Sv ifvel,
U=
0 ifveVand ve U.

Prove that T is not a linear map on V.

13 Suppose V is finite-dimensional. Prove that every linear map on a subspace
of V can be extended to a linear map on V. In other words, show that if U is
a subspace of Vand S € £(U, W), then there exists T € £(V, W) such that
Tu = Suforallu € U.

The result in this exercise is used in the proof of 3.125.

14 Suppose V is finite-dimensional with dim V' > 0, and suppose W is infinite-
dimensional. Prove that £(V, W) is infinite-dimensional.

15 Suppose vy, ...,7,, is a linearly dependent list of vectors in V. Suppose
also that W # {0}. Prove that there exist wy,...,w,, € W such that no
T € £(V, W) satisfies Ty, = wy foreachk =1, ..., m.

16 Suppose V is finite-dimensional with dim V' > 1. Prove that there exist
S, T € £(V) such that ST # TS.

17 Suppose V is finite-dimensional. Show that the only two-sided ideals of
L(V) are {0} and £(V).

A subspace & of £(V) is called a two-sided ideal of £(V) if TE € & and
ETeforallE€ Eandall T € L(V).
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3B Null Spaces and Ranges

Null Space and Injectivity

In this section we will learn about two subspaces that are intimately connected
with each linear map. We begin with the set of vectors that get mapped to 0.

(3.11 definition: null space, null T

For T € £(V, W), the null space of T, denoted by null T, is the subset of V
consisting of those vectors that T maps to 0:

nullT ={ve V:Tov=0}.

3.12 example: null space

e If T is the zero map from V to W, meaning that Tv = 0 for every v € V, then
nullT = V.

e Suppose ¢ € £(C3C) is defined by ¢(z1,25,23) = z; + 22z, + 3z5. Then
null ¢ equals {(z4,2,,23) € C3: z1 + 2z, + 3z5 = 0}, which is a subspace of
the domain of ¢. We will soon see that the null space of each linear map is a
subspace of its domain.

e Suppose D € £(P(R)) is the dif- The word “null” means zero. Thus the

ferentiation map defined by Dp = p". 11, “puti space”should remind you
The only functions whose derivative ¢ the connection to 0. Some mathe-

equals the zero function are the con-  maticians use the term kernel instead
stant functions. Thus the null space of  of null space.
D equals the set of constant functions.

e Suppose that T € £(P(R)) is the multiplication by x> map defined by
(Tp)(x) = x*p(x). The only polynomial p such that x’>p(x) = 0 for all x € R
is the 0 polynomial. Thus null T = {0}.

e Suppose T € £L(F®) is the backward shift defined by
T(.X1,.XZ,X3, ) = (x2, X3, )

Then T (x4, x5, X3, ... ) equals 0 if and only if the numbers x,, x5, ... are all 0.
Thus null T = {(4,0,0,...) : a € F}.

The next result shows that the null space of each linear map is a subspace of
the domain. In particular, 0 is in the null space of every linear map.

ﬁ.13 the null space is a subspace w

buppose T € £(V,W). Then null T is a subspace of V. )
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Proof Because T is a linear map, T(0) = 0 (by 3.10). Thus 0 € null T.
Suppose u,v € null T. Then

Tu+v)=Tu+To=0+0=0.
Hence u + v € null T. Thus null T is closed under addition.
Suppose u € null T and A € F. Then
T(Au) = ATu = A0 =0.
Hence Au € null T. Thus null T is closed under scalar multiplication.

We have shown that null T contains O and is closed under addition and scalar
multiplication. Thus null T is a subspace of V (by 1.34).

As we will soon see, for a linear map the next definition is closely connected
to the null space.

(3.14 definition: injective W

LA function T: V — W is called injective if Tu = Tv implies u = v. )

We could rephrase the definition
above to say that T is injective if u # v
implies that Tu # To. Thus T is injective
if and only if it maps distinct inputs to distinct outputs.

The next result says that we can check whether a linear map is injective
by checking whether 0 is the only vector that gets mapped to 0. As a simple
application of this result, we see that of the linear maps whose null spaces we
computed in 3.12, only multiplication by x? is injective (except that the zero map
is injective in the special case V' = {0}).

The term one-to-one means the same
as injective.

(3.15 injectivity < null space equals {0} W

kLet T € £(V,W). Then T is injective if and only if null T = {0}. )

Proof First suppose T is injective. We want to prove that null T = {0}. We
already know that {0} C null T (by 3.10). To prove the inclusion in the other
direction, suppose v € null T. Then

T(v) =0=T(0).

Because T is injective, the equation above implies that v = 0. Thus we can
conclude that null T = {0}, as desired.

To prove the implication in the other direction, now suppose null T = {0}. We
want to prove that T is injective. To do this, suppose u,v € V and Tu = Tv. Then

0=Tu—-To=T(u-—"o).

Thus u — v is in null T, which equals {0}. Hence u — v = 0, which implies that
u = v. Hence T is injective, as desired.
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Range and Surjectivity

Now we give a name to the set of outputs of a linear map.

3.16 definition: range

For T € £(V, W), the range of T is the subset of W consisting of those vectors
that are equal to Tv for some v € V:

rangeT = {Tv : v € V}.

3.17 example: range

e If T is the zero map from V to W, meaning that Tv = 0 for every v € V, then
range T = {0}.
e Suppose T € £(R%R?) is defined by T(x,y) = (2x,5y,x + y). Then
range T = {(2x,5y,x +y) : x,y € R}.
Note that range T is a subspace of R3. We will soon see that the range of each

element of £(V, W) is a subspace of W.

e Suppose D € £(P(R)) is the differentiation map defined by Dp = p'. Because
for every polynomial g € P(R) there exists a polynomial p € P (R) such that
p’ = q, the range of D is P(R).

The next result shows that the range of each linear map is a subspace of the
vector space into which it is being mapped.

/3.18 the range is a subspace )

\If T € £(V,W), then range T is a subspace of W. )

Proof Suppose T € £(V,W). Then T(0) = 0 (by 3.10), which implies that
0 € range T.

