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Series Preface

The field of aerospace is wide ranging and covers a variety of products,
disciplines and domains, not merely in engineering but in many related
supporting activities. These combine to enable the aerospace industry
to produce exciting and technologically challenging products. A wealth
of knowledge is contained by practitioners and professionals in the
aerospace fields that is of benefit to other practitioners in the industry,
and to those entering the industry from University.

The Aerospace Series aims to be a practical and topical series of books
aimed at engineering professional, operators, users and allied profes-
sions such as commercial and legal executives in the aerospace industry.
The range of topics spans design and development, manufacture, oper-
ation and support of aircraft as well as infrastructure operations, and
developments in research and technology. The intention is to provide a
source of relevant information that will be of interest and benefit to all
those people working in aerospace.

Ian Moir, Allan Seabridge and Roy Langton





Preface

There are many textbooks on the subject of feedback control; however,
most are highly mathematical and, as a result, often repel the seasoned
engineer who may have become a little rusty regarding the rigors of
certain aspects of mathematics that include such things as differential
equations and complex number theory. In a similar manner, unneces-
sarily complex mathematics can be a turnoff to engineering students
who might otherwise find the control systems engineering field both
challenging and exciting.

This book is not a textbook in the traditional sense but an attempt
by the author to give back to the next generation of control systems
engineers a guidebook containing easy to follow descriptions of the
important aspects of classical control supported by examples based on
real world events that have occurred during the author’s career in the
aerospace industry. The arrangement and content of the book is an
attempt to provide an effective answer to the question ‘What would
have been most useful to me as a prospective systems engineer in the
pre-to-post graduate timeframe seeking guidance and insight into the
fundamentals of feedback control?’.

In the opinion of the author, complex mathematics need not be a
significant barrier to learning if a pragmatic presentation methodology
can be developed providing a more straightforward approach to the
subject that can be more easily absorbed by the practicing engineer
and that provides an inspiration to the prospective control engineering
graduate.

In the current world of increasing complexity and functional inte-
gration in all areas of engineering and technology, the engineer who
did not take the course on ‘stability and control’ operates at a serious
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disadvantage. This is a common issue amongst many older mechanical
engineering graduates because historically control theory has been a part
of the electrical engineering curriculum. Even though this is becoming
less typical in most learning institutions the seasoned engineer with
a mechanical engineering background has, more often than not, never
been exposed to the subject of feedback control theory. An additional
problem with academia is the fact that much of the material taught is not
in common practice within the industry. As a result the learning expe-
rience becomes more of a mathematical exercise that misses out many
of the pragmatic methods that have been established as most effective
in the design and development departments of industry.

Today’s engineers are required more and more to be both specialists
in their area of expertise and generalists who understand the complete
functional context of the application where their products are being used.
Also, many of today’s products contain multiple engineering technolo-
gies. What once were single discipline mechanical, hydraulic or pneu-
matic products and systems now contain integrated electronic sensors
and, in many instances today, software. Control theory reduces these
widely varied technical disciplines into their important dynamic char-
acteristics expressed as transfer functions from which the subtleties of
dynamic behavior can be analyzed and understood.

The objective of this introductory book on feedback control is devel-
oped around the generic closed loop control system concept illustrated
by the diagram of Figure 0.1: As shown, the typical system comprises a

Controller Effector

Disturbance

Process

Process
requirements

Process
response

Figure 0.1 Generic feedback control system
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control element, an effector and a process to be controlled. The process
requirements are compared with the process response in the controller
whose task is to generate actions that ultimately bring the process in
line with the required state. The effector represents a power amplifica-
tion stage or ‘muscle’ that takes the control output signals and converts
them into a form that can be used to effect a change in the process. The
process may be any number of things from a simple actuator to a major
aircraft control system. The arrow connecting the process response to
the controller represents the feedback of process states to the controller,
hence the term feedback loop. The effector may also incorporate feed-
back to the controller as indicated by the shaded arrow.

An important feature of the feedback control system is that external
disturbances which affect the response of the process will be sensed,
and ultimately compensated for, by the ensuing corrective action deter-
mined by the controller. The challenge for the control system designer
is to establish the best control algorithm that will provide the optimum
performance in terms of accuracy, dynamic response and stability. The
objective of this book is to provide the reader with the basic tools to
understand the design processes and to visualize the functional behavior
associated with feedback control systems.

As part of the aerospace series the material presented in this book is
related to aircraft control system situations almost exclusively. Further-
more, the extensive background of the author in the areas of flight
controls, hydraulics, fuel and engine control systems forms the basis for
many of the design examples and reinforcement exercises developed.

At this point it is appropriate for the reader to recognize that aircraft
closed loop control systems vary substantially in their criticality and
response needs. While the primary focus of this book on stability and
control is aimed at the tightly coupled fast response systems where
stability and response requirements are important design and opera-
tional issues often with demanding specifications, there are many inter-
active control systems within a typical aircraft that are much more
loosely coupled but nevertheless must be recognized and evaluated
from a response and performance perspective. Figure 0.2 illustrates this
point by showing schematically the functional relationship between the
various layers of functionality associated with the control of a modern
aircraft.

Shown in Figure 0.2 are a number of nested control loops with control
surface actuators at the center which determine the immediate aircraft
response and attitude. At the second level is the flight director/autopilot
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Avionics Avionics Avionics Aircraft Sensors
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Autopilot
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Surface 
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Flight Deck

Attitude
Trajectory

Flight mission

Figure 0.2 Typical integrated flight control system

control loop which determines the trajectory of the aircraft within its
local airspace. Around these two control loops is the navigation system
which controls the aircraft’s mission through space relative to Earth
coordinates.

The outer loops become less tightly coupled but they are by defini-
tion closed loop control systems and as such must be recognized by
the control systems engineer in terms of response needs and poten-
tial interaction between the various control layers. These comments are
presented here to provide a perspective and awareness to the reader of
the complexity of the modern aircraft in terms of stability and control
and to be cognizant of the additional ‘outer’ control loops that are invari-
ably involved in the overall performance of the aircraft.

While the intent of this book is to minimize the mathematical content,
all of the key analytical procedures are developed from first principles
in the interest of completeness and to satisfy the reader with a strong
interest in the mathematics. The underlying methodologies, graphical
aids and guidelines described, however, can be developed using fairly
simple algebraic principles that are intended to provide the practitioner
with a good ‘feel for the problem’.
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Part of the fascination of understanding the principles of feedback
control is learning to be able to appreciate the functional behavior of
control systems through the interpretation of simple block diagrams
and to appreciate the fact that the dynamic functionality of complex
integrated systems is typically not intuitive.

The author has a long-standing belief that a basic understanding
of feedback control systems design, analysis and testing allows the
design/development engineer to have a clearer understanding of the
dynamic functional behavior that results when multiple components are
combined within a system to form an integrated functional entity.

The end objective of this book, therefore, is in effect to ‘switch on the
light’ in the dark room of system design and development for those
engineers who missed the opportunity to complete formal training in
control theory at university. This will provide the know-how necessary
to minimize problems with fielded systems in the area of operational
performance thus increasing the readers’ effectiveness in the eyes of
both their employers and their customers.

Roy Langton





1
Developing the
Foundation

Classical feedback control theory is an inherently mathematical subject
and as such can scare off the would-be practitioner if presented in
rigorous mathematical form. While there is no way to fully absorb and
apply the basic concepts of feedback control without any mathematics
it is definitely possible to ease into the subject matter gradually thus
allowing the reader to pursue with some curiosity, and hopefully some
excitement, the subtleties of closed loop system behavior.

This chapter attempts to provide the reader with a basic understanding
of the terminology associated with control theory and through the use of
simple examples to familiarize the reader with some of the key mathe-
matical tools needed to apply feedback control principles to engineering
problems. To begin with we need to discuss the issue of engineering
units since there are fundamental differences between the standards in
use at teaching institutions and within industry both in Europe and
the United States. This is followed by a discussion regarding the use
of block diagrams as a way to describe the functionality of closed loop
control systems. Differential equations describe the dynamic behavior
of physical systems and are at the core of feedback control theory. Here,
however, they are transformed from the mathematics domain into an
easy to assimilate block diagram form using simple examples.

Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control R. Langton
© 2006 John Wiley & Sons, Ltd
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Finally, a brief refresher on the subject of complex number theory
is presented since there is no way to avoid this aspect of mathematics
in describing oscillatory behavior which is such an important part of
the process for defining closed loop system response and stability to
be developed and discussed later. Throughout this chapter, and also
throughout the rest of this book, every attempt is made to use simple
examples to reinforce the learning process and to present the material
in an easy-to-follow manner using a minimum of complicated mathe-
matics.

1.1 Engineering Units

An important aspect of understanding control systems involves veri-
fying the meaning of equations by analyzing the units associated with
the various constants and variables used. For completeness two unit
standards are addressed here in order to represent adequately the
academic and industrial backgrounds of readers from both Europe and
the United States.

In Europe the International System of Units (SI) has been adopted as
the standard in both academia and industry, while in the United States,
the SI system taught almost exclusively in universities is by no means the
standard of industry where the US/Imperial standards are still used by
the majority. Perhaps the most significant difference between the SI and
US/Imperial systems is regarding the treatment of mass and inertia and
their relationships with linear and angular acceleration. The following
section addresses this aspect of the two units systems before comparing
and reconciling them into a common method of understanding.

1.1.1 International System of Units (SI)

In this system the kilogram (kg) is used to define the mass of an object
representing its inertial resistance to acceleration. Force is expressed in
‘newtons’ (N) and acceleration in meters per second2 (ms−2).

Considering the basic equation:

force = mass×acceleration �F = m×a��

The SI system requires that a force of 1 newton applied to a mass of
1 kilogram will result in an acceleration of 1 meter per second2.
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For the equation above to balance, the units of newtons must be
equivalent to kg m s−2, that is:

kg m s−2 = kg ×m s−2�

Using the same logic we can express the units of kilogram mass as:

kg = N/m s−2�

Thus we have expressed mass as a force per unit acceleration.

1.1.2 US/Imperial Units System

The imperial units system (adopted with a number of modifications by
the United States) developed from the fact that the local gravitational
force is always the same and equal to:

g = 32�2 ft/sec2 �or 386�4 in�/sec2��

The basic equation: force = mass×acceleration is reconciled by defining
mass as weight divided by g so that:

F = �W/g�×acceleration�

Here the unit-balance equation is:

lb = lb/ft sec−2 × ft sec−2�

For most aerospace engineering problems inches (in.) are used for
displacement rather than feet (ft) for obvious reasons of scale.

An alternative method widely in use is to express the mass term
as pounds mass (lbm) and force as pounds force (lbf); however, for
simplicity we will adopt the convention where pounds (lb) always repre-
sents force and mass is expressed as the inertial force resisting acceler-
ation in lb per unit acceleration, i.e. lb/�ft sec−2�.
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1.1.3 Comparing the SI and US/Imperial Units Systems

Going back to the basic equation the SI system denotes:

force �N� = mass �kg�×acceleration �m s2��

We can also express this equation as follows:

force �N� = inertial resistance �N/m s2�×acceleration �m/s2��

This is now in the same form as the US/Imperial representation, that is:

force �lb� = inertial resistance �lb/ft sec−2�×acceleration �ft/sec2��

This same approach can be readily applied to the rotational equivalent
of the above linear examples where:

torque = polar �rotational� inertia× rotational acceleration�

The units equations for the SI and US/Imperial systems are as follows,
respectively:

N m = N m/�r/s2�× r/s2 and lb ft = lb ft/�rads/sec2�× rads/sec2�

The intent of the above is to point out that both unit standards can
be expressed in a similar manner. The interpretation above is used
throughout this book because it is considered to be the most intuitive to
the reader.

1.2 Block Diagrams

Block diagrams are used extensively by control systems engineers to
provide a visual insight into the functionality of closed loop control
systems; it is therefore important for the reader to get comfortable with
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this concept. Block diagrams are a convenient way to depict the various
elements of a control system as a number of interconnected boxes or
blocks wherein the input to a box/block multiplied by the contents of
the box/block defines the output from that box/block.

The contents of blocks may contain dynamic terms or they may be
scalar quantities such as gains, ratios, performance coefficients, etc.. In
the process of calculating the output from a block, the units of the input
term and the block contents are also multiplied together to define the
units of the output from that block. For example, Figure 1.1 shows the
relationship between a fluid valve displacement (the input to the block
X in millimeters (mm) and the output volume flow from the valve Q in
liters per second (l/s). The term inside the block, the valve gain KV, has
units of liters per second per millimeter of valve displacement (l/s)/mm.

Another important feature used in block diagrams is the summation
device which allows two or more signals to be added or compared.
The diagrammatic representation of a summation device is shown in
Figure 1.2. Here the output from the summation device can be either the
sum or the difference of the inputs to the device depending upon the
signs written alongside the arrows of each input. Also, as indicated by
the Figure 1.2, a summing device can have multiple inputs. An important
point to remember when using summing or comparison devices is that
the inputs and outputs to/from the device must all have the same
units. Using a summing device to define the difference between two
variables is a fundamental aspect of feedback control where the required
output from a control system is compared with the actual (measured)
output and the difference used to cause the output to move towards the
desired value.

1.2.1 Examples of Summation (or Comparison) Devices

The most obvious example of a comparison device taken from our
everyday experience is the thermostat used to control the tempera-
ture in our home or office. This system is called a ‘bang–bang’ control

KV
Valve input

X (mm)
Valve flow output

Q (l/s)

Valve

(l/s)/mm

Figure 1.1 Fluid valve block diagram example
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Summation
format types

Typical
summation device
examples

∑

Preferred usage

Alternatives in common use

+

+

+
+

+

–

–
x

x

x1

y

y

y

x2

z

z

z

z = x – y 

z = x + y

z = x1 + x2 – y

Figure 1.2 Summation device representation

since it is either ‘on’ or ‘off’. If the room temperature falls below the
desired value, the thermostat switches the heating system ‘on’ and
when the temperature reaches the desired value the heating system is
switched ‘off’. (There is usually some hysteresis between the ‘on’ and
‘off’ settings to prevent ‘chatter’ about the set point.) This type of system
is ‘nonlinear’ because of the on/off or discontinuous characteristic of the
controller. For the most part we shall be dealing with ‘linear’ systems
where the action taken by the control system is in proportion to the
magnitude of the difference between the desired value and the actual
output. There are many examples of summation/comparison devices
used in all engineering disciplines including mechanics, hydraulics,
pneumatics and electronics. Presented below are just a few of the more
common types.

The Float Control Valve

Everyone is familiar with the float mechanism inside the toilet cistern
that limits the level of water in the cistern during refill following the
flush action. Figure 1.3 shows this system both schematically and in
block diagram form. This same concept is used extensively in aircraft
fuel systems where float valves are used to provide a signal to the
refueling or fuel transfer system that the fuel tank is full. In this case the
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Set level

Actual level

Float Pivot

Control valve

Supply
pressure

+

–

Set level

Actual level

Control valve
position

Figure 1.3 Fluid level comparator

float valves do not act directly on the flow control valve but provide a
servo pressure signal that initiates control valve action shutting off flow
to that tank. For this reason these valves are termed ‘float pilot valves’.

Mechanical Linkage Summing

Mechanical linkage summing is an extremely simple form of summing
device that is used extensively in many aircraft flight control systems
in service today. Movements of the pilot’s control column are typi-
cally translated via cables and pulleys or push–pull rods to mechan-
ical inputs to servo control actuators at the control surface. These
actuators provide the necessary muscle to overcome the aerody-
namic forces associated with high speed flight. The pilot’s input is
compared with the control surface position (servo actuator output) in
a mechanical summing linkage arrangement similar to that shown in
Figure 1.4. In a similar manner inputs from an autopilot actuator can
be summed with the pilot’s command to provide an auto-stabilization
function.

The Speed Governor

The speed governor goes back more than 200 years to James Watt who
invented the ‘flyball governor’ as a mechanism to control the speed of
a steam engine that did not require human intervention. Derivatives of
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X1

X2

(X1 – X2)

X1

X2

(X1 – X2)
– 

+

Figure 1.4 Mechanical linkage summer/comparator

o

Set speed (ωset)

Actual speed (ω)

Flyweights

x x

o

Cam

Close control valve

Open control valve

(ωset) 
+

–
Flyweight
force f(ω2)

Defined by cam
rotation

Flyweight
displacement
to control valve

Figure 1.5 Flyweight governor

this device are used throughout industries using rotating machinery.
Figure 1.5 shows such a device in schematic and block diagram form.
Today, flyweights rather than balls are more typical offering a more
compact design. The basic concept, however, remains unchanged. The
rotation from the machinery to be controlled causes the weights to be
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thrown outward due to the centrifugal force. This force is compared
with an opposing spring force defining the desired operating speed.
If the speed exceeds this value the resulting upward motion of the
flyweights is used to close the valve supplying the energy to the rotating
machinery under control. The square law relating speed and flyweight
force is non-linear but a linear approximation can be used effectively
in control systems analysis. In some sophisticated devices associated
with gas turbine fuel controls, the flyweight governor is integrated with
a non-linear servo mechanism that is designed to compensate for the
square law effect resulting in an output displacement directly propor-
tional to the rotational speed. With the advent of digital electronic
engine controls this non-linear problem is easily taken care of using
software.

The Operational Amplifier

The ‘op-amp’ is the cornerstone of analog electronic circuitry and can
be used to sum or difference two or more voltages. Figure 1.6 shows
a schematic of an operational amplifier with three separate inputs
connected to the summing junction of the amplifier via identical resis-
tors R. The equivalent block diagram is also shown in this figure.
The output of the amplifier is also shown connected to the same junction
via a resistor of the same value. Since the voltage gain of the ampli-
fier is very high (say >105) we can treat the summing junction for all
three inputs and the feedback as a ‘virtual ground’ and so the current

G

V1

V2

V3

Vo

i1

i2

i3

io

Virtual ground

R

R

R

R

+
+

+
V2 –1

V1

V3

Vo

Figure 1.6 The summing amplifier
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flowing into the amplifier can be assumed to be zero. Therefore by
Kirchoff’s Law the sum of the currents from the three inputs into the
virtual ground must equal the current flowing out through the feedback
resistor, i.e.

V1

R
+ V2

R
+ V3

R
= −

(
V0

R

)
�

The negative output is inherent in the hardware since the current
flow in the feedback resistor is away from the summing junction
and hence V0 must be negative. Thus we have a simple summing
amplifier. It is also possible to select different impedances for each
input as well as the feedback to generate complex dynamic transfer
functions.

Force Summing Bellows

Another commonly used summing device uses bellows and a summing
link to generate a displacement proportional to two (or more) pres-
sures in both hydraulic and pneumatic systems. Figure 1.7 shows such
a device used to modulate the opening of a flapper valve as part of
a servo mechanism. This arrangement is ideal since the servo flapper
displacement is extremely small and therefore any error induced by the
spring rate of the bellows will be negligible thus providing accurate force
summing.

P1

P2

Bellows

Summing link

Pivot
Flapper
valve

Figure 1.7 Force summing bellows arrangement
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1.3 Differential Equations

This section reviews the differential equation which is the standard
mathematical approach to defining the dynamic behavior of physical
systems. Here we will limit our attention to linear differential equations
with constant coefficients leaving how to deal with nonlinearities until
later in the book. We will also describe how to express these equations in
a simplified form that is readily adaptable to the block diagram concept
previously discussed.

Let’s begin with an equation that we are all familiar with. This
equation is depicted schematically in Figure 1.8 and is, in fact,
a second-order differential equation whose solution allows us to
determine the position of the mass at any point in time. In more
rigorous terms we can write the same equation in the following
form:

F = M
[

d2x
dt2

]
or F = Mẍ�

where F is the applied force, M is the mass expressed as an inertial force

per unit of acceleration, and
d2x
dt2

or ẍ is the second derivative of x, the
position of the mass with respect to time.

Both the differentiation process, i.e. the calculation of the rate
of change of a variable with respect to time,1 and its inverse
the integration process, are fundamental building blocks of feed-
back control theory and the ‘D’ notation (see below) is used to
facilitate the expression of differential equations in block diagram
form.

M

x

F

Figure 1.8 Schematic diagram of F = M ×a

1 While differentiation (or integration) can be with respect to any variable, in feedback control
it may be assumed that it is always with respect to time.
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1.3.1 Using the ‘D’ Notation

Here ‘D’ means the derivative with respect to time, therefore:

dx
dt

= Dx or ẋ

and similarly:

d2x
dt2

= D2x or ẍ�

The integration process can now be expressed as
1
D

since it is the inverse
of the differentiation process.

The conventional expression for the integral of a function with respect
to time is:

t2∫
t1

f �t�dt�

where the limits t1 and t2 define the span of time (t2 − t1) over which
the integration process takes place. When written without limits it can
be inferred that the time span is from t = 0 to t = �. Therefore we can
define the integral of the acceleration of x with respect to time as:

∫ (d2x
dt2

)
dt = 1

D
ẍ = ẋ

which is velocity, or, in block diagram form, as shown in Figure 1.9(a).
Similarly the double integral of acceleration:

∫∫ (d2x
dt2

)
dt

can be expressed in block diagram form as shown in Figure 1.9(b) and
this may be further simplified as indicated by Figure 1.9(c).
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(b)

(a)

1
D

x
..

x
.

(Acceleration) (Velocity)

(c)

1
D2x x

..

(Acceleration) (Position)

(Position)(Acceleration)
x
..

x
x
.

1
D

1
D

Figure 1.9 D notation examples using block diagrams

There is an important caveat that should be mentioned here as it
relates to the notation described above. The output from the integra-
tion process requires a ‘constant of integration’ which, in the above
examples is assumed to be zero. In other words one cannot compute
the position x without knowing the initial velocity and position at the
start of the integration process. When analyzing closed loop systems the
default condition assumed above, is that the output of each integrator
at time t = 0, is zero. This is usually acceptable but should be noted and
understood.

The next step is to revisit the basic equation (F = M × a) and to
express it in block diagram form using the notation described above. The
resulting block diagram is shown in Figure 1.10. As we learned from the
block diagrams section above, the input to each box is multiplied by (or
operated on by) the contents of the box to obtain the output from that
box. When the term inside the box contains dynamic terms the output
from the block is referred to as the ‘response’ and the contents of the
block as the ‘transfer function’.

xForce F
x
..

x
.

1
M

1
D

1
D

x0
.

x0

Figure 1.10 Block diagram of F = M ×a
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Figure 1.10 gives a much clearer picture of what is happening than
the general expression used at the outset. In order to calculate values
of velocity and position one needs to know the initial conditions at the
output of each integrator depicted above by the ‘0’ subscripts for each
integrator.

1.4 Spring–Mass System Example

In order to reinforce what we have learned so far we will apply these
concepts to a more complex dynamic system. Consider now the spring–
mass arrangement shown in Figure 1.11. From the original equation

force = mass×acceleration

we can say:

�xi −xo� K − fDxo = MD2xo�

At this point the control engineer would develop a block diagram repre-
sentation of the system to provide a visual insight into its functionality.
To accomplish this we rearrange the above force balance equation to
put the highest derivative term (in this case D2xo) on the left-hand side
as follows:

D2xo = 1
M

[
�xi −xo� K − fDxo

]
�

It is now an easy task to construct a block diagram by summing all
the terms in the equation to give D2xo and then integrating to give Dxo

M

xi x0

Spring stiffness K

Viscous damper f 

Figure 1.11 Spring–mass system
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+

–

+
–

K

f

xi xo

D2xo Dxo

1
M

1
D

1
D

Figure 1.12 Spring–mass system block diagram

(velocity) and again to give xo (position). Figure 1.12 shows the block
diagram of this system developed this way.

This block diagram shows the spring–mass arrangement as a mini
system with two feedback paths. The damping term f Dxo subtracts from
the accelerating force and xo is fed back and compared with xi to determine
the compression of the spring. This simple example demonstrates how
block diagrams using the D notation to define the dynamic terms provide
a more easy-to-understand way to express differential equations.

1.4.1 The Standard Form of Second-order System Transfer
Function

In order to make the next point regarding second-order systems we need
to revisit the original force balance equation. From this we will develop
the standard representation of second-order systems that will prove to
be extremely useful in the dynamic analysis methods to be developed
later. Restating the spring-mass force balance equation and rearranging
we obtain:

�xi −xo� K − fDxo = MD2xo

or:

Kxi = xo

(
MD2 + fD+K

)
�

Dividing the above rearranged equation by the spring stiffness, K, we
obtain the following equation relating the input and output displacements

xo

xi
= 1(

M

K

)
D2 +

(
f

K

)
D+1

�



16 Developing the Foundation

The right-hand side of this equation can be expressed in the following
standard form:

1(
D2

��n�2

)
+
(

2�D
�n

)
+1

�

where �n is the ‘undamped natural frequency’ in radians per second. In

this specific case it is equal to

√
K
M

and � is the damping ratio defined

as
f �n

2K
which has no units.

Let us check the units in each unit convention.
SI units:

K/M = N/m/
(
N/m s−2)= s−2 = radians/second2 �

f �n/2K = (
N/m s−1) (s−1

)
/�N/m� � � � all units cancel �

US/Imperial units:

K/M = �lb/in��/
(
lb/in� sec−2

)= sec−2 = radians/second2 �
f �n/2K = (

lb/in� sec−1
) (

sec−1
)
/�lb/in�� � � � all units cancel �

The point of this standard expression for second-order systems is that
it is independent of discipline, i.e. a second-order system associated
with an electronic circuit, a chemical reaction, a hydraulic or pneumatic
pressure oscillation can all be expressed in the standard form. This is an
interesting aspect of feedback control systems in that it all boils down
to a series of transfer functions that can be studied in control systems
terminology and independent of any specific engineering discipline.

Here are some observations we can make regarding second-order
system response. If the damping ratio goes to zero, the ‘D’ term in
the transfer function also goes to zero implying that the system will
oscillate at the undamped natural frequency forever, i.e. the oscillations
will not decay. In the real world there is always some damping present,
however small, causing the oscillations to die away to zero eventually.
As the value of the damping ratio increases, the number of oscillations



Spring–Mass System Example 17

ζ = 0.2 ζ = 0.5 ζ = 0.7

Figure 1.13 Spring–mass system response for different damping
ratios

to damp out following a disturbance become fewer to the point where
for � = 0�707 there will be essentially no oscillations. To illustrate this
point, Figure 1.13 shows the response of xo to a sudden change in xi for
different values of damping ratio.

For a damping ratio of 1.0 the system is said to have ‘critical damping’
and the response equation for the system can be defined as the product
of two identical first order terms as follows:

xo

xi
= 1(

D
�n

+1
)(

D
�n

+1
) �

Multiplying out the two first-order factors yields:

D2

��n�2 + 2D
�n

+1

implying from the above standard definition that � = 1�0� �
Let us look at the implications of the above in mathematical terms:

• For values of � between 0 and 1 the solution of the second-order
differential equation will have imaginary terms.

• For the unique situation where � = 1 the solution is represented by
two equal real roots with a value of −�n.

• As � increases above 1.0, the roots of the equation will be real but
different with the difference becoming larger as � increases.

From the analysis of the second-order system it becomes clear that in the
region of interest, i.e. when the response becomes oscillatory, the roots
of the differential equation are imaginary numbers involving the square
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root of minus one designated by j. The next step therefore is to refresh
our memories regarding the properties of complex numbers.

1.5 Primer on Complex Numbers

Complex numbers are necessary to allow us to express the square root
of negative numbers which occur when solving differential equations
such as we have shown above. This is particularly important in working
with feedback control systems because it is when these systems exhibit
oscillatory behavior or become unstable that the solutions involve the
square root of negative numbers.

The concept is to define numbers as having both real and imaginary
properties; real numbers being, therefore, just a special case where the
imaginary part is zero. This can be expressed graphically by defining
‘the complex plane’ where the real part of a number is defined along
the horizontal axis and the imaginary part, expressed as a product of
the ‘square root of (−1)’ or j as indicated in Figure 1.14.

Referring to this figure we can define the complex number represented
by point P in the complex plane so that:

P = a+ jb�

Point P can also be considered as a vector P represented as the arrow
between the origin and point P. This vector can be described as having a

Real axis

Imaginary 
axis

1 2 3 4–1 –2 –3 –4

P

P

a

b

Complex
plane

–j

–2j

–3j

–3j

–2j

–j

Figure 1.14 Graphical representation of the complex plane



Primer on Complex Numbers 19

R

Im

Real axis

j axis

X
θ

Figure 1.15 The polar coordinate form of a vector

magnitude equal to the length of the vector and a direction represented
by the angle of the arrow relative to, say, the real axis. This method of
describing a complex number is called the ‘polar coordinate form’ (see
Figure 1.15).

Here we refer to the magnitude of the vector as the ‘modulus’ and the
direction of the vector as the ‘phase angle’. Referring to Figure 1.15, the
modulus of the vector, �x�, is the length or magnitude of the vector and
can be calculated via Pythagoras as:

�x� =
√

R2 + Im2�

The phase angle, 	 is obtained from

tan 	 = Im
R

�

The above polar representation is fundamental to the methods used to
analyze and understand the behavior of closed loop systems which we
will develop in the forthcoming chapters.

1.5.1 The Complex Sinusoid

Sine waves are one of the most common ways to apply a disturbance
to a system in order to understand the behavior of that system under
dynamic conditions. Sinusoidal excitation is easy to apply in practice and
by using a range of frequencies of excitation, the dynamic characteristics
of a system can be evaluated over a specific frequency range of interest.
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ω t

ω

Im

R

Figure 1.16 Rotating vector in the complex plane

From an analytical perspective, therefore, we need to familiarize
ourselves with the way we can apply sinusoidal disturbances to the
transfer functions of a system and to analyze the responses that result.
Consider now the vector in Figure 1.16 rotating around the axis of
the complex plane with an angular velocity of � radians per second.
If we were to plot the projected length of this vector onto the real
axis against time we would obtain a sine wave. The interpretation
of this arrangement is that a rotating vector in the complex plane
appears in the ‘real’ world as a sinusoidal oscillation whose frequency
is �/2
 cycles per second or ‘hertz’. This is fairly intuitive and easy to
understand.

Referring to the Figure 1.16 we can see that at any time ‘t’ the phase
angle of the vector with respect to the real axis is equal to �t radians.
Also, for a vector modulus of unity, the coordinates of the vector as it
rotates around the origin are always:

cos �t + j sin �t�

Those readers who remember their high school mathematics will realize
that this expression can be represented in polar coordinate form by the
term ej�t which is referred to as ‘the Complex Sinusoid’. The application
of this concept will be developed in the section on frequency response
analysis where ej�t is used to describe the sinusoidal forcing function.

For the interested reader, the proof that the rectangular coordinate
representation of a sine wave cos �t + j sin �t is equivalent to the
complex sinusoid (polar coordinate) representation ej�t is developed
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below: First we have to express the sine and cosine expressions as a
series. The Taylor series for these are as follows:

cos ��t� = 1− ��t�2

2! + ��t�4

4! − ��t�6

6! + � � � �

Prove this to yourself by plugging in a value for �t in the above equation.
For example, inserting �t = 
/3 radians (60 degrees) will yield 0.5 which
is the correct answer.

Similarly:

sin ��t� = ��t�

1! − ��t�3

3! + ��t�5

5! − � � � �

If we multiply the sine series by j and add it to the cosine series we
obtain the following series for cos �t + j sin �t:

1+ j ��t�− ��t�2

2! − j ��t�3

3! + ��t�4

4! + j ��t�5

5! + � � � �

This, believe it or not, is the Taylor series for ej�t .
From the above we can also determine the following expressions:

cos ��t� = 1
2

(
ej�t −e−j�t

)

and

sin ��t� = 1
2j

(
ej�t −e−j�t

)
�

It is not essential to remember the above mathematical proofs to
understand and analyze feedback control systems. It is presented here,
however, for completeness.

1.6 Chapter Summary

This chapter has armed the reader with the basic tools that are needed to
understand, analyze and evaluate the dynamic behavior of closed loop
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control systems. By introducing the concepts of the block diagram and
the D operator, the dynamic behavior of physical systems can now be
represented in a straightforward visual form where the contributions of
the various elements of a system can be more clearly appreciated.

Perhaps the most challenging aspect covered so far is how oscilla-
tory systems, such as the spring–mass example presented here, have
roots that involve complex numbers and that the larger the imaginary
part relative to the real part, the more oscillatory the system becomes.
The standard form of second-order system where the transfer func-
tion is expressed as a function of the undamped natural frequency and
damping ratio allows us to visualize better the meaning of these imagi-
nary roots and how they relate to the physical behavior of the system.

An important point to take away from this chapter is that feed-
back control theory is essentially independent of discipline. All physical
systems can be described dynamically by transfer functions. Once in this
form the dynamic response attributes can be analyzed and evaluated as
we shall see in the forthcoming chapters.



2
Closing the Loop

This chapter introduces the concept of the ‘closed loop system’ in general
terms explaining the basic principles and issues involved. The signifi-
cance of analyzing the open loop performance of a system to determine
the degree of stability that can be achieved during closed loop system
operation is explained. Various types of response testing of closed loop
systems are discussed and the analytical techniques developed focus
primarily on frequency response as the most popular method used
by the control engineering community. Real world examples are used
throughout to reinforce the concepts as they are developed.

