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Preface

This text is meant as an introduction for students who have never been exposed to
the topics in a linear algebra course. Although the text is filled with interesting and
diverse application sections, it is ultimately a theoretical text with the goal of training
students to do succinct computation, but in a knowledgeable way. In other words,
after completing the course with this text the student will know the best and shortest
ways to do linear algebraic computations, but will also know why such computations
are both effective and successful. This text is best used in an undergraduate course in
linear algebra. It is flexible enough so that an instructor can emphasize either theory,

this author is that this text will eventually become a reliable reference/manual on
the topic with a worn-out spine and cover due to its continual usage by students in
their later career or studies.

The author’s desire is to present the basic concepts of linear algebra in a palat-
able yet concise way. This is done primarily by illustrating each of the fundamental
concepts of linear algebra with plenty of examples (something which students of the
subject always demand in such a text). Another way the author makes these con-
cepts reachable is to consistently present shortcuts for any computation. Therefore,
although this text is often conceptual, it presents the material in a practical way so
that the student who eventually will apply it in later classes will be versed in what
the concepts mean and how to do quick and easy computations.

One of the primary reasons for writing this text was to reorder the topics presented
in a standard linear algebra text in such a way that all the computational skills are
presented first. For this reason, Chapters 1 and encapsulate for the reader all the
necessary computational skills which will be used in later chapters (matrix and vector
operations, Gaussian elimination, determinant and inverse of a matrix, etc.). Since
these are the easiest notions for the student to understand, it is best to present them
first so as to make the reader feel at ease with the subject matter. Besides, these
computational skills will be used over and over again in the remaining chapters.

In Chapter 1, we also familiarize the reader with the notion of vector space by
presenting two classical examples: Tuples and Matrices. These are concrete examples
which will prepare the student for the general definition in Chapter 3. The author
chose to treat scalars as real numbers and forgo the notion of a field (although it
appears in some early exercises), even though later in the text scalars at times will
be complex numbers as well.

Chapters 3 and 4 present the general notions of vector space and linear transfor-
mation. To make each linear algebraic concept understandable, after each definition
we present the reader with examples from four classic vector spaces: Tuples, Matrices,

xi

computation, and/or application and incorporate the use of technology. One hope of
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Polynomials, and Functions. These help the reader fully grasp each definition in its
generality by observing how the definition plays out in each of these four settings.
Other texts would first present all notions of vector space (span, linear independence,
basis, etc.) and linear transformation (one-to-one, kernel, isomorphism, etc.) for Tu-
ples in initial chapters before presenting them all once again in later chapters in a
more general setting. There are even texts which first present these notions for R2,
then R3, and then finally for Rn! The goal of this text is to be concise, to the point,
and practical.

In Chapter 3, we opted for finite dimensional vector spaces, since this is the arena
where most of the applications reside, although we do at times suggest to the reader
how the notion of vector space can be extended to the infinitely dimensional case.

Chapter 5 covers real inner product spaces (although a brief discussion of complex
inner product spaces is found in Section 5.5) with such notions as orthogonality, the
Gram-Schmidt Process, and best approximation. There are many important appli-
cations in this chapter. Chapter 7 covers quadratic forms with the goal of applying
them in the context of finding extrema for multivariate real-valued functions.

Typically, linear algebra is the first subject where students are exposed to for-
mulating proofs after having taken a course on mathematical proof. For this reason
we include proofs, some of which are quite straightforward. But there are also proofs
which require more thought as well. The instructor should carefully consider which
and how many proof exercises to include in homework assignments. In addition, at
the end of Chapter 4, there are some more theoretical ideas for the more advanced
reader. These include the axioms of a determinant, quotient vector spaces, and dual
vector spaces. These can be easily skipped without disrupting the continuity of the
material, yet are there for instructors who feel the class can benefit from them. In-
deed, if the majority of the class consists of mathematics majors, the author would
strongly encourage the instructor to include these sections in their syllabus, for these
topics will enrich the theoretical backbones of the students.

Sections beginning with the word Application have been put into the text for
those who wish to cover relevant applications in linear algebra. The author tried to
select applications which were easy enough to explain, diverse in subject matter, and
ultimately would convince the reader that linear algebra has many deep and mean-
ingful uses. Indeed, the author has included an entire chapter on the timely subject
of machine learning and data analytics (Chapter 6). There are several sections on
the topic of optimization, both linear and nonlinear. There are also several sections
covering linear algebraic computational methods, such as the LU and QR factoriza-
tions. However, no such application section covers new theoretical information which
might be used later in the text. For this reason, any application section can be easily
skipped (at the instructor’s discretion) without destroying any continuity. Further-
more, these application sections are inserted at the moment when a student can grasp
their contents based on the appropriate background knowledge of prior sections. In
addition, at the end of certain application sections, there is a Project that is intended
as a challenging problem that encapsulates and synthesizes the ideas presented in
the application section. These problems are generally more involved and realistically
require some use of technology to solve them. Finally, the author wishes to point out
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that a number of the application sections require a certain amount of background in
multi-variate calculus which students typically will have when beginning a course in
linear algebra.

Although the intention of this text is for students to get their hands dirty and do
all the computations by hand (something which the author feels helps the students
actually understand the computations they are doing), these problems can also be
done with the aid of technology. Indeed, once the student is comfortable with doing
computations by hand in Chapters 1 and 2, in later chapters they could use tech-
nology to speed up their computation. By technology, the author had in mind some

(to name a few). If the goal is to prepare students for careers in applied mathematics,
a programming language may be more appropriate, such as Python. Indeed, many of
the examples and illustrations in this text were produced in Python. Of course, the
use of hand-held technology can also be employed for these problems with certain
limitations. However, this text is not a How To manual for technology usage. For this
reason, the text does not include command lines for the various technology packages,
for in the end, some packages would have to be favored over others. Furthermore, if
we try to include all software packages, then this text will become needlessly thicker
and thus destroy its intended conciseness. In any case, technology changes so quickly
that anything written about it becomes almost instantly obsolete (perhaps even what
was just stated in this paragraph!).

Therefore, in summary, whether the goal is to have the necessary background
to pursue a career in applied mathematics or continue on to study mathematics in
graduate school, this text can be used in either case. If the instructor carefully selects
which chapters and sections to cover, either goal can be achieved.

computer software package such as MATLAB R©, Maple, Sage Math, or Mathematica
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C H A P T E R 1

Examples of Vector Spaces

In this chapter, we introduce the reader to the notion of vector space by pre-
senting two classical examples: Tuples and Matrices. These are concrete examples

which will prepare the student for the general definition in Chapter 3. We also begin
the process of providing the student with the computational skills necessary for the
subject of Linear Algebra. In Section 1.1, the first example of a vector space, Tuples,
is introduced. In Section 1.2, the operation dot product for Tuples is presented as a
precursor for Chapter 5 which discusses general inner product spaces. Section 1.3 is
our first application section and shows how one can use vectors in R2 or R3 in order
to prove in a new way facts about Euclidean geometry. In Section 1.4, the second
example of a vector space, Matrices, is introduced. Finally, in Section 1.5, we define
multiplication of matrices.

1.1 FIRST VECTOR SPACE: TUPLES

Here now is our first example of what later will be called a vector space. A notion in
linear algebra of some importance is the scalar. For most of our discussion, a scalar
will just be a real number and, at times, a complex number. A more comprehensive
and perhaps advanced treatise on linear algebra would assume a scalar to be a element
of what is called a field. Roughly speaking, a field gathers together some of the
essential properties (or axioms) of the real numbers. We list these properties below:

Definition 1.1 A field is a set of objects F together with two operations + and ·
(called addition and multiplication) having the following properties:

Closure: For all a, b ∈ F , we have a+ b ∈ F and a · b ∈ F .

Commutativity: For all a, b ∈ F , we have a+ b = b+ a and a · b = b · a.

Associativity: For all a, b, c ∈ F , we have a + (b + c) = (a + b) + c and
a · (b · c) = (a · b) · c.

Identity: There exist 0, 1 ∈ F such that for all a ∈ F , we have a+ 0 = a and
a · 1 = a.

DOI: 10.1201/9781003217794-1 1
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Inverse: For every a ∈ F there exists b ∈ F such that a+ b = 0 (b is called the
additive inverse of a) and for every 0 6= a ∈ F there exists b ∈ F such that
a · b = 1 (b is called the multiplicative inverse of a).

Distribution: For all a, b, c ∈ F , we have a · (b+ c) = a · b+ a · c.

The main examples of fields addressed in this text are the real numbers and the
complex numbers (one can easily check that the properties above are satisfied in each
example). At times we may want to prove results in more generality without assuming
what field we have, but as stated, a scalar for the time being is simply another name
for a real number. The standard notation for real numbers is R.

Definition 1.2 The vector space called n-tuples is defined as follows:

• Vectors are the elements of the set

Rn = {[a1, . . . , an] : a1, . . . , an ∈ R}.

The scalars a1, . . . , an in each vector are called its components.

• Vector Addition is defined componentwise as follows:

[a1, . . . , an] + [b1, . . . , bn] = [a1 + b1, . . . , an + bn].

• Scalar Multiplication is defined componentwise as follows: If c is a scalar,
then

c[a1, . . . , an] = [ca1, . . . , can].

We will denote this vector space by the notation Rn and we often denote a vector
by single letters such as u, v, w, etc., due to its brevity. Scalars will be typically
denoted by letters a, b, c, etc.

Example 1.1 Let u = [3,−4] and v = [5,−4]. Then

(−1)u+ 3v = (−1)[3,−4] + (3)[5,−4] = [−3, 4] + [15,−12] = [12,−8].

Definition 1.3 Two n-tuple vectors [a1, . . . , an], [b1, . . . , bn] ∈ Rn are equal if
a1 = b1, . . . , an = bn. In other words they have equal components.

We point out that if n = 2 or n = 3, then Rn has a geometric interpretation. For
instance, when n = 2, u = [a1, a2] is represented as an arrow originating from the
origin, called the initial point, and ending at the ordered pair (a1, a2), called the
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Figure 1.1 Geometric interpretation of 2-tuples and 3-tuples.

terminal point (Figure 1.1). Indeed, many books use the notation ~v to represent a
vector to remind us of this interpretation.

There is a nice geometric interpretation of vector addition and subtraction in this
same setting. If u and v are two adjacent sides of a parallelogram, then the sum and
difference form the diagonals of the parallelogram formed by the vectors u and v
(Figure 1.2). Scalar multiplication changes the length of a vector; i.e. it scales either
up or down the length of the vector.

Figure 1.2 Geometric interpretation of the sum and difference of two vectors.

The following theorem proves that Rn is (what we will later call) a vector space:

Theorem 1.1 Rn as defined above has the following properties:

0. For all u, v ∈ Rn and a ∈ R, we have u+ v, au ∈ Rn.

1. For all u, v ∈ Rn, u+ v = v + u.
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2. For all u, v, w ∈ Rn, (u+ v) + w = u+ (v + w).

3. There exists 0 ∈ Rn, such that for all u ∈ Rn, u+ 0 = u.

4. For each u ∈ Rn, there is a v ∈ Rn such that u+ v = 0.

5. For all u, v ∈ Rn, and a ∈ R, a(u+ v) = au+ av.

6. For all u ∈ Rn, and a, b ∈ R, (a+ b)u = au+ bu.

7. For all u ∈ Rn, and a, b ∈ R, (ab)u = a(bu).

8. For all u ∈ Rn, 1u = u.

Proof 1.1 We shall prove some of the properties and leave the rest to the reader.
Property 0 is clear from the properties of real numbers, since adding or multiplying
real numbers yields another real number. For Property 1, let u = [a1, . . . , an] and
v = [b1, . . . , bn]. Then by properties of real numbers,

u+ v = [a1, . . . , an] + [b1, . . . , bn] = [a1 + b1, . . . , an + bn]

= [b1 + a1, . . . , bn + an] = [b1, . . . , bn] + [a1, . . . , an] = v + u.

To verify Property 3, the 0 we are looking for is [0, . . . , 0]. To verify Property 7, notice
that

(ab)u = (ab)[a1, . . . , an] = [(ab)a1, . . . , (ab)an] = [a(ba1), . . . , a(ban)] =

a[ba1, . . . , ban] = a(b[a1, . . . , an]) = a(bu).
�

Some remarks are in order here before we continue. The reader may not realize
or perhaps find it confusing that we have named two different objects with the name
0 and two different operations by the name + (in both R and Rn). But there is really
no possibility of misunderstanding. For when one sees, for instance, the statement
a + 0, we know from the context that both 0 and + refer to scalar arithmetic in R
versus u+ 0 which must by the context refer to vector arithmetic in Rn.

The set of vectors e1 = [1, 0, . . . , 0], e2 = [0, 1, . . . , 0], . . . , en = [0, 0, . . . , 1] are
called the standard basis vectors and play a special role in linear algebra.

For n = 2 and n = 3, the notation is conventionally different: For n = 2 and
n = 3,

ı̂ = [1, 0] and ̂ = [0, 1].

ı̂ = [1, 0, 0], ̂ = [0, 1, 0] and k̂ = [0, 0, 1].
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One can easily verify that in Rn, [a1, a2, . . . , an] = a1e1 + a2e2 + · · ·+ anen. Further-
more, the standard basis vectors are (what we will later call) unit vectors (exercise).

Example 1.2 In R3,

[π,−1,
√

2] = [π, 0, 0] + [0,−1, 0] + [0, 0,
√

2] = πı̂+ (−1)̂+ (
√

2)k̂.

EXERCISES

1. Let u = [2,−1] and v = [−1, 4]. Compute u+ v, −3u and u− 2v.

2. Let u = [1,−2, 0] and v = [3,−1, 1]. Compute u+ v, 2v, v− u, 1
2u and 2u− 3v.

3. List the standard vectors e1, e2, e3, e4 for R4.

4. Express [π,−1,
√

3, 2] in terms of e1, e2, e3, e4.

5. Prove properties 2,4–6 and 8 of Theorem 1.1.

6. Prove that in Rn, [a1, a2, . . . , an] = a1e1 + a2e2 + · · ·+ anen.

7. In the field of real numbers, what is the additive inverse of the scalar 2?

8. In the field of complex numbers, what is the additive inverse of the scalar 2−3i?

9. In the field of real numbers, what is the multiplicative inverse of the scalar 2?

10. In the field of complex numbers, what is the multiplicative inverse of the scalar
2− 3i? (your answer should be represented as a complex number)

11. Show that the real numbers satisfy the axioms of a field.

12. Show that the complex numbers satisfy the axioms of a field.

13. Define F = {0, 1, 2, 3, 4}. Define addition, n +5 m, to be the remainder when
dividing n+m by 5 (for instance, 3+5 4 = 2, since the remainder when dividing
7 by 5 is 2). Define multiplication, n ·5 m, to be the remainder when dividing
n ·m by 5.

a. Complete the addition and multiplication table for the field F (we will not
ask you to prove F is a field, although it is the case).

b. What element of F is the additive inverse of 2?

c. What element of F is the multiplicative inverse of 4?
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1.2 DOT PRODUCT

Here we present another operation applicable in Rn in which the inputs are two
vectors and the output is a scalar. The various names of this operation are dot, scalar
or inner product. Although this is not an operation indicative of a vector space, it is
an essential ingredient of what we will later call an inner product space.

Definition 1.4 Let u = [a1, . . . , an], v = [b1, . . . , bn] ∈ Rn. The dot product of u
and v, written

u · v = a1b1 + · · ·+ anbn.

Example 1.3 In R4,

[2, 25,−1,−1.3] · [−3, 1/5, 3, 10] = (2)(−3) + (25)(1/5) + (−1)(3) + (−1.3)(10)

= −6 + 5− 3− 13 = −17.

The following result summarizes some elementary properties of the dot product:

Theorem 1.2 If u, v, w ∈ Rn and a ∈ R, then

i. u · v = v · u.

ii. u · (v + w) = u · v + u · w.

iii. a(u · v) = (au) · v = u · (av).

Proof 1.2 The proofs of all three statements are straightforward. We will prove ii.
First, set u = [a1, . . . , an], v = [b1, . . . , bn] and w = [c1, . . . , cn]. Then, using the
distributive rule for real numbers, we have

u · (v + w) = [a1, . . . , an] · [b1 + c1, . . . , bn + cn]

= a1(b1 + c1) + · · ·+ an(bn + cn) = a1b1 + a1c1 + · · ·+ anbn + ancn

= a1b1 + · · ·+ anbn + a1c1 + · · ·+ ancn

= [a1, . . . , an] · [b1, . . . , bn] + [a1, . . . , an] · [c1, . . . , cn] = u · v + u · w.

�
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A definition that goes hand in hand with dot product is the following:

Definition 1.5 The length (magnitude or norm) of a vector u = [a1, . . . , an] ∈
Rn, written

|u| =
√
u · u =

√
a2

1 + · · ·+ a2
n.

A vector u is called a unit vector if |u| = 1.

A couple of remarks are in order. First, observe that the context of the vertical bars
| ∗ | will determine its significance, whether it is absolute value or length. Indeed, |u|
is the length of a tuple while |a| is the absolute value of a scalar. Second, |u| is called
length for good reason, for if we think back to our geometric interpretation of vectors
as arrows, then the length of those arrows are precisely |u| (by the Pythagorean
Theorem).

Next we give a list of basic properties involving magnitude.

Theorem 1.3 Let u, v ∈ Rn and a ∈ R. Then

i. |u| ≥ 0 and |u| = 0 iff (i.e. if and only if) u = 0.

ii. |au| = |a||u|.

iii. 1
|u|u (or just u/|u|) is a unit vector.

iv. u · v = |u||v| cos θ, where θ is the smaller of the two angles between the vectors
u and v.

v. (Cauchy-Schwartz Inequality) |u · v| ≤ |u||v|.

vi. (Triangle Inequality) |u+ v| ≤ |u|+ |v|.

Proof 1.3 Statements i ii and iii are left as exercises. To prove iv, consider the
triangle formed by the vectors u, v and u− v.

By the Law of Cosines,

|u− v|2 = |u|2 + |v|2 − 2|u||v| cos θ.

Notice that

|u− v|2 = (u− v) · (u− v) = u · u− (u · v)− (v · u) + (v · v)
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= |u|2 − 2(u · v) + |v|2.

Equating these two observations and simplifying yields the desired result. To prove v,
notice that

|u · v| = ||u||v| cos θ| = |u||v|| cos θ| ≤ |u||v|.

To prove vi, notice that using v we have

|u+ v|2 = (u+ v) · (u+ v) = u · u+ 2(u · v) + v · v = |u|2 + 2(u · v) + |v|2

≤ |u|2 + 2|u||v|+ |v|2 = (|u|+ |v|)2.

Now take the square root of both sides to get the desired result. �

In Theorem 1.3.iii, u/|u| is called the normalization of u. Geometrically speak-
ing, the normalization of u is a unit vector pointing in the same direction as u.

Example 1.4 Set u = [1,−2, 3] in R3. The magnitude of u,

|u| =
√

(1)2 + (−2)2 + (3)2 =
√

14,

so the normalization of u would be[ 1√
14
,
−2√

14
,

3√
14

]
.

We now introduce some new notation and terminology.

Definition 1.6 Let u and v be vectors in Rn. The component of v along u, written

compuv = |v| cos θ,

where θ, as usual, is the smaller angle between u and v.

Component has a geometric interpretation. There are two cases to consider: When
θ is acute and obtuse. Using basic trigonometry, one can verify that |compuv| corre-
sponds to the length of the thicker line indicated in each case in Figure 1.3.

In this second case compuv is a negative quantity, although −compuv is the length
of the thicker line (again, simple trigonometry can verify this). Now there is a simpler
way to compute components without having to find the angle θ. Notice that

compuv = |v| cos θ = |v|
(
u · v
|u||v|

)
= u · v
|u|

.
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Figure 1.3 Geometric interpretation of component.

Figure 1.4 Geometric interpretation of projection.

Example 1.5 We compute the component of v = [1,−2, 3] along u = [2,−3, 1].

compuv = [2,−3, 1] · [1,−2, 3]
|[2,−3, 1]| = 11√

14
.

Keep in mind that compuv is a scalar (real number). A second definition is now in
order.

Definition 1.7 Let u and v be two vectors in Rn. The projection of v along u,
written projuv, is a vector of length |compuv| parallel to u. More precisely,

projuv = (compuv) u
|u|
.

Projections are depicted in Figure 1.4.

Again, we simplify our computation as follows:

projuv = (compuv) u
|u|

= u · v
|u|

u

|u|
= u · v
|u|2

u = u · v
u · u

u.

Keep in mind that projuv is a vector in Rn.

Example 1.6 In our previous example,

projuv = [2,−3, 1] · [1,−2, 3]
[2,−3, 1] · [2,−3, 1] [2,−3, 1] = 11

14[2,−3, 1] = [11/7,−33/14, 1/14].
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EXERCISES

1. If u = [1,−2] and v = [3, 2],

a. Compute |u|, u · v, −(u · u)u and |2u− v|.

b. Normalize u and v into unit vectors.

c. Find the smaller angle between u and v.

2. Let u = [2
√

3, 4,
√

2] and v = [1, 2,
√

2].

a. Normalize u into a unit vector.

b. Find the smaller angle between u and v.

3. If u = [
√

3, 1, 2] and v = [1,−1, 2],

a. Compute |u|, u · v, 2(v · v)v and (u · v)|3u− 2v|.

b. Normalize u and v into unit vectors.

c. Find the smaller angle between u and v.

4. For each given set of vectors compute compuv and projuv.

a. u = [1,−2] and v = [2, 3].

b. u = [1, 0,−2] and v = [1, 1,−1].

5. Let u = [−
√

5, 2,
√

3] and v = [0, 2, −
√

3].

a. Find a unit vector pointing in the same direction as u.

b. Find the smaller angle between u and v.

c. Compute compuv and projuv.

d. Compute 3(u · v)u− |u|v and |3u− 4v|.

6. Prove the following geometric facts:

a. Two vectors u and v are perpendicular iff u · v = 0.

b. Two vectors u and v are parallel iff u = av or v = au for some scalar a ∈ R.

c. The vector −u points in the opposite direction of u.

7. Prove that |u+ av| ≥ |u| for all a ∈ R iff u · v = 0

8. Prove that |v1 + v2 + · · · + vn| ≤ |v1| + |v2| + · · · + |vk|, for any vectors
v1, v2, . . . , vk ∈ Rn

(hint: induction)
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9. Prove that u · v = 1
4(|u+ v|2 − |u− v|2) for any u, v ∈ Rn.

10. Prove that |u+ v| = |u|+ |v| iff u and v point in the same direction (i.e. there
is an a > 0 with v = au).

11. Prove that |u+ v|2 ≤ |u|2 + |v|2 with equality iff u · v = 0.

12. Prove properties i and iii of Theorem 1.2.

13. Prove properties i–iii of Theorem 1.3.

1.3 APPLICATION: GEOMETRY

As we have already stated tuples in Rn along with their operations take on a geometric
meaning. This section is devoted to further exploration of this observation. Recall
briefly the following geometric facts about tuples:

1. A vector, u, can be viewed physically as an arrow.

2. The sum and difference of two vectors, u+ v and u− v, comprise the diagonals
of a parallelogram whose adjacent sides are these two vectors.

3. The magnitude of a vector, |u|, corresponds to the length of the arrow repre-
senting u.

4. For vectors u and v, we have the equation u · v = |u||v| cos θ, where θ is the
smaller angle between u and v.

5. Two vectors u and v are parallel iff u = av or v = au for some real number a.

6. Two vectors u and v are perpendicular iff u · v = 0.

7. The vector −u points in the opposite direction of u.

Only in this section will we allow vectors which do not have their initial point at
the origin so that we can derive some nice geometric results. In this case, we will say
that two vectors are equal if they have the same length and are point in the same
direction.

For instance, in Figure 1.5 we have depicted a collection of vectors which are all equal
to each other.

We need to introduce some notation. If A and B are points in space, then −→AB denotes
the vector with initial point A and terminal point B as depicted in Figure 1.6.

From our discussion of the parallelogram earlier, it is clear that if u =
[a1, a2, . . . , an] is a vector with terminal point at A and v = [b1, b2, . . . , bn] is a vector
with terminal point at B, then

−→
AB = v − u = [b1 − a1, b2 − a2, . . . , bn − an].

With just these few facts we are capable of proving many standard geometric
results.
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Figure 1.5 A collection of equal vectors.

Figure 1.6 A vector with initial point at A and terminal point at B.

Example 1.7 We prove that the midpoints of all the sides of any quadrilateral form
a parallelogram.
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Proof 1.4 Consider a quadrilateral with points P,Q,R and S. Set T to be the mid-
point of PQ, U to be the midpoint of QR, V to be the midpoint of RS and W to be
the midpoint of SP (see Figure 1.7).

Figure 1.7 A quadrilateral PQRS with parallelogram TUVW .

We leave as an exercise the fact that

−→
PQ+−→QR +−→RS +−→SP = 0.

Notice also that

−→
TU = 1

2
−→
PQ+ 1

2
−→
QR and −−→VW = 1

2
−→
RS + 1

2
−→
SP .

But then

−→
TU +−−→VW = 1

2(−→PQ+−→QR +−→RS +−→SP ) = 1
20 = 0,

which implies that −→TU = −−−→VW . This last equation proves half the result, since

a. The length of TU = |−→TU | = | − −−→VW | = |−−→VW | = the length of VW and

b. −−→VW is a scalar multiple of −→TU , implies −−→VW and −→TU are parallel, and so VW
and TU are parallel.

In a similar manner one derives the vector equation −−→UV = −−−→WT to get that the
remaining two opposite sides are equal in length and parallel. �

EXERCISES

1. Prove if u = [a1, a2, . . . , an] is a vector with terminal point at A and v =
[b1, b2, . . . , bn] is a vector with terminal point at B, then
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−→
AB = [b1 − a1, b2 − a2, . . . , bn − an].

2. Use vectors to prove the following statement: The diagonals of a rhombus are
perpendicular.

3. Use vectors to prove the following for any triangle ABC : If D is the midpoint
of AB and E is the midpoint of BC, then DE is parallel to AC.

4. Use vectors to prove that the altitude of an isosceles triangle bisects the base
(hint: use components).

5. Use vectors to prove the following (refer to the diagram): If ∆ABC is a right
triangle, then d = a2

c .

�
�
�
�
�
�
�
�
�
H
HHH

HHH
HHH

HHH
HHH

HH

H�

s

s

ss
� -A

B

CD
c

d

a b

6. Referring to the diagram below, show by induction that the vector v = v1 +
v2 + · · ·+ vk.

�
�
�
�
�
�
�
�
��
���

���
��:H

HHH
HHH

Hj
�
�
�
�
�
�
�
�
�
��HH

HH
H
HH

H
HY

�
�

�
�
�
�	

H
HHH

HHH
Hj

v1

v2 v3

vk−1vk

v

7. Verify that the standard basis vectors ei (i = 1, 2, . . . , n) for Rn are unit vectors.
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8. Referring to the diagram below depicting an arbitrary closed polygonal set of
vectors, show that v1 + v2 + · · ·+ vk = 0 (use the previous exercise).

�
�
�
�
�
�
�
�
��
���

���
��:HHH

HHHH
Hj
�
�
�
�
�
�
�
�
�
��HH

H
HH

H
HH

HY�
�

�
�
��	HH

HH
H
HH

HY

v1

v2 v3

vk

1.4 SECOND VECTOR SPACE: MATRICES

Here now is our second example of what later will be called a vector space. First we
define a matrix.

Definition 1.8 An m× n matrix is a rectangular array of scalars consisting of m
rows and n columns. We say the dimensions of the matrix are “m-by-n or m× n.”.

Example 1.8
[
−1 π 6√

3 −1.2 3/4

]
is an example of a 2× 3 matrix.

There are several useful ways of representing a matrix. The most descriptive (and
most cumbersome) is the following:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 .
Each scalar aij is called the ijth entry of the matrix where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A simpler notation for a matrix is [aij ]. We often represent a matrix simply by A.
Another useful way to represent a matrix is by its rows or by its columns:

A =


r1
r2
...
rm

, where ri = [ai1 ai2 · · · ain] (i = 1, 2, . . . ,m), or
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A = [c1 c2 · · · cn], where cj =


a1j
a2j
...

amj

 (j = 1, 2, . . . , n).

We are now ready to define our second vector space.

Definition 1.9 Consider m× n matrices for fixed positive integers m and n. Then

• Matrices are the elements of the set

Mmn = {[aij ] : aij ∈ R}.

• Matrix Addition is defined entry-wise as follows:

[aij ] + [bij ] = [aij + bij ].

• Scalar Multiplication is defined entry-wise as follows: If c is a scalar, then

c[aij ] = [caij ].

Example 1.9 If A =
[

1 2 3
4 5 6

]
and B =

[
−1 3 2

2 −5 1

]
, then −A+ 3B equals

(−1)
[

1 2 3
4 5 6

]
+ (3)

[
−1 3 2

2 −5 1

]

=
[
−1 −2 −3
−4 −5 −6

]
+
[
−3 9 6

6 −15 3

]
=
[
−4 7 3

2 −20 −3

]
.

Definition 1.10 Two matrices [aij ], [bij ] ∈ Mmn are equal if they have the same
dimensions and aij = bij for all i and j.

The following theorem proves that Mmn is (what we will later call) a vector space:

Theorem 1.4 For Mmn as defined above the following properties hold:

0. For all A,B ∈Mmn and scalar a, we have A+B, aA ∈Mmn.

1. For all A,B ∈Mmn, A+B = B + A.

2. For all A,B,C ∈Mmn, (A+B) + C = A+ (B + C).

3. There exists 0mn ∈Mmn, such that for all A ∈Mmn, A+ 0mn = A.

4. For each A ∈Mmn there is a B ∈Mmn such that A+B = 0mn.



Examples of Vector Spaces � 17

5. For all A,B ∈Mmn and scalar a, a(A+B) = aA+ aB.

6. For all A ∈Mmn and scalars a, b, (a+ b)A = aA+ bA.

7. For all A ∈Mmn and scalars a, b, (ab)A = a(bA).

8. For all A ∈Mmn, 1A = A.

Proof 1.5 We prove a few items to give the reader insight into the proper approach.
The rest are left as exercises. First, set A = [aij ] and B = [bij ]. To prove 1, notice
that

A+B = [aij ] + [bij ] = [aij + bij ] = [bij + aij ] = [bij ] + [aij ] = B + A.

To prove 3, take 0mn to be the m × n matrix filled with 0’s. To prove 7, notice
that

(ab)A = (ab)[aij ] = [(ab)aij ] = [a(baij)] = a[baij ] = a(b[aij ]) = a(bA).

�

We remark that Rn is just a particular example of Mmn. Namely, Rn = M1n or Mn1.
This is illustrated below:

[a1, a2, . . . , an] = [a1 a2 · · · an] =


a1
a2
...
an

 .

1.4.1 Special Matrix Families

We now introduce some terminology and designate names to some special matrices.

Definitions and Examples:

1. The m× n zero matrix, written 0mn, is a matrix filled with 0’s. For example,
the 2× 3 zero matrix is

023 =
[

0 0 0
0 0 0

]
.

2. The principal diagonal of a matrix is comprised of the entries of the form
aii. In the following example, the asterisks form the principal diagonal: ∗ 1 2 3

1 ∗ 2 3
1 2 ∗ 3

 .
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3. A matrix is square if it has the same number of rows as columns. An example
of a 3× 3 square matrix is  1 2 3

2 1 3
3 1 2

 .
4. A diagonal matrix is a square matrix with the property that every entry off

the diagonal is zero. Formally, aij = 0 for i 6= j. An example of a 3×3 diagonal
matrix is  1 0 0

0 −1 0
0 0 2

 .
5. The identity matrix, written In is an n × n diagonal matrix with 1’s on the

diagonal. Formally,

aij =
{

0, if i 6= j
1, if i = j

The 3× 3 identity matrix is

I3 =

 1 0 0
0 1 0
0 0 1

 .
6. A scalar matrix is any matrix of the form aIn where a is a scalar. An example

of a 3× 3 scalar matrix is −2 0 0
0 −2 0
0 0 −2

 = −2I3.

7. An upper triangular matrix is a square matrix with 0’s below the diagonal.
Formally, aij = 0 if i > j. An example of a 3× 3 upper triangular matrix is 1 −2 4

0 −1 0
0 0 2

 .
8. A lower triangular matrix is a square matrix with 0’s above the diagonal.

Formally, aij = 0 if i < j. An example of a 3× 3 lower triangular matrix is 1 0 0
4 −1 0
−1 5 2

 .
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9. The transpose of an m×n matrix A, written AT , is an n×m matrix with the
property that its ijth entry is the jith entry of A. Formally, if A = [aij ] and
AT = [bij ], then bij = aji for all i and j. Some examples of taking the transpose
of a matrix are 1 2 3

4 5 6
7 8 9


T

=

 1 4 7
2 5 8
3 6 9

 ,
 1 2 3 1

4 5 6 3
7 8 9 2


T

=


1 4 7
2 5 8
3 6 9
1 3 2

 .

10. A symmetric matrix A has the property that AT = A. Formally, aij = aji
for all i and j. Note that this definition implicitly requires that A be a square
matrix. An example of a 3× 3 symmetric matrix is 1 −2 4

−2 −1 0
4 0 2

 .
11. A skew symmetric matrix A has the property that AT = −A. Formally,

aij = −aji for all i and j. Note that this definition also requires A to be a
square matrix. Furthermore, one can easily show that such a matrix must have
0’s on the diagonal. An example of a 3× 3 skew symmetric matrix is 0 1 −2

−1 0 3
2 −3 0

 .

We list below some basic properties of transposition:

Theorem 1.5 If A,B ∈Mmn and a is a scalar, then

i.
(
AT
)T = A.

ii. (A+B)T = AT +BT .

iii. (aA)T = aAT .

Proof 1.6 We prove iii. and leave the rest as exercises. Set A = [aij ]. Then

(aA)T = [aaij ]T = [aaji] = a[aji] = aAT .

�
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EXERCISES

1. Consider the following matrices:

A =

 1 −2 3
0 1 0
1 −1 3

 , B =

 2 −1 1
1 −1 3
−1 1 0

 , C =

 1 −1
2 0
0 −3

 ,

D =
[

2 −2 0
−1 2 3

]
, E =

 1
4
−3

 , F =
[

1 −3 2
]
.

Compute (if possible) A + B, C + D, −3C, 2A− 3B, B + 2C, (A− B)T , and
ET + 2F .

2. Consider the following matrices:

A =
[

1 2 3
0 1 0

]
, B =


0 1 −2 0
1 1 0 3
−2 0 0 1

0 3 1 0

 , C =

 0 1 −2
−1 0 −3

2 3 0

 ,

D =
[

1 1
0 1

]
, E =

 1 0 0
2 0 0
−3 0 0

 , F =

 2 3 −1
0 1 −4
0 0 1

 ,

G =

 −2 0 0
0 3 0
0 0 0

 , H =
[

0 0
0 0

]
, K =

[
−1 0

0 3

]
.

List the matrices which meet each of the following criterion: square, diagonal,
upper triangular, lower triangular, symmetric and skew-symmetric.

3. Let A be a square matrix.

a. Show that 1
2(A+ AT ) is symmetric.

b. Show that 1
2(A− AT ) is skew-symmetric.

c. Use parts a. and b. to explain why any square matrix can be expressed as a
sum of a symmetric matrix and a skew-symmetric matrix.

4. Using Exercise 3, express B =
[

1 3
0 −2

]
as a sum of a symmetric and skew-

symmetric matrix.
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5. Prove that a skew-symmetric matrix has 0’s on its diagonal.

6. Show that if a ∈ R and A, B are symmetric matrices, then so is aA+B.

7. Show that if A and B are skew-symmetric matrices, then so is aA+ bB, for any
scalars a, b.

8. Show that ifA andB are skew-symmetric andAB = BA, thenAB is symmetric.

9. Prove properties 0, 2, 4–6 and 8 of Theorem 1.4.

10. Prove properties i and ii of Theorem 1.5.

1.5 MATRIX MULTIPLICATION

Here, we present another operation applicable in Mmn in which the inputs are two
matrices and the output is another matrix. Although this is not an operation indica-
tive of a vector space, it is an essential ingredient in what will follow.

Definition 1.11 Let A = [aij ] ∈ Mmn and B = [bij ] ∈ Mnr. Then the product
C = [cij ] = AB ∈Mmr is defined as follows:

cij =
n∑
k=1

aikbkj .

Notice that to perform matrix multiplication on matrices, it is necessary that the
number of columns in A be equal to the number of rows in B and the resulting matrix
has the same number of rows as A and the same number of columns as B. Perhaps a
simpler way to remember the entries of C is that the ijth entry of C is obtained by
taking the dot product of the ith row of A with the jth column of B. Conversely, one
can define dot product in terms of matrix multiplication. Indeed, if v, w ∈ Rn, then
v ·w = vTw, where v and w are viewed as n× 1 column matrices. This is sometimes
a useful representation of dot product when demonstrating certain proofs.

Example 1.10 [
1 2 3
4 5 6

] 1 −1 1
−1 0 1

0 1 1



=
[

(1)(1) + (2)(−1) + (3)(0) (1)(−1) + (2)(0) + (3)(1) (1)(1) + (2)(1) + (3)(1)
(4)(1) + (5)(−1) + (6)(0) (4)(−1) + (5)(0) + (6)(1) (4)(1) + (5)(1) + (6)(1)

]

=
[
−1 2 6
−1 2 15

]
.
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We now list some basic properties of matrix multiplication:

Theorem 1.6 For matrices A, B, C and I (the identity matrix) of the appropriate
dimensions the following statements are true:

i. A(BC) = (AB)C.

ii. A(B + C) = AB + AC and (B + C)A = BA+ CA.

iii. a(AB) = (aA)B = A(aB).

iv. AI = A and IA = A.

v. (AB)T = BTAT .

Proof 1.7 We prove some of the statements and leave the rest as exercises. First,
we establish the notation A = [aij ], B = [bij ] and C = [cij ]. To prove ii, we first set
our dimensions: A ∈Mmn and B,C ∈Mnr. Then

A(B + C) = [aij ]([bij ] + [cij ]) = [aij ][bij + cij ]

=
[

n∑
k=1

aik(bkj + ckj)
]

=
[

n∑
k=1

(aikbkj + aikckj)
]

=
[

n∑
k=1

aikbkj +
n∑
k=1

aikckj

]

=
[

n∑
k=1

aikbkj

]
+
[

n∑
k=1

aikckj

]
= AB + AC.

Using the same notation and dimensions, we prove v. To ensure lucidity, we also
establish the notation: BT = [dij ] and AT = [eij ] where dij = bji and eij = aji for all
i and j. Then

(AB)T =
[

n∑
k=1

aikbkj

]T
=
[

n∑
k=1

ajkbki

]
=
[

n∑
k=1

ekjdik

]

=
[

n∑
k=1

dikekj

]
= [dij ][eij ] = BTAT .

�

We warn the reader that there are certain very basic properties which matrix
multiplication does not enjoy. For one, we do not have the commutative property,
i.e. that AB = BA is not true in general, even for square matrices.

Example 1.11 Set A =
[

1 0
0 0

]
and B =

[
0 1
0 0

]
. Then one can easily check

that AB 6= BA.
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A second property that we do not have for matrix multiplication is the cancel-
lation property, i.e. AB = AC does not necessarily imply that B = C (exercise).

We state two facts whose proofs will be left as an exercise.

Lemma 1.1 Let A ∈ Mmn and B ∈ Mnr. If B = [c1 c2 . . . cr] (in columns), then
AB = [Ac1 Ac2 . . . Acr] (in columns).

Lemma 1.2 Let A = [c1 · · · cn] ∈ Mmn (in columns) and u = [a1, . . . , an] = a1
...
an

 ∈ Rn. Then Au = a1c1 + · · ·+ ancn.

We are now in a position to define exponentiation for square matrices.

Definition 1.12 Let A ∈ Mnn and k be a positive integer. We define matrix expo-
nentiation as follows:

• A0 = I

• A1 = A

• A2 = AA

• In general, for positive integer k, Ak = AA · · ·A︸ ︷︷ ︸
k times

.

We state without proof (although they can be easily verified by induction) the
usual properties of exponentiation:

Theorem 1.7 For a square matrix A the following are true:

i. AkAl = Ak+l.

ii. (Ak)l = Akl.

EXERCISES

1. Consider the following matrices:

A =
[

1 0 −1
2 3 1

]
B =

[
1 3
0 −2

]
.

a. If possible, compute AB and BA.

b. Compute B3.
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2. Consider the matrices listed below:

A =

 1 2
−3 0

0 1

 B =

 1 0 −1
−2 1 1

1 −2 2

 C =
[

1 2 −1
−2 1 1

]
.

Compute the following: 2A− CT and (AC)T +B.

3. Consider the following matrices:

A =

 1 0 −1
2 3 1
3 −1 2

 , B =

 0 −1
2 1
3 −1

 , C =
[

0 −2 3
−1 0 2

]
,

D =
[
−1 1

0 2

]
, E =

 1
4
−3

 , F =
[

1 −3
]
.

Compute (if possible) AB, AC, AD, AE, AF , BA, BC, BD, BE, BF , CA,
CB, CD, CE, CF , DA, DB, DC, DE, DF , EA, EB, EC, ED, EF , FA, FB,
FC, FD, FE, ABC, BDC, ACD, BTA, ACT , DBT , DCT , 2A(B +CT ), D3,
2D2, and (2D)2.

4. Give an example which illustrates that the Cancellation Property fails for matrix
multiplication.

5. Prove that if A and B are symmetric and AB = BA, then AB is symmetric.

6. Prove that the product of two upper-triangular matrices is upper-triangular.

7. Let A,B ∈ Mmn. Prove that if for all i = 1, . . . , n we have Aei = Bei, then
A = B.

(Hint: Use Lemma 1.1.)

8. Prove the following statement: Let A and B be square matrices. If AB = A
and BA = B then A2 = A.

9. Use induction to prove that for any integer n ≥ 0 and square matrix A, we have
(−A)n = (−1)nAn.

10. Prove by induction that (An)T = (AT )n, for any square matrix A and positive
integer n.

11. Show that if A ∈ Mnn and AB = BA for all B ∈ Mnn, then A = aI for some
scalar a.
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12. Prove properties i, iii and iv of Theorem 1.6.

13. Prove Lemma 1.1.

14. Prove Lemma 1.2.

15. Prove Theorem 1.7.
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C H A P T E R 2

Matrices and Linear
Systems

In this chapter, we continue introducing computational skills relevant to lin-
ear algebra. In Section 2.1, system of equations are introduced. In Section 2.2,

the main algorithm for solving systems of equations is presented called Gaussian
Elimination. Section 2.3 is an application section on Markov Chains. A method is
presented for solving in the case that the transition matrix is regular. Section 2.4 is
another application section introducing the Simplex Method on a sub-collection of
linear programming problems. In Section 2.5, the discussion is less computational and
more theoretical where matrix equivalence is discussed, a notion necessary for further
theoretical developments. In Section 2.6, the inverse of a matrix is presented, when it
exists and how to find it. In Section 2.7, the Simplex Method is revisited and redone
using matrix multiplication in place of elementary row operations. In Section 2.8, lin-
ear systems of equations are divided into homogeneous and non-homogeneous. The
rank of a matrix is also presented including its theoretical significance. In Section 2.9,
the determinant of a matrix is computed in several ways and a connection to the ex-
istence of an inverse for a matrix is made. In Section 2.10, certain linear systems
are solved entirely in terms of determinant and the inverse of a matrix is computed
entirely in terms of determinant, when it exists. One final numerical methods appli-
cation is presented in Section 2.11 called the LU factorization.

2.1 SYSTEMS OF LINEAR EQUATIONS

Our main goals in this chapter are to give a systematic way of solving linear systems
and show their intimate connection to matrices, but before we can do this we need
to introduce relevant terminology and notation.
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Definition 2.1 An m× n system of linear equations has the form

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

,

where the x1, x2, . . . , xn represent the unknowns and the aij’s and bi’s are scalars. The
number of equations is m and the number of unknowns is n.

There are several other ways of representing a system of linear equations which
we present here.

1. Vector Representation:

c1x1 + c2x2 + · · ·+ cnxn = b with each cj =


a1j
a2j
...

amj

 and b =


b1
b2
...
bm


2. Matrix Representation:


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm


or even simpler, we just write AX = B for the matrices we listed in the matrix
equation. The matrix A is called the coefficient matrix. At times we may write
Ax = b where we view x and b as tuples.

3. Augmented Matrix:


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣∣
b1
b2
...
bm


Example: Consider the following 2× 3 system of linear equations:

2x1 + x2 − x3 = 0
x1 − 3x2 + x3 = 7 ,
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The vector representation of this system is

[
2
1

]
x1 +

[
1
−3

]
x2 +

[
−1

1

]
x3 =

[
0
7

]
.

The matrix representation of this system is

[
2 1 −1
1 −3 1

] x1
x2
x3

 =
[

0
7

]
.

The augmented matrix associated with this system is

[
2 1 −1
1 −3 1

∣∣∣∣∣ 0
7

]
.

Definition 2.2 X0 = [c1, c2, . . . , cn], where the ci’s are scalars, is a solution to

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

,

if when we substitute c1, . . . , cn in for x1, . . . , xn, then the following equations are
true:

a11c1 + a12c2 + · · ·+ a1ncn = b1
a21c1 + a22c2 + · · ·+ a2ncn = b2

...
am1c1 + am2c2 + · · ·+ amncn = bm

.

To rephrase in our simplified notation, X0 is a solution to AX = B if AX0 = B as
matrices.

The set of all solutions to a particular system of linear equations is called its
solution set.

Example 2.1 [1,−2, 0] is a solution to the 3× 3 linear system

2x1 + x2 − x3 = 0
x1 − 3x2 + x3 = 7
−3x1 + x2 + x3 = −5

,
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since

2(1) + (−2)− (0) = 0
(1)− 3(−2) + (0) = 7
−3(1) + (−2) + (0) = −5

.

In fact, we will see that this is the only solution to this linear system. Hence, the
solution set to this linear system is {[1,−2, 0]}.

In Section 2.2, we will give an algorithmic method for finding the solution set of
any linear system. We often use the variables x and y in place of x1 and x2, and x, y
and z in place of x1, x2 and x3 in the case of systems with two or three unknowns.
The next theorem gives a classification of the possible solution sets to a system of
linear equations.

Theorem 2.1 Given any system of linear equations, there are only three possibilities
for its solution set:

i. No solution.

ii. Exactly one solution.

iii. An infinite number of solutions.

Proof 2.1 In the next section, we will see concrete examples of linear systems with
no solution, one solution and infinite solutions. Thus, to prove this result it suffices to
show that if a linear system has at least two solutions, then it has an infinite number of
solutions. Suppose X0 and X1 are two solutions to the linear system AX = B. Define
Xa = X0 + a(X0 − X1) for any scalar a. First notice that each Xa is a solution to
AX = B. Indeed, using properties of matrices we see that

AXa = A(X0 + a(X0 −X1)) = AX0 + aAX0 − aAX1 = B + aB − aB = B.

Furthermore, If a 6= b then Xa 6= Xb (we leave this as an exercise). Since there are an
infinite number of scalars a, this implies that we have an infinite number of solutions.
�

Referring to Theorem 2.1, when case i occurs we say the system of linear equations
is inconsistent, otherwise we call the system consistent.

EXERCISES

1. Decide which of the following systems of equations are linear:

a.


2x+ y − (1/2)z = 0
x− 3y + z = 7/2
−3x+ y + z = −5

b.
{

2x− 8√y + 4z = 5
x− 4y + 2z = 0
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c.
{
x+ y − (1/z) = 0
x− y + 2z = −3 d.

{ √
2x− 8y + 4z = 5

x− 4y + 2.125z = 0

e.
{
πx− 3y + z = 7
−3x+ y + z = (−5)2/3 f.

{
2x− xy + z = 5
x− y + z = −1

g.
{
x− y + z−2 = 7
x+ y + z = 8 h.

{
xyz = 1

x+ y + z = 1

2. Rewrite each of the linear systems of equations below in a vector, matrix and
augmented representation:

a.


2x+ y − z = 0
x− 3y + z = 7
−3x+ y + z = −5

b.
{

2x− 8y + 4z = 5
x− 4y + 2z = 0

c.
{

πx+
√

2y = e
(1/2)x− 3.159y = 0

3. Recover the linear systems of equations from the following augmented matrices:

a.

 1 2 −3
4 1 5
2 −3 −1

 b.

 1 −1 0 2
0 0 1 1
0 0 0 0

 c.

 1 −1 2 0
0 3 0 1
0 5 0 0



d.

 1 0 1 0
0 0 1 0
0 −3 0 1

 e.

 1 0 0
0 2 0
0 0 1

 f.

 1 −2 0 3 0
0 0 1 5 0
0 1 −1 0 1


4. Verify that [−2, 0,−2, 1] is a solution to the following linear system of equations:


x1 + x2 + x3 + x4 = −3
−2x1 − x2 + x3 + 3x4 = 5
3x1 + 4x2 + 6x3 + 8x4 = −10

5. Complete the proof of Theorem 2.1, i.e. show that if a 6= b, then Xa 6= Xb (do
this by proving the contrapositive).
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2.2 GAUSSIAN ELIMINATION

We are ready to present a systematic way for solving systems of linear equations. This
method is simple and will be used quite regularly throughout the remainder of the
book. First, recall that every system of linear equations has an associated augmented
matrix:

Example 2.2 The augmented matrix associated with the linear system


2x1 + x2 − x3 = 0
x1 − 3x2 + x3 = 7
−3x1 + x2 + x3 = −5

is

 2 1 −1
1 −3 1
−3 1 1

∣∣∣∣∣∣∣
0
7
−5

 .

In solving a linear system we wish to manipulate the equations without altering
the solution set and arrive at a more “desirable” system of equations for which we
can readily identify the solution set. The operations below achieve this goal.

Definition 2.3 The following three operations are called elementary row opera-
tions which can be applied to a system of linear equations or the associated augmented
matrix:

1. Multiplying the ith equation (or ith row of the augmented matrix) by a non-zero
scalar a. The notation is aRi.

2. Switching the ith and jth equation (or ith and jth row of the augmented matrix).
The notation is Ri ↔ Rj.

3. Adding a scalar a times the ith equation to the jth equation (or adding a times
the ith row to the jth row of the augmented matrix). The notation is aRi +Rj.

Example: We illustrate the three operations in an example.

{
2x− y = 6
x+ 6y = −1

−3R2−→
{

2x− y = 6
−3x− 18y = 3

R1↔R2−→
{
−3x− 18y = 3

2x− y = 6
4R2+R1−→

{
5x− 22y = 27
2x− y = 6 .
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Notice that all information is retained if we apply the same operations to the
corresponding augmented matrix. We use the augmented matrix to make the process
slightly less tedious.

[
2 −1
1 6

∣∣∣∣∣ 6
−1

]
−3R2−→

[
2 −1
−3 −18

∣∣∣∣∣ 6
3

]

R1↔R2−→
[
−3 −18

2 −1

∣∣∣∣∣ 3
6

]
4R2+R1−→

[
5 −22
2 −1

∣∣∣∣∣ 27
6

]
.

When we wish to refer to an arbitrary elementary row operation, we will use the
notation op−→.

Theorem 2.2 Let AX = B be a system of linear equations and suppose that the
linear system CX = D is obtained by applying an elementary row operation to AX =
B. Then AX = B and CX = D have identical solution sets.

Proof 2.2 To demonstrate this theorem, we need to verify the theorem’s statement
for each of the three elementary row operations. Our tactic is to show that each
solution to AX = B is also a solution to CX = D and vice versa. The theorem is
clear for Ri ↔ Rj since rearranging the order of the equations should not have an
effect on the solution set. We will verify the theorem for the first operation and leave
the proof of the third operation as an exercise.

To do this we need the expanded notation for AX = B:



a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
ai1x1 + ai2x2 + · · ·+ ainxn = bi

...
am1x1 + am2x2 + · · ·+ amnxn = bm

.

Applying the operation aRi (a 6= 0) to the system AX = B, we obtain the system
CX = D:



a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
aai1x1 + aai2x2 + · · ·+ aainxn = abi

...
am1x1 + am2x2 + · · ·+ amnxn = bm

.
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Now, suppose that [c1, c2, . . . , cn] is a solution to AX = B. This means that



a11c1 + a12c2 + · · ·+ a1ncn = b1
a21c1 + a22c2 + · · ·+ a2ncn = b2

...
ai1c1 + ai2c2 + · · ·+ aincn = bi

...
am1c1 + am2c2 + · · ·+ amncn = bm

.

By properties of equality we can multiply the ith equation by a 6= 0 to obtain



a11c1 + a12c2 + · · ·+ a1ncn = b1
a21c1 + a22c2 + · · ·+ a2ncn = b2

...
aai1c1 + aai2c2 + · · ·+ aaincn = abi

...
am1c1 + am2c2 + · · ·+ amncn = bm

.

This last set of equations exhibits the fact that [c1, c2, . . . , cn] is also a solution to
CX = D. On the other hand, suppose that [c1, c2, . . . , cn] is a solution to CX = D.
This means that



a11c1 + a12c2 + · · ·+ a1ncn = b1
a21c1 + a22c2 + · · ·+ a2ncn = b2

...
aai1c1 + aai2c2 + · · ·+ aaincn = abi

...
am1c1 + am2c2 + · · ·+ amncn = bm

.

Since a 6= 0, we can multiply the ith equation by 1/a to obtain



a11c1 + a12c2 + · · ·+ a1ncn = b1
a21c1 + a22c2 + · · ·+ a2ncn = b2

...
ai1c1 + ai2c2 + · · ·+ aincn = bi

...
am1c1 + am2c2 + · · ·+ amncn = bm

.

This last set of equations exhibits the fact that [c1, c2, . . . , cn] is also a solution to
AX = B. �
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Corollary 2.1 Let AX = B be a system of linear equations and suppose that the
linear system CX = D is obtained by applying a finite number of elementary row
operation to AX = B. Then AX = B and CX = D have identical solution sets.

Proof 2.3 The proof follows by induction and Theorem 2.2 and is left as an exercise.
�

Using these elementary row operations, we wish to alter the augmented matrix so
that the solution to the associated linear system is evident. This altered augmented
matrix is a form which we now define:

Definition 2.4 A matrix A = [aij ] is in reduced row-echelon form if the follow-
ing conditions on the matrix are met:

1. Reading from left to right in each row, the first non-zero entry (if there is one)
in each row is 1. Each of these 1’s is called a pivot.

2. The entries above and below each pivot are 0’s.

3. Whenever aij and akl (i < k) are pivots for A, then j < k. We say that the
pivots form a “staircase”.

4. Reading from top to bottom, the rows entirely filled with zeros occur last.

Example 2.3 The following matrix is in reduced row echelon form:


1 0 −2 0
0 1 1 0
0 0 0 1
0 0 0 0

 .

An important fact about reduced row-echelon form is the following:

Theorem 2.3 Every matrix row reduces to exactly one row-echelon form.

We remark that the proof of Theorem 2.3 would involve showing that different
reduced row-echelon forms yield different solution sets (if we view these matrices as
augmented matrices) and then appeal to Theorem 2.2.

Now we are ready to state our method for solving any system of linear equations,
called Gaussian Elimination: Using elementary row operations convert the corre-
sponding augmented matrix for the linear system into reduced row-echelon form. We
will give below an example for each of the three types of solution sets of a linear
system.
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Example 2.4 Consider the linear system we introduced earlier:


2x1 + x2 − x3 = 0
x1 − 3x2 + x3 = 7
−3x1 + x2 + x3 = −5

.

The first thing one does is switch to the associated augmented matrix

 2 1 −1
1 −3 1
−3 1 1

∣∣∣∣∣∣∣
0
7
−5

 .
Loosely speaking, working from left to right (in columns) we attempt to put pivot

1’s on the principle diagonal and zeros above and below each of these 1’s:

 2 1 −1
1 −3 1
−3 1 1

∣∣∣∣∣∣∣
0
7
−5

 R1↔R2−→

 1 −3 1
2 1 −1
−3 1 1

∣∣∣∣∣∣∣
7
0
−5



−2R1+R2−→

 1 −3 1
0 7 −3
−3 1 1

∣∣∣∣∣∣∣
7

−14
−5

 3R1+R3−→

 1 −3 1
0 7 −3
0 −8 4

∣∣∣∣∣∣∣
7

−14
16



1R3+R2−→

 1 −3 1
0 −1 1
0 −8 4

∣∣∣∣∣∣∣
7
2

16

 (−1)R2−→

 1 −3 1
0 1 −1
0 −8 4

∣∣∣∣∣∣∣
7
−2
16



3R2+R1−→

 1 0 −2
0 1 −1
0 −8 4

∣∣∣∣∣∣∣
1
−2
16

 8R2+R3−→

 1 0 −2
0 1 −1
0 0 −4

∣∣∣∣∣∣∣
1
−2

0



(−1/4)R3−→

 1 0 −2
0 1 −1
0 0 1

∣∣∣∣∣∣∣
1
−2

0

 2R3+R1−→

 1 0 0
0 1 −1
0 0 1

∣∣∣∣∣∣∣
1
−2

0



(1)R3+R2−→

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
1
−2

0


Now that we have the matrix in reduced row-echelon form we convert back to the

associated linear system and we have our solution:



Matrices and Linear Systems � 37


x1 = 1
x2 = −2
x3 = 0

Notice that we tried to avoid introducing fractions in this procedure. For instance,
our first step in the process could have been (1/2)R1 which would have produced a
pivot 1 in the appropriate place. But the rest of the process would have been much
more tedious having to work with fractions. We remark, though, that regardless of
how one arrives at reduced row-echelon form Theorem 2.3 guarantees that we always
obtain the same one.

Example 2.5 Having given an example of a linear system with one solution, we
now give an example of a linear system with no solution. Consider the following
linear system:

{
2x− 8y + 4z = 5
x− 4y + 2z = 0

Converting to the augmented matrix, we begin the process:

[
2 −8 4
1 −4 2

∣∣∣∣∣ 5
0

]
R1↔R2−→

[
1 −4 2
2 −8 4

∣∣∣∣∣ 0
5

]

(−2)R1+R2−→
[

1 −4 2
0 0 0

∣∣∣∣∣ 0
5

]

At this point we can stop and conclude that there is no solution, for observe the
second row of the augmented matrix. As an equation it reads as 0 = 5 which is a clear
contradiction. Arriving at some sort of contradictory statement such as 0 = 5 tells
us that the system is inconsistent and has no solution, i.e. the solution set is empty.

In general, if at any point in the Gaussian Elimination process we should generate
a row of the form [0 0 · · · 0 | ∗], where ∗ is a non-zero number, then we can stop and
conclude the system has no solution.

Example 2.6 Finally, we give an example of a linear system with infinite solutions.
Take special care to note how we eventually present the solution set. Consider the
following linear system:

{
2x− 8y + 4z = 5
x− 4y + 2z = 0
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Converting to the augmented matrix we begin the process:

[
2 −8 1
1 −4 2

∣∣∣∣∣ 5
0

]
R1↔R2−→

[
1 −4 2
2 −8 1

∣∣∣∣∣ 0
5

]

(−2)R1+R2−→
[

1 −4 2
0 0 −3

∣∣∣∣∣ 0
5

]
(−1/3)R2−→

[
1 −4 2
0 0 1

∣∣∣∣∣ 0
−5/3

]

(−2)R2+R2−→
[

1 −4 0
0 0 1

∣∣∣∣∣ 10/3
−5/3

]

Now that the augmented matrix is in reduced row-echelon form we revert back to
the linear system:

{
x− 4y = 10/3
z = −5/3

The variables corresponding to the pivots will be called pivot variables. The pivot
variables will be the dependent variables and the non-pivot variables will be the inde-
pendent variables. The next step is to solve for the pivot variables:

{
x = 4y + 10/3
z = −5/3

The solution set to the linear system is then

{[4y + 10/3, y,−5/3] : y ∈ R}.

We have an infinite number of solutions to the linear system since we have an
infinite number of choices for y. For instance, setting y = −1 gives one solution to
the linear system, namely, [−2/3,−1,−5/3]. Each choice of y yields another solution
to the linear system. Oftentimes one replaces the independent variable y by a new
parameter t and exhibit the solution set as

{[4t+ 10/3, t,−5/3] : t ∈ R}.

Example 2.7 Consider the following linear system:


2x1 − x2 + x3 − x5 = 1

5x1 − 2x2 + 2x3 + x4 − x5 = 0
−2x1 + x2 − x3 − 3x4 − 2x5 = 2
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The corresponding augmented matrix is

 2 −1 1 0 −1
5 −2 2 1 −1
−2 1 −1 −3 −2

∣∣∣∣∣∣∣
1
0
2


One can compute that this augmented matrix has the following reduced row-

echelon form:

 1 0 0 0 0
0 1 −1 0 1
0 0 0 1 1

∣∣∣∣∣∣∣
−1
−3
−1


Now that the augmented matrix is in reduced row-echelon form we revert back to

the linear system:


x1 = −1

x2 − x3 + x5 = −3
x4 + x5 = −1

Solving for the pivot variables yields


x1 = −1
x2 = x3 − x5 − 3
x4 = −x5 − 1

The solution set to the linear system is then

{ [−1, x3 − x5 − 3, x3,−x5 − 1, x5] : x3, x5 ∈ R }.

As in the previous example, the solution set is infinite since we have an infinite
number of choices for x3 (and/or x5).

For better readability, as in the previous example, one can replace the independent
variables x3 and x5 by new parameters s and t to express the solution set as

{ [−1, s− t− 3, s,−t− 1, t] : s, t ∈ F}.

EXERCISES

1. Decide which of the following matrices is in reduced row-echelon form:

a.

 1 −1 0 2
0 0 1 1
0 0 0 0

 b.

 1 0 −3
0 1 5
0 0 0

 c.

 1 −1 2 0
0 0 0 1
0 0 0 0


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d.

 1 0 1 0
0 0 1 0
0 0 0 1

 e.

 1 0 0
0 2 0
0 0 1

 f.

 1 −2 0 3 0
0 0 1 5 0
0 0 0 0 1


2. Solve each of the following linear systems using Gaussian Elimination and give

a representation of each solution set:

a.
{

2x− y = −3
x+ 3y = 0 b.


x− 2y + z = 1
2x− 4y = −2
x+ 2z = 0

c.


4x− 2y + 2z = −3
2x+ 5y + z = 1
−2x+ y − z = 2

d.
{

2x1 + 3x2 − x3 + x4 = 6
3x1 + 2x2 + 2x3 + 7x4 = 2

e.


6x1 − 12x2 − 5x3 + 16x4 − 2x5 = −53
−3x1 + 6x2 + 3x3 − 9x4 + x5 = 29
−4x1 + 8x2 + 3x3 − 10x4 + x5 = 33

f.


x1 + x2 + x3 + x4 = −3
−2x1 − x2 + x3 + 3x4 = 5
3x1 + 4x2 + 6x3 + 8x4 = −10

g.


−7x1 − 28x2 − 4x3 + 2x4 − 10x5 = 3
−9x1 − 36x2 − 5x3 + 3x4 − 15x5 = 10
6x1 + 24x2 + 3x3 − 3x4 + 10x5 = 4

h.


2x1 − x2 + x3 − x5 = 1

5x1 − 2x2 + 2x3 + x4 − x5 = 0
−2x1 + x2 − x3 − 3x4 − 2x5 = 2

i.


2x− 2y + 2z = 3
−3x+ 3y − 3z = 2

2x− y + z = 0

j.


2x− 2y + z = 1
−3x+ y − 3z = 2

2x− y + z = 0
k.


x+ y + z = 2

2x− y − 4z = −1
−3x− 2y − z = 0

l.


−2x1 − 4x2 + x3 + 2x5 = 4
x1 + 2x2 − 2x4 − 7x5 = 2

x1 + 2x2 − x3 + 4x4 + 11x5 = −8
m.


3x+ y − z = 5
2x− y + z = 0

2x+ y + 2z = −2



Matrices and Linear Systems � 41

n.


x− y + z = 1

2x+ y − z = −1
−x− 2y + 2z = 0

o.


2x1 − x2 + x3 − x5 = 1

5x1 − 2x2 + 2x3 + x4 − x5 = 0
−2x1 + x2 − x3 − 3x4 − 2x5 = 2

p.


x1 − 2x2 + 2x4 = 0

2x1 − 5x2 − 2x3 + 4x4 − 3x5 = −1
x1 + 4x3 + 2x4 + 9x5 = −1

3. The general equation of a circle is x2+y2+ax+by = c. Use Gaussian Elimination
to find the equation of the circle passing through the points (−2, 1), (1, 1) and
(0,−1).

4. Consider the following matrices:

A =

 3 −1 −2
2 −2 1
1 −3 0

 B =

 1
1
2

 .
Use Gaussian Elimination to solve the linear system AX = B.

5. Use Gaussian Elimination to solve the following application problems:

a. I have 27 coins in my pocket made up of nickles and dimes which add up to
$2.15. How many of each coin do I have?

b. Buffalo Bob makes his home in a cabin by the Columbia river. The nearest
general store is 48 miles along the river by canoe. Traveling at a constant
speed, it takes him three hours to get to the store and four hours to return
home. Determine the speed of the river current.

c. I have 21 coins in my pocket made up of pennies, dimes and quarters whose
total value is $ 1.23. The number of pennies I have is one more than twice
the number of dimes. How many dimes do I have?

d. A grocer mixes three types of dried fruits together: Apricots valued at $ 2
per pound, bananas at $ 1 per pound, and papaya at $ 3 per pound. The
result is a 10 pound mixture valued at $ 2 per pound. The number of pounds
of apricots is one pound more than the number of pounds of bananas used.
How many pounds of each were used?

6. Verify Theorem 2.2 for the elementary row operations aRi (for a 6= 0) and
aRi +Rj .

7. Prove by induction Corollary 2.1.
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2.3 APPLICATION: MARKOV CHAINS

In this section, we will consider dynamic systems which can at any moment be in
exactly one of a finite number of states. Perhaps a simple example might be the
weather with states “sunny”, “cloudy” or “precipitating”. Suppose, in addition, that
we observe this system at discrete intervals (maybe once per hour, or day, or year,
etc.). We are concerned with the probabilities of changing from one of the states to
another and ultimately concerned with the probability of being in any of the finite
number of states in the long run.

Definition 2.5 Suppose a system can be in exactly one of the following m states:
s1, s2, . . . , sm. The transition probability, pij, represents the probability of chang-
ing from state sj to state si. Set P = [pij ] ∈ Mmm which is called the transition
matrix.

Note the following observations:

1. For all i and j, we have 0 ≤ pij ≤ 1.

2. The sum of the entries in any column of P equals 1.

3. The number pij represents a conditional probability, namely,

pij = p(state is now si | state was sj).

Example 2.8 A survey is done on adults and smoking. It was found that if someone
was smoking during one year, then there was a 70% chance that they would be smoking
next year. If someone was not smoking during one year, there was a 10% chance they
would be smoking next year.

Our system has two states,

s1 = smoking s2 = not smoking.

Our discrete interval for observation is one year. The survey says that p11 = 0.7
and p12 = 0.1. The other probabilities are inferred, i.e. p21 = 0.3 and p22 = 0.9 and
so we form the transition matrix

P =
[

0.7 0.1
0.3 0.9

]
.

What we are interested in is how the system will look in the long run, that is,
after an extended amount of time what is probability of being in each of the states. In
our example, we would like to know what percentage of the population will be smokers
and non-smokers in the long run.
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Suppose initially that 30% of our population smoke. We can represent this infor-
mation in a column vector

X0 =
[

0.3
0.7

]
←− Smokers
←− Non-smokers .

Using the information in P , let’s compute what the percentages will be like next
year. Of the 30% who smoke 70% will remain smokers, i.e. (0.7)(0.3) = 0.21 or 21%.
Of the 70% who do not smoke 10% will become smokers, i.e. (0.1)(0.7) = 0.07 or
7%. Hence, 21% + 7% = 28% of the population will smoke on the following year, and
therefore 72% will not smoke. We can represent these results as a vector.

X1 =
[

0.28
0.72

]
←− Smokers
←− Non-smokers .

Notice that we can use matrix multiplication to obtain X1:

X1 =
[

0.28
0.72

]
=
[

0.7 0.1
0.3 0.9

] [
0.3
0.7

]
= PX0.

This is certainly true for the successive observations as well.

X2 = PX1 =
[

0.7 0.1
0.3 0.9

] [
0.28
0.72

]
=
[

0.268
0.732

]
.

X3 = PX2 =
[

0.2608
0.7392

]
, X4 = PX3 =

[
0.2565
0.7435

]
, X5 = PX4 =

[
0.2539
0.7461

]
, etc.

Thus, the question is whether or not these vectors tend towards a fixed vector.
Before we get ahead of ourselves let’s formalize what we have defined and observed
thus far.

Definition 2.6

1. The column vector Xn =


a1n
a2n

...
amn

 is called the n-th state vector if for 1 ≤

i ≤ m, ain is the probability of being in state i after n discrete intervals of
observation of the system.
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2. A steady state vector, X∞, for a system with state vectors X1, X2, . . . is
defined as

X∞ = lim
n→∞

Xn,

when the limit exists. We will forego the formal definition of a limit and simply
say that the limiting steady state vector is a constant vector which the state
vectors are tending towards.

3. Any vector v ∈ Rm is called a probability vector if its entries are non-
negative and sum up to 1 (thus Xn and X∞ are particular probability vectors).

Theorem 2.4 Given a system with transition matrix P and state vectors Xn,

i. Xn = PXn−1

ii. Xn = P nX0.

Proof 2.4 Part i is evident and part ii is proved by induction (and left as an easy
exercise). �

We would like to focus on systems where the state vectors are tending towards
a fixed steady state vector. Our hope is to find certain transition matrices which
guarantee a steady state vector. As we shall see below, our hopes are fulfilled and
furthermore, we present a simple method for computing the steady state vector. The
following matrices are the ones we consider:

Definition 2.7 A transition matrix P is regular if for some positive integer k, P k

has no zero entries.

Example 2.9 In the previous example on smoking, certainly P is regular since P 1

has no zero entries.

Example 2.10 The following transition matrix is regular:

P =


0 1/2 1/2 1/3

1/3 0 0 1/3
1/3 0 0 1/3
1/3 1/2 1/2 0

 .
Indeed,

P 2 =


4/9 1/6 1/6 1/3
1/9 1/3 1/3 1/9
1/9 1/3 1/3 1/9
1/3 1/6 1/6 4/9

 ,
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which has no zero entries.

We shall see other examples below, but first we require the foundational result,
namely that a regular transition matrix guarantees a steady state vector. The proof
is somewhat technical and requires a basic knowledge of real analysis and limits. For
this reason we delegate the proof to an appendix at the back of the text and simply
state the result here.

Theorem 2.5 If P is a regular transition matrix, then P n converges to a matrix Q
as n→∞ and has the following properties:

i. The columns of Q are identical probability vectors.

ii. Each entry of Q is positive.

Let’s see why this theorem guarantees a steady state vector for the system.

Corollary 2.2 Let P and Q be as in Theorem 2.5 and set Q = [q q · · · q] with its
identical columns. Then the following hold:

i. For any probability vector X, we have QX = q.

ii. X∞ = q.

Proof 2.5 For any probability vector X =

 a1
...

am

, by Lemma 1.2,

QX = a1q + · · ·+ amq = (a1 + · · ·+ am)q = 1q = q.

Therefore, by Lemma 2.4,

X∞ = lim
n→∞

Xn = lim
n→∞

P nX0 = QX0 = q.

�

Notice that Corollary 2.2 proves something stronger than just the existence of a
steady state vector. By observing the proof, we see that we have shown that regardless
of how the system is initially started it will always tends towards the same steady
state vector.

Now we give a simple method for finding the steady state vector in the case when
we know it exists (as in the case of a regular transition matrix).

Theorem 2.6 If P is a transition matrix which has a steady state vector, then that
steady state vector is the unique (probability vector) solution to PX = X or equiva-
lently, the system (I − P )X = 0.
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Proof 2.6 Notice that

X∞ = lim
n→∞

Xn = lim
n→∞

PXn−1 = P lim
n→∞

Xn−1 = PX∞.

Therefore, PX∞ = X∞ or (I−P )X∞ = 0, and so X∞ is a solution to (I−P )X =
0. Now suppose that we have another probability vector Y which is a solution to
(I − P )X = 0. Then PY = Y and certainly P nY = Y for all n = 1, 2, 3, . . .. But
then by Theorem 2.2,

Y = lim
n→∞

P nY = QY = q = X∞.

�

Example 2.11 Let’s revisit our earlier example on smoking adults in which we found

the (regular) transition matrix to be
[

0.7 0.1
0.3 0.9

]
. Then

I − P =
[

0.3 −0.1
−0.3 0.1

]
which reduces to

[
1 −(1/3)
0 0

]
.

Hence, the solution set is
{ [

(1/3)b
b

]
: b ∈ R

}
. The unique probability vector

solution has the property that (1/3)b+ b = 1 and so b = 3/4. Hence, X∞ =
[

1/4
3/4

]
.

Therefore, in the long run, 25% of the population will be smokers.
Of course, we can simply add the equation a+ b = 1 to the system (I − P )X = 0

to immediately get this final result.

Example 2.12 Consider a particle moving along the graph below:

s���
�
�
�
�
�
�
�
�
�

s���
�
�
�
�
�
�
�
�
�

s s

3 4

1 2

Suppose it travels from one vertex of the graph to another and observations are
made after each transition is completed. In addition, assume that the particle has
an equal probability of traveling to any of the other vertices (and must transition).
We wish to know in the long run what are the chances the particle will be at each
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of the vertices when we observe the system. Let si = the particle is at vertex i (for
i = 1, 2, 3, 4). Then


0 1/2 1/2 1/3

1/3 0 0 1/3
1/3 0 0 1/3
1/3 1/2 1/2 0

 ,
and as we saw earlier P is regular, since P 2 has no zero entries. Then

I − P =


1 −1/2 −1/2 −1/3

−1/3 1 0 −1/3
−1/3 0 1 −1/3
−1/3 −1/2 −1/2 1

 which reduces to


1 0 0 −1
0 1 0 −2/3
0 0 1 −2/3
0 0 0 0

 .

Hence, the solution set is




d
(2/3)d
(2/3)d
d

 : d ∈ R

 .
The unique probability vector solution has the property that d+ (2/3)d+ (2/3)d+

d = 1 and so d = 3/10. Hence,

X∞ =


3/10
1/5
1/5
3/10

 .
Observe that vertices 1 and 4 should have the higher probabilities of 20%, since

there are more connections to vertices 1 and 4 and thus more ways to get to them.

EXERCISES

1. Emotional behavior is observed in a psychiatric patient and the following data
is collected:

a. Given that the patient is happy one day there is a 30 % chance the patient
will remain happy the next day and a 40 % chance the patient will become
angry the next day.

b. Given that the patient is angry one day there is an 80 % chance the patient
will become depressed the next day and a 10 % chance the patient will
become happy the next day.
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c. Given that the patient is depressed one day there is a 90 % chance the
patient will remain depressed the next day and an 8 % chance the patient
will become angry the next day.

Compute the long term probabilities for the patient’s three emotional states.

2. There are three spotlights flickering in a parking lot. Observations of the lights
are made in regular increments. Given that one of the lights is on, there is a
50–50 chance either two or three lights will be on in the next time increment.
Given two lights are on, there is a 2 in 3 chance two lights will remain on in the
next time increment, otherwise one light will be on. If there are three lights on,
in the next time increment there is always one light on. Find the probability
that one, two or three lights are on in any given time increment.

3. Repeat the work done in the section for the Example 2.12 concerning a particle
and a graph, but this time allow for the possibility that the particle remain at
the vertex it is presently at for the next observation (with equal probability).

4. Repeat the work done in the section concerning a particle and graph, but now
use the following graph:

s���
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�
�
�
�
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�

s s

s5 4 3

1 2

5. Consider the following floor plan with five numbered rooms which will serve as
a maze for a mouse:

1

2

3

4

5
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The gaps in the walls represent passageways from one room to the other. Now
suppose we place a mouse in the maze and we observe his movement. At regular
intervals we observe what room the mouse is in (even if he remains in the same
room). Suppose the mouse has an equal probability of either remaining in the
room or transitioning to each of the connected rooms.
Compute the probabilities for the mouse being in each of the rooms in the long
run (hint: first, view the rooms as vertices and convert the floor plan into a
graph).

6. Prove Theorem 2.4.ii

Project for Section 2.3:

Consider the following multilevel floor plan with numbered rooms which will serve as
a maze for a mouse:

Level One

6

6

Level Two

?

66

?

Level Three

6

?

6

?

Level Four

?

?

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

The gaps in the walls represent passageways from one room to the other. An up arrow
indicates the mouse can traverse up to the next level into the room directly above
and a down arrow indicates the mouse can traverse down to the previous level into
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the room directly below. Now, suppose, we place a mouse in the maze and assume at
some fixed increment of time that the mouse has an equal probability of transitioning
to each of the connected rooms.

1. Over an extended period of time, compute in which room the mouse spends
most of his time and where he spends the least of his time.

2. Answer the same question as part a, however assume now that the mouse can
remain in the same room with equal probability to transitioning to each of the
connected rooms.

2.4 APPLICATION: THE SIMPLEX METHOD

An important application of the use of elementary row operations and pivoting is
the Simplex Method for solving linear programming problems. The topic of linear
programming (or linear optimization) requires an entire text of its own and it makes
use of linear algebra in a big way. This section is meant as a glimpse into this field of
study and its connections to linear algebra. To begin, we introduce the terminology
for this setting by way of an example.

Example 2.13 The college cafeteria is offering a lunch consisting of two entrees.
The first entree contains 16g of fat, 20g of carbohydrates and 15g of protein per unit
serving, while the second contains 10g of fat, 30g of carbohydrates and 17g of protein
per unit serving. For lunch, Harry must have at least 100g of protein, but at most
50g of fat and exactly 75g of carbohydrates. The first entree costs $ 0.45 per serving
while the second costs $ 0.65 per serving. How many servings of each entree should
Harry take so as to meet his nutritional needs and spend the least amount of money.

Item Fat Carb Protein Cost per Serving

1 16 20 15 $ 0.45

2 10 30 17 $ 0.65

There are two unknowns

that we wish to determine in this problem, namely the number of servings of each
of the two entrees. Let’s call these unknowns x and y. The objective function
represents the quantity z that is being optimized (maximized or minimized). In our
example, it is the cost and we wish to minimize it. Mathematically, cost (in dollars)
for Harry’s meal is represented by z = 0.45x + 0.65y. The constraints of a linear
programming problem are the conditions imposed on the unknowns for the particular
problem. For instance, in our example, Harry must have at least 100 grams of protein,
i.e. the amount of protein must be ≥ 100. Each of the two entrees will contribute to
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the total protein depending on how many servings of each are eaten and mathemati-
cally this condition translates into 15x+ 17y ≥ 100. Harry cannot have more than 50
grams of fat becomes 16x+ 10y ≤ 50 and exactly 75 grams of carbohydrates becomes
20x+30y = 75. There is also implicit in this problem a positivity constraint, namely
that the number of servings must be positive numbers (and perhaps even integers, but
we won’t concern ourselves with this for the sake of simplicity), i.e. x, y ≥ 0. Now we
can state this linear programming problem in mathematical form as follows:

Minimize z = 0.45x+ 0.65y, Subject to


15x+ 17y ≥ 100
16x+ 10y ≤ 50
20x+ 30y = 75

x, y ≥ 0

A linear programming problem is in standard form if the objective function is
being maximized, the constraints are all ≤ and the unknowns are all positive. Most
linear programming problems can be rewritten to fit these conditions. Just consider
the example above. The values of x and y which maximize z = 0.45x + 0.65y will
be the same values of x and y which minimize z′ = −0.45x − 0.65y (of course, the
values of z and z′ will be of opposite signs). Hence, a minimization problem can
always be rewritten as a maximization problem. A constraint involving ≥ can always
be rewritten as a constraint involving ≤ simply by multiplying the constraint by −1
and reversing the inequality. Again, in the example above, 15x + 17y ≥ 100 can be
rewritten as −15x− 17y ≤ −100. An equation can be rewritten as two inequalities of
the form ≤. In the example above 20x + 30y = 75 is equivalent to 20x + 30y ≤ 75
and 20x + 30y ≥ 75 which is equivalent to 20x + 30y ≤ 75 and −20x − 30y ≤ −75.
Hence, our example will have the following standard form:

Maximize z′ = −0.45x− 0.65y, Subject to



−15x− 17y ≤ −100
16x+ 10y ≤ 50
20x+ 30y ≤ 75
−20x− 30y ≤ −75

x, y ≥ 0

Finally, if an unknown can take on any value (both positive or negative), we can
always replace it by a difference of two new positive unknowns. For example, if it were
the case in our example that x was unrestricted, we could set x = u− v with u, v ≥ 0
and then make this substitution into our linear programming problem. For example,
we would now be maximizing the objective function z′ = −0.45(u − v) − 0.65y =
−0.45u+ 0.45v − 0.65y and the constraints would also require the same substitution;
for instance, the first constraint becomes −15u+ 15v − 17y ≤ −100.

The method we present in this section works precisely on those linear program-
ming problems in standard form for which the constants on the righthand side of the
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constraints are all positive. Therefore, the method we will develop in this section will
not work on the example we have been discussing thus far, because of the −100 or the
−75 appearing in the problem when put in standard form.

Definition 2.8 A feasible solution to a standard linear programming problem is a
set of values for the unknowns which satisfy all the constraints. The collection of all
such solutions is called the feasible region. If, in addition to being feasible, the set
of values of the unknowns also maximizes the objective function, then we call this set
of values an optimal solution.

Optimal solutions are what we are striving for in this section for these are the
solutions to linear programming problems. In solving a linear programming problem
there are three possible outcomes.

1. EMPTY: The feasible region is empty.

2. UNBOUNDED: The feasible region is non-empty and the objective function is
unbounded on the feasible region.

3. FINITE: The feasible region is non-empty and the objective function is bounded
on the feasible region.

In the first case there is certainly no optimal solution since such a solution can only
be found among the feasible ones. In the second case there is also no optimal solution,
since the objective function can be as large as we please on the feasible region and
hence there is no maximal value. It is only the last case for which there exists an
optimal solution.

Let’s look at a particular example of a linear programming problem which we will
eventually be able to solve in this section.

Example 2.14

Maximize z = 2x+ 3y, Subject to


x+ y ≤ 4
x+ 3y ≤ 6
x, y ≥ 0

The feasible region can be represented geometrically by graphing the solution to each
inequality, which will be a half-plane, and then finding out where these half-planes
overlap. Such techniques are developed in any basic algebra course so we omit the
details and simply represent the feasible region.
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← x+ y = 4

← x+ 3y = 6
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Feasible Region

Notice that the feasible region has four corners at (0, 0), (0, 2), (3, 1) and (4, 0).
We call such corners extreme points. More formally, an extreme point of a feasible
region is a point in the region which does not lie on the interior of a line segment
entirely contained in the region.

However, for our purposes, extreme points will be the sharp edges of a feasible
region (note that the extreme points of a disk consists of all the points on its boundary
circle and a circle surely has no corners! However, such regions do not occur in a linear
setting). The extreme points turn out to be the key in determining an optimal solution
as the following theorem attests to this fact:

Theorem 2.7 (Extreme Value Theorem) Let F be the feasible region for some linear
programming problem.

1. If F 6= ∅ and is bounded, then an optimal solution exists and occurs at the
extreme points of F .

2. If F 6= ∅ and is unbounded, then if an optimal solution exists, then it occurs at
the extreme points of F .

3. If there is no optimal solution, then either F = ∅ or F is unbounded.

Informally, the use of the word unbounded in the above theorem means basically that
the region cannot fit within any circle (or sphere/hyper-sphere for higher dimensions).
The proof of this theorem is much too far afield and therefore will be omitted. How-
ever, we can instantly use it to solve the problem at hand in our example.

Example 2.15 For the linear programming problem
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Maximize z = 2x+ 3y, Subject to


x+ y ≤ 4
x+ 3y ≤ 6
x, y ≥ 0

,

the feasible region is bounded and we found the extreme points to be (0, 0), (0, 2),
(3, 1) and (4, 0). Hence, by the Extreme Value Theorem, it’s simply a matter of testing
the four points in the objective function and whichever yields the largest value must
correspond to the optimal solution.

z = 2x+ 3y

(x, y) (0, 0) (0, 2) (3, 1) (4, 0)

0 6 9 8

Thus, we see from this simple computation that the maximum value of objective func-
tion is 9 and occurs when x = 3 and y = 1.

One can guess the deficiencies in using a picture to solve a linear programming
problem. It could be rather complicated to visualize if there are many constraints or
it could have three unknowns which would have us visualizing 3-dimensional planes.
Beyond three unknowns, we cannot even draw a picture and the method completely
breaks down! Therefore, one sees the need to develop a strictly algebraic algorithm
that does not rely on a picture. Such an algorithm, which we shall develop in what
follows, is called the simplex method.

As a first step, we need to convert our linear programming problem into canonical
form which requires that all the constraints be equations. This is easy to do by
introducing additional variables. For instance, an inequality like x + y ≤ 4 can be
transformed into an equation as x + y + u = 4 with u ≥ 0. If it is reversed, like
x+ y ≥ 4, we get x+ y − u = 4 with u ≥ 0. We wish the new variables to also have
the positivity constraint for the purposes of this method. These additional variables
are called slack variables for in a sense they take up the slack of the inequality.

Example 2.16 In the earlier example, it was already in standard form.

Maximize z = 2x+ 3y, Subject to


x+ y ≤ 4
x+ 3y ≤ 6
x, y ≥ 0

In canonical form it looks like this:

Maximize z = 2x+ 3y, Subject to


x+ y + u = 4
x+ 3y + v = 6
x, y, u, v ≥ 0

Our next step is to put all the information concerning the linear programming
problem into a matrix. We need to rewrite the objective function as −2x− 3y+ z = 0
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and treat it as an additional equation. This equation together with the two constraint
can be put into what is called a tableau which is basically an annotated matrix. Here
is what this example’s initial tableau looks like.

u

v



x y u v z

1 1 1 0 0 4

1 3 0 1 0 6

−2 −3 0 0 1 0


Notice that the columns corresponding to the variables u and v have pivoting 1’s
and we keep track of this fact on the left-hand side of the matrix. The numbers 4
and 6 in the right-hand columns correspond to the values of u and v, respectively,
for a feasible solution to the problem. Let’s call these variables u and v the pivoting
variables. Looking back at the canonical form we see then that x and y equal zero and
the feasible solution to the canonical form of the problem is (x, y, u, v) = (0, 0, 4, 6).
Note that it will always be the case that the non-pivots of the tableau will be zero.
Furthermore, dropping the slack variable, (x, y) = (0, 0) is an extreme point of the
feasible region corresponding to the standard form of the problem. Notice also the
bottom right corner of the tableau is 0 which corresponds to the value of the objective
function at (x, y) = (0, 0). All of these observations can be stated more formally and
proven with mathematical rigor, however for the sake of brevity, suffice it to say that
the Simplex Method produces a series of Tableaus which move from one extreme point
to another of the feasible region of the standard form in such a way that the objective
function increases to its maximal value (if the problem has one). Hence, we need not
find the extreme points of the feasible region by creating a graph. Furthermore, the
Simplex Method will pass through only some of the extreme points on its way to the
optimal solution.

The crucial step is how to get to the next tableau (on our way to the optimal
solution). We will step through one transition carefully and give a justification as
to why it makes sense, but the reader should take note that in the long run this
computation will be done without considering the justification at every turn. We first
decide which of the non-slack variables x and y more effectively increases z = 2x+3y
as it increases. Clearly, it will be the variable which has the larger coefficient in
the objective function, which in our example is y which has a coefficient of 3 in the
objective function. In the tableau, this corresponds to looking at the bottom row (called
the objective row) to the left of the vertical bar and finding the smallest negative
number, namely −3.
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u

v



x y u v z

1 1 1 0 0 4

1 3 0 1 0 6

−2 −3 0 0 1 0


If there are no negative numbers in the objective row, then increasing x or y will
not increase z and hence we must already be at the optimal solution. This analysis
is called the objective criterion. Having chosen y which we label as the entering
variable, we now look at the two constraints and solve for the pivoting variables:

u = 4− x− y v = 6− x− 3y.

As we increase y, we have to insure that u and v remain positive so that we remain
in the feasible region of the canonical form of the problem, i.e.

u = 4− x− y ≥ 0 v = 6− x− 3y ≥ 0,

or

y ≤ 4− x y ≤ 6− x
3 .

Since we have opted to increase y, the value of x remains 0 and so we have the
inequalities

y ≤ 4 and y ≤ 2.

Hence, y can be increased by no more than 2, since we must choose the smaller of
the two positive numbers in order to satisfy both inequalities. By increasing y by 2, v
now becomes zero, since u = 4− x− y = 4− 0− 2 = 2. The variable v is called the
departing variable.

There is a way to obtain this same information from our tableau. Simply form the
ratios of the entries in the last column and the column corresponding to our entering
variable y.

u

v



x y u v z

1 1 1 0 0 4

1 3 0 1 0 6

−2 −3 0 0 1 0



← 4/1 = 4

← 6/3 = 2
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We then choose the smaller of the two ratios to decide how much to increase the
entering variable. We only choose from the positive ratios and if all the ratios turn
out to be non-positive (including an undefined ratio in which we are dividing by zero),
then we must conclude that the linear programming problem has no solution. For
instance, take the case where all the ratios were negative. Suppose the first constraint
were x−y+u = 4 and as before we had selected y as the entering variable. The ratio
in this case would be 4/−1 = −4 < 0. Solving again for the slack variable and setting
x = 0, u = 4− x+ y = 4 + y ≥ 0 and so we get the condition that y ≥ −4. Now this
puts no restriction on y at all, since we are increasing its value which began at zero.
This in turn would put no restriction on how large z could be. Hence, there would be
no finite maximal value and therefore the linear programming problem would have no
optimal solution.