If wy,w, € rangeT, then there exist v;,v, € V such that Tv; = w; and
Tv, = w,. Thus

T('Ul + 'Uz) = Tv1 + T'Uz = ZU1 + ZU2.
Hence w; + w, € range T. Thus range T is closed under addition.
If w € range T and A € F, then there exists v € V such that Tv = w. Thus
T(Av) = ATv = Aw.

Hence Aw &€ range T. Thus range T is closed under scalar multiplication.
We have shown that range T contains 0 and is closed under addition and scalar
multiplication. Thus range T is a subspace of W (by 1.34).
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(3.19 definition: surjective W

LA function T: V — W is called surjective if its range equals W. )

To illustrate the definition above, note that of the ranges we computed in 3.17,
only the differentiation map is surjective (except that the zero map is surjective in
the special case W = {0}).

Whether a linear map is surjective de-
pends on what we are thinking of as the
vector space into which it maps.

Some people use the term onto, which
means the same as surjective.

3.20 example: surjectivity depends on the target space

The differentiation map D € £(P5(R)) defined by Dp = p’ is not surjective,
because the polynomial x° is not in the range of D. However, the differentiation
map S € £(P5(R),P,(R)) defined by Sp = p’ is surjective, because its range
equals 7, (R), which is the vector space into which S maps.

Fundamental Theorem of Linear Maps

The next result is so important that it gets a dramatic name.

(3.21 fundamental theorem of linear maps

Suppose V is finite-dimensional and T € £(V, W). Then range T is finite-
dimensional and

dimV = dimnull T + dim range T.

Proof Let uq,...,u,, be a basis of null T; thus dimnull T = m. The linearly
independent list u4, ..., u,, can be extended to a basis

Uiy eees Upyys Uy oens Uy

of V (by 2.32). Thus dim V = m + n. To complete the proof, we need to show that
range T is finite-dimensional and dimrange T = n. We will do this by proving
that Tvq, ..., Tv,, is a basis of range T.
Letv € V. Because uy, ..., u,,, vy, ..., 0, spans V, we can write
v =aguqy + - +a,u,, + by + - +b,0,,
where the a’s and b’s are in F. Applying T to both sides of this equation, we get
Tv =b,Toy + - +b,To,,,

where the terms of the form Tu; disappeared because each u; is in null T. The
last equation implies that the list Tv4, ..., Tv,, spans range T. In particular, range T
is finite-dimensional.
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To show Tvy, ..., Ty, is linearly independent, suppose cy, ...,c,, € F and
cToy + -+ +c,Tv, =0.
Then
T(civq + - +¢,0,) =0.

Hence
€101 + -+ +¢,v, €null T.

Because u, ..., u,, spans null T, we can write

€10y + - +¢,v, =dyuy + - +d,u,,

where the d’s are in F. This equation implies that all the ¢’s (and d’s) are 0
(because uy, ..., u,,, v, ..., v, is linearly independent). Thus Tv,, ..., Tv,, is linearly
independent and hence is a basis of range T, as desired.

Now we can show that no linear map from a finite-dimensional vector space
to a “smaller” vector space can be injective, where “smaller” is measured by
dimension.

(3.22 linear map to a lower-dimensional space is not injective w

Suppose V and W are finite-dimensional vector spaces such that
dim V > dim W. Then no linear map from V to W is injective.

Proof LetT € £(V,W). Then
dimnull T = dimV — dimrange T
>dimV —dim W
> 0,

where the first line above comes from the fundamental theorem of linear maps
(3.21) and the second line follows from 2.37. The inequality above states that
dimnull T > 0. This means that null T contains vectors other than 0. Thus T is
not injective (by 3.15).

3.23 example: linear map from F* to F? is not injective |

Define a linear map T: F* — F° by
T(z1,29,23,24) = (\/721 + 72y + 24,9721 + 325 + 223,25, + 623 + 724).

Because dim F* > dim F3, we can use 3.22 to assert that T is not injective, without
doing any calculations.
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The next result shows that no linear map from a finite-dimensional vector
space to a “bigger” vector space can be surjective, where “bigger” is measured by
dimension.

(3.24 linear map to a higher-dimensional space is not surjective w

Suppose V and W are finite-dimensional vector spaces such that
dim V' < dim W. Then no linear map from V to W is surjective.

Proof LetT € £(V,W). Then
dimrange T = dimV — dimnull T

<dimV

< dim W,

where the equality above comes from the fundamental theorem of linear maps
(3.21). The inequality above states that dimrange T < dim W. This means that
range T cannot equal W. Thus T is not surjective.

As we will soon see, 3.22 and 3.24 have important consequences in the theory
of linear equations. The idea is to express questions about systems of linear
equations in terms of linear maps. Let’s begin by rephrasing in terms of linear
maps the question of whether a homogeneous system of linear equations has a
nonzero solution.

Fix positive integers m and n, and let Homogeneous, in this context, means

A €F forj=1,...mandk =1,...n  tp4t the constant term on the right side
Consider the homogeneous system of lin- ¢ oqch equation below is 0.

ear equations

n
Z Al’kxk - O
k=1

n
Z Am’kxk = 0
k=1

Clearly x; = --- = x,, = 0 is a solution of the system of equations above; the
question here is whether any other solutions exist.
Define T: F'" — F" by

n n
3.25 T(xl,...,xn) == (Z Alykxk,..., Z Am’kxk).
k=1 k=1

The equation T (xq, ..., x,,) = 0 (the 0 here is the additive identity in F", namely,
the list of length m of all 0’s) is the same as the homogeneous system of linear
equations above.

Thus we want to know if null T is strictly bigger than {0}, which is equivalent
to T not being injective (by 3.15). The next result gives an important condition
for ensuring that T is not injective.
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(3.26 homogeneous system of linear equations W

A homogeneous system of linear equations with more variables than equations
has nonzero solutions.

Proof Use the notation and result from the discussion above. Thus T is a linear
map from F” to F”, and we have a homogeneous system of m linear equations
with n variables x4, ..., x,,. From 3.22 we see that T is not injective if n > m.

Example of the result above: a homogeneous system of four linear equations
with five variables has nonzero solutions.