2.1 The Generic Closed Loop System

A generic closed loop system (see Figure 2.1) can be described as a means
of controlling the output of a process by comparing what is required
with the actual output and using the output from this comparison to
generate controlling actions that change the process output towards
what is required. Note that in this simplified depiction, the effectors
(muscle) can be assumed to be integrated within the controller block.

In the diagram, the input to the system (what is required) is compared
with the feedback, which is a measure of the actual output, to establish
the ‘error’. Also shown in the diagram is a disturbance input repre-
senting external changes from outside the control loop that may affect
the process. An example of a disturbance input in an electrical generator

Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control R. Langton
© 2006 John Wiley & Sons, Ltd



24 Closing the Loop

Controller Process

Measuring
device

Process
output

What is
required +

–

Error

Feedback
(measured output)

THE LOOP

+
+

Disturbance

Figure 2.1 The generic closed loop system

speed control system would be a change in demand from the user of
the electrical power. This would result in a sudden increase in generator
torque causing a reduction in speed. The controller, sensing the speed
reduction would then increase the drive torque to bring the speed back
towards the set point. In aircraft or engine control systems, changes in
air pressure and temperature as the aircraft changes speed and altitude
may also be considered as disturbances that would require adjustment
by the various control systems on board.

The controller must now use the error signal to create an input to the
process such that the process output changes until the error is reduced
(ideally to zero). Intuitively it can be seen that for the error to be very
small, the controller must be ‘sensitive’ i.e. small errors must be capable
of generating significant response if the control of the process is to be
effective. In other words the controller must have a ‘high gain’. Not so
intuitive is the fact that with high gain closed loop systems, time delays
around the loop can cause the system to be ‘unstable’. Understanding the
concept of ‘stability’ and having the tools to design closed loop systems
that are well behaved from a stability and performance perspective is
what ‘classical feedback control’ is all about and the intent of this book
is to provide the reader with a fundamental insight into what makes
closed loop systems tick and also to develop the tools that can be applied
easily to both analysis and test.

2.1.1 The Simplest Form of Closed Loop System

Let us begin by analyzing the simplest form of closed loop system indi-
cated by the block diagram of Figure 2.2. For the moment we will assume



The Generic Closed Loop System 25

GInput Output
+

–

Error e

Figure 2.2 The simplest closed loop system example

that G is an algebraic constant, but remember that transfer functions
typically contain dynamic terms involving the operator D. From the
diagram we can write:

output = e G = �input−output�G = �input�G− �output�G�

Gathering up the output terms on the left-hand side of the equation we
obtain:

output�1+G� = input�G��

Therefore:
output
input

= G
1+G

�

The right-hand side of the above expression is referred to as the closed
loop transfer function (CLTF) of the system depicted in Figure 2.2.

We can see from the above transfer function that if G is very large
relative to 1.0 the value of the expression tends towards 1.0. Thus for the
output to become close to, or equal to, the input command, the value
of G must be large. For example, for G = 100�0 there will be a 1 % error
between input and output. If there is an element K in the feedback path,
as indicated by Figure 2.3, the response of the system becomes:

output
input

= G

1+KG
�

GInput Output
+
–

K

Figure 2.3 Simple system with feedback element
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For a constant gain in the feedback path the response tends to 1/K as
G becomes large. The rule for developing the relationship between the
output and the input when there are elements in the feedback path is:

output
input

= (the product of all elements in the forward path)
�1+ the product of all elements around the loop�

�

Let us now move on to consider the dynamic behavior of closed loop
systems and what causes them to become unstable.

2.2 The Concept of Stability

Stability, when referring to a closed loop control system, is a qualitative
description of the performance of the system. Ideally, the output of
a closed loop control system should respond quickly and precisely to
changes in the input. In an attempt to improve the speed of response
the designer can increase the gain of the controller; however, in doing
so, the output response may begin to exhibit oscillatory behavior. This
phenomenon is caused by time delays around the control loop and can
lead to instability. When instability is reached, the output may oscillate
continuously or the oscillations may continue to increase until the output
reaches its maximum limit. To understand this effect let us return to the
generic closed loop example given at the beginning of this chapter, with
a few changes:

• insert a switch in the error signal line;
• assume that the input to the control loop is held constant;
• assume that the disturbance input is zero.

Now consider a sinusoidal input to the controller with the switch in
the error path set open as indicated in the Figure 2.4. You can visualize
from the diagram that if the feedback signal (measured output) is equal
in magnitude and exactly 180 degrees out of phase with the originating
signal, then the oscillations will continue if the switch is closed even
with a fixed input to the control loop. In other words, the oscillation just
continues going around and around at the same amplitude. When this
condition occurs the system is said to have ‘marginal stability’.
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Figure 2.4 Illustration of the concept of stability

The rule for stability is:

In a closed loop system (with negative feedback) when the phase lag
around the loop is 180 degrees (1/2 a cycle), the gain around the loop
must be less than 1.0 for the system to be stable.

From this rule it follows that to determine the stability of a closed loop
system we need to analyze the open loop behavior of the system. Let us
look at what this means mathematically. Remember that the expression
for the ‘closed loop transfer function’ (CLTF) is:

CLTF = (forward path)
�1+ loop�

where ‘loop’ is the product of all of the elements around the control
loop.

Therefore if the denominator goes to zero, the CLTF becomes infinite.
So the condition for marginal stability is satisfied when the dynamic
elements around the loop combine to meet the condition:

1+Loop = 0�

We can also rearrange the equation into the following form:

Loop = −1�0�
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The right-hand side of this equation can be regarded as a vector quantity
having a magnitude of 1.0 and a phase angle of 180 degrees, i.e.

�1�0�∠−180�

In the context of our diagrammatic example, this equation implies
that the sine wave induced at the error signal switch is lagging by 180
degrees (one half of a cycle) by the time it gets all the way around the
loop to the input summing junction. Also, the magnitude of the sine
wave is 1.0 at this point (i.e. equal to the input stimulus). This fits well
with the marginal stability definition stated above.

One final point that should be noted regarding the equation

1+ loop = 0�

In mathematical terms this is a differential equation referred to as
the ‘characteristic equation’ of the control system. Since this equation
contains all of the elements around the loop, its solution defines the
transient response characteristics of the system. A better appreciation of
this comment will develop as we proceed through this book.

2.3 Response Testing of Control Systems

The dynamic performance of a closed loop system can be expressed
in terms of certain attributes of the system’s ‘response’ to external
stimuli. Such attributes include the ability to respond very quickly
to changes in the input command versus a more docile reaction to
changes. Fast response usually comes at a price. Typically, a sensi-
tive, high gain control system may exhibit oscillatory tendencies. In
some applications, a slower, more sluggish response with non-oscillatory
behavior may be preferred. In some cases the response to a change
in input command that results in an output which transiently over-
shoots the desired output may be totally unacceptable. For example,
a control system used to control the position of a machine tool
cannot tolerate overshoot since this would result in excessive mate-
rial removal. In order to determine the qualitative behavior of closed
loop systems we therefore need to establish procedures that can be
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used to determine numerically the dynamic characteristics of the system
using either analytical or test methods. Both approaches are neces-
sary in order to be able to verify consistency between theory and
practice.

The term used to describe the dynamic behavior of a closed loop
system is described as the ‘response characteristic’ of the system and
can be determined as either:

• the transient response – i.e. the system reaction to a sudden change of
input command; or

• the steady state response – i.e. the eventual steady state behavior of the
system when subjected to a continuous time-varying input command
such as a sinusoidal input at a specific frequency.

Figure 2.5 illustrates three types of response that can be used to assess
the suitability of the dynamic performance of a closed loop system.

Response to a step input is used to evaluate the transient charac-
teristics of a system. The sharp-edged feature of the step means that
all frequencies are stimulated and the system response will contain
the dynamic contributions from all of the roots of the characteristic
equation:

1+ loop = 0�

While this type of stimulus is easy to apply to electrical and electronic
systems it is more difficult to apply a pure step to systems with mechan-
ical or fluid-mechanical components where rounded corners inevitably
occur that will result in a less than pure result. The most important
feature of step response is the ability to illustrate clearly the tendency of
a system to overshoot the final condition which may be a critical aspect
of the dynamic performance of some systems.

The ramp input is another form of input which provides an insight
into both the transient and steady state responses of a system. This type
of input is important in assessing a system’s ability to follow a velocity
command. An example would be target tracking where the target is
moving at a specific velocity. The start of the ramp, being sharp-edged
excites the transient roots of the system which eventually die away
leaving the steady state response.

Frequency response (see Figure 2.5(c)) is perhaps the most common
method for evaluating the dynamic performance characteristics of a
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Figure 2.5 (a) Step response; (b) ramp response; (c) frequency
response

system. The input command is varied sinusoidally and the output
response in terms of its relative amplitude and phase shift identified.
Analysis and/or testing can focus on a specific number of frequencies
in the range of interest. For (mostly) linear systems sinusoidal inputs
generate (mostly) sinusoidal outputs with attenuation (or magnification)
and a time delay (also referred to as a phase shift or phase lag expressed
in degrees).

If we go back to our generic closed loop system let us consider
varying the command signal sinusoidally as indicated in Figure 2.6.
Typically, we observe that at frequencies below a certain value,
the output follows the command closely with little attenuation or
phase shift. Above this frequency, the system begins to struggle to
keep up and the output becomes more and more attenuated and
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Figure 2.6 Closed loop system with sinusoidal input command

delayed in time (see Figure 2.7). Frequency response is expressed
as the ratio between the output amplitude and the input amplitude
plotted against frequency together with a plot of phase lag against
frequency.

A word of caution is worth mentioning here regarding the use of
transducers and instrumentation in a dynamic response test arrange-
ment. Great care must be taken to ensure that the transducers selected
to measure the various system variables have response characteristics
that are ideally a couple of orders of magnitude faster than the system
under test. The test setup is equally critical particularly when measuring
fluid pressures and flows. Flexible hoses and pressure gauges can signif-
icantly affect the measured response by virtue of the capacitance effect
caused by the change in volume that occurs during pressure changes.
If the necessary steps are not taken to avoid these problems then the test
results may be seriously compromised.

Good tracking 
at low frequencies

Attenuated and delayed response 
at high frequencies

Input

Response

Figure 2.7 Typical frequency response
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Before proceeding further in describing methods and procedures for
analyzing the response of control systems, we need to address a number
of key aspects of system behavior and how graphical methods have
evolved that simplify the analytical process.

2.4 The Integration Process

A good place to start is to discuss the process of ‘integration’ as it applies
to the dynamic behavior of control elements and systems. Integration is
probably the most important function associated with control systems.
Common examples of integration include:

car heading = ∫�steering wheel angle�dt�

This means that if the steering wheel angle is in neutral (i.e. zero) the
car heading will not change. However, if the wheel is deviated to one
side the car heading will continue to change. The bigger the deviation,
the faster the rate of change of heading.

fluid volume = ∫�control valve position�dt�

here control valve position determines fluid flow rate (assuming a pres-
sure source upstream of the valve) and the output volume passed
through the valve is the integral of flow rate and hence valve position.
The more open the control valve the faster the volume will increase.
Let’s see how this is expressed in block diagram form. Using the D nota-
tion developed previously we can express the above equations by the
block diagrams of Figure 2.8.

Listed below are two key frequency response characteristics of the
integration process that must be understood. These characteristics will
form an important part of the analytical processes that will follow.

• At all frequencies there is a 90 degree phase lag (a quarter of a cycle)
introduced by the integration process. (To understand this statement,
try to plot the car heading that results from a sinusoidal oscillation
of the steering wheel angle and you will clearly see this phase angle
shift effect.)
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• When the frequency of the input is doubled, the amplitude at the
output of the integrator is halved. Likewise, when the frequency is
halved the output amplitude is doubled. (Intuitively this makes sense.
Consider steering your car. As you oscillate the steering wheel angle
very slowly from left to right the car will make large oscillations in
heading. But when you waggle the steering wheel quickly over the
same amplitude the car will wobble a little but the basic heading will
not change significantly.)

1
D

Steering wheel angle Car heading

Initial heading

1
D

Control valve position Fluid volume

Initial volume

Figure 2.8 Integration examples in block diatgram form

To illustrate these principles using control terminology, let us consider
an example based on the control valve integration referred to above.
Referring to the block diagram of Figure 2.9, we have a control valve
(shown as a gate valve with a linear position xV) controlling the flow

Q1

Q2 Piston
position

xP

Area A Area A/2

PC

Control valve 
position xV

PS

PR

Figure 2.9 Hydraulic actuator block diagram
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into a half-area actuator. Supply pressure PS is applied to the control
valve and also to the half-area side of the servo-actuator piston. A fixed
orifice connects the control pressure side of the control valve PC to the
hydraulic return pressure PR, which we can assume to be nominally
zero. This arrangement allows movement of the control valve to cause
movement of the piston in either a positive or negative direction.

Assuming there is no load on the actuator, the control pressure PC
must always be equal to PS/2, and the flow through the control valve
will determine the velocity of the piston. The flow through the fixed
orifice will therefore be constant since PC and PR are constant.

To evaluate the dynamic behavior of the actuator (again assuming
there is no external load on the actuator and also that inertial and friction
forces are negligible) we can write the equations of motion:

control valve flow Q1 = K xV, where K is the valve ‘flow gain’ in fluid
volume per second per unit displacement of xV,

fixed orifice flow Q2 will remain constant for a constant PC,
piston velocity = �Q1 −Q2�/A, i.e DxP = �KxV −Q2�/A.

While this example is a good representation of an integration process,
the reader should be aware that when carrying out this test in practice,
keeping the piston in a constant mid-stroke position is difficult because
only the slightest imbalance between Q1 and Q2 would result in the
piston drifting slowly to one extreme.

We can continue our analytical exercise by expressing these equations
in block diagram form as indicated in Figure 2.10. Since Q2 is a constant,
it can be ignored for the purpose of understanding the dynamics of this
system. Thus we have normalized the system about the steady state point
which allows us to examine perturbations of xV and xP . Consolidating
the above diagram to get a single transfer function results in the simple
block diagram of Figure 2.11.

Let us check the units for the final transfer function.

K
1

AD

–

+

Q2

Q1
xV xP

Figure 2.10 Hydraulic value and actuator block diagram
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K
AD xPxV

Figure 2.11 Hydraulic valve and actuator consolidated block
diagram

US/Imperial units:

�in��

(
in�3

�sec��in��

)(
1

in�2

)
�sec� = XP = �in�� �

SI units:

�m�

(
m3

�s��m�

)(
1

m2

)
�s� = XP = �m� �

Here K/A is termed the ‘gain’ of the integrator and has units of
(seconds)−1 which is the same as radians per second, i.e. frequency.
The gain of the integrator is the frequency at which the amplitude ratio
between the input to the integrator and the output response is unity.
In this example, a quarter of an inch oscillation of xV at a frequency of
K/A radians per second will produce a quarter of an inch oscillation at
the piston xP. (Note also that the oscillation of xP will be displaced in
time by a quarter of a cycle (90 degrees) from the input xV per the first
integration characteristic listed above.)

Substituting values of K = 10�0 and A = 1�0 in the above example
allows us to generate a plot of amplitude ratio against frequency as
shown in Figure 2.12. Here the integrator ‘gain’ K/A = 10�0 s−1 �sec−1�
and therefore the amplitude ratio is equal to unity at a frequency of
10 radians per second as shown in the figure.

The characteristic of amplitude doubling and halving with frequency
halving and doubling is also shown. To better accommodate this feature
a convention is used that converts amplitude ratio into a logarithmic
equivalent called ‘decibels’ expressed as dB. The adopted conven-
tion is:

decibels (dB) = 20 log10 (amplitude ratio)�
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Figure 2.12 Amplitude ratio vs frequency for the valve and
actuator

Therefore:

AR = 1�0 = 0 dB

AR = 2�0 = +6�02 dB

AR = 0�5 = −6�02 dB

AR = 10 = +20 dB

and so on. When amplitude ratio is converted to decibels it is called
‘gain’. Frequency is also plotted on logarithmic scales using either �
radians per second or f hertz.

Figure 2.13 is a repeat of Figure 2.12 using the gain convention
described above. Note that we now have a constant slope gain line.

An important observation from both Figures 2.12 and 2.13 is that as
the frequency of oscillation tends to zero, the gain tends to infinity. This

12

6

0

– 6

–12

 ω (rads/sec)

Gain (dB) 

2.5 5 10 20 40

Figure 2.13 Gain vs frequency for the valve and actuator
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feature is important in the design of control systems since it means that
the presence of an integration process in a closed loop control system
will result in zero error in steady state (i.e. at zero frequency).

Other conventions are used in frequency response jargon:

• doubling the frequency increases frequency by an ‘octave’;
• a factor of 10 change in frequency is called a ‘decade’.

Thus the slope of the line in Figure 2.13 is:

−6 dB per octave or −20 dB per decade�

Let us summarize the effects of integrators in closed loop control systems:

• Since an integrator has infinite gain at zero frequency, a system with a
single integrator in the loop will exhibit zero steady state error. (Note
that the integrator may be designed in as part of the controller function
or it may be an inherent feature of the process being controlled.)

• It can be shown that a system with two integrators in the loop will
have zero error for inputs moving at constant velocity.

• Similarly, a system with three integrators will have zero error with a
constant acceleration input command.

With each integrator in the loop comes a quarter cycle delay at all
frequencies. Two integrators would incur a half cycle delay around the
loop equivalent to 180 degrees of phase lag. Therefore, even though the
integration process has major benefits to control systems by eliminating
steady state and even dynamic errors, there are attendant stability issues
that must be dealt with in the control system design process.

2.5 Hydraulic Servo-actuator Example

Let us now consider a more sophisticated example. Figure 2.14 shows
a schematic of a typical power control unit (PCU) for an aircraft flight
control surface. The input end of the summation link is connected via
cables and pulleys to the pilot’s control column. This hydraulic position
servo actuator allows the pilot to overcome the large hinge moments
that occur during high speed flight.
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Supply and return
pressures

PR PS

Spool valve

Hydraulic cylinder
with piston

Feedback link

Summing lever

xi

xo

Figure 2.14 Aircraft flight control PCU schematic

Movement of the mechanical input �xi� moves the spool valve to the
left causing hydraulic fluid to flow from the supply pressure source PS

into the piston chamber to the left of the piston. At the same time the
right side of the piston is opened to the return line to PR. The resulting
piston movement �xo� to the right continues until the summing lever has
returned the spool valve to the neutral or null position. Figure 2.15 is a
block diagram representation of the actuator. The linkage gearing G will
be equal to 0.5 for a summing lever where the error pivot is equidistant
from the input and output pivot points.

+

–
KG

1

AD

Output xoInput xi

Spool valve Piston

Gearing

Summing
lever

Error

Flow

Figure 2.15 Actuator block diagram
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It should be noted that this approach to hydraulic actuator dynamic
analysis is greatly simplified in the interest of developing an easy-
to-understand introduction into control system analysis. Specifically the
inertia and external forces on the actuator have been neglected. In spite
of this radical simplification, the dynamic model developed here is quite
adequate for use in aircraft dynamic analysis provided that the external
forces represent less than about 25 % of the available pressure drop
because the spool valve flow gain is a function of the square root of
the pressure drop across it. Thus a 25 % reduction in available pressure
drop manifests itself as only an 11 % reduction in flow gain.

From Figure 2.15 we can now develop the closed loop transfer function
(CLTF) using the methods presented earlier.

CLTF = xo

xi
= forward path

1+ loop
=

(
GK
AD

)
(

1+ GK
AD

)

i.e.

xo

xi
= 1

�1+TD�
where T = A

GK
�

Note the similarity of this example to the previous integrator example.
In this case the integrator has a position feedback around it which causes
the spool valve to return to the null position following a change in the
input command.

For the closed loop transfer function developed above, we can make
these following observations:

• The transfer function of the above form is called a ‘first order lag’
since the highest order of the D operator is 1.

• In the term T = A/GK� T is called the ‘time constant’ and has units of
time (check units: m2/

(
m3/s

)
/m = s or in�2/

(
in�3/ sec

)
/in� = sec).

• When the dynamic term TD is large relative to unity (i.e. at high
frequencies) the response xo/xi tends to 1/TD which looks like an
integrator.

• Similarly when things are changing slowly the term TD becomes very
small relative to unity hence the closed loop response xo/xi tends
to 1.
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2.6 Calculating Frequency Response

Frequency response is expressed as the ratio between the output vector
and the input vector as a function of j�. Mathematically we can say:

xo

xi
�j�� =

∣∣∣∣xo

xi

∣∣∣∣∠
(

xo

xi

)

Here
∣∣∣∣xo

xi

∣∣∣∣ is the modulus or amplitude ratio of the response and ∠
(

xo

xi

)

is the phase angle between the input and output vectors.
In calculating the frequency response of a transfer function we need to

develop simple methods of determining the amplitude ratio and phase
angle and then plotting the results against frequency. To calculate these
terms we need to revisit the complex sinusoid described in Chapter 1.
Let us consider the input to the system to be a sinusoid represented by
a vector rotating at � radians per second as shown in Figure 2.16.

ω  t

ω

Im

R

Figure 2.16 Rotating vector in the complex plane

This vector can be expressed in the form of the complex sinusoid
described in Chapter 1, i.e. ej�t, Let us use the closed loop transfer
function developed above for the flight control actuator as the system
for which we want to develop a frequency response analysis. This is
represented by the block diagram in Figure 2.17.

Assuming an input to the system xi of the form xej�t we can
develop the differential equation relating the input forcing function
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xi xo
1

1 + TD

Figure 2.17 PCU closed loop transfer function

and the output response from the closed loop transfer function as
follows:

xej�t = xo +TDxo�

Let us assume that the solution for xo in the above equation is yej�t . This
assumes that the output is a sinusoid of the same frequency as the input
forcing function which is reasonable.

Substituting this solution into the last equation we have:

xej�t = yej�t +TDyej�t = Yej�t +T �j�� yej�t�

Rationalizing we obtain:

yej�t

xej�t
= xo

xi
�j�� = 1

�1+ �j�� T	
�

All we have done is to replace the operator D by the term j�.
The equation states that the response of this system to a sinusoidal

input is simply a complex number expressed as a function of the input
frequency �. The left-hand side of the equation is the ratio of two vectors
at any given frequency and can be represented by two specific input
and output vectors in the complex plane as indicated by Figure 2.18.

Real

Imaginary

xi

xo

θ

Figure 2.18 Input and output vectors at a specific frequency
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The ‘amplitude ratio’ of the response is the ratio of the lengths
(moduli) of the vectors and the phase shift is the phase angle difference
between the two vectors, i.e.

amplitude ratio (AR) =
∣∣∣∣xo

xi

∣∣∣∣
phase angle�
� = ∠xi −∠xo�

To summarize, the frequency response can be calculated by following
the simple rules below:

1. Substitute D = �j�� in the transfer function.
2. Plug in values of � covering the frequency range of interest.
3. Gather up the real and imaginary terms at each frequency.

If we assume that the forcing function vector always lies along the
positive real axis in the complex plane as indicated by the diagram of
Figure 2.19 we can say:

Amplitude ratio =
√

�R2 + I2
m�

Phase shift�
� = tan−1
(

Im

R

)
�

Here R and Im are the real and imaginary components of the output
vector respectively.

Im

xi

xo

R

Imaginary

Real
θ

Figure 2.19 Normalized response vectors in the complex plane
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2.6.1 Frequency Response of a First-order Lag

Having developed the basic rules for calculating the amplitude ratio
(or gain) and phase angle of transfer functions, let us now calculate the
frequency response of the generic first-order lag defined as follows:

1
�1+ �j�� T�

Based on the rules developed above we can say:

AR = 1[
1+ ��T�2

] 1
2

and 
 = − tan−1 ��T� �

Table 2.1 shows the amplitude ratio (AR), gain and phase angle values
for frequencies on either side of � = 1/T radians per second.

We can now plot the results for gain and phase angle against frequency
as shown in Figure 2.20. Note that the gain curve is ‘asymptotic’ to
zero dB for low frequencies and asymptotic to 1/TD (an integrator)
at the higher frequencies which is a straight line with a slope of −6�0
dB/octave.

These asymptotes meet at � = 1/T radians per second. This frequency
is referred to as the ‘bandwidth’ or ‘break frequency’ of the first-
order lag.

The plotting convention used in the above figure shows the phase
lag increasing upwards on the graph. This is opposite to the traditional
convention used by most textbooks since it can be argued that phase

Table 2.1 First-order lag frequency response

� �T ��T�2 1+ ��T�2 AR Gain (dB) 
�

1/8T 0.125 0.016 1.016 0.997 −0�1 −7
1/4T 0.25 0.063 1.063 0.970 −0�3 −14
1/2T 0.5 0.25 1.25 0.894 −1�0 −27
1/T 1.0 1.0 2.0 0.707 −3�0 −45
2/T 2.0 4.0 5.0 0.448 −7�0 −63
4/T 4.0 16.0 17.0 0.243 −12�3 −76
8/T 8.0 64.0 65.0 0.124 −18�1 −83
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Figure 2.20 Frequency response of a first-order lag

lag is a negative quantity and therefore should increase downwards.
The convention used here is, in the author’s opinion, easier to view
because the gain and phase curves go in opposite directions. Using the
more traditional convention can be confusing when the gain and phase
lines have similar shapes often lying on top of each other. In any case
these are simply conventions and the reader should feel free to adopt
either method.

In order to expedite the process of control system analysis which
involves the generation of frequency response plots for the various
elements around the loop it will save time to commit to memory some
key numbers so that these plots can be quickly sketched without having
to resort to calculation.

Some useful numbers to remember are:

• At the break frequency the gain is −3 dB and the phase lag is 45
degrees.

• At half the break frequency the gain is −1 dB and the phase lag is 27
degrees.

• At twice the break frequency the gain is −7 dB and the phase lag is
63 degrees.

• At higher and lower frequencies the gain approximates the asymptotes
and the phase lag tends to 90 degrees and 0 degrees respectively.
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From these few ‘magic numbers’ it is easy to generate frequency
response plots of first-order lags quickly as part of the design and anal-
ysis process.

To obtain the response of two or more terms in series the gains and
phase angles are simply added together as we will see in up-coming
examples. When the above type of graph is used to plot the ‘open loop’
characteristics of a system, it is referred to as a ‘Bode diagram’. More
about this later.

2.6.2 Frequency Response of a Second-order System

To reinforce the frequency response analysis process described above
we shall now apply it to the standard form of second-order system
developed in Chapter 1 as part of the spring–mass system example. The
transfer function relating the input and output displacements is:

xo

xi
= 1(

D2

�2
n

+ 2�D
�n

+1
)

where �n is the undamped natural frequency and � is the damping ratio.
As before, we simply put D = j� in the above transfer function, plug in
values for � gathering up the real and imaginary parts. Table 2.2 shows
the frequency response values for the spring–mass system for several
frequencies either side of the undamped natural frequency �n using a
value for the damping ratio of � = 0�2.

Table 2.2 Second-order system frequency response Frequency

response of
1

��j��2/�2
n +2��j��/�n +1�

for � = 0�2

� �j��2/�2
n 2��j��/�n R Im AR Gain (dB) 
�

�n/8 −1/64 0�05j 0�984 0.05 1.015 0�13 −3
�n/4 −1/16 0�1j 0�963 0.1 1.06 0�51 −6
�n/2 −1/4 0�2j 0�750 0.2 1.29 2�21 −15
�n −1�0 0�4j 0 0.4 2.5 7�96 −90
2�n −4�0 0�8j −3�0 0.8 0.33 −9�63 −165
4�n −16�0 1.6j −15�0 1.6 0.067 −23�6 −174
8�n −64�0 3�2j −63�0 3.2 0.016 −35�9 −177
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Figure 2.21 Second-order system standard response curves

The graph of Figure 2.21 shows standard frequency response plots
for second-order systems for several values of damping ratio. Standard
curves such as these are available to the control system designer to
simplify the analysis task associated with the development of composite
gain and phase plots through the addition of the various elements
around the loop.

From Figure 2.21 we can make a number of observations.

1. The damping ratio determines the degree of magnification seen at
the output. Specifically, for � = 0�05, magnification of the input signal
is approximately 10 times (20 dB). For damping ratios below 0.2, the
peak magnification can be approximated to 1

/
2� .

2. As the damping ratio is increased the peak magnification reduces
and the frequency corresponding to maximum response continues to
reduce to a value somewhat lower than �n.

3. The phase lag for all damping ratios increases to 90 degrees of lag
at the undamped natural frequency �n continuing on towards a
maximum of 180 degrees of lag at the higher frequencies.

4. The lower damping ratios exhibit a more sudden transition in phase
lag from frequencies below �n to the frequencies above �n than the
higher damped systems.
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5. For damping ratios of 1.0 or greater there is no magnification of the
input signal and the second-order system can be represented by two
first-order lags in series, i.e. the roots become real.

This is all we need to know for deriving the frequency response charac-
teristics since a third-order system is made up of either three first-order
elements or one first-order element and a second-order element and so
on for higher-order systems.

2.7 Aircraft Flight Control System Example

We will now use a simplified aircraft flight control system example
to apply what we have learned through the analysis of the open loop
frequency response. From this we will establish the stability margins of
the system which represent the qualitative dynamic performance of the
system.

Figure 2.22 is a schematic of an aircraft pitch attitude control system
example wherein the flight control computer determines and controls
the required aircraft pitch attitude. The command signal is compared
with the measured pitch attitude, determined via the inertial reference
system, to establish an error signal which in turn drives a servo actuator
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computer

G Servo
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Valve

Inertial
reference
system

+ +

– –

Elevator
control
surface

Measured
pitch attitude

Pitch attitude
command

Pitch axis
power control unit

Autopilot 
servo actuator

Gyro

Aircraft
dynamics

Figure 2.22 Aircraft pitch attitude control system
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whose output positions the input linkage on the pitch axis elevator
power control unit (PCU). The PCU can be regarded as a dynamic
element with essentially the same form of response characteristics as the
actuator analyzed in Section 2.5. The PCU output drives the elevator
control surface causing the aircraft to respond in pitch.

2.7.1 Control System Assumptions

We now need to establish numerical values for the functional constants
and dynamics of the various elements in the control loop so that we can
apply our analysis techniques based on the methods outlined earlier.

With regard to the PCU, based on what was mentioned earlier, the
effect of aerodynamic hinge moments which the actuator must overcome
in order to move the control surface can be ignored provided that the
force reflected back to the actuator is equivalent to not more than 25 % of
the maximum available pressure drop. This condition will be assumed to
be valid in the control element values developed below. For the purpose
of this design study the following assumptions and design parameters
will be adopted.

• The avionics, including the inertial reference system (gyro) are fast
relative to the other elements in the control loop and therefore may
be neglected.

• The autopilot servo actuator has a first-order lag of 0.02 seconds and
an output displacement of 0.4 inches per degree of pitch attitude error.

• The PCU input-to-elevator angle ratio is 10 degrees per inch and the
PCU dynamics are equivalent to a first-order lag of 0.1 seconds.

• Aircraft dynamics relating elevator angle to aircraft pitch attitude can
be represented by the transfer function of Figure 2.23.

We can make an observation from this transfer function regarding
how the aircraft will respond to changes in elevator angle. The pres-
ence of the D term in the denominator (which is the definition of an

Elevator angle
(degrees)

Aircraft pitch attitude
(degrees)

0.5

D(1 + 2D)

Figure 2.23 Aircraft dynamics transfer function
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integrator) implies that elevator deviations from steady state will result
in a rate of change of pitch attitude. Also the bigger the elevator devi-
ation, the faster the pitch attitude will change. The second term is a
first-order lag with a time constant of 0.2 seconds which adds an addi-
tional delay into the aircraft response process. It should be realized here
that this simple transfer function is only an approximation and would
not be valid for large excursions in pitch.

2.7.2 Open Loop Analysis

We can now construct a control system block diagram that incorporates
all of the above numerical assumptions for subsequent analysis. This
diagram is presented as Figure 2.24. In order to determine the stability
attributes of this control system we need to evaluate the open loop
performance of the system to assess how the open loop response relates
to the stability criterion established earlier.

From the block diagram described by Figure 2.24, the open loop
transfer function (OLTF) is defined by multiplying together all of the
‘blocks’ from the error signal all the way around the control loop.
The result is:

OLTF = �0�4� �10�0� �0�5�

D �1+0�02D� �1+0�1D� �1+2�0D�

= 2�0
D �1+0�02D� �1+0�1D� �1+2�0D�

�

1.0

+
–-

Servo actuator PCU and elevator gearing

Aircraft dynamics
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Figure 2.24 Pitch attitude control system block diagram
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From here we can develop frequency response plots for each of the
terms in the OLTF. Beginning with the ‘gain’ aspect of the OLTF and
adopting the dB convention, the product of all of the terms in the OLTF
is simply the graphical addition of each of the terms in the OLTF as
indicated in Figure 2.25.