We now want a new tableau where u and the new entering variable y are the pivot-
ing columns. We do this using elementary row operations just as we did in Gaussian
Elimination (except, of course, we are not putting the matrix in reduced row-echelon
form). We want the pivoting 1 at the intersection of the entering column and the
departing row.

u

v



x y u v z

1 1 1 0 0 4

1 3 0 1 0 6

−2 −3 0 0 1 0


We put a 1 in place of the 3 via the operation 1

3R2 and get

x y u v z

1 1 1 0 0 4

1/3 1 0 1/3 0 2

−2 −3 0 0 1 0


.

We then put a zero above and below the pivoting 1 via the operations −R2 + R1 and
3R2 +R3 to get

u

y



x y u v z

2/3 0 1 −1/3 0 2

1/3 1 0 1/3 0 2

−1 0 0 1 1 6


.
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At this point, reading off the information from the tableau as we did previously,
(x, y, u, v) = (0, 2, 2, 0) with z = 6. Take note that any non pivot variables must
be zero, just like in the initial tableau. Notice that y has taken the place of v in the
left-most column as the new pivoting variable (hence, the terminology entering and
departing from pivoting status). Notice also that we are now at the extreme point
(0, 2) of the feasible region of the standard problem.
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← x+ y = 4

← x+ 3y = 6
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Feasible Region

We are not yet at the optimal solution, since there are still negative values in the
objective row. We will now obtain the next tableau without any more fanfare. There
is a −1 in the x column, and being the only negative number x must be the next
entering variable. The resulting ratios are then 2/(2/3) = 3 and 2/(1/3) = 6 with
the first being the smaller, and so u is now the next departing variable. The 2/3 will
become the next pivoting 1 via the operation (3/2)R1 to get

x y u v z

1 0 3/2 −1/2 0 3

1/3 1 0 1/3 0 2

−1 0 0 1 1 6


.

We then put zeros below the pivoting 1 via the operations −(1/3)R1 +R2 and R1 +R3
to get
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x

y



x y u v z

1 0 3/2 −1/2 0 3

0 1 −1/2 1/2 0 1

0 0 3/2 1/2 1 9


.

Reading off the information from the tableau, (x, y, u, v) = (3, 1, 0, 0) with z = 9.
Notice that x has now taken the place of u in the left-most column as the new pivoting
variable. Again, notice that we are now at the extreme point (3, 1) of the feasible region
of the standard problem.
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Feasible Region

We are now at the optimal solution, since the values in the objective row are all non-
negative. Hence, the optimal solution to the linear programming problem is x = 3 and
y = 1 with corresponding maximal value of z = 9, just as we had found before using
the geometric method of looking at the picture.

There is one last comment to make about the Simplex Method. Notice that the
z column never changes throughout the whole process and in fact adds no additional
information about the optimal solution. Hence, from now on we shall omit the z
column. Let’s solve another problem from start to finish by applying the algorithm
that was just gone over carefully.

Example 2.17 A toy manufacturer is producing two kinds of toys. The first toy will
net a profit of $ 2, while the second toy nets him a profit of $ 3. Both toys weigh one
pound. The first toy takes up a cubic foot of space while the second takes up two cubic
feet. These toys have to be packed into crate to be delivered. The crate can carry
no more than 12 pounds and can hold at most 20 cubic feet of toys. The first toy
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requires two workers to produce it, while the second requires only one. The company
has 20 workers at its disposal, however each worker will only work on a single toy.
How many toys of each type should be produced in order to maximize the company’s
profits?

If we let x represent the number of the first toy produced and y the number of
the second toy produced, then our profit objective function becomes z = 2x+ 3y. The
information about the weight of the toys leads to the constraint x + y ≤ 12. The
information about the space taken by the toys leads to the constraint x + 2y ≤ 20.
The information about the number of workers needed to produce the toys leads to
the constraint 2x + y ≤ 20. Therefore, our linear programming problem (already in
standard form) is

Maximize z = 2x+ 3y, Subject to


x+ y ≤ 12
x+ 2y ≤ 20
2x+ y ≤ 20
x, y ≥ 0

In canonical form the problem becomes

Maximize z = 2x+ 3y, Subject to


x+ y + u = 12
x+ 2y + v = 20
2x+ y + w = 20
x, y, u, v, w ≥ 0

Therefore, the initial tableau (with the z column now omitted as per earlier comments)
is

u

v

w



x y u v w

1 1 1 0 0 12

1 2 0 1 0 20

2 1 0 0 1 20

−2 −3 0 0 0 0


.

Since −3 is the smallest negative number in the objective row, we select y as the
entering variable and compute the three corresponding ratios:



Matrices and Linear Systems � 61

u

v

w



x y u v w

1 1 1 0 0 12

1 2 0 1 0 20

2 1 0 0 1 20

−2 −3 0 0 0 0



← 12/1 = 12

← 20/2 = 10

← 20/1 = 20

.

The smallest positive ratio is 10 and so we select v as the departing variable. So we
must put a pivoting 1 in the second row, second column via the operation (1/2)R2:

x y u v w

1 1 1 0 0 12

1/2 1 0 1/2 0 10

2 1 0 0 1 20

−2 −3 0 0 0 0


Now we put zeros in the rest of the column via the operations −R2 + R1, −R2 + R3
and 3R2 +R4 to get

u

y

w



x y u v w

1/2 0 1 −1/2 0 2

1/2 1 0 1/2 0 10

3/2 0 0 −1/2 1 10

−1/2 0 0 3/2 0 30


.

Notice that the optimal criterion is not yet satisfied, since there is still a negative
number in the objective row, so we must repeat the steps in the process. The entering
variable corresponds to the smallest negative value (in this case the only negative
value) in the objective row, namely −1/2, and so x is now the entering variable.
Again, we compute the corresponding ratios:
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u

y

w



x y u v w

1/2 0 1 −1/2 0 2

1/2 1 0 1/2 0 10

3/2 0 0 −1/2 1 10

−1/2 0 0 3/2 0 30



← 2/(1/2) = 4

← 10/(1/2) = 20

← 10/(3/2) = 20/3

The smallest positive ratio is 4 and so we select u as the departing variable. So we
must put a pivoting 1 in the first row, first column via the operation 2R1:

x y u v w

1 0 2 −1 0 4

1/2 1 0 1/2 0 10

3/2 0 0 −1/2 1 10

−1/2 0 0 3/2 0 30


.

Now we put zeros in the rest of the column via the operations −(1/2)R1 + R2,
−(3/2)R1 +R3 and (1/2)R1 +R4 to get

x

y

w



x y u v w

1 0 2 −1 0 4

0 1 −1 1 0 8

0 0 −3 1 1 4

0 0 1 1 0 32


Now the optimal criterion is satisfied with (x, y, u, v, w) = (4, 8, 0, 0, 4). Hence, the
optimal solution is z = 32 with x = 4 and y = 8. In other words, the company should
have the workers produce four of first toy and eight of the second in order to achieve
a maximal profit of $ 32.

We could have also solved this problem geometrically, the graph of the feasible solution
derived from the constraints together with the extreme points would look like this:
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← x+ 2y = 20
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Feasible Region

We now test the five points in the objective function and whichever yields the largest
value must correspond to the optimal solution.

z = 2x+ 3y

(x, y) (0, 0) (0, 10) (10, 0) (4, 8) (8, 4)

0 30 20 32 28

So we reconfirm that the maximum value of objective function is 32 and occurs when
x = 4 and y = 8.

Example 2.18 We give one last example to illustrate what the case of no solution
can look like. The linear programming problem is the following:

Maximize z = x1 + 2x2 + 3x3, Subject to


x1 − x2 − x3 ≤ 2
x1 + x2 − x3 ≥ −1

x1, x2, x3 ≥ 0

The linear programming problem as it stands is not in standard form. This can easily
be amended by multiplying the second constraint by −1 to get

Maximize z = x1 + 2x2 + 3x3, Subject to


x1 − x2 − x3 ≤ 2
−x1 − x2 + x3 ≤ 1

x1, x2, x3 ≥ 0

The canonical form is then
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Maximize z = x1 + 2x2 + 3x3, Subject to


x1 − x2 − x3 + u = 2
−x1 − x2 + x3 + v = 1

x1, x2, x3, u, v ≥ 0

The initial tableau is then

u

v



x1 x2 x3 u v

1 −1 −1 1 0 2

−1 −1 1 0 1 1

−1 −2 −3 0 1 0


.

Because of the −3 in the objective row, the entering variable is x3. The resulting
ratios yield only one which is positive, so the departing variable is v which puts the
pivot in the second row, third column.

u

v



x1 x2 x3 u v

1 −1 −1 1 0 2

−1 −1 1 0 1 1

−1 −2 −3 0 1 0



← 2/− 1 = −2

← 1/1 = 1

The pivot is already 1, so we proceed to put zeros in the rest of the column via the
operations R2 +R1 and 3R2 +R3 and get

u

v



x1 x2 x3 u v

0 −2 0 1 1 3

−1 −1 1 0 1 1

−4 −5 0 0 4 3


Because of the −5 in the objective row, the next entering variable is x2. Notice now
that the resulting ratios yield only negative ratios and it is at this point that we can
conclude that the linear programming problem has no solution.
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u

v



x1 x2 x3 u v

0 −2 0 1 1 3

−1 −1 1 0 1 1

−4 −5 0 0 4 3



← 3/− 2 = −(3/2)

← 1/− 1 = −1

EXERCISES

1. Put each of the following problems in first standard form and then canonical
form and determine which of them can be solved by the method given in this
section:

a.

Minimize z = x− y, Subject to


x− 2y ≥ 24
2x− y = 18
x, y ≥ 0

b.
Minimize z = x1 − x2 − x3 + 2x4

Subject to


x1 − x2 + 2x3 + x4 = 4
x1 − x2 − 3x3 − x4 ≥ 2

4x1 + 6x2 + 8x3 + 3x4 ≤ −1
x1, x2, x3, x4 ≥ 0

2. Solve the following linear programming problems using both the geometric
method and the simplex method:

a.

Maximize z = x+ y, Subject to


4x+ 3y ≤ 24
2x+ 3y ≤ 18

x, y ≥ 0

b.

Maximize z = 2x+ 4y, Subject to


x+ y ≤ 15

2x+ y ≤ 24
x+ 3y ≤ 36
x, y ≥ 0

3. Solve the following linear programming problems using the simplex method:

a.

Minimize z = x− 2y − 3z, Subject to


x+ y + z ≤ 10
x+ y − z ≤ 30
x− y + z ≤ 20

x, y, z ≥ 0
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b.
Maximize z = x1 + 2x2 + 3x3 + x4

Subject to


2x1 + 3x2 + 6x3 + 4x4 ≤ 4

−10x1 − 4x2 − 3x3 − 2x4 ≥ −6
4x1 + 6x2 + 8x3 + 3x4 ≤ 8

x1, x2, x3, x4 ≥ 0

c. The college cafeteria is offering a lunch consisting of two entrees. The first
entree contains 10g of fat, 20g of carbohydrates and 12g of protein per unit
serving, while the second contains 8g of fat, 12g of carbohydrates and 16g
of protein per unit serving. For lunch, Harry must have no more than 100g
of protein, at most 50g of fat and at most 75g of carbohydrates. The first
entree costs $ 0.45 per serving while the second costs $ 0.65 per serving. How
many servings of each entree should Harry take so as to meet his nutritional
needs and spend the least amount of money.

Item Fat Carb Protein Cost per Serving

1 10 20 12 $ 0.45

2 8 12 16 $ 0.65

Project for 2.4:

The following is an example of a well known linear programming problem called the
Transportation Problem:

Two manufacturing plants located in New York City and Los Angeles produce a
certain synthetic polymer. The plant in N.Y.C. can produce 100 tons of the polymer,
while the one in L.A. produces 120 tons. This product is to be shipped to three cities:
San Francisco, Dallas and Chicago. The demand in each of these cities are 60 tons,
70 tons and 90 tons, respectively.

The following table lists the relative shipping costs to transport one ton of the product
from each origin city to each destination city:

LA

NYC

SF DAL CHI

10 7 6

6 7 8
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Let xij represent the amount of polymer shipped from origin city i = 1, 2 to destina-
tion city j = 1, 2, 3.

1. What is the cost function which we wish to minimize?

2. Assuming that the amount shipped exactly meets the demand and that all that
is being produced is in fact shipped, write out the constraints for this linear
programming problem and solve using a computer software package.

2.5 ELEMENTARY MATRICES AND MATRIX EQUIVALENCE

At this point, we have attained the first goal of the chapter, namely we have pre-
sented a systematic way of solving linear systems. Indeed, Gaussian elimination is an
algorithm which can be coded up in a computer and performed without the need of
doing so by hand. Many computer algebra systems have a command which puts a
matrix in reduced row echelon form. With the second goal in mind, namely to develop
a theorem which lists statements which are equivalent to the statement that a matrix
has an inverse, we define a special class of matrices:

Definition 2.9 An elementary matrix is a matrix obtained by applying exactly one
elementary row operation to the identity matrix (note that elementary matrices are
necessarily square).

Example 2.19 a. An example of a 2× 2 elementary matrix is
[

1 −2
0 1

]
since
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I2 =
[

1 0
0 1

]
−2R2+R1−→

[
1 −2
0 1

]
.

b. An example of a 3× 3 elementary matrix is

 1 0 0
0 0 1
0 1 0

 since

I3 =

 1 0 0
0 1 0
0 0 1

 R2↔R3−→

 1 0 0
0 0 1
0 1 0

 .
The next important fact shows that there is a direct connection between elemen-

tary row operations and matrix multiplication.

Theorem 2.8 Every elementary row operation corresponds to multiplication on the
left by the corresponding elementary matrix. Stated mathematically, if A op−→ B and
I

op−→ E, then B = EA.

Example 2.20 Let’s illustrate this fact.

a. Consider the matrix A =
[

1 2
3 4

]
and the elementary row operation

A =
[

1 2
3 4

]
−2R2+R1−→

[
−5 −6

3 4

]
= B.

We have just seen above that the elementary matrix corresponding to this elementary

row operation is E =
[

1 −2
0 1

]
.

To illustrate Theorem 2.8 notice that the product

EA =
[

1 −2
0 1

] [
1 2
3 4

]
=
[
−5 −6

3 4

]
= B

yields the same result as applying the elementary row operation to A.

b. Consider the matrix A =

 1 2 3
4 5 6
7 8 9

 and the elementary row operation

A =

 1 2 3
4 5 6
7 8 9

 R2↔R3−→

 1 2 3
7 8 9
4 5 6

 = B.
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We have also just seen above that the elementary matrix corresponding to this ele-

mentary row operation is E =

 1 0 0
0 0 1
0 1 0

.

To illustrate Theorem 2.8 again, notice that the product

EA =

 1 0 0
0 0 1
0 1 0


 1 2 3

4 5 6
7 8 9

 =

 1 2 3
7 8 9
4 5 6

 = B

yields the same result as applying the elementary row operation to A.

Definition 2.10 A matrix B is said to be equivalent to another matrix A if B can
be obtained by applying a finite number of elementary row operations to A.

We can represent this equivalence by

A
op1−→ A1

op2−→ A2
op3−→ · · · opk−→ B.

Example 2.21 a. B =
[

3 4
−5 −6

]
is equivalent to A =

[
1 2
3 4

]
since

A =
[

1 2
3 4

]
−2R2+R1−→

[
−5 −6

3 4

]
R1↔R2−→

[
3 4
−5 −6

]
= B.

b. B =

 3 6 9
18 21 24
7 8 9

 is equivalent to A =

 1 2 3
4 5 6
7 8 9

 since

A =

 1 2 3
4 5 6
7 8 9

 3R1−→

 3 6 9
4 5 6
7 8 9

 2R3+R2−→

 3 6 9
18 21 24
7 8 9

 = B.

We combine all that we have covered so far in this section in the following fact:

Theorem 2.9 If B is equivalent to A, then there exist elementary matrices
E1, E2, . . . En such that B = En · · ·E2E1A.

Proof 2.7 This result follows from Theorem 2.8 and a simple induction proof and
is left as an exercise. �
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We illustrate this result with the following examples:

Example 2.22 a. Consider the previous example where op1 is −2R2 +R1 and op2
is R1 ↔ R2.

The corresponding elementary matrices are

E1 =
[

1 −2
0 1

]
and E2 =

[
0 1
1 0

]
.

So we have A op1−→ A1
op2−→ B and

E2E1A =
[

0 1
1 0

] [
1 −2
0 1

] [
1 2
3 4

]
=
[
−5 −6

3 4

]
= B.

b. Consider the previous example where op1 is 3R1 and op2 is 2R3 +R2.
The corresponding elementary matrices are

E1 =

 3 0 0
0 1 0
0 0 1

 and E2 =

 1 0 0
0 1 2
0 0 1

 .
So we have A op1−→ A1

op2−→ B and

E2E1A =

 1 0 0
0 1 2
0 0 1


 3 0 0

0 1 0
0 0 1


 1 2 3

4 5 6
7 8 9

 =

 3 6 9
18 21 24
7 8 9

 = B.

Definition 2.11 Let op be an arbitrary elementary row operation. We say that op−1

is the inverse operation of op if whenever A op−→ B, we also have B op−1
−→ A.

In a sense, op−1 undoes whatever op does to a matrix.

A
op−→ B

op−1
−→ A.

Lemma 2.1

1. Every elementary row operation has an inverse operation.

2. The inverse operation is an elementary operation of the same type.

Proof 2.8 The inverse of Ri ↔ Rj is Ri ↔ Rj. The inverse of aRi is (1/a)Ri. The
inverse of aRi +Rj is −aRi +Rj. �

Theorem 2.10 Let A and B be two matrices. Then

i. A is equivalent to A

ii. If B is equivalent to A then A is equivalent to B.

iii. If A is equivalent to B and B is equivalent to C, then A is equivalent to C.
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Proof 2.9 To prove i, apply the operation (1)R1 to A. To prove ii, since B is equiv-
alent to A, we have

A
op1−→ A1

op2−→ A2
op3−→ · · · opk−→ B.

By Lemma 2.1, op−1
1 , . . . , op−1

k exist and we have

B
op−1

k−→ A1
op−1

k−1−→ A2
op−1

k−2−→ · · ·
op−1

1−→ A,

and hence A is equivalent to B. We leave the proof of iii as an exercise. �

As a result of part ii of the previous theorem, we can simply state that two
matrices are equivalent. In other words, we can say A and B are equivalent instead
of A is equivalent to B or B is equivalent to A.

A more practical way to determine whether or not two matrices are equivalent
relies on the following result (the proof of which is left as an exercise):

Theorem 2.11 Two matrices are equivalent iff they have the same reduced row-
echelon form.

Example 2.23 a. A =
[

1 1
0 2

]
and B =

[
3 0
1 1

]
are equivalent since

A =
[

1 1
0 2

]
1
2R2−→

[
1 1
0 1

]
−R2+R1−→

[
1 0
0 1

]
and

B =
[

3 0
1 1

]
1
3R1−→

[
1 0
1 1

]
−R1+R2−→

[
1 0
0 1

]
.

Thus, since A and B have the same reduced row-echelon form by Theorem 2.11,
A and B are equivalent. Furthermore, using inverse operations, we can exhibit a set
of elementary row operations which make them equivalent. This is achieved by linking
the two sequences listed above. One needs to reverse and invert the second sequence
to get the following:

A =
[

1 1
0 2

]
1
2R2−→

[
1 1
0 1

]
−R2+R1−→

[
1 0
0 1

]
R1+R2−→

[
1 0
1 1

]
3R1−→

[
3 0
1 1

]
= B.

b. A =

 −3 0 0
2 0 1
0 0 0

 and B =

 1 0 0
0 3 0
0 3 0

 are not equivalent since
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A =

 −3 0 0
2 0 1
0 0 0

 − 1
3R1−→

 1 0 0
2 0 1
0 0 0

 −2R1+R2−→

 1 0 0
0 0 1
0 0 0

 while

B =

 1 0 0
0 3 0
0 3 0

 −R2+R3−→

 1 0 0
0 3 0
0 0 0

 1
3R2−→

 1 0 0
0 1 0
0 0 0

 .
Thus, by Theorem 2.11, A and B are not equivalent since they do not have the

same reduced row-echelon form.

EXERCISES

1. Compute the elementary matrix corresponding to each of the following elemen-
tary operations: R1 ↔ R3, −3R2, −2R2 +R3. Then illustrate Theorem 2.8 for
each of these elementary operations using the matrix

A =

 1 2 3
2 3 1
3 2 1


2. Using Theorem 2.11, decide whether or not each of the following two matrices

are elementary equivalent:

a.
A =

[
1 1
0 1

]
, B =

[
1 0
0 2

]
b.

A =
[

1 1
2 2

]
, B =

[
1 2
3 4

]
c.

A =

 1 0 0
0 1 0
1 0 0

 , B =

 1 0 0
0 −1/2 0
0 0 0


d.

A =

 1 0 −1
2 3 1
1 1 2

 , B =

 2 4 4
0 3 3
1 4 5


e.

A =

 2 3 −1
3 5 −2
−2 4 −1

 , B =

 6 −1 2
−4 2 −1

2 −2 3


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3. In the previous problem, for the matrices which were elementary equivalent,
illustrate Theorem 2.9.

4. Consider the matrices listed below:

A =
[

2 1
1 0

]
, B =

[
2 2
0 1

]
.

a. Prove that A and B are equivalent matrices.

b. Illustrate the equivalence in part a, by a series of elementary row operations.

c. Illustrate how B can be obtained from A by multiplication on the left by
elementary matrices.

5. Consider the matrices listed below:

A =

 1 0 0
2 1 0
0 −3 0

 , B =

 0 0 0
0 1 0
2 0 0

 .
a. Prove that A and B are equivalent matrices.

b. Illustrate the equivalence in part a, by a series of elementary row operations.

c. Illustrate how B can be obtained from A by multiplication on the left by
elementary matrices.

6. Consider the matrices listed below:

A =

 1 0 0
1 1 0
0 0 2

 B =

 0 1 0
1 0 0
0 2 3


a. Prove that A and B are equivalent matrices.

b. Illustrate the equivalence in part a, by a series of elementary row operations.

c. Illustrate how B can be obtained from A by multiplication on the left by
elementary matrices.

7. Show that if E is an elementary matrix, then so is ET

(hint: consider each of the three elementary row operations separately)

8. Prove Theorem 2.11.

9. Prove part iii of Theorem 2.10.

10. Prove Theorem 2.9.
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2.6 INVERSE OF A MATRIX

If a is a non-zero real number, then the multiplicative inverse of a is 1/a since a(1/a) =
1 = (1/a)a. Note for a real number to have a multiplicative inverse it must be non-
zero. We now investigate the existence of multiplicative inverses for matrices using
matrix multiplication. We will see that they do not always exist, indeed for more than
just the zero matrix. However, in the case that the inverse does exist, we can conclude
a number of seemingly unrelated equivalent conditions for its existence. This theorem
which we will derive slowly for the remainder of the chapter is the second goal of this
chapter. We also give a systematic way to find the inverse of a matrix when it exists.

Definition 2.12 Let A be a square matrix. B is the inverse of A if AB = I = BA.
When A has an inverse we say that A is invertible (or non-singular). Otherwise,
we say A is non-invertible (or singular).

Note that A must be a square matrix in order for both products AB and BA to be
possible.

Example 2.24 The inverse of
[

2 1
1 1

]
is
[

1 −1
−1 2

]
since

[
2 1
1 1

] [
1 −1
−1 2

]
=
[

1 0
0 1

]
=
[

1 −1
−1 2

] [
2 1
1 1

]
.

A number of remarks are in order here.

• The inverse of A is necessarily square and of the same dimensions as A.

• The inverse of a matrix does not always exists. Take the case of A = 0nn; it has
no inverse because for all matrices B, AB = 0nn 6= In. In addition certain non-

zero matrices have no inverse. For instance, A =
[

1 0
0 0

]
(similar argument).

In fact, one of our goals is to determine which matrices do have an inverse.

• When A has an inverse, it has exactly one. In other words a matrix has at most
one inverse. For suppose B1 and B2 are both inverses of A, i.e. AB1 = I = B1A
and AB2 = I = B2A. Then

B1 = B1I = B1(AB2) = (B1A)B2 = IB2 = B2.

• Since inverses are unique we will denote the inverse of A (when it exists) by
A−1.
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Some basic properties of inverse are the following:

Theorem 2.12 Let A and B be invertible matrices of the same dimensions and C
and D any matrices of the appropriate dimensions. Then

i. (A−1)−1 = A.

ii. AB is invertible with (AB)−1 = B−1A−1.

iii. If AC = AD then C = D.

iv. AT is invertible with (AT )−1 = (A−1)T .

Proof 2.10 To prove i, we know that AA−1 = I = A−1A. But this says that A
is the inverse of A−1, i.e. A = (A−1)−1. To prove ii, one need only check that
(AB)(B−1A−1) = I = (B−1A−1)AB (which is easy to compute) and so B−1A−1

is the inverse of AB, i.e. (AB)−1 = B−1A−1. The remainder of the statements are
left as exercises. �

A consequence of Theorem 2.12.ii (which follows by induction) is the following:

Corollary 2.3 If A1, A2, . . . , An are invertible, then so is A1A2 · · ·An and
(A1A2 · · ·An)−1 = A−1

n · · ·A−1
2 A−1

1 .

When A is invertible, matrix exponentiation can be extended to negative exponents
as follows:

• A−1 = the inverse of A,

• A−2 = A−1A−1,

• For k ≥ 2, A−k = A−1A−1 · · ·A−1 (k times).

The exponentiation rules stated earlier also extend here, namely

AkAl = Ak+l and (Ak)l = Akl.

Now we draw on material from the previous section. The lemmas that follow lead
to our second goal. We motivate the next lemma by illustrating it with an example.

Example 2.25 Consider the elementary matrix E =
[

1 0
−2 1

]
obtained by the

elementary row operation −2R1 + R2. The inverse operation is 2R1 + R2 and the

corresponding elementary row matrix is E′ =
[

1 0
2 1

]
. Notice that EE′ = I = E′E.

So we see that the elementary matrix corresponding to the inverse operation is the
inverse of the original elementary matrix.

Lemma 2.2 Elementary matrices are invertible. More specifically, if I op−→ E, then
I
op−1
−→ E−1.
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Proof 2.11 Let E be an elementary matrix obtained by the elementary operation op,
i.e. I op−→ E. Let op−1 be the inverse operation of op (which we know exists). Let
E′ be the elementary matrix corresponding to op−1, i.e. I op−1

−→ E′. We claim that E′
is the inverse of E (and so we are done). By the definition of inverse operation, we
have

I
op−→ E

op−1
−→ I.

By Theorem 2.8, I = E′E. Similarly,

I
op−1
−→ E′

op−→ I.

and I = EE′. Hence, E′ = E−1. �

Lemma 2.3 For a square matrix A ∈Mn(F ), A is equivalent to I iff AX = B has
a solution for any B.

Proof 2.12 If A is equivalent to I, i.e.

A
op1−→ A1

op2−→ A2
op3−→ · · · opk−→ I,

then apply the same elementary row operations to the augmented matrix [A|B] to
obtain

[A|B] op1−→ [A1|B1] op2−→ [A2|B2] op3−→ · · · opk−→ [I|C]

with C =


c1
c2
...
cn

. Then AX = B has solution x1 = c1, x2 = c2, . . . , xm = cm.

We prove the reverse direction of the iff by contrapositive. Assume that A is not
equivalent to I. Now a bit of cleverness is necessary here. We need to find a B for
which AX = B has no solution. If we succeed then the proof is complete. Let R be
the reduced row echelon form for the matrix A with

A
op1−→ A1

op2−→ A2
op3−→ · · · opk−→ R.

Observe that since R is not I it must be the case that at least the last row of R
is a row filled with zeros. Let E1, E2, . . . Ek be the elementary matrices corresponding

to op1, op2, . . . opk. Set B = (Ek · · ·E1)−1en where en =


0
0
...
0
1

. Let C be such that

B
op1−→ B1

op2−→ B2
op3−→ · · · opk−→ C.



Matrices and Linear Systems � 77

By Theorem 2.9, C = Ek · · ·E1B = Ek · · ·E1(Ek · · ·E1)−1en = en. Applying
Gaussian Elimination,

[A|B] op1−→ [A1|B1] op2−→ [A2|B2] op3−→ · · · opk−→ [R|C].

The last row translates into 0 = 1 which is a contradiction. Hence, AX = B has
no solution. �

Lemma 2.4 If A is equivalent to I then A is invertible and a product of elementary
matrices.

Proof 2.13 If A is equivalent to I then I is equivalent to A and

A = Ek · · ·E2E1I = Ek · · ·E2E1,

by Theorem 2.9. Hence, A is a product of elementary matrices. Since E1, E2, . . . , En
are invertible and the product of invertible matrices is invertible (Corollary 2.3), A
is therefore invertible. �

We illustrate how one can express an invertible matrix as a product of elementary
matrices.

Example 2.26 Consider the following matrix:

A =

 1 0 0
0 2 3
0 1 0

 .
A is invertible, since A is equivalent to I3. Indeed,

A =

 1 0 0
0 2 3
0 1 0

 R2↔R3−→

 1 0 0
0 1 0
0 2 3

 −2R2+R3−→

 1 0 0
0 1 0
0 0 3

 1
3R3−→

 1 0 0
0 1 0
0 0 1

 = I3.

Now observe the corresponding inverse elementary row operations:

I3 =

 1 0 0
0 1 0
0 0 1

 3R3−→

 1 0 0
0 1 0
0 0 3

 2R2+R3−→
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 1 0 0
0 1 0
0 2 3

 R2↔R3−→

 1 0 0
0 2 3
0 1 0

 = A.

For these inverse operations we compute their corresponding elementary matrices:

E1 =

 1 0 0
0 1 0
0 0 3

 , E2 =

 1 0 0
0 1 0
0 2 1

 , E3 =

 1 0 0
0 0 1
0 1 0

 .
By Theorem 2.9, A = E3E2E1I = E3E2E1, i.e.

A =

 1 0 0
0 2 3
0 1 0

 =

 1 0 0
0 0 1
0 1 0


 1 0 0

0 1 0
0 2 1


 1 0 0

0 1 0
0 0 3

 .
Hence, we have a method for expressing an invertible matrix A as a product of
elementary matrices.

Lemma 2.5 Let A and C be square matrices. If AC = I or CA = I, then A is
invertible with inverse C.

Proof 2.14 Assume AC = I. Consider the linear system AX = B for any B. Then
CB is a solution to AX = B since A(CB) = (AC)B = IB = B. By Lemma 2.3, A
is equivalent to I and by Lemma 2.4, A is invertible. To complete the proof in this
case we need to show that C = A−1. We know AC = I = AA−1. By Theorem 2.12.iii,
C = A−1.

If CA = I then by the work above C is invertible with inverse A. Hence CA =
I = AC and so A is invertible with inverse C. �

There is a practical side to the previous lemma. It says that to check that B is
the inverse of A it is sufficient to verify only one of the products AB = I or BA = I.

Now we state the main theorem of this chapter. We will add more statements to
it in later sections.

Theorem 2.13 For a square matrix A the following are equivalent:

i. A is invertible.

ii. The linear system AX = B has a unique solution for any B ∈ F n.

iii. A is equivalent to I.

iv. A is a product of elementary matrices.
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Proof 2.15 A lot of the work for this proof has already been done. To prove ii implies
iii, we appeal to Lemma 2.3. To prove iii implies iv, we also appeal to Lemma 2.4.
To prove iv implies i, we appeal to Lemma 2.2 and Corollary 2.3. For the final im-
plication, i implies ii, given that A−1 exists, a solution to AX = B is A−1B, since

A(A−1B) = (AA−1)B = IB = B.

It is the only solution, for suppose X0 is a solution to AX = B, i.e. AX0 = B.
Multiplying on the left by A−1 yields A−1(AX0) = A−1B and simplifying gives X0 =
A−1B. Now our proof is complete. �

Now we give an algorithm for finding the inverse of A (when it exists). It is
a simple, though sometimes tedious, procedure: Begin with the augmented matrix
[A|I]. By applying elementary row operations, convert this matrix to the form [I|B]
for some B (recall that when A is invertible, A can be row reduced to I). Then
B = A−1. Let us see why this is so. We have

[A|I] op1−→ · · · opn−→ [I|B].

Then I = (En · · ·E2E1)A and B = (En · · ·E2E1)I for the corresponding elemen-
tary matrices E1, E2, . . . , En. Combining these two equations we have I = BA and
by Lemma 2.5, B is the inverse of A.

Example 2.27 We compute the inverse of A =
[

2 1
1 1

]
.

[
2 1
1 1

∣∣∣∣∣ 1 0
0 1

]
−R2+R1−→

[
1 0
1 1

∣∣∣∣∣ 1 −1
0 1

]
−R1+R2−→

[
1 0
0 1

∣∣∣∣∣ 1 −1
−1 2

]
,

and so A−1 =
[

1 −1
−1 2

]
. If A could not be reduced to the identity matrix in this

procedure, then we can conclude that A has no inverse.

Example 2.28 We compute the inverse of B =

 1 2 0
0 1 0
0 0 3

.

 1 2 0
0 1 0
0 0 3

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 −2R2+R1−→

 1 0 0
0 1 0
0 0 3

∣∣∣∣∣∣∣
1 −2 0
0 1 0
0 0 1


1
3R3−→

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
1 −2 0
0 1 0
0 0 1/3

 ,
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and so B−1 =

 1 −2 0
0 1 0
0 0 1/3

.

With the introduction of the inverse we are now in a position to give an alternative
way to solve a linear system of equations in the case when it has exactly one solution.
In fact, the proof of Theorem 2.13 (i implies iii) give the method: If AX = B has
exactly one solution, then the unique solution is A−1B. We illustrate this method in
the following example:

Example 2.29 Consider the linear system

{
2x+ y = 1
x+ y = 2 with matrix equation

[
2 1
1 1

] [
x
y

]
=
[

1
2

]
.

The coefficient matrix for this linear system is A =
[

2 1
1 1

]
. In the previous

example we computed A−1 =
[

1 −1
−1 2

]
. Therefore,

[
x
y

]
= X = A−1B =

[
1 −1
−1 2

] [
1
2

]
=
[
−1

3

]
.

Thus, the solution is x = −1 and y = 3.

EXERCISES

1. If possible, find the inverse of each of the following matrices:

A =
[

2 −1
1 3

]
B =

 1 −2 1
2 −4 0
1 0 2

 C =

 4 −2 2
2 5 1
−2 1 −1


2. Use your results in the first problem to solve each of the following linear systems

(when there is a unique solution):

{
2x− y = −3
x+ 3y = 0


x− 2y + z = 1

2x− 4y = −2
x+ 2z = 0


4x− 2y + 2z = −3
2x+ 5y + z = 1
−2x+ y − z = 2

3. Again, use your results in the first problem to write the following matrices as
products of elementary matrices (when it is possible):

[
2 −1
1 3

]  1 −2 1
2 −4 0
1 0 2


 4 −2 2

2 5 1
−2 1 −1


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4. Let A =
[

2 1
1 2

]

a. Find the reduced row-echelon form of A.

b. Use part a. to decide whether or not A is invertible (explain).

c. Explain why we can write A as a product of elementary matrices and then
do so.

5. Consider the matrix A =
[

2 2
1 2

]

a. Find the reduced row echelon form for A.

b. Use part a to explain why A is invertible.

c. Find A−1.

d. Use part c to solve the following linear system:{
2x+ 2y = −1
x+ 2y = 2

e. Express A as a product of elementary matrices.

6. Consider the matrix A =
[

3 2
1 0

]
.

a. Find the reduced row echelon form for A using elementary row operations.

b. Use part a to explain why A is invertible.

c. Use part a to find A−1.

d. Without solving, what can be said about the following linear system?{
3x+ 2y = −1

x = 2

e. Now use part c to find the solution set of the linear system in part d.

f. Express A as a product of elementary matrices.

7. We wish to find an equation of the form x2 + axy + y2 = b which contains the
points (−1, 1) and (2, 1/2).

a. Set up the matrix representation of a linear system needed for finding such
an equation.

b. Solve part a. using the inverse of the coefficient matrix.
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8. Using the inverse of a matrix, find the equation of the circle x2 +y2 +ax+by = c
passing through the points (0, 2), (3, 1) and (4, 0).

9. Let A and B be n × n matrices. Prove that if AB is invertible, then so are A
and B invertible.

10. Prove that if A ∈Mnn is symmetric and invertible, then so is A−1.

11. Prove that if A is invertible and B is equivalent to A, then B is also invertible.

12. Prove the following statement:

A is equivalent to B iff there is an invertible matrix P such that B = PA.

13. Show that if A ∈M21 and B ∈M12, then AB is not invertible.

14. Show that if A ∈Mm1 and B ∈M1m, then AB is not invertible.
(note: you can in fact replace 1 by n with n < m and the result still holds)

15. Prove parts iii and iv of Theorem 2.12.

2.7 APPLICATION: THE SIMPLEX METHOD REVISITED

In this section we introduce a way of implementing the Simplex Method without the
use of elementary row operations. Just as in Gaussian Elimination where we could
replace elementary row operations by multiplication on the left by an elementary
matrices, so too in the Simplex Method can we replace pivoting by multiplication on
the left by an appropriate matrix in order to reach the next tableau.

First, it would make our discussion easier if we introduce matrix notation for
representing a linear programming problem. Assume for this section that matrices
with either one of their dimension being 1 are column matrices.

Let A = [aij ] and B = [bij ] be two matrices of the same dimensions. Then the
notation A < B means for each i and j that aij < bij . The notation >, ≤ and ≥ are
defined in a similar manner.

Definition 2.13 If our linear programming problem has n unknowns and m con-
traints, then the matrix representation of a standard linear programming problem
has the form

Maximize z = CTX Subject to AX ≤ B, X ≥ 0

where A is an m× n matrix, C is an n× 1 matrix, B is an m× 1 matrix, and X is
an n× 1 matrix of unknowns x1, x2, . . . , xn.

Definition 2.14 If our linear programming problem has n unknowns and m con-
traints, then the matrix representation of a canonical linear programming problem
has the form
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Maximize z = [C|0m]TX ′ Subject to [A|Im]X = B, X ≥ 0

where A is an m × n matrix, C is an n × 1 matrix, B is an m × 1 matrix, and
X ′ is an (m + n) × 1 matrix of unknowns x1, x2, . . . , xn together with slack vari-
ables u1, u2, . . . , um. Note that adding m slack variables corresponds to replacing A
by [A|Im] and does nothing to effect the objective function, hence the 0m.

Example 2.30 Consider the following linear programming problem in standard
form.

Maximize z = 2x+ 3y, Subject to


x+ y ≤ 4
x+ 3y ≤ 6
3x+ y ≤ 2
x, y ≥ 0

The standard matrix form will be

Maximize z =
[

2 3
] [ x

y

]

Subject to

 1 1
1 3
3 1

[ x
y

]
≤

 4
6
2

 , [
x
y

]
≥
[

0
0

]

The canonical matrix form will be

Maximize z =
[

2 3 0 0 0
]

x
y
u
v
w



Subject to

 1 1 1 0 0
1 3 0 1 0
3 1 0 0 1



x
y
u
v
w

 =

 4
6
2

 ,

x
y
u
v
w

 ≥


0
0
0
0
0


Example 2.31 Consider the example we presented in the earlier section on linear
programming.

Maximize z = 2x+ 3y, Subject to


x+ y ≤ 4
x+ 3y ≤ 6
x, y ≥ 0
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We will verify our method by means of this example and omit the task of justifying
that the technique works in general, since this would take us too far afield and out of
the scope of this text. Let’s list the tableaus produced by the Simplex Method.

u

v



x y u v

1 1 1 0 4

1 3 0 1 6

−2 −3 0 0 0


→

u

y



x y u v

2/3 0 1 −1/3 2

1/3 1 0 1/3 2

−1 0 0 1 6


→

x

y



x y u v

1 0 3/2 −1/2 3

0 1 −1/2 1/2 1

0 0 3/2 1/2 9


.

We will illustrate how one can get from one tableau to the next without the need of
elementary row operations. For the sake of illustration, we will go from the second
tableau to the final tableau via this new method.

Let T denote the body of the initial tableau above the horizontal bar, i.e.,

T =

 1 1 1 0 4

1 3 0 1 6

 .
Next, as usual, determine what the pivot variables will be in the next (which in our
case is the final) tableau. Form a square matrix D consisting of the columns of the
initial tableau corresponding to these pivot variables (in order) and then compute
also D−1. In our case, the next set of pivot variables (in order) will be x and y,

D =
[

1 1
1 3

]
, and one can compute D−1 =

[
3/2 −1/2
−1/2 1/2

]
.

One can show that the body of the next tableau will be D−1T , which turns out to be

[
3/2 −1/2
−1/2 1/2

] 1 1 1 0 4

1 3 0 1 6

 =

 1 0 3/2 −1/2 3

0 1 −1/2 1/2 1

 .
Annotate the new tableau with the variables, as usual, but in addition place the coef-
ficients of the objective function z = 2x+ 3y next to the corresponding variables:
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2 x

3 y



2 3 0 0
x y u v

1 0 3/2 −1/2 3

0 1 −1/2 1/2 1


.

Our final task is to recover the objective row of the new tableau. The column of
numbers to the left of the pivot variables x and y will be denoted by CD, i.e.

CD =
[

2
3

]
.

One can show that the values in the objective row can be obtained by taking the dot
product of CD with each of the columns of the new tableau and then subtracting the
corresponding coefficient of z listed at the top of the column. In other words, the first
value in the objective row will be[

2
3

]
·
[

1
0

]
− 2 = 2− 2 = 0.

The second value in the objective row will be[
2
3

]
·
[

0
1

]
− 3 = 3− 3 = 0.

The third value in the objective row will be[
2
3

]
·
[

3/2
−1/2

]
− 0 = 3/2.

The fourth value in the objective row will be[
2
3

]
·
[
−1/2

1/2

]
− 0 = 1/2.

Finally, the value of the objective function is simply the dot product[
2
3

]
·
[

3
1

]
= 9.
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Hence, the next tableau is

2 x

3 y



2 3 0 0
x y u v

1 0 3/2 −1/2 3

0 1 −1/2 1/2 1

0 0 3/2 1/2 9


.

As the reader can see, we were able to compute the next tableau without the use of
any elementary row operations.

Example 2.32 Let’s redo the toy problem example from Section 2.4 using this new
method. Recall that the linear programming problem was

Maximize z = 2x+ 3y, Subject to


x+ y ≤ 12
x+ 2y ≤ 20
2x+ y ≤ 20
x, y ≥ 0

In canonical form the problem is

Maximize z = 2x+ 3y, Subject to


x+ y + u = 12
x+ 2y + v = 20
2x+ y + w = 20
x, y, u, v, w ≥ 0

The initial tableau is

u

v

w



x y u v w

1 1 1 0 0 12

1 2 0 1 0 20

2 1 0 0 1 20

−2 −3 0 0 0 0


.

We do the same analysis as before to find the entering variable is y and departing
variable is v. Hence, the next set of pivot variables will be u, y, w (in order). Then

D =

 1 1 0
0 2 0
0 1 1

 , and one can compute D−1 =

 1 −1/2 0
0 1/2 0
0 −1/2 1


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Hence, the body of the next tableau will be

 1 −1/2 0
0 1/2 0
0 −1/2 1




1 1 1 0 0 12

1 2 0 1 0 20

2 1 0 0 1 20

 =


1/2 0 1 −1/2 0 2

1/2 1 0 1/2 0 10

3/2 0 0 −1/2 1 10

 .

Now add all the annotations to get

0 u

3 y

0 w



2 3 0 0 0
x y u v w

1/2 0 1 −1/2 0 2

1/2 1 0 1/2 0 10

3/2 0 0 −1/2 1 10


.

As in the previous example, we dot the column of values next to the pivot variables
with each column in the tableau and subtract the values above the variable columns
to get

0 u

3 y

0 w



2 3 0 0 0
x y u v w

1/2 0 1 −1/2 0 2

1/2 1 0 1/2 0 10

3/2 0 0 −1/2 1 10

−1/2 0 0 3/2 0 30


.

We are now at the next tableau, so we begin the process again. Determine entering
and departing variables as usual which in this case are x and u, respectively. Hence,
the next set of pivot variables will be x, y, w (in order). Then

D =

 1 1 0
1 2 0
2 1 1

 , and one can compute D−1 =

 2 −1 0
−1 1 0
−3 1 1


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Hence, the body of the next tableau will be

 2 −1 0
−1 1 0
−3 1 1




1 1 1 0 0 12

1 2 0 1 0 20

2 1 0 0 1 20

 =


1 0 2 −1 0 4

0 1 −1 1 0 8

0 0 −3 1 1 4

 .

Now add all the annotations to get

2 x

3 y

0 w



2 3 0 0 0
x y u v w

1 0 2 −1 0 4

0 1 −1 1 0 8

0 0 −3 1 1 4


.

Now, dot the column of values next to the pivot variables with each column in the
tableau and subtract the values above the variable columns to get

2 x

3 y

0 w



2 3 0 0 0
x y u v w

1 0 2 −1 0 4

0 1 −1 1 0 8

0 0 −3 1 1 4

0 0 1 1 0 32


.

As before in section 2.4, the optimal criterion is now satisfied with the optimal solution
being z = 32 with x = 4 and y = 8.

EXERCISES

1. Redo Exercise 2 in Section 2.4 using the new method presented in this section.

2. Redo Exercise 2a in Section 2.4 using the new method presented in this section.

3. Redo Exercise 2b in Section 2.4 using the new method presented in this section.

4. Redo Exercise 3 in Section 2.4 using the new method presented in this section.
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5. Redo Exercise 3b in Section 2.4 using the new method presented in this section.

Project for 2.7:

The following is an example of a well known linear programming problem called the
Maximal Flow Problem:

Consider the following diagram called a network:
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View the diagram as representing the flow of material through a grid of points; these
circles are called nodes and the connections are called arcs which we will represent by−−→
(i, j). The material traversing the grid might be water, oil, electricity, etc. The node
labeled by 1 is called the source since all material flows from it, and the node labeled
by 9 is called the sink since all material flows towards it. Each node connection has
a direction and a capacity, where the capacity represents the maximal amount of
material which that line can carry.

Let xij (i 6= j and i, j = 1, . . . , 9) be the unknown representing the amount of
material we decide to let flow across the corresponding arc

−−→
(i, j) (which we will make

to be zero if there should be no connection between i and j). Let cij (i 6= j and
i, j = 1, . . . , 9) represent the capacity of the arc

−−→
(i, j) (which again we will make to

be zero if there should be no connection between i and j). We wish to maximize
the flow of material across the grid from the source to the sink subject to certain
constraints. One contraint is implicit in the problem, namely that the amount of flow
across an arc cannot exceed the capacity of the arc. The second constraint will be
that the amount of flow of material into a node must equal the amount flowing out
of that node; in other words material is not allowed to collect at any node.

1. What is the flow function which we wish to maximize?
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2. Write out the constraints for this linear programming problem and solve using
a computer software package.

2.8 HOMOGENEOUS/NON-HOMOGENEOUS SYSTEMS AND RANK

In this section, we distinguish two kinds on linear systems of equations. There is
a natural division of linear systems of equations into two types: homogeneous and
non-homogeneous.

Definition 2.15 A homogeneous linear system of equations has the form AX = 0,
where 0 is a column of zeros. A non-homogeneous linear system of equations has
the form AX = B, where B 6= 0, i.e. B is a column with nonzero entries.

Example 2.33 The linear system below is homogeneous.
2x1 + x2 − x3 = 0
x1 − 3x2 + x3 = 0
−3x1 + x2 + x3 = 0

The linear system below is non-homogeneous.
2x1 + x2 − x3 = −1
x1 − 3x2 + x3 = 0
−3x1 + x2 + x3 = 6

We remark that any homogeneous linear system has at least one solution, namely
X = 0 called the trivial solution. Some results can be proved at this point.

Theorem 2.14 For a square matrix A the following are equivalent:

i. A is invertible.

ii. A is equivalent to I.

iii. The linear system AX = B has a unique solution for any B ∈ Rn.

iv. A is a product of elementary matrices.

v. The linear system AX = 0 has only the trivial solution.

Proof 2.16 Part iii certainly implies part v. To complete the proof, we show that
part v implies part ii. If AX = 0 has only the trivial solution, then it must be the
case that the augmented matrix [A|0] reduces to [I|0], and so A is equivalent to I. �

Theorem 2.15 Given a linear system AX = B which has at least one solution, the
solution set has the form

{Xp +Xh : for any Xh a solution to the homogeneous system AX = 0}.

where Xp is one of the solutions to AX = B (called a particular solution).
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Proof 2.17 First note that for any Xh a solution to AX = 0, Xp +Xh is indeed a
solution to AX = B, since

A(Xp +Xh) = AXp + AXh = B + 0 = B.

Second, if X0 is a solution to AX = B, then X0 −Xp is a solution to AX = 0,
since

A(X0 −Xp) = AX0 − AXp = B −B = 0.

Hence, X0 = (X0 −Xp) +Xp where Xh = X0 −Xp is a solution to AX = 0. �

Example 2.34 In a previous example, we found the solution set to

{
2x− 8y + z = 5
x− 4y + 2z = 0 is {[4y + 10/3, y, −5/3] : y ∈ F}.

Now notice that [4y+ 10/3, y,−5/3] = [10/3, 0,−5/3] + [4y, y, 0] = Xp +Xh as in the
theorem above.

A consequence of the theorem above is the following:

Theorem 2.16 For A ∈Mmn, the following are equivalent:

i. AX = 0 has only the trivial solution.

ii. AX = B has at most one solution, for any B ∈ Rm.

Proof 2.18 First, assuming that AX = 0 has only the trivial solution, we show that
AX = B has at most one solution, for any B ∈ Rm. Suppose that AX = B has a
solution, say Xp. Then, by Theorem 2.15, the solution set of AX = B has the form
{ Xp+0 } = { Xp }, where Xp is a solution to AX = B. Hence, AX = B has exactly
one solution.

Now we assume AX = B has at most one solution, for any B ∈ Rm and show that
AX = 0 has only the trivial solution. Since AX = B has at most one solution, for
any B ∈ Rm, in particular, AX = 0 has at most one solution. Now, since X = 0 is
always a solution to AX = 0, we conclude that AX = 0 has only the trivial solution.
�

Definition 2.16 Let A be any matrix and R its corresponding reduced row-echelon
form. The rank A, written rk(A), is the number of non-zero rows in R.

Example 2.35 One can show that if

A =

 1 1 −1 0
2 −4 3 1
3 15 −13 −2

 , then R =

 1 0 −1/6 1/6
0 1 −5/6 −1/6
0 0 0 0

 .
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Hence rk(A) = 2. We remark that to compute the rank of a matrix one does not
need to totally reduce the matrix A to R. It is sufficient to produce non-zero pivots
and 0’s below these pivots (this form of a matrix is sometimes called row-echelon
form). For instance, in this example, we could have stopped at the following matrix
in order to compute the rank:

 1 1 −1 0
0 −6 5 1
0 0 0 0

 .
The next result extends Theorem 2.14 by yet another statement.

Theorem 2.17 For an n× n square matrix A the following are equivalent:

i. A is invertible.

ii. A is equivalent to I.

iii. The linear system AX = B has a unique solution for any B ∈ Rn.

iv. A is a product of elementary matrices.

v. The linear system AX = 0 has only the trivial solution.

vi. rk(A) = n.

Proof 2.19 We show that ii to equivalent to vi. If A is equivalent to I, then the
reduced row-echelon form of A is I, and so by definition, rk(A) = n. If rk(A) = n
then, since A is square, the reduced row-echelon form of A must be I. �

The next two results show that rank of a matrix can be used to describe the solution
set of a homogeneous linear system.

Theorem 2.18 Let A ∈Mmn be any matrix.

i. If rk(A) = n then AX = 0 has only the trivial solution.

ii. If rk(A) < n then AX = 0 has infinitely many solutions.

Proof 2.20 If rk(A) = n, then all the variables in AX = 0 will be pivot variables.
Hence, there will be no independent variables, and so AX = 0 cannot have infinitely
many solutions. The only other possibility for AX = 0 is that it have only the trivial
solution. By the same token, if rk(A) < n, then there will be non-pivot variables, and
so independent variables, and so infinitely many solutions for AX = 0. �

Corollary 2.4 If A ∈Mmn with m < n, then AX = 0 has infinitely many solutions.

Proof 2.21 Since rk(A) ≤ m < n, by Theorem 2.18.ii, the result follows. �
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Example 2.36 Using Corollary 2.4, without any computation we can assert that the
following homogeneous system has infinite solutions (since m = 2 < 3 = n):

{
2x+ y − 2z = 0
x− y + 6z = 0 .

EXERCISES

1. Referring to Section 2.2 Exercise 2, express the solution set of each system of
equations which resulted in infinitely many solutions in the form Xp +Xh as in
Theorem 2.15.

2. Consider the following matrix:

A =


2 1 2 3
−2 0 −1 1

4 1 1 1
0 5 3 19

 .
a. Compute rk(A).

b. Use part a. to decide whether or not A has an inverse. (explain)

c. Use part a. to describe the solution set of AX = 0. (explain)

3. Consider the following matrix:

A =


1 2 3
3 2 1
2 1 3
3 1 2

 .
a. Compute the rk(A).

b. Use part a. describe the solution set to AX = 0.

4. Consider the following matrix:

A =


2 0 1 −1
0 −3 −2 1
−1 0 −2 1

1 −3 0 0


a. Compute rk(A).

b. Use part a. to describe the solution set of the following system of equations:
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
2x1 + x3 − x4 = 0

−3x2 − 2x3 + x4 = 0
−x1 − 2x3 + x4 = 0

x1 − 3x2 = 0

5. Consider the following matrix:

B =


1 −2 3
3 −3 0
2 −1 −3
−2 4 −6

 .
a. Compute the rk(B).

b. Use part a. describe the solution set to BX = 0.

6. Consider the following matrices:

B =

 3 −6 0 3
−2 4 2 −2

4 −8 6 7

 C =

 0
3
9

 .
a. Without actually computing it, what can we say about rk(B)?

b. Using part a, can we conclude anything about the solution set of BX = C?

c. Use Gaussian Elimination to solve the system in part b.

7. Prove that if a ∈ R and X0, X1 are solutions to the homogeneous linear system
AX = 0, then aX0 +X1 is also a solution to AX = 0.

8. Our goal in this exercise is to prove that for A ∈ Mmn and B ∈ Mnr, we have
rk(AB) ≤ rk(A).

a. Show that if A is equivalent to C, then rk(A) = rk(C).

b. Show that for an elementary matrix E ∈ Mmn, we have rk(EB) = rk(B)
(use part a.).

c. If A has k zero rows, what can be said about rk(A)?

d. Show that if R ∈ Mmn is a matrix in reduced row-echelon form that
rk(RB) ≤ rk(R) (use part c.).

e. Use parts a. through d. to achieve the goal of this exercise.
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2.9 DETERMINANT

The determinant is a function whose inputs are square matrices and whose outputs
are scalars. We will eventually give a general definition of the determinant, but first
we introduce it in some special cases.

Let us first establish our notation. For a square matrix A, the determinant of A
will be denoted by |A| or det(A) (keep in mind that |A| is a scalar).

• For a 1× 1 matrix A = [a], |A| = a.

Example 2.37 If A = [−6], then |A| = −6.

• For a 2× 2 matrix A =
[
a b
c d

]
, |A| =

∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc.

Example 2.38
∣∣∣∣∣ 1 −3

2 4

∣∣∣∣∣ = (1)(4)− (−3)(2) = 10.

• For a 3× 3 matrix A =

 a b c
d e f
g h i

,

|A| =

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ = (a)
∣∣∣∣∣ e f
h i

∣∣∣∣∣− (b)
∣∣∣∣∣ d f
g i

∣∣∣∣∣+ (c)
∣∣∣∣∣ d e
g h

∣∣∣∣∣ .
Notice that the 2× 2 determinants in the definition of a 3× 3 determinant are
easy to remember. For instance, the 2× 2 determinant next to a is obtained by
crossing out in the 3× 3 determinant the row and column in which a appears.
For b cross out the row and column in which b appears, and the same for c.

Example 2.39∣∣∣∣∣∣∣
1 2 −1
2 0 1
1 1 −1

∣∣∣∣∣∣∣ = (1)
∣∣∣∣∣ 0 1

1 −1

∣∣∣∣∣− (2)
∣∣∣∣∣ 2 1

1 −1

∣∣∣∣∣+ (−1)
∣∣∣∣∣ 2 0

1 1

∣∣∣∣∣
= (0− 1)− 2(−2− 1)− (2− 0) = −1 + 6− 2 = 3.

Now, we give a general definition of the determinant of an n × n matrix which
agrees with the definition we gave above:
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Definition 2.17 Let A = [aij ] be a square n × n matrix. Set Aij by the matrix
obtained by removing the ith row and jth column from A. The determinant of A,
written det(A) or

|A| =
n∑
j=1

(−1)1+ja1j |A1j |.

We call this way of computing the determinant expanding on row 1.

The next result shows that in computing the determinant we can expand on any row
or column. The proof of this result, for the sake of continuity, will be delegated to the
last section of this chapter and basically follows from the fact that the determinant
has certain properties which are unique to it.

Theorem 2.19 Let A be any square matrix.

i. (Expanding on a row) Fix any row i in A. Then

|A| =
n∑
j=1

(−1)i+jaij |Aij |.

ii. (Expanding on a column) Fix any column j in A. Then

|A| =
n∑
i=1

(−1)i+jaij |Aij |.

Example 2.40 We compute the determinant by expanding on column 2 (notice that
we get the same answer as we did before when we computed it):

∣∣∣∣∣∣∣
1 2 −1
2 0 1
1 1 −1

∣∣∣∣∣∣∣

= (−1)1+2(2)
∣∣∣∣∣ 2 1

1 −1

∣∣∣∣∣+ (−1)2+2(0)
∣∣∣∣∣ 1 −1

1 −1

∣∣∣∣∣+ (−1)3+2(1)
∣∣∣∣∣ 1 −1

2 1

∣∣∣∣∣
= −2(−2− 1) + 0− 1(1 + 2) = 6− 3 = 3.

We remark that one need not be so careful about how the signs in front of each
2×2 determinant is computed. Imagine a checkerboard of +’s and –’s where we begin
with a “+” in the upper left-hand corner of the matrix:
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∣∣∣∣∣∣∣
+ − +
− + −
+ − +

∣∣∣∣∣∣∣
These +’s and –’s correspond to the (−1)i+j in the definition of |A| (This observation
extends to square matrices of any dimension).

Notice that this more general definition of determinant gives us more freedom on
how we can compute |A|. No matter what row or column we expand on to compute
|A| we always get the same result. The example below illustrates how advantageous
this can be.

Example 2.41 For the determinant below, we certainly want to expand on row three,
since it contains the most zeros and so most of the 3× 3 determinants will have a 0
coefficient in front of them. Then the resulting 3×3 determinant is easiest to compute
by expanding on row 3:

∣∣∣∣∣∣∣∣∣
1 2 3 4
1 1 2 −1
0 1 0 0
0 −2 0 4

∣∣∣∣∣∣∣∣∣ = +(0)− (1)

∣∣∣∣∣∣∣
1 3 4
1 2 −1
0 0 4

∣∣∣∣∣∣∣+ (0)− (0)

= −
(

+(0)− (0) + (4)
∣∣∣∣∣ 1 3

1 2

∣∣∣∣∣
)

= −4(2− 3) = 4.

We present some basic properties about determinant in the theorem below:

Theorem 2.20 Let A be a square matrix. Then

i. |AT | = |A|.

ii. If B is obtained from A by A aRi−→ B (a 6= 0), then |B| = a|A|. Consequently,
one can factor a scalar out of any row (or by i, column) of a determinant.

iii. If B is obtained from A by A
Ri↔Rj−→ B, then |B| = −|A|. Consequently,

switching any two rows (or by i, columns) introduces a minus sign in front of the
determinant.

iv. If B is obtained from A by A aRi+Rj−→ B, then |B| = |A|.

v. If A is upper (or by i, lower)-triangular, then |A| = a11a22 · · · ann, i.e. the
determinant of A is just the product of its diagonal entries.

Proof 2.22 We prove i by induction on the dimension n of A. If n = 1, then A = AT

so the result follows immediately. Now assume the statement is true for n = k and
prove the statement is true n = k+ 1. Therefore, consider a (k+ 1)× (k+ 1) matrix,
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A. Set B = AT with B = [bij ] and bij = aji. Observe that Bij = ATji. Computing the
determinant of AT by expanding on column j and using induction yields

|AT | = |B| =
n∑
i=1

(−1)i+jbij |Bij | =
n∑
i=1

(−1)i+jaji|ATji| =

n∑
i=1

(−1)j+iaji|Aji| = |A|.

Notice that the last equality follows from expansion on row j.
For the proof of ii (in the case of a row), expand the determinant on row i to get

|B| =
n∑
j=1

(−1)i+j(aaij)|Aij | = a
n∑
j=1

(−1)i+jaij |Aij | = a|A|.

The proofs of iii and iv are similar to ii. We prove v by induction on the dimension
n of A. If n = 1, then A = [a] and |A| = a which is the product of its diagonal entries.
Now assume the statement true for n = k and prove the statement for a (k+1)×(k+1)
matrix A. Computing the determinant by expanding on column 1 yields only one k×k
determinant with a non-zero constant in front of it, i.e. |A| = a11|A11|. Now A11 is
a k× k upper-triangular matrix, so by induction, |A11| = a22a33 · · · ak+1,k+1. Putting
the two computations above together gives us the result. �

This theorem gives us another way to compute determinant and is especially
useful on determinants of larger dimension (i.e. ≥ 4). The algorithm proceeds as
follows: Use elementary row operations to put the determinant in upper-triangular
form. Then use Theorem 2.20.v to complete the computation. The example below
illustrates the method.

Example 2.42 ∣∣∣∣∣∣∣∣∣
2 3 4 5
1 2 −1 3
0 −1 14 −13
2 2 −2 0

∣∣∣∣∣∣∣∣∣
R1↔R2= −

∣∣∣∣∣∣∣∣∣
1 2 −1 3
2 3 4 5
0 −1 14 −13
2 2 −2 0

∣∣∣∣∣∣∣∣∣
−2R1+R2
−2R1+R4= −

∣∣∣∣∣∣∣∣∣
1 2 −1 3
0 −1 6 −1
0 −1 14 −13
0 −2 0 −6

∣∣∣∣∣∣∣∣∣
−R2+R3
−2R2+R4= −

∣∣∣∣∣∣∣∣∣
1 2 −1 3
0 −1 6 −1
0 0 8 −12
0 0 −12 −4

∣∣∣∣∣∣∣∣∣

= −(2)

∣∣∣∣∣∣∣∣∣
1 2 −1 3
0 −1 6 −1
0 0 4 −6
0 0 −12 −4

∣∣∣∣∣∣∣∣∣
3R3+R4= (−2)

∣∣∣∣∣∣∣∣∣
1 2 −1 3
0 −1 6 −1
0 0 4 −6
0 0 0 −22

∣∣∣∣∣∣∣∣∣
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= (−2)(1)(−1)(4)(−22) = −176.

The next few results allow us to add one more statement to Theorem 2.17.

Lemma 2.6 Let A and B be two square matrices of the same dimensions.

i. If A is equivalent to B, then |A| = a|B| for some scalar a 6= 0.

ii. If A has a row (or column) of 0’s, then |A| = 0.

iii. |I| = 1.

iv. If A has two identical rows or columns, then |A| = 0.

Proof 2.23 To prove i, the best proof is a proof by induction on m, where

A
op1−→ A1

op2−→ · · · opm−1−→ Am
opm−→ B.

To prove the result for m = 1 we simply appeal to Theorem 2.20.ii–iv. Now assume
the statement is true for m = k and prove for m = k + 1. So we have

A
op1−→ A1

op2−→ · · · opk−→ Ak
opk+1−→ B.

By induction, |A| = b|Ak| for b 6= 0. By Theorem 2.20.ii–iv again, |Ak| = c|B|
for c 6= 0. Hence, |A| = (bc)|B| where bc 6= 0 as desired.

To prove ii one merely expands the determinant on the row (or column) of 0’s in
A to get the desired result.

To prove iii simply appeal to Theorem 2.20.v.
The proof of iv is left as an exercise. �

Theorem 2.21 For an n× n square matrix A the following are equivalent:

i. A is invertible.

ii. A is equivalent to I.

iii. The linear system AX = B has a unique solution for any B ∈ Rn.

iv. A is a product of elementary matrices.

v. The linear system AX = 0 has only the trivial solution.

vi. rk(A) = n.

vii. |A| 6= 0.

Proof 2.24 We show that ii is equivalent to vii. If A is equivalent to I, then by
Lemma 2.6.i and iii, |A| = a|I| = a 6= 0. By contrapositive, if A is not equivalent to
I, then the reduced row-echelon form R of A must have a row of 0’s. By Lemma 2.6.i
and iv, |A| = a|R| = a · 0 = 0. �
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Finally, to complete this section we prove an important property of determinant,
namely |AB| = |A||B| called the multiplicative property. The next few results will
achieve this goal.

Lemma 2.7 If B and an elementary matrix E are square matrices of the same
dimensions, then |EB| = |E||B|.

Proof 2.25 In order to prove this result one needs to consider the three types of
elementary matrices corresponding to the three types of elementary row operations.
We will consider one type and leave the rest as exercises. Let E be the elementary
matrix obtained by I aRi−→ E. By Theorem 2.20.ii, |E| = a|I| = a. Recall that B aRi−→
EB, by Theorem 2.8. Then by Theorem 2.20.ii, |EB| = a|B| = |E||B|. �

A simple induction proof yields the following consequence of the result above:

Corollary 2.5 If B and elementary matrices E1, E2, . . . , En are square matrices of
the same dimensions, then

|E1E2 · · ·EnB| = |E1||E2| · · · |En||B|.

Now we can prove the multiplicative property of determinant.

Theorem 2.22 If A and B are square matrices of the same dimension, then |AB| =
|A||B|.

Proof 2.26 We prove this in two cases. First suppose that A is invertible. By
Theorem 2.21, A = E1E2 · · ·En where E1, E2, . . . En are elementary matrices. Now
by Corollary 2.5,

|AB| = |E1E2 · · ·EnB| = |E1||E2| · · · |En||B| = |E1E2 · · ·En||B| = |A||B|.

Now suppose A is not invertible. By Theorem 2.21, |A| = 0. Now AB is not
invertible as well, for if it were then (AB)−1 would exist. But then A[B(AB)−1] =
(AB)(AB)−1 = I and A would have an inverse, namely B(AB)−1. But we are assum-
ing A is not invertible. Hence AB cannot be invertible and by Theorem 2.21 again,
|AB| = 0. Hence,

|AB| = 0 = 0 · |B| = |A||B|.

�
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EXERCISES

1. Consider the following matrix:

A =


3 3 0 1
2 7 −1 1
1 2 1 −1
−2 1 1 0

 .
a. Calculate |A| using elementary row operations.

b. Use part a. to describe the solution set of AX = 0.

2. Consider the following matrix:

B =

 4 −2 2
2 5 1
−2 1 −1

 .
a. Find the rank of B.

b. Use part a. to determine |B|.

3. Consider the following matrix:

C =

 1 −2 1
2 −4 0
1 0 2

 .
a. Calculate |C| by expanding on a row or column.

b. Explain why part a. guarantees the existence of C−1.

4. Use elementary row operations to compute the determinant of the following
matrix:


2 3 1 6
4 2 3 −1
−6 −1 0 2
−2 1 8 1

 .
5. Consider the following matrix:

A =


2 1 1 1
−3 2 1 0

2 2 −1 −1
3 7 0 −1

 .
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a. Calculate rk(A).

b. Without calculation, what is the value of |A|?

c. Without calculation, describe the solution set to the following linear system
of equations:

2x1 + x2 + x3 + x4 = 1
−3x1 + 2x2 + x3 = 6

2x1 + 2x2 − x3 − x4 = 0
3x1 + 7x2 − x4 = −9

.

d. Without calculation, is A invertible?

6. Consider the following matrix:

B =


3 2 0 0
−2 3 2 1

1 −1 0 2
2 1 0 1

 .
a. Compute |B| by row-reducing to an upper-triangular matrix.

b. Compute |B| by expanding on rows or columns.

c. Using part a. or b., what can be said about the solution set of the following
linear system of equations?

3x1 + 2x2 = 0
−2x1 + 3x2 + 2x3 + x4 = 0

x1 − x2 + 2x4 = 0
2x1 + x2 + x4 = 0

.

7. Consider the following matrix:

C =


−3 0 2 1

1 0 0 3
2 1 −1 1
−2 0 4 2

 .
a. Compute |C| by row-reducing to an upper-triangular matrix.

b. Compute |C| by expanding on a row or a column.

8. Consider the following matrix:

D =


2 −1 2 0
3 1 1 −2
0 2 0 0
4 −1 1 0


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a. Compute |D| by expanding on a row or a column.

b. Compute |D| by row reducing to an upper-triangular matrix.

c. Use part a. or b. to decide whether or not D is invertible (explain).

9. Consider the following matrix:

A =


1 0 −2 3
2 0 −1 0
−3 2 0 4
−1 0 −6 −2

 .
a. Compute |A| by expanding on a row or column.

b. Compute |A| by using elementary row operations.

c. Is A equivalent to the identity matrix? (explain)

10. Consider the following matrices:

A =

 2 −4 −4
−1 2 2

3 −6 −6

 B =

 −2
1
−3

 .
a. Calculate rk(A).

b. Using part a., what can be said about |A|?

c. Using part a., decide whether or not A is invertible.

d. Express the solution set of AX = B as Xp +Xh as in Theorem 2.15.

11. Repeat the previous exercise with the following matrices:

A =

 2 0 6
1 1 −1
0 −1 −1

 B =

 0
−2

1

 .
12. Consider the following matrix:

A =


2 1 1 1
0 5 10 −5
1 2 1 2
−1 −2 9 −10


a. Compute |A| by using elementary rows operations to put A in upper-

triangular form.
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b. Using part a., what can be said about the solution set to the following linear
system (explain):

2x1 + x2 + x3 + x4 = 0
5x2 + 10x3 − 5x5 = 0

x1 + 2x2 + x3 + 2x4 = 0
−x1 − 2x2 + 9x3 − 10x4 = 0

c. Using part a., what can be said about the rank of A (explain).

13. Consider the following matrix:

A =


1 0 −2 3
2 0 −1 0
−3 2 0 4
−1 0 −6 0

 .
a. Compute |A| by expanding on a row or column (choose wisely).

b. Using part a., what can be said about the rank of A (explain).

c. Compute |A| by using elementary rows operations to put A in upper-
triangular form.

14. Prove that |A−1| = |A|−1.

15. Let A ∈Mnn with the property that ATA = I. Prove that |A| = ±1.

16. Show that |AAT | ≥ 0 for any square matrix A.

17. Let A,B ∈ Mnn and suppose there is an invertible C ∈ Mnn such that B =
C−1AC. Prove that |A| = |B|.

18. Let A,B ∈Mnn. Prove that if rk(A) < n or rk(B) < n, then rk(AB) < n.

19. Prove parts iii and iv of Theorem 2.20.

20. Prove part iv of Lemma 2.6.

21. Complete the proof of Lemma 2.7.

2.10 APPLICATIONS OF THE DETERMINANT

With the introduction of the determinant in the previous section we are now in a
position to give alternative algorithms for solving systems of linear equations (assum-
ing that there is a unique solution) and computing the inverse of a matrix (assuming
that it exists). We will also introduce the cross product for elements of Rn, since it
can be defined and remembered using a mnemonic relating to the determinant. The
following result, called Cramer’s Rule, achieves the first goal of this section. It is a
method for finding the solution to a linear system having exactly one solution and is
defined completely in terms of determinants.
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Theorem 2.23 Let AX = B be a linear system in unknowns x1, x2, . . . , xn with A
invertible. Set A = [c1 c2 . . . ci . . . cn], a column representation of A. Let Ai =
[c1 c2 . . . B . . . cn], where the ith column of A has been replaced by B. Then the
unique solution [a1 a2 . . . an] to AX = B has the form ai = |Ai|/|A| for i =
1, 2, . . . , n.

Proof 2.27 By Theorem 2.21, we know that AX = B has a unique solution, say
X0 = [a1, . . . , an] (so AX0 = B). Define

Ci = [e1, . . . , ei−1, X0, ei+1, . . . , en] =


1 0 a1 0
0 1 a2 0
0 0 · · · a3 · · · 0
...

...
...

...
0 0 an 1

 .

Observe that |Ci| = ai (expand on row i). In the calculation which follows we
appeal to Lemma 1.1.

Notice that

ACi = [Ae1, . . . , Aei−1, AX0, Aei+1, . . . , Aen]

= [c1, . . . , ci−1, B, ci+1, . . . , cn] = Ai.

Therefore, |Ai| = |ACi| = |A||Ci| = |A|ai and solving for ai yields

ai = |Ai|
|A|

.

�

Example 2.43 Consider the following system of equations:

{
2x− y = −5
x+ y = 2 or

[
2 −1
1 1

] [
x
y

]
=
[
−5

2

]
.

The coefficient matrix for this linear system is A =
[

2 −1
1 1

]
and |A| = 3. Then

A1 =
[
−5 −1

2 1

]
and |A1| = −3. Also A2 =

[
2 −5
1 2

]
and |A2| = 9. Hence,

x = |A1|
|A|

= −3
3 = −1 and y = |A2|

|A|
= 9

3 = 3.



106 � Introduction to Linear Algebra

Now we give a method for finding A−1 whose formula is defined completely in
terms of determinants.

Definition 2.18 Let A = [aij ] and define a
′

ij = (−1)i+j |Aij |. Set A′ = [a′ij ]. The
adjoint of A, written adj(A) = (A′)T .

Example 2.44 Consider the matrix A =

 1 2 3
3 2 1
1 3 2

. Then

a
′

11 = (−1)1+1
∣∣∣∣∣ 2 1

3 2

∣∣∣∣∣ = 1, a′12 = (−1)1+2
∣∣∣∣∣ 3 1

1 2

∣∣∣∣∣ = −5, etc.

These computations above yield

A′ =

 1 −5 7
5 −1 −1
−4 8 −4

 and so adj(A) =

 1 5 −4
−5 −1 8

7 −1 −4

 .
Now, we prove the result which justifies the method we seek for finding the inverse

of a matrix.

Theorem 2.24 For any square matrix A, adj(A) · A = |A|I = A · adj(A).

Proof 2.28 Set adj(A) = [cij ] and fix an i and an j with 1 ≤ i, j ≤ n. Let B be the
matrix obtained by replacing the jth row of A by its ith row. Let’s name the entries of
B = [bij ]. Notice that when i 6= j, B has two identical rows and A = B when i = j.
Hence,

|B| =
{
|A|, if i = j
0, if i 6= j

.

Let’s compute |B| in another way, by expanding on row j:

|B| =
n∑
k=1

(−1)j+kbjk|Bjk| =
n∑
j=1

(−1)j+kaik|Ajk| =
n∑
j=1

aika
′

jk.

Equating our two computations of |B| yields

n∑
j=1

aika
′

jk =
{
|A|, if i = j
0, if i 6= j

.

Using this last statement gives
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A(adj(A)) = [aij ][cij ] =
[

n∑
k=1

aikckj

]
=
[

n∑
k=1

aika
′

jk

]
=


|A| 0 · · · 0
0 |A| · · · 0
...

... . . . ...
0 0 · · · |A|

 = |A|I.

�

Corollary 2.6 If A is invertible, then A−1 = (1/|A|)adj(A).

Proof 2.29 This follows quite quickly from Theorem 2.24. Since A is assumed in-
vertible, by Theorem 2.21, |A| 6= 0. Therefore, we can multiply the equation in Theo-
rem 2.24 by 1/|A| to obtain

1
|A|

adj(A) · A = I = A · 1
|A|

adj(A).

Therefore, by definition, 1
|A|adj(A) is the inverse of A. �

Example 2.45 Refer to the previous example. One can compute that |A| = 12 and
so by Corollary 2.6,

A−1 =

 1/12 5/12 −4/12
−5/12 −1/12 8/12

7/12 −1/12 −4/12

 .
One final comment before leaving the notion of the adjoint of a matrix. Corol-

lary 2.6 yields a nice and easily remembered formula for computing the inverse of a

2× 2 matrix: If A =
[
a b
c d

]
then

A−1 =
[

d
|A| −

b
|A|

− c
|A|

a
|A|

]
.

In other words, reverse the entries on the diagonal, negate the entries off the diagonal
and divide all entries by |A|.

Example 2.46 For A =
[

1 2
3 4

]
, |A| = −2 and

A−1 =
[

4
−2

−2
−2

−3
−2

1
−2

]
=
[
−2 1
3/2 −1/2

]
.
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The last topic of this section is a new operation for elements of Rn (only for n = 2
or 3) called the cross (or outer, or wedge, or vector) product.

Definition 2.19 Let u = [d, e, f ] and v = [g, h, i] be two vectors in R3. The cross
product of u and v, written u× v equals

∣∣∣∣∣ e f
h i

∣∣∣∣∣ ı̂−
∣∣∣∣∣ d f
g i

∣∣∣∣∣ ̂+
∣∣∣∣∣ d e
g h

∣∣∣∣∣ k̂.
A simple mnemonic for remembering this formula is

u× v =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
d e f
g h i

∣∣∣∣∣∣∣ .
Example 2.47 Let u = [1, 2, 3] and v = [−1, 0, 2]. Then

u× v =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
1 2 3
−1 0 2

∣∣∣∣∣∣∣ =
∣∣∣∣∣ 2 3

0 2

∣∣∣∣∣ ı̂−
∣∣∣∣∣ 1 3
−1 2

∣∣∣∣∣ ̂+
∣∣∣∣∣ 1 2
−1 0

∣∣∣∣∣ k̂ =

4ı̂− 5̂+ 2k̂ = [4,−5, 2].

The cross product can also be performed on vector in R2 by viewing these vectors as
lying in the xy-plane of R3, i.e. for u = [a, b] and [c, d], u× v = [a, b, 0]× [c, d, 0].

Below are some basic properties of cross product, the proofs of which we leave as
exercises.

Theorem 2.25 Let u, v, w ∈ R3 and a ∈ R. Then

i. v × u = −(u× v).

ii. a(u× v) = (au)× v = u× (av).

iii. u× (v + w) = (u× v) + (u× w).

iv. (u+ v)× w = (u× w) + (v × w).

v. u · (v × w) = (u× v) · w.

vi. u× (v × w) = (u · w)v − (u · v)w.

vii. |u×v| = |u||v| sin θ where θ is as it was defined in relation to the dot product.

There is a geometric interpretation of the cross product. One can show that u× v is
a vector perpendicular to the plane containing the vectors u and v (see Figure 2.1).

Using Theorem 2.25.vii, one can prove two additional geometric interpretations
of the cross product.
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Figure 2.1 Geometric interpretation of cross product.

Corollary 2.7 If u, v ∈ R3, then

i. |u× v| represents the area of the parallelogram with sides u and v.

ii. u and v are parallel iff u× v = 0.

EXERCISES

1. Consider the following linear system:

{
3x− y = −5

2x+ 3y = 4 .

a. Solve the system using Cramer’s Rule.

b. Solve the system using the inverse of the coefficient matrix.

2. Use Cramer’s Rule to find the equation of the parabola y = x2+ax+b containing
the points (1, 2) and (−1, 4).

3. Consider the following matrix:

A =

 −7 5 3
3 −2 −2
3 −2 −1

 .
a. Find the A−1 using the Gaussian Elimination method.
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b. Find the A−1 using the adjoint matrix given that the cofactor matrix is

A′ =

 −2 −3 0
−1 1
−4 −1

 .
4. Consider the following matrices:

A =

 1 2 −1
3 −1 2
1 −2 0

 A′ =

 4 2 −5
2 1
−5 −7


Complete the entries of A′ and use it to find A−1.

5. Consider the following matrix:

A =

 2 1 4
3 2 5
0 −1 1

 .
a. Calculate |A| by expanding on a row or column.

b. Use part a. to describe the solution set of the following linear system:
2x+ y + 4z = 3

3x+ 2y + 5z = 4
−y + z = 1

.

c. Use Cramer’s Rule to solve the system in part b.

d. Use part a. to explain why A−1 exists.

e. Find A−1 using the adjoint matrix.

f. Use part e. to solve the system in part b.

6. Consider the following matrices:

A =
[

2 1
−3 −2

]
B =

[
1
0

]
.

a. Calculate |A| and explain why AX = B has a unique solution.

b. Use Cramer’s Rule to find the solution to AX = B.

c. Explain why A−1 exists and find A−1 using the 2 × 2 formula given after
Corollary 2.6.

d. Use part c. to find the solution to AX = B.
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7. Apply Cramer’s Rule to find the equation of a parabola of the form y = x2 +
ax+ b passing through the points (2, 11/4) and (−1, 7/4).

8. Repeat the previous exercise for the points (−3, 47/6) and (1, 7/6).

9. Consider the equation of the circle x2 + y2 + ay + b = 0 where a and b are
real numbers. We wish to find the equation of such a circle passing through the
points (−2, 3) and (4,−1).

a. Set up the system of equations for finding the circle.

b. Solve the system in part a. using the inverse of the coefficient matrix.

c. Solve the system in part a. using Cramer’s Rule.

10. Consider the following matrices:

A =

 −4 7 6
3 −5 −4
−2 4 3

 B =

 −2
0
1

 .
a. Compute rk(A).

b. Use part a. to decide whether or not A is invertible.

c. What is the 1st row, 3rd column entry of adj(A)?

d. Express A as a product of elementary matrices.

e. Compute |A| by expanding on column 2.

f. Compute |A| by row-reducing to an upper-triangular matrix.

g. From any previous part, what can be said about the solution set of AX = B?

h. Solve AX = B using the inverse of A.

11. Repeat the previous exercise for the following matrices:

A =

 −7 5 3
3 −2 −2
3 −2 −1

 B =

 −2
0
1

 .
12. Consider the following matrix:

A =

 −1 2 2
−2 4 2

4 −9 −6

 .
a. Calculate |A| by expanding on a row or column.
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b. Use part a. to decide whether or not A is invertible.

c. Complete the adjoint matrix below:

adj(A) =

 −6 −6 ∗
−4 −2 −2

2 ∗ 0

 .
d. Use parts a. and c. to find A−1.

e. Now find A−1 using Gaussian Elimination.

f. Use part d. to solve the following linear system:
−x+ 2y + 2z = 1
−2x+ 4y + 2z = −2

4x− 9y − 6z = 1
.

g. Now use Cramer’s Rule to solve the system in part f.

13. Consider the following matrix:

A =

 −3 6 4
−2 4 2

4 −7 −8

 .
a. Find rk(A).

b. Use part a. to decide whether or not A is invertible.

c. Express A as a product of elementary matrices.

d. What is the 3rd row, 2nd column entry of adj(A).

e. Compute |A| by expanding on column 2.

f. Compute |A| using elementary row operations.

14. Consider the following system of linear equations:


2x+ y − z = 3
x− 2y + z = −6

−x+ 2y − 2z = 11

a. Compute the determinant of the coefficient matrix.

b. From part a, what can be said about the solution set of the system? (explain)

c. Use Cramer’s Rule to solve the system.

d. Use Gaussian Elimination to find A−1.
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e. Given that you know A′ below, use the adjoint matrix to find A−1.

A′ =

 2 1 0
0 −5
−3 −5

 .
f. Use part d. or e. to solve the system.

15. Consider the following system of linear equations:


2x+ y − z = 3
x− 2y + z = −6

−x+ 2y − 2z = 11

a. Use Cramer’s Rule to find the value of z in the solution to the system.

b. Use A′ partially computed below to find A−1.

A′ =

 2 1 0
0 −5
−3 −5

 .
16. Consider the following system of equations:


5x− 3y − 10z = −9
2x+ 2y − 3z = 4
−3x− y + 5z = −1

a. Solve the system by the Gaussian Elimination Method.

b. Solve the system by using Cramer’s Rule.

c. Solve the system by using the inverse of the coefficient matrix.

17. Compute u× v for each of the following pair of vectors:

u = [1,−2, 3], v = [3, 0,−1] ∈ R3 u = [2,−3], v = [−3, 1] ∈ R2

18. Let A ∈Mnn. Prove the following facts related to adjoint:

a. A adj(A) = 0nn iff A is not invertible.

b. adj(AT ) = adj(A)T .

c. For a ∈ R, we have adj(aA) = an−1adj(A).

d. |adj(A)| = |A|n−1

e. If |A| = 1, then adj(adj(A)) = A.

f. If |A| 6= 0, then rk(adj(A)) = n.
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g. If |A| = 0, then rk(A) + rk(adj(A)) ≤ n.

19. Prove Theorem 2.25.

20. Prove Corollary 2.7.

2.11 APPLICATION: LU FACTORIZATION

Matrix factorizations or decompositions play an important role in numerical meth-
ods of computational linear algebra. They help in speeding up algorithms used in
linear algebra such as solving linear systems, inverting a matrix or computing its
determinant. One such decomposition is the LU factorization. In this section, we will
describe this factorization as well as when and to what it applies. The LU factoriza-
tion expresses a square matrix as a product of a unit lower triangular matrix times
an upper triangular matrix, where a unit triangular matrix has ones on the diagonal.

Example 2.48 Below we express a matrix A = LU , where L is unit lower triangular
and U is upper triangular. Shortly, we will see the algorithm for performing this
factorization.  1 −3 1

2 −8 −1
−3 1 1

 =

 1 0 0
2 1 0
−3 4 1


 1 −3 1

0 −2 −3
0 0 16


We will show that such a factorization is possible when one can row reduce a

square matrix to an upper triangular matrix using only Type 3 elementary row
operations, aRi + Rj . To prove this we need a lemma the proof of which is left
as an exercise. We also point out that this is not always possible. For example, for

the matrix
[

0 1
1 0

]
it is not possible (exercise).

Lemma 2.8 The following statements about unit triangular matrices hold.

1. A finite product of unit lower (upper) triangular matrices is unit lower (upper)
triangular.

2. The inverse of a unit lower (upper) triangular matrix is unit lower (upper)
triangular.

Note first that the elementary matrix corresponding to an elementary row operation
of the form aRi +Rj with i < j is a unit lower triangular matrix (exercise). We can
now prove the main result in this section.

Theorem 2.26 Given a square matrix A, suppose we can put A in upper triangular
form U using only Type 3 elementary row operations, aRi + Rj. Then there exists a
unit lower triangular matrix L such that A = LU
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Proof 2.30 By assumption A row reduces to an upper triangular matrix U using
only Type 3 elementary row operations, say op1, op2, · · · , opk. Let E1, E2, · · · , Ek be
the corresponding elementary matrices. By Theorem 2.9, U = Ek · · ·E2E1A and so
A = (Ek · · ·E2E1)−1U . Since each elementary matrix is unit lower triangular and by
Lemma 2.8, L = (Ek · · ·E2E1)−1 is unit lower triangular. �

Although Theorem 2.26 is a constructive proof and gives an algorithm for per-
forming the LU factorization, one more observation is needed to create a more efficient
algorithm for LU factorization.

Recall that the inverse operation for aRi+Rj is −aRi+Rj and the corresponding
elementary matrices will have the value a for its jith entry and −a in its jith entry.
Furthermore, multiplying two such elementary matrices of the form aRi + Rj and
bRi′ + Rj′ with {i, j} 6= {i′, j} as sets results in a matrix with a in the jith entry
and b in the j′i′th entry. Therefore, it is easy to determine L by simply negating. An
example will make this clear.

Example 2.49 Let’s revisit Example 2.48 with

A =

 1 −3 1
2 −8 −1
−3 1 1

 −2R1+R2−→

 1 −3 1
0 −2 −3
−3 1 1


3R1+R3−→

 1 −3 1
0 −2 −3
0 −8 4

 −4R2+R3−→

 1 −3 1
0 −2 −3
0 0 16

 = U.

Notice, we achieved the upper triangular matrix U performing only elementary row
operations of Type 3. Furthermore,

L =

 1 0 0
2 1 0
−3 4 1

 .
Having introduced the LU factorization we now show how it can be useful in

several numerical methods. First, we use it to solve square linear systems with a
unique solution. Here is the general algorithm. Given a linear system AX = B with
LU factorization A = LU ,

1. Solve LX = B by forward substitution. Call that solution B0.

2. Solve UX = B0 by back substitution. Call that solution X0.

3. Then X0 is the solution to AX = B, since

AX0 = (LU)X0 = L(UX0) = LB0 = B.



116 � Introduction to Linear Algebra

Example 2.50 Consider the linear system
x− 3y + z = 1

2x− 8y − z = −2
−3x+ y + z = 0

The coefficient matrix for this system is the matrix A from Example 2.48. We have
already found the LU factorization with

L =

 1 0 0
2 1 0
−3 4 1

 and U =

 1 −3 1
0 −2 −3
0 0 16

 .
Following the steps in the algorithm we first solve by forward substitution

x = 1
2x+ y = −2

−3x+ 4y + z = 0

Since x = 1, we have y = −2 − 2x = −4 and so z = 3x − 4y = 19. Therefore, the
solution is x = 1, y = −4 and z = 19. Now solve by back substitution

x− 3y + z = 1
−2y − 3z = −4

16z = 19

Since z = 19/16, we have −2y = −4 + 3z = 7/16 and so y = 7/32. Then x =
1 + 3y − z = 15/32. Therefore, the solution is x = 15/32, y = 7/32 and z = 19/16
which is also the solution to the original system.