Now we consider the question of Inhomogeneous, as used in this con-
whether an inhomogeneous system of lin- A TS R TG TR T 6T
ear equations has no solutions for some  p¢ right side of at least one equation
choice of the constant terms. To rephrase  pelow does not equal 0.
this question in terms of a linear map, fix
positive integers m and n, and let A]-,k €Fforallj=1,...mandallk =1,...,n.
For ¢y, ...,c,, € F, consider the system of linear equations

n
Z Ap X =0
k=1
3.27 :

n
Z Am,kxk = Cip-
k=1

The question here is whether there is some choice of ¢4, ..., ¢,,, € F such that no
solution exists to the system above.

Define T: F* — F" as in 3.25. The The results 3.26 and 3.28, which com-

equation T'(xy, ..., x,,) = (cq, "'9.Cm) is the pare the number of variables and
same as the system of equations 3.27.  yne number of equations, can also

Thus we want to know if range T # F™. pe proved using Gaussian elimina-
Hence we can rephrase our question  tion. The abstract approach taken here
about not having a solution for some  seems to provide cleaner proofs.
choice of ¢y, ..., c,, € F as follows: What

condition ensures that T is not surjective? The next result gives one such condition.

(3.28 inhomogeneous system of linear equations w

An inhomogeneous system of linear equations with more equations than
variables has no solution for some choice of the constant terms.

Proof Use the notation and result from the example above. Thus T is a linear
map from F” to F"”, and we have a system of m equations with n variables x4, ..., x,,.
From 3.24 we see that T is not surjective if n < m.

Example of the result above: an inhomogeneous system of five linear equations
with four variables has no solution for some choice of the constant terms.
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Exercises 3B

N S A

10

11

12

13

14

15

Give an example of a linear map T with dimnull T = 3 and dimrange T = 2.

Suppose S, T € £(V) are such that range S C null T. Prove that (ST)? = 0.

Suppose v, ..., v,, is a list of vectors in V. Define T € £(F", V) by
T(ZqyeeesZyy) = 2901 + o+ + 2,,0,,,.

(a) What property of T corresponds to vy, ..., ,, spanning V?
(b) What property of T corresponds to the list v4,...,v,, being linearly
independent?

Show that {T € £(R%R*) : dimnull T > 2} is not a subspace of £(R> R*).
Give an example of T € £(R*) such that range T = null T.
Prove that there does not exist T € £(R®) such that range T = null T.

Suppose V and W are finite-dimensional with 2 < dim V < dim W. Show
that {T € £(V, W) : T is not injective} is not a subspace of £(V, W).

Suppose V and W are finite-dimensional with dim V > dim W > 2. Show
that {T € £(V, W) : T is not surjective} is not a subspace of £(V, W).

Suppose T € £(V, W) is injective and v, ..., v,, is linearly independent in V.
Prove that Tv,, ..., Tv, is linearly independent in W.

Suppose vy, ..., v,, spans V and T € £(V, W). Show that Tv, ..., Tv,, spans
range T.

Suppose that V is finite-dimensional and that T € £(V, W). Prove that there
exists a subspace U of V such that

UNnullT = {0} and rangeT = {Tu:u € U}.
Suppose T is a linear map from F* to F? such that
null T = {(xq, %y, %3,%4) € F* : x; = 5x, and x5 = 7x,}.
Prove that T is surjective.

Suppose U is a three-dimensional subspace of R® and that T is a linear map
from R® to R such that null T = U. Prove that T is surjective.

Prove that there does not exist a linear map from F° to F> whose null space
equals {(x;, Xy, %3, X4,%5) € F° 1 x; = 3x, and x5 = x4 = x5}

Suppose there exists a linear map on V whose null space and range are both
finite-dimensional. Prove that V is finite-dimensional.



16

17

18

19

20

21

22

23

24

25

26

27
28
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Suppose V and W are both finite-dimensional. Prove that there exists an
injective linear map from V to W if and only if dim V' < dim W.

Suppose V and W are both finite-dimensional. Prove that there exists a
surjective linear map from V onto W if and only if dim V > dim W.

Suppose V and W are finite-dimensional and that U is a subspace of V.
Prove that there exists T € £(V, W) such that nullT = U if and only if
dimU > dim V — dim W.

Suppose W is finite-dimensional and T € £(V, W). Prove that T is injective
if and only if there exists S € £(W, V') such that ST is the identity operator
on V.

Suppose W is finite-dimensionaland T € £(V, W). Prove that T is surjective
if and only if there exists S € £(W, V) such that TS is the identity operator
on W.

Suppose V is finite-dimensional, T € £(V, W), and U is a subspace of W.
Prove that {v € V : Tv € U} is a subspace of V and

dim{v € V: To € U} = dimnull T + dim(U Nrange T).

Suppose U and V are finite-dimensional vector spaces and S € £(V, W) and
T e £(U,V). Prove that

dimnull ST < dimnull S + dimnull T.

Suppose U and V are finite-dimensional vector spaces and S € £(V, W) and
T € £(U, V). Prove that

dimrange ST < min{dimrange S, dimrange T'}.

(@) SupposedimV =5and S, T € £(V) are such that ST = 0. Prove that
dimrange TS < 2.
(b) Give an example of S, T € £(F°) with ST = 0 and dimrange TS = 2.

Suppose that W is finite-dimensional and S,T € £(V,W). Prove that
null S C null T if and only if there exists E € £(W) such that T = ES.

Suppose that V is finite-dimensional and S,T € £(V,W). Prove that
range S C range T if and only if there exists E € £(V) such that S = TE.

Suppose P € £(V) and P? = P. Prove that V = null P & range P.

Suppose D € £(P(R)) is such that deg Dp = (degp) — 1 for every non-
constant polynomial p € P(R). Prove that D is surjective.

The notation D is used above to remind you of the differentiation map that
sends a polynomial p to p'.
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29

30

31

32

33
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Suppose p € P(R). Prove that there exists a polynomial g € P(R) such
that 59" + 39" = p.
This exercise can be done without linear algebra, but it’s more fun to do it
using linear algebra.

Suppose ¢ € L(V,F) and ¢ # 0. Suppose u € V is not in null ¢. Prove
that
V=nullg ® {au : a € F}.

Suppose V is finite-dimensional, X is a subspace of V, and Y is a finite-
dimensional subspace of W. Prove that there exists T &€ £(V, W) such that
null T = X and range T = Y if and only if dim X + dim Y = dim V.