Note the integrator term, 2/D. This term has a slope of −6 dB per
octave and crosses the 0 dB line at a frequency of 2 radians per second.
The term 1

/
�1+2�0D� is a first-order lag with a time constant of 2.0

seconds. The asymptotes of a first-order lag gain are a constant 0 dB
at low frequencies up to the break frequency which is 1/ (2.0) or 0.5
radians per second. Beyond the break frequency the gain slope becomes
−6�0 dB per octave.

All of the transfer function terms can be plotted separately in this
way and the combined gain response of the open loop system obtained
by adding each of the terms together graphically. The result shows the
gain graph beginning at the far left attenuating with a slope of −6�0 dB
per octave. This slope continues up to 0.5 radians per second which is
the break frequency of the aircraft 2.0 seconds first-order lag term. The
gain slope now changes to −12�0 dB per octave and remains constant
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Figure 2.25 Open loop gain frequency response
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at this value up to the break frequency of the PCU actuator which
is 10 radians per second. Above this frequency, the gain slope changes
to −18�0 dB per octave. The servo actuator, with its break frequency at
1/ (0.2) or 50 radians per second, does not contribute significantly to the
final gain curve.

We can also construct a phase angle versus frequency plot in the same
way. This is shown as Figure 2.26. Once again we simply add the phase
contributions of each transfer function to obtain a combined total. Here
the phase lag begins with a lag of 90 degrees due to the integrator and
rapidly climbs to more than 180 degrees at about 2 radians per second
and above.

In order to assess the stability of this control system we must now
combine the open loop gain and open loop phase plots on a single
chart. This is shown as Figure 2.27 and is referred to as a ‘Bode diagram’.
Our phase lag plot convention discussed earlier is particularly useful
in Bode diagrams since we can arrange the 180 degree phase lag line
to coincide with the 0 dB line. Thus the stability margins are easy
to see.
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Figure 2.27 The Bode diagram for the system

From the above Bode diagram the stability margins for the system are
defined as follows.

Gain margin: The gain increase that would result in the gain curve
crossing the 0 dB line at the frequency corresponding to 180 degrees of
open loop phase lag.

Phase margin: The additional phase lag that would result in 180 degrees
of open loop phase lag at the frequency corresponding to 0 dB of open
loop gain.

In our example, the gain and phase margins shown on Figure 2.27 are
approximately 14 dB and 30 degrees respectively.

In practical terms this means that if the open loop gain was increased
by 14 dB, which is a factor of about five, the system would be unstable.
Similarly if an additional phase lag of 30 degrees were to be present at
a frequency of 1 radian per second the system would be unstable. As a
general guide, good design practice is to aim for a minimum of 6 dB (i.e.
a factor of two) gain margin and a phase margin of 45 degrees. In our
case the gain margin is very good at about 15 dB but the phase margin
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of 30 degrees is not sufficient. This indicates that the system is ‘phase
sensitive’.

2.7.3 Closed Loop Performance

The next step is to understand what all this open loop analysis means
in terms of system behavior when operating as a closed loop system.
Going back to the system block diagram of Figure 2.24 we can generate
the closed loop transfer function (CLTF) for the complete system using
the rule:

output
input

= (forward path)
�1+ loop)

�

In this case the aircraft response in pitch attitude 
 to the required pitch
attitude command 
C is:





C
=

[
2�0

D �1+2�0D� �1+0�1D� �1+0�02D�

]

1+
[

2�0
D �1+2�0D� �1+0�1D� �1+0�02D�

]

= 1
�1+ �0�5D� �1+2�0D� �1+0�1D� �1+0�02D�	

Multiplying out the denominator in the above transfer function will yield
a fourth-order expression which can be factorized into the product of
first-order and second-order terms. In this case the closed loop transfer
function approximates to one second-order and two first-order terms as
follows:





C
= 1

�D2 +0�4D+1� �1+0�1D� �1+0�02D�
�

The second-order term has a natural frequency of 1.0 radian per second
with a damping ratio of 0.2. Figure 2.28 shows the closed loop frequency
response of the system.

The resonance at 1.0 radian per second is quite marked indicating that
the introduction of additional lag terms into the loop may result in more
oscillatory behavior and eventually instability.
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Figure 2.28 Closed loop frequency response

This method of transposing open loop frequency response to closed
loop response is tedious when high orders of D are involved. There are,
however, much more straightforward graphical tools that are readily
available to provide the analyst with an immediate visualization of
closed loop behavior directly from the open loop response. These alter-
native graphical methods are developed in the following section.

2.8 Alternative Graphical Methods for Response Analysis

In the last section we developed the concept of the Bode diagram
which presents the open loop gain and phase characteristics of a closed
loop control system from which we can readily determine gain and
phase stability margins. Here we will address alternative methods of
describing control system performance from which we can more easily
transpose what we have learned from the open loop characteristics into
how that system behaves as a closed loop system.

2.8.1 The Nyquist Diagram

The Nyquist diagram is one alternative to the Bode diagram. The
Nyquist diagram uses the polar coordinates of the real and imaginary
contributions of the open loop transfer function (OLTF) to illustrate
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the open loop frequency response characteristics of a system. With
this graphical method, instead of having two curves plotted against
frequency, one for gain and a second for phase angle, a single curve
incorporating both gain and phase is presented as a single locus of the
output vector with frequency being shown as specific points on the curve.

Another feature of the traditional Nyquist plot is that a polar coor-
dinate representation is used with the amplitude ratio defined as the
length of the output vector and phase angle represented by the angle of
the output vector relative to the positive real axis.

Figure 2.29 shows the Nyquist plot of a simple first-order lag transfer
function arbitrarily defined as

3�6
�1+ �j��T�

to illustrate the concept. Note that the input command to the system is
represented by a vector of unit magnitude in line with the real axis of the
diagram (this is typically assumed but not shown in Nyquist plots). The
curve depicts the locus of the response vector as frequency is increased
from zero to infinity.

–1 +1 +2 +3 +4
3.6

Real axis

Imaginary
axis

Instability
point:

1.0 –180˚ ω = 2/T ω = 1/T

Input vector
j

– j

–2j

0

ω = 1/2T
1 + (jω)T

Figure 2.29 Nyquist diagram of a first-order lag

Specific frequencies along the curve are identified below for compar-
ison with Table 2.1:

� = 1/2T AR = 0�894 
 = −27�



56 Closing the Loop

� = 1/T AR = 0�707 
 = −45�

� = 2/T AR = 0�448 
 = −63��

Note that the above amplitude ratio (AR) values are relative to the
nominal zero frequency response of 3.6 (for an input of 1.0). Thus for an
AR = 0.894, the output vector length is �3�6��0�894� = 3�218. Note also
that the locus of the response stays well clear of the instability point.
In fact since the maximum phase angle for a first-order lag is only −90
degrees a system with only one first-order transfer function around the
loop can never be unstable.

Let us now see how a number of different transfer functions look
on the Nyquist diagram. Figure 2.30 shows Nyquist plots for typical
systems having zero, one and two integrators in the open loop transfer
function. These systems are referred to as class ‘0’, class ‘1’ and
class ‘2’ systems respectively. The Nyquist curves on the left show
unstable systems and the right-hand side curves show stable response
plots.

–1

–1

–1

–1

–1

–1

Unstable Stable

Class ‘0’
zero integrators

Class  ‘1’
one integrator

Class ‘2’
two integrators 

Figure 2.30 General examples of Nyquist plots
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The class ‘0’ system begins in phase with the input command at zero
frequency and as the frequency increases the phase lag increases and the
amplitude ratio (length of the response vector) decreases towards zero
at infinite frequency. In the case of the unstable example, the phase lag
passes 180 degrees while the amplitude ratio (response vector length) is
still greater than 1.0.

The class ‘1’ system begins with a phase lag of 90 degrees due to the
integrator, and again the phase lag increases and the amplitude ratio
decreases as before. For stability the locus must pass inside the (−180
degrees, −1�0) point on the graph.

The class ‘2’ system begins with a phase lag of 180 degrees because
of the presence of two integrators in the loop. For this system to be
stable some means of ‘reducing’ the phase lag in the region of the
(−180 degrees, −1�0) point must be introduced. This is achieved using
performance compensation methods that will be described in the next
chapter.

In order to reinforce the concept of the Nyquist diagram, Figure 2.31
shows Nyquist plots for three specific open loop transfer functions
(OLTFs) including the aircraft control system example analyzed in
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Figure 2.31 Specific examples of Nyquist plots
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Section 2.7. The locus for 1/D originates at minus infinity on the y-axis
continuing straight up towards the origin as the frequency increases
maintaining a constant phase lag of 90 degrees. The second locus of 1/D2

comes from minus infinity on the left towards the origin maintaining a
constant phase lag of 180 degrees. In doing so it passes through the insta-
bility point (−180 degrees, −1) at a frequency of one radian per second.
This system would oscillate constantly at a frequency of 1 radian per
second and by definition is ‘marginally unstable’. The third locus is the
aircraft control system example. The locus passes just inside the insta-
bility point indicating that the system is stable but the close proximity
to that point suggests that the closed loop behavior may be somewhat
oscillatory.

From the Nyquist diagram, we can also identify the specific gain
and phase margins as was done using the Bode diagram. Figure 2.32
shows the Nyquist diagram for the aircraft control example magnified
around the instability point indicating the stability margins. Referring to
Figure 2.32, the gain margin in dBs is calculated by taking the reciprocal
of the distance ‘x’ on the graph which is the distance from the origin to
the point where the locus crosses the horizontal axis. In this case 1/X
is approximately 1/0.2. This means that the gain can be increased by a
factor of five before instability occurs. This is equivalent to +14 dB as
indicated on the original Bode diagram. The phase margin is defined
as how much additional phase lag is needed to cause the locus to pass
through the instability point at the frequency where the response vector

Instability
point –1, 0

Real

Imaginary

x

Phase
margin

Locus of pen loop response vector

Unity gain circle

Figure 2.32 Nyquist diagram showing gain and phase margins
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magnitude is 1.0. This can be seen directly from the graph at about
30 degrees which is again in agreement with the earlier Bode diagram
developed as Figure 2.27.

2.8.2 Deriving Closed Loop Response from Nyquist Diagrams

While the stability attributes of a closed loop control system are estab-
lished through the examination of open loop system characteristics, it
is the performance of the control system when operating as a closed
loop system that is also of critical interest to the control system designer
and analyst. Slogging through the mathematics to establish the roots
of the closed loop transfer function from which closed loop frequency
response plots can be obtained is both tedious and time consuming.

Simple graphical alternatives are available to the control systems engi-
neer that are easy to use and provide a valuable insight into the rela-
tionship between the open loop and closed loop characteristics. The
following paragraphs contain some significant mathematics that are
included here for completeness in developing the concept of translating
open loop plots to closed loop plots. It is not necessary for the reader to
retain the mathematics provided here except to understand that there is
mathematical logic behind the resulting graphics that are to be used in
the analysis work that follows.

Returning to the Nyquist diagram we can say that the open loop plot
may be represented by some gain term K in series with a number of
dynamic terms represented by the term G �j�� based on our approach to
frequency response analysis where D is replaced by �j�� in the transfer
function. Therefore we can say that the open loop response of this system
can be represented by the expression

output
error

= KG �j�� �

and the closed loop response by the equivalent expression

output
input

= KG �j��

1+KG �j��
�
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From our previous work we can represent the open loop response
term KG�j�� by a complex number of the form a+jb. From this it follows
that the closed loop response term

KG�j��

1+KG�j��
= a+ jb

�1+ �a+ jb�	
�

Since the expression on the right is simply a complex number we can
say that lines of constant magnitude (gain) are simply the locus of the
modulus of this complex number. Thus constant values of M can be
determined from the equation:

M = �a+ jb�
�1+ �a+ jb�� �

Rationalizing the above equation shows that the expression for lines of
constant gain M are of the form:

[
a−

(
M2

1+M2

)]2

+b2 = M2

�1+M2�2 �

Those of you who remember your high school geometry may recog-
nize the above expression as the equation for a circle which is of the
form x2 +y2 = r2. Similarly it can be shown that lines of constant closed
loop phase angle N drawn on the Nyquist diagram can be represented
by the expression

(
a+ 1

2

)
+
[
b− 1

�2N�2

]
=
(

1
4

+ 1
4N 2

)
�

This equation also defines the loci of circles with the center at the coor-
dinates

−
(

−1
2

�
1

2N

)
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and a radius of

±
√

�N 2 +1�

2N
�

Figure 2.33 shows a Nyquist diagram with families of M and N circles
superimposed. From these circles it is possible to extract the closed
loop frequency response characteristics of an open loop Nyquist plot
directly.
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Figure 2.33 M and N circles
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2.8.3 The Nichols Chart

There is, however, a fundamental problem with the Nyquist diagram
that you may have already noticed. This is the fact that the use of
amplitude ratio instead of its logarithmic equivalent gain in dB presents
response loci where the frequency range of interest is ‘squashed’ tightly
into the region between the instability point and the origin. Also the
polar coordinate method of phase angle representation is not particularly
user friendly.

The solution to this problem was developed by Nathaniel B. Nichols
(1914–1997) who developed his own version of the Nyquist diagram
with embedded M and N circles in a Cartesian coordinate form using
gain in dB. This was first published in 1947 by James, Nichols and
Phillips in a paper entitled ‘Theory of servomechanisms’. The extensive use
of the Nichols chart as an important graphical tool today is a testament
to the contribution of this paper to the field of feedback control theory.
With the Cartesian coordinate format and the logarithmic scale of the
gain axis (dB’s) the M and N circles become a series of curves which
when superimposed on the open loop gain versus phase graph become
the Nichols chart shown in Figure 2.34.

Open loop phase moves to the left on the x-axis with increasing phase
lag. Open loop gain is plotted as the y-axis value with zero dB being
the horizontal axis in the center of the chart. The closed loop gain and
phase can be obtained directly from the curved lines. Standard charts
are available to use for plotting response curves. The figure here shows
only a select few of the closed loop gain and phase curves in the interest
of clarity. It may be helpful to consider the closed loop gain values as
a third dimension coming out of the paper forming a ‘mountain’ of
infinite height at the instability point.

In order to become familiar with the use of the Nichols chart, we will
develop a number of examples. To begin let us consider the example
of a single integrator 1/D in the forward path with a unity feedback
path and no other dynamic terms as indicated in the block diagram of
Figure 2.35. Note that the open loop transfer function (OLTF) for this
example is 1/D and the closed loop transfer function (CLTF) is:

1
�1+D�

�

This is a first-order lag with a time constant equal to 1.0 second.



Alternative Graphical Methods for Response Analysis 63

+24

+18

+12

+6 

0

–6

–12

–18

–24

O
pe

n 
lo

op
 g

ai
n 

(d
B

)

+30

–210 –180 –150 – 120 –90 –60 –30 0

Open loop phase (degrees)

–0.5

–0.25+0.25

+0.5 –5˚

–10˚

–1˚+1˚

+2˚

+12.0

+6.0

+3.0
+2.0 +1.0 0

–1.0 –2.0

–4.0

–6.0

–9.0

–12.0

–210˚ –180˚ –150˚ –120˚ –90˚ –60˚ –45˚–30˚ –20˚

–18.0

Figure 2.34 The Nichols chart

1
D

+

–
xi xo

Figure 2.35 Single integrator example



64 Closing the Loop

The Nichols chart of Figure 2.36 shows the frequency response plot
of this simple system. The open loop phase is constant at −90 degrees
and since the integrator gain is 1.0, its response curve must cross the
0 dB line at a frequency of 1.0 radian per second. Observe now where
the closed loop values cross this open loop plot. At the � = 1�0 radians
per second point where the open loop gain is 0 dB, the closed loop
values are −3 dB gain and −45 degrees phase lag as predicted from
our previous first-order lag analysis. Doubling the frequency to � = 2�0
radians per second shows the open loop gain to be half the magnitude
of the � = 1�0 radian per second value at −6�0 dB which corresponds to
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the closed loop values of −7 dB and −63 degrees of phase. This is again
in agreement with our previous analysis.

Let us now go to a more complex example defined by our aircraft
control system response generated in Section 2.7 and used in the Nyquist
diagrams of Figure 2.31 and 2.32 earlier in this chapter. This same
system response is shown on the Nichols chart of Figure 2.37. The
most important observation to make here is the clarity of the infor-
mation presented compared with the equivalent plot of the Nyquist
diagram. Because of the logarithmic base, the whole frequency range
of interest is visible while showing clearly the important region
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around the instability point. Again, the ability to derive the closed
loop response immediately from the same plot is straightforward and
insightful.

2.8.4 Graphical Methods – Summary Comments and
Suggestions

This section has focused, so far, on the development of the Nyquist
diagram and the Nichols chart as graphical methods for presenting
control system frequency response data and being able to easily see the
relationship between open loop and closed loop performance. The open
loop response takes all of the elements around the control loop in series
in order to determine the degree of stability of the system, in terms of
gain and phase margins.

The Nyquist diagram was presented here as a stepping stone to
the Nichols chart which embeds both open and closed loop lines using
the gain (dB) convention. This graphical method is, in the opinion of the
author, the tool of choice for closed loop control system analysis and
synthesis. There can be some difficulty for the new user of this tool to
overcome the visual complexity associated with all of the closed loop
gain and phase curves superimposed on the open loop coordinates. This
can sometimes make it difficult to observe what is really going on.

One technique, mentioned briefly earlier, that may be helpful to the
control systems engineer is to focus on the closed loop gain curves of
the Nichols chart and to visualize these gain values as a third dimension
coming out the chart as interpreted by the artistic impression presented
as Figure 2.38. As shown the closed loop gain curves become progres-
sively higher as they approach the instability point This ‘mountain’
rising out of the page implies that a response curve passing close to
the instability point (0 dB, −180 degrees open loop), as is the case
when stability margins are small, will have to cross the ‘mountain’ at a
‘high altitude’ resulting in the closed loop gain response being greatly
magnified for the frequencies corresponding to the high points on the
‘mountain’. This effect is equivalent to the resonance displayed by the
spring–mass system analyzed in the first chapter. As the response curve
penetrates into the ‘mountain’ the system will become progressively
more oscillatory when operating as a closed loop system until instability
occurs as the instability point is crossed.

A second observation is worth noting here with regard to the Nichols
chart. The lower half of the chart shows the open and closed loop gains



Alternative Graphical Methods for Response Analysis 67

–18 dB

–1 dB

– 0.5 dB
0 dB+ 0.

5 dB

+ 1 dB

– 2 dB

+ 6 dB

+ 3 dB

Ope
n l

oo
p g

ain
0 dB

–180˚

0˚

Open loop phase

– 9 dB

Figure 2.38 Three-dimensional interpretation of the Nichols closed
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and phase angles becoming progressively closer together as the response
becomes more and more attenuated. This makes sense because as the
frequency of the command signal increases the system response becomes
more delayed and attenuated to the point where the system output is
very small. The effect of the feedback loop therefore becomes so small
as to be negligible and thus the open and closed loop responses begin
to coincide.

Earlier in this chapter we used separate plots of gain and phase angle
against frequency to define the system performance. The open loop plot
of this type is the traditional ‘Bode diagram’ where gain and phase
margins can be observed. This same form of frequency response presen-
tation is also used to show closed loop performance; however, in this
case the graphs are simply ‘frequency response plots’ and while stability
margins cannot be determined from these plots the degree of stability
can be inferred simply by observing the peaking tendency of the gain
curve. A system having a large magnification at a specific frequency (like
the resonance of the spring–mass system) implies that stability margins
are small.
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There is a short cut approach to the determination of whether or not
a closed loop system will have good stability margins using only the
open loop gain versus frequency plot. This short cut rule states:

If the open loop gain plot crosses the 0 dB line with a slope of −6
dB/octave (or less) and this slope is maintained for about half a
decade either side of the crossover point, the system will have good
stability margins.

While the primary weakness of the Bode diagram and frequency
response methods described here is the inability to easily translate
between open and closed loop, this graphical method is by far the most
popular method used to display open and closed loop system behavior
and therefore the reader is encouraged to become familiar with its use.

A word about the term ‘bandwidth’ is also worth discussing here. This
term refers to the transition frequency where a control system begins
to become more and more attenuated and delayed relative to the input
command. For a first-order lag this transition frequency is 1/T radians
per second and for a second-order system the transition occurs around
the undamped natural frequency �n radians per second. In each case
this frequency indicates the region where the response curve plotted
on the Nichols chart comes closest to the instability point. One decade
or so either side of this frequency (or bandwidth) is known as the
‘frequency range of interest’ for that specific system. Frequencies lower
than this range approximate to the steady state behavior of that system
and frequencies above the range typically produce a highly attenuated
response.

2.9 Chapter Summary

This chapter is the foundation of this book in that it develops the basic
definition of the closed loop system and how the dynamic performance
of closed loop control systems are analyzed and tested from the perspec-
tive of response and stability. The requirements for stable behavior of
closed loop systems were established together with the definition of
stability margins. This allows the control system designer to determine
the quality of stability that can be expected and today serves as an effec-
tive way to specify the dynamic performance requirements of a system.

The integration process was singled out as one of the most important
functions in closed loop control due to its ability to eliminate steady
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state errors and many examples were developed to explain its dynamic
behavior. In particular, the quarter of a cycle of phase lag (in a response
to sinusoidal input) that is produced by the integration process can
become critical to the establishment of stable behavior of closed loop
systems containing one or more integrating elements in the loop.

The decibel convention was introduced as a convenient way to
linearize the gain versus log-frequency plots and many examples
of using the frequency response approach to systems analysis were
described. The most commonly used tool for expressing the dynamic
characteristics of closed loop control systems, namely the frequency
response plot, was described and rules for generating the gain and
phase angle of typical elements and systems were developed and rein-
forced with examples. In its open loop form the frequency response
plot is termed the ‘Bode’ diagram and illustrates the stability margins
of the system. Frequency response plots are also a common medium for
expressing the closed loop performance characteristics of closed loop
systems.

The Nichols chart was introduced as a powerful graphical tool that
can also be used to present frequency response characteristics. Here
the gain and phase curves of a conventional frequency response plot
are combined into a single locus with specific frequencies identified as
points on the locus This tool, however, is unique in the fact that it allows
the control engineer to see both the open loop response (with a clear
definition of the stability margins) and the open loop characteristics from
the same plot. The frequency response plot, together with the Nichols
chart, are defined as the most important graphical aids in the analysis of
closed loop systems and the chapters that follow only serve to reinforce
this opinion.





3
Control System
Compensation
Techniques

3.1 Control System Requirements

The need for control system performance compensation is often dictated
by the specified requirements for that system. Steady state accuracy
requirements may dictate the need for the use of one or sometimes
two integrators into the controller since this may be the only way to
meet the specification. The resulting phase lag of 90 degrees for each
integrator will often result in poor closed loop stability. In fact, the class 2
system (with two integrators in the loop) is fundamentally unstable
without some sort of dynamic compensation to ensure that the open
loop response locus can circumvent the instability point at �−1�0�∠180�.

Stability requirements may be stated in the form of a gain and/or
phase margin or as a maximum output overshoot following a set point
step change. The control system may also be required to meet specific
frequency response performance specified in terms of closed loop phase
lag and/or gain boundaries at one or more frequencies.

The rationale behind these requirements is often related to the fact
that one control system may be just one element in a larger and more

Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control R. Langton
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encompassing system. In some cases, one control system requirement
can be in conflict with another. For example, with regard to hydraulic
actuation systems, stability and stiffness requirements often compete
with each other. Stiffness, and its dynamic counterpart impedance, is one
of the most challenging requirements to comply with. This is because
nature always errs on the ‘soft’ side. Hydraulic oil absorbs air which
lowers the effective bulk modulus (volumetric elasticity) to well below
the advertised values shown in textbooks and material specifications.
Also, bearings at attachment points have ‘soft centers’ further lowering
the critical frequencies measured by test.

Ironically, the stability of actuation systems with high inertia loading
can be eased by ‘softening’ the system so that it deflects more as a result
of external loading. This can be achieved using some sort of pressure
feedback. This type of compensation is a convenient way to provide
pseudo acceleration feedback; however, in its simplest form, pressure
(or force) feedback can result in a loss of control effectiveness when
operating against high aerodynamic forces.

From this brief overview and example related to control system spec-
ifications, it can be appreciated that control system compensation can
become difficult to optimize since an ideal solution to all of the func-
tional requirements may not be possible and therefore some compromise
may be necessary.

3.2 Compensation Methods

Control system compensation is the strategy used by the control system
designer to improve system dynamic performance through the addi-
tion of dynamic elements in order to mitigate some of the undesirable
features of the control elements present in the system. Such undesirable
features may include:

• the integrator lag of 90 degrees,
• slow response of some transducers and sensors,
• process delays, non-linearities and other undesirable characteristics.

Control system compensation invariably involves the introduction of
‘anticipation’ into the control loop. This is accomplished using differ-
entiation (measuring the rate-of-change) of control signals around the
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control loop. For example, in a position control loop the position feed-
back signal could be differentiated to obtain the velocity of the output.
This velocity signal can then be used to anticipate the position of
the output at some future time. Anticipatory devices can be ‘built’
by combining transfer functions to achieve the desired control action.
Several examples are presented in the following paragraphs.

3.2.1 Proportional Plus Integral Control

From the previous work we have noted the benefit of integral action
in a closed loop system as a means of ensuring that the steady state
error is reduced to zero as a result of its inherent high gain at low
frequency (infinite at zero frequency). The 90 degree phase lag that
accompanies this device, however, can be troublesome in the transition
frequency range where the open loop gain crosses the 0 dB line and
stability margins are established. One way to circumvent this problem
is to introduce a proportional path into the error signal line such that
the proportional and integral components are developed in parallel and
their individual outputs summed as shown in Figure 3.1.

The output from this proportional plus integral control arrangement is
simply the error multiplied by

(KI
D +KP

)
which is the sum of the integral

and proportional path contributions. Intuitively it can be seen that at
high frequencies, the integrator will become greatly attenuated (because
the D term, i.e. j�, becomes large) and therefore the proportional path
will dominate the control output. Similarly at very low frequencies, the
integrator will have a high gain and therefore its output will be the
dominant term in the control output.

KI

D

KP

P + I control

Command

Feedback

Error

+
–

+

+

Figure 3.1 Proportional plus integral control
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The above expression can be rationalized as follows:

(
KI

D
+KP

)
=

KI

(
1+ KP

KI
D
)

D
or

KI �1+TD�

D

where T is a time constant KP/KI.
We have now created a first-order term in the numerator which is

called a ‘first-order lead’ (as opposed to a lag).The frequency response
of a first-order lead term is the inverse of the lag in that the phase angle
and gain increase with increasing frequency.

Another way to develop this form of transfer function is shown in
Figure 3.2. Note that the feedback in the figure is positive, therefore to
rationalize this system into a single transfer function we must use the
rule: forward path divided by one minus the loop. Referring to the figure
this yields:

1

1− 1
�1+TD�

= �1+TD�

D
�

This is exactly the same expression that we developed by rationalizing
the initial P + I control arrangement. The interesting aspect of this
demonstration is that integral action can be generated without actually
using an integrator and this technique is used frequently by the control
engineering community. While it is usually simple with electronics to
put together any desirable control function, it is often difficult in other
disciplines such as hydraulics, pneumatics and mechanics. Here it is
usually much easier to build a delay using restrictors and compliant
volumes to emulate a first-order lag than to develop pure integral action.

1
(1 + TD)

1
+

+

Figure 3.2 Alternative P + I implementation
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Figure 3.3 Proportional plus integral gain plot

In order to reinforce the control characteristics of the P + I control, let
us develop the frequency response curves using specific values: KI = 1�0
and KP = 2�0. These values yield the following control transfer function:

�1+2D�

D

where the 2 second time constant in the numerator is KP/KI.
Figure 3.3 shows the gain of this function plotted against frequency

and Figure 3.4 shows the phase angle. From the above plots it can be
seen that at low frequencies the integration term dominates with the
control action resembling a simple integrator with a gain of 1.0 s−1 (or
radians per second). At frequencies above about 2.0 radians per second,
however, the control action is almost entirely equal to a proportional
gain of 2.0 (which is +6 dB) with essentially zero phase angle.

The P + I control action therefore seems to provide the best of both
worlds, i.e. integral control at low frequency and steady state to ensure
zero steady state error and proportional control at the higher frequencies
without the burden of the −90 degree phase lag. Selection of the integral
and proportional gains allows the control systems engineer to position
the lead time constant to cancel out a major lag term in the control loop,
e.g. in the process itself, that cannot otherwise be easily modified.
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Figure 3.4 Proportional plus integral phases angle plot

3.2.2 Proportional Plus Integral Plus Derivative Control

An extension of the P + I example is the three-term controller having
P + I + D control action, the third term representing derivative control
action. Figure 3.5 illustrates this control concept schematically. This
approach adds another level of capability (and complexity) to the control
action. Rationalization of the controller transfer function as before yields
the following:

KI

D
+KP +KDD = KI

D

(
1+ KP

KI
D+ KD

KI
D2

)
�

We now have a second-order term in the numerator which can be
represented by either two first-order terms in series or a second-order
term with imaginary roots depending upon the values chosen for KI� KP
and KD.

For real roots we have two first-order lead terms that can be designed
to cancel major lag terms in the control loop as before in the P + I
example. For the imaginary roots solution we can treat this just as we
did the oscillatory spring–mass system defining values for the natural



Compensation Methods 77

KI

D

KP

P + I + D control

Command

Feedback

Error

KP
+

–

+
+

+

Figure 3.5 Proportional plus integral plus derivative control
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Figure 3.6 Second-order numerator gain response showing notch
at �n

frequency �n and the damping ratio � . The fact that this term is in the
numerator means that the frequency response is the inverse of that devel-
oped in Chapter 1 with both gain and phase increasing with frequency.
A gain plot of a numerator second-order system with a damping ratio
of � = 0�05 is shown in Figure 3.6.

From this figure it can be seen that the inverted resonance effect at
�n can be positioned along the frequency axis to cancel out a trou-
blesome resonance in the denominator of the open loop transfer func-
tion associated with the process or other control loop element. If the
element to be neutralized has a very low damping ratio, this type of



78 Control System Compensation Techniques

compensation (which is referred to as ‘notch filtration’) requires great
precision in positioning the natural frequency of the compensation
device relative to the natural frequency of the denominator term to be
cancelled. Even small errors in the design of the notch filter can result in
a substantial loss of effect in terms of overall system performance and
stability.

For most control system applications the use of three-term controllers
may be regarded as an ‘overkill’ because the problems introduced by
the derivative term can more than offset its benefits because the deriva-
tive term can be a major source of noise generation within the control
system. The differentiation process is inherently noisy and can substan-
tially magnify even small levels of noise to a level that can seriously
affect the performance of the system particularly when noise frequencies
are high. It is therefore good practice when using a three-term controller
with derivative action to include a high frequency filter to protect the
system against unwanted high frequency noise. The application of three-
term controllers is more common in relatively slow response systems
such as is typical of the process control industry.

3.2.3 Lead–Lag Compensation

Lead–lag compensation is in effect lead compensation with a high
frequency lag term to filter out high frequency noise. In other words
it is the lead term that we want to introduce into the system in order
to cancel out lag elements in the control loop over the critical range of
frequencies where stability margins are established.

We must be careful, however, not to introduce unwanted high
frequency noise into the system due to the differentiator in the numer-
ator. Lead–lag compensation is the resulting compromise. The transfer
function of this form of compensation is of the form:

�1+T1D�

�1+T2D�
�

Here the time constant in the numerator is selected to compensate a
lag in the control loop while the denominator break frequency 1/T2
should be well beyond the frequency range of interest. Typically the
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K1

+

–K2

(1 + TD)

Lead–lag function

Input Output

Figure 3.7 Lead–lag schematic

denominator time constant is at least an order of magnitude smaller
than the time constant in the numerator. We can ‘construct’ the lead–lag
function using the arrangement shown in Figure 3.7.

From this figure we can develop the transfer function for the device
as follows:

output
input

= K1 �1+TD�−K2

�1+TD�
=

�K1 −K2�

[
1+

(
K1

K1 −K2

)
TD

]

�1+TD�
�

If we select K1 = 10, K2 = 9 and T = 1�0 into the above transfer function
we obtain:

output
input

= �1+10D�

�1+D�
�

We now have a numerator lead term with a time constant of 10.0 seconds
and a denominator lag of 1.0 second. The ratio between the numerator
and denominator time constants can be adjusted by simply modifying
the values of K1 and K2.

The frequency response plots for the gain and phase angle of this
function are shown in Figure 3.8. From the frequency response plots we
can make the following observations.
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Figure 3.8 Lead–lag function (a) gain and (b) phase response

• The lead–lag function has unity transmission in steady state, i.e. 0 dB
and 0 degrees phase shift.

• Between the two break frequencies the phase angle goes positive,
i.e. there is a ‘phase lead’ or ‘phase advance’ response. This phase
lead reaches a maximum value, which is a function of the separation
between the two break frequencies, before reducing back towards a
zero phase angle as the frequency is increased above the second break
frequency.
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• The separation between the two break frequencies must be at least
a factor of 10 to be effective, i.e. lower separation multiples have
relatively small phase lead excursions and therefore little effect on the
overall system behavior.