We can also compute the determinant easily with the LU factorization, for if
A = LU , then |A| = |L||U | = |U | and |U | is obtained by multiplying together its
diagonal entries.

Example 2.51 Consider again the matrix A from Example 2.48 with LU factoriza-
tion

L =

 1 0 0
2 1 0
−3 4 1

 and U =

 1 −3 1
0 −2 −3
0 0 16

 .
Then |A| = |U | = (1)(−2)(16) = −32.

Finally, we can use the LU factorization to find the inverse of a matrix. Indeed, if
A = LU , then A−1 = U−1L−1 and we can immediately obtain L−1 simply by negating
its entries below the diagonal. Therefore, we are reduced to finding the inverse of U
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which is an easier problem since it is upper triangular, thus making the Gaussian
elimination quicker.

Example 2.52 Consider again the matrix A from Example 2.48 with LU factoriza-
tion

L =

 1 0 0
2 1 0
−3 4 1

 and U =

 1 −3 1
0 −2 −3
0 0 16

 .
Then

L−1 =

 1 0 0
−2 1 0

3 −4 1

 .
To find U−1, we now reduce

 1 −3 1
0 −2 −3
0 0 16

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

, which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
1 −3/2 −11/32
0 −1/2 −3/32
0 0 1/16

 .
Therefore,

A−1 =

 1 −3/2 −11/32
0 −1/2 −3/32
0 0 1/16


 1 0 0
−2 1 0

3 −4 1

 =

 7/32 −1/8 −11/32
−1/32 −1/8 −3/32
11/16 −1/4 1/16

 .
EXERCISES

1. If possible, compute the LU factorization for each matrix.

a. A =
[

1 2
3 4

]

b. B =

 1 −1 1
4 2 5
3 1 4



c. C =

 2 −4 0
1 −2 1
1 0 2



d. D =


1 2 1 −1
3 3 0 1
2 7 −1 1
−2 1 1 0


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2. Solve each system of equations by using the LU factorization found in Exercise 1.

a.
{

x+ 2y = 1
3x+ 4y = −2

b.


x− y + z = 1

4x+ 2y + 5z = −1
3x+ y + 4z = 0

c.


x1 + 2x2 + x3 − x4 = 2

3x1 + 3x2 + x4 = −1
2x1 + 7x2 − x3 + x4 = 0
−2x1 + x2 + x3 = 1

3. If possible, compute the determinant of each matrix using the LU factorization
found in Exercise 1.

4. If possible, find the inverse of each matrix using the LU factorization found in
Exercise 1.

5. Prove by contradiction that it is not possible to perform the LU factorization

on the matrix
[

0 1
1 0

]
.

6. Prove that the LU factorization is not uniquely determined. Hint: Introduce a
diagonal matrix and its inverse.

7. Prove that an elementary matrix corresponding to the elementary operation
aRi +Rj with i < j is a unit upper triangular matrix.

8. Prove that a finite product of unit lower (upper) triangular matrices is unit
lower (upper) triangular (Lemma 2.8.(a)).

9. Prove that the inverse of a unit lower (upper) triangular matrix is unit lower
(upper) triangular (Lemma 2.8.(b)).
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Vector Spaces

In this chapter, the general notion of a vector space is presented. The reader will
be presented with the four classic vector spaces: Tuples and Matrices, which the

reader has already seen, and Polynomials and Functions, which will be introduced in
the first section of this chapter. There will be an increase in abstractness in the text at
this point, but this is to be expected and before long overcome. In Section 3.1, a vector
space is defined with the four classic examples presented among others. In Section 3.2,
a subspace is defined with many examples in the context of the four classic vector
spaces. The reader is shown methods for proving or disproving that a particular set of
vectors is a subspace. In Section 3.3, linear independence is introduced and concrete
methods for verifying linear independence/dependence are given for the four classic
vector spaces. In Section 3.4, a very important subspace is defined called the span of a
set of vectors. Concrete methods are given for computing the span of a set of vectors.
In Section 3.5, the notions of basis and dimension are introduced. In Section 3.6, row
space, column space and null space of a matrix are defined and some loose ends are
tied up from earlier sections of this chapter. Finally, in Section 3.7, some counting
arguments using dimension theorems are applied to a number of examples.

3.1 DEFINITION AND EXAMPLES

The first two chapters were more or less an introduction to the notion of a vector
space by way of two examples: Rn and Mmn, i.e. Tuples and Matrices. The first two
chapters were also meant to hone the computational skills needed in linear algebra.
These skills will be employed quite liberally in what is to follow.

Now we are ready to introduce the general notion of a vector space. Technically
speaking we are introducing real vector space, i.e. where the scalars are real numbers,
but we could easily allow scalars to be the complex numbers or even an arbitrary
field. We start, of course, with its definition which should look quite familiar at this
point in the text.

Definition 3.1 A vector space is a set V , made up of objects called vectors,
together with two operations:

1. Scalar Multiplication, in which a scalar (real number) is multiplied by a
vector. We will denote scalar multiplication of a scalar a and a vector v by av.
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2. Vector Addition, in which two vectors are added together. We will denote
vector addition of vectors u and v by u+ v.

V together with its two operations, must also satisfy the following axioms in order
to be a vector space:

0. For all u, v ∈ V and scalar a, we have u+ v, au ∈ V .

1. For all u, v ∈ V , u+ v = v + u.

2. For all u, v, w ∈ V , (u+ v) + w = u+ (v + w).

3. There exists 0 ∈ V , such that for all u ∈ V , u+ 0 = u.

4. For each u ∈ V , there is a v ∈ V , such that u+ v = 0.

5. For all u, v ∈ V and scalar a, a(u+ v) = au+ av.

6. For all u ∈ V and scalars a, b, (a+ b)u = au+ bu.

7. For all u ∈ V and scalars a, b, (ab)u = a(bu).

8. For all u ∈ V , 1u = u.

The 0 in Property 3 is called the zero vector and the v in Property 4 is called the
additive inverse of u and is denoted symbolically as −u (the use of the definite
article the in front of 0 and v will be justified at the end of this section).

We now give the four classical examples of a vector space which will appear over
and over again in the remainder of the text. For this reason the reader should be sure
to have a comfortable familiarity with these four examples. The first two examples
should already be quite familiar. For each example, in order for the example to be
complete, it is necessary to define what the set of vectors are as well as the two
operations of scalar multiplication and vector addition.

Example 1 is Tuples: Define the vectors to be

Rn = {[a1, . . . , an] : a1, . . . , an ∈ R}.

Define vector addition by

[a1, . . . , an] + [b1, . . . , bn] = [a1 + b1, . . . , an + bn].

For each scalar a, define scalar multiplication by

a[a1, . . . , an] = [aa1, . . . , aan].

Theorem 1.1 verified that Rn satisfies the axioms of a vector space. Hence, Rn together
with these two operations forms a vector space.
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Example 2 is Matrices: Define the vectors to be

Mmn = {[aij ] : aij ∈ R}.

Define vector addition by

[aij ] + [bij ] = [aij + bij ].

For each scalar a, define scalar multiplication by

a[aij ] = [aaij ].

Theorem 1.4 verified that Mmn satisfied the axioms of a vector space. Hence, Mmn

together with these two operations forms a vector space.

Example 3 is Polynomials: Define the vectors to be

P = {a0 + a1x+ · · ·+ anx
n | a0, a1, . . . , an ∈ R and n = 0, 1, 2, . . .}.

We call these vectors polynomials in unknown x. The a0, a1, . . . , an are called the
coefficients of the polynomial. The highest power of x which has a non-zero co-
efficient is called the degree of the polynomial. For future reference, the constant
polynomial 0 will be said to have degree −∞ as opposed to non-zero constant poly-
nomials which have degree 0.

We define vector addition by

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn.

We define scalar multiplication by

a(a0 + a1x+ · · ·+ anx
n) = (aa0) + (aa1)x+ · · ·+ (aan)xn.

At times we may wish to represent a polynomial by functional notation p(x) and
then the degree of p(x) will be denoted by deg(p). However, the reader must keep in
mind that polynomials here are defined as formal expressions and is meant only a an
abbreviation.

Example 3.1 If p(x) = 1− x+ 3x3 − 6x7, then deg(p) = 7.
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One comment needs to be made. Two polynomials need not have the same degree
in order to add them. For the polynomial with smaller degree simply introduce higher
powers of x with zeros as their coefficients so that we can add according to the
definition.

Theorem 3.1 Polynomials, P , as defined above is a vector space.

Proof 3.1 We give a partial proof and leave the rest as an exercise. To prove property
1, we use the commutative property of real numbers:

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n) =

(a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn =

(b0 + a0) + (b1 + a1)x+ · · ·+ (bn + an)xn =

(b0 + b1x+ · · ·+ bnx
n) + (a0 + a1x+ · · ·+ anx

n).

For property 3, the zero vector we are looking for is the constant polynomial 0. To
prove property 6,

(a+ b)(a0 + a1x+ · · ·+ anx
n) = [(a+ b)a0] + [(a+ b)a1]x+ · · ·+ [(a+ b)an]xn =

(aa0 + ba0) + (aa1 + ba1)x+ · · ·+ (aan + ban)xn =

(aa0) + (aa1)x+ · · ·+ (aan)xn + (ba0) + (ba1)x+ · · ·+ (ban)xn =

a(a0 + a1x+ · · ·+ anx
n) + b(a0 + a1x+ · · ·+ anx

n).

�

Example 4 is Functions: Define the vectors to be

F = {f : R −→ R | f is a real-valued function}.

Adding functions f and g yields the function f + g defined in the natural way as
(f + g)(x) = f(x) + g(x).

Multiplying a scalar a ∈ R by a function f yields the function af defined in the
natural way as (af)(x) = af(x).

Notice that the two operations should yield as an output another function. There-
fore, we were required to give a definition of these outputs as functions. Recall from
calculus that the domain of a function f , which we shall denote by D(f), is the
collection of all definable inputs for f .

Example 3.2 Let f(x) = 4x and g(x) = 2−x2. Then 2f−g is defined by the formula
(2f − g)(x) = x2 + 8x − 2, since (2f − g)(x) = 2f(x) − g(x) = 2(4x) − (2 − x2) =
x2 + 8x− 2.
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We point out that f = g iff D(f) = D(g) and f(x) = g(x) for all x ∈ D(f).

Example 3.3 The functions f(x) = sin 2x and g(x) = 2 sin x cosx are equal func-
tions, because of the double angle identity from trigonometry.

Example 3.4 The functions f(x) = x+ 1 and g(x) = x2−1
x−1 are not equal functions,

because although they are equal whenever both are defined, the domain of f is all real
numbers while the domain of g, D(g) = {x ∈ R : x 6= 1} and so D(f) 6= D(g).

Theorem 3.2 Functions, F , as defined above is a vector space.

Proof 3.2 Again, we verify only some of the vector space properties and leave the
rest as an exercise. Keep in mind that we consistently appeal to the given properties
of real numbers to verify each of the properties.

To prove Property 1, let f, g ∈ F . Then for all x ∈ D(f + g),

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

Since D(f + g) = D(g+ f) and f + g and g+ f are equal on every input, this implies
that f + g = g + f .

To prove Property 3, the zero vector we are looking for is the function 0(x) = 0
for all x ∈ R. Indeed,

(f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).

Hence, f + 0 = f . To prove Property 5, for all scalars a and f, g ∈ F ,

[a(f + g)](x) = a(f + g)(x) = a(f(x) + g(x)) = af(x) + ag(x) =

(af)(x) + (ag)(x) = (af + ag)(x).

�

Thus, we have presented the four classical examples of a vector space. Below are
some other examples of vector spaces.

Example 3.5 Let V have exactly one element, v say, and define av = v and v+v =
v. One can verify that V satisfies the properties of a vector space. V is called the
trivial vector space. It is the vector space which contains only a zero vector.
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Example 3.6 Define the vectors to be

V = {[a, b] | a, b ∈ R}.

Define addition by

[a1, b1] + [a2, b2] = [a1 + a2 + 1, b1 + b2 − 2].

Define scalar multiplication by

a[a1, b1] = [aa1 + a− 1, ab1 − 2a+ 2].

This example brings up several good points. First, although V has the same vectors
as R2 it is different due to the fact that the operations for V are defined differently
from those of R2. Second, we shall see in the proof of the claim below that the zero
vector is not an object filled with zeros. Indeed, for this example

[a, b] + [0, 0] = [a+ 1, b− 2] 6= [a, b],

so [0, 0] cannot be the zero vector for V .
We wish to point out, though, that this example was given simply to abolish certain

assumptions about vector spaces. It will not appear again in this text.

Claim: V with operations defined above forms a vector space.

Proof 3.3 We give a partial proof and leave the rest as an exercise. To verify Prop-
erty 3, we need to find a [a2, b2] such that

[a1, b1] + [a2, b2] = [a1, b1].

i.e., by definition,

[a1 + a2 + 1, b1 + b2 − 2] = [a1, b1].

Equating yields
a1 + a2 + 1 = a1 and b1 + b2 − 2 = b1.

Solving yields a2 = −1 and b2 = 2 and so the zero vector for V is [−1, 2].
To prove Property 4, we point out that for [a1, b1] ∈ V , the additive inverse of

[a1, b1] will not be [−a1,−b1] as is the case in Rn. Indeed, we want to find a [a2, b2]
such that

[a1, b1] + [a2, b2] = [−1, 2].
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i.e., by definition,

[a1 + a2 + 1, b1 + b2 − 2] = [−1, 2].

Equating yields

a1 + a2 + 1 = −1 and b1 + b2 − 2 = 2.

Solving yields a2 = −a1−2 and b2 = −b1 + 4 and so the additive inverse of [a1, b1] in
V is [−a1 − 2,−b1 + 4] (observe that this additive inverse should be defined in terms
of a1 and b1).

We remark that the fact that we can solve the equations above verifies that Prop-
erties 3 and 4 hold. To verify Property 5, we will simplify both sides of the equality
to find a common middle ground. Working on the left-hand side,

a([a1, b1] + [a2, b2]) = a([a1 + a2 + 1, b1 + b2 − 2])

= [a(a1 + a2 + 1) + a− 1, a(b1 + b2 − 2)− 2a+ 2]

= [aa1 + aa2 + 2a− 1, ab1 + ab2 − 4a+ 2].

Working on the righthand side,

a[a1, b1] + a[a2, b2] = [aa1 + a− 1, ab1 − 2a+ 2] + [aa2 + a− 1, ab2 − 2a+ 2]

= [(aa1 + a− 1) + (aa2 + a− 1) + 1, (ab1 − 2a+ 2) + (ab2 − 2a+ 2)− 2]

= [aa1 + aa2 + 2a− 1, ab1 + ab2 − 4a+ 2].

Hence the righthand side has been made identical with the left-hand side, thus verifying
Property 5. �

The reader should see Exercise 13 in this section to gain some insight as to how this
vector space was constructed.

It’s actually rare that a set of vectors together with its two operations will turn
out to satisfy the properties of a vector space. To convince you of this we give below
several examples of non-vector spaces to show that the operations on the vectors have
to be defined carefully in order to produce a vector space satisfying all the axioms.
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Example 3.7 Define the vectors to be V = {[a, b] | a, b ∈ R}. Define scalar multi-
plication as it was for R2, however define addition by

[a1, b1] + [a2, b2] = [a1 + b2, a2 + b1].

If even one of the nine properties of a vector space should fail, then V cannot be
a vector space. In this case, we will show that Property 1 fails. We suspect that this
property will fail when the sum

[a1, b1] + [a2, b2] = [a1 + b2, a2 + b1]

is compared with the reverse sum

[a2, b2] + [a1, b1] = [a2 + b1, a1 + b2].

But to truly convince ourselves that this property fails it is best to exhibit a coun-
terexample to the property, i.e. exhibit two specific vectors which, in this case, do not
satisfy the property. Let’s keep our counterexample simple. Oftentimes a counterex-
ample can be created using numbers –1, 0 and 1. For instance, [1, 0] + [0, 1] = [2, 0]
while [0, 1] + [1, 0] = [0, 2] and so [1, 0] + [0, 1] 6= [0, 1] + [1, 0].

Example 3.8 Let V be m×n matrices. Define addition as in Mmn, but scalar mul-
tiplication by a[aij ] = 0mn for all a and [aij ].

Observe that Properties 1 through 4 will not fail, since we defined vector addition
exactly how we did in the vector space Mmn. Thus, we can narrow our scope and search
among Properties 0 and 5–8 for a failure. In this case we show that, among others,
Property 8 fails. This is apparent, since if [aij ] 6= 0mn, then 1[aij ] = 0mn 6= [aij ] as
the Property demands. Hence, Property 8 fails for all non-zero matrices (although it
is enough that it fails for just a single one!).

Example 3.9 Define the vectors to be polynomials and define addition of polynomials
to be the same as in P , but scalar multiplication will be defined as follows:

a(a0 + a1x+ · · ·+ anx
n) = (a+ a0) + (a+ a1)x+ · · ·+ (a+ an)xn

A number of properties fail in this case, among which is Property 7. Here is a
counterexample:

1(2 + 3x) = 3 + 4x 6= 2 + 3x

Example 3.10 Define the vectors to be real-valued functions

V = {f : R −→ R}.
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Multiplying a scalar a by a function f yields the function af defined as in our
classic example, i.e. (af)(x) = af(x). However, adding functions f and g yields the
function f + g defined by (f + g)(x) = f(x)g(x).

One can show that Properties 0–3, 6–8 hold (note that the zero vector is the
function which takes on the value 1 for all inputs), however, Properties 4 and 5 fail.
Property 4 fails for functions which have zero for even a single output. Property 5
fails, since a(f(x) + g(x)) = af(x)g(x) while af(x) + ag(x) = a2f(x)g(x). As a
counterexample, choose a = 2 and f(x) = x, g(x) = x for all inputs x.

We end this section with some simple consequences of the axioms of a vector space.

Theorem 3.3 Let V be a vector space. Then the following are true:

i. V has exactly one zero vector (denoted by 0).

ii. Every u ∈ V has exactly one additive inverse (denoted by −u).

iii. For all scalars a, a0 = 0.

iv. For all u ∈ V , 0u = 0.

v. For all u ∈ V , (−1)u = −u.

vi. If for a scalar a and vector u ∈ V we should have au = 0, then either a = 0
or u = 0.

Proof 3.4 Keep in mind that in the proof we implicitly appeal to the properties of a
vector space which V is assumed to have.

To prove i, suppose 01 and 02 are both zero vectors in V . We shall show that
01 = 02. Since 01 is a zero vector, 01 + 02 = 02. Since 02 is also a zero vector,
01 + 02 = 01. Equating these two equations yields 01 = 02 as desired.

To prove ii, suppose v1 and v2 are both inverses of a vector u ∈ V . By definition,
u+ v1 = 0 and u+ v2 = 0. Then

v1 = v1 + 0 = v1 + (u+ v2) = (v1 + u) + v2 = (u+ v1) + v2 = 0 + v2 = v2.

Hence, v1 and v2 are one and the same.
To prove iii, notice that a0 = a(0 + 0) = a0 + a0. Now we add to both sides of the

equation the inverse of the vector a0, i.e. −(a0):

−(a0) + a0 = −(a0) + (a0 + a).

By the properties of a vector space (Properties 2 and 3), the above equation sim-
plifies to 0 = a0 and we are done.

The proof of iv is similar to iii. To prove v, we are required to show that (−1)u
is the inverse of u. We do this by direct verification using part iv.



128 � Introduction to Linear Algebra

(−1)u+ u = (−1)u+ 1u = (−1 + 1)u = 0u = 0.

To prove vi, either a = 0 (and we have reached one of the conclusions) or a 6= 0.
In this latter case we need to show that u = 0. Since a 6= 0, we can multiply both
sides of the equation by 1/a to get (1/a)(au) = (1/a)0. Using properties of a vector
space and part iii, this equation simplifies to u = 0 and we are done. �

EXERCISES

1. Let V have the same vectors as R2 and define

[a1, a2] + [b1, b2] = [a1 + b1, 0],

a[a1, a2] = [aa1, 1].

Determine which of the nine properties of a vector space fail for this structure.

2. Let V have the same vectors as R2 and define

[a1, a2] + [b1, b2] =
[

3
√
a3

1 + b31,
3
√
a3

2 + b32

]
,

a
[
a1, a2] = [ 3

√
aa1,

3
√
aa2

]
.

Decide whether or not V together with these operations forms a vector space.

3. Let V = {[a, b] | a, b ≥ 0} and define

[a1, a2] + [b1, b2] =
[√

a2
1 + b21,

√
a2

2 + b22

]
,

a
[
a1, a2] = [

√
aa1,
√
aa2

]
.

Decide whether or not V together with these operations forms a vector space.

4. Let V be the collection of n×n matrices. Define vector addition by A+B = AB
(matrix multiplication) and the usual scalar multiplication. Decide whether or
not V together with these operations forms a vector space.

5. Let V be the collection of n × n invertible matrices. Define vector addition by
A+B = AB (matrix multiplication) and the usual scalar multiplication. Decide
whether or not V together with these operations forms a vector space.
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6. Let V be the collection of n × n matrices with determinant 1. Define vector
addition by A+B = AB (matrix multiplication) and the usual scalar multipli-
cation. Decide whether or not V together with these operations forms a vector
space.

7. Let V be the collection of n×n matrices. Define vector addition by A+B = AB
(matrix multiplication) and scalar multiplication by aA = 1

aA (the right-hand
side represents the usual scalar multiplication). Determine which of the nine
properties of a vector space fail in this setting.

8. Let V be the collection of polynomials. Define vector addition as follows:

(a0 +a1x+ · · ·+anxn)+(b0 +b1x+ · · ·+bnxn) = (a0b0)+(a1b1)x+ · · ·+(anbn)xn

Define scalar multiplication as follows:

c(a0 + a1x+ · · ·+ anx
n) = (ca0) + (ca1)x+ · · ·+ (can)xn

Decide which of the axioms of a vector space fail and when they do provide a
counterexample.

9. Let V be the collection of real-valued functions. Define vector addition by com-
position of functions, i.e. (f + g)(x) = f(g(x)) and scalar multiplication as the
usual one for F . Decide which of the axioms of a vector space fail and when
they do provide a counterexample.

10. Let V be real numbers (i.e. scalars) with vector addition being scalar addition
and scalar multiplication being multiplication of scalars. Show that V together
with these operations forms a vector space.

11. Let V be real numbers with vector addition defined by a+b = ab (multiplication
of real numbers) and a · b = ab (the usual exponentiation). Which properties of
a vector space are satisfied under this definition?

12. Let V1, . . . , Vn be vectors spaces with respective operations +1, . . . ,+n and
·1, . . . , ·n. Define V = {(v1, . . . , vn) | v1 ∈ V1, . . . , vn ∈ Vn}. with addition
defined by

(v1, . . . , vn) + (u1, . . . , un) = (v1 +1 u1, . . . , vn +n un)

and scalar multiplication defined by

a(v1, . . . , vn) = (a ·1 v1, . . . , a ·n vn).
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Prove that V is a vector space with these defined operations.

13. This exercise will shed some light as to how our non-classical vector space was
formulated.

a. Let (V,+, ·) be a vector space and f : V −→ V be a bijection (i.e. f is
one-to-one and maps onto V ). Define the following two new operations ⊕
and �:

For u, v ∈ V, u⊕ v = f−1(f(u) + f(v)).

For a ∈ R and v ∈ V, a� v = f−1(a · f(v)).

Show that (V,⊕,�) forms a vector space.

b. Referring to part a, find the bijection f which yields our non-classical vector
space in the section.

3.2 SUBSPACE

Every algebraic structure has a notion of a sub-algebraic structure and vector spaces
are no exception.

Definition 3.2 A non-empty subset U of a vector space V is a subspace if U to-
gether with the operations defined for V is a vector space in its own right.

Before giving any examples we first prove a fact that will make it easier to verify
whether or not a given subset of a vector space is a subspace. It states that one
doesn’t need to check all nine properties of a vector space to ensure that U is a
subspace, but rather only one of the properties. This is certainly a time saver.

Lemma 3.1 A non-empty subset U of a vector space V is a subspace iff U satisfies
Property 0 of a vector space, namely

a. If u1, u2 ∈ U , then u1 + u2 ∈ U . (Closure under Addition)

b. If a ∈ i.e.R and u ∈ U , then au ∈ U . (Closure under Scalar Multiplication)

Proof 3.5 One direction of the “ff” is immediate (assuming U is a subspace). Now
assume that U satisfies Property 0. We need to show Properties 1 through 8 hold as
well, and so we will be done.

First note that Properties 1, 2, 5–8 are what we call inherited from the vector
space V . For instance, since all the vectors in V commute (Property 1) certainly the
vectors in the subset U also commute.

To prove Property 4, let u ∈ U . We need to show that u has an additive inverse
also in U . In V we know −u exists. But since U satisfies Property 0, −u = (−1)u ∈ U .

To prove Property 3, we know there is a 0 in V . We show this same 0 is in U as
well. Take any u ∈ U (here we use the fact that U is non-empty). From what we just
proved we know there exists −u ∈ U . Now by Property 0, 0 = u+ (−u) ∈ U . �
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We give several examples of subspaces of the classical vector spaces presented in the
previous section.

Example 3.11 Consider the following subset of R2:

U = {[a, b] ∈ R2 | a+ b = 0}.

Sometimes it is useful to put in words the property which defines U . In this case, a
vector from R2 is in U if the sum of its coordinates is equal to zero. Using Lemma 3.1
above we show U satisfies Property 0 and thus is a subspace of R2. Recall that there
are two parts of Property 0 that need to be verified.

First, take [a1, b1] and [a2, b2] in U (so we know that a1 + b1 = 0 and a2 + b2 = 0).
We need to show that [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] is in U as well. To this end
we show that the sum of its coordinates equals zero.

(a1 + a2) + (b1 + b2) = (a1 + b1) + (a2 + b2) = 0 + 0 = 0.

Second, take a scalar c and [a, b] ∈ U (so we know that a + b = 0). We need
to show that c[a, b] = [ca, cb] is in U as well. Again, we show that the sum of its
coordinates equals zero.

ca+ cb = c(a+ b) = c0 = 0.

Geometrically speaking, U describes the set of all vectors in R2 whose terminal
points lie on the line x+ y = 0 or y = −x.

Example 3.12 We show that n× n skew-symmetric matrices (i.e. AT = −A) are a
subspace of Mnn.

First, take two skew-symmetric matrices A and B (so we know that AT = −A
and BT = −B). We need to show that A + B is also skew-symmetric which we do
directly using properties of transpose.

(A+B)T = AT +BT = (−A) + (−B) = −(A+B).

Second, take a scalar a and A skew-symmetric (so we know that AT = −A). We
need to show that aA is also skew-symmetric.

(aA)T = aAT = a(−A) = −(aA).

Example 3.13 Consider the following subset of F :

U = {f ∈ F | f(1) = 0}.

First, we take f, g ∈ U (so f(1) = 0 and g(1) = 0) and show f + g ∈ U (i.e. we
show (f + g)(1) = 0).

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0.
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Second, we take a scalar a and f ∈ U (so f(1) = 0) and show af ∈ U (i.e. we
show (af)(1) = 0).

(af)(1) = af(1) = a0 = 0.

Definition 3.3 For a positive integer n, define Pn = {p(x) ∈ P | deg(p) ≤ n}. In
other words Pn consists of polynomials of degree at most n.

Example 3.14 We show that Pn is a subspace of P . Here Property 0 is apparent for
Pn. First, if we add two polynomials of degree ≤ n we certainly get another polynomial
of degree ≤ n. Similarly, multiplying a scalar by a polynomial of degree ≤ n yields a
polynomial of degree ≤ n.

Example 3.15 Here is an important subspace of Rn. First choose a specific matrix
A ∈ Mmn and define U = {u ∈ Rn | Au = 0} (here we are viewing the u ∈ U as
a column vector). In other words, U is the solution set to the homogeneous linear
system of equations AX = 0. We use properties of matrices to show that U is a
subspace of Rn.

First, if u, v ∈ U (so Au = 0 and Av = 0), then A(u+ v) = Au+Av = 0 + 0 = 0
and so u+ v ∈ U . Second, if a ∈ R and u ∈ U , then A(au) = a(Au) = a0 = 0 and so
au ∈ U .

This subspace is called the null space of the matrix A.

Example 3.16 For those familiar with Calculus, other examples of subspaces are the
following:

1. P , polynomials, are a subspace of real-valued, differentiable functions which is
a subspace of continuous functions which is a subspace of F . The collection of all
continuous functions will be denoted by C(R) and the collection of all differentiable
functions will be denoted by D(R).

2. The solution set of a set of homogeneous differential equations is a subspace of
F .

Now let’s look at some examples which fail to be subspaces. Keep in mind that
it is sufficient that one of the two parts of Property 0 fail in order to prove the given
subset is not a subspace. As before, in order to verify that a property fails, at times
we will provide a specific counterexample.

Example 3.17 Define the following subset of R2:

U = {[a, b] | ab = 0}.

In this case, the first part of Property 0 fails (the second part holds). The reader
might be wondering “If I am given a subset of a vector space, how am I to decide
whether or not it is a subspace of the given vector space?” We suggest that the best
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approach is to first try to show it is a subspace. If you fail and your demonstration
seems to suspiciously suggest that perhaps the subset is not a subspace, then perhaps
you might want to attempt to supply a counterexample. This is what we do here.

Take [a1, b1] and [a2, b2] in U (so we know that a1b1 = 0 and a2b2 = 0). In
order to show that [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2] is in U we need to show that
(a1 + a2)(b1 + b2) = 0. But notice that

(a1 + a2)(b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2 = a1b2 + a2b1.

It is these two middle terms which linger that leads us to believe that it is not
always the case that (a1 +a2)(b1 + b2) = 0 and so U is not a subspace. Now, a specific
counterexample is called for to cement in the fact that it is not.

Notice that [1, 0] and [0, 1] are in U but the sum, [1, 1], is clearly not in U . Hence,
we have shown by counterexample that U is not a subspace.

Example 3.18 Let U = {f ∈ F | f(0) = 1}.
If f, g ∈ U , then f(0) = 1 and g(0) = 1. But (f + g)(0) = f(0) + g(0) = 1 + 1 =

2 6= 1 and so f + g 6∈ U . No specific counterexample is required here, since the first
part of Property 0 fails in general.

Example 3.19 This example of a non-subspace of F looks suspiciously like a previ-
ous example which was a subspace, but there is a subtle difference. Define

U = {f ∈ F | f(a) = 0 for some a ∈ R}.

The key words here are “for some”. In other words the a is not fixed. The a that
puts f in U may be different for each f . Again, it is the first part of Property 0
which fails. We provide a specific counterexample. f(x) = x is in U , since f(0) = 0
(here a = 0) and g(x) = −x + 1 is in U (here a = 1). But f + g is not in U , since
(f + g)(x) = f(x) + g(x) = x + (−x + 1) = 1 a constant function of value 1. Thus,
regardless of what a we plug into f + g we have no hope of getting 0 as an output.
Hence, U is not a subspace of F .

Example 3.20 Consider the following subset of Mnn:

U = {A ∈Mnn | AAT = In}.

This example illustrates another way to show a subset is not a subspace. The
logic is this: For a subset to be a subspace, surely it must contain the zero vector of
the larger vector space (look at the proof of Lemma 3.1). Thus, if one can show that
0 6∈ U , then U cannot be a subspace of the vector space. A word of caution is in order
here. If you should find that the zero vector is indeed in U , you cannot conclude that
U is a subspace. Just look at the previous two examples and you’ll see that the zero
vector was in U even though U was not a subspace.

But in this example, the method works. The zero vector, 0nn 6∈ U , since 0nn0Tnn =
0nn0nn = 0nn 6= In. hence U is not a subspace of Mnn.
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Example 3.21 Consider the following subset of P :

U = {p(x) ∈ P | deg(p) = n} for a fixed n ≥ 0.

U fails to be a subspace for the same reason as the previous example. The zero
polynomial, which has degree −∞ is not in U . Notice the efficiency of this method.

Now we look at some specific subspaces which are always defined in any arbitrary
vector space V .

Definition 3.4

1. The subset {0} is called the trivial subspace in V .

2. V is called the improper subspace of V .

3. Given U1, U2 . . . , Un subspaces of V define U1 ∩ U2 ∩ · · · ∩ Un to be the set
theoretic intersection of the subspaces of U1, U2, . . . , Un.

4. Given U1, U2 . . . , Un subspaces of V define

U = {u1 + u2 + · · ·+ un | u1,∈ U2,∈ u2 ∈ U2,∈ Un}

U is called the sum of the subspaces U1, U2, . . . , Un and in this case we write
U = U1 + U2 + · · ·+ Un.

Of course, for each of the defined subsets above one really needs to prove that
each is indeed a subspace by verifying Property 0 in each case. These make for good
exercises for the reader, so we wouldn’t want to have the reader miss any opportunity
for practice.

The next subspace will have some use in later sections.

Definition 3.5 Let U1, U2 be subspaces of a vector space V and set U = U1 + U2.
We write U = U1⊕U2 if in addition to U = U1 +U2 we have U1 ∩U2 = {0}. We call
the type of sum of subspaces a direct sum.

Lemma 3.2 Let U,W be subspaces of a vector space V . V = U ⊕ W iff every
v ∈ V can be written uniquely as v = u+ w for some u ∈ U and w ∈ W .

We leave the proof as an exercise, however, we point out that the existence of the
expression v = u + w follows from the fact V = U + W and the uniqueness follows
from the fact U ∩W = {0}.



Vector Spaces � 135

EXERCISES

1. Decide whether or not each of the following subsets of Rn is a subspace:

a. U = {[a, b] ∈ R2 | a = b}.

b. U = {[a, b] ∈ R2 | ca+ db = 0}, where c, d ∈ R are fixed.

c. U = {[a, b] ∈ R2 | a2 = b}.

d. U = {[a, b, 2a− b] | a, b ∈ R}.

e. U = {[a, b] : ab ≥ 0}.

f. U = {u ∈ Rn | u · v = 0}, where v ∈ Rn is fixed.

g. U = {u ∈ Rn | Au = cu}, where A ∈Mnn and c ∈ R are fixed.

2. Decide whether or not each of the following subsets of M22 is a subspace:

a. U =
{ [

a b
c d

]
: a+ b+ c+ d = 0

}
.

b. U =
{ [

a b
c d

]
: a+ b+ c+ d = 1

}
.

c. U =
{ [

a a+ b
a− b b

]
: a, b ∈ R

}
.

3. Decide whether or not each of the following subsets of Mnn is a subspace:

a. U = {A ∈Mnn | A2 = A}.

b. U = {A ∈Mnn | |A| = 0}.

c. U = {A ∈Mnn | |A| > 0}.

d. U = {A ∈Mnn | A is invertible}.

e. U = {A ∈Mnn | Ak = 0nn for a fixed k}.

f. U = {A ∈Mnn | Ak = 0nn for a some k}.

g. U = {[aij ] ∈Mnn | a11a22 · · · ann = 0}.

h. U = {A ∈Mnn | AB = BA}, where B ∈Mnn is fixed.

i. U = {A ∈Mnn | AB = 0}, where B ∈Mnn is fixed.

j. U = {A ∈Mnn | A = aI for some scalar a}.

k. U = {A ∈Mnn : ∃c ∈ R s.t. Av = cv}, where v ∈ Rn is fixed.
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4. Decide whether or not each of the following subsets of F is a subspace:

a. U = {f ∈ F | f(x) = xg(x) for some g ∈ F}.

b. U = {f ∈ F | f(x2) = f(x)}.

c. U = {f ∈ F | f(x2) = f(x)2}.

d. U = {f ∈ F | f ′(x) = f(x)}.

e. U = {f ∈ F | f(0) = f(1)}.

f. U = {f ∈ F | f ′(0) = f(1)}.

g. U = {f ∈ F | f(x) = p(x)
q(x) for some polynomials p(x), q(x)}.

h. U = {f ∈ F | f is an increasing function}.

i. U = {f ∈ F | f is one-to-one}.

j. U = {f ∈ F | For all x, f(x) ≤M, for some real number M}.

k. U = {f ∈ F | f(x) = exg(x) for some function g(x)}.

5. Decide whether or not each of the following subsets of P is a subspace:

a. U = {a+ (a+ b)x+ bx2 | a, b ∈ R}.

b. U = {a+ (ab)x+ bx2 | a, b ∈ R}.

c. U = {a+ bx+ cx2 ∈ P | a > b+ c}.

d. U = {p ∈ P | deg(p) is odd}.

6. Unn will represent the set of all n × n upper triangular matrices. Show it’s a
subspace of Mnn.

7. Lnn will represent the set of all n × n lower triangular matrices. Show it’s a
subspace of Mnn.

8. Dnn will represent the set of all n× n diagonal matrices. Show it’s a subspace
of Mnn.

9. For a square matrix A ∈Mnn, define the trace of A, written tr(A) to be the sum
of the diagonal entries of A, i.e. if A = [aij ] then tr(A) = a11 + a22 + · · ·+ ann.
Show that the following subset of Mnn is a subspace:

U = {A ∈Mnn : tr(A) = 0}.

10. Consider the vector space Mnn(C) where C is the complex numbers. In other
words matrices with complex number entries (note scalars are now complex
numbers).
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a. The conjugate of a + bi ∈ C, written a+ bi = a − bi. Verify the following
two properties of conjugacy for a, b ∈ C:

a+ b = a+ b ab = ab.

b. Decide whether or not the following subset of Mnn(C) is a subspace:

U = {[aij ] | aij = aji}.

11. Illustrate by example two subspaces U and W of a vector space V whose union,
U ∪W , is not a subspace (hint: V = R2 is an easy setting).

12. Show that the only non-trivial proper subspaces of R2 are lines through the
origin.

13. Given U1, U2, . . . , Un subspaces of a vector space V , show that U1∩U2∩· · ·∩Un
is a subspace of V .

14. Given U1, U2, . . . , Un subspaces of a vector space V , show that U1 +U2 + · · ·+Un
is a subspace of V .

15. Let X1, . . . , Xn be any sets and let Xi represent one of these sets. Prove that
X1 ∩ · · · ∩Xn ⊆ Xi (this result extends to infinite intersections).

16. Let U and W be subspaces of a vector space V . Prove that if U ∪ W is a
subspace, then either U ⊆ W or W ⊆ U .

17. Let U1, U2, . . . , Un be subspaces of a vector space V . In Exercise 14 above the
reader verified that U1 + · · · + Un is a subspace of V . Suppose we have the
addition property that for every i, 1 ≤ i ≤ n, we have

Ui ∩ (U1 + · · ·+ Ui−1 + Ui+1 + · · ·+ Un) = {0}.

Show that every element in U1 + U2 + · · · + Un has a unique representation as
u1 + u2 + · · ·+ un, where u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un (note that in this case
we write U1 ⊕ U2 ⊕ · · · ⊕ Un).

18. Prove Lemma 3.2.

3.3 LINEAR INDEPENDENCE

We present now a topic which is critical in Linear Algebra. It will allow us to define
the notions of basis and dimension in an upcoming section. First we present some
definitions.

Definition 3.6 Let v1, . . . , vn be elements of a vector space V and a1, . . . , an be
scalars. We call the expression a1v1 + · · ·+anvn a linear combination of the vectors
v1, . . . , vn. The scalars a1, . . . , an are called the coefficients of the linear combina-
tion.
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Example 3.22 In P2, the vector 1 + 2x + x2 is a linear combination of 1 + x, 1−
x2, x+ x2, since

1 + 2x+ x2 = (−1)(1 + x) + (2)(1− x2) + (3)(x+ x2).

Definition 3.7 Let v1, . . . , vn be elements of a vector space V . We say these vectors
are linearly dependent in V , if there exists scalars a1, . . . , an not all zero such that
a1v1 + · · · + anvn = 0. In other words there is a non-trivial linear combination of
v1, . . . , vn which equals 0. If no such non-trivial linear combination exists, then we
say that v1, . . . , vn are linearly independent in V . In other words v1, . . . , vn are
linearly independent if whenever it should be the case that a1v1 + · · ·+anvn = 0, then
it must be that a1 = 0, . . . , an = 0.

The last restatement of linear independence gives us a method for checking linear
independence: We assume that a1v1 + · · · + anvn = 0 and show that this implies
that a1 = 0, . . . , an = 0. Some simple results immediately follow from this definition
(which we leave as exercises):

1. Any collection of vectors which includes the zero vector is linearly dependent.

2. Any single vector v 6= 0 on its own is linearly independent.

3. Two vectors u, v are linearly dependent iff one is a scalar multiple of the other
(i.e. there exists a scalar a such that u = av or v = au).

Example 3.23 The functions f(x) = sin2 x, g(x) = cos2 x, h(x) = 1 are linearly
dependent in F since (1) sin2 x+ (1) cos2 x+ (−1)1 = 0.

Example 3.24 We show that the vectors [1, 0, 0], [1, 1, 0], [1, 1, 1] are linearly inde-
pendent vectors in R3. Suppose a1[1, 0, 0]+a2[1, 1, 0]+a3[1, 1, 1] = [0, 0, 0]. Combining
the left-hand side yields [a1 + a2 + a3, a2 + a3, a3] = [0, 0, 0]. Equating components
gives us


a1 + a2 + a3 = 0

a2 + a3 = 0
a3 = 0

.

Notice that answering a question about linear independence has been reduced to
solving a homogeneous linear system. If this linear system has only the trivial solution,
then we have proved that the three vectors are linearly independent. Let’s switch to
the augmented matrix:

 1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣∣
0
0
0

 .
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One can easily compute that this augmented matrix reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
0
0
0

 .
Thus, the system has only the trivial solution and hence the three vectors are

linearly independent.

In future, to check for linear independence of vectors in Rn, the example above
illustrates that one can immediately form an augmented matrix for a homogeneous
system in which the columns on the left are the vectors in question. We summarize
this technique in a theorem.

Theorem 3.4 For A ∈Mmn(F ), the following are equivalent:

i. AX = 0 has only the trivial solution.

ii. AX = B has at most one solution, for any B ∈ R, i.e. Rm.

iii. The columns of A are linearly independent.

iv. rk(A) = n.

Proof 3.6 In Theorem 2.16, we proved the equivalence of i and ii. From Theo-
rem 2.18, we have that part iv implies part i and part ii implies part iv (the contra-
positive statement). We complete this proof by showing that i and iii are equivalent.
Set A = [c1 · · · cn] represented in columns.

Assuming part i, if a1c1 + · · · + ancn = 0 for some scalars a1, . . . , an, then by
Lemma 1.1, Au = 0 where u = [a1, . . . , an]. Hence, u is a solution to AX = 0 and by
assumption we must have u = 0, i.e. a1 = · · · = an = 0.

Assuming part iii, suppose that u = [a1, . . . , an] is a solution to AX = 0. Again,
by Lemma 1.1, a1c1 + · · ·+ancn = 0. By assumption, we must have a1 = · · · = an = 0
and so u = 0. �

Perhaps the reader had noticed another (quicker) way to complete the previous
example. Since the coefficient matrix for the system is square, we can show using The-
orems 2.21 and 3.4, that the linear system has only the trivial solution by showing
the determinant of the coefficient matrix is non-zero. For in this example, the deter-
minant of the coefficient (upper-triangular) matrix is equal to (1)(1)(1) = 1 6= 0.

Example 3.25 We show that the vectors 1+x, 2+x−x2, x+x2 are linearly dependent
in P2. Suppose a(1+x)+ b(2+x−x2)+ c(x+x2) = 0. Then, by collecting like terms,
we have (a+ 2b) + (a+ b+ c)x+ (−b+ c)x2 = 0. But this implies that


a+ 2b = 0

a+ b+ c = 0
−b+ c = 0

.
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As in the previous example, we have reduced the problem to solving a system of
homogeneous equations. If we can show that the linear system has infinitely many
solutions, then the original polynomials must be linearly dependent.

Since the coefficient matrix is square, we can once again look at its determinant.
If the determinant is zero, by Theorem 3.7, the system has infinitely many solutions:

∣∣∣∣∣∣∣
1 2 0
1 1 1
0 −1 1

∣∣∣∣∣∣∣ −R1+R2=

∣∣∣∣∣∣∣
1 2 0
0 −1 1
0 −1 1

∣∣∣∣∣∣∣ = 0 (two identical rows).

As in the previous example, we point out a shortcut method. One can immediately
form an augmented matrix for a homogeneous system where the columns on the left
are the coefficients of each polynomial:

1
x
x2

 1 2 0
1 1 1
0 −1 1

∣∣∣∣∣∣∣
0
0
0

 .
The notation to the left of the matrix keeps track of the coefficients of the polyno-

mial, for the order in which they are inserted into each column must be consistent.

Example 3.26 We show that the following matrices are linearly independent in M22:

[
1 1
0 1

]
,

[
1 1
1 0

]
,

[
1 0
1 1

]
.

For suppose

a

[
1 1
0 1

]
+ b

[
1 1
1 0

]
+ c

[
1 0
1 1

]
=
[

0 0
0 0

]
.

Then combining the righthand side we have

[
a+ b+ c a+ b
b+ c a+ c

]
=
[

0 0
0 0

]
.

Equating, yields again a homogeneous system of equations:


a+ b+ c = 0

a+ b = 0
b+ c = 0
a+ c = 0

.
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In this example, our coefficient matrix is not square so we cannot appeal to The-
orem 2.21, but we can use Theorem 3.4. We form the augmented matrix:


1 1 1
1 1 0
0 1 1
1 0 1

∣∣∣∣∣∣∣∣∣
0
0
0
0

 which reduces to


1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣∣
0
0
0
0

 .

Hence, the linear system has only the trivial solution and the matrices are therefore
linearly independent.

Again there is a short cut method for checking linear independence. Notice that
the above augmented matrix can be obtained by inserting the matrices in question
into the columns of the augmented matrix. This is done by inserting the rows of each
matrix. For instance, a matrix such as

[
1 2 3
4 5 6

]
would become the column



1
2
3
4
5
6

 .

Perhaps a more convenient way to verify independence for this example would be
to compute the rank of the coefficient matrix. Notice that


1 1 1
1 1 0
0 1 1
1 0 1

 reduces to


1 0 0
0 1 0
0 0 1
0 0 0

 .

Therefore, the rank of the coefficient matrix equals the number of columns, so
by Theorem 3.4, the augmented matrix has only the trivial solution and again we
conclude that the original matrices are linearly independent.

Our approach is different when we verify linear independence for vectors in F . We
give two methods for testing linear independence of functions (one of which involves
Calculus). We derive some results which will make this task possible.

For the first method, we need the following result:

Theorem 3.5 Let f1, . . . , fn be vectors in F . If there are n distinct scalars b1, . . . , bn
with the property that
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∣∣∣∣∣∣∣∣∣∣
f1(b1) f1(b2) · · · f1(bn)
f2(b1) f2(b2) · · · f2(bn)

...
...

...
fn(b1) fn(b2) · · · fn(bn)

∣∣∣∣∣∣∣∣∣∣
6= 0,

then f1, . . . , fn are linearly independent in F .

Proof 3.7 We prove the contrapositive statement. Assume that f1, . . . , fn are linearly
dependent. Then there exist scalars a1, . . . , an not all zero such that a1f1+· · ·+anfn =
0. Now evaluate the functions at any bi ∈ R (i = 1, 2, . . . , n) to obtain the following
set of equations:

a1f1(b1) + · · ·+ anfn(b1) = 0

a1f1(b2) + · · ·+ anfn(b2) = 0

...

a1f1(bn) + · · ·+ anfn(bn) = 0.

This implies in Rn that

a1[f1(b1), . . . , f1(bn)] + · · ·+ an[fn(b1), . . . , fn(bn)] = [0, 0, . . . , 0],

and so [f1(b1), . . . , f1(bn)], . . . , [fn(b1), . . . , fn(bn)] are linearly dependent in Rn. But
then

∣∣∣∣∣∣∣∣∣∣
f1(b1) f1(b2) · · · f1(bn)
f2(b1) f2(b2) · · · f2(bn)

...
...

...
fn(b1) fn(b2) · · · fn(bn)

∣∣∣∣∣∣∣∣∣∣
= 0.

�

Example 3.27 We use this method to show that cosx, sin x are linearly independent
in F . Use the values b1 = 0 and b2 = π/2 to obtain the determinant

∣∣∣∣∣ 1 0
0 1

∣∣∣∣∣ = 1 6= 0.

Hence, by the theorem we have shown that cosx, sin x are linearly independent in F .
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We point out that the converse of Theorem 3.5 is not true. Namely, the following
statement is not true:

If there exists scalars b1, . . . , bn ∈ R such that

∣∣∣∣∣∣∣∣∣∣
f1(b1) f1(b2) · · · f1(bn)
f2(b1) f2(b2) · · · f2(bn)

...
...

...
fn(b1) fn(b2) · · · fn(bn)

∣∣∣∣∣∣∣∣∣∣
= 0,

then f1, . . . , fn are linearly dependent. Just take the simple example of x, x2 which
we know to be linearly independent by our earlier method. However, using the values
b1 = 0 and b2 = 1 we get the determinant

∣∣∣∣∣ 0 1
0 1

∣∣∣∣∣ = 0.

Now we give a second method for testing linear independence of certain functions
in F . First we define a special function.

Definition: Let f1, f2 . . . , fn be vectors in F which are n − 1 times differentiable.
The Wronskian of f1, f2 . . . , fn is the following function in F :

W [f1, . . . , fn](x) =

∣∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)
f ′′1 (x) f ′′2 (x) · · · f ′′n(x)

...
...

...
f

(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Example 3.28 The Wronskian of ex, e2x is

W [ex, e2x](x) =
∣∣∣∣∣ ex e2x

ex 2e2x

∣∣∣∣∣ = 2e3x − e3x = e3x.

Theorem 3.6 Let f1, . . . , fn be vectors in F . If there is a scalar a such that
W [f1, . . . , fn](a) 6= 0, then f1, . . . , fn are linearly independent in F .

Proof 3.8 We prove the contrapositive statement. Assume that f1 . . . , fn are linearly
dependent. Then there exist scalars a1, . . . , an not all zero such that a1f1+· · ·+anfn =
0. Taking successive derivatives yields

a1f
′
1 + · · ·+ anf

′
n = 0
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a1f
′′
1 + · · ·+ anf

′′
n = 0

...

a1f
(n−1)
1 + · · ·+ anf

(n−1)
n = 0.

Now plug in any scalar a into each equation to get

a1f1(a) + · · ·+ anfn(a) = 0

a1f
′
1(a) + · · ·+ anf

′
n(a) = 0

...

a1f
(n−1)
1 (a) + · · ·+ anf

(n−1)
n (a) = 0.

This implies in Rn that

a1[f1(a), . . . , f (n−1)
1 (a)] + · · ·+ an[fn(a), . . . , f (n−1)

n (a)] = [0, 0, . . . , 0],

and so [f1(a), f ′1(a), . . . , f (n−1)
1 (a)], . . . , [fn(a), f ′n(a), . . . , f (n−1)

n (a)] are linearly in-
dependent in Rn. Hence,

W [f1, . . . , fn](a) =

∣∣∣∣∣∣∣∣
f1(a) · · · fn(a)

...
...

f
(n−1)
1 (a) · · · f

(n−1)
n (a)

∣∣∣∣∣∣∣∣ = 0.

Since a was an arbitrary scalar, our proof is complete. �

Example 3.29 The vectors ex, e2x are linearly independent in F , since W [ex, e2x](x)=
e3x and for a = 0, W [ex, e2x](0) = e0 = 1 6= 0.

This method of verifying linear independence is much more efficient as compared
to the previous method, since we are required to find only one scalar as opposed to
n scalars. We point out that the converse (or any distortion) of Theorem 3.6 is not
true. For instance, the following are not true:
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1. If there exists a scalar a such that W [f1, . . . , fn](a) = 0, then f1, . . . , fn are
linearly dependent.

2. If for all scalars a we have W [f1, . . . , fn](a) = 0, then f1, . . . , fn are linearly
dependent (although under certain conditions this is a valid application—this
one would encounter in a course on Ordinary Differential Equations).

We round off this section by adding yet another statement to our ever expanding
theorem (the proof is left as an exercise).

Theorem 3.7 For an n× n square matrix A the following are equivalent:

i. A is invertible.

ii. A is equivalent to I.

iii. The linear system AX = B has a unique solution for any B ∈ Rn.

iv. A is a product of elementary matrices.

v. The linear system AX = 0 has only the trivial solution.

vi. rk(A) = n.

vii. |A| 6= 0.

viii. The columns (or rows) of A are linearly independent in Rn.

EXERCISES

1. Consider the following vectors in R2:

w = [−5, 0], v1 = [2,−3], v2 = [3,−2].

a. Set up the system of equations necessary to solve in order for w to be a linear
combination of v1 and v2 and decide whether or not it is possible (without
solving).

b. If part a. is possible use Cramer’s Rule to write w as a linear combination
of v1 and v2.

2. Consider the following vectors in R3:

w = [1, 2,−3], v1 = [1, 1, 1], v2 = [−1, 1, 0], v3 = [1, 3, 2].

a. Set up the system of equations necessary to solve in order for w to be a
linear combination of v1, v2 and v3 and decide whether or not it is possible
(without solving).



146 � Introduction to Linear Algebra

b. If part a. is possible use Cramer’s Rule to write w as a linear combination
of v1, v2 and v3.

3. Decide whether each collection of vectors is linearly independent or linearly
dependent:

a. [1, 0, 1, 1], [1, 1, 0, 1], [1, 3,−2, 1] ∈ R4

b.
[

1 0
−1 1

]
,

[
2 1
−1 2

]
,

[
−1 2
−1 −1

]
∈M22

c. 1 + 2x2, x+ x2, −1 + x ∈ P2

d. sin x, tan x ∈ F

4. Decide whether each collection of vectors is linearly independent or linearly
dependent:

a. [1, 2, 0,−1], [0, 1, 1,−1], [1, 1,−2, 1] ∈ R4

b.
[

1 2
−1 0

]
,

[
2 −1
1 1

]
,

[
0 5
−3 −1

]
∈M22

c. 1− x2, −1 + x+ x2, 3− x− 3x2 ∈ P2

d. ex, e2x, e3x ∈ F

5. Decide whether or not X is linearly independent, for each of the following vector
spaces V containing a set of vectors X

a. V = R3 and X = {[1, 1, 1], [−1, 1, 0], [1, 3, 2]}

b. V = M22 and

X =
{ [

2 2
−1 3

] [
−1 2

1 −2

] [
1 −2
1 0

] }

c. V = M22 and

X =
{ [

−1 −1
0 0

] [
0 0
2 3

] [
4 0
−2 1

] [
3 −1
0 4

] }

d. V = M22 and

X =
{ [

1 0
−1 0

] [
1 1
0 −1

] [
−1 −3
−2 3

] }

e. V = M22 and

X =
{ [

2 3
4 5

] [
1 −1
1 −1

] [
5 5
9 9

] }



Vector Spaces � 147

f. V = P2 and X = {1− x+ 3x2, 2 + 4x2, −1− 3x+ x2}.

g. V = P2 and X = {1 + x+ x2, 1 + x, 2− x2}.

6. Decide whether each of the following vectors in F are linearly dependent or
linearly independent:

a. sin x, x sin x

b. ln x, ln x2

c. cosx, cos2 x

d. ex, sin 2x, cos 3x

e. 1, cos 2x, cos2 x

f. 1, cosh2 x, sinh2 x

g. 1, ln x, ln 5x

h. log2 x, log2 (x− 1), log2

(
x2

x−1

)
i. 1, tan x, secx

j. 1, tan2 x, sec2 x

7. Prove that any collection of vectors which includes 0 is linearly dependent.

8. Prove that any vector v 6= 0 is linearly independent.

9. Prove that two vectors u, v are linearly dependent iff one is a scalar multiple of
the other (i.e. there exists a scalar a such that u = av or v = au).

10. Find three vectors in R3 which are linearly dependent, but any two of them are
linearly independent.

11. Prove that if v1, . . . , vn are linearly independent, then so are

a. v1, v1 + v2, v1 + v3, . . . , v1 + vn.

b. v1, v1 + v2, v1 + v2 + v3, . . . , v1 + v2 + · · ·+ vn.

12. Prove that if v1, v2, . . . , vn ∈ V are linearly independent, then any subset of the
vectors is linearly independent.

13. Let v1, v2, . . . , vk ∈ Rn and A ∈ Mnn. Prove that if Av1, Av2, . . . , Avk are lin-
early independent, then so are v1, v2, . . . , vk.

14. Complete the proof of Theorem 3.7 by showing that viii implies iii.
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3.4 SPAN

We present in this section a special subspace which plays an important role in the
theory of vector spaces as well as introduce the second property necessary for a basis.

Definition 3.8 Given vectors v1, . . . , vn in a vector space V , the span of v1, . . . , vn,
written span(v1, . . . , vn), is the set of all linear combinations of the vectors v1, . . . , vn.
In other words

span(v1, . . . , vn) = {a1v1 + · · ·+ anvn | a1, . . . , an ∈ R}.

It is also called the subspace generated by v1, . . . , vn and is sometimes indicated
by the notation 〈v1, . . . , vn〉. The vectors v1, . . . , vn are called the generators.

We remark that one can define span for infinite sets of vectors as well, but this
text does not require such treatment. It wouldn’t be fair to introduce such a non-
intuitive object without giving some examples. Later in the section, we will give a
method for uncovering a nice description of the span of a collection of vectors. For
this reason, our examples at this point will be simple.

Example 3.30 Let V = R3. The span of ı̂ and ̂,

span(̂ı, ̂) = {aı̂+ b̂ | a, b ∈ R} = {[a, b, 0] | a, b ∈ R}.

Hence, this span describes all vectors in R3 which lie in the xy-plane, or we might
just say that this span is the xy-plane. Similarly, the span of ı̂, ̂ and k̂ will be all of
R3.

Definition 3.9 Let A ∈ Mmn with rows r1, . . . , rm ∈ F n and columns c1, . . . , cn ∈
Rm. Then

1. span(r1, . . . , rm) is called the row space of A.

2. span(c1, . . . , cn) is called the column space of A.

Now we prove an essential fact that the span of a collection of vectors is a subspace
of V (and more).

Lemma 3.3 Given vectors v1, . . . , vn in a vector space V ,

i. v1, . . . , vn ∈ span(v1, . . . , vn).

ii. span(v1, . . . , vn) is a subspace of V .

iii. If U is a subspace of V containing the vectors v1, . . . , vn then span(v1, . . . , vn) ⊆
U .

To summarize i–iii, span (v1, . . . , vn) is the smallest (with respect to inclusion) sub-
space of V containing the vectors v1, . . . , vn (see Figure 3.1) .
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Figure 3.1 The span of a set of vectors

Proof 3.9 For the proof of i, if vi is one of v1, . . . , vn, since vi = 0v1 + · · · + 1vi +
· · ·+ 0vn is a linear combination of v1, . . . , vn, by definition, vi ∈ span(v1, . . . , vn).

To prove ii, we need to verify that span(v1, . . . , vn) satisfies Property 0. First, take
a1v1 + · · ·+ anvn and b1v1 + · · ·+ bnvn in span(v1, . . . , vn). Then the sum,

(a1v1 + · · ·+ anvn) + (b1v1 + · · ·+ bnvn) = (a1v1 + b1v1) + · · ·+ (anvn + bnvn) =

(a1 + b1)v1 + · · ·+ (an + bn)vn ∈ span(v1, . . . , vn).

Second, for any scalar c and a1v1 + · · · + anvn in span(v1, . . . , vn), the scalar
product

c(a1v1 + · · ·+ anvn) = c(a1v1) + · · ·+ c(anvn) =

(ca1)v1 + · · ·+ (can)vn ∈ span(v1, . . . , vn).

To prove iii, assume U is a subspace of V containing the vectors v1, . . . , vn and
take any a1v1 + · · ·+ anvn in span(v1, . . . , vn). We need to show that it is in U . Since
v1, . . . , vn are in U , then so are a1v1, . . . , anvn (since U satisfies Property 0). By
Property 0 again the sum, a1v1 + · · ·+ anvn, is also in U . �

The following result is a direct consequence of Lemma 3.3:
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Corollary 3.1 Let v1, . . . , vn be vectors in a vector space V .

i. If X is a subset of the set {v1, . . . , vn}, then span(X) ⊆ span(v1, . . . , vn).

ii. The subspace span(v1, . . . , vn) equals the intersection of all subspaces containing
the vectors v1 . . . , vn.

Proof 3.10 By Lemma 3.3.i,

X ⊆ {v1, . . . , vn} ⊆ span(v1, . . . , vn).

By Lemma 3.3.iii, since span(X) is the smallest subspace containing X, it follows
that span(X) ⊆ span(v1, . . . , vn).

To prove ii, we have seen that the intersection of a collection of subspaces is itself
a subspace. Hence, the intersection of all subspaces containing v1, . . . , vn (let’s call it
U) is a subspace. Certainly this U contains v1, . . . , vn since each of its constituents
in the intersection does so. Thus, by Lemma 3.3.iii, span(v1, . . . , vn) ⊆ U . For
the reverse inclusion, since span(v1, . . . , vn) is a subspace containing v1, . . . , vn, it is
certainly contained in the intersection of all such subspaces (see Exercise 15), namely
U . �

Definition 3.10 A set of vectors v1, . . . , vn ∈ V spans a vector space V if
span(v1, . . . , vn) = V , i.e. the vectors v1, . . . , vn generate all the vectors in V
(recall that the span of a set of vectors is a subspace of V which is not necessar-
ily the entire vector space V ).

Example 3.31 Consider the vectors ı̂, ̂, k̂ ∈ R3. One computes span(̂ı, ̂, k̂) = R3

and so ı̂, ̂, k̂ span R3.

We add yet another extension of Theorem 3.7.

Theorem 3.8 For an n× n square matrix A the following are equivalent:

i. A is invertible.

ii. A is equivalent to I.

iii. The linear system AX = B has a unique solution for any B ∈ Rn.

iv. A is a product of elementary matrices.

v. The linear system AX = 0 has only the trivial solution.

vi. rk(A) = n.

vii. |A| 6= 0.

viii. The columns (or rows) of A are linearly independent in Rn.

ix. The span of the columns (or rows) of A equals all of Rn.
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Proof 3.11 Set A = [c1 · · · cn] viewed in columns. We will show that viii is equiv-
alent to iii. First assume iii is true and show that span(c1, . . . , cn) = Rn. It’s
enough to show that any B ∈ Rn is an element of span(c1, . . . , cn). Since, by as-
sumption, AX = B has a solution, there exists X0 = [a1, . . . , an] ∈ Rn such that
AX0 = B. Now by Exercise 1.2, a1c1 + · · · + ancn = B which by definition implies
that B ∈ span(c1, . . . , cn).

We leave the proof of viii implies iii as an exercise. �

Example 3.32 A simple example which illustrates Theorem 3.8 nicely is the matrix
A = I3. Certainly, A is invertible, since |A| = 1 6= 0. Furthermore, the rows (or
columns) span R3, since the rows (or columns) are ı̂, ̂, k̂.

The next Lemma, besides its theoretical usefulness, gives us a method for com-
puting the span of a collection of vectors. First, we make the following definition:

Definition 3.11 Let v, v1, . . . , vn ∈ V a vector space. We say v is linearly depen-
dent on v1, . . . , vn if there exist scalars a1, . . . , an such that v = a1v1 + · · · + anvn.
Otherwise, v is linearly independent of v1, . . . , vn.

Example 3.33 1−x−2x2 is linearly dependent on 1 +x, x+x2 since 1−x−2x2 =
(1)(1 + x) + (−2)(x+ x2).

Another way to phrase the definition above is v is linearly dependent on v1, . . . , vn
iff v ∈ span(v1, . . . , vn). The next lemma links the two notions of linear dependence
we have seen. The proof is left as an exercise.

Lemma 3.4 Let v1, . . . , vn ∈ V a vector space. Then v1, . . . , vn are linearly de-
pendent iff there exists a vi ∈ {v1, . . . , vn} such that vi is linearly dependent on
v1, . . . , vi−1, vi+1, . . . , vn.

Now we prove the lemma we had mentioned earlier.

Lemma 3.5 Let v1, . . . , vn ∈ V a vector space. If v1 is linearly dependent on
v2, . . . , vn, then span(v1, . . . , vn) = span(v2, . . . , vn).

Proof 3.12 The fact that span(v2, . . . , vn) ⊆ span(v1, . . . , vn) follows from Corol-
lary 3.1.i.

For the reverse inclusion, take any a1v1 + · · · + anvn ∈ span(v1, . . . , vn). Since
v1 is linearly dependent on v2, . . . , vn there exist scalars b2, . . . , bn such that v1 =
b2v2 + · · ·+ bnvn. Hence,

a1v1 + a2v2 + · · ·+ anvn = a1(b2v2 + · · ·+ bnvn) + a2v2 + · · ·+ anvn =
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(a1b2 + a2)v2 + · · ·+ (a1bn + an)vn ∈ span(v2, . . . , vn).

�

Lemma 3.5 says that we may drop a linearly dependent vector from a list of
vectors without reducing the size of the span. Another way to express this is that
linearly dependent vectors make no real contribution to the size of the span. By
repeating this process, assuming there is at least one non-zero vector, we can reduce
the set of vectors to a linearly independent set of vectors which has the same span as
the original set of vectors. We call this reduced set of linearly independent vectors the
necessary generators (later we will see that they form what we will call a basis
for the span).

The procedure which follows illustrates an algorithm for giving a nice description
of the span of a collection of vectors in Rn, P or Mmn. The idea is that first we insert
the vectors into the rows of a matrix (just as we had inserted them as columns to
check linear independence), then we put this matrix in reduced row-echelon form.
The process of row reducing will eliminate any linearly dependent vectors and the
resulting non-zero rows will be the necessary generators of the span of the original
vectors. See Section 3.6, Corollary 3.3 for a more formal explanation for why this
process works.

Example 3.34 We describe the span of [1, 0, 1], [1, 1, 0], [3, 1, 2] ∈ R3. First we form
the matrix

 1 0 1
1 1 0
3 1 2

 which reduces to

 1 0 1
0 1 −1
0 0 0

 .
Hence, the necessary generators are [1, 0, 1], [0, 1,−1] and

span([1, 0, 1], [1, 1, 0], [3, 1, 2]) = span([1, 0, 1], [0, 1,−1])

= {a[1, 0, 1] + b[0, 1,−1] | a, b ∈ R} = {[a, b, a− b] | a, b ∈ R}.

So the span consists of vectors in R3 in which the third coordinate is the difference
of the first and second coordinates. Notice that now one can easily decide whether or
not a vector is in a span. For instance, [1, 2,−1] ∈ span([1, 0, 1], [1, 1, 0], [3, 1, 2]) since
here a = 1, b = 2 and a−b is indeed -1. While [1, 2, 3] 6∈ span([1, 0, 1], [1, 1, 0], [3, 1, 2])
since a− b = 3 6= −1.

Example 3.35 We describe the span of 1 +x+x2, 1−x3, x+x2 +x3 ∈ P3. We form
the matrix
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 1 1 1 0
1 0 0 −1
0 1 1 1

 which reduces to

 1 0 0 −1
0 1 1 1
0 0 0 0

 .
Hence, the necessary generators are 1− x3, x+ x2 + x3 and

span(1 + x+ x2, 1− x3, x+ x2 + x3) = span(1− x3, x+ x2 + x3)

= {a(1− x3) + b(x+ x2 + x3) | a, b ∈ R} = {a+ bx+ bx2 + (b− a)x3 | a, b ∈ R}.

Again, 1− 2x− 2x2 − 3x3 is in the span while vectors like 1− 2x− 2x2 + x3 and
1− 2x− x2 − 3x3 are not.

Example 3.36 We describe the span of

[
1 1
0 0

]
,

[
1 0
1 0

]
,

[
0 −1
1 0

]
∈M22.

Form the matrix

 1 1 0 0
1 0 1 0
0 −1 1 0

 which reduces to

 1 0 1 0
0 1 −1 0
0 0 0 0

 .
Hence, the necessary generators are

[
1 0
1 0

]
,

[
0 1
−1 0

]

and the span equals

{
a

[
1 0
1 0

]
+ b

[
0 1
−1 0

]
: a, b ∈ R

}

=
{ [

a b
a− b 0

]
: a, b ∈ R

}
.
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Example 3.37 We show that [1, 0, 0], [1, 1, 0], [1, 1, 1] span R3. Putting the vectors
in rows,

 1 0 0
1 1 0
1 1 1

 reduces to

 1 0 0
0 1 0
0 0 1

 .
Hence,

span([1, 0, 0], [1, 1, 0], [1, 1, 1]) = span([1, 0, 0], [0, 1, 0], [0, 0, 1])

= {a[1, 0, 0] + b[0, 1, 0] + c[0, 0, 1] | a, b, c ∈ R} = {[a, b, c] | a, b, c ∈ R} = R3.

Example 3.38 We show that [1, 0, 0], [1, 1, 0], [0,−2, 0] do not span R3.

 1 0 0
1 1 0
0 −2 0

 reduces to

 1 0 0
0 1 0
0 0 0

 .
Hence,

span([1, 0, 0], [1, 1, 0], [0,−2, 0]) = span([1, 0, 0], [0, 1, 0])

= {a[1, 0, 0] + b[0, 1, 0] | a, b ∈ R } = { [a, b, 0] | a, b ∈ R } 6= R3. (it is smaller)

Sometimes, we wish to select our necessary generators from the original set of
vectors. To do this we put the vectors in columns and row reduce until we find the
pivots of the matrix (as we did when we computed the rank of a matrix). Then the
columns in the original matrix corresponding to these pivots are necessary generators
for the original set of vectors. The reason why this works (without going into detail)
is that essentially we are finding the generators necessary for expressing as a linear
combination any arbitrary vector in the span. See Section 3.6, Corollary 3.3 for a
more formal justification for why this process works. This algorithm generally does
not give a nice description of the span, but can serve other purposes. For instance,
this algorithm comes in handy when we wish to extend a set of linearly independent
vectors to a basis for a vector space (see Section 3.5).

One example should suffice for this procedure. Let’s rework the previous example
in R3.
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Example 3.39 Select from [1, 0, 1], [1, 1, 0], [3, 1, 2] ∈ R3 necessary generators which
form its span. Form the matrix

 1 1 3
0 1 1
1 0 2

 which reduces to

 1 1 3
0 1 1
0 0 0

 .
At this point we know the pivots and we therefore choose [1, 0, 1], [1, 1, 0] as the

necessary generators of the span.

EXERCISES

1. For each of the following vector spaces V containing a set of vectors X and a
vector v (all listed below),

i. Find necessary generators for span(X).

ii. Give a nice description of span(X).

iii. Use part ii to decide whether or not v ∈ span(X).

a. V = R3, X = {[1, 1, 1], [−1, 1, 0], [1, 3, 2]}, v = [2, 4, 3]

b. V = R4, X = {[1, 1, 0, 1], [2, 1, 0, 0], [1,−1, 0,−3]}, v = [3, 1, 0,−1]

c. V = M22,

X =
{ [

2 2
−1 3

]
,

[
−1 2

1 −2

] [
1 −2
1 0

] }
, v =

[
1 −2
2 3

]
d. V = M22,

X =
{ [

1 2
0 −1

]
,

[
0 1
−1 2

]
,

[
1 5
−3 5

] }
, v =

[
1 −2
4 −1

]
e. V = M22,

X =
{ [

−1 −1
0 0

]
,

[
0 0
2 3

]
,

[
4 0
−2 1

] [
3 −1
0 4

] }
, v =

[
2 3
−1 1

]
f. V = M22,

X =
{ [

1 0
−1 0

]
,

[
1 1
0 −1

]
,

[
−1 −3
−2 3

] }
, v =

[
2 3
1 2

]
g. V = M22,

X =
{ [

2 3
4 5

]
,

[
1 −1
1 −1

] [
5 5
9 9

] }
, v =

[
2 3
4 −5

]
,
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h. V = M22,

X =
{ [

2 −1
1 3

]
,

[
1 0
1 1

]
,

[
3 −1
2 4

] }
, v =

[
1 2
3 −1

]

i. V = P2, X = {1− x+ 3x2, 2 + 4x2, −1− 3x+ x2}, v = −1 + 3x− 5x2

j. V = P2, X = {1 + x+ x2, 1 + x, 2− x2}, v = 1
2 + 3x2

k. V = P3, X = {1+x−x2, 2+x−2x2+x3, 1+2x−x2−x3}, v = 1+2x+x2−x3

2. Describe geometrically the span of a single vector in R3.

3. Suppose that u ∈ span(v1, v2), v1 ∈ span(w1, w2) and v2 ∈ span(w3, w4)
for some u, v1, v2, w1, w2, w3, w4 ∈ V a vector space. Show that u ∈
span(w1, w2, w3, w4).

4. Let v, v1, v2, v3, w1, w2 ∈ V a vector space. Show that if v ∈ span(v1, v2, v3) and
v1, v2, v3 ∈ span(w1, w2), then v ∈ span(w1, w2).

5. Let v, v1, . . . , vk ∈ V , a vector space. Suppose that w ∈ span(v, v1, . . . , vk)
but w 6∈ span(v1, . . . , vk). Prove that span(w, v1, . . . , vk) = span(v, v1, . . . , vk)
(sometimes called the exchange principle).

6. Let v, v1, . . . , vk, w1, . . . , wm ∈ V , a vector space. Suppose that span(v, v1, . . . ,
vk) = span(v, w1, . . . , wm), span(v1, . . . , vk) ⊆ span(w1, . . . , wm) and v 6∈
span(v1, . . . , vk). Prove that span(v1, . . . , vk) = span(w1, . . . , wm).

7. Prove that if v1, . . . , vn are linearly dependent and v1, . . . , vn−1 are linearly
independent, then vn ∈ span(v1, . . . , vn−1).

3.5 BASIS AND DIMENSION

This section introduces what we call a counting principle for comparing the rel-
ative sizes of vector spaces, called dimension. It will conform to our intuition of
dimension for R2 (2-dimensional) and R3 (3-dimensional), but in addition it will as-
sign dimension to many other vector spaces. Our focus will be on investigating vector
spaces of finite dimension.

Definition 3.12 A set of vectors v1, . . . , vn ∈ V a vector space is a basis for V if

1. The vectors v1, . . . , vn span V , and

2. The vectors v1, . . . , vn are linearly independent.

Example 3.40 Take the earlier example. We have already verified that [1, 0, 0],
[1, 1, 0], [1, 1, 1] span R3. Now we show they are linearly independent (and thus a
basis for R3). Again, we use the technique from the Section 3.3. Putting the vectors
in columns in a determinant,
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∣∣∣∣∣∣∣
1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣∣ = (1)(1)(1) = 1 6= 0.

Example 3.41 The necessary generators of a particular span are a basis for that
span. We shall formally prove this fact in Section 3.6. However, we illustrate this
fact with one of the earlier examples. Although [1, 0, 0], [1, 1, 0], [0,−2, 0] do not
span R3, from our calculations above, we know that [1, 0, 0], [0, 1, 0] form a basis for
span([1, 0, 0], [1, 1, 0], [0,−2, 0]), since [1, 0, 0], [0, 1, 0] are the necessary generators of
span([1, 0, 0], [1, 1, 0], [0,−2, 0]) and one can check that they are linearly independent.

We will not give too many examples at this point, because within this section we
will shortcut the method of determining basis even further.

Definition 3.13 The following bases for their respective vector spaces are called
standard bases:

1. The standard basis for Rn is the collection of vectors

e1 = [1, 0, . . . , 0], e2 = [0, 1, 0, . . . , 0], . . . , en = [0, . . . , 0, 1].

Note that in R2 the notation for the standard basis is ı̂, ̂ and in R3 the notation
is ı̂, ̂, k̂.

2. The standard basis for Pn is the collection of vectors 1, x, x2, . . . , xn.

3. The standard basis for P is the infinite collection of vectors 1, x, x2, . . ..

4. The standard basis for Mmn is the collection of vectors

{Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

where each Eij is a matrix filled with zeros except that there is a 1 in the ijth
entry.

Example 3.42 The standard basis for M23 is

E11 =
[

1 0 0
0 0 0

]
, E12 =

[
0 1 0
0 0 0

]
, E13 =

[
0 0 1
0 0 0

]
,

E21 =
[

0 0 0
1 0 0

]
, E22 =

[
0 0 0
0 1 0

]
, E23 =

[
0 0 0
0 0 1

]
.
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The result we now prove is an essential fact about bases. Among other reasons we
will need it later in this section to define coordinates, and coordinates play a major
role in linear algebra as we shall see in later sections of this text.

Theorem 3.9 Let v1, . . . , vn be vectors in a vector space V . Then v1, . . . , vn form a
basis for V iff for each v ∈ V there exist unique scalars a1, . . . , an such that

v = a1v1 + · · ·+ anvn.

Proof 3.13 Take v ∈ V . By definition of basis (in particular the fact that the basis
spans V ), we know there exist scalars a1, . . . , an such that

v = a1v1 + · · ·+ anvn.

We need to show that these scalars are unique. To show this, assume there were
potentially other scalars b1, . . . , bn such that

v = b1v1 + · · ·+ bnvn.

Since both linear combinations equal v, we can equate them:

a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn.

Now collect like terms:

a1v1 + · · ·+ anvn − (b1v1 + · · ·+ bnvn) = 0.

(a1 − b1)v1 + · · ·+ (a1 − b1)vn = 0.

We now have a linear combination of v1, . . . , vn equaling zero. Since v1, . . . , vn are
linearly independent this implies

a1 − b1 = 0, . . . , an − bn = 0,

and so

a1 = b1, . . . , an = bn.

Hence, we have proved the uniqueness of the representation. We leave the proof
of the reverse implication as an exercise. �
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Our goal now is to prove an important fact about vector spaces and their bases.
Consider the following example for V = R3. Both ı̂, ̂, k̂ and [1, 0, 0], [1, 1, 0], [1, 1, 1]
are bases for V , and one can find many more bases for R3. But one fact remains
constant about these bases for R3: Although a given vector space may have many
bases, the number of vectors in each basis is always the same; we say the number
of elements in the basis for a given vector space is an invariant. This invariant will
be what we will call the dimension of the vector space. To prove the invariance of
dimension we need the following lemma:

Lemma 3.6 Given a vector space V , suppose v1, . . . , vn ∈ V span V and
w1, . . . , wk ∈ V are linearly independent. Then k ≤ n.

Proof 3.14 We prove this statement by contradiction. Suppose k > n. Since
v1, . . . , vn span V , for 1 ≤ i ≤ k there exist scalars a1i, . . . , ani such that wi =
a1iv1 + · · · + anivn. Now consider the following homogeneous linear system of equa-
tions:


a11x1 + · · ·+ a1kxk = 0

...
an1x1 + · · ·+ ankxk = 0

Since k > n, by Corollary 2.4, the linear system above has a non-trivial solution.
In other words there exist scalars b1, . . . , bk not all zero such that

a11b1 + · · ·+ a1kbk = 0
...

an1b1 + · · ·+ ankbk = 0

Notice then that

b1w1 + · · ·+ bkwk = b1(a11v1 + · · ·+ an1vn) + · · ·+ bk(a1kv1 + · · ·+ ankvn)

= (a11b1 + · · ·+ a1kbk)v1 + · · ·+ (an1b1 + · · ·+ ankbk)vn = 0v1 + · · ·+ 0vn = 0.

Since b1, . . . , bk are not all zero, this implies that w1, . . . , wk are linearly depen-
dent, contradicting our assumption. Hence, it must be the case that k ≤ n. �

Corollary 3.2 Let V be a vector space. If v1, . . . , vn ∈ V is a basis for V and
w1, . . . , wk is a basis for V , then n = k.
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Proof 3.15 By definition of basis, v1, . . . , vn span V and w1, . . . , wk are linearly
independent. Thus, by Lemma 3.6, k ≤ n. Now reverse the roles: w1, . . . , wk span V
and v1, . . . , vn are linearly independent. Again, by Lemma 3.6, n ≤ k. The above two
inequalities yield the desired equality. �

It is precisely this corollary that allows us to make the following definition:

Definition 3.14 The dimension of a vector space V , written dim(V ) (or just
dimV ) is the number of elements in any basis for V .

A few remarks are in order here.

1. We emphasize that the corollary ensures us that dimension is well-defined (in
the case when a basis has a finite number of elements). In other words for a
given vector space V , although we might find different bases for V , our bases
will always have the same number of vectors and thus we will always be in
agreement on the dimension of V .

2. If V = {0}, we define dimV = 0—essentially because V has no basis, and also
to make the dimension theorems in later sections (for instance, Section 3.7)
work out nicely.

3. If V has a basis which is infinite, for the purposes of this text we assign it the
dimension∞ (although, infinite dimensional vector spaces can be given a much
more in depth treatment).

4. The reader should also keep in mind that we have in no way shown that every
vector space is guaranteed to have a basis, however this can be proved in a
more advanced mathematical setting.

Example 3.43 Let’s use the standard bases for Rn, Pn, P and Mmn to compute their
dimensions: dimRn = n, dimPn = n+ 1, dimP =∞, dimMmn = mn.

Example 3.44 Referring to an earlier example in this section,

dim(span([1, 0, 0], [1, 1, 0], [0,−2, 0])) = 2,

since [1, 0, 0], [0, 1, 0] form a basis for span([1, 0, 0], [1, 1, 0], [0,−2, 0]).

We illustrate in the example below a simple but practical observation about bases:
If you know the dimension of a vector space, then for a collection of vectors to form a
basis for that vector space, it is necessary that the number of vectors in that collection
equal the dimension of the vector space.

Example 3.45 Notice that 1, 1 + x, 1 + x2, x + x2 has no hope of being a basis for
P2 since there are too many vectors. Indeed, dimP2 = 3.

The vectors [1, 2, 3, 4], [4, 3, 2, 1] have no hope of being a basis for R4 since there
are too few vectors. Indeed, dimR4 = 4.
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In order to further streamline the verification of basis, we prove two results below
and then give their practical implications.

Lemma 3.7 Let v1, . . . , vn be linearly independent vectors in a vector space V . If
for v ∈ V it is the case that v 6∈ span(v1, . . . , vn), then v, v1, . . . , vn are linearly
independent.

Proof 3.16 Given the assumptions of the lemma, suppose to the contrary that
v, v1, . . . , vn were linearly dependent. This implies that there exist scalars a, a1, . . . , an
not all zero such that av+a1v1 + · · ·+anvn = 0. Note that a cannot be zero, otherwise
this would imply that v1, . . . , vn were linearly dependent. Hence, 1/a exists and we
can solve for v as follows:

av = −a1v1 − · · · − anvn

v = (−a1/a)v1 + · · ·+ (−an/a)vn.

This last equation implies that v ∈ span(v1, . . . , vn) contrary to our assumptions.
Hence, it must be that case that v, v1, . . . , vn are linearly independent. �

Theorem 3.10 Let V be a vector space with dimV = n and v1, . . . , vn ∈ V . Then

1. If v1, . . . , vn are linearly independent, then they form a basis for V .

2. If v1, . . . , vn span V , then they form a basis for V .

Proof 3.17 Let w1, . . . , wn be a basis for V so that dimV = n. To prove i, suppose
to the contrary that v1, . . . , vn is not a basis for V , i.e. v1, . . . , vn do not span V .
This implies that span(v1, . . . , vn) 6= V and so there is a v ∈ V which is not in
span(v1, . . . , vn). Then by Lemma 3.7, v, v1, . . . , vn are linearly independent. Since
w1, . . . , wn span V , by Lemma 3.6, n + 1 ≤ n which is an obvious contradiction.
Hence it must be the case that v1, . . . , vn form a basis for V .

To prove ii, suppose to the contrary that v1, . . . , vn is not a basis for V , i.e.
v1, . . . , vn are linearly dependent. By Lemma 3.4, there exists a vi linearly dependent
on v1, . . . , vi−1, vi+1, . . . , vn. In other words
vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vn). By Lemma 3.5,

span(v1, . . . , vi−1, vi+1, . . . , vn) = span(v1, . . . , vn) = V.

Hence, the n − 1 vectors v1, . . . , vi−1, vi+1, . . . , vn span V . Since w1, . . . , wn are
linearly independent, by Lemma 3.6, n ≤ n − 1 an obvious contradiction. Thus, it
must be the case that v1, . . . , vn is a basis for V . �

Now we investigate some of the consequences of these two results above by way
of examples.
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Example 3.46 We show that [1, 0, 0], [1, 2, 0], [1, 2, 3] form a basis for R3. These
vectors are linearly independent since

∣∣∣∣∣∣∣
1 1 1
0 2 2
0 0 3

∣∣∣∣∣∣∣ = (1)(2)(3) = 6 6= 0.

Since dimR3 = 3, by Lemma 3.10.i, [1, 0, 0], [1, 2, 0], [1, 2, 3] form a basis for R3.

Example 3.47 We show that 1, 1 + x, 1 + x2 form a basis for P2.
We show these vectors span P2, by direct computation.

 1 0 0
1 1 0
1 0 1

 reduces to

 1 0 0
0 1 0
0 0 1

 .
Hence, span(1, 1 + x, 1 + x2) = span(1, x, x2) = P2. Since dimP2 = 3, by

Lemma 3.10.ii, 1, 1 + x, 1 + x2 form a basis for P2.

Example 3.48 This example illustrates a quick way to extract a basis for a vector
space (or subspace) when we have a nice description of it. Consider the following
subspace of M22:

U =
{ [

a b
c 2a− b+ c

]
: a, b, c ∈ R

}
.

Notice that

[
a b
c 2a− b+ c

]
=
[
a 0
0 2a

]
+
[

0 b
0 −b

]
+
[

0 0
c c

]
=

a

[
1 0
0 2

]
+ b

[
0 1
0 −1

]
+ c

[
0 0
1 1

]
.

The basis for U is then [
1 0
0 2

]
,

[
0 1
0 −1

]
,

[
0 0
1 1

]
.

Indeed, these matrices span U (the work above shows that every matrix in U is
a linear combination of the three matrices), and it is easy to show that the three
matrices are linearly independent.

Here is an easier way to obtain the three matrices. Consider the arbitrary matrix
in U as defined above. Set a = 1, b = 0, c = 0 to obtain the first matrix; set a = 0, b =
1, c = 0 to obtain the second; say a = 0, b = 0, c = 1 to obtain the third.
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In sum, if we know the dimension of a vector space and we have a set of vectors
whose number equals that dimension, then we need only verify one of the two re-
quirements for being a basis: either linear independence or span. As a rule of thumb,
linear independence is usually the easier of the two to verify.

The next example illustrates a method for taking a set of linearly independent
vectors and adding additional vectors in order to obtain a basis. We call this process
extending to a basis. The process is algorithmic and proceeds as follows:

1. Start with a collection of linearly independent vectors v1, . . . , vk ∈ V with
dimV = n.

2. If k = n then v1, . . . , vk form a basis for V (Lemma 3.10) and stop the process.
Otherwise, proceed to the next step.

3. Compute span(v1, . . . , vk).

4. Select any vk+1 6∈ span(v1, . . . , vk). Note that by Lemma 3.7, v1, . . . , vk, vk+1
are linearly independent. Go back to the second step (replacing k by k + 1).

Example 3.49 Let’s apply the above process to linearly independent vectors
[1, 0, 1], [1, 1, 0] ∈ R3 (where k = 2 and n = 3). We proceed to step 3.

[
1 0 1
1 1 0

]
which reduces to

[
1 0 1
0 1 −1

]
.

Hence,

span([1, 0, 1], [1, 1, 0]) = span([1, 0, 1], [0, 1,−1]) =

{a[1, 0, 1] + b[0, 1,−1] | a, b ∈ R} = {[a, b, a− b] | a, b ∈ R}.

Certainly, [1, 0, 0] 6∈ span([1, 0, 1], [1, 1, 0]). Therefore, [1, 0, 1], [1, 1, 0], [1, 0, 0] are
linearly independent and in fact form a basis for R3 (since k + 1 = 3 = n).

There is a much simpler way to extend a set of linearly independent vectors to
a basis for a given vector space, especially if you are using computer software to
do your computation. The problem with the previous algorithm from a computer’s
point of view is the fourth step where one has to make a choice. Although this is
easy for a human to do, for a computer this is not easy, i.e. how do we write code so
that we choose systematically a vector outside of a span—even when we have a nice
description of the span? We now present a more deterministic way of extending to a
basis.

1. Drop your original set of linearly independent vectors into columns of a matrix
and put alongside them (in columns) the standard basis for the given vector
space.
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2. Row reduce the matrix into row-echelon form (as was done for computing rank)
and identify the pivots.

3. The columns in the original matrix corresponding to these pivots will form a
basis for the given vector space.

At the end of Section 3.4 we discussed why this algorithm will yield a basis.

Example 3.50 Let’s take the same set of vectors in R3, namely [1, 0, 1], [1, 1, 0]. As
described above, we form the matrix

 1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

 which reduces to

 1 0 0 0 1
0 1 0 1 0
0 0 1 −1 −1

 .
Hence, the first three columns are the pivot columns and looking at the original

matrix we take for our basis [1, 0, 1], [1, 1, 0], [1, 0, 0].

Example 3.51 Let’s repeat the algorithm in a different setting. In the vector space
M22 we extend the following set of vectors to a basis for M22:

[
2 1
0 0

]
,

[
−1 −2

2 −1

]
.

As described above we put these two matrices into the columns of a matrix and
put the four standard basis matrices alongside them (in columns).