Suppose V is finite-dimensional with dim V' > 1. Show thatif ¢: £(V) - F
is a linear map such that ¢(ST) = @(S)e(T) for all S,T € £(V), then
¢ =0.

Hint: The description of the two-sided ideals of £(V) given by Exercise 17

in Section 3A might be useful.

Suppose that V and W are real vector spaces and T € £(V,W). Define
TC: VC - WC by
Te(u+iv) =Tu+ilv

forall u,v € V.

(a) Show that T is a (complex) linear map from V- to We..
(b) Show that T is injective if and only if T is injective.
(c) Show that range T- = W if and only if range T = W.

See Exercise 8 in Section 1B for the definition of the complexification V.
The linear map T is called the complexification of the linear map T.
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3C Matrices

Representing a Linear Map by a Matrix

We know that if vy, ..., v, is a basis of Vand T: V — W is linear, then the values
of Tvy, ..., Tv,, determine the values of T on arbitrary vectors in V—see the linear
map lemma (3.4). As we will soon see, matrices provide an efficient method of
recording the values of the Tv,’s in terms of a basis of W.

/3.29 definition: matrix, A; A

Suppose m and n are nonnegative integers. An m-by-n matrix A is arectangular
array of elements of F with m rows and n columns:

,n

A o Ay
A= :
A A

m,1 " m,n

The notation A]», « denotes the entry in row j, column k of A.

J
3.30 example: A; ;. equals entry in row j, column k of A |
S A = 8 4 5-3i
uppose - 1 9 7 * When dealing with matrices, the first

Thus A,  refers to the entry in the sec- index refers to the row number; the sec-
ond row, third column of A, which means ond index refers to the column number.
that A2’3 = 7.

Now we come to the key definition in this section.

~

/3.31 definition: matrix of a linear map, M (T)

Suppose T € £(V,W) and vy, ...,v,, is a basis of V and w,, ..., w,, is a basis
of W. The matrix of T with respect to these bases is the m-by-n matrix M (T)
whose entries A; ; are defined by

TUk = Alykwl + .-+ Am’kwm.

If the bases vy, ..., v,, and wy, ..., w,, are not clear from the context, then the
notation M (T, (vq, ..., 0,,), (W1, ..., W,,)) is used. )

The matrix M (T) of alinear map T € £(V, W) depends on the basis vy, ..., 7,
of V and the basis wy, ..., w,, of W, as well as on T. However, the bases should be
clear from the context, and thus they are often not included in the notation.

To remember how M (T) is constructed from T, you might write across the
top of the matrix the basis vectors vy, ..., v,, for the domain and along the left the
basis vectors wy, ..., w,, for the vector space into which T maps, as follows:
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’Z)l ces Uk “es vn

wq Aqk
M(T)= : .
w A

m m,k

In the matrix above only the k" col-
umn is shown. Thus the second index of
each displayed entry of the matrix above
is k. The picture above should remind you i
that T, can be computed from M (T) by To, =) A w;.
multiplying each entry in the k™ column J=1
by the corresponding w; from the left col-
umn, and then adding up the resulting
vectors.

If T is a linear map from F" to F”, If T is a linear map from an
then unless stated otherwise, assume the  ,_ 7 oncional vector space 1o an
bases in question are the standard ones ;_gimensional vector space, then
(where the k™ basis vector is 1 in the kK™ 7 (T) is an m-by-n marrix.
slot and O in all other slots). If you think
of elements of F” as columns of m numbers, then you can think of the k™ column
of M (T) as T applied to the k™ standard basis vector.

The k™ column of M (T) consists of
the scalars needed to write Tv; as a
linear combination of W, ..., Ww,,:

3.32 example: the matrix of a linear map from F? to F®
Suppose T € £(F?% F°) is defined by
T(x,y) = (x+ 3y,2x + 5y, 7x + 9y).

Because T(1,0) = (1,2,7) and T(0,1) = (3,5,9), the matrix of T with respect
to the standard bases is the 3-by-2 matrix below:

1 3
m:(z 5).
79

When working with 7, (F), use the standard basis 1, x, x2 ..., x™ unless the
context indicates otherwise.

3.33 example: matrix of the differentiation map from P5(R) to P,(R)

Suppose D € £(P5(R), P,(R)) is the differentiation map defined by Dp = p".
Because (") = nx" ", the matrix of D with respect to the standard bases is the
3-by-4 matrix below:

0100
MD)y=( 0 0 2 0 |[.
0 00 3
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Addition and Scalar Multiplication of Matrices

For the rest of this section, assume that U, V, and W are finite-dimensional and
that a basis has been chosen for each of these vector spaces. Thus for each linear
map from V to W, we can talk about its matrix (with respect to the chosen bases).

Is the matrix of the sum of two linear maps equal to the sum of the matrices of
the two maps? Right now this question does not yet make sense because although
we have defined the sum of two linear maps, we have not defined the sum of two
matrices. Fortunately, the natural definition of the sum of two matrices has the
right properties. Specifically, we make the following definition.

-~

3.34 definition: matrix addition

~

The sum of two matrices of the same size is the matrix obtained by adding
corresponding entries in the matrices:

Arr o Ay Cii  Cia
: : + : :
Am,l Am,n Cm,l Cm,n
( Ag+GCGy o A, 16 )

Am,l + Cm,l Am,n + Cm,n

- )

In the next result, the assumption is that the same bases are used for all three
linear maps S + T, S, and T.

(3.35 matrix of the sum of linear maps w

buppose S,T € £(V,W). Then M (S +T) = M(S) + M (T). )

The verification of the result above follows from the definitions and is left to
the reader.

Still assuming that we have some bases in mind, is the matrix of a scalar times
a linear map equal to the scalar times the matrix of the linear map? Again, the
question does not yet make sense because we have not defined scalar multiplication
on matrices. Fortunately, the natural definition again has the right properties.

-

3.36 definition: scalar multiplication of a matrix

\

The product of a scalar and a matrix is the matrix obtained by multiplying
each entry in the matrix by the scalar:

Arn o A AAyy o AAg,
A 2 3 = 3 2 :
A v A Ay, - AA

m,1 m,n /
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| 3.37 example: addition and scalar multiplication of matrices |

231+42_62+42_1O4
-1 5 1 6 )\ =2 10 1 6 )\ -1 16
In the next result, the assumption is that the same bases are used for both the
linear maps AT and T.