The lead–lag compensation strategy is often used to offset the effect
of slow response transducers as demonstrated in the example in
Section 3.3.

3.2.4 Lag–Lead Compensation

Lag–lead compensation is really a poor man’s P + I control since it
produces essentially the same dynamic effect as the P+ I compensation
described in Section 3.2.1. Lag–lead is accomplished by introducing a
first-order lag with a very long time constant together with a high gain.
In the frequency range of interest this looks very similar to an integrator
with phase lag approaching 90� together with a gain slope of −6 dB
per octave. The lead term cancels the lag effect as the critical frequency
range is neared as is the case with the pure proportional plus integral
control action. The lag–lead compensation transfer function, therefore,
is of the form:

K �1+T1D�

�1+T2D�
�

As described above, K is typically very large and T2 is also large so
that it looks like integral action in the frequency range of interest. T1 is
chosen to cancel a major system lag term as in the P + I compensation
approach described previously. The construction of the lag–lead network
is similar to the lead–lag method (see Figure 3.9). The values for K1, K2

and T are substantially different from the lead–lag example and the two
paths are summed to obtain the output rather than differenced.

The resultant transfer function is:

�K1 +K2�

[
1+

(
K1

K1 +K2

)
TD

]

�1+TD�
�
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Figure 3.9 Lag–lead schematic

To demonstrate this lag–lead function let us select K1 = 1�0� K2 = 99�0
and T = 10�0. Substituting these values into the above transfer function
yields the lag–lead control action:

output
input

= 100�0 �1+0�1D�

�1+10D�
�

Once again this transfer function can be ‘built’ using the positive feed-
back of a first-order lag (similar to the example given in the proportional
plus integral compensation in Section 3.2.1) as indicated in Figure 3.10.
Rationalizing the block diagram of Figure 3.10 into a single transfer
function by applying the rule ‘forward path divided by (1-the loop)’ we
obtain:

1

1−
[

0�99
�1+0�1D�

] = �1+0�1D�

�1+0�1D�−0�99�

= 100 �1+0�1D�

�1+10D�
�

This is the same transfer function previously developed.
Figure 3.11 shows the gain and phase frequency responses for the

above lag–lead function showing the clear similarity between the lag–
lead compensation and the pure proportional plus integral control
action.
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We can make the following observations regarding lag–lead compen-
sation.

• Lag–lead provides a pseudo P+ I type of control action
• In steady state the gain of the lag–lead compensator is very large but

finite and this is the main functional difference between lag–lead and
P+ I and will result in a small but measurable steady state error.

• In the example shown in Figure 3.11(a) and (b) the response is almost
identical to the pure P + I compensation of

(
1+ 10

D

)
for frequencies

above the lag break frequency.

3.2.5 Feedback Compensation

This approach to improving the dynamic behavior of feedback control
systems can be extremely useful if the forward-path transfer function is
highly non-linear, varies in a unpredictable manner, or has other unde-
sirable characteristics that make traditional forward path compensation
ineffective. The success of this compensation approach is due to the
simple fact that we can introduce feedback transfer function elements
that are fixed with known and reasonable values.

The reasoning behind the concept of feedback compensation is
explained by considering the simple block diagram of Figure 3.12 which
shows a typical closed loop system with forward path and feedback
elements.

G

K

+

–

xi xo

Figure 3.12 Simple closed loop system

We can express the closed loop transfer function (CLTF) of this system as:

xo

xi
= G

1+KG
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which is the same as:

1
K

(
KG

1+KG

)
or G

(
1

1+KG

)
�

Now if KG � 1 for the particular signal range being considered then,
based on the first of the above two expressions we can say:

xo

xi
� 1

K
�

This assumption will usually apply to the low frequency range of input
signals.

For the conditions where KG � 1 which would typically correspond
to high frequencies when significant attenuation is present, the closed
loop transfer function approximates the forward path transfer function
G based on the second of the above expressions. Hence using this tech-
nique the low frequency response can be approximated by the inverse of
the feedback transfer function. This will transition to the forward path
response at higher frequencies as KG attenuates.

To illustrate this compensation technique let us consider the closed
loop control system shown in Figure 3.13 which describes a system
with a process which has an undesirable transfer function in the form
of a very lightly damped second-order system. The second-order term
introduces an almost instantaneous phase lag of 180 degrees at the
resonant frequency. This severely limits the integrator gain K1 that can be

+

–

10

(0.01D2
 + 0.01D + 1)

1

Controller
Process

Feedback transducer

K1

D

(1 + 0.01D)

Figure 3.13 Control system with undesirable process dynamics
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Figure 3.14 Control system with feedback compensation

used resulting in a system that is either too sluggish in response or
too oscillatory due to the process characteristics. This problem may be
compounded substantially if the predictability of the process resonant
frequency is not very reliable or varies over the operating range of the
control system.

Using the feedback compensation technique, this system is modified as
shown in Figure 3.14 to include an additional feedback loop containing a
first-order lead term with a time constant of 0.02 seconds. Rationalizing
just the inner loop, the closed loop transfer function is:

CLTF =
10

�0�01D2 +0�01D+1�

1+ 10 �1+0�02D�

�0�01D2 +0�01D+1�

= 1
0�1 �0�01D2 +0�01D+1�+1+0�02D

�

This further rationalizes into a second-order system with significantly
improved damping as shown in the final equation below which shows
the second-order system in the standard form indicating the undamped
natural frequency and the damping ratio:

(
1

1�1

)⎧⎨
⎩

1[
D2/ �33�16�2

]
+ ��D� �0�45� /33�16	+1

⎫⎬
⎭ �
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The effect of the added feedback loop has been to increase the
undamped natural frequency of the process from 10 to 33.16 radians per
second and, at the same time, improving the damping ratio from 0.05
to 0.45. It should also be noted that the process gain has been reduced
by a factor of about 10. This can be compensated for by increasing K1 to
achieve optimum stability margins.

According to the feedback compensation methodology, the inner loop
response for the condition where the product of the forward path and
feedback elements is significantly greater than unity can be approxi-
mated by the reciprocal of the feedback element. For the opposite condi-
tion where the product of the forward path and feedback elements is
significantly less than unity, the process approximates to the forward
path transfer function.

Figure 3.15 demonstrates these assumptions showing that the low
frequency gain response does indeed look like a first-order lag with a
time constant of 0.02 seconds which is precisely the reciprocal of the
feedback element. This transitions into the forward path response at the
higher frequencies where the product of the forward path and feedback
elements becomes significantly less than unity.

Forward path response
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Reciprocal of feedback

Actual closed loop response
of the inner loop
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Figure 3.15 Improved inner loop performance
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Figure 3.16 Comparison of closed loop responses

In this simple example we can do the mathematics to confirm the
conclusions arrived at above because of the simple linear example used
to demonstrate the feedback control principle. The intent here is to
prove the concept by example so that when presented with complex
non-linear processes, the control engineer can apply the feedback control
methodology with both confidence and understanding. In the above
example the complete system can be optimized by the selection of the
controller gain K1 to provide a much improved bandwidth together with
good stability margins. Figure 3.16 compares the original uncompensated
system with the best controller gain with the same system with the feed-
back compensation added. The uncompensated system can only tolerate
an integral gain of 0.1 which yields only 6.0 dB of gain margin and a
sluggish response. In contrast, the compensated solution has an integral
gain of 10.0, a much faster response and even better stability margins.

So far we have covered five commonly used compensation tech-
niques for improving the dynamic performance characteristics of closed
loop control systems. There are many others not covered here and the
reader is encouraged to experiment with the building block approach
to build compensation transfer functions. Furthermore, compensation
using second-order transfer functions, which was covered here only
briefly, can be particularly valuable when presented with a moderately
resonant but predictable element or process that impacts the stability
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margins as a result of the added phase shift in the critical frequency
range. This situation will be addressed in the ‘Class 2’ design example
described later.

3.3 Applications of Control Compensation

This section applies some of the compensation concepts described above
to specific control system examples in order to demonstrate the perfor-
mance benefits that can be accomplished via this technique.

3.3.1 Proportional Plus Integral Example

Let us examine a real world control system application to demonstrate
the benefits of P + I control over pure integral control action. The
example that we will use in based on an auxiliary power unit (APU) for
an aircraft that is used to provide electrical power to the aircraft when
the engines are shut down during turn-around at the gate. The APU
also provides a source of compressed air for engine starting. Figure 3.17
shows the APU schematic focusing on the fuel control arrangement that
is used to control the shaft speed of the APU.

The control challenge here is to ensure that when running, the APU
shaft speed remains essentially constant so that the electrical power
generator maintains constant frequency ac power supply to the aircraft
(usually 400 Hz). To achieve this, the controller must contain an inte-
grator to ensure that the speed error will be zero under all APU power
generator loads.

Note that if we use a simple gain term for the controller, some small
error is necessary to generate a finite fuel flow to run the APU. As the
power demanded from the APU increases, additional fuel is required
and with a simple gain controller, this can only be provided at the
expense of a larger error signal. This simple gain type of speed regulator
is called a ‘droop governor’ which is descriptive of the response of this
type of governor to increasing load. When precise speed regulation with
essentially zero speed change over the complete load range is required,
integral action becomes necessary and this type of speed regulator is
referred to as an ‘isochronous governor’.

Figure 3.18 shows the control system block diagram for the speed
control loop showing a pure integral controller and the fuel metering
valve represented by a simple gain term. The engine dynamics
comprises a gain term together with two first-order lags. One lag is
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associated with the combustion process and the second is related to
the inertia of the rotating hardware as torque is applied and speed
response lags behind. The speed sensor is shown as a gain term and a
first-order lag.

The control loop shows that the required operating shaft speed NSET
is compared with the tachometer speed transducer output to obtain the
speed error which is then acted on by the integrator control shown in
the dotted line box. The fuel metering valve is an electro-hydraulic servo
valve that is assumed to have negligible dynamics for the purpose of
this example. This valve converts the integrator output to fuel flow via
a simple gain term.

Let us now allocate values for the variables and their units:

KI is to be determined by our analysis and will have units of
milliamps/second per volt of speed error (mA/sec V) thus as long as
a speed error exists the integrator output will continue to increase (or
decrease) until the error is zero

KM converts milliamps to fuel flow and has units of pounds/hour per
milliamp and for this example has a value of 4.0 lb/hr mA.

KE is the engine gain with a value of 70 RPM/(lb/hr) at the operating
condition under study.

KT converts engine shaft RPM to an equivalent voltage and is allocated
a value of 0.00025 V/RPM. (For an engine operating shaft speed of
40 000 RPM the tachometer output will be 10 V)

The time constants for this analysis are as follows: T1 = 0�02 seconds,
T2 = 1�0 seconds and T3 = 0�1 secconds.

This indicates that the dominant lag in the control loop is the engine
inertia lag of 1.0 second. The other two lags are smaller but not small
enough to neglect their contribution to the control loop dynamics. Let
us now check the loop gain and ensure that it has the correct units.

loop gain = KI �KMKEKT� = KI �4�0� �70�0� �0�00025� = 0�07KI

Units around the loop are:

mA
sec V

�
lb/hr
mA

RPM
lb/hr

V
RPM

= sec−1�
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As you can see, when everything is cancelled we are left with sec−1 or
radians per second which is correct for a control loop with one integrator.

Based on the above variable values we can define the open loop
transfer function (OLTF) as:

NM

�NSET −NM�
= 0�07KI

D

[
1

�1+0�02D� �1+D� �1+0�1D�

]
�

We can now figure out what value of KI will yield acceptable stability
margins. Using the short cut method of plotting only the gain curve
against frequency we can estimate what value of KI will keep the rate
of attenuation at 6 dB/octave for about a decade in the region where
the gain curve crosses the 0 dB line. Figure 3.19 shows the open loop
gain response for the above function excluding the integrator term. By
inspection, if we add an integrator to the gain plot of Figure 3.19 and
require that the total gain maintains an attenuation rate of 6 dB per
octave for about a decade around the crossover point, the maximum
value of the integrator term 0�07 KI we can select is about 0.5 which
defines the integrator crossover frequency in radians per second.
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Figure 3.19 Open loop gain without the integrator term
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Figure 3.20 Open loop gain with the best integrator value

Figure 3.20 shows the total gain plot including the integrator. In this
plot the integrator gain KI is defined by the requirement that 0�7 KI = 0�5.

Let us now examine how the same system can have substantially
improved dynamic performance by using P + I control in place of
the pure integral action evaluated above. From the P + I description
presented in Section 3.2.1 we know that the transfer function for this
type of control action can be represented as:

KI �1+TD�

D

where the time constant T = KP/KI.
The open loop transfer function for the speed control loop with P + I

control is as follows with the known variable values inserted:

NM

NSET −NM
= 0�07KI �1+TD�

D �1+0�02D� �1+D� �1+0�1D�
�
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Figure 3.21 Open loop gain with P+ I control

We can now choose the value of T to cancel one of the terms in the
denominator. In this case setting T = 1�0 would exactly cancel the engine
1 second lag.

If we now go through the same exercise as for the integral controller
we will see that we can select a value of 0�07 KI = 5�0 and still provide
good stability based on the gain slope around the crossover frequency.
This is illustrated in Figure 3.21 which shows the composite open loop
gain for the system.

Because we have been able to neutralize the primary lag in the
APU transfer function, the control system with P + I control action is
10 times more responsive to dynamic disturbances than the system with
pure integral control. The improved dynamic response of the compen-
sated System is important because deviations in electrical power supply
frequency variations following sudden changes in power demand are
usually limited by industry specification requirements. Both design
solutions are shown in the Nichols chart of Figure 3.22.

In this Nichols plot the response trajectory for both systems is
essentially identical and is therefore represented here by a single curve.
The difference between the systems, however, is in the frequency scale.
The integral control system crosses the 0 dB line at 0.5 radians per second
while the P+ I system crosses the 0 dB line at 5.0 radians per second.
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Figure 3.22 Nichols plot of both APU control system designs

This is easier to see in Figure 3.23 which shows the closed loop
response curves for each system derived from the Nichols chart. Here
it clearly shows that the P+ I controlled system has a flat gain response
out to about 5 radians per second while the integral controlled version
begins to attenuate at about 0.5 radians per second.

An important point to note regarding the translation from open to
closed loop via the Nichols chart is that the closed loop transfer function
is assumed to have unity feedback with all of the control system elements
in the forward path. In other words the chart translates from KG �j�� to
KG �j�� /1+KG �j��.
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Figure 3.23 Closed loop frequency response for both solutions

In the example just completed the closed loop response is from the speed
set point, NSET to the output of the speed sensor NM. Thus the speed
tachometer is assumed to be in the forward path. In this case, therefore
if we want the actual closed loop speed response of the system with the
speed tachometer in the feedback path, i.e. N

NSET
�j�� we must multiply

the overall closed loop response by the inverse of the speed tachometer
transfer function.

In mathematical terms we can say:

N
NSET

�j�� = NM

NSET
�j��

N
NM

�j�� �

While this looks complicated it is in fact quite simple. In this case
we subtract the gain and phase of the first-order lag representing the
speed tachometer to obtain the actual speed response as indicated in
Figure 3.24. This figure compares the actual and the measured speed
responses for the P + I control approach showing that the actual speed
response is improved a little over the measured response as would be
expected. It is important to note, however, that the stability of the closed
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Figure 3.24 Actual versus measured speed response

loop system is exactly the same in both cases because the open loop
response (and hence the characteristic equation) is the same.

The lessons learned from this example are clear. Pure integral control
burdens the system with its 90 degree phase lag at all frequencies and
thus limits the gain that can be selected while P + I control allows the
control system designer to provide integral action at low frequencies
while providing fast response at the higher frequencies without compro-
mising stability margins.

An observation worth mentioning here refers to the ‘short cut’
approach to system design. In the example presented the short cut
method gave conservative solutions with a gain margin of almost 20 dB
and phase margin of over 50 degrees. While this method demonstrates
a fairly conservative rule of thumb, designing for specific margins based
on pre-determined system performance drivers will require a complete
open loop response analysis. The short cut method, however, is an excel-
lent place to start.

3.3.2 Lead–Lag Compensation Example

To demonstrate the application of lead–lag compensation we will use
a fuel temperature control system example. This system, shown in the
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Figure 3.25 Fuel temperature control system schematic

schematic diagram of Figure 3.25 serves to control the temperature of
the fuel that is fed to a gas turbine engine by mixing cold fuel from
the storage tanks with hot fuel from heat exchanger discharge. Heat
exchangers using fuel as a cooling medium are often used as a heat
sink for aircraft systems that generate substantial amounts of heat such
as hydraulics and avionics. By maintaining the engine feed fuel at a
maximum allowable value, the availability of cold fuel as a heat sink is
maximized.

In the example schematic an electronic controller compares the
temperature set point with the measured engine fuel feed temperature.
The error drives a stepping motor connected to a rotary ball valve having
hot and cold fuel inlets. This valve serves as a mixing valve whose posi-
tion determines the engine fuel feed temperature. The temperature of
the discharge from the mixing valve is measured and fed back to the
electronic controller.
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Let us characterize each control loop element and construct a
system block diagram. The temperature sensor has an inherent time lag
equivalent to a first-order lag of 1.0 second and develops an output
voltage 0.0 to 10.0 V for fuel temperatures from 0.0 to 100 C We can there-
fore represent this element with the transfer function 0�1/�1+1�0 D�.

The electronic controller compares the temperature sensor output with
the temperature set point and drives the stepping motor at a stepping
rate proportional to the magnitude of the error. A 10.0 degree error
(i.e. 1.0 V) generates a stepping rate of 2500.0 steps per second. There is
also a lag associated with the drive electronics and the stepping motor
winding inductance of 0.05 second. We can represent the electronics and
stepping motor by the transfer function 2500/D �1+0�05D� (motor steps
per volt error). The motor rotates 10.0 degrees per step and the reduction
gear ratio is 125:1 therefore there are 0.08 degrees of drive shaft rotation
per degree of motor rotation. For this exercise we will ignore the effects
of inertia and friction.

In order to continue with the analysis we need to characterize the
mixing valve element at the specific operation condition to be analyzed.
Figure 3.26 shows the results taken from a test rig. Here we can see that
the slope of the line at an 80.0 C operating point is approximately 0.5 C
of fuel temperature per degree of shaft rotation.
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Figure 3.26 Mixing value sensitivity at 80 C
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Figure 3.27 Temperature control system block diagram

From this we can now construct a system block diagram (see
Figure 3.27) and determine the system stability margins. From the block
diagram we can see that the open loop transfer function is:

�2500� �0�08� �0�5� �0�1�

D �1+0�05D �1+1�0D�	
= 10

D �1+0�05D �1+1�0D�	
�

By generating the gain and phase for each element as before and
adding them to arrive at the total gain and phase for the open loop
transfer function we obtain the Bode diagram for the system. This is
shown in Figure 3.28 and it is clearly apparent that the stability margins
are unacceptably low. The phase margin in particular (the additional
phase lag to achieve a loop phase lag of 180 degrees when the open loop
gain passes through 0 dB) is only about 10 degrees or less.

The stability margins can be substantially improved by compen-
sating for the 1 second first-order lag of the temperature sensor using
a lead–lag function. We want the numerator of this function to cancel
the sensor lag and if we choose the separation between the lead and
lag time constants to be 50:1 we obtain the lead–lag transfer function
�1+1�0 D� / �1+0�02 D�. The compensated system open loop transfer
function then becomes 10/D �1+0�05 D �1+0�02 D�	 �
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Figure 3.28 Temperature control system Bode diagram

Figure 3.29 is a Nichols chart showing both the uncompensated and
compensated system responses. This chart shows clearly the substan-
tial improvement in stability margins. The compensated system phase
margin is increased to almost 60 degrees. Note also that the frequency
at which the response curves cross the zero dB gain line is consider-
ably higher for the compensated system implying that the closed loop
bandwidth and hence the dynamic performance is improved.

To illustrate the improvement in dynamic response Figure 3.30 shows
the closed loop frequency response for the two systems as derived from
the Nichols chart. The uncompensated system has a sharp resonance at
about 3 radians per second, while the compensated system shows flat
response to about 10 radians per second implying a system substantially
more capable of handling dynamic disturbances.

3.3.3 Class 2 System Design Example

Class 2 systems, i.e. systems having two integrators in the loop, are
inherently unstable without some form of compensation to bring the
open loop frequency response locus around the 1�0� −180 degrees
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point on the stable side as illustrated in the Nichols chart sketch of
Figure 3.31.

The requirements that drive the need for a class 2 control system
solution are for zero steady state error when following a command signal



Applications of Control Compensation 103

+20

0

–20

–40

150

100

50

0
0.1 1.0 10.0 100.0

Frequency (rads/sec)

TM

TS

TM

TS

Gain(dB) Phase lag
(degrees)

Figure 3.30 Closed loop response compensated and uncompen-
sated

–180 degrees

0 dB

Open loop
gain

Without compensation

With compensation

Nichols chart

Instability point
at 0 dB,

–180 degrees

Open loop phase

Figure 3.31 Typical class 2 open loop response

that is changing at a constant velocity. A class 1 system will ensure zero
steady state position error while a class 2 system ensures zero velocity
error. This is illustrated by Figure 3.32 which shows ramp responses for
class 0, class 1 and class 2 systems.
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Figure 3.32 Ramp responses for class 0, 1 and 2 systems

The example developed here is for a target tracking system that
requires the ability to follow a target moving at a constant velocity with
zero error. The specified performance requirements are:

(1) zero error when following targets moving at constant velocities;
(2) maximum error when following a sine wave of +/− 25 degrees at

0.5 radians per second shall be less than 1.0 minute of arc;
(3) small signal step change overshoot shall be less than 40 %.

Control System Description

Figure 3.33 shows the control system in schematic form. This control
system uses an electronic controller to drive a hydrostatic drive
comprising a variable displacement hydraulic pump and a fixed
displacement hydraulic motor. The rotational output from the hydraulic
motor drives the mechanical load and transmission. An electrohydraulic
servo actuator controls the displacement of the pump in order to vary
the speed and torque output of the motor. The transmission gearbox is
coupled directly to the hydraulic drive motor.

Interpretation of Requirements

From the specification, we can make a number of design decisions that
must be met in order to satisfy the peformance requirements. From
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Figure 3.33 Tracking system schematic

requirement number (1) we must have two integrators between the error
and the output as indicated by the equation:

output �
o� = KL

D2
error�

where KL is the open loop gain. We can determine the minimum value
of the gain KL required to meet the specified performance from the
equation:

KL = �0�5�2 �25�0�

�0�1� / �60�
= 300

D2

where the numerator is the angular acceleration at the specified condi-
tion �2r and the numerator is the maximum error allowed. Checking
units we have:

KL =
(
r/s2

)
�deg�

�min� �deg / min�
= r/s2

Element Transfer Functions

The hydrostatic transmission and load can be represented by an inte-
grator in series with a second-order system. The integration function
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means that the hydraulic pump displacement is proportional to the
speed of the hydraulic motor, i.e. if the displacement is not in the null
position, the output will continue to rotate. The second-order term is
associated with the compliance of the hydrostatic drive and the inertia
of the transmission and load.

The transfer function for this element was given in the specification as:


o

xo
= KT

D

[
1

�0�01D�2 +2 �0�3� �0�01D�+1

]
�

The gain KT has units of degrees rotation per second per inch of displace-
ment. The second-order term is expressed in the standard form showing
an undamped natural frequency of 0�01−1 = 100�0 radians per second
and a damping ratio of 0.3. The displacement servo was specified as
being a first-order lag with a time constant of 0.005 second, i.e.

xo

xi
= 1

�1+0�005D�
�

The control algorithm of the electronic controller can be represented
by the expression KG

D �C �D�	 which is an integrator, KG
D in series with

a dynamic compensation element C �D�. The integrator is necessary to
provide class 2 system action which requires two integrators in the open
loop transfer function.

The object of this design study is to determine what the transfer
function of the compensation element should be in order to meet the
specified performance and stability objectives. The system block diagram
(see Figure 3.34) can now be constructed.

From the requirements evaluation we know that the product of all the
gains around the loop must equal 300�0 sec−2, i.e.

KLKT = 300�0

We can now plot the uncompensated open loop response which is
presented as the Bode diagram of Figure 3.35. As indicated in the figure
the system is instable with negative margins. We can also check the
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dynamic performance requirement at 0.5 radians per second where the
gain must be defined by the requirements per the equation:


O

error
= �25�0�

�1�0� / �60�
= 1500 = 63�52 dB

This requirement is confirmed by the open loop gain line at 0.5 radians
per second. We must be aware therefore that our compensation strategy
to be developed does not compromise this point on the open loop gain.

As shown by the Bode diagram, the double integrator has a slope
of −40 dB per decade, crossing the zero dB line at 17.3 radians per
second (which is the square root of 300.0). The double integrator also
imparts a phase lag of 180 degrees which is added to by the other lagging
elements in the loop causing the frequency response locus to pass the
1.0, −180 degrees point on the wrong side.

To compensate this system we need to reduce the slope of the gain
line to 20 dB per decade before it crosses the 0 dB line. We can do this
by introducing a first-order lead element that breaks at a frequency of
10.0 radians per second.

The transfer function �1+0�1D� / �1+0�001D� developed using the
lead–lag approach will suffice. The denominator lag is selected to be
well out of the frequency range of interest with a break frequency of
1000 radians per second and as such should not contribute significantly
to the system dynamics. The new open loop transfer function is now:


o

error
= 300

D2

⎧⎨
⎩

�1+0�1D�

�1+0�001D� �1+0�005D�
[
�0�01D�2 +2 �0�3� �0�01D�+1

]
⎫⎬
⎭ �

This gives rise to the compensated system Bode diagram of Figure 3.36
which shows the system to be stable with a phase margin of 40 degrees
and a gain margin of 8 dB which is quite respectable.

We can now utilize the Nichols chart to develop the closed loop
response of the system in order to examine the overshoot response as it
relates to the specified limit of 40 % maximum following a step change
in the set point. While the frequency response does not examine the
transient behavior of the system, the maximum gain at the resonant
frequency can be considered as an effective guide as to the overshoot
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Figure 3.36 Compensated system Bode diagram

performance (for input steps that are within the linear regime of the
system). Since an overshoot of 50 % is equivalent to an amplitude ratio of
1.4 or +2�9 dB we need to show that the maximum gain at the resonant
frequency is less than +2.9 dB for this requirement to be met. Figure 3.37
shows the Nichols chart plot of the compensated system response which
indicates a maximum closed loop gain of about +2�8 dB which is just
inside the overshoot requirement.

At this point the design exercise appears to be successfully completed
with the response and stability requirements met by the simple addition
of a lead–lag element; however, when the system transmission was
tested for the first time it was discovered that the undamped natural
frequency was only half the value quoted on the design specification, i.e.


o

xo
= KT

D

[
1

�0�02D�2 +2 �0�3� �0�02D�+1

]
�
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Figure 3.37 Nichols chart of the compensated system

Re-plotting the Bode diagram for the system with the actual transmission
dynamics (see Figure 3.38) shows the system to be only marginally
stable.

We now need to introduce additional compensation to neutralize the
effects of the transmission compliance which now has a major impact
on the system near to the zero dB crossover frequency. This is accom-
plished by introducing a second-order lead element at the same natural
frequency as the transmission element together with a second-order lag
with a natural frequency several times higher.
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The chosen transfer function for this compensation element is:

[
�0�02D�2 +2�0�33� �0�02D�+1

]
[
�0�005D�2 +2 �0�2D�+1

] �

This element has a numerator as close as possible to the actual trans-
mission dynamics and a denominator second-order lag having four
times the transmission natural frequency. This effectively moves the
transmission resonance out to 200 radians per second (32.0 Hz) which
is well away from the crossover frequency. The denominator term also
has a lower damping ratio that will help to further improve stability
margins. It should be noted here that it is good design practice to mini-
mize the degree of derivative action necessary in order to ensure that
undesirable high frequency noise is avoided.
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The revised open loop transfer function is now:

300
D2

�1+0�1D�

�1+0�001D� �1+0�005D�
[
�0�005D�2 +2 �0�2D�+1

] �

Note that the numerator second-order term and the actual transmission
term cancel and therefore do not contribute to the response.

Figure 3.39 shows the newly compensated system Bode diagram
showing that good stability has been recovered as a result of the
additional compensation elements. This figure shows that the stability
margins have been improved to provide a phase margin of 58 degrees
and a gain margin of about 11 dB implying well behaved closed loop
response characteristics.

Finally we can plot the open loop characteristics on a Nichols chart
(see Figure 3.40). From this chart we can see a significant reduction in

0.01 0.1 1.0 10.0 100 1000 10 000

Total gain

Open loop
gain (dB)

Frequency (rads/sec)

Specification requirement

Total phase

Phase margin  58 degrees

Gain margin 11 dB

80

60

40

20

0

–20

–40

–60

–80

380

330

280

230

180

130

80

Open loop
phase lag
(Degrees)

Figure 3.39 Bode diagram with revised compensation
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Figure 3.40 Final solution Bode diagram

the maximum closed loop gain from +2�8 dB for the original compen-
sated solution to about +2�3 dB for the current design solution thus
providing a slightly improved performance margin over the specifica-
tion requirements.

From this Nichols chart we can obtain the closed loop system
frequency response which is shown in Figure 3.41.
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As indicated in the figure the maximum gain is +2�3 dB at about
20 radians per second which represents a magnification of 1.3 or 30 %
overshoot well inside the specification requirement.

An important message to be taken from this exercise is the fact that
theoretical analyses typically overstate the stiffness effects leading to
resonant frequencies that almost always turn out to be lower than origi-
nally predicted. In hydraulic systems the stated oil bulk modulus, which
is the volumetric compliance factor, is based on pure oil with absolutely
zero entrained air. This value is not typical of the empirical experience
and one should be wary of this fact as a control system designer. The
example presented here is not unusual in this respect and therefore
it is prudent in selecting design parameters to consider what options
are available should key natural frequencies turn out to be significantly
lower than predicted by theoretical analyses.

3.4 Chapter Summary

Chapter 3 has built upon the basic understanding of closed loop
stability analysis that was developed in Chapter 2. We learned to build
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compensation transfer functions from simple combinations of integra-
tors and first-order lags that can create anticipatory elements such as:

• proportional plus integral control;
• proportional plus integral plus derivative control;
• lead–lag compensation;
• lag–lead compensation.

By selecting the appropriate values for the time constants and gains
used in these building blocks the anticipatory elements can be arranged
to neutralize (cancel out) one or more undesirable elements in the
control loop.

An important message to the would-be practitioner is to recognize
that the anticipatory (phase lead) terms contain derivatives (i.e. D terms
in the numerator of transfer functions) that can be a major source of high
frequency noise. It is therefore good practice to include a high frequency
noise filter term when developing derivative elements. In other words,
having made sure that the appropriate amount of phase lead is provided
in the frequency range of interest (i.e. where the open loop gain line
crosses the zero dB line) we must make sure that the derivative element
is canceled out at the higher frequencies where there is no significant
effect on the system being compensated.

The key to becoming skillful in the optimization of closed loop control
systems is to practice the art of sketching frequency response plots, using
firstly the Bode diagram and then the Nichols chart. With practice these
charts can be developed quickly and the ensuing visibility provided.
The ability of the Nichols chart to provide both an open and closed loop
view of the system makes an important contribution to the development
of a ‘feel for the problem’.





4
Introduction to Laplace
Transforms

This chapter introduces the ‘Laplace transform’ as a tool for analyzing
both the transient and frequency response characteristics of control
systems. Since it is used extensively by the control systems commu-
nity it is important that we address the topic in this book. While the
term ‘transform’ implies mathematical complexity the good news is that
the subject can be covered at a fairly high level leaving the reader able
to readily apply Laplace transforms to control system problems and to
benefit substantially from the insight into the complex frequency domain
that is provided. For completeness the mathematics of the Laplace trans-
form is developed here for those readers interested in the proof of the
general case; however, it is not essential reading for applying Laplace
transforms to control systems analysis or for appreciating the visibility
into the functional behavior of control systems that this topic provides.

4.1 An Overview of the Application of Laplace Transforms

Provided here is a brief overview of the process associated with the
application of Laplace transforms in order to determine the response of
linear systems to a multitude of input stimuli including step, ramp and
sinusoidal inputs. In order to apply Laplace transforms to solve response
problems we convert the transfer functions we have been working with

Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control R. Langton
© 2006 John Wiley & Sons, Ltd
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in previous chapters from the time domain into the complex frequency
domain, also referred to as the ‘s’ plane in order to eliminate the inde-
pendent variable, ‘t’. Thus we can say:

F�s� = �f �t�, where the term ‘�’ denotes Laplace transform
and F �s� is the ‘s’ plane equivalent of f �t�.

Once in the ‘s’ plane it becomes a simple algebraic task to determine
the response of the system to, for example, a step input and, using
the reverse process designated the ‘inverse Laplace transform’ (�−1),
to express the answer as a function of time. We can consider this
process as similar to using logarithms where we simplify the processes of
multiplication, division and exponent operations by converting numbers
into logarithms via tables and after performing the simplified process
(e.g. adding the logarithms to generate the product) we use the ‘anti-
logarithm’ table to convert the answer back into the real world.