2 −1 1 0 0 0
1 −2 0 1 0 0
0 2 0 0 1 0
0 −1 0 0 0 1

 which reduces to


1 0 0 1 0 −2
0 −1 0 0 0 1
0 0 1 −2 0 3
0 0 0 0 1 2

 .

Hence, the pivots columns are the first, second, third and fifth. Looking at the
original matrix we choose our basis for M22 to be

[
2 1
0 0

]
,

[
−1 −2

2 −1

] [
1 0
0 0

]
,

[
0 0
1 0

]
.

We add yet another extension of Theorem 3.8. The addition of this new statement
is certainly self-evident in view of statements viii. and ix. and Theorem 3.10.
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Theorem 3.11 For an n× n square matrix A the following are equivalent:

i. A is invertible.

ii. A is equivalent to I.

iii. The linear system AX = B has a unique solution for any B ∈ Rn.

iv. A is a product of elementary matrices.

v. The linear system AX = 0 has only the trivial solution.

vi. rk(A) = n.

vii. |A| 6= 0.

viii. The columns (or rows) of A are linearly independent in Rn.

ix. The columns (or rows) of A span Rn.

x. The columns (or rows) of A form a basis for Rn.

The last topic in this section is the notion of coordinates. The definition of coor-
dinates relies on the result of Theorem 3.9.

Definition 3.15 Let v1, . . . , vn be a basis for a vector space V . Then (v1, . . . , vn) is
called an ordered basis.

Ordered bases function as ordered tuples do. For instance, the following ordered
bases are not equal: (v1, v2) 6= (v2, v1) even though the sets, {v1, v2} and {v2, v1}
are equal. In other words the order in which basis vectors are listed has become
important. It will be useful as well to adopt the notation B = (v1, . . . , vn).

Definition 3.16 Let B = (v1, . . . , vn) be an ordered basis for a vector space V and
take v ∈ V . By Theorem 3.9, there exist unique scalars a1, . . . , an such that v =
a1v1 + · · · + anvn. These scalars a1, . . . , an are called the coordinates of v with
respect to the basis B.

We normally represent these coordinates as an n-tuple in Rn, i.e. as [a1, . . . , an].
We also adopt the notation [v]B = [a1, . . . , an] for the coordinates of v with respect
to the ordered basis B.

Note that the coordinates of a vector v will change when the ordered basis B
changes (even if simply the order of the basis vectors should change). In other words,
the coordinates we find for v are completely dependent upon the ordered basis in
question.

Example 3.52 Consider the following ordered basis for R3:



166 � Introduction to Linear Algebra

B = ([1, 0, 0], [1, 1, 0], [1, 1, 1]).

We compute [v]B where v = [1, 2,−3]. In other words, we want to find scalars
a, b, c such that

[1, 2,−3] = a[1, 0, 0] + b[1, 1, 0] + c[1, 1, 1].

Combining the righthand side yields

[1, 2,−3] = [a+ b+ c, b+ c, c].

Equating coordinates gives


a+ b+ c = 1

b+ c = 2
c = −3

.

Thus, finding coordinates reduces to solving a system of linear equations (as was
stressed to the reader, many computations in this text reduce to a linear system of
equations). We switch to the augmented matrix.

 1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣∣
1
2
−3

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
−1

5
−3

 .
Therefore, a = −1, b = 5, c = −3 and so [1, 2,−3]B = [−1, 5,−3]. One can leave

out the extra square brackets and simply write [1, 2,−3]B = [−1, 5,−3].

As usual, we can shortcut some of this work. Notice in the example above, we
could have immediately formed an augmented matrix where the columns on the left
of the bar are the elements of the ordered basis (which must be listed in their proper
order) and the column on the right of the bar is the vector for which we wish to find
the coordinates.

It will be useful to introduce some additional notation. The ordered basis ST will
represent the standard ordered basis. For instance, the standard ordered basis for
R3 is ST = (̂ı, ̂, k̂). Notice that in the example above, [1, 2,−3]ST = [1, 2,−3]. In
other words, there is no difference between a vector in Rn and its coordinates with
respect to the standard ordered basis for Rn. Refer to the previous section for the
other standard bases.
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Example 3.53 Consider the following ordered basis for P2: B = (1, 1 + x, 1 + x2).
We find the coordinates of v = 1 − x + 2x2 with respect to B. As in the previous
example, we can immediately form the augmented matrix

1
x
x2

 1 1 1
0 1 0
0 0 1

∣∣∣∣∣∣∣
1
−1

2

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
0
−1

2

 .
Hence, [1− x+ 2x2]B = [0,−1, 2].

Example 3.54 Consider the following ordered basis for M22:

B =
([

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

])
.

We find the coordinates of
[

1 −1
2 3

]
with respect to the basis B. Again, the

shortcut allows us to unwind the matrices into columns:


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

∣∣∣∣∣∣∣∣∣
1
−1

2
3

 which reduces to


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣∣
2
−3
−1

3

 .

Hence,
[

1 −1
2 3

]
B

= [2,−3,−1, 3].

An important matrix which will appear in later sections of this text is now defined.
It will play an integral role in what we shall define as matrix similarity.

Definition 3.17 Let V be a vector space with B = (v1, . . . , vn) and B′ = (v′1, . . . , v′n),
two ordered bases for V . The change of basis matrix from B′ to B is a matrix
P ∈Mnn defined by

P = [ [v′1]B [v′2]B · · · [v′n]B ] (represented in columns).

This matrix gets its name from the fact that given any vector v ∈ V if we
multiply the coordinates of v with respect to B′ on the left by P , the result returns
the coordinates of v with respect to B. We summarize this result in the following
proposition (proof withheld until a later section):

Proposition 3.1 Let V be a vector space with B = (v1, . . . , vn) and B′ =
(v′1, . . . , v′n), two ordered bases for V . Then
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1. For any v ∈ V we have P [v]B′ = [v]B.

2. P−1 is the change of basis matrix from B to B′.

Note that given ordered bases B and B′, the change of basis matrix from B′ to
B is unique since coordinates of vectors are uniquely determined. For the time being
let us simply illustrate the Proposition with a couple of examples.

Example 3.55 Let V = R2 with ordered bases B = ([1, 0], [1, 1]) and B′ =
([1, 1], [0, 1]). Since

[1, 1] = (0)[1, 0] + (1)[1, 1] and [0, 1] = (−1)[1, 0] + (1)[1, 1]

it follows that

P =
[

0 −1
1 1

]
.

The general algorithm for finding P is as follows: Set up an augmented matrix
with B on the left of the bar and B′ on the right, i.e. [B|B′] (in columns). Then row
reduce to reduced row-echelon form to get [I|P ]. To the right of the bar is P .

Example 3.56 Let’s redo Example 3.55 with the algorithm described above. We set
up the augmented matrix[

1 1
0 1

∣∣∣∣∣ 1 0
1 1

]
which reduces to

[
1 0
0 1

∣∣∣∣∣ 0 −1
1 1

]

Hence, once again,

P =
[

0 −1
1 1

]
.

Now take some vector, say v = [2,−1] ∈ V . Since

v = (2)[1, 1] + (−3)[0, 1] we have [v]B′ = [2,−3].

Furthermore,

v = (3)[1, 0] + (−1)[1, 1] we have [v]B = [3,−1].

As the Proposition guarantees, these last coordinates, [v]B can be obtained via the
product P [v]B′ and indeed as the reader can check this is the case. We leave it to the
reader to check that the change of basis matrix from B to B′ coincides with P−1.
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Example 3.57 Let V = P2, B = (1 + x, 1 + x2, x + x2) and B′ = (x2,−1 + x, 1 +
x+ x2). First we compute the change of basis matrix by row reducing

 1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣∣
0 −1 1
0 1 1
1 0 1

 which reduces to

 1 0 0
0 0 1
0 0 1

∣∣∣∣∣∣∣
−1/2 0 1/2

1/2 −1 1/2
1/2 1 1/2

 .
Therefore,

P =

 −1/2 0 1/2
1/2 −1 1/2
1/2 1 1/2

 .
Now take v = 1 + 2x− x2. First we find [v]B′ by row reducing 0 −1 1

0 1 1
1 0 1

∣∣∣∣∣∣∣
1
2
−1

 which reduces to

 1 0 0
0 0 1
0 0 1

∣∣∣∣∣∣∣
−5/2

1/2
3/2

 .
Therefore [1 + 2x− x2]B′ = [−5/2, 1/2, 3/2]. Next we find [v]B by row reducing 1 1 0

1 0 1
0 1 1

 1
2
−1

 which reduces to

 1 0 0
0 0 1
0 0 1

 2
−1

0

 .
Therefore [1 + 2x − x2]B′ = [2,−1, 0]. Now one can verify the Proposition by multi-
plying  −1/2 0 1/2

1/2 −1 1/2
1/2 1 1/2


∣∣∣∣∣∣∣
−5/2

1/2
3/2

 =

∣∣∣∣∣∣∣
2
−1

0

 .
EXERCISES

1. For each set of vectors X in a vector space V answer the following questions:

i. Is X a linearly independent set of vectors?

ii. Does X span V ?

iii. Do the vectors X form a basis for V ?

a. X = {[1, 1, 1], [1, 1, 0], [1, 0, 0]} and V = R3.

b. X = {[1, 0, 0], [1, 2, 0], [1, 2, 3]} and V = R3.
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c. X = {1, 1 + x, 1 + x2, x+ x2} and V = P2.

d. X = {1, 1 + x3, x+ x2} and V = P3.

e.
X =

{ [
1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
0 1

] }
and V = M22.

f.

X =
{ [

1 0
0 0

]
,

[
1 2
0 0

]
,

[
0 1
0 2

]
,

[
1 2
0 3

] }
and V = U22.

2. Referring to Exercise 1 in Section 3.4, answer the following additional questions:

v. Decide whether or not X spans V .

vi. Decide whether or not X is a basis for V .

3. Consider the following subspace of M22:

U =
{ [

a b
a− b+ 2c c

]
: a, b, c ∈ R

}
.

a. Find a basis for U .

b. Verify that the vectors in part a. are indeed a basis for U .

c. What is the dimension of U?

4. Repeat the previous exercise for the following subspace of P3:

U = {a+ bx+ cx2 + dx3 | d = −2a+ 3c}.

5. Consider the following system of linear equations:

{
2x1 + x2 + 3x3 + x4 = 0
x1 + x2 + x3 + x4 = 0 .

a. Find the solution set for the linear system.

b. Find a basis for the solution set in part a.

c. Find the dimension of the solution set.

6. Consider the vector space L22 and the set of vectors X and the vector v:

X =
{ [

1 0
0 2

]
,

[
1 0
1 3

]
,

[
1 0
−2 0

] }
v =

[
−2 0

3 −1

]
.
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a. Find a basis for span(X) and give a nice description of span(X).

b. Decide whether or not v ∈ span(X).

c. Decide whether or not X spans L22.

d. What is the dimension of span(X)?

7. Using all the shortcuts introduced in this section, decide whether or not each
of the following set of vectors form a basis for the given vector space V .

a. V = R3 and vectors [1, 0, 0], [1, 2, 0], [1, 2, 3], [0, 2, 3].

b. V = R3 and vectors [1, 0,−1], [0, 1, 2], [1, 1,−1].

c. V = R3 and vectors [1, 0, 0], [1, 2, 0].

d. V = R3 and vectors [1, 0, 0, 0], [1, 2, 0, 0], [0, 2, 3, 0], [0,−1, 2, 1].

e. V = M22 and vectors[
1 1
0 0

]
,

[
0 1
1 0

]
,

[
0 0
1 1

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]
.

f. V = M22 and vectors[
1 1
0 0

]
,

[
0 1
1 0

]
,

[
0 0
1 1

]
,

[
1 0
0 1

]
.

g. V = M22 and vectors[
1 1
0 0

]
,

[
0 1
1 0

]
,

[
0 0
1 1

]
,

[
1 0
0 1

]
,

[
0 1
0 1

]
.

h. V = U22 and vectors [
1 1
0 0

]
,

[
1 0
0 1

]
,

[
0 1
0 1

]
.

i. V = P2 and vectors 1 + x, x+ x2.

j. V = P3 and vectors 1 + x, 1 + x2, 1 + x3.

k. V = P3 and vectors 1 + x, 1 + x2, 1 + x3, 1 + x+ x2 + x3.

8. For each set of linearly independent vectors X in a vector space V , extend X
to a basis for V as done in the section.

a. X = {[1, 0,−2], [0,−1, 1]} for V = R3.

b. X = {[0, 0, 1, 1], [1, 1, 0, 0]} for V = R4.
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c.
X =

{[
1 −2
−1 0

]
,

[
2 0
1 −1

] }
for V = M22.

d. X = {1− x2} for V = P2.

e. X = {1 + x, x2 + x3} for V = P3.

9. For each vector space V with v ∈ V and B an ordered basis, compute [v]B.

a. V = R3, v = [2,−3, 4], B = ([1, 2,−3], [1, 0,−2], [2,−1, 4])

b. V = P2, v = 1− x+ 3x2, B = (1− 2x, x+ 3x2, 1 + x− x2)

c. V = M22,

v =
[

1 −2
3 −1

]
,

B =
( [

2 0
0 0

]
,

[
1 −1
2 0

]
,

[
−1 1

0 0

]
,

[
1 1
1 1

] )
.

d. V = R3, v = [1,−2,−1], B = ([1, 0, 0], [1, 1, 0], [0, 1, 1])

e. V = D22,

v =
[

2 0
0 −1

]
,

B =
( [

1 0
0 1

]
,

[
0 0
0 −1

] )
.

10. For each vector space V with ordered bases B and B′ compute P the change of
basis matrix from B′ to B. Then for the given vector v verify Proposition 3.1.1

a. V = R2, v = [2,−3], B = ([2,−3], [−1, 4] ) and B′ = ( [1, 2], [0,−2]).

b. V = P1, v = 1− x, B = (1− 2x, 1 + x ) and B′ = ( 1− x, 1 + 2x).

c. V = D22(F ),

v =
[

2 0
0 −1

]
,

B =
( [

1 0
0 1

]
,

[
0 0
0 −1

] )
,

B′ =
( [

0 0
0 −2

]
,

[
1 0
0 −1

] )
.

11. Let V = P1 be a vector space with ordered bases B = (1 + x, 1 − x) and
B′ = (1, 1 + x). Let v = 1− 3x.

a. Compute [v]B and [v]B′
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b. Compute P , the change of basis matrix from B′ to B.

c. Verify the result that P [v]B′ = [v]B.

12. Let V = P1 be a vector space with ordered bases B = (1 + x, 1 − x) and
B′ = (1, 1 + x). Let v = 1− 3x.

a. Compute [v]B′

b. Compute P , the change of basis matrix from B′ to B.

c. Use parts a and b to compute [v]B.

13. Consider the following vector space with ordered bases: V = M22,

B =
([

1 1
0 0

]
,

[
0 1
0 1

]
,

[
0 0
1 1

]
,

[
1 0
1 1

])

B′ =
([

1 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 1

])

a. Verify that B is indeed a basis.

b. Compute the change of basis matrix P from B′ to B.

c. Compute the coordinates [v]B and [v]B′ for the vector v =
[

1 1
1 1

]
.

d. Verify that P [v]B′ = [v]B.

14. Let A ∈ M22 and suppose I, A, . . . , A4 are all distinct. Prove that there exists
scalars a0, a1, . . . , a4 not all zero such that a0I + a1A+ · · ·+ a4A

4 = 022.

15. Prove if u, v, w is a basis for a vector space V , then so is u+ v, v+w, u+w.

16. Let V be a vector space with basis v1, . . . , vn. Select non-zero scalars a1, . . . , an.

a. Prove that a1v1, . . . , anvn is a basis for V .

b. Prove that a1v1, a1v1 + a2v2, . . . , a1v1 + · · ·+ anvn is a basis for V .

17. Let V be a vector space with v1, . . . , vn ∈ V . Prove that if V = span(v1, . . . , vn)
and no proper subset of {v1, . . . , vn} spans V , then v1, . . . , vn is a basis for V .
We say that a basis is a minimal spanning set of vectors

18. Let V be a vector space with v1, . . . , vn ∈ V . Prove that if v1, . . . , vn are linearly
independent and for all v ∈ V , we have that v1, . . . , vn, v are linearly dependent,
then v1, . . . , vn form a basis for V . We say that a basis is a maximal linearly
independent set of vectors.
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19. Complete the proof of Theorem 3.9.

20. Prove that if U is a subspace of Rn, then there exists A ∈ Mmn such that
U = {Ax : x ∈ Rm} (i.e. U equals the column space of A). Hint: Let A have
columns which form a basis for U .

3.6 SUBSPACES ASSOCIATED WITH A MATRIX

In this section we address some results that were earlier discussed but never formally
proved. This section also gives a justification for the process of finding a basis for
a span of a set of vectors. We now remind the reader of some definitions as well as
introduce some new notation and terminology.

Definition 3.18 For A ∈ Mmn with rows r1, . . . , rm ∈ Rn and columns c1, . . . , cn ∈
Rm,

1. the row space of A, which we will denote by

rowsp(A) = span(r1, . . . , rm) a subspace of Rn.

2. the column space of A, which we will denote by

colsp(A) = span(c1, . . . , cn) a subspace of Rm.

3. the null space of A, which we will denote by

nullsp(A) = {u ∈ Rn | Au = 0} a subspace of Rn.

4. the dimension of rowsp(A) will be called the rank of A (for good reason) and
will be denoted by r(A).

5. the dimension of nullsp(A) will be called the nullity of A and will be denoted
by n(A).

We leave the proof of the following lemma as an exercise:

Lemma 3.8 If A ∈Mmn and B ∈ Rm, then

i. rowsp(AT ) = colsp(A) and colsp(AT ) = rowsp(A).

ii. colsp(A) = {Av | v ∈ Rn}.

iii. The linear system AX = B is consistent iff B ∈ colsp(A).

The goal of the next series of lemmas is to give a simple method for finding a
basis for rowsp(A) and colsp(A).

Lemma 3.9 Let A,B ∈Mmn. If A is equivalent to B, then rowsp(A) = rowsp(B).
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Proof 3.18 We show that if A op−→ B for some elementary row operation op, then
rowsp(A) = rowsp(B). The result then follows by induction on k, where

A
op1−→ A1

op2−→ · · · opk−→ B,

and op1, op2, . . . , opk are any elementary row operations.
We will prove the statement for op = aRi (a 6= 0) and leave the verification for

the other two elementary operations as an exercise. If r1, . . . , ri, . . . , rm are the rows
of A, then the rows of B are r1, . . . , ari, . . . , rm. Hence, we need to show that

span(r1, . . . , ri, . . . , rm) = span(r1, . . . , ari, . . . , rm).

First, take any u ∈ span(r1, . . . , ri, . . . , rm). Then for some scalars a1, . . . , am we
have

u = a1r1 + · · ·+ airi + · · ·+ amrm = a1r1 + · · ·+ (aia−1)ari + · · ·+ amrm.

Thus, u ∈ span(r1, . . . , ari, . . . , rm). Second, take any
u ∈ span(r1, . . . , ari, . . . , rm). Then for some scalars a1, . . . , am we have

u = a1r1 + · · ·+ ai(ari) + · · ·+ amrm = a1r1 + · · ·+ (aia)ri + · · ·+ amrm.

Thus, u ∈ span(r1, . . . , ri, . . . , rm). �

Note, however, that the following statement is not true, namely, if A is equivalent to
B, then colsp(A) = colsp(B). To see this, just look at the example of A = E11 and
A

R1+R2−→ B. The column space of A is the x-axis, while the column space of B is the
line y = x. There is, however, a relationship between the column spaces of equivalent
matrices.

Lemma 3.10 Let A,B ∈Mmn and assume that A is equivalent to B. Let c1, . . . , ck
be any subset of the columns of A and d1, . . . , dk the corresponding columns of B.
Then

i. c1, . . . , ck are linearly independent iff d1, . . . , dk are linearly independent.

ii. c1, . . . , ck form a basis for colsp(A) iff d1, . . . , dk form a basis for colsp(B).

Proof 3.19 To prove part i, set A1 = [c1 · · · ck] (represented in columns) and B1 =
[d1 · · · dk] (represented in columns). Note that since A and B are equivalent, then
so are A1 and B1. If c1, . . . , ck are linearly independent, by Theorem 3.4, A1X =
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0 has only the trivial solution. Since they are equivalent, B1X = 0 has only the
trivial solution (see Theorem 2.1). Then, by Theorem 3.4 again, d1, . . . , dk are linearly
independent. The reverse implication is symmetric.

To prove part ii, assuming that c1, . . . , ck form a basis for colsp(A), suppose that
d1, . . . , dk do not form a basis for colsp(B). By part i, we know that d1, . . . , dk are
linearly independent, so it must be the case that d1, . . . , dk do not span colsp(B). Then
there must be a column of B, say d 6∈ span(d1, . . . , dk). Then the columns d1, . . . , dk, d
are linearly independent. Let c be the column in A corresponding to column d in B. By
part i, c1, . . . , ck, c are linearly independent, but this contradicts the fact that c1, . . . , ck
form a basis for colsp(A). The reverse implication is symmetric. �

The next result is left as an exercise for the reader.

Lemma 3.11 Let R ∈Mmn be a matrix in reduced row-echelon form. Then

i. The rows of R containing the pivots form a basis for rowsp(R).

ii. The columns of R containing the pivots form a basis for colsp(R).

Indeed, by the very nature of the reduced row-echelon form and the position of
zeros and ones in this matrix, one is convinced that the above statement is true. Some
immediate consequences of these lemmas are the following (we leave it to the reader
to justify them in the exercises):

Corollary 3.3 Let A,R ∈Mmn where R is the reduced row-echelon form of A. Then

i. A basis for rowsp(A) can be obtained by taking the rows of R containing the
pivots.

ii. A basis for colsp(A) can be obtained by taking the columns of A corresponding
to the columns of R containing the pivots.

Corollary 3.4 For any A ∈Mmn,

i. r(A) = rk(A) = dim(colsp(A)), and

ii. rk(A) = rk(AT ).

Corollary 3.3 validates our discussion in Section 3.5 in which we gave two methods
for finding a basis for the span of a set of vectors in Rn, Pn and Mmn.

Example 3.58 We illustrate these results with an example.

If A =

 1 −2 0 2 1
2 1 1 0 −1
1 3 1 −2 −2

 , then
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R =

 1 0 2/5 2/5 −(1/5)
0 1 1/5 −(4/5) −(3/5)
0 0 0 0 0

 .
Therefore, a basis for rowsp(A) is

[1, 0, 2/5, 2/5,−(1/5)], [0, 1, 1/5,−(4/5),−(3/5)]

and the row space of A,

rowsp(A) =
{ [

a, b,
2
5a+ 1

5b,
2
5a−

4
5b,−

1
5a−

3
5b
]

: a, b ∈ R
}
.

For computing colsp(A) we consider

AT =


1 2 1
−2 1 3

0 1 1
2 0 −2
1 −1 −2

 row reduces to


1 0 −1
0 1 1
0 0 0
0 0 0
0 0 0

 .

Therefore, a basis for colsp(A) is [1, 0,−1], [0, 1, 1] and

colsp(A) = {[a, b,−a+ b] | a, b ∈ R}.

Notice that r(A) = rk(A) = dim(colsp(A)) = 2.

The next theorem is an important result which we will revisit in Chapter 4 and
reprove using material we have yet to develop.

Theorem 3.12 For any A ∈Mmn, r(A) + n(A) = n.

Proof 3.20 Let R be the reduced row-echelon form of A and set k equal to the number
of pivots of R. Note that k = rk(A) = r(A). We have seen from examples that the
number of non-pivot variables (or parameters, or independent variables) associated
with nullsp(A) is precisely n − k (the pivot variables correspond to the dependent
variables) and this number of independent variables corresponds to the dimension of
nullsp(A). In other words, n− k = n(A). Hence, r(A) + n(A) = k + (n− k) = n. �

Example 3.59 Let’s apply Theorem 3.12 in a specific setting. Consider the homo-
geneous system

{
x− y + z = 0
2x+ y − z = 0 .
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In this example n = 3 and the rk(A) = 2 since

[
1 −1 1
2 1 −1

]
reduces to

[
1 −1 1
0 3 −3

]
.

Hence, the solution space of the system has dimension equal to 3 − 2 = 1. In-
deed, one can compute as we did in Chapter 1 that the solution space has the form
{ [0, a, a] | a ∈ R }, and so a basis for it would be [0, 1, 1], and so has dimension 1
as predicted.

EXERCISES

1. For each of the following matrices A find a basis for and dimension of rowsp(A)
and colsp(A), then use Theorem 3.12 to find the dimension of nullsp(A).
Afterwards verify the dimension you found for the null space, by computing
it explicitly and exhibiting its basis.

a.

A =

 1 −1 −1
2 −2 1
3 −3 0


b.

A =

 1 1 1 1
−2 −1 1 3

3 4 6 8


2. Consider the following homogeneous linear system


2x1 − x2 + 3x3 + x4 = 0
x1 − x2 + x3 − x4 = 0
x1 + x2 + x3 + x4 = 0

.

a. Find the rank of the coefficient matrix of the linear system.

b. Use Theorem 3.12 to find the dimension of the solution space.

c. Compute the solution space of the system, find its basis and dimension and
thus confirm your answer in part b.

3. Repeat the previous exercise with the following homogeneous linear system:


2x1 + 3x2 + 4x3 + 5x4 = 0
x1 − x2 + x3 − x4 = 0

5x1 + 5x2 + 9x3 + 9x4 = 0
.
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4. Repeat the previous exercise with the following homogeneous linear system:


x1 + x2 + x3 + x4 = 0
−2x1 − x2 + x3 + 3x4 = 0
3x1 + 4x2 + 6x3 + 8x4 = 0

.

5. Repeat the previous exercise with the following homogeneous linear system:


x1 + x2 + 2x3 − x4 = 0
−x1 − x2 − x3 + x4 = 0

2x1 + 2x2 + 4x3 − 2x4 = 0
.

6. Prove Lemma 3.8.

7. Complete the proof of Lemma 3.9.

8. Prove Lemma 3.11.

9. Prove Corollary 3.3.

10. Prove Corolary 3.4.

3.7 APPLICATION: DIMENSION THEOREMS

In this section, we illustrate a technique called a counting argument. These counting
arguments will be a consequence of the two dimension theorems proved in this section.
The first dimension theorem is a result we would expect to be true if dimension is
indeed measuring size in some sense. First, we need a lemma.

Lemma 3.12 For v1, . . . , vn ∈ V a vector space, the following are equivalent:

i. The vectors v1, . . . , vn represent a maximal number of linearly independent vec-
tors in V .

ii. v1, . . . , vn form a basis for V .

Proof 3.21 To show that i. implies ii, We need to show that v1, . . . , vn span V .
Suppose to the contrary that they don’t span V . This means there exists a v ∈ V not
in the span of v1, . . . , vn. By Lemma 3.7, v1, . . . , vn, v are linearly independent. But
this contradicts the fact that v1, . . . , vn is a largest number of linearly independent
vectors in V . Hence, it must be that case that v1, . . . , vn form a basis for V . The
reverse implication is left as an exercise. �

Theorem 3.13 (Subspace Dimension Theorem) Let V be a vector space with
finite dimension and U be a subspace of V . Then

i. dimU ≤ dimV .

ii. dimU = dimV iff U = V
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Proof 3.22 Let v1, . . . , vn be a basis for V (so dimV = n). To prove i, if U = {0}
then certainly dimU = 0 ≤ dimV , so we can assume that U 6= {0}. Consider all
collections u1, . . . , uk ∈ U which are linearly independent. Such collections exist since,
for instance, a single 0 6= u ∈ U is linearly independent. By Lemma 3.6, for every
such collection we have k ≤ n (i.e. there is a bound on how large k can be). Hence,
there is a collection u1, . . . , uk linearly independent with k largest. By Lemma 3.12,
this largest collection forms a basis for U . Thus, dimU = k ≤ n = dimV .

To prove ii, one direction is trivial: If U = V then certainly dimU = dimV . Now
lets assume that dimU = dimV . Choose u1, . . . , un a basis for U . Since u1, . . . , un are
linearly independent in V , by Lemma 3.10, u1, . . . , un is a basis for V , and so they
span V . Thus,

V = span(u1, . . . , un) = U.

�

Example 3.60 We will see important applications of the above dimension theorem
as the material develops. Here is trivial example to illustrate its application. We have
seen that [1, 0, 0], [1, 1, 0], [1, 1, 1] are linearly independent in R3. Define the subspace
U = span([1, 0, 0], [1, 1, 0], [1, 1, 1]). Certainly, [1, 0, 0], [1, 1, 0], [1, 1, 1] form a basis for
U . Hence, dimU = 3 = dimR3. By Theorem 3.13.ii, it follows that U = R3.

We give some intuition for the second dimension theorem. Consider two sets X
and Y . Define |X| to be the number of elements in the set X. A formula which counts
the number of elements in the union of X and Y is

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |,

since |X|+|Y | counts |X∩Y | twice. An analogous result holds for subspaces and their
dimensions. Let U and W be subspaces of a vector space V . Recall from previous
exercises that U ∪ W is not necessarily a subspace, but that U + W and U ∩ W
are subspaces. Thus, our theorem will be phrased slightly differently from the set
theoretic result we stated above.

Theorem 3.14 (Sum Dimension Theorem) Let U and W be subspaces of a
finite dimensional vector space V . Then

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Proof 3.23 If U or W equals {0} the result follows easily (check). Now let’s consider
the case when U ∩W = {0}. Select any bases u1, . . . , uk for U and w1, . . . , w` for W .
We will show that u1, . . . , uk, w1, . . . , w` forms a basis for U +W . Having shown this,
we can arrive at the desired conclusion that
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dim(U +W ) = k + ` = k + `− 0 = dimU + dimW − dim(U ∩W ).
First, we show u1, . . . , uk, w1, . . . , w` span U+W . Take any u+w ∈ U+W where

u ∈ U and w ∈ W . Since u1, . . . , uk is a basis for U , there exist scalars a1, . . . , ak
such that u = a1u1 + · · · + akuk. Similarly, there exist scalars b1, . . . , b` such that
w = b1w1 + · · ·+ b`w`. But then

u+ w = a1u1 + · · ·+ akuk + b1w1 + · · ·+ b`w`.

Now we show u1, . . . , uk, w1, . . . , w` are linearly independent. Suppose that a1u1 +
· · ·+ akuk + b1w1 + · · ·+ b`w` = 0. Rewrite this equation as

a1u1 + · · ·+ akuk = (−b1)w1 + · · ·+ (−b`)w`.

Set

v = a1u1 + · · · akuk = (−b1)w1 + · · ·+ (−b`)w`.

Notice that this equation implies that v ∈ U and v ∈ W , hence v ∈ U ∩W . Since
U ∩W = {0}, this implies v = 0 which yields the equations

a1u1 + · · · akuk = 0 and (−b1)w1 + · · ·+ (−b`)w` = 0.

Since u1, . . . , uk and w1, . . . , w` are each linearly independent, we have a1 = · · · =
ak = 0 and b1 = · · · = b` = 0. Hence, u1, . . . , uk, w1, . . . , w` are linearly independent
and so a basis for U +W .

Finally, we consider the case when U ∩W 6= {0}. This case will be similar to
the previous case with an additional twist. Choose a basis v1, . . . , vm for U ∩W . By
Lemma 3.7, we can extend these vectors to v1, . . . , vm, um+1, . . . , uk a basis for U .
For the same reason we can also extend them to v1, . . . , vm, wm+1, . . . , w` a basis for
W . We will show that v1, . . . , vm, um+1, . . . , uk, wm+1, . . . , w` form a basis for U +W .
Having shown this, we can arrive at the desired conclusion that

dim(U +W ) = k + l −m = dimU + dimW − dim(U ∩W ).
First, we show v1, . . . , vm, um+1, . . . , uk, wm+1, . . . , w` span U +W . Take any u+

w ∈ U +W where u ∈ U and w ∈ W . Since v1, . . . , vm, um+1, . . . , uk is a basis for U ,
there exist scalars a1, . . . , ak such that u = a1v1 + · · ·+amvm+am+1um+1 + · · ·+akuk.
Similarly, there exist scalars b1, . . . , b` such that w = b1v1 + · · · bmvm + bm+1wm+1 +
· · ·+ b`w`. But then

u+w = (a1+b1)v1+· · ·+(am+bm)vm+am+1um+1+· · ·+akuk+bm+1wm+1+· · ·+b`w`.
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Now we show v1, . . . , vm, um+1, . . . , uk, wm+1, . . . , w` are linearly independent.
Suppose that

a1v1 + · · ·+ amvm + am+1um+1 + · · ·+ akuk + bm+1wm+1 + · · ·+ b`w` = 0.

Let’s refer to the equation above as (*). Rewrite equation (*) as

a1v1 + · · ·+ amvm + am+1um+1 + · · ·+ akuk = (−bm+1)wm+1 + · · ·+ (−b`)w`.

Set

v = a1v1 + · · ·+ amvm + am+1um+1 + · · ·+ akuk = (−bm+1)wm+1 + · · ·+ (−b`)w`.

Notice that this equation implies that v ∈ U and v ∈ W , hence v ∈ U ∩ W .
Since v1, . . . , vm is a basis for U ∩W , there exist scalars c1, . . . , cm such that v =
c1v1 + · · ·+ cmvm. In particular,

c1v1 + · · ·+ cmvm = (−bm+1)wm+1 + · · ·+ (−b`)w`,

which implies that

c1v1 + · · ·+ cmvm + bm+1wm+1 + · · ·+ b`w` = 0.

Since v1, . . . , vm, wm+1, . . . , w` are linearly independent, this implies that bm+1 =
· · · = b` = 0 (as well as c1 = · · · = cm = 0). Returning to our original equation (*),
it becomes

a1v1 + · · ·+ amvm + am+1um+1 + · · ·+ akuk = 0.

Since v1, . . . , vm, vm+1, um+1, . . . , uk are linearly independent, this implies that
a1 = · · · = ak = 0.

Hence, v1, . . . , vm, um+1, . . . , uk, wm+1, . . . , w` are linearly independent and so a
basis for U +W . �

Example 3.61 Let V = P3 and consider the following subspaces:

U = {a+ bx− ax2 + cx3 | a, b, c ∈ R}
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W = {a− ax+ bx2 + cx3 | a, b, c ∈ R}.

We wish to find dim(U + W ). We do this in an indirect manner using Theo-
rem 3.14. A basis for U is 1 − x2, x, x3 and a basis for W is 1 − x, x2, x3. Hence,
dimU = 3 = dimW . We can find a description of U ∩W via the descriptions of U
and W . Notice that U requires that the coefficient of x2 be the opposite sign of the
constant coefficient, and W requires that the coefficient of x be the opposite sign of
the constant coefficient. Polynomials in U ∩W must meet both requirements, and so

U ∩W = {a− ax− ax2 + cx3}.

Hence, a basis for U ∩W is 1 − x − x2, x3, and so dim(U ∩W ) = 2. Now, by
Theorem 3.14, dim(U+W ) = 3+3−2 = 4. Observe further that since dim(U+W ) =
4 = dimP3, this implies, by Theorem 3.13.ii, that U + W = P3. The reader has just
witnessed the first “counting argument” in this text. We hope the reader sees the
beauty and the power of this type of argument.

We add a couple additional remarks about this example. First, we can illustrate
explicitly how P3 = U +W . Indeed, for any a+ bx+ cx2 + dx3 ∈ P3,

a+ bx+ cx2 + dx3 = (b− a)x+ dx3 + a− ax+ cx2,

where (b− a)x+ dx3 ∈ U and a− ax+ cx2 ∈ W . Second, since U ∩W 6= {0} there is
no unique representation of polynomials in P3 as a sum U+W . For a simple example
of this consider the polynomial x3. One simple representation of x3 in U + W could
be x3 + 0. However, here is another representation

x3 = (1− x− x2 + x3) + (−1 + x+ x2)

Example 3.62 Let V = M22 with subspaces U and W , where U is the collection of
symmetric matrices and W is the collection of skew-symmetric matrices. Notice that

U =
{ [

a b
b c

]
: a, b, c ∈ R

}
and W =

{ [
0 a
−a 0

]
: a, b, c ∈ R

}
.

A basis for U is

[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

and a basis for W is
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[
0 1
−1 0

]
.

Hence, dimU = 3 and dimW = 1. Now U ∩ W = {0}, so dim(U ∩ W ) = 0. By
Theorem 3.14, dim(U + W ) = 3 + 1 − 0 = 4 and since dim(U + W ) = dimV , by
Theorem 3.13.ii, U +W = V .

This says that every two-by-two matrix can be written uniquely as a sum of a
symmetric plus a skew-symmetric matrix. Recall, we write V = U ⊕W , a direct sum
of U and W . Indeed, we knew this from an earlier exercise in which we expressed any
matrix A = 1

2(A+ AT ) + 1
2(A− AT ).

We state a result here which we leave as an easy exercise.

Corollary 3.5 Let U,W be subspaces of a vector space V . If V = U ⊕ W , then
dimV = dimU + dimW .

Theorem 3.15 (Product Dimension Theorem) Let V1, V2, . . . , Vk be finite di-
mensional vector spaces. Then

dim(V1 × V2 × . . .× Vk) = dimV1 + dimV2 · · ·+ dimVk.

Proof 3.24 Let v(i)
1 , . . . , v

(i)
ni be a basis for Vi for i = 1, 2, . . . , k. Then it is easy to

show (although perhaps cumbersome to write out) that the following vectors form a
basis for V1 × . . .× Vk:

(v(1)
1 , 0, . . . , 0), . . . , (v(1)

n1 , 0, . . . , 0), . . . , (0, . . . , 0, v(k)
1 ), . . . , (0, . . . , 0, v(k)

nk
).

The result now follows by simply counting the vectors in this basis. �

EXERCISES

1. Let V = M22 with subspaces

U =
{ [

a b
c d

]
: a+ d = 0

}
and W =

{ [
a b
c d

]
: b+ c = 0

}

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .
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2. Let V = M22, U be the subspace of matrices with trace equaling zero, and W
the subspace of symmetric matrices.

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .

d. If V = Mnn, and U and W are the same, repeat parts a.–c.

3. Let V = M22, U be the subspace of upper-triangular matrices, and W be the
subspace of skew-symmetric matrices. Repeat the previous exercise.

4. Let V = M22, U be the subspace of matrices in which the sum of all its entries
is 0, and W be the subspace of matrices whose trace is 0. Repeat the previous
exercise.

5. Let V = M22, U be the subspace of upper triangular matrices and W the
subspace of lower triangular matrices. Repeat the previous exercise.

6. Let V = P2, U be the subspace of polynomials with 0 as a root, and W be the
subspace of polynomials with 1 as a root.

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .

d. If V = Pn (n ≥ 2), and U and W are the same, repeat parts a.- c.

7. Consider the vector space V = P2 and subspaces

U = {a+ bx+ (a+ b)x2 : a, b ∈ R} and W = {a+ (a+ b)x+ bx2 : a, b ∈ R}

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .

8. Let V = P3 with subspaces

U = {a+bx−ax2+(a+b)x3 : a, b ∈ R} and W = {a+bx+ax2+cx3 : a, b ∈ R}

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.
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c. Find the dimension of U +W and decide whether or not V = U +W .

9. Let V = P2 with subspaces

U = {p(x) ∈ P2 : p(0) = p(1)} and W = {p(x) ∈ P2 : p′(0) = p′(1)}}.

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .

10. Let V = P2, U be the subspace of polynomials whose second derivative is 0,
and W = {p ∈ V | p(0) = 2p(1)}.

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .

11. Let V = P3, U be the subspace of polynomials which have both 0 and 1 as
roots, and W be the subspace of polynomials which have 0 as at least a double
root.

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .

12. Consider the vector space V = R3 and the vectors u = [3,−2, 1] and w =
[1, 1,−1]. Consider also the subspaces U = {v ∈ R3 | u · v = 0} and W = {v ∈
R3 | w · v = 0}.

a. Find bases and dimensions for V, U and W .

b. Give a description of U ∩W , then find a basis for and the dimension of it.

c. Find the dimension of U +W and decide whether or not V = U +W .

13. Prove that n × n square matrices are a direct sum of symmetric matrices and
skew-symmetric matrices.

14. Let V be a vector space with basis v1, . . . , vn. Fix a k, 1 ≤ k ≤ n and set
U = span(v1, . . . , vk) and W = span(vk+1, . . . , vn).

a. Show directly that V = U +W .

b. Show directly that U ∩W = {0}.

c. Use Theorem 3.14 and part a. to show that U ∩W = {0}.
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15. Prove that for v1, . . . , vn ∈ V a vector space, the following are equivalent:

i. The vectors v1, . . . , vn represent a minimal number of vectors which span V .

ii. v1, . . . , vn form a basis for V .

16. Prove that if V is a vector space of finite dimension and U is a subspace of V ,
then U has finite dimension as well.

17. Prove by induction that for any subspaces U1, U2, . . . , Uk of a vector space V
we have

dim(U1 + U2 + · · ·+ Uk) ≥ dimU1 + dimU2 + · · ·+ dimUk.

18. Complete the proof of Lemma 3.12.

19. Prove Lemma 3.5.
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C H A P T E R 4

Linear Transformations

In this chapter, the general notion of a linear transformation is presented. In
Section 4.1, the definition of a linear transformation is introduced and many ex-

amples are given in the context of the four classic vector spaces. Methods are given to
prove or disprove that a particular map is a linear transformation. In Section 4.2, two
special subspaces are defined related to a linear transformation: Kernel and image.
These subspaces are computed and their dimensions are determined. In Section 4.3,
an important connection is made between linear transformations and matrices. In
Section 4.4, the inverse linear transformation is discussed and matrix representation
is used to compute it. The notion of isomorphism is discussed how two seemingly
different vector spaces are essentially the same. In Section 4.5, different matrix repre-
sentation of a particular linear transformation are shown to be related by similarity.
In Section 4.6, the reader will learn how to compute eigenvalues, eigenvectors and
eigenspaces as well as diagonalize a linear transformation or matrix (when possi-
ble). The final sections of this chapter are for advanced learners. Section 4.7 gives
an axiomatic treatment of the determinant. Section 4.8 introduces quotient vector
spaces. Section 4.9 introduces the dual vector space and the transpose of a linear
transformation.

4.1 DEFINITION AND EXAMPLES

Every algebraic structure has its corresponding functions (maps, morphisms). For
vector spaces these functions are called linear transformations. The inputs are the
vectors of one vector space and the outputs are the vectors from another (or perhaps
the same) vector space. Just as subspaces are special subsets of a vector space, linear
transformations are special functions from one vector space to another; they have the
property that they respect (or preserve) the operations of the vector space. We give
the formal definition.

Definition 4.1 Let V and W be two vector spaces. A function T : V −→ W is a
linear transformation if

1. For all v1, v2 ∈ V , we have T (v1 + v2) = T (v1) + T (v2).

2. For all scalars a and v ∈ V, we have T (av) = aT (v).
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We remark that the +’s in part a. refer to two different vector additions: T (v1+v2)
refers to addition in V and T (v1) + T (v2) refers to addition in W . There really is
no reason for confusion since the context of the addition tells you which addition it
must be. A similar remark can be made for part b. of the definition regarding scalar
multiplication.

We now list a few examples of linear transformations to make the reader more
accustomed with the definition and also to illustrate the method by which one verifies
that a function is indeed a linear transformation.

Example 4.1 Consider the function T : R2 −→ P1 defined by T ([a, b]) = b + ax.
For instance, according to its definition, T ([−1, 3]) = 3 − x. In order to simplify
our notation, we write just T [a, b] instead of T ([a, b]). We show that T is a linear
transformation by verifying parts a. and b. of the definition. To prove part a, notice
that

T ([a1, b1] + [a2, b2]) = T [a1 + a2, b1 + b2] = (b1 + b2) + (a1 + a2)x

= (b1 + a1x) + (b2 + a2x) = T [a1, b1] + T [a2, b2].

To prove part b, notice that

T (a[a1, b1]) = T [aa1, ab1] = (ab1) + (aa1)x

= a(b1 + a1x) = aT [a1, b1].

Example 4.2 Consider the function T : R2 −→ R3 by T [a, b] = [a, a + b, a − b].
Again, we show that T is a linear transformation. To prove part a,

T ([a1, b1] + [a2, b2]) = T [a1 + a2, b1 + b2]

= [(a1 + a2), (a1 + a2) + (b1 + b2), (a1 + a2)− (b1 + b2)]

= [a1, a1 + b1, a1 − b1] + [a2, a2 + b2, a2 − b2] = T [a1, b1] + T [a2, b2].

To prove part b,

T (a[a1, b1]) = T [aa1, ab1] = [(aa1), (aa1) + (ab1), (aa1)− (ab1)]

= [aa1, a(a1 + b1), a(a1 − b1)] = a[a1, a1 + b1, a1 − b1] = aT [a1, b1].
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The previous example brings up an important observation about linear transfor-
mations which will fully come to light in Section 4.3. Notice in the previous example
that

T [a, b] = [a, a+ b, a− b]

=

 a
a+ b
a− b

 =

 1 0
1 1
1 −1

[ a
b

]
.

In other words, we can represent the action of the linear transformation as multi-
plication on the left by an appropriate matrix. Later we will show that this is true in
general: If T : Rn −→ Rm is a linear transformation, there exists a matrix A ∈Mmn

such that for all v ∈ Rn we have T (v) = Av (in fact, there is yet a more general
statement that can be made about finite dimensional vector spaces which will be
presented in Section 4.3). The converse of this statement is true, as we shall see in
the next example.

Example 4.3 Choose any A ∈Mmn and define the map

T : Rn −→ Rm by the formula T (v) = Av.

We show that T is a linear transformation using properties of matrices. First, for
u, v ∈ Rn we have

T (u+ v) = A(u+ v) = Au+ Av = T (u) + T (v).

Second, for scalar a and v ∈ Rn we have

T (av) = A(av) = aAv = aT (v).

Example 4.4 Define the map T : Mmn −→ Mnm by T (A) = AT . We show that T
is a linear transformation using properties of the transpose. First, for A,B ∈ Mmn

we have

T (A+B) = (A+B)T = AT +BT = T (A) + T (B).

Second, for scalar a and A ∈Mnn we have

T (aA) = (aA)T = aAT = aT (A).

Example 4.5 The verification that the following are linear transformations is left
to the reader.

• Let D represent the collection of real-valued differentiable functions. Then the
map T : D −→ F by T (f) = f ′ (the derivative) is a linear transformation.
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• Let C represent the collection of real-valued continuous functions. Then the map
T : C −→ F by T (f) equals the primary antiderivative (with constant = 0) of
f is a linear transformation.

Special Examples: The verification that the following are linear transformations
is left as exercises.

1. Let V be any vector space and define 1V : V −→ V by 1V (v) = v for all v ∈ V .
This linear transformation is called the identity map.

2. Let V and W be any vector spaces with identities 0V and 0W , respectively.
Define the map 0 : V −→ W by 0(v) = 0W for all v ∈ V . This linear transfor-
mation is called the zero map.

3. Choose any scalar a and define T : F −→ R by T (f) = f(a). This linear
transformation is called the evaluation transformation.

We now present maps that are not linear transformations. To verify that a given
map is not a linear transformation, it is sufficient to show that one of parts a or
b of the definition of linear transformation fails, and to show failure we often have
to exhibit a specific counterexample. We suggest that, without the hindsight, one
should try to prove a given map is a linear transformation, and if a property looks
suspiciously false then perhaps one should consider seeking a counterexample.

Example 4.6 Consider the map T : R2 −→ R2 by T [a, b] = [a2, b]. We will show
that part b fails. Compare the left-hand side

T (a[a1, b1]) = T [aa1, ab1] = [(aa1)2, ab1] = [a2a2
1, ab1]

with the right-hand side

aT [a1, b1] = a[a2
1, b1] = [aa2

1, ab1].

Notice that the two computations above seem to give different results. In fact, it
is quite clear that if we choose a 6= 0, 1, we will not have equality. However, to make
it crystal clear choose scalar 2 and vector [1, 0]. Then 2T [1, 0] = 2[1, 0] = [2, 0] while
T (2[1, 0]) = T [2, 0] = [4, 0].

Example 4.7 Consider the map T : D22 −→ P1 by

T

[
a 0
0 b

]
= 1 + (ab)x.

We show that part a fails. Compare the left-hand side of property a

T (
[
a1 0
0 b1

]
+
[
a2 0
0 b2

]
) = T

[
a1 + a2 0

0 b1 + b2

]
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= 1 + [(a1 + a2)(b1 + b2)]x = 1 + (a1b1 + a1b2 + a2b1 + a2b2)x

with the right-hand side of property a

T

[
a1 0
0 b1

]
+ T

[
a2 0
0 b2

]
= 1 + (a1b1)x+ 1 + (a2b2)x

= 2 + (a1b1 + a2b2)x.

There is no need for a specific counter-example here, since the failure of this
property is true in general. Indeed, in the first computation the constant coefficient is
always 1, while in the second it is always 2.

Example 4.8 Consider the map T : Mnn −→ R by T (A) = |A|. We show property a.
fails. Set n = 2 and observe that T (E11 +E22) = T (I2) = 1 while T (E11) +T (E22) =
0 + 0 = 0.

We end this section with some basic properties of linear transformations. First,
let’s establish a convenient notation. Let V and W be vector spaces. Then

L(V,W ) = {T : V −→ W | T is a linear transformation}.

Theorem 4.1 Let V and W be vector spaces with v1, v2, . . . , vn ∈ V , S, T ∈
L(V,W ), and scalars a, a1, . . . , an. Then

i. T (0V ) = 0W .

ii. T (−v) = −T (v).

iii. T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).

iv. S+T ∈ L(V,W ) where S+T is the map defined by (S+T )(v) = S(v)+T (v).

v. aT ∈ L(V,W ) where (aT )(v) = aT (v).

Proof 4.1 We prove some of the items and leave the rest as exercises. To prove i,
notice

T (0V ) = T (00V ) = 0T (0V ) = 0W .

The proof of iii is by induction. To prove v, we need to verify for aT the two parts
of the definition for linear transformation. For part a,

(aT )(v1 + v2) = aT (v1 + v2) = a(T (v1) + T (v2))

= aT (v1) + aT (v2) = (aT )(v1) + (aT )(v2).
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For part b,

(aT )(bv) = aT (bv) = a(bT (v)) = (ab)T (v)

(ba)T (v) = b(aT (v)) = b(aT )(v).

�

Corollary 4.1 Let V and W be vector spaces. Define addition and scalar multipli-
cation as in Theorem 4.1.iv,v. Then L(V,W ) is also a vector space.

Proof 4.2 We need to verify the nine axioms of a vector space. Property 0 follows
from Theorem 4.1.iv,v. The rest of the axioms are proved just as we did for F (we need
to point out, though, that in an exercise to follow one has to prove that 0(v) = 0W is
a linear transformation - this is necessary for the verification of Property 3). �

We hope the reader sees the progression of complexity which culminates in Corol-
lary 4.1: We begin with vector spaces V and W ; from this we define a linear trans-
formation T : V −→ W , which in turn produces a vector space L(V,W ) of all linear
transformations from V into W .

A linear operator is simply a linear transformation T ∈ L(V,W ) with V = W .
Since V = W we use a short-hand notation, T ∈ L(V ). It is in this setting that,
perhaps, these functions acquired the name transformation. For, as we shall see
in the example below, linear operators in a sense transform the shape of the vector
space.

Example 4.9 Define T ∈ L(R2) by T [a, b] = [b, a] (one can easily check that this
is indeed a linear transformation). Geometrically, T is reflecting every point in R2

across the line y = x. Another way to express the formula for T is

T [a, b] =
[

0 1
1 0

] [
a
b

]
.

The collection of reflections (and rotations) is an important set of linear operators.
See Section 5.3 of Chapter 5 for a more in depth discussion of this topic.

EXERCISES

1. For each of the following maps T : Rn −→ Rm, decide whether or not it is a
linear transformation and if so express the map in the form T (v) = Av for some
matrix A ∈Mmn

a. T : R2 −→ R3 by T [a, b] = [a+ b, 2a, b− a].

b. T : R3 −→ R2 by T [a, b, c] = [a+ b, c2].
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c. T : R2 −→ R2 by T [a, b] = [2b− a, 3a+ 5b].

2. Decide whether or not each of the following maps is a linear transformation:

a. T : Mnn −→Mnn by T (A) = A− AT .

b. T : Mnn −→Mnn by T (A) = A2 + A.

c. T : F → P1 by T (f) = f(0) + f(1)x.

d. T : R2 → P2 by T [a, b] = a+ bx+ (a+ b)x2.

e. T : Rn −→ R by T (v) = u · v for a fixed u ∈ Rn.

f. T : P1 −→Mnn by T (a+ bx) = aA+ bB for fixed A,B ∈Mnn.

g. T : F −→ R by T (f) = f(0)/f(1).

h. T : Rn → Dnn by T (v) = |v|In (where |v| is the magnitude of v).

i. T : R2 → F by T [a, b] = aebx.

j. T : F → R by T (f) = f(0)f(1).

k. T : Mnn →Mnn by T (A) = AB −BA for a fixed B ∈Mnn.

l. T : U22 −→ P1 by

T

[
a b
0 c

]
= a+ (bc)x.

m. T : F → Dnn by

T (f) =
[
f(0) 0

0 f(0) · f(1)

]
.

n. T : D −→ D22 by

T (f) =
[
f(0) 0

0 f ′(0)

]
.

o. T : D22 −→ R by

T

[
a 0
0 b

]
= a− 2b.

p. T : D22 → P1 by

T

[
a 0
0 b

]
= a+ (a+ b)x.

q. T : P2 −→ D22 by

T (a+ bx+ cx2) =
[
a 0
0 bc

]
.

3. Let D represent the collection of real-valued differentiable functions. Show the
map T : D −→ F by T (f) = f ′ (the derivative) is a linear transformation.
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4. Let C represent the collection of real-valued continuous functions. Show the map
T : C −→ F by T (f) equals the primary antiderivative (with constant = 0) of
f is a linear transformation.

5. Let T : Mnn → R by T (A) = tr(A), the trace of A. Prove that T is a linear
transformation.

6. Let V be any vector space and define 1V : V −→ V by 1V (v) = v for all v ∈ V .
Show this defines a linear transformation.

7. Let V and W be any vector spaces with identities 0V and 0W , respectively.
Define the map 0 : V −→ W by 0(v) = 0W for all v ∈ V . Show this defines a
linear transformation.

8. Choose any scalar a and define T : F −→ R by T (f) = f(a). Show this defines
a linear transformation.

9. Let U, V,W be vector spaces with S ∈ L(U, V ) and T ∈ L(V,W ). Prove that
the composition T ◦ S ∈ L(U,W ).

10. Prove if T : W −→ W is a linear transformation and T (v1), T (v2), . . . , T (vn)
are linearly independent, then v1, v2, . . . , vn are linearly independent.

11. Fix an angle θ and define T ∈ L(R2) by

T [a, b] =
[

cos θ − sin θ
sin θ cos θ

] [
a
b

]
.

Describe geometrically how T transforms the points in R2 (the reader may want
to try specific values of θ first). Justify your answer with a proof.

12. Prove parts ii,iii and iv of Theorem 4.1.

4.2 KERNEL AND IMAGE

In this section we introduce two important subspaces which play an important role
in Linear Algebra. But first we remind the reader of some definitions concerning
functions.

Definition 4.2 Let f : X −→ Y be a function from a set X to a set Y .

1. f is one-to-one (or 1–1) if whenever f(x1) = f(x2) we have x1 = x2, for any
x1, x2 ∈ X. In other words, every output of f originates from exactly one input
in X.

2. f maps onto Y if for all y ∈ Y there exists an x ∈ X such that f(x) = y. In
other words, every element of Y originates from an input of X via f .
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We will not take the time to illustrate these definitions, since in a moment we will
have an easier way to check these properties in the context of linear transformations.

Definition 4.3 Let T ∈ L(V,W ) with 0V , 0W the zero vectors in the vector spaces
V,W , respectively.

1. The kernel of T , which we shall designate by ker(T ), is the set of all vectors
in V which are sent to 0W by T , i.e.

ker(T ) = {v ∈ V | T (v) = 0W}.

2. The range (or image) of T , which we shall designate by T (V ), is the set of
all outputs of T , i.e.

T (V ) = {T (v) | v ∈ V }.

Figure 4.1 Kernel and Range of a linear transformation.

Other notation you may run across for the image of T is Im(T ) or Image(T ).
We remark that ker(T ) is never empty since, by Theorem 4.1.i, it is always the case
that 0V ∈ ker(T ). We will at times drop the subscripts on the zero vectors, since the
context makes them understood.

Example 4.10 Consider the linear transformation T ∈ L(M22, P2) defined by

T

[
a b
c d

]
= (a+ b) + cx+ dx2.

We compute ker(T ) as follows:

[
a b
c d

]
∈ ker(T ) iff T

[
a b
c d

]
= 0 iff
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(a+ b) + cx+ dx2 = 0 iff
a+ b = 0
c = 0
d = 0

.

Notice that to find the kernel of T we are once again reduced to solving a system
of linear equations. There’s no need to solve this using the augmented matrix here,
since it’s clear that the solution is

a = −b
c = 0
d = 0

.

Hence, we see that

ker(T ) =
{ [

−b b
0 0

] }
.

Lemma 4.1 Let T ∈ L(V,W ). Then

i. ker(T ) is a subspace of V .

ii. T (V ) is a subspace of W .

iii. T is one-to-one iff ker(T ) = {0V }.

iv. T maps onto T (V ).

v. T maps onto W iff T (V ) = W .

Proof 4.3 Some parts of this proof are left as exercises. To prove i, take u, v ∈ ker(T )
(so T (u) = 0 and T (v) = 0). First, we need to show u+ v ∈ ker(T ); but this is clear,
since by the property of linear transformation, T (u+ v) = T (u) + T (v) = 0 + 0 = 0.
Second, we need to show that for any scalar a, we have au ∈ ker(T ), but this follows
since T (au) = aT (u) = a0 = 0.

To prove iii, first assume that ker(T ) = {0V } and we show that T is one-to-one.
To do this, suppose that T (u) = T (v) for u, v ∈ V (and show u = v). This implies
that T (u) − T (v) = 0W . But then T (u − v) = 0W and so u − v ∈ ker(T ) = {0V }.
Hence, u− v = 0V and so u = v. For the reverse implication, assume that T is one-
to-one and suppose v ∈ ker(T ). Thus, T (v) = 0W . Recall that T (0V ) = 0W as well,
and so T (v) = T (0V ). Since T is one-to-one, we have v = 0V , and so ker(T ) = {0V }.
�

Example 4.11 In the previous example, T ∈ L(M22, P2(F )) is not one-to-one, since
by Lemma 4.1.iii,

ker(T ) 6=
{ [

0 0
0 0

] }
.

Below are some useful results which we will leave as exercises.
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Lemma 4.2 Let T ∈ L(V,W ). Then

i. T is one-to-one iff whenever v1, . . . , vk ∈ V are linearly independent, then
T (v1), . . . , T (vk) are linearly independent in W .

ii. T maps onto W iff whenever v1, . . . , vk ∈ V span V , then T (v1), . . . , T (vk)
span W .

iii. T is one-to-one and onto W iff whenever v1, . . . , vk ∈ V form a basis for V ,
then T (v1), . . . , T (vk) form a basis for W .

Now we have arrived at another dimension theorem which will lead to another
counting principle. Among other things, with this theorem we will be able to verify
whether or not a linear transformation maps onto W . First, we present a bit of
terminology.

Definition 4.4 Let T ∈ L(V,W ).

1. The dimension of the kernel of T is called the nullity of T and is written n(T ).

2. The dimension of the range of T is called the rank of T and is written rk(T ).

Later in this section we will give the reason behind this terminology.

Theorem 4.2 (Linear Transformation Dimension Theorem) Let T ∈L(V,W )
and assume that dim(V ) <∞. Then

dim(V ) = dim(ker(T )) + dim(T (V )).

In other words the dimension of V equals the nullity plus rank of T .

Proof 4.4 Let dim(V ) = n which is given to be finite. First, let’s assume that
ker(T ) = {0}. In this case, dim(ker(T )) = 0 and by Lemma 4.1, T is 1–1 and maps
onto T (V ). Choose a basis, v1, . . . , vn, for V . By Lemma 4.2.iii, T (v1), . . . , T (vn)
forms a basis for T (V ). Hence, dim(T (V )) = n and so

dim(V ) = n = 0 + n = dim(ker(T )) + dim(T (V )).

Now let’s assume that ker(T ) 6= {0}. Since ker(T ) is a subspace of V and dim(V )
is finite, this implies that ker(T ) is finite as well. Let v1, . . . , vm be a basis for ker(T )
(note that m ≤ n by Theorem 3.13). As we saw in the previous chapter, we can extend
to a basis for V , say

v1, . . . , vm, vm+1, . . . , vn.

We will show that T (vm+1), . . . , T (vn) form a basis for T (V ) and so we will have

dim(V ) = n = m+ (n−m) = dim(ker(T )) + dim(T (V )).
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First we show that T (vm+1), . . . , T (vn) are linearly independent. Suppose that
am+1T (vm+1) + · · ·+ anT (vn) = 0. By Theorem 4.1.iii, we have T (am+1vm+1 + · · ·+
anvn) = 0. This means that am+1vm+1 + · · · + anvn ∈ ker(T ). Since v1, . . . , vm is a
basis for ker(T ), there exist a1, . . . , am ∈ F such that

am+1vm+1 + · · ·+ anvn = a1v1 + · · ·+ amvm,

and so

(−a1)v1 + · · ·+ (−am)vm + am+1vm+1 + · · ·+ anvn = 0.

Since v1, . . . , vn are linearly independent, a1 = · · · = an = 0. In particular,
am+1 = · · · = an = 0.

To show that T (vm+1), . . . , T (vn) span T (V ) take any T (v) ∈ T (V ) where v ∈ V .
Since v1, . . . , vn span V , there exist a1, . . . , an ∈ R such that v = a1v1 + · · · + anvn.
Now apply T to both sides of the equation:

T (v) = T (a1v1 + · · ·+ anvn).

By properties of a linear transformation, this equation becomes

T (v) = a1T (v1) + · · ·+ anT (vn).

Let’s call this last equation ∗. Since v1, . . . , vm are a basis for ker(T ), in particular,
they are vectors in ker(T ) and so T (v1) = · · · = T (vm) = 0. Then equation ∗ loses
the first m terms and becomes

T (v) = am+1T (vm+1) + · · ·+ anT (vn).

Therefore, T (v) is in the span of T (vm+1), . . . , T (vn) and the proof is complete.
�

Example 4.12 Let’s return to the earlier example where T ∈ L(M22(F ), P2(F ))
defined by

T

[
a b
c d

]
= (a+ b) + cx+ dx2.

We found that

ker(T ) =
{ [

−b b
0 0

] }
.

Hence a basis for ker(T ) contains a single vector (set b = 1), namely
[
−1 1
0 0

]
.
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Therefore, dim(ker(T )) = 1. Now we know that dim(V ) = dim(M22(F )) = 4. Using
Theorem 4.2, we have

dim(T (M22(F ))) = dim(M22(F ))− dim(ker(T )) = 4− 1 = 3.

Notice that dim(T (M22)) = 3 = dim(W ) = dim(P2). By Theorem 3.13.ii, we have
that T (M22) = P2. Then by Lemma 4.1.v, we know that T maps onto P2. We hope
the reader sees both the power and beauty in this counting argument.

Example 4.13 Let’s look at a complete example from start to finish which illustrates
the material in this section. Consider T ∈ L(U22, P1) defined by

T

[
a b
0 c

]
= (2a− b+ c) + (b− c− 2a)x.

First we compute ker(T ).

[
a b
0 c

]
∈ ker(T ) iff T

[
a b
0 c

]
= 0 iff (2a− b+ c) + (b− c− 2a)x = 0

iff 2a− b+ c = 0 and b− c− 2a = 0 iff c = b− 2a

Hence,

ker(T ) =
{ [

a b
0 b− 2a

]
: a, b ∈ F

}
.

By Lemma 4.1.iii, T is not one-to-one, since

ker(T ) 6=
{ [

0 0
0 0

] }
.

A basis for ker(T ) is [
1 0
0 −2

]
,

[
0 1
0 1

]
,

and so dim(ker(T )) = 2. Now, by Linear Transformation Dimension Theorem,

dim(T (U22)) = dimU22 − dim(ker(T )) = 3− 2 = 1.

Since dimP1 = 2 6= 1 = dim(T (U22)), by Theorem 3.13.ii, P1 6= T (U22), and so
by Lemma 4.1.v, T does not map onto P1.
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The next Corollary is a consequence of Theorem 4.2. We have already seen a
proof of this fact in Section 3.6.

Corollary 4.2 Let A ∈ Mmn and consider the homogeneous linear system of equa-
tions AX = 0. Set U = nullsp(A), i.e. recall nullsp(A) = {v ∈ Rn | Av = 0}.
Then

dimU = n− rk(A)

equivalently, n = r(A) + n(A).

Proof 4.5 Consider the linear transformation T ∈ L(Rn,Rm) defined by T (v) = Av.
First notice that ker(T ) = U . Indeed, v ∈ ker(T ) iff T (v) = 0 iff Av = 0 iff v ∈ U .

Express A = [c1 · · · cn] in columns. We now show that T (Rn) = colsp(A). Indeed,
b ∈ T (Rn) iff there exists a v ∈ Rn such that T (v) = b iff there exists a v ∈ Rn
such that b = Av ∈ colsp(A). Now dim[span(c1, . . . , cn)] = rk(A), by Corollary 3.4.
Finally, by Theorem 4.2,

dim(Rn) = dim(ker(T )) + dim(T (V ))

and by the work above this translates to n = dimU + rk(A). �

Example 4.14 We give an application of Corollary 4.2. Suppose you want to quickly
decide whether or not a homogeneous linear system has non-trivial solutions. One can
simply compute the rank of the coefficient matrix for the system. If the rank is less
than the number of columns in the coefficient matrix, then by Corollary 4.2, the
system must have non-trivial solutions. Indeed, we in fact knew this already due to
Theorem 2.18.ii

EXERCISES

1. Consider T ∈ L(P2, D22) defined by

T (a+ bx+ cx2) =
[
a+ b+ c 0

0 a− 2c

]
.

a. Find ker(T ).

b. Use part a. to decide whether or not T is one-to-one.

c. Find a basis for ker(T ).

d. Find dim(ker(T )).

e. Use Theorem 4.2 to find dim(T (P2)).

f. Use part e. to decide whether or not T maps onto D22.
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2. Consider T ∈ L(U22, P1) defined by

T

[
a b
0 c

]
= (a+ b) + (b− c)x.

a. Verify that T is a linear transformation.

b. Calculate ker(T ) and decide whether or not T is one-to-one.

c. Find a basis for and dimension of ker(T ).

d. Use Theorem 4.2 to find dim(T (U22)) and decide whether or not T maps
onto P1.

3. Consider T ∈ L(U22, P1) defined by

T

[
a b
0 c

]
= (2a− b) + (c− a)x.

a. Find ker(T ).

b. Use part a. to decide whether or not T is one-to-one.

c. Find a basis for and dimension of ker(T ).

d. Find dim(T (U22)) and decide whether or not T maps onto P1.

4. Consider T ∈ L(P1,R3) defined by

T (a+ bx) = [a+ b, a− b, b− a].

a. Find ker(T ).

b. Use part a. to decide whether or not T is one-to-one.

c. Find a basis for and dimension of ker(T ).

d. Find dim(T (P1)) and decide whether or not T maps onto R3.

5. Let V be the set of all symmetric 2× 2 matrices. Consider the following linear
transformation:

T : V −→ P1 by T

[
a b
b c

]
= (a+ b) + (a− c)x.

a. Verify that T is a linear transformation.

b. Calculate ker(T ) and decide whether or not T is one-to-one.

c. Find a basis for and dimension of ker(T ).
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d. Use Theorem 4.2 to find dim(T (V )) and decide whether or not T maps onto
P1.

6. For each of the following linear transformations T ∈ L(V,W ),

i. Find ker(T ) and decide whether or not T is one-to-one.

ii. Find a basis for and dimension of ker(T ).

iii. Find dim(T (V )) and decide whether or not T maps onto W .

a. T ∈ L(M22, P1) defined by

T

[
a b
c d

]
= (a+ b) + (c+ d)x.

b. T ∈ L(U22, P1) defined by

T

[
a b
0 c

]
= (2a− b+ c) + (b− c− 2a)x.

c. T ∈ L(V, P2) defined by

T

[
a b
c a

]
= (a+ b− 2c) + (2a+ 2b− 4c)x+ (2c− a− b)x2, where

V =
{ [

a b
c a

]
| a, b, c ∈ R

}
.

d. T ∈ L(P2, D22) defined by

T (a+ bx+ cx2) =
[
a− b+ c 0

0 b− a− c

]
.

e. T ∈ L(P3, D22) defined by

T (a+ bx+ cx2 + dx3) =
[
a+ b+ c 0

0 b− c− d

]
.

f. T ∈ L(P3, U22) defined by

T (a+ bx+ cx2 + dx3) =
[
a+ b b+ c+ d

0 a+ 2b+ c+ d

]
.

g. T ∈ L(P2, D22) defined by

T (a+ bx+ cx2) =
[
a+ b− c 0

0 2a− b+ c

]
.
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h. T ∈ L(U22,R2) defined by

T

[
a b
0 c

]
= [a+ b, 2a− c].

i. T ∈ L(R3, P2) defined by

T [a, b, c] = (a+ 2b− c) + (a− b+ 2c)x+ (4a− b+ 5c)x2.

7. Prove if T : W −→ W is a linear transformation with dim(V ) = dim(W ), then
T is one-to-one iff T maps onto W .

8. Prove that T is one-to-one iff whenever v1, . . . , vk ∈ V are linearly independent,
then T (v1), . . . , T (vk) are linearly independent in W .

9. Prove that (assuming dim(V ) <∞), T maps onto W iff whenever v1, . . . , vk ∈
V span V , then T (v1), . . . , T (vk) span W .

10. Let T ∈ L(V,W ) and U a subspace of W . Define the inverse image of T in U ,

T−1(U) = { v ∈ V | T (v) ∈ U }.

a. Show that T−1(U) is a subspace of V .

b. What can be said about T−1({w}), any w ∈ W , if T is one-to-one?

11. Let U be a subspace of a finite dimensional vector space V and W any other
vector space with dimension at least 1. Construct a T ∈ L(V,W ) such that
ker(T ) = U .

12. Let T ∈ L(U, V ) and S ∈ L(V,W ). Show that ker(T ) ⊆ ker(S ◦ T ) and use this
to show that dim((S ◦ T )(U)) ≤ dim(T (U)).

13. Let S, T ∈ L(V ). Show that (S ◦ T )(V ) ⊆ S(V ) and use this to show that
dim(ker(S)) ≤ dim(ker(S ◦ T )).

14. Let A ∈Mmn and B ∈Mnr.

a. Prove that rk(AB) ≤ rk(A).
(hint: Consider the linear transformations defined by multiplication on the
left by a matrix)

b. Prove that rk(AB) ≤ rk(B).

c. Conclude that rk(AB) ≤ min{ rk(A), rk(B) }.

15. Let T ∈ L(V ) for V a finite dimensional vector space with T 2 = T (i.e.
T (T (v)) = T (v) for all v ∈ V ).
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a. Prove that ker(T ) ∩ T (V ) = {0}.

b. Prove that V = ker(T ) + T (V ).

16. Let T ∈ L(V,W ) where V and W are vector spaces and dim(V ) <∞. Assume
also that for every subspace U of V of dimension 1, we have dim(T (U)) = 1.

a. Show that if for v ∈ V , U = span(v), then T (U) = span(T (v)).

b. Using part a. prove that T = a1V for some scalar a ∈ R.

17. Let T ∈ L(V ) where V is a vector space. Prove that if rk(T ) = 1, then T 2 = aT
for some scalar a ∈ R, i.e. T (T (v)) = aT (v) for all v ∈ V .

18. Let S, T ∈ L(V ) for some vector space V . Prove that if ST = TS then S maps
ker(T ) into ker(T ) and S maps T (V ) into T (V ).

19. Prove parts ii,iv and v of Lemma 4.1.

20. Prove Lemma 4.2.

4.3 MATRIX REPRESENTATION

Just as in Chapter 2 where we made the connection between matrices and linear sys-
tems of equations, we now link the concepts of matrices and linear transformations.
We hinted at such a connection in Example 4.2 of Section 4.1 that linear transfor-
mations can be represented as multiplication on the left by a matrix. We first prove
the foundational result that makes this possible.

Lemma 4.3 Let (v1, . . . , vn) be an ordered basis for a vector space V and let W be
any other vector space.

i. If S, T ∈ L(V,W ) and S(vi) = T (vi) for i = 1, . . . , n, then S = T .

ii. Take any w1, . . . , wn ∈ W (possibly non-distinct). There exists a unique T ∈
L(V,W ) such that T (vi) = wi for i = 1, . . . , n.

Proof 4.6 For part i, take any v ∈ V . Since v1, . . . , vn is a basis for V , there exist
a1, . . . , an ∈ F such that v = a1v1 + · · ·+ anvn. Since S, T ∈ L(V,W ),

S(v) = S(a1v1 + · · ·+ anvn) = a1S(v1) + · · ·+ anS(vn)

= a1T (v1) + · · ·+ anT (vn) = T (a1v1 + · · ·+ anvn) = T (v).

Hence, by definition of equality of functions, we have S = T . To prove part ii,
define a function T : V −→ W as follows: For v ∈ V , express v = a1v1 + · · ·+ anvn
and then define T (v) = a1w1 + · · · + anwn. Notice that T is well-defined, since the
a1, . . . , an are uniquely determined. We need to show that T ∈ L(V,W ). First, we
take u, v ∈ V and show that T (u+ v) = T (u) + T (v). Express u = a1v1 + · · ·+ anvn
and v = b1v1 + · · ·+ bnvn. Notice that u+ v = (a1 + b1)v1 + · · ·+ (an + bn)vn. Hence,
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T (u+ v) = (a1 + b1)w1 + · · ·+ (an + bn)wn
= (a1v1 + · · ·+ anvn) + (b1v1 + · · ·+ bnvn) = T (u) + T (v).

Second, we need to show that T (au) = aT (u). Notice that au = (aa1)v1 + · · · +
(aan)vn. Hence,

T (au) = (aa1)w1 + · · ·+ (aan)wn
= a(a1v1 + · · ·+ anvn) = aT (u).

To show the uniqueness of T , suppose there was an S ∈ L(V,W ) such that S(vi) =
wi for i = 1, . . . , n. Then we would have S(vi) = wi = T (vi) for i = 1, . . . , n. By part
i this implies that S = T . �

To put in words Lemma 4.3, it says that a linear transformation is completely and
uniquely determined by where it sends a basis and for any list of vectors w1, . . . , wn ∈
W there is a unique linear transformation sending a chosen basis to those vectors.
Let’s illustrate the Lemma with an example.

Example 4.15 Here we illustrate that if we know where a linear transformation
sends a basis, then we can determine where it sends any vector. Let V = R2, B =
([1, 0], [1, 1]) and T ∈ L(R2). Suppose we know that T [1, 0] = [1, 2] and T [1, 1] =
[3,−4] and we want to determine T [2,−3]. Let’s find the coordinates of [2,−3] with
respect to the basis. One can show that

[2,−3] = (5)[1, 0] + (−3)[1, 1].

Since T is a linear transformation, we have

T [2,−3] = T ((5)[1, 0] + (−3)[1, 1]) = (5)T [1, 0] + (−3)T [1, 1]

= (5)[1, 2] + (−3)[3,−4] = [−4, 22].

Example 4.16 Let V = P1 and W = R3. Take the ordered basis (v1 = 1 − x,
v2 = 1 + 2x) and choose w1 = [1, 1, 0] and w2 = [0, 1,−1]. We will discover the
formula for the linear transformation T ∈ L(V,W ) with the property that T (v1) = w1
and T (v2) = w2. The proof of Lemma 4.3.ii provides an algorithm for how to do this.
Take any v = a+ bx ∈ V . We first need to find a1, a2 ∈ F such that v = a1v1 + a2v2,
i.e. the coordinates of v with respect to (v1, v2). We already know how to do this with
an augmented matrix.[

1 1
−1 2

∣∣∣∣∣ ab
]
R1+R2−→

[
1 1
0 3

∣∣∣∣∣ a
a+ b

]
1/3R2−→



208 � Introduction to Linear Algebra[
1 1
0 1

∣∣∣∣∣ a
1
3(a+ b)

]
−R2+R1−→

[
1 0
0 1

∣∣∣∣∣ 2
3a−

1
3b

1
3a+ 1

3b

]
.

Hence, the coordinates are a1 = 2
3a −

1
3b and a2 = 1

3a + 1
3b. Now Lemma 4.3.ii

defines T by

T (a+ bx) =
(2

3a−
1
3b
)

[1, 1, 0] +
(1

3a+ 1
3b
)

[0, 1,−1] =[2
3a−

1
3b, a,−

1
3a−

1
3b
]
.

Just to reassure ourselves, let’s check that T (v1) = w1.

T (v1) = T (1− x) =
[2

3(1)− 1
3(−1), (1),−1

3(1)− 1
3(−1)

]
= [1, 1, 0].

Lemma 4.3 allows us to make the following definition.

Definition 4.5 Let V and W be vector spaces, B1 = (v1, . . . , vn) be an ordered basis
for V , B2 = (w1, . . . , wm) be an ordered basis for W and T ∈ L(V,W ). The matrix
representation of T with respect to B1 and B2 is an m× n matrix of the form

[ [T (v1)]B2 · · · [T (vn)]B2 ] represented in columns.

A useful notation for this matrix is the descriptive

[T ]B2
B1

= [ [T (v1)]B2 · · · [T (vn)]B2 ].

This matrix captures, or encodes, the essential information of a linear transforma-
tion. Indeed, as we shall see, one can recover the definition of a linear transformation
from this matrix. Lemma 4.3 assures us that, once we specify ordered bases, each
linear transformation has its own unique matrix representation and, in addition, a
matrix of the appropriate dimensions (i.e. dim(W ) × dim(V )), when viewed as a
matrix representation of a linear transformation, is describing a specific linear trans-
formation. It’s quite remarkable that a finite set of numbers set in an array can
completely describe a linear transformation. As we shall later see, there are much
more remarkable things occurring with this matrix representation. Note the follow-
ing shorthand notation: If V is a vector space with ordered basis B, and T ∈ L(V ),
then we write [T ]B for the matrix representation [T ]BB.

Example 4.17 Let’s find such a matrix representation in a specific setting. Consider
the linear transformation T ∈ L(R2, P2) defined by

T [a, b] = (a+ b) + (a− b)x+ (b− a)x2.
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Take the following ordered bases for R2 and P2, respectively:

B1 = ([1, 2], [−2, 1]) and B2 = (1, 1 + x, 1 + x+ x2).

We shall compute [T ]B2
B1

. First, we need to apply T to each element in B1 (in
order).

T [1, 2] = 3− x+ x2 and T [−2, 1] = −1− 3x+ 3x2.

Now we need to find the coordinates of each of the above outputs of T with respect
to B2. Observe how we can find them simultaneously in a single augmented matrix.
We place B2 (in their proper order) in the columns to the left of the bar and the
outputs (also in order) to the right of the bar and row reduce.

 1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣∣
3 −1
−1 −3

1 3

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
4 2
−2 −6

1 3

 .
Hence, [T [1, 2]]B2 = [4,−2, 1] and [T [−2, 1]]B2 = [2,−6, 3]. Now drop these coor-

dinates (again in order) into the columns of a matrix to get

[T ]B2
B1

=

 4 2
−2 −6

1 3

 .
Notice that in the reduced augmented matrix above, what is to the right of the bar

is already the matrix we seek.

Example 4.18 Now keep the same setup as the previous problem and suppose that
S ∈ L(R2, P2) with

[S]B2
B1

=

 3 −1
−4 3

3 −1

 .
We illustrate the fact that the matrix representation of a linear transformation

contains all necessary information about S in order to recover its definition, by finding
the formula which defines S. By definition of matrix representation, the columns yield

[S[1, 2]]B2 = [3,−4, 3] and [S[−2, 1]]B2 = [−1, 3,−1].

In other words,

S[1, 2] = (3)(1) + (−4)(1 + x) + (3)(1 + x+ x2) = 2− x+ 3x2,
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S[−2, 1] = (−1)(1) + (3)(1 + x) + (−1)(1 + x+ x2) = 1 + 2x− x2.

At this point we know where S sends a basis, so as before, we can find the formula
for S. Recall that we need the coordinates of an arbitrary [a, b] in terms of the basis
B1. We use an augmented matrix.[

1 −2
2 1

∣∣∣∣∣ ab
]

which reduces to
[

1 0
0 1

∣∣∣∣∣ (1/5)a+ (2/5)b
−(2/5)a+ (1/5)b

]
.

Therefore, [a, b]B1 = [(1/5)a+ (2/5)b,−(2/5)a+ (1/5)b] and thus the formula for
S is

S[a, b] = ((1/5)a+ (2/5)b)(2− x+ 3x2) + (−(2/5)a+ (1/5)b)(1 + 2x− x2) =

b− ax+ (a+ b)x2.

What we have illustrated without specifically proving is the following fact:

Theorem 4.3 Consider two finite dimensional vector spaces V and W with dimV =
n and dimW = m and with respective bases B1 and B2. For any matrix A ∈ Mmn

there exists a unique linear transformation T ∈ L(V,W ) such that [T ]B2
B1

= A.

Now we look at some elegant and intuitive results derived from the notion of the
matrix representation of a linear transformation.

Lemma 4.4 Let U, V,W be finite dimensional vector spaces with corresponding
ordered bases B1, B2, B3. Then

i. If T ∈ L(U, V ) and u ∈ U , then [T (u)]B2 = [T ]B2
B1

[u]B1 .

ii. If 1U is the identity map for U , then [1U ]B1 = I.

iii. If S, T ∈ L(U, V ), then [S + T ]B2
B1

= [S]B2
B1

+ [T ]B2
B1

.

iv. If T ∈ L(U, V ) and scalar a ∈ R, then [aT ]B2
B1

= a[T ]B2
B1

.

v. If S ∈ L(U, V ) and T ∈ L(V,W ), then [T ◦ S]B3
B1

= [T ]B2
B1

[S]B3
B2

.

Proof 4.7 Let B1 = (u1, . . . , un) and let dim(V ) = m. To prove part i, define the
following two linear transformations (one should really check that they are indeed
linear transformations) R, S ∈ L(U,Rm):

R(u) = [T (u)]B2 and S(u) = [T ]B2
B1

[u]B1 .

For each ui in the basis for U , notice that

S(ui) = [T ]B2
B1

[ui]B1 = [T ]B2
B1
ei,
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the ith column of [T ]B2
B1

, which by definition is [T (ui)]B2 = R(ui). Since R and S
agree on a basis, by Lemma 4.3.i, R = S. In other words R(u) = S(u) for all u ∈ U .
By how we defined R and S, we have proved part i.

Part ii is easy and we leave it to the reader to prove. To prove part iii, we employ
part i. For i = 1, . . . , n,

([S]B2
B1

+ [T ]B2
B1

)ei = ([S]B2
B1

+ [T ]B2
B1

)[ui]B1 = [S]B2
B1

[ui]B1 + [T ]B2
B1

[ui]B1

= [S(ui)]B2 + [T (ui)]B2 = [S(ui) + T (ui)]B2 = [(S + T )(ui)]B2

= [S + T ]B2
B1

[ui]B1 = [S + T ]B2
B1
ei.

Hence, by Exercise 7 in Section 1.5, [S + T ]B2
B1

= [S]B2
B1

+ [T ]B2
B1

.
Parts iv and v are proved in a similar manner to iii. �

We point out that part i of the lemma confirms an earlier remark concerning how
linear transformations can be represented as multiplication on the left by a matrix
(i.e. the matrix representation of the linear transformation). In fact, the following
result follows immediately if we take the bases to be the standard ones:

Corollary 4.3 Given any linear transformation T ∈ L(Rn,Rm) there exists a unique
matrix A ∈Mmn such that T (v) = Av for all v ∈ Rn.

Example 4.19 We illustrate Lemma 4.4.i with an example. Consider the linear
transformation T ∈ L(D2, P2) defined by

T

[
a 0
0 b

]
= a+ bx+ (a+ b)x2.

Consider the following bases for D22 and P2, respectively:

B1 =
([

2 0
0 0

]
,

[
−1 0

0 1

])
and B2 = (1 + x+ x2, 1 + x, x).

One can compute

[T ]B2
B1

=

 2 0
0 −1
−2 2

 .
We illustrate how one can use Lemma 4.4.i to compute T (v) where

v =
[

2 0
0 −1

]
.
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First, we compute [v]B1 . Notice that[
2 0
0 −1

]
= (1/2)

[
2 0
0 0

]
+ (−1)

[
−1 0

0 1

]
.

Hence, [
2 0
0 −1

]
B1

= [1/2,−1].

By Lemma 4.4.i,

[
T

[
2 0
0 −1

]]
B2

=

 2 0
0 −1
−2 2

[ 1/2
−1

]
=

 1
1
−3

 .
This means that

T

[
2 0
0 −1

]
= (1)(1 + x+ x2) + (1)(1 + x) + (−3)(x) = 2− x+ x2.

Of course, a much easier way to compute this result is to use the formula.

T

[
2 0
0 −1

]
= (2) + (−1)x+ ((2) + (−1))x2 = 2− x+ x2.

We point out, as the reader can probably tell, this is not a very practical method
for computing the outputs of T . We gave this example merely as a way to see
Lemma 4.4.i in action. Indeed, as is often the case in this text we illustrate math-
ematical results by way of example. This is done to help the reader grasp abstract
concepts by having a concrete example.

EXERCISES

1. Consider the following ordered bases for R3 and P2:

B1 = ( [1, 0, 0], [1, 1, 0], [1, 1, 1] ) B2 = (x2, x+ x2, 1 + x+ x2),

and the matrix

A =

 2 1 4
3 1 1
1 1 1

 .
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Find the formula for T ∈ L(R3, P2) if [T ]B2
B1

= A.

2. Consider the following ordered bases for D22 and P2:

B1 =
([

2 0
0 1

]
,

[
−1 0

0 1

])
, B2 = (x,−1− 3x, 2− x2),

and the matrix

A =

 1 2
−2 0

1 −1

 .

Find the formula for T ∈ L(D22, P2) if [T ]B2
B1

= A.

3. Consider the linear transformation T ∈ L(R3, P1) defined by T [a, b, c] = (a+b)+
(b+ c)x and ordered bases B1 = ([1, 0, 2], [0,−1, 2], [1, 1, 1]) and B2 = (x, 2−x).

a. Compute [T ]B2
B1

.

b. Use the fact that [T ]B2
B1

[v]B1 = [T (v)]B2 to compute T [1, 2, 0].

4. Consider the linear transformation T ∈ L(R2, P1) defined by T [a, b] = (a+b)+bx
and ordered bases B1 = ([1,−1], [0, 2]) and B2 = (1 + x, 1− x).

a. Compute [T ]B2
B1

.

b. Use the fact that [T ]B2
B1

[v]B1 = [T (v)]B2 to compute T [1,−2].

c. Let S ∈ L(R2, P1) and suppose [S]B2
B1

=
[
−1/2 2
−1/2 0

]
. Find the formula

which defines S.

5. Consider the linear transformation T ∈ L(P1, D22) defined by

T (a+ bx) =
[
a+ b 0

0 b− a

]

and ordered bases B1 = (1 + x, 1− x) and

B2 =
([

1 0
0 1

]
,

[
−1 0
0 1

])
.

a. Compute [T ]B2
B1

.

b. Use the fact that [T ]B2
B1

[v]B1 = [T (v)]B2 to compute T (2− x).
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c. Let S ∈ L(P1, D22) and suppose [S]B2
B1

=
[

3/2 1/2
1/2 −1/2

]
. Find the formula

which defines S.

6. Consider the following data:

T ∈ L(U22, P1) defined by T

[
a b
0 c

]
= (a+ b) + (b− c)x.

B1 =
([

1 0
0 0

]
,

[
1 0
0 −1

]
,

[
0 −1
0 0

])
and B2 = (1 + x,−x).

a. Compute [T ]B2
B1

.

b. Use Lemma 4.4.i to compute T
[

1 2
0 3

]
.

7. Consider T ∈ L(U22, P1) defined by

T

[
a b
0 c

]
= (2a− b) + (c− a)x.

and the ordered bases for U22 and P1, respectively,

B1 =
([

2 1
0 0

]
,

[
0 1
0 1

]
,

[
−3 0

0 2

])
B2 = (2 + x,−5− 2x).

a. Compute [T ]B2
B1

b. Find the formula for S ∈ L(U22, P1) if [S]B2
B1

=
[

3 −1 −2
1 0 −1

]
.

8. Consider T ∈ L(P1,R3) defined by

T (a+ bx) = [a+ b, a− b, b− a].

and the ordered bases for P1 and R3, respectively,

B1 = ( 2− x,−1 + x ) B2 = ( [1, 1, 1], [−1, 1, 0], [0, 1, 1] ).

a. Compute [T ]B2
B1

b. Find the formula for S ∈ L(P1,R3) if [S]B2
B1

=

 1 1
1 0
0 −1

.
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9. Let V be the set of all symmetric 2× 2 matrices. Consider the following data:

T ∈ L(V, P1) defined by T

[
a b
b c

]
= (a+ b) + (a− c)x.

B1 =
([

1 0
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

])
and B2 = (1, 1 + x).

a. Compute [T ]B2
B1

b. Use Lemma 4.4.i to compute T
[

0 1
1 1

]
.