ﬁ.38 the matrix of a scalar times a linear map W

kSuppose AeFand T € £(V,W). Then M (AT) = AM(T). j

The verification of the result above is also left to the reader.

Because addition and scalar multiplication have now been defined for matrices,
you should not be surprised that a vector space is about to appear. First we
introduce a bit of notation so that this new vector space has a name, and then we
find the dimension of this new vector space.

/3.39 notation: F>" )

For m and n positive integers, the set of all m-by-n matrices with entries in F
is denoted by F"™".
N J

/3.40 dim F"™"" = mn )

Suppose m and 7 are positive integers. With addition and scalar multiplication
defined as above, F"-" is a vector space of dimension mn. )

Proof The verification that F™" is a vector space is left to the reader. Note that
the additive identity of F"" is the m-by-n matrix all of whose entries equal 0.

The reader should also verify that the list of distinct m-by-n matrices that have
0 in all entries except for a 1 in one entry is a basis of F"". There are mn such
matrices, so the dimension of F"-" equals mn.

Matrix Multiplication

Suppose, as previously, that vy, ..., v, is a basis of V and wy, ..., w,), is a basis of W.
Suppose also that u, ..., u, is a basis of U.

Consider linear maps T: U — Vand S: V — W. The composition ST is a
linear map from U to W. Does M (ST) equal M (S)M (T)? This question does
not yet make sense because we have not defined the product of two matrices. We
will choose a definition of matrix multiplication that forces this question to have
a positive answer. Let’s see how to do this.
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Suppose M (S) = A and M (T) = B. For 1 < k < p, we have
(ST)u; = s( Yy B,’kv,)
r=1

n
= Z Br,ksvr
r=1
n
= Z Br,k
=1 j

A w;

m
=1

<

m n
= Z < Z Aj’rBr’k>w]-.
j=1 r=1
Thus M (ST) is the m-by-p matrix whose entry in row j, column k, equals

Z Aj,rBr,k
r=1
Now we see how to define matrix multiplication so that the desired equation
M(ST) = M (S)M(T) holds.
Vs

3.41 definition: matrix multiplication

~

Suppose A is an m-by-n matrix and B is an n-by-p matrix. Then AB is defined
to be the m-by-p matrix whose entry in row j, column k, is given by the equation

n
(AB)]',k = Z Aj,rBr,k
r=1

Thus the entry in row j, column k, of AB is computed by taking row j of A and
column k of B, multiplying together corresponding entries, and then summing.j

Note .that we define the product of 'y, may have learned this definition
two matrices only when the number of of matrix multiplication in an earlier
columns of the first matrix equals the  course, although you may not have
number of rows of the second matrix. seen this motivation for it.

3.42 example: matrix multiplication

Here we multiply together a 3-by-2 matrix and a 2-by-4 matrix, obtaining a
3-by-4 matrix:

1 2 10 7 4 1
(3 4)(3 5 4 _31):(26 o 1 5)
5 6 42 31 20 9

Matrix multiplication is not commutative—AB is not necessarily equal to
BA even if both products are defined (see Exercise 10). Matrix multiplication is
distributive and associative (see Exercises 11 and 12).
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In the next result, we assume that the same basis of V is used in considering
T € £(U,V)and S € £(V,W), the same basis of W is used in considering
S e L(V,W)and ST € £(U, W), and the same basis of U is used in considering
Te LU,V)and ST € LU, W).

(3.43 matrix of product of linear maps W
QfTEﬁ(U, Vyand S € £(V,W), then M (ST) = M (S)M(T). J

The proof of the result above is the calculation that was done as motivation
before the definition of matrix multiplication.

In the next piece of notation, note that as usual the first index refers to a row
and the second index refers to a column, with a vertically centered dot used as a
placeholder.

/3.44 notation: A]-,_ s A_’k

~

Suppose A is an m-by-n matrix.

e If 1 <j<m,thenA;. denotes the 1-by-n matrix consisting of row j of A.

e If 1 <k < n,then A ; denotes the m-by-1 matrix consisting of column k

3.45 example: A; . equals j™ row of A and Ay equals k™ column of A |
The notation A,y denotes the second row of A and A, denotes the second

. 8 4 5
column of A. Thusif A = ( 19 7 ),then

The product of a 1-by-n matrix and an n-by-1 matrix is a 1-by-1 matrix. How-
ever, we will frequently identify a 1-by-1 matrix with its entry. For example,

6

(3 4)(5)=(2)
because 3 - 6 + 4 - 2 = 26. However, we can identify ( 26 ) with 26, writing

(3 4)(3):26.

The next result uses the convention discussed in the paragraph above to give
another way to think of matrix multiplication. For example, the next result and
the calculation in the paragraph above explain why the entry in row 2, column 1,
of the product in Example 3.42 equals 26.
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/

3.46 entry of matrix product equals row times column

N

Suppose A is an m-by-n matrix and B is an n-by-p matrix. Then
(AB)]‘,k = A]',. B.,k

if1 <j<mand1 <k < p. In other words, the entry in row j, column k, of
\AB equals (row j of A) times (column k of B). )

Proof Supposel <j < mand1 < k < p. The definition of matrix multiplication
states that

3.47 (AB)],k = Aj,lBl,k + -+ Aj,an,k'

The definition of matrix multiplication also implies that the product of the 1-by-n
matrix A;. and the n-by-1 matrix B_  is the 1-by-1 matrix whose entry is the
number on the right side of the equation above. Thus the entry in row j, column k,
of AB equals (row j of A) times (column k of B).

The next result gives yet another way to think of matrix multiplication. In the
result below, (AB). ; is column k of the m-by-p matrix AB. Thus (AB).  is an
m-by-1 matrix. Also, AB. ; is an m-by-1 matrix because it is the product of an
m-by-n matrix and an n-by-1 matrix. Thus the two sides of the equation in the
result below have the same size, making it reasonable that they might be equal.

(3.48 column of matrix product equals matrix times column

Suppose A is an m-by-n matrix and B is an n-by-p matrix. Then
(AB),,k - AB,’k

if 1 < k < p. In other words, column k of AB equals A times column k of B.