In the ‘s’ plane the frequency response of a control system can be
obtained simply by substituting s = j� in the Laplace transform of the
system just as we did before with the D operator so that all the effort we
have put into how to develop the frequency response of a system still
applies in the ‘s’ plane. This will be explained in detail in the paragraphs
that follow.

4.2 The Evolution of the Laplace Transform

So what is the Laplace transform, why is it needed and what is the
implication of the ‘s’ plane or complex frequency domain? We will try
to address these questions here without getting into any complex math-
ematics. Let us begin by going back to the application of the ‘D’ nota-
tion in the expression of differential equations and transfer functions.
To begin we shall adopt a more specific definition of the derivative with
respect to time, d/dt. Consider:

s = d
dt

and
1
s

=
∫ t

0
� � dt�

This appears to be the same definition used for the D operator; however,
because we have applied specific limits to the integration process above
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we say that this is a definite integral. So we can say:

st = d �t�

dt
= 1

and

1
s

�t� =
∫ t

0
�t�dt =

[
t2

2

]t

0
= t2

2

which is also definite.
We now need to introduce the concept of the ‘unit impulse’ which is a

very narrow, very tall pulse of unit area occurring just after t = 0. This is
perhaps the most important concept in the use of Laplace transforms
as we shall see later. The unit impulse is defined as �t and is shown
graphically in Figure 4.1. It can be seen from the figure that �t = 0 so
long as t �= 0.

We can also see that if we integrate the impulse function between
t = 0 and any positive value of t, the answer will always be 1.0 because
the area under the impulse function is, by definition, unit area.

Therefore we can say mathematically:

∫ t

0
��t�dt = 0 for t < 0 and 1 for t > 0�

We can represent this function graphically as shown in Figure 4.2
which clearly depicts the step function denoted by H �t�. Using the

Unit area

t

t = 0

δ t

Figure 4.1 The unit impluse function
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1.0

t = 0

t

H(t)

Figure 4.2 The step function H�t �

same principles developed by the use of the ‘D’ notation concept we
can say:

1
s

��t� = H �t� �

Similarly we can say:

1
s2

��t� = 0 for t < 0 and t for t > 0�

Continuing the same logic:

2
s3

��t� = 0 for t < 0 and t2 for t > 0�

From the above exercise we have found the ‘s’ plane transfer functions
for the ‘boxes’ whose response to a unit impulse is a step, a ramp and
a parabola. Figure 4.3 illustrates this concept in both block diagram and
graphical form.

These ‘s’ plane transfer functions are in fact the Laplace transforms
for the step, ramp and parabola time functions. What we need now is
to develop the formula that allows us to define what goes in the ‘box’
for any function of time whose input is the impulse function �t that will
give the desired time response for t > 0.
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1

s

1

s2
δ t

δ t

δ t H(t)

t for t > 0

t2 for t > 0

Step

Ramp

Parabola

1

2

s3

1
s (δ t) = H(t)

1

s2 (δ t) = tH(t)

2

s3 (δ t) = t2H(t)

Figure 4.3 Step, ramp and parabola transforms

The following formula defines the general case for the transformation
of any time function into the ‘s’ plane

�f �t� = F �s� =
∫ �

0
f �t�e−stdt�

Let us now check the above transform definition using the step and
ramp functions previously determined

�H �t� =
∫ �

0
�1�e−stdt = 1

s

� �t� =
∫ �

0
te−stdt = 1

s2
�

This supports the arguments developed above and Table 4.1 shows a
number of Laplace transforms for common time functions.

4.2.1 Proof of the General Case

This section provides the proof of the general case for transforming any
function of time into the ‘s’ plane. As mentioned in the introduction to
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Table 4.1 Commonly used Laplace transforms

Function f �t� F�s� Block diagram

��t� 1 ��t� → 1 → ��t�

H�t� 1
s ��t� → 1

s → H�t�

t 1
s2 ��t� → 1

s2 → tH�t�

e−kt 1
s+k ��t� → 1

s+k → e−ktH�t�

sin �t �
s2+�2 ��t� → �

s2+�2 → sin �tH�t�

cos �t s
s2+�2 ��t� → s

s2+�2 → cos �tH�t�

this chapter it is presented here for completeness and is not considered
as essential reading for those interested in the application of the Laplace
transform to linear control systems analysis. Those readers who do not
feel the need to cover the detailed mathematical development of the
Laplace transform, should go to Section 4.3.

To begin we must first recall Taylor’s Theorem:

f �x+h� = f �x�+hf ′ �x�+ h2f ′′ �x�

2! + h3f ′′′ �x�

3! + � � � ��

Introducing the definition: s = d/dt we obtain:

f �x+h� = f �x�+hs �x�+ h2s2 �x�

2! + h3s3 �x�

3! + � � � �

= f �x�

(
1+hs+ h2s2

2! + h3s3

3! + � � � �

)
�
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Thus we can write:

f �x+h� = ehsf �x� �

and therefore:

f �x−h� = e−hsf �x� �

Consider now a unit impulse occurring at some time � rather than at
t = 0, we would express this function in our Laplace transform termi-
nology as

� �t −�� = e−st� �t� (4.1)

If we now consider the integral:

∫ �

0
f ���� �t −�� d�	

referring to Figure 4.4 we can see that since � �t −�� = 0, if �t −�� �= 0,
the only significant value of f ��� is f �t� and this is constant with respect
to �. Therefore

∫ �

0
f ���� �t −�� d� = f �t�

∫ �

0
� �t −��d� = f �t� �1� �

Hence

f �t� =
∫ �

0
f ���� �t −�� d� (4.2)

τ = t

Unit impulse f(τ)

τ

Figure 4.4 Function f ��� is significant only at � = t
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If we now put (4.1) in (4.2) we have

f �t� =
∫ �

0
f ���e−st� �t� d�

and since � �t� is constant with respect to � we can write

f �t� =
(∫ �

0
f ��� e−std�

)
� �t� (4.3)

If we now denote the integral in equation (4.3) as F �s� and replace � by
t in the integral since it is a dummy variable, we arrive at the equation
below and its associated block diagram of Figure 4.5:

f �t� = F �s� � �t� �

We have thus defined the integral that transforms any function of time
into the ‘s’ domain as:

F �s� =
∫ �

0
f �t� e−stdt

which is defined as the Laplace transform of f �t�.

f(t) for t > 0
F(s)

δ t

Figure 4.5 Block diagram of the Laplace transforms process

4.3 Applying Laplace Transforms to Linear Systems
Analysis

The next step is to relate all of this Laplace transforms material to
differential equations and linear control systems analysis. Consider
now the Laplace transform of the time derivative of a time function
f �t�, i.e

�
d �f �t��

dt
=
∫ �

0

[
d �f �t��

dt

]
e−stdt�
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By integrating the right-hand side of the above equation by parts we
obtain:

[
f �t� e−st

]�
0 + s

∫ �

0

f �t��e−stdt

= f �t�0 + s�f �t�

where f �t�0 is the value of f �t� at t = 0. Therefore if we can assume that
f �t� = 0 at t = 0 (and this is reasonable for most control systems work)
then

�Df �t� = s� f �t� �

This states that the Laplace transform of the derivative of a time function
is simply ‘s’ multiplied by the function itself (provided that the initial
conditions are zero at t = 0). Thus we can simply replace the operator D
in our traditional transfer functions by the Laplace operator ‘s’ to obtain
the Laplace transform equivalent of that transfer function. Let us now
go back to our original time domain, D operator depiction of a control
system as shown in Figure 4.6. If the initial conditions at t = 0 are zero
we can replace f �D� by F �s� based on what we have learned above.

xi(t) xo(t)f(D)

Figure 4.6 Typical time domain transfer function depiction

So we can say:

xo �t� = f �D� xi �t�

which is the same as

xo �t� = F �s� xi �s� � �t�

where xi �s� is the Laplace transform of xi �t� and �t makes sure that the
output remains at zero until the impulse arrives at t = 0.

Similarly we can say:

xo �t� = xo �s� � �t� �
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If we now express everything in the ‘s’ domain we can say:

xo �s� � �t� = F �s� xi �s� � �t� �

Since the unit impulse functions cancel we have a new ‘s’ domain
block diagram as shown in Figure 4.7. Everything is now in the ‘s’
domain and the independent variable t has been eliminated. All we
have to do to derive the response of any system to an input disturbance
is to convert the time variable disturbance into the ‘s’ domain by finding
its Laplace transform (from tables).

xi(s) xo(s)F(s)

Figure 4.7 ‘s’ domain transfer function depiction

The algebraic product of the input and system Laplace transforms
defines the response in the ‘s’ domain. If we now take the inverse
transform we obtain the time domain response. Let us now demonstrate
this process using a simple first-order lag as the system and a step input
as the input disturbance. Figure 4.8 shows this problem statement in
both the time domain and the ‘s’ domain.

H(t) y(t)1

(1 + TD)

1

(1 + Ts)

Time domain

‘s’ domain

H(t) y(s)

Figure 4.8 First-order lag shown in time and ‘s’ domains

Since we know that the Laplace transform of the step function,
�H �t� = 1/s, we can say:

y �s� = 1
s

1
�1+Ts�

� (4.4)
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Using partial fractions (remember them?) we can express the right-
hand side of this equation as the sum of two separate terms as follows:

y �s� = 1
s

− T
�1+Ts�

= 1
s

− 1

s+ �1/T��

�

If we refer to the table of Laplace transforms in Table 4.1 we can convert
each term into the time domain to obtain:

y �t� = 1−e−t/T for t ≥ 0

= (
1−et/T

)
H �t� �

This is solution is illustrated graphically in Figure 4.9. We have just used
Laplace transforms to calculate the step response of a first-order lag.

Let us now look at what all this means in the ‘s’ plane (or domain).
Figure 4.10 shows the ‘s’ plane where ‘s’ is represented by the complex
number � + j�. This can be considered as the ‘complex frequency’ where
the imaginary term is pure frequency and the real term determines the
degree of exponential decay (or growth) and for this reason the ‘s’ plane
is usually referred to as the ‘complex frequency domain’.

The boxes in the figure located in various positions around the plane
show the equivalent time responses to a unit impulse at t = 0. For
points in the plane that lie on the imaginary axis, the real term is zero
and therefore the exponential decay/growth is zero and the result is

t

1

(1 – et/T) H(t)

(1 – et/T) for t ≤ 0

Figure 4.9 Step response of a first-order lag



128 Introduction to Laplace Transforms

jω

σ

Figure 4.10 Time response implications of the ‘s’ plane

pure frequency. Points that lie on the real axis imply zero frequency
(i.e. j� = 0) and there will be no oscillations. For points in the plane
on the left-hand side of the imaginary axis (negative values of �) the
rate of exponential decay increases as the value of � becomes increas-
ingly negative. The opposite is true for points in the plane to the right
of the imaginary axis. Here the exponential term implies growing oscil-
lations with the growth rate increasing for increasing values of � . The
negative j� half of the ‘s’ plane is simply a mirror image of the positive
half of the plane which is inherent in the mathematics and this mirror
image represents an important feature in control systems in that when
imaginary roots occur (implying oscillatory behavior) they always occur
in complex conjugate pairs of the form � ± j�. This complex frequency
interpretation of points in the ‘s’ plane provides a valuable insight into
the effect that each of the roots of the control system transfer function
have on the behavior of the system in the real world.

Going back to our first-order lag step response problem, this can be
represented by the ‘s’ plane diagram of Figure 4.11. The ×’s are defined
as ‘poles’ meaning that for those specific values of ‘s’ the function y�s�
defined by equation (4.4) above becomes infinite hence the term ‘pole’.
As indicated in Figure 4.11 the pole at −1/T is referred to as the ‘system
pole’ and the pole at the origin as the ‘input pole’ representing the step
function.



Applying Laplace Transforms to Linear Systems Analysis 129

System pole at s = – 1/T

Input pole at s = 0

jω

σ

Figure 4.11 ‘s’ plane representation of the first-order lag response

Extending this to the general case we can say that linear systems are
typically of the form:

F �s� = k

(
sm +a1s�m−1� +a2s�m−2� + � � � am

)
�sn +b1s�n−1� +b2s�n−2� + � � � bn�

�

Factorizing we obtain:

F �s� = k �s−z1� �s−z2� � � � �s−zm�

�s−p1� �s−p2� � � � �s−pn�
�

The roots of the numerator z1	z2� � � zm are called the ‘zeros’ of the system
since when s = z the term equals zero and the function F �s� goes to zero.
The roots of the denominator p1	 p2� � � pn are the poles as described in
the first-order lag example above so that when s = p the function F �s�
goes to infinity. To illustrate the ‘s’ plane pole–zero concept graphically
we can represent the magnitude of F �s� (i.e. the modulus�F �s��� as a
surface in the ‘s’ plane as illustrated by Figure 4.12.

4.3.1 Partial Fractions

In view of the importance of partial fractions as the process used to
convert Laplace transforms back from the ‘s’ domain into the time
domain, the subject is revisited in more detail in this section. Let us begin
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jω

σ

Pole

Zero

‘s’ plane

Figure 4.12 Graphical representation of F �s�

by considering the general case for linear systems in the ‘s’ domain.
Partial fractions allow us to express the general equation:

F �s� = k �s−z1� �s−z2� � � � �s−zm�

�s−p1� �s−p2� � � � �s−pn�

as the sum of a number of separate fractions of the form:

F �s� = A1

�s−p1�
+ A2

�s−p2�
+ � � �

An

�s−pn�
�

This rule is provided that the number of poles is greater than the number
of zeros and also that there are no repeated poles. (If repeated poles do
occur it is easy to circumvent this limitation by moving the location of
one of the repeated poles slightly.)

The A values in the numerators are called the ‘residues’ at the poles
and the method for calculating the residues is described in the following
example. To calculate the value of the residue Ar at pole pr we simply
set s = pr in the factorized equation for F �s�, and cover up (ignore) the
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factor �s−pr�. That is

Ar = k �pr −z1� �pr −z2� � � � �pr −zm�

�pr −p1� �pr −p2� � � � �∗∗∗∗� � � � �pr −pn�
�

The term �∗∗∗∗� in the above expression represents the factor �s−pr�
which is ignored in the calculation for Ar . What this means is that the
residue Ar at pole pr is defined as

Ar = �product of vectors from zeros to pole at pr�

�product of vectors from poles to pole at pr�
�

The residue at a pole, therefore, is a vector quantity so that: Ar = �Ar�∠Ar .
To reinforce this process let us consider the example shown in

Figure 4.13 which shows a system block diagram and the equivalent ‘s’
plane representation.

H(t) 5

(s + 10) (s + 1)
x0

System poles
Input pole

s plane

–10 –1

Figure 4.13 Block diagram and ‘s’ plane representation

The output xo �s� is the product of the input and system Laplace
transforms, i.e.

xo �s� = 1
s

[
5

�s+10� �s+1�

]
�
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In partial fraction form we obtain:

Xo �s� = A−10

�s+10�
+ A−1

�s+1�
+ A0

s
�

Using the previously described method we can calculate the residues:

A−10 = �5� �1�

�−10� �−9�
= 5

90

 A−1 = �5� �1�

�+9� �−1�
= −5

9

 A0 = �5� �1�

�10� �1�
= 5

10
�

Instead of applying the partial fractions ‘formula’ for obtaining the
residues at each pole we can use the vector product approach as shown in
Figure 4.14 to calculate the residues. As indicated in the figure this yields
the same values as before. In this particular example the calculations are
simple since there are no zeros and all of the poles lie on the real axis.

–9

–10

+9

– 1

+1

+10

5

(–10)(–9)

5

90
A–10 ==

5

(10)(1)

5

10
A0 ==

5

(+9)(–1)

5

9
A–1 == –

Figure 4.14 Vector approach to residue calculation (in each case
the loop gain k=5)

Therefore the vector angles are either zero or 180 degrees. Inserting
the values for the residues into the response equation we obtain the ‘s’
plane expression:

xo = 5
90

[
9
s

− 10
�s+1�

+ 1
�s+10�

]
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From the transforms table (Table 4.1) we can now express this function
as a function of time:

xo �t� = 5
90

(
9−10e−t +e−10t

)
�

This function is shown in Figure 4.15 where it can be seen that the
contribution from the pole at s = −10 is small compared with the other
terms. This is an important observation since it means that a pole isolated
from the main group of poles will have a small residue and contribute
little to the overall response.

9

1

–10
– 10e– t

e–10t
xo(t)(90/5)

t

Figure 4.15 Time response plot

To complete this segment we need to examine the residues associ-
ated with oscillatory roots, i.e. roots that are not on the real axis of the
‘s’ plane. First let’s connect the ‘s’ plane representation of an oscilla-
tory second-order system to the standard form of second-order transfer
function developed back in Chapter 1 which is:

1
s2

��n�2 + 2�s
�n

+1
�

Here �n is the undamped natural frequency and � is the damping
ratio. Multiplying the numerator and denominator by ��n�2 gives the
following expression which is now in the ‘s’ plane format, i.e.

��n�2

s2 +2��ns+ ��n�2 �
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We can obtain the roots of the numerator using the old high school
formula:

−b±√
b2 −4ac

2a
�

From this it is clear that when the square root term becomes negative
the roots must always be complex conjugates. Substituting the standard
second-order expression coefficients in the root finding equation yields:

−2��n ±
√

�2��n�2 −4 ��n�2

2
= −��n ±�n

√
��2 −1��

Considering values of �< 1, the second term will always be imaginary
and referring to the ‘s’ graph of Figure 4.16 we can see that the real
coordinate, −�n cos �, must equate to −��n, therefore the damping ratio
� = cos �. Similarly, the imaginary coordinate ±�n sin � must equate to
±�n

√
��2 −1�. Substituting � = cos �, the term inside the square root sign

becomes sin2 � thus confirming the location of the complex conjugate
roots as ��n� cos � ± j ��n� sin �.

‘s’ plane ω
n

– jω

ωn sinθ

ωn cosθ

jω

σ
θ

Figure 4.16 Definition of natural frequency and damping ratio
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We have now related the standard expression for a second-order
system which is defined in terms of the undamped natural frequency
and damping ratio to the graphical representation of two complex conju-
gate poles in the ‘s’ plane. As indicated earlier, oscillatory roots always
come in ‘complex conjugate pairs’ for example:

10
�s2 +2s+10�

= 10

s+ �1+3j�� 
s+ �1−3j��

�

In the ‘s’ plane these complex roots are located as shown in Figure 4.17
where the imaginary coordinates ±3j determine the frequency of oscilla-
tion and the real term, −1, determines the rate of decay of the oscillations.

jω

σ

‘s’ plane

–1

3j

–3j

Figure 4.17 Second-order system poles

In the special case where there is zero damping, i.e. where the � term
is zero, we will have sustained oscillations with the poles lying on the
imaginary axis as shown in Figure 4.18.

In this case the system is defined by the transfer function:

5
�s2 +25�

= 5
�s +5j��s −5j�

Note here the similarity of the Laplace transform of sin ��t� = �

�s2+�2�
in the table of commonly used Laplace transforms (Table 4.1). From this
we can see that when s = j� we get pure frequency which ties in with
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jω

‘s’ plane

Time domain

sine wave of 5 rads/sec

5j

– 5j

σ

Figure 4.18 Second-order system poles with zero damping

the frequency response analysis method where we substitute s = j� (or
D = j�� in the transfer function. Residues at complex conjugate poles
typically take the form A

2j
and A∗

−2j
where the residues A and A∗ are

conjugates.
Therefore the general expression for the impulse response of a complex

conjugate pair will be of the form:

F �s� = 1
2j

A
{

1

s+ �� − j���

}
− 1

2j
A∗
{

1

s+ �� + j���

}
�

The corresponding t terms are:

f �t� = 1
2j

(
Ae−��−j�� − conjugate

)

= 1
2j

(�A�e−�te j��t+∠A� − conjugate
)

and since we know that

sin � � = 1
2j

(
e� � −e−� �

)

we can write:

f �t� = �A�e�t sin ��t +∠A� �
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Therefore we can say that the impulse response of this system is a
damped sinusoid with a time constant of 1/� seconds and a frequency
of � radians per second.

Since Laplace transforms provide a complete solution to linear differ-
ential equations and their stimulus we can obtain both the transient
response to any function of time (provided that we can define the input
time function as a Laplace transform) and also the frequency response
by substituting s = j� into the system transfer function. Suppose we
have a system defined by the Laplace transform:

F �s� = k �s−z1� �s−z2� � � � �s−zm�

�s−p1� �s−p2� � � � �s−pn�
�

At any point q in the ‘s’ plane we can determine the value of F �s� by
the previously described expression which means:

F �s� = k�product of vectors from the zeros to point q�

�product of vectors from the poles to point q�
�

This point is illustrated graphically by Figure 4.19 which shows an arbi-
trary point q in the ‘s’ plane with the vectors from each zero and pole in a
typical system. The vector lengths are multiplied together and the vector
angles summed to obtain the vector value of F �s� at the selected point q.

Suppose now that we select point q to be on the imaginary axis of the
‘s’ plane. Here s = j� and so F �s� will describe the frequency response
of the system at that specific frequency. Thus moving along the j� axis
and calculating the ratio of the vector products in the above expression

jω
‘s’ plane

q

σ

Figure 4.19 Vectors to point ‘q’
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F(s)

jω

σ

Figure 4.20 Interpretation of a second-order system frequency
response

for F �s� generates the frequency response of the system defined in the ‘s’
plane. Once again we can visualize the amplitude ratio (i.e. the modulus
of the function F �s�) as a three-dimentional surface in the ‘s’ plane as
shown in Figure 4.20. As indicated in the figure, the amplitude ratio
of the frequency response can be interpreted as a section through the
imaginary (j�) axis. In this second order system example there are two
complex conjugate poles fairly close to the j� axis. Therefore a section
through the amplitude surface of the ‘s’ plane along the j� axis will result
in a cut that penetrates well into the side of the ‘mountain’ associated
with the poles. For this particular system the frequency response will
show a significant magnification, or resonance, at a frequency adjacent
to the poles as indicated by the shape of the section shown in the
figure.

4.4 Laplace Transforms – Summary of Key Points

Laplace transforms allow us to operate in the ‘s’ plane giving us a unique
insight into the contributions that each element in the control loop makes
to the overall response. Laplace transforms for almost any useful time
functions can be obtained from tables (just like using logarithms). Once
in the ‘s’ domain, it becomes easy to generate mathematical solutions for
the response of a system by obtaining the product of the stimulus and
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the system Laplace transforms and, with the help of partial fractions,
converting the result back into the time domain.

Here are some of the major points established regarding Laplace trans-
forms:

(1) The Laplace transform for any function of time can be determined
from the expression:

�f �t� = F �s� =
∫ �

0
f �t�e−stdt�

Laplace transforms of all commonly used time functions are available
from standard tables.

(2) The Laplace transform of a derivative of a function of time, i.e.

�
d
dt

f �t� = sF �s�

and similarly:

�
d

dt2
f �t� = s2F �s�

provided that the initial conditions are zero at t = 0. This allows
allows us to convert our traditional transfer functions into the ‘s’
domain by simply substituting s for the operator D in our block
diagrams.

(3) An important observation regarding Laplace transforms is that the
time response of a function F �s� is the response of that system to a
unit impulse � �t�.

(4) The frequency response of a system defined by the Laplace transform
F �s� can be obtained by substituting s = j� just as we did with the
transfer functions using the D operator.

(5) When converting system responses from the ‘s’ domain back into the
time domain we use partial fractions to define the separate contri-
butions made to the solution by each pole. In this form it is easy to
use the standard tables to establish the composite time response.

(6) The contribution of each pole to the overall response is defined by
the residue at that pole. Poles located away from the main group
will have small residues and contribute little to the response.
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4.5 Root Locus

It would be irresponsible not to mention the root locus method of linear
control system design and analysis because it is so closely linked to
Laplace transforms. We introduce this topic here, therefore, to provide
the reader with an interesting and insightful approach to system design
through the process of optimizing the loop gain. Root locus involves
working in the ‘s’ plane and therefore the system transfer functions are
defined by their Laplace transforms.

To begin, let us revisit the baseline definition of the system closed
loop transfer function (CLTF):

output
input

= �forward path�

�1+ loop�
�

The denominator, when set equal to zero, is called the ‘characteristic
equation’ of the system. This equation’s solution defines the transient
response characteristics of the system; however, it is important to realize
that the definition of the specific locations of ‘input’ and ‘output’ around
the loop do not affect the definition of the characteristic equation as
indicated graphically by Figure 4.21. Each of the block diagrams in

A(s)

B(s)

C(s)B(s)A(s)

C(s)

C(s)

B(s)A(s)

Input

Input

Input

Output

Output

Output

+

+

+

–

–

–

Figure 4.21 Three systems with the same characteristic equation
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Figure 4.21 will have output responses to input stimuli that are different;
however, the inherent stability of each system will be the same because
they have the same characteristic equation, i.e.

1+A �s� B �s� C �s� = 0�

A typical system characteristic equation may have the following defini-
tion:

1+ k �s+z1� �s+z2�

�s+p1� �s+p2� �s+p3�
= 0

where z1 and z2 are zeros in the open loop transfer function and p1	 p2
and p3 are poles. The term k is a measure of the product of all of the
gains around the loop.

Rearranging the characteristic equation, we can say:

k �s+z1� �s+z2�

�s+p1� �s+p2� �s+p3�
= −1 = �1�0�∠180o�

It follows that if we can define a locus of all of the points in the ‘s’
plane in which the sum of all the zero angles minus the sum of all the
pole angles is always 180 degrees, we will be able to see immediately
how the ‘closed loop roots’ of the system move as k varies from zero to
infinity. The value of k at any point along the locus is simply the product
of the vector lengths (moduli) from the zeros to the point divided by
the product of the vector lengths from the poles to that point. This is
difficult to conceive at first but via the use of examples all will become
clear. Meanwhile let us learn how to construct these root loci.

4.5.1 Root Locus Construction Rules

Root loci can be constructed using a few simple rules which are easy to
apply to typical linear control systems. These rules are developed below
followed by an number of examples to illustrate how the application
of root locus theory can provide a clear picture of first, how the loop
gain affects closed system stability, and second, how the system can be
best modified through the addition of compensating poles and zeros to
optimize closed loop performance.
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Rule 1 Root loci travel from the poles (where k = 0) to the zeros
(where k = �). Figure 4.22 shows a graphical depiction of two
loci traveling from one pair of poles to another pair of zeros.

jω

σ

‘s’ plane

Figure 4.22 Root loci travel from poles to zeros

Rule 2 A locus will always be present along the real axis to the left
of a number of odd poles plus zeros (see Figure 4.23).

jω

σ

‘s’ plane

Figure 4.23 Root loci with real axis poles and zeros

Rule 3 When there are more poles than zeros (most cases), addi-
tional zeros are located at infinity. These loci will be asymp-
totic to straight lines with angles defined by the equation:

� = 180+ i360
n−m

where m and n are the number of zeros and poles respectively.
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jω

σ

‘s’ plane

Asymptotes
Point r

Figure 4.24 Root loci asymptotes for a three pole system

This equation applies for i = 0	±1	±2, etc. until all
�n−m� angles not differing by multiples of 360 degrees
are obtained. Figure 4.24 shows the loci for a system of
three poles and no zeros illustrating the asymptotes for
� = 60
	 180
	 300
.

Rule 4 The starting point on the real axis from which the asymp-
totes radiate (point r in Figure 4.24) is given by the
equation:

� =
∑

pole_values−∑zero_values
n−m

�

This point is the centroid of the asymptotes. Figure 4.25
illustrates this rule for a system with two real poles at −2�0
and −9�0, two complex conjugate poles at −4�0 ± 4j and a
zero at −5�0. Inserting the values into the above equation
gives:

� = �−9−4+4j −4−4j −2�− �−5�

4−1
= −4�67�
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jω

σ

‘s’ plane

–9 –5 –2–4

+4j

–4j

Centroid ϑ = – 4.67 

Figure 4.25 Asymptote centroid for a specific system

Figure 4.26 shows the root loci for this system. On the
real axis the locus from the pole at −2�0 goes to the zero at
−5�0 and the locus from the pole at −9�0 goes to the zero at
minus infinity. The complex poles merge with the asymp-
tote that radiates from the real axis at −4�67. Any point on
any of the loci represents a specific value of k and a corre-
sponding point on each of the other loci will represent that
same value of k. These points on the loci having the same

jω

σ

‘s’ plane

–2–5–9To zero at – ∞ 

Centroid at –4.67

Asymptotes

+4j

–4j

Figure 4.26 Root locus example showing closed loop roots
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value of k are roots of the characteristic equation and, as
such, are roots of the closed loop system. In Figure 4.26 the
small rectangles on each locus represent the specific value
of k for the system to be marginally stable. This is because
the roots along the loci from each of the complex poles
are just crossing the imaginary axis and would therefore
exhibit sustained oscillations at about 8 radians per second.
The other roots along the real axis loci correspond to that
same value of loop gain.

Rule 5 When two adjacent poles lie on the real axis, there will be
a breakaway point on the locus between these two poles.
These breakaway points are defined:

• the locus leaves the real axis at the maximum possible
value of k in that region;

• the locus joins the real axis at the minimum possible
value of k in that region.

Figure 4.27 illustrates this rule.

‘s’ plane

Joins at minimum k

Breaks away
at maximum k

jω

σ

Figure 4.27 Breakaway point example

Rule 6 The angle of departure of a locus from a complex pole can
be determined from the following equation, where � is the
angle of departure:

� = 180−∑ �p�+∑ �z�

where
∑

�p� =∑
(pole angles to the pole), and

∑
�z� =∑

(zero angles to the pole).
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φ

Figure 4.28 Angle of departure example

Figure 4.28 illustrates this rule for a system with two
complex conjugate poles, a real pole and a real zero.

The above six rules of root locus construction make it easy to generate
the root loci for any linear system and to visualize how the closed loop
roots move as the loop gain is varied from zero to infinity.

4.5.2 Connecting Root Locus to Conventional Linear Analysis

Before applying these rules to a specific control system example we
need to have a feel for how root locus and the ‘s’ plane relate to the
fundamentals of control systems analysis already covered.

To begin, let us consider a first-order control loop defined by a single
integrator with gain K in the forward path and a unity feedback closing
the loop (see Figure 4.29). The characteristic equation for this simple
system is:

1+ K
s

= 0�

This can be represented in the ‘s’ plane by a single pole at the origin
as shown in Figure 4.29. The root locus for this control loop is a single
locus that simply runs along the real (�) axis from the pole at the origin
towards minus infinity. Selecting a value of the gain K for this example
determines the location of the one and only closed loop root as indicated
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–jω

jω

Closed loop
root 1/T

Input OutputK
s

σ

Figure 4.29 Simple first-order example

by the rectangle on the locus shown in the figure. Increasing the value
of K simply moves the root along the �-axis to a more negative location.

When considering the ‘s’ plane, we observe that any point in the plane
defined by � + j� represents a complex frequency where the imaginary
component j� defines the frequency of oscillation and the real compo-
nent � defines the rate of decay (or growth) of that oscillation. Points
along the j� axis having a zero real component will therefore define
points of sustained oscillation with neither decay nor growth. From this
we can say that the system closed loop roots as viewed from the points
along the j� axis represent a measure of the frequency response of that
system.

Although this concept was presented briefly in the Laplace transforms
section, it bears repeating here using the above simple example. In
conventional linear systems analysis, we typically obtain the frequency
response of a system by substituting s = j� into the closed loop transfer
function. In our simple example, we obtain:

output
input

�j�� = 1
�1+ j�T�

�
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where the time constant T = 1/K. We can see clearly now that the process
of substituting s = j� is simply stating that we will constrain our view of
the system response to the perspective of points on the j� axis. Thus the
general function F �s� for any point in the ‘s’ plane becomes a more
specific function F �j�� defining the system response to pure frequency.

Going back to our example consider now selecting various points
along the positive j� axis. We can say from the previous text on Laplace
transforms that for this specific case with a single root the length of
the vector from any point on the j� axis to the root on the real axis
represents both the magnitude and the phase response of the system
to frequency excitation. When the selected point is at the origin of the
plane representing zero frequency the vector becomes a reference vector
corresponding to the steady state response of the system.

As we select different points �p� along the j� axis as shown on
Figure 4.30, the angle and length of the vector changes and the ratio
between each of these vectors and the zero frequency (steady state)
vector defines the frequency response of the system.

Now, since we are working with roots of the characteristic equation
(1+loop = 0� and the characteristic equation is always in the denominator
of the response equation, the frequency response is the reciprocal of the
response vector divided by the reference vector. Thus the amplitude
ratio is the length of the reference vector divided by the response vector

 jω

Closed loop
root 1/T 

.

.

.

. p3

p2

p1

p0

Increasing
frequency

Steady state or reference vector

–jω

σ

Figure 4.30 Vector ratio approach to frequency response
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lengths at the various points along the j� axis and the phase angle is
minus the angle between the reference vector and the response vectors.
Using this vector ratio method for determining the frequency response
of this simple example we can make these observations:

• The amplitude ratio will be unity at zero frequency (j� = 0).
• As we move along the j� axis to points p1	 p2, etc. the amplitude ratio

will attenuate towards zero at infinite frequency.
• The phase angle will be negative implying a lag which tends towards

a 90 degree lag at infinite frequency.
• For the point on the j� axis equal to 1/T radians per second, the phase

lag is exactly 45 degrees and the amplitude ratio is 1/
√

2 = 0�707 =
−3 dB.