10. Consider the following data:

T ∈ L(M22, P1) defined by T

[
a b
c d

]
= (a+ b) + (c+ d)x.

B1 =
([

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

])
and B2 = (1, 1 + x).

a. Compute [T ]B2
B1

b. Use Lemma 4.4.i to compute T
[

2 1
0 0

]
.

11. Let T ∈ L(R3, D22) by

T [a, b, c] =
[
a+ 2c 0

0 2b− c

]

and consider bases B1 = ([1,−1, 0], [2, 0, 1], [0,−3,−2]) and

B2 =
( [

1 0
0 −1

]
,

[
2 0
0 0

] )

for R3 and D22 respectively.

a. Compute [T ]B2
B1

b. Use the fact that [T (v)]B2 = [T ]B2
B1

[v]B1 to compute T [0, 1,−2].



216 � Introduction to Linear Algebra

c. Given that S ∈ L(R3, D22) and

[S]B2
B1

=
[

1 −1 1
0 1 1/2

]
,

find the formula for S.

12. Consider the following data:

V =
{ [

a b
c a

]
| a, b, c ∈ R

}
,

T ∈ L(V, P2) defined by T

[
a b
c a

]
= (a+b−2c)+(2a+2b−4c)x+(2c−a−b)x2,

B1 =
([

1 1
0 1

]
,

[
0 1
1 0

]
,

[
1 0
1 1

])
and B2 = (x, 1, x+ x2).

a. Show that V is indeed a vector space by showing it is a subspace of M22.

b. Show that B1 and B2 are bases for V and P2, respectively.

c. Compute [T ]B2
B1

.

d. Use Lemma 4.4.i to compute T
[

1 1
−2 1

]
.

13. Consider T ∈ L(P2, D22) defined by

T (a+ bx+ cx2) =
[
a− b+ c 0

0 b− a− c

]
.

and the ordered bases for P2 and D22, respectively,

B1 = ( 1 + x, x− x2, 2 + x2 ) B2 =
( [

1 0
0 −1

]
,

[
2 0
0 −3

] )
.

a. Compute [T ]B2
B1

.

b. Use Lemma 4.4.i to compute T (1− x+ 2x2).

c. Find the formula for S ∈ L(P2, D22) if [S]B2
B1

=
[
−1 2 1

1 0 −2

]
.
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14. Consider T ∈ L(L22,R2) defined by

T

[
a 0
b c

]
= [a+ b, a+ c]

and ordered bases

B1 =
([

1 0
1 0

]
,

[
1 0
0 1

]
,

[
0 0
1 1

])

and B2 = ([1,−2], [1,−1]).

a. Compute [T ]B2
B1

.

b. Use Lemma 4.4.i to compute

T

[
3 0
0 1

]
.

c. Let S ∈ L(L22,R2) and suppose

[S]B2
B1

=
[
−3 −2 −3

5 3 4

]
.

Find the formula which defines S.

15. Consider T ∈ L(P3, D22) defined by

T (a+ bx+ cx2 + dx3) =
[
a+ b+ c 0

0 b− c− d

]
.

and the ordered bases for P3 and D22, respectively,

B1 = ( 1, 1+x, 1+x+x2, 1+x+x2+x3 ) B2 =
( [

0 0
0 1

]
,

[
−1 0

0 1

] )
.

a. Compute [T ]B2
B1

.

b. Use Lemma 4.4.i to compute T (3 + 2x2 + x3).

c. Find the formula for S ∈ L(P3, D22) if

[S]B2
B1

=
[

1 0 1 0
0 −2 1 −1

]
.
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16. Consider the following data:
A linear transformation T ∈ L(D2, P3) defined by

T

[
a 0
0 b

]
= (a+ b) + bx− ax2 + (4a− 2b)x3,

and ordered bases

B1 =
([

1 0
0 −1

]
,

[
2 0
0 1

])
and B2 =

(
1 + x3, 1 + x, x+ x3, x2 + x3

)
.

a. Verify that B1 is indeed a basis.

b. Compute the matrix representation [T ]B2
B1

.

c. Using the fact that [T ]B2
B1

[v]B1 = [T (v)]B2 , compute

T

[
1 0
0 2

]
.

d. Find the formula defining S, given that S : D2 −→ P3 is a linear transfor-
mation with

[S]B2
B1

=


2 1
−1 1

0 0
0 3

 .
17. Consider the linear transformation T ∈ L(D22,R2) defined by

T

[
a 0
0 b

]
= [a+ b, a− b]

and ordered bases

B1 =
([

1 0
0 0

]
,

[
1 0
0 1

])

and B2 = ([1,−2], [1,−1]).

a. Compute [T ]B2
B1

.

b. Use the fact that [T ]B2
B1

[v]B1 = [T (v)]B2 to compute

T

[
−1 0

0 −3

]
.
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c. Let S ∈ L(D22,R2) and suppose

[S]B2
B1

=
[
−3 −3

5 6

]
.

Find the formula which defines S.

18. Let B = (v1, v2, . . . , vn) be an ordered basis for a vector space V . Set B′ =
(cv1, cv2, . . . , cvn) for some scalar c. Prove that for any linear operator T ∈ L(V )
we have [T ]BB = [T ]B′B′ .

19. Suppose that S, T ∈ L(V ) for a finite dimensional vector space V . Show that if
S ◦ T = 1V , then T ◦ S = 1V .

20. Referring to Exercise 15 in Section 4.2 where we considered T ∈ L(V ) for V a
finite dimensional vector space with T 2 = T we proved that ker(T )∩T (V ) = {0}
and V = ker(T ) + T (V ).

a. Let v1, . . . , vk be a basis for ker(T ) and T (u1), . . . , T (um) be a basis for
T (V ). Set B = { v1, . . . , vk, T (u1), . . . , T (um) }. Verify that B is a basis for
V (look at the proof of Theorem 3.14).

b. Describe [T ]B using ordered basis B from part a.

21. Check that R, S in the proof of Lemma 4.4.i are linear transformations.

22. Prove parts ii,iv and v of Lemma 4.4.

4.4 INVERSE AND ISOMORPHISM

We now look at a special class of linear transformations which have some additional
properties. Before we do this we remind the reader of some results that are valid for
any functions.

4.4.1 Background

Definition 4.6 Let X and Y be any sets and f : X −→ Y be any function from X
to Y . A function g : Y −→ X is the inverse of f if g ◦ f = 1X and f ◦ g = 1Y . In
other words, for all x ∈ X and y ∈ Y we have

(g ◦ f)(x) = x and (f ◦ g)(y) = y.

Example 4.20 Here is a simple example to illustrate the definition. Let f : R −→ R
by f(x) = 2x− 5. Then the reader can check that f has inverse g(x) = 1

2(x+ 5).

In a sense, the inverse g of a function f undoes what the function f does. Below
are some pertinent results concerning functions in general:
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Theorem 4.4 Let f : X −→ Y be a function from a set X to a set Y .

i. f has an inverse iff f is one-to-one and maps onto Y .

ii. If f has an inverse, then it has exactly one.

iii. If f has an inverse, then the inverse is also one-to-one and maps onto X.

iv. If f1 has inverse g1 and f2 has inverse g2, then f1 ◦ f2 has an inverse, namely
g2 ◦ g1.

Proof 4.8 To prove i, first we assume that f has an inverse g. We show f is one-to-
one. We have to resort to the original definition of one-to-one, since f is not assumed
to be a linear transformation. For x1, x2 ∈ X, if f(x1) = f(x2), then g(f(x1)) =
g(f(x2)), i.e. (g ◦ f)(x1) = (g ◦ f)(x2). By definition of inverse, this equation reduces
to x1 = x2, and we have proved that f is one-to-one. To show that f maps onto Y ,
take any y ∈ Y . We have to find an x ∈ X such that f(x) = y. The element x = g(y)
does the trick, since f(g(y)) = (f ◦ g)(y) = y.

Now assume that f is one-to-one and maps onto Y . Define a function g : Y −→
X as follows: For y ∈ Y find the unique x ∈ X such that f(x) = y (such an x
exists, since f maps onto Y , and it is unique, since f is one-to-one). We then define
g(y) = x (i.e. the x that we found above). We prove that this g is the inverse of f .
First, for any y ∈ Y , we have (f ◦ g)(y) = f(g(y)) = f(x) = y. Second, take any
x ∈ X. Set y = f(x). Note that by definition of g, we have that g(y) = x. Hence,
(g ◦ f)(x) = g(f(x)) = g(y) = x.

To prove ii, suppose that g1 and g2 are inverses of f . We will show that g1 = g2
and so f has only one inverse (if it exists). For any y ∈ Y , since f is one-to-one and
maps onto Y there is a unique x ∈ X such that f(x) = y. Then

g1(y) = g1(f(x)) = (g1 ◦ f)(x) = x = (g2 ◦ f)(x) = g2(f(x)) = g2(y).

We leave the proof of iii and iv as exercises. �

Because of the fact that when an inverse exists there is only one, we can assign it
notation without any confusion. The inverse of f will be denoted by f−1. Take note
that this is simply notation and should not be taken literally as 1/f .

4.4.2 Inverse

We now restate the definition of inverse in the context of linear transformations.

Definition 4.7 Let V and W be vector spaces with T ∈ L(V,W ). The function
T−1 : W −→ V is the inverse of T , if T−1 ◦ T = 1V and T ◦ T−1 = 1W . If T
is one-to-one and maps onto W (or equivalently has an inverse), we say that T is
invertible.
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Example 4.21 Consider T ∈ L(P1, D2) defined by

T (a+ bx) =
[
a+ b 0

0 a− b

]
.

One can show (and shortly we will present an algorithm for producing it) that

T−1
[
a 0
0 b

]
=
(
a+ b

2

)
+
(
a− b

2

)
x.

We check, for example, that T−1 ◦ T = 1P1 .

(T−1 ◦ T )(a+ bx) = T−1(T (a+ bx)) = T−1
[
a+ b 0

0 a− b

]
=

((a+ b) + (a− b)
2

)
+
((a+ b)− (a− b)

2

)
x = a+ bx.

Similarly, one can verify that T ◦ T−1 = 1D2 .

One of the goals of this section is to have a method for finding T−1. This will
be given at the end of the section. Below are some results regarding linear trans-
formations and their inverses. The first two results parallel a result that is true for
functions on finite sets having the same size.

Lemma 4.5 Let V and W be vector spaces with V having finite dimension and
T ∈ L(V,W ). Then

i. If T is one-to-one with dimV = dimW finite, then T is invertible.

ii. If T maps onto W with dimV = dimW finite, then T is invertible.

iii. If T is invertible, then dimV = dimW .

Proof 4.9 To prove i, assuming dimV = dimW and T is one-to-one (and so
ker(T ) = {0V }), this implies that

dim(T (V )) = dimV − dim(ker(T )) = dimV − 0 = dimV.

Hence T maps onto V , which implies that T is invertible.

The proof of part ii is similar and left as an exercise. To prove part iii, just
consider a finite basis for V which T sends to a basis for W , since it is both onto-to-
one and maps onto W . �

The next result makes an important connection between invertible linear transfor-
mations and their corresponding matrix representations.
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Theorem 4.5 Let V and W be finite dimensional vector spaces and B1,B2 be any
ordered bases for V ,W respectively. Let T ∈ L(V,W ). Then

i. If T is invertible, then so is T−1 ∈ L(W,V ).

ii. If T is invertible, then [T−1]B1
B2

=
(
[T ]B2

B1

)−1
.

iii. T is invertible iff [T ]B2
B1

is invertible.

Proof 4.10 Part i makes for a nice exercise, so we leave it to the reader. Part ii is
less obvious, so we supply the proof. We prove this directly using Lemma 4.4.

[T−1]B1
B2

[T ]B2
B1

= [T−1 ◦ T ]B1 = [1V ]B1 = I.

To prove iii, if T is invertible, then by part ii, [T ]B2
B1

is invertible. Now assume
[T ]B2

B1
is invertible. To show T is one-to-one, we look at ker(T ). If T (v) = 0, then

0 = [T (v)]B2 = [T ]B2
B1

[v]B1 .

Multiplying both sides by the inverse of [T ]B2
B1

yields 0 = [v]B1 and so v = 0. Hence,
ker(T ) = {0} and T is one-to-one. To show T maps onto W , notice that since [T ]B2

B1

is invertible, it must be square, and so B1 and B2 have the same number of vectors.
Hence, dim(V ) = dim(W ) and by Lemma 4.5, T maps onto W . Therefore, T is
invertible. �

Theorem 4.5.ii has a nice practical application. We can use it to compute T−1.

Example 4.22 Consider T ∈ L(P1, D2) defined by

T (a+ bx) =
[
a+ b 0

0 a− b

]
.

We first compute [T ]B2
B1

. To make it easy on ourselves, we choose standard bases
B1 = ST1 = (1, x) and

B2 = ST2 =
([

1 0
0 0

]
,

[
0 0
0 1

])
.

Then

T (1) =
[

1 0
0 1

]
= (1)

[
1 0
0 0

]
+ (1)

[
0 0
0 1

]
, and

T (x) =
[

1 0
0 −1

]
= (1)

[
1 0
0 0

]
+ (−1)

[
0 0
0 1

]
.
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Hence,

[T ]ST2
ST1

=
[

1 1
1 −1

]
.

Notice that since
∣∣∣[T ]ST2

ST1

∣∣∣ = −2 6= 0, we know that [T ]ST2
ST1

is invertible, and so by
Theorem 4.5.iii, T is invertible. Thus we have the assurance that T−1 does indeed
exist. By Theorem 4.5.ii,

[T−1]ST1
ST2

=
[

1 1
1 −1

]−1

=
[
−1/− 2 −1/− 2
−1/− 2 1/− 2

]
=
[

1/2 1/2
1/2 −1/2

]
.

Since now we have a matrix representation for T−1, we can find the formula for
T−1. This matrix tells us that

T−1
[

1 0
0 0

]
= (1/2)(1) + (1/2)(x) = 1

2 + 1
2x

T−1
[

0 0
0 1

]
= (1/2)(1) + (−1/2)(x) = 1

2 −
1
2x.

Therefore,

T−1
[
a 0
0 b

]
= a

(1
2 + 1

2x
)

+ b

(1
2 −

1
2x
)

=
(
a+ b

2

)
+
(
a− b

2

)
x.

Observe that having used standard bases, we avoided the step of finding the coor-
dinates of an arbitrary vector in D2 with respect to B2.

4.4.3 Isomorphism

We now introduce the notion of isomorphism, a topic found in a discussion of any
algebraic structure. Informally, two vector spaces are isomorphic if they are in a
sense identical in the way they behave. In other words, give or take a relabelling of
the names of the vectors, they both act in the same way with regards to their two
operations.

Example 4.23 Let’s compare R2 and P1. The vector [a, b] in R2 looks a lot like the
vector a+ bx in P1. Furthermore, addition in both vector spaces look very similar.

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2].

(a1 + b1x) + (a2 + b2x) = (a1 + a2) + (b1 + b2)x.
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The same holds true for scalar multiplication.

c[a, b] = [ca, cb].
c(a+ bx) = (ca) + (cb)x.

Indeed, replacing the set of symbols left square bracket, comma and right
square bracket by the symbols + and x converts R2 into P1. We shall see that these
two vector spaces do indeed turn out to be isomorphic.

Definition 4.8 Let V and W be vector spaces with T ∈ L(V,W ). If T is invertible,
then we call T an isomorphism.

In order to formally prove that two vector spaces are isomorphic, we need to
produce a map between the two vector spaces which is an isomorphism.

Definition 4.9 Two vector spaces V and W are isomorphic, written V ' W , if
there exists an isomorphism T ∈ L(V,W ).

In other words, if we wish to show that two vector spaces are isomorphic, then
we have to be inventive enough to supply the appropriate isomorphism. Many times
the choice of isomorphism is obvious (or natural, as mathematicians like to say).

Example 4.24 We formally show that R2 ' P1. Consider the natural map T ∈
L(R2, P1) defined by

T [a, b] = a+ bx.

One can show that T is indeed a linear transformation, and that ker(T ) = {[0, 0]}
and so T is one-to-one. Furthermore, since dimR2 = dimP1, by Lemma 4.5, T maps
onto P1. All this shows that T is an isomorphism, and so R2 ' P1.

Lemma 4.6 Let U ,V ,W be vector spaces and T ∈ L(U, V ).

i. U ' U .

ii. If U ' V , then V ' U .

iii. If U ' V and V ' W , then U ' W .

iv. If U ' V , then dimU = dimV .

v. If dimU = dimV and T is one-to-one, then U ' V .

vi. If dimU = dimV and T maps onto W , then U ' V .

Proof 4.11 To prove i, use the isomorphism 1U . To prove ii, assuming U ' V , we
have an isomorphism T ∈ L(U, V ). By Theorem 4.5.i, T−1 makes V ' U . We leave
the proof of iii as an exercise.

Part iv follows immediately from Lemma4.5.iii. Parts v and vi follow from
Lemma 4.5.i and ii (respectively). �
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The next theorem lists some important isomorphisms of vector spaces.

Theorem 4.6 Let V and W be finite dimensional vector spaces with dim(V ) = n
and dim(W ) = m.

i. V ' Rn.

ii. L(V,W ) 'Mmn, and so dim(L(V,W )) = mn = (dimV )(dimW ).

Proof 4.12 To prove i, take any ordered basis B1 = (v1, . . . , vn) for V and define
the map T : V −→ Rn by T (v) = [v]B1 . One can easily show that T is a linear
transformation. Let’s look at ker(T ). If T (v) = [0, . . . , 0], then [v]B1 = [0, . . . , 0] and
so v = 0v1 + · · · + 0vn = 0V . Hence, ker(T ) = {0v} and T is one-to-one. Now by
Lemma 4.6.v, V ' Rn.

To prove ii, take an ordered basis B2 for W . Define the map S : L(V,W ) −→Mmn

by S(T ) = [T ]B2
B1

. First note that S is a linear transformation. Indeed, if T1, T2 ∈
L(V,W ), by Theorem 4.4.iii,

S(T1 + T2) = [T1 + T2]B2
B1

= [T1]B2
B1

+ [T2]B2
B1

= S(T1) + S(T2).

Furthermore, if a ∈ R and T ∈ L(V,W ), by Theorem 4.4.iv,

S(aT ) = [aT ]B2
B1

= a[T ]B2
B1

= aS(T ).

Second, S is one-to-one, since matrix representation with respect to B1 and B2
is uniquely determined. Now by Lemma 4.6.v, L(V,W ) 'Mmn and dim(L(V,W )) =
dim(Mmn) = mn. �

Corollary 4.4 If V and W are finite dimensional vector spaces, then V ' W iff
dimV = dimW .

Proof 4.13 First suppose that dimV = dimW = n. By Theorem 4.6.i, V ' Rn and
W ' Rn and hence V ' W . The reverse direction follows from Lemma 4.6.iv �

The above corollary is an example of a Classification Theorem, in the sense that
we have completely classified all vector spaces of finite dimension. It says that if a
vector space has dimension n, then the vector space is more or less Rn. Note also
that Corollary 4.4 improves on Lemma 4.6.v and vi. There is no need anymore to
exhibit an isomorphism, but rather it is enough to check that two vector spaces have
the same dimension in order to conclude that they are isomorphic.

EXERCISES

1. Consider T ∈ L(R2, P1) defined by T [a, b] = (2a+ b) + ax.

a. Compute [T ]ST2
ST1

using standard bases.
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b. Use part a. to explain why T−1 exists.

c. Use part a. to find the formula which defines T−1.

2. Repeat the previous exercise for T ∈ L(D22,R2) defined by

T

[
a 0
0 b

]
= [a+ b, a− b].

3. Repeat the previous exercise for T ∈ L(D22, P1) defined by

T

[
a 0
0 b

]
= 2b− ax.

4. Repeat the previous exercise for T ∈ L(P1, D22) defined by

T (a+ bx) =
[
a+ b 0

0 a− b

]
.

5. Let T ∈ L(D22,R2) defined by

T

[
a 0
0 b

]
= [a− b, a+ 2b].

a. Use matrix representations to show that T−1 exists.

b. Find the formula for T−1 using part a.

6. Repeat the previous exercise for T ∈ L(P2, U22) defined by

T (a+ bx+ cx2) =
[
a+ 2c 2a− b

0 b+ 3c

]
.

7. Repeat the previous exercise for T ∈ L(R3, P2) defined by

T [a, b, c] = (a+ b+ c) + (a− b+ c)x+ (a+ b− c)x2.

8. Consider T ∈ L(P3, U22) defined by

T (a+ bx+ cx2 + dx3) =
[
a+ b− c+ d −2a− b+ c+ d

0 −a+ 2d

]
.

and the ordered bases for P3 and U22, respectively,

B1 = ( x, 1−x2, x+ 2x3, 2 ) B2 =
( [

1 0
0 0

]
,

[
2 1
0 0

]
,

[
1 1
0 −1

] )
.
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a. Find ker(T ) and decide whether or not T is one-to-one.

b. Find a basis for and dimension of ker(T ).

c. Find dim(T (P3)) and decide whether or not T maps onto U22.

d. Is T invertible? (explain)

e. Compute [T ]B2
B1

.

f. Use Lemma 4.4.i to compute T (−2 + 3x+ 4x3).

9. Let T ∈ L(P1,R2) by T (a+ bx) = [2a+ 2b,−a− 3b].

a. Use matrix representations to verify that T is invertible.

b. Using part a., find a formula for T−1.

c. Verify that your answer in part b. is indeed the inverse of T (i.e. T ◦T−1 = 1R2

and T−1 ◦ T = 1P1).

10. Consider the following data:

T ∈ L(P2,R3) defined by T (a+ bx+ cx2) = [a+ b, a− c, a+ b].

B1 = (1 + x, x+ 2x2,−1 + x2) and B2 = ([2, 3, 1], [0,−1, 0], [0, 2,−2]).

a. Show that T ∈ L(P2,R3).

b. Show that B1 and B2 are bases for P2 and R3, respectively.

c. Compute ker(T ) and use this to decide whether or not T is one-to-one.

d. Use the Linear Transformation Dimension Theorem to decide whether or
not T maps onto R3.

e. Is T an isomorphism? (explain)

f. Calculate [T ]B2
B1

.

g. Use part e. to decide whether or not [T ]B2
B1

is invertible.

11. Consider the following data:

T ∈ L(U22, P2) defined by T

[
a b
0 c

]
= (a+ b) + (b+ c)x+ (a+ c)x2.

B1 =
([

1 0
0 0

]
,

[
1 1
0 0

]
,

[
0 1
0 1

])
and B2 = (1, 1 + x, 1 + x2).
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a. Compute [T ]B2
B1

.

b. Use part a. to decide whether or not T is invertible.

c. Compute ker(T ) and use it to decide whether or not T is one-to-one.

d. Use Theorem 4.2 to decide whether or not T maps onto P2.

12. Consider the following data:

A =

2 1 4
3 1 1
1 1 1

 , B1 = ([1, 0, 0], [1, 1, 0], [1, 1, 1]), B2 = ([0, 0, 1], [0, 1, 1], [1, 1, 1]).

Suppose that T ∈ L(R3) and that [T ]B2
B1

= A.

a. Use Lemma 4.4.i to compute T [3, 1, 0].

b. Use |A| to explain why A is invertible, then find A−1.

c. Find the formula for T−1 using Theorem 4.5.ii.

13. Use Corollary 4.4 to decide whether or not each of the following pairs of vector
spaces are isomorphic:

a. P2 and 2× 2 symmetric matrices.

b. M33 and R6.

c. U22 and P3.

14. Let V,W be finite dimensional vectors spaces and T ∈ L(V,W ).

a. Prove that if dim(V ) < dim(W ), then T does not map onto W .

b. Prove that if dim(V ) > dim(W ), then T is not one-to-one.

c. Prove that if dim(V ) 6= dim(W ), then T is not an isomorphism.

15. Let V be a vector space and T ∈ L(V ). Prove that if T 2 = 1V , then T is an
isomorphism (note: T 2 = T ◦ T ).

16. Let T ∈ L(V ) and S = T ◦ T . Prove that T is invertible iff S is invertible.

17. Prove that if a linear operator T : V −→ V has the property that T ◦ T is the
zero transformation (i.e. every input is mapped to 0V ), then T−1 does not exist.

18. Prove part ii of Lemma 4.5.

19. Prove part iii of Theorem 4.4.

20. Prove Theorem 4.5.i.

21. Verify that the map in part i of Theorem 4.6 is a linear transformation.
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4.5 SIMILARITY OF MATRICES

In this section, we introduce the notion of similarity of square matrices. We show
that the matrix representations of a linear operator have the special property of
being similar to each other.

Definition 4.10 A matrix A ∈ Mnn is similar (or conjugate) to a matrix B ∈
Mnn if there exists an invertible matrix P ∈Mnn such that B = P−1AP .

Example 4.25 Consider the following matrices:

A =
[

1 2
3 4

]
and B =

[
−1 −1

4 6

]
.

Notice that A is similar to B since for invertible P =
[

1 1
1 2

]
(invertible, since

|P | = 1 6= 0),

P−1AP =
[

2 −1
−1 1

] [
1 2
3 4

] [
1 1
1 2

]
=
[
−1 −1

4 6

]
= B.

Lemma 4.7 Let A,B,C ∈Mnn. The following are true:

i. A is similar to A.

ii. If A is similar to B, then B is similar to A.

iii. If A is similar to B and B is similar to C, then A is similar to C.

Proof 4.14 To prove i, take P = I. To prove ii, we are assuming that there is
an invertible P such that P−1AP = B. Solving for A we have A = PBP−1 =
(P−1)−1BP−1 and so the invertible matrix P−1 makes B similar to A. We leave the
proof of iii as an exercise. �

Note that since similarity has property ii, we can just say that A and B are
similar in no particular order. Let’s consider a finite dimensional vector space V and
two ordered bases B and B′ for V . Let T ∈ L(V ) be a linear operator. The main
result in this section is to show that the matrices [T ]B and [T ]B′ are related, namely
they are similar.

Theorem 4.7 Let V be a finite dimensional vector space with two ordered bases
B and B′ = (v′1, . . . , v′n). Choose any linear operator T ∈ L(V ). Then the matrix
representations of T , [T ]B and [T ]B′ , are similar, i.e. [T ]B′ = P−1[T ]BP , for some
invertible matrix P .

Furthermore, the invertible matrix P which makes [T ]B and [T ]B′ similar is de-
fined as follows:

P = [1V ]BB′ = [[v′1]B · · · [v′n]B] as columns.
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Proof 4.15 First observe that since 1V is an invertible linear operator, by Theo-
rem 4.5.iii, P = [1V ]BB′ is invertible. Second, notice that for any v ∈ V , by Theo-
rem 4.4.i,

P [v]B′ = [1V ]BB′ [v]B′ = [1V (v)]B = [v]B.

To complete the proof we rely heavily on Theorem 4.4.i and the observation just
made. For any i = 1, . . . , n,

P [T ]B′ei = P [T ]B′ [v′i]B′ = P [T (v′i)]B′ = [T (v′i)]B

= [T ]B[v′i]B = [T ]BP [v′i]B′ = [T ]BPei.

This shows that P [T ]B′ = [T ]BP , and so [T ]B′ = P−1[T ]BP . �

The matrix P in the theorem above is the change of basis matrix from B′ to
B introduced in Section 3.5. The name arises from the fact that, for any v ∈ V , we
have P [v]B′ = [v]B (as was shown in the proof above). In other words P changes the
coordinates of a vector with respect to B′ into coordinates of the vector with respect
to B.

One can show (we leave this as an exercise) that

P−1 = [1V ]B′B = [[v1]B′ · · · [vn]B′ ],

whereB = (v1, . . . , vn). In other words P−1 is the change of basis matrix fromB to
B′. There is a result which generalizes Theorem 4.7 to arbitrary linear transformations
L ∈ L(V,W ) with dimV, dimW < ∞. We state this result without proof (although
the proof is very similar to the one above).

Theorem 4.8 Let V and W be a finite dimensional vector spaces each with two
ordered bases B1, B

′
1 and B2, B

′
2 respectively. Choose any linear transformation T ∈

L(V,W ). Then the following relationship holds between two matrix representations of
T ,

[T ]B2
B1

= Q[T ]B
′
2

B′1
P.

Where P is the (invertible) change of basis matrix from B2 to B′2 and Q is the
(invertible) change of basis matrix from B′1 to B1.

Example 4.26 Let V = P1 with ordered bases B = (1, 1 + x) and B′ = (x, 1 − x).
Define T ∈ L(P1) by T (a+ bx) = a− bx.

Let’s first compute [T ]B directly.

T (1) = 1 = (1)(1) + (0)(1 + x) and T (1 + x) = 1− x = (2)(1) + (−1)(1 + x).
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Hence,

[T ]B =
[

1 2
0 −1

]
.

Now we could compute [T ]B′ the same way, but let’s find it by way of Theorem 4.7
as an illustration. First, let’s find P .

x = (−1)(1) + (1)(1 + x) and 1− x = (2)(1) + (−1)(1 + x).

Thus,

P =
[
−1 2
1 −1

]
.

Since |P | = −1, we have

P−1 =
[
−1/(−1) −2/(−1)
−1/(−1) −1/(−1)

]
=
[

1 2
1 1

]
.

Hence,

[T ]B′ =
[

1 2
1 1

] [
1 2
0 −1

] [
−1 2
1 −1

]
=
[
−1 2
0 1

]
.

EXERCISES

1. Consider T ∈ L(P1) and bases B = (1+x, 2x) and B′ = (−2, 1−x) and suppose
that

[T ]B =
[

1 −2
−1 3

]
.

Use the fact [T ]B′ is similar to [T ]B in order to compute [T ]B′ .

2. Repeat the previous exercise for T ∈ L(R2), B = ([1, 1], [−1, 2]), B′ =
([1, 1], [−1, 1]) and

[T ]B =
[
−1 2

1 0

]
.

3. Let T ∈ L(P1), B = (x, 1− x), B′ = (1,−1 + x) and suppose that

[T ]B =
[

1 −1
1 2

]
.
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a. Use Theorem 4.7 to compute [T ]B′ .

b. Use [T ]B to find the formula which defines T .

c. Using part b, compute [T ]B′ directly and verify your answer in part a.

4. Let T ∈ L(D22) with

[T ]B =
[

1 −1
1 2

]
,

where

B =
([

1 0
0 −2

]
,

[
1 0
0 0

])
and B′ =

([
1 0
0 −1

]
,

[
0 0
0 −4

])
.

Repeat the previous exercise.

5. Let T ∈ L(U22) with

T

[
a b
0 c

]
=
[
a+ b b+ c

0 a+ c

]
.

and consider the following bases for U22:

B =
([

1 0
0 0

]
,

[
1 −1
0 0

]
,

[
0 0
0 2

])
and

B′ =
([
−1 0

0 1

]
,

[
0 2
0 0

]
,

[
0 0
0 1

])
.

a. Compute directly [T ]B.

b. Using part a and Theorem 4.7, compute [T ]B′ .

6. Consider the following data:

T ∈ L(D22, D22) defined by T

[
a 0
0 b

]
=
[
a+ b 0

0 a+ b

]
.

B1 =
([

2 0
0 0

]
,

[
2 0
0 1

])
and B2 =

([
0 0
0 1

]
,

[
1 0
0 −1

])
.

a. Show that T is a linear transformation.

b. Compute [T ]B2
B1

.
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c. Using Lemma 4.4, compute

T

[
−2 0

0 1

]
.

d. Suppose S ∈ L(D22) and [S]B2
B1

=
[

2 2
2 1

]
. Find the formula for S.

e. Compute [T ]B1 .

f. Use Theorem 4.7 to compute [T ]B2 .

7. Prove that if A is similar to B, then |A| = |B|.

8. Prove the following facts about the trace of a matrix:

a. For A,B ∈Mn that tr(AB) = tr(BA).

b. Prove that if A is similar to B, then tr(A) = tr(B).

9. Given the assumptions of Theorem 4.7, prove that P−1 = [1V ]B′B =
[[v1]B′ · · · [vn]B′ ], where B = (v1, . . . , vn).

10. Prove part iii of Lemma 4.7.

4.6 EIGENVALUES AND DIAGONALIZATION

In this section, we introduce some special scalars called eigenvalues (or character-
istic values) which are associated with a matrix and play a crucial role in linear
algebra.

Definition 4.11 Let V be a vector space and T ∈ L(V ). If there is a v ∈ V with
v 6= 0, and scalar λ such that T (v) = λv, then

1. The scalar λ is called an eigenvalue of T .

2. The vector v is called an eigenvector of T with respect to λ.

3. The set Eλ = { v ∈ V : T (v) = λv } is called the eigenspace of T with
respect to λ.

Note that Eλ is the collection of all eigenvectors of T with respect to λ together
with the zero vector.

Example 4.27 We still need to introduce the method for finding the above objects,
but we give a simple example (which we shall revisit) to illustrate the definitions. Let
T ∈ L(P2) be defined by

T (a+ bx+ cx2) = (5a− 6b− 6c) + (−a+ 4b+ 2c)x+ (3a− 6b− 4c)x2.
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Since T (2 + x2) = 4 + 2x2 = (2)(2 + x2), an eigenvalue of T is λ = 2, and
v = 2 + x2 is a eigenvector of T with respect to the eigenvalue 2. We shall see that

E2 = { (2b+ 2c) + bx+ cx2 | b, c ∈ R }.

We point out that eigenspaces are subspaces of V . Indeed, if v1, v2 ∈ Eλ, then
T (v1) = λv1 and T (v2) = λv2. Hence,

T (v1 + v2) = T (v1) + T (v2) = λv1 + λv2 = λ(v1 + v2),

and so v1 + v2 ∈ Eλ. For any scalar a,

T (av1) = aT (v1) = a(λv1) = λ(av1),

and so av1 ∈ Eλ. Hence, we have demonstrated that Eλ is indeed a subspace of
V .

Definition 4.12 Let A ∈Mnn and define pA(t) = |A− tI|. Then pA(t) is called the
characteristic polynomial for A.

Example 4.28 Consider the matrix

A =

 5 −6 −6
−1 4 2
3 −6 −4

 .
Then

pA(t) =

∣∣∣∣∣∣∣
 5 −6 −6
−1 4 2
3 −6 −4

− t
 1 0 0

0 1 0
0 0 1


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
5− t −6 −6
−1 4− t 2
3 −6 −4− t

∣∣∣∣∣∣∣ R2+R3=

∣∣∣∣∣∣∣
5− t −6 −6
−1 4− t 2
2 −2 + t −2 + t

∣∣∣∣∣∣∣
−C2+C3=

∣∣∣∣∣∣∣
5− t −6 0
−1 4− t −2 + t
2 −2 + t 0

∣∣∣∣∣∣∣ = −(−2 + t)
∣∣∣∣∣ 5− t −6

2 −2− t

∣∣∣∣∣
= −(t− 2)[(5− t)(−2− t)− (−6)(2)] = −(t− 2)(t2 − 3t+ 2)

= −(t− 2)(t− 2)(t− 1) = −(t− 2)2(t− 1).



Linear Transformations � 235

Observe how we used elementary row and column operations in order to get
two zeros in a column and so obtain one of the factors of pA(t) as well as reduce
our computation to a 2 × 2 determinant. For 3 × 3 determinants (and higher) this
approach is always advisable, otherwise we would have been stuck with the task of
factoring high degree polynomials. Finally, notice that pA(t) is indeed a polynomial
in t.

The next theorem introduces our method for finding eigenvalues.

Theorem 4.9 Let V be a finite dimensional vector space and T ∈ L(V ). Pick any
ordered basis B for V and set A = [T ]B. Then the following three statements are
equivalent:

i. λ is a eigenvalue for T .

ii. (A− λI)X = 0 has nontrivial solutions, and these non-trivial solutions corre-
spond to the eigenvectors of T with respect to λ.

iii. pA(λ) = 0.

Proof 4.16 We first show that i is equivalent to ii. Let B be any basis for V . Now
λ is a eigenvalue for T iff There is a non-zero v ∈ V such that T (v) = λv iff
T (v) = λ1V (v) iff T (v)−λ1V (v) = 0 iff (T−λ1V )(v) = 0 iff [(T−λ1V )(v)]B = [0]B
iff [T − λ1V ]B[v]B = 0 iff (A− λI)[v]B = 0 and therefore the homogeneous system
(A − λI)X = 0 has non-trivial solutions, namely the coordinates of v with respect
to the ordered basis B. Furthermore, if (A − λI)X = 0 has non-trivial solutions we
can view these solutions as the coordinates of eigenvectors with respect to the ordered
basis B.

The fact that ii is equivalent to iii follows immediately from Theorem 2.21. Indeed,
(A− λI)X = 0 has non-trivial solutions iff pA(λ) = |A− λI| = 0. �

The theorem says that to find eigenvalues of a linear operator T , take any ordered
basis B, form the matrix representation A = [T ]B, and find the roots of the char-
acteristic polynomial pA(t). When doing this we normally take the standard basis
B = ST to make the computation of A easier.

Furthermore, the proof of the theorem also implies more. If T (v) = λv with
v 6= 0 (i.e. v is a eigenvector), then as in the proof (T − λ1V )(v) = 0. Then for any
ordered basis B, [(T − λ1V )(v)]B = [0]B = 0 which implies, by Lemma 4.4.i, that
[T −λ1V ]B[v]B = 0. As in the proof of the theorem this reduces to the equation (A−
λI)[v]B = 0. The reverse direction holds as well and we have that v is a eigenvector
for T with respect to λ iff the coordinates of v with respect to B are a solution to
the homogeneous system (A− λI)X = 0.

In other words, when we compute the solution set to the homogeneous system
(A − λI)X = 0 we are finding Eλ (at least the coordinates of vectors in Eλ with
respect to B). If we choose B = ST , the standard basis, then finding such vectors is
made even easier. This will all make better sense after the following example:

Example 4.29 Let T ∈ L(P2) be defined as in the previous example by
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T (a+ bx+ cx2) = (5a− 6b− 6c) + (−a+ 4b+ 2c)x+ (3a− 6b− 4c)x2.

We will find the characteristic polynomial, values and spaces. First we take ST =
(1, x, x2) and compute [T ]ST . Since

T (1) = 5− x+ 3x2, T (x) = −6 + 4x− 6x2, T (x2) = −6 + 2x− 4x2,

we have that

[T ]ST =

 5 −6 −6
−1 4 2
3 −6 −4

 .
Call this matrix A. This is the same matrix as in the previous example. We

computed the characteristic polynomial to be pA(t) = −(t− 2)2(t− 1). Therefore, the
eigenvalues of T are 1 and 2.

Now we compute E1, the eigenspace for T with respect to λ = 1. As we stated in
the discussion above we need to solve the homogeneous system (A − λI)X = 0 for
λ = 1. This amounts to replacing λ by 1 in the matrix A− λI and row-reducing (we
can omit the column of zeros in the augmented matrix, since they will remain zero).
Hence,  5− (1) −6 −6

−1 4− (1) 2
3 −6 −4− (1)

 =

 4 −6 −6
−1 3 2
3 −6 −5

 .
This matrix reduces to  1 0 −1

0 1 1/3
0 0 0

 .
Thus, the solutions to the homogeneous system satisfy the relations a − c = 0 and
b+ (1/3)c = 0. Solving for the pivots yields a = c and b = −(1/3)c. Therefore,

E1 = { c− (1/3)cx+ cx2 | c ∈ F }.

A basis for this subspace consists of one vector, 1 − (1/3)x + x2. For the reader’s
reassurance we compute

T (1− (1/3)x+ x2) =

[5(1)− 6(−1/3)− 6(1)] + [−(1) + 4(−1/3) + 2(1)]x+ [3(1)− 6(−1/3)− 4(1)]x2 =



Linear Transformations � 237

1− (1/3)x+ x2 = (1)(1− (1/3)x+ x2).

Now we compute the other eigenspace, E2. Replace λ by 2 this time in A− λI. 5− (2) −6 −6
−1 4− (2) 2
3 −6 −4− (2)

 =

 3 −6 −6
−1 2 2
3 −6 −6

 .
This matrix reduces to  1 −2 −2

0 0 0
0 0 0

 .
Thus, the solutions to the homogeneous system satisfy the relation a − 2b − 2c = 0.
Solving for the pivot yields a = 2b+ 2c. Therefore,

E2 = { (2b+ 2c) + bx+ cx2 | b, c ∈ R }.

A basis for this subspace consists of two vectors, 2 + x and 2 + x2. These vectors
which form bases for the eigenspaces will play an important role for the remainder of
the discussion in this section.

We wish to point out that any square matrix can be considered to have eigenvalues
as well, for we can view an n × n matrix as a linear operator on Rn by the rule
A(v) = Av, multiplication of A on the left of a column vector v ∈ Rn.

Example 4.30 This example deals with the case of complex eigenvalues. Consider
the matrix

A =
[
−2 1
−1 −2

]
,

Note that as an operator in L(C) the matrix representation with respect to the
standard basis of the map v → Av is the matrix A. One can compute pA(t) = t2+4t+5
and using the quadratic formula we find that A has eigenvalues −2± i. Let’s compute
the eigenspace for −2 + i, namely E−2+i. Replace t by −2 + i this time in A− tI to
get [

−i 1
−1 −i

]
which reduces to

[
1 i
0 0

]
.

Thus, the solutions to the homogeneous system satisfy the relation a + bi = 0 or
a = −bi. Therefore,

E−2+i = { [−bi, b] | b ∈ C }.
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A basis for this eigenspace consists of the vector [−i, 1] when we set b = 1. In a
similar manner one can compute

E−2−i = { [bi, b] | b ∈ C }.

A basis for this eigenspace consists of the vector [i, 1] when we set b = 1. In fact,
one can show that for any matrix A with real-valued entries, eigenspaces corresponding
to complex conjugate pair eigenvalues are also complex conjugates, i.e. if λ ∈ C and
Av = λv for v ∈ Cn, then Av = λv.

Definition 4.13 Let A ∈Mnn be a square matrix.

1. We say that A is triangularizable if A is similar to an upper triangular ma-
trix. A linear operator T ∈ L(V ) is triangularizable if any (or equivalently
all, by Theorem 4.7) of its matrix representations is triangularizable. Equiva-
lently (again, by Theorem 4.7), there is an ordered basis B such that [T ]B is a
triangular matrix.

2. We say that A is diagonalizable if A is similar to a diagonal matrix. A linear
operator T ∈ L(V ) is diagonalizable if any (or equivalently all) of its matrix
representations is diagonalizable. Equivalently, there is an ordered basis B such
that [T ]B is a diagonal matrix.

A result for which we will prove in the next chapter is the fact that any matrix
A ∈Mnn is triangularizable. The result below is what we are after in this section.

Theorem 4.10 Let V be a finite dimensional vector space and T ∈ L(V ) a linear
operator. Let λ1, . . . , λn ∈ R be distinct eigenvalues of T with corresponding eigen-
vectors v1, . . . , vn ∈ V . Then

i. The vectors v1, . . . , vn are linearly independent.

ii. For i 6= j, we have Eλi ∩ Eλj = {0}.

iii. For i = 1, . . . , n, we have 1 ≤ dim(Eλi) ≤ the multiplicity of λ as a root of
the characteristic polynomial.

iv. T is diagonalizable iff dim(Eλ1) + · · ·+ dim(Eλn) = dimV .

Proof 4.17 The proof of part i is by induction on n. For n = 1, one non-zero vector
v1 is certainly linearly independent. Assume the statement is true for k and we show
it is true for k + 1. Suppose that

a1v1 + · · ·+ ak+1vk+1 = 0.

For the case when ak+1 = 0, the equation reduces to a1v1 + · · · + akvk = 0, and
by induction a1 = · · · = ak = 0 and we are done. For the case when ak+1 6= 0 we will
get a contradiction, as desired. Solve the equation for vk+1 to get
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vk+1 = (a1/ak+1)v1 + · · ·+ (ak/ak+1)vk.

For brevity, let’s define bi = ai/ak+1 for i = 1, . . . , k. Thus our equation becomes

vk+1 = b1v1 + · · ·+ bkvk.

Let’s call the equation above ∗. Applying T to both sides of equation ∗ yields

T (vk+1) = b1T (v1) + · · ·+ bkT (vk).

Since v1, . . . , vk+1, are eigenvectors, we have

λk+1vk+1 = b1(λ1v1) + · · ·+ bk(λkvk).

Use equation ∗ to make a replacement on the left hand side to get

λk+1(b1v1 + · · ·+ bkvk) = b1(λ1v1) + · · ·+ bk(λkvk).

Collecting like terms yields

b1(λk+1 − λ1)v1 + · · ·+ bk(λk+1 − λk)vk = 0.

By induction, v1, . . . , vk are linearly independent, thus

b1(λk+1 − λ1) = · · · = bk(λk+1 − λk) = 0.

Since λ1, . . . , λk+1 are distinct, it must be the case that b1 = · · · = bk = 0. But
then equation ∗ reduces to vk+1 = 0, contradicting the fact that vk+1 is a eigenvector.

Verifying part ii is easy and we therefore leave it as an exercise.
For part iii, since λi is an eigenvalue this implies there are non-zero eigenvectors

in Eλi and so dim(Eλi) > 0. Take a basis for Eλi , say u1, u2, . . . , uk and extend it to
B = (u1, u2, . . . , uk, vk+1, . . . , vn) a basis for V . The matrix representation of T with
respect to this basis (in block form) is

[T ]B =


λ1

λ2
. . .

λk

0n−k

0n−k C

 .

Using this matrix representation of T to compute the characteristic polynomial
we get (t − λi)kpC(t) and so λi is a root of the characteristic polynomial at least
k = dim(Eλi) times.
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For the proof of part iv, let Bi be an ordered basis for Ei for i = 1, . . . , n. One can
show (see Exercise 17) that B = B1∪· · ·∪Bn is a linearly independent set of vectors.
Now order B so that the elements of B1 precede elements of B2, and so on. Now B is
a basis, since the number of elements in B equals dim(Eλ1)+ · · ·+dim(Eλn) = dimV
and B is a linearly independent set of vectors (see Theorem 3.10). Furthermore,
since B is made up of eigenvectors [T ]B will be diagonal. Indeed, [T ]B will be a
diagonal matrix with the eigenvalues occurring on the diagonal (see Example 4.31).
The number of occurrences of each eigenvalue corresponds exactly to the dimension
of its associated eigenspace. �

Example 4.31 In our ongoing example of T ∈ L(P2), we found a basis for each
eigenspace E1 and E2. Hence,

dim(E1) + dim(E2) = 1 + 2 = 3 = dim(P2).

By Theorem 4.10.ii, T is diagonalizable. Furthermore, the proof of Theorem 4.10.ii
shows that the ordered basis B which makes [T ]B diagonal is the combined bases for
E1 and E2, namely

B = (1 + 1
3x+ x2, 2 + x, 2 + x2).

Note the fact that B is comprised of eigenvectors implies

T (1 + 1
3x+ x2) = (1)(1 + 1

3x+ x2) = (1)(1 + 1
3x+ x2) + (0)(2 + x) + (0)(2 + x2),

T (2 + x) = (2)(2 + x) = (0)(1 + 1
3x+ x2) + (2)(2 + x) + (0)(2 + x2),

T (2 + x2) = (2)(2 + x2) = (0)(1 + 1
3x+ x2) + (0)(2 + x) + (2)(2 + x2).

Hence,

[T ]B =

 1 0 0
0 2 0
0 0 2

 .
Some immediate corollaries to Theorem 4.10 are the following:

Corollary 4.5 Let V be a non-trivial vector space of finite dimension n and T ∈
L(V ).

1. T has at most n distinct eigenvalues.

2. If T has exactly n distinct eigenvalues, then T is diagonalizable.
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Example 4.32 We use the technique in the previous example to decide whether an
arbitrary matrix is diagonalizable and to find a diagonal matrix to which it is similar.

The logic goes as follows: Given a matrix A ∈ Mnn, consider the linear trans-
formation T ∈ L(Rn) by T (v) = Av. One can check that [T ]ST = A, where
ST = ([1, 0], [[0, 1]). Therefore, checking diagonalizabilty of T is also checking di-
agonalizability of A.

Consider the matrix

A =
[

1 4
1 1

]
.

The characteristic polynomial,

pA(t) =
∣∣∣∣∣ 1− t 4

1 1− t

∣∣∣∣∣ = (1− t)2 − 4 =

t2 − 2t− 3 = (t− 3)(t+ 1).

Therefore, we have two eigenvalues, namely 3 and −1. Observe that we now know
that A is diagonalizable by Corollary 4.5.ii. Let’s find a basis for each eigenspace.

For the eigenvalue λ = 3, we row-reduce

[
1− (3) 4

1 1− (3)

]
=
[
−2 4
1 −2

]
which reduces to

[
1 −2
0 0

]
.

Therefore, a = 2b and E3 = { [2b, b] | b ∈ R} and the basis is the single vector
[2, 1]. In a similar manner one can compute that E−1 = { [−2b, b] | b ∈ R} and the
basis is the single vector [−2, 1].

Set B = ([2, 1], [−2, 1]). As was discussed in the previous example, we know that

[T ]B =
[

3 0
0 −1

]
. By Theorem 4.7, we also know that A and [T ]B are similar. More

specifically, [T ]B = P−1AP where P is the change of basis matrix from B to ST .
This is easy to compute, since we write the vectors in B in terms of ST . Hence, we
simply drop the vectors of B (in order) into the columns of P , i.e.

P =
[

2 −2
1 1

]
.

Since |P | = 4, we have

P−1 =
[

1/4 1/2
−1/4 1/2

]
.
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Hence,

P−1AP =
[

1/4 1/2
−1/4 1/2

] [
1 4
1 1

] [
2 −2
1 1

]
=[

3 0
0 −1

]
= [T ]B.

Here could be a possible application of diagonalization. Suppose we needed to com-
pute A5. It would be quite tedious if we multiplied A by itself 5 times (and the tedium
increases as the exponent increases). By the work above, A = P [T ]BP−1, and by an
exercise to follow,

A5 = (P [T ]BP−1)5 = P [T ]5BP−1 =

[
2 −2
1 1

] [
3 0
0 −1

]5 [
1/4 1/2
−1/4 1/2

]
=

[
2 −2
1 1

] [
(3)5 0

0 (−1)5

] [
1/4 1/2
−1/4 1/2

]
=

[
2 −2
1 1

] [
243 0
0 −1

] [
1/4 1/2
−1/4 1/2

]
=
[

121 244
61 121

]
.

Observe that no matter how high the exponent we wish to compute, we are always
reduce to multiplying three matrices, a great savings in labor.

EXERCISES

1. Consider the following linear transformation T ∈ L(P2) defined by

T (a+ bx+ cx2) = −a+ (2b+ 3c)x+ (2b+ c)x2.

a. Compute [T ]ST .

b. Use part a. to verify that T is invertible.

c. Use part a. to find the formula for T−1.

d. Find eigenvalues and spaces for T .

e. Find a basis for and dimension of each eigenspace of T .

f. Is there a basis B for P2 which makes [T ]B diagonal? If so, exhibit the basis
and the matrix [T ]B.

2. Consider T ∈ L(U22) defined by

T

[
a b
0 c

]
=
[
a+ b+ c a+ b+ c

0 a+ b+ c

]
.
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a. Find the eigenvalues for T .

b. Is there enough information from part a. to decide whether or not T is
diagonalizable? (explain)

c. Find the eigenspaces for T .

d. Find the basis and dimension of the eigenspaces for T .

e. Use part d. to explain why T is diagonalizable and exhibit a basis B such
that [T ]B is diagonal. What does [T ]B equal?

3. Repeat the previous exercise for the following linear transformation T ∈ L(U22):

T

[
a b
0 c

]
=
[

4a a+ b
0 −2a+ c

]
.

4. Consider T ∈ L(P2) defined by

T (a+ bx+ cx2) = (8a+ 10b) + (−5a− 7b)x− 2cx2.

a. Find the eigenvalues for T .

b. Is there enough information from part a. to decide whether or not T is
diagonalizable? (explain)

c. Find the eigenspaces for T .

d. Find the basis and dimension of the eigenspaces for T .

e. Use part d. to explain why T is diagonalizable and exhibit a basis B such
that [T ]B is diagonal. What does [T ]B equal?

f. Use [T ]B in part e. and Theorem 4.5.ii to find the formula for T−1.

5. Repeat the previous exercise for T ∈ L(U22) defined by

T

[
a b
0 c

]
=
[
a− b+ c −2b+ 3c

0 c

]
.

6. Consider the following linear transformation T ∈ L(P2) defined by

T (a+ bx+ cx2) = 2a+ (a+ b+ c)x+ (2b− 2a)x2.

a. Find eigenvalues and eigenspaces for T .

b. Find a basis for and dimension of each eigenspace of T .

c. Using part b. explain why T is diagonalizable.
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d. Find a basis B for P2 which makes [T ]B diagonal and exhibit the matrix
[T ]B.

7. Consider the following matrix:

A =
[
−3 −2

2 2

]
.

a. Find an invertible matrix P such that P−1AP is diagonal.

b. Use part a. to compute A5.

8. Repeat the previous exercise with the following matrix:

A =
[

2 1
1 2

]
.

9. Repeat the previous exercise with the following matrix:

A =

 −7 0 5
0 3 0

−10 0 8

 .

10. Consider the matrix A =
[

1 2
3 2

]

a. Find a matrix P which makes A similar to a diagonal matrix.

b. Use part b to compute A3.

c. When would a 2 × 2 matrix not be similar to a diagonal matrix by this
method?

11. Prove if A is a 2 by 2 symmetric matrix, then A is diagonalizable.

12. Prove if A is a 2 by 2 matrix, then the sum of the entries on the diagonal of
A equals the sum of the eigenvalues of A and |A| equals the product of the
eigenvalues of A.

13. Prove that the following statement can be added to the list of equivalent state-
ments in Theorem 3.7:

x. λ = 0 is not an eigenvalue of A.

14. Prove that A ∈Mnn and AT have the same eigenvalues.

15. Prove that similar matrices have the same eigenvalues.

16. Prove for A,B ∈Mn that AB and BA have the same eigenvalues.
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17. Prove that if X1, . . . , Xm are sets each consisting of linearly independent vectors
such that the following sum is a direct sum (see Section 3.1, Exercise 17):

span(X1) + span(X2) + · · ·+ span(Xm),

then X1 ∪ · · · ∪Xm is linearly independent.

18. Given a matrix A ∈ Mnn, consider the linear transformation T ∈ L(Rn) by
T (v) = Av. Prove that [T ]ST = A.

19. Prove that for A,P ∈Mnn and P invertible, we have (PAP−1)n = PAnP−1.

20. Prove that if λ ∈ C and Av = λv for v ∈ Cn, then Av = λv.

21. Consider the linear transformation defined as follows: Let C represent the vector
space of continuous functions and T : C → C by

T (f)(x) =
∫ x

0
f(t) dt

.

Show that T has no eigenvalues.

22. Prove parts ii and iii of Theorem 4.9.

23. Prove part ii of Theorem 4.10.

24. Prove Corollary 4.5.

4.7 AXIOMATIC DETERMINANT

This section is a bit more on the theoretical side than on the application side. It can
be easily skipped, but some students may find it mathematically interesting. In it we
determine the axioms for which the determinant is uniquely defined. One consequence
is that all our definitions of determinant in earlier sections must coincide since they
all satisfy these axioms. For the definition below, recall the notation for the cartesian
product of vector spaces, namely for a vector space V ,

V n = V × V × · · · × V︸ ︷︷ ︸
n times

= { (v1, v2, . . . , vn) : v1, v2, . . . , vn ∈ V }.

Definition 4.14 Let V = Rn. A function d : V n → R is n-linear if it is linear in
each of its coordinates, i.e. for any 1 ≤ i ≤ n and any v1, . . . , vi, v

′
i, . . . , vn ∈ V we

have

1. d(v1, . . . , vi + v′i, . . . , vn) = d(v1, . . . , vi, . . . , vn) + d(v1, . . . , v
′
i, . . . , vn) and

2. d(v1, . . . , avi, . . . , vn) = ad(v1, . . . , vi, . . . , vn) for any a ∈ R.
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Example 4.33 We list here several important examples of n-linear functions.

1. Any linear transformation T ∈ L(Rn,R) is a 1-linear function
(these functions are sometimes called linear functionals).

2. Any inner product on Rn is a 2-linear (or bilinear) function.

3. If we represent a matrix A = (c1, c2, . . . , cn) as an n-tuple of its columns, then
the determinant is an n-linear function.

We list a couple results about n-linear functions which are left as exercises for the
reader.

Lemma 4.8

1. If (v1, v2, . . . , vn) includes a coordinate which is the zero vector, then
d(v1, v2, . . . , vn) = 0.

2. Any linear combination of n-linear functions is again n-linear.

3. An n-linear function on Rn is completely determined by its values on the inputs

(eσ(1), eσ(2), . . . , eσ(n)),

where e1, e2, . . . , en is the standard basis for Rn and σ is any permutation of
the numbers 1, 2, . . . , n.

Our focus in this section will be n-linear functions for which the inputs are ma-
trices represented in columns (see Example 3 above). The goal is to determine what
additional properties (i.e. axioms) this type of n-linear function needs in order to
completely characterize the determinant, since there are other such n-linear func-
tions with the very same domain, but which are not the determinant function.

Example 4.34 For A = [aij ] ∈ Mnn the function defined by d(A) = a11a22 · · · ann
has the same domain as a determinant, however it is an n-linear function different
from the determinant function.

Definition 4.15 An n-linear function d is alternating if d(v1, v2, . . . , vn) = 0 when-
ever some vi = vj (i 6= j).

Lemma 4.9 An n-linear function d is alternating iff interchanging any two vectors
in the n-tuple (v1, v2 . . . , vn) reverses the sign of the output of d.

Proof 4.18 For one direction, assume first that d is alternating. Then

0 = d(v1, . . . , vi + vj︸ ︷︷ ︸
ith slot

, . . . , vi + vj︸ ︷︷ ︸
jth slot

, . . . , vn) =
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d(v1, . . . , vi, . . . , vi, . . . vn) + d(v1, . . . , vi, . . . , vj , . . . vn)+

d(v1, . . . , vj , . . . , vi, . . . vn) + d(v1, . . . , vj , . . . , vj , . . . vn) =

d(v1, . . . , vi, . . . , vj , . . . vn) + d(v1, . . . , vj , . . . , vi, . . . vn).

Therefore,

d(v1, . . . , vi, . . . , vj , . . . vn) = −d(v1, . . . , vj , . . . , vi, . . . vn).

For the reverse direction, consider the output

d(v1, . . . , vi︸︷︷︸
ith slot

, . . . , vi︸︷︷︸
jth slot

, . . . , vn).

Interchanging the ith and jth coordinate yields the same n-tuple, however by assump-
tion

d(v1, . . . , vi, . . . , vi, . . . vn) = −d(v1, . . . , vi, . . . , vi, . . . vn) and so

2d(v1, . . . , vi, . . . , vi, . . . vn) = 0 or d(v1, . . . , vi, . . . , vi, . . . vn) = 0.

�

It will be useful later on in this section to prove the following additional charac-
terization of alternating:

Lemma 4.10 An n-linear function d is alternating iff interchanging of any two ad-
jacent vectors in the n-tuple (v1, v2 . . . , vn) reverses the sign of the output of d.

Proof 4.19 One direction is an immediate consequence of Lemma 4.9. For the
other direction, assume that interchanging of any two adjacent vectors in the n-tuple
(v1, v2 . . . , vn) changes the sign of the output of d. We shall show that interchanging
any two vectors in the n-tuple (v1, v2 . . . , vn) changes the sign of the output of d,
which by Lemma 4.9 completes the proof. Consider the two outputs

d(. . . , vi︸︷︷︸
ith slot

, . . . , vj︸︷︷︸
jth slot

, . . .) and d(. . . , vj︸︷︷︸
ith slot

, . . . , vi︸︷︷︸
jth slot

, . . .).

We can move from the first output to the second by a sequence of interchanges of
adjacent vectors the number of which is (j − i) + (j − i)− 1 or 2(j − i)− 1, so that
by assumption
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d(. . . , vj︸︷︷︸
ith slot

, . . . , vi︸︷︷︸
jth slot

, . . .) =

(−1)2(j−i)−1d(. . . , vi︸︷︷︸
ith slot

, . . . , vj︸︷︷︸
jth slot

, . . .) =

−d(. . . , vi︸︷︷︸
ith slot

, . . . , vj︸︷︷︸
jth slot

, . . .).

�

The following result states that there can be at most one n-linear alternating
function with the additional property that it equals 1 on the n-tuple (e1, e2, . . . , en).
This result will lead to the uniqueness of the determinant.

Theorem 4.11 If d1 and d2 are two n-linear alternating function satisfying the ad-
ditional property that di(e1, e2, . . . , en) = 1 for i = 1, 2, then d1 = d2.

Proof 4.20 Set f = d1 − d2 which is an n-linear function, by part 1 of Lemma 4.8,
and is certainly still alternating. By expressing each vi as a linear combination
of the standard basis e1, e2, . . . , en one can eventually express f(v1, v2, . . . , vn) =
af(e1, e2, . . . , en) for some scalar a ∈ R. Therefore,

d1(v1, v2, . . . , vn)− d2(v1, v2, . . . , vn) = a[d1(e1, e2, . . . , en)− d2(e1, e2, . . . , en)] = 0.

Hence, d1(v1, v2, . . . , vn) = d2(v1, v2, . . . , vn) for all n-tuples (v1, v2, . . . , vn). �

Theorem 4.12 Expanding on a row or column of a matrix to compute the determi-
nant yields an n-linear alternating function satisfying the additional property that its
value on In equals 1.

Proof 4.21 The proof is done by induction on n. For n = 1, since the determinant
is the identity map, it is certainly 1-linear, alternating (vacuously) and its value on
I1 = [1] equals 1. For n > 1, let’s first reestablish our notation for expanding on row
i for A ∈Mnn:

|A|n =
n∑
j=1

(−1)i+jaij |Aij |n−1.

Since | ∗ |n is a linear combination of | ∗ |n−1’s and by induction the determinant
function on the Aij’s is (n− 1)-linear, it follows from part 1 of Lemma 4.8 that the
determinant on A is n-linear. We now show it is alternating. By Lemma 4.10, it’s
enough to consider a matrix A with two adjacent equal columns, say column k and
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k + 1. Then Aij will have two equal columns for j 6= k, k + 1, aik = ai,k+1 and
Aik = Ai,k+1. Therefore, using this observation and by induction

|A|n = (−1)i+kaik|Aik|n−1 + (−1)i+k+1ai,k+1|Ai,k+1|n−1 = 0.

Finally, we show that |In|n = 1. Set A = In. Notice for i = j that Aij = In−1 and
for i 6= j that Aij will have a zero column. Therefore, using these observations and
by induction

|In|n = |In−1|n−1 = 1.

A similar argument can be used to prove the result for expanding on a column. �

Corollary 4.6 The determinant function obtained by expanding on any row or col-
umn is the unique n-linear alternating function on Mnn satisfying the additional
property |In| = 1.

Proof 4.22 We have already seen in the proof of Theorem 4.12 that the determinant
function is n-linear and alternating on matrices A = (c1, c2, . . . , cn) viewed as an
n-tuple of column vectors and satisfies |(e1, e2, . . . , en)| = 1. By Theorem 4.11, it is
the only such function. �

EXERCISES

1. Verify that each of the following functions are n-linear:

a. Any linear transformation T ∈ L(Rn,R) is a 1-linear function.

b. Any inner product on Rn is a 2-linear (or bilinear) function.

c. If we represent a matrix A = (c1, c2, . . . , cn) as an n-tuple of its columns,
then the determinant is an n-linear function.

d. For A = [aij ] ∈ Mnn the function defined by d(A) = a11a22 · · · ann is an
n-linear function. Illustrate why d is different from the determinant function.

2. Show that the following functions are not n-linear (give a counterexample):

a. d : V n → R by d(v1, v2, . . . , vn) = a for some fixed scalar a.

b. For A = [aij ] ∈Mnn the function defined by d(A) = a2
11a22 · · · ann

3. Prove that if d is n-linear and alternating on a vector space V , then for any set
of linearly dependent vectors v1, v2, . . . , vn in V we have d(v1, v2, . . . , vn) = 0.

4. Prove Lemma 4.8.

5. Prove Theorem 4.12 for expanding on a column.
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4.8 QUOTIENT VECTOR SPACE

If one is dealing with any algebraic structure, there is always a notion of a quotient
structure. The reader should already have some good experience with equivalence
relations and classes, otherwise it would be strongly recommended to study or review
these concepts. In the first subsection of this section, we provide the reader with all
the necessary review if needed. Quotient structures are important in the study of
algebraic structures. Some important applications are the ability to equate algebraic
structure via an isomorphism to a quotient structure. One important application we
will see in this section is the First Isomorphism Theorem. Quotient structures can
be useful in induction proofs where one has a notion of measuring size. In the case
of a vector space, it is dimension which can be used for measuring size and therefore
allows us to prove things by induction. One important application which is at the
end of this section is the fact that every matrix is triagularizable over the complex
numbers.

We begin with a review of equivalence relations which the reader may skip if they
are already comfortable with this concept.

4.8.1 Equivalence Relations

The notion of a relation on a set is important in many fields of mathematics. We
shall see many applications of a particular type of relation (called an equivalence
relation) in this text. We start by defining a relation and then narrow things down
to an equivalence relation.

Definition 4.16 A relation ∼ on a set A is simply any subset of the cartesian
product A× A. If (a, b) ∈∼ we instead write a ∼ b and we say a relates to b.

Example 4.35 Here, we list a number of examples including several that you have
already seen in this text.

1. Let A = {a, b, c, d} and set ∼= {(a, b), (b, b), (c, d)}. For instance, according to
our definition of ∼, we have c ∼ d or c relates to d.

2. Let A = Z and ∼ be <. In other words, (n,m) ∈∼ or n ∼ m exactly when
n < m.

3. Set A = P(Z) which represents all the subsets of Z (called the power set of
Z). Let ∼ be ⊆, i.e. subset. In other words, two subsets X and Y of Z will
relate exactly when X ⊆ Y .

4. Take any set A and let ∼ be equality, i.e. a ∼ b exactly when a = b. In other
words ∼= {(a, a) : a ∈ A}.

5. Let f : A → B be a function from a set A to another set B. Define a relation
on A as follows: a ∼ b iff f(a) = f(b).
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6. Let A = Z and define ∼ as follows: n ∼ m iff There exists an integer k
such that m = nk. On says that n divides m and we write n|m. For instance,
(3,−15) ∈∼ since 3 divides −15 because −15 = 3(−5).

7. Define a relation on the set Z as follows: Fix a positive integer n and define
m ∼ k iff n|(m − k). This relation is called congruence modulo n and in
place of m ∼ k we typically write m ≡n k or m ≡ k (mod n).

8. Define a relation on Q as follows: a
b ∼

c
d iff ad = bc. So for instance

(1
2 ,
−3
−6) ∈∼ or 1

2 ∼
−3
−6 .

9. Let A be the set of all m× n matrices (for a fixed m and n) and for two such
matrices A and B define A ∼ B iff A and B are elementarily equivalent, i.e.
if B can be obtained by applying a finite number of elementary row operations
to A.

10. Let A be the set of all n×n matrices and for two such matrices A and B define
A ∼ B iff There is an invertible matrix P such that B = P−1AP . Recall, one
says that A is similar to B.

11. Define a relation ∼ on the set of all vector spaces as follows: Two vector spaces
V and W relate iff they are isomorphic. For instance, (R3, P2) ∈∼ or R3 ∼ P2,
since 3-tuples are isomorphic to polynomials of degree 2 or less (because they
have the same dimension).

There are various properties that one may wish to investigate in regards to a
relation. We list a few below.

Definition 4.17 Let ∼ be a relation on a set A. We say ∼ is

1. reflexive if for all a ∈ A, we have a ∼ a.

2. symmetric if for all a, b ∈ A, we have a ∼ b implies b ∼ a.

3. transitive if for all a, b, c ∈ A, we have a ∼ b and b ∼ c implies a ∼ c.

4. irreflexive if for all a ∈ A, we have a 6∼ a.

5. anti-symmetric if for all a, b ∈ A, we have a ∼ b and b ∼ a implies a = b.

Example 4.36 The reader may wish to prove which properties are satisfied by each
of the examples presented above. For instance, < on Z is irreflexive, anti-symmetric
(vacuously) and transitive. The relation ⊆ on P(Z) is reflexive, anti-symmetric and
transitive. Congruence ≡n on Z is reflexive, symmetric and transitive.

Some examples of types of relations that are of particular importance in mathematics
are the following:

Definition 4.18 Let ∼ be a relation on a set A. We say that ∼ is
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1. a partial ordering of A if it is reflexive, anti-symmetric and transitive.

2. an equivalence relation on A if it is reflexive, symmetric and transitive.

3. a function on A if whenever a ∼ b and a ∼ c, then it must be that b = c.

Example 4.37 We see now that ⊆ is a partial ordering on P(Z) and ≡n is an
equivalence relation on Z. Note that if we restrict the relation divides to a relation
on positive integers, then it becomes a partial ordering on positive integers.

The focus of our discussion for the remainder of this subsection is equivalence re-
lations. Let’s list here the examples introduced above which are equivalence relations.
The reader should take the time to prove that they are indeed equivalence relations.

Example 4.38 Here are some equivalence relations which are not specifically related
to linear algebra.

1. Take any set A and let ∼ be equality, i.e. a ∼ b exactly when a = b.

2. Let f : A → B be a function from a set A to another set B. Define a relation
on A as follows: a ∼ b iff f(a) = f(b).

3. Define a relation on the set Z as follows: Fix a positive integer n and define
m ∼ k iff m ≡ k (mod n).

4. Define a relation on Q as follows: a
b ∼

c
d iff ad = bc.

Here are some equivalence relations specific to linear algebra.

1. Matrix equivalence is an equivalence relation on the set of m× n matrices, i.e.
for two m× n matrices A and B define A ∼ B iff there exist a finite number
of elementary row operations which change A into B.

2. Matrix similarity is an equivalence relation n × n matrices, i.e. for two n × n
matrices A and B define A ∼ B iff there is an invertible matrix P such that
B = P−1AP .

3. Isomorphism is an equivalence relation on the set of vector spaces, i.e. two
vector spaces V and W relate iff they are isomorphic.

As we have stated already, for the remainder of this subsection we will be assuming
that ∼ is an equivalence relation and as such we typically use the notation ≡ in place
of ∼.

Definition 4.19 Let ≡ be an equivalence relation on a set A and a ∈ A. The equiv-
alence class of a with respect to ≡, written

[a]≡ = { b ∈ A : a ≡ b}.
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The element a is sometimes called the representative of the class [a]≡. The collec-
tion of all equivalence classes of A with respect to ≡, in other words { [a]≡ : a ∈ A },
is denoted by A/ ≡ and is called the quotient set of A.

At times we will simply write [a] in place of [a]≡ when the equivalence relation is
understood and we may simply call [a] the class of a for brevity. Some other notation
for an equivalence class which the reader will encounter in the next subsection is a
in place of [a].

Example 4.39 Let’s compute some equivalence classes for the examples already pre-
sented.

1. The equivalence classes for equality on a set A are singleton sets, i.e. [a] = {a},
since no other element besides a relates to a.

2. For the equivalence relation we defined on Q an equivalence class represents
all the different ways we can represent a particular fraction. For instance, the
equivalence class

[1
2

]
=
{1

2 ,
−3
−6 ,

12
24 , . . .

}
.

3. Consider the equivalence relation congruence modulo 3 on Z. There are exactly
three distinct equivalence classes. Each class contains integers which when di-
vided by 3 yield the same remainder.

[0] = {0,±3,±6, . . .}

[1] = {. . . ,−8,−5,−2, 1, 4, 7, . . .}

[2] = {. . . ,−7,−4,−1, 2, 5, 8, . . .}

One can view equivalence relations as a generalization of equality. Each class in
a sense contains all the elements of a set which we view as being the same. Just
consider the example of the equivalence class of 1

2 . We view 1
2 and −3

−6 as essentially
being the same even though symbolically the look very different. Equivalence classes
are simply a formal way of equating things which we wish to view as being equal.
Consider also isomorphic vector spaces. For the sake of study of vector spaces we
might as well group isomorphic types as being equal since isomorphic types are alike
in all ways in terms of properties they share, except that the objects are named and
look differently.

We now prove a result which uncovers the essential properties of an equivalence
relation.
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Lemma 4.11 Let ≡ be an equivalence relation on a set A.

1. For all a ∈ A we have a ∈ [a].

2. For all a, b ∈ A we have [a] = [b] iff a ≡ b.

3. For all a, b ∈ A either [a] = [b] or [a] ∩ [b] = ∅.

Proof 4.23 The first part follows immediately from the reflexive property. For the
second part, assume first that [a] = [b]. Now, since a ∈ [a] we have a ∈ [b] and so
by definition and symmetry a ≡ b. Now assume that a ≡ b. Using transitivity and
symmetry, notice that c ∈ [a] iff a ≡ c iff c ≡ b iff c ∈ [b] and so [a] = [b]. For the
last part, either [a] = [b] or [a] 6= [b]. In the latter case we show that [a] and [b] are
disjoint, thus proving the result. Indeed, we prove this by proving the contrapositive,
for if [a] ∩ [b] 6= ∅ then there is a c ∈ [a] ∩ [b]. Then c ∈ [a] and c ∈ [b] and so c ≡ a
and c ≡ b. Using symmetry and transitivity we have a ≡ b and so by the second part
[a] = [b]. �

Notice that the second part of the lemma says that any element of a class can
represent that class, i.e. if b ∈ [a] then [b] = [a]. The first and third part of the lemma
says that equivalence classes partition the set A into a union of disjoint sets.

Example 4.40 Let’s consider what equivalence classes look like in the case of our
linear algebraic examples of an equivalence relation.

1. Consider the equivalence relation on Mmn matrix equivalence. Each equivalence
class can be represented by a reduced row-echelon form.

2. Consider the equivalence relation isomorphism on finite dimensional vector
spaces. Each equivalence class can be represented by Rn, i.e. the quotient space
is

{[Rn] | n = 0, 1, 2, . . .},

if we allow R0 to be the set {0}.

3. Consider the equivalence relation similarity on n × n diagonalizable matrices.
Each equivalence class can be represented by a diagonal matrix.

Let’s formally define the notion of a partition of a set.

Definition 4.20 Let A be a non-empty set and P be a family of non-empty subsets
of A. We say P is a partition of A or partitions A if

1. For all a ∈ A there is an X ∈ P such that a ∈ X.

2. For all X, Y ∈ P distinct we have X ∩ Y = ∅.
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According to this formal definition, we see from the lemma that A/ ≡ is a partition
of A. One can think of a partition of a set as a puzzle where each puzzle piece is an
element of the partition and when you put all the puzzle pieces together you get the
set A.

Example 4.41 Consider the earlier example of congruence modulo 3 an equivalence
relation on Z. The partition into equivalence classes, namely Z/ ≡3, consists of three
puzzle pieces, namely [0], [1] and [2]. These three classes are pairwise disjoint and
their union is all of Z.

The reader may wish to verify the following observations: Given a partition P of a
set A, define the relation a ∼ b iff There is an X ∈ P such that a, b ∈ X. Then ∼
defines an equivalence relation whose equivalence classes consisting of precisely the
elements of P . Conversely, if one starts with an equivalence relation ≡ on a set A and
forms the partition into equivalence classes and then defines an equivalence relation
on this partition as we just did above, then we wind up with the same equivalence
relation we began with.

4.8.2 Introduction to Quotient Spaces

We begin our discussion by introducing a relation on vectors in a vector space. Let
V be a vector space with subspace U . For v, w ∈ V define v ∼ w iff v − w ∈ U .
One can readily check that this defines an equivalence relation. Indeed, to verify the
reflexive property, for any v ∈ V we have v ∼ v, since v − v = 0 ∈ U . To verify the
symmetric property, for v, w ∈ V if v ∼ w then v − w ∈ U , but then −(v − w) ∈ U
and so w − v ∈ U which implies that w ∼ v. To verify the transitive property, for
u, v, w ∈ V if u ∼ v and v ∼ w, then u− v, v − w ∈ U and so (u− v) + (v − w) ∈ U
or u− w ∈ U and so u ∼ w.

Now consider the equivalence classes for this equivalence relation, namely v̄ =
{ w ∈ V : w ∼ v } where v ∈ V . Notice that

w ∈ v̄ iff w ∼ v iff w − v ∈ U iff w = v + u, some u ∈ U.
Hence, v̄ = { v+u : u ∈ U } which we will denote by v+U . We call this a coset

of V modulo U . We will denote the collection of all equivalence classes (or cosets of
V modulo U) by the notation V/U which we call the quotient space of V modulo
U . We will therefore move away from the notation v̄ in favor of the more descriptive
notation v+U . Given a coset v+U , the element v is called a representative of that
coset. The use of the indefinite article “a” is justified, because of the more general
fact that any element of an equivalence class can represent that class.

Example 4.42 Consider the vector space V = R3 and the subspace U = span(̂ı, ̂)
which generates all the points in the xy-plane. Take v = [0, 0, c] for some scalar c ∈ R.
Then one can see that v+U generates all the points on the plane z = c and therefore
V/U is the collection of all planes parallel to the xy-plane. Furthermore, as we shall
see more formally later in the section, V/U is isomorphic to span(k̂), the z-axis, and
dim(V/U) = 1 = dim(V )− dim(U).
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We leave the following properties as exercises:

Lemma 4.12 (Basic Properties) If U is a subspace of a vector space V and v, w ∈
V , then

1. 0 + U = U .

2. v + U = w + U iff v − w ∈ U .

3. w ∈ v + U implies w + U = v + U , thus any element in a coset can represent
that coset.

Our immediate goal is to make V/U into a vector space, so we need to define a
vector addition and a scalar multiplication. The obvious definitions are, for v, w ∈ V
and scalar a ∈ R,

(v + U) + (w + U) = (v + w) + U and a(v + U) = (av) + U.

One can easily go on to check that cosets together with these two operations
satisfy the axioms of a vector space (left as an exercise). Thus, perhaps the reader
believes there is no more to say and the vector space has been established, however
there is a potential problem with these definitions since they are defined in terms
of representatives and any element of a coset can represent that coset. Hence, we
need to check that coset addition and scalar multiplication are well-defined. In other
words, no matter which representatives we use for cosets when we add or multiply by
a scalar using the definitions above, we always arrive at the same coset. Therefore,
we need to establish two things:

Lemma 4.13 Let U be a subspace of a vector space V .

1. If v +U = v′ +U and w+U = w′ +U , then (v +w) +U = (v′ +w′) +U , and

2. If a ∈ R and v + U = v′ + U , then (av) + U = (av′) + U .

Proof 4.24 We will establish the first and leave the second as an exercise. Thus, if
v+U = v′+U and w+U = w′+U , then v−v′, w−w′ ∈ U and so (v−v′)+(w−w′) ∈ U
or (v+w)− (v′+w′) ∈ U which means (v+w)+U = (v′+w′)+U , which establishes
the first item. �

Hence, because of Lemma 4.13, we have established the following result:

Theorem 4.13 V/U together with the two vector space operations on cosets defined
above forms a vector space.

We introduce an important linear transformation which relates to quotient spaces.

Definition 4.21 Let U be a subspace of a vector space V and define the function
ν : V → V/U by ν(v) = v + U . This function is called the canonical map.
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We leave it as an exercise for the reader to verify that ν is a linear transformation
which maps onto V/U .

We have now arrived at another dimension theorem which relates to quotient
spaces. It allows us to easily compute the dimension of a quotient space under certain
conditions as described in the result below.

Theorem 4.14 (Quotient Space Dimension Theorem) For U be a subspace of
a vector space V , V is finite dimensional iff both U and V/U are finite dimensional.
Furthermore, in this case, dim(V/U) = dim(V )− dim(U).

Proof 4.25 First, assuming dim(V ) < ∞, by the Subspace Dimension Theorem,
dim(U) < ∞. Consider the canonical map ν : V → V/U . Since ν maps onto V/U
we know that the image of any basis for V is a set of generators for V/U , and so
dim(V/U) ≤ dim(V ) < ∞. For the reverse direction, assuming dim(U) < ∞ and
dim(V/U) < ∞, we shall prove that dim(V/U) = dim(V ) − dim(U) and thus as a
byproduct obtain the fact that dim(V ) <∞. First, let’s dispense with the two extreme
cases. First, if U = V then V/U is the trivial subspace with only the zero vector
U = 0 + U (exercise). Therefore, dim(V/U) = 0 = dim(V ) − dim(U). Second, if
U = {0}, then V/U is isomorphic to V (exercise) and therefore have the same finite
dimension. Hence,

dim(V/U) = dim(V ) = dim(V )− 0 = dim(V )− dim(U).

From now on we assume that U is a proper non-trivial subspace of V and select
a basis for U , say u1, u2, . . . , uk. Since, dim(V/U) <∞ it also has a finite basis, say
v1 + U, v2 + U, . . . , vm + U .

Claim: u1, u2, . . . , uk, v1, v2, . . . , vm forms a basis for V .
First we show that u1, u2, . . . , uk, v1, v2, . . . , vm span V . Take any v ∈ V and

consider the coset v + U ∈ V/U . Then for some scalars b1, b2, . . . , bm ∈ R, we can
write

v + U = b1(v1 + U) + b2(v2 + U) + · · ·+ bm(vm + U).

But then v+U = (b1v1+b2v2+· · · bmvm)+U and so v−(b1v1+b2v2+· · · bmvm) ∈ U
and as such there exists scalars a1, a2, . . . , ak ∈ R such that

v − (b1v1 + b2v2 + · · · bmvm) = a1u1 + a2u2 + · · · akuk,

and so v = a1u1 + a2u2 + · · · akuk + b1v1 + b2v2 + · · · bmvm as desired. To
show u1, u2, . . . , uk, v1, v2, . . . , vm are linearly independent, suppose for some scalars
a1, a2, . . . , ak, b1, b2, . . . , bm that a1u1 + a2u2 + · · · akuk + b1v1 + b2v2 + · · · bmvm = 0.
Then b1v1 + b2v2 + · · · bmvm = −(a1u1 + a2u2 + · · · akuk) ∈ U . Therefore,

U = (b1v1 + b2v2 + · · · bmvm) + U = b1(v1 + U) + b2(v2 + U) + · · ·+ bm(vm + U).

Since, v1 +U, v2 +U, . . . , vm+U are linearly independent, b1 = b2 = · · · = bm = 0.
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But then a1u1 +a2u2 + · · · akuk = 0 and since u1, u2, . . . , uk are linearly independent,
a1 = a2 = · · · = ak = 0, which completes the proof of the claim.

Therefore, by the claim, dim(V/U) = m = (k +m)− k = dim(V )− dim(U). �

Example 4.43 We can use ideas from this proof in order to construct a basis for
a given quotient space. Consider the vector space V = R4 with subspace U = {[a +
b, a, a− b, b] : a, b ∈ R}. A basis for U is u1 = [1, 1, 1, 0] and u2 = [0, 1,−1, 1]. Using
our algorthm presented in Section 3.5, let’s extend U to a basis for V by row reducing


1 0 1 0 0 0
1 1 0 1 0 0
1 −1 0 0 1 0
0 1 0 0 0 1

 which reduces to


1 0 0 0 1 1
0 1 0 0 0 1
0 0 1 0 −1 −1
0 0 0 1 −1 −2

 .

Therefore, a basis extension would be u1, u2, e1, e2. We claim that a basis for V/U
is e1 + U and e2 + U . To see this, notice that any v ∈ V can be written in terms of
this basis, i.e. v = a1u1 + a2u2 + a3e1 + a4e2 for some ai ∈ R. Then

v + U = [(a1u1) + U ] + [(a2u2) + U ] + [(a3e1) + U ] + [(a4e2) + U ].

But since a1u1, a2u2 ∈ U and U is the zero vector in V/U , we have

v + U = U + U + a3(e1 + U) + a4(e2 + U) = a3(e1 + U) + a4(e2 + U).

Thus e1 +U and e2 +U span V/U with dim(V/U) = 4− 2 = 2. Therefore, e1 +U
and e2 + U form a basis for V/U .

The next result will be useful in allowing us to equate a vector spaces with a
quotient space via an isomorphism.

Theorem 4.15 (First Isomorphism Theorem) If V and W are vector spaces
and T ∈ L(V,W ), then V/kerT ' T (V ).

Proof 4.26 Set K = kerT and consider the map S : V/K → T (V ) by S(v + K) =
T (v). Since the domain of this function is equivalence classes, we must first ensure
that S is a well-defined map. In other words, two representations of the same coset
get sent to the same place by S. Thus, if v + K = w + K we need to conclude that
S(v +K) = S(w +K). We will do this via a series of iff statements.

v +K = w +K iff v − w ∈ K iff T (v − w) = 0W

iff T (v) = T (w) iff S(v +K) = S(w +K).
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Notice that reading the iff statements from right to left also proves that S is a
one-to-one map. The fact that S maps onto T (V ) is self-evident. So it remains to
show that S is a linear transformation so that S is an isomorphism, thus proving the
result. To this end

S[(v+K)+(w+K)] = S[(v+w)+K] = T (v+w) = T (v)+T (w) = S(v+K)+S(w+K).

and S[a(v +K)] = S[(av) +K] = T (av) = aT (v) = aS(v +K).
Hence, S is an isomorphism making V/K isomorphic to T (V ). �

4.8.3 Applications of Quotient Spaces

We illustrate in the following examples how quotient spaces can be used. Although
some of these results can be proved without quotient spaces, one readily sees the
mathematical elegance in which quotient spaces can be employed.

Example 4.44 We can quickly reprove the Linear Transformation Dimension Theo-
rem. By the First Isomorphism Theorem we know V/kerT ' T (V ) and being isomor-
phic implies they have the same dimension, i.e. dim(V/kerT ) = T (V ), but then by
the Quotient Space Dimension Theorem, dim(V )− dim(kerT ) = dimT (V ) or equiv-
alently, dim(V ) = dim(kerT ) + dimT (V ). �

Example 4.45 We can reprove the Product Dimension Theorem for a cartesian
product of vector spaces V1×V2×· · ·×Vn by induction on n. The result holds trivially
for n = 1, so for n > 1 consider the linear transformation (one needs to check it is)

T : V1×V2×· · ·×Vn → V1×V2×· · ·×Vn−1 by T [v1, v2, . . . , vn] = [v1, v2, . . . , vn−1].

T is sometimes called a projection map. It’s easy to see that T maps onto
V1 × V2 × · · · × Vn−1 and

kerT = {[0, 0, . . . , 0, vn] : vn ∈ Vn}.
and so (another easy thing to check) we have that kerT ' Vn. Therefore, by the Linear
Transformation Dimension Theorem just reverified,

dim(V1 × V2 × · · · × Vn) = dim(Vn) + dim(V1 × V2 × · · · × Vn−1).
But then, by induction,

dim(V1 × V2 × · · · × Vn) = dim(Vn) + dim(V1) + dim(V2) + · · ·+ dim(Vn−1).

Rearranging, we have our result that

dim(V1 × V2 × · · · × Vn) = dim(V1) + dim(V2) + · · ·+ dim(Vn).
�
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The final application is a new result not reproved which employs quotient spaces.

Theorem 4.16 Every square matrix is triangularizable over the complex numbers,
i.e. given a matrix A ∈Mnn(C) there exists an invertible matrix P ∈Mnn(C) and a
upper triangular matrix B ∈Mnn(C) such that P−1AP = B.

Proof 4.27 Let T be the familiar linear operator on Cn defined by T (v) = Av. We
will show that T (and therefore A) is triangularizable. The bulk of the proof relies on
the following claim:

Claim: For any linear operator T ∈ L(Cn), there exists a ordered basis B =
(v1, . . . , vn) for Cn such that T (vi) ∈ span(v1, . . . , vi) for i = 1, 2, . . . , n (such a
basis is called a fan basis).

We prove the Claim by induction on n. For n = 1, T ∈ L(C) and C = span(v1)
so evidentally, T (v1) ∈ span(v1). For n > 1, first set A = [T ]ST and consider the
characteristic polynomial pA(t). Since every polynomial has a root in C, set λ1 to
be a root of pA(t), an eigenvalue of T with respect to some eigenvector v1. Set U =
span(v1). Certainly, T (U) ⊆ U . Indeed, for any av1 ∈ U , we have

T (av1) = aT (v1) = aλ1v1 ∈ span(v1) = U.

Now consider the map S : V/U → V/U by S(v+U) = T (v)+U . Since the domain
of S is a quotient space, we need to check that it is well-defined. To that end, suppose
that v+U = w+U , then v−w ∈ U , but then T (v−w) ∈ U (see above) which means
that T (v)− T (w) ∈ U , and so T (v) + U = T (w) + U , i.e. S(v) = S(w). We leave it
as an exercise to show that S is a linear transformation.

Now dim(V/U) = dim(V )− dim(U) = n− 1, so by induction S has a fan basis,
i.e. there is a basis for V/U , say v2 + U, . . . , vn + U , such that

S(vi + U) ∈ span(v2 + U, . . . , vi + U) for i = 2, . . . , n.

Equivalently, for i = 2, . . . , n and some scalars a2, . . . , ai ∈ C,

S(vi + U) = a2(v2 + U) + · · ·+ ai(vn + U) = (a2v2 + · · ·+ aivi) + U.

Therefore, by definition of S, T (vi) +U = (a2v2 + · · ·+ aivi) +U and so T (vi)−
(a2v2 + · · ·+aivi) ∈ U which means T (vi)−(a2v2 + · · ·+aivi) = a1v1 for some a1 ∈ C
and so

T (vi) = a1v1 + · · ·+ aivi ∈ span(v1, . . . , vi).