Proof As discussed above, (AB). and AB. ; are both m-by-1 matrices. If 1 <
j < m, then the entry in row j of (AB).  is the left side of 3.47 and the entry in
row j of AB. j is the right side of 3.47. Thus (AB). , = AB_,.

Our next result will give another way of thinking about the product of an
m-by-n matrix and an n-by-1 matrix, motivated by the next example.

3.49 example: product of a 3-by-2 matrix and a 2-by-1 matrix

Use our definitions and basic arithmetic to verify that

SHORIISHES)

Thus in this example, the product of a 3-by-2 matrix and a 2-by-1 matrix is a
linear combination of the columns of the 3-by-2 matrix, with the scalars (5 and 1)
that multiply the columns coming from the 2-by-1 matrix.
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The next result generalizes the example above.

[3.50 linear combination of columns )

by
Suppose A is an m-by-n matrix and b = ( ) is an n-by-1 matrix. Then

b

n

Ab = blA,l 9P 000 qp bnA‘,n'

In other words, Ab is a linear combination of the columns of A, with the
scalars that multiply the columns coming from b. Y

Proof If k € {1, ..., m}, then the definition of matrix multiplication implies that
the entry in row k of the m-by-1 matrix Ab is

Ak,lbl + b +Ak,nbn'

The entry inrow k of b; A, | +--- +b,, A, , also equals the number displayed above.
Because Ab and b;A. | + --- + b, A, have the same entry in row k for each
k € {1,...,m}, we conclude that Ab = b1A_; + - +b, A .

Our two previous results focus on the columns of a matrix. Analogous results
hold for the rows of a matrix. Specifically, see Exercises 8 and 9, which can be
proved using appropriate modifications of the proofs of 3.48 and 3.50.

The next result is the main tool used in the next subsection to prove the
column—row factorization (3.56) and to prove that the column rank of a matrix
equals the row rank (3.57). To be consistent with the notation often used with the
column—row factorization, including in the next subsection, the matrices in the
next result are called C and R instead of A and B.

(351 A

matrix multiplication as linear combinations of columns

Suppose C is an m-by-c matrix and R is a c-by-n matrix.

(a) If k € {1,...,n}, then column k of CR is a linear combination of the
columns of C, with the coefficients of this linear combination coming
from column k of R.

(b) Ifj € {1,...,m}, then row j of CR is a linear combination of the rows of R,
with the coefficients of this linear combination coming from row j of C. )
Proof  Suppose k € {1,...,n}. Then column k of CR equals CR_; (by 3.48),
which equals the linear combination of the columns of C with coefficients coming
from R_ (by 3.50). Thus (a) holds.
To prove (b), follow the pattern of the proof of (a) but use rows instead of
columns and use Exercises 8 and 9 instead of 3.48 and 3.50.
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Column—Row Factorization and Rank of a Matrix

We begin by defining two nonnegative integers associated with each matrix.

/

3.52 definition: column rank, row rank

~

Suppose A is an m-by-n matrix with entries in F.

e The column rank of A is the dimension of the span of the columns of A
in F™1,

e The row rank of A is the dimension of the span of the rows of A in F-". )

If A is an m-by-n matrix, then the column rank of A is at most n (because A has
n columns) and the column rank of A is also at most m (because dim F"™! = m).
Similarly, the row rank of A is also at most min{m, n}.

| 3.53 example: column rank and row rank of a 2-by-4 matrix |

47 1 8
A= ( 35209 )'

The column rank of A is the dimension of

wn((5)(3H2)(3))

in F>1. Neither of the first two vectors listed above in F>1 is a scalar multiple of
the other. Thus the span of this list of length four has dimension at least two. The
span of this list of vectors in F>! cannot have dimension larger than two because
dim F?! = 2. Thus the span of this list has dimension two, which means that the
column rank of A is two.

The row rank of A is the dimension of

span((4 7 1 8).(3 5 2 9))

Suppose

in F1-# Neither of the two vectors listed above in F# is a scalar multiple of the
other. Thus the span of this list of length two has dimension two, which means
that the row rank of A is two.

We now define the transpose of a matrix.

~

3.54 definition: transpose, A

The franspose of a matrix A, denoted by A", is the matrix obtained from A by
interchanging rows and columns. Specifically, if A is an m-by-n matrix, then
Al is the n-by-m matrix whose entries are given by the equation

9 (At)k,]' = Aj,k' /
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3.55 example: transpose of a matrix

5 -7

IfA:( 3 8 ),thenA‘=<_57 g _24 )
-4 2

Note that here A is a 3-by-2 matrix and A" is a 2-by-3 matrix.

The transpose has nice algebraic properties: (A + B)' = A' + BY, (AA)! = AA,
and (AC)' = C'A' for all m-by-n matrices A, B, all A € F, and all n-by-p matrices
C (see Exercises 14 and 15).

The next result will be the main tool used to prove that the column rank equals
the row rank (see 3.57).

6.56 column—row factorization

Suppose A is an m-by-n matrix with entries in F and column rank ¢ > 1. Then
there exist an m-by-c matrix C and a c-by-n matrix R, both with entries in F,
such that A = CR.

Proof Each column of A is an m-by-1 matrix. The list A_ 4, ..., A, of columns
of A can be reduced to a basis of the span of the columns of A (by 2.30). This
basis has length c, by the definition of the column rank. The ¢ columns in this
basis can be put together to form an m-by-c matrix C.

If k € {1, ...,n}, then column k of A is a linear combination of the columns
of C. Make the coeficients of this linear combination into column k of a c-by-n
matrix that we call R. Then A = CR, as follows from 3.51(a).

In Example 3.53, the column rank and row rank turned out to equal each other.
The next result states that this happens for all matrices.

(3.57 column rank equals row rank W

LSuppose A € F"™". Then the column rank of A equals the row rank of A. J

Proof Let ¢ denote the column rank of A. Let A = CR be the column-row
factorization of A given by 3.56, where C is an m-by-c matrix and R is a c-by-n
matrix. Then 3.51(b) tells us that every row of A is a linear combination of the
rows of R. Because R has c rows, this implies that the row rank of A is less than
or equal to the column rank c of A.

To prove the inequality in the other direction, apply the result in the previous
paragraph to A', getting

column rank of A = row rank of A*
< column rank of A'

= row rank of A.