These observations are exactly in line with our conventional frequency
response analysis of a first-order lag. From the ‘s’ plane representation
it becomes clear that as the closed loop root location becomes more
negative, the time constant 1/T becomes smaller and the break frequency
where the phase lag is 45 degrees now occurs at a larger value of j�
implying a faster responding system.

Let us now consider what happens when we add an additional lag
to open loop response. This will add a second pole on the real axis and
according to root locus construction Rule 2 there will be a locus on the
real axis between the two poles and this locus will split into two separate
loci with asymptotes at ± 90 degrees as shown in Figure 4.31.

Closed loop roots

–jω

jω

σ
θ

Figure 4.31 Root locus plot for a two pole open loop system
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We now have a pair of complex conjugate roots in the closed loop
system that can exhibit oscillatory behavior if the loop gain is increased
sufficiently. However, in theory this system can never be unstable
because the damping ratio (cos �) tends to zero but can only reach there
at infinite frequency. Adding a third pole to the open loop system results
in additional asymptotes for the loci because there are now three poles
that need a zero as a target. In the first-order system with one pole
the single zero target was located at minus infinity along the negative
real axis. The two pole system required two zero targets and these are
located at 90 degrees to the real axis at ± infinity. The three pole system
requires three zero targets and these are located at minus infinity along
the real axis and at angles of ±60 degrees to the real axis as shown in
Figure 4.32 and in accordance with Rule 3 of root locus construction.

The trend is clear. The more lags in the open loop transfer function,
the more poles reside in the left half of the ‘s’ plane and the more aggres-
sively the root loci move into the unstable right half plane. The above
examples send an important message. The simple systems with a small
number of open loop poles appear to be easy to stabilize. We must

Closed loop roots

–jω

jω

σ

Figure 4.32 Three pole system root locus
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remember that we often neglect the roots that are outside the frequency
range of interest and, while their residues may be small, they still have a
small but negative effect on the root loci by forcing them more quickly to
the right and towards the unstable region. This phenomenon is similar
to the observations made earlier about stiffness. It is always lower than
expected because we never take all of the contributions into account
and the result is lower than expected resonant frequencies. By the same
token, we never take into account all of the time lag terms and there-
fore our root loci tend to impart optimistic results. This is why it is so
important to design closed loop systems to have good stability margins
and for the control system designer to be wary of system analyses that
may have neglected or minimized the contributions of some of the faster
roots.

Let us now consider the affect of adding zeros to the open loop transfer
function. Figure 4.33 shows the three pole system with added zeros.
The system on the left has a single zero on the real axis and the system
on the right has a complex conjugate pair of zeros added. In each case
the number of poles minus the number of zeros (p − z), and hence the
number of asymptotes, is reduced because the loci now have added
targets within the plane. For the system with one added zero, the extreme
left pole now produces a locus along the real axis to the zero and the
asymptotes from the breakaway between the remaining two poles are
now ±90 degrees instead of ±60 degrees. The added zero has therefore

–jω

jω

σ

–jω

jω

σ

Figure 4.33 Three pole system with added zeros
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pulled the primary locus to the left thus improving the damping ratio
associated with the two complex roots.

The complex conjugate zeros on the right-hand system provide targets
within the plane for the locus that breaks away from the real axis leaving
just one asymptote that emanates from the farthest left pole to minus
infinity along the negative real axis. Again a substantial improvement
in damping of the primary closed loop roots is evident.

This review has provided the reader with an additional insight into
the connection between the fundamentals of linear systems analysis
developed earlier with the location of the open loop poles and zeros in
the ‘s’ plane and how this relates to the closed loop roots as the loop gain
is increased. The section that follows will further reinforce the principles
of root locus analysis as it is applied to the design of linear closed loop
control systems.

4.6 Root Locus Example

Let us revisit the aircraft attitude control system analyzed in Section 2.7.
This system was defined (using the ‘D’ operator) by the open loop
transfer function (OLTF) which contains an integrator and three first-
order lags:

OLTF = 2�0
D �1+0�02D� �1+0�1D� �1+2�0D�

�

We can now define the characteristic equation for this system based on
the definition �1+ loop� = 0 using the Laplace transform notation:

1+ 2�0
s �1+0�02s� �1+0�1s� �1+2�0s�

= 0�

We now rearrange the equation so that the denominator terms are in
the familiar �s+p� form, i.e.

1+ 2�0
s �0�02� �s+50� �0�1� �s+10� �2�0� �s+0�5�

= 0	
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i.e.

1+ 500
s �s+50� �s+10� �s+0�5�

= 0�

This system, therefore, has no zeros and four poles at 0, −50, −10 and
−0�5. The gain term is not the actual loop gain but the loop gain divided
by the product of each of the time constants associated with the poles. It
is, however, directly proportional to the loop gain and may be referred
to, loosely, as the loop gain in root locus analyses.

If we try to plot the poles in the ‘s’ plane, it becomes clear quickly
that three of the poles are reasonably close to the origin and the fourth
pole is situated a long way away at −50. From the earlier discussions
about residues at poles we said that if a pole is remotely situated from
the main group its residue will be small as will its contribution to the
response of the system. To illustrate this point Figure 4.34 shows the
root locus plots for this system with and without the pole at −50.

The locus on the left has four starting poles on the real axis and
since there are no zeros, there are two breakaway points for the four
asymptotes that radiate from a point at −15�25 at +45 degrees and +135
degrees.
The alternative plot on the right is for the same system but with the
pole at −50 neglected. Here there are only three poles on the real axis
and only three asymptotes radiating from a point −3�5 at ±60 degrees

jωjω

σσ
–50 –10

Asymptotes

Asymptotes

Figure 4.34 Root loci showing the effect of neglecting the remote
pole
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and −180 degrees. The rectangles shown on each locus are closed loop
roots corresponding to the same loop gain indicating that there is no
significant difference between the two approaches to the root locus anal-
ysis even though the root locus curves for the two approaches appear
to be significantly different. We will therefore ignore the pole at −50 in
the following discussions regarding this system.

Consider now that we need to have a control system that is both
faster and with reasonably good damping. From the ‘s’ plane diagram
it would seem appropriate to introduce a numerator term with two
complex conjugate zeros located at a higher value of j� and with a more
negative real component as indicated in Figure 4.35.

The new characteristic equation for this modified system is:

1+ k
(
s2 +5�4s+30�33

)
s �s+10� �s+0�5�

= 0�

jω

σ

‘s’ plane

–10 –0.5

Resonant
frequency

θ

Figure 4.35 Attitude control system with second-order compen-
sation
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Factorizing the numerator gives us the complex conjugate roots which
are the location of the zeros in the ‘s’ plane, i.e.

1+ k 
s+ �5�4+4�8j�� 
s+ �5�4−4�8j��

s �s+10� �s+0�5�
= 0�

Now there are three poles and two zeros and the root loci will move
from the two complex poles to the complex zeros and the third pole
will move to a zero at minus infinity along the real axis as shown in the
figure.

The closed loop roots are now vastly improved with the natural
frequency of oscillation (indicated by the closest proximity of the
complex roots to the j� axis) of about 4 radians per second which is
about four times the original value. The damping ratio of the complex
roots, defined as cos � in the figure is about 0.4 compared with only 0.2
for the uncompensated system.

4.7 Chapter Summary

In this chapter we have developed a new visibility into the behavior of
linear feedback control systems through the application of the Laplace
transforms to define both the input forcing functions as well as the
control system element transfer functions. This new visibility is afforded
by the complex frequency domain which allows the control system
analyst to understand the influence on the system dynamic behavior
that the roots of the various elements in the open loop transfer func-
tion can impart due to their location in the complex frequency domain
together with their location relative to the other elements in the loop.

We have also seen that we can readily replace the D operator with the
Laplace operator ‘s’ while retaining all of the application simplification
benefits established in the early chapters of this book. From this point on,
therefore, we will adopt the use of the Laplace operator ‘s’ exclusively
in all of our transfer function definitions. This is in line with the control
engineering community at large where transfer functions are almost
always expressed in Laplace terminology.

Chapter 4 also introduced ‘root locus theory’ as a design methodology
that is particularly well suited to linear systems design analysis since
it provides a means to observe the movement of a control system’s
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closed loop roots in the complex frequency domain (‘s’ plane) as the
loop gain is varied over the full range of values from zero to infinity.
The insight provided by this methodology into the dynamic performance
characteristics of linear closed loop control systems is powerful, and
the practicing control engineer is encouraged to use this process as an
analytical technique. It is not necessary to develop a rigorous analysis
of the loci but to be able to draw the root locus from the system open
loop transfer function quickly so that the closed loop root possibilities
(and the impossibilities) can be visualized.



5
Dealing with
Nonlinearities

This chapter addresses non-linearities and how to take account of them
in closed loop systems analysis. So far we have assumed that the world
is linear and continuous but unfortunately, more often than not, this is
not the case. We therefore need to develop methods to accommodate
nonlinearities as an extension of the linear analysis methods already
established. These techniques use the concept of linearization where a
system with nonlinear characteristics can be adequately represented by
an equivalent linear representation. This approach does require some
engineering judgment and we must always remember the guidance
offered by Albert Einstein when he said that we should simplify the
problem as much as possible � � � but no more!

Also addressed in this chapter are simulation techniques that allow
the engineer to develop a computer representation of real world systems
including their nonlinear characteristics and to evaluate the systems’
dynamic behavior by observing the simulated responses to input stimuli.

5.1 Definition of Nonlinearity Types

Nonlinearities come in two fundamentally different forms. The first
we can designate as continuous functions associated with mathematical
expressions such as square roots and multiplication or division of two

Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control R. Langton
© 2006 John Wiley & Sons, Ltd
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independent variables as well as the relationship between an input and
an output transfer function that varies with the operating condition
according to a predetermined curve or control law.

The second form of nonlinearity is the discontinuous form caused
by such typical phenomena as static friction, deadband, saturation
and hysteresis (also referred to in mechanical systems as backlash).
Bang–bang control systems alluded to earlier also come into this cate-
gory. Each of these nonlinearity categories can be treated separately with
regard to stability analysis techniques. In the analysis of these discon-
tinuous types of nonlinearity, the issue that we must recognize is that
the system response will be dependent not only on the frequency of the
stimulus but also on the amplitude of the input to the nonlinearities.
Therefore we now have to consider two independent input variables
when we evaluate nonlinear systems, first the frequency-dependent
aspects of the system and second the amplitude-dependent aspects of
the system.

Figure 5.1 shows an example of both of the two basic forms of nonlin-
earity described above. The figure shows the position versus flow char-
acteristic of a typical hydraulic spool valve used to control the flow of
hydraulic fluid into and out of a piston actuator. The graph in the figure
is typical of a spool valve where the controlling spool land is slightly
larger than the ports cut into the sleeve that it rides in. This is called
‘deadband’ and is favored by the hydraulic system designer as a means
to minimize internal leakage of fluid from the pressure side to the return

PC

Q

Supply pressureReturn pressure Q

Deadband

Saturation

Nonlinear flow gain

Three-way
spool valve

ω

ω

Figure 5.1 Typical spool valve characteristic
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side with the attendant unwanted heat generation. This deadband,
however, can be a problem to the control system designer because the
flow gain of the valve is zero within the range of the deadband. The curve
in the flow line is caused by the circular ports in the valve sleeve that
produce a nonlinear flow area as the valve is moved away from the null
position.

This nonlinearity can be avoided by cutting rectangular ports in the
sleeve which is a commonly used but more expensive process. The third
nonlinearity shown on this graph is the saturation feature that repre-
sents the effect of having a flow limiter in the hydraulic supply line or
a travel limit designed into the error linkage. The above example serves
to demonstrate that both forms of nonlinearity can (and often do) occur
together and that this must be borne in mind when analyzing complex
systems. The two forms of nonlinearity will now be addressed sepa-
rately using common real world examples as a basis for discussion and
explanation.

There is one additional form of nonlinearity that must be mentioned
here and that is the pure time delay also referred to as a transport delay
or dead time. This type of nonlinearity falls into neither of the above
two categories and will therefore be discussed as a separate topic.

5.2 Continuous Nonlinearities

A good example of this form of nonlinearity is found in hydraulics and
pneumatics where the flow equations involve a number of nonlinear
functions. If we consider a simple flapper valve found in typical
hydraulic servos (see Figure 5.2) we have a nonlinear relationship
between the flapper displacement, and the flow through the nozzle.

Pi

Po

Q

xV

Pivot

Figure 5.2 Flapper valve example of a nonlinear function
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This type of equation does not readily fit into the linear transfer func-
tion methodology presented so far in this book, i.e.

Q = KVxV

√
�Pi −Po�

where Q is the flow through the flapper valve, KV is a valve flow/
geometry coefficient, xV is the flapper valve displacement, and �Pi −Po�
is the valve pressure drop.

We have ignored here the flapper travel limits for the purpose of
this exercise since this would fall into the category of discontinuous
nonlinearities to be discussed in the next section. A block diagram of this
equation would look like Figure 5.3. In order to reduce this problem to
a linear equivalent where we can apply the analytical methods already
described we use the method of ‘small perturbations’.

(Pi – Po)

xV KV

Q

Figure 5.3 Flapper valve nonlinear block diagram

Here we consider what happens to the output if we disturb one input
variable at a time while holding all the others constant. This is valid for
small deviations around the operating point being considered. What we
are doing in this example is to establish the partial derivatives of Q with
respect to KV and xV and treating their contributions to the flow through
the flapper valve Q independently. We can now rewrite the flapper
valve flow equation using the prefix � to denote a small perturbation of
the variable, i.e.

�Q = �Q
�xV

�xV + �Q
��Pi�

��Pi�

(assuming that Po is constant). We can now establish the derivatives:

�Q
�xV

= KV

√
�Pi −Po�0 and

�Q
��Pi�

= KVxV0

2
√

�Pi −Po�0

�
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The 0 suffixes associated with the pressure and displacement variables
denote the nominal values of each variable at the chosen operating
condition. We can now construct a linear equivalent block diagram for
the flapper valve (see Figure 5.4) that is valid for small perturbations
about the selected operating point and usable by our linear analysis
methods. This linearized block diagram implies that small variations in
the flow through the flapper nozzle are equal to the sum of the effects
of small perturbations in flapper displacement xV and the pressure drop
across the valve �Pi −Po� each considered separately.

Δ Q

ΔPi

Δ xV

+

+

2

KV (Pi – Po)0

KV xV0

(Pi – Po)0

Figure 5.4 Flapper valve linearized block diagram

The continuous type of nonlinearity described above is also common
in aircraft control systems where the operating conditions vary from
sea level at low speeds to very high altitudes traveling at high speeds.
These changes have a marked effect on the dynamics of the aircraft and
its power plant. For the aircraft, the gains for the autopilot established
for the sea level, low speed condition will be substantially different
from the cruise condition if we want to maintain the same dynamic
performance standards and stability margins. In the case of an aircraft
gas turbine engine, the variations are not only introduced by the changes
in flight condition but also as a result of variations in throttle setting.
The following section uses the aircraft gas turbine engine fuel control as
an example of the application of continuous nonlinearities in feedback
control system design.

5.2.1 Engine Fuel Control System Example

A typical aircraft gas turbine fuel control system provides an excellent
vehicle to demonstrate of the use of a continuous nonlinear function
because of the natural benefits provided by this approach. The challenge
here is to provide a means of compensation for both environmental
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variations (i.e. altitude and Mach number) and throttle settings that
will result in a simple fuel control concept. To illustrate this problem,
Figure 5.5 shows the significant differences in the sensitivity to changes
in fuel flow that can typically occur between idle power and maximum
power settings at a single operating condition (in this case at sea level
static conditions).

In addition to the fuel flow sensitivity, the engine responds much more
slowly at low power settings than at high power. An engine with a 1.0
second effective time constant at full power may have an idle power time
constant of closer to 3.0 seconds. Add to this the effect of varying altitude
and speed and we have a very complex process with the prospect of an
equally complex control system. Therefore to control engine thrust as a
measure of speed, for example, we need to accommodate the substantial
variations in both the engine response terms (sensitivities and dynamics)
as well as in the environmental conditions (altitude and speed) when
developing the control system design.

A commonly used approach to solving this engine speed control
system problem is to use compressor discharge pressure (PC) as a feed-
back signal to the fuel metering unit to compensate for the variations in
power setting by multiplying the speed governor output by this param-
eter. This makes a lot of sense because of the following two features.

Fuel
flow

Engine
RPM

Idle Maximum

Sensitivity
at full power

Sensitivity
at idle

Figure 5.5 Gas turbine fuel sensitivity variation with throttle setting
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• PC feedback provides automatic correction to the fuel control system
for changes in throttle setting and changes in flight condition
(i.e. engine inlet pressure and temperature).

• It turns out that the ratio of fuel flow (WF) and PC is a fairly accurate
measure of fuel/air ratio over most of the engine operating regime.
Thus the ratio WF/PC remains fairly consistent throughout the oper-
ating envelope of the engine.

This control concept is illustrated by the block diagram of Figure 5.6.
Here the PC feedback signal to the fuel control is multiplied by the
output from the speed governor to determine the required fuel flow to
the engine. The governor gain KG therefore, must be expressed in WF/PC
ratio units per RPM of speed error.

The nice feature of this system is that the PC multiplier effectively
reduces the governor gain at low throttle settings when PC is low and
the engine sensitivity to fuel flow is high while increasing the gain at
high power settings when PC is high and fuel flow sensitivity is low. So
what is the problem with this apparently ideal solution to the engine fuel
control design problem? We will see this more clearly when we use the
small perturbation method to linearize the system. When we linearize a
multiplication function we hold one of the inputs constant and vary the
other to establish the partial derivatives of each input leg. By inspection
we can see that if the speed is held constant and we increase PC we
will increase fuel flow. This means that the PC feedback is positive and
not negative as is the norm in feedback control. Positive feedback is

EngineKG

RPM

+

–

Fuel flow WF

Speed command RPM (throttle setting)

Speed feedback

Governor gain

Engine speed governor

WF

PC

PC feedback

PC

Figure 5.6 Gas turbine speed governor with PC gain
compensation
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inherently destabilizing and therefore we need to look closely into the
effect of PC feedback with regard to the stability of the speed governor
control loop.

To further evaluate this problem let us insert some numerical values
into a block diagram that represent a gas turbine speed governor control
loop at a specific power setting that is valid for small changes in
accordance with our small perturbation methodology. This is shown
in Figure 5.7 and is a very simplistic representation of a gas turbine
engine but it does include the important characteristics that contribute
to the speed control problem using a nonlinear PC multiplier as a gain
compensator.

The units used in this example are in common use in industry
today, i.e.

fuel flow: lb/h
pressure: lb/in�2 absolute
engine speed: RPM
WF/PC ratios: lb/h/�lb/in�2� = in�2/h

The compressor discharge pressure dynamics contains a fast path
response to fuel flow changes and a slow path. The former is simply
the immediate response to adding fluid into the combustion chamber
and the latter is the change in PC that occurs after the engine spools up
(or down) in response to the change in fuel flow.

100

6.0

Speed feedback

+ +
+

–

Speed governor

Fuel flow to engine

PC feedback

0.1

0.01

ΔNRPM

+

+

ΔWF

ΔPC

∂PC

∂WF

∂PC

∂N

WFR =
PC

∂WF

∂R

∂WF

∂PC

NSET
KG

Engine dynamics 

Fast path

Slow
path

20.0

(1 + s)

Figure 5.7 Gas turbine speed governor numerical example
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From Figure 5.7 we can generate the expression for �PC:

�PC = �WF�0�1�+�WF

[
20�0

�1+ s�

]
�0�01��

This defines �PC as sum of the fast path and slow path contributions.
From the above expression we can define the transfer function relating
�WF and �PC:

�PC

�WF
= 0�3 �1+0�33s�

�1+ s�
�

We can now redraw the block diagram (see Figure 5.8) showing the PC
feedback as a separate inner control loop comprising the above transfer
function in series with partial derivative �WF

�PC
which, in this example is

6�0 in�2h. This positive feedback loop can now be reduced to a single
transfer function using the rule: forward path/(1 – loop), which yields:

�WF

�WFG
= 2�5 �s+1�

�s−0�5�
�

This shows that there is a positive real root in the closed loop transfer
function indicating that this loop on its own would be unstable. We have

100

6.0

+ +
+

–

ΔNRPMΔWF

ΔPC

NSET
KG

20.0
(1 + s)

0.3(1 + 0.33s)

(1 + s)

ΔWFG

ΔWFP

Figure 5.8 Rationalized speed governor and engine block
diagram
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an outer speed governor loop, however, that is able to provide an overall
stable governor speed control as we shall see from the analysis that
follows. To understand this let us develop the characteristic equation for
the overall governor control system including both the inner and outer
loops so that we can observe how the closed loop roots of the speed
governor move as the gain is increased (i.e. let’s look at the root locus
plot for this system). The characteristic equation for this system is:

1+KG�100�× �inner loop�× 20
�s+1�

i.e.

1+ KG�100��2�5��20��s+1�

�s−0�5��s+1�
= 0�

The 1 second time constant terms in the numerator and denominator
cancel leaving a single root in the ‘s’ plane at +0�5. The locus therefore
goes along the real axis to a zero at minus infinity. Thus the system will
be stable as long as the governor gain KG is sufficiently large to ensure
that the closed loop root is in the negative half plane.

Since we have only a single pole, the value of loop gain required for
marginal stability is equal to the length of the vector from the pole to
the origin, i.e. 0.5. This is the minimum loop gain for stability. If we
wanted a governor with a break frequency of say 10 radians per second,
this corresponds to a closed loop root at −10. The vector length from
the pole to this point on the � axis (and hence the loop gain for this
solution) is 10.5. This defines KG = 0�0042 ratios per RPM. As already
mentioned this is a very simplistic interpretation of the engine control
problem. In reality there will be additional lags around the loop which
will cause the governor gain to be bounded as indicated in Figure 5.9
which shows the simple example locus and a more realistic form that
would result from additional lags around the loop.

We have learned in this section that the way to handle nonlinear func-
tions such as square roots, multiplication, division, variable gains, etc. is
to use small perturbations about a specific operating point and to estab-
lish how the output from each nonlinearity would respond. With more
than one variable in a nonlinear expression we consider the effects of
varying each variable at a time while holding the others constant, i.e.
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jω jω

‘s’ plane ‘s’ plane

Simplistic

Realistic

Potential closed loop roots

Figure 5.9 Gas turbine speed governor root locus plots

find the partial derivative of the output for each input variable in turn.
The output is then the sum of the individual contributions. This gives us
a linear system that we can analyze using the standard linear analysis
techniques already developed.

It must be emphasized here that this technique is only valid for small
excursions about a specific operating point and will not be representative
of the dynamic behavior of the system in response to large disturbances.
For this problem we use computer simulation which will be discussed
later in this chapter.

5.3 Discontinuous Nonlinearities

Discontinuous nonlinearities differ from the previous type exhibiting
sudden changes in response to input stimuli because of their inherent
nature. Included in this category are deadband, saturation and
hysteresis. These nonlinear features can be the result of any number of
physical characteristics as illustrated by Table 5.1 which shows the char-
acteristics and possible causes of some of the most common forms of
discontinuous nonlinearity.

From the table there is one important observation that should be
made regarding the nonlinearities described and that is with regard
to hysteresis. This phenomenon is perhaps the most common function
that the control systems designer must address and certainly the most
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Table 5.1 Discontinuous nonlinearity characteristics

Nonlinearity Example causes Input vs output Comments

Deadband • Hydraulic valve
overlap

• Motor breakout
torque

Out

In

• Effective gain is
reduced for small
inputs

• No phase shift

Saturation • Valve flow limits
• Travel limit stops
• Amplifier voltage or

current limits

Out

In

• Effective gain is
reduced for large
inputs

• No phase shift

Hysteresis • Coulomb friction
• Backlash

Out

In

• Effective gain is
reduced for small
inputs

• A phase lag is
introduced that is
larger for smaller
inputs

troublesome. This is because of the phase shift that accompanies this
nonlinearity. Both the deadband and saturation functions simply change
the effective gain by modifying the signal transmission for either small
or large signals, respectively, and therefore the accommodation of these
nonlinearities is relatively straightforward. The effects of hysteresis,
on the other hand, require careful study to ensure that the impact
on system stability and dynamic performance are understood and
acceptable.

In order to explain the behavior of the above nonlinearities we need
to develop the output waveform that results from a sinusoidal input
so that we can observe the signal transmission through the function.
Figure 5.10 illustrates the saturation nonlinearity showing how a sinu-
soidal input is distorted as it is transmitted through the saturation
element. From this we can see that the output waveform, while distorted
due to the saturation effect, is in phase with the input signal. The effec-
tive gain (or transmission) through the nonlinearity is reduced and the
bigger the input the bigger the loss (or gain reduction) of this nonlinear
element.

One of the established methods for analyzing these effects involves
the ‘describing function’ which can be used to identify potential instability
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Figure 5.10 Saturation nonlinearity characteristics

for control systems with discontinuous nonlinearities based on sinu-
soidal inputs. This is convenient for the control systems engineer since
frequency response is a well used and established technique for closed
loop dynamic performance analysis. The describing function assumes
that the outputs from nonlinear elements such as saturation, deadband,
etc. can be represented by an equivalent sinusoid of the fundamental
frequency of the input excitation. This is illustrated by the graph on
Figure 5.10 which shows the waveforms and the describing function for
the saturation element. In this case the describing function is simply a
gain coefficient denoted by CN that varies with the magnitude of the
saturation limit XS and the input amplitude Xi.

Since the transmission through the nonlinear element is not shifted in
phase, CN is a scalar quantity coefficient and therefore is very easy to
apply to system stability analysis as we shall see later. We will not get
into the geometric derivation of CN here since we are more interested
in the application of the describing function concept in control system
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performance analysis. For completeness, however, the equation for the
saturation gain coefficient is shown:

CN =
[

2	



+ sin�2	�




]

where 	 = sin−1
(

XS

Xi

)
.

Figure 5.11 shows the characteristics of the deadband nonlinearity
including the describing function which, again, is simply a gain
coefficient CN.
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Figure 5.11 Deadband nonlinearity characteristics

Here the equation for the deadband gain coefficient is:

CN = 1− 2	



− sin �2	�




where 	 = sin−1
(

XD
Xi

)
.
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As with the saturation element the deadband nonlinearity has no
phase shift associated with it and the effective gain is reduced as the
input amplitude is reduced.

The hysteresis element is more complex than the last two examples
because it modifies both the gain and the phase shift in transmitting
a sinusoidal input. As with all of the nonlinear elements described so
far the effects on the control loop are dependent upon the amplitude
of the input to the element and independent of the frequency of the
input. We must take care to remember, however, that within a closed
loop system the presence of simple nonlinearities such as the saturation
and deadband elements described here can secondarily cause additional
phase lag due to the fact that the loop gain has been changed by the
presence of the nonlinearity within the loop.

Figure 5.12 shows the characteristics of the hysteresis nonlinearity
which clearly indicates the phase shift of the output waveform relative
to the ideal transmission waveform. The describing function for this
element is no longer a simple gain coefficient but a complex number with
gain and phase attributes. The graph shown on Figure 5.12 shows how
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Figure 5.12 Hysteresis nonlinearity characteristics
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the effective gain term �CN� and its associated phase lag ∠CN vary with
the ratio of hysteresis half-width and input signal amplitude. It should
be obvious to the reader that the potential for the hysteresis element
to impact system stability is substantially greater than the saturation or
deadband elements.

5.3.1 Stability Analysis with Discontinuous Nonlinearities

To understand the impact of discontinuous nonlinearities on closed loop
system stability we need to go back to the condition for stability that
we established in Chapter 2 where we defined the closed loop transfer
function as:

CLTF = forward_path
�1+ loop�

�

We also defined the condition for marginal stability from the character-
istic equation, namely:

1+ loop = 0�

If we consider a generic closed loop system containing both linear
and nonlinear elements as shown in Figure 5.13 where CN the nonlinear
element is dependent upon amplitude and independent of frequency
and both F�s� and G�s� are linear dynamic transfer functions that

+

–
CN F( jω)xi xo

Nonlinear element

Forward path dynamic element

Feedback dynamic element

G( jω)

Figure 5.13 Feedback control system with nonlinear element
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are independent of amplitude, we can write the closed loop transfer
function:

CLTF = CNF�s�

�1+CNF�s�G�s��
�

We must now substitute s = j
 since the describing function is
valid only for sinusoidal response analysis. The characteristic equation
is now:

1+CNF�j
�G�j
� = 0

or

F �j
� G �j
� = −1
CN

�

The term F �j
� G �j
� is simply the open loop frequency response of
the system which we are already familiar with. We can now plot
this characteristic against the term −1/CN and see if the functions
intersect.

The best graphical medium for demonstrating the stability aspects
of control systems with nonlinear elements is the Nichols chart. This
graph allows the depiction of the nonlinearity describing function as a
single locus which incorporates both the gain and phase contributions
of the nonlinear element. The importance of this will become apparent
later as we discuss the hysteresis element. To begin let us consider the
saturation element. The Nichols chart of Figure 5.14 shows how typical
class 0, class 1 and class 2 control systems (containing zero, one and two
integrators respectively in the open loop transfer function) relate to the
locus of −1/CN which is a straight line along the open loop phase line
of −180 degrees.

For the closed loop system to be unstable as a result of this nonlinear
element, the frequency response locus must cross the −1/CN locus. It is
clear from the chart that class 0 and class 1 systems will be unaffected
stabilitywise by the saturation element because they cannot cross the
open loop −180 degree line in the upper portion of the chart. On the
other hand a class 2 system containing two integrators in the open loop
frequency response starts with a −180 degree open loop phase lag and
additional lags around the loop eventually force the response curve
to cross the locus in order to bypass the instability point in a stable
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Figure 5.14 Nichols chart showing the effects of saturation

manner. At the intersection a stable limit cycle will occur at an amplitude
defined by the ratio of the input oscillation to the saturation limit at the
intersection. The same observation can be made regarding the deadband
nonlinear element because the −1/CN locus is also a straight line along
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the −180 degree open loop phase line but with increasing amplitude
going in the opposite direction.

When we look at the describing functions for both the saturation and
deadband nonlinearities is becomes clear very quickly that:

• the only difference between the two loci are the points along the line
that define the ratio of the input amplitude to the geometry of the
nonlinearity;

• for most control systems saturation and deadband nonlinearities do
not play a significant role as serial elements on their own in determining
the stability margins of a typical control loop.

We need to be aware, however, that these apparently benign nonlinear-
ities can turn into hysteresis once a loop is closed around them. One
example of this is with regard to valve overlap (deadband) in a hydraulic
servo. If the servo actuator has a friction load, this deadband can mani-
fest itself as hysteresis between the input and the output. Thus an
apparently benign nonlinearity is transformed into a more significant
nonlinear element that can have a serious impact on the overall system
performance and stability.

Let us now examine the hysteresis element and find out what makes
this feature so troublesome to the control system designer. The Nichols
chart of Figure 5.15 shows the locus of −1/CN for the hysteresis element
together with the three typical frequency response plots for class 0, 1
and 2 linear control systems as before. Here, however, the nonlinearity
locus moves towards the −90 degree open loop lag line as the input
amplitudes to the hysteresis reduces towards the half hysteresis width,
i.e. as XH/Xi tends to unity.

We now have a situation where the class 1 and class 2 systems both
cross the nonlinearity locus implying that a limit cycle will occur. Since
the class 1 system starts its open loop phase at −90 degrees an intersec-
tion of the two loci is inevitable at some point. Therefore to reduce the
impact of hysteresis on closed loop stability it is important to minimize
the hysteresis as much as possible so that any limit cycling will be
small. Also by ensuring that any additional lags around the loop have a
high bandwidth, the frequency of any limit cycle can be kept very low
to a point that it may be unnoticeable during normal control system
operation.
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5.4 The Transport Delay

The transport delay is special type of nonlinearity where there is specific
time delay before an event or control action is measured. A good
example of this type of nonlinearity is the temperature control example
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shown in Chapter 3 where the control system mixed hot and cold fuels
to achieve a desired temperature. Since the temperature sensor is located
some physical distance from the mixing valve there will be a finite
time delay before the mixing event and the measurement event. In this
case the time delay will be equal to the distance from the mixing valve
divided by the velocity of the fuel flowing down the pipe to the temper-
ature sensor.

From a frequency response perspective, the transport delay adds
a constant time delay to all frequencies therefore the phase lag will
be directly proportional to the frequency of the input signal, i.e.
doubling the frequency doubles the phase lag. Also the pure trans-
port delay provides no attenuation as frequency increases. These two
attributes make the transport delay something to be avoided wherever
possible.