Hence, the Claim is proved. Having shown this Claim, it’s easy to see that [T ]B
is upper triangular. Furthermore, [T ]ST = A. Therefore, by similarity of matrices the
theorem is proved. �
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EXERCISES

1. For each of the following vector spaces V with subspace U , find a basis for V/U .

a. V = R4 and U = { [a,−a,−b, b] : a, b ∈ R }.

b. V = P3 and U = { a+ bx+ (a+ b)x2 − bx3 : a, b ∈ R }.

c. V = M22 and U = D22.

2. Given positive integers m and n with m < n, determine what the quotient space
Rn/Rm is isomorphic to.

3. Verify the Basic Properties listed in Lemma 4.12.

4. Verify that V/U together with the well-defined operations for coset addition
and scalar multiplication satisfies the axioms of a vector space.

5. Verify that scalar multiplication as defined for V/U is well-defined as stated in
Lemma 4.13.

6. Verify that ν : V → V/U by ν(v) = v + U is a linear transformation which
maps onto V/U .

7. Prove for any vector space V that V/{0} ' V and V/V ' {0}, the trivial vector
space.

8. Prove that if u1, . . . , uk is a basis for a subspace U of a finite dimensional vector
space V and we extend this basis to a basis for V , say u1, . . . , uk, vk+1, . . . , vn,
then vk+1 + U, . . . , vn + U forms a basis for V/U .

9. Prove that the map S defined in Theorem 4.16 is a linear transformation.

4.9 DUAL VECTOR SPACE

To every vector space we can associate a dual vector space which is a useful structure
to have around in order to prove some important results in linear algebra.

Definition 4.22 Let V be a vector space.

1. The dual space of V , written V ∗ = L(V,R), i.e. linear transformations from
V to the real numbers.

2. An element φ ∈ V ∗ is called a linear functional.

Example 4.46 We list here several important linear functionals.

1. The trace of a matrix is a linear functional in M∗nn, since tr(A+B) = tr(A)+
tr(B) for any square matrices A, B and tr(aA) = atr(A) for any scalar a ∈ R
and square matrix A.
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2. Any evaluation transformation is a linear functional in F . Recall, for any
scalar a ∈ R and f ∈ F the evaluation transformation takes f to f(a).

3. Define the linear functional φi ∈ (Rn)∗ by φi[a1, a2, . . . , an] = ai, for a fixed i,
1 ≤ i ≤ n. We call this map the ith coordinate functional.

4. Let v1, v2, . . . , vn be a basis for a vector space V and fix an i, 1 ≤ i ≤ n. Define
the χi ∈ V ∗ to be the unique linear functional having the following property:

χi(vj) =
{

0, i 6= j
1, i = j

We call this the characteristic functional.

Example 4.47 We give a concrete example of the characteristic functionals for V =
P2. Consider the following basis for P2; v1 = 1, v2 = 1 + x, v3 = 1 + x+ x2. Let’s
find the formula for χ2. We will use Lemma 4.3.ii to construct it. Take any p =
a+ bx+ cx2 ∈ P2. First, we find the coordinates of p with respect to B = (v1, v2, v3).
Create the augmented matrix 1 1 1

0 1 1
0 0 1

∣∣∣∣∣∣∣
a
b
c

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
a− b
b− c

c


Therefore,

χ2(a+ bx+ cx2) = (a− b)(0) + (b− c)(1) + (c)(0) = b− c.

Similarly, χ1(a+ bx+ cx2) = a− b and χ3(a+ bx+ cx2) = c.

These characteristic functionals are important as is illustrated in the following result:

Lemma 4.14 Let V be a finite dimensional vector space. Then dimV ∗ = dimV .
Furthermore, if v1, v2, . . . , vn forms a basis for V then χ1, χ2, . . . , χn forms a basis
for V ∗ ( called the dual basis).

Proof 4.28 Using Theorem 4.6.ii,

dim(V ∗) = dim(L(V,R)) = dim(V )dim(R) = dimV.

Hence, to prove χ1, χ2, . . . , χn forms a basis for V ∗, it’s enough to show they are
linearly independent. Therefore, suppose a1χ1 + a2χ2 + · · · + anχn = 0. Then for
1 ≤ j ≤ n we have (a1χ1 + a2χ2 + · · · + anχn)(vj) = 0 or equivalently a1χ1(vj) +
a2χ2(vj) + · · ·+ anχn(vj) = 0. But by the definition of characteristic functionals this
reduces to aj = 0, for 1 ≤ j ≤ n. �
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Even though we did not have to show that χ1, χ2, . . . , χn span V ∗, it is worthwhile
to see how they do this. Take any φ ∈ V ∗. We show that

φ = φ(v1)χ1 + φ(v2)χ2 + · · ·+ φ(vn)χn.

Using Lemma 4.3.i, it’s enough to show that φ and φ(v1)χ1 + φ(v2)χ2 + · · · +
φ(vn)χn agree on the basis v1, v2, . . . , vn. For 1 ≤ j ≤ n,

[φ(v1)χ1 + φ(v2)χ2 + · · ·+ φ(vn)χn](vj)

= φ(v1)χ1(vj) + φ(v2)χ2(vj) + · · ·+ φ(vn)χn(vj) = φ(vj)χj(vj) = φ(vj).

Example 4.48 Let’s illustrate this discourse on span using the example we created
earlier. With V = P2 and basis 1, 1+x, 1+x+x2 we computed the dual basis χ1, χ2, χ3
where

χ1(a+ bx+ cx2) = a− b, χ2(a+ bx+ cx2) = b− c, χ3(a+ bx+ cx2) = c.

Consider the linear functional φ ∈ (P2)∗ defined by φ(a + bx + cx2) = a + b + c.
Notice that when we input the basis for P2, we get

φ(1) = 1, φ(1 + x) = 2 and φ(1 + x+ x2) = 3.

But then

φ(1)χ1 + φ(1 + x)χ2 + φ(1 + x+ x2)χ3 = χ1 + 2χ2 + 3χ3 and so

[φ(1)χ1 +φ(1 +x)χ2 +φ(1 +x+x2)χ3](a+ bx+ cx2) = [χ1 + 2χ2 + 3χ3](a+ bx+ cx2)

= χ1(a+ bx+ cx2) + 2χ2(a+ bx+ cx2) + 3χ3(a+ bx+ cx2)

= (a− b) + 2(b− c) + 3c = a+ b+ c = φ(a+ bx+ cx2).

We now shift our attention to linear transformations on dual vector spaces. For
every linear transformation between two vector spaces we can associate another linear
transformation between the corresponding dual spaces.

Definition 4.23 Let V and W be vector spaces and T ∈ L(V,W ). The transpose
of T , written T ∗, is a linear transformation from W ∗ to V ∗, i.e. T ∗ ∈ L(W ∗, V ∗),
defined by T ∗(φ) = φ ◦ T .
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Several remarks are in order. First, T ∗ is indeed a linear transformation, since
it is a composition of two linear transformations. Secondly, T ∗ maps into V ∗, since
T ∗(φ) = φ ◦T takes as an input an element of V and outputs a real number. Finally,
the kernel of T ∗ is the collection of all linear functionals in W ∗ which send the image
of T to 0W , since

φ ∈ kerT ∗ iff T ∗(φ) = 0 iff φ ◦ T = 0

iff (φ ◦ T )(v) = 0W , ∀v ∈ V iff φ(T (v)) = 0W , ∀v ∈ V.

The next result explains the reason why T ∗ is called a transpose.

Theorem 4.17 Let V and W be finite dimensional vector spaces with bases B1 and
B2 respectively. Denote B∗1 and B∗2 as the dual bases for V ∗ and W ∗ respectively.
Then

[T ∗]B
∗
1

B∗2
=
(
[T ]B2

B1

)T
.

Proof 4.29 Set B1 = {v1, v2, . . . , vn} and B2 = {w1, w2, . . . , wm}. Set B∗1 =
{φ1, φ2, . . . , φn} and B∗2 = {ψ1, ψ2, . . . , ψm}. Let A = [T ]B2

B1
, where A = [aij ]. Note

that for 1 ≤ j ≤ m, as we saw in remarks after Lemma 4.14,

T ∗(ψj) = ψj ◦ T =
n∑
i=1

(ψj ◦ T )(vi)ψi.

Therefore, the jth column of [T ∗]B
∗
1

B∗2
is the vector

[(ψj ◦ T )(v1), (ψj ◦ T )(v2), . . . , (ψj ◦ T )(vn)].

In particular, the ijth entry in [T ∗]B
∗
1

B∗2
is

(ψj ◦ T )(vi) = ψj(T (vi)) = ψj

(
m∑
k=1

akiwk

)
=

m∑
k=1

akiψj(wk) = ajiψj(wj) = aji,

which is, of course, the ijth entry in
(
[T ]B2

B1

)T
. �

Example 4.49 Let’s illustrate Theorem 4.17 with an example. Take V = P1 with
ordered basis B1 = (1, 1 + x), W = U22 with basis B2 = (E11, E11 + E12, E11 +
E12 + E22) and consider the linear transformation

T (a+ bx) =
[
a b
0 a+ b

]
.

First, we compute [T ]B2
B1

. Now
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T (1) =
[

1 0
0 1

]
and T (1 + x) =

[
1 1
0 2

]
.

We row reduce 1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣∣
1 1
0 1
1 2

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
1 0
−1 −1

1 2


Therefore,

[T ]B2
B1

=

 1 0
−1 −1

1 2

 .
Before we can compute [T ∗]B

∗
1

B∗2
we first need to derive the dual bases B∗1 and B∗2 .

To find B∗1 we first find the coordinates of an arbitrary a + bx ∈ P1 with respect to
B1. So we create the augmented matrix[

1 1
0 1

∣∣∣∣∣ ab
]

which reduces to
[

1 0
0 1

∣∣∣∣∣ a− bb
]

Therefore,

φ1(a+ bx) = (a− b)(1) + (b)(0) = a− b and φ2(a+ bx) = (a− b)(0) + (b)(1) = b.

Now we find B∗2 by first finding the coordinates of an arbitrary
[
a b
0 c

]
∈ U22

with respect to B2. So we create the augmented matrix 1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣∣
a
b
c

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
a− b
b− c

c


Therefore,

ψ1

[
a b
0 c

]
= (a− b)(1) + (b− c)(0) + (c)(0) = a− b,

ψ2

[
a b
0 c

]
= (a− b)(0) + (b− c)(1) + (c)(0) = b− c,

ψ3

[
a b
0 c

]
= (a− b)(0) + (b− c)(0) + (c)(1) = c.
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We again use the remarks after Lemma 4.14 to find coordinates each T ∗(ψi) (1 ≤
i ≤ 3) with respect to B∗1 .

T ∗(ψ1) = [(T ∗(ψ1))(1), (T ∗(ψ1))(1 + x)] =

[ψ1(T (1)), ψ1(T (1 + x))] =
[
ψ1

[
1 0
0 1

]
, ψ1

[
1 1
0 2

]]
= [1, 0].

T ∗(ψ2) = [(T ∗(ψ2))(1), (T ∗(ψ2))(1 + x)]

= [ψ2(T (1)), ψ2(T (1 + x))] =
[
ψ2

[
1 0
0 1

]
, ψ2

[
1 1
0 2

]]
= [−1,−1].

T ∗(ψ3) = [(T ∗(ψ3))(1), (T ∗(ψ3))(1 + x)]

= [ψ3(T (1)), ψ3(T (1 + x))] =
[
ψ3

[
1 0
0 1

]
, ψ3

[
1 1
0 2

]]
= [1, 2].

Therefore,

[T ∗]B
∗
1

B∗2
=
[

1 −1 1
0 −1 2

]
=
(
[T ]B2

B1

)T
.

Definition 4.24 Let U be a subspace of a vector space V . The annihilator of U in
V , written

U◦ = { φ ∈ V ∗ : φ(u) = 0, ∀u ∈ U }.

Example 4.50 We give several examples of direct computation of the annihilator of
a subspace.

1. We have seen for T ∈ L(V,W ) that kerT ∗ = T (V )◦.

2. Let V = R2 and U = span([1, 1]). Note that φ ∈ V ∗ is in U◦ exactly when
φ[1, 1] = 0. Extend [1, 1] to a basis for V by adding the vector [1, 0]. Find the
coordinates of [a, b] ∈ V with respect to B = ([1, 0], [1, 1]) by row reducing

[
1 1
0 1

∣∣∣∣∣ ab
]

which reduces to
[

1 0
0 1

∣∣∣∣∣ a− bb
]

Therefore,

φ[a, b] = (a− b)φ[1, 0] + bφ[1, 1] = c(a− b).

If we define φ1 ∈ V ∗ by φ1[a, b] = a− b, then we see that U◦ = span(φ1).
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3. Let V = P2 with U = span(1 + x). Note that φ ∈ V ∗ is in U◦ exactly when
φ(1 + x) = 0. Extend 1 + x to a basis for V by adding the vector 1, x, x2 and
row reducing

 1 1 0 0
1 0 1 0
0 0 0 1

 which reduces to

 1 0 1 0
0 1 −1 0
0 0 0 1

 .
Thus, by identifying the pivots of the reduced row-echelon form we see that the
extended basis is B = (1+x, 1, x2). Therefore, φ ∈ U◦ if φ(1+x) = 0 while φ(1)
and φ(x2) can equal whatever we like, say φ(1) = d ∈ R and φ(x2) = e ∈ R.
Find the coordinates of a + bx + cx2 ∈ V with respect to B = (1 + x, 1, x2) by
row reducing

 1 1 0
1 0 0
0 0 1

∣∣∣∣∣∣∣
a
b
c

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
b

a− b
c


Therefore,

φ(a+ bx+ cx2) = bφ(1 + x) + (a− b)φ(1) + cφ(x2) = d(a− b) + ec.

If we define φ1 ∈ V ∗ by φ1(a+ bx+ cx2) = a− b and φ2(a+ bx+ cx2) = c, then
we see that U◦ = span(φ1, φ2).

Notice that in all these examples above there is a relationship between the di-
mension of U, V and U◦ which leads to the following result:

Theorem 4.18 (Annihilator Dimension Theorem) If U is a subspace of a finite
dimensional vector space, then

dimU◦ = dimV − dimU.

Proof 4.30 Consider the inclusion linear transformation T ∈ L(U, V ) defined by
T (u) = u for all u ∈ U . Then T ∗ ∈ L(V ∗, U∗) is defined by T ∗(φ) = φ ◦ T which
is the map φ restricted to U . First note that kerT ∗ = T (U)◦ = U◦. Second T ∗ maps
onto U∗, since for any φ ∈ U∗, define ψ ∈ V ∗ to be the linear functional that agrees
with φ on U and equals 0 elsewhere (in the usual way by extending a basis for U to
a basis for V ). Now by Theorem 4.2, Theorem 4.14 and our work above,

dimV = dimV ∗ = dim(kerT ∗) + dim(T ∗(V ∗)) = dimU◦ + dimU∗ = dimU◦ + dimU.

�
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We can use this result to derive further useful results.

Theorem 4.19 Let V , W be vector spaces and T ∈ L(V,W ). Then

1. dimT (V ) = dimT ∗(W ∗)

2. T maps onto W iff T ∗ is one-to-one

3. T is one-to-one iff T ∗ maps onto V ∗

Proof 4.31 To prove the first item, using earlier results on dimension,

dimT ∗(W ∗) = dimW ∗ − dim(kerT ∗) = dimW − dimT (V )◦ =

dimW − (dimW − dimT (V )) = dimT (V ).

The second and third item follow from the first and are left as exercises. �

There is nothing to stop us from taking the dual of the dual and this is what we
do now. We shall see that in a sense, i.e. in the sense of isomorphism, this returns us
back to the original vector space.

Definition 4.25 For vector spaces V , W and T ∈ L(V,W )

1. the bidual of V , written

V ∗∗ = (V ∗)∗ = L(V ∗,R) = L(L(V,R),R).

2. the bitranspose of T , written

T ∗∗ = (T ∗)∗ ∈ L(V ∗∗,W ∗∗) and is defined by T ∗∗(v∗∗) = v∗∗ ◦ T ∗.

3. For v ∈ V , the notation v∗∗ ∈ V ∗∗ will be given more meaning, namely for a
fixed v ∈ V and any φ ∈ V ∗, we define v∗∗(φ) = φ(v).

4. We then define the map Φ : V → V ∗∗ by Φ(v) = v∗∗ called the canonical map.

Note that for 0 ∈ V the element 0∗∗ ∈ V ∗∗ is the zero map from V ∗ to R (this
short proof is left as an exercise).

From our earlier work we already know that when the dimension of V is finite,
then dimV ∗∗ = dimV ∗ = dimV , but we can say more about the relation between V
and V ∗∗,

Theorem 4.20 If dim(V ) is finite, then the canonical map Φ is a vector space iso-
morphism thus making V ∗∗ ' V .

Proof 4.32 First we show that Φ is a linear transformation.
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1. For v1, v2 ∈ V , Φ(v1 + v2) = Φ(v1) + Φ(v2).

This is equivalent to showing (v1 + v2)∗∗ = v∗∗1 + v∗∗2 and to see this, for any
φ ∈ V ∗,

(v1 + v2)∗∗(φ) = φ(v1 + v2) = φ(v1) + φ(v2) = v∗∗1 (φ) + v∗∗2 (φ).

2. For v ∈ V and a ∈ R, Φ(av) = aΦ(v).

This is equivalent to showing (av)∗∗ = av∗∗ and to see this, for any φ ∈ V ∗,

(av)∗∗(φ) = φ(av) = aφ(v) = av∗∗(φ).

Thus, Φ is a linear transformation. Since dimV = dimV ∗∗ it’s enough to show
that Φ is one-to-one by showing that the kernel of Φ is trivial. To show this we will
rely on a result which we leave as an exercise, namely v ∈ V and φ(v) = 0 for all
φ ∈ V ∗ iff v = 0. Assuming this result

v ∈ kerΦ iff Φ(v) = 0∗∗ iff v∗∗ = 0∗∗ iff v∗∗(φ) = 0, ∀φ ∈ V ∗

iff φ(v) = 0, ∀φ ∈ V ∗ iff v = 0.

�

EXERCISES

1. Verify that the coordinate functional is indeed a linear functional.

2. Verify that the characteristic functional is indeed a linear functional.

3. For each of the following vector spaces and bases compute the corresponding
dual basis:

a. V = R3 with basis B = ([1, 1, 0], [1, 0, 1], [0, 1, 1]).

b. V = P3 with basis B = (1− x, x− x2, 1 + x+ x2).

c. V = M22 with basis

B =
([

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

])

4. For each of the following vector spaces, bases and linear transformations, illus-
trate Theorem 4.17. Note that often the solutions to Exercise 3 can assist.

a. V = R3 with basis B1 = ([1, 1, 0], [1, 0, 1], [0, 1, 1]) and W = P3 with basis
B2 = (1− x, x− x2, 1 + x+ x2).
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b. V = D22 with basis B1 = (E11, E11 + E22) and W = M22 with basis

B2 =
([

1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

])

5. Compute the annihilator of a subspace of a vector space in each of the following
settings:

a. U = span

([
1 0
0 2

])
in V = D22.

b. U = span

([
1 0
0 2

])
in V = U22.

c. U = span

([
1 0
0 2

])
in V = M22.

6. When we use standard bases for Rn, Pn and Mmn, what is another name for
the characteristic functionals? Justify your answer.

7. Prove for a given subspace U of a vector space V that U◦ is a subspace of V ∗.

8. Prove that if U ⊆ W are subspaces of a vector space V , then W ◦ ⊆ U◦.

9. Prove that if U is a subspace of a finite dimensional vector space V and v ∈
V − U , then there exists a φ ∈ U◦ such that φ(v) 6= 0.

10. Let U , W be subspaces of a vector space V . Prove that U = W iff U◦ = W ◦.

11. For 0 ∈ V prove that the element 0∗∗ ∈ V ∗∗ is the zero map from V ∗ to R.

12. Given a finite dimensional vector space V , if v ∈ V and φ(v) = 0 for all φ ∈ V ∗,
then v = 0.
(hint: for the non-trivial direction make use of a basis for V and the correspond-
ing dual basis for V ∗)

13. Prove the last two parts of Theorem 4.19.
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Inner Product Spaces

In this chapter, real inner product space are covered which generalizes dot
product. Orthogonality, the Gram-Schmidt Process, and best approximation are

introduced. In Section 5.1, a real inner product space is defined and examples are
given. In Section 5.2, perpendicular vectors are defined and a method for producing
an orthonormal basis from any given basis is given. The annihilator of a set is given
which will be used in later sections of the chapter. In Section 5.3, orthogonal matrices
are defined and all 2×2 orthogonal matrices are classified as rotations or reflections of
two dimensional space. Section 5.4, is another numerical methods application called
the QR factorization. In Section 5.5, is it shown how any square matrix is similar to a
triangular matrix over the complex numbers. In Section 5.6, the notions of component
and projection are reintroduced as well as the orthogonal projection of a vector onto
a subspace. These play a crucial role in best approximation. In Section 5.7, it is
shown that any symmetric matrix can be diagonalized by eigenvectors. In Section 5.8,
the singular value decomposition is presented. In Section 5.9, the technique of best
approximation is applied to overdetermined systems of linear equations, a best fitting
polynomial, a best fitting hyperplane, underdetermined systems of linear equations
and to continuous functions.

A (Real) Inner Product Space is simply a generalization of the vector space Rn
together with its dot product. Our goal is to generalize the definition of dot product
and associate it with the other classic examples of a vector space. First, we begin
with the definition:

Definition 5.1 A (real) inner product space is a vector space V together with
a binary map (called the inner product) from V × V to R sending (v, w) to (v|w)
satisfying the following properties:

i. (v|v) > 0, for 0 6= v ∈ V .

ii. (v|w) = (w|v), for all v, w ∈ V .

iii. (u+ v|w) = (u|w) + (v|w), for all u, v, w ∈ V .

DOI: 10.1201/9781003217794-5 271

5.1 DEFINITION, EXAMPLES, AND PROPERTIES

https://doi.org/10.1201/9781003217794-5


272 � Introduction to Linear Algebra

iv. (av|w) = a(v|w), for all v, w ∈ V and a ∈ R.

If dim(V ) <∞, then V is called a Euclidean space.

There are names for these properties. Property i says that (∗|∗) is positive def-
inite, ii is the symmetric property, while iii and iv combined say that (∗|∗) is
bilinear. An inner product is called non-degenerate if (v|w) = 0 for all w ∈ V ,
then v = 0. It is left as an exercise to show that an inner product is necessarily
non-degenerate.

Example 5.1 Listed below are some standard examples of real inner product spaces.

1. Let V = Rn and define

([a1, . . . , an]|[b1, . . . , bn]) = a1b1 + · · ·+ anbn.

This is the standard dot product we have seen in Section 1.2. In that section
we proved that the dot product satisfied properties i–iv.

2. Let V = C[a, b] (continuous real-valued functions on the interval [a, b]) and
define (f |g) =

∫ b
a f(x)g(x) dx. One can easily check that properties i-iv are

satisfied here.

3. Let V = Mn and define (A|B) = tr(BTA). Again, one can check that properties
i-iv are satisfied.

Example 5.2 Let V = R2 and define

([a1, a2]|[b1, b2]) = a1b1 − a1b2 − a2b1 + 4a2b2.

With a little patience, one can easily verify properties ii–iv, however it is not an
inner product, since it does not satisfy property i.

Example 5.3 Let V = {0}, the trivial vector space, with (0|0) = 0. This is aptly
called the trivial inner product space. It is easy to check that properties i–iv are
satisfied in this case.

Example 5.4 Let W be an inner product space with inner product (∗|∗) and suppose
T ∈ L(V,W ) for another vector space V . Define the binary map (u|v)V = (T (u)|T (v))
for u, v ∈ V . One can verify that this maps makes V into an inner product space.

Listed below are some properties of an inner product space V as a consequence of its
definition.

iii’. (w|u+ v) = (w|u) + (w|v), for all u, v, w ∈ V .

iv’. (w|av) = a(w|v), for all v, w ∈ V and a ∈ R.
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v. (v|0) = (0|v) = 0 for all v ∈ V .

Properties iii’ and iv’ follow immediately from property ii and property v follows from
iv’ and ii.

Definition 5.2 Let V be an inner product space with inner product (∗|∗). The norm
(or length, or magnitude) of v ∈ V , written

|v| =
√

(v|v).

A unit vector v has the property that |v| = 1. The distance between two vectors
v, w ∈ V is defined to be |v − w|.

Example 5.5 Referring to the inner products defined above,

1. |[2,−3, 1]| =
√

(2)2 + (−3)2 + (1)2 =
√

14.

2. For [a, b] = [0, 1], |ex| =
√∫ 1

0 e
2x dx =

√
1
2(e2 − 1).

3. For A =
[

2 1
−1 1

]
,

|A| =
√
tr(ATA) =

√√√√tr([ 5 1
1 2

])
=
√

7.

One can check that |A|2 is simply the sum of the squares of the entries in A.

Notice that there is no notational confusion between norm and absolute value,
since the context (i.e. scalar or vector) dictates what | ∗ | signifies (however, |A| can
be confused with determinant).

As in Section 1.2, the vector 1
|v|v is a unit vector called the normalization of the

vector v ∈ V where v is necessarily non-zero.

We summarize some properties pertaining to the above definitions.

Lemma 5.1 Let V be an inner product space with inner product (∗|∗) with v, w ∈ V
and a ∈ R. Then

1. |v| ≥ 0. Furthermore, |v| = 0 iff v = 0.

2. |av| = |a||v|.

3. (Polarization Identity) (v|w) = 1
4(|v + w|2 − |v − w|2).

4. (Parallelogram Law) |v + w|2 + |v − w|2 = 2|v|2 + 2|w|2.

5. (Cauchy-Schwarz Inequality) |(v|w)| ≤ |v||w|.
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6. (Triangle Inequality) |v + w| ≤ |v|+ |w|.

7. (Right Triangle Law) (v|w) = 0 iff |v + w|2 = |v|2 + |w|2.

Proof 5.1 To prove 1, use properties i and v. To prove 2, notice that

|av|2 = (av|av) = a2(v|v) = a2|v|2.

Now take the square root of both sides to get the desired result. We can prove 3
and 4 at the same time. Note that, using the bilinear and symmetric property,

|v + w|2 = (v + w|v + w) = (v|v) + (v|w) + (w|v) + (w|w) = |v|2 + |w|2 + 2(v|w).

Let’s call the above equation ∗. Replacing w by −w in ∗ yields

|v − w|2 = |v|2 + | − w|2 + 2(v| − w) = |v|2 + |w|2 − 2(v|w).

Let’s call this second equation ∗∗. Adding the two equations ∗ and ∗∗ yields 4,
while subtracting ∗∗ from ∗ and multiplying the result by 1

4 yields 3.
To prove 5, we first need to show that we have the result for unit vectors, i.e. for

v, w ∈ V unit vectors, we have

|(v|w)| ≤ 1.

Indeed, using ∗,

0 ≤ |v + w|2 = |v|2 + |w|2 + 2(v|w) = 2 + 2(v|w),

which simplifies to (v|w) ≥ −1. Similarly, using ∗∗,

0 ≤ |v − w|2 = |v|2 + |w|2 − 2(v|w) = 2− 2(v|w),

which simplifies to (v|w) ≤ 1. Putting these two results together yields

−1 ≤ (v|w) ≤ 1 or |(v|w)| ≤ 1.

Now we can prove 5 for arbitrary v, w ∈ V . Since v/|v| and w/|w| are unit vectors,
we have |(v/|v|, w/|w|)| ≤ 1. Then

(v|w)
|v||w|

≤ 1, and so (v|w) ≤ |v||w|.

To prove 6, using ∗ again and what we just proved,

|v + w|2 = |v|2 + |w|2 + 2(v|w) ≤ |v|2 + |w|2 + 2|v||w| = (|v|+ |w|)2.



Inner Product Spaces � 275

Now take the square root of both sides of the above inequality to get the desired
result.

Part 7 follows easily from equation ∗. �

EXERCISES

1. Compute the inner product in each of the following examples:

a. In Example 5.1.1, compute (u|v), where u = [−1, 2, 4] and v = [−2, 0, 5].

b. In Example 5.1.2, compute (f |g), where f(x) = x, g(x) = x2 and [a, b] =
[1, 2].

c. In Example 5.1.3, compute (A|B), where

A =
[

1 −2
3 0

]
and B =

[
0 −1
2 −3

]
.

d. In Example 5.2, compute (u|v), where u = [1,−2] and v = [3,−1].

e. In Example 5.4, let W = R2 with the inner product from Example 2, and
let T ∈ L(R2) be defined by T [a, b] = [a + b, a − b] (so V = R2). Compute
(u|v)V , where u = [1,−2] and v = [3,−1].

2. Compute the magnitude of each vector:

a. In Example 5.1.1, compute |[−1, 2, 0]|.

b. In Example 5.1.2, compute | secx| on [a, b] = [0, π/4].

c. In Example 5.1.3, compute
∣∣∣∣∣
[

1 2
−1 0

]∣∣∣∣∣.
d. In Example 5.4, let W = R2 with the inner product from Example 2, and

let T ∈ L(R2) be defined by T [a, b] = [a+ b, a− b]. Compute |[1,−2]|V .

3. Prove that each of the following examples is an inner product space:

a. Example 5.1.2.

b. Example 5.1.3.

c. Example 5.4.

4. Decide whether or not each of the following functions is an inner product.

a. For V = R2 define ([a1, b1]|[a2, b2]) = |a1b1|+ |a2b2|.

b. For V = P (polynomials) define (p|q) =
∫∞

0 p(x)q(x)e−x dx.

5. Prove that Example 5.2 satisfies properties ii - iv, but not property i.
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6. Verify Properties iii’, iv’ and v using Properties i–iv.

7. Prove that for each 0 6= v ∈ V an inner product space, 1
|v|v is a unit vector.

8. Fix a vector v ∈ V and define a map v∗ : V → R by v∗(w) = (w|v) for all
w ∈ V . Prove that v∗ is a linear transformation.

9. Prove that for an inner product space V and w ∈ V , if (v|w) = 0 for all v ∈ V ,
then w = 0.

10. Prove Lemma 5.1.1 and 5.1.7.

5.2 ORTHOGONAL AND ORTHONORMAL

The geometric notion of two vectors being perpendicular (or orthogonal) can be
extended from Rn with dot product to arbitrary inner product spaces. We saw in
Section 1.2 that two vectors in Rn are perpendicular iff their dot product is zero.
This is exactly how we extend this notion.

Definition 5.3 Let V be an inner product space with inner product (∗|∗). Two vec-
tors v, w ∈ V are orthogonal, written v ⊥ w, if (v|w) = 0.

Example 5.6 Referring to the inner products defined in Section 5.1,

1. (Example 5.1.1) [1,−2,−1] ⊥ [1, 1,−1].

2. (Example 5.1.2) sin x ⊥ cosx on [a, b] = [0, π].

3. (Example 5.1.3)
[

2 1
1 −1

]
⊥
[

1 −2
2 2

]
.

Below are listed some simple properties of orthogonality which we leave as an exercise.

Lemma 5.2 Let V be an inner product space with inner product (∗|∗) and v, w ∈ V .
Then

i. v ⊥ w iff w ⊥ v.

ii. v ⊥ v iff v = 0.

iii. If v1, . . . , vn ∈ V and v ⊥ vi for i = 1, . . . , n, then v ⊥ (a1v1 + · · ·+ anvn) for
all a1, . . . , an ∈ R.

iv. If v1, . . . , vn ∈ V are non-zero and pairwise orthogonal (i.e. vi ⊥ vj for all
i 6= j), then v1, . . . , vn are linearly independent.

Proof 5.2 Parts i-iii are left as exercises. To prove iv, we suppose for a1, . . . , an ∈ R
that a1v1 + · · ·+ anvn = 0. Then, for all j = 1, . . . , n,
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0 = (0|vj) =
(

n∑
i=1

aivi

∣∣∣∣∣ vj
)

=
n∑
i=1

ai(vi|vj) = aj(vj |vj) = aj |vj |2.

Since vj 6= 0, it must be that aj = 0 (for all j = 1, . . . , n). �

Definition 5.4 Let V be an inner product space.

1. A set of vectors in V is orthogonal if they are pairwise orthogonal.

2. A set of vectors in V is orthonormal if they are orthogonal and of unit length
(i.e. all unit vectors).

Example 5.7 The standard basis for Rn and Mnn are orthonormal in their respective
inner product spaces (Examples 5.1.1 and 5.1.2).

The next theorem is very useful, for it gives a constructive proof of the existence
of an orthonormal basis for any Euclidean space. This algorithm for constructing the
orthonormal basis is called the Gram-Schmidt Process.

Theorem 5.1 If V is a non-trivial Euclidean space, then V has an orthonormal
basis.

Proof 5.3 Start with any basis for V , say v1, . . . , vn. We will first we find an orthog-
onal basis for V which we shall call w1, . . . , wn.

Set w1 = v1. Inductively assume that we have found non-zero orthogonal vectors
w1, . . . , wk (for 1 ≤ k < n) with span(w1, . . . , wk) = span(v1, . . . , vk). Then

wk+1 = vk+1 −
k∑
i=1

(vk+1|wi)
|wi|2

wi.

First, note that wk+1 6= 0, otherwise because of how wk+1 is defined it would
follow that vk+1 ∈ span(w1, . . . , wk) = span(v1, . . . , vk), contradicting the linear in-
dependence of v1, . . . , vn. Second, wk+1 ⊥ wj for j = 1, . . . , k, since

(wj |wk+1) = (wj |vk+1)−
k∑
i=1

(vk+1|wi)
|wi|2

(wj |wi)

= (wj |vk+1)− (vk+1|wj)
|wj |2

(wj |wj) = (wj |vk+1)− (vk+1|wj) = 0.

Finally, span(w1, . . . , wk+1) = span(v1, . . . , vk+1), since
wk+1 ∈ span(w1, . . . , wk, vk+1) = span(v1, . . . , vk, vk+1) and
vk+1 ∈ span(w1, . . . , wk+1), since

vk+1 =
k∑
i=1

(vk+1|wi)
|wi|2

wi + wk+1.
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Now to get an orthonormal basis for V simply normalize the vectors w1, . . . , wn.
�

We want to reiterate again that the proof of the existence of an orthonormal basis
is indeed constructive. As such, in the examples below we will apply this algorithm
for constructing an orthonormal basis.

Example 5.8 Let’s start we a basic example in a familiar setting. Set V = R3,
standard Euclidean space. Now the standard basis is already an orthonormal basis,
so let’s begin with a basis which is not orthonormal, such as v1 = [1, 0, 0], v2 =
[1, 1, 0], v3 = [1, 1, 1]. Set w1 = v1 = [1, 0, 0] and

w2 = v2 −
(
v2 · w1

w1 · w1

)
w1 = [1, 1, 0]−

( [1, 1, 0] · [1, 0, 0]
[1, 0, 0] · [1, 0, 0]

)
[1, 0, 0]

= [1, 1, 0]−
(1

1

)
[1, 0, 0] = [0, 1, 0].

w3 = v3 −
(
v3 · w1

w1 · w1

)
w1 −

(
v3 · w2

w2 · w2

)
w2

= [1, 1, 1]−
( [1, 1, 1] · [1, 0, 0]

[1, 0, 0] · [1, 0, 0]

)
[1, 0, 0]−

( [1, 1, 1] · [0, 1, 0]
[0, 1, 0] · [0, 1, 0]

)
[0, 1, 0]

= [1, 1, 1]− [1, 0, 0]− [0, 1, 0] = [0, 0, 1].

Normally, we would then normalize vectors w1, w2 and w3, however in this ex-
ample they are already normalized since they are the standard orthonormal basis for
R3.

Example 5.9 Take V = P2 with (p|q) =
∫ 1

0 p(x)q(x) dx. We start with the standard
basis v1 = 1, v2 = x, v3 = x2. Set w1 = 1.

w2 = v2 −
(v2|w1)
(w1|w1)w1 = x− (x|1)

(1|1) · 1 = x− 1/2
1 = −1

2 + x.

w3 = v3 −
(v3|w1)
(w1|w1)w1 −

(v3|w2)
(w2|w2)w2 = x2 − (x2|1)

(1|1) −
(x2| − 1

2 + x)
(−1

2 + x| − 1
2 + x)

· (−1
2 + x)

= x2 − 1
3 + x− 1/12

1/12(−1
2 + x) = 1

6 + x2.

As stated in the proof above, we now need to normalize w1, w2 and w3.

|w1| =
√

(w1|w1) =
√∫ 1

0
dx = 1.
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|w2| =
√

(w2|w2) =
√∫ 1

0
(−1

2 + x)2 dx = 1/
√

12.

|w3| =
√

(w3|w3) =
√∫ 1

0
(1
6 + x2)2 dx =

√
61/180.

Hence, the orthonormal basis is then w1/|w1|, w2/|w2|, w3/|w3|. More precisely, it
is

1,−
√

3 +
√

12x,
√

5 +
√

180
61 x

2.

The next result is easy to verify, so we leave it as an exercise. What the lemma says
basically is that any finite dimensional inner product space is essentially Euclidean
space with the standard dot product.

Lemma 5.3 Let B = (u1, . . . , un) be an ordered orthonormal basis for a Euclidean
space V . For u, v ∈ V , suppose that [u]B = [a1, . . . , an] and [v]B = [b1, . . . , bn]. Then
(u|v) = a1b1 + · · ·+ anbn.

Example 5.10 Let’s illustrate Lemma 5.3. Consider the example above in which we
found an orthonormal basis for P2, namely,

B =
(

1,−
√

3 +
√

12x,
√

5 +
√

180
61 x

2
)
.

We shall compute (1|x) in two different ways. On the one hand, (1|x) =
∫ 1

0 x dx =
1
2 . On the other hand, according to Lemma 5.3, first we need to find the coordinates
of 1 and x with respect to B. Clearly, [1]B = [1, 0, 0]. To get [x]B we row reduce 1 −

√
3

√
5

0
√

12 0
0 0

√
180
61

∣∣∣∣∣∣∣
0
1
0

 which reduces to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
1
2√
3

6
0

 ,
so that [x]B = [1/2,

√
3/6, 0]. Therefore, (1|x) = (1)(1/2) + (0)(

√
3/6) + (0)(0) = 1

2 ,
as expected.

Definition 5.5 Let X be a subset of an inner product space V . We define

X⊥ = { v ∈ V | (v|u) = 0 for all u ∈ X },

called the annihilator of X in V .
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Example 5.11 Let’s compute a simple annihilator to get some intuition for the idea.
Consider the standard inner product space on R3 and set X = { ı̂, ̂ }. We compute
X⊥. Note that v = [a, b, c] ∈ X⊥ iff v · ı̂ = 0 and v · ̂ = 0. These two equations
simplify to a = 0 and b = 0. Hence,

X⊥ = { [0, 0, c] | c ∈ R } = span(k̂).

Now this makes sense, since span(̂ı, ̂) is the xy-plane and the collection of vectors
perpendicular to the xy-plane is the z-axis.

Example 5.12 Now let’s compute an annihilator in a less familiar setting. Consider
the inner product space M22 with inner product (A|B) = tr(BTA). Let X = {A,B},
where

A =
[

1 1
0 0

]
and B =

[
0 0
1 −1

]
.

C =
[
a b
c d

]
∈ X⊥ iff (C|A) = 0 and (C|B) = 0, i.e. tr(ATC) = 0 and tr(BTC) =

0. Equivalently,

tr

([
0 1
0 1

] [
a b
c d

])
= 0 and tr

([
−1 0

1 0

] [
a b
c d

])
= 0.

Equivalently,

tr

([
c d
c d

])
= 0 and tr

([
−a −b
a b

])
= 0.

Equivalently, c + d = 0 and −a + b = 0. Therefore, d = −c and b = a with a and c
arbitrary. Hence,

X⊥ =
{ [

a a
c −c

]
: a, c ∈ R

}
.

We will write the short-hand X⊥⊥ to represent
(
X⊥

)⊥, X⊥⊥⊥ for
((
X⊥

)⊥)⊥,
etc. We now list some properties of the annihilator.

Lemma 5.4 If X and Y are subsets of an inner product space V , then

i. X⊥ is a subspace of V .

ii. X ⊆ X⊥⊥.

iii. If X ⊆ Y , then Y ⊥ ⊆ X⊥.

iv. X⊥⊥⊥ = X⊥.
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v. X ∩X⊥ ⊆ { 0 }.

vi. X⊥ = span(X)⊥.

Proof 5.4 Part i is left as an exercise. To show part ii, take any u ∈ X. We know that
for any v ∈ X⊥ that (u|v) = 0. But this means that u ∈ (X⊥)⊥, and so X ⊆ X⊥⊥.
We leave part iii as an exercise. Part iv follows from parts ii and iii. To prove part
v, assuming X is non-empty, take a v ∈ X ∩ X⊥. Since v ∈ X and v ∈ X⊥, this
implies that (v|v) = 0. For an inner product, this means that v = 0. To prove vi,
since X ⊆ span(X), by part iii, span(X)⊥ ⊆ X⊥. For the reverse inclusion, take a
v ∈ X⊥. We show that for any u ∈ span(X) that (v|u) = 0, and so v ∈ span(X)⊥
and we’re done. To do this, express u = a1u1 + · · · + akuk for some a1, . . . , ak ∈ R
and u1, . . . , uk ∈ X. Then

(v|u) = (v|a1u1 + · · ·+ akuk) = a1(v|u1) + · · ·+ ak(v|uk)

= a1 · 0 + · · ·+ ak · 0 = 0.

Hence, v ∈ span(X)⊥. �

The following result will be useful later in the chapter:

Lemma 5.5 For A ∈Mmn,

i. (rowsp(A))⊥ = nullsp(A).

ii. (colsp(A))⊥ = nullsp(AT ).

Proof 5.5 Let r1, . . . , rm be the rows of A and c1, . . . , cn the columns. In order to
prove part i, we first take v ∈ rowsp(A)⊥ and show it is in nullsp(A). Since v ∈
rowsp(A)⊥, this means that v · u = 0 for any u ∈ rowsp(A). In particular, v · ri = 0
for all i = 1, . . . ,m. Now, by definition of matrix multiplication,

Av =

 r1 · v
...

rm · v

 =

 0
...
0

 = 0.

Hence, v ∈ nullsp(A). Now take v ∈ nullsp(A). As above, we have v · ri = 0 for
all i = 1, . . . ,m. Therefore v ∈ {r1, . . . , rm}⊥. Since rowsp(A) = span(r1, . . . , rm),
by Lemma 5.4.vi, v ∈ rowsp(A)⊥.

For part ii, replace A by AT in the statement of part i to get rowsp(AT )⊥ =
nullsp(AT ) and since rowsp(AT ) = collsp(A), the result follows. �
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EXERCISES

1. Verify that each pair of vector mentioned in Example 5.6 at the beginning of
this section are indeed perpendicular.

2. Consider the inner product space R3 in Example 5.1.1.

a. Find an orthonormal basis for R3 starting with the basis [1, 1, 0], [1, 0, 1],
[0, 1, 1].

b. Compute ([2, 1, 1]|[1, 1, 2]) in two ways: Directly from the definition of the
inner product and then by using Lemma 5.3 and part a.

3. Consider the inner product space C[0, 6] in Example 5.1.2.

a. Find an orthonormal basis for P2 starting with the basis 1, 1 + x, 1 + x2.

b. Compute (2 + x| − x+ x2) in two ways: Directly from the definition of the
inner product and then by using Lemma 5.3 and part a.

4. Consider the inner product on U22 in Example 5.1.3.

a. Find an orthonormal basis for U2(R) starting with the following basis:[
1 0
0 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]

b. Compute
([

0 1
0 0

] ∣∣∣∣∣
[

2 1
0 2

])
in two ways: Directly from the definition

of the inner product and then by using Lemma 5.3 and part a.

5. Consider the inner product on U22 in Example 5.1.3. Find an orthonormal basis
for U2(R) starting with the following basis:[

1 1
0 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]

6. For each of the following inner product spaces V (with inner product defined in
Example 5.1) and subset X of V , compute X⊥:

a. V = R3 and X = { [1, 3,−1], [2, 2, 1] }.

b. V = P2 and X = { 1, x } with [a, b] = [0, 1].

c. V = P2 and X = { 1 + x, 1 + x2 } with [a, b] = [0, 1].

d. V = M22 and X =
{ [

1 −1
1 0

]
,

[
2 1
0 −2

] }
.

7. Prove that the standard basis e1, e2, . . . , en for Rn with the standard dot product
is an orthonormal basis.
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8. Prove that the standard basis { Eij | 1 ≤ i, j ≤ n } for Mnn with the inner
product defined in Example 5.1.3 is an orthonormal basis.

9. Prove each of the following statement for an inner product space V with inner
product ( | ).

a. (u+ v) ⊥ (u− v) iff |u| = |v|.

b. u ⊥ v iff |u| ≤ |u+ av| for all a ∈ R.

10. Prove Lemma 5.3.

11. Prove Lemma 5.2.i–iii.

12. Prove Lemma 5.4.i, iii and iv.

5.3 ORTHOGONAL MATRICES

In this section we study a class of square matrices and their corresponding mappings
with a special property we call orthogonal. A special case of these mappings and
matrices occurs in R2 in which the mappings turn out to be either rotations or
reflections of R2.

5.3.1 Definition and Results

Definition 5.6 A matrix A ∈Mnn is orthogonal if ATA = I.

Example 5.13 Here we list several examples of orthogonal matrices.

1. A =
[ √

3/2 −1/2
1/2

√
3/2

]
is orthogonal, since

[ √
3/2 −1/2
1/2

√
3/2

]T [ √
3/2 −1/2
1/2

√
3/2

]

=
[ √

3/2 1/2
−1/2

√
3/2

] [ √
3/2 −1/2
1/2

√
3/2

]
=
[

1 0
0 1

]
.

We shall see that A represents a 30◦ rotation of the xy-plane.

2. B =
[

1/2
√

3/2√
3/2 −1/2

]
is orthogonal, since

[
1/2

√
3/2√

3/2 −1/2

]T [
1/2

√
3/2√

3/2 −1/2

]

=
[

1/2
√

3/2√
3/2 −1/2

] [
1/2

√
3/2√

3/2 −1/2

]
=
[

1 0
0 1

]
.
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We shall see that B represents a reflection of the xy-plane across a line through
the origin which makes a 30◦ angle with the positive x-axis.

By the end of this section we will classify all 2× 2 real orthogonal matrices. We
remark that ATA = I is equivalent to AAT = I (since AT is the inverse of A).
Furthermore, matrix orthogonality is equivalent to the rows or columns of the matrix
forming an orthonormal basis for Rn (consider matrix multiplication in terms of inner
product). We leave the following results as an exercise:

Theorem 5.2 For A ∈Mnn the following are equivalent:

i. A is orthogonal.

ii. A is invertible with inverse AT .

iii. AT is orthogonal.

iv. The rows (or columns) of A form an orthonormal basis for Rn.

Definition 5.7 Let V be a Euclidean space and T ∈ L(V )

1. T is orthogonal if (T (v)|T (w)) = (v|w) for all v, w ∈ V .

2. T is an isometry if |T (v)| = |v| for all v ∈ V .

The definitions orthogonal and isometry will be shown below to be equivalent.
We say that isometries preserve length. From this one can easily show that they also
preserve the distance between vectors and the angle between vectors.

Theorem 5.3 Let V be a Euclidean space and T ∈ L(V ).

1. T is orthogonal iff (T (vi)|T (vj)) = (vi|vj) for some basis v1, . . . , vn and all
1 ≤ i, j ≤ n.

2. T is orthogonal iff T is an isometry.

Proof 5.6 The first item is left as an exercise. To prove the second item, assume
first that T is orthogonal. Then for all v ∈ V we have

|T (v)| =
√

(T (v)|T (v)) =
√

(v|v) = |v|.

Now assume that |T (v)| = |v| for all v ∈ V . Then by Lemma 5.1.iii,

4(T (v)|T (w)) = |T (v) + T (w)|2 − |T (v)− T (w)|2

= |T (v + w)|2 − |T (v − w)|2 = |v + w|2 − |v − w|2 = 4(v|w).

�
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We now make the connection between orthogonal matrices and orthogonal linear
operators on Rn (this can in fact be generalized to any Euclidean space).

Theorem 5.4 Consider the Euclidean space Rn with the standard dot product. For
any A ∈ Mnn define T ∈ L(Rn) by T (v) = Av. Then A is orthogonal iff T is
orthogonal.

Proof 5.7 First observe that for any matrix A and v, w ∈ Rn,

Av · Aw = (Aw)TAv = (ATAw)T v = (ATAw) · v = v · (ATAw).

Assuming that A is orthogonal, using the above observation notice that

T (v) · T (w) = Av · Aw = v · (ATAw) = v · w.

Hence, T is orthogonal. Now assume that T is orthogonal, i.e. v · w = Av · Aw
for all v, w ∈ Rn. Then by the first observation, for all v, w ∈ Rn, v ·w = Av ·Aw =
v · ATAw or equivalently v · (w − ATAw) = 0 or equivalently v · (I − ATA)w = 0.
Now, by Exercise 9 in Section 5.1, this implies that (I − ATA)w = 0. Since this last
statement is true for all w ∈ Rn, by Exercise 7 in Section 1.5, I − ATA = 0 and so
ATA = I. �

Corollary 5.1 A linear operator T ∈ L(Rn) is orthogonal iff [T ]ST is orthogonal.

Proof 5.8 This follows immediately from the fact that T (v) = [T ]ST v. �

5.3.2 Application: Rotations and Reflections

We are ready to prove a classification theorem. We will classify 2× 2 real orthogonal
mappings and matrices. Let T ∈ L(R2) be orthogonal. Set T (̂ı) = [a, b] and T (̂) =
[c, d]. Then, using the fact that T is also an isometry,

1 = |̂ı| = |T (̂ı)| = |[a, b]| = a2 + b2.

Similarly, c2 +d2 = 1. Since ı̂ ⊥ ̂ and T is orthogonal, it follows that T (̂ı) ⊥ T (̂)
and so ac+ bd = 0. Then

0 = (ac+bd)2 = a2c2 +2abcd+b2d2 = a2c2 +2ac(−ac)+(1−a2)(1−c2) = 1−a2−c2.

Hence, a2 + c2 = 1. In a similar manner one can deduce that b2 + d2 = 1. But
then d2 = 1− c2 = a2 and so d = ±a. Similarly, one can show that c = ±b.

Assume first that we are in the case that d = a. Then a(c+b) = 0, so either a = 0
(in which case d = 0 and so c = ±1) or c = −b.

In the case that d = −a. Then a(c− b) = 0, so either a = 0 (in which case d = 0
and so c = ±1) or c = b.



286 � Introduction to Linear Algebra

We can summarize these results as follows:

Either [T ]ST =
[
a −b
b a

]
or [T ]ST =

[
a b
b −a

]
.

Notice that a matrix of either form listed above is orthogonal (check that ATA =
I) and so (by Corollary 5.1) we have the complete list of all orthogonal linear operators
on R2. Notice also that∣∣∣∣∣ a −b

b a

∣∣∣∣∣ = 1 while
∣∣∣∣∣ a b
b −a

∣∣∣∣∣ = −1,

since a2 + b2 = 1. In addition a2 + b2 = 1 implies that [a, b] lies on the unit circle,
and so we can find 0 ≤ θ < 2π such that a = cos θ and b = sin θ. Hence,

Either [T ]ST =
[

cos θ − sin θ
sin θ cos θ

]
or [T ]ST =

[
cos θ sin θ
sin θ − cos θ

]
.

Let’s call these matrices Type I and Type II (respectively). We will now obtain a
geometric interpretation of each of these two operators. We show now that the Type
I matrices correspond to a counter-clockwise rotation of R2 through an angle of θ.
Indeed, for any v = [a, b] ∈ R2, the smaller angle between v and T (v) is

cos−1
(
v · T (v)
|v||T (v)|

)
= cos−1

(
v · T (v)
|v|2

)

= cos−1


[a, b] ·

[
cos θ − sin θ
sin θ cos θ

] [
a
b

]
|v|2


= cos−1

( [a, b] · [a cos θ − b sin θ, a sin θ + b cos θ]
a2 + b2

)

= cos−1
(

(a2 + b2) cos θ
a2 + b2

)
= cos−1 (cos θ) =

{
θ, if 0 ≤ θ ≤ π

2π − θ, if π < θ < 2π .

We remark that in Appendix B we show that the matrix representation of any
linear operator which rotates R2 counter-clockwise through an angle of θ has this
very form [

cos θ − sin θ
sin θ cos θ

]
.

We show now that the matrices of Type II correspond to a reflection of R2 across
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the line through the origin which makes an angle of θ/2 with the positive x-axis.
Indeed, such a line through the origin has slope sin (θ/2)/ cos (θ/2). We appeal to the
result proved in Appendix B which states that any linear operator which reflects R2

across the line y = mx has the form[
1−m2

m2+1
2m
m2+1

− 2m
m2+1

1−m2

m2+1

]
.

Notice that

1−m2

m2 + 1 =
1−

(
sin (θ/2)
cos (θ/2)

)2

(
sin (θ/2)
cos (θ/2)

)2
+ 1

=
1−

(
sin (θ/2)
cos (θ/2)

)2

(
sin (θ/2)
cos (θ/2)

)2
+ 1
· cos2 (θ/2)

cos2 (θ/2)

= cos2 (θ/2)− sin2 (θ/2)
sin2 (θ/2) + cos2 (θ/2) = cos θ

1 = cos θ.

Similarly, one can show that 2m
m2+1 = sin θ. Hence, we have shown that the matrices

of Type II are of the same form as the reflections across the line y = mx.

Example 5.14 Let’s apply these rotations and reflections to a specific graphic,
namely the letter T (see Figure 5.1).

Figure 5.1 The Letter T in the xy-plane.
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1. We will first rotate the letter T through an angle of 30◦. What we will do is
rotate the four indicated points on the graphic and then connect the dots. First,
we compute the appropriate operator

[T ]ST =
[

cos 30◦ − sin 30◦
sin 30◦ cos 30◦

]
=
[ √

3/2 −1/2
1/2

√
3/2

]
.

Therefore,

T [2, 2] =
[ √

3/2 −1/2
1/2

√
3/2

] [
2
2

]
=
[ √

3− 1
1 +
√

3

]
≈ [0.7, 2.7].

T [−2, 2] =
[ √

3/2 −1/2
1/2

√
3/2

] [
−2

2

]
=
[
−
√

3− 1
−1 +

√
3

]
≈ [−2.7,−0.3].

T [0, 2] =
[ √

3/2 −1/2
1/2

√
3/2

] [
0
2

]
=
[
−1√

3

]
≈ [−1, 1.7].

T [0,−2] =
[ √

3/2 −1/2
1/2

√
3/2

] [
0
−2

]
=
[

1
−
√

3

]
≈ [1,−1.7].

See Figure 5.2 for the resulting rotated image.

2. Now let’s reflect the letter T across line making an angle of 30◦ with the positive
x-axis. Again we compute

[T ]ST =
[

cos 60◦ sin 60◦
sin 60◦ − cos 60◦

]
=
[

1/2
√

3/2√
3/2 −1/2

]
.

Therefore,

T [2, 2] =
[

1/2
√

3/2√
3/2 −1/2

] [
2
2

]
=
[

1 +
√

3√
3− 1

]
≈ [2.7, 0.7].

T [−2, 2] =
[

1/2
√

3/2√
3/2 −1/2

] [
−2

2

]
=
[
−1 +

√
3

−1−
√

3

]
≈ [0.7,−2.7].

T [0, 2] =
[

1/2
√

3/2√
3/2 −1/2

] [
0
2

]
=
[ √

3
−1

]
≈ [1.7,−1].

T [0,−2] =
[

1/2
√

3/2√
3/2 −1/2

] [
0
−2

]
=
[
−
√

3
1

]
≈ [−1.7, 1].

See Figure 5.3 for the resulting reflected image.



Inner Product Spaces � 289

Figure 5.2 The Letter T rotated counter-clockwise 30◦ in the xy-plane.

We remark that one can show that a 3 × 3 orthogonal matrix A is one of three
types: Either |A| = 1 and A corresponds to a rotation of Rn about a line through
the origin, or |A| = −1 and A corresponds either to a reflection across a hyper-plane
through the origin or a rotation about a line through the origin followed by a re-
flection across a hyper-plane through the origin perpendicular to that line (called a
rotoreflection). As the dimension gets higher the classification becomes more compli-
cated.

EXERCISES

1. Following all the steps in Example 5.14 of this section compute the following
transformations of the letter T:

a. Rotation of 120◦.

b. Reflection through 60◦.

2. Let V be any inner product space. Prove that if T ∈ L(V ) is orthogonal, then
v ⊥ w implies that T (v) ⊥ T (w) for all v, w ∈ V .

3. Let V be any inner product space. Prove that if T ∈ L(V ) is orthogonal, then
for all v, w ∈ V we have that the smaller angle between T (v) and T (w) equals
the smaller angle between v and w.
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Figure 5.3 The Letter T reflected across a line making an angle of 30◦ with the positive
x-axis.

4. Let V be any inner product space. Prove that if T ∈ L(V ) is orthogonal, then
for all v, w ∈ V we have that the distance between T (v) and T (w) equals the
distance between v and w.

5. Prove part a of Theorem 5.3.

6. Prove Theorem 5.2.

5.4 APPLICATION: QR FACTORIZATION

We have already seen how matrix factorizations/decompositions play an important
role in linear algebra in Section 2.11. In this section we present another factorization
which is useful in numerical linear algebra called the QR factorization. As with the
LU factorization, the QR factorization can also be used to computationally speed up
solving linear systems, inverting a matrix or computing its determinant. Furthermore,
it can be used in finding eigenvalues of a matrix by an iterative algorithm called the
QR algorithm.

Example 5.15 Below we express A = QR, where Q is an orthogonal matrix and R is
upper triangular. Shortly, we will see the algorithm for performing this factorization.
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A =

 1 1 −1
1 −1 1
1 1 1

 =

 1/
√

3 1/
√

6 −1/
√

2
1/
√

3 −2/
√

6 0
1/
√

3 1/
√

6 1/
√

2



√

3 1/
√

3 1/
√

3
0 2
√

6/3 −2/
√

6
0 0

√
2

 .
For the moment we will assume A is an n × n invertible matrix with columns

v1, v2, . . . , vn. By Theorem 3.11, v1, v2, . . . , vn forms a basis for Rn. Using the Gram-
Schmidt process we can derive an orthogonal basis w1, w2, . . . , wn and by normalizing
this orthogonal basis we form an orthonormal basis u1, u2, . . . , un. We now need a
particular result which relates these three bases.

Lemma 5.6 Consider the standard dot product for Rn. For the three bases described
above the following is true:

1. For 1 ≤ k ≤ n, wk = |wk|uk

2. v1 = |w1|u1.

3. For k > 1,

vk+1 = |wk+1|uk+1 +
k∑
i=1

(vk+1 · ui)ui.

Proof 5.9 For the first statement, notice that

|wk|uk = |wk|
wk
|wk|

= wk.

For the second statement, as defined in the Gram-Schmidt process, w1 = v1 and
the result follows from the first statement. For the third statement, recall that in the
Gram-Schmidt process, for 1 ≤ k < n,

wk+1 = vk+1 −
k∑
i=1

vk+1 · wi
|wi|2

wi.

Solving for vk+1, we have

vk+1 = wk+1 +
k∑
i=1

vk+1 · wi
|wi|2

wi

= wk+1 +
k∑
i=1

(
vk+1 · |wi|ui
|wi|

)
wi
|wi|

= wk+1 +
k∑
i=1

(vk+1 · ui)ui.

�
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We can now present the algorithm for the QR factorization. Recall that A is an
n× n invertible matrix with columns v1, v2, . . . , vn. Define Q to be the matrix whose
columns are u1, u2, . . . , un. By Theorem 5.2.iv, Q is an orthogonal matrix. Now define
another matrix R = [rij ] as follows: For 1 ≤ i, j ≤ n,

rij =


ui · vj i < j
|wi|, i = j

0, i > j

By its very definition, R is upper triangular, but furthermore A = QR which is the
QR factorization. We now verify that A = QR.

Theorem 5.5 Consider A, Q and R as defined above. Then A = QR.

Proof 5.10 Let R = [c1 c2 · · · cn] represented in columns. By Lemma 1.1, QR =
[Qc1 Qc2 · · · Qcn] represented in columns. By Lemmas 1.2 and 5.6.2,

Qc1 =
n∑
i=1

ri1ui = r11u1 = |w1|u1 = v1.

For 1 < j ≤ n, by Lemmas 1.2 and 5.6.3,

Qcj =
n∑
i=1

rijui =
j∑
i=1

rijui =
j−1∑
i=1

rijui + rjjuj =
j−1∑
i=1

(ui · vj)ui + |wj |uj = vj .

This proves that QR = [v1 v2 · · · vn] = A. �

Example 5.16 We will perform the QR factorization algorithm on Example 5.15
where

A =

 1 1 −1
1 −1 1
1 1 1

 .
According to the notation used in this section,

v1 = [1, 1, 1], v2 = [1,−1, 1], v3 = [−1, 1, 1].

Now we use the Gram-Schmidt process to generate an orthogonal basis. One can show
that this basis is

w1 = [1, 1, 1], w2 = [2/3,−4/3, 2/3], w3 = [−1, 0, 1].

We then normalize w1, w2, w3 to obtain
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u1 = [1/
√

3, 1/
√

3, 1/
√

3], u2 = [1/
√

6,−2/
√

6, 1/
√

6], u3 = [−1/
√

2, 0, 1/
√

2].

Therefore,

Q =

 1/
√

3 1/
√

6 −1/
√

2
1/
√

3 −2/
√

6 0
1/
√

3 1/
√

6 1/
√

2

 .
In order to obtain the matrix R, we need to compute

r11 = |w1| =
√

3, r12 = u1 · v2 = 1/
√

3, r13 = u1 · v3 = 1/
√

3,

r22 = |w2| = 2
√

6/3, r23 = u2 · v3 = −2/
√

6, r33 = |w3| =
√

2.

Therefore,

R =


√

3 1/
√

3 1/
√

3
0 2
√

6/3 −2/
√

6
0 0

√
2

 .
Having introduced the QR factorization we now show how it can be useful in

several numerical methods. First, we use it to solve square linear systems with a
unique solution. Here is the general algorithm. Given a linear system AX = B with
QR factorization A = QR, since Q is invertible with inverse QT we can solve the
equivalent system RX = QTB by back substitution.

Example 5.17 Consider the linear system
x+ y − z = −2
x− y + z = 4
x+ y + z = 0

.

The coefficient matrix for this system is the matrix A from Example 5.15. We have
already found the QR factorization with

Q =

 1/
√

3 1/
√

6 −1/
√

2
1/
√

3 −2/
√

6 0
1/
√

3 1/
√

6 1/
√

2

 and R =


√

3 1/
√

3 1/
√

3
0 2
√

6/3 −2/
√

6
0 0

√
2

 .
Following the algorithm we first compute

QTB =

 1/
√

3 1/
√

3 1/
√

3
1/
√

6 −2/
√

6 1/
√

6
−1/
√

2 0 1/
√

2


 −2

4
0

 =

 2/
√

3
−10/

√
6√
2

 .
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Now we solve the system RX = QTB, i.e.
√

3x+ (1/
√

3)y + (1/
√

3)z = 2/
√

3
(2
√

6/3)y − (2/
√

6)z = −10/
√

6√
2z =

√
2
,

or equivalently (although this step is not necessary),
3x+ y + z = 2

2y − z = −5
z = 1

.

Back substituting, we have y = (z−5)/2 = −2 and x = (2− y− z)/3 = 1. Hence,
the solution to the original system is (1,−2, 1).

We can also nearly compute the determinant with the QR factorization, for if A =
QR, then |A| = |Q||R| = ±|R| where |R| can be obtained by multiplying together
its diagonal entries. Hence, we can obtain the absolute value of the determinant of a
matrix.

Example 5.18 Consider again the matrix A from Example 5.15 with QR factoriza-
tion

Q =

 1/
√

3 1/
√

6 −1/
√

2
1/
√

3 −2/
√

6 0
1/
√

3 1/
√

6 1/
√

2

 and R =


√

3 1/
√

3 1/
√

3
0 2
√

6/3 −2/
√

6
0 0

√
2

 .

Then |A| = ±|R| = ±(
√

3)(2
√

6/3)(
√

2) = ±4. Indeed, one can compute that |A| =
−4.

We can use the QR factorization to find the inverse of a matrix. Indeed, if A = QR,
then A−1 = R−1Q−1 = R−1QT . Therefore, we are reduced to finding the inverse of
R which is an easier problem since it is upper triangular, thus making the Gaussian
elimination quicker.

Example 5.19 Consider again the matrix A from Example 5.15 with QR factoriza-
tion

Q =

 1/
√

3 1/
√

6 −1/
√

2
1/
√

3 −2/
√

6 0
1/
√

3 1/
√

6 1/
√

2

 and R =


√

3 1/
√

3 1/
√

3
0 2
√

6/3 −2/
√

6
0 0

√
2

 .
To find R−1 we row reduce
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
√

3 1/
√

3 1/
√

3
0 2
√

6/3 −2/
√

6
0 0

√
2

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 to

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
√

3 −
√

6/12 −
√

2/4
0

√
6/4

√
2/4

0 0 1/
√

2

 .
Therefore,

A−1 =


√

3 −
√

6/12 −
√

2/4
0

√
6/4

√
2/4

0 0 1/
√

2


 1/

√
3 1/

√
3 1/

√
3

1/
√

6 −2/
√

6 1/
√

6
−1/
√

2 0 1/
√

2



=

 1/2 1/2 0
0 −1/2 1/2

−1/2 0 1/2

 .
There’s nothing stopping us from extending the QR factorization to rectangular

matrices assuming the columns of the matrix are linearly independent. The very
same procedure will work in this case. A nice application for the case of rectangular
matrices is computing the pseudo-inverse. Hence, if we have a quicker way to compute
a pseudo-inverse, then we in turn have quicker ways to solve all the applications of
least squares gone over in Section 5.9. IfA is anm×nmatrix with linearly independent
columns, we first write A = QR with Q an m× n with orthonormal columns and R
an n× n upper triangular matrix as defined earlier. Then

A† = (ATA)−1AT = (RTQTQR)−1RTQT

= (RTR)−1RTQT = R−1(RT )−1RTQT = R−1QT .

Notice that we obtained the same result for a square invertible matrix.

Example 5.20 Consider the following matrix with linearly independent columns:

A =


1 1 1
−1 1 1

1 −1 1
−1 1 −1

 .

According to the QR factorization, we start with

v1 = [1,−1, 1,−1], v2 = [1, 1,−1, 1], v3 = [−1, 1, 1,−1].

Now we use the Gram-Schmidt process to generate an orthogonal basis. One can show
that this basis is



296 � Introduction to Linear Algebra

w1 = [1,−1, 1,−1], w2 = [3/2, 1/2,−1/2, 1/2], w3 = [0, 4/3, 2/3,−2/3].

We then normalize w1, w2, w3 to obtain

u1 = [1/2,−1/2, 1/2,−1/2], u2 = [
√

3/2,
√

3/6,−
√

3/6,
√

3/6],
u3 = [0,

√
6/3,
√

6/6,−
√

6/6].

Therefore,

Q =


1/2

√
3/2 0

−1/2
√

3/6
√

6/3
1/2 −

√
3/6

√
6/6

−1/2
√

3/6 −
√

6/6

 .
In order to obtain the matrix R, we need to compute

r11 = |w1| = 2, r12 = u1 · v2 = −1, r13 = u1 · v3 = 0,

r22 = |w2| =
√

3, r23 = u2 · v3 = −2
√

3/3, r33 = |w3| = 2
√

6/3.

Therefore,

R =

 2 −1 0
0
√

3 −2
√

3/3
0 0 2

√
6/3

 .
One can then compute

R−1 =

 1/2
√

3/6
√

6/12
0
√

3/3
√

6/6
0 0

√
6/4

 .
Therefore,

A† =

 1/2
√

3/6
√

6/12
0
√

3/3
√

6/6
0 0

√
6/4


 1/2 −1/2 1/2 −1/2√

3/2
√

3/6 −
√

3/6
√

3/6
0
√

6/3
√

6/6 −
√

6/6



=

 1/2 0 1/4 −1/4
1/2 1/2 0 0

0 1/2 1/4 −1/4

 .
The reader can easily verify this answer by computing (ATA)−1AT directly.
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EXERCISES

1. If possible, compute the QR factorization for each matrix.

a. A =
[

1 2
3 4

]

b. B =

 1 −1 1
4 2 5
3 1 4



c. C =

 2 −4 0
1 −2 1
1 0 2



d. D =


1 2 1 −1
3 3 0 1
2 7 −1 1
−2 1 1 0


2. Solve each system of equations by using the QR factorization found in Exer-

cise 1.

a.
{

x+ 2y = 1
3x+ 4y = −2

b.


x− y + z = 1

4x+ 2y + 5z = −1
3x+ y + 4z = 0

c.


x1 + 2x2 + x3 − x4 = 2

3x1 + 3x2 + x4 = −1
2x1 + 7x2 − x3 + x4 = 0
−2x1 + x2 + x3 = 1

3. If possible, compute the determinant of each matrix using the QR factorization
found in Exercise 1.

4. If possible, find the inverse of each matrix using the QR factorization found in
Exercise 1.

5. Compute the pseudo-inverse of the following matrix using QR factorization:

A =


−1 −1 1

1 3 3
−1 −1 5

1 3 7


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6. (See Section 5.9) Use Exercise 5 to find a best approximation to the following
overdetermined system: 

−x− y + z = 2
x+ 3y + 3z = −2
−x− y + 5z = 0
x+ 3y + 7z = 4

5.5 SCHUR TRIANGULARIZATION THEOREM

In this section, we prove an important result called the Schur Triangularization The-
orem which states that any matrix over the complex numbers is similar to an upper
triangular matrix via a unitary matrix. Therefore, in this section we allow the scalars
of our vector space to be the complex numbers. We remind the reader about some
properties of complex numbers.

1. If z = a + bi is a complex number, then the conjugate, written z̄ = a − bi.
We extend this notation to complex values vectors as v̄ in which we take the
conjugate of each of the components of v. In other words if w = [z1, z2, . . . , zn],
then w = [z1, z2, . . . , zn]. Note that if w = [a1+b1i, a2+b2i, . . . , an+bni] ∈ Cn we
can write w = u + vi where u = [a1, a2, . . . , an] ∈ Rn and v = [b1, b2, . . . , bn] ∈
Rn.

2. The magnitude (or norm) of a complex number z = a + bi, written |z| =√
a2 + b2. Note that zz = |z|2 ≥ 0 with zz = 0 iff z = 0. In a similar manner,

for a complex vector w = [z1, z2, . . . , zn] ∈ Cn,

w · w = z1z1 + z2z2 + · · ·+ znzn ≥ 0 with w · w = 0 iff w = 0

3. If z is complex with z = z, then z is in fact a real number.

4. For complex numbers z1, z2 ∈ C, z1z2 = z1 z2. A similar property holds for
matrix multiplication and dot product, i.e. for complex entry matrices A and
B, we have AB = A B.

We present now some special families of complex valued matrices.

Definition 5.8 Let A = [aij ] be a matrix with complex entries.

1. A∗ = [bij ] has entries bij = āji, where āji represents the complex conjugate of
aji. In other words A∗ is the conjugate transpose of A.

2. A is Hermitian if A∗ = A.

3. A is skew-Hermitian if A∗ = −A.

4. A is unitary if A∗A = I.
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Note that if A has all real number entries, then Hermitian is equivalent to sym-
metric, skew-Hermitian is equivalent to skew-symmetric and unitary is equivalent to
orthogonal.

The definition of a complex inner product space, where the scalars are now com-
plex numbers, differs from a real inner product space in one respect. The symmetric
property of a real inner product is replaced by the following property:

For all v, w ∈ V, (v|w) = (w|v).

Notice that this property reduces to the symmetric property of a real inner prod-
uct space when the scalars are all real numbers.

Definition 5.9 Consider the vector space Cn. We define dot product on Cn as
follows: For v, w ∈ Cn, v · w = v̄Tw.

We leave it as an exercise to show that Cn together with this dot product forms a
complex inner product space. We point out that the Gram-Schmidt Process continues
to function for a complex inner product space (see exercises). We also remark that
one can also define a complex inner product on complex entry square matrices and
complex valued functions, but our goal is to present the minimal amount of new
information in order to prove the main result in this section which we present now.

Theorem 5.6 Every square matrix is triangularizable over the complex numbers by
means of a unitary matrix, i.e. given a matrix A ∈ Mnn(C) there exists a unitary
matrix P ∈Mnn(C) and a upper triangular matrix B ∈Mnn(C) such that P ∗AP = B
where P ∗P = I.

Proof 5.11 The proof is demonstrated by induction on n. For n = 1, take unitary
matrix P = I1 with B = A. For n > 1, note that the characteristic polynomial pA(t)
has a root in C, say λ1, an eigenvalue for A. Let v1, v2, . . . , vk be a basis for Eλ1 . Ex-
tend v1, v2, . . . , vk to a basis v1, v2, . . . , vk, vk+1, . . . , vn for Cn. Viewing v1, v2, . . . , vn
as elements of the complex inner product space Cn, apply the Gram-Schmidt Process
to obtain from this basis an orthonormal basis for Cn and form the unitary matrix P
whose columns are these basis vectors. Then, represented in blocks,

P ∗AP =
[
λ1Ik B
0n−k C

]
,

where B ∈Mk,n−k and C ∈Mn−k,n−k. By induction, there exists a unitary matrix Q̂
such that Q̂∗CQ̂ is upper triangular. Define, in blocks, the unitary matrix

Q =
[

Ik 0n−k
0n−k Q̂

]
.

Then (PQ)∗A(PQ) is upper triangular via the unitary matrix PQ. �
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A couple of remarks are in order.

1. If A ∈Mnn(R) and all of its eigenvectors are real numbers, then the matrix P
which makes A similar to an upper triangular matrix will be real orthogonal.

2. In the proof, notice that pA(t) = (t− λ1)kpC(t).

There are several methods for triangularizing a matrix. These methods include House-
holder matrices, Givens rotations, and the Gram-Schmidt Process. Indeed, our proof
of Schur’s Theorem gives us the algorithm for triangularization by means of the
Gram-Schmidt Process.

Example 5.21 In this example we will illustrate the Gram-Schmidt Process for tri-
angularization. Consider the matrix

A =

 −1 −1 −2
8 −11 −8

−10 11 7

 .
One can check that A has real eigenvalues 1, −3 and −3 and the corresponding

eigenspaces are

E1 = { [a, 2a,−2a] : a ∈ R } and E−3 = { [a, 0, a] : a ∈ R }.

Notice that dim(E1) + dim(E−3) = 1 + 1 = 2 < 3, so A is not diagonalizable.
However, by Schur’s Theorem on triangularization we know that A is triangulariz-
able. Randomly choose one of the eigenvalues, say λ = 1 and find a basis for E1
which in our case is v1 = [1, 2,−2]. Now extend to a basis for R3 by row reducing a
matrix whose columns are v1, e1, e2, e3 to row-echelon form and selecting the vectors
corresponding to the pivots in the row echelon form. In our case our extended basis
is v1, e1, e2. Now apply the Gram-Schmidt Process to this basis in order to create an
orthogonal basis, namely

[1, 2,−2], [8/9,−2/9, 2/9] and [0, 1/2, 1/2].

If we normalize these vectors we obtain the orthonormal basis

u1 = [1/3, 2/3,−2/3], u2 = [
√

8/3,−
√

8/12,
√

8/12] and u3 = [0,
√

2/2,
√

2/2].

Form the orthogonal matrix P whose columns are u1, u2 and u3. Then

P TAP =


1 17

√
2

2 −77
√

2
6

0 −11
2

25
6

0 −3
2 −1

2

 .
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We now repeat the process on the 2× 2 block in the bottom right corner, namely

C =

 −11
2

25
6

−3
2 −1

2

 .
The eigenvalues for C are −3 and −3 with corresponding eigenspace

E−3 = { [5a, 3a] : a ∈ R } with basis v1 = [5, 3].

Once again we cannot diagonalize C so we extend v1 to a basis for R2, namely
v1, e1. Again we use Gram-Schmidt to create an orthogonal basis, namely

[5, 3] and [9/34,−15/34].

If we normalize these vectors we obtain the orthonormal basis

[5
√

34/34, 3
√

34/34] and [3
√

34/34,−5
√

34/34].

Form the orthogonal matrix Q̂ whose columns are u1 and u2. Then define the
orthogonal matrix in blocks

Q =
[

1 0
0 Q̂

]
=


1 0 0

0 5
√

34
34

3
√

34
34

0 3
√

34
34 −5

√
34

34

 .

Therefore,

(PQ)TA(PQ) =


1 4

√
17

17
269
√

17
17

0 −3 −17
3

0 0 −3

 ,

which is upper triangular. Hence, A is similar to this upper triangular matrix via an
orthogonal matrix PQ.

We mention some consequences of the Schur Triangularization Theorem.

1. The triangularization of a matrix has the roots of the characteristic polynomial
(including multiplicity) on the diagonal.

2. The trace of a matrix is the sum of the roots of the characteristic polynomial
(including multiplicity) for the matrix.
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3. The determinant of a matrix is the product of the roots of the characteristic
polynomial (including multiplicity) for the matrix.

Example 5.22 Just as we did in Section 4.6, Example 4.32 we simplify the compu-
tation of performing matrix exponentiation. Consider the matrix A in the previous
example. Suppose we wanted to compute A raised to a high power. Since we cannot
diagonalize A, we cannot use the algorithm employed in Section 4.6, Example 4.32,
however, we can use a similar technique with the triangularization of A. Just as an
example, suppose we wish to compute A20. From the work above

A20 =

(PQ)


1 4

√
17

17
269
√

17
17

0 −3 −17
3

0 0 −3

 (PQ)T



20

=(PQ)


1 4

√
17

17
269
√

17
17

0 −3 −17
3

0 0 −3



20

(PQ)T .

Using the binomial theorem, notice that


1 4

√
17

17
269
√

17
17

0 −3 −17
3

0 0 −3



20

=




1 0 0

0 −3 0

0 0 −3

+


0 4

√
17

17
269
√

17
17

0 0 −17
3

0 0 0





20

=

20∑
k=0

(
20
k

)
1 0 0

0 −3 0

0 0 −3


20−k 

0 4
√

17
17

269
√

17
17

0 0 −17
3

0 0 0



k

.

Note that one can verify that


0 4
√

17
17

269
√

17
17

0 0 −17
3

0 0 0



2

=


0 0 −4

√
17

3

0 0 0

0 0 0

 ,

and all higher powers of this matrix equals the zero matrix. Therefore,


1 4
√

17
17

269
√

17
17

0 −3 −17
3

0 0 −3



20
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=


1 0 0

0 −3 0

0 0 −3


20

+ 20


1 0 0

0 −3 0

0 0 −3


19 

0 4
√

17
17

269
√

17
17

0 0 −17
3

0 0 0



+190


1 0 0

0 −3 0

0 0 −3


18 

0 0 −4
√

17
3

0 0 0

0 0 0

 =

=


120 0 0

0 (−3)20 0

0 0 (−3)20

+ 20


119 0 0

0 (−3)19 0

0 0 (−3)19




0 4

√
17

17
269
√

17
17

0 0 −17
3

0 0 0



+190


118 0 0

0 (−3)18 0

0 0 (−3)18




0 0 −4

√
17

3

0 0 0

0 0 0

 .

Thus, instead of performing twenty matrix multiplications, we perform much less.
Furthermore, this minimal number of multiplications holds in our example no matter
how high the exponent, an amazing computational savings. Keep in mind that this
technique can be used for any square matrix.

EXERCISES

1. Consider the following matrix:

A =

 13 8 8
−1 7 −2
−1 −2 7

 .
a. Determine by investigating the eigenvalues of A whether or not it can be

diagonalized.

b. Use the Gram-Schmidt method to illustrate how A is similar to an upper
triangular matrix.

c. Compute A20 as we did in this section.
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2. Prove the following facts about conjugate transpose for A,B ∈ Mnn(C) and
a ∈ C:

a. (A∗)∗ = A.

b. (A+B)∗ = A∗ +B∗.

c. (aA)∗ = āA∗.

d. (AB)∗ = B∗A∗.

e. |A∗| = |A|.

3. Prove that the set of all Hermitian matrices are a subspace of Mnn(C).

4. Prove that the set of all Skew-Hermitian matrices are a subspace of Mnn(C).

5. What can we say about the diagonal entries of a Skew-Hermitian matrix? Prove
your statement.

6. Prove that if P and Q are unitary matrices, then so is PQ.

7. Prove that a unitary matrix has determinant equal to ±1.

8. Prove that the following are complex inner product spaces:

a. Consider the complex vector space Cn. For v, w ∈ Cn, define the complex
inner product (v|w) = v̄Tw.

b. Consider the complex vector space Mnn(C). For A,B ∈ Mnn(C), define the
complex inner product (A|B) = tr(B∗A).

9. Prove the following consequences for a complex inner product space:

a. (w|u+ v) = (w|u) + (w|v), for all u, v, w ∈ V .

b. (v|aw) = ā(v|w), for all v, w ∈ V and a ∈ C.

10. Verify that the Gram-Schmidt Process continues to function for a complex inner
product space.

5.6 ORTHOGONAL PROJECTIONS AND BEST APPROXIMATION

In this section, our ultimate goal is to define what it means to be a best approximation
and how to find it. This approximation will then be applied in Section 5.9. Recall the
following definitions for the inner product space Rn from Section 1.2:

compuv = u · v
|u|

projuv = u · v
u · u

u.

We now formally extend these definitions to arbitrary inner product spaces. Al-
though we will lose the geometric interpretation of these definitions in this general
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setting, it doesn’t hurt to use the geometric interpretation to maintain an intuition
of what is going on.

Definition 5.10 Let V be an inner product space with inner product (∗|∗) and u, v ∈
V . Then

1. The component of v along u, written compuv = (u|v)
|u| .

2. The projection of v along u, written projuv = (u|v)
(u|u)u.

As before compuv is a scalar, while projuv is a vector. It’s easy to check that the
magnitude of projuv equals |compuv|.

Example 5.23 Let V = R4 with the standard inner product and take u = [1, 0,−1, 2]
and v = [−2, 1, 1,−1]. Then

compuv = ([1, 0,−1, 2]|[−2, 1, 1,−1])
|[1, 0,−1, 2]| = −5√

6
and

projuv = ([1, 0,−1, 2]|[−2, 1, 1,−1])
([1, 0,−1, 2]|[1, 0,−1, 2]) [1, 0,−1, 2]

= 5
6[1, 0,−1, 2] = [5/6, 0,−(5/6), 5/3].

Example 5.24 Let V = M22 with the inner product defined in Section 5.1 and take
u = E12 and v = E22. Then

compuv = (E12|E22)
|E12|

= tr(ET
22E12)√

tr(ET
12E12)

= tr(E22)√
tr(E21E12)

= tr(E22)√
tr(E22)

= 1
1 = 1 and

projuv = (E12|E22)
(E12|E12)E12 = 1 · E12 = E12.

Example 5.25 Let V = C([0, π/2]) with the inner product defined in Section 5.1 and
take u = cosx and v = sin x. Then

compuv = (cosx| sin x)
| cosx| =

∫ π/2
0 cosx sin x dx√∫ π/2

0 cos2 x dx
= 1/2√

π/4
= 1√

π
.

projuv =
( (cosx| sin x)

(cosx| cosx)

)
cos(x) =

(∫ π/2
0 cosx sin x dx∫ π/2

0 cos2 x dx

)
cosx = 2

π
cosx.
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Definition 5.11 If U is a subspace of an inner product space V , then the annihilator
of U , U⊥, is called the orthogonal complement of U in V

We point out that Lemma 5.4.i and v give us the fact that U ∩ U⊥ = {0}. The
next result is fundamental (refer to U ⊕ U⊥ at end of Section 3.2).

Theorem 5.7 If U is a subspace of an inner product space V with dim(U) < ∞,
then V = U ⊕ U⊥.

Proof 5.12 We will prove that for any v ∈ V there exist u ∈ U and u′ ∈ U⊥ such
that v = u + u′. The uniqueness of this representation follows from the fact that
U ∩ U⊥ = { 0 } (see Lemma 3.2).

We shall explicitly construct the appropriate u ∈ U as follows: By the Gram-
Schmidt Process, we first produce an orthonormal basis u1, . . . , uk for U . Now set

u = (v|u1)u1 + · · ·+ (v|uk)uk and u′ = v − u

Certainly v = u + u′ and u ∈ U , so we need only show that u′ ∈ U⊥. Take any
w ∈ U and we show that (u′|w) = 0. First write w = a1u1 + · · · + akuk for some
a1, . . . , ak ∈ R. Notice first that

(v|w) = (v|a1u1 + · · ·+ akuk) = a1(v|u1) + · · ·+ ak(v|uk).

Secondly,

(u|w) = ((v|u1)u1 + · · ·+ (v|uk)uk | a1u1 + · · ·+ akuk)

= a1(v|u1) + · · ·+ ak(v|uk), by Lemma 5.3

Hence, (v|w) = (u|w), and so (u′|w) = (v − u|w) = (v|w)− (u|w) = 0. �

The following is an immediate consequence of this theorem.

Corollary 5.2 If U is a subspace of a Euclidean space V , then

i. dimV = dimU + dimU⊥.

ii. U⊥⊥ = U .

Proof 5.13 Part i follows immediately from Lemma 3.5. For part ii, note that since
U⊥ is a subspace of V we can use part i to conclude that dimV = dimU⊥+dimU⊥⊥.
Equating yields dimU+dimU⊥ = dimU⊥+dimU⊥⊥ and so dimU = dimU⊥⊥. Now,
by Lemma 5.4.ii, U is a subspace of U⊥⊥, and so U = U⊥⊥. �
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Definition 5.12 Let U be a subspace of an inner product space V with dim(U) <∞
and u1, . . . , uk an orthonormal basis for U . In the proof of Theorem 5.7, for any
v ∈ V we constructed a u ∈ U with the property that v − u ∈ U⊥, namely,

u = (v|u1)u1 + · · ·+ (v|uk)uk.

We shall call this u the orthogonal projection of v onto U and denote it by
projUv.

Before we explore some examples, a few of observations are in order which we
collect in the following proposition:

Proposition 5.1 Let V be a Euclidean space with v ∈ V .

1. The definition of projUv is unique and not dependent on our choice of orthonor-
mal basis.

2. v − projUv ∈ U⊥.

3. If w ∈ V and U = span(w) then projwv = projUv.

Proof 5.14 The first item follows from the fact that we have unique representation
as V = U ⊕ U⊥. The second and third items are left as exercises. �

Example 5.26 As usual we will start with a more intuitive example for computing
projUv. Take V = R3 with the standard dot product and U equal to the xy-plane.
An orthonormal basis for U is ı̂, ̂. Set v = [1, 2, 3] and we will compute projUv. By
definition,

projUv = (v · ı̂)̂ı+ (v · ̂)̂ = 1ı̂+ 2̂ = [1, 2, 0].

This makes intuitive geometric sense, since the point in the xy-plane closest to
[1, 2, 3] is indeed [1, 2, 0].

Hence, v − projUv = 3̂k and is a vector perpendicular to the xy-plane U (as
anticipated by Proposition 5.1) (see Figure 5.4).

Figure 5.4 The projection of vector v onto the U .
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Example 5.27 Here is a less intuitive example. Take V = P2 with the inner product
defined in Section 5.1, i.e. (p|q) =

∫ 1
0 p(x)q(x) dx. Set v = x2 and

U = { a+ bx : a, b ∈ R }.
Notice that a basis for U is 1 and x. Again, we will compute projUv. This time

we first need to obtain an orthogonal basis for U . Using Gram-Schmidt we will obtain
an orthogonal basis: We set w1 = 1 and

w2 = x− (x|1)
(1|1) (1) = x−

∫ 1
0 x dx∫ 1

0 dx
= −1

2 + x.

Then we normalize the orthogonal vectors to get an orthonormal basis for U .

u1 = w1

|w1|
= 1√∫ 1

0 dx
= 1.

u2 = w2

|w2|
= −(1/2) + x√∫ 1

0 (−(1/2) + x)2 dx
= −
√

3 + 2
√

3x.

Then, using the formula for projUv in terms of an orthogonal basis, we have that
projUv equals

(v|u1)u1 + (v|u2)u2 = (x2|1)(1) + (x2| −
√

3 + 2
√

3x)(−
√

3 + 2
√

3x)

=
(∫ 1

0
x2 dx

)
+
(∫ 1

0
−
√

3x2 + 2
√

3x3 dx
)

(−
√

3 + 2
√

3x) = −1
6 + x.

Proposition 5.1.2 gives us an alternative way to compute the orthogonal projection
of a vector v onto a subspace U . Let U = span(v1, v2, . . . , vk) a subspace in an inner
product space V . Since v − projUv ∈ U⊥ this implies that v − projUv ⊥ vi for
i = 1, 2, . . . , k, or equivalently (v − projUv|vi) = 0 for i = 1, 2, . . . , k. Rewriting,
we have (projUv|vi) = (v|vi) for i = 1, 2, . . . , k. Since projUv ∈ U we can write
projUv = a1v1 + a2v2 + · · ·+ akvk, for some scalars a1, a2, . . . , ak ∈ R. Therefore,

(a1v1 + a2v2 + · · ·+ akvk|vi) = (v|vi) for i = 1, 2, . . . , k.