Thus the column rank of A equals the row rank of A.
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Because the column rank equals the row rank, the last result allows us to
dispense with the terms “column rank” and “row rank” and just use the simpler
term “rank”.

(3.58 definition: rank \

kThe rank of a matrix A € F™" is the column rank of A. )

See 3.133 and Exercise 8 in Section 7A for alternative proofs that the column
rank equals the row rank.

Exercises 3C

1 Suppose T € £(V, W). Show that with respect to each choice of bases of V
and W, the matrix of T has at least dim range T nonzero entries.

2  Suppose V and W are finite-dimensional and T € £(V,W). Prove that
dimrange T = 1 if and only if there exist a basis of V and a basis of W such
that with respect to these bases, all entries of M (T) equal 1.

3 Suppose v, ..., v, is a basis of V and wy, ..., w,, is a basis of W.

(a) Show thatif S, T € £(V,W), then M (S + T) = M(S) + M(T).
(b) Show thatif A € Fand T € £(V,W), then M (AT) = AM(T).

This exercise asks you to verify 3.35 and 3.38.

4 Suppose that D € £(P5(R), P, (R)) is the differentiation map defined by
Dp = p'. Find a basis of P;(R) and a basis of P, (R) such that the matrix of
D with respect to these bases is

1 000
010 0
0 010

Compare with Example 3.33. The next exercise generalizes this exercise.

5 Suppose V and W are finite-dimensional and T € £(V, W). Prove that there
exist a basis of V and a basis of W such that with respect to these bases, all
entries of M (T) are 0 except that the entries in row k, column k, equal 1 if
1 <k < dimrangeT.

6 Suppose vy, ...,v,, is a basis of V and W is finite-dimensional. Suppose
T € £(V,W). Prove that there exists a basis w;, ..., w,, of W such that all
entries in the first column of M (T) [with respect to the bases vy, ..., v,, and
wy, ..., w,] are 0 except for possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of V instead of
being able to choose a basis of V.



80

10
11

12

13

14

Chapter 3 Linear Maps

Suppose wy, ..., w,, is a basis of W and V is finite-dimensional. Suppose
T € £(V,W). Prove that there exists a basis vy, ...,v,, of V such that all
entries in the first row of M (T) [with respect to the bases vy, ...,v,, and
wy, ..., w,] are 0 except for possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of W instead of
being able to choose a basis of W.

Suppose A is an m-by-n matrix and B is an n-by-p matrix. Prove that
(AB);. = A;.B

foreach 1 < j < m. In other words, show that row j of AB equals (row j of A)
times B.

This exercise gives the row version of 3.48.
Supposea = ( a; - a, )isal-by-n matrix and B is an n-by-p matrix.
Prove that
aB=a,By .+ +a,B, ..
In other words, show that aB is a linear combination of the rows of B, with
the scalars that multiply the rows coming from a.

This exercise gives the row version of 3.50.
Give an example of 2-by-2 matrices A and B such that AB # BA.

Prove that the distributive property holds for matrix addition and matrix
multiplication. In other words, suppose A, B, C, D, E, and F are matrices
whose sizes are such that A(B + C) and (D + E)F make sense. Explain why
AB + AC and DF + EF both make sense and prove that

AB+C)=AB+AC and (D +E)F =DF +EF.

Prove that matrix multiplication is associative. In other words, suppose A, B,
and C are matrices whose sizes are such that (AB)C makes sense. Explain
why A (BC) makes sense and prove that

(AB)C = A(BC).

Try to find a clean proof that illustrates the following quote from Emil Artin:
“It is my experience that proofs involving matrices can be shortened by 50%
if one throws the matrices out.”

Suppose A is an n-by-n matrix and 1 < j,k < n. Show that the entry in
row j, column k, of A3 (which is defined to mean AAA) is

n n
Z Z A]‘,p Ap,rAr,k-
p=1r=1

Suppose m and n are positive integers. Prove that the function A — A'is a
linear map from F"™" to F»™.



15

16

17

Section 3C  Matrices 81

Prove that if A is an m-by-n matrix and C is an n-by-p matrix, then

(AC)! = C'Al.
This exercise shows that the transpose of the product of two matrices is the
product of the transposes in the opposite order.

Suppose A is an m-by-n matrix with A # 0. Prove that the rank of A is 1
if and only if there exist (cy, ...,c,,) € F" and (dy, ...,d,)) € F" such that

A]-’k = c]-dk foreveryj=1,...,mandeveryk = 1,...,n.

Suppose T € £(V), and uq, ..., u,, and vy, ..., v,, are bases of V. Prove that
the following are equivalent.

(a) T is injective.

(b) The columns of M (T) are linearly independent in F*1,

(c) The columns of M (T) span F*1

(d) The rows of M (T) span F!-".

(e) The rows of M (T) are linearly independent in F'-".

Here M (T) means M (T, (1, ..., U,,)s (U1, e, U),) ).
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3D Invertibility and Isomorphisms

Invertible Linear Maps

We begin this section by defining the notions of invertible and inverse in the
context of linear maps.

(A N

3.59 definition: invertible, inverse

e Alinear map T € £(V, W) is called invertible if there exists a linear map
S € £L(W, V) such that ST equals the identity operator on V and TS equals
the identity operator on W.

e A linear map S € £(W, V) satisfying ST = [ and TS = [ is called an
inverse of T (note that the first I is the identity operator on V and the second
[ is the identity operator on W). )

The definition above mentions “an inverse”. However, the next result shows
that we can change this terminology to “the inverse”.

(3.60 inverse is unique w

LAn invertible linear map has a unique inverse. J

Proof  Suppose T € £(V, W) is invertible and S; and S, are inverses of T. Then
Sl == Sll = SI(TSZ) = (SlT)Sz = 152 = Sz.
Thus S; = 5,.

Now that we know that the inverse is unique, we can give it a notation.

(3.61 notation: T~}

If T is invertible, then its inverse is denoted by T~—L. In other words, if
T € £(V, W) is invertible, then T~! is the unique element of £(W, V) such
that T-'T =Tand TT-' = L.