To demonstrate the powerful effect of transport delay, let us revisit
the temperature control system analyzed in Chapter 3 beginning with
the compensated solution which had an open loop transfer function:

OLTF = 10
s�1+0�05s�1+0�02s��

�

This expression ignores the effects of any transport delay due to the
location of the temperature sensor downstream of the mixing valve.
For the operating condition analyzed, the transport delay can be calcu-
lated as the distance from the mixing valve to the sensor divided by the
fluid velocity in the piping. For this example the transport delay was
calculated to be 0.4 seconds.

Considering a sinusoid at 1 radian/second the time per cycle is 2

seconds. Therefore a shift of 0.4 seconds represents:

0�4
2


�360� = 23�

of phase lag. At 2 radians per second this phase lag doubles to 46� and
so on.
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xe  
jω t e–jω TD f(t)

Figure 5.16 Transport delay frequency response block diagram

The transfer function for the transport delay is e−sTD where TD is
the delay in seconds. To understand this, consider a sinusoidal input
to a transport delay as indicated in Figure 5.16 where we have set
s = j
. From this figure we can define the output from the delay
which is:

f �t� = xej
te−j
TD = xej
�t−TD��

This is clearly the input sinusoid shifted in time by the delay TD.
Let us now develop the frequency response for the system including

the transport delay of 0.4 seconds. The open loop frequency response
transfer function is:

10e−0�4j


j
 �1+0�05j
 �1+0�02j
��
�

The Nichols chart of Figure 5.17 shows the original (compensated)
response curve together with the response including the transport delay.
This system is now unstable due to the substantial additional lag.
Stable performance can be achieved by reducing the loop gain by
about a factor of five (+14 dB). This would result in a gain margin
of 6 dB.

This simple example demonstrates very clearly that the transport delay
can have a substantial impact on closed loop system stability when it is
large enough to add large phase lags in the frequency range where the
open loop system characteristic crosses the 0 dB line. What makes the
transport particularly difficult to deal with is that it brings no attenuation
with it.
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Figure 5.17 Effect of transport delay on temperature control
system stability

5.5 Simulation

Simulation and modeling techniques are used by control system
designers routinely as a means to verify or evaluate the dynamic
behavior of control systems as an integral part of the design,
development and certification process. This process provides a low cost,
low risk means to test the system design before it is commissioned in the
actual application. It also allows early identification and fixing of func-
tional shortcomings, software bugs, etc. so that the system is, ideally,
mature as it enters into service.
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The aircraft simulator is an obvious example of the use of control
system modeling that allows design engineers to optimize the aircraft
dynamic characteristics and for pilots to critique the aircraft design
and develop control skills long before the aircraft itself flies. In an
aircraft simulator a computer is programmed to simulate the dynamics
of the aircraft so that control inputs from the pilot generate a realistic
simulated aircraft response which is fed back to the cockpit instrumen-
tation to provide representative displays of attitude, altitude, speed,
etc. In sophisticated simulators the cockpit is mounted upon a multi-
axis platform so that pitch, roll and yaw motion can be created to give
the pilot a more realistic ride. In this section we are going to confine
ourselves to the use of simulation as a design tool for evaluating the
dynamic behavior of control systems with nonlinearities that are other-
wise difficult to analyze and evaluate.

Early simulation tools included analog computers where operational
amplifierswereusedtoperformthebasicsummationandintegrationfunc-
tions that make up differential equations. A typical analog computer of
the 1960s would comprise up to 100 or more operational amplifiers with
multiple inputs that could be configured as summing or integrating units.
Potentiometers allowed the user to set specific system parameters and to
‘scale’ the equations so that 10 V represents, say, a specific velocity in m/s.
A patch panel attached to the front of the machine allowed the user to
connect up the various elements to represent the problem being evalu-
ated. Figure 5.18 shows how our spring–mass system example would be
set up on an analog computer. The potentiometers are adjusted to repre-
sent the values of mass, spring stiffness and viscous damping specific
to the problem as well as the initial conditions for each integrator. Once
operating, the voltage outputs from the two integrators will respond in
a manner representative of the velocity and position of the mass. To
see how the system responds to a step change in the input we would
simply inject a voltage step at xi and record the resulting response at xo.

Nonlinear elements such as function generators and multipliers were
also developed as part of the analog computers’ capability to allow the
user to easily investigate the effects of both continuous and discontin-
uous nonlinearities. In the 1970s these computers were further refined
to include digital logic devices and in some cases a digital computer
that could operate on one or more of the digitized analog voltages in
order to solve complex equations ‘on the fly’ in parallel with the analog
part of the machine. These devices were called ‘hybrid computers’. One
example where the digital section of the computer could be used to
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Figure 5.18 Analog computer model of the spring–mass system
(IC stands for initial condition)

great benefit would be in computing pneumatic fluid flows where the
transition between choked and unchoked flow is complex and highly
nonlinear.

Today the analog and hybrid computers have been totally replaced
by general purpose simulation tools that will run on both worksta-
tions and the faster of the standard PCs. These tools typically have
libraries of elements, including all kinds of nonlinearities that can be inte-
grated together in a user-friendly environment to make up a complete
system. These tools solve the differential equations defined by all of
the various elements by simply computing all of the variable deriva-
tives for small time steps and then obtaining the output variables via a
numerical integration routine. To demonstrate how simple this concept
is let us develop the digital simulation code for the spring–mass system
example.

First we must define the initial conditions for each independent
variable, i.e. the velocity and position of the mass. We also need to define
the values of the system parameters, i.e. mass M, the spring rate K,
and viscous damping constant f . The basic computer code required to
generate the time response of the mass position Xo (XO) resulting from
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a step change in the input Xi (XI) (using arbitrary values for the system
parameters) would be typically:

C INPUT=XI, OUTPUT=XO, OUTPUT VELOCITY=DXO
C OUTPUT ACCELERATION=DDXO, PROBLEM TIME
C STEP=DT
C INPUT DATA

M=100.0, K=400.0, f=80.0, T=0.0, DT=0.001
C INITIAL CONDITIONS

T=0.0, XI=0.0, XO=0.0, DXO=0.0
10 T=T+DT

XI=1.0
DDXO=((XI-XO)*K-f*DXO)/M
DXO=DXO+DDXO*DT
XO=XO+DXO*DT
GO TO 10

This simple example uses rectangular integration to predict the value
of the velocity (DXO) and position (XO) of the mass by assuming that
the acceleration (DDXO) and velocity (DXO) respectively will continue at
the same value for the time interval DT. Providing that the DT interval
is small relative to the dynamic characteristics of the problem being
modeled this is a reasonable assumption. If we plot out the graph of XO
versus XI for the above computer model of our spring–mass system for
every 100 time steps we would obtain the graph of Figure 5.19 which
shows the response of a second-order system with a damping ratio
of 0.2. This coincides well with our linear analysis methods.

An important point to note here is the choice of time increment (DT)
used in the simulation. The value of DTmust be sufficiently small relative
to the bandwidth of the problem being simulated as to have no impact
on the result obtained. A good rule of thumb in selecting a value for DT
in digital simulation is to make sure that halving the value of DT does
not change the response obtained.

The flexibility of digital computers and software make it easy to add
nonlinearities into the model using conditional logic statements (if, then,
else) and nonlinear functions such as multiplication, division, square
roots and in fact anything that a digital computer can calculate. Going
back to our spring–mass example let us replace the viscous damper
with coulomb friction as illustrated by the block diagram of Figure 5.20.
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Figure 5.20 Spring–mass system with coulomb friction

This diagram applies only to the conditions where the velocity of the
mass is not zero.

In our program logic, we need to be careful to ensure that when
the mass is not moving the coulomb friction force does not act on the
mass causing acceleration. The simulation must therefore do separate
calculations for the moving state and the static state. The program code
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below shows how this nonlinearity can be represented including the
condition when the mass is stationary.

C INPUT=XI, OUTPUT=XO, OUTPUT VELOCITY=DXO
C OUTPUT ACCELERATION=DDXO, PROBLEM TIME
C STEP=DT
C INPUT DATA

M=100.0, K=400.0, FC=70.0, T=0.0, DT=0.001
C INITIAL CONDITIONS

T=0.0, XI=0.0, XO=0.0, DXO=0.0, FS=0.0, FM=0.0
10 T=T+DT

XI=1.0
FS=(XI-XO)*K
IF(ABS DXO<0.0001) THEN

C FM FOR ZERO VELOCITY CONDITION:
IF(FS<FC) THEN FM=0.0
DXO=0.0
ELSE FM=(ABS FS-FC)*SIGN FS

C FM FOR NON-ZERO VELOCITY CONDITION:
FM=FS-FC*SIGN DXO
DDXO=FM/M
DXO=DXO+DDXO*DT
XO=XO+DXO*DT
GO TO 10

Figure 5.21 compares the step response of the linear system with
the nonlinear version with coulomb friction. As shown in this figure,
coulomb friction introduces quite a different response as a result of the
amplitude dependency of the friction term. Note also that the coulomb
friction version ends up with a steady state error.

The problem for most practicing engineers is that generating bug-free
software code to represent accurately complex nonlinearities and other
custom features of a control system can be a challenge for the nonpro-
grammer. This point is demonstrated by the relatively complicated code
necessary to define such a common nonlinearity as coulomb friction.
The good news is that the software tools available today take that issue
away by providing proven modules (libraries) for such elements as
coulomb friction, hysteresis, saturation, nonlinear functions, etc., that can
be selected and installed into a control system model by the control
system analyst in a user friendly manner.
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Figure 5.21 Comparison of step responses

We can use the linearized engine governor analysis presented earlier
in Section 5.2.1 as an example of the value of simulation in control system
design and analysis. In the earlier section the method of small pertur-
bations was used to evaluate the stability of the speed governor. This
analysis was only valid for the selected conditions and did not provide
any visibility as to the behavior of the system for large excursions in
speed demand. Simulation allows the designer to assemble dynamic
models that are fully representative of the physical system including
multiple types of nonlinearities and over a wide range of operating
conditions.

The block diagram of Figure 5.22 shows a model of a gas turbine
engine that can be used to examine control system behavior over the full
power range. The fuel flow input WF is compared with the steady state
fuel flow WFss derived from the engine steady running line function to
obtain the amount of over (or under fueling) �WF. This is multiplied by
the derivative �Q/�WF (which varies with rotational speed N) to obtain
the excess torque to accelerate the engine spool. Compressor discharge
pressure PC is generated in a similar manner. The ‘fast path’ change �PC
resulting from the over (or under) fueling �WF is added to the steady
state value PCss to get the complete dynamic variable PC.

This model approach is one of the simplest methods and depends on
having good engine performance data available. More rigorous models
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based on the complete aero-thermodynamics of the compressor and
turbine are also in common use throughout the aerospace industry. Also
not shown in the model presented here is the application of corrected
variable techniques that allow easy compensation for changes in engine
operating conditions, i.e. altitude, temperature and Mach number.

The value of the full range nonlinear model allows the control system
designer to evaluate the performance of the control system better not
just from the point of view of the stability at specific power settings but
also during the transient conditions between, say, idle and maximum
power. This is important for gas turbines because the acceleration and
deceleration process must be carefully controlled to prevent compressor
surge during acceleration and flame out during deceleration.

Figure 5.23 shows the schematic of a fuel controller showing how the
speed governor, acceleration and deceleration limiters are combined.

By combining the non-linear simulations of the engine and control
system the full range dynamics of the system can be readily evaluated
including the transition from acceleration (or deceleration) limiting to
the speed governing mode. This is illustrated on Figure 5.24 which
shows a typical slam acceleration plot of fuel flow and engine speed.
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A slam acceleration is a step change in throttle setting usually from idle
to maximum power. At the start of the plot, the engine is running on
the speed governor and as the step change is applied there is a sudden
increase in fuel flow which is limited to the WF/PC acceleration limit
associated with the prevailing speed and inlet temperature and pressure
conditions (N� P1 and T1); this is multiplied by PC to give the fuel flow
required by the engine. As the engine accelerates the acceleration limit
continues to increase until, as the new set point is neared, the governor
path output becomes lower than the acceleration limit and the speed
governor takes over control.

This is a good example of the value of simulation as a tool to provide
visibility into the dynamic behavior of highly nonlinear systems. Simu-
lations such as this are used to validate actual control system hardware
and software during development before using an actual engine. Thus
control bugs can be identified and fixed safely and without jeopardizing
expensive hardware.

5.6 Chapter Summary

Dealing with nonlinearities is a continual challenge to the control system
engineer because the real world is, more often than not, nonlinear
and the analytical tools that can be readily applied to closed cool
system problems are based on the assumption of linearity. This chapter
describes a number of techniques that can be used to work around this
issue, the foremost being ‘linearization’.

Nonlinear types are described as being in three categories:

• continuous nonlinearities;
• discontinuous nonlinearities;
• the transport delay.

Continuous nonlinearities such as square root functions, multipli-
cation, division, variable gain functions, etc. can be treated as linear
elements using the small perturbation technique that states that for
small perturbations around a specific operating point, systems with such
nonlinearities can be easily transposed into an equivalent linear form
that is readily analyzable using the standard linear method. Discontin-
uous nonlinearities such as saturation, deadband and hysteresis, require
a different approach called the ‘describing function’ that allows the
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amplitude dependent behavior and frequency dependent behavior of
a system to be evaluated separately and the stability impact of the
nonlinearity, if any, to be identified in both amplitude and frequency
terms. This method of nonlinear analysis is somewhat limited in that
it can only handle one nonlinear element at a time and the dynamic
behavior in the presence of the nonlinearity is not easily visualized. Of
the various types of discontinuous nonlinearity described, the hysteresis
element was established as the most troublesome due to the phase lag
effect on signal transmission that tends to 90 degrees as the input signal
amplitudes approach the hysteresis width.

The transport delay was singled out as a special case that generates a
phase lag that is directly proportional to frequency and zero attenuation.
Dealing with this element is easy, however, since it can be included as
a serial element in the open loop transfer function and its impact on
stability can be readily assessed.

Finally, simulation and modeling as a technique for evaluating nonlin-
earities was described covering the history of analog, hybrid and digital
simulation tools. The availability of general purpose software packages
that are easy to use even on today’s standard PCs were described as
the standard used by industry. It is stressed, however, that it is always
good practice to do an approximate linearized analysis before getting
into complex models so that the analyst has a reasonable understanding
of what to expect from the outcome of the simulation exercise.





6
Electronic Controls

Critical aircraft control functions such as flight controls and engine
power management were, by necessity, controlled using systems with
mechanical interconnections and mechanisms because of the criticality
of the function itself. Loss of control for any reason would likely mean
loss of the aircraft (when something goes wrong at 30 000 ft you can’t
just ‘pull over’).

Early attempts during the 1950s to use the obvious benefits afforded
by the flexibility of electronics were fraught with reliability problems
due to the inability of electronic components of the day (such as
thermionic valves/vacuum tubes) to withstand the hostile environment
(primarily vibration and temperature effects) associated with the aircraft
flight environment. Following the early failure of electronics to meet
reliability expectations in the field, innovations involving the use of
hydromechanical and pneumomechanical technologies were developed
to a high degree. This was particularly true with regard to engine control
technology.

This temporary diversion brought with it some exceptional technolo-
gies including ‘fluidics’ which were envisioned at the time as the answer
to the environmental reliability problems of electronic controls. With the
advent of the transistor and its miniaturization leading to very large
scale integration (VLSI) technology and eventually single chip micro-
processors, a revolution in the involvement of electronics throughout
the aerospace industry began that continues to this day.

Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control R. Langton
© 2006 John Wiley & Sons, Ltd
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Figure 6.1 History of aircraft electronic controls technology

To give some perspective to this commentary, Figure 6.1 shows some
of the major technology milestones regarding the application of elec-
tronics in the control of aircraft engine and flight control systems.
By the 1980s digital electronic control was becoming the accepted tech-
nology standard for almost every control function in both military and
commercial aircraft programs of that decade. The popular acronyms of
the day were FBW (fly-by-wire) for flight control systems and FADEC
(full authority digital engine control) for engine control systems. In each
case the safety criticality issue was addressed by the use of multi-
channel redundancy and in some cases the use of a mechanical backup
system. Today every new aircraft or engine program accepts that digital
electronic control is the only viable approach to be considered due to
the affordability, reliability and computing power of modern electronic
hardware coupled with the functional benefits afforded by the flexibility
of software. There remains, however, an important challenge which is to
bring software reliability and system-level functional maturity at entry
into service for complex electronic control systems up to the expectations
of the investors and users of this powerful new technology.
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Before we come to the application of digital computers in modern
control technology, which is the primary goal of this chapter, the
following section is included which describes the use of analog elec-
tronics in closed loop control systems which became extremely popular
from the 1960s through the 1980s. While digital electronics has emerged
as the technology of choice today, analog solutions are still in common
use where the cost of software design, development and maintenance for
aircraft applications may be considered prohibitive for relatively simple
control functions.

6.1 Analog Electronic Controls

Analog electronic controls in aircraft applications were enabled largely
by the advent of the transistor and solid state electronics technology.
During the 1960s and 1970s before the availability of general purpose
single chip microprocessors, the control system designer looked first
to analog electronics technology to provide an easy way to implement
custom dynamic functions. We saw the introduction of auto-stabilizers
in flight control systems providing limited authority trim functions that
added to the pilots mechanical commands. Engine controls saw the
introduction of the ‘supervisory control’ as a means to reduce pilot
workload and to enhance the maintenance intervals by preventing inad-
vertent exceedances such as transient over-temperature events that can
seriously reduce the engine hot section life.

Two of the most ambitious accomplishments of analog control tech-
nology developed in the 1960s were the first aircraft Auto-land system
developed by Smiths Industries and the quadruplex flight control system
for the USAF F-16 aircraft developed and produced by the Astronics
Division of Lear Seigler. These analog control systems were eventually
replaced by digital electronic controls.

As the growth in electronic technology continued there emerged an
increase in the application of hybrid electronics technology wherein
analog electronics was mixed in with the emerging digital technology.
This was a stepping stone towards the application of custom digital
computer designs later developed by the large corporations who were
prepared to absorb the expensive tooling costs associated with custom
electronics in an attempt to obtain a competitive position and also to fill
a technology vacuum that continued to grow. The section that follows
summarizes the key functional features of analog electronic controls in
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order to give the reader a basic understanding of the principles involved
in their design

6.1.1 The Operational Amplifier

The most significant driver in this area of electronics was the availability
of the transistorized ‘operational amplifier’ in the early 1960s. The term
‘operational amplifier’ or ‘op-amp’ implies the use of high gain amplifier
circuits to perform common mathematical operations such as summa-
tion, integration and differentiation. Operational amplifiers have key
functional properties that allow the control system designer to ‘build’
dynamic transfer functions using passive devices such as resistors and
capacitors. These important properties are:

• extremely high voltage gain typically greater than 105;
• operational bandwidth well into the megahertz range.

These characteristics allow the designer to neglect the dynamics associ-
ated with the amplifier safely, leaving the passive devices to determine
the functionality of the control circuit.

Operational amplifier control functions are determined by the input
and output impedance circuits around the amplifier as shown in the
generic schematic of Figure 6.2. Schematics of analog amplifier control
functions typically do not show the amplifier, power supply and ground
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G Vo
V1
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Figure 6.2 Operational amplifier generic schematic
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circuitry which are usually taken for granted. The key aspect of the
schematic of Figure 6.2 is the concept of the ‘virtual ground’ at the
junction of the input and feedback impedances (point G on the figure).
This is brought about by the very high amplifier gain which ensures
that the input to the amplifier at point G must always be essentially at
ground potential. Thus the output voltage relative to the virtual ground
is simply the sum of the input voltages multiplied by the ratio of the
feedback and input impedances, i.e.

V o = −
[

V1

(Zf

Z1

)
+V2

(Zf

Z2

)
+· · ·Vn

(Zf

Zn

)]

The negative sign reflects Kirchoff’s Law that the current flowing into
the virtual ground G must equal the current flowing out from G to the
output.

6.1.2 Building Analog Control Algorithms

The control and compensation algorithms developed in Chapter 3 can
be easily assembled using operational amplifiers and passive devices.
The simple integrator is obtained by using a capacitor for the feedback
impedance as shown in Figure 6.3.

From basic electricity theory, the current flow through a capacitor is
defined by the equation:

V = 1
C

∫
idt

–

+

G Vo

C

Vi

Figure 6.3 Integrator schematic
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which in Laplace operator format is the same as:

V = 1
C

(
i
s

)
�

From this we can see that the impedance represented by a capacitor
becomes:

Z = V
i

= 1
Cs

�

We can now equate the current flow through the input resistor and the
feedback capacitor to give us the relationship between the input voltage
Vi and output voltage Vo as follows:

Vo

Vi
= −

(
1

RCs

)
�

This is the transfer function of an integrator with RC having units
of time. Using this approach control and compensation can be easily
applied to operational amplifier circuits. Figure 6.4 shows examples of
this for proportional plus integral and lead–lag functions.
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Figure 6.4 Proportional plus integral and lead–lag circuits
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The above provides a brief illustration of how analog electronic circuits
can be assembled to emulate the dynamic transfer functions used in
the control and compensation of feedback control systems. Due to the
extremely fast response of the underlying electronics associated with
these operational amplifier-based circuits, there is no significant dynamic
penalty involved in the control implementation. The digital controller,
however, is different in that there is a finite, and often significant, time
delay involved in providing the loop closure and control algorithms
involved. The rest of this chapter is therefore focused on the digital
electronic controller.

6.2 The Digital Computer as a Dynamic Control Element

So how does a digital computer operate as a dynamic controller within
a closed loop control system? This issue may not be obvious to the non-
specialist because the digital computer is associated with high-speed
number crunching in response to program instructions that are typi-
cally not time dependent in the sense of providing dynamic response to
external time-dependent processes.

The explanation of this question lies in the following three items which
together make the digital computer viable as a control element:

• the real time clock which ties the computer to a real world measure
of time;

• the analog-to-digital converter (A-D converter) which provides the
ability to convert analog signals at high speed into the digital
domain;

• the digital-to-analog converter (D-A converter) which transposes
the output of the computer’s calculations back into the analog
world.

6.2.1 Signal Conversion

In order to be effective as a controller the digital computer must have
high speed access to all forms of input signals including analog voltages,
pulse trains, serial data streams and discretes. Similarly the computer
has to communicate the control output signals back into the physical
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Figure 6.5 Pulse width modulation (PWM) example

world so that the appropriate control action can be initiated. Output
signals can also be in analog, discrete and serial data form. Pulse width
modulation (PWM) is also a common form of output format used in
digital systems using a carrier square wave and varying the width of
each pulse as a measure of the magnitude of the output signal (see
Figure 6.5). The percentage of pulse ‘on-time’ is referred to as the pulse
width ‘duty cycle’ that can vary from 0 to 100 %.

The A-D converter takes a number of forms the most common of
which is the successive approximation type. This method is illustrated
by the diagram of Figure 6.6 which shows the conversion of an analog
voltage of 5.8 V (an arbitrary value) in a signal range of 0.0 to 10.0 V. The
conversion takes place by using the mid-point of successively smaller
ranges as a ‘guess’. If the guess is low a 1 bit is set, if it is high a 0 bit is
set. In the example shown the process is:
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Figure 6.6 Successive approximation A-D conversion
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(1) The first guess is half of the full range (i.e. 5 V). In this case the guess
is low so the most significant bit set is a 1.

(2) The second guess is at the mid-point of the upper half of the signal
range (i.e. 7.5 V). In this case the guess is high so a 0 bit is set for the
next most significant bit.

(3) The third guess is the mid-point of the third quarter of the signal
range (i.e. 6.25 V). In this case it is still high so a 0 is set.

This process continues for the number of significant bits of the A-D
converter. In the example shown, the eight bit successive approximation
process results in the binary number 10010101. This in turn is equiva-
lent to:

�128+0+0+16+0+4+0+1�/256 = 149/256

For a 10.0 V signal range this is �149/256�∗10 = 5�8203125 V.
From a signal accuracy standpoint, an eight-bit A-D converter has a

maximum potential error in the conversion process of 1 in 256 which
is about ±0�4 % of full scale. In most systems a converter with a 10 bit
resolution or better is used which reduces the error to less than 0.1 %
which is good enough for most applications.

The D-A converter uses the same principle in reverse. The computer
sets a series of switches representing the value of the binary number to be
converted and a summing amplifier with weighted input resistors adds
the contributions of each bit to achieve the analog equivalent output as
indicated in Figure 6.7.

Pulse trains from magnetic pick-ups are typically used to sense shaft
speeds. These sensors can be easily converted into the digital domain
using counters and clocks. A pulse train generated from a magnetic
pick-up mounted on a rotating shaft can be accumulated in a digital
counter so that over a fixed time period the binary number in the counter
represents the rotational speed of the shaft.

The problem with this interface is the fact that for a specific time
window, the number of pulse counts in a fixed time period becomes
less as the shaft speed increases. Also the critical operating condition
is usually the high-speed condition. As the shaft speed reduces the
pulses per conversion increases providing superior resolution at oper-
ating conditions where it is typically not required. One way around this
problem is to use the incoming pulse train as the start and stop bits for
a high-speed clock. This way the resolution throughout the speed range
is much improved.
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Figure 6.7 D-A converter example

There are many other innovative approaches to this problem that can
be adopted which are beyond the scope of this book as an introduction
to the subject of feedback control. However, the fundamentals presented
here provide a good starting point from which the subject can be pursued
further.

Serial data transmission and reception is an equally important aspect
of digital control that must be covered here. The most common serial
data transmission format in use in the aircraft industry today is the
ARINC 429 data bus (ARINC stands for Air Radio Inc and is a USA
standard for avionics). This standard has been in commercial service for
more than 30 years and has even been adopted by the military commu-
nity as a result of the push for dual-use technology in new military
programs. This specific standard employs a unidirectional data bus that
transmits data, labels and parity information using a 32 bit protocol.
The ARINC 429 data stream is a 0.0 to +5�0 V square wave that provides
a time series of 1s and 0s from one source to one or more receivers.
Two standard transmission rates are available within the standard, one
at 12.5 kilobits/second (kbps) and the higher speed version at 100 kbps.
The label identifies the specific variable being transmitted and 18 bits of
the 32 bit word are allocated as data thus providing adequate resolution
for almost any application.
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Serial data must be converted from a serial, time-based format into a
parallel format that can be used by the digital controller. This activity is
typically performed by dedicated hardware that communicates with the
central processing unit (CPU) by setting a flag or a discrete bit that tells
the CPU that a serial data word has been converted into an equivalent
parallel format and ready for transfer. The CPU can then transfer this
data to a predetermined memory location in the random access memory
(RAM) for use by the control algorithm. When a conversion is in progress
the conversion bit is not set. There are many other serial data standards
available with different protocols and speeds. For most applications the
specific standard(s) for serial data communication will be specified by
the aircraft manufacturer.

6.2.2 Digital Controller Architectures

The issue that faces the control system designer is the fact that the
computer requires a finite amount of time to do these conversions
and to execute the control algorithms required by the system control.
Figure 6.8 is a simplified schematic of a single channel digital controller
having ‘n’ input variables with ‘m’ outputs. The single line arrows
depict analog signals while the broad arrows represent a parallel bus
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SH control

Multiplexer control
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Figure 6.8 Simplified schematic of a digital controller
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typically 16 bits (or 32 bits) wide. The multiplexer is a solid state switch
that allows the CPU to select each input signal in turn to the A-D
converter. After processing the input data in accordance with the instruc-
tions stored in the read only memory (ROM), the D-A converter is
loaded with the required outputs. The RAM is used by the CPU as a
scratch-pad for temporary storage of variables and intermediate calcula-
tions. This sequence of signal conversion and control logic computation
continues with the output changing in response to the input changes
via the control algorithm. The output amplifiers are ‘sample and hold’
devices that hold the last D-A output until it is updated at the end
of the next iteration. To verify the correct operation of the D-A and
output amplifiers, the output signals are wrapped around back to the
input multiplexer so that the CPU can verify correct operation of the
complete output stage. The clock (CLK) tells the CPU when to start a new
computer iteration and the watch-dog timer (WDT) shuts the computer
down if it is not reset at the end of each clock cycle. This ensures that
undetected program errors or physical failures of the computer elec-
tronic hardware cannot result in indeterminate control actions.

In a typical digital control system the activities of the CPU can be
broken down into two major functions:

• the input-output signal management (I/O handler);
• the control logic execution.

The I/O handler is responsible for the A-D and D-A processing and all
of the continuous built-in-test (BIT). This includes range checks on all
of the inputs as they are digitized, along with test and ground signal
conversions that ensure correct and accurate functioning of the input
interface. The I/O handler loads the appropriate values for each input
into predetermined locations in RAM and loads the outputs from prede-
fined addresses in RAM into the D-A converter.

The control logic is simply the execution of the control instructions
stored in ROM. The values of the input variables are always located in
the same address in RAM under the control of the I/O handler. This
separation of I/O management and control logic execution minimizes
the impact of changes during the system development and certification
process. Within the computer logic is an executive control that manages
the time sequencing of the CPU activities. Typically the tasks associated
with one complete iteration are broken down into a number of small
time segments as indicated by the diagram in Figure 6.9. For example,
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Figure 6.9 Typical control executive arrangement

a complete iteration time allocation may be 20 ms which may be broken
down into say, 20 segments of 1ms. Within each 1ms time slot, a number
of tasks are allocated including signal conversion, BIT checks, control
logic, etc.. After completing each time slot task allocation, the CPU
executes secondary BIT referred to as ‘background checks’ which are
completed on a time available basis. In this category are RAM read-
write tests and program memory check sum calculations to verify the
integrity of the computer. The background activity continues until the
real time clock initiates the next computation cycle.

A brief discussion of redundancy is appropriate at this point. Where
the controlled functions are safety-critical as is typical with most of the
major control systems in aircraft, the probability of loss of control must
be acceptably small. The probability of a catastrophic event must be
lower than one chance per 109 flight hours to satisfy the certification
authorities and to achieve such levels of safety may mean providing
more than one control channel so that in the event of a failure in flight
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a second channel with equivalent control capability can take over to
maintain the safety of the control function.

Figure 6.10 shows a number of control architectures from single
channel to a quadruplex (four) level of redundancy. Clearly the higher
the level of redundancy the lower the probability of loss of the control
function. This of course comes at a price which includes hardware
cost, weight, reliability and maintainability. There is also an additional
burden associated with additional redundancy and that is the soft-
ware complexity associated with redundancy management and fault
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Figure 6.10 Overview of redundancy concepts
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detection and accommodation. The simplex or single channel system
does have the ability to evaluate the health of the system elements and,
following the detection of a fault, accommodation control logic can be
introduced that can allow continued operation with some degradation
in performance. There are, however, a significant number of faults that
can be catastrophic for the system the most obvious of which is loss
of the computer itself where the watch-dog-timer could shut down the
system.

The dual channel approach offers a much more functionally reliable
solution than the simplex approach since we have doubled up on the
sensors and computing hardware. The issue that now becomes critical
is the level of fault coverage that can be attained with this architecture
because an undetected failure can result in loss of control function. In a
dual channel system levels of fault coverage significantly above 90 % are
difficult to achieve and verification of this coverage factor can be subjec-
tive. One of the most challenging issues with dual channel systems is the
detection of ‘signal in-range faults’. While the majority of transducers
and interface circuit faults result in an out-of-range condition that can
be readily identified, the in-range fault results in a difference in value
between the two channels. In this case either one of the signals can be
correct or incorrect. The selection of dual channel architecture, there-
fore, can only be tolerated in systems that can safely tolerate loss of
function, albeit with a very low probability of occurrence. Early FADEC
solutions for aircraft engine control used dual channel architectures
because the contribution of the FADEC to the engine shut-down rate was
considered acceptably small at about two shut-downs per million flight
hours.

As the miniaturization revolution in digital electronics continued with
substantial improvements in the size, cost and reliability, the dual–
dual architecture won favor over the traditional dual channel system.
The addition of a second computer into each channel allowed close to
100 % fault coverage to be achieved. Here a command processor (COM)
and a monitor processor (MON) execute identical software. Any differ-
ences between the COM and MON processor outputs will result in that
channel being taken offline. The in-range sensor failure issue remains,
however, even with this more sophisticated architecture. For systems
where loss of function can be catastrophic such as in-flight control
systems, triplex or even quadruplex architecture becomes necessary.
Here any single failure can be voted out by the remaining two channels
providing 100 % functionality after any single failure. The quadruplex
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architecture provides even more safety protection by accommodating
two failures without loss of functionality. Even the in-range sensor
failure can be identified via the voting process.

6.3 The Stability Impact of Digital Controls

We now need to examine how the digital controller can affect the
dynamics of the control loop. Figure 6.11 shows how a digital controller
with sample and hold output stages transmits a sign wave. In the
example shown the output is refreshed about 12 times in one complete
oscillation of the sine wave. Inserting specific values this is equivalent
to a controller with an update rate of 20 ms transmitting a 4 Hz sine
wave.