Equivalently, we need to solve the following k × k linear system of equations in
unknowns a1, a2, . . . , ak:

a1(v1|vi) + a2(v2|vi) + · · ·+ ak(vk|vi) = (v|vi) for i = 1, 2, . . . , k.

Hence, we have come up with an alternative algorithm for computing projUv
which reduces to solving a linear system instead of having to use the Gram-Schmidt
process to find an orthonormal basis for the subspace U .
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Example 5.28 Let’s redo Example 5.27 using this alternative algorithm for comput-
ing projUv where v = x2, U = { a+ bx : a, b ∈ R } and the inner product is defined
by (p|q) =

∫ 1
0 p(x)q(x) dx. Since U = span(1, x), we seek an a+ bx ∈ U such that

(a+ bx|1) = (x2|1) and (a+ bx|x) = (x2|x).

⇔
∫ 1

0
a+ bx dx =

∫ 1

0
x2 dx and

∫ 1

0
ax+ bx2 dx =

∫ 1

0
x3 dx.

⇔ a+ 1
2b = 1

3 and 1
2a+ 1

3b = 1
4 .

Solving this system yields a = 1
6 and b = 1 and so projUv = 1

6 + x.

With the definition of projUv we can acquire some intuition as to why the Gram-
Schmidt process produces an orthogonal basis. As in Theorem 5.1, let v1, . . . , vn be
any basis for a Euclidean space V and w1, . . . , wn be the orthogonal basis produced
by the Gram-Schmidt process. Set Uk = span(w1, . . . , wk) for k = 1, . . . , n. Then
w1 = v1, w2 = v2 − projU1v2 and in general

wk+1 = vk+1 − projUk
vk+1 for k = 1, . . . , n− 1.

Figure 5.5 The Gram-Schmidt Process.

At each step of the process, we add a new vector wk+1 which is orthogonal to all
the previous w1, . . . , wk (see Figure 5.5).
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The next theorem brings us closer to our goal, which is to define a notion of best
approximation. This theorem states that the closest vector in a given subspace U to
a vector v is the vector projUv. This makes intuitive sense if we consider our previous
example of U = span(̂ı, ̂). If we wish to minimize the distance |v − u| for u ∈ U ,
since v − projUv is perpendicular to U , we should take u = projUv.

Theorem 5.8 Let U be a subspace of an inner product space V with dimU <∞ and
take v ∈ V . Then for all u ∈ U but u 6= projUv we have |v − projUv| < |v − u|.

Proof 5.15 First, take any u ∈ U but u 6= projUv and write v− u = (v− projUv) +
(projUv−u) (note that dimU <∞ ensures that projUv exists). Since projUv−u ∈ U
and we have seen that v−projUv ∈ U⊥, we have (v−projUv | projUv−u) = 0. Now,
by Lemma 5.1.g,

|v − u|2 = |v − projUv|2 + |projUv − u|2 > |v − projUv|2 (since u 6= projUv).

It follows that |v − u| > |v − projUv|. �

In the case of the inner product space Rn with the standard inner product, this
approximation is called the least squares approximation, since if v = [a1, . . . , an]
and u = [b1, . . . , bn], then

|v − u| =
√

(a1 − b1)2 + · · ·+ (an − bn)2.

Hence, for a fixed v, if we minimize the sum of the squares (a1− b1)2 + · · ·+(an−
bn)2, then we obtain the best approximation. We can view the ai− bi for i = 1, . . . , n
as the error between u and v in the ith coordinate.

EXERCISES

1. Compute compv and projuv for each of the following inner product spaces V
with inner product as defined in Section 5.1.

a. V = R5 and u = [1, 0,−2,−1, 2] and v = [2,−1,−2, 0, 1].

b. V = M33 and u =

 1 0 −1
2 1 −1
0 −1 2

 and v =

 2 1 0
−1 1 −2

2 0 −1


c. V = P2 and u = 1 + 2x− x2 and v = x− 2x2.

2. For each inner product space V given below with the inner product defined
in Section 5.1 and subspace U and vector v, compute projUv using the Gram-
Schmidt process as was done in Example 5.27.

a. V = R3 and U = { [a, 2a+ b,−a− 2b] : a, b ∈ R } and v = [1, 1, 1].
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b. V = R4 and U = { [a+ b, a, a− b, b] : a, b ∈ R } and v = [1, 2, 0,−1].

c. V = R4 and U = { [a, b, 2a− b, c] | a, b, c ∈ R } and v = [1,−2, 1,−1].

d. V = P2 and U = { (a+ b) + ax− bx2 : a, b ∈ R } and v = 1− x− x2.

e. V = M22 and U =
{[

a b
0 0

]
: a, b ∈ R

}
and v = I.

f. V = P1 and U = {a− 2ax | a ∈ F } and v = 1− x.

g. V = M22 and U is the matrices in V where the sum of the non-diagonal

entries is zero, and v =
[

1 1
1 1

]
.

3. Redo do Exercise 2 by solving the appropriate linear system as was done in
Example 5.28.

4. Prove that the magnitude of projuv equals |compuv|.

5. Prove that if U is a finite dimensional subspace of an inner product space V ,
then V/U ' U⊥.

6. Let V be the inner product space of continuous, real valued functions with inner
product

(f |g) =
∫ 1

−1
f(x)g(x) dx.

Set U equal to the subspace of all odd functions, i.e. f(−x) = −f(x) for all
x ∈ R. Show that U⊥ is the subspace of all even functions, i.e. f(−x) = f(x)
for all x ∈ R.
Hints: First show that (1) Every even function is in U⊥, then (2) Every function
can be written as an even plus an odd function (very similar to how we proved
every square matrix is a sum of a symmetric plus a skew-symmetric matrix).

7. For those who studied Section 4.9 and referring to Exercise 8 of Section 5.1,
prove for U is a subspace of an inner product space V that v ∈ U⊥ iff v∗ ∈ U◦
(justifying in a sense the use of the name annihilator in two different settings).

8. Prove Proposition 5.1 parts b and c.

5.7 REAL SYMMETRIC MATRICES

In this section, we prove some facts about real symmetric matrices which will be
used in a big way in later applied sections of this text. In this section A is an n× n
symmetric matrix whose entries are real numbers. We now focus our attention on
their eigenvalues and eigenvectors.
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Theorem 5.9

a. All the eigenvalues of a real symmetric matrix are real numbers with corresponding
real eigenvectors. More specifically, if λ is a complex eigenvalue for a symmetric
matrix with corresponding complex eigenvector w = u + vi, then λ ∈ R and either u
or v is the eigenvector corresponding to λ.

b. Any real symmetric matrix has a real eigenvalue with corresponding real eigen-
vector.

Proof 5.16 For part a, let λ be a (potentially) complex eigenvalue for a real sym-
metric matrix A with corresponding complex eigenvector w = u+vi. Since Aw = λw,
applying the conjugate to this equation we have Aw = λw or equivalently, Aw = λw.
Since A has real number entries, we get Aw = λw. Notice that

λwTw = wTλw = wTAw = wTATw = (Aw)Tw = (Aw)Tw = (λw)Tw = λwTw.

This implies that (λ − λ)wTw = 0. Since w 6= 0, it must be that λ = λ and so
λ ∈ R.

Now we show that w can be chosen inRn. Since Aw = λw, this implies that A(u+
vi) = λ(u + vi) = λu + λvi. Equating yields Au = λu and Av = λv. Since w 6= 0
either u 6= 0 or v 6= 0, so either u or v is a real eigenvector for A corresponding to
real eigenvalue λ.

For part b, consider the characteristic polynomial pA(t). By the Fundamental
Theorem of Algebra, pA(t) has a complex root and so A has an eigenvalue. By part
a, that eigenvalue must be a real number with a corresponding real eigenvector. �

Theorem 5.10 Eigenvectors from distinct eigenvalues of a real symmetric matrix
are orthogonal.

Proof 5.17 Let Av1 = λ1v1 and Av2 = λ2v2 for v1, v2 6= 0 and λ1 6= λ2. Notice that

λ1(v1 · v2) = (λ1v1) · v2 = (Av1) · v2 = (Av1)T v2

= vT1 A
T v2 = vT1 Av2 = vT1 λ2v2 = λ2v

T
1 v2 = λ2(v1 · v2).

This implies that (λ1−λ2)(v1 ·v2) = 0. Since λ1 6= λ2 this implies that v1 ·v2 = 0.
�

Theorem 5.11 A real symmetric n × n matrix has n orthogonal real eigenvectors
corresponding to real eigenvalues.

Proof 5.18 Let V = Rn and A be a real symmetric n×n matrix and let TA ∈ L(V )
be defined as TA(v) = Av. Note that the eigenvalues and eigenvectors for TA and A
are identical. We will prove this result by induction on the dimension of V .
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For n = 1, by Theorem 5.9.b, A has a real eigenvalue with corresponding real
eigenvector v. This single vector serves as the required 1 orthogonal real eigenvector.

Now assume the statement of the theorem is true for vector spaces of dimension
less than n > 1. Once again, by Theorem 5.9.b, A has a real eigenvalue λ with cor-
responding real eigenvectors u1, . . . , uk forming a basis for the eigenspace Eλ. Apply
the Gram-Schmidt process to u1, . . . , uk to obtain an orthogonal basis for Eλ, say
v1, . . . , vk. If k = n, then we are done, otherwise set U = Eλ and by Theorem 5.7,
write V = U ⊕ U⊥.

We claim that if w ∈ U⊥, then Aw ∈ U⊥. To verify this it’s enough to show that
Aw · vi = 0 for i = 1, . . . , k. Indeed,

Aw · vi = (Aw)T vi = wTAT vi = wTAvi = wTλvi = λ(wT vi) = λ(w · vi) = 0.

Therefore TA is a linear operator on U⊥. Now dimU⊥ < n, so by induction TA and
therefore A has orthogonal real eigenvectors with real eigenvalues, say vk+1, . . . , vn.
Now since vk+1, . . . , vn ∈ U⊥ this implies that v1, v2, . . . , vn are orthogonal. �

In lieu of Theorem 5.11 we have the following Corollary:

Corollary 5.3 A real symmetric matrix is similar to a real diagonal matrix via an
orthogonal matrix. In other words, if A is real symmetric, then there exists a diagonal
matrix D and a matrix P such that P TP = I such that P TAP = D.

Proof 5.19 Let A be a real symmetric n×n matrix. By Theorem 5.11 there exist real
eigenvectors for A with respect to real eigenvalues which form an orthogonal basis for
Rn. Normalize these vectors and let them be the columns of an orthogonal matrix P .
The rest of the proof relies on the fact that matrix representations of a linear operator
are similar. �

Example 5.29 In this example we illustrate Corollary 5.3. Consider the 3× 3 sym-
metric matrix

A =

 1 1 3
1 3 1
3 1 1

 .
One can compute the eigenvalues of A to be −2, 2 and 5 with corre-

sponding eigenvectors (normalized) as [−1/
√

2, 0, 1/
√

2], [1/
√

6,−2/
√

6, 1/
√

6] and
[1/
√

3, 1/
√

3, 1/
√

3]. Drop these vectors in columns to form the orthogonal matrix

P =

 −1/
√

2 1/
√

6 1/
√

3
0 −2/

√
6 1/

√
3

1/
√

2 1/
√

6 1/
√

3

 .
The reader can check that P TP = I and that P TAP produces a diagonal matrix

with the eigenvalues −2, 2 and 5 on the diagonal.
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EXERCISES

1. Illustrate Corollary 5.3 as we did in Example 5.29 with each of the following
real symmetric matrices:

a. A =
[

3 1
1 3

]
.

b. B =

 3 1 −1
1 3 −1
−1 −1 5

.

c. C =

 3 −2 4
−2 6 2

4 2 3

.

d. D =

 6 −2 −1
−2 6 −1
−1 −1 5

.

2. Prove that a symmetric matrix is orthogonal iff all its eigenvalues are either 1
or −1.

5.8 SINGULAR VALUE DECOMPOSITION

As we have seen, not every square matrix is diagonalizable (although they are train-
gularizable). And certainly, not every square matrix is diagonalizable in the way sym-
metric matrices are, i.e. via an orthogonal matrix. The Singular Value Decomposition
(SVD) of a matrix is perhaps the next best thing. It says any (not necessarily square)
matrix A = QSP where QTQ = I = P TP and S has zeros off the principal diagonal.
In this section, we will derive this decomposition and look at some examples. There
are many uses for this decomposition. In this section, we will see an application in
data compression while in the next chapter we will apply this decomposition to a
technique in data analytics called dimensionality reduction.

For A ∈ Mmn consider the symmetric matrix ATA. By Theorem 5.11, ATA has
an orthonormal basis consisting of real eigenvectors v1, v2, . . . , vn with corresponding
real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn (put in descending order). We now show the
eigenvalues of ATA are non-negative real numbers. Notice that for i = 1, 2, . . . , n,

|Avi|2 = (Avi)T (Avi) = vTi A
TAvi = vTi (λivi) = λiv

T
i vi = λi|vi|2.

Since |Avi|2 and |vi|2 are non-negative, then so is λi. Furthermore, a similar
argument (left as an exercise) can be given to show that Av1, Av2, . . . , Avn form an
orthogonal set of vectors (not necessarily a basis, since some of the Avi may be the
zero vector when the eigenvector vi corresponds to a zero eigenvalue).

Note that if v1, v2, . . . , vn are normalized to form an orthonormal basis for Rn they
are still eigenvectors of ATA with the same eigenvalues. Indeed, for i = 1, 2, . . . , n,
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ATAui = ATA

(
vi
|vi|

)
= 1
|vi|

ATAvi = 1
|vi|

λivi = λi
vi
|vi|

= λiui.

In this setting, λi = |Aui|2 and Aui = 0 iff λi = 0. Putting this all together,
we see that if λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the non-zero eigenvalues of ATA, then
Av1, Av2, . . . , Avr is an orthogonal and linearly independent set of vectors. In addi-
tion, Av1, Av2, . . . , Avr forms a basis for the rowspace of A and thus the rank of A
equals r. In other words the rank of A is the number of non-zero eigenvalues of ATA.

Theorem 5.12 If A ∈Mmn, then there exist U ∈Mmm, S ∈Mmn, V ∈Mnn such
that A = USV T with UTU = I = V TV and S is a matrix with zeros off the diagonal.

Proof 5.20 As detailed in the above remarks, we construct v1, v2, . . . , vn an or-
thonormal basis for Rn consisting eigenvectors of ATA with corresponding eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let r equal the number of non-zero eigenvalues. As we saw
above, Av1, Av2, . . . , Avr is an orthogonal basis for the rowspace of A. Normalize this
set of vectors, i.e. for i = 1, 2, . . . , r set

ui = Avi
|Avi|

= 1
|Avi|

Avi = 1√
λi
Avi.

Therefore, Avi =
√
λiui for i = 1, 2, . . . , r. Extend via Gram-Schmidt,

u1, u2, . . . , ur to u1, u2, . . . , um an orthonormal basis for Rm. Consider the matri-
ces V = [v1 v2 · · · vn] (in columns) and U = [u1 u2 · · · um] (in columns). As per
our construction, we have UTU = I = V TV . Note that

AV = [Av1 Av2 · · · Avr 0 · · · 0] = [
√
λ1u1

√
λ2u2 · · ·

√
λrur 0 · · · 0].

Set

D = diag(
√
λ1,
√
λ2, . . . ,

√
λr) and S =

[
D 0r,n−r

0n−r,r 0n−r,n−r

]
.

Then it follows that AV = US and so A = USV T . �

Definition 5.13 The values on the principal diagonal the matrix S in Theorem 5.12,
i.e.
√
λ1,
√
λ2, . . . ,

√
λn are called the singular values of A.

The standard notation for singular values is σi =
√
λi for i = 1, 2, . . . , n. We

remind the reader that the number of non-zero singular values of A equals the rank
of A.
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Example 5.30 We carefully compute a small example so that the reader can with
understanding follow the steps of the proof which led to the singular value decomposi-
tion. Indeed, the proof of Theorem 5.12 is constructive and outlines an algorithm for
this decomposition.

Set A =

 3
√

3 −3
√

3
√

3
√

3
0 0 2

√
6 2
√

6
3
√

3 −3
√

3
√

3
√

3

. Then ATA =


45 −45 27 27
−45 45 −27 −27

27 −27 45 45
27 −27 45 45

.

The eigenvalues are λ1 = 144, λ2 = 36, λ3 = 0, λ4 = 0 with corresponding unit
eigenvectors

v1 = [1/2,−1/2, 1/2, 1/2], v2 = [−1/2, 1/2, 1/2, 1/2],
v3 = [0, 0,−1/

√
2, 1/
√

2], v4 = [1/
√

2, 1/
√

2, 0, 0].

Following the construction in the theorem,

S =

 12 0 0 0
0 6 0 0
0 0 0 0

 and

V = [v1 v2 v3 v4] (in columns) =


1/2 −1/2 0 1/

√
2

−1/2 1/2 0 1/
√

2
1/2 1/2 −1/

√
2 0

1/2 1/2 1/
√

2 0

 .

u1 = 1
12Av1 = [

√
3/3,
√

6/6,
√

2/2] and u2 = 1
6Av2 = [−

√
3/3,
√

6/6, 0].

We extend u1, u2 to a basis for R3 by dropping u1, u2 together with e1, e2, e3 into
the columns of a matrix and row reduce


√

3/3 −
√

3/3 1 0 0√
6/6

√
6/6 0 1 0√

2/2 0 0 0 1

 to

 1 0 0 0
√

2
0 1 0

√
6/2 −

√
2/2

0 0 1
√

2/2 −
√

6/2

 .
Looking at the pivots of the reduced row-echelon we form the basis is u1, u2, e1.

Using Gram-Schmidt we create u1, u2, u3 an orthonormal basis for R3. Since u1, u2
are already orthonormal we start with

w3 = e1 −
(
eT1 u1

|u1|2
u1 + eT1 u2

|u2|2
u2

)
= e1 −

√
3

3 u1 −
−
√

3
3 u2 = [1/3,

√
2/6,−

√
6/6]
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Now, we normalize w3 to get

u3 = w3

|w3|
= [
√

3/3,
√

6/6,−
√

2/2] and

U = [u1 u2 u3] (in columns) =


√

3/3 −
√

3/3
√

3/3√
6/6

√
6/3

√
6/6√

2/2 0 −
√

2/2

 .
Hence, the decomposition is complete and one can check that USV T = A.

Example 5.31 This examples illustrates how SVD can be used as a compression
algorithm. We start with a 129 by 154 grayscale image of my pug Penelope. It is a
129× 154 matrix A filled with numbers from 0 (black) to 255 (white). We decompose
A = USV T via SVD. We now create what are called truncated SVD decompositions
which are “best” approximations to A. We do this by replacing with zero a certain
number of the smallest singular values as well as dropping the corresponding columns
of U and rows of V . Figure 5.6 illustrates this technique.

Figure 5.6 Truncated SVD on a black and white image

From left to right, Photo 1 is the original 129 by 154 photo with 129 singular val-
ues. The singular values are 77.9271, 25.0281, 14.0747, 12.2264 down to the smallest
value 0.0063. Photo 2 includes the top 29 singular values (which are all > 1). Photo
3 includes the top 15 singular values (> 2). Photo 4 includes only the top 4 singular
values (> 10).

In terms of data compression even Photo 2 makes an incredible space saving. The
original photo contains 129 × 154 = 19866 values from 0 to 255. Photo 2 has three
matrices whose combined number of values is (129 × 29) + 29 + (29 × 154) = 8236,
more than a 50% reduction in size without losing that much clarity in the image.
Photo 3 has (129× 15) + 15 + (15× 154) = 4260 and Photo 4 has only 1136 values.
Depending on the application, even the last photo may be sufficient (more to come in
the Data Analytics section).

We will now carefully define what it means to be a “best” approximation of a
matrix. It’s pretty much the same as our previous least squared definition for n-
tuples. Indeed, as we have seen, a matrix in Mmn can be viewed as an mn-tuple in
Rmn.

Definition 5.14 Let A,B ∈Mmn.
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1. The distance between A and B, written

d(A,B) =

√√√√ m∑
i=1

n∑
j=1

(aij − bij)2 where A = [aij ], B = [bij ].

2. The norm of a matrix A ∈Mmn, written |A| =
√
d(A, 0mn), i.e. the square root

of the sum of the squares of the entries in A.

3. Let A ∈ Mmn and X ⊆ Mmn. We say B ∈ X is the best approximation of
A if B is the element in X closest to A (with respect to the distance defined
above).

As we have seen, the number of non-zero singular values of a matrix A equals the
rank of A. When we consider the truncated SVD of A which uses s non-zero singular
values we have created an approximation of A with rank s. We shall show now the
following result:

Theorem 5.13 Let A ∈Mmn with rank r. Out of all the m×n matrices of rank s ≤
r, the truncated SVD of A with s non-zero singular values is the best approximation
to A.

Proof 5.21 Let σ1, σ2, . . . , σn be the singular values of A. We first show for any
B ∈ Mmn that |B|2 equals the sum of the squares of its singular values. To see
this, using the SVD decomposition write B = USV T and set B = [bij ], U = [uij ],
V = [vij ] and S = [sij ]. Note that

bij =
m∑
k=1

n∑
l=1

= uiksklvjl and so

b2ij =
m∑
k=1

n∑
l=1

m∑
r=1

n∑
s=1

uiksklvjluirsrsvjs =
m∑
k=1

n∑
l=1

m∑
r=1

n∑
s=1

uikuirsklsrsvjlvjs.

Examining the terms of b2ij and using the fact that UTU = I = V TV and that S
has zero entries off the diagonal,

b2ij =
m∑
k=1

n∑
s=1

uikuisskksssvjkvjs and so

|B|2 =
m∑
i=1

n∑
j=1

m∑
k=1

n∑
s=1

uikuisskksssvjkvjs =
n∑
j=1

m∑
k=1

skksssvjkvjs =
m∑
k=1

s2
kk =

m∑
k=1

s2
kk.

Now assume B has rank s so that |B|2 =
∑s
k=1 s

2
kk and

d(A,B) =
s∑

k=1
(σk − skk)2 +

n∑
k=s+1

σ2
k.
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Therefore, the rank s matrix which minimizes d(A,B) is the truncated SVD of A with
only the first s singular values of A. �

EXERCISES

1. Compute the singular value decomposition for each of the following matrices:

a. A =

 1 2
1 1
2 1

.

b. B =
[

1 1 2
3 1 1

]
.

c. C =


1 −1 2
3 1 1
2 2 −1
1 3 −1

.

d. D =


1 −1 2
1 1 1
2 2 −1
1 0 −1

.

e. E =

 3 1 −1
1 3 −1
−1 −1 5

.

f. F =
[

1 −1 1 1
1 −1 1 1

]
.

2. LetA ∈Mmn and v1, v2, . . . , vn be the orthogonal eigenvectors for the symmetric
matrix ATA. Prove that Av1, Av2, . . . , Avn is an orthogonal set of vectors.

3. Prove that if A is symmetric, then SVD produces the same decomposition as
diagonalizing the matrix does (up to an ordering of the columns).

4. Select a small black and white photo and explore different truncated SVD de-
compositions as we did with the photo of my pug Penelope.

5.9 APPLICATION: LEAST SQUARES OPTIMIZATION

In this section, we look at several applications of the use of best approximation de-
veloped in Section 5.6. We restrict ourselves to the standard inner product space, i.e.
Rn with dot product for all but the last subsection.
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5.9.1 Overdetermined Systems

For our first application, consider a system of linear equations AX = B, where
A ∈ Mmn, X is a column of unknowns and B ∈ Rm. In general, AX = B may not
have a solution. In this case we will say that X = X0 is the best approximation
to a solution to AX = B if X0 minimizes the value of |AX0 − B|. In other words,
the distance between AX0 and B is minimized. This application is useful in the
case of overdetermined in which the number of equations exceeds the number of
unknowns and in the case of inconsistent systems. Overdetermined systems are at
times inconsistent.

Let’s put this notion into the context of the discussion in the previous section.
Set U = { Av | v ∈ Rn }. We are looking for an AX0 ∈ U such that |AX0 − B| is
minimal. By Theorem 5.8, to find the best approximation to a solution to AX = B,
we should choose AX0 = projUB. For the remainder of this section we seek a simple
and direct way to compute X0 and the conditions for when X0 is unique, for although
AX0 = projUB is unique, it doesn’t necessarily follow that X0 is unique.

Recall that B − projUB ∈ U⊥ and as we have seen in Section 3.6, U =
colsp(A). Therefore, by Lemma 5.5.ii, U⊥ = colsp(A)⊥ = nullsp(AT ). Hence,
AT (B − projUB) = 0 which implies that ATB = ATprojUB = ATAX0. Thus, X0
is a solution to the n × n linear system (ATA)X = ATB. This equation is some-
times called the normal equation (basically because AX0 − B is normal to the
range of ATA). Furthermore, if ATA is invertible, then X0 is uniquely determined
as X0 = (ATA)−1ATB. Standard notation for (ATA)−1AT is A† and is called the
pseudo-inverse or generalized inverse of A, since it generalizes the method of
solving a system AX = B having a unique solution and because when A is invertible,
A† = A−1. Let’s summarize our results in a theorem.

Theorem 5.14 The best approximation to a solution to the m × n linear system
AX = B is precisely a solution to the n × n linear system (ATA)X = ATB. In the
case when ATA is invertible, the unique solution is X0 = (ATA)−1ATB.

Now, we give an equivalent and more straightforward condition for determining
when ATA is invertible.

Lemma 5.7 For A ∈Mmn(F ), ATA is invertible iff the columns of A are linearly
independent.

Proof 5.22 Assuming that ATA is invertible, we show that AX = 0 has only the
trivial solution (and hence, by Theorem 3.4, we are done). If Au = 0 for some
u ∈ Rn, then ATAu = AT 0 = 0 and so u is a solution to (ATA)X = 0. Now, by
Theorem 3.11, (ATA)X = 0 has only the trivial solution and so u = 0.

Assuming now that the columns of A are linearly independent, we show that
(ATA)X = 0 has only the trivial solution (and so, by Theorem 3.11, we are done).
Suppose that (ATA)u = 0 for some u ∈ Rn. Then Au is a solution to ATX = 0, i.e.
Au ∈ nullsp(AT ) = colsp(A)⊥, by Lemma 5.5. By Lemma 3.8.ii, Au ∈ colsp(A) as
well. Therefore, Au ∈ colsp(A)⊥ ∩ colsp(A) = { 0 }. Thus, Au = 0 which means u is
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a solution to AX = 0. Now, by Theorem 3.4 and our assumption, AX = 0 has only
the trivial solution, i.e. u = 0. �

Example 5.32 Consider the following 3× 2 linear system:

x− y = −1
2x+ y = 3
−x− 2y = 2

.

Notice that this system is inconsistent, since the corresponding augmented matrix 1 −1
2 1
−1 −2

∣∣∣∣∣∣∣
−1

3
2

 reduces to

 1 −1
0 3
0 0

∣∣∣∣∣∣∣
−1

5
6

 ,
and the last line of the matrix says that 0 = 6, a contradiction. Notice also that the

columns of the coefficient matrix A =

 1 −1
2 1
−1 −2

 are linearly independent, since

neither column is a scalar multiple of the other. Hence, by Theorems 5.14 and 5.7,
the linear system has a unique best approximation, namely

[
x
y

]
=


 1 −1

2 1
−1 −2


T  1 −1

2 1
−1 −2



−1  1 −1

2 1
−1 −2


T  −1

3
2



=

[ 1 2 −1
−1 1 −2

] 1 −1
2 1
−1 −2



−1 [

1 2 −1
−1 1 −2

] −1
3
2


=
[

6 3
3 6

]−1 [
3
0

]
=
[

2/9 −1/9
−1/9 2/9

] [
3
0

]
=
[

2/3
−1/3

]
.

In Figure 5.7, we plot the three lines in the linear system together with the best
approximation to a solution, X0.

Set X0 =
[

2/3
−1/3

]
, our best approximation to the inconsistent system AX = B.

Let’s describe in another way what is happening geometrically. First we compute
colsp(A). Since

AT =
[

1 2 −1
−1 1 −2

]
reduces to

[
1 0 1
0 1 −1

]
,
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Figure 5.7 The plot of a linear system with its best solution in the xy-plane.

we have that

colsp(A) = span([1, 0, 1], [0, 1,−1]) = { [a, b, a− b] | a, b ∈ R }.

This corresponds to the plane z = x− y or x− y − z = 0. Second,

AX0 =

 1
1
0

 .
Hence, (1, 1, 0) is the point in the plane x− y − z = 0 closest to B = (−1, 3, 2) (see
Figure 5.8).

Just to reiterate, X0 is closest to a solution to AX = B, since it minimizes the value
of

|AX0 −B| = |[1, 1, 0]− [−1, 3, 2]| = |[2,−2,−2]| =
√

4 + 4 + 4 = 2
√

3.

5.9.2 Best Fitting Polynomial

In our next application of best approximation, we put forth a method for fitting a
collection of points in R2 with a polynomial. In general, given a collection of points
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Figure 5.8 The plot a point in plane closest to a given point off the plane.

(x1, y1), . . . , (xn, yn), one hopes for a mathematical relationship between the variables
x and y derived from these points. In other words, we want a function f with the
property that f(xi) = yi for all i = 1, . . . , n. Examples of such functions were com-
puted in the exercises in Section 2.2, Problem 3, Section 2.6, Problems 7 and 8, and
Section 2.10, Problems 2, 7 and 9.

However, it is not always possible to obtain an exact fit for a given set of points.
One can imagine an inconsistent system of equations arising in certain instances when
we attempt to fit the points with a curve. In such a case we attempt to find a best
fit to the points. In other words, we would like a best approximation to a function
which fits the points. We will be relying heavily on the results derived in Section 5.6
to obtain this best approximation.

Consider Figure 5.9 depicting our set of points and a curve y = f(x) approximat-
ing a fit to the points:

In the diagram, ei = f(xi) − yi for i = 1, . . . , n represents the error is approx-
imating the y-coordinate of the ith point by the curve at x = xi. Minimizing the
sum of all these errors might seem a natural way to obtain a best fitting curve. These
errors, however, are signed and therefore subject to cancellation when added. For this
reason, we minimize the sum of the squares of the errors,

e2
1 + e2

2 + · · ·+ e2
n = (f(x1)− y1)2 + (f(x2)− y2)2 + · · ·+ (f(xn)− yn)2.
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Figure 5.9 Fitting a function to a set of points.

Such a curve which minimizes the sum of the squares of the errors is called the least
squares curve.

We now put this discussion in terms of what was done in the previous section. Set
Y = [y1, y2, . . . , yn] and Ŷ = [f(x1), f(x2), . . . , f(xn)]. We seek to minimize |Ŷ − Y |2
or equivalently to minimize |Ŷ −Y |. Let’s narrow our scope a bit and look for a best
fitting polynomial function which minimizes |Ŷ −Y |. Set f(x) = a0+a1x+· · ·+amxm.
Notice that

Ŷ = [a0 + a1x1 + · · ·+ amx
m
1 , a0 + a1x2 + · · ·+ amx

m
2 , . . . , a0 + a1xn + · · ·+ amx

m
n ]

=


a0 + a1x1 + · · ·+ amx

m
1

a0 + a1x2 + · · ·+ amx
m
2

...
a0 + a1xn + · · ·+ amx

m
n

 =


1 x1 · · · xm1
1 x2 · · · xm2
...

... . . . ...
1 xn · · · xmn



a0
a1
...
am

 .

Now we set

A =


1 x1 · · · xm1
1 x2 · · · xm2
...

... . . . ...
1 xn · · · xmn

 and X0 =


a0
a1
...
am

 .

Hence, our goal is to find a X0 which minimizes |AX0 − Y |. But this is exactly
the topic of discussion in the previous application where we found a best solution to
an overdetermined system.

Theorem 5.15 Let (x1, y1), . . . , (xn, yn) be a collection of points in R2 and m < n a
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positive integer. If at least m+ 1 of the x-coordinates of the points are distinct, then
there exists a unique polynomial of degree m, a0 + a1x+ · · ·+ amx

m which best fits
the points. The coefficients of this polynomial are given by

a0
a1
...
am

 = (ATA)−1ATY,

where

A =


1 x1 · · · xm1
1 x2 · · · xm2
...

... . . . ...
1 xn · · · xmn

 and Y =


y0
y1
...
ym

 .

Proof 5.23 Theorem 5.14 assures us that such a polynomial exists, so the proof
entails showing the uniqueness of this polynomial under the condition that at least m+
1 of the x-coordinates of the points are distinct. To show uniqueness, by Theorem 5.7,
it is enough to show that A has linearly independent columns. Set A = [c0 c1 · · · cm]
as columns. Therefore we need to prove

Claim: If at least m + 1 of the x-coordinates of the points are distinct, then
c0, c1, . . . , cm are linearly independent.

We will prove the contrapositive statement, namely if c0, c1, . . . , cm are linearly
dependent, then at most m of the x-coordinates of the points are distinct. So suppose
that c0, c1, . . . , cm are linearly dependent. Then there exist b0, b1, . . . , bm ∈ R not all
zero such that b0c0 + b1c1 + · · ·+ bmcm = 0. In expanded notation we have

b0 + b1x1 + · · ·+ bmx
m
1

b0 + b1x2 + · · ·+ bmx
m
2

...
b0 + b1xn + · · ·+ bmx

m
n

 =


0
0
...
0

 .

Equating the entries gives

b0 + b1x1 + · · ·+ bmx
m
1 = 0

b0 + b1x2 + · · ·+ bmx
m
2 = 0

...
b0 + b1xn + · · ·+ bmx

m
n = 0

which means that x1, x2, . . . , xn are roots of the polynomial g(x) = b0 + b1x + · · · +
bmx

m. Now since the degree of g is at most m, this implies (by a basic fact about poly-
nomials) that g has at most m distinct roots. Hence, at most m of the x-coordinates
of the points are distinct. �
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Example 5.33 Let’s first take the simplest setup and best fit three points with a line.
Note that the theorem requires that the points not lie on the same vertical line (i.e.
at least two of the x-coordinates are distinct). Consider the points (0, 2), (1, 0) and
(2, 3). Then

A =

 1 0
1 1
1 2

 and

[
a0
a1

]
=


 1 0

1 1
1 2


T  1 0

1 1
1 2



−1  1 0

1 1
1 2


T  2

0
3



=
[

3 3
3 5

]−1
 2

0
3

 =
[

5/6 −1/2
−1/2 1/2

] 2
0
3

 =
[

7/6
1/2

]
.

Hence, the best fitting line is y = 7
6 + 1

2x (see Figure 5.10).

Figure 5.10 Fitting a line to a set of points.

Example 5.34 Now let’s fit five points with a parabola. Consider the five points
(−1,−1), (−1, 0), (0,−1), (1, 0) and (2, 1). Notice that four of the five x-coordinates
are distinct and we need at least three being distinct to apply the theorem.

A =


1 −1 1
1 −1 1
1 0 0
1 1 1
1 2 4

 and
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 a0
a1
a2

 =




1 −1 1
1 −1 1
1 0 0
1 1 1
1 2 4


T 

1 −1 1
1 −1 1
1 0 0
1 1 1
1 2 4





−1 
1 −1 1
1 −1 1
1 0 0
1 1 1
1 2 4


T 
−1

0
−1

0
1



=

 5 1 7
1 7 7
7 7 19


−1  −1

3
3

 =

 7/13 5/26 −7/26
5/26 23/78 −7/39
−7/26 −7/39 17/78


 −1

3
3

 =

 −10/13
2/13
5/13

 .

Therefore, the parabola we seek is y = −10
13 + 2

13x+ 5
13x

2 (see Figure 5.11).

Figure 5.11 Fitting a parabola to a set of points.

Example 5.35 This example illustrates the fact that Theorem 5.15 can be used to
find an exact fit to a set of points (when it exists), thus giving an alternate method
to Gaussian Elimination used in Chapter 2.

We find a parabola which passes through the points (0,−1), (1, 2) and (−1, 0). In
this case,

A =

 1 0 0
1 1 1
1 −1 1

 and

 a0
a1
a2

 =


 1 0 0

1 1 1
1 −1 1


T  1 0 0

1 1 1
1 −1 1



−1  1 0 0

1 1 1
1 −1 1


T  −1

2
0

 =
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 3 0 2
0 2 0
2 0 2


−1  1

2
2

 =

 1 0 −1
0 1/2 0
−1 0 3/2


 1

2
2

 =

 −1
1
2

 .
Therefore, the parabola we seek is y = −1 + x+ 2x2 (see Figure 5.12).

Figure 5.12 Fitting a parabola exactly to a set of points.

5.9.3 Linear Regression

In this subsection, our goal is to obtain the “best fit” of a set of data points
in Rn to a hyperplane. First, let’s establish our notation. Our data will be of
the form (x(i)

1 , x
(i)
2 , . . . , x

(i)
d−1, yi) for i = 1, 2, . . . , n and our hyperplane will be

y = f(x1, x2, . . . , xd−1). Since f represents a hyperplane, we can be more specific,
namely

y = a0 + a1x1 + a2x2 + · · ·+ ad−1xd−1.

For each data point (x(i)
1 , x

(i)
2 , . . . , x

(i)
d−1, yi) as before define the error

ei = f(x(i)
1 , x

(i)
2 , . . . , x

(i)
d−1)− yi.

In order to find the best fit, we wish to minimize the sum of the squares of these
errors, i.e.

n∑
i=1

e2
i =

n∑
i=1

[f(x(i)
1 , x

(i)
2 , . . . , x

(i)
d−1)−yi]2 =

n∑
i=1

[a0+a1x
(i)
1 +a2x

(i)
2 +· · ·+ad−1x

(i)
d−1−yi]

2.

In other words, just as before, we are looking to minimize |Ŷ − Y |2 or equivalently
|Ŷ − Y |, where
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Ŷ = [a0 + a1x
(1)
1 + a2x

(1)
2 + · · ·+ ad−1x

(1)
d−1, . . . , a0 + a1x

(n)
1 + a2x

(n)
2 + · · ·+ ad−1x

(n)
d−1]

and Y = [y1, y2, . . . , yn].

One can see that Ŷ = AX0, where

A =



1 x
(1)
1 x

(1)
2 · · · x

(1)
d−1

1 x
(2)
1 x

(2)
2 · · · x

(2)
d−1

...
...

... . . . ...

1 x
(n)
1 x

(n)
2 · · · x

(n)
d−1


and X0 =


a0
a1
a2
...

ad−1

 .

Hence, we are looking to find an X0 which minimizes the quantity |AX0 − Y |. But
just as before, we are looking to find a best solution to an overdetermined system
which we already know how to find, namely X0 = (ATA)−1ATY .

Example 5.36 Consider the following set of data points:

(1, 2, 1), (2,−1, 1), (−2, 1, 1), (−1, 1,−2), (1, 1,−2), (−2,−1, 1), (2,−1,−1),
(−2,−1,−2).

We seek a best fitting plane to this set of data. To this end we construct

A =



1 1 2
1 2 −1
1 −2 1
1 −1 1
1 1 1
1 −2 −1
1 2 −1
1 −2 −1


and Y =



1
1
1
−2
−2

1
−1
−2


.

Therefore,  a0
a1
a2

 = (ATA)−1AT ≈

 −0.3759
0.0271
0.0342

 ,
so that the equation of our plane is z = −0.3759 + 0.0271x + 0.0342y. Figure 6.3
depicts the resulting best fitting plane to the data.
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Figure 5.13 Fitting a plane to a set of points.

5.9.4 Underdetermined Systems

The next application deals with the case of underdetermined linear systems in
which the number of unknowns exceeds the number of equations. Undetermined sys-
tems often have infinite solutions. Given an linear system AX = B with infinite
solutions, we wish to find the solution of smallest magnitude called the minimal
norm solution.

Before addressing how to find such a minimal norm solution we present a more
efficient way to compute projUv in the special case that U is a subspace of Rn with the
standard dot product. This algorithm will be ultimately used in finding the minimal
norm solution.

Theorem 5.16 Given a subspace U of Rn and v ∈ Rn, then projUv = (AA†)v where
A is a matrix whose columns consist of any basis for U .

Proof 5.24 It was shown in Exercise 20 of Section 3.5 that U = { Aw : w ∈ Rm }.
Therefore, there exists an w∗ ∈ Rm such that projUv = Aw∗. Recall that projUv
minimizes the distance between v and U and from above

|v − Aw∗| ≤ |v − Aw| for all w ∈ Rm

But this implies that w∗ is a best approximation to a solution to Aw = v.
Therefore, using the work in the first application of this section, w∗ = A†v and so
projUv = AA†v �
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Example 5.37 Let’s redo the simple Example 5.26 we gave in the Section 5.6 for

V = R3, U = span(̂ı, ̂) and v = [1, 2, 3]. Then the matrix A =

 1 0
0 1
0 0

 and

projUv =

 1 0
0 1
0 0



 1 0

0 1
0 0


T  1 0

0 1
0 0



−1  1 0

0 1
0 0


T  1

2
3



=

 1 0 0
0 1 0
0 0 0


 1

2
3

 =

 1
2
0

 .
Theorem 5.17 The minimal norm solution to an underdetermined linear system
AX = B is X∗ = AT (AAT )−1B.

Proof 5.25 Let AX = B be an m × n undetermined linear system and set U =
nullsp(A) = { Xh : AXh = 0 }. We’ve seen that the solution set to AX = B can be
expressed as { Xp + Xh : Xh ∈ U } for a fixed particular solution Xp to AX = B.
Equivalently, we can write this solution set as { Xp −Xh : Xh ∈ U }. Set X∗ to be
the minimal norm solution to AX = B and let X∗h be such that X∗ = Xp−X∗h. Since
X∗h minimizes |Xp−Xh| this implies that X∗h = projUXp and so, by Proposition 5.1,
X∗ = Xp − projUXp ∈ UT . By Lemma 5.5 and Corollary 5.2, U⊥ = rowsp(AT ).
Therefore, X∗ ∈ rowsp(AT ) and so X∗ = ATY for some Y ∈ Rm. Since X∗ is
a solution to AX = B we have AATY = B and so Y = (AAT )−1B, but then
X∗ = AT (AAT )−1B. �

Example 5.38 When we find the point on the intersection of the two planes x +
y + z = 1 and −x + y + z = 1 closest to the origin we are solving a minimal norm
solution problem, namely we are finding the solution to{

x+ y + z = 1
−x+ y + z = 1 of smallest magnitude.

Following Theorem 5.17, we set A =
[

1 1 1
−1 1 1

]
and B =

[
1
1

]
and compute

the minimal norm solution to be

X∗ =
[

1 1 1
−1 1 1

]T [ 1 1 1
−1 1 1

] [
1 1 1
−1 1 1

]T−1 [
1
1

]
=

 0
1/2
1/2

 .
Hence, the solution we seek is (0, 1/2, 1/2). The solution is illustrated in

Figure 5.14.

We make one last aesthetic observation about best solutions to overdetermined
systems and minimal norm solutions to underdetermined systems: Notice the beau-
tiful similarity between the two solutions, namely X0 = (ATA)−1ATB and X∗ =
AT (AAT )−1B.
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Figure 5.14 Minimal norm solution to a 2× 3 linear system.

5.9.5 Approximating Functions

Our goal is to make a best approximation of a function by a linear combination of
another collection of functions. Perhaps the reader has run across this in an inte-
gral calculus course, in particular, approximating a function by a Taylor polynomial,
which is a linear combination of powers of x. Our best approximation will be in the
sense of the inner product (f(x)|g(x)) =

∫ b
a f(x)g(x) dx. For now we focus on ap-

proximating a function by a polynomial, say of degree k. Therefore, our vector space
will be continuous functions on the interval [a, b] and we consider the subspace U of
polynomials of degree k or less. Now U = span(1, x, . . . , xk) and if f(x) is the func-
tion we wish to best approximate by an element in U , we therefore wish to compute
projUf(x). In other words we seek a polynomial p(x) closest to f(x) by minimizing

|p(x)− f(x)|2 =
∫ b

a
(p(x)− f(x))2 dx.

This we already know how to do as we saw in Section 5.6. We will take the second
approach to solving this problem in which we solve a linear system as opposed to using
the Gram-Schmidt process.
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Example 5.39 We will find the best fitting quadratic polynomial to cosx on the in-
terval [−1, 1]. As before, the quadratic a+bx+cx2 will satisfy the following equations:

(a+bx+cx2|1) = (cos x|1), (a+bx+cx2|x) = (cos x|x), (a+bx+cx2|x2) = (cos x|x2).

Equivalently, ∫ 1

−1
(a+ bx+ cx2) dx =

∫ 1

−1
cosx dx,

∫ 1

−1
(ax+ bx2 + cx3) dx =

∫ 1

−1
x cosx dx,

∫ 1

−1
(ax2 + bx3 + cx4) dx =

∫ 1

−1
x2 cosx dx.

Computing these intergrals results in the following linear system:

2a+ 2
3c = 2 sin 1

2
3b = 0

2
3a+ 2

5c = 4 cos 1− 2 sin 1

.

Solving this 3× 3 linear system yields a ≈ 0.9966, b = 0 and c ≈ 0.4653. There-
fore, our best approximating quadratic of cosx is 0.9966−0.4653x2. It’s interesting to
note that if one were to compute the 2nd degree Taylor polynomial centered at zero,
the result would be 1− 1

2x
2 which is a slightly different result from our best approxi-

mation. Recall that Taylor polynomials focus on approximating well a function close
to its center, while the best approximation we computed is attempting to approximate
well the function on the entire interval [−1, 1]. Figure 5.15 illustrates cosx as well
as the two approximations just mentioned.

At this point we could continue the discussion and present Fourier approxima-
tions and the Fourier series which would naturally follow from our discussion of best
approximating functions and is a very important field of applied mathematics having
many uses. However, we begin to go too far afield should we enter into that discourse.
At the very least the reader should be reassured with the knowledge that they are
now fully prepared for such a topic after having read this subsection.

One of the motivations for this particular subsection was to show a very concrete
use for an inner product besides the usual dot product. We hope the reader agrees
that the ability to approximate functions on intervals using an inner product besides
the dot product is impressive.
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Figure 5.15 On the left is the graph of cosx together with the 2nd degree Taylor
polynomial centered at zero and the best approximating quadratic. On the right is
a close up of the right hand tails of same three graphs. In the close up, the best
approximation is above, the Taylor polynomial is below and cosx is in between.

EXERCISES

1. Consider the following linear system:

y = x+ 1
x+ y = 1
2x− y = 4

.

a. Verify that the linear system is inconsistent.

b. Find the best approximation to a solution to the system.

c. Plot the lines in the system as well as the best approximation.

2. Repeat the previous exercise with the following linear system:

x = 2− 2y
x = 3y + 3
y = −2x
y = x

.

3. Repeat the previous exercise with the following linear system:

4x− 2y + 2z = −3
2x+ 5y + z = 1
−2x+ y − z = 2

4. Consider the following points: (1, 2), (0, 1), (0,−1)
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a. Find the best fitting line

b. Explain why the theorem doesn’t apply for a best fitting parabola.

5. Consider the following points: (1,−1), (2, 2), (−1, 2), (0, 1).

a. Find the best fitting line.

b. Find the best fitting parabola.

c. Find the exact fitting cubic (third degree polynomial).

d. Plot the points with your results from parts a,b and c.

6. Consider the following points: (−2,−2), (−1, 0), (0, 2), (1,−1), (2,−2).

a. Find the best fitting parabola.

b. Find the best fitting cubic.

c. Plot the points with your results from parts a and b.

7. Find an exact fit for the points (1, 0), (2, 2), (−2,−1) with a parabola and plot
the points with your result.

8. Recompute projUv in Exercise 5.6 for Problem 2.a,b,c using the more efficient
method discussed in this section.

9. Find the point on the intersection of the planes x+2y−z = 1 and 2x−y+z = −1
closest to the origin.

10. Find the minimal norm solution to the following underdetermined system:


w − y = 0
w − x = −1
z − w = 2

11. Find the best approximating linear polynomial to the function ex on the interval
[0, 1], then plot the two functions on the same graph.

12. Find the best approximating cubic polynomial to the function sin x on the
interval [−1, 1], then plot the two functions on the same graph.
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C H A P T E R 6

Applications in Data
Analytics

In this chapter, some examples of linear algebra applied to the field of data
analytics and machine learning are given. Topics in the field of data analytics and

machine learning were sought which applied linear algebra techniques and were eas-
ily within grasp without too much background development. Section 6.1 is a general
introduction to the topics presented. Section 6.2 determines in what direction a data
set is most spread. Section 6.3 presents the multi-use topic of principal component
analysis. Section 6.4 introduces an integral technique in data analytics called dimen-
sion reduction. A distance more statistically based is presented in Section 6.5 called
Mahalanobis distance. A useful tool called data sphering is developed in Section 6.6.
The remaining three sections deal with linear discriminant functions. In Section 6.7,
the Fisher linear discriminant function is presented while the minimal square error
linear discriminant function is presented in Section 6.9. The general notion of a linear
discriminant function is discussed in Section 6.8.

6.1 INTRODUCTION

The general topics to be discussed in this chapter fall under three categories: Classi-
fication, feature selection/reduction and data preprocessing.

In Machine Learning, in the subdiscipline of classification, a set of data might
represent the features of objects, called classes of data. When we speak of feature
data we are referring to aspects of an object under consideration. It may be nu-
merical or categorical. For instance, consider a glass of wine. A numerical feature
would be the percentage of sugar in the wine, while a categorical feature might be
the grape used to make the wine.

Oftentimes we wish to identify/classify/distinguish different classes. For instance,
maybe we wish to distinguish between two types of handwritten digits [8]: Written
zeros and written ones (see Figure 6.1).

Perhaps we collect two features on the handwritten digits: Number of pixels in
the digit and Minimal distance from the pixels in the digit to its mean (disregarding
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Figure 6.1 28× 28 Handwritten zeros and ones.

the intensity of the pixels in the digit). We then plot the two classes in what we call
feature space. We can distinguish the two classes by creating a linear demarkation
between the two data sets called a linear discriminant function (LDF). Figure 6.2
depicts an example of an LDF dividing two classes.

Figure 6.2 Two classes divided by an LDF in 2D feature space.

Feature selection and reduction aims to reduce the dimension of a data set while
minimizing the reduction in information lost and predictive power. This is done so
that algorithms which use the data will be more computationally efficient. Oftentimes
a data set can be unruly due to the fact that the data points are of high dimension. For
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instance if we need to run an algorithm on this data the high dimension can cause the
algorithm to run very slow to the point where we are unable to perform our intended
data analysis. In addition, high dimensional data can exist in a sparse distribution
across this high dimensional space and this can also cause issues. For instance, the
distance between points in the data set tends to lose significance if it is needed in our
data analysis. These issues are often referred to as the curse of dimensionality.
For this reason it is useful to reduce the dimension of our data set in such a way as
to minimize the loss of information. This is aptly called dimensionality reduction
and there are numerous ways to do this.

Data preprocessing refers to preliminary manipulation of data sets in order to
make them more amenable to data analytic applications. One such technique which
will be presented in this chapter is called data sphering.

As we shall see many of the first applications in this chapter center around a
matrix we shall define and which will be called the scatter matrix of a data set.
Finally, the reader should take note that only in this chapter will vectors have the
conventional arrow notation primarily to conform better to existing literature in this
field.

6.2 DIRECTION OF MAXIMAL SPREAD

The term projection pursuit was coined by Friedman and Tukey. It is a means of
analyzing data sets and finding interesting structural properties. This is done by
projecting multi-dimensional data onto lines in all possible directions through the
mean and finding the direction which maximizes or minimizes a particular property
of interest.

Consider a collection of data points ~x1, ~x2, . . . , ~xn ∈ Rd with mean ~µ. Let ` be a
line passing through ~µ and ~a be a unit vector parallel to `. For a given data point ~xk,
let xk be the projection of ~xk on the line `.

Figure 6.3 Projection of a point onto a line through the mean of a data set.

Recall that xk is the component of ~xk − ~µ along ~a, i.e.
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xk = (~xk − ~µ) · ~a
||~a||

= (~xk − ~µ) · ~a = ~aT (~xk − ~µ).

The variance of all the projections x1, x2, . . . , xm is then

1
n

n∑
k=1

[
~aT (~xk − ~µ)

]2
Note, we are viewing vectors as d × 1 column matrices. We seek to find the line

through the mean of the data which maximizes the variance. We can dispense with
the fraction 1

n and simply maximize
n∑
k=1

[
~aT (~xk − ~µ)

]2
=

n∑
k=1

~aT (~xk − ~µ)~aT (~xk − ~µ)

=
n∑
k=1

~aT (~xk − ~µ)(~xk − ~µ)T~a = ~aT
(

n∑
k=1

(~xk − ~µ)(~xk − ~µ)T
)
~a

Set S =
∑n
k=1(~xk − µ)(~xk − ~µ)T called the d× d scatter matrix of the data.

Example 6.1 Consider the four data points (0, 1), (0,−1), (1, 2), (3, 2). The scatter
matrix is computed as follows:

~µ = 1
4

([
0
1

]
+
[

0
−1

]
+
[

1
2

]
+
[
3
2

])
=
[

1
1

]
.

S =
([

0
1

]
−
[

1
1

])([
0
1

]
−
[

1
1

])T
+
([

0
−1

]
−
[

1
1

])([
0
−1

]
−
[

1
1

])T
+

([
1
2

]
−
[

1
1

])([
1
2

]
−
[

1
1

])T
+
([

3
2

]
−
[

1
1

])([
3
2

]
−
[

1
1

])T

=
[
−1

0

] [
−1 0

]
+
[
−1
−2

] [
−1 −2

]
+
[

0
1

] [
0 1

]
+
[

2
1

] [
2 1

]

=
[

1 0
0 0

]
+
[

1 2
2 4

]
+
[

0 0
0 1

]
+
[

4 2
2 1

]
=
[

6 4
4 6

]
.

Note that this is not the most efficient method for finding the scatter matrix, but
we did it this way to illustrate its definition. An easier way would be to subtract the
mean from each point and put them in the rows of a matrix A and then compute
ATA. Indeed,
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ATA =
[
−1 −1 0 2

0 −2 1 1

]
−1 0
−1 −2

0 1
2 1

 =
[

6 4
4 6

]
.

In order to find the direction of maximal variance we need to solve the following
constrained optimization problem: Maximize ~aTS~a subject to ~aT~a = 1. We use
Lagrange multipliers to do this and solve the vector equation

∇
[
~aTS~a

]
= λ∇

[
~aT~a

]
Equivalently,

2S~a = λ(2~a) or S~a = λ~a.

In other words, the direction ~a which maximizes variance is an eigenvector of
the scatter matrix. The question now is which of the eigenvectors is the direction of
maximal variance. Notice, if ~a∗ is an eigenvector of S with respect to the eigenvalue
λ∗, then the variance in that direction equals

1
n

[~a∗]T S~a∗ = 1
n

[~a∗]T λ∗~a∗ = 1
n
λ∗ [~a∗]T ~a∗ = 1

n
λ∗

Thus, the eigenvector corresponding to the largest eigenvalue is the direction of max-
imal variance.

Example 6.2 (revisited) In Example 6.1, the eigenvalues of the scatter matrix are
2 and 10 with corresponding eigenvectors[

−
√

2/2√
2/2

]
and

[ √
2/2√
2/2

]
.

Therefore, the direction of maximal variance corresponds to the angle θ = tan−1(1) =
π/4.

Figure 6.4 shows the data plus their projections onto the line of maximal spread.
Now let’s do an exhaustive search of projected variance for this data set. Let

~a = [cos θ, sin θ] where θ varies from 0 to 2π. We’ve seen that the variance of the
projected data is then

1
4~a

TS~a = 1
4
[

cos θ sin θ
] [ 6 4

4 6

] [
cos θ
sin θ

]

= 1
4
[

cos θ sin θ
] [ 6 cos θ + 4 sin θ

4 cos θ + 6 sin θ

]
= 3

2 cos2 θ + 2 cos θ sin θ + 3
2 sin2 θ.
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Figure 6.4 Projection of points on the line producing the maximal spread.

Figure 6.5 The graph of angle versus projected variance

Figure 6.5 shows the graph of this function.
As one can see, the angle where variance is maximal is roughly π

4 . This confirms
the exact value of θ computed using eigenvalues of S is π

4 .

EXERCISES

1. Consider the following two dimensional data:

{ (0, 0), (0, 1), (1, 1), (1, 2), (2, 3) }.

a. Following the same steps as in Example 6.1 in this section, compute the
scatter matrix for this data.

b. Following the same steps as in Example 6.2 in this section, compute the
direction of maximal variance and the corresponding angle θ.
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c. Following the same steps as in Example 6.2 in this section, plot the graph
of angle versus projected variance.

2. Consider the following three dimensional data:

{ (0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3) }.

a. Following the same steps as in Example 6.1 in this section, compute the
scatter matrix for this data.

b. Following similar steps to Example 6.2 in this section, compute the direc-
tion of maximal variance and the corresponding angles φ and θ (spherical
coordinates).

c. Plot a surface with axes θ, φ and the projected maximal variance for values
0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π.

6.3 PRINCIPAL COMPONENT ANALYSIS

In this section, we consider a way of “best” representing data by a lower dimensional
set of data called Principal Component Analysis (PCA). Consider a collection of data
points X = { ~x1, ~x2, . . . , ~xn } ⊆ Rd with mean ~µ. We will now ask a series of questions
which will motivate this topic.

Zero Dimensional Question: What point ~x0 ∈ Rd “best represents” the data
points X?

Our definition of “best represents” will be a least squares definition. In other
words, we want a point ~x0 ∈ Rd which minimizes the quantity

n∑
k=1
||~xk − ~x0||2.

Claim: ~x0 = ~µ.

To see this, notice that

n∑
k=1
||~xk−~x0||2 =

n∑
k=1
||(~xk−~µ)−(~x0−~µ)||2 =

n∑
k=1

[(~xk−~µ)−(~x0−~µ)]·[(~xk−~µ)−(~x0−~µ)]

n∑
k=1
||~xk − ~µ||2 − 2

n∑
k=1

(~x0 − ~µ) · (~xk − ~µ) +
n∑
k=1
||~x0 − ~µ||2

Note that

n∑
k=1

(~x0−~µ)·(~xk−~µ) = (~x0−~µ)·
n∑
k=1

(~xk−~µ) = (~x0−~µ)·
(

n∑
k=1

~xk − n~µ
)

= (~x0−~µ)·~0 = ~0.
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Therefore,
n∑
k=1
||~xk − ~x0||2 =

n∑
k=1
||~xk − ~µ||2 +

n∑
k=1
||~x0 − ~µ||2.

Now the first term in the sum above is a constant and the second can be made
smallest (indeed, zero) when ~x0 = ~µ, which proves the Claim. Hence, ~µ is the best
zero dimensional representation of X.

One Dimensional Question: What line “best represents” the data points X?

Let’s assume our line passes through ~µ, since ~µ is the best zero dimensional
representation of the data points. Let ~a be a unit vector parallel to the line through
~µ. Then the vector equation of the line is

~x = ~µ+ t~a where t ∈ R.

This One Dimensional Question involves one subordinate question, namely

One Dimensional Subquestion: How do we “best represent” a data point on a
line?

Our definition of “best represents” will again be a least squares definition. In
other words for all ~xk we wish to find tk ∈ R which minimizes the quantity

n∑
k=1
||(~µ+ tk~a)− ~xk||2.

Set L(~t) =
∑n
k=1 ||(~µ+ tk~a)− ~xk||2. Notice that

L(~t) =
n∑
k=1
||tk~a− (~xk − ~µ)||2 =

n∑
k=1

[tk~a− (~xk − ~µ)] · [tk~a− (~xk − ~µ)]

=
n∑
k=1
||tk~a||2−2

n∑
k=1

tk~a·(~xk−~µ)+
n∑
k=1
||~xk−~µ||2 =

n∑
k=1

t2k−2
n∑
k=1

tk~a·(~xk−~µ)+
n∑
k=1
||~xk−~µ||2.

We wish to minimize L, so we first find critical points by solving ∇L = ~0. This leads
to the equations

∂L

∂tk
= 2tk − 2~a · (~xk − ~µ) = 0 or tk = ~a · (~xk − ~µ).

In other words, tk is the component of ~xk − ~µ along ~a, which answers the sub-
question. Set

~t∗ = [~a · (~x1 − ~µ), ~a · (~x2 − ~µ), . . . ,~a · (~xn − ~µ)].
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If we evaluate L at ~t∗, we have

L(~t∗) =
n∑
k=1

[~a · (~xk − ~µ)]2 − 2
n∑
k=1

[~a · (~xk − ~µ)][~a · (~xk − ~µ)] +
n∑
k=1
||~xk − ~µ||2

= −
n∑
k=1

[~a · (~xk − ~µ)]2 +
n∑
k=1
||~xk − ~µ||2 = −

n∑
k=1

[~aT (~xk − ~µ)]2 +
n∑
k=1
||~xk − ~µ||2.

Note that

[~aT (~xk − ~µ)]2 = ~aT (~xk − ~µ)~aT (~xk − ~µ)

= ~aT (~xk − ~µ)
(
~aT (~xk − ~µ)

)T
= ~aT (~xk − ~µ)(~xk − ~µ)T~a.

Therefore,

L(~t∗) = −~aT
(

n∑
k=1

(~xk − ~µ)(~xk − ~µ)T
)
~a+

n∑
k=1
||~xk − ~µ||2.

Set S =
∑n
k=1(~xk − ~µ)(~xk − ~µ)T (which we have seen already) called the scatter

matrix for the data points. Thus, L(~t∗) = −~aTS~a+
∑n
k=1 ||~xk−~µ||2. Now view L as a

function of ~a and find the minimum which will answer the one dimensional question.
Since,

∑n
k=1 ||~xk − ~µ||2 is constant it’s enough to minimize −~aTS~a. This leads to the

following constrained optimization problem:

Maximize ~aTS~a subject to ~aT~a = 1.

This optimization problem we have already encountered in Section 6.2 and found
that the answer is the eigenvector of S corresponding to the largest eigenvalue. There-
fore, we have answered the One Dimensional Question.

We now list the general result which answers the m Dimensional Question (proof
omitted).

Theorem 6.1 The “best” m dimensional representation of a collection of data points
(for m = 1, 2, . . . , d ) is the eigenvectors of the scatter matrix corresponding to the m
largest eigenvalues.

Note that since the scatter matrix is real symmetric we are guaranteed an or-
thonormal set of eigenvectors which diagonalise the scatter matrix. Therefore, all d
eigenvectors can be used to create a change of coordinate system for the data points.
This change of coordinate system transforms the data point about its mean. Here is
the general algorithm for this transforming process:
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1. Shift the data points to have ~µ = ~0 by subtracting the mean from each data
point.

2. Assuming ~µ = ~0 we let A be an n × d matrix whose rows consist of the data
points. Set S = ATA which is real symmetric. Therefore, there exists a P ∈Mdd

such that P TP = I and P TSP = D is diagonal. Indeed, P is a matrix whose
columns are composed of the orthonormal eigenvectors of S and D is a diagonal
matrix with diagonal entries are composed of the corresponding eigenvalues.
Notice that

D = P TSP = P TATAP = (AP )T (AP ).

If we set B = AP we see that the scatter matrix of B is D which means the PCA
coordinate system coincides with the principal axes. Therefore multiplying A
on the right by P transforms the points into the PCA coordinate system.

3. Shift the points back to their original mean by adding the mean from each
transformed data point.

Example 6.3 We will compute the PCA coordinate system for the four data points
(0, 1), (0,−1), (1, 2), (3, 2) in Example 6.1 and transform the data points about their
mean into the PCA coordinate system.

We have already computed the scatter matrix

S =
[

6 4
4 6

]
.

If we put the unit eigenvectors in the columns of a matrix, we have

P =
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
.

Notice that P is the orthogonal matrix corresponding to a counter-clockwise rota-
tion through a 45◦ angle (see Section 5.3). We shift the points to have mean equaling
zero, rotate the points via P , then shift the points back to their original mean. In
this way we obtain points with the principal axes coinciding with the directions of the
principal components. Figure 6.6 depicts the original points and the points rotated
about the mean counter-clockwise by 45◦.

Indeed, it is sometimes useful to switch to the PCA coordinate system. For in-
stance, Mahalanobis distance utilizes this coordinate system to define the distance
between a point and a collection of points in terms of the collection’s mean and co-
variance matrix (hence, relying on first and second order statistics of the collection).
We will define this distance in Section 6.5.
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Figure 6.6 The original points are circles, while the rotated points are X’s. The dia-
mond is the mean of the points.

EXERCISES

1. Consider the following two dimensional data:

{ (0, 0), (0, 1), (1, 1), (1, 2), (2, 3) }.

Following the same steps as in Example 6.3 in this section, find the PCA coor-
dinate system, perform the change of basis and plot the original points together
with the change of basis points. You can use the work done on the exercise in
Section 6.2.

2. Consider the following three dimensional data:

{ (0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3) }.

Following the same steps as in Example 6.3 in this section, find the PCA coor-
dinate system, perform the change of basis and plot the original points together
with the change of basis points. You can use the work done on the exercise in
Section 6.2.

6.4 DIMENSIONALITY REDUCTION

We will focus on two ways of performing feature reduction which involve techniques
for which we already have the background: PCA and SVD. PCA can be used to
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retain only the highest principal components and thus reduce the dimension of the
set. Truncated SVD retains only the highest singular values. When using truncated
SVD the number of dimensions of the data set is not reduced, however it will exist
in a lower dimensional subspace (since the rank will be reduced), i.e. every singular
value replaced by zero reduces the rank by one and thus the rows of the matrix exists
in a subspace of dimension one less than before.

Example 6.4 Let’s illustrate these techniques with three dimensional data. Let A
be a matrix representing the data in rows. For simplicity, the mean of our data will
be the zero vector. We will start with the truncated SVD method for dimensionality
reduction. Let A = USV T be the singular value decomposition of A. Note that the
singular values for A are approximately 55.6, 45.7 and 0.2. Set Ŝ to be the truncated
SVD in which we replace the smallest non-zero singular value of S by 0. The intuition
is that by dropping such a small singular value in comparison with the other two,
we should not lose too much information about our data set. Now set Â = UŜV T ,
the truncated singular value decomposition. The resulting data set will sit in a two
dimensional, rank 2, subspace of R3, i.e. a plane through the origin.

In Figure 6.7, on the left we have the original data in R3 and in the center we
have its truncated SVD decomposition with two non-zero singular values. Notice how
the truncated points sit in a two dimensional plane. Also included in the figure is
the data transformed from the plane into the xy-plane using the orthogonal matrix V
from the singular value decomposition (one can show that V is a rotoreflection—see
the end of Section 5.3).

Figure 6.7 On the left are the original points. In the center is the truncated SVD
points in a two dimensional subspace. On the right is the transformed data into the
xy-plane.

Starting with the same original data we employ the PCA technique of dimen-
sionality reduction by extracting the first two principal components of the data set.
Let P T (ATA)P = D, where P is the orthogonal matrix whose columns consist of
orthonormal eigenvectors. We do this by multiplying A by P and dropping the third
component of each data point. In Figure 6.8, we plot these points.
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Figure 6.8 The result of keeping the first two principal components of the three di-
mensional data.

If we plot both two-dimensional data points in Figure 6.7, we see that they correspond
exactly (see Figure 6.9).

Figure 6.9 On the left is the truncated SVD points in a two dimensional subspace. On
the right is the first two principal components of the three dimensional data.

Hence, we see that there really is no difference between the two versions of di-
mension reduction. The only difference is that truncated SVD keeps the data set in
its original dimensional space. We now give a formal proof of this statement which
was illustrated in the example above.

Let A ∈ Mnd be a data set in which each row is a data point and assume the
mean of the data set is ~0. Let A = USV T be its singular value decomposition. Set r
equal to the number of non-zero singular values of A. Consider the truncated singular
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value decomposition Â = UŜV T in which Ŝ retains only the highest k singular values,
k < r.

Recall that V = [v1 v2 · · · vd] consists of columns which form an orthonormal
basis for Rd and are the eigenvectors of ATA. Therefore, V is precisely the orthog-
onal matrix such that V T (ATA)V is a diagonal matrix of eigenvalues in descending
order. Therefore, we transform the data into the principal coordinate system by mul-
tiplying by V , i.e. AV . The PCA dimensionality reduction simply retains the first k
components of AV .

Multiply Â by the same V . We show that these points correspond exactly to the
PCA dimensionality reduction. To see this, notice that AV = [Av1 Av2 · · · Avd] and
so the PCA dimensionality reduction is simply [Av1 Av2 · · · Avk 0 · · · 0]. Now look
at

ÂV = UŜ = [
√
λ1u1

√
λ2u2 · · ·

√
λkuk 0 · · · 0] = [Av1 Av2 · · · Avk 0 · · · 0].

EXERCISES

1. Consider the following three dimensional data:

{ (0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3) }.

Using this data, repeat all the steps illustrated in Example 6.4. Be sure to plot
your results just as was done in the example using a computer algebra system.
You can use the work done on the exercise in Section 6.2 or Section 6.4.

6.5 MAHALANOBIS DISTANCE

To introduce and therefore get an understanding as to why Mahalanobis distance
makes intuitive sense, we first look at univariate data. Consider two normal distribu-
tions with identical means µ yet different standard deviations, and a value x in the
distribution (see Figure 6.10).

The Euclidean distance between x and µ is the same for both distributions. How-
ever, for the distribution on the top x is intuitively closer to µ, since its likelihood
of occurring in that distribution is higher. The natural way to account for this is
by looking at the standard deviation, σ, of the distribution, so that instead of the
distance from x to µ being simply |x− µ| we define the distance to be

|x− µ|
σ

.

Let ~µ = [µ1, µ2, . . . , µd] and ~x = [x1, x2, . . . , xd]. The Euclidean distance is defined
to be

d(~x, ~µ) =

√√√√ d∑
k=1

(xi − µi)2.
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Figure 6.10 The result of keeping the first two principal components of the three di-
mensional data.

The distance we defined for univariate normal distributions generalizes to
d-dimensional Gaussian distributions as

d(~x, ~µ) =

√√√√ d∑
k=1

(xi − µi)2

σ2
i

.

This distance is sometimes called standardized Euclidean distance. Now con-
sider a collection of data points X = { ~x1, ~x2, . . . , ~xn } ⊆ Rd with mean ~µ and
standard deviation ~σ. The covariance matrix for X is the scatter matrix S divided
by the number of data points n. Set C = S/n to be the covariance matrix.

We define a particular distance from a point ~x to a set X, Mahal(~x,X), called
Mahalanobis distance. It is defined as follows:

Mahal(~x,X) =
√

(~x− ~µ)TC−1(~x− ~µ).

Suppose ~x and X are such that ~µ = ~0 with the PCA directions coinciding with
the principal axes. In this case the inverse of the covariance matrix is diagonal with
diagonal entries consisting of the reciprocal of the variance in each of the PCA direc-
tions. If we set ~x = [x1, x2, . . . , xd] and the entries in C−1 to be 1/σ2

1, 1/σ2
2, . . . , 1/σ2

d

then
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Mahal(~x,X) =

√√√√ d∑
k=1

x2
i

σ2
i

.

Hence, Mahalanobis distance is in fact standardized Euclidian distance, since
shifting and transforming a data set does not affect Mahalanobis distance (exercise).

Example 6.5 Consider the 212 points of data we used in Example 6.4, which we
will designate as X with mean µ = ~0. We can skip subtracting the mean of the data
from each data point, since it is zero. We put the data in the rows of a matrix which
we shall designate by A. Then the covariance matrix is approximately

C = 1
212A

TA =

 10.2170 1.2838 −0.0047
1.2838 14.2170 −0.0068
−0.0047 −0.0068 0.0002

 .
Consider the point ~x = (15, 20, 0.1) (see Figure 6.11). Then the Mahalanobis distance
from ~x to the data X is approximately

Mahal(P,X) =
√
~xTC−1~x = 11.4658.

Note that there was no need to subtract the mean of the data from ~x since the mean
is zero. Compare this to the Euclidean distance from ~x to X (i.e. to the mean of the
data which is zero) which is approximately

√
~xT~x = 25.0002. One way to interpret

the fact that the Mahalanobis distance is smaller is that the data is spread more so
in the direction of the point ~x, loosely speaking.

EXERCISES

1. Consider the following two dimensional data:

{ (0, 0), (0, 1), (1, 1), (1, 2), (2, 3) }.

As in Example 6.5,

a. Compute the Mahalanobis distance from (3, 2) to this data set.

b. Compute the Euclidean distance from (3, 2) to this data set.

2. Consider the following three dimensional data:

{ (0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3) }.

As in Example 6.5,
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Figure 6.11 Plot of the data set X and the point ~x.

a. Compute the Mahalanobis distance from (3, 2, 1) to this data set.

b. Compute the Euclidean distance from (3, 2, 1) to this data set.

3. Prove that rigidly shifting a point and a data set does not change the Maha-
lanobis distance from the point to the data set.

4. Prove that transforming a point and a data set via an orthogonal matrix does
not change the Mahalanobis distance from the point to the data set.

6.6 DATA SPHERING

Data sphering is loosely speaking a way to normalize data so that different data can
be compared and also so that one can compute invariants.

In the case of feature data, data sphering levels the playing field of the various
features so that no feature plays a stronger role than the others. Mathematically, it
results in data which has variance equal to one in any direction through the mean of
the data. Equivalently, it transforms the data so that Mahalanobis distance has been
reduced to Euclidean distance (exercise).

Let A ∈ Mnd be a matrix whose rows consist of points in the data and let’s
assume the mean is ~0. We must also assume that the points have distinct values in
each of its given coordinates in order for ATA to be invertible (which is often the
case with data sets). Since ATA is symmetric, it is diagonalizable by an orthogonal
matrix, i.e. there exists P ∈Mdd with P TP = I = PP T such that P T (ATA)P = D,
where D is a diagonal matrix. If we set S = APD−1/2, we have
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STS = (APD−1/2)T (APD−1/2) = D−1/2P TATAPD−1/2 = D−1/2DD−1/2 = I.

Hence, S is sphered data, since the variance in every direction equals one. Recall
in Section 6.3 that AP is the data transformed so that the its coordinates are in
terms of the data’s principal components. Therefore, when we multiply AP by D−1/2

we are dividing each coordinate by the standard deviation of that coordinate.

Example 6.6 Consider again the four data points (0, 1), (0,−1), (1, 2), (3, 2) from
Example 6.1. In that example we subtracted the mean of the data from each point and
inserted them in the rows of a matrix

B =


−1 0
−1 −2

0 1
2 1

 .
In Example 6.3. we computed

P =
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
and D =

[
10 0
0 2

]
.

Therefore, the sphered data will be

S = BPD1/2 =


−1 0
−1 −2

0 1
2 1


[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

] [
10 0
0 2

]−1/2

=


−
√

5/10 1/2
−3
√

5/10 −1/2√
5/10 1/2

3
√

5/10 −1/2

 .

One can easily check that STS = I.

Example 6.7 Let’s return to the data with mean ~0 explored in Example 6.4. If A is
a matrix whose rows consist of the points in the data, we computed for the scatter
matrix ATA that (approximately)

P =

 0.0004 −0.9596 −0.2815
0.0004 0.2815 −0.9596
1.0000 0.0003 0.0005

 and D =

 0.03 0 0
0 2086.18 0
0 0 3093.84

 .
One can again check that STS ≈ I. In Figure 6.12. we plot the original data versus
the sphered data. We set the axes to have the same aspect ratio. As you can see the
original data is very flat in the z direction, however after sphering we removed the
flatness of the data.
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Figure 6.12 On the left is the original data while on the right is the resulting sphered
data.

EXERCISES

1. Consider the following two dimensional data:

{ (0, 0), (0, 1), (1, 1), (1, 2), (2, 3) }.

As was done in Example 6.6, sphere this data.

2. Consider the following three dimensional data:

{ (0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3) }.

As was done in Example 6.6, sphere this data.

3. Prove that for sphered data, Mahalanobis distance and Euclidean distance co-
incide.

6.7 FISHER LINEAR DISCRIMINANT FUNCTION

The Fisher LDF is one example of a linear discriminant function and has a very
intuitive definition which we explain now. Consider two different classes of objects
C1 and C2 each of which is represented by a data set of features. As a first step we
shall project all the data in both classes onto a line thus creating univariate data P1
and P2. Figure 6.13 illustrates two classes with two possible lines (above) and their
corresponding projections (below).
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Figure 6.13 Two classes projected onto two different lines.

Notice that in the figure on the top left the line of projection better separates the
projected data into two separate distributions as opposed to the projection on the
right. Our goal is to find the line of projection that “best” separates the two classes
of projected data. Once we find the “best” separation, a line perpendicular to that
line of projection will be our Fisher LDF. All this will become clear in Example 6.8.
Let ~a be a unit vector parallel to the line on which we project the data and ~µi be the
mean of class Ci for i = 1, 2 and µi be the mean of projection Pi for i = 1, 2. The
projection x of any vector ~x onto a line parallel to ~a is defined by

x = comp~a~x = ~a · ~x
|~a|

= ~a · ~x = ~aT~x.

We now define two measures on the two classes. Recall, our goal is the find the
line which “best” separates the two classes C1 and C2.

(1.) Scatter between two classes: This will simply be the Euclidian distance
between the two projected means, i.e.

|µ1 − µ2| = |~aT ~µ1 − ~aT ~µ2| = |~aT (~µ1 − ~µ2)|

A line which “best” separates the classes should maximize this measure, or equiv-
alently maximize
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(µ1 − µ2)2 = [~aT (~µ1 − ~µ2)]2 = ~aT (~µ1 − ~µ2)~aT (~µ1 − ~µ2) = ~aT (~µ1 − ~µ2)(~µ1 − ~µ2)T~a.

Define SB = (~µ1 − ~µ2)(~µ1 − ~µ2)T called the scatter between matrix.

(2.) Scatter within a class: This is nearly the variance of the class Ci and will
be denoted by σ̃2

i for i = 1, 2 and is defined by

σ̃2
i =

∑
xk∈Pi

(xk − µi)2 =
∑
~xk∈Ci

[~aT~xk − ~aT ~µi]2 =
∑
~xk∈Ci

[~aT (~xk − ~µi)]2

=
∑
~xk∈Ci

~aT (~xk − ~µi)~aT (~xk − ~µi) =
∑
~xk∈Ci

~aT (~xk − ~µi)(~xk − ~µi)~a

= ~aT

 ∑
~xk∈Ci

(~xk − ~µi)(~xk − ~µi)

~a.
Define Si =

∑
~xk∈Ci

(~xk−~µi)(~xk−~µi), which we’ve seen is the scatter matrix for class
Ci. Then the scatter within matrix, SW = S1 + S2. A line which “best” separates
the classes should minimize

σ̃2
i + σ̃2

i = ~aTS1~a+ ~aTS2~a = ~aTSW~a.

We need to construct a function which takes into account both these measures, a
function which at the same time maximizes ~aTSB~a while minimizing ~aTSW~a. One
such function is

f(~a) = ~aTSB~a

~aTSW~a
.

If we maximize f(~a), we will be maximizing ~aTSB~a while minimizing ~aTSW~a. The
following theorem tells us how to find this maximum.

Theorem 6.2 A unit vector parallel to the line of projection, which maximizes f(~a)
is parallel to a vector which is a solution to the linear system SWX = ~µ1 − ~µ2.

Proof 6.1 In order to find the maximum, we need to find the critical points of f by
solving ∇f = ~0, i.e. solve

∇f(~a) = (2SB~a)(~aTSW~a)− (~aTSB~a)(2SW~a)
(~aTSB~a)2 = ~0.

This equation reduces to

(2SB~a)(~aTSW~a) = (~aTSB~a)(2SW~a),
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or equivalently,

SB~a = λSW~a where λ = ~aTSB~a

~aTSW~a
, a scalar.

The solution to this equation involves generalized eigenvectors, something we have
not covered in this text, however we can further simplify this problem. Note that SB~a
is parallel to ~µ1 − ~µ2. Indeed, since

SB = (~µ1 − ~µ2)(~µ1 − ~µ2)T ,

which implies

SB~a = (~µ1 − ~µ2)(~µ1 − ~µ2)T~a = α(~µ1 − ~µ2) where α = (~µ1 − ~µ2)T~a, a scalar.

Hence, α(~µ1 − ~µ2) = λSW~a or equivalently SW~a = β(~µ1 − ~µ2) where β = λ/α.
Now β can be dropped, since we are simply looking for a vector parallel to the optimal
line. To obtain the unit vector ~a we simply normalize the solution to the system
SWX = ~µ1 − ~µ2. �

Example 6.8 We find a unit vector ~a parallel to the line of projection which maxi-
mizes f(~a) for the classes C1 = { (−2, 0), (−2,−1) } and C2 = { (0, 2), (1, 2) }.

~µ1 = 1
2[(−2, 0) + (−2,−1)] = (−2,−1/2) and ~µ2 = 1

2[(0, 2) + (1, 2)] = (1/2, 2).

To form the scatter matrix for C1, first subtract ~µ1 from each point in C1 and place
the results in rows of a matrix, say

A1 =
[

0 1/2
0 −1/2

]
.

Then the scatter matrix for C1,

S1 = AT1A1 =
[

0 0
1/2 −1/2

] [
0 1/2
0 −1/2

]
=
[

0 0
0 1/2

]
.

To form the scatter matrix for C2, first subtract ~µ2 from each point in C2 and place
the results in rows of a matrix, say

A2 =
[
−1/2 0

1/2 0

]
.

Then the scatter matrix for C2,
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S2 = AT2A2 =
[
−1/2 1/2

0 0

] [
−1/2 0

1/2 0

]
=
[

1/2 0
0 0

]
.

Therefore,

SW = S1 + S2 =
[

1/2 0
0 1/2

]
and S−1

W =
[

2 0
0 2

]
.

Thus, we can solve X = S−1
W (~µ1 − ~µ2) =[

2 0
0 2

]([
0

−1/2

]
−
[

3/2
1

])
=
[

2 0
0 2

] [
−3/2
−3/2

]
=
[
−3
−3

]
.

Hence, the unit vector we seek is ~a = [
√

2/2,
√

2/2].

Note that the Fisher LDF is a line perpendicular to the line of projection. There
are several possibilities for which line to choose. One option is to choose the line
passing through the midpoint of ~µ1 and ~µ2. Another option is to choose a line which
minimizes the number of data points on the wrong side of the line, called the minimal
total error (MTE) line.

Example 6.9 Returning to Example 6.8, let’s illustrate each of the two lines men-
tioned above and graph them both together with the points in each class. However,
in this example the two lines coincide, since the first line perfectly separates the two
classes and thus also minimizes the total error (which equals zero, since nothing has
been misclassified). In Figure 6.14, the dotted line represents the optimal line on which
to project the data and the solid line is the Fisher LDF.

Example 6.10 We will repeat the algorithm for a real world 3-dimensional data set
and determine the Fisher LDF. One place to find real world data is at the UC, Irvine
Machine Learning Repository [2]. We chose the first, second and fifth features of a
data set entitled “Breast Cancer Wisconsin (Diagnostic)”. In this case the Fisher LDF
will be a plane dividing the two classes, but since the two classes overlap it will not
be a perfect separation as is typical for real world data (see Figure 6.15).

We begin by subtracting from each class its mean and place the results in the rows
of a matrix, say A1 and A2 for classes C1 and C2, respectively. Then we compute the
scatter matrix for each class, S1 = AT1A1 and S2 = AT2A2 so that the scatter within
matrix is SW = S1 + S2, a 3 × 3 matrix with very large entries not worth listing
here. Then the vector parallel to the Fisher optimal line of projection is obtained by
computing S−1

W ( ~µ1 − ~µ2) where

~µ1 − ~µ2 ≈ [5.3163, 3.6901, 0.0104].

If we normalize S−1
W ( ~µ1 − ~µ2) we get
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Figure 6.14 Two classes projected on the dotted line and divided by the solid Fisher
LDF line.

~a ≈ [0.8041,−0.2408,−0.5436].

Now ~a is normal to the plane of separation and we want the midpoint of the two class
means to be a point on the plane, i.e. the point

1
2( ~µ1 + ~µ2) ≈ [14.8047, 19.7598, 0.0977].

Therefore, our plane has the equation

[
0.8041 −0.2408 −0.5436

]  x
y
z

 =
[

0.8041 −0.2408 −0.5436
]  14.8047

19.7598
0.0977



or equivalently, z = 1.4793x− 0.4431y − 13.0476.

In Figure 6.16, we include the Fisher LDF plane between the two classes of data.

As stated earlier, we cannot expect to have perfect separation when it comes to
real world data. In fact, around 16.98% of the first class is on the wrong side of the
plane and 14.57% of the second class. The Fisher LDF plane becomes the classifier
in the following sense: Given a new object for which we do not know to which class
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Figure 6.15 Two classes, black and grey, plotted in 3-dimensional space.

it belongs, we collect the same three features for that object and map it in feature
space. Our prediction as to which class the unknown object belongs depends on which
side of the Fisher LDF plane the point lies. In Section 6.8, we will explain in more
generality this process.

EXERCISES

1. Consider the following two classes of data:

C1 = { (0, 0), (0, 1) } and C2 = { (1, 1), (1, 2), (2, 3) }.

a. Following the same steps as in Example 6.8 in this section, find a unit vector
corresponding to the line of optimal projection.

b. Following the same steps as in Example 6.9 in this section, plot the classes,
the line of projection and a Fisher LDF though the midpoint of the two class
means.

2. Consider the following two classes of data:

C1 = { (0, 0,−1), (1, 0, 1) } and C2 = { (1, 1, 0), (1, 1, 2), (2, 3, 1) }.
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Figure 6.16 Two classes, black and grey, plotted in 3-dimensional space with the Fisher
LDF plane.

a. Following the same steps as in Example 6.10 in this section, find a unit vector
corresponding to the line of optimal projection.

b. Following the same steps as in Example 6.10 in this section, plot the classes
and the Fisher LDF (which is a plane) though the midpoint of the two class
means.

3. Consider the following two classes of data:

C1 = { (6, 0), (0, 6) } and C2 = { (−1,−1), (0,−5), (−5, 0) }.

Find the equation of the Fisher LDF (in the form y = mx + b) which passes
through the midpoint of the means of the two classes.

6.8 LINEAR DISCRIMINANT FUNCTIONS IN FEATURE SPACE

In Section 6.7, we discussed a specific example of a linear discriminant function
(LDF) called the Fisher LDF. In this section, we discuss LDFs in general as well as
modifications of feature space. Recall that feature space is Rd for some dimension
d and points in feature space consist of features collected from objects, and that
features come in two varieties: Numerical and categorical. We will be focusing on
numerical features. Of course, you can make categorical features numerical simply
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by replacing words by numbers, but in many cases this is a weak labeling when the
categorical features do not have an ordering of any sort (e.g. the type of grape used
to make a wine).

We begin with a discussion of the general idea of an LDF, but at first we shall
make two assumptions. First, that the two classes of data are linearly separable.
Second, that our line of separation passes through the origin. Later in the section we
will remove these assumptions.

Definition 6.1 A linear discriminant function is a map g : Rd → R having the
form

g(x1, x2, . . . , xd) = a1x1 + a2x2 + · · ·+ adxd, where a1, a2, . . . , ad ∈ R.

We can denote the LDF using shorthand vector notation as follows. Set ~x =
[x1, x2, . . . , xd] and ~a = [a1, a2, . . . , ad], then

g(~x) = ~a · ~x = ~aT~x, viewing vectors as column matrices.

In Section 6.7, we equated the LDF with the separating line/plane/hyperplane, but in
fact this is not so. The hyperplane of separation is in fact the equation g(~x) = 0.
Let’s focus on two and three dimensions so that we have a mental picture of what
things look like.

Example 6.11 In R2, g(x, y) = ax+ by and so the line of separation is ax+ by = 0
or y = −a

bx (see Figure 6.17).

Example 6.12 In R3, g(x, y, z) = ax + by + cz and so the plane of separation is
ax+ by + cz = 0 or z = −a

cx−
b
cy (see Figure 6.18).

Observe that the vector ~a is always normal to the separating line/plane/hyper-
plane, since ~a ·~x = 0. Let’s assume that ~a is pointing at the class C1. Then any point
in C1 (viewed as a vector) makes an acute angle with ~a, while any vector in C2 makes
an obtuse angle with ~a. Indeed, since ~a · ~x = |~a||~x| cos θ this is equivalent to saying
for any ~x∗ ∈ C1 ∪ C2,

If g(~x∗) > 0 then ~x∗ ∈ C1, and

If g(~x∗) < 0 then ~x∗ ∈ C2.

Figures 6.17 and 6.18 illustrate these comments as well. Now we would like a state-
ment about our separating LDF which does not depend on what class we are in as
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Figure 6.17 Two classes, C1 and C2, together with a line of separation.

Figure 6.18 Two classes, C1 and C2, together with a plane of separation.

is the case for the two conditional statements above. To resolve this we look at what
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is called normalized feature space which is very easy to explain. Assuming again
that ~a points at C1, we first define

−C2 = { −~x | ~x ∈ C2 }.

Set Ĉ = C1∪−C2. Now the separating LDF we seek simply must satisfy the condition
g(~x) > 0 for all ~x ∈ Ĉ (see Figure 6.19).

Figure 6.19 Two classes, C1 and C2, together with −C2.

In general, ~a will not be uniquely determined by this condition. For instance, in
R2, choices of ~a which produce separable LDFs lie within a sector of 2-space (see
Figure 6.20).

If we hope to produce an algorithm for determining ~a, then we need to add an
additional condition in order to make ~a unique. There are a number of different
conditions one can add in order to make ~a unique, and different conditions will lead
to different ~a. Some examples of conditions one can add include

1. Maximize the minimal distance between points in C1 ∪ C2 and the separating
LDF. This leads to what is called a linear support vector machine (which is
beyond the scope of this text).