3.62 example: inverse of a linear map from R3 to R3

Suppose T € £(R?) is defined by T(x,y,z) = (—y,x,4z). Thus T is a
counterclockwise rotation by 90° in the xy-plane and a stretch by a factor of 4 in
the direction of the z-axis.

Hence the inverse map T~! € £(R3) is the clockwise rotation by 90° in the
xy-plane and a stretch by a factor of 411 in the direction of the z-axis:

_ 1
T (x,y,2) = (v, —x, 72).
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The next result shows that a linear map is invertible if and only if it is one-to-
one and onto.

(3.63 invertibility < injectivity and surjectivity W

LA linear map is invertible if and only if it is injective and surjective. J

Proof Suppose T € £(V,W). We need to show that T is invertible if and only
if it is injective and surjective.
First suppose T is invertible. To show that T is injective, suppose u,v € V
and Tu = To. Then
u=T"YTu) = T"YTov) = v,

so u = v. Hence T is injective.

We are still assuming that T is invertible. Now we want to prove that T is
surjective. To do this, let w € W. Then w = T(T~'w), which shows that w is
in the range of T. Thus range T = W. Hence T is surjective, completing this
direction of the proof.

Now suppose T is injective and surjective. We want to prove that T is invertible.
Foreachw € W, define S(w) to be the unique element of V such that T(S(w)) = w
(the existence and uniqueness of such an element follow from the surjectivity and
injectivity of T). The definition of S implies that T o S equals the identity operator
on W.

To prove that S o T equals the identity operator on V, let v € V. Then

T((S o T)v) = (T o S)(Tv) = I(Tv) = To.

This equation implies that (S o T)v = v (because T is injective). Thus S o T equals
the identity operator on V.

To complete the proof, we need to show that S is linear. To do this, suppose
wy, wy € W. Then

T(S(wy) + S(w,)) = T(S(wq)) + T(S(wy)) = wy + w,.

Thus S(w;) + S(w,) is the unique element of V that T maps to w; + w,. By the
definition of S, this implies that S(w; + w,) = S(w;) + S(w,). Hence S satisfies
the additive property required for linearity.

The proof of homogeneity is similar. Specifically, if w € W and A € F, then

T(AS(w)) = AT(S(w)) = Aw.

Thus AS(w) is the unique element of V that T maps to Aw. By the definition of S,
this implies that S(Aw) = AS(w). Hence S is linear, as desired.

For a linear map from a vector space to itself, you might wonder whether
injectivity alone, or surjectivity alone, is enough to imply invertibility. On infinite-
dimensional vector spaces, neither condition alone implies invertibility, as illus-
trated by the next example, which uses two familiar linear maps from Example 3.3.
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3.64 example: neither injectivity nor surjectivity implies invertibility

e The multiplication by x? linear map from P (R) to P(R) (see 3.3) is injective
but it is not invertible because it is not surjective (the polynomial 1 is not in
the range).

e The backward shift linear map from F* to F* (see 3.3) is surjective but it is
not invertible because it is not injective [the vector (1,0,0,0,...) is in the null
space].

In view of the example above, the next result is remarkable—it states that for
a linear map from a finite-dimensional vector space to a vector space of the same
dimension, either injectivity or surjectivity alone implies the other condition.
Note that the hypothesis below that dim V' = dim W is automatically satisfied in
the important special case where V is finite-dimensional and W = V.

(3.65 injectivity is equivalent to surjectivity (if dimV = dim W < o0)

Suppose that V and W are finite-dimensional vector spaces, dim V = dim W,
and T € £(V,W). Then

T is invertible < T is injective <« T is surjective.

Proof The fundamental theorem of linear maps (3.21) states that
3.66 dimV = dimnull T + dimrange T.

If T is injective (which by 3.15 is equivalent to the condition dimnull T = 0),
then the equation above implies that

dimrange T = dim V —dimnullT = dim V = dim W,

which implies that T is surjective (by 2.39).
Conversely, if T is surjective, then 3.66 implies that

dimnullT = dimV — dimrange T = dimV —dim W = 0,

which implies that T is injective.

Thus we have shown that T is injective if and only if T is surjective. Thus if
T is either injective or surjective, then T is both injective and surjective, which
implies that T is invertible. Hence T is invertible if and only if T is injective if
and only if T is surjective.

The next example illustrates the power of the previous result. Although it is
possible to prove the result in the example below without using linear algebra, the
proof using linear algebra is cleaner and easier.
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3.67 example: there exists a polynomial p such that (x> +5x + 7)p)" = g |

The linear map
p= ((x2+5x+7)p)"

from P (R) to itself is injective, as you can show. Thus we are tempted to use 3.65
to show that this map is surjective. However, Example 3.64 shows that the magic
of 3.65 does not apply to the infinite-dimensional vector space P (R). We will
get around this problem by restricting attention to the finite-dimensional vector
space 7,,(R).

Suppose g € P(R). There exists a nonnegative integer m such thatg € 7, (R).
Define T: 7,(R) —» ?,(R) by

Tp = ((x*> +5x + 7)p)".

Multiplying a nonzero polynomial by (x? + 5x + 7) increases the degree by 2, and
then differentiating twice reduces the degree by 2. Thus T is indeed a linear map
from 7,,(R) to itself.

Every polynomial whose second derivative equals 0 is of the form ax + b,
where a,b € R. Thus null T = {0}. Hence T is injective.

Thus T is surjective (by 3.65), which means that there exists a polynomial
p € P,,(R) such that ((x?+5x+7)p)" = g, as claimed in the title of this example.

Exercise 35 in Section 6A gives a similar but more spectacular example of
using 3.65.

The hypothesis in the result below that dim V = dim W holds in the important
special case in which V is finite-dimensional and W = V. Thus in that case, the
equation ST = [ implies that ST = TS, even though we do not have multiplicative
commutativity of arbitrary linear maps from V to V.

(3.68 ST =1 < TS = I (on vector spaces of the same dimension) W

Suppose V and W are finite-dimensional vector spaces of the same dimension,
Se L(V,W),and T € £L(W, V). Then ST = [if and only if TS = .

Proof First suppose ST = 1. If v € V and Tv = 0, then
v=1Iv=(S8T)v =S5(Tv) = S(0) = 0.

Thus T is injective (by 3.15). Because V and W have the same dimension, this
implies that T is invertible (b