The staircase effect on the output shows an approximate sinusoidal
output that is displaced in time. As the frequency of the sine wave
input increases (i.e. fewer signal updates per oscillation) the time shift
increases and the output waveform becomes less sinusoidal as shown
in Figure 6.12. The effect of the signal digitization with the sample and
hold output can be approximated by the following transfer function:

e−Ts

�1+Ts�

where T is the computer update rate.
This is a transport delay of T s in series with a first-order lag with a

time constant also equal to the computer update rate T . This approxima-
tion can be easily verified. Going back to Figure 6.11 and drawing in a
best-fit sine wave to the quantized output indicates a phase lag of about

Figure 6.11 Transmission of a sine wave through a digital controller
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Figure 6.12 Digital distortion at higher frequencies

one sixth of a cycle or 60 degrees. Substituting T = 0�02 s and � = 25�0
radians per second (4 Hz) into the above transfer function the phase lag
is calculated:

transport delay phase lag = �0�02� �25�

2�
�360� = 28�7�

first-order lag phase = tan−1 �25� �0�02� = 26�6��

This gives a total calculated phase lag of 55.3 degrees which agrees
closely with our graphical approximation.

The above example demonstrates that the dynamic characteristics of
a digital controller can contribute significantly to the stability of closed
loop systems by virtue of the phase lag resulting from the digitization
and computing delays inherent in the process. In designing closed loop
control systems with digital controllers, careful attention must be given
to the signal acquisition and output update rates. One of the best exam-
ples that demonstrates many of the key issues involved in digital control
is the FADEC (full authority digital engine control) for the gas turbine
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engine. Without getting into the redundancy issues and sticking to the
basic control functions let us consider the engine control system arrange-
ment shown in Figure 6.13 which is a simplified hardware diagram
typical of a commercial turbofan engine fuel control system. The gearbox
driven from the main engine shaft drives the high pressure fuel pump,
the fuel metering unit and a dedicated alternator to provide power to
the FADEC unit. The FADEC controls the fuel flow metered to the
engine and, simultaneously the position of inlet guide vanes (IGV) on
the compressor inlet. Figure 6.14 shows the signal flow around the two
closed loop functions.

The FADEC receives throttle commands from the flight deck and auto-
throttle and the prevailing flight conditions are available via a serial data
bus. Feedback signals from the engine include fan speed, N1, gas gener-
ator speed N2, compressor discharge pressure, PC, turbine gas tempera-
ture, TGT, and two position feedbacks, one from the fuel metering valve,
XFV and one from the IGV actuator output, XIGV. As is typical with
complex control systems the dynamic response requirements associated
with the various control modes can differ substantially, for example the
temperature and pressure signals respond very quickly to changes in
fuel flow while the engine shaft speeds have a much slower response.

Fuel combustion nozzles

Fuel pump and metering unit

Alternator for the FADEC

Gearbox

Inlet guide vane 
actuator

FADEC unit

Fuel to engine

Figure 6.13 Engine control system hardware
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TGTN1 N2 PC XIGVXFV

Figure 6.14 Engine control system signal flow diagram

The inlet guide vane (IGV) actuator must respond quickly in order to do
its job of controlling the airflow into the compressor during large power
transients.

So how does the control system designer cope with these varying
dynamic response demands from the digital controller perspective? The
easy answer is to require that the digital controller will support the
highest bandwidth control loop and that all signals must be accessed and
processed at that same high-speed rate. This ‘brute force’ approach is not
only a very inefficient use of data and processing power, the throughput
required may be significantly beyond the capacity of available (not to
mention affordable) processors. A more effective solution is to develop
a control executive that accesses data and processes the control logic at
update rates that are compatible with stability and control needs but no
faster.

In the engine control system example there are large differences in the
signal rates of change among the various input and feedback variables.
At the slowest extreme are the external inputs which provide throttle
commands and flight operating condition data to the FADEC. These
variables need not be accessed by the controller any faster than, say
every 0.1 s. The next slowest responding variables are the engine shaft
speeds. These variables change relatively slowly due to the inertia of the
rotating machinery. An update rate of 20 ms is adequate here. The engine
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pressures and temperatures are fast moving variables and should be
accessed by the controller at, say, 10 ms intervals.

This leaves the position feedback signals from the fuel metering valve
and the IGV actuator output plus the output commands to the engine
for fuel flow and IGV position. These control loops should have band-
widths of 10 Hz or better in order to be dynamically separated by at
least a decade from the process they are controlling (in this case the
engine). By separating the roots of the control system from those of the
process we are minimizing any undesirable dynamic contribution from
the controller during transient operations. This is related to the comment
in Chapter 5 when we discussed the effect of the location of the open
loop system roots on the closed loop system behavior. Here we said that
poles located well away from the main group will have small residues.

Based on these observations therefore the feedback signals and the
output commands should be refreshed at a faster rate than the other
control parameters. Experience has demonstrated that an update rate
of 5 ms in an application similar to the one described here is adequate
to ensure good stability margins. A good rule of thumb is to select
an update rate for a digital control loop such that its inverse in cycles
per second is separated by at east a decade from the bandwidth of the
loop being controlled. In this example the inverse of 5 ms is 200 cycles
per second which is well separated from the control loop bandwidth
of about 10 Hz. From this exercise we can see that we have bought a
lot of spare computing capacity by managing the signal conversion and
output update rates based on their specific dynamic contribution to, and
involvement in, the overall system.

6.4 Digital Control Design Example

To reinforce the important features associated with digital closed loop
system stability, this section goes through the process of establishing
the design parameters of a simple closed loop system application with
a digital controller. We will assume for the purpose of this example
that the complete control loop can be represented by the linear transfer
functions shown in Figure 6.15 together with a digital controller whose
task is to close the loop and apply the appropriate control action to the
process being controlled.

As shown, the process is represented by an integrator in series with
two first-order lags and the output from the process is measured by a
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Figure 6.15 Digital control design example schematic

transducer with an additional 5 ms lag. The control system performance
requirements are:

(a) to have a steady state error of less than 2 % of the operating point
for inputs in the range 10 % to 100 % of full scale;

(b) to have a bandwidth of 1 Hz or better measured as a closed loop
phase lag of less than 50 degrees at 1 Hz;

(c) to have stability margins in excess of 40 degrees phase and 10
dB gain.

The steady state accuracy requirement allows us to determine the signal
conversion resolution of the A-D converter. Even though we have an
integrator in the loop which ensures that the steady state error must
always be reduced to zero as a result of the integral action, we must
now take into consideration the resolution of the digitization process.

For example, if we select an eight-bit A-D converter we must recognize
that the conversion process has a resolution of no better than one part
in 512�28�. This means that the converted signal could have an error of
up to ±0�4 % of the input signal range. Therefore for an input signal of
10 % of the signal range a 0.4 % of full scale error equates to 4 % of the
operating point with twice the allowable error based on the accuracy
requirement of (a) above. A 10-bit A-D converter has a resolution of one
part in 2048�210� which correlates to an error of ±0�05 % of full scale.
Therefore an input signal of 10 % of the full range will have a conversion



212 Electronic Controls

error of no more than ±0�5 % of full scale thus providing a 2:1 margin
over the accuracy requirement.

The output D-A resolution requirement is much less critical in this
example because the process contains an integrator and therefore the
D-A output is commanding a rate-of-change to the process. The reso-
lution of this signal, therefore, does not contribute to the steady state
accuracy requirement since it must always be zero in steady state.
Consideration may be given by the control system designer to using
only an eight-bit D-A device as a cost saving approach.

When we consider the control loop design the natural place to start
is to evaluate the linear solution, i.e. ignore the digital dynamics in
order to determine the controller function that best fits the requirements.
Therefore let us develop the open loop response for the system as though
it were a linear open loop system. The open loop transfer function
assuming a simple gain term in the controller is:

OLTF = G �10�0�

s �1+0�02s �1+0�01s��

where G is the controller gain.
Figure 6.16 shows the open loop response on a Nichols chart for a

value of G equal to 1.0 indicating good stability margins (16 dB gain
margin and 65� of phase margin) a system bandwidth of about 10 radians
per second or 1.5 Hz. Thus the system as a traditional linear system
satisfies the dynamic requirements assuming that the digital controller
has no impact on the loop dynamics.

To establish the digital controller cycle time requirement we can
consider the crossover frequency which in this case is 10 radians per
second and determine what the cycle time would be to reduce the phase
margin to the specification limit of 40 degrees. i.e. we solve for T in the
equation:

∠

(
e−10jT

1+10jT

)
= 25��

If we calculate the phase angle for a cycle time of T = 0�02 s we get
22.9 degrees which suggests that with this signal update-rate the system
will have a phase margin of slightly better than 45 degrees. The
Nichols chart of Figure 6.17 shows the system response curve with the
digital controller dynamics included showing that the dynamic response
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Figure 6.16 Nichols chart of the equivalent linear system

requirements established at the outset are met. If the available computer
cannot support the update-rate required, then the loop gain must be
reduced to achieve the specified stability margins. The impact of this
would be to reduce the system bandwidth hence degrading the closed
loop dynamic response.

This example is deliberately very simple to ensure that the funda-
mental issues are understood. In the real world a digital controller
would not be selected to do a simple comparison and gain multipli-
cation for a simple linear system. The power of the digital controller
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Figure 6.17 Impact of the digital controller dynamics

is its ability to apply very complex control algorithms which may be
necessary to control a highly nonlinear process with widely varying
gains and dynamic characteristics over the system operating envelope.
The fundamental design principles are the same, however, even though
there may be many different operating points to consider in a similar
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linearized fashion. The following section provides an introductory
insight into how dynamic compensation algorithms can be programmed
into the digital controller.

6.5 Creating Digital Control Algorithms

Having acquired the digitized signals defining process output require-
ments, process feedback and other signals related to the prevailing oper-
ating conditions, the digital controller’s task is to compute the output
drives for each control loop. This task typically involves the generation
of dynamic elements that emulate linear transfer functions in order to
provide the appropriate control action and/or signal compensation for
optimum dynamic performance of the system. For example:

• integral control;
• proportional plus Integral control;
• proportional plus derivative control;
• lead–lag compensation, etc..

These dynamic elements and many others can be generated from three
basic building blocks, namely, the integrator, the first-order lag and the
derivative elements. The digital representations of these elements are
developed below.

6.5.1 The Integrator

This function can be very easily achieved using rectangular integra-
tion as shown in Figure 6.18 by adding the last computed value of the

K

Last value

ΔT
xi

xoL

xo
+

+

(one cycle delay)

Figure 6.18 Simple integrator algorithm
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output to the product of the newly computed derivative and the cycle
time, i.e.

Xo = Xol +XiK�T

where: Xo is the new output, Xol is the output computed by the last cycle,
Xi is the input to the integrator, K is the integrator gain in s−1

(
second−1

)
and �T is the controller cycle time in seconds.

By inspection it can be seen that provided the derivative (input) term
is finite the output will continue to grow and that the growth rate will
be proportional to the magnitude of the derivative term.

6.5.2 The First-order Lag

To generate this function we simply add a feedback around the inte-
grator algorithm as indicated in the block diagram of Figure 6.19. In this
case the time constant of the lag T = 1/K. To demonstrate this concept
in detail, Figure 6.19 also shows the computed results in tabular and
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graphical form for a first order lag for values of K = 1�0 and �T = 0�1
following a step change in the input Xi from 0.0 to 1.0 at T = 0�01 s.

The results show a good representation of a first-order lag step
response. The quantization process does introduce errors which are
functions of the ratio between the time-constant being modeled and the
cycle time of the controller. In the example shown the error is about
0.2 % (the output value at T = 1�0 s should be close to 0.63 to agree with
linear theory (the algorithm calculated a value of 0.613).

As a general guideline the smallest time constant must be at least an
order of magnitude larger than the controller cycle time. If this rule is
violated very large errors can result and even instability of the algorithm
itself.

6.5.3 The Pseudo Derivative

The preferred algorithm for this function is in fact a combination
of the integrator and first-order lag elements. As indicated by the
heading this is not a pure derivative element but a differentiator
with high frequency filtering via a first-order lag. This approximation
provides close to pure derivative action at frequencies below the break
frequency of the first-order lag while providing an all-important high
frequency filtering effect to guard against the generation of unwanted
high frequency noise. As was mentioned earlier, differentiation is an
inherently noisy process and therefore the use of pure derivative action
should be avoided. The transfer function of this pseudo derivative
element is:

Ts
�1+Ts�

�

This effect is generated digitally by putting an integrator with a gain of
K = 1/T in the feedback path around a simple gain of 1.0 as indicated in
the diagram of Figure 6.20. As shown in the graph of the step response,
the output responds immediately to the step change in the input and
then decays to zero.

The digital control algorithms described here are just brief summary
in order to give the reader an idea of what is involved in generating
dynamic control elements within a digital controller. Clearly the possibil-
ities are almost unlimited and as computer power continues to increase
the ability to generate essentially instantaneous transmission through
the digital controller will become close to reality.
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6.6 Chapter Summary

The digital computer as the control element within a feedback control
system is rapidly becoming the preferred solution as a result of the expo-
nential growth in computing power together with an equally impressive
reduction in cost. With the flexibility afforded by software, the control
possibilities are almost infinite.

It behooves the control system engineer, therefore, to be aware of the
issues involved in applying this powerful technology to the task of the
system controller. This chapter provided a top-level explanation of how
the digital computer fulfills the role of system controller with regard
to signal and data acquisition, control logic computation and control
output commands. A brief introduction into digital control architectures
provided insight into the issues of fault detection and accommodation
and the levels of redundancy necessary to ensure continued function
following one or more failures, since this is the most important issue
with regard to control system operation in an airborne situation.

The impact on closed loop stability as a result of the time delays
associated with the computing function was explained and a simple way
to represent digital computer dynamics via an equivalent linear element
was described and reinforced using a simple control system example.
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Finally, some examples of control algorithms that can be programmed
to emulate the standard linear transfer functions were developed and
some general guidelines were established in order to avoid common
pitfalls associated with quantization and cycle time that will ensure that
the algorithms behave in accordance with the intended linear definition.





7
Concluding Commentary

The objective of this chapter is to review the contents of the book and to
summarize the most important aspects of the material presented making
sure that the reader is well armed with the tools necessary to appreciate
the subtleties of the design, analysis and testing of closed loop control
systems. It should be recognized that this book is not intended to make
control theory experts out of its readers but to create a heightened
level of awareness of the consequences of feedback control and of the
contribution that certain elements around the loop can make to the
dynamic behavior of a system. The emphasis throughout, therefore, has
been to provide the potential practitioner with a number of basic tools
that rely heavily on graphical methods to provide a quick insight into
the response characteristics of control systems.

One successful outcome from digesting the content of this book would
be to allow the reader to delegate complex control systems analysis work
to the control engineering specialist department while, at the same time,
having an expectation of the likely outcome from this analysis so that
a meaningful discussion of the results can occur. This ability has been
referred to several times earlier as having a ‘feel for the problem’ and
can be likened to using a calculator to obtain the answer to a complex
calculation and having an expectation of approximately what the answer
should be. All too often, today, users of sophisticated analytical tools
blindly write down the answer without having any idea as to its validity.
The recommendation is, therefore, to use the knowledge presented in the

Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control R. Langton
© 2006 John Wiley & Sons, Ltd



222 Concluding Commentary

previous chapters to establish a basic understanding of the system using
lots of block diagrams and sketches. This comment will be expanded
upon in the following paragraphs.

7.1 An Overview of the Material

The first step in the knowledge gathering process presented in Chapter 1
was to lay the groundwork for some of the basic mathematical concepts
that are needed in order to express the concept of response and oscilla-
tory behavior. Here we introduced the concept of the D operator and the
use of block diagrams to show graphically the interaction between the
various elements around the control loop. A refresher on the subject of
complex numbers provided the background necessary to appreciate the
mathematics behind the oscillatory response of physical systems such
as the spring–mass system that was used as an example.

The early chapters focused on the use of frequency response, which
is perhaps the most commonly used analytical and test methodology
used by the control engineering community, as a means of classifying
the dynamic response of closed loop systems and with the expression of
amplitude ratio in dB plotted against log frequency we learned that it
is easy to establish the product of all the elements around the loop by
simply adding the gain in dB for each element. Total phase can also be
determined in a similar manner by simple addition. With practice the
generation of frequency response graphs is quick and easy thus giving the
practitioner an immediate insight into the stability margins of the system.

The next challenge was to simplify the task of moving from open loop
response, which is used to establish stability margins, to the closed loop
response in order to observe how the system responds to changes in the
set point or from the application of external disturbances. To support
this process we introduced the Nichols chart which should be consid-
ered as a key graphical aid to illustrate both the open loop and closed
loop characteristics on a single diagram. Not only does this graphical tool
provide immediatevisibility into theclosedloopresponse, it eliminates the
mathematical tedium associated with the generation of closed loop roots.

The compensation techniques expounded in Chapter 3 provided the
reader with some insight into the design process whereby dynamic
elements can be introduced into the control loop to compensate for some
of the undesirable dynamic features of the system, be they the process
itself or one or more of the transducers used to measure the various
states of the process.
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Laplace transforms were introduced in Chapter 4 as a tool supporting
the development of transient response solutions for linear systems using
simple algebra together with the use of standard tables to represent the
various forcing functions and output responses. This chapter included
a significant amount of mathematics in order to describe the logic asso-
ciated with the transformation process; however, the application of the
principles of Laplace transformation can be integrated into the response
analysis process without bringing with it the need to remember the
mathematical origin of the process when solving specific response anal-
ysis problems. The most important aspect of the Laplace transform tuto-
rial was the introduction of the s plane or ‘complex frequency domain’.
This unique feature allows the analytical engineer to see where the
control system roots reside and what their dynamic contribution to the
real world will be. This point is illustrated in Figure 7.1 which shows the
complex frequency domain (i.e. the ‘s’ plane) and how the locations of
the roots of a typical second-order system affect the real world response.

When the roots are close to the j� axis the real world response to
inputs close to the undamped natural frequency are greatly magnified.
As the real component of the root location becomes more negative,
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Figure 7.1 The complex frequency domain summarized
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the oscillation tendency quickly disappears so that when the cosine of
the angle � is 0.707 or greater, there is no measurable oscillation. The
region to the left of the j� axis is the stable region for system roots with
decaying oscillations while to the right side of the j� axis is the unstable
region where oscillations continue to grow. Roots lying exactly on the
axis will exhibit sustained oscillations.

It is an interesting paradox that in the complex frequency domain, the
real world is represented by the imaginary �j�� axis while the real axis
determines the rate of decay (or growth) of oscillations based on the
remoteness of the system roots from the j� axis. The ability of the reader
to become comfortable with this ‘s’ plane concept is important in order
to develop that all-important ‘feel for the problem’. From this point we
were able to replace the D operator in transfer functions with the Laplace
operator s since this has essentially the same meaning while giving the
additional insight provided by the s plane representation of the system.
In fact it is typical for control engineers to consider the s and D operators
as interchangeable and while this is not mathematically correct it is
nevertheless common practice. Certainly when we set s (or D) equal to
j� for frequency response analysis this is, in fact, mathematically correct.

Chapter 5 showed how nonlinearities can be taken into account using
linearization. This simple technique considers small perturbations about
an operating condition so that nonlinear gain curves can be represented
by a constant equal to the slope of the curve at that point. Also, functions
such as multiplication, division, square rooting, etc. can be replaced by
the summation of the partial derivatives of the output for each input
considered separately. Analysis is then reduced to the familiar linear
methods already covered.

Discontinuous nonlinearities are more difficult to analyze since they
result in system behavior that varies not just with frequency but also
with signal amplitude. The hysteresis nonlinearity was singled out as
the most troublesome due to the fact that it can generate phase shifts of
up to 90� and is often the source of limit cycling types of instability.

The describing function approach to determining whether or not a
specific nonlinearity can result in instability is somewhat limited since
it can only provide a ‘yes’ or ‘no’ answer. A far more useful method for
evaluating the effects of nonlinearities is to use simulation and modeling
techniques. This approach takes care of all types of nonlinearity and can
provide the analyst with unlimited dynamic performance information.
It is important, however, to have some understanding of what to expect
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from simulation exercises and to question unexpected results until an
explanation is found.

Chapter 6 addressed the use of the digital computer as a controlling
element in closed loop systems since this is becoming more the norm
with the continuing improvements in the cost and speed of electronics.
Here we learned how to take into account the effects of signal digitization
and re-conversion and the time delays associated with these processes.

The section which follows will attempt to capture the most important
rules, and procedures that have been covered in the book as a whole.
References to the specific section(s) are also included to assist the reader.

7.2 Graphical Tools

The use of graphical techniques has been emphasized throughout as a
powerful supporter of the analytical process because they are easy to
use and provide good visibility as to what is happening dynamically
with the control system under scrutiny. The Bode diagram (frequency
response plot) is by far the most popular graphical tool used by the
control engineering community and is ideal for showing the degree of
stability, in terms of gain and phase margins, that can be expected from
a closed loop control system.

The first thing to remember is that all systems can be represented
by transfer functions that are combinations of first- and second-order
elements whose response characteristics, in terms of gain and phase, are
well documented as tables or graphs expressed as ratios of frequency
with either the time constant or the undamped natural frequency. Thus
it is an easy task to translate each problem-specific element into gain
and phase plots to obtain the composite open loop gain of the system.
Using the frequency response graph this is made simple by the fact that
the gain asymptotes for the dynamic elements are simple straight lines.
For example:

• first-order elements have a flat gain response up to the break frequency
1/T and thereafter the gain attenuates at a constant rate of 6.0 dB per
octave (20 dB per decade);

• second-order elements have a flat response up to the undamped
natural frequency �n and thereafter the gain attenuates at 12.0 dB per
octave (40 dB per decade). The resonance effect around the natural
frequency is a function of damping ratio and can be easily estimated
from standard curves.
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The phase angle for each element, however, is not as easy to define
since it does not change linearly with log frequency and the curves for
each element must be sketched with the help of a few ‘magic numbers’
that we can easily commit to memory. Again the total phase is simply
the sum of the individual elements’ contributions.

The ‘short cut’ approach to stability assessment described in Chapter 2
promotes the use of simple rules using only the gain plots to determine
the acceptability (or otherwise) of the stability margins of the system.
While this approach is only approximate and perhaps a little conserva-
tive, it is an easily used method that can provide a quick assessment
of the situation. This method states that using only the open loop gain
versus frequency plot, good stability will result if the gain curve crosses
the zero dB line with a slope of 6.0 dB per octave for about half a
decade either side of the cross-over frequency. This approach elimi-
nates the need to generate the phase angle plots which is perhaps the
most tedious chore in the analysis process. Figure 7.2 shows examples
of this method showing a system that will exhibit good stability and
one which would probably have unacceptably small stability margins.
Another useful guideline in closed loop control system design is that
it is good practice to ensure that there is good separation between
the bandwidth of the process being controlled and the bandwidth of
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the controller. Also it is desirable that feedback sensors should be as
fast as possible so that their contribution to the system dynamics is
minimized.

7.3 Compensation Techniques

Chapter 3 covered the basics of control system compensation providing
detailed descriptions as to how compensation transfer functions can be
built to suit the specific needs of the system under review. This was rein-
forced through the use of several design examples. There are a number
of key lessons learned which should be passed on to prospective control
engineers that may prove useful in future exercises. The following is a
short list of system features related to the compensation development
process that are worth noting.

7.3.1 Integral Wind-up

We have used the integration process as a means to eliminate errors in
steady state and the use of compensation techniques to minimize the
effect of the unwelcome phase lag that accompanies the integral action.
We also need to be aware of how the integrator responds following
large changes in the control loop command. During large transients,
as long as the error input to the integrator remains finite and of the
same sign, the output from the integrator will continue to increase to
a point where it is caught with a large output as the process reaches
the commanded value and the error changes sign. In the time it takes
for the integrator output to move back towards its null position the
process output can exhibit a large overshoot beyond the commanded
value.

This phenomenon is known as ‘integral wind-up’ and can be
controlled by limiting the authority of the integrator. This can be accom-
plished as indicated in Figure 7.3 where a high gain feedback is intro-
duced around the integrator which comes into play as the authority
limit is reached.

In today’s modern digital controls with the flexibility provided by
software this is even easier. For example, the integrator gain can be
made nonlinear with additional logic to control when the integrator is
operative or not as a function of the error.
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Figure 7.3 Integrator with authority limits

7.3.2 Avoid Using Pure Derivative Action

Derivative action is very attractive to the control system designer
because, in theory, it provides a 90 degree phase lead right off the
bat! We need to recognize, however, that the differentiation process
is inherently noisy and should only be employed with an attendant
high frequency filter term to avoid the magnification of noise. The pure
derivative transfer function TD is not recommended. The pseudo deriva-
tive:

T1D
�1+T2D�

is much better. This approach was covered in Chapter 6 on digital
electronic control where the generation of a pseudo derivative algorithm
was described. In the preferred transfer function, the lag term effectively
cancels the derivative term for frequencies above about 10 times the
break frequency, i.e. 10/T2 radians per second.

7.3.3 Mechanical Stiffness Estimates are Always High

This point was made more than once in Chapter 3; however, it is
an important message that cannot be overstated. All too often the
control system designer has to contend with lower resonant frequencies
resulting from low stiffness estimates. It therefore behooves the designer
to consider at the outset what might be done to compensate for such
an event. Better yet, use test results where possible to define the best
control action.
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Finally, on the general subject of compensation, the control system
designer can gain significant insight into the effects of adding various
control elements into the loop by using the complex frequency domain
(the ‘s’ plane) to observe the location of the open loop roots and to sketch
in the root locus curves with and without the compensation. Further
discussion of this subject is presented in the following section.

7.4 Laplace Transforms and Root Locus Techniques

Laplace transforms gave rise to the application of root locus theory
which became very popular in the aerospace industry in the 1960s and
1970s. The aircraft as a dynamic process behaves in a linear fashion for
small deviations about a given flight condition. This type of process
lends itself well to the use of root locus and this became the tool of
choice for the design and analysis work associated with aircraft stability
and autopilot systems. The example in Figure 7.4 shows how an aircraft
that is basically unstable in pitch can be stabilized via a simple pitch
rate control loop.
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Figure 7.4 Root locus example for a pitch axis autostabilizer
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The aircraft dynamics are represented by the following transfer func-
tion which comprises a first-order lead term in the numerator and a
second-order term in the denominator:

20 �s+2�[
s2 +2 �−0�1� �4� s+ �4�2

] �

The latter term shows the undamped natural frequency to be 4.0 radians
per second with a damping ratio of −0�1 hence the location of the aircraft
roots on the positive side of the j� axis.

In this example, the root locus plot can be quickly sketched and the
gain required to provide the desired damping ratio obtained. In the past,
slide-rule type tools (called ‘spirules’) were available to help the analyst
to add and subtract angles to locate the −180 degree locus on a scaled
graph. This same tool could be used to calculate the gain at any point
on the locus. Today this can be accomplished using readily available
software tools that will run on standard PCs; however, the purpose of
introducing the root locus method here is make the reader aware of
its capabilities and to encourage its use from a qualitative perspective.
This again provides valuable insight into a control system’s behavior
from the location of the open loop roots to the location of the closed
loop roots over a wide range of loop gains. It also gives the analyst
useful information as to what the various compensation elements will
contribute to the potential closed loop performance.

The advice, therefore, is to use Laplace transforms and root locus as
another tool that can provide additional visibility into control system
behavior. Having obtained the open loop transfer function, it is easy to
sketch out the root locus plot to see what is happening in the complex
frequency domain and where the loci track as gain is increased.

7.5 Nonlinearities

We must remember that in the real world purely linear systems do
not exist and that the control systems engineer must use linearization
techniques that provide ease of analysis while maintaining a reason-
able representation of the fundamental dynamic behavior of the system
being analyzed. Fortunately most feedback control systems can be
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adequately studied using the basic linear analysis and synthesis tech-
niques described in this book; however, it is always a good idea to keep
asking the question ‘are my assumptions sufficiently valid?’. Experience
suggests that the problems with performance in the field are primarily
due to the fact that the real world use does not adequately match the
intended application. This suggests that we need to be much more atten-
tive to the way products are used than blindly referring to the specified
performance requirements.

As an example let us consider the hydraulic servo actuator with
overlap in the servo valve spool. This feature manifests itself as a dead-
band around the null point so that the flow gain of the spool valve is
reduced for small inputs to the spool valve. From the perspective of
actuator stability, this is not particularly significant since it means that
for small signals the loop gain is progressively reduced as input ampli-
tude is reduced. Figure 7.5 shows typical test results that can occur from
this type of situation. As shown in the figure, the response degrades
as the amplitude of the input command is reduced. This degradation
manifests itself as a small reduction in gain and, more importantly, as
an increase in phase lag and while the actuator itself is quite stable
its degraded performance at low amplitudes can seriously impact the
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stability margins of an outer control loop of which the actuator is just
one element.

It is therefore important for the design engineer to pay attention not
just to performance aspects of one component when it plays a role as an
element in a larger system. Component specifications are notorious for
being incomplete and, in the complex integrated systems environment
that we find ourselves today, every engineer should be prepared to share
an understanding of the big picture early in the design and development
phase in order to minimize the need to fix performance problems after
the system enters service.

7.6 Digital Electronic Control

The electronic control chapter (Chapter 6) provided the reader with a
basic understanding of how a digital computer can be utilized as a
controller in a closed loop system. In today’s environment even mechan-
ical engineers need to have an understanding as to how signals are
digitized (and vice versa) and the time delays involved in the data
conversion and calculation processes in order to appreciate the impact
on closed loop stability that these characteristics generate.

Once again this stresses the need for today’s engineers to be not only
specialists in their specific field but also generalists who have a funda-
mental appreciation of the pitfalls that can trap the unwary or unin-
formed engineer who does not have a feel for the ‘big picture’. In order
to simplify the task of the typical digital controller it was recommended
that the operational software program be considered as two subsections
that together perform the total controller function namely:

• the input/output (I/O) handler;
• the control logic.

The I/O handler focuses on the conversion of sensor data into the digital
domain and performs built-in-test (BIT) checks on all converted data to
ensure that the input signal conditioning circuitry and output drivers
are operating correctly, while the control logic is concerned only with
the overall system functionality.

A consideration in the design of the software architecture is to ensure
that the execution is performed in a deterministic fashion in order to
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provide an operational environment that is amenable to the establish-
ment of a predictable verification testing regimen as part of the certifica-
tion process. Architectures that involve layers of interrupts with different
levels of priority should be avoided since the execution of the software
program becomes indeterministic thus making verification testing and
regression testing following changes and problem fixes to often be incon-
clusive. Even more seriously, the nature of indeterministic software is its
ability to hide embedded problems during the development and certi-
fication phase of the program only to have them suddenly appear well
after the system enters service when a much longer software operational
exposure time has occurred.

Another architectural design issue to be aware of concerns the use of
multiple control channels executing the same control logic program for
the purpose of providing control redundancy. In the event of a failure
in one control channel, the remaining channel (or channels) can main-
tain continued safe control of the process. Problems can arise, however,
when the control channels are not synchronized in time. In this case
even minute differences in clock frequency can result in two (or more)
channels becoming a full clock cycle out of step and, as a result, the
redundancy management logic whose job it is to monitor differences
between channels can erroneously de-select a healthy channel. While
some of the above commentary is only secondarily related to the feed-
back control issue it is considered to be of sufficient importance to be
brought to the attention of the prospective control systems engineer.

7.7 The Way Forward

The content of this book addresses only a small corner of the subject of
feedback control systems engineering within an area that is referred to
as classical control theory. Hopefully the reader has found the material
to be both relatively easy to absorb and interesting. As an introduc-
tory book there are a number of the less commonly used topics associ-
ated with the classical theory that were not covered here including the
following.

(a) Random noise. This approach to both analysis and testing utilizes the
concept whereby random noise comprising a specific power spec-
trum and frequency content is used as the input to closed loop control
systems. It is interesting to realize that if a system is excited with
random noise containing a mixture of all frequencies, the system will
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act like a tuning filter by magnifying those frequencies that it ‘likes’
while rejecting all of the other frequencies. Thus the transfer func-
tion of a system tested using random noise can be synthesized via
this technique.

(b) Phase plane analysis. The phase plane is a graphical method of
analyzing the dynamic behavior of graphs of second-order systems
when nonlinearities exist that can be expressed as functions of output
velocity and position but are not time dependent. Systems with
on–off (bang–bang) controllers are an example where the phase plane
method can be used effectively. The approach is to redefine the
equations of motion as functions of velocity and position and to
develop graphs of these two variables plotted against each other.
These response curves define the system response in the ‘phase
plane’.

(c) Sample data systems. This is the rigorous analysis method for eval-
uating the stability of sampled data control systems and involves
another mathematical transform technique (the ‘Z’ transform) that
can be used in block diagram form as well as via the ‘Z’ plane chart
to provide insight into their functional behavior.

Now that we have successfully penetrated the mathematical mystery
of feedback control theory, it should be relatively easy to broaden ones
knowledge through further reading. There are many books on classical
control theory available today with different areas of emphasis and the
reader is encouraged to seek out what is most appropriate in terms of
the industrial area of interest, style and material content.

Beyond classical control theory, which represents the limit in scope
of this book, there is modern control theory that applies matrix mathe-
matics in the exploration of the dynamic behavior of multi-input, multi-
output systems. This area of study is the cutting edge of control theory
and continues to be the subject of most advanced degrees in the field of
control engineering.
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