2. Minimize the sum of the squares of the distances between points in C1 ∪ C2
and the separating LDF. This leads to a minimal square error LDF which will
be discussed in Section 6.9.

There is one last change we need to make to feature space before we proceed to
the next section. This alteration will allow us to remove the assumption that our
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Figure 6.20 Shaded region indicates possible choice of separating ~a.

separating LDF must pass through the origin. The basic idea is to lift the classes one
dimension higher, divide the results with a hyper-plane through the origin and then
project the hyper-plane back down to the original dimension of the classes to obtain
the separating LDF.

Definition 6.2 Given two classes C1 and C2 in feature space and ~x ∈ C1∪C2, define
~y = [~x, 1] and Ĉi = { ~y = [~x, 1] | ~x ∈ Ci } for i = 1, 2. We say that Ĉ1 and Ĉ2 exist
in augmented feature space.

We now give an algorithm for finding a separating LDF for classes C1 and C2
which does not have to pass through the origin (refer to Figure 6.21).

1. Given two classes C1 and C2, form the sets Ĉ1 and Ĉ2.

2. Find a separating LDF for Ĉ1 and Ĉ2, say g(~x, z) = 0.

3. The separating LDF for C1 and C2 is then g(~x, 1) = 0, i.e. replace z by 1 in
g(~x, z) = 0.

In Section 6.9, we will illustrate this algorithm using concrete data and a specific
kind of LDF called the minimal square error LDF.

EXERCISES

1. Prove that if g(~x, z) = 0 separates Ĉ1 and Ĉ2, then g(~x, 1) = 0 separates C1
and C2. Hint: use the normalized feature space definition of a separating LDF.
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Figure 6.21 Illustration of algorithm for finding a separating LDF not passing through
the origin.

6.9 MINIMAL SQUARE ERROR LINEAR DISCRIMINANT FUNCTION

The Minimal Square Error Linear Discriminant Function (MSE LDF) will give us
another application of best approximating an overdetermined system. Recall that a
separating LDF with nomal vector ~a will have the property that ~a · ~x > 0 for all
~x ∈ C1∪−C2 in normalized feature space and such an ~a is not unique in general. We
can pin down ~a to be unique if we add the following conditions: Suppose C1∪−C2 =
{ ~x1, ~x2, . . . , ~xn }. The conditions we will add are

~a · ~xi = bi, a fixed positive number, i = 1, 2, . . . , n.

If we let A be the matrix whose rows are ~x1, ~x2, . . . , ~xn and B a column vector
with entries b1, b2, . . . , bn, then ~a is a solution to AX = B. In general this linear
system will be overdetermined, so we will choose ~a to be the best approximation to
a solution to AX = B, i.e. ~a = (ATA)−1ATB.

Example 6.13 Consider again the classes C1 = { (−2, 0), (−2,−1) } and C2 =
{ (0, 2), (1, 2) } from Example 6.8. First, we will find an MSE LDF through the
origin. Let’s choose b1 = b2 = b3 = b4 = 1 for our MSE LDF. Now −C2 =
{ (0,−2), (−1,−2) }, so we form the matrix
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A =


−2 0
−2 −1

0 −2
−1 −2

 and ~a = (ATA)−1ATB =
[
−5/13
−5/13

]
.

Therefore, the separating line is [−5/13,−5/13] · [x, y] = 0 or y = −x, which leads
to the same solution found for the Fisher LDF in Example 6.9. There is a reason for
this which will be explained shortly.

Next, we will find an MSE LDF that does not have to go through the ori-
gin by looking in augmented feature space. We form the augmented classes Ĉ1 =
{ (−2, 0, 1), (−2,−1, 1) } and Ĉ2 = { (0, 2, 1), (1, 2, 1) }. again, we will set
b1 = b2 = b3 = b4 = 1. Now −Ĉ2 = { (0,−2,−1), (−1,−2,−1) }, so we form
the matrix

A =


−2 0 1
−2 −1 1

0 −2 −1
−1 −2 −1

 and ~a = (ATA)−1ATB =

 −5/13
−5/13

0

 .

Therefore, the separating plane (and line) is [−5/13,−5/13, 0]·[x, y, z] = 0 or y = −x

The following result (proof omitted) explains the connection between the Fisher
LDF and MSE LDF.

Theorem 6.3 Let C1 and C2 be two classes of size n1 and n2, respectively. Set
n = n1 + n2. The Fisher LDF is a special case of an MSE LDF with the following
values of b1, b2, . . . , bn:

n1

n
, . . . ,

n1

n︸ ︷︷ ︸
n1 times

,
n2

n
, . . . ,

n2

n︸ ︷︷ ︸
n2 times

.

This explains why in Example 6.13 we obtained the same results as the Fisher
LDF, since when the classes are equal in size, the values of bi will all be equal.

Example 6.14 Let’s consider an example with the classes not of the same size.
Let C1 = { (−2, 0), (−2,−1) } and C2 = { (0, 2), (1, 2), (2, 2) }. Then Ĉ1 =
{ (−2, 0, 1), (−2,−1, 1) }, C2 = { (0, 2, 1), (1, 2, 1), (2, 2, 1) } and −C2 =
{ (0,−2,−1), (−1,−2,−1), (−2,−2,−1) }. First, we will compute the MSE LDF
with all the bi = 1, (i = 1, 2, 3, 4, 5). We form the matrix

A =


−2 0 1
−2 −1 1

0 −2 −1
−1 −2 −1
−2 −2 −1

 and ~a = (ATA)−1ATB =

 −18/107
−60/107

35/107

 .
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Therefore, the separating plane for Ĉ1 and Ĉ2 is

[−18/107,−60/107, 35/107] · [x, y, z] = 0 or 18x+ 60y − 35z = 0.

To obtain the separating line for C1 and C2 we set z = 1 and get 18x + 60y = 35.
Figure 6.22 is a concrete example of the general illustration presented in Figure 6.21.

Figure 6.22 Concrete example of algorithm for finding a separating LDF not passing
through the origin.

Second, we produce the Fisher LDF by assigning the values b1 = 2/5, b2 = 2/5,
b3 = 3/5, b4 = 3/5 and b5 = 3/5. In this case,

~a = (ATA)−1ATB =

 −9/107
−30/107

34/535

 .
Therefore, the separating plane for Ĉ1 and Ĉ2 is

[−9/107,−30/107, 34/535] · [x, y, z] = 0 or 45x+ 150y − 34z = 0.

To obtain the separating line for C1 and C2 we set z = 1 and get 45x + 150y = 34.
In Figure 6.23, we plot both MSE separating lines together with the two classes.

We make a couple of remarks before ending this section. First, as we saw with the
Fisher LDF, the MSE LDF still functions even when the two classes are not linearly
separable, however there are instances of linearly separable classes for which the line
corresponding to an MSE LDF does not succeed in separating these two classes. A
solution to this problem is the Ho-Kashyap LDF which is a variation of the MSE
LDF which guarantees to separate classes which are linearly separable, however the
details of this LDF is beyond the scope of this text.
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Figure 6.23 Two MSE LDFs separating the two classes. The lighter line is the Fisher
LDF

EXERCISES

1. Consider the following two classes of data:

C1 = { (0, 0), (0, 1) } and C2 = { (1, 1), (1, 2), (2, 3) }.

a. Using augmented feature space, find the MSE LDF for C1 and C2 having all
bi’s equal to zero.

b. Using augmented feature space, find the Fisher LDF for C1 and C2.

c. Graph both lines and the classes as was done in Example 6.14.

2. Consider the following two classes of data:

C1 = { (0, 0,−1), (1, 0, 1) } and C2 = { (1, 1, 0), (1, 1, 2), (2, 3, 1) }.

a. Using augmented feature space, find the MSE LDF for C1 and C2 having all
bi’s equal to zero.

b. Using augmented feature space, find the Fisher LDF for C1 and C2.



C H A P T E R 7

Quadratic Forms

In this chapter, we introduce the notion of a quadratic form. Quadratic forms
are prevalent in linear algebra and have many applications. In Section 7.1, we

introduce the notion of a quadratic form and the associated definitions of positive
and negative definite and semi-definite and indefinite. In Section 7.2, we derive the
first test for determining if a quadratic form is positive or negative, definite or semi-
definite, or indefinite called the Principal Minor Criterion. In Section 7.3, we derive
the second test for determining if a quadratic form is positive or negative, definite or
semi-definite, or indefinite called the Eigenvalue Criterion. In Section 7.4, we apply
the criteria developed in Sections 7.2 and 7.3 to analyze critical points to determine if
they are extrema for a multivariate function. In Section 7.5 we generalize the notion
of a quadratic form.

7.1 INTRODUCTION TO QUADRATIC FORMS

In this section, we introduce the notion of a quadratic form and the associated defi-
nitions of positive and negative definite and semi-definite.

Definition 7.1 Let A be a symmetric n×n matrix. The quadratic form associated
with A, written QA, is a map from Rn to R defined by QA(x) = xTAx for x ∈ Rn.

Example 7.1 Let A =
[

1 −2
−2 5

]
, then

QA(x1, x2) =
[
x1 x2

] [ 1 −2
−2 5

] [
x1
x2

]
=
[
x1 x2

] [ x1 − 2x2
−2x1 + 5x2

]

= x1(x1 − 2x2) + x2(−2x1 + 5x2) = x2
1 − 4x1x2 + 5x2

2

A couple of things to notice about QA: First, the formula consists of a sum of
terms each of which is degree two. Secondly the coefficients of the terms can quickly
be obtained from the entries in the matrix A.
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Example 7.2 To illustrate the last comment about quadratic forms, let’s recover the
matrix A associated with the quadratic form 2x2

1 − x2
2 + 4x1x2 − 2x2x3. The diagonal

entry aii of A will consist of the coefficient of the pure square terms x2
i , while the

entries off the diagonal, aij and aji (i 6= j), will each consist of half the coefficient
of the mixed term xixj, so that

A =

 2 2 0
2 −1 −1
0 −1 0


We now introduce some fundamental definitions associated with quadratic forms.

Definition 7.2 The symmetric n×n matrix A and its associated quadratic form QA

is called

1. positive semi-definite if QA(x) ≥ 0 for all x ∈ Rn.

2. positive definite if QA(x) > 0 for all non-zero x ∈ Rn.

3. negative semi-definite if QA(x) ≤ 0 for all x ∈ Rn.

4. negative definite if QA(x) < 0 for all non-zero x ∈ Rn.

5. indefinite if there exist x1, x2 ∈ Rn such that QA(x1) > 0 and QA(x2) < 0.

Example 7.3 Here are two examples illustrating these definition.

1. Consider the quadratic form already introduced, namely QA(x1, x2) = x2
1 −

4x1x2 + 5x2
2 = (x1 − 2x2)2 + x2

2. If x1 6= 2x2, then QA(x1, x2) > 0, and if
x1 = 2x2 and (x1, x2) 6= (0, 0), then QA(x1, x2) = x2

2 > 0. Hence, QA is
positive definite.

2. If A =

 −1 0 0
0 1 0
0 0 3

, then QA(x1, x2, x3) = −x2
1 + x2

2 + 3x2
3. Notice that

QA(1, 0, 0) = −1 < 0 while QA(0, 1, 0) = 1 > 0. Thus, QA is indefinite.

EXERCISES

1. Compute the associated quadratic form for each of the following symmetric
matrices:

a. A =
[

8 1
1 2

]

b. B =
[
−6 1
1 0

]
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c. C =

 2 −1 2
−1 0 0

2 0 −3


2. Recover the symmetric matrix for each of the following symmetric forms:

a. QA(x1, x2) = x2
1 − 6x1x2 − 2x2

2

b. QB(x1, x2) = 2x1x2 + 3x2
2

c. QC(x1, x2, x3) = 2x2
1 − 2x1x2 − x2

2 + 4x2x3

3. Decide whether each of the following quadratic forms are positive (or negative),
semi-definite (or definite), or indefinite:

a. QA(x1, x2) = x2
1 − 6x1x2 + 11x2

2

b. QB(x1, x2) = 2x2
1 + 3x2

2

c. QC(x1, x2, x3) = x2
1 + 2x2

2 + 4x2
3

d. QD(x1, x2, x3) = x2
1 + 2x2

3

4. State and prove a result regarding diagonal matrices as to whether they are
positive (or negative), semi-definite (or definite), or indefinite.

5. Prove that the diagonal entries of a positive definite symmetric matrix must be
positive.

6. Let A ∈Mmn.

a. Prove that ATA is symmetric.

b. Prove that ATA is positive semi-definite.

c. Prove that if the columns of A are linearly independent, then A is positive
definite.

7.2 PRINCIPAL MINOR CRITERION

In this section, we develop a test for determining whether a symmetric matrix and its
associated quadratic form is positive or negative, definite or semi-definite or indefinite.
This test involves computing certain minors in the matrix A called the principal
minors. We start off with a lemma which will be useful as an inductive step in the
verification of the test.

Lemma 7.1 Consider the 2× 2 symmetric matrix A =
[
a b
b c

]
a. A is positive definite iff a > 0 and |A| > 0.

b. A is negative definite iff a < 0 and |A| > 0.
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Proof 7.1 Consider the quadratic form associated with A, namely QA(x1, x2) =
ax2

1 + 2bx1x2 + cx2
2. We prove only part a, since the proof of part b has an very

similar argument.
We first assume that a > 0 and |A| > 0. We wish to show for any (x1, x2) 6= (0, 0)

we have QA(x1, x2) > 0. We do this in two cases.
Case 1: x2 = 0.

In this case x1 6= 0 and so QA(x1, x2) = ax2
1 > 0.

Case 2: x2 6= 0.
In this case we can write (x1, x2) = (tx2, x2), where t = x1/x2. Then

QA(x1, x2) = a(tx2)2 + 2b(tx2)x2 + cx2
2 = (at2 + 2bt+ c)x2

2

Set φ(t) = at2 + 2bt+ c. Notice that φ′(t) = 2at+ 2b and so φ has a critical value
at t∗ = −b/a. Since φ′′(t) = 2a > 0 for all t, this implies that t∗ is a global minimum.
In other words, for all t ∈ R we have

φ(t) ≥ φ(t∗) = a(−b/a)2 + 2b(−b/a) + c = c− b2/a = (1/a)|A| > 0

Therefore, QA(x1, x2) = φ(t)x2
2 > 0.

For the reverse direction, assume now that QA is positive definite. So in particular,
QA(1, 0) > 0, i.e. a > 0. Now we show |A| > 0. Note that QA(x1, x2) > 0 when
x2 6= 0, so borrowing work from the reverse direction we know that φ(t) > 0 for all
t ∈ R. This implies that the quadratic polynomial at2 + 2bt+ c has no real roots. This
in turn implies that the discriminant in the quadratic formula, (2b)2 − 4ac < 0. But
this inequality is equivalent to −4|A| < 0 and so |A| > 0. �

Example 7.4 Now it’s easy to check the earlier example A =
[

1 −2
−2 5

]
is positive

definite, since a = 1 > 0 and |A| = 1 > 0.

Our goal is to generalize this lemma to arbitrary n×n symmetric matrices. First,
we define some terminology and notation.

Definition 7.3 Let A = [aij ] be an n × n matrix. The kth principal minor of A,
written

∆k =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1k
a21 a22 · · · a2k

...
... . . . ...

ak1 ak2 · · · akk

∣∣∣∣∣∣∣∣∣∣
Theorem 7.1 Let A be an n× n symmetric matrix.

1. A is positive definite iff ∆k > 0 for all k = 1, 2, . . . , n.

2. A is negative definite iff (−1)k∆k > 0 for all k = 1, 2, . . . , n.
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3. If ∆k > 0 for k = 1, 2, . . . , n− 1 and ∆n = 0 then A is positive semi-definite.

4. If (−1)k∆k > 0 for k = 1, 2, . . . , n − 1 and ∆n = 0 then A is negative semi-
definite.

5. If for some i 6= j we have aiiajj − a2
ij < 0, then A is indefinite.

Proof 7.2 Part 5, we leave as an exercise. For the rest we will only show the proof
of part 1, since the other parts are done in a similar manner. The proof of part 1 is
a proof by induction on n, but in order to simplify our notation without losing the
depth of the argument, we will simply show that n = 2 implies n = 3. Therefore, we
wish to prove the result for

A =

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 with associated quadratic form

QA(x1, x2, x3) = a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3.

For one direction, we assume ∆1, ∆2, ∆3 > 0 and assume part 1. holds
for symmetric 2 × 2 matrices. We need to show that QA(x1, x2, x3) > 0 for any
(x1, x2, x3) 6= (0, 0, 0). We consider two cases.
Case 1: x3 = 0.

Set Â =
[
a11 a12
a12 a22

]
. Notice that in this case, QÂ = QA and since ∆1, ∆2 > 0,

by assumption QÂ is positive definite. Therefore, so is QA.
Case 2: x3 6= 0.

In this case we can write x1 = sx3 and x2 = tx3 for some s, t ∈ R. But then

QA(x1, x2, x3) = a11(sx3)2 + a22(tx3)2 + a33x
2
3 + 2a12(sx3)(tx3) + 2a13(sx3)x3

+ 2a23(tx3)x3 =

(a11s
2 + a22t

2 + 2a12st+ 2a13s+ 2a23t+ a33)x2
3.

Set φ(s, t) = a11s
2 + a22t

2 + 2a12st + 2a13s + 2a23t + a33. We show now that
φ(s, t) > 0 for all ordered pairs (s, t). This will imply QA(x1, x2, x3) = φ(s, t)x2

3 > 0
which proves the result in Case 2. The argument follows from content covered in
multivariate calculus (something which will be generalized later on in this chapter).
First, we look for critical points of φ by solving ∇φ = 0. This leads to the following
linear equations:

φs = 2a11s+ 2a12t+ 2a13 = 0
φt = 2a12s+ 2a22t+ 2a23 = 0
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Rewriting this as a matrix equation yields[
a11 a12
a12 a22

] [
s
t

]
=
[
−a13
−a23

]

Notice that the coefficient matrix of this linear system is Â. Since |Â| = ∆2 > 0
this implies the system has a unique solution, say (s∗, t∗). To classify this critical
point we compute the second order partials φss = 2a11, φst = 2a12 and φtt = 2a22.
Since φss = 2∆1 > 0 and φssφtt − φ2

st = 4∆2 > 0 this implies that (s∗, t∗) is a global
minimum for φ (you cannot have a unique critical point which is local but not global).
In other words, for all ordered pairs (s, t) we have φ(s, t) ≥ φ(s∗, t∗). We will now
show that φ(s∗, t∗) > 0 from which we get our result, since

QA(x1, x2, x3) = φ(s, t)x2
3 ≥ φ(s∗, t∗)x2

3 > 0

Claim: φ(s∗, t∗) > 0
To see this we return to the system for which (s∗, t∗) was the unique solution. In

other words

a11s
∗ + a12t

∗ + a13 = 0
a12s

∗ + a22t
∗ + a23 = 0

Multiplying the top equation by s∗ and the bottom equation by t∗ yields

a11(s∗)2 + a12s
∗t∗ + a13s

∗ = 0
a12s

∗t∗ + a22(t∗)2 + a23t
∗ = 0

Utilizing these last equations we compute and simplify

φ(s∗, t∗) = a11(s∗)2 + a22(t∗)2 + 2a12s
∗t∗ + 2a13s

∗ + 2a23t
∗ + a33 =

[(s∗)2 + a12s
∗t∗ + a13s

∗] + [a12s
∗t∗ + a22(t∗)2 + a23t

∗] + [a13s
∗ + a23t

∗ + a33] =

0 + 0 + a13s
∗ + a23t

∗ + a33 = a13s
∗ + a23t

∗ + a33

Using Cramer’s Rule we can compute directly the values of s∗ and t∗ as

s∗ =

∣∣∣∣∣ −a13 a12
−a23 a22

∣∣∣∣∣
∆2

and t∗ =

∣∣∣∣∣ a11 −a13
a21 −a23

∣∣∣∣∣
∆2

Putting all that we derived so far together we have

∆2φ(s∗, t∗) = a13s
∗∆2 + a23t

∗∆2 + a33∆2 =
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a13

∣∣∣∣∣ −a13 a12
−a23 a22

∣∣∣∣∣+ a23

∣∣∣∣∣ a11 a13
a21 a23

∣∣∣∣∣+ a33

∣∣∣∣∣ a11 a12
a12 a22

∣∣∣∣∣ =

a13

∣∣∣∣∣ a12 a13
a22 a23

∣∣∣∣∣− a23

∣∣∣∣∣ a11 −a13
a21 −a23

∣∣∣∣∣+ a33

∣∣∣∣∣ a11 a12
a12 a22

∣∣∣∣∣ = ∆3

Therefore, φ(s∗, t∗) = ∆3
∆2

> 0, by assumption. Thus, the claim is proved and one
direction of the argument is done.

We now assume that QA is positive definite and follow the same two cases. First,
consider (x1, x2, x3) with x3 = 0. As above QÂ = QA and is positive definite. There-
fore, by induction ∆1,∆2 > 0. Now consider (x1, x2, x3) with x3 6= 0. Since ∆2 6= 0,
using some of the work from the reverse direction, the critical point (s∗, t∗) once again
exists for φ and

∆3

∆2
= φ(s∗, t∗) = φ(s∗, t∗)(1)2 = QA(s∗, t∗, 1) > 0

Therefore, since ∆2 > 0, it follows that ∆3 > 0. �

Example 7.5 Here are several examples for which we apply the Principal Minor
criterion.

1. Let A =

 2 1 0
1 2 0
0 0 2

.

∆1 = 2 > 0, ∆2 =
∣∣∣∣∣ 2 1

1 2

∣∣∣∣∣ = 3 > 0 and ∆3 = |A| = 6 > 0.

Therefore, by Theorem 7.1.a, A is positive definite.

2. Let A =

 −1 2 0
2 −5 1
0 1 −2

.

∆1 = −1 < 0, ∆2 =
∣∣∣∣∣ −1 2

2 −5

∣∣∣∣∣ = 1 > 0 and ∆3 = |A| = −1 < 0.

Therefore, by Theorem 7.1.b, A is negative definite.

3. Let A =

 2 1 0
1 2 0
0 0 0

.
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∆1 = 2 > 0, ∆2 =
∣∣∣∣∣ 2 1

1 2

∣∣∣∣∣ = 3 > 0 and ∆3 = |A| = 0.

Therefore, by Theorem 7.1.c, A is positive semi-definite.

4. Let A =

 −1 1 1
1 −2 0
1 0 −2

.

∆1 = −1 < 0, ∆2 =
∣∣∣∣∣ −1 1

1 −2

∣∣∣∣∣ = 1 > 0 and ∆3 = |A| = 0.

Therefore, by Theorem 7.1.d, A is negative semi-definite.

5. Let A =


1 −1 3 −2
−1 3 2 1

3 2 5 0
−2 1 0 1

. Notice that

∣∣∣∣∣ a11 a13
a31 a33

∣∣∣∣∣ =
∣∣∣∣∣ 1 3

3 5

∣∣∣∣∣ = −4 < 0,

Therefore, by Theorem 7.1.e, A is indefinite.

EXERCISES

1. Use Theorem 7.1 to classify the following matrices as positive or negative, def-
inite or semi-definite, or indefinite:

a. A =

 2 4 0
4 1 0
0 0 −6

.

b. B =

 −1 1 1
1 −2 0
1 0 −3

.

c. C =

 2 0 2
0 2 −1
2 −1 4

.

d. D =

 1 1 1
1 2 1
1 1 1

.
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e. E =

 −2 1 1
1 −1 1
1 1 −5

.

2. Explain why the following example does not contradict Theorem 7.1:

Let A =
[

1 −4
1 1

]
. Notice that ∆1 = 1 > 0 and ∆2 = 5 > 0, however

QA(1, 1) =
[

1 1
] [ 1 −4

1 1

] [
1
1

]
= −1 < 0.

3. Prove Lemma 7.1.b

4. Prove Theorem 7.1.b

5. Prove Theorem 7.1.c

6. Prove Theorem 7.1.d

7. Prove Theorem 7.1.e

7.3 EIGENVALUE CRITERION

In this section we derive the second test for determining if a symmetric matrix is
positive or negative, definite or semi-definite, or indefinite called the Eigenvalue Cri-
terion. This result relies on the fact that we can perform this determination for
diagonal matrices.

Theorem 7.2 Let A be a symmetric real-valued matrix. Then
1. A is positive definite iff all the eigenvalues of A are positive.

2. A is positive semi-definite iff all the eigenvalues of A are non-negative.

3. A is negative definite iff all the eigenvalues of A are negative.

4. A is negative semi-definite iff all the eigenvalues of A are non-positive.

5. A is indefinite iff A has both positive and negative eigenvalues.

Proof 7.3 By Corollary 5.3 in Section 5.7, P TAP = D where P TP = I and D
is a diagonal matrix consisting of real eigenvalues, say λ1, λ2, . . . , λn of A. For any
x = (x1, x2, . . . , xn) ∈ Rn there exists y = (y1, y2, . . . , yn) ∈ Rn such that x = Py
(indeed, y = P Tx). Therefore,

QA(x) = xTAx = (Py)TA(Py) = yTP TAPy = yTDy = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n.

To prove part 1 (parts 2,3,4,5 are done similarly), first assume that A is posi-
tive definite. Set x = Pei. Then 0 < QA(x) = λi for i = 1, 2, . . . , n. Now assume
λ1, λ2, . . . , λn > 0. Then certainly, QA(x) = λ1y

2
1 +λ2y

2
2 + · · ·+λny2

n > 0 when x 6= 0.
�
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Example 7.6 (revisited from Section 7.1)

1. Let A =

 2 1 0
1 2 0
0 0 2

. We compute

pA(t) =

∣∣∣∣∣∣∣
2− t 1 0

1 2− t 0
0 0 2− t

∣∣∣∣∣∣∣ = (2−t)
∣∣∣∣∣ 2− t 1

1 2− t

∣∣∣∣∣ = (2−t)[(2−t)2−1] =

(2− t)(t2 − 4t+ 3) = −(t− 2)(t− 1)(t− 3).

Thus, the roots of pA(t) are 2, 1, 3 (all positive). Therefore, by Theorem 7.2.a,
A is positive definite.

2. Let A =

 −1 2 0
2 −5 1
0 1 −2

.

One can show that the eigenvalues of A are approximately −6.04, −1.87 and
−0.09 (all negative). Therefore, by Theorem 7.2.c, A is negative definite.

3. Let A =

 2 1 0
1 2 0
0 0 0

.

One can show that the eigenvalues of A are 1, 3, 0 (all non-negative). Therefore,
by Theorem 7.2.b, A is positive semi-definite.

4. Let A =

 −1 1 1
1 −2 0
1 0 −2

.

One can show that the eigenvalues of A are −3,−2, 0 (all non-positive). There-
fore, by Theorem 7.2.d, A is negative semi-definite.

5. Let A =


1 −1 3 −2
−1 3 2 1

3 2 5 0
−2 1 0 1

.

One can show that the eigenvalues of A are approximately −1.98, 0.47, 4.41
and 7.10 (both positive and negative values). Therefore, by Theorem 7.2.e, A is
indefinite.

We finish this section with a very nice classification of positive semi-definite symmet-
ric matrices.
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Proposition 7.1 A symmetric matrix A ∈ Mnn is positive semi-definite iff there
exists a matrix B ∈Mmn such that A = BTB.

Proof 7.4 One direction is found in Exercise 6.b of Section 7.1. For the other
direction, assume A is symmetric and positive definite. Since A is symmetric, by
Corollary 5.3, there exists an orthogonal matrix P and diagonal matrix D such that
P TAP = D, where the diagonal entries in D are (real) eigenvalues of A. Since
A is positive semi-definite, by Theorem 7.2.b, A has only non-negative eigenvalues.
Therefore, the matrix D1/2 is a real matrix. Set B = D1/2P T . Then

BTB = PD1/2D1/2P T = PDP T = A.

�

Example 7.7 We point out that the proof of Proposition 7.1 is constructive and
yields an algorithm for expressing A as BTB which we illustrate now. Consider the
positive semi-definite symmetric matrix from Example 7.5.3.

A =

 2 1 0
1 2 0
0 0 0

 .
We have seen that the eigenvalues of this matrix are 0, 1, 3. The corresponding nor-
malized eigenvectors are [0, 0, 1], [−1/

√
2, 1/
√

2, 0] and [1/
√

2, 1/
√

2, 0]. Therefore,
the orthogonal matrix which diagonalizes A is

P =

 0 −1/
√

2 1/
√

2
0 1/

√
2 1/

√
2

1 0 0

 .
According to Proposition 7.1, set

B = D1/2P T =

 0 0 0
0 1 0
0 0

√
3


 0 0 0
−1/
√

2 1/
√

2 0
1/
√

2 1/
√

2 0

 =

 0 0 0
−1/
√

2 1/
√

2 0√
3/2

√
3/2 0

 .

One can check that BTB does indeed equal A.

One final note on Proposition 7.1. The matrix B is not uniquely determined and
furthermore there is a choice of B which is upper triangular. Such a decomposition
always exists and is called the Cholesky decomposition.
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EXERCISES

1. Redo Exercise 1 in Section 7.1 using the Eigenvalue Criterion, namely

a. A =

 2 4 0
4 1 0
0 0 −6

.

b. B =

 −1 1 1
1 −2 0
1 0 −3

.

c. C =

 2 0 2
0 2 −1
2 −1 4

.

d. D =

 1 1 1
1 2 1
1 1 1

.

e. E =

 −2 1 1
1 −1 1
1 1 −5

.

2. Prove for any real number a the following matrix is positive semi-definite:

A =

 a4 a3 a2

a3 a2 a
a2 a 1


Note: Principal Minor Criterion does not work here.

3. Prove Theorem 7.2.e.

7.4 APPLICATION: UNCONSTRAINED NON-LINEAR OPTIMIZATION

In this section, we apply what we have gone over thus far in the chapter in order to
analyze critical points of a multivariate function and decide whether or not they are
extrema. This material falls under the topic of unconstrained nonlinear optimization.
Some of this material would be covered in a multivariable calculus course, however
not to the extent to which we do now. In reality multivariable calculus only covers
functions of two variables when it comes to unconstrained nonlinear optimization.
This section will generalize the method shown in multivariable calculus to any number
of variables. First, we need to introduce some definitions and terminology.

Definition 7.4 A multi-variable real-valued function f : Rn → R has as in-
put an n-tuple x = (x1, x2, . . . , xn) ∈ Rn and as output a real number f(x) =
f(x1, x2, . . . , xn).
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Example 7.8 Define f : R4 → R by f(x1, x2, x3, x4) = 2x2
1x3 − cos (x1x4)− 5x4

x3
.

Definition 7.5 For an n-tuple x and positive real number r, an open ball centered
at x of radius r, written

B(x, r) = {y ∈ Rn : |x− y| < r}.

Example: In R3 an open ball is a solid sphere without its outer surface. In R2

an open ball is a solid disk without its circular edge, and in R an open ball is an open
interval.

Definition 7.6 Let D ⊆ Rn.

• x ∈ D is an interior point of D if ∃r > 0 such that B(x, r) ⊆ D.

• The interior of D, written D◦ is the collection of all interior points of D.

• The boundary of D, written ∂D = D −D◦.

• D is open if D = D◦.

• D is closed if its complement Dc is open.

• D is bounded if ∃r > 0 such that D ⊆ B(0, r).

For the remainder of this section, we shall assume that our functions have continuous
first and second order partial derivatives on its domain, which we shall denote by D.

Definition 7.7 Let D ⊆ Rn and f : D → R with x∗ ∈ D◦.

• x∗ is a global minimizer with global minimum f(x∗) if ∀x ∈ D we have
f(x∗) ≤ f(x).

• x∗ is a strict global minimizer with strict global minimum f(x∗) if ∀x ∈
D and x 6= x∗ we have f(x∗) < f(x).

• x∗ is a local minimizer with local minimum f(x∗) if ∃δ > 0 such that
∀x ∈ D ∩B(x∗, δ) we have f(x∗) ≤ f(x).

• x∗ is a strict local minimizer with strict local minimum f(x∗) if ∃δ > 0
such that ∀x ∈ D ∩B(x∗, δ) and x 6= x∗ we have f(x∗) < f(x).

• For the definitions of maximizer/maximum simply reverse all the inequalities
in the definitions above.

• All the above definitions are referred to collectively as extrema of f .

• x∗ is a saddlepoint if there exist y, z ∈ Rn such that f(x+ ty), t ∈ R, has a
strict local minimum and f(x+ tz), t ∈ R, has a strict local maximum.
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• x∗ is a critical point if ∂f
∂xi

exists and equals 0 for i = 1, 2, . . . n. Recall the
gradient of f is defined as

∇f =
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]
Thus, a critical point satisfies ∇f(x∗) = 0.

We shall omit some of the proofs of the following facts, since their proofs are more
appropriate in a real analysis course.

Facts and Definitions:

• Let D ⊆ Rn and f : D → R with x∗ ∈ D◦. Assuming ∂f
∂xi

exist for i = 1, 2, . . . n,
if x∗ corresponds to a local extremum of f , then x∗ is a critical point (proof
omitted).

• For x, x∗ ∈ Rn we define the interval [x∗, x] = {x∗ + t(x − x∗) : 0 ≤ t ≤ 1}.
This is basically a line segment (with orientation) connecting x∗ to x.

• If f(x) has continuous first and second order partials, then ∂2f
∂xixj

= ∂2f
∂xjxi

for all
i, j ∈ {1, 2, . . . , n}.

• Generalized Taylor’s Theorem: Let f(x) have continuous first and second
order partials. There exists z ∈ [x∗, x] such that

f(x) = f(x∗) +∇f(x∗)(x− x∗) + 1
2(x− x∗)THf(z)(x− x∗),

where

Hf =



∂2f
∂x2

1

∂2f
∂x1x2

· · · ∂2f
∂x1xn

∂2f
∂x1x2

∂2f
∂x2

2
· · · ∂2f

∂x2xn

...
... . . . ...

∂2f
∂x1xn

∂2f
∂x2xn

· · · ∂2f
∂x2

n


The symmetric matrix Hf is called the Hessian of f . In multivariable calculus,
its determinant is typically called the discriminant and is denoted D(x, y),
i.e.

D(x, y) = |Hf(x, y)| =
∣∣∣∣∣
∂2f
∂x2

∂2f
∂xy

∂2f
∂xy

∂2f
∂y2

∣∣∣∣∣
The proof of this result (omitted) relies heavily on the single variable Taylor’s
Theorem.
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From all these facts listed one can obtain the following results which follow almost
immediately from the Generalized Taylor’s Theorem (proofs omitted).

Theorem 7.3 Let x∗ ∈ D◦ be a critical point of f where f : D ⊆ Rn → R has
continuous first and second order partials.

• Global Information

1. If Hf(x) is positive definite for all x 6= x∗, then x∗ is a strict global
minimizer.

2. If Hf(x) is negative definite for all x 6= x∗, then x∗ is a strict global
maximizer.

3. If Hf(x) is positive semi-definite, then x∗ is a global minimizer.
4. If Hf(x) is negative semi-definite, then x∗ is a global maximizer.

• Local Information

1. If Hf(x∗) is positive definite, then x∗ is a strict local minimizer.
2. If Hf(x∗) is negative definite, then x∗ is a strict local maximizer.
3. If Hf(x∗) is indefinite, then x∗ is a saddlepoint.

Before we dive into some detailed examples, it might be good to see the connection
between Theorem 7.3 and Theorem 7.1 and multivariate calculus. In that class when
critical points were analyzed students were basically applying the Principal Minor
Criterion in the case of local extrema in Theorem 7.3. Indeed, given f : R2 → R
and a critical point x∗ students evaluated fxx(x∗) and fxx(x∗)fyy(x∗) − fxy(x∗)2 to
determine if they had a relative maximum, relative minimum or a saddlepoint. But
these two quantities are precisely ∆1(x∗) and ∆2(x∗) of the Principal Minor Criterion!

Example 7.9 In these examples, we will apply either the Principal Minor Criterion
or Eigenvalue Criterion in order to analyze critical points.

1. Let f(x, y) = ex
2+y2 . First, we compute ∇f = [fx, fy] = [2xex2+y2

, 2yex2+y2 ]
and find critical points by solving ∇f = 0, i.e.

{
2xex2+y2 = 0
2yex2+y2 = 0

Therefore, the only critical point is x∗ = (0, 0). To analyze the critical points
we compute the Hessian. Note that

fxx = 2ex2+y2+2x(2xex2+y2) = 2(1+2x2)ex2+y2
, fxy = 2x(2yex2+y2) = 4xyex2+y2

and by symmetry fyy = 2(1 + 2y2)ex2+y2 . Therefore,
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Hf(x, y) =
[
fxx fxy
fxy fyy

]
=
[

2(1 + 2x2)ex2+y2 4xyex2+y2

4xyex2+y2 2(1 + 2y2)ex2+y2

]
.

Notice that ∆1 = 2(1 + 2x2)ex2+y2
> 0 for all (x, y) and

∆2 = 2(1 + 2x2)ex2+y22(1 + 2y2)ex2+y2 −
(
4xyex2+y2

)2

=
(
ex

2+y2
)2

(4(1 + 2x2)(1 + 2y2)− (4xy)2) =

4e2x2+2y2(1 + 2x2 + 2y2) > 0 for all (x, y).

Therefore, Hf(x, y) is positive definite which implies (0, 0) is the strict global
minimizer. Figure 7.1 shows the graph of the surface with its strict global min-
imizer.

Figure 7.1 The graph of z = ex
2+y2 with strict global minimizer (0, 0, 0).

2. Let f(x, y) = −1
3x

3 +xy+ 1
2y

2−12y. Then ∇f = [fx, fy] = [−x2 +y, x+y−12].
To find critical points we solve ∇f = 0, i.e.

{
−x2 + y = 0
x+ y − 12 = 0
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One can show that the solutions to this non-linear system are x∗ = (−4, 16)
and (3, 9). Next we compute the Hessian,

Hf(x, y) =
[
fxx fxy
fxy fyy

]
=
[
−2x 1

1 1

]
.

It’s clear that Hf can not be used to determine global information, since ∆1 =
−2x and its sign can be both positive and negative for different values of x.
Therefore, we will plug in each critical point and determine local information.

We show that Hf(−4, 16) =
[

8 1
1 1

]
is positive definite. For comparison, we

will verify this using each of the two criteria. First, since ∆1 = 8 > 0 and
∆2 = 7 > 0. Second, the eigenvalues of Hf(−4, 16) turn out to be both positive.
Therefore, (−4, 16) is a strict local minimizer.

We show that Hf(3, 9) =
[
−6 1
1 1

]
is indefinite. One way to see this is since

the determinant of Hf(3, 9) = −7 < 0. Another way to see this is to compute
the eigenvalues of Hf(3, 9) which has one positive and one negative eigenvalue.
Therefore, (3, 9) is a saddlepoint. Figure 7.2 shows the graph of the surface with
its strict local minimizer and saddlepoint.

3. Let f(x, y, z) = x2 + y2 + z2 + xy. Then ∇f = [fx, fy, fz] = [2x+ y, x+ 2y, 2z].
To find critical points we solve ∇f = 0, i.e.


2x+ y = 0
x+ 2y = 0

2z = 0

Since the determinant of the coefficient matrix of this linear system equals zero,
the system has only the trivial solution, (0, 0, 0). Next we compute the Hessian,

Hf(x, y, z) =

 fxx fxy fxy
fxy fyy fyz
fxz fyz fzz

 =

 2 1 0
1 2 0
0 0 2


Now Hf(x, y, z) is positive definite, since ∆1 = 2 > 0, ∆2 = 3 > 0 and
∆3 = 6 > 0. Therefore, (0, 0, 0) is a strict global minimizer (or since the
eigenvalues of Hf(x, y, z) are 1, 2 and 3, which are all positive).

4. Let f(x, y, z) = −x4− y4− z4. One can compute that the only critical point for
f is (0, 0, 0) and the Hessian is
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Figure 7.2 The graph of z = −1
3x

3 + xy + 1
2y

2 − 12y with its local minimizer
(−4, 16,−320/3) and saddlepoint (3, 9,−99/2).

Hf(x, y, z) =

 −12x2 0 0
0 −12y2 0
0 0 −12z2

 .
Since Hf is a diagonal matrix with diagonal entries ≤ 0 we have seen this
implies Hf is negative semi-definite (or since the eigenvalues of Hf(x, y, z) are
−12x2, −12y2 and −12z2, which are all non-negative). Therefore, (0, 0, 0) is a
global maximizer. Now we cannot conclude Hf is negative definite, but there are
two ways we can argue that (0, 0, 0) is a strict global maximizer. One argument is
that since (0, 0, 0) is the only critical point it must be the strict global maximizer.
Another argument is “by inspection”. Notice that for (x, y, z) 6= (0, 0, 0) we
have f(x, y, z) < 0 = f(0, 0, 0) and this shows that (0, 0, 0) is the strict global
maximizer.

EXERCISES

1. Use the Principal Minor Criterion to classify the critical points of f .

a. f(x, y, z) = x2 + 1
2y

2 + z2 + 1
12y

4 + xz − yz.
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b. f(x, y) = x3 + y2 − 2xy + 2

c. f(x, y, z) = x2 + 2y2 − 3z2 + 4xy − 5x− 6y − 2z

d. f(x, y, z) = −1
2x

2 − y2 − 3
2z

2 + xy + xz

e. f(x, y) = x4 + y4 − 4xy + 1

f. f(x, y) = x2y − 2y2 − (1/24)x4 − 2y4

g. f(x, y) = x2ey + x4 + e2y

h. f(x, y, z) = ex
2+y+z

i. f(x, y) = 3x4 + 2y3 − 6x2y

j. f(x, y) = 6xy2 − 2x3 − 3y4

k. f(x, y, z) = ex + ey + ez + 2e−x−y−z

2. Use the Eigenvalue Criterion to classify the critical points of f (you can at times
use your work in Problem 1).

a. f(x, y, z) = x2 + 1
2y

2 + z2 + 1
12y

4 + xz − yz.

b. f(x, y) = x3 + y2 − 2xy + 2

c. f(x, y, z) = x2 + 2y2 − 3z2 + 4xy − 5x− 6y − 2z

d. f(x, y, z) = −1
2x

2 − y2 − 3
2z

2 + xy + xz

e. f(x, y, z) = x3y + y3z + z2 + xy.

f. f(x, y, z) = x2 + y2 + 2yz + (1/2)z2 + z

g. f(x, y, z) = x2 + 2xy + (1/2)y2 + y + z2

h. f(x, y, z) = x+ xz − 2x2 − xy − y2 − z2

3. Use either criterion to classify the critical points of f .

a. f(x, y, z) = x2 + y2 + xyz + 4z2

b. f(x, y, z) = 6xy2 − 2x3 − 3y4 − z4 + 4z.

4. Apply both criteria to classify the critical points of

f(x, y, z) = ex
2+y2+z2

7.5 GENERAL QUADRATIC FORMS

In this section, we generalize the notion of a quadratic form with the ultimate goal
of proving an elegant result of J. J. Silvester.
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Definition 7.8 Let V be a vector space with a symmetric bilinear map (∗|∗). The
quadratic form associated with (∗|∗) is a function q : V → R defined by q(v) =
(v|v).

The way in which quadratic form has been generalized is the fact that our sym-
metric bilinear map is no longer an inner product, since it does not necessarily have
the positive definite property of an inner product.

Example 7.10 The first three examples represent quardatic forms derived from an
inner product, however the fourth example defines a symmetric bilinear map which is
not an inner product.

1. Let V = Rn with the usual dot product, then

q(a1, a2, . . . , an) = a2
1 + a2

2 + · · ·+ a2
n.

2. Let V = C[a, b] with inner product (f |g) =
∫ b
a f(x)g(x) dx, then

q(f) =
∫ b

a
f(x)2 dx.

3. Let V = Mn with inner product (A|B) = tr(BTA), then for A = [aij ],

q(A) = a2
11 + a2

12 + · · ·+ a2
nn,

i.e. the sum of the squares of all the entries in A.

4. Let V = R2 with inner product ([a1, a2] | [b1, b2]) = a1b1 − a1b2 − a2b1 + 4a2b2,
then

q(a1, a2) = a2
1 − 2a1a2 + 4a2

2.

We have already seen in Section 7.1 how any quadratic form in Rn can be rep-
resented by a symmetric matrix in the sense that q(v) = vTQv for Q a symmetric
matrix. The same still holds in this more general context. Instead of getting bogged
down in these details, let’s prove a more general result regarding symmetric bilinear
maps on Rn.

Theorem 7.4 Consider the vector space Rn.

1. If Rn equipped with a symmetric bilinear map (∗|∗), then there exists a unique
symmetric matrix C such that (u|v) = uTCv for all u, v ∈ Rn.

2. If C is a symmetric matrix, then (u|v) = uTCv defines a symmetric, bilinear
map.
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Proof 7.5 First we show the existence of C. For u, v ∈ Rn set u = [a1, . . . , an] and
v = [b1, . . . , bn]. Then

(u|v) = (a1e1 + · · ·+ anen|b1e1 + · · ·+ bnen) =
n∑

i,j=1
ai(ei|ej)bj .

Set cij = (ei|ej) and C = [cij ]. Then uTCv = (u|v). Furthermore, C is symmetric
since the bilinear map is symmetric. Indeed, cij = (ei|ej) = (ej |ei) = cji. To prove
uniqueness, suppose C ′ was another symmetric matrix satisfying (u|v) = uTC ′v for
all u, v ∈ Rn. Set D = [dij ] = C − C ′. Then uTDv = 0 for all u, v ∈ Rn and in
particular, for all 1 ≤ i, j ≤ n we have dij = eTi Dej = 0. Hence, D = 0nn and
C = C ′.

Statement 2 is left as an exercise. �

Example 7.11 Refer back to Example 7.10.4 where V = R2 with symmetric bilinear
map ([a1, a2]|[b1, b2]) = a1b1− a1b2− a2b1 + 4a2b2. Following the proof and looking at
the coefficients of q we see that

C =
[

1 −1
−1 4

]
.

Example 7.12 Suppose C =

 1 2 −1
2 0 3
−1 3 −2

 for a symmetric bilinear map on R3.

Then

([a1, a2, a3] | [b1, b2, b3]) = a1b1 + 2a1b2− a1b3 + 2a2b1 + 3a2b3− a3b1 + 3a3b2− 2a3b3.

The reader should take note of the relationship between entries in C and the coefficient
of each term aibj, namely cij.

A more general result of the above theorem (left as an exercise), is that for any
finite dimensional vector space V with a symmetric bilinear map (∗|∗) and any basis
B for V there exists a unique symmetric matrix C such that (u|v) = [u]TBC[v]B.

Another important observation is that given a quadratic form q we can recover the
symmetric bilinear map. This follows from the fact that (u|v) = 1

4(q(u+v)−q(u−v))
(left as an exercise, but see Lemma 5.1.c). We also point out that an easier way to
find the symmetric bilinear map is to note that the matrix C for a symmetric bilinear
map is one and the same as the matrix Q for the associated quadratic form (exercise).

Example 7.13 Let V = R2 with quadratic form q(a1, a2) = 3a2
1 + 4a1a2 − a2

2. We
could find the symmetric bilinear map by computing

([a1, a2] | [b1, b2] ) = 1
4(q(a1 + b1, a2 + b2)− q(a1 − b1, a2 − b2)) etc.,
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but the easier way to find the symmetric bilinear map is to follow the second obser-
vation made above, namely that

C = Q =
[

3 2
2 −1

]
, and so ([a1, a2] | [b1, b2]) = 3a1b1 + 2a1b2 + 2a2b1 − a2b2.

Our goal now is to prove Sylvester’s Theorem which uncovers invariants regarding
symmetric bilinear maps. Let V be a finite dimensional vector space with symmetric
bilinear map (∗|∗) and v1, v2, . . . , vn be an orthogonal basis (which exists via Gram-
Schmidt). Set ci = (vi|vi) for i = 1, 2, . . . , n and reorder the basis so that c1, . . . , cr >
0, cr+1, . . . , cs < 0 and cs+1 = · · · = cn = 0. Sylvester’s Theorem states that the
value of r and s are invariant, i.e. they are the same values regardless of our choice
of orthogonal basis.

A couple of remarks are in order. First, ifB = (v1, . . . , vn) is an ordered orthogonal
basis, then the matrix C representing the symmetric bilinear map is a diagonal matrix,
where (u|v) = [u]TBC[v]B. If in addition B is orthonormal, then c1 = · · · = cr = 1 and
cr+1 = · · · = cs = −1. We prove Sylvester’s Theorem in two separate theorems

Theorem 7.5 Let V be a finite dimensional with symmetric bilinear map (∗|∗). Then
the value of s as defined above is invariant.

Proof 7.6 Set n = dim(V ) and consider the set of vectors

V0 = {v ∈ V | (v|w) = 0, ∀w ∈ V }.

We need to show that V0 is a subspace and that dim(V0) = n−s. This will show that
s is invariant, since we make no mention of an orthogonal basis in V0’s definition.
We leave verifying V0 is a subspace of V as an exercise. We will show dim(V0) =
n−s as follows: For any orthogonal basis v1, . . . , vn we have V0 = span(vs+1, . . . , vn).
To show this we prove containment both ways. For one inclusion, take any vi with
s < i ≤ n and w ∈ V and write w = a1v1 + · · · + anvn. Because of orthogonality
we have (vi|w) = ai(vi|vi) = ai · 0 = 0 and so vs+1, . . . , vn ∈ V0. But then by
Lemma 3.3.iii, span(vs+1, . . . , vn) ⊆ V0. For the reverse inclusion, Take any v ∈ V0
and write v = a1v1 + · · ·+anvn. Note that for 1 ≤ i ≤ s we have 0 = (v|vi) = ai(vi|vi)
and since (vi|vi) 6= 0 it must be that ai = 0 which means v = as+1vs+1 + · · ·+ anvn ∈
span(vs+1, . . . , vn). �

Definition 7.9 In the proof of Theorem 7.5, the quantity n− s = dim(V0) is called
the index of nullity.

Theorem 7.6 Let V be a finite dimensional vector space with symmetric bilinear
map (∗|∗). Then the value of r as defined above is invariant.

Proof 7.7 Let v1, v2, . . . , vn be an orthogonal basis with c1, . . . , cr > 0, cr+1, . . . , cs <
0 and cs+1 = · · · = cn = 0, where each ci = (vi|vi). Let w1, w2, . . . , wn be an orthog-
onal basis with d1, . . . , dr′ > 0, dr′+1, . . . , ds′ < 0 and ds′+1 = · · · = dn = 0, where
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each di = (vi|vi). We show that r ≤ r′ which is enough to prove the theorem, since by
symmetry r′ ≤ r and thus r = r′. If we show that v1, . . . , vr, wr′+1, . . . , wn are linearly
independent, then r+(n−r′) ≤ n which gets us our result that r ≤ r′ and the theorem
is complete. To this end, suppose that a1v1 + · · ·+arvr +ar′+1wr′+1 + · · ·+anwn = 0.
Then

a1v1 + · · ·+ arvr = −ar′+1wr′+1 + · · · − anwn.

Set v = a1v1 + · · ·+ arvr. On the one hand,

(v|v) = (a1v1 + · · ·+ arvr|a1v1 + · · ·+ arvr) = c1a
2
1 + · · ·+ cra

2
r .

On the other hand,

(v|v) = (−ar′+1wr′+1+· · ·−anwn|−ar′+1wr′+1+· · ·−anwn) = dr′+1a
2
r′+1+· · ·+ds′a2

s′ .

Now, c1a
2
1 + · · · + cra

2
r ≥ 0 while dr′+1a

2
r′+1 + · · · + ds′a

2
s′ ≤ 0, therefore c1a

2
1 +

· · ·+ cra
2
r = 0 = dr′+1a

2
r′+1 + · · ·+ ds′a

2
s′ ≤ 0 and the only way that is possible (since

c1, . . . , cr > 0 and dr′+1, . . . , ds′ < 0) is if a1 = · · · = ar = 0 = ar′+1 = · · · = as′ . This
implies that as′+1ws′+1 + · · · + anwn = 0, but ws′+1, . . . , wn are linearly independent
and so ar′+1 = · · · = an = 0. �

Definition 7.10 In the proof of Theorem 7.6, the quantity r is called the index of
positivity.

Example 7.14 Suppose V = R3 with symmetric bilinear map (u|v) = uTCv, where

C =

 −1 0 0
0 2 3
0 2 1

 .
We will now find the values of r and s. We will do this in two very different ways.

For the first method, we will create an orthogonal basis using Gram-Schmidt. We will
start with the standard basis ı̂, ̂, k̂. First w1 = ı̂ = [1, 0, 0]. Then

w2 = [0, 1, 0]−
(

[0, 1, 0]TC[1, 0, 0]
[1, 0, 0]TC[1, 0, 0]

)
[1, 0, 0] = [0, 1, 0]−

( 0
−1

)
[1, 0, 0] = [0, 1, 0].

w3 = [0, 0, 1]−
(

[0, 0, 1]TC[1, 0, 0])
[1, 0, 0]TC[1, 0, 0]

)
[1, 0, 0]−

(
[0, 0, 1]TC[0, 1, 0])
[0, 1, 0]TC[0, 1, 0]

)
[0, 1, 0] =

[0, 0, 1]−
( 0
−1

)
[1, 0, 0]−

(2
2

)
[0, 1, 0] = [0,−1, 1].
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Now that we have an orthogonal basis (the order may need to change) we can now
compute

(w1|w1) = [1, 0, 0]TC[1, 0, 0] = −1.

(w2|w2) = [0, 1, 0]TC[0, 1, 0] = 2.

(w3|w3) = [0,−1, 1]TC[0,−1, 1] = −2.

Hence, c1 = 2, c2 = −1 and c3 = −2 with r = 1 and s = 3.

Another way we can compute r and s is to first diagonalize C by finding a basis
of eigenvectors for C (which we know exists, since C is real symmetric).

pC(t) =

∣∣∣∣∣∣∣
−1− t 0 0

0 2− t 3
0 2 1− t

∣∣∣∣∣∣∣ = −(t− 4)(t+ 1)2.

Therefore, C has eigenvalues 4,−1,−1 and one can compute the corresponding
eigenvector basis to be B = ([0, 3, 2], [1, 0, 0], [0,−1, 1]). By dropping these vectors
in the columns of a matrix and calling that matrix P , we know that

(u|v) = uTCv = uTP T

 4 0 0
0 −1 0
0 0 −1

Pv =

(Pu)T
 4 0 0

0 −1 0
0 0 −1

 (Pv) = [u]TB

 4 0 0
0 −1 0
0 0 −1

 [v]B.

Thus, we see that d1 = 4, d2 = −1 and d3 = −1 with r = 1 and s = 3.

Therefore, in hindsight, it’s enough to simply compute the eigenvalues of C to
determine the signs of the ci’s and consequently the values of r and s.

Let’s now find explicitly the connection between the index of nullity and posi-
tivity and our earlier discussion about positive and negative definite, semi-definite
and indefinite. This should be easy to understand from our work in the above exam-
ple. Remember that C for our symmetric bilinear map is identical to our Q for the
associated quadratic form. Therefore, when we find the eigenvalues of Q we are si-
multaneously determining whether C is positive or negative, definite or semi-definite,
or indefinite as well as determining the values of r and s. Hence, we can deduce the
following result:

Proposition 7.2 Let V be a finite dimensional non-trivial vector space with non-
degenerate symmetric bilinear map (u|v) = uTCv.
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1. C is positive definite iff r = n.

2. C is positive semi-definite iff 0 < r = s < n.

3. C is negative definite iff r = 0 and s = n.

4. C is negative semi-definite iff r = 0 and s < n.

5. C is indefinite iff 0 < r < s ≤ n.

This proposition can in fact serve as an alternative proof of Sylvester’s Theorem
(assuming, of course, we have proved the Eigenvalue Criterion).

Example 7.15 Referring to Example 7.14, since 0 < r = 1 < s = 3 = n we see that
C must be indefinite.

EXERCISES

1. Compute the quadratic form on Rn for each of the following symmetric bilinear
maps:

a. ([a1, a2] | [b1, b2] ) = 2a1b1 + a1b2 + a2b1 − 3a2b2

b. ([a1, a2, a3] | [b1, b2, b3] ) = 2a1b1 + a1b2− a1b3 + a2b1− a2b2 + 4a2b3− a3b1 +
4a3b2 − 3a3b3

c. ([a1, a2, a3] | [b1, b2, b3] ) = 2a1b1 + a1b3 + a3b1 − 3a2b3 − 3a3b2 − a3b3

2. Compute the C for each of the following symmetric bilinear maps on Rn:

a. ([a1, a2] | [b1, b2] ) = 2a1b1 + a1b2 + a2b1 − 3a2b2

b. ([a1, a2, a3] | [b1, b2, b3] ) = 2a1b1 + a1b2− a1b3 + a2b1− a2b2 + 4a2b3− a3b1 +
4a3b2 − 3a3b3

c. ([a1, a2, a3] | [b1, b2, b3] ) = 2a1b1 + a1b3 + a3b1 − 3a2b3 − 3a3b2 − a3b3

3. Recover the symmetric bilinear map on Rn for each symmetric matrix C:

a. C =
[

2 −1
−1 1

]

b. C =

 4 1 −2
1 1 0
−2 0 1



c. C =

 1 1 −2
1 2 −1
−2 −1 1


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4. Recover the symmetric bilinear map for each of the following quadratic forms
on Rn:

a. V = R2 and q(a1, a2) = 2a2
1 − 3a1a2 − a2

2.

b. V = R3 and q(a1, a2, a3) = 3a2
1 + 2a1a2 − 4a1a3 + a2

3.

5. Consider the following matrix:

C =

 4 1 −2
1 1 0
−2 0 1

 .
a. Find the values of r and s by repeating the computations done in the last

example of the section.

b. Determine if C is positive or negative, definite or semi-definite, or indefinite.

6. Repeat the previous exercise for the following matrix:

C =

 1/2 −
√

12/12 −
√

6/6
−
√

12/12 −1/2
√

18/18 +
√

2/3
−
√

6/6
√

18/18 +
√

2/3 0

 .
7. Prove that for any finite dimensional vector space V with the symmetric bilinear

map (∗|∗) and any basis B for V there exists a unique symmetric matrix C such
that (u|v) = [u]TBC[v]B.

8. In the previous exercise, show that if B is an orthonormal basis, then C = I.

9. Prove that if V is a vector space with the symmetric bilinear map (∗|∗) and
associated quadratic form q, then (u|v) = 1

4(q(u+ v)− q(u− v)).

10. Prove Theorem 7.4.b

11. Prove that V0 in the proof of Theorem 7.5 is a subspace of V .
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Regular Matrices

We now formally prove the result that a Markov chain with a regular transition
matrix converges to a steady state. This is a proof adapted from one presented in [6].
The technical work which is required for this result is done in the following lemma:

Lemma A.1 Let P = [πij ] ∈ Mmm be a transition matrix with no zero entries and
define the following constants:

α = the value of the smallest entry in the matrix P .

For any row vector v ∈ Rm,

α0 = the minimum component of v.

ω0 = the maximum component of v.

α1 = the minimum component of vP .

ω1 = the maximum component of vP .

The following are then true:

i. ω1 ≤ ω0 and α0 ≤ α1.

ii. ω1 − α1 ≤ (1− 2α)(ω0 − α0).

Proof A.1 Let v′ be the vector obtained by replacing every component of v by ω0
except α0. Then certainly for 1 ≤ j ≤ m, the jth component of v′ is greater than or
equal to the jth component of v and thus the jth component of v′P is greater than or
equal to the jth component of vP . Notice also that the jth component of v′P has the
form

π1jω0 + · · ·+ πi−1jω0 + πijα0 + πi+1jω0 + · · ·+ πmjω0 = (1− πij)ω0 + πijα0.

Set β = πij ≥ α. Hence, the jth component of v′P equals

(1− β)ω0 + βα0 = ω0 − β(ω0 − α0) ≤ ω0 − α(ω0 − α0).
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By our earlier comment we have

ω1 ≤ ω0 − α(ω0 − α0). (A.1)

Since α > 0 and ω0−α0 ≥ 0, it follows from this last equation that ω1 ≤ ω0. Now
apply the same reasoning to the vector −v. The jth component of −v is greater than
or equal to the jth component of −v′ and note that the maximal component of −v is
−α0, etc. In the end we obtain the inequality

−α1 ≤ −α0 − α(ω0 − α0). (A.2)

Again, since α > 0 and ω0−α0 ≥ 0, it follows that α0 ≤ α1. Furthermore, adding
equations C.1 and C.2 yields

ω1 − α1 ≤ ω0 − α0 − 2α(ω0 − α0) = (1− 2α)(ω0 − α0).

�

With Lemma A.1 we can now prove the main result.

Theorem A.1 If P is a regular transition matrix, then P n converges to a matrix Q
as n −→∞ and has the following properties:

i. The columns of Q are identical probability vectors.

ii. Each entry of Q is positive.

Proof A.2 Set α equal to the minimal entry in the matrix P and for n = 0, 1, 2, . . .
set αn to be the minimal component of the vector eiP n, ωn to be the maximal com-
ponent of the vector eiP n and δn = ωn − αn. Keep in mind that eiP n is the ith row
of P n.

Claim: δn → 0 as n→∞
To prove the claim, let’s first consider the case when P has no zero entries. By

Lemma A.1,

ω0 ≥ ω1 ≥ ω2 ≥ · · · and α0 ≤ α1 ≤ α2 ≤ · · · .

Therefore,

δ0 ≥ δ1 ≥ δ2 ≥ · · · .

In addition, by Lemma A.1,

ωn − αn ≤ (1− 2α)(ωn−1 − αn−1), (n = 1, 2, 3, . . .),

or equivalently,



Regular Matrices � 399

δn ≤ (1− 2α)δn−1 ≤ (1− 2α)2δn−2 · · · ≤ (1− 2α)nδ0 = (1− 2α)n,

since the maximal component of ei is 1 and the minimal component is 0. Taking
limits, since |1− 2α| < 1, we have

0 ≤ lim
n→∞

δn ≤ lim
n→∞

(1− 2α)n = 0.

Hence, limn→∞ δn = 0.
Now. we prove the claim in the general case of P being any regular transition

matrix. Let k be such that P k has no zero entries and set α′ to be the smallest entry
of P k. By our work above we have

0 ≤ δnk ≤ (1− 2α′)n and lim
n→∞

δnk = 0.

Hence, { δn } is a monotone sequence (non-increasing) which has a subsequence
{ δnk } which tends towards 0. It follows that δn → 0 as n → ∞. This finishes the
proof of the claim.

The claim implies that limn→∞ ωn = limn→∞ αn, but this can only mean that in
the limit the entries of the ith row of the limiting matrix exist and are identical. Let’s
call the limiting matrix Q and set

Q =


π1 π1 · · · π1
π2 π2 · · · π2
...

... . . . ...
πm πm · · · πm

 .

Note that, for 1 ≤ i ≤ m, we have 0 < αn ≤ πi ≤ ωn < 1, so that 0 < πi < 1.
Since the columns of P n sum to 1 for all n, then in the limit this must be true as
well for Q. �
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Rotations and Reflections in
Two Dimensions

We present the derivations of the formulas for the linear operators on R2 which rotate
and reflect the plane while preserving length.

Theorem B.1 The map T [a, b] =
[

cos θ − sin θ
sin θ cos θ

] [
a
b

]
is the linear operator

which rotates vectors in R2 through an angle θ while preserving their lengths.

Proof B.1 Consider Figure B.1 depicting the vector [a, b] and the resulting rotation
through an angle θ.

Figure B.1 two points on a circle. The [a, b] is a rotation through an angle θ and [c, d]
is an additional rotation through an angle φ.
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Notice by the definition of circular functions that the coordinates of the rotated
vector

[c, d] = [
√
a2 + b2 cos (θ + φ),

√
a2 + b2 sin (θ + φ)].

Now, using trigonometric identities, we get
√
a2 + b2 cos (θ + φ) =

√
a2 + b2(cos θ cosφ− sin θ sinφ)

=
√
a2 + b2

(
cos θ

(
a√

a2 + b2

)
− sin θ

(
b√

a2 + b2

))
= a cos θ − b sin θ.

Similarly, one can show that
√
a2 + b2 sin (θ + φ) = a sin θ + b cos θ.

Hence,

T [a, b] = [a cos θ − b sin θ, a sin θ + b cos θ] =
[

cos θ − sin θ
sin θ cos θ

] [
a
b

]
.

�

Theorem B.2 The map T [a, b] =
[

1−m2

m2+1
2m
m2+1

2m
m2+1

m2−1
m2+1

] [
a
b

]
is the linear operator

which reflects vectors in R2 across the line y = mx.

Proof B.2 Consider Figure B.2 depicting the vector [a, b] and the resulting reflection
[x, y] across the line y = mx.

Think of x and y as unknowns for which we wish to uncover the values. We will
generate two equations in the unknowns x and y and then proceed to solve for these
variables.

To obtain the first equation we will compute the slope of the line segment AB
in two different ways. Using the coordinates of A and B, the slope is y−b

x−a . On the
other hand, since AB is perpendicular to the line y = mx it must have slope −1/m.
Equating yields

y − b
x− a

= −1
m

or x+my = a+mb.

To obtain the second equation we will compute the coordinates of the midpoint,
M , of the line segment AB. Using the formula for midpoint, we obtain the coordinates
M = ((1/2)(x+a), (1/2)(y+b)). On the other hand, since M lies on the line y = mx,
the y-coordinate of M is also (m/2)(x+ a). Equating yields
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Figure B.2 Vector [x, y] is the result of reflecting the vector [a, b] across the line y = mx.

1
2(y + b) = m

2 (x+ a) or mx− y = b−ma.

Hence, the problem is reduced to solving the following system of equation:{
x+my = a+mb
mx− y = b−ma .

The corresponding augmented matrix is[
1 m
m −1

∣∣∣∣∣ a+mb
b−ma

]
.

We then row-reduce the augmented matrix.

−mR1+R2−→
[

1 m
0 −1−m2

∣∣∣∣∣ a+mb
b− 2ma−m2b

]
(
−1

1+m2

)
R2

−→
[

1 m
0 1

∣∣∣∣∣ a+mb
2ma+m2b−b

m2+1

]
−mR2+R1−→

[
1 0
0 1

∣∣∣∣∣ 2mb−m2a+a
m2+1

2ma+m2b−b
m2+1

]
.
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Hence,

T [a, b] =
[

2mb−m2a+ a

m2 + 1 ,
2ma+m2b− b

m2 + 1

]

=
[

(1−m2)a+ (2m)b
m2 + 1 ,

(2m)a+ (m2 − 1)b
m2 + 1

]
=
[

1−m2

m2+1
2m
m2+1

2m
m2+1

m2−1
m2+1

] [
a
b

]
.

�
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Answers to Selected
Exercises

CHAPTER 1

Section 1.1

2. u+ v = [4,−3, 1], 2v = [6,−2, 2], 1
2u = [1/2,−1, 0] and 2u− 3v = [−7,−1,−3]

Section 1.2

3. (a) |u| = 2
√

2, u · v =
√

3 + 3, 2(v · v)v = [12,−12, 24], (u · v)|3u − 2v| =
48
√

3+216 (b) u/|u| =
[ √

3
2
√

2 ,
1

2
√

2 ,
2

2
√

2

]
and v/|v| =

[
1√
6 ,
−1√

6 ,
2√
6

]
. (c) θ ≈ 0.8189

Section 1.4

1. A + B =

 3 −3 4
1 0 3
0 0 3

, −3C =

 −3 3
−6 0

0 9

, 2A − 3B =

 −4 −1 3
−3 5 −9

5 −5 6

,

(A−B)T =

 −1 −1 2
−1 2 −2

2 −3 3

, ET + 2F =
[

3 −2 1
]
.

2. B through K are square. G through K are diagonal. D, F and G through K are
upper triangular. E and G through K are lower triangular. B and G through K are
lower triangular. B and G through K are symmetric. C and H are skew-symmetric.

Section 1.5

1. (a) BA =
[

7 9 2
−4 −6 −2

]
(b) B3 =

[
1 9
0 −8

]

6. A =
[

2 3
0 0

]
, B =

[
2 4
0 0

]
and C =

[
1 0
0 0

]
. AC = BC while A 6= B
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CHAPTER 2

Section 2.1

1. a, d and e.

Section 2.2

1. a,b,c and f

2. (a) { [−9/7, 3/7] } (b) { [−4, −3/2, 2] } (c) No solution (e) { [2x2 −
x4 − 4, x2, 2x4 + 5, x4, 2] | x2, x4 ∈ R }

Section 2.9

1.

 0 0 1
0 1 0
1 0 0

,

 1 0 0
0 −3 0
0 0 1

,

 1 0 0
0 1 0
0 −2 1



3. (c) rref(A) = rref(B) =

 1 0 0
0 1 0
0 0 0


Section 2.6

1. (a)
[

3/7 1/7
−1/7 2/7

]
(b)

 −2 1 1
−1 1/4 1/2

1 −1/2 0

 (c) no inverse

2. (a) { [−9/7, 3/7] } (b) { [−4, −3/2, 2] } (c) no unique solution

3. (solutions can vary) (a) E1 =
[

1 3
0 1

]
, E2 =

[
1 0
0 −7

]
, E3 =

[
1 0
2 1

]
,

E4 =
[

0 1
1 0

]
and A = E4E3E2E1.

Section 2.8

1. (e) [2x2− x4− 4, x2, 2x4 + 5, x4, 2] = [2x2− x4, x2, 2x4, x4, 0] + [−4, 0, 5, 0, 2] =
Xh +Xp

2. (a) rk(A) = 3 < 4 (b) not invertible (c) infinite solutions

3. (a) rk(A) = 3 (b) only trivial solution

6. (a) rk(B) ≤ 3 < 4 (b) no solution or infinite solutions

Section 2.9

1. (a) 42 6= 0 (b) only trivial solution
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2. (a) rk(B) = 2 < 3 (b) |B| = 0

3. (a) 4 6= 0 (b) C−1 exists

5. (a) rk(A) = 3 < 4 (b) |A| = 0 (c) no solution or infinite solutions (d) not
invertible

6. (a) 6 6= 0 (b) 6 6= 0 (c) only trivial solution

8. (a) 24 6= 0 (b) 24 6= 0 (c) not invertible

Section 2.10

1. (a) { [−1, 2] }

4. (a) −1 6= 0 (b) unique solution (c) {[2, −1, 0]} (d) A−1 exists (e)

A′ =

 7 −3 −3
−5 2 2
−3 2 1

 and A−1 =

 −7 5 3
3 −2 −2
3 −2 −1


11. (a) 2 6= 0 (b) invertible (c) a′31 = −4, a′23 = −1 (d) A−1 = −3 −3 −2
−2 −1 −1

1 −1/2 0


CHAPTER 3

Section 3.1

1. Property 3,4,5,6,8 Fail

7. Property 0,1,4,5,6 Fail

11. Property 4,5,7,8 Fail

Section 3.2

1. (c) is not (d) is

3. (c) is not (h) is

4. (a) is (h) is not

5. (a) is (d) is not

Section 3.3

1. (a)
{

2a+ 3b = −5
−3a− 2b = 0 (b) w = 2v1 − 3v2
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4. (a) linearly independent (b) linearly dependent (c) linearly dependent (d)
linearly independent

5. (a) linearly dependent (c) linearly dependent

6. (a) linearly independent (e) linearly dependent (h) linearly dependent

10. one possible answer is [1, 0, 0], [0, 1, 0], [1, 1, 0]

Section 3.4

1. (a) i. [1, 0, 1/2], [0, 1, 1/2] ii. { [a, b, (1/2)a + (1/2)b] : a, b ∈ R} iii. in

span 1. (f) i.
[

1 0
−1 0

]
,

[
0 1
1 −1

]
ii.

{ [
a b

−a+ b −b

]
: a, b ∈ R

}
iii.

not in span (i) i. 1 + 2x2, x− x2 ii. { a+ bx+ (2a− b)x2 : a, b ∈ R} iii. in
span

Section 3.5

1. (b) i. Y ii. Y iii. Y (d) i. Y ii. N iii. N (e) i. Y ii. N iii. N

3. (a)
[

1 0
1 0

]
,

[
0 1
−1 0

]
,

[
0 0
2 1

]
(c) 3

4. (a) 1− 2x3, x, x2 + 3x3 (c) 3

5. (a) {[−2a, a− b, a, b] : a, b ∈ R} (b) [−2, 1, 1, 0], [0,−1, 0, 1] (c) 2

8. (c)
[

1 −2
−1 0

]
,

[
2 0
1 −1

]
,

[
1 0
0 0

]
,

[
0 1
0 0

]

9. (a) [−16/15, 4/3, 13/15] (b) [1, 1, 0] (c) [1/2, 2, 1,−1]

10. (a) P =
[

6/5 −2/5
7/5 −4/5

]
, [2,−3]B′ = [2, 7/2], [2,−3]B = [1, 0] (b) P =[

2/3 −1/3
1/3 4/3

]
, [1 − x]B′ = [1, 0], [1 − x]B = [2/3, 1/3] (c) P =

[
0 1
2 2

]
,[

2 0
0 −1

]
B′

= [−1/2, 2],
[

2 0
0 −1

]
B

= [2, 3]

Section 3.7

2. (a) A basis for V is E11, E12, E21, E22 so dimV = 4. A basis for U is E11, E12, E22

so dimU = 3. A basis for W is
[

0 1
−1 0

]
so dimW = 1. (b) U ∩W = {022} so

it has no basis and its dimension is 0. (c) 4, Y
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4. (a) A basis for V is 1, x, x2 so dimV = 3. A basis for U is x, x2 and dimU = 2.
A basis for W is −1+x,−x+x2 and dimU = 2. (b) U∩W = {−ax+ax2 | a ∈ R},
basis is −x+ x2 and dim(U ∩W ) = 1. (c) 3, Y

12. (a) A basis for V is î, ĵ, k̂ so dimV = 3. A basis for U is [1, 0,−3], [0, 1, 2]
and dimU = 2. A basis for W is [1, 0, 1], [0, 1, 1] and dimW = 2. (b) U ∩W =
{ [a, 4a, 5a] | a ∈ R }. A basis for U ∩W is [1, 4, 5] and dim(U ∩W ) = 1. (c) 3, Y

CHAPTER 4

Section 4.1

1. (a) is (b) is not

2. (e) is (l) is not (o) is

Section 4.2

1. (a) { (2c) + (−3c)x+ cx2 : c ∈ R } (b) is not (c) 2− 3x+ x2 (d) 1 (e)
2 (f) it does

4. (a) { 0 } (b) is (c) no basis for kerT and dim(kerT ) = 0 (d) 2, does not

Section 4.3

8. (a)

 7 −4
6 −4

−10 6

 (b) S(a + bx) = (a + b)[0, 2, 1] + (a + 2b)[1, 0, 0] = [a +

2b, 2a+ 2b, a+ b]

11. (a)
[

2 1 4
−1/2 3/2 −4

]
(b)

[
−4 0

0 4

]
(c) S[a, b, c] =[

a− c 0
0 4a+ 5b− 7c

]

Section 4.4

1. (a)
[

2/3 1/3
−1/3 1/3

]
(c) T−1[a, b] =

[
2
3a+ 1

3b 0
0 1

3a+ 1
3b

]

12. (a) [3, 10, 15] (b) |A| = 6 6= 0, A−1 =

 0 1/2 −1/2
−1/3 −1/3 5/3

1/3 −1/6 −1/6

 (c)

T [a, b, c] = [a, 2a− b/2, c/3− b/2]

Section 4.5

3. (a) P =
[

1 0
1 −1

]
, [T ]B′ =

[
0 1
−3 3

]
(b) T (a+ bx) = (3a+ b)− 3ax
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5. (a)

 1 −1 2
0 1 −2

1/2 1/2 1

 (b)

 1 −2 0
1/2 1 1/2
−1 2 1

 6. (e)
[
−1 −3/2

2 3

]
(f)

[
2 0
1 0

]

Section 4.6

1. (a)

 −1 0 0
0 2 3
0 2 1

 (b) |[T ]ST | = 4 6= 0 (c) T−1(a + bx + cx2) = −a +

(
−1

4b+ 3
4c
)
x+
(1

2b−
1
2c
)
x2 (d) T has eigenvalues −1 and 4, E−1 = {a−cx+cx2 :

a, c ∈ R}, E4 = {(3/2)cx + cx2 : a, c ∈ R} (e) A basis for E−1 is 1, −x + x2

and dim(E−1) = 2 and a basis for E4 is (3/2)x + x2 and dim(E4) = 1. (f) Y,

B = (1,−x+ x2, (3/2)x+ x2), [T ]B =

 −1 0 0
0 −1 0
0 0 4


3. (a) T has eigenvalues 1 and 4 (b) N (c) E1 =

{ [
0 b
0 c

]
: b, c ∈ R

}
, E4 ={ [

−(3/2)c −(1/2)c
0 c

]
: c ∈ R

}
(d) A basis for E1 is

[
0 1
0 0

]
,

[
0 0
0 1

]

and so dim(E1) = 2. A basis for E4 is
[
−(3/2) −(1/2)

0 1

]
and so dim(E4) = 1.

(e) Since dim(E1) + dim(E4) = dim(U22), T is diagonalizable with basis B =([
0 1
0 0

]
,

[
0 0
0 1

]
,

[
−(3/2) −(1/2)

0 1

])
, [T ]B =

 1 0 0
0 1 0
0 0 4


4. (a) T are−2 and 3 (b) N (c) E−2 = {−b+bx+cx2 : b ∈ R}, E3 = {−2b+bx :
b ∈ R} (d) A basis for E−2 is −1 + x, x2, so dim(E−2) = 2 while a basis for E3 is
−2 + x, so dim(E3) = 1 (e) Since dim(E−2) + dim(E3) = 2 + 1 = 3 = dim(P2),

T is diagonalizable. B = (−1 + x, x2,−2 + x) and [T ]B =

 −2 0 0
0 −2 0
0 0 3

.

7. (a)
[
−2 −1

1 2

]

8. (a)
[

1 −1
1 1

]
(b)

[
122 121
121 122

]

Section 4.8

1. (b) 1 + U , x+ U
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Section 4.9

3. (b) φ1

[
a b
c d

]
= a − b, φ2

[
a b
c d

]
= b − c, φ3

[
a b
c d

]
= c − d,

φ4

[
a b
c d

]
= d

CHAPTER 5

Section 5.1

1. (a) 22 (b) 15/4 (c) 8

2. (a)
√

5 (b) 1 (c)
√

6

4. (a) is (b) is not

Section 5.2

2. (a) [1/
√

2, 1/
√

2, 0], [1/
√

6,−1/
√

6,
√

2/3], [−1/
√

3, 1/
√

3, 1/
√

3] (b) 5

4. (a)
[

1 0
0 0

]
,
[

0 1/
√

2
0 1/

√
2

]
,
[

0 −1/
√

2
0 1/

√
2

]
(b) 1

5.
[

1/
√

2 1/
√

2
0 0

]
,
[
−
√

2/2
√

3
√

2/2
√

3
0
√

2/
√

3

]
,
[ √

3/3 −
√

3/3
0

√
3/3

]

7. (a) {[−(5/4)c, (3/4)c, c] : c ∈ R} (b) {(1/6)c − cx + cx2 : c ∈ R} (c){ [
−(1/3)c+ (2/3)d (2/3)c+ (2/3)d

c d

]
: c, d ∈ R

}

Section 5.6

1. (a) 8√
10 , [4/5, 0,−8/5,−4/5, 8/5] (b) 1√

13 ,

 1/13 0 −1/13
2/13 1/13 −1/13

0 −1/13 2/13

 (c)

7
√

645
860 , − 21

172x
2 + 21

86x+ 21
172

2. (a) [1, 1, 1] (b) [1, 1, 1, 0] (d) 94349097310435973
198158383604301824 −

31378641891135303
198158383604301824x −

2857448618217529
4503599627370496x

2 (e) E11

Section 5.7

1. (a) P =
[
−1/
√

2 1/
√

2
1/
√

2 1/
√

2

]
and P TAP is a diagonal matrix with diagonal

entries 2 and 4 (b) P =

 −
√

6/6 −
√

2/2
√

3/3
−
√

6/6
√

2/2
√

3/3√
6/3 0

√
3/3

 and P TBP is a diagonal

matrix with diagonal entries 2, 3 and 6
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Section 5.8

1. (d) U≈


0.2850 −0.8315 0.3895 0.2750
−0.2413 −0.5292 −0.5000 −0.6417
−0.8758 −0.1512 −0.0055 0.4583
−0.3058 0.0756 0.7735 −0.5500

, S≈


3.3948 0 0

0 2.6458 0
0 0 1.2145
0 0 0

,

V ≈

 −0.5932 −0.6000 0.5368
−0.6710 −0.0000 −0.7415

0.4449 −0.8000 −0.4026

 (e) U =

 −
√

6/6
√

3/3 −
√

2/2
−
√

6/6
√

3/3
√

2/2√
6/3

√
3/3 0

 =

V and S =

 6 0 0
0 3 0
0 0 2

 (f) U =
[

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
, S =

[ √
8 0 0 0
0 0 0 0

]
,

V =


1/2 −1/

√
2 −1/

√
2 1/

√
2

−1/2 0 0 1/
√

2
1/2 0 1/

√
2 0

1/2 1/
√

2 0 0


Section 5.9

1. (b) (10/7, 2/7)

5. (a) y = 1.1− 0.2x (b) y = 0.1− 1.2x+ x2 (c) y = 1− 2.5x− 0.5x2 + x3

9. (−1/7, 3/7,−2/7)

CHAPTER 6

Section 6.2

1. (b)
[

14/5 17/5
17/5 26/5

]
(b) [0.5776, 0.8163], θ ≈ 0.9550 (c) 14

5 cos2 θ +
34
5 cos θ sin θ + 26

5 cos2 θ

Section 6.3

1. P =
[
−0.8163 0.5776

0.5776 0.8163

]
, [0.5945,−1.3549], [1.1720,−0.5386], [0.3557, 0.0390],

[0.9333, 0.8553], [0.6945, 2.2492]

Section 6.6

1. S ≈


−0.2476 −0.5820

0.6720 −0.2859
−0.6278 −0.0765

0.2918 0.2195
−0.0884 0.7249


Section 6.7
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1. (a) [−11/4, 1/2] (b) y = (11/2)x− (29/12)

3. y = −x+ 1

CHAPTER 7

Section 7.1

1. (a) 8x2
1 + 2x1x2 + 2x2

2 (b) −6x2
1 + 2x1x2 (c) 2x2

1 − 2x1x2 + 4x1x3 − 3x2
3

2. (a)
[

1 −3
−3 −2

]
(b)

[
0 1
1 3

]
(c)

 2 −1 0
−1 −1 2

0 2 0


Section 7.2

1. (a) indefinite (b) negative definite (c) positive definite (d) positive
semi-definite (e) negative semi-definite

Section 7.3

1. (a) indefinite (b) negative definite (c) positive definite (d) positive
semi-definite (e) negative semi-definite

2. eigenvalues are 0, 0 and 1 + a2 + a4 all ≥ 0.

Section 7.4

1. (a) (0, 0, 0) is a strict global minimizer (g) no critical points (h) no critical
points (k) ((1/4) ln 2, (1/4) ln 2, (1/4) ln 2) is a strict global maximizer

2. (a) (0, 0, 0) is a strict global minimizer (c) (1/2, 1,−1/3) is a saddlepoint (e)
(0, 0, 0) is a saddlepoint (h) (1/3,−1/6, 1/6) is a strict global maximizer

3. (a) (0, 0, 0) is a strict local (in fact, global) minimizer, (−4,−4,−2), (−4, 4, 2)
and (4,−4, 2) are saddlepoints (b) (0, 0, 1) and (1,−1, 1) are strict local maximizers

Section 7.5

1. (b) 2a2
1 + 2a1a2 − 2a1a3 − a2

2 + 8a2a3 − 3a2
3]

2. (b)

 2 1 −1
1 −1 4
−1 4 −3


3. 4a1b1 + a1b2 − 2a1b3 + a2b1 + a2b2 − 2a3b1 + a3b3

4. 3a1b1 + a1b2 − 2a1b3 + a2b1 − 2a3b1 + a3b3

5. (a) r = 2 and s = 3 (b) indefinite

6. (a) r = 1 and s = 2 (b) indefinite
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n-linear, 245
alternating, 246

basis, 156
dual, 262
extending to, 163
fan, 260
ordered, 165
standard, 4, 157
standard ordered, 166

boundary, 383
bounded, 383

class, 337
closed, 383
coefficient, 137
column space, 174
congruence, 251
constraint, 50
critical point, 384
curse of dimensionality, 339

data sphering, 353
decomposition

Cholesky, 381
LU, 114
QR, 292
singular value, 314

dimensionality reduction, 339
discriminant, 384
distance

Euclidean, 350
standardized, 351

divide, 251

eigenspace, 233
eigenvalue, 233
eigenvector, 233
elementary row operation

inverse, 70

elementary row operations, 32
equivalence class, 252

quotient set, 253
representative, 253

Euclidean space, 272
exchange principle, 156
extreme point, 53

feasible
region, 52
solution, 52

feature, 337
categorical, 337
numerical, 337
space, 338

feature space
augmented, 366
normalized, 364

field, 1
function, 122

domain, 122
extrema, 383
inverse, 219
linear discriminant, 338, 363
multi-variate, 382
one-to-one, 196
onto, 196

Gaussian Elimination, 35
Generalized Taylor’s Theorem, 384
generators, 148

Hessian, 384
hyperplane of separation, 363

index of nullity, 392
index of positivity, 393
inner product, 271

bilinear, 272
non-degenerate, 272
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positive definite, 272
symmetric, 272

inner product space, 271
annihilator, 279
trivial, 272

interior, 383
interior point, 383

least squares
approximation, 310
curve, 324

linear
combination, 137
dependent, 138
dependent on, 151
independent, 138
independent of, 151

linear discriminant function
Fisher, 356

linear operator, 194
diagonalizable, 238
triangularizable, 238

linear programming problem
canonical, 82
standard, 82

linear transformation, 189
bitranspose, 268
characteristic, 262
coordinate, 262
evaluation, 192, 262
functional, 261
identity, 192
image, 197
inverse, 220
inverse image, 205
invertible, 220
isometry, 284
isomorphism, 224
kernel, 197
nullity, 199
orthogonal, 284
rank, 199
transpose, 263
zero, 192

map

canonical, 256, 268
projection, 259

matrix, 15
addition, 16
adjoint, 106
augmented, 28
best approximation, 318
change of basis, 167
conjugate transpose, 298
diagonal, 18
diagonalizable, 238
distance, 318
elementary, 67
equivalence, 69
generalized inverse, 320
Hermitian, 298
identity, 18
inverse, 74
invertible, 74
lower triangular, 18
multiplication, 21
norm, 318
orthogonal, 283
principal minor, 374
pseudo-inverse, 320
rank, 91
reduced row-echelon form, 35
representation, 208
row-echelon form, 92
scalar, 18
scalar multiplication, 16
scatter, 340
scatter between, 357
scatter within, 357
similarity, 229
singular, 74
singular values, 315
skew symmetric, 19
skew-Hermitian, 298
square, 18
symmetric, 19
trace, 136, 261
transpose, 19
triangularizable, 238
unit triangular, 114
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unitary, 298
upper triangular, 18
zero, 17

minimal total error line, 359
minimizer

global, 383
local, 383
strict global, 383
strict local, 383

minimum
global, 383
local, 383
strict global, 383
strict local, 383

necessary generators, 152
normal equation, 320
null space, 174
nullity, 174

objective
criterion, 56
function, 50
row, 55

open, 383
open ball, 383

partition, 254
pivot

entry, 35
variable, 38

polynomial, 121
characteristic, 234
coefficient, 121
degree, 121

positivity, 51
power set, 250
principal component analysis, 343
principal diagonal, 17
probability vector, 44
projection pursuit, 339

quadratic form, 371, 390
indefinite, 372
negative definite, 372
negative semi-definite, 372

positive definite, 372
positive semi-definite, 372

rank, 174
relation, 250

anti-symmetric, 251
equivalence relation, 252
function, 252
irreflexive, 251
partial ordering, 252
reflexive, 251
symmetric, 251
transitive, 251

row space, 174

simplex method, 54
solution, 29

feasible, 52
optimal, 52
particular, 90
trivial, 90

solution set, 29
span, 148
state vector, 43
steady state, 44
subspace, 130

annihilator, 266, 279
column space, 148
direct sum, 134
generated by, 148
improper, 134
intersection, 134
null space, 132
orthogonal complement, 306
row space, 148
sum, 134
trivial, 134

system
consistent, 30
homogeneous, 90
inconsistent, 30
non-homogeneous, 90
of linear equations, 28

tableau, 55
transition
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matrix, 42
probability, 42

Truncated SVD, 317
tuple, 2

addition, 2
best approximation, 310
component, 8
cross product, 108
dot product, 6, 299
length, 7
magnitude, 7
norm, 7
normalization, 8
projection, 9
scalar multiplication, 2
unit, 7

variable
departing, 56
entering, 56
pivoting, 55
slack, 54

vector, 119
addition, 119
additive inverse, 120
best approximation, 310

component, 305
coordinates, 165
distance, 273
length, 273
magnitude, 273
norm, 273
normalization, 273
orthogonal, 276
orthogonal projection, 307
orthogonal set, 277
orthonormal set, 277
projection, 305
scalar multiplication, 120
span, 150
unit, 273
zero, 120

vector space, 119
annihilator, 266
bidual, 268
coset, 255
dimension, 160
dual, 261
isomorphism, 224
quotient, 255
subspace, 130
trivial, 123
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